Extensibility Guide for Business Analysts
11g Release 7 (11.1.7)
E16691-12
September 2013
Documentation for business analysts and administrators that describes how to use runtime tools to customize and extend the standard functionality provided by Oracle Fusion Applications.
Oracle Fusion Applications Extensibility Guide for Business Analysts, 11g Release 7 (11.1.7)
E16691-12
Copyright © 2011, 2013 Oracle and/or its affiliates. All rights reserved.
Primary Author: Chris Kutler (lead), Sarah Bernau, Shelly Butcher, Ralph Gordon, Peter Jew, Mark Kennedy, Steven Leslie, Landon Ott, Leslie Studdard
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Oracle Fusion Applications Extensibility Guide for Business Analysts.
This document is intended for business analysts and administrators who want to use runtime tools to customize and extend the standard functionality provided by Oracle Fusion Applications. Business analysts and administrators should have a basic understanding of Oracle Fusion Applications. This book gives an overview of the customization and extension tasks and provides references to the books that contain more detailed documentation.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
You can also find information about Oracle Fusion Middleware and extending and customizing Oracle Fusion Applications in the following documents:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
The following topics introduce the new and changed customization and extensibility features of Oracle Fusion Applications and other significant changes that are described in this guide, and provides pointers to additional information.	
Oracle Fusion Applications 11g Release 7 (11.1.7) includes the following new and changed customization and extensibility features for this document.	
For 11g Release 7 (11.1.7), this guide has been updated in several ways. Following are the sections that have been added or changed.	
Oracle Fusion Applications 11g Release 6 (11.1.6) includes the following new and changed customization and extensibility features for this document.	
For 11g Release 6 (11.1.6), this guide has been updated in several ways. Following are the sections that have been added or changed.	
Part I contains the following chapters:	
This chapter provides an overview of how to customize and extend Oracle Fusion applications and introduces Page Composer, Oracle Fusion CRM Application Composer (Application Composer), Business Process Composer, and Oracle Business Intelligence Publisher (Oracle BI Publisher).	
Within this guide, the term customize means to change a standard (existing) artifact. The term extend means to create a completely new artifact, such as a custom object.	
This chapter includes the following sections:	
Note: For Oracle Cloud implementations, check the Oracle Cloud documentation to determine which Oracle Fusion Applications versions are supported by that Oracle Cloud implementation.	
While Oracle Fusion applications provide robust out-of-the-box functionality, there may be areas of an application that you must change to meet your business needs. This book guides you through the process of using runtime tools to extend and customize Oracle Fusion applications.	
Oracle Fusion applications are built using a common data model. Because of this commonality, when you make a customization in one area, that customization is available to all objects in the application. For example, if you add an attribute to an object, you can easily add that attribute to the web-based view page, to an associated mobile page, and to any associated reports.	
You can make the customizations in a sandbox so that the changes are isolated. After validating the changes, you can publish them into a full test environment. For more information about sandboxes, see Section 2.2, "Using the Sandbox Manager."	
For customizations and extensions, there are three basic scenarios:	
The term personalization refers to the changes that every end user of the Oracle Fusion Applications product suite makes to certain artifacts in the user interface (UI) at runtime. These changes remain for that user each time that user logs in to the application. Personalization includes changes based on user behavior (such as changing the width of a column in a table), changes the user elects to save, such as search parameters, or composer-based personalizations, where an end user can redesign aspects of a page.	
For composer-based personalizations, Oracle Fusion Applications includes Page Composer, which allows end users to change certain UI pages to suit their needs. For example, they can rearrange certain objects on a page, add and remove designated content, and save queries. Figure 1-1 shows the Partner Profile page in Page Composer. An end user can add other content to this page, or change the order of the current content.	
Runtime customizations and extensions include those that a business analyst makes to an Oracle Fusion application at runtime using browser-based composers. These customizations and extensions are visible and usable by all or by a subset of Oracle Fusion Applications users. The types of runtime customizations and extensions range from changing the look and feel of a page, to customizing standard objects, adding a new object and associated pages and application functionality, changing workflows, defining security for new objects, and customizing reports. Figure 1-2 shows how you can customize the fields on a standard object using Application Composer, which is a runtime tool used to customize and extend certain Oracle Fusion Customer Relationship Management (Oracle Fusion CRM) applications.	
Customizing and extending Oracle Fusion applications using runtime tools, with the exception of Application Composer, is covered in this book. For information about Application Composer, see the "Application Composer: Introduction" chapter in the Oracle Fusion Applications CRM Extensibility Guide.	
Note: This functionality is not available in Oracle Cloud implementations.	
Design time customizations and extensions include more complex changes, such as creating a SOA composite application or creating a new batch job, and they require deployment into the runtime environment. These design time customizations and extensions are most often done by Java developers using Oracle JDeveloper (a comprehensive integrated development environment), or they may be done in other tools, such as Oracle SOA Composer. The customizations are then uploaded or deployed to a running instance of Oracle Fusion Applications.	
Design time customizations and extensions are covered in the Oracle Fusion Applications Extensibility Guide for Developers.	
Oracle Fusion applications contain built-in customization layers that allow you to make customizations that affect only certain instances of an application. For example, the Sales application has a layer for job role. When you customize an artifact, you can choose to make that customization available only to users of a specific job role, for example, a sales representative.	
Customizations you make are not saved to the base standard artifact. Instead, they are saved to an Extensible Markup Language (XML) file that is stored in an Oracle Metadata Services (MDS) repository. This XML file acts like a list of instructions that determines how the artifact looks or behaves in the application, based on the layer that is controlling the current context. The customization engine in MDS manages this process.	
For example, say you want to customize the Sales home page by removing the Quick Create panel, but only for users with the Sales Representative role. Before you make your customization, you first select the layer in which to make your customization, in this case the role layer whose value is Sales Representative	
. When you make your customization by removing that pane from the page, an XML file is generated with the instructions to remove the pane, but only in the role layer, and only when the value is Sales Representative	
. The original page file remains untouched. The customization engine in MDS then stores the XML file in an MDS repository.	
Now, whenever someone logs in to the application and requests an artifact, the customization engine in MDS checks the repository for XML files that match the requested artifact and the given context, and if there is a match, it layers the instructions on top of the base artifact. In this example, whenever the Sales home page is requested (the artifact) by someone who is assigned the role of Sales Representative (the context), before the page is rendered, the customization engine in MDS pulls the corresponding XML file from the repository, layers it on top of the standard Sales home page, and removes that pane. Whenever someone who is not a Sales Representative logs in (for example, someone with the role of Sales Manager), the XML file with your changes is not layered on top, and so the Quick Create panel is displayed.	
Figure 1-3 shows how the customization XML file is applied to the base document and is visible only to a sales representative.	
All users of Oracle Fusion applications can personalize certain pages using the Personalization menu. Users can move elements around on a page, hide elements, and even add available elements to their page. When they do this personalization, the customization engine in MDS creates an XML file specific to that user.	
For example, say User 1 (who has the role of Sales Representative) personalizes the Sales home page. There will then be an XML file stored in the repository, noting the changes that user made. When User 1 logs in, as in the previous example, the customization engine in MDS pulls the XML file with the sales representative customizations from the repository and layers it on top of the standard Sales home page. In addition, the engine pulls the XML file with the User 1personalizations, allowing the user to see the personalization changes along with the Sales Representative changes. When other Sales Representatives log in, they do not see the User 1 personalization changes, as shown in Figure 1-4.	
The exact customization layers available for an application depend on that application family (see the product-specific documentation from Oracle Enterprise Repository for Oracle Fusion Applications for details). However, all Oracle Fusion applications have the following customization layers:	
These layers are applied in a hierarchy, and the highest layer in that hierarchy in the current context is considered the tip. Within the default customization layers, the global layer is the base layer, and the user layer is the tip. If customizations are done to the same object, but in different layers, at runtime, the tip layer customizations take precedence. For example, if you customize the label for a field in the site layer using Page Composer and customize the same label in the global layer using JDeveloper, the site layer customization will be displayed at runtime.	
Because customizations are saved in these XML files, when you patch or upgrade your Oracle Fusion applications, the base artifacts can be updated without touching your changes. The base artifact is replaced, and when the application is run after the patch or upgrade, the XML files are simply layered on top of the new version. You do not need to redo your customizations.	
Before you create customizations, you must select the layer to which you want your customizations to be applied. Most of the tools that you use to create your customizations provide a dialog where you can pick the layer for your customizations.	
Oracle Fusion Applications provides several runtime tools to enable you to customize and extend Oracle Fusion applications. With these tools, you can perform the following tasks:	
For a more detailed description of the workflow you must follow when customizing and extending Oracle Fusion applications, see Chapter 2, "Understanding the Customization Development Lifecycle."	
The user interfaces in Oracle Fusion applications are controlled by role-based authentication, meaning that the information presented in the UI, and what the user can do in the UI, depends on the role assigned to the currently logged-in user. For example, if you are assigned a role with an administrative privilege, when you log in to Oracle Fusion Applications, you will see an Administration menu, as shown in Figure 1-5. This menu allows you to do things such as customize a page for all users, or manage customizations.	
Both personalization and customization use Page Composer to make changes to an application page. Using personalization, any user can drag and drop fields, rearrange regions, add approved external content, and save their favorite queries.	
Using administration customization, you also use Page Composer to customize pages for other users. You can add fields, add validation, change defaults, rearrange regions, and add external content. Page Composer allows you to work in a WYSIWYG view, and, in some cases, Source view, as shown in Figure 1-6.	
For more information about customizing pages, see Chapter 3, "Customizing Existing Pages."	
If you want to extend or customize the Sales, Marketing, Customer Center, Trading Community Architecture (TCA), and Order Capture applications that are part of the Oracle Fusion CRM product family of Oracle Fusion Applications, you can use Application Composer to customize your pages, as described in the "Creating a Work Area: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.	
Note: Only certain pages are available for customization. For a complete list, see the product-specific documentation from Oracle Enterprise Repository for Oracle Fusion Applications.	
You access Application Composer by clicking the Application Composer link from the Navigator menu of Oracle Fusion Applications, as shown in Figure 1-7.	
Application Composer allows business analysts to make more complex runtime customizations to Oracle Fusion CRM applications. In addition to customizing pages, business analysts can customize objects and all the artifacts that support them (such as fields, pages, buttons and links, security, server scripts, and saved searches), and can also extend Oracle Fusion applications by creating completely new objects and artifacts, as shown in Figure 1-8. For more information, see the "Defining Objects: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.	
When new objects are created, you often also create associated Work Area pages for those objects. You can add those pages to the navigator menu so that they can be accessed in the same way as standard objects. For more information, see Chapter 5, "Customizing Menus."	
Note: This feature is not available in Oracle Cloud implementations of Oracle Fusion Human Capital Management.	
When you create a new object that is not a subclass of another object, you can also create a new object workflow to manage any business processes associated with it. For example, say you used Application Composer to create a marketing object and you want to create an associated approval flow. From within Application Composer, you can access Oracle Business Process Composer and create the process that defines that flow. For applications outside of Oracle Fusion CRM, you access Business Process Composer directly from the Navigator menu. For more information about using the Business Process Composer, see Chapter 6, "Customizing and Extending BPMN Processes ."	
When you create a new object in Application Composer, you can define security policies for it. A security policy defines the end user's level of access to the data records of the object. For more information about creating security policies for custom Oracle Fusion CRM objects, see the "Securing Custom Objects: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.	
If you need to add an attribute to a business component in an application that is not one of the five Oracle Fusion CRM applications, you can often use flexfields. A flexfield enables you to define attributes on a business component and then apply business logic to them. For example, an airline manufacturer might require very specific attributes for their orders that are not provided by the out-of-the-box implementation of an order. Because a flexfield exists for the order business component, you can use it to create and configure the desired attribute. Flexfield configurations are stored in an MDS repository, and so are safe during patching and upgrading. You access flexfields from the Setup and Maintenance menu from the Administration menu. For more information about flexfields, see Chapter 4, "Using Flexfields for Custom Attributes."	
Oracle Fusion Applications comes with a complete set of reports. You can customize these reports (for example, change the layout) to fit your particular business needs. Additionally, if you customize or create a business object, you can create a new report for that object. For more information, see Chapter 7, "Customizing Reports and Analytics."	
Note: This functionality is not available in Oracle Cloud implementations.	
Design time customizations and extensions include complex changes that require deployment into the runtime environment. For information about design time customizations, see the Oracle Fusion Applications Extensibility Guide for Developers.	
There are many scenarios for which you can customize Oracle Fusion applications. The following tables identify for each scenario the artifacts that you can customize or create in Oracle Fusion Applications, what tool you use, the type of user that can make the change, and whether the changes are stored in an MDS repository:	
Note: Application Composer is available only if you want to make changes in the following Oracle Fusion CRM applications:	
Some features described in this section are not available in Oracle Cloud implementations	
Note: While you can customize view pages in Page Composer and Application Composer, only certain pages are configured to allow it. If the customization that you want to make is not available in Page Composer, then you must use JDeveloper to make the customization.	
Table 1-1 View Page Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Add, move, delete, show, or hide components on a page.	Page Composer
Change a page layout.	Page Composer
Create a site-level search for all users.	Page Composer
Customize a page title.	Page Composer
Customize a task list menu.	Page Composer
Customize popup window content.	Page Composer
Add fields, buttons, links, to a standard page (Oracle Fusion CRM).	Application Composer
Customize attributes for a flexfield on a page.	Page Composer
Customize properties for UI components on a standard page.	Page Composer
Customize properties for UI components on a standard page (Oracle Fusion CRM).	Application Composer
Customize the UI Shell template.	Page Composer
Table 1-2 Branding Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Customize the UI Shell template.	Page Composer
Customize report layouts.	Oracle BI Publisher
Table 1-3 Object Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Customize objects (Oracle Fusion CRM).	Application Composer
Add an attribute to a business object using flexfields (not Oracle Fusion CRM).	Setup and Maintenance work area
Create objects (Oracle Fusion CRM).	Application Composer
Add a business object page to the navigator menu	Setup and Maintenance work area
Add custom object work area pages to the navigator menu (Oracle Fusion CRM)	Application Composer
Add validation to an object (Oracle Fusion CRM).	Application Composer
Customize saved searches for a custom object (Oracle Fusion CRM).	Application Composer
Customize object workflows for an object (Oracle Fusion CRM).	Application Composer
Create object workflows for an object (Oracle Fusion CRM).	Application Composer
Table 1-4 Business Process Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Create a BPMN process in a BPM project.	Business Process Composer
Create a BPMN approval process in a BPM project (Oracle Fusion CRM).	Application Composer
Customize custom BPM projects.	Business Process Composer
Customize custom BPM projects (Oracle Fusion CRM).	Application Composer
Table 1-5 Report Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Create report layout.	Oracle BI Publisher
Customize report layouts.	Oracle BI Publisher
Customize style templates.	Oracle BI Publisher
Create a report.	Oracle BI Publisher
Translate a report.	Oracle BI Publisher
Create a report subject area (Oracle Fusion CRM)	Application Composer
Table 1-6 Analysis and Dashboard Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Customize analytics.	Reports and Analytics pane
Customize and extend the Oracle BI repository (RPD file).	JDeveloper, Oracle BI Administration Tool
Table 1-7 Security Customization Scenarios in Oracle Fusion Applications	
Customization/ Extension	Tool
---	---
Grant access to custom objects (Oracle Fusion CRM).	Application Composer
Enable elevated privileges customization.	Application Composer
This chapter discusses the typical workflow for customizing and extending Oracle Fusion applications. It describes how to use sandboxes to perform customizations in an environment that is separate from the full test environment, publish the changes to a full test environment, and move the changes to other environments.	
This chapter includes the following sections:	
Note: For Oracle Cloud implementations, check the Oracle Cloud documentation to determine which Oracle Fusion Applications versions are supported by that Oracle Cloud implementation.	
All customizations and extensions to Oracle Fusion Applications should be done in a full test environment, as shown in Figure 2-1. Typically, this environment contains one or more Oracle Fusion applications that will then be moved to a production environment after all customizations and extensions are complete and tested.	
As described in Section 2.1.1, "Runtime Customization Workflow," business analysts using Page Composer and Oracle Fusion CRM Application Composer (Application Composer) make their application customizations in a sandbox. Sandboxes store the customizations in isolated, protected Oracle Metadata Services (MDS) labels that are available only when you work in that particular sandbox. The changes can be done in a test-only sandbox (that is, the code in the sandbox is for testing only, and is never deployed), or they can be done in a sandbox that is then published to the full test environment.	
After testing, you can then move the customizations to the mainline code as described in Section 2.3, "Exporting and Moving Customizations."	
Tip: When you extend Oracle Fusion applications, you might want users to be able to configure the extensions using Oracle Fusion Functional Setup Manager. For more information about creating task flows for setup activities for extensions, see the Oracle Fusion Functional Setup Manager Developer's Guide.	
When you use Application Composer and Page Composer to make runtime customizations to Oracle Fusion applications, you use sandboxes to save your changes in an isolated environment. For example, before you begin making customizations, you create a sandbox named MySandbox	
and make your customizations in that sandbox. If others want to see the customizations, then they would use MySandbox	
.	
Note: There are restrictions for when more than one user is working in a sandbox. For more information, see Section 2.2.1, "Sandboxes and Concurrent Usage."	
You also use a sandbox when you define security policies for custom objects that you have created using Application Composer. A security sandbox stores the security information in new database tables that are available only when you choose to work in that sandbox.	
After you complete your customizations, others can review and validate the sandbox. Then you can publish the sandbox to the full test environment where your customizations become part of that repository. For more information about sandboxes, see Section 2.2, "Using the Sandbox Manager."	
Note: A flexfield sandbox is for testing only and cannot be published. Instead, you deploy a flexfield to the full test environment using the flexfield UI. To test a flexfield configuration before deploying it to the full test environment, deploy it to a flexfield sandbox, as described in Section 4.7, "Deploying Flexfield Configurations." The changes that you deploy to a sandbox are isolated from the full test environment and can be seen only by those who make the flexfield sandbox active in their session. After you are satisfied with the changes in the sandbox, you can deploy the changes to the full test environment.	
When you publish a sandbox, the published customizations are labeled. Labeling can act as a save point, meaning that if a future customization causes issues, you can use the Manage Customizations dialog to remove all customizations done after that point by promoting the last known good label back to the tip as described in Section 2.1.1.1.3, "Backing Out Customizations."	
You can also use the Manage Customizations dialog to view others' customization metatdata files, and to download those files to diagnose any issues. For more information, see Section 2.1.1.1, "Viewing and Diagnosing Runtime Customizations."	
Note: The navigator menu, Business Process Modeling Notation (BPMN) process flows, and report customizations do not use an MDS repository. See Chapter 5, "Customizing Menus," Chapter 6, "Customizing and Extending BPMN Processes ," and Chapter 7, "Customizing Reports and Analytics" for more information.	
Figure 2-2 illustrates the use of sandboxes when customizing pages, objects, and security using Page Composer and Application Composer and when configuring flexfields.	
Use the Manage Customizations dialog to view and diagnose runtime customizations that have been made to application pages.	
By default, the Manage Customizations dialog displays the customizations that have been performed by the logged-in user. Administrators can optionally see the customizations made by other users.	
Tip: You can also use the Manage Customizations dialog to export customizations for diagnostic purposes. For more information, see Section 2.3.3, "Using the Manage Customizations Dialog to Download Customizations."	
You must do the following before you can use the Manage Customizations dialog:	
Figure 2-3 shows the Manage Customizations dialog on a desktop page with all artifacts related to the CustomerCtrWorkarea.jsp	
file.	
Note: When viewing the Manage Customizations dialog from a simplified page, you can see only the top-level nodes and you cannot expand them.	
As shown in Figure 2-3, a customization was made to a page fragment file in the site layer, and a customization was made to the UIShell Page Template in the external layer (the external layer is a layer that is specific to Oracle Fusion Customer Relationship Management applications). By default, the customizations in the Current Context column show the customizations that the currently logged-in user would see in a running version of the application. All customizations, including those the currently logged-in user might not see (perhaps because of security policies), are listed in the All Layers column.	
For example, say you are a customization developer. Because you as a user have been assigned a particular role, the page that you see will display only those customizations appropriate for your role. Those customizations will be listed in the Current Context column (provided you chose the proper layer from the Layer Name dropdown menu). This helps you to determine what customizations are affecting what you are seeing. There may, however, be customizations that you do not see. You can view those customizations from the All Layers column.	
Sometimes, an administrator might need to view a personalization that was made by another end user. For example, a user might have made an error while personalizing a page and that page is no longer displayed for the user. Because the user cannot access the page, the user cannot correct the error. In this case, the administrator can access the page, request to see the user's changes, and delete those changes to restore the page to its original settings.	
To view customizations:	
Tip: After you are in the Manage Customizations dialog, you can change the page, page fragment, or task flow for which you are viewing customizations using the Search field.	
Metadata labels identify the state of the objects in an MDS repository at a given point in time. Labels can serve as save points to which you can roll back your customizations if the customizations create problems. You roll back to a label by making that label become the latest version. This action is often referred to as promoting the label to the tip.	
Note: You cannot promote design time customizations. If a design time customization is causing a problem, you must undeploy the changes, fix the issues, and then redeploy to a sandbox.	
To create a label across the entire MDS repository, use the createMetadataLabel	
Oracle WebLogic Scripting Tool (WLST) command as described in the "Creating Metadata Labels" section of the Oracle Fusion Middleware Administrator's Guide. You can also create a label when you save a customization in Page Composer.	
To roll back all customizations, use the promoteMetadataLabel	
WLST command as described in the "Promoting Metadata Labels" section of the Oracle Fusion Middleware Administrator's Guide.	
Note: WLST is not available in Oracle Cloud implementations.	
To roll back the customizations for a specific page, use the Manage Customizations dialog accessed from Page Composer as described in the following steps. Note that when you use the Manage Customizations dialog, you are rolling back only the customizations for the page and its pageDef	
file. You are not rolling back the other customizations made at the label's save point.	
Note: Some labels are created automatically. For example, customizations that are created in a sandbox are automatically labeled when the sandbox is published. You can identify an automatically created label by its prefix. For a list of these prefixes, see the "Managing Oracle Fusion Applications-Specific Labels in the Oracle Metadata Repository" section in the Oracle Fusion Applications Administrator's Guide.	
To promote a page's customizations to the tip:	
Note: The functionality described in this section is not available in Oracle Cloud implementations.	
For information about the design time customization workflow, see the Oracle Fusion Applications Extensibility Guide for Developers.	
The sandbox manager is a tool for managing the different types of customization changes that can be applied to an application. The different types of sandboxes are:	
The metadata sandbox supports making changes to the application's metadata stored in the MDS repository.	
The security-enabled sandbox supports making data security changes.	
The flexfield sandbox is not created using the sandbox manager. Use the flexfield UI to make changes to the flexfields and then deploy them to the sandbox. The flexfield deployment process manages the creation of the sandbox. For more information about flexfields, see Section 4.7, "Deploying Flexfield Configurations."	
To customize an Oracle Fusion application in runtime, you must first create a sandbox and then use Page Composer or Application Composer to make the customizations. These changes will be contained within the sandbox so they do not affect the mainline code. You then test and validate the changes by publishing the sandbox to the full test environment. After the application has been tested, it can then be moved to the production environment. The customizations created in the sandbox will be migrated to the production environment and will be available to users of the system.	
You make changes to an application at runtime in a sandbox so that the changes are isolated from the mainline code. The mainline code is a branch of data that serves as a single source. After you are satisfied with the changes in the sandbox and want to commit them, you can publish the metadata or security-enabled sandbox to the mainline code. If customizations existed in the mainline code before the sandbox was created, you will see the customization information in the sandbox. If you add customizations to the mainline code after a sandbox has been created, you will not see the newly added customizations in the sandbox. You will need to exit, publish, or destroy the sandbox and create a new sandbox to see the customizations that were newly added to the mainline code.	
Flexfield sandboxes are for testing only and cannot be published. You make flexfield configurations that are then stored in a database, and then deploy those configurations to a sandbox to see the resulting deployment artifacts in a sandbox environment. Flexfields are deployed directly to the mainline code using the flexfield UI. For more information about flexfields, see Section 4.7, "Deploying Flexfield Configurations."	
You can use runtime tools to customize the application. The sandbox manager works with Application Composer and Page Composer to customize objects and pages:	
Oracle Business Process Composer and Oracle SOA Composer are also runtime customization tools, but they do not use the sandbox manager. They have their own mechanisms for handling customization changes:	
For non-Cloud implementations, a metadata sandbox that you create using the sandbox manager is available in JDeveloper when you are creating and deploying customizations intended for a deployed Oracle Fusion application in Oracle WebLogic Server. The available sandboxes will appear in a selection list in JDeveloper during deployment. For more information, see the "Deploying Oracle ADF Customizations and Extensions" section in the Oracle Fusion Applications Extensibility Guide for Developers. Note that the security sandboxes created using the sandbox manager are not available in JDeveloper.	
In Application Composer, you customize security policies using a sandbox specifically for editing them. When you enable the security sandbox, the operation will duplicate the schema for Oracle Fusion Data Security tables, which is a lengthy setup operation. Therefore, ensure that you are fully ready to customize the security policies before you enable the security sandbox.	
The security policy customizations that you publish from a sandbox will be merged into the Oracle Fusion security policy repository as part of the native application, and will overwrite any previous customizations. Ensure that you are not editing the same object concurrently with another user to avoid inconsistencies that can result when multiple users edit the security policies associated with the same object in different sandboxes.	
The metadata and security sandbox sessions can be saved, downloaded, and imported as files into other Oracle Fusion applications.	
In the customization runtime workflow, you use sandboxes to isolate the changes from the mainline code for testing and validating. After you are satisfied with the changes, you can publish the changes back to the mainline code. You can also create sandboxes for testing purposes only, and not publish them.	
There are two types of sandboxes:	
These sandboxes will be merged back to the mainline code.	
These test-only sandboxes will not be published and therefore produce no concurrency conflicts between sandboxes. You can have many test-only sandboxes at the same time. But if you have multiple users working on the same test-only sandbox, then they must adhere to the guidelines described in Section 2.2.1.3, "Guidelines for One Sandbox, Multiple Users."	
Figure 2-4 illustrates the two types of sandboxes and their relationship to the mainline code.	
When multiple users can customize an application using sandboxes, there are two types of concurrency conflicts:	
An application artifact typically includes several metadata files. Therefore, creating or editing an artifact usually means making changes, whether directly or indirectly, to more than one file. Some of these metadata files may be shared between artifacts.	
Note: Many customization scenarios, including customizing security policies, involve editing the same underlying artifacts. The only way to be certain of eliminating the possibility of any concurrency conflicts is to allow only one user at a time in an active sandbox. If you must have multiple users or multiple sandboxes, then follow the usage guidelines described in Section 2.2.1.3, "Guidelines for One Sandbox, Multiple Users," and Section 2.2.1.4, "Guidelines for Multiple Sandboxes, Multiple Users."	
Note: Features or functionality described in this note are not available in Oracle Cloud implementations. When a sandbox intended for publishing is active, do not use Oracle Enterprise Manager Fusion Applications Control or Oracle WebLogic Scripting Tool (WLST) commands to import any metadata documents into the mainline code. The imported metadata may be in conflict with the changes made in the sandbox. For more information, see the "Transferring Metadata Using Fusion Middleware Control" section of the Oracle Fusion Middleware Administrator's Guide. If you need to import multiple customizations available in the metadata repository for an application, you can use the	
Conflicts within a sandbox can arise when multiple users are customizing an application using the same sandboxes at the same time, because more than one user may be attempting to customize the same artifact, or performing a customization task that indirectly affects other shared files. An example of a direct conflict is when different users attempt to customize the same page, the same fragment, or the same metadata file within the same layer. An example of an indirect conflict is when two users, each creating their own object, cause a conflict in the metadata file that tracks which new objects have been created by both saving their changes around the same time.	
Conflicts may also arise when users are editing a shared artifact, such as when a user performs an operation that adds or edits a translatable string. For example, a user edits a field's display label or help text, or a validation rule's error message, while another user performs an operation around the same time that similarly affects translatable strings. Another example of a shared artifact conflict is when two or more users are working in navigator menus that are shared across applications.	
When you are using Page Composer, you must use a sandbox. Page Composer provides concurrency warning messages when there is a potential customization conflict with another user. For Page Composer, these warning messages help prevent conflicts. For more information, see the "A Few Notes About Concurrent Users" section of the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
When you are using Application Composer, you must also use a sandbox. Application Composer provides error messages when there is a concurrency conflict. If multiple users in a single sandbox attempt to edit the same artifact, then an error message is displayed. For example, if two users are editing the label of the same attribute, then Application Composer will display an error message.	
Conflicts between sandboxes can arise when there is more than one sandbox intended for publishing in use. If two sandboxes contain customization changes to the same artifact and both are being published, then the sandbox that is being published last is given an option (by the sandbox manager) to overwrite the changes for that artifact from the sandbox that was published first. If the user working in the second sandbox decides to force the publication of the second sandbox, then the changes published by the first sandbox are overwritten. For example, these types of conflicts can also occur with shared metadata files such as a resource bundle that stores translatable strings.	
Note: You should force-publish a sandbox only when there is no other option available. Typically, if you encounter a conflict during publishing, you should delete the sandbox, create a new sandbox, re-enter your changes and try publishing again.	
If there is a concurrent change made in the mainline code after the sandbox was created and the user attempts to publish that sandbox, then such conflicts are detected at publication time and error messages occur.	
Tip: If you encounter a message showing a conflict on	
Regardless of whether the sandbox is intended for publishing or for test-only, if multiple users are allowed to work in a single sandbox simultaneously, follow these guidelines:	
For example, if user1	
updates object1	
, then user2	
can update object2	
but should not update object1	
. Be aware that if both modifications involve changes to translatable strings, then saving changes to separate objects around the same time may still cause a conflict in the resource bundle that stores the translatable strings.	
Application Composer retains any uncommitted changes in the UI. For example, if the user is editing a Groovy expression when the error is encountered, then the expression is retained in the editor so the user can copy and paste the expression to try customizing again. (No metadata corruption or partial transactional commit operations will happen.)	
If multiple users are permitted to work in multiple sandboxes, the guidelines in Section 2.2.1.3, "Guidelines for One Sandbox, Multiple Users," and follow these guidelines:	
Note: Even though sandboxes that are for test-only cause no conflicts with each other because they are not published, multiple users who work in the same test-only sandbox still must follow the guidelines in Section 2.2.1.3, "Guidelines for One Sandbox, Multiple Users."	
Note: For Application Composer, use only one sandbox at a time that is intended for publishing. You cannot have multiple concurrent sandboxes that are intended for publishing. You can still have other sandboxes that are test-only.	
Note: For a sandbox that contains ADF Business Components customizations, sign out and sign back in after switching in or out of this sandbox to avoid any inconsistencies between the runtime caches and the ADF Business Components definitions. Sign out and sign back in when you are performing any of the following sandbox-related actions:	
When you create a sandbox, the currently available metadata is gathered into a sandbox session. You designate a sandbox to be the active sandbox by choosing either the newly created sandbox or selecting from a list of existing sandboxes in a table. The active sandbox is the context for all changes. After you activate the sandbox, you can make customization changes to the application artifacts and these changes will be stored in the sandbox. The sandbox uses a database to store the actual change information. After you are satisfied with the changes, you can publish the sandbox, or deploy the flexfield, and the changes will be merged into the mainline code and the sandbox will be archived.	
To set up a sandbox:	
For nonflexfield sandboxes, you can access the sandbox manager by selecting the Manage Sandboxes menu item from the Administration menu in the global area of Oracle Fusion Applications.	
Figure 2-5 shows the Manage Sandboxes menu selection from the Administration dropdown list.	
For flexfields, you must be in the Manage Descriptive Flexfields task or the Manage Extensible Flexfields task and then select the Deploy Flexfield to Sandbox menu item to deploy the customizations to a flexfield sandbox. Flexfield changes are stored in flexfield metadata in the database and are available to users only when the flexfield is deployed, as described in Section 4.7, "Deploying Flexfield Configurations." Thus for flexfields, the remaining steps in this procedure do not apply.	
Note: Because setting up the security sandbox requires duplicating the schema for Oracle Fusion Data Security tables, this will always be a lengthy operation in Application Composer. Allow sufficient time for the process to be completed and do not terminate it early. You may want to defer customizing security and enabling the security sandbox until you are sure that customizations are required.	
When the sandbox has been created successfully, a confirmation dialog appears. Click OK to dismiss the dialog.	
In the Manage Sandboxes dialog, in the Available Sandboxes page, select the sandbox you want to make active and click Set as Active as shown in Figure 2-8.	
Only one sandbox can be active at one time. The customization changes are captured in the active sandbox.	
A sandbox can be exported as a file for transporting, sharing, and other uses where packaging it as a file is required. Consequently, a sandbox exported as a file can be imported.	
In the Sandbox Details dialog, click Download All. Enter the location and file name for the exported sandbox.	
In the Manage Sandboxes dialog, click Import.	
In the Import dialog, click Browse to navigate to the file or enter the fully qualified file name.	
Mouse over the sandbox name next to the Session Sandbox label in the global area of the Oracle Fusion application to open a popup dialog, as shown in Figure 2-9. Click Exit Sandbox.	
In the Exit Sandbox dialog, click Yes, as shown in Figure 2-10.	
If there are changes to the mainline code from another source and you publish your sandbox, then the mainline code is not overwritten. If there are conflicts, then you will be warned and given a chance to fix the conflicts.	
To publish a sandbox:	
You can make metadata changes in the sandbox. Metadata changes are usually associated with MDS. These include making changes to a page, to Oracle ADF customization, and to objects. For more information about making changes to the page, see Chapter 3, "Customizing Existing Pages." For more information about making changes to objects, see the "Defining Objects: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.	
You make security changes by applying your changes to a security-enabled sandbox. Test your security changes and policies in the sandbox before you commit the changes by publishing the sandbox. For more information about customizing security policies, see the "Securing Custom Objects: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide.	
For more information about security in custom business components in non-Cloud implementations, see the "Customizing Security for Oracle ADF Application Artifacts" chapter in the Oracle Fusion Applications Extensibility Guide for Developers.	
In the Manage Sandboxes dialog, click the sandbox link to open the Sandbox Details dialog. You can view the layers and objects where you have made customization changes, as shown in Figure 2-11.	
After you are satisfied with the changes, select the sandbox and click Publish in the Manage Sandbox dialog or in the Sandbox Detail dialog to commit the changes to the mainline code.	
There are several tools available for exporting and moving customizations. These tools enable you to perform the following tasks:	
Table 2-1 lists the tools to use to export and move customizations and extensions.	
Note: Oracle WebLogic Scripting Tool (WLST) and Oracle Enterprise Manager Fusion Applications Control (Fusion Applications Control) are not available in Oracle Cloud implementations. For Oracle Cloud implementations, to complete the tasks in Table 2-1 that require use of WLST commands or Fusion Applications Control, log a service request using My Oracle Support at	
Table 2-1 Tools to Use for Exporting and Moving Customizations	
Task	Tools to Use
---	---
Move all customizations described in Section 2.3.1, "Using Customization Set Migration to Move Customizations" to another Oracle Fusion Applications environment.	Customization Set Migration.
Move only MDS customizations made to pages and the user interface to another Oracle Fusion Applications environment.	WLST commands or Fusion Applications Control.
Move only descriptive flexfield configurations to another Oracle Fusion Applications environment.	Oracle Fusion Functional Setup Manager (Functional Setup Manager). Moves configurations for a specified module. To move configurations for all modules, use Customization Set Migration.
Move only extensible flexfield configurations to another Oracle Fusion Applications environment.	Functional Setup Manager. Moves configurations for a specified module. To move configurations for all modules, use Customization Set Migration.
Move only value set configurations to another Oracle Fusion Applications environment.	Functional Setup Manager. Moves configurations for a specified module. To move configurations for all modules, use Customization Set Migration.
Move only lookups to another Oracle Fusion Applications environment	Functional Setup Manager. Move application standard lookups, application common lookups, or both.
Move only data security policies to another Oracle Fusion Applications environment.	Functional Setup Manager. Note that this does not move Oracle Fusion Human Capital Management roles.
Export customizations to a file to help diagnose an issue.	WLST commands or Manage Customizations dialog.
Export customizations for import into an application workspace in JDeveloper.	WLST commands or Manage Customizations dialog.
The Customization Set Migration dialog enables you to move customizations and extensions from one Oracle Fusion Applications environment to another. You create a set of all customizations and extensions that have been made to the source environment, download the customization set, upload it into another (target) environment, and then apply the customizations that are in the set to that environment. Should you need to back out the customizations that you have applied, you can restore the environment to the state that it was in before you applied the customizations.	
Note: The Customization Set Migration dialog is to be used to move customizations from one environment to another. It is not a tool for backing up and restoring customizations in the same environment.	
After you have downloaded a customization set from the source environment, you must compact the set to remove the temporary files that were created during the create process. After you apply a customization set on the target environment, you must compact it to remove the temporary files that were created when you uploaded it into the target environment.	
The customization set includes customizations across all Oracle Fusion Applications product families, such as Oracle Fusion Financials, Oracle Fusion Customer Relationship Management (Oracle Fusion CRM), and Oracle Fusion Human Capital Management (Oracle Fusion HCM).	
The customization set includes only the customizations and extensions that you make using the following tools and features. Personalizations are not included in the set. (For the definitions of customization, extension, and personalization, see Section 1.1, "Understanding Customizing and Extending Oracle Fusion Applications.")	
Note: The steps in this section include steps for manually moving the customizations and extensions that are described in the preceding bulleted list.	
Notes: The Customization Set does not include code extensions, such as managed beans, that you implement in JDeveloper using the Oracle Fusion Applications Developer role. These code extensions are deployed into the application as a library JAR file and must be redeployed manually into each target environment.	
Tip: To prevent including in-progress customizations in the customization set, always make Application Composer, Page Composer, and JDeveloper customizations in a sandbox. The customization set does not include customizations that are in sandboxes.	
WARNING: During the time that an apply or restore is processing Oracle Fusion CRM customizations and extensions, the following issues can occur for approximately 5 minutes of the processing time:	
Note: The customization set does not include all deletions. For example, the set does not include the removal of a customization document using the Manage Customizations dialog. After you import a customization set into the target environment, you must examine the environment for any deletions that you must make manually.	
Before you begin:	
You will need to do the following before you can begin migrating a customization set:	
https://support.oracle.com	
and request a production-to-test movement, a reprovisioning of the test environment, or an upgrade of the production environment, whichever is appropriate. To migrate customizations using the Customization Set Migration dialog:	
This process takes approximately 15 minutes. If, when you click Refresh, the export has not progressed for over one hour, a dialog box appears with the following message. If there is a reason for the stalled process, such as a slow server, click Continue. Otherwise, click Restart to restart the export process.	
Note: The process runs asynchronously. You can exit the dialog and return to it at a later time.	
Note: If the Browse button is not enabled, you must first apply the previously uploaded customization set, or, if you do not intend to apply the set, you must first compact it to enable the Browse button.	
WARNING: Always upload the most recent customization set from the source environment. Never upload a customization set into the same environment from which it was created.	
This process takes approximately 25 minutes. If, when you click Refresh, the process has not progressed for over one hour, a dialog box appears with the following message. If there is a reason for the stalled process, such as a slow server, click Continue. Otherwise, click Restart to restart the apply process.	
Tip: The process runs asynchronously. You can exit the dialog and return to it at a later time.	
Note: For Oracle Cloud implementations, if problems occur during an apply action, log a service request using My Oracle Support at	
Tip: Click the header in the Status column to sort the flexfields by status.	
In non-Cloud environments, you can also use the deployPatchedFlex	
WLST command as described in the "Deploying Flexfields Using the Command Line: Explained" section in the Oracle Fusion Applications Common Implementation Guide.	
No	
, trigger the sending of its definition to the Oracle Social Network server by changing its Enabled value, resetting it back to the original Enabled value, and then saving the change. For example, if the Enabled value is Manual	
, click Disable Object, click Enable Object, select Manual, click OK, and then click Save. Make a note of the name and WSDL URL for the web service.	
You can accept the defaults that are supplied. If you change the Code value, you must specify a unique code. Use the default value for the Start Date and leave the Finish Date blank. The Assigned To user must have access to Customization Set Migration.	
Tip: Use the Name field to specify a meaningful project name. When you change the name, the code and description fields change automatically.	
As shown in Figure 2-18, you can choose a value from the Status field in the Search region to filter the search results by status. Alternatively, you can click the Status column header in the Search Results table to sort the search results by status.	
WARNING: All user personalizations that are performed after a customization set is applied are lost when you perform a restore on that customization set.	
Figure 2-19 shows the Log dialog box for a restore that is in progress.	
You can use the Functional Setup Manager to move common reference objects, such as application data security policies, application extensible flexfields, application descriptive flexfields, and application value sets from one Oracle Fusion Applications environment to another. For more information, see "Importing and Exporting Setup Data" in the Oracle Fusion Applications Common Implementation Guide.	
The Manage Customizations dialog enables you to download customization files for a given page. You can use this downloaded file for diagnosing customization issues.	
To download customizations using the Manage Customizations dialog:	
Tip: After you are in the Manage Customizations dialog, you can change the page, task flow, or page fragment for which you are viewing customizations using the Search field.	
Note: To download all customizations of the page for all layers, click the Download Customizations for All Layers link, located at the bottom of the window. This will download the	
Note: WLST is not available in Oracle Cloud implementations.	
You can use WLST commands to upload and download customization files for one page, multiple pages, the navigator menu, and Oracle Application Development Framework (ADF) Business Components.	
Note: You can also use Fusion Applications Control to move customizations as described in Section 2.3.5, "Using Fusion Applications Control to Move Customizations."	
Example 2-1 shows how to export all customizations for a specific application.	
Example 2-1 WLST Command to Export All Customizations for an Application	
Example 2-2 shows how to export the site layer customizations of the navigator menu.	
Example 2-2 WLST Command to Export Site Layer Customizations of the Navigator Menu	
Tip: If you are not sure of the document name, append	
For more information about uploading and downloading customization files, see the "Importing Customizations into Your Application Workspace" section in the Oracle Fusion Applications Extensibility Guide for Developers. For information about uploading and downloading the customizations of resources, see the "Translating Resource Bundles from an MDS Repository" section in the Oracle Fusion Applications Extensibility Guide for Developers	
For more information about the exportMetadata	
command, see the "Managing the Metadata Repository" chapter in the Oracle Fusion Middleware Administrator's Guide.	
Note: Fusion Applications Control is not available in Oracle Cloud implementations.	
Use Fusion Applications Control to move MDS customizations made to a page or other UI from one environment to another. For more information, see the "Transferring Metadata Using Fusion Middleware Control" section of the Oracle Fusion Middleware Administrator's Guide. The referenced procedure describes using Fusion Middleware Control, but also applies to Fusion Applications Control.	
This chapter describes how administrative users can customize pages in Oracle Fusion applications at runtime using Page Composer.	
This chapter includes the following sections:	
Notes:	
The pages in Oracle Fusion applications provide content and functionality to users that enable them to complete their tasks (for example, learning about a product or service, keeping up with sales data, or submitting an order) as easily and efficiently as possible. Because different users have different needs, Oracle Fusion applications enable you to customize pages to fit those needs using Page Composer. End users can use Page Composer for personalization of pages. For example, end users can reorganize content in dashboards to place the content they use most frequently at the top of the page. Administrative users can use Page Composer to customize pages in any layer of the application or to customize the UI Shell template used by Oracle Fusion Customer Relationship Management (Oracle Fusion CRM) applications—the template used for the base UI for all Oracle Fusion CRM application pages. For example, administrative users can add a logo or contact information to the header and footer of the application.	
Most of what you do in Page Composer is perform actions on a UI object, or UI component, on a page. Components are grouped together on the page into boxes to simplify management of related components. For example, you might group components relating to a particular project or to a particular subject. The grouped components are referred to as Child Components. Page Composer enables you to edit an individual child component or manage all the grouped child components at one time by editing the box containing the child components. For example, you might want all the related child components to have the same style (background color, font, and such) so that users can more easily see their relationship.	
Figure 3-1 shows an application page as the user sees it. The outlined components (in red) are grouped together. Figure 3-2 shows the same application page in Page Composer, where you can see the dashed outline of the box containing the grouped components.	
Note: The user interface and capabilities of Page Composer differ depending on the product family and how Page Composer is accessed. See the product-specific documentation for more information.	
Page Composer provides two views for working with page content:	
For more information, see the "Introducing Design View and Source View" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Sometimes objects are included on multiple pages. The effect of changing such an object depends on how the object is included on the page and whether you are working with a Oracle Fusion CRM or non-CRM application.	
Depending on your role, the type of page, and the type of application, you can perform different actions in Page Composer.	
Sales Administrators, Marketing Operations Managers, and Channel Managers can customize nondashboard pages in the following ways:	
Refer to Task: Add Components to a Page.	
Refer to Task: Create a Site-Level Saved Search for All Users.	
Refer to Task: Change the Layout of a Page.	
Refer to Task: Move Components on a Page.	
Users can personalize their dashboard pages and administrators can customize site, internal or external, and job-role dashboard pages with the tasks mentioned in Section 3.1.3.1, "Nondashboard Pages in Oracle Fusion CRM Applications" and in the following additional ways:	
Refer to Task: Show and Hide Components on a Page.	
Refer to Task: Delete Components from a Page.	
Administrators can customize pages in non-CRM applications with the tasks mentioned in Section 3.1.3.1, "Nondashboard Pages in Oracle Fusion CRM Applications," Section 3.1.3.2, "Dashboard Pages in Oracle Fusion CRM Applications," and in the following additional ways:	
Refer to Task: Customize a Page Title.	
Refer to Task: Customize a Task List Menu.	
Refer to Task: Customize Attributes for a Flexfield on a Page.	
Notes: Many pages in Oracle Fusion applications include a flexfield. Flexfields allow you to add custom attributes to a page. You add flexfields to a page using the Manage Descriptive Flexfields task and the Manage Extensible Flexfields task, then customize the attributes through Page Composer. For more information about adding flexfields to a page, see Chapter 4, "Using Flexfields for Custom Attributes."	
Refer to Task: Customize Popup Window Content.	
Refer to Section 3.3, "Editing Component Properties in Page Composer."	
Refer to Task: Edit Component Header and Other Display Options.	
Refer to Task: Edit Component and Content Style.	
Refer to Task: Edit Component Parameters.	
Refer to Task: Reset a Page or Task Flow to a Previously Saved Version.	
Refer to Task: Allow Certain Component Property Values to Persist Across Sessions.	
Application administrators can customize the UI Shell template used by all pages in the application. See Section 3.4, "Editing the UI Shell Template Used by All Pages."	
Note: Features and functionality involving JDeveloper, as described in this section, are not available in Oracle Cloud implementations.	
Business users cannot perform the following tasks in a runtime environment with Page Composer:	
For Oracle Fusion CRM applications, you can change objects globally by editing them through Application Composer. For information, see the "Application Composer: Using the Application Composer" chapter in the Oracle Fusion Applications CRM Extensibility Guide.	
If a flexfield exists on a page, you must use the appropriate manage flexfield task to add the custom attributes to the page before working with them in Page Composer. For more information, see Chapter 4, "Using Flexfields for Custom Attributes."	
To permit end users to edit a page, a developer must use JDeveloper to enable personalization. For more information, see the "Allowing Pages to Be Personalized by End Users in Page Composer" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
To edit user interface text that is part of a skin, a developer must use JDeveloper to change the resource bundle used by the skin. For more information, see the "How to Apply Skins to Text" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
To edit text that is part of the embedded help on a page, a developer must use JDeveloper. For more information, see the "Customizing or Adding Static Instructions, In-Field Notes, and Terminology Definitions" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
To edit ADF task flows, a developer must use JDeveloper. For more information, see the "Customizing and Extending Oracle ADF Application Artifacts" chapter in the Oracle Fusion Applications Extensibility Guide for Developers.	
To edit the ADF Business Components objects (for example, to add validation to an ADF Business Components object), a developer must use JDeveloper. For more information, see the "Customizing and Extending Oracle ADF Application Artifacts" chapter in the Oracle Fusion Applications Extensibility Guide for Developers.	
To edit the Oracle Fusion CRM administrative pages, a developer must use JDeveloper.	
To edit mobile web pages, a developer must use JDeveloper. For more information, see the "Editing Pages" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
As an administrative user, before you implement customizations in applications, you should be familiar with the Oracle Fusion application architecture that enables customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also understand the typical workflows for working with runtime customizations, as described in Chapter 2, "Understanding the Customization Development Lifecycle."	
You must do the following before you can begin customizing existing pages:	
For Oracle Fusion CRM applications:	
For HCM applications, all pages are customizable.	
For non-CRM applications, see product-specific documentation in Oracle Fusion Applications Help for information about which pages are customizable.	
Page Composer uses sandboxes to manage your customizations. For more information, see Section 2.2, "Using the Sandbox Manager."	
For more information about customization layers, including selecting a layer and customization context, see Section 1.2, "Understanding Customization Layers."	
You can use Page Composer to perform basic editorial tasks, such as editing page components, changing the layout of the page, and the like. The tasks available to you depend on your role, the type of page, and the type of application. For details, see Section 3.1.3, "What You Can Do with Pages at Runtime."	
Note: If the object you want to edit is included on multiple pages, then see Section 3.1.2, "Effects of Editing Objects That Display on Multiple Pages," before editing the object.	
Task: Add Components to a Page	
To add components to a page, in Design view, click Add Content at the top of the container component to which you want to add the new component.	
For non-CRM pages, you can also add components in Source view (where UI widgets are available). To add components in Source view, you select the container component, then, in the Source view toolbar, click Add Content.	
In either mode (Design view or Source view), clicking Add Content opens the Resource Catalog, enabling you to select from a wide range of task flows, portlets, layout components, and other types of resources. For more information about adding components to a page, see the "Adding a Component to a Page" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Note: If you want to display custom attributes, then you may be able to use a flexfield that has been defined for the page. Flexfields are available for many pages in Oracle Fusion applications, except for the Oracle Fusion CRM applications. For more information, see Chapter 4, "Using Flexfields for Custom Attributes."	
Task: Create a Site-Level Saved Search for All Users	
You can use Page Composer to create a saved search that can be used by all users. To create a site-level (or global) saved search, perform the following steps:	
When you are done, click OK.	
To delete, rename, or change the search options for a site-level saved search:	
Task: Change the Layout of a Page	
Page layout defines the number, placement, and orientation of content regions on a page. A page's initial layout style is selected when the page is created. Some style selections can be switched even after you have added content to the page, others do not support layout changes after creation.	
To change the layout of a page, in Design view, click Change Layout. For more information, see the "Changing the Page Layout" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Move Components on a Page	
To move components on a page, in Design view, drag and drop the component.	
For non-CRM pages, you can also cut and paste or drag and drop components in Source view, or you can access the Component Properties for the container component and rearrange the components on the Child Components tab. For more information, see the "Rearranging Child Components" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Show and Hide Components on a Page	
Note: You can perform this task only on dashboard pages in Oracle Fusion CRM applications, on nondashboard pages in Oracle Fusion CRM applications if you have the proper job role, or in non-CRM applications.	
You can control whether to show or hide a component on a page. For example, you have a list of checkboxes, and if a user selects checkbox B, you want a button to be displayed. You could set the Show Component property on the button to be an EL expression that says #{if checkboxB.selected = true}	
, meaning that if the checkbox B is selected, then display the button.	
There are two ways to hide a component—hide the individual component or hide the box containing the component.	
To hide an individual component, click the Edit icon in the component header, click the Display Options tab, deselect the Show Component box, and click OK. For more information, see the "Working with Component Display Options" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. You can instead, click the Edit icon on the containing box's toolbar, then, on the Child Components tab, deselect the box next to the component you want to hide, and click OK. For more information, see the "Hiding and Showing Child Components" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
To hide the box and all its child components, click the Edit icon in the box's header, click the Display Options tab, deselect the Show Component box, and click OK. For more information, see the "Working with Component Display Options" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Delete Components from a Page	
Note: You can perform this task only on dashboard pages in Oracle Fusion CRM applications, on nondashboard pages in Oracle Fusion CRM applications if you have the proper job role, or in non-CRM applications.	
WARNING: Delete a component only if you are positive that no other components or processes are dependent on the component you delete. If you are uncertain about any dependencies, then hide the component instead of deleting it.	
If you are sure no other components or processes are dependent on a component, you can delete the component from a page by clicking the Delete icon in the component header.	
Note: Some components might not be able to be deleted, such as mandatory or indexed fields or components that are installed as part of the Oracle Fusion applications.	
If you delete a box, all of the child components—any components contained in the box—are also deleted.	
For more information about deleting components, see the "Deleting a Component from a Page" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Customize a Page Title	
Note: You can perform this task only in non-CRM applications.	
The page title is specified in three places:	
You must change all three entries to change the page title. To change the first two entries in Page Composer, complete the following steps. To change the navigator menu entry, see Chapter 5, "Customizing Menus."	
Figure 3-6 Selecting a Task List in the Design Region	
This selects the task list entry in the Source region.	
panelFormLayout	
node, and select Edit as shown in Figure 3-8. Figure 3-8 Editing the panelFormLayout Node	
The Component Properties dialog for panelFormLayout	
is displayed.	
Figure 3-9 Component Properties — Tasks List Task Properties Task List Items	
Task: Customize a Task List Menu	
Note: You can perform this task only in non-CRM applications.	
Task lists enable you to provide links to task flows in your application or web pages outside your application. For example, you can add links to frequently used task flows, so that users can quickly perform the most common tasks.	
Figure 3-10 Selecting a Task List in the Design Region	
This selects the task list entry in the Source region.	
panelFormLayout	
node, and select Edit as shown in Figure 3-12. Figure 3-12 Editing the panelFormLayout Node	
The Component Properties dialog for panelFormLayout	
is displayed.	
Figure 3-13 Component Properties — Tasks List Task Properties Task List Items	
Figure 3-14 Component Properties — Tasks List Task Properties Toolbar	
Note: For Oracle Cloud implementations: to obtain a list a valid values, log a service request using My Oracle Support at	
This list contains web applications that are defined in the deployments tables.	
Caution: If you enter a value for Web Application then you must enter a value for Focus View Id.	
focusViewId	
value of the target page, for example, /ServiceRequest. Caution: If you enter values for Web Application and Focus View Id, do not enter a value for Destination and vice versa.	
Pages with actions are defined in the adfc-config.xml	
file, and these actions can take the user to a particular page. If you specify an action here, then the Web Application and Focus View Id values are ignored. This Action attribute is used in an ADF Controller navigation.	
isDynamicTabNavigation="true"	
. Note: When deselected, the item is displayed in italics on the customization dialog. This allows you to identify items that are currently hidden from users.	
The Destination attribute is used for navigation outside of the Oracle Fusion Middleware UI Shell pages. It opens in a new window.	
Note: Destination takes precedence over any specified Web Application value.	
dynamicMain	
, defaultMain	
, defaultRegional	
, or taskCategory	
. Caution: The task type can be specified by the administrator for the newly inserted item nodes only. It cannot be updated for an existing item node.	
Figure 3-15 lists the properties that are applicable based on the task type of the currently edited item node.	
Task: Customize Attributes for a Flexfield on a Page	
Note: You can perform this task only in non-CRM applications.	
After you deploy an extensible flexfield or descriptive flexfield, you can use Page Composer to further control the custom attribute properties on a page-by-page basis. For example, you can hide some custom attributes or reorder how they appear on the page.	
To customize flexfield values, edit the page in Source view. In Source view, navigate through the tree and expand the flexfield component (for example descriptiveFlexfield	
) to see the custom attributes. Click the flexfield component to display the Component Properties dialog box, where you can edit the values for the attributes.	
Task: Customize Popup Window Content	
Note: You can perform this task only in non-CRM applications.	
You can use Page Composer to customize the content in popup windows as follows:	
popup	
node, and select Edit. For information about popup window properties, see the "Using Popup Dialogs, Menus, and Windows" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
Note: You can perform these tasks only in non-CRM applications.	
Components, such as task flows, portlets, documents, and layout components, carry with them a set of configurable properties that control the appearance and behavior of a particular component instance.	
To edit component properties:	
Note: If the object you want to edit is included on multiple pages, then see Section 3.1.2, "Effects of Editing Objects That Display on Multiple Pages," before editing the object.	
For more information, see the "Setting Properties on a Component" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Edit Component Header and Other Display Options	
Typically, the Display Options tab presents settings that affect the display elements surrounding component content (that is, its chrome). Chrome includes the header, the Actions menu, Expand and Collapse icons, and the like. For example, use the display options on a task flow to hide or show a header, change the text in the header, enable or disable menus, show a tooltip for the component, and other options. Use the display options on an Image layout component to specify the image source URL and its optional link target. For more information, see the "Working with Component Display Options" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Edit Component and Content Style	
Style and Content Style properties provide an opportunity to fine-tune your application look-and-feel at the component level. You can specify color, style, and margin settings on the selected component instance. For more information, see the "Working with Style and Content Style Properties" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Edit Component Parameters	
Component parameters are settings, unique to the component type, that can control such things as the source of the component's content. Component parameters vary from component to component. For example, on some components, they provide the opportunity to specify the source of task flow content; on other components, they present read-only, application-generated identifiers that are used in maintaining a task flow instance's association with its customizations. For more information, see the "Working with Component Parameters" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Task: Customize a Component Based on Role	
Role level customization allows you to display a component only if the user has the specified role. For example, you might want to show a "Reports" button only if the user has a manager role.	
If you are customizing a CRM application, you can select CRM's Role	
layer in the Layer Picker dialog, which appears when you open Page Composer.	
If you are customizing a non-CRM based application, there is no Role	
layer to customize. Instead you could do the following:	
MANAGER_REPORTS_BUTTON_PRIV	
. For more information on defining privileges and granting them to roles, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Task: Reset a Page or Task Flow to a Previously Saved Version	
Page Composer provides controls for resetting a page or task flow to a previously saved version or to its original out-of-the-box state.	
The Reset Page button is available on the page in both Design view and Source view. For more information, see the "Reset Page" section in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal.	
The Reset Task Flow button on the Source view toolbar is rendered only when editing a task flow. For more information, see the "Reset Task Flow" section in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal.	
Task: Allow Certain Component Property Values to Persist Across Sessions	
Certain attribute values of ADF Faces components can be persisted for end users. For example, on the column component, an end user can change the width of a column, and that width will still be in effect when the user logs back in to the application. For information about which component properties can persist, see the "Introduction to Allowing User Customizations" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
To enable a property to be persistent, list that property as a value for the persist parameter, using the procedures in the "Working with Style and Content Style Properties" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
For more information about user personalization of components, see the "Configuring End-User Personalization for Components" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
Notes:	
The UI Shell template provides the global or header area (shown in Figure 3-16) and the footer panel (shown in Figure 3-17, highlighted in red) for all pages in your application.	
Note: If the footer does not contain any content it appears as a thin bar at the bottom of the browser window. The area highlighted in red in Figure 3-17 shows the footer ready to be selected.	
You can use Page Composer to edit the UI Shell template. For example, you might want to edit the links available in the global area (such as removing the Tags link from the header area) or add company contact information to the footer.	
To open the UI Shell template in Page Composer (shown in Figure 3-18), use one of the following methods:	
Task: Add a Component to the UI Shell Template	
Note: Editable areas display a blue outline when you place your cursor over them.	
The component is appears in the global area or footer. If necessary, edit the component. For example, if you added the Text component, you can enter the text that you want displayed.	
Task: Edit a Component in the UI Shell Template	
Note: Editable components display a blue outline when you place your cursor over them.	
Task: Delete a Component in the UI Shell Template	
Note: Editable components display a blue outline when you place your cursor over them.	
Note: This section does not apply to Oracle Cloud implementations.	
Using Page Composer, you (the administrative user) can implement a variety of customizations on an application's pages. Pages that were created or customized in JDeveloper are further customizable in Page Composer, and page customizations that were implemented in Page Composer can be viewed in JDeveloper.	
To view Page Composer customizations in JDeveloper, and potentially further customize the pages, you must export the customizations from the runtime environment and import them into the JDeveloper customization application workspace. For more information, see the "Viewing ADF Library Runtime Customizations from Exported JARs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
It is important to note that you cannot customize a given artifact at the same layer in both JDeveloper and Page Composer. You can, however, customize a given artifact in both tools provided the customizations are made at different layers. At run time, the tip layer customizations take precedence. For example, if you customize the label for a field in the site layer using Page Composer and customize the same label in the global layer using JDeveloper, the site layer customization will be displayed at run time.	
This chapter describes how to use descriptive and extensible flexfields to add additional attributes to your Oracle Fusion applications. You create these custom attributes using runtime tasks in the Setup and Maintenance work area.	
This chapter includes the following sections:	
If you need to add company-specific attributes to a business object, such as size and color attributes for the product business object, then you can often use flexfields to add the desired custom attributes. A flexfield is a set of placeholder fields that is associated with a business object. With flexfields, a field is called a segment.	
Oracle Fusion Applications provides three types of flexfields — descriptive flexfield, extensible flexfield, and key flexfield. This chapter discusses how you can use descriptive and extensible flexfields to add additional attributes to Oracle Fusion applications. This chapter refers to these attributes as custom attributes.	
Note: This chapter does not discuss key flexfields, which you use to define keys such as part numbers, as explained in the product-specific documentation in Oracle Fusion Applications Help. In this chapter, the term flexfield applies to descriptive and extensible flexfields only.	
Descriptive and extensible flexfields enable you to configure your applications to capture additional pieces of information (attributes) without having to perform custom development. The attributes that you add by configuring flexfields are available throughout the Oracle Fusion Middleware technology stack, allowing custom attributes to be used in user interface pages, incorporated into the service-oriented architecture (SOA) infrastructure, and, in the case of descriptive flexfields, integrated with Oracle Business Intelligence.	
Note: For Sales, Marketing, Customer Center, Trading Community Architecture, and Order Capture applications, use Oracle Fusion CRM Application Composer (Application Composer) to add custom attributes instead of using descriptive and extensible flexfields. For more information, see the "Application Composer: Introduction" chapter in the Oracle Fusion Applications CRM Extensibility Guide	
Many business objects in Oracle Fusion applications have an associated descriptive or extensible flexfield with which you can create custom attributes for the business object. A descriptive flexfield is the more basic of the two and is more commonly used. As explained later in this section, extensible flexfields offer more advanced features, such as hierarchical configurations.	
The flexfield type determines how you configure the custom attributes.	
An example of where you would use context-sensitive attributes is for a job business object, as illustrated in Figure 4-1. Where some attributes are common to all jobs, such as whether the job is off site, some job attributes depend upon the job type. For example, you might want to store the service type for a service technician, and for a driver, you might want to store the required commercial driver's license (CDL) class.	
Extensible flexfield contexts are somewhat different from descriptive flexfield contexts in that extensible flexfields enable you to configure multiple contexts, and you can group the contexts into categories. All extensible flexfields have at least one category (often referred to as the root category), and some extensible flexfields enable you to configure a hierarchy of categories, where a given category can inherit contexts from its parent categories. For more information about categories, see Task: Identify the Extensible Flexfield's Category Hierarchy Structure in Section 4.3.2, "Planning Extensible Flexfields."	
You use logical pages to arrange how the contexts appear in the user interface. For example, the extensible flexfield in Figure 4-2 has been configured to include a Technical Specifications logical page in the user interface for the Electronics and Computers category. The Technical Specifications logical page contains the attributes for four contexts — Recovery and Recycling, Compliance and Certification, Operating Conditions, and Materials and Substances. Figure 4-3 shows the user interface for the Technical Specifications logical page.	
As shown in Figure 4-2, the user interface for the Furniture category has been configured to include a Furniture Specifications logical page and an Assembly Instructions logical page. Note that the two categories (Electronics & Computers and Furniture) share the Materials & Substances context.	
Another extensible flexfield feature is the ability to configure a context to store multiple rows per entity. For example, you can use a context to store all the materials and substances required to make a single product. The Materials and Substances context in Figure 4-3 has been configured for multiple rows, and is thus displayed as a table.	
Extensible flexfields also enable you to specify view and edit privileges. For example, you can set the privileges so that everyone can view the attributes but only managers can make changes.	
Using the runtime tools, you can perform the following flexfield tasks:	
You can use the Manage Descriptive Flexfields task, shown in Figure 4-4, and the Manage Extensible Flexfields task, shown in Figure 4-5, to create your custom attributes. You can also configure descriptive flexfields by using the three Quick Create dialogs — Create Context Value, Quick Create: Global Segment, and Quick Create: Context-Sensitive Segment. The Quick Create: Context-Sensitive Segment dialog is shown in Figure 4-6. For more information, see Section 4.5.1, "Configuring Descriptive Flexfields" and Section 4.5.2, "Configuring Extensible Flexfields."	
Note: Some setup activities enable you to complete product-specific flexfield configuration. For example, you can use the Manage Item Classes task in the Product and Catalog Management application to manage a hierarchy of custom attributes for catalog items. For more information, see the product-specific documentation in Oracle Fusion Applications Help.	
As shown in Figure 4-7, use the Manage Value Sets task to specify validation rules for your custom attributes, such as minimum and maximum values or a list of valid values.	
Note: If you use the Quick Create dialogs to configure the attributes, the value sets are created automatically when you add the segments. You cannot use an existing value set.	
You must deploy a flexfield as described in Section 4.7, "Deploying Flexfield Configurations" before you can access the custom attributes from the user interface and the technology stack. After you deploy the flexfield, you can use Page Composer to configure the attributes on a per-page basis, and you can incorporate the custom attributes into Oracle Business Intelligence, web services, the SOA infrastructure, and Oracle Social Network, as described in Section 4.8, "Integrating Custom Attributes."	
You can create translations of the value sets and the custom attributes for different locales as described in the "Translating Custom Text" chapter in the Oracle Fusion Applications Extensibility Guide for Developers.	
You cannot use flexfields for the following tasks:	
For more information, see the "Editing an Object: Explained" section in the Oracle Fusion Applications CRM Extensibility Guide	
Do not use Oracle JDeveloper to customize flexfields. If you require flexfield changes that you cannot accomplish using the tasks and UI that are described in this chapter, contact My Oracle Support at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info	
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs	
if you are hearing impaired.	
Before you use flexfields to create custom attributes, you should be familiar with the Oracle Fusion application architecture that enables customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also understand the typical workflows for working with customizations, as described in Chapter 2, "Understanding the Customization Development Lifecycle."	
Perform the following steps to configure custom attributes. These steps are described in detail in the remaining sections of this chapter.	
For a simple descriptive flexfield configuration, such as adding a format-only field or adding a field with a basic list of values, you can use the Quick Create dialogs. For other configurations, complete the following tasks.	
Before you begin the planning stage, you must first determine what type of flexfields — extensible or descriptive — are available for customizing. You also need the flexfield codes. You can choose Highlight Flexfields from the Administration menu or you can use Page Composer to find the flexfields on a page.	
Task: Use Highlight Flexfields to Find the Flexfields on a Page	
To obtain information about the flexfields on a page, open the page and choose Highlight Flexfields from the Administration menu. Hover over the Information icon next to the highlighted fields to display information about the flexfield, as shown in Figure 4-8. Choose Unhighlight Flexfields from the Administration menu when you no longer want to see the highlighted flexfields.	
Tip: When you click the wrench icon for a highlighted flexfield, the applicable Manage Flexfields task is displayed for that flexfield. If the flexfield is a descriptive flexfield, you can click the appropriate Add icon to add a context value, a global segment, or a context-sensitive segment that does not require advanced configurations. For more information, see Section 4.5.1, "Configuring Descriptive Flexfields,"	
Note: Not all flexfields are available for creating custom attributes. Consult the product-specific documentation in Oracle Fusion Applications Help to verify whether there are any restrictions on using the flexfield.	
Task: Use Page Composer to Find the Flexfields on a Page	
Use Page Composer to get information about the flexfields on a page. Open the page in Source view and look for the following:.	
<descriptiveFlexfield>	
elements. Open the properties panel for the element to view the flexfield name and flexfield code. Note: Not all flexfields are available for creating custom attributes. Consult the product-specific documentation in Oracle Fusion Applications Help to verify whether there are any restrictions on using the flexfield.	
The planning of your custom attributes is an important activity in preparation for flexfield configuration. The way in which you plan and configure a flexfield depends on whether it is descriptive or extensible.	
If you are configuring a descriptive flexfield, complete the following tasks:	
Task: Identify Existing Descriptive Flexfield Context Values	
To identify existing context values, access the Manage Descriptive Flexfields task by completing one of the following steps:	
If context values have been preconfigured, you should consult the product-specific documentation in Oracle Fusion Applications Help for information about the use of those values.	
Task: Evaluate Whether the Context Value Is Derived	
The context value for a descriptive flexfield might have been preconfigured to be derived from an external reference. For example, if the context is Marriage Status, then the value might be derived from an attribute in the employee business object. When the context value is derived, you might need to take the derived values and their source into consideration in your plan. To determine whether the context value is derived, look at the Derivation Value field in the Context Segment region in the Edit Descriptive Flexfields window for the flexfield. The dropdown list displays a list of available parameters. For more information about derived values, see Task: Identify Available Descriptive Flexfield Parameters.	
Task: Identify Available Descriptive Flexfield Parameters	
Some descriptive flexfields provide parameters, which enable you to set the initial value of an attribute from external reference data, such as a column value or a session variable. For example, if a flexfield has a user email parameter, then you would be able to configure the initial value for a customer email attribute to be derived from the parameter. You can view the Derivation Value dropdown list in the Create Segment window for the flexfield to see what parameters are available for a descriptive flexfield. If you decide to use one of the parameters to set an initial value, then you would select that parameter from the dropdown list when you add the attribute during the flexfield configuration process described in Section 4.5.1, "Configuring Descriptive Flexfields."	
Task: List Custom Attributes	
List all the custom attributes that you want to add. Later, as described in Task: Define Attribute Properties, you define the attribute details.	
Task: Plan the Descriptive Flexfield Structure	
When you configure the flexfield, you will use the flexfield's global, context, and context-sensitive segments to structure your custom attributes. For the custom attributes that you want to store for every instance of the business object, you will add them as global segments. For example, in Figure 4-9, the Offsite attribute is a global attribute that is stored for every job	
For the custom attributes that you want to store based on a context (a condition or situation), define the context and list the valid values for the context. For example, you might want to use the Job Attributes descriptive flexfield on the Manage Jobs page to display different custom attributes depending on whether the job is for a service technician, an engineer, or a driver, as shown in Figure 4-9. You would define the context as Job Type, and you would list Service Technician, Engineer, and Driver as the list of valid values for the Job Type context. Next, list the custom attributes that you want to store for each of the valid values. For example, you might store the service type custom attribute for a service technician job and you might store the commercial driver's license (CDL) class for a driver job. Later, when you configure the flexfield, you would set the prompt for the context segment to Job Type, you would create the Service Technician, Engineer, and Driver context values, and you would define the context-sensitive segments for each of the three context values. For example, you would create a service type context-sensitive segment for the Service Technician context value and you would create a commercial driver's license (CDL) class context-sensitive segment for the Driver context value.	
There is only one context segment available for descriptive flexfields. If you have more than one group of custom attributes where you could use the context segment, you will have to pick one group over the others, based on your company's needs and priorities, and add the other custom attributes as global segments.	
The following list shows an example of a structural plan for the Job Attributes descriptive flexfield:	
Task: Define Attribute Properties	
For each custom attribute that you want to add, define the attribute properties that are listed in Table 4-1.	
Table 4-1 Attribute Properties	
Property	Description
---	---
Sequence	The order the attribute appears in relation to the other configured attributes.
Enabled	Whether the attribute can be used.
Data type	Character, date, date and time, or number.
Range type	If the attribute is part of a range specification, whether the attribute is the low value or the high value. For example, if adding minimum height and maximum height attributes, then the minimum height attribute has a range type of low.
Required	Whether the end user is required to provide a value.
Initial value	The initial default value for an attribute when the row is created. You can specify a constant value for both descriptive flexfields and extensible flexfields. You can specify a SQL statement for extensible flexfields, and for descriptive flexfields, you can specify a flexfield parameter. For more information, see Task: Define Initial Values for Descriptive Flexfield Custom Attributes and Task: Define Initial Values for Extensible Flexfield Custom Attributes.
Derivation value	The flexfield parameter from which to derive the attribute's value. Whenever the parameter value changes, the attribute's value is changed to match. If you derive an attribute value from a descriptive flexfield parameter, then consider making the attribute read-only, because user-entered values are lost whenever the parameter value changes.
Prompt	The string to be used for the attribute's label in the user interface.
Display type	The type of field in which to display the attribute. The available display types are described in Table 4-2.
Checked and unchecked values	If the display type is chooser (checkbox), the actual values to save. For example, Y and N or 0 and 1.
Display size	The character width of the field.
Display height	The height of the field.
Read only	Whether the field should display as read-only (noneditable) text.
Table 4-2 describes the display types that you can use for a segment.	
Table 4-2 Display Types	
Display Type	Description
---	---
Checkbox	The field is displayed as a checkbox. If the end user selects the checkbox, the checked value is used. Otherwise, the unchecked value is used.
Drop-down List	The field displays a dropdown list of values from which the end user can select a value.
List of Values	The field displays a dropdown list of values from which the end user can select a value. The user can also click Search to find more values.
Pop-up List of Values	The field displays as a text field with a Search icon. The end users can type a value in the text field or they can click the Search icon to open a dialog for searching.
Radio Button Group	The field is displayed as a set of radio buttons. The end user can select one button. Selecting a button deselects any previously selected button in the set.
Text Area	The field is displayed as a text area in which the end user can type multiple lines of text. The display width specifies the visible width of the text area. The display height specifies the visible number of lines in the text area.
Text Box	The field is displayed as a text field in which the end user can type a single line of text. The display width controls the width of the text box.
Date/Time	The field enables the end user to enter a date if the data type is Date, or a date and time if the data type is Date Time. The user can select the date from a calendar. If the data type is Date Time, the field also displays fields for specifying the hour, minutes, seconds, AM or PM, and time zone.
Hidden	The field is not displayed.
Task: Define Validation Rules for Descriptive Flexfield Custom Attributes	
Define the validation rules for the custom attributes. For example, one attribute might need to match a specified format, while another attribute might be restricted to a list of values. You use a value set to specify the validation rules for an attribute, as described in Section 4.4, "Creating Custom Value Sets." Define each attribute's validation rules and check if value sets exist for those rules or you must create new ones. If you must create a value set, you can either create it before you configure the flexfield or you can create it at the same time that you create or edit a segment.	
Note: If you use the Quick Create dialogs to configure the flexfield, the value sets are created automatically. You cannot use existing value sets.	
Note that validation for a descriptive flexfield context attribute is somewhat different from validation of global and context-sensitive attributes. While value sets are required for global and context-sensitive attributes, a value set is optional for descriptive flexfield context attributes. If a value set is not defined for a context attribute, then the application validates an input value against the context attribute's values. For example, if you created YES and NO context-attribute values, then you do not need an associated value set if YES and NO are the only valid values. However, if the list of valid values for a context is a superset of the context attribute's values, then a value set is required. For example, suppose that you need custom context-sensitive attributes for a YES value, but you do not need any custom attributes for a NO value. You need to add only a YES context attribute value. Because you do not have a NO context value, the context attribute requires a value set of YES and NO, as both values are valid. A value set is also required when the valid values are a subset of the context values. For example, you might have contexts for several countries, but the list of values from which the end user selects the context value might be confined to the countries in the user's region.	
You can use only a table value set or an independent value set to validate context values. If you use a table value set, then you cannot reference other flexfield segments in the value set's WHERE	
clause. That is, the WHERE	
clause cannot reference SEGMENT	
.segment_code or VALUESET	
.value_set_code. For information about table and independent value sets, see Section 4.4, "Creating Custom Value Sets."	
When determining an attribute's validation rules, consider the following questions:	
WHERE	
clause? Task: Define Initial Values for Descriptive Flexfield Custom Attributes	
When you configure a flexfield segment for a descriptive flexfield attribute, you can specify a constant to use for setting the initial value. If, in Task: Identify Available Descriptive Flexfield Parameters you identified available parameters, you can use those parameters to set initial values. For every custom attribute, list the constant value or parameter, if any, to use for the initial value.	
Task: Plan Attribute Mapping to Oracle Business Intelligence Objects	
If a descriptive flexfield has been enabled for Oracle Business Intelligence, then you can use segment labels to map attributes to logical objects. By mapping the attributes to logical objects before you deploy the flexfield, you minimize the steps for importing the flexfield into Oracle Business Intelligence. This mapping also equalizes similar context-sensitive attributes that are from different contexts but are mapped to a single logical object, as described in Task: Incorporate Custom Attributes into Oracle Business Intelligence in Section 4.8, "Integrating Custom Attributes." For information about objects in the logical model, see the "Working with Logical Tables, Joins, and Columns" chapter in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).	
Use the Manage Segment Labels page to view the preconfigured segment labels and to create new ones, as described in Task: Create Segment Labels in Section 4.5.1, "Configuring Descriptive Flexfields."	
For each attribute that you want to make accessible to Oracle Business Intelligence, decide whether you want to map the attribute to a logical object. If a segment label does not exist for the logical object, then decide on a code, name, and description in preparation for adding that label. Choose a code, name, and description that will help end users select the correct label for any attribute that should be mapped to a logical object.	
Note: You are not required to map attributes to logical objects, but doing so minimizes the steps for importing the flexfield into Oracle Business Intelligence and helps to equalize context-sensitive segments across contexts, as described in Task: Incorporate Custom Attributes into Oracle Business Intelligence in Section 4.8, "Integrating Custom Attributes."	
If you are configuring an extensible flexfield, complete the following tasks:	
Task: Identify the Extensible Flexfield's Category Hierarchy Structure	
Most extensible flexfields are shipped with only one category, which is often referred to as the root category, but there are a few extensible flexfields that are preconfigured with category hierarchies. In addition, some Oracle Fusion applications provide user interfaces to create and manage an extensible flexfield's category hierarchy, as described in the product-specific documentation in the Oracle Fusion Applications Help. If a category hierarchy exists for the flexfield, then you can take advantage of the hierarchy to reuse contexts for similar entities, such as similar items in a product catalog.	
The Item Extended Attributes flexfield shown in Figure 4-11 is an example of a flexfield that uses the category hierarchy feature to reuse contexts. The flexfield's Electronics and Computers category has been customized to contain contexts for compliance and certification, voltage, and materials and substances, as shown in Figure 4-10. The TV and Video subcategory and the Computer Products subcategory inherit the Electronics and Computer contexts in addition to having their own contexts.	
Contexts are reusable within a given extensible flexfield. For example, in Figure 4-10 the Materials and Substances context belongs to both the Electronics and Computer Products category and the Tools, Auto, and Industrial Products category.	
If you were adding custom attributes to the Item Extended Attributes flexfield, then you would plan how to work them into the existing category hierarchy.	
You can use the category hierarchy feature in your flexfield plan, as described in Task: Plan Extensible Flexfield Categories, only if a category hierarchy exists for the flexfield. For example, Figure 4-11 shows the Category region for the Item Extended Attributes flexfield.	
To view whether a category hierarchy exists for an extensible flexfield, complete one of the following steps:	
Task: Identify Existing Context Values	
Some extensible flexfields have preconfigured context values. To identify an extensible flexfield's existing context values, display the user interface page or pages that contain the flexfield segments and look for region headers, which identify existing contexts. For example, the first region in Figure 4-3 contains the attributes that belong to the Recovery and Recycling context value.	
You can also use the Manage Extensible Flexfields task to view the list of configured context values.	
If context values have been preconfigured, then consult the product-specific documentation in Oracle Fusion Applications Help for information about the use of these contexts.	
Task: List Custom Attributes	
List all the custom attributes that you want to add using the extensible flexfield. Later, as described in Task: Define Attribute Properties, you define the attribute details.	
Task: Plan Extensible Flexfield Categories	
All extensible flexfields have at least one category, but some flexfields have been set up with a hierarchy of categories, as described in Task: Identify the Extensible Flexfield's Category Hierarchy Structure.	
How you structure the flexfield configuration depends upon the way in which categories are defined for the flexfield. Most extensible flexfields are preconfigured with one category, and you associate all your contexts and pages with that category. Other extensible flexfields are preconfigured with several categories and you associate your contexts and pages with those categories as instructed by the product-specific documentation in Oracle Fusion Applications Help. A small number of extensible flexfields enable you to configure multiple categories by using provided user interfaces. In these cases, you can take advantage of the inheritance feature described in Task: Identify the Extensible Flexfield's Category Hierarchy Structure to associate a context with more than one category. For example, the Item Extended Attributes flexfield might be set up with the following category hierarchy:	
Suppose you want to store voltage information for all electronic and computer items. If you associate a Voltage context with the Electronics and Computers category, then both the TV and Video subcategory and the Computers subcategory inherit the Voltage context from the parent Electronics and Computers category. Figure 4-12 shows the contexts that have been associated with a Computers subcategory. Three of the contexts are inherited from the parent category.	
Task: Plan the Extensible Flexfield Structure	
Extensible flexfields enable you to group similar custom attributes into contexts, as illustrated in Figure 4-2. A context's attributes are displayed together in a region, and the region's header is the context value. For example, the Item Extended Attributes flexfield might have the following contexts:	
However, for the Position EIT Information flexfield, you might group your custom attributes into the following contexts:	
To begin the planning process, group the custom attributes into contexts and determine the order in which the attributes should appear.	
A context can optionally store multiple rows of data for a single entity, such as a specific job or position. For example, with the Certification and License Requirements context for the Position EIT Information flexfield, you might want to store values for all the certificates and licenses that are required to perform each position. For contexts that store multiple rows, decide how to uniquely identify each row. That is, identify which attributes form a unique key. For example, you might decide that the combination of certificate type and certificate name uniquely identifies a given row for the Certification and License Requirements context.	
Next, for each category (or for the single category if the flexfield was not set up with multiple categories), group the category's contexts into logical pages and determine the sequence in which the logical pages should appear.	
Note: For hierarchical categories, the child categories inherit the logical pages that are defined for the parent categories.	
The following list shows an example plan for custom computer attributes for the Item Extended Attributes flexfield. In this example, the Electronics Information page is inherited from the parent Electronics and Computers category.	
The following list shows a sample plan for the Position EIT Information flexfield:	
Task: Define Attribute Properties	
For each custom attribute that you want to add, define the attribute properties that are listed in Table 4-1.	
Also define the indexed property for each attribute. This indicates whether the attribute should be marked as selectively required in search panels. That is, whether it is one of the attributes for which an end user must enter a value before conducting a search. Note that if you mark an attribute as indexed, you must ask your database administrator to create an index on the segment column that you configure for that custom attribute as described in Section 4.5.2, "Configuring Extensible Flexfields."	
Task: Define Validation Rules for Extensible Flexfield Custom Attributes	
Define the validation rules for every attribute as described in Task: Define Validation Rules for Descriptive Flexfield Custom Attributes in Section 4.3.1, "Planning Descriptive Flexfields."	
Task: Define Initial Values for Extensible Flexfield Custom Attributes	
When you configure a flexfield segment for an extensible flexfield attribute, you can specify a constant or a SQL statement to use for setting the initial value. For every custom attribute, list the constant value or SQL statement, if any, to use for the initial value.	
If you use an SQL statement, it must be a valid statement that returns only one row and that returns a value of the correct type. You can use two types of SQL statements:	
WHERE	
clause of the SQL statement. :{SEGMENT.	
segment_code	
}	
: Identifies a segment in the same context. :{CONTEXT.	
context_code	
;SEGMENT.	
segment_code	
}	
: Identifies a segment in a different context. The context must be in the same category or in an ancestor category, and it cannot be a multiple-row context. :{VALUESET.	
value_set_code	
}	
: Identifies the closest prior segment in the same context that is assigned to the specified value set. :{FLEXFIELD.	
internal_code	
}	
: Identifies a flexfield. For information about how to use these bind variables, see Task: Create a Table Value Set in Section 4.4, "Creating Custom Value Sets."	
Task: Plan Extensible Flexfield Security	
Extensible flexfields enable you to specify view and edit privileges for a context's attributes. If an end user has a view privilege for a context, then the context's task flow and region appear in the user interface. Edit privileges enable an end user to edit the context's attribute values. If a user has view privileges but does not have edit privileges, then the context's attribute values are displayed, but the user cannot modify the values or add new rows. For example, you can set the privileges such that everyone can view the attributes but only managers can make changes.	
When an end user performs a search, the user interface displays only the attribute values of the contexts for which the user has view privileges. The user is able to perform a search using all attributes for all contexts, regardless of view privileges.	
If end users access a context through a web service, an exception is thrown if they perform an action for which they do not have privileges.	
Some data security resources for extensible flexfields are preconfigured with actions that you can use to specify access privileges. If not, or if you need additional actions, then create the actions as described in the "Managing Oracle Fusion Applications Data Security Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition). You must create a policy to grant an action to a job role. You can optionally create a condition (rule) to filter the instance sets to which the action is granted.	
All extensible flexfields have a base data security resource, which typically has a name with an _B suffix. Some extensible flexfields have a translatable option; these flexfields also have a translation data security resource. The translation data security resource, which is a view of a translation table, typically has a name with an _VL suffix. If a flexfield supports the translatable option and has a translation data security resource, you must ensure that you create the action for the appropriate data security resource. If you create a context-specific action for a nontranslatable context, add it to the base data security resource. If you create a context-specific action for a translatable context, add it to the translation data security resource. For information about the translatable option, see Task: Configure the Context in Section 4.5.2, "Configuring Extensible Flexfields."	
Tip: As shown in Table 4-3, the name of the base data security resource matches the name of the extensible flexfield's base extension table, which typically has an _B suffix. The name of the translation data security resource matches the name of the translation extension table, but with an _VL suffix instead of the table's _TL suffix. To find the names of the extension tables, view the flexfield in the Search Results region in the Manage Extensible Flexfields task and click the Show Entity Usages icon in the Entity Usages column. For example, the entity usages displayed for the ITEM_EFF flexfield would include ITEM_EFF_B, and ITEM_EFF_TL. Therefore, you would create actions for the ITEM_EFF_B and ITEM_EFF_VL data security resources.	
If your security restrictions apply to several contexts, you can create generic actions. At a minimum, create the generic actions for the base data security resource. If the flexfield has a translatable option and you plan to use translatable contexts, then also create the generic actions for the translation data security resource. For example, if the Item flexfield supports the translatable option and has a data security resource ITEM_EFF_VL in addition to the base data security resource ITEM_EFF_B, then create actions for both data security resources, such as EDIT_NONTRANS_ATTRS for ITEM_EFF_B and EDIT_TRANS_ATTRS for ITEM_EFF_VL.	
If your security restrictions are more fine-grained, for example, if you would like to secure each context with a different privilege, then you can create more fine-grained actions.	
Table 4-4 shows an example of data security policies for the Item flexfield and Table 4-5 shows the privileges for three of the flexfield's contexts. In this example, anyone can view the contexts' attributes, but the edit privileges are restricted as follows:	
In this example, Materials and Substances is secured by a generic action with a condition applied to restrict access by category. Voltage and Compliance and Certification are secured by actions specific to each context.	
Table 4-3 Data Security Resources for the Item Flexfield	
Extension Table	Data Security Resource
---	---
ITEM_EFF_B	ITEM_EFF_B
ITEM_EFF_TL	ITEM_EFF_VL (defined for the view of the extension table)
Table 4-4 Example Security Policies for the Item Flexfield	
Data Security Resource	Policy
---	---
ITEM_EFF_B	A
ITEM_EFF_VL	B
ITEM_EFF_VL	C
ITEM_EFF_VL	D
Table 4-5 Example Context Privileges for the Item Flexfield	
Context	Edit Privilege
---	---
Voltage	edit_nontrans_voltage_ctx
Compliance and Certification	edit_trans_compliance_ctx
Materials and Substances	edit_trans_attrs
When you configure a flexfield, you set the privileges for a context at the usage level by selecting actions from the View Privileges and Edit Privileges dropdown lists as described in Task: Configure Context Usages and Usage Security in Section 4.5.2, "Configuring Extensible Flexfields." By selecting an action from the View Privileges dropdown list, you are associating that action with the view operation. Selecting an action from the Edit Privileges dropdown list associates that action with the edit operation.	
Note: An extensible flexfield context can be associated with one or more flexfield usages. For example, a flexfield might be associated with an ITEM usage, an ITEM_REVISION usage, and an ITEM_SUPPLIER usage. Consult the product-specific documentation to understand the purpose of each usage.	
You use the following types of value sets to control the values that can be stored for the custom attributes:	
A value set is a predefined group of values that you can use to validate custom attributes. Different custom attributes in the same flexfield can use the same value set, and custom attributes in different flexfields can share value sets.	
Value sets enable you to enforce the following types of data validation:	
WHERE	
clause. Table value sets also provide some advanced features, such as enabling validation to depend upon custom attributes in the same structure. You can further limit the valid values that an end user can select or enter by specifying format, minimum value, and maximum value.	
Note: You can use only table and independent value sets to validate context values. The data type must be character and the maximum length of the values being stored must not be larger than the context's column length. If you use a table value set, the value set cannot reference flexfield segments in the value set's	
If you are creating an independent, dependent, or subset value set, you must also define the set of valid values. For table, independent, dependent, and subset value sets, you can optionally implement value set data security. If the Oracle Fusion applications are running in different locales, you might need to provide different translations for the values and descriptions. For more information, see the "Translating Flexfield and Value Set Configurations" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
For independent, dependent, and subset value sets, if you need to capture additional information about each valid value, such as its purpose, you can configure the value set to add additional attributes, as described in Task: Add Attributes to a Value Set.	
Use the Manage Value Sets task as shown in Figure 4-13 to create and manage value sets.	
For more information, see the "Manage Value Sets" section in the Oracle Fusion Applications Common Implementation Guide. In Section 4.5, "Configuring Flexfields" you learn how to assign the value sets to the flexfield segments that you preconfigure for your custom attributes as well as how to create value sets at the same time that you create segments for the custom attributes.	
Note: If you use the Quick Create dialogs to configure a flexfield, a value set is created automatically. If the display type is a checkbox, radio button group, dropdown list, list of values, or pop-up list of values, an independent value set is created and you specify its values and descriptions (the set of valid values) using the Quick Create UI. If the display type is text field, multi-line text area, or date picker, a format-only value set is created and you specify the format rules, such as length, minimum value, and maximum value, using the Quick Create UI.	
Note: The management of value sets cannot be performed in a sandbox. For a list of the customizations that can be performed in a sandbox, see Chapter 2, "Using the Sandbox Manager."	
When you change an existing value set, the deployment status for all affected flexfields changes to Edited. You must redeploy all flexfields that use that value set to make the flexfields reflect the changes. The Usages tabs show which flexfields are affected by the value set changes. You learn about deploying flexfields in Section 4.7, "Deploying Flexfield Configurations."	
Before you begin:	
You will need to do the following before you can begin creating custom value sets:	
Task: Define Format Specifications	
Regardless of which type of validation you use for an attribute, the attribute will most likely require some sort of format specification. Before you create a value set, consider how you will specify the required format. Depending on the validation type and the value data type, you will be able to specify one or more of the options shown in Table 4-6.	
Table 4-6 Format Options	
Option	Description
---	---
Value data type	Character, Number, Date, Date Time.
Value subtype	Text, Translated text, Numeric digits only, Time (20:08), Time (20:08:08). An additional data type specification for the Character data type for the Dependent, Independent, and Format validation types. See the Caution note following this table for information about the Text and Translated text subtypes.
Maximum length	Maximum number of characters or digits for Character data type.
Precision	Maximum number of digits the user can enter.
Scale	Maximum number of digits that can follow the decimal point.
Uppercase only	Lowercase characters automatically changed to uppercase.
Zero fill	Automatic right-justification and zero-filling of entered numbers (affects values that include only the digits 0-9).
Caution: When choosing between a value subtype of Text or Translated text, choose Translated text if your application has more than one language installed, or there is any possibility that you might install additional languages, and you might want to translate the displayed values into the other languages. Choosing the Translated text subtype does not require you to provide translated values now, but you cannot change this option if you decide to provide them later.	
Task: Create a Format-Only Value Set	
If you do not need to validate input against a list of valid values, then create a value set with the Validation Type of Format. You can also use this validation type to create a range specification, such as all numbers between 1 and 100.	
Task: Create an Independent Value Set	
If you need to validate the input against a custom list of values, where the list is not stored in an application table and the values are not dependent upon nor a subset of another independent value set, then create a value set with a Validation Type of Independent.	
After you create the value set, define the set of valid values as described in Task: Define the Set of Valid Values.	
Note: If the independent value set has dependent value sets, then define the dependent values sets before you define the valid values for the independent value set.	
Task: Create a Dependent or Subset Value Set	
If you need to validate the input against a custom list of values where the values are dependent upon or are members of an independent value set, then create a value set with a Validation Type of Dependent or Subset, as appropriate. You must specify the independent value set on which dependent or subset value set depends.	
After you create the value set, define the set of valid values as described in Task: Define the Set of Valid Values.	
Note: If the independent value set has dependent value sets, then define the dependent values sets before you define the valid values for the independent value set.	
Task: Define the Set of Valid Values	
Independent, dependent, and subset value sets require a customized list of valid values. Use the Manage Values page as shown in Figure 4-14 to create and manage a value set's valid values and the order in which they appear. To access the Manage Values page, select the value set from the Manage Value Sets page and click Manage Values. Alternatively, click Manage Values from the Edit Value Set page.	
If you are adding a value to a dependent value set, then you must associate it with a value from the parent independent value set.	
If you are adding a value to a subset value set, then you must select it from the parent independent set.	
If the value set's subtype is Translated text, then you can enter a translated value for a locale by logging in using that locale (or choosing Set Preferences from the Personalization menu in the global area) and entering the translated value. If you do not provide a translation for a given locale, then the value that was first entered is used for that locale.	
Task: Create a Table Value Set	
If you need to validate the input against a list of values from an application table, then create a value set with the Table validation type. You define which table you want to use and you specify the column that contains the valid value. You can optionally specify the description and ID columns, a WHERE	
clause to limit the values to use for your set, and an ORDER BY	
clause.	
If you specify an ID column, then the flexfield saves the ID value, instead of the value from the value column, in the associated flexfield segment. You learn about assigning value sets to flexfield segments in Section 4.5, "Configuring Flexfields."	
If the underlying table supports translations, you can enable the display of translated text by basing the value set's value column on a translated attribute of the underlying table. You should also define an ID column that is based on an attribute that is not language-dependent so that the value's invariant ID (an ID that does not change) is saved in the transaction table. This allows the runtime to display the corresponding translated text from the value column for the runtime session's locale. For more information, see the "Using Multi-Language Support Features" section in the Oracle Fusion Applications Developer's Guide.	
After you assign a value set to a flexfield, you can use the following bind variables in the WHERE	
clause.	
:{SEGMENT.	
segment_code	
}	
This bind variable refers to the ID (if the value set is ID-validated) or value (if not ID-validated) of a segment where segment_code	
identifies the segment. The data type of the bind value is the same as the data type of the segment's column.	
For descriptive flexfields, if the segment is global, then the source segment (the segment with the WHERE clause) must be global. Otherwise, it must be in the same context as the source segment. For extensible flexfields, the segment must be in the same context as the source segment.	
The source segment must have a sequence number that is less than the sequence number of the target segment (segment with this bind variable).	
This bind variable is useful when the set of valid values depends on the value in another segment. For example, the values to select from a CITIES table might depend upon the selected country. If SEGMENT1 contains the country value, then the WHERE	
clause for the CITIES table might be country_code = :{SEGMENT.SEGMENT1}	
.	
:{CONTEXT.	
context_code	
;SEGMENT.	
segment_code	
}	
This bind variable, which is valid only for extensible flexfields, refers to the ID (if the value set is ID-validated) or value (if not ID-validated) of a segment that is in a different context than the target segment (the segment with the WHERE	
clause). The context_code	
identifies the context and segment_code	
identifies the segment. The data type of the bind value is the same as the data type of the segment's column.	
The source context must be a single-row context that is in the same category or ancestor category as the target segment.	
Tip: The target segment should appear in the UI after the source segment to ensure the source segment has a value. If the target segment's context is a single-row context, the source and target segments must be on separate pages and the target page must follow the source page.	
This bind variable is useful when the set of valid values depends on the value of a segment in another context. For example, the values to select from a CERTIFICATION table for a segment in the Compliance and Certification context might depend on the value of the country segment in the Manufacturing context.	
:{VALUESET.	
value_set_code	
}	
This bind variable refers to the ID (if the value set is ID-validated) or value (if not ID-validated) of the segment that is assigned to the value set that is identified by the value_set_code	
. The data type of the bind value is the same as the data type of the segment's column.	
The segment must have a sequence number that is less than the sequence number of the segment with this bind variable. If more than one segment is assigned to the value set, the closest prior matching segment will be used to resolve the bind expression. A matching segment must exist in the current flexfield context.	
This bind variable is useful when the set of valid values depends on the value in another segment and that segment code can vary, such as when the value set is used for more than one context or flexfield. For example, the values to select from a CITIES table might depend upon the selected country. If the value set for the segment that contains the country value is COUNTRIES, then the WHERE	
clause for the CITIES table might be country_code = :{VALUESET.COUNTRIES}	
.	
:{FLEXFIELD.	
internal_code	
}	
This bind variable refers to an internal code of the flexfield in which the value set is used, or to a validation date. The internal_code	
must be one of the following:	
APPLICATION_ID	
— the application ID of the flexfield in which this value set is used. The data type of APPLICATION_ID	
and its resulting bind value is NUMBER. DESCRIPTIVE_FLEXFIELD_CODE	
— the identifying code of the flexfield in which this value set is used. The data type of DESCRIPTIVE_FLEXFIELD_CODE	
and its resulting bind value is VARCHAR2. Note that you use this string for both descriptive and extensible flexfields. CONTEXT_CODE	
— the context code of the flexfield context in which this value set is used. The data type of CONTEXT_CODE	
and its resulting bind value is VARCHAR2. SEGMENT_CODE	
— the identifying code of the flexfield segment in which this value set is used. The data type of SEGMENT_CODE	
and its resulting bind value is VARCHAR2. VALIDATION_DATE	
— the current database date. The data type of VALIDATION_DATE	
and its resulting bind value is DATE. :{PARAMETER.	
parameter_code	
}	
This bind variable refers to the value of a flexfield parameter where parameter_code	
identifies the parameter. The data type of the resulting bind value is the same as the parameter's data type.	
Note: You cannot assign a table value set to a context segment if the	
Task: Add Attributes to a Value Set	
For independent, dependent, and subset value sets, you can use the FND_VS_VALUES_B descriptive flexfield to add the attributes to a value set. The additional attributes appear in the Manage Value Sets UI, and can be used to capture additional information about each valid value, such as its purpose. These attributes are typically used to capture internal information. If you need to display the attributes on an application page, you must modify the application to programmatically access them.	
To add attributes to a value set, edit the FND_VS_VALUES_B flexfield from the Manage Descriptive Flexfields task, and then click Manage Contexts. Create a new context and use the value set code for the context code. Add the desired attributes as context-sensitive segments. Next, deploy the FND_VS_VALUES_B flexfield, sign out, and then sign back in to see the new attributes for that value set in the Manage Value Sets UI.	
Task: Implement Value Set Data Security	
If you need to control end user access to the values in an independent, dependent, subset, or table value set, then you can create data security policies for that value set. These policies enable you to specify what values each end user can enter and view, based on that user's role. End users will not be able to enter values for which they do not have access, and only the values they have access to appear in the list of values for the associated segments. Any security rules that you define for a value set affect every segment that uses the value set.	
A data security resource identifies the data that must be secured by the policies, which in this case is the value set. Value set data security follows a "deny all, allow some" approach. This means that access to all of a resource's data is denied by default and, based on policies, end users have access only to the data that is appropriate for their role. Use conditions to define the data that can be accessed and use policies to identify the roles that have the authority to access the data that is identified by the condition.	
You can implement value set security after you create the value set, or you can implement it later by editing the value set. To implement security, select the Security Enabled checkbox and then provide the data security resource name. You can enter the name of an existing resource or type the name of a data security resource that you want to create. This will be the name used for the data security resource in the data security system. The name typically matches the code value for the value set.	
Note: You cannot edit the data security resource name after you save your changes.	
After you save your changes to the data security resource name, you can optionally click the Edit Data Security button to access the Edit Data Security page, provided that you have access to the Manage Database Security Policies task. On the Edit Data Security page, you can specify conditions, such as filters or SQL predicates, and you can define policies where you associate roles with conditions. You can use a filter for simple conditions. For more complex conditions, use a SQL predicate.	
The data security conditions and policies that you define are similar to those that you can define for business objects. Value set data security policies differ in the following ways:	
VALUE	
, VALUE_NUMBER	
, VALUE_DATE	
, VALUE_TIMESTAMP	
, or VALUE_ID	
to reference the value from a dependent, independent, or subset value set. For table value sets, use a table alias to define the table, such as &TABLE_ALIAS.category_id=70	
. For more information about data security resources, roles, conditions, and policies, see the "Managing Oracle Fusion Applications Data Security Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).	
Use the Manage Extensible Flexfields task to configure an extensible flexfield. For descriptive flexfields, use either the Manage Descriptive Flexfields task or the Quick Create dialogs.	
Note: Do not use JDeveloper to customize flexfields. If you require flexfield changes that you cannot accomplish using the Manage Flexfields tasks or the Manage Value Sets tasks as described in this chapter, contact My Oracle Support at	
Use the Manage Descriptive Flexfields task or the Quick Create dialogs to configure a descriptive flexfield. Both the Manage Descriptive Flexfield task and the Quick Create dialogs are available from the Highlight Flexfields UI. The Manage Descriptive Flexfields task is also available from the Setup and Maintenance work area.	
When you configure a descriptive flexfield, you define the global segments, the context segment, and the context-sensitive segments. For each segment, you define its display properties and you specify how to validate its values.	
If the descriptive flexfield has been enabled for Oracle Business Intelligence, you can enable segments for Oracle Business Intelligence and you can select segment labels for the segments. For more information, see Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
Note: A descriptive flexfield might be used for more than one application table. For example, a flexfield might be associated with a USER table and a USER_HISTORY table. These associations are called flexfield usages. When you configure a flexfield, the configuration applies to all its usages.	
If the Oracle Fusion applications are running in different locales, then you might want to provide different translations for the translatable text, such as prompts and descriptions. To create the translations, log in with each of the different locales (or choose Set Preferences from the Personalization menu in the global area to set the locale) and change the text to the translated text for that locale. For more information, see the "Translating Flexfield and Value Set Configurations" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
For more information about using the Manage Descriptive Flexfields task, see the "Manage Descriptive Flexfields" section in the Oracle Fusion Applications Common Implementation Guide.	
For basic configurations, you can use the three Quick Create dialogs — Create Context Value, Quick Create: Global Segment, and Quick Create: Context-Sensitive Segment — to quickly add and configure a context value or segment from the page on which the flexfield appears. Figure 4-15 shows the Quick Create: Global Segment dialog.You access the Quick Create dialogs from the Highlight Flexfields UI.	
When you use a Quick Create dialog to create a segment, the segment code, name, description, table column, and sequence number are set automatically.	
To change any default configuration that is editable, such as sequence number, name, and description, or to configure advanced options such a business-intelligence label, click the segment's Edit Descriptive Flexfield (wrench) icon in the Highlight Flexfields UI to access the Manage Descriptive Flexfields task for the segment.	
Before you begin:	
You will need to do the following before you can begin configuring the descriptive flexfield:	
Note: Some Oracle Fusion applications provide product-specific tasks for configuring and managing certain flexfields, such as the Manage Purchasing Descriptive Flexfields task. See the product-specific documentation in Oracle Fusion Applications Help for information about product-specific flexfield management tasks.	
Task: Use the Quick Create Dialogs to Add Basic Segments	
To add a context value, click the Add new context icon that appears next to the Context field. To add a global segment, click the Add global segment icon. Click the Add context-sensitive segment icon to add a context sensitive segment.	
Tip: After you add a context value, refresh the page to see the new value.	
A value set is created automatically for a segment. The type of value set that is created depends upon the display component that you select.	
Click Save and Deploy to save your changes and to deploy the flexfield configuration.	
Use the Manage Descriptive Flexfield task to edit the segments that you create using Quick Create dialogs.	
Note: You must log out and log in again to see your changes.	
The Manage Descriptive Flexfields task enables you to define the global segments, the context segment, and the context-sensitive segments. For each segment, you can define its display properties, its initial default value, and how to validate its values. You can also use this task to business-intelligence enable the flexfield and to configure BI labels.	
You can access the Manage Descriptive Flexfields task from either the Highlight Flexfields UI or from the Setup and Maintenance work area.	
Figure 4-17 shows the Edit Descriptive Flexfield page, which you use to define the context, add segments, and manage contexts, and manage segment labels.	
Before you begin:	
You will need to do the following before you can begin configuring the descriptive flexfield:	
Note: Some Oracle Fusion applications provide product-specific tasks for configuring and managing certain flexfields, such as the Manage Purchasing Descriptive Flexfields task. See the product-specific documentation in Oracle Fusion Applications Help for information about product-specific flexfield management tasks.	
Task: Create Segment Labels	
If the descriptive flexfield has been enabled for Oracle Business Intelligence and you want to create segment labels for the flexfield, click Manage Segment Labels to create the labels. For more information, see Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
Task: Configure Global Segments	
Using the information that you gathered in your planning stage, configure a global segment for every global attribute that you identified in Task: Plan the Descriptive Flexfield Structure in Section 4.3.1, "Planning Descriptive Flexfields." For each segment, provide the identifying information, the initial default value, and the display properties.	
Tip: A flexfield column is assigned to a new segment automatically, but you can change the assignment. If you need to set a specific column assignment for a segment, create that segment first to ensure that the intended column is not automatically assigned to a different segment.	
If the value set to be used to validate the segment already exists, select it from the dropdown list. Otherwise, click Create Value Set and configure it.	
Select BI Enabled if you want to make the segment available to Oracle Business Intelligence. Select a label from the BI Label dropdown list if you want to equalize the segment with segments in other contexts or you want to map the segment to a logical object as described in Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
Note: The segment code is used in the flexfield's element in the XML schema for web services. You can maximize the readability of the schema by naming segment codes with a leading alphabetic character followed by alphanumeric characters. The use of spaces, underscores, multibyte characters, and leading numeric characters, which are all encoded in XML schemas, make the codes in the schema element difficult to read.	
Tip: When you create segments for your attributes, you specify the sequence number for the segment. This sequence affects the order in which the attribute is displayed on the page. Consider numbering the segments in multiples, such as 4, 5, or 10, to make it easy to insert new attributes.	
Task: Configure the Context Segment	
On the Edit Descriptive Flexfield page, specify the prompt for the context segment, whether the context segment should be displayed, and whether a value is required.	
Select BI Enabled if you want to make the context segment available to Oracle Business Intelligence. Select a label from the BI Label dropdown list if you want to map the segment to a logical object as described in Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
As explained in Task: Define Validation Rules for Extensible Flexfield Custom Attributes in Section 4.3, "Planning Your Flexfields," you do not need to specify a value set if the set of valid values is the same as the set of context values. If you need to associate a context with a value set, then the value set must be an independent or table value set. The data type must be Character and the maximum length of the values being stored must not be larger than the context's column length.	
If the value set to be used to validate the segment already exists, select it from the dropdown list. Otherwise, to create a value set, click Create Value Set and configure it.	
Note: You cannot assign a table value set to a context segment if the	
Task: Configure Contexts	
Using the list of valid context values that you prepared in the planning stage, access the Manage Contexts page and specify for each context value a context code, description, and name, and add its context-sensitive segments.	
For each context-sensitive segment that you add, provide the identifying information, the column assignment, the initial default value, and the display properties.	
Tip: A flexfield column is assigned to a new segment automatically, but you can change the assignment. If you need to set a specific column assignment for a segment, create that segment first to ensure that the intended column is not automatically assigned to a different segment.	
If the value set to be used to validate the segment already exists, select it from the dropdown list. Otherwise, click Create Value Set and configure it.	
Select BI Enabled if you want to make the segment available to Oracle Business Intelligence. Select a label from the BI Label dropdown list if you want to equalize the segment with segments in other contexts or you want to map the segment to a logical object as described in Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
Note: The context and segment codes are used in the flexfield's element in the XML schema for web services. You can maximize the readability of the schema by naming context and segment codes with a leading alphabetic character followed by alphanumeric characters. The use of spaces, underscores, multibyte characters, and leading numeric characters, which are all encoded in XML schemas, make the codes in the schema element difficult to read.	
Tip: When you create segments for your attributes, you specify the sequence number for the segment. This sequence affects the order in which the attribute is displayed on the page. Before you begin creating segments, you might want to plan how you will number sequences. Consider numbering the segments in multiples, such as 4, 5, or 10, to make it easy to insert new attributes.	
Use the Manage Extensible Flexfields task shown in Figure 4-18 to configure an extensible flexfield. You can access the Manage Extensible Flexfields task from the Highlight Flexfields UI as well as from the Setup and Maintenance work area.	
Configure an extensible flexfield by defining its contexts and associated context-sensitive segments and usages, defining the access privileges for each usage, associating the context with categories and pages, and defining the display properties, initial value, and value validation for each context-sensitive segment.	
If the Oracle Fusion applications are running in different locales, you might want to provide different translations for the translatable text, such as prompts and descriptions. To create the translations, log in with each of the different locales (or choose Personalization from the Set Preferences menu in the global area to set the locale) and change the text to the translated text for that locale. For more information, see the "Translating Flexfield and Value Set Configurations" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
For more information, see the "Manage Extensible Flexfields" section in the Oracle Fusion Applications Common Implementation Guide.	
Before you begin:	
You will need to do the following before you can begin configuring an extensible flexfield:	
Note: Some Oracle Fusion applications provide product-specific tasks for configuring and managing certain flexfields, such as the Manage Orchestration Extensible Flexfields task. See the product-specific documentation in Oracle Fusion Applications Help for information about product-specific flexfield management tasks.	
Task: Configure the Context	
Using the list of contexts that you prepared in the planning stage, access the Manage Contexts page and create the desired contexts. Create the context-sensitive segments for each context and provide the identifying information, the column assignment, the initial default value, and the display properties.	
Tip: A flexfield column is assigned to a new segment automatically, but you can change the assignment. If you need to set a specific column assignment for a segment, create that segment first to ensure that the intended column is not automatically assigned to a different segment.	
If the value set to be used to validate a segment already exists, select it from the dropdown list. Otherwise, click Create Value Set and configure it. If the value set is a table value set, independent value set, dependent value set, or subset value set, optionally select Show Value Description to display the description of the selected value to the right of the segment.	
Some extensible flexfields have a Translatable option. If the context will be used to store free-form user-entered text in the language of the user's locale, and if different translations of that text can be stored for other languages, then select Translatable. If you select Translatable, then the context can have only format-only validated segments.	
Note: The context and segment codes are used in the flexfield's element in the XML schema for web services. You can maximize the readability of the schema by naming context and segment codes with a leading alphabetic character followed by alphanumeric characters. The use of spaces, underscores, multibyte characters, and leading numeric characters, which are all encoded in XML schemas, make the codes in the schema element difficult to read.	
Tip: When you create segments for your attributes, you specify the sequence number for the segment. This sequence affects the order in which the attribute is displayed on the page. Consider numbering the segments in multiples, such as 4, 5, or 10, to make it easy to insert new attributes.	
Task: Configure Context Usages and Usage Security	
Typically, an extensible flexfield has one usage. If a flexfield has more than one usage, you can associate a context with several usages. Consult the product-specific documentation in Oracle Fusion Applications Help to understand the purpose of each usage.	
Using the usage security information that you gathered from Task: Plan Extensible Flexfield Security in Section 4.3, "Planning Your Flexfields," select the appropriate actions from the View Privileges and Edit Privileges dropdown lists for each usage that you associated with the context. Select None to specify that no special privileges should be enforced.	
Note: If you change a privilege for a usage after you deploy the flexfield, you must redeploy the flexfield for the change to take place.	
Some flexfields might have other usage fields. Consult the product-specific documentation from Oracle Enterprise Repository for Oracle Fusion Applications for more information about the additional usage fields.	
Task: Configure Categories and Category Details	
While most extensible flexfields have a single category, some extensible flexfields have multiple categories. When an extensible flexfield has multiple categories, you can further group the contexts into categories. Some flexfields provide an activity or task for creating your own categories. Consult the product-specific documentation in Oracle Fusion Applications Help to determine whether you can create categories for the flexfield.	
Task: Associate Contexts with a Category	
Most extensible flexfields have a single category that contains all the flexfield's contexts. Some flexfields enable you to work with multiple categories. To associate contexts with a category, select the category on the Edit Extensible Flexfield page. Then, in the Associated Contexts tab, add the desired contexts to the selected category.	
Task: Create Logical Pages for a Category	
Using the information from your plan, group the contexts into logical pages and determine the sequence in which the logical pages should appear. To build the logical pages, select the category on the Edit Extensible Flexfield page. Then, in the Pages tab, add the desired contexts and specify their sequence.	
You can verify that a flexfield's metadata is complete and correctly configured by choosing Validate Metadata from the Actions menu in either the Maintain Extensible Flexfields task or the Maintain Descriptive Flexfields task. The validations that this action performs are the same validations that are performed when you deploy a flexfield.	
You must deploy a flexfield before you can access the custom attributes from the user interface and other parts of the Oracle Fusion Middleware technology stack. You use the appropriate flexfield management task — Manage Descriptive Flexfields or Manage Extensible Flexfields — to deploy a flexfield.	
Note: If you use the Quick Create dialogs to configure a flexfield, the flexfield is deployed when you click Save and Deploy.	
When you deploy descriptive or extensible flexfields, the following occurs:	
Note: Some products provide tasks for creating and maintaining categories for an extensible flexfield. Some of these tasks enable the end user to disable a category while they are setting it up. In the Edit Extensible Flexfield page, the Enabled column in the Category table indicates which categories are enabled. When you deploy an extensible flexfield that has a disabled category, that category and its descendant categories are not deployed. Contexts and their segments are deployed only if they belong to at least one enabled category.	
Before you deploy the flexfield to the full test environment, deploy the flexfield configurations to the flexfield sandbox by choosing the Deploy Flexfield to Sandbox action. The changes that you deploy to a sandbox are isolated from the full test environment and can be seen only by those who make the flexfield sandbox active in their session. After you are satisfied with the changes in the sandbox, deploy the changes to the full test environment. Note that this feature if not available if you use the Quick Create dialogs to deploy the flexfield.	
In addition to the Deploy Flexfield and Deploy Flexfield to Sandbox actions, extensible flexfields provide a Deploy Offline action. You must use this action to deploy extensible flexfields that have more than 30 categories. You can also use this action if you want to deploy several extensible flexfields, or if you want to continue working in your session without having to wait for a deployment to complete.	
After deployment, the custom attributes are available for incorporating into the SOA infrastructure, such as business process and business rule integration. For example, you can now write business rules that depend on the custom attributes.	
Descriptive flexfields that are enabled for business intelligence are available for integrating with business intelligence (BI) technology, such as Oracle BI Enterprise Edition (Oracle BI EE) and Oracle Essbase.	
For more information about flexfield deployment and flexfield sandboxes, see the "Flexfield Deployment" section in the Oracle Fusion Applications Common Implementation Guide. For more information about integrating the deployed flexfield into the Oracle Fusion Middleware technology stack, see Section 4.8, "Integrating Custom Attributes."	
Before you begin:	
You will need to do the following before you can begin deploying a descriptive or extensible flexfield:	
Task: Deploy a Flexfield to a Sandbox	
Before you deploy the flexfield configuration to the full test environment, deploy the flexfield to the flexfield sandbox and test the configuration. To deploy a flexfield to a sandbox, select the flexfield in the Search Results region, and choose Deploy Flexfield to Sandbox from the Actions menu, as shown in Figure 4-19. A progress window shows when the process has completed and the completion status.	
The sandbox to which you deploy the flexfield is different from the standard sandboxes that are described in Section 2.2, "Using the Sandbox Manager." Each flexfield has its own sandbox. You do not need to create a flexfield sandbox because the deployment process manages flexfield sandbox creation. When you deploy to the flexfield sandbox, a dialog box shows the name of the flexfield sandbox, and that flexfield sandbox is set as your current active sandbox.	
Note: When you deploy to the flexfield sandbox, the	
When you next log in to the application, you can see the updated flexfield configurations (you must log out and log back in to see the changes). The Oracle Fusion Applications global area displays your current session sandbox. When you hover over the sandbox name, the sandbox details appear. To exit a sandbox, hover over the sandbox name and click Exit Sandbox. To view additional details about the sandbox, hover over the sandbox name and click More Details.	
To make an existing flexfield sandbox active for your session, access the flexfield sandbox from the Manage Sandboxes page, select the flexfield sandbox, and click Set as Active. For information about accessing this page, see Section 2.2, "Using the Sandbox Manager."	
After you are satisfied with the changes, deploy the flexfield to the full test environment as described in Task: Deploy a Flexfield to the Full Test Environment.	
Task: Deploy a Flexfield to the Full Test Environment	
To deploy a flexfield to the full test environment, select the flexfield in the Search Results region, and choose Deploy Flexfield from the Actions menu.	
A progress window shows when the process has completed and the completion status. If a sandbox exists for the flexfield, then this sandbox is deleted automatically after the flexfield successfully deploys to the full test environment.	
When you next log in to the application, you can see the updated flexfield configurations (you must log out and log back in to see the changes).	
Task: Deploy Extensible Flexfields Offline	
When an extensible flexfield has more than 30 categories, you must deploy the flexfield offline. You can also use this action if you want to deploy several extensible flexfields, or if you want to continue working in your session without having to wait for a deployment to complete.	
To add an extensible flexfield to your offline deployment queue, select the flexfield and click Deploy Offline. The Queued icon appears in the Offline Status column, as shown in the second row in Figure 4-20. You can add several flexfields to your queue, one after the other. The flexfields are deployed, one at a time, in the order that you deploy them to the queue. To remove an extensible flexfield from your queue, select the queued flexfield and click Cancel Offline. You cannot remove flexfields from other users' queues.	
While an extensible flexfield is in an offline deployment process, the Deploying icon displays in the Offline Status column, as shown in the first row in Figure 4-20. After an extensible flexfield completes the offline deployment process, its offline status becomes blank and its deployment status indicates if the deployment was successful or not.	
Note: The Offline Status column does not refresh automatically when a queued flexfield begins the offline deployment process or when its offline deployment process completes. To display the current offline status, you must perform a new search in the Manage Extensible Flexfields task, or exit and reenter the task.	
Task: Check Deployment Status	
The Deployment Status column in the Search Results region shows the current status for each flexfield.	
If a deployment error occurs, then the Deployment Error Message column in the Search Results region provides details about the error, as shown in Figure 4-21.	
After you have deployed a flexfield, you can begin incorporating its custom attributes into the Oracle Fusion Middleware technology stack.	
For information about the technology stack, see the "Oracle Fusion Middleware Components" chapter in the Oracle Fusion Applications Concepts Guide.	
Task: Customize Flexfield Pages	
After you deploy an extensible or descriptive flexfield, the new attributes appear on all pages that contain the flexfield. You can use Page Composer to configure the custom attribute properties on a page-by-page basis. For example, you can hide some custom attributes. For more information, see Chapter 3, "Customizing Existing Pages."	
Note: The custom attributes appear only on pages that include the flexfield. For information about adding flexfields to a page, see the "Adding Descriptive Flexfield UI Components to a Page" section or the "Employing an Extensible Flexfield on a User Interface Page" section in the Oracle Fusion Applications Developer's Guide.	
Task: Incorporate Custom Attributes into Oracle Business Intelligence	
If a descriptive flexfield is enabled for Oracle Business Intelligence, the Manage Descriptive Flexfields task displays a Manage Segment Labels button and displays BI Enabled checkboxes for the global, context, and context-sensitive segments. Select a segment's BI Enabled checkbox to specify that the segment is available for use in Oracle Business Intelligence. You can optionally select a value from the BI Label dropdown list to specify the logical object to which the segment should be mapped when the flexfield is imported into Oracle Business Intelligence. This mapping also equalizes context-sensitive segments across contexts, as explained later in this section. For more information, see Task: Plan Attribute Mapping to Oracle Business Intelligence Objects in Section 4.3.1, "Planning Descriptive Flexfields."	
When you deploy a flexfield with business intelligence-enabled segments, the deployment process generates a set of flattened ADF Business Components in addition to the usual ADF Business Components and ADF Faces runtime artifacts that are generated during deployment. A flattened business component includes a single attribute for the context segment if it is business intelligence-enabled, as well as one attribute for each business intelligence-enabled global segment. For the business intelligence-enabled context-sensitive segments that have labels, the segments are equalized across contexts. That is, the flattened business component includes one attribute for each label. For example, a United States context might have a Passport segment and a Canada context might have Visa segment. If you assign the NationalID segment label to both the Passport and Visa segments, they are equalized into the same NationalID attribute in the flattened business component.	
For the business intelligence-enabled context-sensitive segments that do not have labels, the business component includes a separate attribute for each non-labeled context-sensitive segment for each context value. Non-labeled context-sensitive segments are not equalized across context values.	
After you deploy a business intelligence-enabled flexfield, import the flexfield changes into the Oracle Business Intelligence repository to make use of the newly flattened business components in business intelligence and then propagate the flex object changes. When you import the metadata into the Oracle Business Intelligence repository, you must do so as the FUSION_APPS_BI_APPID	
user.	
Note: To import flexfield changes into the Oracle Business Intelligence repository in Oracle Cloud implementations, log a service request using My Oracle Support at	
Tip: When you import a flexfield into the Oracle Business Intelligence repository, you see both name_ and name_c attributes for each segment, along with some other optional attributes. The name_ attribute contains the value. The name_c attribute contains the code of the value set that the value comes from, and is used for linking to "value dimension." You must import both attributes.	
For more information about importing and propagating your flexfield changes, see Task: Configuring Descriptive Flexfields and Key Flexfields for Oracle Business Intelligence in Section 7.3.3, "Customizing the Oracle BI Repository (RPD)." For information about adding flexfields to an Oracle Business Intelligence Publisher data model, see the "Adding Flexfields" chapter in the Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition).	
Task: Incorporate Custom Attributes into Web Services and SOA Infrastructure	
When an extensible or descriptive flexfield is deployed, the deployment process regenerates the XML schema definition (XSD), which makes the custom attributes available to web services and the SOA infrastructure.	
After deploying a flexfield configuration, you must synchronize the updated XSD files in the MDS repositories for each SOA application. For more information, see "Customizing SOA Composite Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
Note: To synchronize the updated XSD files in the MDS repositories in Oracle Cloud implementations, log a service request using My Oracle Support at	
Task: Enable the Custom Attributes for Oracle Social Network	
Use the Manage Oracle Social Network Objects task to enable the flexfield attributes for Oracle Social Network. To access the task, choose Setup and Maintenance from the Administration menu in the global area of Oracle Fusion Applications and search for the task. Next, search for the business object and select the attributes that you want to enable.	
This chapter describes how to use the Manage Menu Customizations task to customize the navigator menu and the home page menu in Oracle Fusion Applications.	
This chapter includes the following sections:	
You use the Manage Menu Customizations task to customize the navigator and home page menus. This task is available from the Setup and Maintenance work area, which is accessible from the Administration menu in the Oracle Fusion Applications global area.	
You customize the menus at the site level and your changes affect all users (or all users of a tenant if in a multi-tenant environment).	
In non-Cloud implementations, you can localize menu customizations. For more information, see the "Translating Menu Customizations" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
Note: While you can customize the navigator menu and the home page menu at runtime, you cannot customize the global preferences menu at runtime. For information about customizing the navigator and home page menus using Oracle JDeveloper, see the "Customizing Menus" section in the Oracle Fusion Applications Extensibility Guide for Developers. This functionality is not available in Oracle Cloud implementations.	
The navigator menu is the global menu that is accessible from the Oracle Fusion Applications global area. It allows an end user to navigate directly to pages inside of Oracle Fusion Applications as well as to outside web pages. The menu is composed of links (items) that are organized in a hierarchy of groups.	
You can customize the navigator menu to address needs that are specific to your organization. For example, you might want to add specialized groupings for cross-functional teams or add links to web pages or external applications. You can add groups and links to the navigator menu, as well as hide and show them.	
The navigator menu typically appears when the end user clicks the Navigator link, as shown in Figure 5-1. However, in some non-Cloud applications, the page template can be customized to present the top level groups and items as dropdown buttons, as shown in Figure 5-2, in place of the single Navigator link. For information about how to display the navigator menu as a series of dropdown buttons see the "Rendering the Navigator Menu as Dropdown Buttons" section in the Oracle Fusion Applications Developer's Guide.	
The Manage Menu Customizations task displays the menu groups as expandable nodes, as shown in Figure 5-3, with which you can traverse the menu hierarchy.	
In non-Cloud implementations you can also customize the navigator menu from Oracle JDeveloper. For more information, see the "Customizing Menus" section in the Oracle Fusion Applications Extensibility Guide for Developers	
If you have the required privileges, you can perform the following tasks to customize the menu:	
You cannot make the following menu customizations at runtime:	
The home page menu is the set of tabs that are displayed in the Oracle Fusion Applications global area at the top of a desktop page, as shown in Figure 5-4. The home page menu displays tabs for all the items in the menu for which the end user has access privileges. You can add tabs to the home page menu, as well as hide and show them.	
In a multi-tenant environment, you customize the home page menu at the site level and your changes affect the tenant at that site level. Otherwise, you customize the home page menu at the site level and your customizations affect all end users.	
In non-Cloud implementations you can also customize the home page menu from Oracle JDeveloper. For more information, see the "Customizing Menus" section in the Oracle Fusion Applications Extensibility Guide for Developers	
If you have the required privileges, you can perform the following tasks to customize the menu:	
In non-Cloud implementations, you can localize home page menu customizations. For more information, see the "Customizing Menus" section in the Oracle Fusion Applications Extensibility Guide for Developers	
You cannot make the following menu customizations at runtime:	
Before you customize a menu, you should be familiar with the Oracle Fusion application architecture that enables customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also understand the typical workflows for working with customizations, as described in Chapter 2, "Understanding the Customization Development Lifecycle."	
You will need to do the following before you can begin customizing a menu:	
You arrange the navigator menu by building a hierarchy of nested groups. For example, in Figure 5-3 the Manager Resources group contains the Career group.	
Task: Navigate the Menu Hierarchy	
Use the View menu to expand or collapse a group of nodes. You can also right-click a node and access similar actions to facilitate tree navigation.	
Task: Add a Group	
As shown in Figure 5-5, you can insert a group above or below a peer group or insert a child group. You edit a group by defining a label and specifying whether the group should be rendered. You typically hide the group until all changes have been completed.	
The home page menu items are URL links to Oracle Fusion Applications home pages. Navigator menu items can be links to UI Shell pages or links to external applications and web sites.	
You can add navigator menu items to top-level groups and to their subgroups. You cannot add navigator menu items as top-level nodes. Home page menu items are always top-level items.	
Task: Adding a Home Page Menu Item	
To add a home page menu item, navigate to the place where you want the item to appear and choose Insert Above or Insert Below from the Actions menu. You can also choose to duplicate an existing item. You must supply the menu label and a link to a UI Shell page as described Task: Linking to a UI Shell Page. The Create Item Node dialog for the home page menu is shown in Figure 5-7.	
Figure 5-6 Create Item Node Dialog for the Home Page Menu	
Task: Adding a Navigator Menu Item	
To add a navigator menu item, navigate to the item's group and insert the item above or below another item, as shown in Figure 5-5. You can also choose to duplicate an existing item. When the Create Item Node dialog appears, as shown in Figure 5-7, select the type of link that you want to create.	
Task: Linking to a UI Shell Page	
To add a menu item that links to a UI Shell page, create a new item to display the Create Item Node dialog shown in Figure 5-7. Select Application Page, select the web application from the dropdown list, and provide the view ID of the target page.	
The quickest way to obtain the web application name and view ID is to copy them from an existing menu item that links to the same page. In a non-Cloud implementation, you also can obtain the web application name from the context root for the application, and you can obtain the view ID from the id	
attribute for the page's <view>	
tag in the product's public_html/WEB-INF/adfc-config.xml	
file.	
If you want to secure access to the target UI Shell page from the menu item, then you must provide the name of the secured resource and the name of the policy store's application stripe. When an end user clicks the link, Oracle Fusion Applications checks the secured resource and Lightweight Directory Access Protocol (LDAP) policy store to determine whether the user the privilege to view the page.	
If there is another menu item that points to the same page, then you can get the secured resource name and application stripe from that item. In a non-Cloud implementation, you also can obtain the application stripe from the jps.policystore.applicationid	
parameter in the application's weblogic-application.xml	
file. Examples of application stripes are crm	
, fscm	
, and hcm	
.	
For non-Cloud applications, you can determine the secured resource name by obtaining the name of the web page's page definition file. By default, the page definition files are located in the view.PageDefs	
package in the Application Sources directory of the view project. If the corresponding JavaServer Faces (JSF) page is saved to a directory other than the default (public_html	
), or to a subdirectory of the default, then the page definition will also be saved to a package of the same name. An example of a secured resource name is oracle.apps.view.pageDefs.CaseList_Form_Attach_ UIShellPagePageDef	
.	
A UI Shell page might take parameters and display or act differently based on the parameters that are passed in. For example, if accessing a page from one group in the menu hierarchy, the parameter might be set to status="Open	
" and if accessing the page from a different group, the parameter might be set to status="Closed"	
. If the page takes parameters, you can use the Page Parameters List text box to provide a semicolon-delimited string of name-value pairs, such as org=m1;context=s1	
. You can use expression language (EL) to specify the parameters. If the EL evaluates to an Object, the toString	
value of that Object is passed as the value of the parameter.	
Task: Dynamically Linking to an External Web Site or Application	
To link to a page outside of Oracle Fusion Applications where the host, port, or context root might change, first use the Register Enterprise Applications task to add the web application to the topology.	
Next, create a new menu item, and, in the Create Item Node dialog, select Dynamic URL as shown in Figure 5-8. From the Web Application dropdown list, select the web application that you added to the topology. In the Destination for Web Application text box, type the remainder of the URL. For example, if you wanted to link to http://example:9011/myApp/faces/Page1	
, you would add MyApp to the topology with a protocol, host, port, and context root of http://example:9011/myApp	
. In the Create Item Node dialog, you would select MyApp from the dropdown list, and you would type /faces/Page1	
in the Destination for Web Application text box.	
Task: Statically Linking to an External Web Site or Application	
To link to a page outside of Oracle Fusion Applications where the host, port, or context will not change, create a new menu item, and, in the Create Item Node dialog, select Static URL as shown in Figure 5-8. Next, type the full URL, for example http://www.oracle.com	
, in the Destination text box.	
Figure 5-9 Creating an Item Node with a Static URL	
While you are creating or working with a group or item, you might want to prevent end users from accessing the node. You can hide the group or item while you are working with it, and then show the node when you have completed the task.	
If you want a group or item to appear only if certain conditions are met, you can use an EL expression to indicate when the node should appear.	
Tip: For major changes that need to be tested and approved, you might want to use the sandbox manager instead of hiding and showing nodes. For more information, see Section 2.2, "Using the Sandbox Manager."	
The Manage Menu Customizations page shows all nodes. A node that appears in italics either has an EL expression or the Rendered check box was deselected, as shown in Figure 5-10.	
Task: Hiding or Showing a Node	
When you add a node, the Rendered check box is selected by default. To hide the node, deselect the check box. You can edit the node later to change how it is rendered.	
If you want the node to appear only if certain conditions exist, click the down arrow on the right side of the Rendered check box to open the EL Expression Editor dialog. Type the expression that must be met for the node to appear, such as #{securityContext.userInRole['ADMIN']}	
.	
This chapter describes how to use Oracle Business Process Composer (Business Process Composer)to customize and extend Business Process Modeling Notation (BPMN) processes. Several Oracle Fusion applications use BPMN processes to define process flows within the application. This chapter also describes how to edit BPMN processes by creating and modifying BPM projects based on project templates and deploying those projects at runtime.	
Note: The Business Process Composer and Oracle Business Process Management Studio functionality described in this chapter is not available in Oracle Cloud implementations of Oracle Fusion Human Capital Management.	
This chapter includes the following sections:	
The Oracle Fusion CRM Application Composer (Application Composer) and Oracle Fusion Human Capital Management product families of Oracle Fusion Applications use Business Process Management Notation (BPMN) processes to define some of the process flows used within their applications.	
BPMN is a standard notation for modeling the behavior of business processes. It enables process analysts to create graphical models of a business process. Oracle Business Process Management Suite provides an environment for implementing BPMN processes by enabling process developers to integrate them with other systems and services. Oracle BPM Suite also provides a runtime environment for integrating the running processes within Oracle Fusion Applications. For general information about BPMN, see the "Modeling and Testing Business Processes" part in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
Business Process Composer enables you to customize the BPMN processes used within Application Composer and Oracle Fusion Human Capital Management. To customize these processes you must create, modify, and deploy Oracle BPM projects created from a project template. BPMN processes are contained within a BPM project. BPM projects contain all of the resources required for a functioning BPM application, including BPMN processes and Service Oriented Architecture artifacts such a business rule or human task.	
Oracle Fusion applications provide default project templates that you can use to create new process flows. See the product-specific documentation in Oracle Fusion Applications Help for more information about the default BPM project templates provided by Oracle Fusion Applications.	
For general information about working with project templates, see the "Working with BPM Projects" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
A BPM project template is prepopulated with all of the required resources for implementing BPMN processes within an Oracle Fusion application. This includes the BPMN processes that define the process flow as well as the necessary implementation details that enable the processes to communicate with other parts of the application.	
After customizing a BPM project, you can deploy it to runtime in one of several ways. See Section 6.5, "Deploying a BPM Project" for more information.	
The reusable elements contained within a BPM project are called the business catalog. The business catalog contains different reusable services that a BPMN process can use to connect to other components of the application, including other processes, systems, and databases.	
Table 6-1 lists the reusable components of the business catalog.	
Table 6-1 Business Catalog Components Available in Business Process Composer	
Business Catalog Component	Description
---	---
Services	Use services to connect a BPMN process with other processes, systems, and services, including a BPEL process, and databases. See the "Working with Services" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for more information.
Human tasks	Human tasks enable you to define how end users interact with your BPMN processes. Human tasks are implemented in a BPMN process using the user task. See the "Working with Human Tasks" chapter in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.
Business rules	Oracle business rules are statements that describe business policies or describe key business decisions. See the "Using Oracle Business Rules" chapter in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information on implementing business rules within a BPMN process.
Oracle Fusion applications provide multiple tools for customizing and extending BPMN processes. These tools are described in Table 6-2.	
Table 6-2 Oracle Tools for Customizing and Extending BPMN Processes	
This tool...	Enables you to...
---	---
Business Process Composer	Customize BPMN processes by creating and deploying BPM projects based on project templates. This functionality is described in the current chapter.
Oracle BPM Studio (Oracle JDeveloper)	Customize project templates. See the "Customizing and Extending Oracle BPM Project Templates" chapter in the Oracle Fusion Applications Extensibility Guide for Developers.
Oracle SOA Composer	Customize a business rule, domain value map, or approval configuration and assignment rules at runtime. See the "Customizing SOA Composite Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers for more information. These customizations are performed directly on a running application. They do not require redeployment of the BPM project containing the BPMN process.
Oracle BPM Worklist	Customize approval configuration and assignment rules. See the "Customizing SOA Composite Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers for more information. These customizations are performed directly on a running application. They do not require redeployment of the BPM project containing the BPMN process.
There are two types of runtime customization that you can make to BPMN processes. These are described in the following sections.	
BPMN processes use multiple SOA components, including business rules and approval workflow. Using Oracle SOA Composer and Oracle BPM Worklist, you can customize the following components used by the BPMN processes of a running Oracle Fusion application:	
These customizations can be made directly to a running Oracle Fusion application without having to redeploy the BPM project. See the "Customizing SOA Composite Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers for information about using Oracle SOA Composer or Oracle BPM Worklist to make these customizations.	
Note: Any changes you make to the deployed, running BPMN processes of an Oracle Fusion Customer Relationship Management application will not be preserved if you later redeploy the BPM project that contains them.	
Using Business Process Composer, you can make the following customizations to a BPM project created from a project template:	
Table 6-3 lists which business catalog components can be customized or created using Business Process Composer.	
Table 6-3 List of Business Catalog Components	
Business Catalog Component	Can be created using Business Process Composer?
---	---
Business rules	Yes
Human tasks	Yes You can create human tasks using Business Process Composer, however not all functionality of a human task can be customized.
Services	Yes
See Section 6.2, "Creating a BPM Project" for information about creating a new BPM project based on a project template.	
Changes to the business catalog that cannot be made using Business Process Composer must be made to the project template using Oracle BPM Studio. See Section 6.1.3, "What You Cannot Do with BPMN Processes at Runtime" for more information.	
Often, it is necessary to make changes to a BPMN process that cannot be performed using Business Process Composer. The following tasks must be performed using JDeveloper:	
To create or customize these components, process developers must modify the project template and republish it to the Oracle BPM repository. After a project template is revised, you can use Business Process Composer to create and deploy BPM projects. See the "Customizing and Extending Oracle BPM Project Templates" chapter in the Oracle Fusion Applications Extensibility Guide for Developers for more information.	
Before customizing BPMN processes using Business Process Composer, you should be familiar with the Oracle Fusion application architecture that enables customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion Applications."	
You should also understand the typical workflows for customization and extensibility, as described in Chapter 2, "Understanding the Customization Development Lifecycle."	
You should be familiar with how to model business processes using the Business Process Modeling and Notation (BPMN) standard. See the "Modeling and Testing Business Processes" part in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
To create and deploy projects based on project templates, you must have specific privileges. Contact your security administrator for details. See the "Performing Administrative Tasks" chapter in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for more information.	
How you access Business Process Composer depends on which Oracle Fusion application you are using:	
To access Application Composer, in the Navigator menu, choose Application Composer.	
To edit or create business processes, you will need specific privileges. Contact your security administrator for details.	
A page displays showing a list of BPMN processes.	
To create a new business process choose Create from the Actions menu.	
To modify an existing business process, choose a process from the list, then choose Update from the Actions menu.	
After selecting one of the preceding steps, the Business Process Composer login screen appears. For more information, see the "Signing On to Oracle Business Process Composer" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
You can use Business Process Composer to customize or extend BPMN processes. BPMN processes are contained within a BPM project. After launching Business Process Composer the first step in modifying a BPMN process is to create a new project based on a project template or to open an existing BPM project.	
Task: Create a New BPM Project Based on a Project Template	
Oracle Fusion applications do not ship with running BPMN processes out-of-the-box. To integrate BPMN processes within Oracle Fusion applications, you must create a new BPM project based on a project template, deploy the project to runtime, and then configure the Oracle Fusion application to use the BPMN processes of the deployed BPM project.	
Business Process Composer enables you to create new BPM projects based on project templates. For information about creating a new BPM project, see the "How to Create a New Project from a Project Template" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
See the product-specific documentation in Oracle Fusion Applications Help for a list of the default BPM project templates provided by Oracle Fusion Applications. By default, project templates are stored in the Templates folder of the BPM repository.	
Task: Open an Existing BPM Project	
If you have already created a new BPM project based on a template, you can continue to customize the project before deploying it to runtime.	
For information about opening an existing BPM project, see the "How to Open a Project Using the Application Welcome Page" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
After creating a new BPM project based on a project template, you can modify the BPMN processes within the project. Additionally, you can customize the business catalog components within the BPM project.	
Task: Open a BPMN Process	
See "How to Open a Business Process" in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information about opening a BPMN process.	
Task: Customize a BPMN Process	
You can alter the flow of your BPMN process by adding, removing, or modifying BPMN flow objects.	
See the "Working with Flow Elements" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for more information about using the process editor to modify BPMN processes.	
See the "Modeling and Testing Business Processes " part in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for specific information about BPMN flow objects.	
Task: Assign Business Catalog Components to a BPMN Flow Object	
You can use Business Process Composer to assign reusable services from the business catalog to different BPMN flow objects.	
The business catalog components and their corresponding flow objects are shown in Table 6-4.	
Table 6-4 BPMN Flow Objects and Their Corresponding Services	
BPMN Flow Object	Business Catalog Component
---	---
User task	Human tasks
Service task	Services, including web services and adapters
Business rules task	Business rules
See the "The Business Catalog" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for more information about working with reusable services and the business catalog.	
Task: Add Milestones to the Activity Guide	
The activity guide of a BPM project defines a set of milestones. Each BPM project contains one activity guide. An activity guide can contain multiple milestones.	
A milestone is a specific set of tasks that the process participant has to complete. A milestone is complete when the participant successfully runs a specific set of tasks in the milestone.	
Each milestone is a defined by a set of human workflow tasks. Each human workflow task is itself a task flow that may require the collaboration of multiple participants in various roles.	
See the "Using Guided Business Processes to Set Project Milestones" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management. for information about creating milestones.	
Task: Customize Business Rules	
Business rules enable dynamic decisions to be made at runtime that allow you to automate policies, computations, and reasoning while separating rule logic from the underlying application code.	
Note: You can use Business Process Composer to modify business rules within a BPM project. These changes are made to the runtime application when the project is deployed. You can use Oracle SOA Composer to make runtime changes directly to the runtime environment, without deploying a project. See the "Customizing SOA Composite Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers for more information about making runtime changes to a BPMN process.	
For more information about customizing rules using Business Process Composer, see the "Using Oracle Business Rules" chapter in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
Task: Create or Customize Human Tasks	
Human tasks enable you to integrate human interaction with connectivity to systems and services as part of an end-to-end process flow. Human tasks are responsible for handling all interactions with the users or groups participating in the business process.	
Using Business Process Composer, you can create and customize human tasks. See the "Working with Human Tasks" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information about creating and configuring human tasks.	
Task: Customize Expressions	
Expressions are used to evaluate the data used within your process. Different flow objects use expressions to determine which path within the process to follow.	
Expressions are used to configure the following BPMN elements:	
You can customize the expressions used within a BPMN process using Business Process Composer.	
See the "Working with Expressions" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
You can save the changes you make to a BPM project to the BPM repository. In addition to saving your work in progress, saving a project in the repository enables you to share BPM projects with process developers using Business Process Composer and Oracle BPM Studio.	
The BPM repository can also be used to share project templates created in Oracle BPM Studio. In the BPM repository, projects and project templates are stored in a default folder as shown in Table 6-5.	
Table 6-5 Default Location of BPM Projects and Project Templates in the BPM Repository	
Type	Location
---	---
BPM Projects	/bpm/drafts
BPM Project Templates	/bpm/templates
Within these default folders, you can create additional subfolders to organize your projects and project templates.	
Task: Save a Project	
See the "How to Save Changes to a Project" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information about how to save a project to the BPM repository.	
After creating a new BPM project, you must deploy it to runtime to make the BPMN processes contained within it accessible to Oracle Fusion applications.	
After customizing a project and publishing it, you must deploy the project to runtime. After the project is deployed, the BPMN processes within it are accessible to the Oracle Fusion applications that implement them.	
Task: Deploy a BPM Project	
There are three methods of deploying a BPM project to Oracle Fusion applications using Business Process Composer. The specific method you use depends on whether you are in a production or test environment:	
This is the recommended deployment method if you are deploying a BPM project to a production environment. A SAR file is an archive of a SOA composite application that, like a BPM project, contains all of t he required resources of a deployable application.	
You can use Business Process Composer to export a BPM project as a SAR file. See the "Deploying a BPM Project" chapter in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management.	
After the project is exported as a SAR file, your system administrator must deploy it to runtime using Oracle Enterprise Manager.	
You can use Business Process Composer to generate a deployment plan for your project. Like a SAR file, system administrators can use a deployment plan to deploy a BPM project to runtime.	
See the "How to Generate a Deployment Plan" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information about generating a deployment plan using Business Process Composer.	
You can deploy a BPM project to runtime directly from Business Process Composer. See the "How to Deploy a Project to Run Time" section in the Oracle Fusion Middleware Business Process Composer User's Guide for Oracle Business Process Management for information about deploying a BPM project to runtime.	
To deploy project using Business Process Composer you must have specific privileges. Contact your system administrator for details.	
You may want to deploy a BPM project using the same name as the project and project template to make it easier to associate the deployed project with its design time version	
Task: Configure Oracle Fusion Applications to Use BPMN Processes	
After deploying a BPM project, you must configure the Oracle Fusion application to use the BPMN processes within the application. See Section 6.6, "Configuring Oracle Fusion Applications to Use BPMN Processes" for more information.	
After deploying a BPM project to runtime, you must configure your Oracle Fusion applications to use the BPMN processes.	
After deploying a BPM project, you must use Application Composer to add an object workflow that conditionally responds to a record modification event for the business object.	
After deploying your BPM project to Oracle BPM runtime, you must register the BPMN processes using the Register Workforce Process page in Oracle Fusion Workforce Lifecycle Manager. When you register a process, you must provide the name of the process as it appears in the Start menu of the Manage Workforce Process page. Depending on how your process is designed, you may also need to specify the parameters that are passed to the workforce process on startup.	
For more information, see product-specific documentation in Oracle Fusion Applications Help.	
This chapter describes how to use Oracle Business Intelligence Suite (Oracle BI Suite) to customize and extend reports and analytics for Oracle Fusion Applications, including customizing Oracle BI Publisher layouts and data models, customizing Oracle BI Enterprise Edition analyses and dashboards, and extending the Oracle BI repository.	
This chapter includes the following sections:	
In Oracle Fusion Applications, reports and analytics are built using Oracle Business Intelligence:	
This section describes how to use Oracle BI Publisher to customize and extend reports for Oracle Fusion Applications. It includes the following sections:	
Reports extract the data from your applications and present it in the formats required for your enterprise. Reports provide the information you need for internal operations and statutory compliance; reports also provide the business documents for communicating with your customers. Many product-specific reports are provided with Oracle Fusion Applications; for example, the invoice register, the pick slip report, the payroll summary, the journals report, and the customer credit memo. To meet the specific needs of your enterprise, you may need to customize the reports provided or you may need to create new reports to capture and present different data.	
Understanding the BI Publisher reporting architecture will help you to understand the report customization scenarios and tasks. A report in Oracle BI Publisher consists of the following components:	
Optionally, a report may also include:	
In many cases, Oracle BI Publisher reports delivered with Oracle Fusion applications contain the appropriate data elements you expect, but may not provide the presentation of the data just as you would like it. Oracle BI Publisher enables you to customize the layouts for reports leveraging the prebuilt data models. If the reports provided by Oracle Fusion applications do not include the data you require, you can create a new report based on a custom data model.	
Important: Oracle recommends that you do not directly edit the predefined report objects. If you change a report and a subsequent patch includes a new version of the report object, the patch overwrites any customizations. When customizing reports, use the Customize feature to seamlessly create the copy for you. See Section 7.2.1.4, "Using the Customize Feature." If you choose not to use the Customize feature or you are creating new reports, place your custom report objects in the Shared/Custom folder in the catalog.	
Some common report customization scenarios are shown in the following table.	
Customization Use Case	Described in
---	---
Edit the layout of a report provided with an application For example: Add your company logo to the Receivables Credit Memo report	
Add a new layout to a report provided with an application For example: Design a new form letter users can select when they run the Receivables Credit Memo	
Create a new report based on a data model provided with an application	
Edit a data model provided with an application For example: Add a field to a data model	"Editing Existing Data Models"
Create a new data model For example: Define a new query against Oracle Fusion applications tables	
Create a new report based on a custom data model	
Depending on how a report is implemented in Oracle Fusion Applications and the type of customization you make you may also have to perform additional tasks to implement your custom report in the system.	
When you create a new report and you wish to schedule this report through Oracle Enterprise Scheduler, you must create an Oracle Enterprise Scheduler job for the report. If you require Oracle Enterprise Scheduler to send parameter values to the Oracle BI Publisher report you must also create a parameter view object to pass the values.	
If you create a custom layout and you require translations of the layout, you must also provide the translations. Oracle BI Publisher provides a tool for extracting the translation file for some layout types. The translation file can be translated into the required languages then uploaded to the report.	
You must also ensure that the proper security settings are applied to the report and data model to enable the intended report consumers to run the report.	
Table 7-1 provides links to related report customization tasks.	
Table 7-1 Related Report Customization Tasks	
Related Report Customization Task	Described in
---	---
Create the Parameter View Object for Oracle Enterprise Scheduler	"Customizing Parameters for Reports Submitted Through Oracle Enterprise Scheduler"
Create the Oracle Enterprise Scheduler job definition and job	"Tasks Required to Run Custom Reports with Oracle Enterprise Scheduler"
Provide translations	
Secure reports and related components	"Securing Custom Reports and Related Components"
Customize reports either within the Oracle BI Publisher application or using one of the tools or applications listed in Table 7-2. For the list of certified versions of third-party applications, see the "System Requirements and Certification" section in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Table 7-2 Tools for Customizing Report Components	
Component	Tool for Customizing
---	---
Report Data Model	BI Publisher's data model editor
Report properties	BI Publisher's report editor
Layout	
Table 7-3 shows the tools required to customize each layout type.	
Table 7-3 Tools for Customizing Layouts	
Layout Template Type	Tool for Customizing
---	---
RTF template	Microsoft Word with BI Publisher's Template Builder for Word (see Section 7.2.2.1, "Customizing RTF Templates")
BI Publisher template (XPT)	BI Publisher's layout editor (see Section 7.2.2.2, "Customizing BI Publisher Templates")
PDF template	Adobe Acrobat Professional
Excel template	Microsoft Excel with BI Publisher's Template Builder for Excel
eText Template	Microsoft Word
To facilitate the customization of Oracle Fusion Applications reports, BI Publisher provides the Customize feature. When you select the Customize option for a report, BI Publisher creates a copy of the report in the "Custom" folder. This custom copy is linked internally to the original report. You can customize the custom copy of the report, leaving the original report intact. When users initiate a request to run the original report, whether from Oracle Enterprise Scheduler, from the BI catalog or through an application process, BI Publisher detects the customized version and runs your custom version instead.	
Figure 7-1 shows the Customize task available from the report More menu. In this example, the Payables Invoice Register is automatically copied to Shared Folders/Custom/Financials/Payables/Invoices.	
The Customize feature provides the following benefits:	
User Requirements	
Following are requirements for a user to customize a report:	
Following are requirements for a user to view a report in the Custom folder:	
Limitations	
Following are limitations of the Customize report option:	
/xmlpserver	
URL (for example: http://hostname.com:7001/xmlpserver	
). The Customize option is not available through the /analytics	
URL used to access Oracle Business Intelligence Enterprise Edition. To customize data models, style templates or sub templates and insulate them from potential changes from patching: Make a copy of the data model, style template, or sub-template and either rename it or place it in a custom folder. Ensure that you update any reports to point to the customized data model, style template, or sub template.	
When you click the Customize link, the report, folder structure, and original report permissions are copied to the Custom folder. The custom report still references the original data model. The data model is not copied. Because the data model referenced by the custom report is the original data model, an Oracle patch that updates the data model may impact the running of your custom report if the data structure is changed.	
When an Oracle patch is applied that updates the original report, the custom report is not updated in any way.	
When a custom version of a report exists, performing tasks on the original report have the following results:	
Task Performed on the Original Report	Behavior When a Custom Report Is Present
---	---
Open	Opens the custom report.
Schedule	Creates a report job for the custom report.
Edit	Edits the custom report.
Delete	Deletes the original report (only).
Copy	Copies the original report.
Cut/Paste	Cuts and pastes the original report.
Rename	Renames the original report. The custom report name is not changed.
Download	Downloads the custom report.
Customize	Edits the custom report.
The Job History for the custom report is maintained under the original report.	
To apply further edits to a report in the Custom folder perform one of the following	
If you manually create the identical folder path to a report under the Custom folder and create a report with the same name, BI Publisher treats the identically named report as a customized report and will run this report instead of the original report, as if you had used the Customize option to create it.	
If you delete the original report, the custom report is not deleted. If you delete the custom report, the original report is not deleted.	
Before you customize reports, you should be familiar with the Oracle Fusion application architecture that enables customization, as described in Chapter 1, "Customizing and Extending Oracle Fusion Applications." You should also understand the typical workflows for working with runtime customizations, as described in Chapter 2, "Understanding the Customization Development Lifecycle."	
In addition, be familiar with the following Oracle BI Publisher-specific requirements:	
Ensure that you have proper permissions for editing and creating Oracle Business Intelligence Publisher objects	
To view and perform actions on report objects in the BI Presentation catalog your role must be granted the appropriate combination of functional permissions to enable the actions and access permissions to the object in the catalog. The functional permissions are granted in the definition of the role; the access permissions are granted in the catalog.	
Permissions Required to Edit Reports, Style Templates, and Subtemplates	
To edit, create, or copy reports, style templates, and subtemplates you must be granted the BI Author role. You must be granted additional permissions on the objects in the catalog to enable the actions on the specific objects.	
The following security settings are configured by default in the BI Presentation catalog:	
The preceding settings are configured to enable users with the BI Author role and Read permission to copy seeded reports, subtemplates, and style templates to the Custom folder and to edit these objects. These settings also enable BI Author to create new reports, subtemplates, and style templates under the Custom folder.	
Permissions Required to Customize Data Models	
Creating and editing data models requires a role that includes the BI Author role and the BI Publisher Data Model Developer role. The BI Publisher Data Model Developer role is included in the Application Developer role. Note that the ability to create Oracle BI Publisher data models enables the user to write and execute SQL, therefore implementors must consider carefully to whom they grant the BI Publisher Data Model Developer role.	
Important: Because this role enables the ability to write SQL, it carries substantial access privileges and should, therefore, only be assigned when needed. As a guideline: Developers should be granted this access in development environments; only trusted individuals should be granted this access in test environments. Implementers should consider not extending this privilege to any user in a production environment.	
To grant the role for editing data models, follow the guidelines in the "Configuring Roles" section in the Oracle Fusion Applications Administrator's Guide in conjunction with the guidelines in the Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition. For Oracle Cloud implementations, request this role by logging a service request using My Oracle Support at https://support.oracle.com	
.	
For more information about setting permissions in the catalog, see the "Managing Objects in the Oracle BI Presentation Catalog" chapter in the Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).	
Understand how the patching process for catalog objects impacts customizations	
If a patch includes an update to a catalog object that was delivered with an Oracle Fusion application (for example, the Payables Invoice Register report) the patch will overwrite any customizations applied to the original report. To avoid overwriting a customization, do not customize a predefined Oracle Fusion application object in place, instead use the Customize option see Section 7.2.1.4, "Using the Customize Feature."	
Be aware of any application-specific guidelines for customizing reports	
See application-specific documentation in the Oracle Enterprise Repository for Oracle Fusion Applications.	
Be aware of property settings that determine how the report can be run and viewed	
Some reports are configured to run only through an external application or through Oracle Enterprise Scheduler. While customizing a report, you may want to configure it temporarily for viewing online to facilitate testing. See Task: Review Report Settings for Online Viewing for information about these settings.	
Know how to access Oracle BI Publisher report components	
Your entry point to customize report components will depend on what report component you are customizing.	
Navigate to the Oracle BI Presentation Catalog as follows:	
On the Navigator, under Tools, click Reports and Analytics. In the Reports and Analytics pane, click Browse Catalog.	
Alternatively, log in to Oracle Business Intelligence directly (example: http://host:port/analytics/saw.dll).	
Oracle Fusion Applications reporting objects are organized by product family in the catalog typically as follows:	
--Report group folders (example: Invoices)	
-- Reports	
-- Data Model folder	
Figure 7-2 shows the Oracle BI Presentation Catalog.	
If you are customizing a data model, sub template or style template, initiate the customization from this entry point.	
The Customize option for BI Publisher layouts is only available through direct access to the BI Publisher server using the /xmlpserver	
URL (for example: http://hostname.com:7001/xmlpserver	
).	
The layout defines the presentation of the report data. All reports delivered with Oracle Fusion Applications include at least one predefined layout template file that defines the presentation components (such as tables and labeled fields) and maps the elements from the data model to these components. The layout also defines font sizes, styles, borders, shading, and can also include images, such as a company logo.	
To customize a layout, you edit the layout template. Oracle BI Publisher supports several types of templates to support different report layout requirements. Most of the templates delivered with Oracle Fusion Applications are rich text format (RTF) templates created using Microsoft Word. Some predefined templates are BI Publisher layout templates created using Oracle BI Publisher's layout editor. These are for interactive and more visually appealing layouts. A third type is the eText template, which is used specifically for electronic data interchange (EDI) and electronic funds transfer (EFT).	
Oracle BI Publisher templates can also be created using Adobe PDF, Microsoft Excel, Adobe Flash, and XSL-FO.	
Some examples of layout customizations are:	
This is the simplest type of customization. Examples are removing the predefined logo from the report and inserting your own or simply modifying colors and font styles. For these changes you can download the predefined template and edit it. Because there are no changes to the data mapping, style changes do not require sample data from your report; however, having sample data available will enable testing of the template from your desktop.	
An example of this type of customization is adding or removing a table column or data field from the report layout. For these changes you must have sample data to load to the layout editing tool. You can download the predefined template, load your sample data, insert the required elements, preview your template, then upload your customized template back to the report definition.	
To create a new layout, start by opening the layout editing tool and loading the sample data to begin designing your custom layout.	
Customizing a layout consists of the following tasks:	
Task: Create a Custom Copy of the Original Report	
To create the custom copy using the Customize feature:	
One method of navigation to the BI Publisher server is: On the Navigator, under Tools, click Reports and Analytics. In the Reports and Analytics pane, click Browse Catalog. This opens Oracle Business Intelligence (http://host:port/analytics/saw.dll). Change the final node of the URL to xmlpserver	
: http://host:port/xmlpserver.	
BI Publisher creates a copy of the report in the Custom folder, under the identical folder hierarchy and opens the report copy in the report editor. In this example the report is created under: Shared Folders/Custom/Financials/Payables/Invoices.	
Figure 7-4 shows the custom report in the report editor. Notice that the report URL now references the report in the Custom folder.	
Task: Review Report Settings for Online Viewing	
Some reports are configured to view only through an external application or through Oracle Enterprise Scheduler. To view your report online while you are customizing it, ensure that the following properties are set as shown in this section. When finished customizing your report, ensure that you reset these properties appropriately for production.	
To navigate to the report Properties dialog:	
The layout setting View Online must be enabled.	
To view the layout settings:	
In the report editor, click View a List. Ensure that the View Online property is enabled.	
Task: Generate Sample Data from the Report	
The layout tools require sample data to enable the mapping of data fields to layout components in the report. You can generate sample data in the following ways:	
To generate sample data from the data model:	
This procedure requires the BI Publisher Data Model Developer to open the data model.	
Tip: If you are not sure which data model is the source for a particular report, click the report Edit link. The data model is displayed in the upper left corner of the report editor.	
If you are designing an RTF template, click Export to save the file to a local client for use with the Template Builder for Microsoft Word.	
To save sample data from the report viewer:	
This procedure requires that the report is enabled for online viewing. For information on enabling a report for online viewing, see Task: Review Report Settings for Online Viewing.	
To save sample data from the scheduler:	
This procedure requires that the report is enabled for scheduling through BI Publisher. For information, see Task: Review Report Settings for Online Viewing.	
Task: Edit or Create the Layout	
To design an RTF layout, see Section 7.2.2.1, "Customizing RTF Templates."	
To design a layout using the Oracle BI Publisher layout editor, see Section 7.2.2.2, "Customizing BI Publisher Templates."	
To design one of the other supported layout types, see the corresponding chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher:	
Task: Upload the Template File to the Report Definition	
If you created a layout using the layout editor, the layout is automatically saved to the report definition and you can skip this step. For all other layout types upload the template file to the report definition.	
To upload the template file to the report definition:	
Task: Configure the Layout Settings	
Tip: To hide the original layout from users, clear the Active box.	
To edit the layout settings:	
Set the following properties for your custom layout:	
Output formats are the file formats available for the generated report, such as PDF, HTML, RTF, Excel. Depending on the requirements of a report you may want to limit the output formats available to users. The output formats available vary according to the template file type.	
When multiple output formats are available for the report, the default output format is generated by default when the report is run in the report viewer.	
When multiple layouts are available for the report, the default layout is presented first in the report viewer. Select this box for your custom layout when you want it displayed first. One layout must be selected as the default layout.	
If a style template is assigned to this report, use this field to apply the style template to the layout.	
Active layouts are displayed to report consumers. Inactivate the layout to make it unavailable to report consumers.	
Layouts that can be viewed online are available to report consumers from the report viewer. If this property is not checked, the layout is available only for scheduled jobs.	
Task: Delete a Layout	
To delete a layout from the report:	
Most templates delivered with Oracle Fusion Applications are RTF templates. An RTF template is a rich text format file that contains the layout instructions for BI Publisher to use when generating the report. RTF templates are created using Microsoft Word. Oracle BI Publisher provides an add-in to Microsoft Word to facilitate the coding of layout instructions. For more information see the "Creating RTF Templates Using the Template Builder for Word" chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Note: If you are designing a new layout for the report, consider using the BI Publisher layout editor. The layout editor is an online layout editing tool launched from the report editor. See Section 7.2.2.2, "Customizing BI Publisher Templates."	
Before you begin:	
Ensure that your local client has a supported version of Microsoft Word. Oracle BI Publisher provides the Template Builder for Microsoft Word to facilitate RTF template design. Download the tool from the Oracle Business Intelligence home page. For more information see the "Creating RTF Templates Using the Template Builder for Word" chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Task: Download the Template File	
If you are creating a new layout, skip this step.	
If you are modifying a predefined layout, navigate to the copy of the report under Custom in the catalog and click Edit. In the report editor, click the Edit link of the layout to download the RTF file to your local client, as shown in Figure 7-8.	
Task: Edit the RTF File in Microsoft Word	
Open the downloaded RTF template file in Microsoft Word; or, if you are creating a new template, open Microsoft Word.	
Load the sample data to the Template Builder for Word Add-in.	
Edit or create the layout following the guidelines in the Template Builder help or in the "Creating RTF Templates Using the Template Builder for Word" chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Ensure that you save the file as Rich Text Format (rtf).	
Task: Upload the Template File to the Report Definition	
In the catalog, open the report in the report editor and click Add New Layout. Click Upload to upload the RTF file from your local directory. Enter the fields in the Upload Template File dialog as shown in Figure 7-9.	
Task: Add Translations for the Layout	
If this report requires translations, see Section 7.2.5, "Adding Translations."	
This section includes two examples of RTF template customizations:	
Example 7-1 Changing the Inserted Logo in a Predefined Template	
The Payables Invoice Register report layout includes a standard logo in the report header. To change the inserted logo using Microsoft Word 2007:	
Tip: If the template file includes section breaks, you must insert the new logo for each section header.	
Example 7-2 Customizing an RTF Template Using an Existing Data Model	
This example demonstrates the general steps for customizing an RTF template using an existing data model. In this example, the Payables Invoice Register data model is used to create a new layout to display a summary for each currency. This example demonstrates general report layout concepts and features of the Oracle BI Publisher Template Builder for Microsoft Word. Follow the steps in this topic and the guidelines in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
The final report layout is shown in the following figure:	
To create this layout:	
Apply formatting to the date and number fields. To apply formatting to the date field:	
Note: This example shows simple number formatting. If your report requires locale-driven number and date formatting, see the topic "Formatting Numbers, Dates, and Currencies" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Set the Type to Date.	
Select the date Format from the list.	
Enter Text to display, for example: 8/7/2011.	
To apply formatting to a number field:	
Set the Type to Number	
Select the number Format from the list.	
Enter Text to display, for example: 999.00.	
The completed template will appear as shown in Figure 7-20. To preview the template, click the PDF button in the Oracle BI Publisher Preview group.	
BI Publisher templates are created using the BI Publisher Layout Editor - a design tool that provides an intuitive, drag-and-drop interface for creating pixel perfect reports in PDF, RTF, Excel, PowerPoint, and HTML. It also provides dynamic HTML output that supports lightweight interaction through a browser.	
BI Publisher layouts are best suited for reports of simple to medium complexity. The interactive view is only available for BI Publisher layouts, therefore choose this layout type when you want your report consumers to interact with the report (change sorting, apply filters, and so on).	
Before you begin:	
The BI Publisher layout editor requires the data model to include sample data. To save sample data to the data model, you must generate data according to the first option described in "Task: Generate Sample Data from the Report".	
Task: Launch the Layout Editor from the Report Definition	
Navigate to the report and click Customize. Click Add New Layout. Under the Create Layout region, click one of the Basic Templates or Shared Templates to launch the layout editor, as shown in Figure 7-21.	
Task: Create and Save the Layout	
Create the layout using the guidelines in the online help or in the "Creating BI Publisher Layout Templates" chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher. Click Save to save the layout to the report definition.	
Task: Add Translations for the Layout	
If this report requires translations, see Section 7.2.5, "Adding Translations."	
Note: To create or edit data models you must be granted a role that includes the BI Publisher Data Model Developer role. To assign this role for editing data models, follow the guidelines in the "Configuring Roles" section in the Oracle Fusion Applications Administrator's Guide. For Oracle Cloud implementations, request this role by logging a service request using My Oracle Support at	
A data model defines the source and structure of the data for a report. At runtime Oracle BI Publisher executes the data model to supply the XML data for a report. Create a custom data model when the data models supplied by your application do not provide the data required in your report. If you need to customize the data that is captured by the report data model, you can either copy and edit an existing data model or create a new data model.	
In BI Publisher the Oracle Fusion Applications tables are provisioned as follows:	
Before You Begin: Understand the Use of Parameter View Objects with Oracle Enterprise Scheduler	
Editing Oracle Enterprise Scheduler jobs is not supported in Oracle Cloud implementations.	
If the report requires user input for parameter values and the report is submitted by Oracle Enterprise Scheduler to Oracle BI Publisher, Oracle Enterprise Scheduler uses a parameter view object to present and validate parameter values in the Oracle Fusion application. The values are then sent by Oracle Enterprise Scheduler to BI Publisher for execution of the data model.	
In the parameter view object the parameters are defined as attributes and must be named incrementally as ATTRIBUTE1, ATTRIBUTE2, and so on. In the BI Publisher data model, you must define the parameters in the same order as they are defined in the parameter view object. The mapping of the value passed by Oracle Enterprise Scheduler to the BI Publisher data model is by order alone.	
For example, in a BI Publisher data model assume you have defined the following parameters in this order:	
In the parameter view object you must define ATTRIBUTE1 to retrieve the value for P_BUSINESS_UNIT; ATTRIBUTE2 to retrieve the values for P_VENDOR_ID; and ATTRIBUTE3 to retrieve the values for P_INVOICE_TYPE.	
Ensure that any edits you make to the ordering of parameters in the parameter view object, the BI Publisher data model, or the Oracle Enterprise Scheduler job definition are reflected in all places. See Section 7.2.6.2, "Customizing Parameters for Reports Submitted Through Oracle Enterprise Scheduler."	
Do not directly edit a data model delivered with an Oracle Fusion application. Instead, copy the data model into the Custom folder and edit the copy.	
Task: Copy the Existing Data Model	
Navigate to the data model in the Oracle BI Presentation Catalog. To make a copy:	
Task: Customize the Data Model in the Data Model Editor	
Click the Edit link in the catalog to open the data model in the data model editor. See the "Using the Data Model Editor" chapter in the Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition) for general information about using the data model editor and the specific chapter for the component you wish to edit, for example:	
Important: If the report will use Oracle Enterprise Scheduler to collect parameter values from end users, then the parameter logic, list of values and display attributes that are presented in the application interface are defined in a parameter view object and the Oracle Enterprise Scheduler job definition. The parameter values are then passed to BI Publisher when the job is submitted. In this case, edit the parameters in the parameter view object then ensure that the parameters in the BI Publisher data model are in the same order as they are defined in the parameter view object. Do not create the list of values in the BI Publisher data model for reports submitted via Oracle Enterprise Scheduler.	
Note: To create or edit data models you must be granted a role with the BI Author role and the developDataModel permission. To create the custom role for editing data models, follow the guidelines in the "Configuring Roles" section in the Oracle Fusion Applications Administrator's Guide. For Oracle Cloud implementations, request this role by logging a service request using My Oracle Support at	
To create a data model:	
On the global header, click New, then click Data Model to open the data model editor.	
Typically, you create data sets from SQL queries against your Oracle Fusion application data tables. The data model editor also supports using an Oracle BI analysis as its source of data as well as entity view objects created in Oracle JDeveloper. See the "Creating Data Sets" chapter in the Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition) for more information about all supported data set types and how to create them. Figure 7-22 shows the menu of data set types available.	
A data model can include the following components:	
Important: See "Before You Begin: Understand the Use of Parameter View Objects with Oracle Enterprise Scheduler" for information about how to define parameters in the BI Publisher data model when the report is submitted by Oracle Enterprise Scheduler. This functionality is not available in Oracle Cloud implementations.	
See the Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition) for details on creating these components.	
Create a custom report when the reports delivered with your Oracle Fusion application do not provide the data you need; or, if you want to use a predefined data model but change other properties of the report. Save your custom report to the Custom folder.	
Task: Create the Data Model	
If you are using a predefined data model, skip this step.	
To create a data model, see Section 7.2.3.2, "Creating a New Data Model."	
Task: Create the Report Definition in the Catalog and Choose the Data Model	
On the global header, click New, click Report., then click Use Existing Data Model. Select the data model to use for the data source for this report.	
Task: Create and Add the Layout	
Follow the tasks described in the section "Creating Custom Layouts" beginning with "Task: Edit or Create the Layout".	
Task: Configure Report Properties	
You can configure a variety of properties to set specific formatting, caching, and processing options for your report. To access the Properties dialog, click Properties in the report editor. For information on report properties see the "Configuring Report Properties" section in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Task: (Conditional) Create an Oracle Enterprise Scheduler Job to Run the Custom Report	
This task does not apply to Oracle Cloud implementations.	
To schedule this report from an Oracle Fusion application, you must create an Oracle Enterprise Scheduler job and job definition. This may also require creating a parameter view object. See Section 7.2.6, "Tasks Required to Run Custom Reports with Oracle Enterprise Scheduler."	
Task: (Conditional) Enable Access to the Report Through the Reports and Analytics Pane	
See Section 7.2.8, "Making Reports Available to Users in the Reports and Analytics Pane."	
Template translation is a feature of BI Publisher that enables the extraction of translatable strings from a single RTF-based template or a single BI Publisher layout template. Use this option when you need multiple translations of the final report document; for example, you need to generate invoices for both German and French customers.	
For information on adding translations for your custom report layouts, see the "Translating Individual Templates" chapter in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
Note: When you use the Customize feature to add a custom layout to an existing report, you do not need to edit the Oracle Enterprise Scheduler job.	
Note: Oracle Enterprise Scheduler jobs are not customizable for Oracle Cloud implementations. Instead, schedule custom reports using the Oracle BI Publisher scheduler. For reports appropriate to run online, you can also run them on demand through the Reports and Analytics pane or from the Oracle Business Intelligence catalog.	
Many Oracle Fusion applications use Oracle Enterprise Scheduler to submit report requests to Oracle BI Publisher. For reports that require parameter value input from users, Oracle Enterprise Scheduler uses a parameter view object to collect and validate parameter values to send to BI Publisher.	
When you create a new report in Oracle BI Publisher, additional tasks are required to set up the Oracle Enterprise Scheduler job definition to run your report from Oracle Fusion applications. If your report customization includes customizing parameters that are passed to Oracle BI Publisher, you will likely need to customize the parameter view object.	
This section highlights the additional tasks required for these related components. You must also reference the following documents for full descriptions of how to customize them and how to configure the Oracle Enterprise Scheduler job definition to integrate the parameter view object:	
To create an Oracle Enterprise Scheduler Job Definition:	
Follow the instructions for creating a job definition in the "Customizing and Extending Oracle Enterprise Scheduler Jobs" chapter in the Oracle Fusion Applications Extensibility Guide for Developers. Note the following for Oracle BI Publisher jobs:	
Tip: Ensure that you include the .xdo extension for the report object.	
parametersVO	
to point to the parameter view object you defined, if your custom job requires parameter input. The parameter view object is a view object used by Oracle Enterprise Scheduler to collect user input for report parameters that Oracle Enterprise Scheduler then sends to BI Publisher. The parameter view object defines the display of the parameters in the Oracle Enterprise Scheduler interface and performs validation of the input. Use JDeveloper to edit the parameter view object.	
Task: Create or Customize the Parameter View Object	
To customize a parameter view object, see the following information:	
Task: Align Parameter Order in the BI Publisher Data Model	
Ensure that the attributes defined for the parameters in the view object are in the same order as the parameters in the BI Publisher data model. See "Before You Begin: Understand the Use of Parameter View Objects with Oracle Enterprise Scheduler" for more information.	
Task: Integrate the Parameter View Object in the Oracle Enterprise Scheduler Job Definition	
Follow the instructions for creating a job definition in the "Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers.	
When you create a custom report you must secure it so that only users with appropriate privileges can run it. You have two options for securing it:	
Use an existing role when a custom report is functionally aligned with an Oracle-delivered report. In this case simply use the roles and entitlements that secure the associated Oracle-delivered report. For example, if a functional user who runs the Account Analysis report should also run or have access to the custom report, then you can use the same role and entitlements from the Account Analysis report rather than creating a custom role.	
If you choose to enable the custom report for an existing role, the only actions required are to grant this role permissions on the objects in the Oracle BI Presentation Catalog and on the Oracle Enterprise Scheduler job definition. Perform the tasks: Task: Configure Permissions in the Oracle BI Presentation Catalog and Task: Grant Permissions to the Oracle Enterprise Scheduler Job Definition.	
If you choose to create a custom role, keep the following in mind:	
Task: Create the Custom Report Role in the OBI Stripe	
Only a system administrator can create a new application role, and optionally include the role in an existing role hierarchy. For information about creating application roles, see the "Managing Policies and Policy Objects" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).	
For Oracle Cloud implementations, request a new role by logging a service request using My Oracle Support at https://support.oracle.com	
.	
Task: Configure Permissions in the Oracle BI Presentation Catalog	
For a user to run a report, Read permissions must be granted to that user's role on every object in the Oracle BI Presentation Catalog that is used in the report. This will always include at least two objects: the report and the data model. If your report also references a subtemplate or a style template, you must also grant Read permissions on those objects. The report object requires additional grants to run, schedule, and view output.	
See "Managing Objects in the BI Presentation Catalog" in the Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information about catalog permissions.	
Configuring permissions in the BI Presentation catalog consists of the following subtasks:	
Grant the Role Permissions to the Report	
To grant permissions in the catalog:	
The Custom Permissions dialog is shown in Figure 7-26.	
Grant the Role Permissions to the Data Model and Other Referenced Objects	
Delete Permissions	
If the custom report inherited permissions that you want to remove from the report, you can delete permissions as follows:	
Task: Grant Permissions to the Oracle Enterprise Scheduler Job Definition	
This task does not apply to Oracle Cloud implementations.	
If the custom report is to be scheduled through Oracle Enterprise Scheduler, execution permissions must also be granted to enable users belonging to the role to submit the job. See the "Extending Custom Oracle Enterprise Scheduler Jobs Using Existing Oracle Fusion Applications" section in the Oracle Fusion Applications Extensibility Guide for Developers	
To make a report available to users through the Reports and Analytics pane, map the report to the work areas of the user roles that need access. For the procedure to map reports to work areas, see "Define Application Toolkit Configuration" in the Oracle Fusion Applications Common Implementation Guide.	
To enable scheduling through the Reports and Analytics pane, configure the report properties:	
Enter the Path for the Job Definition. For example: /oracle/apps/ess/financials/payables/invoices/transactions/Jobs	
Enter the Name for the Job Definition. For example: APXINRIR	
The Report Properties dialog is shown in Figure 7-28:	
This section describes how to use Oracle Business Intelligence Enterprise Edition to customize and extend analytics for Oracle Fusion Applications.	
Analytics are analyses and dashboards built with Oracle Business Intelligence Presentation Services, based on objects in the Oracle BI repository. Analyses are queries based on real-time, transactional or operational data that provide answers to business questions. Dashboards provide personalized views of corporate and external information. A dashboard consists of one or more pages that contain content, such as analyses, links to Web sites, BI Publisher reports, and so on.	
You can customize analyses using the Oracle BI Composer interface from within Oracle Fusion Applications. You can customize dashboards using Oracle Business Intelligence Enterprise Edition.	
You can also customize objects in the Oracle BI repository (RPD) using the Oracle BI Administration Tool in either online or offline mode. Use online mode only for small changes that do not require running consistency checks. Running consistency checks against the full online repository can take a long time. Instead, make more complex changes that require consistency checks in offline mode against a project extract of the repository.	
Table 7-4 provides guidelines for when to perform online and offline edits. See the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for full information about how to use the Administration Tool to edit RPD files.	
Table 7-4 Guidelines for Online and Offline RPD Edits	
Mode	Use This Mode For:
---	---
Online	
Offline	
The Oracle BI Presentation catalog includes a Custom folder under Shared Folders. The Custom folder contains a subfolder for each product family, similar to the product family subfolder structure under Shared Folders. The structure of the Custom folder is shown in Figure 7-29.	
By default, the BI Platform Author Role is granted Full Control permissions to the product family subfolders, enabling users with this role to edit and delete the report objects that are copied to or created in the Custom folders, as well as set permissions on those objects. Oracle recommends that you copy the report objects that you wish to customize into the corresponding product family folder under the Custom folder. Maintaining custom objects in the Custom folder has the following benefits:	
Security Considerations When Copying Objects into the Custom Folder	
When you copy an object, the copied object inherits the permission settings of the folder into which it is copied. You must manually reset the permissions on the object and product subfolder structure that you create under the Custom folder to reestablish the security settings of the original object. For information on setting permissions in the catalog see Section 7.2.7, "Securing Custom Reports and Related Components."	
You can customize analyses and dashboards, as well as objects in the Oracle BI repository (RPD). In Oracle Cloud implementations you can customize analyses and edit dashboards; you cannot create new dashboards or make changes to the Oracle BI repository (RPD).	
Customizations to analyses and dashboards result in changes to the Oracle BI Presentation Catalog. Be aware that some patches include updates to the Oracle BI Presentation Catalog. All new objects are preserved during the patch process; in addition, changes to existing objects are preserved when the patch does not include a new version of that object.	
If you change an existing presentation catalog object and subsequent patches do include a new version of the object, the patch process detects and logs conflicts, and patching will stop. The catalog administrator must resolve any conflicts manually using Catalog Manager and then rerun the patch.	
In the Oracle BI repository, non-Cloud implementations can create new repository objects such as physical columns, logical table sources, logical columns, and presentation columns. Be aware that some patches include updates to the Oracle BI repository. New objects are preserved during the patch process; in addition, changes to existing objects are preserved when the patch does not include a new version of that object.	
If you change an existing object and subsequent patches do include a new version of the object, the Merge Wizard in the Administration Tool provides a method to merge the changes. For most typical customizations, the merge process is straightforward. The exception is when presentation columns have been moved across presentation tables; in this situation, it is important to plan ahead and track the changes carefully to ensure your changes are preserved during the merge.	
See the "Oracle BI Applications Patching" chapter in the Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications for more information about patching the Oracle BI Presentation Catalog and Oracle BI repository.	
Before you customize analytics, ensure that you have proper permissions for editing and creating Oracle Business Intelligence Presentation Catalog objects and understand how to set permissions in the catalog. For more information about setting permissions in the catalog, see the "Managing Objects in the Oracle BI Presentation Catalog" chapter in the Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).	
Only users with the BI Platform Administrator role (not available in Oracle Cloud implementations) can directly edit objects delivered by Oracle in the BI Presentation catalog. Edit Oracle-delivered objects directly only when necessary to maintain the proper functioning of applications or processes that reference the original objects (such as embedded dashboards or targets of navigation actions). Ensure that you understand patching implications described in the previous section.	
Users with the BI Author role have full control permissions to the Custom folder located under Shared Folders. Oracle provides the Custom folder with default permissions for BI Author to facilitate customizations in a centralized location while maintaining security on the original objects. Table 7-5 summarizes the actions allowed for BI Authors.	
Table 7-5 Allowed Actions for BI Author	
Customization	Action Allowed for BI Author
---	---
Edit analysis	Can edit analysis but cannot save to original folder. Must save the edited version to the Custom folder or My Folders.
Copy analysis	Can copy analysis and save to the Custom folder or My Folders. Cannot save the copy to original folder.
Create new analysis	Can create a new analysis and save to the Custom folder or My Folders.
Edit dashboard	Not allowed for Oracle predefined dashboards. Use Copy dashboard.
Copy dashboard	Can copy dashboard and save to the Custom folder or My Folders. In the Custom folder the copy can be edited. Cannot save the copy to original folder.
Create new dashboard	Not allowed.
You can customize analytics from the Reports and Analytics pane in Oracle Fusion Applications.	
Task: Customize Analyses	
To work with analyses, use one of the following editors:	
You have access to this editor only if you have been granted the Access to BI Composer privilege by the administrator.	
You have access to this editor only if you have been granted the Access to Analysis privilege by the administrator.	
To customize existing analyses using BI Composer:	
To create new analyses using BI Composer:	
Task: Customize Dashboards	
To customize dashboards:	
Note: Only BI Administrators can create new dashboards or edit an Oracle predefined dashboard in place. The BI Administrator role is not available in Oracle Cloud implementations.	
In the catalog, click the dashboard's More link and then click Copy. Navigate to the destination folder and click the Paste catalog toolbar button. Oracle recommends saving customizations to the appropriate application folder under Shared Folders/Custom. You can only save to folders to which you have Write permissions.	
For information about customizing dashboards in the catalog page, see the "Building and Using Dashboards" chapter in the Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).	
You can customize and extend the Oracle BI repository (RPD file).	
Note: Customizing the Oracle BI repository is not available in Oracle Cloud implementations.	
Task: Create BI View Objects for Custom Fact and Dimension Tables	
Whenever you create a custom fact or dimension table, you must create a BI view object for that table and incorporate it into the Oracle Fusion application before you can import it into the Oracle BI repository. To do this, follow these steps:	
Tip: When you create the custom table, you must grant the necessary privileges (such as See also the "Customizing and Extending the Oracle Fusion Applications Schemas" section in the Oracle Fusion Applications Extensibility Guide for Developers for guidelines on creating custom tables.	
Task: Modifying Existing Fact or Dimension Tables	
In some cases, you might want to modify existing fact or dimension tables in the Oracle BI repository. For example, assume you want to deploy Oracle Fusion Project Portfolio Management, but use the PeopleSoft Procurement application as a source. In this situation, you would set up a custom table in Oracle Fusion Applications that populates Commitments data from PeopleSoft. Then, you would need to change the Commitments fact table in the Oracle BI repository (RPD file) to point to the new custom table.	
To accomplish the task described in this example:	
See the "Importing Metadata from ADF Data Sources" and "Working with Physical Foreign Keys and Joins" sections in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
See the "Managing Logical Table Sources (Mappings)" chapter in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
Using this approach, all Presentation layer metadata, analyses, and dashboards will continue to work with data coming from the new physical columns.	
In other cases, you might want to extend existing fact or dimension tables using existing view objects that have new attributes. For example, you might want to incorporate fields on standard Oracle Fusion Applications pages that are not currently being used for analysis into the Oracle BI repository.	
To extend existing fact or dimension tables for existing view objects that have new attributes:	
See the "Importing Metadata from ADF Data Sources" section in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
See the "Working with Logical Tables, Joins, and Columns" chapter in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
See the "Creating and Maintaining the Presentation Layer" chapter in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
Task: Adding New Fact or Dimension Tables	
In some cases, you might want to add new fact or dimension tables to your Oracle BI repository. Possible sources include custom tables in Oracle Fusion Applications, additional tables in the data warehouse, or new physical data sources.	
To add new fact or dimension tables to your RPD:	
For more information, see the following resources in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition):	
See the "Working with Logical Tables, Joins, and Columns" and "Working with Physical Foreign Keys and Joins" sections in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
See the "Creating and Maintaining the Presentation Layer" chapter in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.	
Task: Changing How Metadata Is Displayed in Answers Reports	
In some cases, you might want to change how the names of facts and dimensions in the Presentation layer appear in Answers reports, to comply with naming standards or for other reasons. Table 7-6 summarizes considerations for different use cases.	
Table 7-6 Use Cases for Changing How Metadata Is Displayed	
Use Case	For More Information
---	---
For warehouse sources, display names are typically externalized into a database table. To customize the names, you can change them in the externalized tables with no impact to the metadata itself. Note that for situations where display names are externalized into a database table, changing the names of Presentation layer objects in the RPD has no impact on the names displayed in Answers reports.	See the "Localizing Metadata Names in the Repository" section in the Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about externalizing display names.
For Oracle Transactional Business Intelligence sources, display names are typically customized using UI hints (labels and tooltips) within Oracle Fusion Applications. Changing the UI hint name does not impact metadata. Note that for situations where display names are customized using UI hints, changing the names of Presentation layer objects in the RPD has no impact on the names displayed in Answers reports.	See the "Propagating Labels and Tooltips from ADF Data Sources" section in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information about how UI hints are propagated in the RPD.
For situations where Presentation layer names are not externalized or tied to UI hints, display names must be modified directly in the RPD. Existing reports will continue to work because the old names are stored as aliases.	See the "Renaming Presentation Columns to User-Friendly Names" section in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.
Task: Reorganizing Presentation Layer Metadata	
Note the following about reorganizing Presentation layer metadata in the RPD:	
Task: Configuring Descriptive Flexfields and Key Flexfields for Oracle Business Intelligence	
You can use the Import Metadata Wizard in the Administration Tool to incrementally import flexfield changes to the Physical layer of the Oracle BI repository (RPD).	
Tip: See Chapter 4, "Using Flexfields for Custom Attributes" for information about changing flexfields. In particular, see "Task: Incorporate Custom Attributes into Oracle Business Intelligence" for information about enabling flexfields for BI.	
In addition, you can use the Map to Logical Model screen of the Import Metadata Wizard to automatically propagate the flexfield changes to the Business Model and Mapping layer.	
Finally, for Oracle BI Applications customers, you can configure and enable the BI Extender functionality to propagate flexfield changes to the data warehouse.	
See the following sections in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information about these topics:	
Task: Moving RPD Changes to Production Systems	
Typically, data source connection pool settings are different in production repositories. You can use the Oracle BI Server XML API to programmatically update these settings in the repository when moving changes to production systems. See the "Moving from Test to Production Environments" section in the Oracle Fusion Middleware XML Schema Reference for Oracle Business Intelligence Enterprise Edition for more information.	
This part contains information about troubleshooting Oracle Fusion Applications extensions and customizations. It contains the following appendix:	
This appendix describes common problems that you might encounter when extending and customizing Oracle Fusion Applications and explains how to solve them.	
Note: Some features and functionality described in this chapter are not available in Oracle Cloud implementations.	
This appendix contains the following topics:	
In addition to this appendix, review Oracle Fusion Middleware Error Messages Reference for information about the error messages you may encounter.	
Use the following guidelines and process within this appendix to help focus and minimize the time you spend resolving problems.	
Guidelines	
When using the information in this appendix, consider the following guidelines:	
Process	
Follow the process outlined in Table A-1 when using the information in this appendix. If the information in a particular section does not resolve your problem, proceed to the next step in this process.	
Table A-1 Process for Using the Information in this Appendix	
Step	Section to Use
---	---
1	
2	
3 | | Use My Oracle Support to get additional troubleshooting information about Oracle Fusion Applications or Oracle Business Intelligence. My Oracle Support provides access to several useful troubleshooting resources, including Knowledge Base articles and Community Forums and Discussions. |
4 | | Log a service request if the information in this appendix and My Oracle Support does not resolve your problem. You can log a service request using My Oracle Support at |
This section provides the following general approaches for managing and diagnosing customization issues:
The Manage Customizations dialog displays the customizations of the task flows in a page. You can access the Manage Customizations dialog from Page Composer and from the Administration menu in the global area of Oracle Fusion Applications. You can also use this dialog to delete page customizations, and to upload and download page customization files. For more information, see Section 2.1.1.1, "Viewing and Diagnosing Runtime Customizations."
Customizations are stored in XML files. You can export the customizations for diagnosing issues in a number of ways, as described in Section 2.3, "Exporting and Moving Customizations."
Note: The functionality described in this section is not available in Oracle Cloud implementations. |
The logging functionality for customization set migration is different from the standard logging functionality for Oracle Fusion Applications. The Customization Set Migration dialog uses Oracle Fusion Middleware logging functionality, which lets you adjust the amount of detail to log for customization set migration without requiring a server restart. You can use Oracle Enterprise Manager Fusion Applications Control to view the log messages. For more information about Oracle Fusion Middleware logging functionality, see the "Managing Log Files and Diagnostic Data" chapter in the Oracle Fusion Middleware Administrator's Guide.
To generate diagnostic information, select the desired level for the oracle.adf.share.customizationset logger as described in the "Adjusting ApplSession Log Levels for Troubleshooting" section in the Oracle Fusion Applications Administrator's Guide and rerun.
When requesting assistance from My Oracle Support, provide the log files and the customization set JAR file.
You can use the Manage Customizations UI to delete customizations. In the page that contains the customizations, select the page fragment or task flow and choose Manage Customizations from the Administration menu. In the Name list, select the correct layer, find the page, task flow, or fragment that contains the customizations, and click Delete for the customization document that you want to delete.
Tip: If you are unable to display the page that contains the customizations, choose Manage Customizations from the Administration menu, and then, in the Manage Customizations dialog, type the page, page fragment, or task flow in the Search text field, and click the Search icon. |
If the customizations were made by someone other than the logged-in user, and you have administrator privileges, you can display that person's customizations by selecting Select User from the Layer Name dropdown list.
For more information about the Manage Customizations dialog, see Section 2.1.1.1, "Viewing and Diagnosing Runtime Customizations."
In non-Cloud implementations, you can also use Oracle WebLogic Scripting Tool (WLST) commands to delete customizations, as shown in Example A-1.
Example A-1 WLST Command to Delete a Customization Document
For more information about the deleteMetadata
command, see the "Application Metadata Management Commands" section of Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
Alternatively, in non-Cloud implementations you can use Fusion Applications Control to delete an application's metadata. For more information, see the "Managing the Metadata Repository" chapter in the Oracle Fusion Middleware Administrator's Guide.
Note: The functionality described in this section is not available in Oracle Cloud implementations. |
Before you make customizations, you can create a backup of a known good state by creating a label. If an issue occurs after creating the label, you can revert back to that label by promoting it to the tip as described in the "Creating Metadata Labels" and "Promoting Metadata Labels" sections of the Oracle Fusion Middleware Administrator's Guide.
Another way to back up and restore customizations is by exporting and importing customization files, as described in Section A.2.2, "Exporting Customizations."
When you make customizations, be careful to choose the correct layer:
The following string shows the structure of the full document path for a customization document:
For example, the full document path for the Visa Work Permit Expiration region is /oracle/apps/hcm/dashboard/hrSpecialist/publicUI/page/mdssys/Site/SITE/VisaWorkPermitExpirationRegion.jsf.xml
.
You can obtain the full document path of a customized region on a page by completing the following steps:
/oracle/apps/hcm/dashboard/hrSpecialist/publicUI/page/mdssys/Site/SITE/VisaWorkPermitExpirationRegion.jsf.xml
. Make a note of this path. For descriptive flexfield configurations, you can use the Register Descriptive Flexfields task to find the name of the flexfield's package.
To turn on runtime logging for customizations that are applied to a page, set the log level for the oracle.mds.custmerge
module to FINEST
. You can set the application's log level by choosing Troubleshooting from the Help menu. You might need to ask your administrator to give you privilege to set the log level.
If you have administration privileges, you can also use Fusion Applications Control to set the log level in non-Cloud implementations.
You can use logging, as described in Section A.2.8, "Logging Customizations that Are Applied to a Page," or you can use the Manage Customizations dialog, as described in Section A.2.1, "Diagnosing Customization Issues Using the Manage Customizations Dialog," to determine whether customizations have been applied to a page.
If you suspect that a problem might have been caused by a customization on a page, such as a user interface component disappearing from a page, you can export the page's customizations as described in Section A.2.2, "Exporting Customizations" and examine the document file.
Perform your page customizations in sandboxes and publish only after full testing. You can use any number of sandboxes for testing, but you should use just one sandbox for publishing to prevent merge conflicts, as described in Section 2.2.1, "Sandboxes and Concurrent Usage." For information about analyzing merge conflicts, see Section A.3.2, "Conflict Errors Reported When You Publish a Sandbox."
Before deploying flexfield configurations to the full test environment, first deploy the configurations to a sandbox so that you can test the configuration without affecting other end users or risking the inclusion of the untested configuration in customization set movement to a production environment. A flexfield that is successfully deployed to a sandbox will have a status of Deployed to Sandbox. After deploying to a sandbox, log out and log back in. The flexfield's sandbox will be active in your session for you to test. After testing, deploy to the full test environment so that the changes can be seen by other users. For more information, see Section 4.7, "Deploying Flexfield Configurations."
After you deploy a flexfield using the Manage Descriptive Flexfields task or the Manage Extensible Flexfields task, look at the value in the Deployment Status column to ensure that its status is Deployed (or Deployed to Sandbox if you are testing in a sandbox). If not, review the message in the Deployment Error Message column. For more information, see Section 4.7, "Deploying Flexfield Configurations."
If you successfully deployed a flexfield, but the custom attributes do not appear on the user interface page, ensure that you signed out and signed back in after deploying the flexfield. The changes do not appear until you sign back in.
In the case of an extensible flexfield, if a context does not appear in the user interface, verify that the context is associated with one of the category's pages.
To examine a flexfield's configuration, export the deployed artifacts using the exportMetadata
WLST command as described in Section A.2.2, "Exporting Customizations."
When you deploy a flexfield from the Manage Descriptive Flexfields task or the Manage Extensible Flexfields task, the metadata is validated and, if errors are found, the flexfield is not deployed. If you want to check whether a flexfield will pass validation, choose Validate from the Actions menu.
The following are common problems and solutions:
Problem
The customizations that were made in the active sandbox are not appearing in the user interface.
Solution
Sign out and sign back in.
To ensure that the sandbox customization cache is cleared, log out and log back in before you enter a sandbox and after you perform any of the following sandbox-related actions:
Problem 1
You created customizations in a sandbox using the guidelines suggested in Section 2.2, "Using the Sandbox Manager." When you published the sandbox, merge conflicts were detected but not resolved.
Conflicts between sandboxes can arise when there is more than one sandbox that is intended for publishing in use. If two sandboxes contain customization changes to the same artifact and both are being published, the sandbox that is published last is given an option (by the sandbox manager) to overwrite the changes for that artifact from the sandbox that was published first. If the user working in the second sandbox decides to force-publish the second sandbox, the changes published by the first sandbox are overwritten. These types of conflicts can also occur with shared metadata files such as resource bundles that store translatable strings.
For more information, see Section 2.2.1, "Sandboxes and Concurrent Usage."
Solution 1
Before forcing the publishing of the sandbox, complete the following steps to analyze the conflicts:
Problem 2
When you publish a sandbox, you get a message that reports a conflict with oracle/apps/menu/fnd/applcore/dataSecurity/dataSecurityService/mds/DSMO.xml
.
Solution 2
The security changes that you made in your sandbox conflict with other security changes in the mainline code. Cancel the sandbox and recreate the changes in a new sandbox.
Problem 3
When you publish a sandbox, you get a message that reports a conflict with /oracle/apps/fnd/applcore/profiles/profileService/mds/ProfileMO.xml
.
Solution 3
Ignore the message, continue the process, and force the sandbox to be published.
Problem
After using Page Composer to change a dashboard page title, the old name is still displayed in the browser title bar, navigator link, or tab.
Solution
In addition to changing the page title property in the Task List Properties tab in Page Composer, which affects the browser title, you must also make the following changes:
Problem
After making personalizations to a page, an end-user cannot open that page.
Solution
An administrator can use the Manage Customizations task to display and delete that user's personalizations for the page as described in Section A.2.4, "Deleting Customizations."
Problem
An expected menu item is not appearing in the Navigator menu.
Solution
Verify whether the menu item has been hidden from view as described in Section 5.4, "Hiding and Showing Nodes."
Problem 1
A custom menu item was added and the browser is not displaying the page indicated by the URL.
Solution 1
Open the Manage Menu Customizations task and verify that the web application name is the same as the context root for the application, and that the view ID is the id
attribute for the page's <view>
tag in the product's public_html/WEB-INF/adfc-config.xml
file. The URL should not contain the.JSPX
suffix.
For more information, see Section 5.3, "Adding Menu Items."
Problem 2
When you choose an item in the Navigator menu, you get a "webApp value not defined" error message.
Solution 2
Verify that the application is in the topology tables, as described in the "Viewing the Routing Topology of an Oracle Fusion Applications Instance, Product Family, or Product" section in the Oracle Fusion Applications Administrator's Guide.
Problem
You click the Cancel button in the Set Preferences page and nothing changes.
Solution
The cancel action resets the page to the same values that appeared when you accessed the page. If you have not made any changes, the page appears the same. To navigate away from the page, select Recent Items or Navigator from the global area of Oracle Fusion Applications or use the text box to search for a different page.
You can use My Oracle Support (formerly MetaLink) to help resolve Oracle Fusion Middleware problems. My Oracle Support contains several useful troubleshooting resources, such as:
Note: You can also use My Oracle Support to log a service request. |
You can access My Oracle Support at https://support.oracle.com
.
application stripe
A collection of Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider policies that are applicable to the application with which it is associated. Out of the box, an application stripe maps to a Java EE application. Oracle Platform Security Services also supports mapping multiple Java EE applications to one application stripe.
artifact (SAR file)
A file included in the SAR file of the SOA composite application. Examples of artifacts include binding components and service components, references to B2B agreements, Oracle Web Services Manager (Oracle WSM) policies, human task flows, and metadata such as WSDL and XSD files.
binding component
A component that establishes the connection between a SOA composite application and the external world. There are two types of binding components:
BPEL
Business Process Execution Language. An XML-based markup language for composing a set of discrete web services into an end-to-end process flow.
BPEL process
A service component that integrates a series of business activities and services into an end-to-end business process flow. See also BPEL.
bucketset
A container for defining a list of values or a range of values of a specified type. After you create a bucketset, you can associate the bucketset with a fact property of matching type. Business rules use the bucketsets that you define to specify constraints on the values associated with fact properties in rules or in decision tables.
business event
A message sent as the result of an occurrence or situation, such as a new order or completion of an order. You can raise business events when a situation of interest occurs. When an event is published, other applications can subscribe to it. Definitions for business events are stored in an Oracle Metadata Services (MDS) repository, and then published in the Event Delivery Network (EDN).
Business Process Execution Language (BPEL)
See BPEL.
Child Components
The components contained within a parent component. For example, the task flows contained within a Box layout component are the child components of the Box.
component
An individual piece of an application, for example, a task flow, portlet, page, or layout element such as a box or image.
configuration plan
As you move projects from one environment to another (for example, from testing to production), you typically must modify several environment-specific values, such as JDBC connection strings, hostnames of various servers, and so on. Configuration plans enable you to modify these values using a single text (XML) file. During process deployment, the configuration plan searches the SOA project for values that must be replaced to adapt the project to the next target environment.
custom object
A high-level artifact, which manages data that resides in a database table, that you create using Oracle Fusion CRM Application Composer.
data dimension
A stripe of data accessed by a data role, such as the data controlled by a business unit.
data security
The control of access to data. Data security controls what action an end user can take against which data.
data stripe
A dimensional subset of the data granted by a data security policy and associated with a data role. The data dimension expresses stripes of data, such as territorial or geographic information, that you can use to partition enterprise data.
decision table
An alternative business rule format that is more compact and intuitive when many rules are needed to analyze many combinations of property values. You can use a decision table to create a set of rules that covers all combinations or when no two combinations conflict.
dependent value set
A list of values whose availability and meaning depend on the value that the end user provides for a prior segment, where the prior segment is associated with an independent value set.
descriptive flexfield
A type of flexfield used to give additional attributes to a data model. A descriptive flexfield can support only a set amount of segments.
design time customizations and extensions
Customizations and extensions that include more complex changes, such as creating Oracle SOA Suite composite applications or creating new batch jobs. Design time customizations are most often done by Java developers using Oracle JDeveloper (a comprehensive IDE), or may be done in other tools, such as Oracle SOA Composer. The customizations are then uploaded or deployed to a running instance of Oracle Fusion Applications.
domain value map
A set of value mappings that enables you to associate values from one application with values from another. For example, one value can represent a city with a long name (Boston), while another value can represent a city with a short name (BO). In such cases, you can directly map the values by using domain value maps.
desktop page
A page in a user interface that is optimized for extended periods of use with monitors.
entitlement
A set of grants of access to functions and data. This is an Oracle Fusion Middleware term for privilege.
extensible flexfield
A type of flexfield that is similar to a descriptive flexfield, but does not have a fixed number of segments, allows grouping of segments into contexts, allows entities to inherit segments from their parents, and supports one-to-many relationships between an entity and its extended attribute rows.
flexfield
A set of placeholder fields (segments) that is associated with a business object. Oracle Fusion Applications provides three types of flexfields: descriptive, extensible, and key. Implementors use descriptive and extensible flexfields to add custom attributes to business objects. Implementors use key flexfields to define keys, such as part numbers.
flexfield sandbox
A sandbox to which you deploy flexfield configurations for testing purposes before deploying to the mainline code.
format-only value set
A value set that conforms to formatting rules. This is used when you want to allow end users to enter any value so long as that value conforms to formatting rules. For example, if you specify a maximum length of 3 and numeric-only, then users can enter 456 but not 4567 or 45A. Use a format-only value set only when no other types of validation are required.
function security
The mechanism by which user access to application functionality is controlled.
global layer
A customization layer in which customizations affect all end users of the application. This layer's XML files are added for everyone, whenever the artifact is requested. Customizations made to ADF Business Components in Oracle JDeveloper must be made in the global layer.
human task
A Business Catalog component that enables you to define how end users interact with your Oracle Business Process Management (Oracle BPM) processes. Human tasks are implemented in an Oracle BPM process using the user task. Human tasks are also used in SOA composite applications, where they are known as service components.
independent value set
A predefined list of values for a flexfield segment. These values can have an associated description. The meaning of a value in this value set does not depend on the value of any other segment.
key flexfield
A non-optional type of flexfield. This type of flexfield is used to define the parts of a key structure such as the parts of a product key or the parts of a customer key.
metadata sandbox
The type of sandbox that supports making changes to the application's metadata stored in an Oracle Metadata Services (MDS) repository.
multi-tenant environment
An environment where a single application instance serves multiple client organizations by partitioning the data and configurations into separate virtual application instances.
page fragment file
A particular type of file that represents only a fragment of a page, but that is necessary to properly display the entirety of that page.
partner link
Characterizes the conversational relationship between two services in a BPEL process by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation.
permission
A security artifact in the policy store that maps a specific application resource with an allowed action. For example, a permission may be granted to a role to confer access rights to users.
personalization
The changes that every end user of the Oracle Fusion Applications product suite can make to certain artifacts in the user interface (UI) at runtime. These changes remain for that user each time that user logs in to the application. Personalization includes changes based on user behavior (such as changing the width of a column in a table), changes the user elects to save, such as search parameters, or composer-based personalizations, where an end user can redesign aspects of a page.
privilege
A grant of access to functions and data. A privilege is a defined by a single, real world action on a single business object.
production-to-test movement
The process of completely refreshing the test environment by copying configuration and data from the production system.
resource bundle
A collection of locale-specific objects. When a program needs a locale-specific resource, a String
for example, it can load the resource from the resource bundle appropriate for the current user's locale. In this way, the program code is largely independent of the user's locale, isolating most, if not all, of the locale-specific information in resource bundles.
rule dictionary
A business rules container for facts, functions, globals, bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that stores the application's rulesets and the data model. Dictionaries can link to other dictionaries.
ruleset
A business rules container for rules and decision tables. A ruleset provides a namespace, similar to a Java package, for rules and decision tables.
runtime customizations and extensions
Customizations and extensions that can be made to Oracle Fusion Applications at runtime using browser-based components. These customizations and extensions are available to all or to a subset of Oracle Fusion Applications end users, and range from changing the look and feel of a page, to customizing standard business objects, adding a new business object and associated pages and application functionality, changing workflows, defining security for new objects, and customizing reports.
sandbox
A testing environment that separates sections of an application so that changes and modifications are kept within the sandbox and do not affect the mainline code or other sandboxes. Different users can create their own sandboxes to test their own sections. After the changes made in the sandbox have been tested, the sandbox user has the option to publish the changes to the mainline code.
SAR file
A SOA archive deployment unit. A SAR file is a special JAR file that requires a prefix of sca_. (For example, sca_OrderBookingComposite_rev1.0.jar). The SAR file packages binding components and service components, such as BPEL processes, business rules, human tasks, and mediator routing services, into a SOA composite application.
security reference implementation
Provides role-based access control in Oracle Fusion Applications, and is composed of predefined security policies that protect functions, data, and segregation of rules. The reference implementation supports identity management, access provisioning, and security enforcement across the tools, data transformations, access methods, and the information lifecycle of an enterprise.
segment
A subdivision of a flexfield. A segment captures a single atomic value, which is represented in the application database as a single column. In the application UI, segments can be presented as individual table columns, as separate fields, or as a concatenated string of values.
service component
A component that implements the business logic or processing rules of a SOA composite application. Service components include Oracle Business Process Execution Language processes, business rules, human tasks, and mediator routing services.
simplified page
A page in a user interface that is optimized to provide quick access to high-volume, self-service tasks from any device.
skin
A style sheet based on the CSS 3.0 syntax and that is specified in one place for an entire application. Instead of providing a style sheet for each component, or inserting a style sheet on each page, you can create one skin for the entire application.
SOA composite application
An assembly of service binding components, service components, and reference binding components designed and deployed in a single application. Wiring between the components enables message communication. The details for a composite are stored in the composite.xml file.
subset value set
A set of values taken from an existing independent value set. For example, if you have an independent value set for the days of the week, a weekend subset can be composed of its entries for Saturday and Sunday.
table value set
A value set with the Table validation type. The valid values in the value set are obtained from a specified column in a database table.
UI Shell template
The template that is use for the base UI for all Oracle Fusion Applications pages.
user layer
The customization layer in which all personalizations are made. The user layer is automatically selected when you use the Personalization menu.
wire
Wires connect service binding components, service components, and reference binding components into a complete SOA composite application.
 Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved. |