
  
    
      
    
  



[image: Oracle Utilities Network Management System ]


OEBPS/Text/part0114.xhtml






Adapter Functionality 




The adapter program extracts objects and features from the ArcGIS database and produces extract files in Oracle Utilities Network Management System Model Preprocessor (".mp") format. In ArcGIS terminology, the program makes use of a data converter engine. The Adapter is called "AItoCentricity." 




The Adapter makes use of ESRI’s ArcObjects via a Visual Basic shell (COM program). Its extraction behavior is configured by default values set in an accompanying Microsoft Access database, which has the same name as the executable (i.e. AItoCentricity.mdb) and resides in the same subdirectory. This required database is the "application reference" database. 




The Adapter can be installed and run on any PC with Windows 2000/Windows XP as the supported platforms. Note this application does not run on the SDE server, however it does use SDE resources through ArcObjects if the data is SDE-based. 




The Adapter can be run against either a personal geodatabase or an SDE database. Since database versioning is not supported in a personal geodatabase, the Adapter’s change detection mechanism will only work on SDE data that has also been registered as versioned. 




There are two methods of invoking the Adapter: 








		

•




		



Non-interactively by a command line with parameters. 





















		

•




		



Interactively with a GUI. 

















The program can be launched in non-GUI mode from an OS command prompt with command line parameters. The user can either use the defaults as set in the application reference database or override them with passed parameters. As such, the program can be scheduled for "silent" launch as a Windows scheduled task. Note because this type of launch is "silent" and does not make use of a GUI, feedback is usually not provided to the workstation screen unless an error occurs. 




The program can be launched from the workstation desktop or pull down menu. Using the GUI, the user can interactively control what data is extracted, what extract method is to be used, the type of data to extract, and the name of the output directory. The user is also provided with a status area, which includes progress bars and messages for monitoring the progress of the overall workorder and the specific partition currently being extracted. 








OEBPS/Text/part0235.xhtml






Trouble Call Message Tags 















		



Tag 




		



Parent 




		



Description 










		



Incident  




		










		
















		



troubleCode  




		



Incident 




		
















		



device  




		



Incident 




		
















		



account  




		



Incident 




		
















		



custDeviceCls 




		



Incident 




		
















		



custDeviceIdx 




		



Incident 




		
















		



name  




		



Incident 




		
















		



address  




		



Incident 




		
















		



city  




		



Incident 




		
















		



phone   




		



Incident 




		
















		



incidentTime   




		



Incident 




		
















		



comment  




		



Incident 




		
















		



callbackLate  




		



Incident 




		
















		



externalId 




		



Incident 




		
















		



callCancel  




		



Incident 




		



Deprecated and project specific 










		



lifeSupport  




		



Incident 




		
















		



custNone 




		



Incident 




		
















		



custPriority 




		



Incident 




		
















		



custPhoneArea 




		



Incident 




		
















		



callId 




		



Incident 




		
















		



meterId 




		



Incident 




		
















		



custLastName 




		



Incident 




		
















		



generalArea 




		



Incident 




		
















		



custOrderNum 




		



Incident 




		
















		



drvInst 




		



Incident 




		
















		



addrBuilding 




		



Incident 




		
















		



addrStreet 




		



Incident 




		
















		



addrCity 




		



Incident 




		



This is also used in fuzzy calls to get a better indication of which intersection point should be used. 










		



meetTime 




		



Incident 




		
















		



meetType 




		



Incident 




		
















		



cidAlias 




		



Incident 




		
















		



powerUp 




		



Incident 




		
















		



cancelCall 




		



Incident 




		



Deprecated and project specific 










		



callbackRequest 




		



Incident 




		
















		



callbackTime 




		



Incident 




		
















		



custIntrX 




		



Incident 




		
















		



custIntrY 




		



Incident 




		
















		



updateExistingInc 




		



Incident 




		
















		



custCritical 




		



Incident 




		
















		



alternatePhone 




		



Incident 




		
















		



userName 




		



Incident 




		
















		



checkCutoff 




		



Incident 




		
















		



xRef 




		



Incident 




		
















		



yRef 




		



Incident 




		
















		



custPhoneUpdate 




		



Incident 




		
















		



streetNameA 




		



Incident 




		



Used to indicate a street name for a fuzzy call 










		



streetNameB 




		



Incident 




		



Used to indicate a street name for a fuzzy call. 










		



addressNumber 




		



Incident 




		



Used for the street number, to find in an address range for it in the range of an intersection point. The street number is <> the range. 










		



addrState 




		



Incident 




		



This is also used in fuzzy calls to get a better indication of which intersection point should be used. 










		



addrPostCode 




		



Incident 




		



This is also used in fuzzy calls to get a better indication of which intersection point should be used. 










		



premiseId 




		



Incident  




		



This is the premiseId (serv_loc_id) for the customer.  This XML tag should only be used as a last option if supply node or customer account number cannot be used with a call. This field incurs additional performance issues if used, and is highly recommended not to use it as an option for processing trouble calls. 










		



controlZoneName 




		



Incident 




		



If the control zone name is passed with the call, it will be used to append control zone information with the call to be placed at this control zone within JMService.   This would be useful in cases where customers are not yet modeled in Oracle Utilities Network Management System, and calls would want to be placed as close to the lowest control zone as possible. 










		



eventCls 




		



Incident 




		



Related event class. Used for canceling or updating outages. 










		



eventIdx 




		



Incident 




		



Related event index. Used for canceling or updating outages. 


















OEBPS/Text/part0115.xhtml






Adapter Capabilities 




The Adapter extracts information from the GIS in groups of features known as "partitions"; all of the features in a partition, along with an overall partition object that defines an enclosing rectangle for the contained features, are placed in one extract (.mp) file. The process of grouping features into partitions can be done in one of two ways:  








		

•




		



Geographic, tile-based partitions can be defined using a grid feature class that exists within the GIS. With tile-based partitions, all of the features contained within or overlapping one particular "cell" or region as defined by this grid feature will be grouped into the same partition by the adapter and will be extracted into the same extract file.  





















		

•




		



Non-spatial, attribute-based partitions - e.g., feeder/circuit-based partitions -- can be defined by supplying the name of an attribute (or two attributes in the case of feeders when a device might have two feeders because it acts as tie-point between feeders e.g., "FEEDERID1" and "FEEDERID2"); the distinct values of this attribute (e.g., all the distinct values for feeder ID) will define the partitions: all the objects sharing a particular value of this attribute (e.g., all the features belonging to a particular feeder/circuit) will be grouped into the same partition by the adapter and will be extracted into the same extract file. (Optionally, if the "SpatialWithNonSpatial" option in the "Defaults" table is checked, features lacking this characteristic attribute but falling within the same bounding rectangle will also be extracted. Typically, this option would be enabled if you want to extract non-electrical features like support structures and annotation that are not marked as belonging to a particular feeder but which you would like to extract into the same partition as the adjacent electrical features that do belong to a feeder.) 

















Configuring which of these two methods of defining a partition should be used is done primarily through the "PartitionReference" table in the application reference database as explained in detail below in the "Adapter Configuration" section of this document. 




Optionally, the Adapter can be used to detect changes to a geodatabase, thereby automatically flagging partitions for extraction.  




Automated change detection by the Adapter is based on ArcGIS version functionality. Accordingly, the Adapter manages the internal versions it makes use of to support its change detection. However, for those clients that prefer not to implement ESRI SDE versions in their database, the Adapter can be configured to read an externally generated list of changed partitions and bypass creating/using SDE versions. This functionality permits those clients to benefit from the change detection functionality (e.g., for incremental model builds), however it clearly places the onus of change detection on the data maintenance team. 




If change detection by the Adapter is chosen, then a versioned database must be used. As a result, the Adapter will create a temporary extract "freeze" version for the extraction process. If the extract completes successfully, this temporary version is then saved as a valid data freeze for future use. Then, on the next launch of the Adapter, it will attempt to intelligently detect the last successful freeze version (based on creation and modification dates). If located, it will highlight the last freeze version for use with the change detect tool. The change detect tool is an optional automated mechanism for queuing partitions that contain objects and features that have been either changed, added, or deleted since the last extract. 




On extraction, the Adapter retrieves: 








		

•




		



Partition details. 





















		

•




		



Objects. For each object: 





















		

•




		



Object class and identifier. 





















		

•




		



Connectivity. 





















		

•




		



Geometric information. 





















		

•




		



It retrieves rows and attributes for the object as well as from related or connected features and tables. For example, the related instance(s) of TransformerUnit may be extracted when the instance of Transformer (a transformer bank) is extracted. 





















		

•




		



Feature-linked annotation. This is a special case of a related table. 





















		

•




		



Labels and Annotation. 

















The Adapter produces output in a work order folder containing extract files in Oracle Utilities Network Management System Model Preprocessor (".mp") format and a log file of informational, warning, and error messages. 




Partition Details 




The Adapter generates a "partition section" object as the first object in each MP file. This partition object is based on the geometry of the tile or the minimum-bounding rectangle for the objects identified as belonging to a particular feeder (for feeder-based extracts). In the case of tile-based extraction, it uses the specified grid feature class as the class name for this partition and an attribute (e.g., "TileID") for the partition’s name. For feeder based extraction, this has an object type of "NONSPATIAL" and an object ID equal to the distinct attribute value - i.e. the FEEDERID for this partition. 




Object Extraction 




The Adapter generates object records for each object. The object records add the object, its topology, Diagram records, and Attribute records. 




Object Identifier 




The Adapter uses the feature class name and feature ID to identify an object. For example, "Switch 24." Note the feature ID is unique within the feature class. 




Connectivity 




The Adapter determines the connected (or networked) objects by analyzing the ArcGIS’ Geometric network. The connectivity (topology) is established using the EID attribute, a unique index number in the Geometric network. The Adapter translates the EID into a port value that contains the following: 








		

•




		



Feature Class Name 





















		

•




		



Object ID 





















		

•




		



Sub ID 

















For example, 6.324.1 could be PriOhElectricLineSegment OID #324, Sub ID #1. 




The Oracle Utilities Network Management System AttTopoBuild program uses the port numbers to generate topology. 




To support identification of this feature, an attribute object FEATURE_CLASS_ID is produced. This, in combination with the objectid.subid can be used as an identifier equivalent to the port identifier of connected objects. 




Geometric Information 




The Adapter determines the geometry of the object and uses it for the coordinates of the object as well as for any Oracle Utilities Network Management System diagram objects generated from the object: scale, height, angle, etc. The geometric diagram line should specify the feature class name. 




Related Information 




Although "core" attributes will always be output for an object, the Adapter will only traverse to related objects if the class relationship is listed in the "RequiredRelationships" table of the application reference database. This is to enhance performance and minimize file sizes. For convenience, attribute records (identified by feature class name or object class name) are output in the following order: 








		

•




		



Attributes 





















		

•




		



Attributes from related tables 

















Coded Value Look Up 




The Adapter can be configured to either provide the raw code for an attribute with a coded-value domain from the database or to perform a "look up" for the coded value. This option can be set in the "Defaults" table of the application reference database. 




If the look up is not used, it requires the Model Build process to perform the lookup. Two options are: 








		

•




		



Model Build preprocessor contains a copy of the coded value domain tables and looks it up. 





















		

•




		



Copy the lookup table to the OMS and use a database view to bring them together for presentation. This view slows down the Oracle Utilities Network Management System attribute display so it is not a recommended approach. 

















The obvious disadvantage of both these methods is maintaining and synchronizing lookup tables in both the GIS and OMS. 




Decomposing Complex Edge Features 




Oracle Utilities Network Management System requires simple features, so complex edge features in ArcGIS data are decomposed into their components: simple edge features. Each component gets an Object record with the attributes of the complex edge. Since we are breaking a complex edge into multiple simple edges it will require recalculation of "MeasuredLength" attribute for each of the simple edge. The "MeasuredLength" attribute could be derived from the complex edge feature’s "MeasuredLength" attribute using the ratio of the "Shape_Length" of the simple edge feature to the "Shape_Length" of the complex edge feature. The Shape_Length is an ArcGIS geographic attribute that provides a length of an edge. 




Instead of calculating "MeasuredLength" attribute using the method described above, the Adapter uses the simple edge’s "Shape.Len" attribute value to populate the measured length attribute. 




By default, feature-linked annotation for complex objects is always associated with the first component of the set of complex edge features when output in the extract file. However, the geometry for the annotation feature is maintained so the annotation feature’s spatial placement in the OMS should always be consistent with the GIS’. 




Class Names Containing Space Characters 




It is possible for GIS class names to contain spaces in them (e.g., "Overhead Line"), particularly in a personal geodatabase. However, the Oracle Utilities Network Management System model build tools do not recognize or accept class names with spaces, so a conversion must be made. 




The accepted convention is that all spaces be substituted with underscores (e.g., "_"). Therefore, if source data class names have spaces in them, the final output model preprocessor (.mp) files will have underscores substituting the spaces. An example would be a class named "Overhead Line". The ADD and ATTRIBUTE statements in the extract output file would show the name "Overhead_Line" instead. 




Labels and Annotation 




Extracting a label as a separate feature is possible, but it is not recommended because Feature and Label object data does not have any explicit relationship. Without the explicit relationship, Oracle Utilities Network Management System Preprocessor and Model Build process cannot associate the label text with the feature class in the Oracle Utilities Network Management System viewer leading to inefficient behavior of the hide/display operation. For example if a Switch and Switch text are not associated, then turning off display of Switch using the hide/display tool, will not automatically hide the associated text as well. Feature-linked annotation provides similar functionality and should be used instead since it maintains the relationship between a feature and its annotation. 




Feature-linked annotation is treated as an attribute of the related object. The text and geometry associated with the annotation is extracted and expressed as a text diagram object. The extraction executes the governing expression used in defining the annotation. 




The advantage of feature-linked annotation is that annotation can be grouped with the feature in Oracle Utilities Network Management System for decluttering purposes. 




Change Detection 




Change detection is a feature that automates the queuing of partitions for an extract. Its purpose is to detect and queue for extract those partitions that contain data (objects) that have been modified, added, or deleted since the last successful extract and build. As such, the user can either use the Adapter’s built-in change detection functionality, or read the results from an externally generated change detection source. Each of these options is discussed in the sections that follow. 




Change Detection by the Adapter 




Change detection performed by the Adapter will only work on ESRI SDE versioned data. 




On the first run of the Adapter, a change detect is not possible because version maintaining for the previous data state will not yet exist (i.e. no freeze yet exists). However, once the first full extract is completed, a freeze version will exist for a change detect. Then, all subsequent successful extractions will create new freezes that represent the state of the data at the last extract for use in the next change detection. 




On any subsequent launch of the Adapter, the most recent freeze version will be automatically selected in the change detect drop down list. This is the recommended and normal approach to using Change Detection. 




The only exception is if a specific change detect version is listed in the "ChangeDetectVersion" field of the "Defaults" table in the application reference database. Normally, this field would remain blank so that the proper freeze version can be selected. However, this ability has been placed in the Adapter for those clients that choose to reuse a version for maintaining state on the last successful extract. 




See  

Freeze Versions Created and Used by the Adapter

 for more details.




Change Detect in a Multi-Schema ArcSDE Environment: 




The Adapter uses the ArcObject version reconciliation method to identify the changed classes between two versions. The ESRI tools do not provide a way to specify a schema on which change detect should be performed, so reconciliation method identifies all the changed classes in various schemas. For example, if Electric and Gas schemas are created on the same ArcSDE database server than Adapter change detects will identify changed classes in both Electric and Gas schemas. 




The Adapter’s change detect method is enhanced to identify only changed classes (and thus changed partitions) in a user-specified schema. The user specifies a schema indirectly by providing the Dataset name, which belongs to the schema. The Adapter detects changes only in the schema of dataset listed in the DatasetReference table. 




The Adapter’s change detect functionality pre-loads the class name for each dataset and then cross-reference the changed class names as they are encountered, thus avoiding feature class/schemas which are not included in the datasets listed in the DataSetReference table.   




Change Detection from an Externally Generated Source 




This option assumes that change detection has been performed prior to the Adapter being launched, and that the results are available for the Adapter to read. Usually, this approach means that change detection is performed either as part of data maintenance, or as a batch job prior to extraction. 




Out of the scope and control of the Adapter, the results of external change detection are placed in a table (with specific schema) in the GIS database. The Adapter is then configured to "read" the results from this table, and provide the GUI with the "partition sets" as defined in the table. In the GUI, the user can then choose one of these defined sets or queues, and apply this filter set to the existing list of partitions to queue partitions for an extract. 




Note that maintenance of the externally generated change detect or partition queue table is out of the scope of the Adapter, and alternate tools must be in place to manage the data (i.e. the partition queue table). 








OEBPS/Text/part0236.xhtml






Crew Message Tags 















		



Tag 




		



Parent 




		



Description 










		



CrewList 




		



DATAAREA 




		
















		



Crew 




		



CrewList 




		
















		



crewId  




		



Crew 




		
















		



crewContact 




		



Crew 




		
















		



crewType 




		



Crew 




		
















		



crewPagerNumber 




		



Crew 




		
















		



crewMobileNumber 




		



Crew 




		
















		



crewMdt 




		



Crew 




		
















		



crewSupervisor 




		



Crew 




		
















		



crewCenter 




		



Crew 




		
















		



controlZone 




		



Crew 




		
















		



crewStatus 




		



Crew 




		
















		



crewVehicleList 




		



Crew 




		
















		



crewVehicle 




		



crewVehicleList 




		
















		



crewVehicleId 




		



crewVehicle 




		
















		



crewVehicleType 




		



crewVehicle 




		
















		



crewActive 




		



Crew 




		
















		



crewAvailable 




		



Crew 




		
















		



crewNcgCls 




		



Crew 




		
















		



crewNcgIdx 




		



Crew 




		
















		



userName 




		



Crew 




		
















		



eventCls 




		



Crew 




		
















		



eventIdx 




		



Crew 




		
















		



crewMemberList 




		



Crew 




		
















		



CrewMember 




		



crewMemberList 




		
















		



crewMemberName 




		



CrewMember 




		
















		



crewMemberTechId 




		



CrewMember 




		
















		



crewMemberType 




		



CrewMember 




		
























OEBPS/Text/part0112.xhtml






Modeling Implied Objects 




Oracle Utilities Network Management System can generate implicit objects. For example, a transformer object has elbows in the field, but often they are not modeled in the ArcGIS model. The Oracle Utilities Network Management System Model Build preprocess can create implicit objects such as elbows, which are needed for operating the electrical system.  




In Oracle Utilities Network Management System, these implied objects can be given unobtrusive symbols so that the Oracle Utilities Network Management System appearance of the model is similar to the GIS appearance. 








OEBPS/Text/part0233.xhtml






SRS Output and SRS Output Status Message Tags 















		



Tag 




		



Parent entity 




		



Description 




		



Type 










		



PostSrsOutput 




		



PostSrsOutput_001 




		



The start of the SRS Output message 




		



S 










		



PostSrsOutputStatus 




		



PostSrsOutputStatus_001 




		



The start of the crew outage status message. 




		



S 










		



srsOutputMsgType 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Type of SRS output message: 




1=Create outage condition and alarm  




2=Remove outage condition and alarm 




3=Change outage condition or alarm 




4=Send a fuzzy alarm 




5=Create incident 




6=Clear incident 




7=Priority Call groups to existing DO 




8=A Pending Cancel 




9=Reschedule Meet or Outage 




10=TEService internal messages 




11=Send an unassigned alarm  




12=Remove all "incident" alarms for an event  




13=crew has been removed AND the update trouble button on the picklist has been selected 




14=update trouble button on the picklist has been selected 




15=this message tells the viewer not to display the outage any more 




16=message intended to invoke case note deletion  




17=the secondary SRS is now up and running 




18=clear case note message 




19=event action added or deleted 




20=Estimated assessment/restore time values updated 




21=damage report updated or created 




22=update callback information 




23=no type 




99=Trouble Clear 




		



I 










		



district 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



District name of the outage device 




		



S 










		



office 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Office name of the outage device 




		



S 










		



circuit 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Circuit name of the outage device 




		



S 










		



feeder 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Feeder name of the outage device 




		



S 










		



Ncg 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



ID of the control zone of the outage device 




		



I 










		



partition 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Partition ID typically identifies the map sheet on which a device is associated 




		



I 










		



appliedRule 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Rule number used by SRS to determine outage device 




		



I 










		



numb 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Internal identifier for each outage record 




		



I 










		



ruleSet 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Name of active rule set used by SRS to process outage 




		



S 










		



eventCls 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Event class. Class 800 indicates an outage event. Part of the event handle. 




		



I 










		



eventIdx 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Event index, part of the event handle that uniquely identifies event in conjunction with the eventCls. 




		



I 










		



eventApp 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Event app, part of the event handle that uniquely identifies event in conjunction with the eventCls and eventIdx. 




		



I 










		



alarmCls 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Alarm class, part of alarm handle. Used to uniquely identify rows on work agenda 




		



I 










		



alarmIdx 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Alarm index, part of alarm handle. Used to uniquely identify rows on work agenda 




		



I 










		



deviceCls 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Class or outage device. Identifies the type of device that failed. 




		



I 










		



deviceIdx 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used in conjunction with the deviceCls to form the device handle, which uniquely identifies a device. 




		



I 










		



deviceAlias 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Name of outage device, as defined in the ALIAS_MAPPING table. 




		



S 










		



deviceApp 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used in conjunction with the deviceCls and deviceIdx to form the device handle, which uniquely identifies a device. 




		



deviceApp 










		



cause 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Outage cause (TROUBLE_CALL, FAULT_INDICATOR or blank) 




		



S 










		



description 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Short description based on status 




		



S 










		



troubleCode 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Entered trouble code or combination from all calls 




		



S 










		



troubleQueue 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Dispatcher queue for outage 




		



S 










		



status 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Alarm state name 




		



S 










		



operatorComment 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Operator entered comment 




		



S 










		



tags 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Y if tags exist 




N if no tags exist 




X if tags are not checked 




		



C 










		



estSource 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Source of estimated restoration time: 




C=crew (manually entered) 




S=Storm Management (regular) 




G=Storm Management globally applied ERT 




P=Storm Management non-published ERT 




O=Storm Management (crew dispatched/onsite) 




N=none 




		



C 










		



externalId 




		



PostSrsOutput, PostSrsOutputStatus  




		



Identifier for event supplied by an external system. 




		



I 










		



crewId 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Crew(s) assigned to outage 




		



I 










		



firstIncTime 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Time of first reported incident. 




		



T 










		



firstCrewTime 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Time of first dispatched crew. 




		



T 










		



crewOnSiteTime 




		



PostSrsOutputStatus 




		



Time of crew arrival 




		



T 










		



estRestTime 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Estimated restoration time. 




		



T 










		



outageTime 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



Time the outage began. 




		



T 










		



jobCompletionTime 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Time outage was completed. 




		



T 










		



restoreTime 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



Time the outage was restored. 




		



T 










		



srsCondStatus 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Outage status codes: 




0=no outage 




1=probable service outage     




2=probable device outage 




3=real service outage 




4=real device outage 




7=non outage 




8=critical meet 




9=future meet 




10=confirmed service outage 




11=confirmed secondary outage 




12=additional alarm 




13=probable momentary outage 




14=real momentary outage 




15=planned outage 




		



I 










		



condPhases 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



Bitmask to identify affected phases 




		



I 










		



customersOut 




		



PostSrsOutput, 




PostSrsOutputStatus, 




outage  




		



Number of customers affected by an outage. 




		



I 










		



srsPriority 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of priority calls, may be redefined by configuration 




		



I 










		



custCall 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of customers affected by an outage that have called. 




		



I 










		



priW 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of wire related calls, may be redefined by configuration 




		



I 










		



priSW 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of service wire related calls, may be redefined by configuration 




		



I 










		



priP 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of pole problem calls, may be redefined by configuration 




		



I 










		



priE 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of emergency calls, may be redefined by configuration 




		



I 










		



custCrit 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of affected critical customers 




		



I 










		



crit1 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of category 1 customers that called, as determined by configuration 




		



I 










		



crit2 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of category 2 customers that called, as determined by configuration 




		



I 










		



crit3 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of category 3 customers that called, determined by configuration 




		



I 










		



critK 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Affected category K (KEY) customer, may be redefined by configuration 




		



I 










		



critC 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Affected category C (CRITICAL) customer, may be redefined by configuration 




		



I 










		



critD 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Affected category D customer, may be redefined by configuration 




		



I 










		



critTot 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Total number of critical customers, recognizing that a customer is counted only once even though it may belong to more than one category 




		



I 










		



revenue 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Revenue of the total customers from customer_sum 




		



revenue 










		



customerName 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used for fuzzy calls 




		



S 










		



addrBuilding 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used for fuzzy calls 




		



S 










		



addrStreet 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used for fuzzy calls 




		



S 










		



addrCity 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used for fuzzy calls 




		



S 










		



customerPhone 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Used for fuzzy calls 




		



S 










		



xRef 




		



PostSrsOutput, PostSrsOutputStatus, utage  




		



X reference coordinate 




		



F 










		



yRef 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Y reference coordinate 




		



F 










		



sheetNum 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Number of switching sheet associated with a planned outage. 




		



I 










		



dispAddress 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Dispatch address, first incident if probable service outage, feeder name if no incidents or probable device outage 




		



S 










		



groupType 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



GRP is manually grouped, REL if related 




		



S 










		



hasClue 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Y if one or more incidents for this outage has a clue 




		



C 










		



ctrlZoneName1 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Control zone name, level 1 




		



S 










		



ctrlZoneName2 




		



PostSrsOutput, PostSrsOutputStatus,  outage  




		



Control zone name, level 2 




		



S 










		



ctrlZoneName3 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Control zone name, level 3 




		



S 










		



ctrlZoneName4 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Control zone name, level 4 




		



S 










		



ctrlZoneName5 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Control zone name, level 5 




		



S 










		



ctrlZoneName6 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



Control zone name, level 6 




		



S 










		



devClsName 




		



PostSrsOutput, PostSrsOutputStatus, utage  




		



Name of class of outage device 




		



S 










		



AffectedSupplyNodeList 




		



PostSrsOutput, PostSrsOutputStatus, outage  




		



The affected list of supply nodes 




		



S 










		



snd 




		



AffectedSupplyNodeList 




		



The affected supply node. 




		



I 










		



AffectedDeviceIdList 




		



PostSrsOutput, PostSrsOutputStatus 




		



The indicator for the device ids for the affected transformers. 




		



S 










		



devId 




		



AffectedDeviceIdList 




		



The affected device id for the transformer. 




		



S 










		



whoCompleted 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



The name of the user who completed the outage. 




		



S 










		



whoResponsible 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



The name of the user who is currently responsible for the event. 




		



S 










		



whoAcknowledged 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



The user who acknowledged the event. 




		



S 










		



AffectedPremiseIdList 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



This list is used as an option for systems that cannot have a transformer relationship to a customer.  This is a last resort and is highly recommended not to be used because of performance impacts when using this option 




		



S 










		



premiseId 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		



The customer’s premise id, or serv_loc_id in the customer model 




		



S 










		



AffectedDeviceIdList 




		



PostSrsOutput, PostSrsOutputStatus 




		










		



S 










		



devId 




		



PostSrsOutput, PostSrsOutputStatus 




		










		



S 










		



CaseNote 




		



PostSrsOutput, PostSrsOutputStatus, Outage 




		










		



S 










		



caseNoteText 




		



CaseNote 




		



Text for the case note. 




		



s 










		





Note:  The following tags appear in <PostSrsOutput_001> message only if the ‘-includeincident’ command line option is used. Oracle recommends against using this option. 










		



IncidentList 




		



PostSrsOutput, PostSrsOutputStatus, outage 




		










		
















		



Incident 




		



IncidentList 




		










		
















		



incTroubleCode 




		



Incident 




		










		



S 










		



incDevice 




		



Incident 




		










		



S 










		



incAccount 




		



Incident 




		










		



S 










		



incCustDeviceCls 




		



Incident 




		










		



I 










		



incCustDeviceIdx 




		



Incident 




		










		



I 










		



incCustName 




		



Incident 




		










		



S 










		



incAddress 




		



Incident 




		










		



S 










		



incStreet 




		



Incident 




		










		



S 










		



incCity 




		



Incident 




		










		



S 










		



incPhone 




		



Incident 




		










		



S 










		



incIncidentTime 




		



Incident 




		










		



S 










		



incComment 




		



Incident 




		










		



S 










		



incCallbackLate 




		



Incident 




		










		



S 










		



incExternaId 




		



Incident 




		










		



S 










		



incCallCancel 




		



Incident 




		










		



S 










		



incLifeSupport 




		



Incident 




		










		



S 










		



incCustPriority 




		



Incident 




		










		



S 










		



incMeterId 




		



Incident 




		










		



S 










		



incGeneralArea 




		



Incident 




		










		



S 










		



incCustOrderNum 




		



Incident 




		










		



S 










		



incDrvInst 




		



Incident 




		










		



S 










		



incCallbackRequest 




		



Incident 




		










		



S 










		



incCustCritical 




		



Incident 




		










		



S 










		



incAlternatePhone 




		



Incident 




		










		



S 










		



incCserName 




		



Incident 




		










		



S 










		



incXRef 




		



Incident 




		










		



F 










		



incYRef 




		



Incident 




		










		



F 










		



incEventCls 




		



Incident 




		










		



I 










		



incEventIdx 




		



Incident 




		










		



I 























Note:  Many values, names and usages are configurable and vary between implementations. The details and description of configuration options are outside the scope of this document.






Note:  For performance reasons the type 20(TRBL_ERT_UPDATE) message contains limited information. The available fields are: <srsOutputMsgType>, <eventIdx>, <estRestTime> and <estSource>. Other fields are either NULL or 0.








OEBPS/Text/part0113.xhtml






Mapping GIS Classes to Oracle Utilities Network Management System Classes 




Options 




GIS classes can be mapped to Oracle Utilities Network Management System classes in a number of ways: 








		

•




		



GIS class becomes one Oracle Utilities Network Management System class. 





















		

•




		



GIS class is ignored. For example, the GIS SupportStructure class (pole) can be ignored. 





















		

•




		



GIS class becomes an abstract Oracle Utilities Network Management System class, and the GIS subtypes become Oracle Utilities Network Management System classes. For example, the GIS DistributionTransformer has subtypes of SinglePhaseOverhead and ThreePhaseUnderground. The corresponding Oracle Utilities Network Management System classes can be SinglePhaseOverhead and ThreePhaseUnderground. 





















		

•




		



GIS classes become one Oracle Utilities Network Management System class. For example, the GIS classes of SinglePhaseOverheadVoltageRegulator and AutoTransformer can map to Oracle Utilities Network Management System VoltageRegulator. 

















GIS annotation classes are also mapped to Oracle Utilities Network Management System classes in a similar way. GIS annotation is either simple text annotation or feature-linked annotation. 




Feature-linked annotation is defined by an annotation class and the class of the feature it uses for the data source. It can only be defined for a concrete GIS class (it cannot be defined for a specific subtype of a GIS class). For example, annotation for the GIS DistributionTransformer can be mapped to an Oracle Utilities Network Management System class DistributionTransformerAnnotation. A Oracle Utilities Network Management System class based on the GIS DistributionTransformer’s subtype, e.g., SinglePhaseOverhead, would have its annotation in the Oracle Utilities Network Management System class DistributionTransformerAnnotation. In other words, there would be no SinglePhaseOverheadAnnotation class. To support this requires substantial additional customization services of the Adapter. 




Techniques for Retrieving the Object Model Schema 




There are several ways for retrieving the GIS object model schema: 








		

•




		



Visually inspecting it using ArcCatalog 





















		

•




		



Using RDBMS tools 





















		

•




		



Using Microsoft Access tools. 

















The schema can be retrieved from the RDBMS by exporting the database and examining the schema found in the export. 




During the process of defining the GIS object model, a geodatabase is built in a Microsoft Access database. Access has a function for analyzing the schema and reporting it: 




Tools->Analyze->Documenter 




The tables holding features are selected and the options for the analysis are: 








		

•




		



table’s properties 





















		

•




		



field names, data types and sizes 





















		

•




		



nothing for indexes. 

















The resulting report can be exported into a spreadsheet where it can be cleaned up, sorted, and filters set for the columns. Additional columns of OMS and NOTES are added. 




For example: 








		



Class 




		



Attribute Name 




		



Type 




		



Size 




		



OMS? 




		



Notes 










		



CapacitorBank 




		



(Class) 




		










		










		



Y 




		
















		



CapacitorBank 




		



OBJECTID 




		



Long Integer 




		



4 




		



N 




		
















		



CapacitorBank 




		



Shape 




		



OLE Object 




		



- 




		



N 




		
















		



CapacitorBank 




		



HighSideConfiguration 




		



Text 




		



1 




		



N 




		
















		



CapacitorBank 




		



LocationType 




		



Text 




		



3 




		



N 




		
















		



CapacitorBank 




		



PhaseDesignation 




		



Long Integer 




		



4 




		



Y 




		
















		



CapacitorBank 




		



RatedVoltage 




		



Long Integer 




		



4 




		



N 




		
















		



CapacitorBank 




		



OperatingVoltage 




		



Long Integer 




		



4 




		



Y 




		
















		



CapacitorBank 




		



LabelText 




		



Text 




		



50 




		



Y 




		
















		



CapacitorBank 




		



TotalKVAR 




		



Long Integer 




		



4 




		



Y 




		
















		



CapacitorBank 




		



SubtypeCD 




		



Long Integer 




		



4 




		



Y 




		
















		



CapacitorBank 




		



FacilityID 




		



Text 




		



20 




		



Y 




		
















		



CapacitorBank 




		



InstallationDate 




		



Date/Time 




		



8 




		



N 




		
















		



CapacitorBank 




		



SymbolRotation 




		



Double 




		



8 




		



N 




		
















		



CapacitorBank 




		



WorkOrderID 




		



Text 




		



20 




		



N 




		
















		



CapacitorBank 




		



FeederNumber 




		



Text 




		



20 




		



N 




		
















		



CapacitorBank 




		



CustomerOwned 




		



Text 




		



1 




		



N 




		
















		



CapacitorBank 




		



DeviceLocation 




		



Text 




		



70 




		



Y 




		
















		



CapacitorBank 




		



CreationUser 




		



Text 




		



10 




		



N 




		
















		



CapacitorBank 




		



DateCreated 




		



Date/Time 




		



8 




		



N 




		
















		



CapacitorBank 




		



DateModified 




		



Date/Time 




		



8 




		



N 




		
















		



CapacitorBank 




		



LastUser 




		



Text 




		



10 




		



N 




		
















		



CapacitorBank 




		



AncillaryRole 




		



Integer 




		



2 




		



N 




		
















		



CapacitorBank 




		



Enabled 




		



Integer 




		



2 




		



N 




		
















		



CapacitorBank 




		



SubtypeCD=FixedBank 




		










		










		



Y 




		



OMS class FixedCapacitorBank 










		



CapacitorBank 




		



SubtypeCD=SwitchedBank 




		










		










		



Y 




		



OMS class SwitchedCapacitorBank 


















OEBPS/Text/part0234.xhtml






Customer Message Tags 




Refer to the Oracle Utilities Network Management System Customer Data Model specification. 






Note:  The bulk load of customers can be accomplished by running the createSql.exe file that will create .sql file to be run through ISQL.ces, which will populate the customer model. The createSql file should be provided the following command line options to create the sql.  (IE. CreateSql -xmlfile create_customers.sql -outputfile product_customer_data.sql.)  The -writetodb command can be provided to write the customers directly through to the database with out having to run ISQL.ces < product_customer_data.sql.








OEBPS/Text/part0118.xhtml






Installing the Application 




Since the Adapter makes use of ESRI’s ArcObjects, it assumes there is a valid ESRI ArcGIS license installed either locally on the PC or on another network accessible computer. Otherwise, the Adapter will not work. 




If a previous version of the Adapter exists on the workstation, uninstall the previous version first. However, be sure to keep a backup copy of your application reference database file for use with the new software. Notice of schema changes for this database should be found in the readme.txt file in the installation directory. 




If this is the first installation, then an empty application reference database file can be obtained from the installation package. Refer to the section below labeled "Application Reference Database File" for details on this required file. 




Be certain to install the software while logged on to the workstation as an administrator. 








OEBPS/Text/part0116.xhtml






Installing ArcGIS to Oracle Utilities Network Management System Adapter 




There are four components to installing the Adapter: system configuration, application installation, the application reference database file, and optional testing. 








		

•




		





System Configuration 

























		

•




		





Installing the Application 

























		

•




		





Application Reference Database File 

























		

•




		





Testing the Installation 

























OEBPS/Text/part0237.xhtml






Crew Outage Status Changes 




Refer to the SRS Output Message tags, as the DATA Content tags will be the same for this flow.  








OEBPS/Images/image00715.jpeg
ORACLE"

Oracle Utilities Network
Management System

Adapters Guide

Release 1.10.0.6
E36983.01
December 2012

Copyrighs () 2014 Oracle Corporation. Al Righs Reserved.





OEBPS/Text/part0117.xhtml






System Configuration 




Environment Variable 




If ArcGIS is not on the Adapter workstation, then add the following environment variable: 






ESRI_LICENSE_FILE = [<port>]@<server> 






Where  <port> is optional, and <server>

is the name of the ArcGIS license server in your installation (e.g.- ESRI_LICENSE_FILE=@boron).




Windows NT: Start - Settings - Control Panel - System - Environment 











Windows 2000: Start - Settings - Control Panel - System - Advanced    - Environment Variables 




Hosts File 




If ArcGIS is not on the Adapter workstation, then add the port and host information for all required ESRI clients and servers: 




192.37.0.101boron# ArcGIS development PC 




192.37.0.105gis_server1# ArcSDE server 











Windows NT: C:\winnt\system32\drivers\etc\hosts 




Windows 2000: C:\windows\system32\drivers\etc\hosts 




Services File 




If ArcGIS is not on the Adapter workstation, then add the ESRI/SDE database services and port information: 




esri_sde5151/tcp# ESRI SDE port for SDE default database 




Windows NT: C:\winnt\system32\drivers\etc\services 




Windows 2000: C:\windows\system32\drivers\etc\services 




Extract Output Base Directory 




Ensure the path specified in the "ExtractDirectory" field of the "Defaults" table of the application reference database exists and is accessible from your client PC.   This directory is required, so create it if it does not exist. 




Note this may be a shared or mounted network drive (e.g., "\\data1\extracts") so long as the workstation has access through the operating system. Ensure access to this drive will not be interrupted during extracts (e.g., archiving or network maintenance "down times"). 








OEBPS/Text/part0238.xhtml






Configure Queues for Required Data Flows 




Any data flows to be used require WebSphere queues to be created and configured. The default queues for the supported data flows are listed below. While these queues would need to be created, the base product configuration already supports these data flows. 








		

•




		



Create Incident 

















OMS_TROUBLE_CALL 








		

•




		



Get Customer Outage Status 

















OMS_CUST_STATUS 




OMS_CUST_STATUS_REPLY 








		

•




		



Get Customer Outage History 

















OMS_CUST_HISTORY 




OMS_CUST_HISTORY_REPLY 








		

•




		



Condition Updates and Queries 

















OMS_CONDITION_DATA 








		

•




		



Outage Status 

















OMS_TROUBLE_CALL_STATUS 








		

•




		



Customer Updates and Queries 

















OMS_CUSTOMER_DATA 




OMS_CUSTOMER_DATA_REPLY 








		

•




		



SQL Transactions 

















OMS_SQL 




OMS_SQL_REPLY 








		

•




		



Adapter Status Check 

















OMS_GATEWAY_STATUS 








		

•




		



SQL Query 

















OMS_EXECUTE_QUERY 




OMS_EXECUTE_QUERY_REPLY 








		

•




		



Customer Disconnect / Reconnect 

















OMS_CUSTOMER_DISCONNECT 




OMS_CUSTOMER_DISCONNECT_REPLY 








		

•




		



Crew Outage Status Changes 

















OMS_TROUBLE_CALL_STATUS 








		

•




		



Crew Updates / Crew Requests 

















OMS_UPDATE_CREW 




OMS_UPDATE_CREW_REPLY 








		

•




		



Published Crew Updates 

















OMS_TROUBLE_CALL_STATUS 








		

•




		



Network Trace 

















OMS_TRACE_NETWORK 




OMS_TRACE_NETWORK_REPLY 








		

•




		



Area Summary 

















OMS_AREA_SUMMARY 




OMS_AREA_SUMMARY_REPLY 








		

•




		



Callback List 

















OMS_TROUBLE_CALL_STATUS 








OEBPS/Images/image00716.jpeg
ORACLE





OEBPS/Text/part0239.xhtml






Table Used to Define MQ Queues 




The following is the table definition for the MQ_ADAPTER_CONFIG table that defines the queues that will be used by the adapter. This is a configuration table that is loaded at startup. 















		



Column 




		



Type 




		



Description 










		



name 




		



VARCHAR2(32) 




		



Name of queue put queue for the reply queue, and for async output queues. 










		



Q_type 




		



INTEGER 




		



Queue type: 1=async input, 2=async output, 3=request/reply 










		



topic 




		



VARCHAR2(32) 




		



Subject matter for queue, specified in terms of document types 










		



topic_type 




		



VARCHAR2(32) 




		



Message types for filtering specific document types. 










		



translation 




		



VARCHAR2(128) 




		



Name of XSL translation to be applied, default=NULL 










		



reply 




		



VARCHAR2(32) 




		



Name of reply queue (needed when qtype=3), but will be overridden if reply queue is specified on a request message 










		



total_threads 




		



INTEGER 




		



Number of threads processing messages. Note: for async output queues the total_number is always set to 1. 





















The specific information topics to be supported include the following: 








		

•




		



PostError_001 





















		

•




		



PostSrsOutput_001 





















		

•




		



GetCustomerHistory_001 





















		

•




		



GetCustomerStatus_001 





















		

•




		



CreateIncident_001 





















		

•




		



ExecuteQuery_001 





















		

•




		



ExecuteTransaction_001 





















OEBPS/Images/image00717.jpeg
Generic R
Adapter

e

oracie.
procediies, provder

mﬁ?ﬂ

Copteee
m;&_%

it






OEBPS/Text/part0121.xhtml






Application Reference Database File 




The Adapter requires an application reference database file ("AItoCentricity.mdb"). This file is used to store the custom parameters and default configurations required for the Adapter to operate at your specific location. A primary copy of this file should always be placed in the same directory as the Adapter software. 




Note that copies of this file configured with different default parameters may also be stored elsewhere on the workstation. The most likely purpose for these additional reference database files would be to provide different defaults for non-GUI extracts. 




An empty application reference database file can be found in the installation source at:  




AItoCentricity\support\AItoCentricity.mdb 











Be sure to populate this file according to your specific requirements. See the Adapter Configuration section below for details. 








OEBPS/Text/part0242.xhtml






Trigger of broadcasting messages 




Among information flows discussed in section 4, outage status flow  <PostSrsOutput_001> and crew outage status change flow <PostSrsOutputStatus_001> are two broadcasting flows triggered by some actions happened in the Oracle Utilities Network Management System. Generally speaking, <PostSrsOutput_001> message will be generated every time when an internal srsoutput message is broadcasted. <PostSrsOutputStatus_001> message will be generated every time when an internal crew message is broadcasted. But the adapter configuration can selectively broadcast those messages based on the value in the mq_gateway_config.topic_type column which are internal srsoutput message and crew message type values. 




Because Oracle Utilities Network Management System is highly configurable, it is pretty hard to define what kind operation to trigger internal srsoutput and crew messages and it is out of the scope of this document. Please reference corresponding SRS document for details of internal srsoutput and crew message. 








OEBPS/Images/image00720.gif
iV

£ =] o resdnly Abematve: 1
Lndvien — [ird =] o readeny Atomatve: 1
Cesvien es =] chmfwie Ao e






OEBPS/Text/part0122.xhtml






Testing the Installation 




The Adapter can be tested on an Access database or an SDE database. This section describes a quick test that can be conducted on an Access geodatabase. 




Before running the Adapter on an Access database, make sure the dataset contains network information. Without this, the extract will have no topology information. 




There is an ArcMap wizard for generating a geometric network. See  Creating Geometric Networks in ESRI’s Building a Geodatabase document for details.




The GIS data model should specify what features belong to the electrical network. This specification can be used to answer the wizard’s questions. 




Typically, the answers include: 








		

•




		



Putting all electrical features into the network. 





















		

•




		



Using complex edges for conductors. This is the preferred method from a GIS perspective for minimizing the number of features. 





















OEBPS/Text/part0243.xhtml

















OEBPS/Images/image00721.gif
ecas [E55%5 Tioelovel [1 o 1] 4]





OEBPS/Text/part0119.xhtml






Obtaining the Software 






The adapter setup files are included in the Oracle Utilities Network Management Optional Windows Applications download zip file that can be obtained from the Oracle e*Delivery site.  After downloading the zip file, find the appropriate Adapter zip file within the NMS_GIS_Adapters directory and unzip to a location on your Windows server. 










OEBPS/Text/part0240.xhtml






XSL Transformation Files 




If XSL transformations are to be used by the interface, these files must be placed in a file directory on the adapter server. The directory path must be supplied on the adapter command line. 








OEBPS/Images/image00718.jpeg
liworld Modle Manage

T Tiipe Ve Dot ]
e Cite.(400) Prockettoo i et e s
et Gt (400) ket s custrmsion esaaces
o komel Lopoed(400) Lowieel el osses
[, Loy (400) Lowievl s ndresonces vl o o splctors
(5 ov_conmen Loyt (100) Wohorevl ki e avofai for an i s
sono Lo [400) s an e or e i gt e achiocts
5 on_owe Lo (4010) Meds o meuces o s wh o slcaon v achchee
oy Lo (400) Medos o suces o TS s
wLoms Loved(400) SFLOMS Sl oo
oot com. P 1 Gt OMS Corponent s
onsaowctr Pt 1 Outoe onopmert St At i
one el o Futic 1 Outoge Monopnert Sl Adanpe Hisachis WO sorsrs
one.ypenods Pt 1 Outoe Monognent Sl At Hpores Eversers
one. e ecrd Pt 1 SPLOMS SmolwardAdpes Pt card
onenwich_ vk ower P 1 Outoe Monogmert St At Sk e O
ones. e dovcs Putic 1 Outge Monogmert Sl At TP D rions
[ Pt 1 OMSA Vi colectons - drt ok s v e
onen vt vt Futic 1 Outoe Monognert Sl AtV Ot i
onenw oo oot P 1 SFLOMS St Adpe ek O ngor iy
Jienpusspis e e 1 SPLOMS S Adpe ot Fecrd Monser ity
wlboe Pt 1 SPL Bor s
‘oL chongeowol Futic 1 SPL B Change o1 CST SWAF cte prois
fr—" Putic 1 SPLSWAF GUl Famenak
1 57 oty

sl Pusic

e
B PR o e
SEmS e e
e e
B
S
Shzias
Sntoag
e
e
s
i
e
=
Snmias
Snties
S
e
EnEtEmE
e
Enmiiee
i
Emtase
Eniiese
SnEnase
Sntsasy
Snmtass
SR
e
SR
Enmtaee 3
e e
Clde s
RS

b






OEBPS/Text/part0120.xhtml






Automated Installation 




Run (double click) the setup.exe file found in the downloaded software at: 




AItoCentricity_1_9_0\setup.exe 




Follow the instructions and prompts as required. Try to use the defaults unless they conflict with your systems configuration (e.g., installation directory). 




Note the Adapter requires the Microsoft Data Access Components (MDAC version 2.7) product be installed on the workstation, since it contains drivers required for querying the application reference database file (in Access 2000 format). If these drivers are not found on your workstation, the package will automatically install this Microsoft product for you. On completion you may need to reboot the workstation and then re-launch the installation package to continue installing the Oracle Adapter software. 








OEBPS/Text/part0241.xhtml






Default CES_GET and CES_PUT queues 




CES_PUT and CES_GET queues are the default queues for sending and receiving each kind of Generic WebSphere MQ Adapter message. Both queues needed to be created, but they can be renamed through command line options defined above.  








OEBPS/Images/image00719.jpeg
Pattial: 0K

D R
Catcogues b partal
Managemert > _ Schenatic
User 5






OEBPS/Text/part0103.xhtml






Modeling Guidelines 




This sections describes how the ArcGIS geodatabase should be used to support the Oracle Utilities Network Management System model interface. 








OEBPS/Text/part0224.xhtml






Errors 




Errors detected will be asynchronously reported on the defined error queue. An error queue will be as define per the reply queue for any out going message. If there is no reply queue, the default queue will be used to supply the error messages to. 








OEBPS/Text/part0104.xhtml






Supporting Oracle Utilities Network Management System Partitions with Index Maps 




The ArcGIS geodatabase is a continuous map. For performance reasons, Oracle Utilities Network Management System requires maps to be tiled, each tile corresponding to an Oracle Utilities Network Management System partition. 




The tiles can be any size and are not required to be uniform. The optimal sized tile contains less than 2500 objects (devices, background text, and background graphics). For example, in dense urban areas of the model, smaller tiles can be used. There is no danger in making the tiles too small, other than the increased overhead in maintenance. 




A single tile class may be preferred, or several can be used so long as the same class is applied across the extract. Landbase features should be separated from electrical features since this data is inherently different, and because landbase data is typically more static. 




To support tiling, index maps can be defined by drawing polygon features in a feature class within a dataset. Such feature classes might be named: 








		

•




		



ElectricTile 





















		

•




		



LandbaseTile 

















A text attribute (e.g., "TileID") of the partition feature class will be used to store the unique name of each tile (e.g., "Downtown_NW", "Downtown_SE"). On extraction, the TileID becomes the name of the Oracle Utilities Network Management System partition. 




Ideally, the partitions used for electrical data extraction should be drawn so they do not split any point features such as electrical switches. Note that splitting linear features such as conductors is acceptable. 








OEBPS/Text/part0225.xhtml






Customer Disconnect / Reconnect. 




This information flow is implemented as an asynchronous request for disconnecting or reconnecting customers, indicating which customers have had power disconnected or reconnected by the utility. The customers who have been disconnected will not be seen by Oracle Utilities Network Management System call taking applications, as these customers have purposely been disconnected by the utility for payment reasons. In order for these customers to be ignored from call taking applications that will be using the CreateIncident flow defined in this document, the checkCutoff flag for customers that call in should be used for JMService to be notified to check for the disconnected customers. If these systems know that the customers are disconnected, calls for these customers only need to use the checkCutoff flag. 








OEBPS/Text/part0101.xhtml






Hardware and Software Environment 




The ArcGIS 9.x processing for the data Adapter takes place on a Windows workstation, and optionally on an ArcSDE server. 




The ArcGIS extraction workstation environment consists of: 








		



Hardware platform 




		



PC workstation - Recommended: Pentium III or better, 512MB Ram or more, Hard Disk Space Min: 1GB however must have enough beyond that for your GIS Extraction Files (.mp files) and extraction log files. 










		



Operating system 




		



Windows XP/Window Server 2003 










		



Networking protocol 




		



TCP/IP 










		



Network media 




		



Ethernet 










		



Database product 




		



Geodatabase via ArcSDE server, PersonalArcSDE, Geo File Database, or Geo Personal Database 










		



Third Party Products 




		



ArcGIS 9.x  




Microsoft Access for editing Personal Geodatabases (small test models only), and for editing the Adapter reference database. 


















OEBPS/Text/part0222.xhtml






SQL Query 




This is a request/reply interface that is used to perform an SQL query on Oracle Utilities Network Management System and return the resulting selection set. The DBS::query method is used internally. The returned XML is formatted using appropriate tags, using column names, and row delimiters. 






WARNING:  This interface, if activated and used inappropriately, can be a source of system performance degradation or denial of service. This would be the case if long duration queries were run against the Oracle Utilities Network Management System database, especially if done against key Oracle Utilities Network Management System tables.








OEBPS/Text/part0343.xhtml






AMR_REQUEST_RESP 




The AMR_REQUEST_RESP table is used to keep track of the ping requests currently being processed by the interface. It is initially populated through a trigger on the AMR_RESPONSES table, with one row added for each row in AMR_RESPONSES. Once the interface has passed meter status information to the Oracle Utilities Network Management System record for the completed request is removed from this table. 




This table has a large number of columns to account for the wide variety of information that AMR systems can provide. Currently most of these columns are not used. Only the most commonly used columns are listed in the table below. 








		



Field 




		



DataType 




		



Nullable 




		



Comments 










		



AMR_REQUEST_ID 




		



NUMBER 




		



No 




		



Primary key. 










		



REQUEST_ID 




		



NUMBER 




		



Yes 




		



Request id from Oracle Utilities Network Management System. 










		



REQUEST_TIME 




		



DATE 




		



Yes 




		



Timestamp when the meter ping request was initiated. 










		



REQUEST_TYPE 




		



VARCHAR2(256) 




		



Yes 




		



Not used. 










		



METER_NO 




		



VARCHAR2(256) 




		



Yes 




		



Meter identifier used by the AMR system. 










		



METER_ID 




		



NUMBER 




		



Yes 




		



Meter identifier in Oracle Utilities Network Management System. 










		



STATUS 




		



VARCHAR2(255) 




		



Yes 




		



Ping request status: 




N - new request; 




P - pending request; 




R - response received; 




C - completed request. 










		



DEV_POWER_STATUS 




		



NUMBER 




		



Yes 




		



Meter status ("ON" or "OFF"). 










		



SUCCESS_STATUS 




		



NUMBER 




		



Yes 




		



Not used. 










		



REPORT_TIME 




		



DATE 




		



Yes 




		



Not used. 










		



RESULT_TIME 




		



DATE 




		



Yes 




		



Timestamp of the latest meter status received from the AMR system. 










		



ATTEMPT_COUNT 




		



NUMBER 




		



Yes 




		



Number of ping requests sent to the AMR system. 










		



PROBABILITY 




		



NUMBER 




		



Yes 




		



Probability that the meter has power (0-100). 
































OEBPS/Text/part0102.xhtml






Related Documents 




The following sections recommend additional reading. 




ArcGIS Documents 






Modeling our World , Michael Zeiler, ESRI Press 1999. Overview, covers versioning and annotation.






Building a Geodatabase , Andrew MacDonald, ESRI Press 1999.  User guide, covers versioning and annotation.






ArcObjects Developer's Guide , ESRI Press 2003.  Guide to programmatically extending ArcGIS.




Object Model Documents 






Implementing ArcFM Energy: Electric Utility Model Component Reference , Miner & Miner, 2000.








OEBPS/Text/part0223.xhtml






Status Check 




This is a request/reply interface that is used to check the status of the Generic WebSphere MQ Adapter. 








OEBPS/Text/part0107.xhtml






ArcGIS Data Maintenance 




Prior to launching the Adapter, a proper data maintenance environment with procedures and rules should be implemented. Requirements for setting up a proper maintenance environment are outside the scope of this document. These procedures will vary widely between installations, depending on factors such as whether the database is versioned. As a result, generalizations and assumptions have been made in this section. 




Unversioned Database 




If the database is not versioned, then maintenance will be simpler since any extract performed on an unversioned GIS database will therefore be of the default data. 




Since there will only be one version, be aware that making changes to the GIS database should be scheduled with other users in order to avoid data sharing and locking conflicts. For similar reasons, extracts should also be scheduled with other database users. Typically, this could be accomplished by either running the Adapter after hours, or by performing extracts against a "mirror" database of the production GIS data. 




Versioned Database 




For versioned databases, it is assumed there is a current or extract version (see diagram below). This could either be the SDE.DEFAULT version, or another version, so long as the following three criteria are met: 








		

•




		



The current or extract version contains the most recent data and serves as the source for the extract (i.e. proposed OMS data, ready for a model build). 





















		

•




		



The current or extract version is of type public and not protected, so that permissions will not become an issue for extract users. 





















		

•




		



The current or extract version is persistent (i.e. not a temporary version). 

















Other versions may exist in the database, such as checked-out versions for "in-progress" work orders, or a parent version that serves as a source for all the data (i.e. in a typical enterprise GIS database solution). 




Two simplified scenarios for data maintenance are presented below. The first represents a system by which data changes are posted or made directly on the extract version, while the second represents a system where data changes are made on another version and that data is then transferred to the Oracle Utilities Network Management System proposed version for subsequent extract. 






[image: ]

















OEBPS/Text/part0228.xhtml






Published Crew Information Updates to an External System 




When a crew is assigned, un-assigned, dispatched, un-dispatched, arrived, suspended, created, deleted, or edited in Oracle Utilities Network Management System; the system will broadcast this information to any external system that would be interested in receiving this information about the crew.  








OEBPS/Text/part0108.xhtml






Supporting Oracle Utilities Network Management System Data Requirements 




This section discusses how ArcGIS is used to provide mandatory and optional data for Oracle Utilities Network Management System. 




Data for All Features 




The following table provides descriptions for data that is essential for all features. 








		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Object type 




		



Object type and/or attribute 




		



Table name is the object type. 




The object type can also be derived from GIS object type and attribute values. See "Supporting Oracle Utilities Network Management System Symbology". 










		



Object geometry (point, line, text) 




		



Object shape 




		



Adapter produces diagram object of type point, line, or text. 










		



Points: 




(x,y) location 




angle, 




height 




		



Object shape (junction) 




		



Adapter produces diagram object characteristics of: location, angle, scale. 




Note that a switch is a junction feature. 










		



Lines: 




List of coordinates 




		



Object shape (edge) 




		



Adapter produces diagram object characteristics of: location, angle, scale 










		



Text: 




(x,y) location 




angle or endpoint 




string 




height 




width 




justification 




		



Object shape 




		



Adapter produces diagram object characteristics of: location, angle, string, size (height/text combination), and justification. 





















The following table provides descriptions for data that is optional for all features. 








		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comment 










		



Object unique ID 




		



FacilityID (ArcFM) 




		



Alternatives are: 




ArcGIS ObjectID (unique within the class) 










		



Diagram declutter ranking value 




		



attribute 




		
















		



(x,y) offset for graphical attributes 




		










		
















		



Diagram groupings for multi-object hide/display 




		










		
















		



Symbology class 




		










		
















		



Scale factor 




		



Refer to Supporting Oracle Symbology 




		
















		



Object location ID 




		



E.g., urban or rural attribute prescribes a certain scale factor 




		
















		



Aliases (common names) 




		



Based on Partition Tile 




		
















		



Other operationally useful attributes 




		



attribute 




		



























Additional Data for Electrical Objects 




This section discusses how ArcGIS is used to provide additional attributes for Oracle Utilities Network Management System electrical objects. 




Additional Essential Attributes for Electrical Objects 




The following table provides descriptions for additional essential attributes for electrical objects. 








		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Connectivity information 




		



Node topology 




		
















		



Normal status of device 




		



NormalPosition[A,B,C] (ArcFM) 




		




















Additional Optional Attributes for Electrical Objects 




The following table provides descriptions for additional optional attributes for electrical objects. 








		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comment 










		



Phases for the device (PHASES) 




		



PhaseDesignation (ArcFM) 




		
















		



Network protection direction 




		



Attributes or relationships 




		
















		



Operations control authority zone (NCG) 




		



attribute 




		



See section on NCG below. Required for all electrical objects including modeling nodes. 










		



Voltage level (VOLTS) 




		



NominalVoltage (ArcFM) or OperatingVoltage (ArcFM) 




		
















		



Feeder (or Circuit) Name  




		



Feeder/Circuit ID Attribute 




		



Essential for feeder-based extraction 














Supporting Network Component Group (NCG) 




The Network Component Group (NCG) is an attribute of an electrical component in the Oracle Utilities Network Management System model. It supports control zones and reporting of events. The NCG value generally relates to a political structure. 




The NCG value is generated by relating a GIS attribute (or combination of attributes) to a control zone hierarchy. The control zone hierarchy typically relates to political/administration structures such as: 








		

•




		



Company (highest level) 





















		

•




		



Division 





















		

•




		



District 





















		

•




		



Office 





















		

•




		



Substation 





















		

•




		



Feeder segments (lowest level) 

















In the political structure in the example above, feeder segments are shown. This is a political structure imposed on the electrical structure of a feeder. NCG values correspond to a single hierarchy. Multiple inheritance is not supported so it is not possible to have an NCG value correspond to an electrical hierarchy (e.g., feeder, station) and a political structure. Where a feeder crosses political boundaries, it must be considered as a feeder segment belonging to one office, and other feeder segments belonging to other offices. 




To provide enough information to generate the NCG, the GIS must have attributes to relate to the feeder segment. For example, a feeder name and office name (populated by a polygon overlay of the office polygons on the electrical components) can be combined into a unique NCG value. 




Additional Data for Storm Management Support 




These attributes are required to support Storm Management analysis. They apply to any object that can have an outage on it (e.g., a distribution transformer or breaker): 








		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Physical location 




		



Varies according to class of object. Examples are: 




Three-phase devices are mapped to "backbone". 




Single-phase devices are mapped to "lateral". 




Distribution transformers are mapped to "transformer". 




		



The possible non-exclusive choices are: 




no_properties  




backbone  




express  




feeder  




interconnected  




lateral  




overhead  




secondary  




spot_network  




service  




sub  




transformer  




transmission  




underground 




Presently, only these choices are applicable: 




backbone 




lateral 




service 




transformer 














Additional Data for Supporting Power Flow Analysis 




These attributes are required to support Power Flow analysis. 








		



Oracle Utilities Network Management System Requirement 




		



GIS or Existing Power Flow Analysis Source 




		



Comments 










		



(To be determined) 




		










		



























Oracle Utilities Network Management System Electrical Model Items 




The Oracle Utilities Network Management System data model requires the following modeling items: 








		



Oracle Utilities Network Management System Requirement 




		



ArcGIS Source 




		



Comments 










		



Injection source point-Source Node (SRC) 




		



CircuitSource  




		
















		



Customer connection point-Supply Node (SND) 




		



DistributionTransformer or equivalent 




		
















		



Feeder start and boundary points -Feeder ID Node/Feeder Boundary Node (FID/FBD) 




		



CircuitSource or 




CircuitBreaker  




		



GIS source objects imply the Oracle Utilities Network Management System nodes. The FBD and FID are generated by the preprocessor. 










		



Mesh network and boundary points-Mesh Network ID Node (MID/FBD) 




		



PowerTransformer  




		



GIS source objects imply the Oracle Utilities Network Management System nodes. The FBD and MID are generated by the preprocessor. 










		



Inter-map electrical common points-Boundary Node (BND) 




		



Not applicable in an ArcGIS geodatabase. 




		



Generated automatically where tile boundary splits a conductor. 










		



Groundable nodes (GND) 




		



Ground  




		
























OEBPS/Text/part0105.xhtml






Supporting Oracle Utilities Network Management System Symbology 




Distinct symbols in Oracle Utilities Network Management System require distinct Oracle Utilities Network Management System classes. The model interface can generate an Oracle Utilities Network Management System class from a combination of GIS class and attributes. If a specific symbol is desired in Oracle Utilities Network Management System, then the GIS class and attributes must be present. 




For example, the concrete GIS class "Transformer" has an attribute "Subtype" with values such as PowerTransformer, DistributionTransformer, etc. The model interface can use different symbols for PowerTransformer and DistributionTransformer by generating Oracle Utilities Network Management System classes PowerTransformer and DistributionTransformer based on the GIS class and attribute value. 








OEBPS/Text/part0226.xhtml






Crew Outage Status Changes 




The purpose of this section is to provide crew states that may or may not transition an outage state change in Oracle Utilities Network Management System. Oracle Utilities Network Management System currently provides crew state changes for an outage via a CrewMessage. The CrewMessage contains the following message types for crew messages. Each message type identified below also provides whether or no the message could change the status of the outage. 















		



Crew Message Type 




		



Classes APIs available in 




		



Potentially generates outage state change 




		



Description. 










		



INVALID 




		



None 




		



NO 




		



Invalid message was sent. Unsupported message for all crew APIs 










		



SET_CONST 




		



None 




		



NO 




		



Sets static constant(s) for the Crew class, which will make non-standard functionality of the crew classes be supported.   










		



CLEAR_CONST 




		



None 




		



NO 




		



Remove a static constant that has been set. This may make some supported functionality of the crew classes’ disabled. 










		



AVAIL_FOR_OP 




		



Crew  




		



NO 




		
















		



UNAVAIL_FOR_OP 




		



Crew 




		



NO 




		
















		



CREATED 




		



Crew 




		



NO 




		
















		



DELETED 




		



Crew 




		



NO 




		
















		



EDITED 




		



Crew 




		



NO 




		
















		



ACTIVATED 




		



Crew 




		



NO 




		
















		



DEACTIVATED 




		



Crew 




		



NO 




		
















		



ASSIGNED 




		



CrewAssignment 




		



YES 




		
















		



UNASSIGNED 




		



CrewAssignment 




		



YES 




		
















		



DISPATCHED 




		



CrewDispatch 




		



YES 




		
















		



UNDISPATCHED 




		



CrewDispatch 




		



YES 




		
















		



RELOCATE 




		



CrewDispatch 




		



YES 




		
















		



AVAILABLE 




		



Crew 




		



NO 




		
















		



UNAVAILABLE 




		



Crew 




		



NO 




		
















		



ASSIGNMENT_CHANGED 




		



CrewAssignment 




		



YES 




		
















		



DISPATCH_CHANGED 




		



CrewAssignment 




		



YES 




		
















		



ARRIVED 




		



CrewDispatch 




		



YES 




		
















		



UNARRIVED 




		



CrewDispatch 




		



YES 




		
















		



TEMP_ZONE_CHANGE 




		



Crew 




		



NO 




		
















		



UPDATE_SCHEDULE 




		



Crew 




		



NO 




		
















		



SUSPENDED 




		



CrewAssignment 




		



YES 




		
















		



CASE_NOTES_INFO_CHANGED 




		



Crew 




		



NO 




		
















		



CREW_REQUEST_ADD 




		



CrewRequest 




		



NO 




		
















		



CREW_REQUEST_EDIT 




		



CrewRequest 




		



NO 




		
















		



CREW_REQUEST_DELETE 




		



CrewRequest 




		



NO 




		



























These changes may affect the status of the outage, or just the status of a crew. Via configuration of the mq_adapter_config table, any crew state change may trigger the creation of a PostSrsOutputStatus_001 XML message. This message will be identical in format to the PostSrsOutput_001 XML message, except that it will be triggered by the configure crew message type as previously defined. If the configuration for the crew message type is made, any queue can be used to put the PostSrsOutputStatus_001 message in.  






Note:  The crew message may not affect the current state transition of the outage, and may provide redundant data. In order to avoid un-necessary overhead of providing SRSOutput status information for non-required crew states, it is highly recommended that only the minimal crew states that are needed for the outage state changes are used in order to get the PostSrsOutputStatus_001 XML message. This flow will have to go to JMService to regenerate the outage information. 




An example for configuring the receipt of a PostSrsOutputStatus_001 is provided below. 




INSERT INTO mq_adapter_config VALUES ('OMS_OUTAGE_STATUS', 2,  




                                      'PostSrsOutputStatus_001', 




                                      'DISPATCHED', 






                                      '', '', 1);  













In this example, if a message type of "DISPATCHED" is received by the adapter, SRS will (via SRS::getEventInfo()) be requested for the current event status of the outage. The outage status can be retrieved via the Crew with the current outage data; a PostSrsOutputStatus_001 XML message will be generated to send to the OMS_OUTAGE_STATUS queue. Note that any queue can be defined to publish the Outage Status to. This will be configurable based on the number of configuration parameters for the PostSrsOutputStatus_001 XML message. Whichever crew message types should trigger the creation of the XML message, each one (message type and put queue) will need to be identified and defined in the mq_adapter_config table. Please refer to PostSrsOutput_001 XML message for the data content of the PostSrsOutputStatus_001 message. 




The purpose of this information flow is to provide crew outage status messages when ever a crew is Dispatched, Un-Dispatched, Assigned, or Un-Assigned from an event. In order to provide the crew outage status change for the events, this flow is required. This will be an asynchronous event that will provide the crew outage status changes to any interface that may require this information. 








OEBPS/Text/part0106.xhtml






Supporting Change Detection 




Because of the size, it is usually not practical to extract the entire geodatabase each time a change is made. The goal of change detection is therefore to automatically queue partitions containing objects that have changed since the last successful extract. That way, only those partitions are extracted and passed through the model interface. 




Change detection in the GIS is not intrinsically supported but the Oracle Utilities Network Management System model interface has functionality (Incremental Model Build) for handling changes. 




The two options for change detection are manual and automatic. 




There are several approaches available for automating change detection: 








		

•




		



Using database triggers to log the fact that a change has been made. This is considered unreliable because some changes are cached and don't make it into the more persistent tables until a database compress operation is done. 





















		

•




		



Using a change-detection modification field on features. 





















		

•




		



Read from an external source the partitions that contain changes. 





















		

•




		



Comparing a static "last-extracted" database version to a current or "as-built" database version. 

















The third and fourth approaches above, namely reading from an external source the partitions that contain changes, and using ArcGIS database versioning and reconciliation tools for change detection are the implemented approaches. These approaches are discussed in greater detail in the sections that follow. 




Manually Track Affected Tiles 




This option requires keeping track of what changes have been made manually and then doing an extract on those specified tiles.  




Automated Change Detection Using a Modification Field 




A modification field on each feature could be used as a change detection field. Note that this option is not implemented. This is not a preferred option to track the changes. 




One option is to examine the modification date on the version relationship to determine what has changed since the last extract. This assumes the modification date is adjusted to the time the posting took place rather than the time the edit occurred on the work order version. This examination has to look at every object in the geodatabase, which would be a time and process intensive operation. Also, there is no way of correlating these changes back to any meaningful reference such as a work order. 




Another option is to configure the post operation to run the Adapter on any tiles affected by the work order version. This has the advantage of doing extracts against proposed work and later extracting "as-built" work. 




In either case, the Adapter would perform a selection such as: 








		

•




		



Select all features with modification time greater than last extract. Alternatively, select all features with description equals the work order name. This selection may be further constrained to look for features within a political zone. 





















		

•




		



Select all tile features containing the above selection set. 





















		

•




		



Select all features contained in the selected tile features. 

















Then, utilize the Adapter to extract all the selected features. 




This approach is likely to perform poorly. To optimize it, additional polygons could be defined. Polygons representing political boundaries and work regions and divisions of the utility corresponding to the data maintenance activity, could be applied to restrict model building to a specific area. For example, if the maintenance of the dataset is structured by Division, then a spatial query to determine changes after maintenance can be restricted to those features within that Division. 




Automated Change Detection from an External Source 




This is one of the implemented approaches. It assumes that change detection is performed external to the Adapter, and the results are provided to the Adapter in the form of a "list" of affected partitions. 




To work, the external source of partitions containing changes must be a table in the same GIS database (geodatabase) as the data for extraction, and must follow a predefined schema. This table must also exhibit the same access rights and privileges for the database/SDE users as the other GIS model data does. 




Once this table exists, external tools must be used to populate and manage the table contents. The Adapter has no control over this table, so it assumes the contents are correct and accurate. At present it does not write to or update this table, except to mark the extraction completed information. 




The Adapter is configured to read from this table the change detect results, or the "partition sets" as defined by the external change detect tools. 




Automated Change Detection using ArcGIS Versioning 




This is the other implemented option. It uses the ArcGIS versioning and reconciliation tools in conjunction with some custom ArcObjects code to compare a last-extracted "freeze" version to the current or "proposed for OMS" version. The intent is to automate detecting data changes since the last extract. 




To work, the GIS database must be registered as versioned. Note that version management can be performed through the ArcCatalog interface. A version can be considered a "copy" of the data that maintains state information and metadata such as the name, owner, description, creation date, modification date, parent version, and access permissions for the version. 




To work properly, a "current" or "as-built" version of the data is required. This version is where all normal data changes or modifications should be posted, including work order completions. For simplicity, the system administrator can use the DEFAULT version or they may choose to create a new "current" or "as-built" version from the DEFAULT. 




By design, every time an extract is successful, the Adapter creates a "freeze" version of the database. As a result, this historical image or benchmark of the data state is created that can be referred back to in the future. 




Meanwhile, the change detect mechanism in the Adapter is designed to compare two versions of the database to determine the geographic location of changes to the database (i.e. objects that have been added, deleted, moved, or modified). 




Together, the versioning tools and Adapter's change detect mechanism empower the Adapter to automatically detect changed features between the current database version and the freeze (created at the last extract). This information is then used to queue the appropriate partitions or tiles for subsequent extraction. 




Then, when run, the Adapter extracts all features and objects located within the queued partitions. On completion of the extract, the "freeze" version is then made available for reference as the new data benchmark, for use in subsequent change detection when the Adapter is run next time. 








OEBPS/Text/part0227.xhtml






Sending Crew Updates / Getting Crew (Request / Reply) Information 




When an external system needs to get crew details for one Crew, or all Crews, or the Crew needs to be indicated assigned, un-assigned, dispatched, un-dispatched, arrived, available, unavailable, active, in-active, or suspended from an event in or independent from an event in Oracle Utilities Network Management System; the external system will send a crew update message with the event id to Oracle Utilities Network Management System. The VERB of the CrewUpdate_001 XML message will indicate the state or action to be triggered by the message. Creating, deleting and editing crews is also supported by this flow. 








OEBPS/Text/part0110.xhtml






Modeling Spatially Dense Objects 




Objects tend to be spatially dense in substations (covered above) and in vaults and manholes. A similar approach to the substations, using miniature switches (scaled symbols), can be used or liberties taken in the GIS to layout the vault switches in a schematic near the vault’s spatial location. 








OEBPS/Text/part0231.xhtml






Callback List 




The callback list message will use the same body as the Post SRSoutput message. It will have a different noun and verb.  




There are two types of callback list. One contains in the incident list all of the callers who have requested a callback. This message will have a verb of REQUESTED and a noun of CALLBACKLIST. The second type of callback list is a relatively random sampling of customers downstream of the restored device. This message will have a verb of SUBSET and a noun of CALLBACKLIST.  




There are configurable parameters that will set the maximum and minimum percentage of affected customers who will be included in the SUBSET callback list. The maximumCallbackSample and minimumCallbackSample for the subset callback can be set through the srs_rules table. These parameters will default to 50 and 4 percent respectively if not configured explicitly. Both types of callback lists use the same format found in PostSrsOutput_001.xsd. 








OEBPS/Text/part0111.xhtml






Modeling Complex Objects 




Oracle Utilities Network Management System models objects as nodes or edges in the same way as ArcGIS has junction and edge features. Complex objects are those with more than two connections such as 2-way and 4-way switches. 




The simplest approach is to model in the GIS the complex objects by their component objects. For example, the 2-way switch would be modeled as three switches with interconnecting bus work surrounded by a container. The name of the component switches would be derived from the name of the 2-way switch (e.g., "S123-1" is one of the internal switches in 2-way switch "S123"). 




The other approach to model the complex objects is to use the Oracle Utilities Network Management System "aggregate" functionality.  








OEBPS/Text/part0232.xhtml






Information Model 




This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include: 








		

•




		



Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads an XML file, with defined customers to create the model. This process (createSql) can be run to generate the SQL to be run on the production servers, or can directly create the customers.  





















		

•




		



Trouble calls are also referred to as incidents with in Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network. 





















		

•




		



Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System. 





















		

•




		



Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.  





















		

•




		



Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.) 





















		

•




		



SQL queries, result sets and transactions. 





















		

•




		



Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility. 





















		

•




		



Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System. 

















The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point. 








OEBPS/Text/part0229.xhtml






Network Trace Includes Planned Outage Request and Current Feeder Request 




Oracle Utilities Network Management System has the ability to send all supply nodes back for a specific device (planned outage request). Oracle Utilities Network Management System can also send back feeder, substation and control zone information back for a specific supply node (current feeder request). To enable this function, one line needs to be added to MQ_ADAPTER_CONFIG table and specify ‘-connectivitytrace’ command line option: 




insert into mq_adapter_config values ('REQUEST_TRACE',3, 'TraceNetwork_001','TraceNetwork_001',null,'REPLY_TRACE',1); 





























OEBPS/Text/part0109.xhtml






Modeling Stations and Substations 




There are three options for modeling stations and substations. The recommended option is shown first. 








		

•




		





Option 1 - Draw Miniature Station 

























		

•




		





Option 2 - Draw Stations in Separate Drawing 

























		

•




		





Option 3 - Do Not Bother Modeling the Station 





















Option 1 - Draw Miniature Station 




In the GIS draw the substation within the footprint of the substation symbol (a rectangle). Draw it with complete and correct connectivity showing breakers and station transformers. 




This option is easiest for the GIS to handle because it keeps the substation in the same coordinate space as the rest of the geodatabase features. 




Oracle Utilities Network Management System can be configured to only show the tiny details when zoomed in. 




Option 2 - Draw Stations in Separate Drawing 




This requires common devices between the two maps, probably a breaker. Since the GIS does not support having the same object in two places, two separate breakers with a common attribute (plant identifier) are needed to link the two drawings. 




Oracle Utilities Network Management System will generate a BND node to link the breakers. 




Option 3 - Do Not Bother Modeling the Station 




This is the easiest to model but has the major disadvantage of not being able to model cases where a station bus is out. It also makes it tricky to relate the implied breakers to the SCADA system’s breakers so outage status due to a breaker trip can be properly captured. 




A "getaway" point, with attributes of a feeder name, must be defined in the GIS for each feeder leaving a station. 




Oracle Utilities Network Management System can be configured to convert the getaway point into a SRC, breaker, and other modeling nodes. 








OEBPS/Text/part0230.xhtml






Area Summary 




The MQ Adapter will respond to a request for an area summary. The reply message will contain information that is available in the Performance Mart database. A synonym will be created to make this data available in the Ops database. The MQ Series Adapter will query this table and send back the information. 




This will be a request/reply data flow. The external system must request an outage summary for the MQ Adapter to send a response. The areas that are to be summarized will exactly match some level(s) as defined in the Performance Mart database. The areas that are returned will be the Area Control Zones with recognized active outages. The control zone level of the included areas can be configured through the command line.  








OEBPS/Text/part0136.xhtml






Perform Change Detection Via the Adapter 




In the Change Detection Panel:  




The user selects a freeze version (Static Data) from the drop down list and specifies a Name of Change Set. When the user clicks the Perform Change Detect button, the following happens: 








		

•




		



The GUI compares the selected "Change Detect Version" with the "Extract Version"; 





















		

•




		



The software reconcile both versions to get the affected SDE tables; 





















		

•




		



For each table, the application will: 





















		

•




		



Get the geometry of all changed features 





















		

•




		



Find the dataset corresponding to the table 





















		

•




		



For each partition type corresponding to the dataset: 





















		

•




		



spatial select to find partitions (tiles) 





















		

•




		



store the result in a object or dictionary; 





















		

•




		



The software files out the objects or dictionary into the  PartitionQueue table.





















		

•




		



The software queries the  PartitionQueue table WHERE "Partition Type" = GUI selection (truncated) AND "DataSet Name" = listed Data Set(s) AND WHERE "Partition Set Name" = specified "Name of Change Set". The resulting Partitions are then highlighted.

















Each record of the  PartitionQueue table is a distinct PartitionName/PartitionType/ DataSet combination e.g., if one Partition has two related Data Sets, two separate records will be saved to the table. The Name of Partition Set field gets populated with the specified Name of Change Set and the Date Stamp field gets populated with the time when the result of the change detection (if successful) was saved to the table.






Note:  By saving a queue of the changed partition names, the next steps can be executed later on, even after a shut down and re-launch of the Adapter.




In the Data Extraction Parameters Panel:  








		

•




		



As in section 4.1, the user selects a combination of Partition Type/Extract_Type that will affect both the Data Sets and the Partitions listbox. In this scenario, the Partition Type selection will also be used as a parameter to query the  PartitionQueue table and populate the Partition Set Names field with the resulting Partitions Sets. 





















		

•




		



The user then selects the Filter by Partition Set option, which will enable the filed and the Select Filtered Partitions button. After highlighting one of more Partition Set Names, the user clicks the Select Partitions by Filter button. This command queries table  PartitionQueue WHERE "Partition Type" = GUI selection (truncated) AND "DataSet Name" = listed Data Set(s) AND WHERE "Partition Set Name" = GUI selection(s). The resulting Partitions are then highlighted. Please note that the filtered partitions can only be related to one Partition Type at a time.





















		

•




		



The user can now perform the extract as usual. However, in the case of a successful extract, if one or more Partition Set is highlighted under Filter by Set Names, the Extract Date will be saved for each associated record in  PartitionQueue table. 





















OEBPS/Text/part0257.xhtml






Output Documents 




An Output Document gathers data from various sources, performs all necessary data transformations and logic, and formats the resulting data into XML elements whose tags are specified in the Output Document. The main sources of data are asynchronous InterSys messages, database selections, data cached in the adapter from previous XML documents, both input and output, and InterSys API calls. 




 In order to have the resulting XML document generated, the Output Document has to be activated. This activation is known as "triggering" Output Documents. These triggers occur under the following circumstances:  








		

•




		



The reception of an InterSys message. For example, an update to an event from SRS could trigger an order update message. 





















		

•




		



Periodically. For example, an interface status message that produces a reply from the MDS to monitor the state of the connection between the two systems. 





















		

•




		



By request in another document. For example, an assignment message is received from the MDS, but Oracle Utilities Network Management System has no record of the specified crew. In this case the Input Document processing the assignment message could trigger a query to the MDS, asking it to return the data describing the crew. 





















		

•




		



When event relationships change. For example when a number of events are grouped manually on the Work Agenda. 





















OEBPS/Images/image00735.gif
Verly AMR Vtsr Status
Tor nen OMS raqunts,
Genrats v AR recuest

Gt resls rom AR Rocuest
tar X saconch s paceed

AR inrace

3

L p—
¢ cusmersevcacat 2@

FaluptotheFusacn 1or2

OV Craat on Outage

ol dabas for now rquests
e

OMS processos sais

Sona it S o Sarce——fpf S BTCSEs






OEBPS/Text/part0137.xhtml






Manually Select Partitions and Save Selection to a Partition Set 




As above, the user selects a combination of Partition Type/Extract_Type, which will affect both the Data Sets and the Partitions field, and manually selects the Partitions. Note that in this scenario, in order to be able to manually select the Partitions, the user must ensure Manual Selection in the Partition Queue Selection Mode panel is specified. 








		

•




		



The user decides to save the selection and wait before performing the extract. Under Save Selection to Table the user specifies a Partition Set Name and clicks the Save button. This new Partition Set is saved to the  PartitionQueue table and is automatically added to the Partition Set Names list in the GUI.





















		

•




		



The user shuts down the application and re-launches it later to perform the extract on the selection. The user must first select the proper Partition Type i.e. the same "Partition Type" as when the selection was saved, otherwise, the Partition Set will not be displayed in the Partition Set Names list. 





















		

•




		



The user then selects the Filter by Set Name option, highlights the Partition Set and clicks the Select Partitions by Filter button to query the  PartitionQueue table and to highlight the resulting Partitions. 





















		

•




		



The user can now perform the extract as described above. 

















A variant of this scenario is for the user to first automatically select partitions by using the Filter by Partition Set option as described in above. They can then click on the Manual Selection option which keeps the highlighted Partitions and allows the user to select or de-select partitions when holding the "Control" or the "Shift" key. The user can now perform the extract or save his new selection. Note that when specifying Manual Selection, the Partitions are still highlighted but the Partition Set Names are de-selected - this identify the selection as manual and therefore no Extract Date will be saved during the extract. 








OEBPS/Text/part0258.xhtml






Input Documents 




Input Documents process data from elements whose tags are specified in the Input Document. Other elements are ignored. Once the data from all tags in the message that the Input Document recognizes are gathered, all necessary data transformations are performed, possibly in conjunction with data from other sources, and the results are passed to various data sinks. The main data sinks are the database, InterSys API calls, and the adapter cache for use in later document processing. 




In order for Input Documents to process the appropriate incoming XML documents, Input Documents have selection criteria. These criteria specify one or more of the following conditions that have to be met before the Input Document is used to process the data in the XML document: 








		

•




		



The tag and attributes of the XML document’s root element. 





















		

•




		



One or more element tags that are required to be in the XML document to identify its usage. Optional elements can be processed with the required elements. Facilities are available to set optional elements to default values, or to alter the processing logic depending whether they are present or not. 





















		

•




		



The queue that the XML document was received on. 





















OEBPS/Text/part0134.xhtml






Manually Selected Partitions (no change detection) 




If no table name is specified in the Partition Queue Reference table, the user will not be able to perform Change Detection and will be restricted to a manual selection of the Partitions. 




The following portions of the GUI will be disabled: 








		

•




		



Change Detection panel 





















		

•




		



Partitions Queue Selection Mode panel  





















		

•




		



(Table Name label will be replaced with No Partition Queue table and the options will be locked to Manual Selection) 





















		

•




		



Select Filtered Partitions button 





















		

•




		



Save Selection to Table section 

















In this scenario, the user selects a combination of Partition Type/Extract_Type (e.g., "Electrical  *.mp") from the Partition Type drop-menu. The application queries table  DatasetPartitionTypeExtractType_Relation in order to get the related Data Sets and populate the Data Sets field. 




The application also uses the Partition Type selection in order to query ArcGIS SDE and populate the Partitions field with the related Partition Names. The user manually selects the Partitions. 




The user then specifies a Work Order Name and launches the Adapter by clicking the Launch Extract button. The extraction is performed using the selected Partition Type, the  listed Data Set(s) and the selected Partition(s).




Please note that all listed Data Set(s) are being used (no selection available) since the information is now contained in configuration table  DatasetPartitionTypeExtractType_Relation.










OEBPS/Text/part0255.xhtml






Design Overview 




The adapter passes data between Oracle Utilities Network Management System and the MDS, transforming the data based on the configuration files and tables. Messages sent and received using MQSeries are formatted in XML. The types of messaging that are supported include the following: 








		

•




		



Asynchronous publish from Oracle Utilities Network Management System to MDS (using ‘fire and forget’ pattern) 





















		

•




		



Asynchronous publish from MDS to Oracle Utilities Network Management System (using ‘fire and forget’ pattern) 





















		

•




		



Request/reply from Oracle Utilities Network Management System to MDS (the requestor can process this either synchronously or asynchronously) 





















		

•




		



Request/reply from MDS to Oracle Utilities Network Management System (the requestor can process this either synchronously or asynchronously) 

















There are a number of mobile data systems produced by various vendors. These systems allow the end customer to specify the contents of orders that are sent to the crews and the various ways that the crews can report on their progress of their work in the field. In addition, crews can request information from the dispatcher and from other systems in the customer’s organization. The number of options and capabilities vary between the mobile data system vendors. 




Oracle Utilities Network Management System allows the end customer a large number of options in the kinds of data that are associated with different kinds of objects, including customers, customer calls, outage and non-outage events, field crews, and devices in the network model.  




This implies that an adapter that interfaces between Oracle Utilities Network Management System and multiple mobile data systems and multiple implementations of Oracle Utilities Network Management System and the various individual mobile data systems has to be highly configurable.  




To meet this challenge, the Oracle Utilities Network Management System WebSphere MQ Mobile Adapter can be configured to perform data manipulations and business logic, for flexibility, and has functions commonly used interfacing between Oracle Utilities Network Management System and mobile data systems hard coded for performance. 








OEBPS/Images/image00733.gif
Vendor Web Servca

et AUR OutageEvenis
Last GaspPover Up

Receive OutageEvert Message
Holdfor X minutes

Get AR OutageEvens,
Lest GaspPover Up

AR Intetace

[ ]

Send Meter Status to JSendce—— |






OEBPS/Text/part0135.xhtml






Save and Recall a Partition Queue 




This scenario corresponds to the case where change detection has been run, and the results must be saved and recalled at a later time. 




In the two scenarios below, the user must ensure that a Table Name and a Connection Type are specified in  PartitionQueueReference table and that the ReadOnly field is not selected. The default table specified in PartitionQueueReference is PartitionQueue located in AItoCentricity.mdb. If the specified table does not exist, the application will generate an error upon launch.




When the application is launched, the valid table name is specified within the Partition Queue Selection Mode panel. The Adapter queries the  PartitionQueue table and populates the FromDate field with the earliest date and the ToDate field with the latest one. The Partition Set Names field is populated with the result of another query that selects all distinct Partition Set Names.








OEBPS/Text/part0256.xhtml






Configuration Concepts 




The core of the configuration is one or more file(s) written in Dynamic Message Language (dml). This language allows the adapter to dynamically generate XML messages from various data sources, and to process XML messages to distribute the data contained in the message to various data sinks.  




DML allows data to be textually transformed and combined, has logic to allow XML elements to be included or ignored, and different InterSys API calls to be made, all depending on the data being processed. 




The basic units in dml are known as documents. There are two main types of document: 








		

•




		



Output Documents: These instruct the adapter how to generate XML documents to be sent to the MDS. For example, an Output Document is used to generate order create and update messages.  





















		

•




		



Input Documents: These instruct the adapter how to process the data received in XML documents from the MDS. For example, an Input Document instructs the interface how to process a crew creation message. 

















One or more dml files are read by the adapter during initialization. The contents of these files are compiled into a hierarchical set of internal data structures. As the various documents are triggered, the internal data structures are used to generate outgoing XML messages and process incoming XML documents. 




The details of the syntax and capabilities of dml are described below in paragraph  

DML Files

 and in the Appendices.








OEBPS/Images/image00734.gif
Probable Senvice Outage (PSO) Venficaton

iR inrace s

L p—

O Creats an Outage

o cabse forno rquasts,
ey saeons P
Verly AR vt Status

[ fornon oS requess,

gencrss vencs AVE request

@it o v s,

ater X soconds Ras passed

OMS processes s,

@0 ot St o oo S o st






OEBPS/Text/part0138.xhtml






Load Partition Queue from Externally Generated Source 




As above,  PartitionQueueReference table must be populated with the appropriate information. 








		

•




		



The user selects a combination of Partition Type/Extract_Type, which will affect both the Data Sets and the Partitions listbox. The user can then follow the steps described in section 4.2.1, under "In the Data Extraction Parameters Panel". 





















		

•




		



Another option that the user has is Filter by Date. With this option, the user selects the FromDate and ToDate, using a calendar control that restricts the format. The user then clicks the Select Partitions to Filter button. This commands queries table  PartitionQueue WHERE "Partition Type" = GUI selection (truncated) AND "DataSet Name" = listed Data Set(s) BETWEEN "FromDate" AND "ToDate". The resulting Partitions are highlighted.





















		

•




		



The user can now launch the Extract. If the extract is successful and if table  PartitionQueue is in Read/Write mode (i.e. ReadOnly is unchecked in PartitionQueueReference), the Extract Date field of table PartitionQueue could be updated by the following statement "UPDATE "Extract Date" WHERE "Partition Type" = populated object AND "DataSet Name" = populated object AND "Partition Name" = populated object BETWEEN objFromDate AND objToDate.





















OEBPS/Text/part0139.xhtml






Bypass Use of the ESRI ArcSDE Database Versions 




By unselecting field "Keep versions" of table  Defaults, the Adapter will not generate ArcSDE database versions when it is launched. In choosing this option, the Change Detection cannot be performed and will therefore be disabled in the GUI.








OEBPS/Text/part0260.xhtml






Aggregation of Objects 




Oracle Utilities Network Management System and mobile data systems perform very distinct functions and, therefore have distinct views of a utility. This leads to different object models. The difference that has the major impact on the integration of the two is what appears to be the same object on each side of the interface: events and orders. 




Events are associated with particular devices in the electrical network, while orders describe work to be done in the field. Normally, one event is associated with one order, for example when a customer transformer needs to be replaced because of a fault. However, in more complex situations, this one-to-one relationship no longer applies. 




An example of this is the series of steps involved in a partial restoration. A typical scenario is presented below: 








		

1.




		



A fault occurs in an underground loop, causing the fuse protecting the loop to blow.  





















		

2.




		



This results in an outage event on the fuse.  





















		

3.




		



This generates an order, which is sent to a crew in the field.  





















		

4.




		



The crew arrives on site and discovers that an underground cable has been cut at the end of the loop opposite from the fuse.  





















		

5.




		



In order to restore power to as many customers as possible, the crew opens the switch closest to the cut cable, and then replaces the fuse.  





















		

6.




		



This creates a new outage event associated with the downstream switch.  





















		

7.




		



The event associated with the fuse remains, but is now in a restored state. 

















If a one-to-one relationship were maintained between orders and events, there would now be a new order associated with the downstream switch. However, this does not match the view of the crew in the field. The new event is merely part of the work involved in servicing the original order. 




To accommodate this, the adapter will aggregate partial restoration events, if the appropriate configuration options are chosen, into what appears as a single event to the dml. The dml can then process the aggregate event into a single order. Similarly, when the dml processes updates to an order sent by the MDS, causing updates to the aggregate event, the adapter applies the updates to all of the aggregated events in Oracle Utilities Network Management System. 




Another example is when the Oracle Utilities Network Management System operator wants to group related events, for example when multiple outages occur in an ice storm in a small area, and assign them to a single crew. The adapter can be configured to treat this in the same way as a partial restoration, but this is not necessarily the preference of the customer. Some mobile data systems can group orders into a folder like object. The adapter can provide a trigger to the dml to process the group of associated events appropriately. 








OEBPS/Text/part0140.xhtml






Populating the Partition Listbox Using PartitionQueue Table  




The Adapter Graphic User Interface populates and displays all available partitions in the Partition field. These partitions are read from the specified Partition class in the ArcGIS. Due to Visual Basic software limitations, it could take an unusually long time to populate the Partitions field when there are more than 20,000 partition names. The time to partitions name could vary from few minutes to hours based on the network condition and database server hardware limitation When the Adapter is used in command line mode, the number of partitions does not cause any performance degradation but in interactive mode, a large number of partitions affect the Adapter GUI performance.  








OEBPS/Text/part0261.xhtml






Information Flows 




The contents of the configuration files are driven by the information flows required for a particular customer.  








OEBPS/Images/image00736.gif
Restorstion Verfication

et OutageEventsrom AR
Lot Casel Power s
Telater X mintes

ety AV poter Sttus
e e OV e,
aneras venc AR reciest

ot OutagaEvnssrom AR
Lot G Poner U
Telator mines

SR nartace

Polldtabasa for et

SendMiotr St o MSarice——Jp| IS recasses ot

Poll dstabeso fornow et

oy X soconds

vy X seconds

@

——

o

Lo ——
| PR

Toprdcs f nocsssay






OEBPS/Text/part0259.xhtml






Integration with System Services 




In order for the various dml documents to access Oracle Utilities Network Management System service objects, a number of facilities are available. They include: 








		

•




		



Asynchronous notification messages. For example, SRSoutput messages that describe new or modified events. DML documents can access the data supplied by these messages. 





















		

•




		



Access to the database. DML documents can read data from the database using select statements, and can write data using insert and update statements. 





















		

•




		



Access to the service APIs. Service APIs relevant to objects used in interfacing to mobile data systems are available to dml documents using function calls. 





















OEBPS/Images/image00737.gif
Menusi Ping.

VoS E3

s —
L —

Poll dataoase ornow equests.
ey sonss P
Verty AV weter Stus
o o OMS recuests,
e vk AV roest

OMS processes s,
SenctMete Sats o Sarica —— 1ot I nacossary.srcoabiy
and ecvad e & updatsd

Pl datats or ne et
prp et ]






OEBPS/Text/part0143.xhtml






Load All Partitions 




If UsePartitionQueue is unchecked in the Default table, then the Adapter will populate the Partition field will all available partitions for a selected partition class. In this scenario, the user selects a combination of Partition Type/Extract_Type (e.g., "Electrical  *.mp") from the "Partition Type drop-menu. The application uses the Partition Type selection in order to query the database and populate the Partitions field with the related Partition Names.  








OEBPS/Text/part0264.xhtml






High Level Messages 




High-level messages are typically used within Oracle Utilities Network Management System to permit one process to control another process. There are no special high-level messages that would be required for the Generic WebSphere MQ Mobile Adapter.  




Note that doing an Action any.any stop will stop the adapter, which needs to be taken into consideration for administering the adapter when starting and stopping it. 




Supported high level messages include the following: 








		

•




		



debug <debug level>: set the global debug level to <debug level>. If no level is supplied, toggle between 0 and 1. 





















		

•




		



dl <arg>: modify the local mdsadapter debug level depending on arg 





















		

•




		



(none): toggle between 0 and 1 





















		

•




		



off: turn off debug (no messages) 





















		

•




		



on: set to 0 (lowest level above off, least messages)  





















		

•




		



(a number): set to number (the higher the more debug messages) 





















		

•




		



dump: dump adapter data to the log 





















		

•




		



isisdump: request an isis dump 





















		

•




		



report 





















		

•




		



stop 





















		

•




		



relog: close the current log file, save it in the logs directory, and open a new log file 





















		

•




		



trigger <document name> <trigger name> [<arg> …]: Trigger the specified OnRequest trigger in the specified Output Document passing all the additional arguments to the document. If the document name, trigger name, or the number of arguments is invalid, the adapter exits due to a configuration error.  




























OEBPS/Text/part0144.xhtml






Load Externally Generated Partition Queue Saved in PartitionQueue 




If UsePartitionQueue is checked in the Default table then Adapter will not populate Partition field all of the available partitions for a selected PartitionClass. Instead, the field will be populated using all "unextracted" partitions in the PartitionQueue table.  




The user must ensure that a Table Name and a Connection Type are specified in  PartitionQueueReference table and that the ReadOnly field is not selected. The default table specified in PartitionQueueReference is PartitionQueue located in AItoCentricity.mdb. If the specified table does not exist, the application will generate an error upon launch.




When the application is launched, the valid table name is specified in the Partition Queue Selection Mode panel. The Adapter queries the  PartitionQueue table and populates the FromDate field with the earliest date and the ToDate field with the latest one. The Partition Set Names field is populated with the result of another query that selects all distinct Partition Set Names. The user selects a combination of Partition Type/Extract_Type, which will affect both the Data Sets and the Partitions fields. 




Filter By PartitionSet 




As described in a previous section the user selects a combination of Partition Type/Extract_Type that will affect both the Data Sets and the Partitions fields. In this scenario, the Partition Type selection will also be used as a parameter to query the  PartitionQueue table and populate the Partition Set Names field with the resulting Partitions Sets. 




The user then selects the Filter by Partition Set Names option, which will enable the field and the Select Partitions by Filter button. After highlighting one or more Partition Set Names, the user clicks the "Select Partitions by Filter button. This command queries table  PartitionQueue WHERE "Partition Type" = GUI selection (truncated) AND "DataSet Name" = listed Data Set(s) AND WHERE "Partition Set Name" = GUI selection(s). The resulting Partitions are then populated in the Partitions field. Please note that the filtered partitions can only be related to one Partition Type at a time.




The user can now perform the extract as usual. However, in the case of a successful extract, the "Extract Date" will be saved for each associated record in the  PartitionQueue table




Filter By Date 




Another option that the user has is Filter by Date. With this option, the user selects the FromDate and ToDate, using a calendar control that restricts the format. Clicking the Select Partitions by Filter button queries table  PartitionQueue WHERE "Partition Type" = GUI selection (truncated) AND "DataSet Name" = listed Data Set(s) BETWEEN "FromDate" AND "ToDate". The resulting Partitions are populated in the Partition field.




The user can now launch the Extract. If the extract is successful the "Extract Date" field of table  PartitionQueue is updated by the following statement "UPDATE "Extract Date" WHERE "Partition Type" = populated object AND "DataSet Name" = populated object AND "Partition Name" = populated object BETWEEN objFromDate AND objToDate.








OEBPS/Text/part0265.xhtml






Information Models 




The key objects supported by the adapter include: 








		

•




		



Incidents are typically related to a customer and are generated by trouble calls. The customer in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network. 





















		

•




		



Events are a consequence of the correlation of incidents. Outages are one form of an event that is managed by SRSService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that SRSService will generate within Oracle Utilities Network Management System. 





















		

•




		



Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.  





















		

•




		



Crews, who work in the field that can be made up of one or more crew members, and one or more vehicle. 





















		

•




		



MDS orders, which contain data relevant to the work that the crews perform in the field. 





















OEBPS/Text/part0141.xhtml






Read Predefined Partition Queue from PartitionQueue Table 




This option assumes that change detection has been performed prior to the Adapter being launched, and that the results are available for the Adapter to read. Usually, this approach means that change detection is performed either as part of data maintenance, or as a batch job prior to extraction. 




Out of the scope and control of the Adapter, the results of external change detection are placed in a table (with specific schema e.g., PartitionQueue) in the database. The Adapter is then configured to "read" the unextracted partitions from this table, and populate the Partition Queue field in the Adapter GUI. The partition is considered "unextracted" when the extract_date field is null. After successful extraction of each partition, the extract updates this field with date and time stamp indicating that partition has been extracted.  




Note that maintenance of the externally-generated change detect or the partition queue table is out of the scope of the Adapter, and alternate tools must be in place to manage the data (i.e. the partition queue table). 




The users can define an external table named PartitionQueue to save a list of partitions to be extracted.  








OEBPS/Text/part0262.xhtml






High Availability  




The goal of the Oracle Utilities Network Management System WebSphere MQ Mobile Adapter redundancy is to provide assured message receipt and delivery between the Oracle Utilities Network Management System services and the MDS. This is achieved using Microsoft Windows 2000 Server Clustering with an appropriate IBM MQSeries configuration. Configuring Clustering and MQSeries is not addressed here. 




The adapter supports High Availability in the following ways: 








		

•




		



Order data is saved to the database so that change detection can continue over a shutdown restart cycle. 





















		

•




		



The use of the MQSeries syncpoint facilities to preserve input messages that have not been fully processed. 





















OEBPS/Text/part0142.xhtml






Partition Loading 




The user-configurable option in the configuration database will determine whether the Adapter should populate the Partition field with all available partitions in a specified PartitionClass or use PartitionQueue table to populate the Partitions field.   








OEBPS/Text/part0263.xhtml






Performance 




This interface is intended to provide for high performance needed to process frequent message exchange such as in the case of a high volume of events during a storm. In order to provide optimum performance, there are aspects of both implementation and usage. Aspects of usage include: 








		

•




		



Reducing the number of database accesses and API calls required to generate outgoing XML documents and to process incoming XML documents. 





















		

•




		



Reducing the number of elements that need to be sent and received. 





















		

•




		



Keeping the number of critical elements that cause XML documents to be sent when they change to as low a number as possible. 





















		

•




		



Allowing events time to group for as long as possible, before they cause the creation of orders and cancellation of orders for grouped calls. An example of this is to wait until an event is acknowledged before creating the order, and implementing business practices that delays the acknowledgement until the event is ready to be processed by the MDS. 





















		

•




		



Sending multiple requests and updates from the MDS together in a single message. 

















Aspects of implementation which optimize performance include: 




The assumption that incoming XML messages are well formed, bypassing the validation step. It is assumed that the sender provided well-formed XML, which was transmitted using reliable communication mechanisms. The actual validation test is whether or not the code that internally parses a message can extract a sufficient set of parameters to process an Input Document. XML that is not well formed will typically generate an error. It should also be noted that XML validation does not necessarily guarantee valid information provided by an external system. If this generates an error in the adapter, the error will be logged. 








OEBPS/Text/part0125.xhtml






Explicitly Specifying Data Ownership 




Personal geodatabases are not affected by this functionality. 




For the tables referenced in the Reference Database Tables section, if the SDE database UserID that owns the data is different from the UserID used for performing the extract, then the data-owning UserID must be explicitly specified as a prefix for items such as class, dataset, and version names. This is necessary because SDE interfaces to Oracle Utilities Network Management System, and the standard method of explicitly declaring data ownership in Oracle Utilities Network Management System is <owner_dbusername>.<item>. 




For example, if the Adapter is being run as SDE user ‘abc’ and the data is owned by user ‘xyz’, then any reference to class, dataset, or version items must be prefixed according to the Oracle Utilities Network Management System method. Several examples of such item definitions are provided: 















		



Parameter 




		



Value 










		



Version 




		



"xyz.MAPPING_DEFAULT" 










		



DataSet 




		



"xyz.Electric_Feeder" 










		



ClassName 




		



"xyz.DistributionTransformer" 


















OEBPS/Text/part0246.xhtml






Overview Description 




Integration of Oracle Utilities Network Management System to a mobile data system involves the implementation of an adapter process, which exchanges messages with a mobile data system (MDS). The contents of messages sent to the MDS are generated from data obtained from the Oracle Utilities Network Management System services, transformed so that they are suitable for the MDS, and formatted into XML. The contents of messages received from the MDS are extracted from XML, transformed so that they are suitable for Oracle Utilities Network Management System, and sent to the Oracle Utilities Network Management System services. 




The current implementation of the adapter supports the exchange of the following types of messages: 








		

•




		



Messages sent to the MDS 





















		

•




		



MDS order creation, update and cancellation messages, triggered by Event updates from Oracle Utilities Network Management System. 





















		

•




		



Interface communication status verification messages, triggered on a periodic basis. 





















		

•




		



Messages received from the MDS 





















		

•




		



MDS order update and completion messages, triggering updates to the corresponding Oracle Utilities Network Management System events. 





















		

•




		



Crew log on, update and log off messages, triggering Oracle Utilities Network Management System crew creation, update and de-activation. 





















		

•




		



Crew assignment creation, update and deletion messages, triggering status changes to the corresponding Oracle Utilities Network Management System crews and events. 





















		

•




		



Interface communication status verification messages, triggering changes to the interface status. 





















OEBPS/Images/image00724.jpeg
* Net Assistant - C: \oracle\oraB1 \NETWORK\ADMIN/

e ot
* 2 Local
=
e g
e
e i s

——






OEBPS/Text/part0126.xhtml






Freeze Versions Created and Used by the Adapter 




The Adapter creates and maintains "freeze" versions when a versioned database is available and the "UseSDEVersioning" attribute is checked/true in the "Defaults" table of the application reference database. These versions are used to minimize the time the Adapter locks the database as well as support change detection. 




Personal geodatabases and unversioned databases are not affected by this functionality. Extracts of unversioned databases are automatically conducted on the default database. No special action is required. 




If the database is registered as versioned and the user has configured the Adapter to use SDE versions, the Adapter generates a temporary freeze of the desired extract version once the extraction begins. The extract is then carried out on the freeze version, which makes the existing "default" version available for other purposes (e.g., new data postings) while the extract is running. 




Then, once an extract successfully completes, the temporary freeze is renamed to a permanent freeze. This permanent freeze version must be kept because it can be used in subsequent change detections as a static representation of the database at the time of the last extract (i.e. as a temporal benchmark). In other words, it maintains a handle on database state as it existed when the last extract took place. 




Several benefits of this approach include: 








		

•




		



A freeze can always be referenced back to a single base (parent) version of data. 





















		

•




		



New work version (i.e. posting and reconciling) can continue on the "as-built" or current version concurrently with an extract process. 





















		

•




		



Data should never change on the freeze version, and therefore the Adapter should never be "locked out" of the database. 





















		

•




		



The freeze can be re-used as part of change detection tool prior to the next extraction in an effort to determine which features and objects changed since the last extract. 

















When the Adapter is launched against a versioned database, all version information is loaded to the Adapter. The Adapter then identifies the "current" or "extract" version as defined in the application reference database. 




If a non-zero value is placed in the "NumDaysToKeepFreeze" field of the "Defaults" table of the application reference database, each freeze version is checked to determine if it has "expired." If a version is older than the maximum specified, then the version is automatically dropped. All remaining freeze versions are then listed in the change detect field, however the most recent freeze should be automatically selected as the default. 




Once an extract commences, a temporary "freeze" (copy) is created of the extract version. The extract is then run on the freeze version, effectively freeing the extract version for other purposes. As a result, it is possible to simultaneously post new data to the "current" version of the database while an extract is in progress. 








OEBPS/Text/part0247.xhtml






Terms 















		





InterSys 






		



The middleware infrastructure which supports Oracle Utilities Network Management System 










		





MDS 






		



A Mobile Data System, which exchanges data with field crews’ mobile data terminals. 










		





MDS Order 






		



A document or unit of work on the MDS. Also known under different names, for example Job 










		





Event 






		



Oracle Utilities Network Management System outage and non-outage events are generated by SRS based on customer calls and changes to the Oracle Utilities Network Management System topology model. 










		





SRS 






		



Service Reliability System, the service within InterSys which analyzes and manages outages 










		





MQSeries 






		



A queue-based messaging system developed by IBM. 










		





XML 






		



Extensible Markup Language 










		





DML 






		



Dynamic Message Language. This language is used to configure the adapter. 


















OEBPS/Images/image00725.jpeg
G/Electric-Oracle NMS Integration

Data Review &
Enhancement
stage
Other Graphics or
Tabular Data | GIS-NMS Data
(optional) Magping Data Import
Stage

Oracle's G/
Electric Data
Extractor

Customer Source
Data Extraction
Stage

Cell
Manupulation
Rules

Oracle NMS Model Build
Exception Report





OEBPS/Text/part0123.xhtml






Configuring the Adapter 




The Adapter is configured using tables in a Microsoft Access database, commonly referred to as the "application reference" database. The specific configuration tables, their contents, several examples, and content requirements are provided in the sections that follow. 








OEBPS/Text/part0244.xhtml






Generic WebSphere MQ Mobile Adapter 








OEBPS/Images/image00722.jpeg





OEBPS/Text/part0124.xhtml






Reference Database Tables 




Defaults Table 




The Defaults table is used to indicate the default settings to use for the Adapter. These settings should reflect the most common parameters used for an extract: 








		



Parameter 




		



Value 




		



Type 










		



ExtractDirectory 




		



Base/Root Directory for Extracted Data Output 




		



Text(50) 










		



PartitionType 




		



Name of Default PartitionType/ExtractType combination to use 




		



Text(50) 










		



ExtractType 




		



Type of Extract to Perform (sourced from field "ExtractType" from  "DatasetPartitionTypeExtractType_Relation" table) 




		



Text(50) 










		



ExtractVersionName 




		



Name of Version to Extract 




		



Text(50) 










		



ChangeDetectVersionName 




		



Name of Version to Perform Change Detect Against (optional - populate this only if change detection is performed by the Adapter) 




		



Text(50) 










		



UseCodedValues 




		



Extract Attributes as Coded Values Instead of Raw Data (True/Check=Supply Codes, False/Uncheck=Supply Raw Data) 




		



Boolean 










		



UseSDEVersioning 




		



Specify Whether to use SDE Versions or Not (True/Check=Use/Create, False/Uncheck=Don't Use/Don’t Create) 




		



Boolean 










		



NumDaysToKeepFreeze 




		



Number of Days to Keep a Database Freeze Before Deleting (0 means forever) 




		



Integer 










		



RelatedFeatureClassLevels 




		



Number of Levels to Traverse when Handling Related Feature Classes 




		



Integer 










		



RelatedObjectClassLevels 




		



Number of Levels to Traverse when Handling Related Object Classes 




		



Integer 










		



NonFacilityExtractFileSuffix    




		



Suffix to Place on mp Extract Files for Non-Facility Extracts 




		



Text(20) 










		



ExtractFilePrefix    




		



Prefix to Place on mp Extract Files 




		



Text(20) 










		



LatLongForPoints 




		



Specify whether to Provide Lat/Long Attributes For Point Features 




		



Boolean 










		



SpatialAttributesForPoints 




		



Specify whether to Provide Spatial Attributes For Point Features (as defined in the optional "SpatialAttributeQueries" table, and as coded in the functionality for obtaining the "closest service address" results for a point.) 




		



Boolean 










		



UsePartitionQueue 




		



Specify whether to use PartitionQueue table partitionset to populate the GUI Partition listbox or not.   




		



Boolean 










		



ExtractPolyline 




		



Specify whether to extract poly line coordinates using From and To pair of coordinates or just one pair of coordinate. Default is False, i.e extract only one pair of coordinates. If GIS has poly line with gap, it is recommended to extract both pair of coordinates 




		



Boolean 










		



ContinueExtract 




		



Specify whether to continue extraction even when one of the partitions fails to extract. This option is helpful for a batch process when instead of stopping whenever extraction fails on a specific partition extract moves on to next available partition in the queue. 




		



Boolean 










		



NormalizePort 




		



If true, then normalize port id; if false, then port number is in featurenumber.objectid format. 




		



Boolean 










		



SpatialWithNonSpatial 




		



If true, then do a spatial extract for features within MBR after doing non-spatial extract. 




		



Boolean 










		



GetAnnoOnRelated 




		



If True, then extract all related Annotation Features 




		



Boolean 










		



GetRelatedAnnoSpatially 




		



If True, then also check for Related Annotations, to be extracted spatially 




		



Boolean 










		



VersionNamePrefix 




		



Specify Freeze Version Prefix, for Electrical & Non-Electrical Change Detect process 




		



Text(50) 










		



GisDataOwner 




		



When specified, allows extraction from different GIS user names. Applicable mainly during extraction of related features 




		



Text(50) 










		



ExtractNullFeeder 




		



In non-spatial extracts, extract objects with NULL values for both feeder attributes into aq feeder named NULL_NULL 




		



Boolean 










		



SkipEmptyPartitions 




		



If an extraction .mp file does not contain any objects, by default, the empty .mp file will be generated with the partition definition only.  With this option checked, the empty partition will not be written out. 




		



Boolean 










		



LeaveSubtypeFieldNames 




		



If UseCodedValues is true and this is true, the SYBTYPECD field is not renamed to SUBTYPE. 




		



Boolean 










		



UseRelationshipSets 




		



If true, extract using relationship sets instead of getting one relationship at a time. 




		



Boolean 
















Note:  If the "SpatialAttributesForPoints" Boolean is checked (yes or true), ensure the optional SpatialAttributeQueries" and "ClosestServiceAddress" tables exist and are properly populated.




Parameter Values Examples 















		



Parameter 




		



Value 










		



ExtractDirectory 




		



"c:\SPL" 










		



PartitionType 




		



"Electrical" 










		



ExtractType 




		



"Facility" 










		



ExtractVersionName 




		



"OMS Proposed" 










		



ChangeDetectVersionName 




		



"" (blank means use the last freeze version) 










		



UseCodedValues 




		





  (a check means to "use" or "extract" coded values)










		



UseSDEVersioning 




		





  (a check means to "use" or "create" SDE versions)










		



NumDaysToKeepFreeze 




		



14 (keep freeze versions for 14 days) 










		



RelatedFeatureClassLevels 




		



2 










		



RelatedObjectClassLevels 




		



1 










		



NonFacilityExtractFileSuffix 




		



"_lb" 










		



LatLongForPoints 




		





  (a check means to "use" or "extract" lat/long coordinates as extra attributes on point features)










		



SpatialAttributesForPoints 




		





  (a check means to perform the spatial attribute queries, as defined in the optional SpatialAttributes table. If checked off here, ensure the "SpatialAttributeQueries" and "ClosestServiceAddress" tables exist and have been populated in the application reference database.)










		



UsePartitionQueue 




		





  (a check means to "use" PartitionQueue table to read list of partitions to extract instead of defined Partition class in the geodatabase)










		



ExtractPolyline 




		





  (a check means to extract From and To pair of coordinates for a polyline.)










		



ContinueExtract 




		





  (a check means continue to extract even when one of the partitions fails to extract)










		



NormalizePort 




		





  (a check means normalize the port)










		



SpatialWithNonSpatial 




		





  (a check means do a spatial extract for features within MBR after doing non-spatial extract.)










		



GetAnnoOnRelated 




		





  (a check means, extract all related Annotation features)










		



GetRelatedAnnoSpatially 




		





  (a check means, spatially extract related Annotation features, if stored spatially










		



VersionNamePrefix 




		



"_elec" for Electrical freeze version or "_nonelec" for Non-electrical freeze version 










		



GisDataOwner 




		



Specify GIS user name for the extractor to access, other the default user name. Used mainly for related features. 










		



ExtractNullFeeder 




		





  (a check means, extract NULL-NULL feeder)














DataSet Reference Table 




The DataSetReference table is used to indicate the datasets (data groupings) found within the database and their appropriate configurations: 








		



Parameter 




		



Value 




		



Type 










		



DataSet 




		



Name of Dataset to Reference From the Workspace (e.g., Electric, Landbase) 




		



Text(40) 










		



DatabaseName 




		



Database File Name (geodatabase only) 




		



Text(100) 










		



Instance 




		



Database Instance Name 




		



Text(50) 










		



UserID 




		



Database userid for the Instance 




		



Text(50) 










		



Password 




		



Database password for the userid 




		



Text(50) 










		



ConnectionType 




		



Data Connection Type (ACCESS, SDE) 




		



Text(10) 










		



Server 




		



Database Server Name 




		



Text(30) 










		



Version 




		



Database Version to use for Extracts 




		



Text(50) 





















For example, an SDE dataset of electric feeder facilities is defined: 








		



Parameter 




		



Value 










		



DataSet 




		



"Electric_Feeder" 










		



DatabaseName 




		



"" (this is only for a path for a personal geodatabase) 










		



Instance 




		



"esri_sde" 










		



UserID 




		



"gisDBuser" 










		



Password 




		



"gisDBuser_password" 










		



ConnectionType 




		



"SDE" 










		



Server 




		



"gis_server" 










		



Version 




		



"OMS Future" 














Partition Reference Table 




The PartitionReference table is used to indicate the partitions (spatial, geographic tiles or attribute-defined, e.g., feeder-based, groupings) to be used for extraction and their appropriate configurations: 








		



Parameter 




		



Value 




		



Type 










		



PartitionType 




		



Unique Name of the Partition Type (e.g., Landbase, Electrical, Feeder, etc.) 




		



Text(50) 










		



ClassName 




		



Name of feature class (or classes) used to define partition (e.g., tile or grid-feature class name for spatial extract vs. objects that define origin of feeder/circuit for feeder-based) 




		



Text(50) 










		



IDColumn 




		



For spatial extract: Name(s) of Partition ID Column(s) (in partition class) separated by a comma. For non-spatial extract: Name(s) of characteristic attribute column(s) (such as FEEDERID) separated by commas 




		



Text(30) 










		



WhereClause 




		



SQL where clause to limit the partition id selection  




		



Text(80) 










		



ExtractMethod 




		



Partition Extraction Method (Spatial (i.e. tile) or NonSpatial (i.e. feeder)) 




		



Text(50) 










		



DatabaseName 




		



Database Name Partition is in (geodatabase only) 




		



Text(100) 










		



Instance 




		



Database Instance Name Partition is In 




		



Text(50) 










		



UserID 




		



Database userid for the Instance 




		



Text(50) 










		



Password 




		



Database password for the userid 




		



Text(50) 










		



ConnectionType 




		



Data Connection Type (ACCESS, SDE) 




		



Text(10) 










		



Server 




		



Database Server Name 




		



Text(30) 










		



Version 




		



Database Version Name the Partitions are In 




		



Text(50) 





















For example, an SDE electric partition spatial feature class is defined: 








		



Parameter 




		



Value 










		



PartitionType 




		



"Electric_Partitions" or "FEEDER" 










		



ClassName 




		



"ElectricTiles" or "CircuitBreaker, SubTransBreaker" 










		



IDColumn 




		



"TileID,ObjectID" or "FEEDERID, FEEDERID2" 










		



WhereClause 




		



"TILID<1000 and OBJECTID>200" 










		



ExtractMethod 




		



"SPATIAL" or "NONSPATIAL" 










		



DatabaseName 




		



"" (this is only for a path for a personal geodatabase) 










		



Instance 




		



"esri_sde" 










		



UserID 




		



"gisDBuser" 










		



Password 




		



"gisDBuser_password" 










		



ConnectionType 




		



"SDE" 










		



Server 




		



"gis_server" 










		



Version 




		



"OMS Future" 














Partition Queue Reference Table 




The PartitionQueueReference table supplies the location details for the Partition Queue table (which is used to store and recall saved partition queues):  








		



Parameter 




		



Value 




		



Type 










		



DatabaseName 




		



Database Name Partition Queue Table is in (geodatabase only) 




		



Text(100) 










		



TableName 




		



Name of the Partition Queue Table (most likely "PartitionQueue") 




		



Text(50) 










		



UserID 




		



Database userid for the Instance 




		



Text(50) 










		



Password 




		



Database password for the userid 




		



Text(50) 










		



ConnectionType 




		



Data Connection Type (ACCESS, SDE) 




		



Text(10) 










		



Server 




		



Database Server Name configured using Oracle NetConfiguration utility. 




		



Text(30) 










		



ReadOnly 




		



Specifies whether the PartitionQueue table can be written to, namely for the ChangeDetect Queue or Selection Queue. 




		



Boolean 





















For example, for a local Access database partition queue table: 








		



Parameter 




		



Value 










		



DatabaseName 




		



""  (specify if in a database other than the application reference file) 










		



TableName 




		



"PartitionQueue" 










		



Instance 




		



"" 










		



UserID 




		



"" 










		



Password 




		



"" 










		



ConnectionType 




		



"ACCESS" 










		



Server 




		



"" 










		



Version 




		



"" 










		



ReadOnly 




		



""  (no check means the table can be written to) 














For example, for an Oracle database partition queue table: 








		



Parameter 




		



Value 










		



DatabaseName 




		



""  (used only for an Access database or geodatabase only) 










		



TableName 




		



"PartitionQueue" 










		



Instance 




		



""  










		



UserID 




		



"gisDBuser" 










		



Password 




		



"gisDBuser_password" 










		



ConnectionType 




		



"SDE" 










		



Server 




		



"gis_server" with "gis_server in the tns_names.ora configuration or "(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=nms-vm)(PORT=1521)) )(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=nms11g)))" 










		



Version 




		



""  










		



ReadOnly 




		



"" (no check means the table can be written to) 














The contents of this table affect the GUI as follows: 








		

•




		



If no table name is specified, the "Partitions Selection Mode" panel, "Select Partitions by Filter" button, and "Save Selected Set to a Table" sections will be disabled, restricting the user to manual selection. The "Change Detection" panel will also be disabled since there would be no table available to save the results to. 





















		

•




		



When "ReadOnly" is checked, the "Change Detection" panel and "Save Selected Set to a Table" sub-panel will be disabled, preventing the user from saving a Partition Set to the  PartitionQueue table.

















Oracle Client Configuration 




If the connection type is "SDE", i.e. the PartitionQueue table resides in Oracle database instead of AItoCentricity.mdb then the user must ensure that the appropriate Oracle client is installed on the machine where the Adapter resides. The user must configure the Server name using "Oracle Net8 Configuration Assistant". The Net8 Assistant screen appears below: 






[image: ]






DataSet Partition Type/Extract Type Relation Table 




The DataSetPartitionTypeExtractType_Relation table is a configuration table used to indicate the relationship between "Partition Type", "DataSet" and "Extract_Type". This table is meant to clarify some of these ambiguous relations. The application will use these relations in order to populate its GUI. 




The existing application allows the user to specify this relationship on each extract. Instead of using the run-time specification, the relationships are made explicit and treated as a configuration that defines the type of extraction to perform when combinations of these two aspects are chosen: 








		



Parameter 




		



Value 




		



Type 










		



DataSet 




		



The proper ESRI dataset name. Values are restricted to enumerated "DataSet" values found in table 'DataSetReference'. 




		



Text(40) 










		



PartitionType 




		



Unique name of the partition type. Values are restricted to enumerated "PartitionType" values in table 'PartitionReference'. 




		



Text(50) 










		



ExtractType 




		



Type of Extract to perform for the dataset; "Facility" or "NonFacility." Used to determine the suffix to place on .mp files. 




		



Text(30) 














For example, a dataset called "Electrical" and a partition type of "Electrical_Grid" should be a "Facility" extract: 















		



Parameter 




		



Value 










		



DataSet 




		



"Electrical" 










		



PartitionType 




		



"Electrical_Grid" 










		



ExtractType 




		



"Facility" 














DataSet Exceptions Table 




The DataSetExceptions table is used to indicate any exceptions when processing classes. The Adapter assumes a feature class will be  included as part of an extract of the dataset it belongs to unless an exception record indicating it should be excluded from processing appears in this table. Similarly, the Adapter assumes that a feature class will be excluded as part of an extract of a dataset that it does not belong to unless an exception record indicating it should be included from processing appears in this table. In other words, do not list a feature class here unless you want it to be excluded from an extract of the dataset it belongs to, or included in an extract of a dataset it does not belong to. 















		



Parameter 




		



Value 




		



Type 










		



DataSet 




		



DataSet to Provide Special Instructions For 




		



Text(40) 










		



ClassName 




		



Name of Class to Include/Exclude from the DataSet (exceptions class) 




		



Text(50) 










		



Action 




		



Action to Take With Specified Class (check=true=include,uncheck=false=exclude) 




		



Boolean 














For example, include a class called "WorkzoneTile" in the electrical dataset extraction: 








		



Parameter 




		



Value 










		



DataSet 




		



"Electrical" 










		



ClassName 




		



"WorkzoneTile" 










		



Action 




		





  (check means to include the class)














Required Relationships Table 




The RequiredRelationships table is used to indicate which relationships between classes in the GIS database should be traversed in an extraction. This table should therefore indicate the class relationships required for the model build: 








		



Parameter 




		



Value 




		



Type 










		



OriginClass 




		



Name of Origin Class (class that originates the desired relationship, or parent class to the direction of the relationship) 




		



Text(50) 










		



DestinationClass 




		



Name of Destination Class (class that ends the relationship, or child class of the relationship) 




		



Text(50) 










		



RequiredForOMS 




		



Whether Relationship is Required for OMS Extract (Yes/Check=Required For OMS, No/Uncheck=Not Required For OMS) 




		



Boolean 





















For example, a class relationship between "Fuse" and "FuseUnit" needs to be included in an extract for a successful model build: 








		



Parameter 




		



Value 










		



OriginClass 




		



"Fuse" 










		



DestinationClass 




		



"FuseUnit" 










		



RequiredForOMS 




		





  (check means to include the class relationship)














Partition Queue Table 




The PartitionQueue table is used by the Adapter to store sets or queues of partitions for later recall and extraction. It can exist either in the application reference database or in the SDE geodatabase. If creating this table in your SDE database, please ensure the schema (field names and types) shown below are closely adhered to:  








		



Parameter 




		



Value 




		



Type 










		



PartitionSetName 




		



Groups the Partitions Queue under a unique Partition Set Name 




		



Text(50) 










		



DateStamp 




		



Date/Time stamp when the specified Partition was saved to this table 




		



Date 










		



DataSetName 




		



The proper ESRI dataset name that corresponds to a specific Partition Name (1 DataSet per record) 




		



Text(40) 










		



PartitionName 




		



Specific name of the partition in the Partition Queue 




		



Text(50) 










		



PartitionType 




		



Unique name of the partition type that corresponds to a specific Partition Name 




		



Text(50) 










		



ExtractDate (provisional) 




		



Date when the specific Partition Set record was extracted. Note: this field does not get updated if the "Read Only" field is checked in the "PartitionQueueReference" table. 




		



Date 
















Note:  The DATESTAMP field in the "PartitionQueue" table can be null in the ACCESS application reference database, but not in SDE/Oracle Utilities. For consistency, the best practice is to define the field as not allowing null but permitting zero-length strings (i.e. "").




For example, the partition "774410-000000" was identified, queued, and saved as part of the set "SelectionSet_200208261412" on "August 28" for the dataset "Electric_Feeder": 








		



Parameter 




		



Value 










		



PartitionSetName 




		



"SelectionSet_200208261412" 










		



DateStamp 




		



"26/08/2002 2:12:34 PM" 










		



DataSetName 




		



"Electric_Feeder" 










		



PartitionName 




		



"774410-000000" 










		



PartitionType 




		



"Electrical" 










		



ExtractDate 




		



"" (not extracted yet, or table is read only) 














A specific "Partition Name" can have more than one related "DataSet Name". Each DataSetName/PartitionName combination will correspond to one distinct record in the table. The same applies to the Partition Types. 




SpatialAttributeQueries Table 




The optional SpatialAttributeQueries table is used by the Adapter to store information on custom spatial queries. These spatial queries add spatial attributes to point features (e.g., a point in polygon analysis). Note that a record must appear in this table for every spatial query that a point feature class is to have applied to it. To use this table, make sure the "SpatialAttributesForPoints" Boolean is checked (yes or true) in the "Defaults table, otherwise this table will be ignored. 















		



Parameter 




		



Value 




		



Type 










		



AttributeName 




		



Custom name of the attribute that should be appended to the point features in the extract file. 




		



Text(50) 










		



PointClassName 




		



The point FeatureClass that will have this spatial query applied to it. Note that a spatial query can be repeated n times, once for each FeatureClass needing the query. 




		



Text(50) 










		



PolygonClassName 




		



Name of the polygon feature class that the spatial query is being applied to. 




		



Text(50) 










		



IDColumn 




		



Name of the column/field in the polygon feature class that should be "pulled" or applied as the spatial attribute for the point features. 




		



Text(50) 










		



WhereClause 




		



Any characteristics for refining the spatial query (omit the WHERE statement from the field, it is assumed). 




		



Text(100) 














For example, using the polygon feature class called "FM_Counties" that has the unique field "Name", perform a spatial query for adding the county name as the attribute "County" to the "Fuse" point feature class in the output .mp file:  








		



Parameter 




		



Value 










		



AttributeName 




		



"County" 










		



PointClassName 




		



"Fuse 










		



PolygonClassName 




		



"FM_Counties" 










		



IDColumn 




		



"Name" 










		



WhereClause 




		



"" 














As an example, this spatial query would result in an attribute being added to a fuse feature in the extract (mp) file similar to:  




ATTRIBUTE[Fuse.COUNTY]="Oxford"; 




ClosestServiceAddress Table 




The optional ClosestServiceAddress table is used to store information for a specific custom spatial query: determining the closest service address to a point feature. This spatial query will add the first retrieved service address from the spatially closest transformer as an attribute to point features. However, to use this table, ensure the "SpatialAttributesForPoints" Boolean is checked (yes or true) in the "Defaults table, otherwise this table will be ignored. 




This functionality assumes: 








		

•




		



that the transformer feature class has a key field for the premise 





















		

•




		



the customer table has a corresponding key field for the premise 





















		

•




		



a relationship exists between the transformer class and customer table 





















		

•




		



the customer table exists/is accessible from the geodatabase. 




























		



Parameter 




		



Value 




		



Type 










		



TransformerClassName 




		



Name of the Transformer class to obtain the closest service address from (i.e. the feature class that serves as the origin in the premise relationship). 




		



Text(50) 










		



TransformerClassPremiseKey 




		



Name of the field in the transformer class that serves as the key for the premise relationship. 




		



Text(50) 










		



CustomerTableName 




		



Name of the SDE customer table that contains the service addresses. 




		



Text(50) 










		



CustomerTablePremiseKey 




		



Name of the field in the customer table that serves as the key for the premise relationship. 




		



Text(50) 










		



AddressFields 




		



The exact names of the customer table address fields that are desired in the attribute, in the exact order they are desired in. 




		



Text(255) 










		



PremiseCompanyKey 




		



Name of the Company field in Premise table 




		



Text(50) 










		



CustomerCompanyKey 




		



Name of the Company field in Customer table 




		



Text(50) 





















For example, a transformer class named "Transformer" contains a key field named "PremiseNumber". This is the key in a class relationship to the customer table called "Customer" that has the key field "Premise_ID" located in the same geodatabase. 




Meanwhile, the address fields in the "Customer table that are required for the service address attribute are "STREET_NUMBER", "STREET_NAME", "STREET_TYPE", and "STREET_DIRECTION". These fields need to be entered in the "AddressFields" field in comma delimited form, ensuring the field names as exactly as they appear in the "Customer" table, and in the exact order they are desired in. 




Such an example would look like the following: 















		



Parameter 




		



Value 










		



TransformerClassName 




		



"Transformer" 










		



TransformerClassPremiseKey 




		



"PremiseNumber" 










		



CustomerTableName 




		



"Customer" 










		



CustomerTablePremiseKey 




		



"Premise_ID" 










		



AddressFields 




		



"STREET_NUMBER, STREET_NAME, STREET_TYPE, STREET_DIRECTION" 










		



PremiseCompanyKey 




		



"COMPANY" 










		



CustomerCompanyKey 




		



"COMPANY_CD" 














As an example, this spatial query may result in the following attribute being added to a fuse feature in the extract (mp) file:  




ATTRIBUTE[Fuse.CLOSEST_SERVICE_ADDRESS]="1598 Maple Ave E"; 








OEBPS/Text/part0245.xhtml






Introduction 




This document describes the Generic WebSphere MQ Mobile Adapter that can be used by Oracle Utilities Network Management System customers to exchange data with external mobile data systems using MQSeries messages formatted using XML. The reader is assumed to have a working-level knowledge of Oracle Utilities Network Management System mobile data systems, XML, and MQSeries technologies.  








OEBPS/Images/image00723.jpeg
Scenario 1: Edits Directly Scenario 2: Edits Pushed
Off Extract Version To Extract Version

Bitract or Cunent version TR TI T TS

OMS Propossd |

Work Order |

Work Orcer 2





OEBPS/Text/part0127.xhtml






Freeze Naming Conventions 




The naming convention is to prefix the valid freeze version with "Freeze_" and suffix with the work order name for the extract process. In this manner, valid freezes can be identified "at-a-glance" while their specific purpose is also revealed. Of course, the description attribute for the version is also populated to reflect the purpose of the freeze. 




Temporary or working freezes are prefixed with "Extract_" and suffixed with a date stamp. These versions are for internal purposes only, and should be automatically cleaned up (removed) by the Adapter when it is launched after a few days. 








OEBPS/Text/part0248.xhtml






Functional Description 




The purpose of this section is to describe the basic functional capabilities of the Generic WebSphere MQ Mobile Adapter, as applied to the integration of Oracle Utilities Network Management System with mobile data systems (MDS). While a high-level graphical description is provided here, detailed descriptions are provided in subsequent sections. 






[image: ]










OEBPS/Text/part0128.xhtml






Managing Freezes 




To optimize the database, versions should be managed. The administrator can specify in the application reference database (in the "NumDaysToKeepFreeze" field of the "Defaults" table) the number of days that valid freeze versions should be kept. Past that date, freezes will be automatically deleted on the next launch of the Adapter. Note that a value of zero (0) in this field means "keep the freeze versions indefinitely." 




At their discretion, a system administrator can manually delete freeze versions and compact the database. However, be aware that if the latest freeze version is deleted, past state information will be lost and there will be no way to detect database changes since the last successful extract. In other words, the Adapter’s change detect tool will not work the next time an extract is required. In this case, it would be up to the GIS maintenance team to manually determine the appropriate partitions for extraction. 








OEBPS/Text/part0007.xhtml






Common Terminology 




The following terms and acronyms are used in one or more adapter descriptions. 








		





Term 






		





Definition 












		





CIS 






		



Customer Information System. 










		



DMS 




		



Distribution Management System. 










		



DTD 




		



Document type definition, used to define XML documents. DTDs were a precursor to XML schemas. 










		





Generic IVR Adapter 






		



A Unix application that generally executes on the  OMS server machine. It supports the Trouble Call, Event Status, Affected Customers, Callback Request and Callback Response Data Flows.










		



HA 




		



High Availability, where Oracle Utilities Network Management System is configured with a pair of redundant servers. This is usually in the form of a hardware cluster and a shared drive that contains the database. 










		





Isis 






		



Isis is a real-time implementation of message oriented middleware and comprises the  NMS backbone, providing access to the server for each client and the communication required between tools and services.










		



IVR 




		



Interactive Voice Response system. 










		



JMService  




		



Job Management Service. The Oracle Utilities Network Management System call processing and outage prediction engine. 










		



MQSeries 




		



A queue-based messaging system developed by IBM. This system has been renamed to WebSphere MQ. 










		



NMS 




		



Oracle Utilities Network Management System. 










		





ODService  






		



Object Directory Service. ODService improves performance of the NMS by caching large amounts of device information that is likely to be requested by applications. This caching allows the requests to be handled very quickly without directly accessing the database. 










		





OMS 






		



Outage Management System. 










		



SCADA 




		



Supervisory Control and Data Acquisition system. 










		



SMService 




		



System Monitor Service. SMService monitors the core processes in the system, essentially the services and interfaces. 










		



XML 




		



XML (Extensible Markup Language), is a subset of the SGML (Standard Generalized Markup Language; ISO 8879) standard. 










		



XML Schema 




		



An XML standard for defining XML documents. 










		



XSL 




		



XML Stylesheet Language Family; a family of recommendations for defining XML document transformations. Includes XSLT, XSL-FO, and XPath. 

























OEBPS/Text/part0249.xhtml






Functional Requirements 




The key requirements for the current implementation of the Generic WebSphere MQ Mobile Adapter are: 








		

•




		



Generation of MDS orders based on Oracle Utilities Network Management System events.  





















		

•




		



Updates of MDS orders based on changes to Oracle Utilities Network Management System events. 





















		

•




		



Updates to Oracle Utilities Network Management System events based on updates to MDS orders. 





















		

•




		



Creation and update of crew information based on changes to crews on the MDS. 





















		

•




		



The ability to map multiple events to a single MDS order, based on event relationships in Oracle Utilities Network Management System. This allows groups of events to be viewed as single units of work on the MDS. An example of this is multiple events involved in a set of partial restoration steps. 





















		

•




		



Support for multiple adapters in a High Availability configuration. 





















		

•




		



The capability to send individual field changes to an order when events change so that there is a minimum usage of the limited bandwidth available to transmit data to and from field crews. This requires storing the data last sent to the MDS so that change detection can be used. This data is saved to the database, so that change detection can be used over an adapter shutdown and restart. 





















		

•




		



The ability of data from various Oracle Utilities Network Management System sources to be transformed and combined for transmission to the MDS. The data sources include the Oracle Utilities Network Management System services and the database. Data from the Oracle Utilities Network Management System services will be obtained from both asynchronous notification messages and the use of API calls. 





















		

•




		



The ability of data from the MDS to be transformed and sent to various Oracle Utilities Network Management System destinations, using database updates and API calls. 





















OEBPS/Images/image00727.jpeg
VIEw
o
o
vy
FELoS
EDITOATE

nave.
Toa T
e

TheLE

oeTAL
ATGNENTRELD
ocNo

€orToaTe

omo.

OFFSETVALIDATIONPRIORITY
BREAKTOLERAWCE
ALLOWINTERIORREL ATION

0.
useRnave
ToouTP.

PRIMARY GECGRAPHICENO.
PRIMARYATTRIBUTEQNO
ocNo.

PRIMARYOETALONO
EDITOATE
NMBERCENOOES
IMPORTFEATURENAME
REPLAGE

Nave
ALTERNATEGEOGRAPHICNO
LocALECoMMENT

MeERGE
CLASSIFICATIONANO.

TDENTIFIERVIEW.
BuLkEDIT
ICONORDINAL

CONTENT
EDITOATE
LOGRLECOMMENT

FLTER
FILTERGRDINAL
o
EorDATE






OEBPS/Text/part0006.xhtml






Conventions 




The following text conventions are used in this document: 








		



Convention 




		



Meaning 










		





boldface 






		



Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. 










		





italic 






		



Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. 










		





monospace 






		



Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. 

























OEBPS/Text/part0129.xhtml






Running the Adapter 




The Adapter can be run either in the background with command line parameters or interactively with a GUI. In any event, ensure the application reference database file has been customized prior to first running the Adapter. 








OEBPS/Text/part0250.xhtml






Hardware and Software Requirements 




The purpose of this section is to describe the environment relevant to this interface.  




Oracle Utilities Network Management System Environment 




The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system. 




Adapter Server 




The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server: 








		

•




		



All Oracle Utilities Network Management System UNIX operating systems are supported 





















		

•




		



IBM WebSphere MQ 6 messaging product (Note, however, that the queues may reside on a remote machine) must be installed.  





















		

•




		



A LAN connection to the Oracle Utilities Network Management System server must be available 





















		

•




		



ISIS must be installed and configured 

















Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy. 




Oracle Utilities Network Management System Server 




The Oracle Utilities Network Management System server environment is typically deployed on one or more UNIX servers configured with the following: 








		

•




		



UNIX operating system 





















		

•




		



Oracle RDBMS with Oracle Utilities Network Management System model 





















		

•




		



Oracle Utilities Network Management System service processes 





















		

•




		



LAN connection to adapter server 





















		

•




		



Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table. 





















		

•




		



ISIS  





















OEBPS/Images/image00728.jpeg
% Netd Assistant - Ci\oracle\oraB1 \NETWORK\ADMINY

Eile Eait
& S-¥2Nets Configuration fice Identification

2 Local
vice Namo
@ o | Advancod..

semee Naming i
Connection Type:
umnevs o Release 8.0 Com

Oracle Names Servers
onfiguration






OEBPS/Text/part0008.xhtml






Generic IVR Adapter 




This chapter includes the following topics: 








		

•




		





Introduction 

























		

•




		





Supported Application Data Flows 

























		

•




		





Interaction Diagram 

























		

•




		





Data Flow Details 

























		

•




		





Adapter Installation 

























		

•




		





Software Configuration 

























		

•




		





SRS Rules Configuration 

























		

•




		





Database Schema 

























		

•




		





Terminology 

























OEBPS/Images/image00726.jpeg





OEBPS/Text/part0003.xhtml






Preface 











Please read through this guide thoroughly before beginning an installation or configuration of any supported adapters for the Oracle Utilities Network Management System.  








OEBPS/Text/part0132.xhtml






Populate the Required Relationship Tables 




The RequiredRelationships table of the Adapter’s configuration database file AItoCentricity.mdb is used to indicate which relationship between classes and objects in the GIS database should be traversed and extracted. It could be cumbersome to manually identify every available feature relationship in the ArcGIS database and populate this table. Using this SQL query to the GIS database, you can get a listing of the relationships in the GIS model: 




SELECT GDB_FeatureDataset.Name as DatasetName,  




    GDB_ObjectClasses.Name as Parent,  




    GDB_ObjectClasses_1.Name as Child ,  




    GDB_RelClasses.ForwardLabel as Label1 ,  




    GDB_RelClasses.BackwardLabel as Label2 




FROM (GDB_RelClasses  




    INNER JOIN ((GDB_ObjectClasses  




    INNER JOIN GDB_FeatureClasses   




    ON GDB_ObjectClasses.ID = GDB_FeatureClasses.ObjectClassID)   




    INNER JOIN GDB_FeatureDataset  




    ON GDB_ObjectClasses.DatasetID = GDB_FeatureDataset.ID)  




    ON GDB_RelClasses.OriginClassID = GDB_ObjectClasses.ID)   




    INNER JOIN GDB_ObjectClasses AS GDB_ObjectClasses_1  




    ON GDB_RelClasses.DestClassID = GDB_ObjectClasses_1.ID  




ORDER BY GDB_FeatureDataset.Name, GDB_ObjectClasses.Name; 











The query results with relationship information, such as Origin Class and destination class and lables, and these can be cut/pasted into the RequiredRelationship table.  








OEBPS/Text/part0253.xhtml






Adapter Installation 




Overview 




This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed: 








		

1.




		



Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as ISIS message bus communication. 





















		

2.




		



WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System. 

















Check if the Generic WebSphere MQ Mobile Adapter is installed 




Verify that the following files are found in their respective folders 








		

•




		



$CES_HOME/bin/mdsgateway 





















		

•




		



$CES_HOME/bin/ces_mds_gateway.ces 

















Configure Adapter to run as NMS System Service 






Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network Management System service by updating  the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.   




See the  $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.    




See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService. 






Note:   In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes.  Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.




Generic WebSphere MQ Mobile Adapter Command Line Options 











The command line for the Generic WebSphere MQ Mobile Adapter provides the following options: 








		

•




		





-install:  Install the adapter as a Service.





















		

•




		





-uninstall:  Un-install the adapter as a Service.





















		

•




		





-override:  Run the adapter as a normal application, not a Service.





















		

•




		





-debug <level>:  Output debug messages to the log from the adapter and all API toolkits.





















		

•




		





-dl:  Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).





















		

•




		





-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).





















		

•




		





-d2:  Output level two and lower debug messages from the adapter, only, to the log. 





















		

•




		





-d3:  Output level three and lower debug messages from the adapter, only, to the log. 





















		

•




		





-logfile <file name>:  The name of the file to output error, warning and debug messages to. If no file name is specified, MDSlog.txt in the folder the adapter is started in is used. If this option is not present, messages are sent to standard output. If the adapter is being run as a Service, it is highly recommended that the full pathname of the log file be provided. The format of the full path name uses double backslashes (\\) rather that a single backslash (\). For example: c:\\mdsg\\ Mdslog.txt.





















		

•




		





-relog <relog time in hours>:   The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.





















		

•




		





-dbserver <database server name>:  Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.





















		

•




		





-waitfor <service name>:  The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature





















		

•




		





-maxwaitfor <time in seconds>:  The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).





















		

•




		





-dmldir <directory path>:  The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

















Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.  




Optionally Configure the Adapter to Run with another Instance of DBService 




In  $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.






Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.




Configure the WebSphere MQ Server 




References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.  




Create New Queue Manager 




From WebSphere MQ Explorer tree, select: 








		

•




		



Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager  





















		

•




		



Queue Manager (name) = NMS_MGR.A  





















		

•




		



Check Make this the default Queue Manager (indicating yes)  





















		

•




		



Click Next - use default settings (circular logging)  





















		

•




		



Click Next - use default settings (start queue manager)  





















		

•




		



Click Next - uncheck "create listener configured for TCP/IP"  

















Create New Queues (2) 




From WebSphere MQ Explorer tree, select: 








		

•




		



Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue  





















		

•




		



Queue Name = NMS.A.FROMNMS  





















		

•




		



Click  OK - use all default settings 





















		

•




		



Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A   ==> Queues ==> New ==> Local Queue  





















		

•




		



Queue Name = NMS.A.TONMS  





















		

•




		



Click OK - use all default settings  



















Note:  At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following: 








		

•




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues 

















This should display a list of queues.  








		

•




		



Right click on the desired queue to bring up a menu containing selections for Status and Put test message.  

















Create Server Connection Channel 








		

•




		



From WebSphere MQ Explorer tree, select  





















		

•




		



Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel  

















A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL  








		

•




		



In the General tab, the Channel Name is SCH1  





















		

•




		



In the MCA tab, the MCA User ID is the local login userid 





















		

•




		



Click OK - use all default settings  



















Note:  At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following: 








		

•




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.  

















This should display a list of connection channels.  








		

•




		



Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.  





















		

•




		



Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".  

















Create New Queue Manager Listener Service 




The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.  




Stopping the original default Q manager listener 








		

•




		



Select Console Root ==> WebSphere MQ Services (local) ==> ( the original default queue manager name). 

















This will cause a list of services to be displayed, one of which is the "listener" service.  








		

•




		



Right Click on "listener ==> properties" and stop the listener.  





















		

•




		



Change the startup from Automatic to Manual.  

















This listener should no longer start-up at reboot.  




Create new Q manager listener for new Q manager 








		

•




		



Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.  

















This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.  








		

•




		



The Parameters tab port number must be 1414.  





















		

•




		



The General tab startup type should be "Automatic".  





















		

•




		



Then press the "start" button on the General tab.  





















		

•




		



To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties  

















Configure the MQ Client  




Set environment variables 








		

•




		



The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:  



















export MQSERVER=SCH1/TCP/10.115.3.85  










		

•




		



The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples: 

















export MQCHLLIB=/users/proj/MQ 




export MQCHLTAB=AMQCLCHL.TAB 








		

•




		



To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:  



















http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/csqzal10203.htm 










		

•




		



View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER 

















Test the connection between MQ Client and MQ Server 




Test the server connection channel (amqscnxc) 








		

•




		



On the Unix command line, type in the following command:  

















/usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A 




where:  








		

•




		



-x is the IP address of the MQ Server host  





















		

•




		



-c is the Server Connection Channel Name  





















		

•




		



the third parameter is the desired Queue Manager Name  

















Test ‘putting’ a message from Server to Client (amqsputc) 








		

•




		



On the Unix command line, type in the following command:  

















/usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS 




<MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end 








		

•




		



The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:  

















Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages  




Test ‘getting’ a message on Client from Server (amqsgetc) 








		

•




		



First "get" the message just written  

















/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end  




Test ‘putting’ a message from Client to Server using WebSphere MQ GUI 








		

•




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message  





















		

•




		



Paste the following into "Message Data":  





















		

•




		



<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>  





















		

•




		



Click OK.  

















The following message should be displayed: "The test message was put successfully (amq4016)".  




Test ‘getting’ a message on Server from Client (amqsgetc) 




On the Unix command line:  




/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end 








OEBPS/Images/image00731.gif
Customer updates

Trouble calls,
Callbacks

R

call
Taking

Generic CIS/
IVRMQ
Adapter

!

Customer status,
Trouble calls,
Customer history

Cther

Queries,
Transactions,
Conditions,

IS1S Message Bus

Oracle NMS

WebSphere MQ Gateway Context





OEBPS/Text/part0002.xhtml




Oracle Utilities Network Management System Adapters Guide, Release 1.10.0.6



E36983-01



Copyright © 1991, 2012 Oracle and/or its affiliates. All rights reserved.



This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.



The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.



If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:



U.S. GOVERNMENT RIGHTS



Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.



This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.



Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.



This software or software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.









OEBPS/Text/part0133.xhtml






Usage Scenarios 




This section presents several usage scenarios for the AItoCentricity data Adapter. 








		

•




		





Manually Selected Partitions (no change detection) 

























		

•




		





Save and Recall a Partition Queue 

























		

•




		





Load Partition Queue from Externally Generated Source 

























		

•




		





Bypass Use of the ESRI ArcSDE Database Versions 

























OEBPS/Text/part0254.xhtml






Configure Queues for Required Data Flows 




All incoming (with respect to NMS) data flows would go through the NMS.A.TONMS queue. All outgoing messages would go through the NMS.A.FROMNMS queue. Additionally, an error queue is intended for all adapter generated error messges. 




These queues must be added to the DML configuration with the following parameters: 




config_QueueManager_name 




config_OutQueue_ <id>_name




config_InQueue_ <id>_name




where  <id> is a unique identifier to differentiate between multiple output or input queues.















OEBPS/Images/image00732.gif
Mobile Data System

MDS Gateway

MDS Gateway

i

i

Inersys

Oracle Uiies Network

Managemen System






OEBPS/Text/part0005.xhtml






Related Documents 








		

•




		



Oracle Utilities Network Management System  Installation Guide























		

•




		



Oracle Utilities Network Management System  Configuration Guide























		

•




		



Oracle Utilities Network Management System  User’s Guide























OEBPS/Text/part0130.xhtml






Launching Adapter with Command Line Parameters 




The Adapter can be launched in a non-GUI mode from the Windows command line with parameters. However, because this launch method is "silent," no visual feedback will usually be provided to the workstation screen except for error reports. The user will have to view the output directory in order to determine progress. 




As a result, the Windows scheduler can be used to schedule an automatic extract process. Instructions on configuring and using the scheduler can be obtained through Microsoft’s Help files, or through the scheduler wizard (available in Windows 2000). 




When launching the Adapter in non-GUI mode, only the non-GUI launch flag is required, while all other command line parameters are optional. If a parameter is omitted, the default is assumed. Note the default dataset or partition parameters that will be used should be already defined by the user in the "Defaults" table of the application reference database. 




The command line usage is: 




"[install directory]\AItoCentricity.exe" -nongui [-?] [-d dataset] [-r reference] [-p partition] [-w workorder]                        [-o] [-e extract] [-q queue] 















		



Option 




		



Description 




		
















		



-nongui 




		



(required) Indicates to launch Adapter in non-GUI mode. 










		



-? 




		



Command Line Help 










		



-d dataset 




		



Dataset(s) to process; separate with commas (e.g., -d electrical,landbase) 










		



-r reference 




		



Path of application reference database file (e.g., -r c:\myrefdb.mdb) 










		



-p partition 




		



Partition type to use; as in PartitionReference table (e.g., -p Electric_Tile) 










		



-w workorder 




		



Workorder directory to create (e.g., -w Nov20-01) 










		



-o 




		



Force an Overwrite of existing workorder and version (if existing ones are found) 










		



-e extract 




		



Extract type to perform; 'FACILITY' for facility data (default) 'NON' for non-facility data (i.e. landbase) (e.g., -e NONFACILITY) 










		



-q queue 




		



Method to queue partitions; 'ALL' queues all partitions (e.g., -q ALL) 'CD' uses change detection to queue (e.g., -q CD) (default) Specifying a valid (existing) selection set name will queue the partitions identified in the partition queue table for that selection set (e.g., -q ‘WeeklyLandbaseExtract’) 


















OEBPS/Text/part0251.xhtml






External System Environment 




The external system is any system that can exchange information with Oracle Utilities Network Management System through an adapter. The environment of the external system has the following capabilities: 








		

•




		



Any operating system which supports IBM WebSphere MQ messaging 





















		

•




		



IBM WebSphere MQ messaging product 





















		

•




		



Applications that can request or publish information in a manner which is either directly or indirectly (through a translator) compliant with the XML specifications contained within this document via queues 





















		

•




		



Queues must be pre-configured 





















		

•




		



IBM WebSphere MQ Integrator can be used as needed for routing and translation. 





















OEBPS/Images/image00729.gif
NMS NMS
GiElectric Maintenance Prodetion
Oracle Model Model
Database [
Modal Build Production
I Service Model Build
otjects ant imports Model Sorvice
Preprocessed
Oracle iy b
GlElectric Cmb fles)
Extractor t
NMS
Preprocessor
Extracted
workorder
Retrieve
(il Extracted
Work Orders
to NMS

Server






OEBPS/Text/part0004.xhtml






Audience 




This document is intended for the administrator and the engineers responsible for installing and configuring Oracle Utilities Network Management System adapters. 








OEBPS/Text/part0131.xhtml






Launching Adapter Interactively 




The AItoCentricity program can be launched from the Windows Start button Program - SPL’ AItoCentricity submenu. As it starts, a splash screen appears.  




After a few moments, the program will then configuration screen for the ArcGIS adapter. This screen contains four main framed panels. The top three are categories of information: 








		

•




		



Extract Data 





















		

•




		



Change Detection 





















		

•




		



Data Extraction Parameters 

















Across the bottom of the GUI is the fourth framed panel, the Status panel, where information on the process is reported to the user. Other objects include the work order field, and the extract and cancel buttons. 




Extract Data Panel 




This panel contains information on the Extract version (as defined in the application reference database). This should be the "current" or "proposed" data version for the OMS, and it should contain the modified or most recent data since it is the version that objects and features will be extracted from. 




Change Detection Panel 




This panel contains information for the built-in change detection functionality of the Adapter. If the SDE database is versioned and the "UseSDEversions" field of the Defaults table is checked, then this panel will become enabled. Otherwise, it should remain grayed out. 




If the above criteria are met and the user wishes to perform a change detection, then a Change Detect version must first be chosen in the Version sub-panel. In order to detect changes in the database, the system must have some method of maintaining the database state on the last successful extract. Therefore, the change detect version represents a "check-out" or "freeze" of the data at the point the Adapter last successfully completed. By default, the system will attempt to choose the most recent data freeze, based on creation date. If no previous freeze is detected, then the field is left blank. Note that freeze version names are always prefixed with the string "Freeze_". 




It is possible that a user may want to choose a different version for change detection. Even though the most recent freeze is selected, the drop down list also provides all of the available previous data freezes. Meanwhile the optional ChangeDetectVersionName field in the Defaults table of the application reference database could be populated to override the automatic selection of the most recent freeze. This option is provided for convenience only, and this approach is not recommended unless the potential impact of using a change detect version not created by the system is clearly understood by the user. 




The user can also specify a unique name for the change detection results in the Save Results Set to a Table sub-panel. This is the name of the set that will be saved to the PartitionQueue table when the change detection completes. 




Then, to have the Adapter perform change detection, click the Perform Change Detect button. This will automatically queue partitions that contain objects that are different in the extract version versus the change detect version (which is usually a freeze of the data on the last extract). Because of the intensive database search, reconciliation, and comparisons required for performing change detection, please be aware it may take a while for the Adapter to complete this task. 




Data Extraction Parameters Panel 




This panel contains the data parameters required for conducting the extraction. 




First, partition information for the extract must be specified. For this, the partition type is selected from the Partition Type drop-menu. This is the type of partition to be used for the extract, as defined in the "PartitionReference" table of the application reference database. 




Note that depending on the partition type chosen, the items (partition names) listed in the "Partitions" queue on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition type. 




Next, based on the partition type chosen, the associated datasets must be chosen for the extract. Selecting more than one dataset is allowed, but be aware that objects from all chosen datasets will end up in the same partition model preprocessor output (.mp) file. 




One of three partitions selection modes also must be specified: Manual Selection, Filter by Date, or Filter by Partition Set. 




In Manual Selection mode, the user may manually choose/queue which partitions to extract from the Partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the Partitions list will queue it for extraction. Standard Windows shift-click or alt-click functionality is employed for multiple selects. 




In Filter by Date selection mode, the user can specify dates for filtering the selections or partitions by clicking on the From Date or To Date buttons and interactively double-clicking a date on the calendar control. Then, to apply the date filter and queue the appropriate partitions, the user must click the "Select Partitions by Filter" button. 




In "Filter by Partition Set" selection mode, the user can specify a pre-defined or saved queue or set of partitions by selecting the name of the selection set from the list. Then, to apply the partition set filter and queue the appropriate partitions, the user must click the Select Partitions by Filter button. 




Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively. 




Finally, if the PartitionQueue is not marked as ReadOnly in the application reference database, the user can choose to name and save the currently selected queue of partitions to a set for later use. To do this, enter a unique name in the Name of Partition Set field and click the Save button. 




Extract Launch Controls 




In order to identify the extract results, the user must specify a work order name for the extract. The default name for an extract is a combination of the system’s current date and time (e.g., 2001Aug30-1256), however this can be overridden by simply changing the contents of the Work Order Name field. 




Pressing the Launch Extract button begins the extraction of the specified items. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which if clicked will allow the user to interrupt the extract process. 




Status Panel 




Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays a very rough estimate of the entire work order process (i.e. all feature classes for all datasets within all queued partitions for the extraction), while the Detail Progress field indicates more detailed progress information, such as the specific feature class currently being processed. 








OEBPS/Text/part0252.xhtml






Required Installed Software 




The following lists the required software that needs to be installed prior to any configuration of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter.  




IBM’s WebSphere MQ Version 6  




ISIS (installed as part of the base Oracle Utilities Network Management System installation) 






Note : ISIS is the messaging backbone for Oracle Utilities Network Management System and will already be present on any Network Management System servers. If the Generic WebSphere MQ Adapter is to be executed on a separate server than the Network Management System, then that server must also have ISIS installed and running. Every server installation must be running the same version of ISIS. The CMM_CELL environment variable must be set the same on any servers which are to communicate through ISIS.















OEBPS/Images/image00730.gif
OMS Model

Load selected
pariticns in
quescto
exract

Admnittor
Seec Exict.
T Pattion Group Type ety petticns 1o
Estror - Elecic orLandbase gty
Run Change Detect T
Detect Changed

[~ Partitions






OEBPS/Text/part0158.xhtml






Object Identifier 




The Adapter uses the feature class name and feature ID to identify an object. For example, "Switch 24". Note the feature ID is unique within the feature class. 








OEBPS/Text/part0001.xhtml
















		

[image: logobar.png]



		





Oracle Utilities Network Management System







Adapters Guide



Release 1.10.0.6





E36983-01









December 2012























OEBPS/Text/part0156.xhtml






Partition Details 




The Adapter generates a "partition section" based on the geometry of the selection or tile. It uses the specified feature class as the class name for the partition and an attribute (e.g., "TileID") for the partition’s name. 








OEBPS/Text/part0277.xhtml






 Input Element Arrays 




The declaration of input elements discussed in section  

Input Elements and Attributes 

. can only handle elements whose tags are unique within the bounding parent element (which may be the root element). If such an element appears in the input XML, its value (or those of its own sub-elements) will override the values previously read. Input element arrays solve this problem.




Generally there are two situations that repeated elements are required: 








		

•




		



When the elements contain the same type of data and each should be processed in a similar fashion. For example, a crew logs on when the MDS had previously assigned multiple orders to the crew. Each of these assignments should be made to the crew on Oracle Utilities Network Management System. 





















		

•




		



When the elements contain different types of data, and the individual elements are identified by the value of a particular attribute, in effect giving the element a compound tag. 

















Using an element array with an unspecified index solves the first situation. For example: 











&CrewAssignments 




{ 




&CrewAssignment[] 




{ 




&OrderId; 




&AssignmentStatus; 




} 




} 











This allows any number of elements with the tag ‘CrewAssignment’ to be processed. This can be achieved using the ‘for’ statement described below. 




Using an element array with a specified index attribute solves the second situation. For example: 




&UDFS 




{ 




&UDF[idx]; 




} 











@etr = &UDFS/UDF[et]; 




@troubleType = &UDFS/UDF[tt]; 











which assigns the ‘UDF’ element whose ‘idx’ attribute is ‘et’ to the variable ‘etr’ and the ‘UDF’ element whose ‘idx’ attribute is ‘tt’ to the variable ‘troubleType’. 




Array elements can be given alternate names in the same way as normal input elements, but they cannot be given flags and defaults, as they have no meaning. Individual array indices can be required to be present, using a required index specification. For example: 











&UDFS 




{ 




&UDF[idx] R(et, tt); 




} 











@etr = &UDFS/UDF[et]; 




@troubleType = &UDFS/UDF[tt]; 











Prevents the processing of the input XML when the input XML does not contain a ‘UDF’ element with an ‘idx’ attribute of ‘et’ and contain a ‘UDF’ element with an ‘idx’ attribute of ‘tt’. The required index specification consists of an ‘R’ followed by a comma separated list of attribute values in parentheses ‘(‘ ‘)’. 




While sub-elements to array elements can be given names, their usage differs from normal sub-elements because the appropriate index must be specified. This is done using a format similar to the long form of referencing tags, using forward slashes ‘/’. For example: 




&ancestor 




{ 




&grandparent[idx] 




{ 




&parent 




{ 




&child; 




} 




} 




} 




@son = &ancestor/grandparent[smith]/parent/child; 











uses the full long form. 











&ancestor 




{ 




&grandparent[idx]:::granny 




{ 




&parent 




{ 




&child; 




} 




} 




} 




@son = &granny[smith]/parent/child; 











uses a name for the array element. 











&ancestor 




{ 




&grandparent[idx]:::granny 




{ 




&parent 




{ 




&child:::son; 




} 




} 




} 




@son = granny[smith]/son; 











uses a name for both the array element and its sub-element. 








OEBPS/Text/part0157.xhtml






Feature Extraction 




The Adapter generates Add records for each feature. The Add feature records list the feature, its topology, diagram records, and attribute records 








OEBPS/Text/part0278.xhtml






 For Statement 




The for statement, or for loop, is used to iterate through the contents of an array element. 




The array element can either have a specified index attribute or an unspecified index. The usage is similar. 




For example: 











&CrewId:R; 











&CrewAssignments 




{ 




&CrewAssignment[]:::asn 




{ 




&OrderId; 




&AssignmentStatus; 




} 




} 




if (!findCrewById(&CrewId)) 




{ 




stop; 




} 











for (&asn[], @i) 




{ 




if (isSet(&asn[@i]/OrderId) &&  




    isSet(&asn[@i]/AssignmentStatus) && 




    findOrder(externalId, (&asn[@i]/OrderId)) 




{ 




if (&asn[@i]/AssignmentStatus == ASN) 




{ 




assignCrew(); 




} 




elseif (&asn[@i]/AssignmentStatus == DSP) 




{ 




dispatchCrew(); 











} 




} 




} 











The for statement executes all the statements between the matching brackets ‘{‘ and ‘}’, for each of the elements in the tag array (‘&asn[]’ in this case), in the order that they appeared in the input XML. During execution of the statements the ‘for’ variable (‘@i’ in this case) is set to the elements index in the tag array. As this array did not have an index attribute specified, the variable has a numeric value, starting at zero, and is incremented by one between loop executions. If the XML does not contain the element, the loop is never executed. 




If, instead, the array element had an index attribute, for example: 











&CrewAssignments 




{ 




&CrewAssignment[idx]:::asn 




{ 




&OrderId; 




&AssignmentStatus; 




} 




} 











the loop variable would contain the values for the ‘idx’ attribute included in the input XML. Note, however, that if the XML contained any ‘CrewAssignment’ elements, without an ‘idx’ attribute, these elements would be ignored, and therefore not available for processing. 








OEBPS/Text/part0078.xhtml






OMSA_associated_objects 




A customization hook to extract related objects. A rope or stream of objects should be returned. 








OEBPS/Text/part0077.xhtml






Dataless_rwo_joins 




A customization hook to extract dataless rwos. A rope or stream of objects should be returned.  E.g., used to extract hv_cable_annotation for an hv_cable. 








OEBPS/Text/part0076.xhtml






OMSA_internal_associated_objects 




A customization hook is provided to enable objects that are related to an object within an internal world that exist within other worlds with no join fields available. A rope or stream of objects should be returned. 








OEBPS/Text/part0075.xhtml






OMSA Object ID 




All objects that are exported are assumed to be uniquely identified by a field call omsa_object_id. This defaults to id field on each object, then rwo_id, then key_value 




_method ds_record.omsa_object_id 




        _if _self.responds_to?(:id) 




        _then 




_return _self.id.write_string 




        _else 




_return "????" 




        _endif 




_endmethod 











If the default is inappropriate the object will require the behavior to be over written. 




E.g., Poles are often numbered uniquely by a pole number, resulting in the behavior needing to be overwritten. 




_method pole.omsa_object_id 




                      ## 




                         ## 




              _return _self.pole_id.write_string 




_endmethod 








OEBPS/Text/part0074.xhtml






Prime Location 




The prime location defaults to centerline, then location. If neither of these geometries is suitable, a vector of suitable geometries should be defined called omsa_prime_object. Mapped geometries are taken into consideration if this feature is used. 




E.g., hypernodes are already redefined with the Adapter 




   hypernode.define_shared_constant(:ces_prime_location, 




 simple_vector.new_with( 




 :pin1, 




 :pin2 




       ), 




 _false) 








OEBPS/Text/part0073.xhtml






Object Configuration 




The following sections describe the individual objects that can be configured for Oracle Utilities Network Management System Smallworld GIS adapter. 








OEBPS/Text/part0072.xhtml






Visibilities 




The adapter requires that a definition of the objects to be extracted be defined. This consists of a number of aspects: 








		

•




		



Which fields are going to be exported for each object 





















		

•




		



What is the prime geometry for an object that defines which tile the object is to be associated with. In Smallworld it is possible to define multiple geometries against the object, but typically only one is of importance. This is not important for non-tile based extraction. 





















OEBPS/Text/part0071.xhtml






Map Tiles  




Need to set-up the OMSA Map Tiles grids. These can be any size and shape. Ideally, the map sheets should be defined as a true square using conformal map projections. It would be normal to define the grid in the default coordinate system. 




The tile size is defined to be the most efficient at the Oracle Utilities Network Management System model build and import stage. The impact on the size is fairly negligible on the Smallworld side unless the amount of objects in a tile is extremely large. A target of 3-5000 objects for data that is expected to be attributed with Oracle Utilities Network Management System, otherwise for "dumb" background a target of 10,000 is more appropriate. 




For non-tile based extraction e.g., feeder omsa_map_tiles need to be created and match the feeder names 




Sample grid code is supplied. Refer to ..\SPL_OMS_400\modules\lib\SPL\util\grids.magik 




For simple testing purposes you can manually define a Map sheet. 








OEBPS/Text/part0070.xhtml






Setting up the Oracle Utilities Network Management System Smallworld Adapter 




The following section describe how to set up the Oracle Utilities Network Management System Smallworld GIS adapter. 








OEBPS/Text/part0069.xhtml






GE Smallworld CST 4.0 Systems 




The Oracle Utilities Network Management System modules should be loaded as a separate layered product - SPL_OMS. 






[image: ]






The key components, depending on whether electricity, gas or a combination of both is required, are: 








		

•




		



spl_oms_smallworld_adapter_component, spl_oms_smallworld_adapter_component_gas_extras and/or spl_oms_smallworld_adapter_component_electrical_extras ces_centricity_engine_gas_extras 





















		

•




		



spl_oms_smallworld_adapter_batch 





















		

•




		



spl_oms_smallworld_adapter_swaf and/or spl_oms_smallworld_adapter_grs 

















The dependencies contained in the module definition will ensure the correct loading of modules provided customer Smallworld images are built from software components. 




A number of data model specific modules are provided for use with the numerous electrical starter kits. They include: 








		

•




		



omsa_hypernode 





















		

•




		



omsa_two_pin_device 





















		

•




		



omsa_hierarchical_rwo 





















		

•




		



omsa_world_owner 

















The source code is not provided. All requests for access to the source for modification, bug fixes, etc. should be referred back to Oracle. 








OEBPS/Text/part0279.xhtml






 Queue Specification  




The queue specification is used to specify the queue that XML from Output Documents are sent to, and the queue that input XML is received on to be processed by Input Documents. The queue specification appears in the header portion of the document. For example: 











queue = NMS.TO.MDS.REQUEST; 











Which sets the queue name to a constant. Commonly, the queue is set to the value of a field in the global object to facilitate the configuration of the queue names. 




Output Documents can change the queue name by accessing the queue variable in the body of the document. For example: 











If (@use_alternate_queue) 




{ 




@queue = $G.alternateQueue; 




} 















OEBPS/Text/part0161.xhtml






Coded Value Look Up 




In G/Electric there are no coded values, instead it provides the Value List for feature attributes for which user input should be limited to the system provided values. Because there are no coded values in the GIS database, the Adapter does not need to perform any coded value look up. 








OEBPS/Text/part0282.xhtml






 The Root Element 




The root element is the element that contains all of the other elements in an XML document. The root element in dml serves a different purpose depending on whether it is part of an Output or Input Document. 




In an Output Document, it is used to generate the root element in the XML to be sent. In an Input Document it is used to select the Input Document or Documents that the input XML can be processed by, similar to a trigger for an Output Document. An example of a root element follows: 











&RootElement <environment = $G.environment; revision = "1.0.0";> = CreateJob; 











The root element has the same format for both Input and Output Documents. 




The root element differs from other elements in that the element’s tag is defined by the value of the element, ‘CreateJob’ in this example. The pseudo-tag ‘RootElement’ keyword identifies it to be the root element.  




In an Output Document, the example would generate the following start element tag: 











<CreateJob environment="Test" revision="1.0.0"> 











assuming that the global field ‘environment’ held the value ‘Test’. 




To select an Input Document, the input XML’s root element must have the same tag, and all the attributes in the root element specification must be present and have exactly the same contents. Extra attributes in the XML’s root element are ignored. 




An Input Document with the same root element definition example above would be selected by the root element in the example above. 




The root element is defined in different areas, depending on the type of document. 




In an Output Document the root element is in the body of the document, because it’s tag may have to be determined during document processing. It is the only element in an Output Document that is an exception to the rule that states that elements are generated in the order that they appear in the Output Document. 




In an Input Document the root element is the header of the document because it is used before any processing is done in the document. 








OEBPS/Text/part0162.xhtml






Names Containing Space Characters 




It is possible for GIS feeder names or class user names to contain spaces (e.g., "Overhead Line). However, the Oracle Utilities Network Management System model build process does not recognize or accept class names with spaces, so a conversion must be made. 




The accepted convention is that all spaces be substituted with underscores (e.g., "_"). Therefore, if source data class names have spaces in them, the final output model preprocessor (.MP) files will have underscores substituting the spaces. An example would be a class named "Overhead Line". The ADD statement in the extract output file will show the name "Overhead_Line" instead. 








OEBPS/Text/part0283.xhtml






 The Base Path 




The base path only applies to Input Documents, and is not necessary, but can make Input Documents more compact. Consider the following XML: 











<ConfirmJob> 




 <ApplicationArea> 




 </ApplicationArea> 




 <DataArea> 




  <Job> 




   <OriginalApplicationArea> 




    <BODId>OrigBODId</BODId> 




   </OriginalApplicationArea> 




   <CreateSuccess> 




    <JobNumber>1234567890</JobNumber> 




   </CreateSuccess> 




  </Job> 




 </DataArea> 




</ConfirmJob> 











The XML could contain many other elements, but the ‘BODId’ and ‘JobNumber’ are the only elements to be processed. The elements in the Input Document would be: 











&DataArea 




{ 




&Job 




{ 




&OriginalApplicationArea 




{ 




&BODId; 




} 




&CreateSuccess 




{ 




&JobNumber; 




} 




} 




} 











Note that ‘BODId’ and ‘JobNumber’ have a common grandparent ‘Job’. By setting the base element to the grandparent by adding: 











BasePath = DataArea/Job; 











to the document’s header, the elements would become: 











&OriginalApplicationArea 




{ 




&BODId; 




} 




&CreateSuccess 




{ 




&JobNumber; 




} 















OEBPS/Text/part0159.xhtml






Connectivity 




The Adapter determines the connected (or networked) objects by analyzing the G/Electric connectivity component. The connectivity (topology) is established using the Node1 and Node2 ID attribute, a unique index number in the connectivity component. 




The Oracle Utilities Network Management System AttTopoBuild program uses the GIS provided Port (Node) information to generate topology. 








OEBPS/Text/part0280.xhtml






 Association of an Output Document to the Order Object 




The order document must have an associated Output Document that generates the Order creation (usually) and update (always) XML. It is used to cache all the element data that is used for change detection. This association is achieved using the associate specification in the document header which takes the form: 











associate = O; 











where the ‘associate’ is the associate keyword and the ‘O’ identifies the Order Object. 








OEBPS/Text/part0160.xhtml






Geometric Information 




The Adapter determines the geometry of the object and uses it to extract the coordinates scale, height, angle, and justification of the object.   








OEBPS/Text/part0281.xhtml






Triggers 




Triggers specify when Output Documents are activated to generate XML to be sent to the MDS. For example: 











trigCreateOrder < SRSoutput; > =  




($E.status == "ACK") && !findOrder(event, $E.outageHdl); 











might be used to trigger the creation of an order.  




The ‘trigCreateOrder’ is the trigger’s name. The value of a trigger is available to the body of the document in a variable with this name.  




The angle brackets, ‘<’ and ‘>’, contain the trigger specification(s), which define the circumstances under which the trigger is to be tested. In this case the arrival of an asynchronous ‘SRSoutput’ message.  




After the assignment is the expression which determines when the trigger is to be fired. The expression is evaluated and if it is true, i.e. not the empty string, the trigger is fired. The result of this evaluation is then assigned to the trigger variable. In the example, the trigger will fire if the event is in the acknowledged state and no order has been created for the event. 




If an expression is not supplied, the trigger always fires when the trigger specification is satisfied. In this case, its value is set to ‘Y’. 






Triggers can also have the ‘send on change’ ‘S’ flag set . If not set, all elements in the document are sent in the resulting XML. If set, only those elements that have changed are set. For example:











trigUpdateOrder:S < SRSoutput; > =  




(!isIn($E.status, "UNA", "CNL") && findOrder(event, $E.outageHdl); 











There can be multiple triggers, only one of which is fired. The triggers are evaluated in order of their definitions and the first to fire takes effect.  The unfired triggers all have a value of false.






There are a number of types of trigger specifications. In some cases they need values. They are: 








		

•




		



The reception of a SRSoutput message. The trigger specification is ‘SRSoutput’, which has no value. Examples of the SRSoutput trigger are shown above. 





















		

•




		



When an event is deleted. This occurs when outages are merged, and when a previously processed event is not returned by SRSService at start up. The trigger specification is ‘ EventNonexistent’, which has no value. Commonly, this triggers the same Output Document that handles event cancellation. The event is supplied in trigger parameter 1. An example of an event non-existent trigger is:
























triggerEventNonexistent<EventNonexistent;> 




                =  findOrder(order, $T.1) && $O.externalId; 















		

•




		



Periodically. The trigger specification is ‘Periodic’, which needs a value that is the period at which to fire the trigger, in seconds. An example of a periodic trigger that fires once a minute is: 
























trig1min< Periodic=60; >; 















		

•




		



By request in another document, using the ‘triggerOutputDoc’ function. The trigger specification is ‘OnRequest’, which needs a value that is the number of trigger parameters that need to be passed by the requesting document. An example of a request trigger with two parameters is: 
























trigOnRequest<OnRequest=2;> 




                =  findOrder(event, $T.1) && 




                   isIn($E.status, "UNA", "CNL") && 




                   $O.externalId; 















		

•




		



Creation of, changes to the number of events in, and deletion of an event relationship processed by dml. The trigger specification is ‘RelationChanged’, which as no value. The Output Document is activated once for each event in the relationship. The event is supplied in trigger parameter 1. An example of an relationship change trigger is: 
























trigRelationChanged< RelationChanged; > 




= findOrder(event, $T.1) && 




          isIn($E.status, "UNA", "CNL"); 















		

•




		



Deletion of an event relation processed by dml. The trigger specification is ‘RelationDeleted’, which as no value. The Output Document is activated once for the relationship. The relation is supplied in trigger parameter 1. An example of an relationship deletion trigger is: 
























trigRelationDeleted< RelationDeleted; > 




= findOrder(RELATED_OUTAGE, relation, $T.1) && 




        $R.externalId; 















		

•




		



A change to the number of events in an event relation that is aggregated by the adapter. The trigger specification is ‘ AggregateChanged’, which has no value. The Output Document is activated once for the order in which the events are aggregated. The order is supplied in trigger parameter 1. An example of an aggregate change trigger is:
























trigAggregateChanged< AggregateChanged; > 




= findOrder(order, $T.1) && 






      $O.externalId; 













This trigger is often used to ensure that all events in the relation have data updates sent by the MDS before new events are added to the relationship, for example the estimated time to restore. 








		

•




		



An SRSoutput message arrives indicating  number of events are merged. The trigger specification is ‘EventMerged’. Its value specifies the name of an Output Document, known as the Merge Priority Document, which is used to generate the priority of all of the orders associated with the events involved in the merge, if any. The Merge Priority Document must have a request trigger named ‘call’. The Output Document that contains the event merged trigger is known as the Merge Document. There can be zero or one Merge Document in all the dml files processed by the adapter. If no Merge Document is supplied, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers. If a Merge Document is supplied, the adapter processes the SRSoutput message as follows:















1.For each of the events involved in the merge, including the surviving event, the adapter determines whether the event is associated with an order. If so it’s order becomes eligible to be the surviving order, except for a non-surviving event’s order is in an aggregate relationship. If there are no eligible orders, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers. Neither the Merge Document nor the Merge Priority Document is processed. 


2.When there are multiple eligible orders, the adapter must choose which one will become the survivor. The Merge Priority Document provides a priority value to allow this choice to be made. The adapter processes the Merge Priority Document via the ‘call’ trigger. The Merge Priority Document has its order and event objects set. Note that if the event is the surviving event, the previous version of the event object is set. This allows the event object’s fields before the merge to be used to determine the priority.  


3.The Merge Priority Document returns the priority in the trigger argument object. The priority consists of a priority sort definition and one or more priority values. The priority sort definition is returned in the ‘0’ (the character zero) field of the trigger argument object ($T.0). If this value is the empty string, the order is no longer eligible to survive. If not empty, it defines the number and sort order of the priority values. The priority values are returned the ‘1’, ‘2’, … fields ($T.1, $T.2, …), up to the number of values. The number of characters in the priority sort definition determines the number of values expected by the adapter. Each character determines the sort order for the corresponding value, ‘A’ or ‘a’ for ascending and ‘B’ or ‘b’ for descending, the first character applies to $T.1, the second to $T.2, etc. 


4.If there are multiple orders eligible, the one with the highest priority becomes the survivor. Each priority value is sorted alphabetically in the order specified by its character in the priority sort definition. The first value ($T.1) is examined first. If one order ranks higher that all the other, it is chosen. Otherwise, any order with a lower priority is discarded. Then the other values are examined in turn, until an order is chosen. If all the priorities are the same, the order associated with the surviving event, if any, survives. If the surviving event has no order, the order associated with the oldest event survives. For example, the following dml fragment illustrates how to choose the order with the most advanced crew assignment/dispatch status, and if they are equal the order with the oldest event. 











# two priority values, the first descending, the second ascending  




$T.0 = DA; 











# orderCrewStatus() returns ’A’ for Assigned, ‘D’ for dispatched,     ‘O’ for on site, nothing for none 




@ocr = orderCrewStatus(); 




if (@ocr) 




{ 




$T.1 = @ocr; 




} 




else 




{ 




# ‘a’ precedes all of the valid values 




$T.1 = a; 




} 











# formatDateTime() returns the date and time in the format 




# YYYY-MM-DDTHH:MM:SS 




$T.2 = formatDateTime($E.outageTime); 









5.The Merge Priority Document can populate other fields in the trigger argument object, to be used by the Merge Document when the order being processed becomes the surviving order. Note that the Merge Priority Document is processed even if there is only one eligible order so that these fields, if any, can be passed to the Merge Document. 


6.If the surviving order is not associated with the surviving event, the surviving order is re-associated to the surviving event. The order that was associated with the surviving event is re-associated to the surviving order’s old event, so that it can be processed via an event non-existent trigger, to allow normal order clean up. 


7.The adapter processes the Merge Document with the surviving order object and surviving event object set to the new version of the event, and the trigger argument object fields set by the Merge Priority Document when processing the surviving order. 


8.Finally, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers. 











An example of an event merged trigger is: 




TrigEventMerged <EventMerged="OrderMergePriority";>; 




For this to be valid, there must be an Output Document named ‘OrderMergePriority’, with a request trigger named ‘call’. 








OEBPS/Text/part0165.xhtml






Programs and Files 




The Oracle Utilities Network Management System G/Electric Data Adapter program, configuration database, help file, and other associated files, are supplied in a standard self-extracting Oracle Utilities Network Management System G/Electric Data Adapter Installer. The following files will be installed in the user-selected installation directory. Default installation directory is "C:\Program Files\OracleTUGBU\Oracle GElectric data Extractor". 








		

•




		



Oracle Utilities Network Management System G/Electric Data Adapter Program (GElec2Oracle.exe) 





















		

•




		



Oracle Utilities Network Management System G/Electric read me file. (readme.rtf) 





















		

•




		



Oracle_NMS_GElectric_Extractor_User_Guide.pdf 





















		

•




		



Oracle_NMS_GElectric Extractor Installation Guide.pdf 

















The following reference files will be copied to the Reference subdirectory under the user-selected installation directory: 








		

•




		



Oracle Utilities Network Management System G/Electric Data Adapter On-line Help document (gelec2spl.chm) 





















		

•




		



Oracle Utilities Network Management System G/Electric Data Adapter Configuration Database (GElec2Oracle.mdb) 





















		

•




		



Oracle Utilities Network Management System G/Electric Data Adapter custom scrip to create the v_spl_fidfno View object (create_spl_view.sql) 





















OEBPS/Text/part0286.xhtml






 Configuration Documents 




Configuration Documents are used to set configuration data and load configuration tables from the database at initialization time. They are similar to Input Documents, but have no elements. 




They are processed at initialization time and then discarded. Any errors encountered when processing a Configuration Document should be made fatal by executing a stop statement, causing initialization to fail. 




Common uses are to set fields in the global data object, including configuration fields, and to load mapping tables, used by the ‘mapTableStr’ and ‘mapTableCode’ functions described in  

DML Function Calls

. For example:











ConfigDoc Configure 




{ 




# fields for other documents 




$G.OutRequestQueue=NMS.MDS.REQUEST; 




$G.OutErrorQueue=NMS.ERROR; 




$G.InReplyQueue=MDS.NMS.REPLY; 




$G.InRequestQueue=MDS.NMS.REQUEST; 




$G.environment=Test; 











# configuration parameters 




$G.config_QueueManager_name=OPS; 




$G.config_OutQueue_req_name=$G.OutRequestQueue; 




$G.config_OutQueue_err_name=$G.OutErrorQueue; 




$G.config_OutQueue_numThread=5; 




$G.config_InQueue_rep_name=$G_InReplyQueue; 




$G.config_InQueue_rep_numThread=2; 




$G.config_InQueue_req_name=$G.InRequestQueue; 




$G.config_InQueue_req_numThread=4; 




$G.config_ErrorQueue_name=$G.OutErrorQueue; 




$G.config_ErrorDoc_name=Error; 




$G.config_ErrorDoc_trigger=xmlErrorTrigger; 











$G.config_Relation_Aggregate_AcknowledgeEvents = ack; 




$G.config_Relation_Aggregate_type = PARTIAL_RESTORATION; 




$G.config_Relation_Aggregate_ActiveEvents = Y; 




$G.config_Relation_dml_type = RELATED_OUTAGE; 


















# Load map tables 




if (!loadMapConfigTable(mds_map_config) || 




    !loadMapTable(mds_cls_desc) || 




    !loadMapTable(mds_cls_type)) 




{ 




stop; 




} 




} 











Configuration Field Reference 




Configuration fields have names starting with ‘config_’. The available configuration fields are: 








		

•




		





config_QueueManager_name : The name of the queue manager to use. This field must be specified, or the adapter will exit with a configuration error message.





















		

•




		





config_OutQueue_<id>_name : The name of an output queue to use. Each output queue needs to have a unique id, which replaces the ‘<id>’. The unique id may not contain an underscore (_).





















		

•




		





config_OutQueue_numThread : The number of threads to use to generate output documents. If not specified, one thread is used to generate output documents.





















		

•




		





config_InQueue_<id>_name : The name of an input queue to use. Each input queue needs to have a unique id, which replaces the ‘<id>’. The unique id may not contain an underscore (_).





















		

•




		





config_InQueue_<id>_numThread : The number of threads to use to process input documents arriving on the input queue with the same id. Each input queue needs to have a unique id, which replaces the ‘<id>’. If not specified, one thread is used to process documents on the queue.





















		

•




		





config_ErrorQueue_name : The name of the queue to send XML parse error and warning reports to. This field must be specified, or the adapter will exit with a configuration error message.





















		

•




		





config_ErrorDoc_name : Specify an output document to process error reports. If specified, the config_ErrorDoc_trigger field must be specified. If not specified, the standard XML error document, as specified in the MQ/XML adapter documentation, is used.





















		

•




		





config_ErrorDoc_trigger : The trigger to pull in the error document when there is an error or warning to report. Ignored is no error document is specified. If the specified trigger does not exist in the error document, the adapter exits with a configuration error message. The adapter supplies three trigger arguments to the error document. Argument one is the error or warning message description, argument two is the priority level, one of ‘Warning’, ‘Error’, and ‘Fatal Error’, and argument three is the offending XML document.





















		

•




		





config_Relation_Aggregate_type : A comma separated list of relationship types to aggregate. The relationship types are: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. If a pseudo relationship of a type that is aggregated by the adapter is created using createPseudoRelation(), the pseudo relation is aggregated. If a relationship type is configured for both aggregation and dml processing, the adapter exits with a configuration error.





















		

•




		





config_Relation_Aggregate_AcknowledgeEvents : Acknowledge all unacknowledged events in aggregate relations. The value of this field is used in a call to SRS::requestRowAction() as the button name. This field should be set if pseudo aggregate relations are created on events that may not be acknowledged.





















		

•




		





config_Relation_Aggregate_ActiveEvents : If the field is not the empty string "", sum count data for all active events in an aggregated relation. The count data event fields are: customersOut, crit_k, crit_c, and crit_d.





















		

•




		





config_Relation_dml_type:  A comma separated list of relationship types to be processed by the dml, using the relationship object. The relationship types are: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. If a pseudo relationship of a type that is processed by the dml is created using createPseudoRelation(), the pseudo relation is processed by the dml. If a relationship type is configured for both aggregation and dml processing, the adapter exits with a configuration error.





















		

•




		





config_Relation_dml_AcknowledgeEvents : Acknowledge all unacknowledged events in dml processed relations. The value of this field is used in a call to SRS::requestRowAction() as the button name.





















		

•




		





config_MaxBackoutCount : The adapter uses the MQSeries syncpoint facilities to preserve input messages when there is a failure. Using the MQSeries syncpoint facilities introduces the possibility that a 'poison' message will be sent by the MDS. A 'poison' message is one that can never be successfully processed, for example because an Oracle Utilities Network Management System table has a constraint that the contents of the message violate. If the 'poison' message is never discarded, MDS will continually try to process the message, fail, and then restart. This parameter sets a limit on the number of restarts that MDS will perform before discarding a message. The default value is five. A value of zero disables this feature. If a message is discarded, the error is logged to the log file, including the offending XML, and if the error document is configured, and an error report is sent to the error queue.





















		

•




		





config_Event_QueueDelay : When event data is received in an SRSoutput message, from SRSService, they are held for this period before they are queued for processing. If another message for the same event is received before the delay has expired, the older message is discarded, and the new message is held for the delay period. This avoids unnecessary processing and message transmission when event data is changing rapidly. Setting this delay too short can cause extra messages, while setting it too long can cause poor response. The value is in seconds. The default value is four seconds. A value of zero disables this feature.





















		

•




		





config_Event_ReprocessPeriod : In certain circumstances, for example when more that one event is grouped, the adapter needs to request an event’s status from SRSService. The adapter periodically requests these events’ statuses in a single request, reducing the burden on SRSService. In addition, if an SRSoutput message for one of these events arrives before it is time to do the request, the request does not have to be made. Setting this period too short can cause extra messages, while setting it too long can cause poor response. The value is in seconds. The default value is six seconds. The minimum value is two seconds. It must be at least 2 seconds longer than config_Event_QueueDelay.





















		

•




		





config_Crew_AssignmentCheckPeriod : When the assignment of crews to events is the responsibility of the adapter, as a proxy for the MDS, Oracle Utilities Network Management System can be configured to reduce the possibility of an operator inadvertently assigning a crew to an event. However, it must be possible to assign crews if Oracle Utilities Network Management System cannot communicate with the MDS, hence mistakes can happen. The adapter periodically checks all crew assignments. A sub-set of crew assignments is checked at the end of each period, the events in ten orders, and ten crews for events not in an order being checked each time. Setting the period too short causes unneeded processing, setting it too long delays such mistakes being repaired. The value is in seconds. The default value is six seconds. A value of zero disables this feature.





















		

•




		





config_Crew_MoveAssignmentCheckDelay : When crew assignments are being checked, allowing the checking to occur during event grouping can, in some configurations, cause unnecessary message traffic between the adapter and SRSService. To prevent this, when a grouping happens, crew assignment checking is delayed. The value is in seconds. The default value is two seconds. A value of zero disables this feature.





















		

•




		





config_Relation_CheckPeriod:  When event relationships are processed by the adapter, the adapter loads the relationship database table each time a relationship is created, changed or deleted. In addition, the adapter checks for changes to the table at this period. The value is in seconds. The default value is 30 seconds. A value of zero disables this feature.





















		

•




		





config_IgnoreCondStatus : In most implementations of the adapter, additional alarms in the Oracle Utilities Network Management System Work Agenda should not be processed. The value of this configuration parameter is a list of condition statuses, separated by commas (,), that are to be ignored by the adapter. To ignore additional alarms (often NFY events) set this value to 12.





















		

•




		





config_CompleteStatus : In certain situations the adapter need to be able to determine if an event is complete, for example to prevent the assignment of a crew to a completed event, which is illegal. This can only be determined by examining the status string for the event, which is configurable in Oracle Utilities Network Management System. The value of this configuration parameter is a list of statuses, separated by commas (,), that indicate that an event is complete. The default value of this parameter is CMP, CNL. 





















		

•




		





config_EventUpdateTimeout : When device outages are confirmed and restored (using confirmDeviceOutage() and restoreOutage()), the new state of the event(s) needs to be read from SRSService. Because device operations are initiated by a message to DDService, which sends a notification to MTService to update the model, which subsequently notifies SRSService of the model change, the new state cannot be read immediately, because SRSService may not have received the notification. To avoid this, the adapter waits for an SRSoutput message updating the event before reading the new state. To prevent the adapter from hanging if an event update does not occur, a timeout is used to interrupt the wait. This value is the timeout in seconds. The default value is 20 seconds. The minimum is two seconds.





















		

•




		





config_MaxThreadBusyUntilFatalError : The adapter monitors the input and output threads to detect Mutex deadlocks, which would cause the adapter to hang. This value is the maximum number of seconds that a thread can be responding to a single trigger or input XML document. The default value is 300 seconds (5 minutes). The minimum is 60 seconds.





















		

•




		





config_StopServiceOnHighLevelStop : The adapter runs as a Windows Service, and it usually set to restart after a period after it fails. (This period is often the minimum one minute). If the adapter tells Windows that it has stopped normally, using a Service Stop message, just before exiting Windows does not try to restart the adapter. If the adapter does not send a Service Stop message, Windows will restart the adapter. When the adapter exits due to Stop request from the Service Property dialog, it sends Windows a Service Stop message, because the user is intending that the adapter stops and does not restart. When the adapter exits abnormally, it does not send a Service Stop message so that Windows will restart the adapter. However, when the adapter is sent a high-level stop message from Oracle Utilities Network Management System using the Action command, the user may or may not want the adapter to restart. This value determines whether the adapter sends a Service Stop message under these circumstances. A value of ‘Y’ causes the adapter to send a Service Stop message, while a value of ‘N’ prevents the adapter from sending a Service Stop message. The default value is ‘N’.





















		

•




		





config_AllowCloseOutEventCancel : When this parameter is set to 'Y,' the DML function closeOutEvent will cancel the event instead of completing it, if the appliedRule value OUTAGE_PND_COMPLETE (26) is passed to the function. When this parameter is set to 'N,' the DML function closeOutEvent will not cancel events. The default value is 'Y'.





















		

•




		





config_IgnoreStormmanUpdates : When this parameter is set to 'Y' (default), the adapter will not process TRBL_ERT_UPDATE messages generated when Storm Management recalculates ERTs. When this parameter is to set to 'N' the adapter will process such messages.





















		

•




		





config_AllowManualEntryForSCADA : When this parameter is to set to 'Y,' the adapter will perform manual entry in order to operate a SCADA device in NMS model. When this parameter is to set to 'N' (default), the adapter will not be able to operate SCADA devices.





















OEBPS/Text/part0166.xhtml






G/Electric Data Adapter Installation Phases 




There are four phases to installing the Adapter: application installation, Adapter configuration, Oracle client configuration, and testing: 








		

•




		



Install the G/Electric Data Adapter 





















		

•




		



Populate the Adapter configuration database 





















		

•




		



Configure the Oracle SQL*Net Client 





















		

•




		



Test the Adapter 





















OEBPS/Text/part0287.xhtml






 Pseudo Relationships 




Pseudo relationships can be created by the dml so that all the events on a single device can be processed in the same way as an Oracle Utilities Network Management System created event relationship. The processing of these relationships is configured in a configuration document. 




For example, a probable device outage is created from multiple customer calls grouping to the common transformer, but the crew discovers that there are multiple service problems only affecting some of the customers (perhaps a tree limb took down two service wires). The crew will fix all of the problems, so they do not need multiple MDS orders. When the individual service status is set for the affected customers, all the events generated will be treated in the same way as a partial restoration. (This example assumes that partial restorations are aggregated, and the dml creates a pseudo partial relationship when this situation arises.) 




When all of the events in a pseudo relation are completed, the relation itself is automatically completed. 








OEBPS/Text/part0163.xhtml






Node Reduction 




The interface program does not use a node reduction algorithm to reduce the number of nodes. 








OEBPS/Text/part0284.xhtml






 Stop Statement 




 The Stop statement causes the processing of the current document to stop. It takes the form: 











stop; 











It is usually contained in an ‘if’ statement. Any statements with side effects, for example a SQL Insert, processed before the ‘stop’ do take effect.  




A stop statement prevents an Output Document’s XML from being sent.  




A stop statement in a Configuration Document, described below, causes initialization to fail. 








OEBPS/Text/part0164.xhtml






Partitions with Index Maps 




The G/Electric GIS database is a continuous map. For performance reasons, Oracle Utilities Network Management System requires maps to be tiled, each tile corresponding to an Oracle Utilities Network Management System partition. 




The electrical features are extracted by using the feeder names associated with a source device or listed in the Connectivity table. All the electric devices taking part in forming a feeder are extracted in single MP file. The Adapter also extracts electrical device owner features such as structure and poles in the same MP file. The feeder name is used to name the extracted MP file. 




The spatial data extract requires a GIS polygon feature to extract the data. These polygon partitions can be any size and are not required to be uniform. The optimal sized partition polygon contains less than 5,000 objects (devices, background text, and background graphics). For example, in dense urban areas of the electrical network, smaller size partition polygons can be used. The Adapter can use one of the existing polygon boundary classes or users can define a new Oracle Utilities Network Management System specific polygon boundary class to define the partition polygon. 




A unique text attribute (e.g., "GridID") of the polygon partition feature class will be used to name the extracted MP Files that will become the name of the Oracle Utilities Network Management System partition. 








OEBPS/Text/part0285.xhtml






 Include Statement 




Sometimes it’s useful to have the same set of statements in two different places in a dml file. For example all Output Documents may need the same header, or application area. This can be achieved by placing the repeated statements in another file and then including the file more than once in another file. The following is an ‘include’ statement: 











include ohdr.dml 











 This ‘include’ statement in effect replaces the text ‘include ohdr.dml’ with the contents of the file ‘ohdr.dml’. Files being included can also include other files, but the nesting level is limited to 10 deep so that infinite recursion can be prevented.  








OEBPS/Text/part0147.xhtml






Extract Log File 




The diagnostic product of the Adapter is a log file ("extracting.log"). 




A sample extract log file may look like this: 




=============================================== 




 Process Log File 




 ---------------- 




 ArcGIS to ORACLE NMS Data Extraction Utility for Work Order: 2001Dec30-1258 











 Generated By: AItoCentricity  ver: 3.0.0 




 File Name:    c:\SPL\2001Dec30-1258\extracting.log 




 Date Opened:  01/12/30 12:58:07 




=============================================== 











01/12/30 12:58:07             




01/12/30 12:58:07            Creating temporary freezes for database version OMS Proposed 




01/12/30 12:58:07            Database temporary freeze Extract_Freeze_2001Dec30-1258 created for maintaining state. 




01/12/30 12:58:07            Database temporary freeze Extract_010830125807 created for extracting from 




01/12/30 12:58:07            Open temporary freeze for processing 




01/12/30 12:58:08                Server:    gis_server 




01/12/30 12:58:08                Database:   




01/12/30 12:58:08                Instance:  esri_sde 




01/12/30 12:58:08                Version:   Extract_010830125807 




01/12/30 12:58:08            Class relationships obtained for dataset Electric_Points 




01/12/30 12:59:03            Class relationships obtained for dataset Electric_Lines 




01/12/30 12:59:03             




01/12/30 12:59:03            Partition Type: Electric_Partitions 




01/12/30 12:59:03            Extract Method: Spatial 




01/12/30 12:59:04            ________________________________________ 




01/12/30 12:59:04             




01/12/30 12:59:04            Partition 754490 as file c:\SPL\2001Dec30-1258\754490.mp 




01/12/30 12:59:04             




01/12/30 12:59:04             * DataSet:   Electric_Feeder 




01/12/30 12:59:04             




01/12/30 12:59:04            ConductorJunction 




01/12/30 12:59:06                1 - point 




01/12/30 12:59:06                  - is networked 




01/12/30 12:59:07                  - feature linked annotation 




01/12/30 12:59:07                2 - point 




01/12/30 12:59:07                  - is networked 




01/12/30 12:59:08                  - feature linked annotation 




01/12/30 12:59:08                3 - point 




01/12/30 12:59:08                  - is networked 




01/12/30 12:59:09                  - feature linked annotation 




01/12/30 12:59:09                4 - point 




01/12/30 12:59:09                  - is networked 




01/12/30 12:59:10                  - feature linked annotation 




01/12/30 12:59:10                5 - point 




01/12/30 12:59:10                  - is networked 




01/12/30 12:59:11                  - feature linked annotation 




01/12/30 12:59:11              ElectricLineSegment 




01/12/30 12:59:12                1 - line 




01/12/30 12:59:12                  - is networked 




01/12/30 12:59:12                2 - line 




01/12/30 12:59:12                  - is networked 




01/12/30 12:59:13              PrimaryMeter 




01/12/30 12:59:13                1 - point 




01/12/30 12:59:13                  - is networked 




01/12/30 12:59:14                  - related tabular attributes 








OEBPS/Text/part0268.xhtml






Operator Summary 




In the table below, each operator is followed by its name and an example of its use.  















		



Operator 




		



Description 




		



Example 










		



! 




		



Not 




		



!@bool 










		



+ 




		



Concatenate 




		



"NMS:" + $E.outageHdl.idx 










		



== 




		



Equal 




		



@v1 == @v2 










		



!= 




		



Not equal 




		



@v4 != on 










		



&& 




		



Logical AND 




		



@b1 && @b2 










		



|| 




		



Logical inclusive OR 




		



@b3 || @b4 










		



?  : 




		



Alternation 




		





@bool ? @vtrue : @vfalse 























The not operator is right associative, all the others are left associative. For example,  !!@v means !(!@v), and @v1 + @v2 + @v3 means (@v1 + @v2) + @v3,  and @v1 == @v2 == @v3 means (@v1 == @v2) == @v3.




Each box holds operators with the same precedence. An operator has a higher precedence than those in lower boxes. For example,  @v1 == @v2 + @v3 means @v1 == (@v2 + @v3).




Parentheses can be used to change the precedence. For example,  (@v1 == @v2) + abc would result in "Yabc" if @v1 was the same as @v2, otherwise "abc", while @v1 == @v2 + abc would result in "Y" or "" depending on whether the value of v1 is the same as the value of v2 concatenated with "abc".




Parentheses should be used whenever the precedence is in doubt, especially when a boolean expression becomes more complex. 








OEBPS/Text/part0148.xhtml






Work Order Time Stamp File 




Once the work order extract successfully completes, a zero byte file is created in the extract subdirectory to indicate the time of completion ("WO_TIME_STAMP"). 








OEBPS/Text/part0145.xhtml






Output of Adapter 




The model preprocessor import files (.mp), the log file, and the work order time stamp file are all placed in a folder with the work order name. This folder will appear in the output directory as designated in the "Defaults" table. If change detection was run, a log file of the process will be placed in the root of the output directory. 




Note that if the extract is still in progress or does not complete, the work order time stamp file will not appear in the output directory. The work order time stamp file will only appear if the complete extract finishes successfully. As such, external processes can use its presence as an indicator of a completed extract. 








OEBPS/Text/part0266.xhtml






Configuration 




There are several mechanisms used to configure this interface: 








		

•




		



DML files 





















		

•




		



Database tables 





















		

•




		



Command line options 

















Once the dml files and configuration tables for a customer’s initial configuration have gone into production, a knowledgeable user can make changes to the configuration, as business needs change. For example: 








		

•




		



Change element tags and attribute names in input and output messages. 





















		

•




		



Remove obsolete elements and attributes. 





















		

•




		



Add new elements and attributes. 





















		

•




		



Change the format and contents of elements and attributes in output messages. 





















		

•




		



Change the transformation of data in input messages. 





















		

•




		



Alter business logic. 





















		

•




		



Change the contents of the tables that translate Oracle Utilities Network Management System values to and from equivalent values in the messages to and from the MDS. 





















		

•




		



Change the conditions that trigger the various messages sent to the MDS. 





















		

•




		



Alter the names of the MQSeries queue manager and queues. 





















OEBPS/Text/part0146.xhtml






Model Preprocessor File 




The main products of the Adapter are the Model Preprocessor (".mp") files. There is one preprocessor file for each partition. 




A sample of a model preprocessor file that contains a switch with feature linked annotation and a related SwitchUnit is shown below: 




ADD Switch 97 { 




PORT_A=4.239.1; 




PORT_B=4.240.2; 




DIAGRAM[point] { 




HEIGHT = 0; 




ANGLE = 45; 




SCALE = 1; 




GEOMETRY= 




(401999.99995809,5000249.99990163); 




}; 




DIAGRAM[Switch_Anno] = { 




HEIGHT = 7; 




ANGLE = -44.9999894816408; 




SCALE = 1; 




TEXT = "SW0097"; 




JUSTIFICATION = LL; 




GEOMETRY = { 




(401999.99995809,5000249.99990163); 




}; 




ATTRIBUTE[Switch.FEATURECLASSID]="47"; 




ATTRIBUTE[Switch.OBJECTID]="97"; 




ATTRIBUTE[Switch.SUBTYPE]="Fused Cutout/Switch"; 




ATTRIBUTE[Switch.FACILITYID]="Applebee Junction"; 




ATTRIBUTE[Switch.SYMBOLROTATION]="45"; 




ATTRIBUTE[Switch.FEEDERNUMBER]="F159-J1"; 




ATTRIBUTE[Switch.SCADA]="No"; 




ATTRIBUTE[Switch.OPERATINGVOLTAGE]="14,400 kva"; 




ATTRIBUTE[SwitchUnit.OBJECTID]="455"; 




ATTRIBUTE[SwitchUnit.AMPRATING]="600 Amps"; 




ATTRIBUTE[SwitchUnit.MANUFACTURER]="Westinghouse"; 




ATTRIBUTE[SwitchUnit.PHASEDESIGNATION]="C"; 




ATTRIBUTE[SwitchUnit.SUBTYPE]="Switch Unit with Fuse"; 




ATTRIBUTE[SwitchUnit.FACILITYID]="Applebee Lane"; 




ATTRIBUTE[SwitchUnit.INSTALLATIONDATE]="00/03/19"; 




ATTRIBUTE[SwitchUnit.SERIALNUMBER]="SU_R569-CX89865"; 




ATTRIBUTE[SwitchUnit.MANUFACTUREDATE]="99/07/27"; 




ATTRIBUTE[Switch_Anno.FEATURECLASSID]="88"; 




ATTRIBUTE[Switch_Anno.OBJECTID]="168"; 




ATTRIBUTE[Switch_Anno.FEATUREID]="350"; 




ATTRIBUTE[Switch_Anno.ELEMENT]="BLOB"; 




ATTRIBUTE[Switch_Anno.SHAPE.AREA]="2928.31356"; 




ATTRIBUTE[Switch_Anno.SHAPE.LEN]="248.915904366188"; 




}; 








OEBPS/Text/part0267.xhtml






DML Files 




DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use. 




A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices. 




The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section  

Input Elements and Attributes 

.




Output Elements and Attributes 




The following is an example of a dml statement that will generate an element: 




&Hello = world; 




This will generate the element: 




<Hello>world</Hello> 




The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement. 




Similarly, the statement: 




&Tag < attr1=1; attr2=two; > = ""; 




generates the following empty element with two attributes: 




<Tag attr1="1" attr2="two"/> 




In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string. 




The statements: 




&Tag < attr1=1; attr2=two; > 




{ 




&SubTag1=SubData1; 




&SubTag2=SubData2; 




} 




generate the following element with two attributes, and two sub-elements: 




<Tag attr1="1" attr2="two"> 




<SubTab1>SubData1</SubTab1> 




<SubTab2>SubData2</SubTab2> 




</Tag> 











The ‘{‘ and ‘}’ enclose a list of sub-elements. 




External Data 




So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is: 




&EventDevice=$E.devAlias; 











This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class. 




Data obtained this way can be combined with other data using dml operators. For example: 




&ExternalId = "NMS:" + $E.outageHdl.idx; 











concatenates the constant string ‘NMS:’ (contained within quotes because of the non-alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated: 




<ExternalId>NMS:1234</ExternalId> 




Variables 




Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example: 




@eid = "NMS:" + $E.outageHdl.idx; 




&ExternalId = @eid; 




&code = @eid + "%" + $E.devAlias; 




would generate, assuming the device name was XFM1234567, 




<ExternalId>NMS:1234</ExternalId> 




<code>NMS:1234%XFM1234567</code> 











The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left. 




SQL Select Statements 




A SQL Select statement is used to read data from the database. For example, the statement: 




sqlselect @type, @intDev | type_om, interrupt_dev_om | 




          picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;  











sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index. 




The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax. 




The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below. 




If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails. 




If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log. 




An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error. 




Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘ static’ keyword. For example:











sqlselect @devPhases,        @fuseSize | 




          phase_designation, fuse_size | 




static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx; 











reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage. 




If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter. 




Function Calls 




Function calls have a number of uses, including: 








		

•




		



Making Oracle Utilities Network Management System API calls. 





















		

•




		



Performing data manipulations not supported by the dml syntax. 





















		

•




		



Accessing the adapter’s data. 





















		

•




		



Accessing other configuration data. 

















A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is: 











&Address = substring($E.dispAddress, 0, 100); 











the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero). 




The various functions available are described in  

DML Function Calls

.




Expressions 




The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values. 




Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are: 








		

•




		



The equality operator ‘ ==’: This compares two values for textual equality. For example abc == ab has a value of  "" (false).





















		

•




		



The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of  "" (false).





















		

•




		



The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).





















		

•




		



The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.





















		

•




		



The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

















Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below. 




The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form: 











@bool ? @vtrue : @vfalse 











If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’. 








OEBPS/Text/part0068.xhtml






How to Build Smallworld Images 




The product is supplied as compiled Magik components. 








OEBPS/Text/part0067.xhtml






Oracle Utilities Network Management System Partitions with Index Maps 




The Smallworld GIS database is a continuous map. For performance reasons, Oracle Utilities Network Management System requires maps to be tiled, each tile corresponding to an Oracle Utilities Network Management System partition. 




The electrical features are extracted by a feeder, i.e. all the electric devices taking part to form a feeder are extracted in single mp file. The adapter also extracts electrical device owner features such as structure and poles in the same mp file. The feeder name is used to name the extracted mp file.  




The spatial data extract requires a GIS polygon feature to extract the data. This polygon partitions can be any size and are not required to be uniform. The optimal sized partition polygon contains less than 5000 objects (devices, background text, and background graphics). For example, in dense urban areas of the model, smaller size partition polygon can be used. The adapter can use one of the existing polygon boundary class or users can define a new OMS specific polygon boundary class to define the partition polygon. 








OEBPS/Text/part0066.xhtml






Class Names Containing Space Characters 




It is possible for GIS class user names to contain spaces in them (e.g., "Overhead Line"). However, the Oracle Utilities Network Management System model build tools do not recognize or accept class names with spaces, so a conversion must be made. 




The accepted convention is that all spaces be substituted with underscores (e.g., "_"). Therefore, if source data class names have spaces in them, the final output model preprocessor (.mp) files will have underscores substituting the spaces. An example would be a class named "Overhead Line." The ADD statement in the extract output file would show the name "Overhead_Line" instead. 








OEBPS/Text/part0065.xhtml






Coded Value Look Up 




In Smallworld enumerators (code values) are hidden from the user and no lookup is required. 








OEBPS/Text/part0064.xhtml






Geometric Information 




The Adapter determines the geometry of the object and uses it for the coordinates of the object as well as for any Oracle Utilities Network Management System diagram objects generated from the object: scale, height, angle, etc. The geometric diagram line should specify the feature class name. 




The coordinates will be extracted in the defined coordinate projection system. 








OEBPS/Text/part0063.xhtml






Connectivity 




The Adapter retrieves the topology associated with a geometry at the node and link level. Features can be extracted at a single link or multiple link level. 








OEBPS/Text/part0062.xhtml






Object Identifier 




The Adapter uses the feature class name and feature ID to identify an object. For example, "Switch 24." Note the feature ID is unique within the feature class pool. 








OEBPS/Text/part0061.xhtml






Feature Extraction 




The Adapter generates Add records for each feature. The Add feature records list the feature, its topology, Diagram records, and Attribute records. 








OEBPS/Text/part0060.xhtml






Adapter Capabilities 




The Adapter is a partition-based tool that extracts objects and features as selected by their geographic location (i.e. based on the feeder name or partition to which they are spatially coincident).  




Optionally, the Adapter can be used to detect changes to a GIS database, thereby automatically flagging partitions for extraction. Automated change detection by the Adapter is based on Smallworld version difference tool modification log table where the Adapter attempts to identify changed feeders or partition polygons since the last successful extract (based on creation and modification dates). If located, it will highlight the last freeze version for use with the change detect tool. The change detect tool is an optional automated mechanism for queuing partitions that contain objects and features that have been either changed, added, or deleted since the last extract. 




On extraction, the Adapter retrieves: 








		

•




		



Partition details. 





















		

•




		



Features. 





















		

•




		



Feature Object class and identifier. 





















		

•




		



Connectivity. 





















		

•




		



Geometry ic (Graphic) Components including feature annotation (text) component. 





















		

•




		



Retrieves rows and Attributes - logical and physical for all the non-graphic components of the feature including annotation. 

















The Adapter produces output in a work order folder containing files in Oracle Utilities Network Management System Model Preprocessor (".mp") format and a log file of informational, warning, and error messages. 




The details and issues of these topics are discussed in the following sections. 








OEBPS/Text/part0059.xhtml






Obtaining the Software 




The adapter setup files are included in the Oracle Utilities Network Management Optional Windows Applications download zip file that can be obtained from the Oracle e*Delivery site. After downloading the zip file, find the appropriate Adapter zip file within the NMS_GIS_Adapters directory and unzip to a location on your Windows server 




It can be installed and run on any valid Smallworld supported platform namely PC with Windows XP/2000 or Unix as the supported platforms.  




There are two methods of invoking the Adapter: 








		

•




		



Non-interactively by a command line with parameters. 





















		

•




		



Interactively with a GUI. 

















The program can be launched in non-GUI mode from a Smallworld MagikOS command prompt with command line parameters. The user can either use the defaults as set in the application reference database or override them with passed parameters. As such, the program can be scheduled for "silent" launch as a Windows scheduled task. Note because this type of launch is "silent" and does not make use of a GUI, feedback is usually not provided to the workstation screen unless an error occurs. 




The program can be launched from the workstation desktop or pull down menu. Using the GUI, the user can interactively control what data is extracted, what extract method is to be used, the type of data to extract, and the name of the output directory. The user is also provided with a status area, which includes progress bars and messages for monitoring the progress of the overall work order and the specific partition currently being extracted. 




The remainder of this section describes the capabilities of the Adapter, how to install and configure it, and how to run it. 








OEBPS/Text/part0150.xhtml






Performance 




Performance of the extraction is currently at "GIS speeds". Landbase data does not typically have connectivity issues so extracts can take as few as several seconds per typical partition. However, complex Electrical networks may take about 5-10 minutes per typical partition to extract. 




The number of class relationships to traverse when extracting objects will dramatically affect Adapter performance. Therefore, the RequiredRelationships table in the application reference database should be configured to only allow relationships vital for the model build process. This in turn will also affect the size of the output files. 




The depth of related features and objects that the extract traverses (set in the Defaults table of the application resource database file) can also dramatically impact performance, so keep these numbers to the minimum possible. 




The time required to perform change detection will vary and is dependent on the number of features and objects that have changed since the last extract. Objects are non-spatial and the system must therefore branch out from objects to their related features in order to obtain an approximate geographic location. Therefore, as a rule, objects are much more time-intensive to perform a change detection on than features. 




The performance is severely degraded when spatial attribute queries are performed.  








OEBPS/Text/part0271.xhtml






 If Statement 




If statements are used to alter the flow of document processing, allowing elements to be generated optionally in output XML, different tables to be updated depending on data in incoming XML, etc. For example: 











if (@doctype != create) 




{ 




# there is no job number until the reply to the create document is received 




&JobNumber = $O.externalId; 




} 











The statements between the brackets ‘{‘ and ‘}’ are only processed when the variable ‘doctype’ does not contain the string "create". 




An if statement can also have an ‘else’ clause. For example: 











if (@v1 == @v2) 




{ 




logDebug(0, "v1 is " , @v1, " as is v2"); 




} 




else 




{ 




logDebug(0, "v1 is ", @v1, " and v2 is ", @v2); 




} 













Note:  An if statement can have any number of ‘elseif’ clauses, optionally followed by an ‘else’ clause. For example:











if (@a == 1) 




{ 




logDebug(0, "a is 1"); 




} 




elseif (@a == 2) 




{ 




logDebug(0, "a is 2"); 




} 




else 




{ 




logDebug(0, "a is ", @a, " neither 1 nor 2"); 




} 











‘else if’ (two words) can be substituted for ‘elseif’.  











‘if’ statements can contain nested ‘if’ statements, for example: 











if (@a == 1) 




{ 




if (@b == 1) 




{ 




logDebug(0, "a is 1, b is 1"); 




} 




else 




{ 




logDebug(0, "a is 1, b is ", @b); 




} 




} 




elseif (@a == 2) 




{ 




if (@b == 1) 




{ 




logDebug(0, "a is 2, b is 1"); 




} 




else 




{ 




logDebug(0, "a is 2, b is ", @b); 




} 




} 




else 




{ 




logDebug(0, "a is ", @a, ", b is ", @b); 




} 








OEBPS/Text/part0151.xhtml






Issues 




Windows Resources 




The Adapter uses the ArcObjects API. Currently, there are memory leaks either in ArcObjects or Visual Basic (Microsoft OS) that consume GDI resources. Typical symptoms of these resource limits being reached are: screen degradation, especially when a screen saver application is running, changing of the down arrow icons on the application GUI to a digit such as "6", or complete failure of the operating system once the Adapter program has completed and exited (requiring a reboot). 






Note:  The Adapter minimizes the use of GDI resources as much as possible, but the Windows OS limit could potentially be reached if the Adapter is run against many partitions in a single session.






















OEBPS/Text/part0272.xhtml






 Flags 




Flags are used to modify the behavior of elements, attributes and variables. Flags are set by adding a flag specification to the entity’s definition. Individual flags have a flag character, used in flag specifications. 




The flags are: 








		

•




		



The ‘send on change’ flag ‘S’. This flag only applies to elements, attributes and triggers in Output Documents. It is described below in sections  

Change Detection

 and 

Triggers

.





















		

•




		



The ‘always include’ flag ‘I’. This flag only applies to elements and attributes in Output Documents. It is described below in section  

Change Detection

.





















		

•




		



The ‘don’t save’ flag ‘D’. This flag only applies to elements and attributes in Output Documents. It is described below in section  

Change Detection

.





















		

•




		



The ‘ignore attribute changes’ flag ‘A’. This flag only applies to elements in Output Documents. It is described below in sections  

Change Detection

.





















		

•




		



The ‘default to current’ flag ‘C’. This applies to elements, attributes and variables in Output Documents. Normally when the source of an assignment fails (due to the unavailability of an incident, for example) the element, attribute or variable is set to its default (described below). If this flag is on, the previous value is used instead. This only has effect when change detection (see below) is in effect. 





















		

•




		



The ‘required’ flag ‘R’. This flag applies only to elements and attributes in Input Documents. If this flag is set, the element or attribute must be present in the input XML for the Input Document to process the XML. If an attribute is required, the element itself is implicitly required. 

















Flags are set by adding a flag specification after the name in an element, attribute or variable declaration. For example:  











&Elem:CSI = $E.devAlias; 











The flag specification is the ‘:’ followed by one or more flag characters. 




All elements and attributes have definitions. However, variables do not have to be. They are implicitly defined when they are assigned in an assignment statement and in a SQL select statement. Such implicit definitions cannot have flag specifications. An example of a variable definition with a flag specification is: 











@var:C; 















OEBPS/Text/part0269.xhtml






Input Elements and Attributes  




The element statements described above in section 7.1 are used in Output Documents. Elements in Input Documents do not have values assigned to them, as the element values are supplied by the incoming XML. An example of an input element follows: 











&JobNumber; 











This defines an element whose tag is ‘JobNumber’. This element is optional, i.e. it does not have to be present in the input XML for the enclosing Input Document to be processed. In addition, no attributes were declared for the element. Therefore any attributes for the element in the input XML will be ignored. 




If the element is not present in the input XML, its value is the element’s default. The specification of default values is described below. In this example, the default is "", the empty string. If special processing should take place when an element is present or not, the boolean function ‘isSet’ can be used to alter the processing logic using, for example, an ‘if’ statement, described below. 




The value of the element can be used in assignments, expressions, and in the various SQL statements.  




For example:  




@jobNo = &JobNumber; 











assigns the element’s value to the variable ‘jobNo’. 




To declare that an element is required for the Input Document to be processed, the required flag ‘R’ would be added to the declaration, as described below in section  

Flags

.




An example of an element with four sub-elements is: 











&CrewKey 




{ 




&CrewName; 




&AgencyCode; 




&ShiftCode; 




&ShiftDate; 




} 











The default way to obtain the value of a sub-element is to specify parent’s tag, followed by a forward slash (‘/’), followed by the sub-elements tag. Deeper nesting of elements is similar. For example: 











@crewId = &CrewKey/CrewName + &CrewKey/AgencyCode + &CrewKey/ShiftCode + &CrewKey/ShiftDate; 











If the nesting is very deep, it can become very tedious and error prone to have to type all the tags leading to a particular element. This can be avoided by giving the element a name, as described in section  

Alternate Names

.




Input attributes are declared similarly to Output Document element attributes. For example: 




&Elem < attr1; attr2; >; 











declares an element with a tag of ‘Elem’, with two attributes ‘attr1’, and ‘attr2’. 




The value of an attribute can be obtained as follows: 




@val = &Elem<attr2>; 











The attribute’s name is enclosed in angle brackets ‘<’ and ‘>’. 








OEBPS/Text/part0149.xhtml






Change Detect Log File 




The diagnostic product of the change detect mechanism is a log file. These log files are placed in the "root" output directory, as specified in the ExtractDirectory field of the Defaults table of the application reference database. They are prefixed with "ChangeDetect_" and have a date stamp suffix, where the date stamp format is YYMMDDHHMMSS. 




A sample change detect log file may look like this: 




=============================================== 




 Process Log File 




 ---------------- 




 ArcGIS to ORACLE NMS Data Extraction Utility Change Detect Log File 











 Generated By: AItoCentricity  ver: 3.0.0 




 File Name:    c:\SPL\ChangeDetect_011217141538.log 




 Date Opened:  01/12/17 14:15:38 




=============================================== 











01/12/17 14:15:38            ***** CHANGE DETECT LOG FILE ***** 




01/12/17 14:15:39             




01/12/17 14:15:39            ---------------------------------------- 




01/12/17 14:15:39            Change Detect For Dataset Electric_Feeder 




01/12/17 14:15:39             




01/12/17 14:15:39            *** Obtain Unique DB Connection 




01/12/17 14:15:39             




01/12/17 14:15:39            *** Set versioned workspace to the opened workspace 




01/12/17 14:15:39             




01/12/17 14:15:39            *** Reconcile the Versions 




01/12/17 14:15:39            Reconciling OMS Proposed with Freeze_2001Dec15-1532 




01/12/17 14:15:39             




01/12/17 14:15:39            Checking DISTRIBUTIONTRANSFORMER class for changes . . .  




01/12/17 14:15:40                - Modified OID=1362 




01/12/17 14:15:40                  - change detect partition(s): 




01/12/17 14:15:41                    758490-A 




01/12/17 14:15:41                  - extract partition(s): 




01/12/17 14:15:41                    758490-A 




01/12/17 14:16:00             




01/12/17 14:16:02            Checking UGELECTRICLINESEGMENT class for changes . . .  




01/12/17 14:16:12                - Modified OID=255 




01/12/17 14:16:12                  - change detect partition(s): 




01/12/17 14:16:12                    758490-A 




01/12/17 14:16:12                    754316-B 




01/12/17 14:16:12                  - extract partition(s): 




01/12/17 14:16:13                    758490-A 




01/12/17 14:16:13                    754316-B 




01/12/17 14:16:23             




01/12/17 14:16:23            Checking BUSBAR class for changes . . .  




01/12/17 14:16:24                - Modified OID=1879 




01/12/17 14:16:24                  - change detect partition(s): 




01/12/17 14:16:24                    758490-A 




01/12/17 14:16:24                  - extract partition(s): 




01/12/17 14:16:25                    758490-A 




01/12/17 14:16:26             




01/12/17 14:16:26            ---------------------------------------- 




01/12/17 14:16:26            *** Identifying partitions containing modified features 




01/12/17 14:16:28              754316-B 




01/12/17 14:16:28              758490-A 




01/12/17 14:16:28             




01/12/17 14:16:28              Queued 2 partitions for extraction. 




01/12/17 14:16:28             




01/12/17 14:16:28            Change Detection Complete 











=============================================== 




 Date Closed: 01/12/17 14:16:28 




=============================================== 








OEBPS/Text/part0270.xhtml






 SQL Insert and Update Statements 




SQL Insert and Update statements are used to save data to the database. For example, the statement: 











sqlinsert picklist_completion_log | 




ref_id,       who,     reason_for_update,  when | 




$O.event.idx, @crewId, @reason_for_update, time(); 











inserts a row into the ‘picklist_completion_log’ table. The value of the ‘ref_id’ column is supplied by the index of the Handle held in the ‘event’ field of the external object ‘O’ (Order), that is associated with a particular MDS Order. The value of the ‘who’ and ‘reason_for_update’ columns are supplied by the variables ‘crewId’ and ‘reason_for_update’. The ‘when’ column is supplied by the ‘time’ function, which returns the current time in internal format. 




The ‘sqlinsert’ introduces the SQL insert statement, and is followed by the table or view name, followed by a vertical bar (|) as a separator. The list of column names follows, separated by commas, and terminated by a vertical bar. The list of data sources follow, separated by commas, and terminated by the statement terminator, ‘;’. The number of sources must match the number of columns.  




The table name or a data source can be a constant or the value of a variable, an element, an external data field, a function call, or the result of an expression. 




If the table name is constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails. 




If the table name is not constant, the columns are checked for validity at run time. If the table does not exist, nothing is sent to the database, and, optionally, a debug message is output to the log. If a column is missing, the data for the column is not sent to the database, and, optionally, a debug message output to the log. 




The type and length of the columns are read from the database, the first time a table is accessed (commonly at initialization time). Values for character columns (CHAR or VARCHAR2) are truncated to the column length. Values for NUMBER and FLOAT columns are checked for validity, and invalid numbers are set to NULL. Values for DATE columns are assumed to be in the internal time format and are checked for validity and set to NULL if invalid. Invalid column values are output to the log file. 




The SQL Update statement is for use in tables with a set of key columns. If there is a row with the keys set to the values used in the statement, that row is updated. If there is no row with the same keys, the row is inserted. For example: 











sqlupdate picklist_info_upd_tr | 




system_om, type_om, crew_restore | 




&System,   &Type,   @restoredTime | 




ref_id | $O.event.idx; 











ensures that there is a row in the ‘picklist_info_upd_tr’ table with a ‘ref_id’ column equal to the outage’s event index, and sets the ‘system_om’, ‘type_om’, and ‘crew_restore’ columns to the values in the ‘System’ element, ‘Type’ element, and ‘restoredTime’ variable, respectively. 




The ‘sqlupdate’ introduces the SQL update statement, and is followed by the table or view name, followed by a vertical bar (|) as a separator. The list of non-key column names follows, separated by commas, and terminated by a vertical bar. The list of non-key data sources follow, separated by commas, and terminated by a vertical bar. The number of non-key sources must match the number of non-key columns. The list of key column names follows, separated by commas, and terminated by a vertical bar. The list of key data sources follow, separated by commas, and terminated by the statement terminator, ‘;’. The number of key sources must match the number of key columns.  




The set of rules for Update statements is the same as described above for Insert statements above, except that nothing is written to the database if a key column is missing. 








OEBPS/Text/part0154.xhtml






Adapter Overview 




The Adapter makes use of G/Electric GIS metadata to access the G/Electric GIS features. The Adapter utilizes default values as set in an accompanying Microsoft Access database, which has the same name as the executable (GElec2Oracle) and resides in the same subdirectory. This required database is referred to as the "application configuration" database. 




The Adapter can be installed and run on any personal computer with Windows XP or Windows 2000 as the supported platforms. 




There are two methods of invoking the Adapter: 








		

•




		



Non-interactively by a command line with parameters 





















		

•




		



Interactively with a Graphical User Interface (GUI) 

















The program can be launched in non-GUI mode from an operating system command prompt with command line parameters. The user can either use the defaults as set in the application configuration database or override them with passed parameters. As such, the program can be scheduled for "silent" launch as a Windows scheduled task. Note that because this type of launch is "silent" and does not make use of a GUI, feedback is usually not provided to the workstation screen unless an error occurs. 




The program can be launched from the workstation desktop or pull down menu. Using the GUI, the user can interactively control what data is extracted, what extract method is to be used, the type of data to extract, and the name of the output directory. The user is also shown a status area, which includes progress bars and messages for monitoring the progress of the overall work order and the specific partition currently being extracted. 




The remainder of this document describes the capabilities of the Adapter, how to install and configure it, and how to run it. 








OEBPS/Text/part0275.xhtml






 Change Detection 




When MDS orders are updated due to changes in the event that is associated with the order, it is important to send only the elements that have changed. This is because of the limited bandwidth available to transmit data to and from field crews.  




In addition, some elements that change may not be important enough to cause an update to occur, for example, the number of customer calls that are associated with the event. 




Some elements that do not change may have to be sent every time that an update message is to be sent, for example the order identifier could be the key on the MDS. 




Change detection only applies to Output Documents, and only to documents that update data previously sent to the MDS. To indicate that change detection applies, change detection only occurs when the trigger invoking the Output Document has the ‘S’ (send on change) flag set. The rest of this section assumes that change detection applies. 




The default setting for an element is that it is only included in the output XML when it changes, and that a change to the element is not important enough to cause an update to be in effect. For example: 











&NumCustCalls = $E.custCall; 











An element that causes the update to be sent has the ‘S’ (send on change) flag set. For example: 











&IntDev:S = $E.devAlias; 











An element that is always sent when the update is to be sent has the ‘I’ (always include) flag set. For example: 











&Create:I < confirm="Always"; >; 











The ‘S’ and ‘I’ flags can be combined. This means that the element is always sent on an update, and that a change to it causes an update to be sent. For example: 











&JobNumber:SI=$O.externalId; 











Change detection applies to element attributes in the same way as elements.  




If the element or any attributes is to be included in the output XML, the element and all of its attributes (including those that have not changed) are included in the output XML. 




When an object with an associated document is created, a copy is made of the document, with all elements and attributes marked as changed, because they have not been sent to the MDS yet. If an element is not included in the initial transmission of the document (due to an if statement), it, and all its attributes, remains marked as changed. Normally, this is the correct behavior. However, if it has constant attributes, and may is set externally by a call to setDocValue to suppress sending the value, the element will no longer be marked as changed, but the attributes will remain marked as changed. This means that the first time that the element is processed (due to the condition in the if statement changing), it will be transmitted because the attributes are marked as changed, which is likely not the intention. 




Using the ‘ignore attribute changes’ flag ‘A’, defeats the behavior. It can be combined with the ‘S’ and ‘I’ flags, if appropriate. For example: 











 if (($E.est_source == "O") || ($E.est_source == "C")) 




{ 




WorkCodeUDF:SA::ert = formatDateTime($E.estRestTime); 




} 











If the element or any attributes is to be included in the output XML, the element and all of its attributes (including those that have not changed) are included in the output XML. 




The values of the elements and attributes are held in memory while the adapter is executing. In order to preserve these values over a shutdown/restart cycle, they are stored in the database. By default, the adapter saves all elements and attributes that do not have constant values. However, some element and attribute values are always set during the execution of the Output Document, for example: 











if (@docType == "create") 




{ 




@conf = Always; 




} 




else 




{ 




@conf = Never; 




} 




&Confirm:I = @conf; 











In this example, there is no need to save the value of the ‘Confirm’ element. To prevent saving its value, add the ‘don’t save’ flag ‘D’ to the element’s definition, for example: 











&Confirm:ID = @conf; 











The table used to save the values of the order document is described in section  

The Order Tables

.








OEBPS/Text/part0155.xhtml






Adapter Capabilities 




The Adapter is a partition-based tool that extracts objects and features as selected by their geographic location (i.e., based on the feeder name or partition to which they belong). 




Optionally, the Adapter can be used to detect changes in a GIS database, thereby automatically flagging partitions for extraction. Automated change detection by the Adapter is based on the G/Electric modification log table where the Adapter attempts to identify changed feeders or partition polygons since the last successful extract (based on creation and modification dates). The change detect functionality is an optional automated mechanism for queuing partitions that contain objects and features that have been either changed, added, or deleted since the last extract. 




On extraction, the Adapter retrieves: 








		

•




		



Partition details. 





















		

•




		



Features. For each feature, the following are extracted: 





















		

•




		



Feature object class and identifier 





















		

•




		



Connectivity 





















		

•




		



Geometric (graphic) components including a feature annotation (text) component 





















		

•




		



Rows and attributes for all the non-graphic components of the feature, including annotation. 

















The Adapter produces output in a work order folder containing files in Oracle Utilities Network Management System Model Preprocessor (".mp") format and a log file of informational, warning, and error messages. 




The details of these topics are discussed below. 








OEBPS/Text/part0276.xhtml






 The External Objects 




The external objects are: 








		

•




		



The Event object, identified by ‘E’, holds the data from the event’s latest ‘SRSoutput’ data. The names of the fields are the relevant fields in the Oracle Utilities Network Management System SRSoutput class. They are listed in  

DML Function Calls

.





















		

•




		



The Incident object, identified by ‘I’, holds the data from the event’s customer calls. The Incident object is not automatically populated. It can be populated by a call to the function  readIncidents(). If memory is at a premium, the Incident object can be unpopulated by the function clearIncidents(). The names of the fields are the relevant fields in the Oracle Utilities Network Management System Incident class. They are listed in 

DML Function Calls

. There can be any number of incidents associated to an event, including zero. Therefore, the offset of the incident of interest has to be supplied when accessing an incident field. Offsets start at zero. The offset is an integer, and is the second component of the external data reference. For example, $I.1.getCustomerName reads the name of the second customer in the incident array. A function, sortIncidents(), is supplied to sort the incidents. Before sorting they are in the order that the customers called. Any reference to an incident field can fail, because there may be no incidents. Such a failure causes the value of the element, attribute or variable being assigned to be set to its default.





















		

•




		



The Order object, identified by ‘O’, holds data relating to orders sent to the MDS. It holds the order’s current event object (possibly aggregated to summarize a set of related events), the Output Document that holds all the document data for the order for change detection, a number of fields that are always available (section  

Permanent Order Object Fields

, 

Permanent Order Object Fields

 of 

DML Function Calls

), and other data fields as configured by the MDS_ORDER and MDS_ORDER_FIELD tables. See 

MDS_ORDER

 for a description of the order tables.





















		

•




		



The Relationship object, identified by ‘R’, holds data relating to event relationships processed by the dml. It holds the type of relationship, the handles of all the related events, and a number of fields that are always available (see section  

Permanent Relationship Object Fields

, 

Permanent Relationship Object Fields

 of 

DML Function Calls

). 





















		

•




		



The Global Data object, identified by ‘G’, which holds named values for use by any of the documents. A field is created by assigning values to the field, e.g.,  $G.QueueManager = OPS;. If a field that has not been created is read, the field is created with a value of "", the empty string, and an warning is output to the log. The global data object usually holds configuration data, and the fields are set in a Configuration Document.





















		

•




		



The Trigger Parameter object, identified by ‘T’, which holds the parameters sent to Output Documents when they are triggered from another document using the function ‘triggerOutputDoc’. The first parameter to ‘triggerOutputDoc’ specifies the Output Document to trigger, the second parameter specifies the trigger to pull, and the rest of the parameters values are available to the Output Document as fields ‘1’, ‘2’ … up to the number of parameters supplied, less two (the document and trigger names). For example,   @param1 = $T.1; sets the variable ‘param1’ to the value of the first parameter. 





















OEBPS/Text/part0152.xhtml






Intergraph G/Electric Adapter 




This chapter includes the following topics: 








		

•




		





Introduction 

























		

•




		





Adapter Capabilities 

























		

•




		





Programs and Files 

























		

•




		





Installing the G/Electric Data Adapter  

























		

•




		





Adapter Configuration 

























		

•




		





Third Party Products 

























		

•




		





Executing the Adapter 

























		

•




		





GIS Data Requirements 

























		

•




		





Uninstalling the G/Electric Data Adapter 

























OEBPS/Text/part0273.xhtml






 Defaults 




There are cases when the values for an element, attribute or variable are not available. In this case the values are set to the entity’s default. 




Values are not available in the following cases: 








		

•




		



When an optional element is not present in input XML. 





















		

•




		



When insufficient incidents are associated with an event. 





















		

•




		



When a table name is dynamically set, for example a device’s facility table, and a column is referenced that the table does not contain. 





















		

•




		



When a sqlselect statement selects no rows. 





















		

•




		



A function call cannot generate a value, perhaps because it needs to use an external object that is not available. The specific situations are discussed in the function reference section of  

DML Function Calls

.

















If no default is specified, and the ‘default to current’ flag is not set, the default value for an entity is "", the empty string. The ‘default to current’ flag is discussed above in  

Flags

.




A default is specified by adding a default specification to the entity’s definition, after its (possibly empty) flag specification. For example: 











&CallerName::None = $I.0.getCustomerName; 











This normally sets the ‘CallerName’ element to the name of the first customer that called. If the event has no incidents, the element’s value is set to ‘None’. In this case the flag specification ‘:’ is empty, and is followed by the default specification ‘:None’. If a change to the element ‘CallerName’ causes an update, the ‘S’ flag is included in the flag specification: 











&CallerName:S:None = $I.0.getCustomerName; 











This time the flag specification is ‘:S’ and the default specification remains ‘:None’. 








OEBPS/Text/part0153.xhtml






Introduction 




GIS to Oracle Utilities Network Management System integration is a multi-step process that generates an operational topological representation of the existing GIS database for use by and display in the Oracle Utilities Network Management System. This process is referred to as the model build. A single spatial grouping of GIS objects (known as a partition) is processed by the Oracle Utilities Network Management System model build engine before incorporating the partition data into the Oracle Utilities Network Management System electrical model. An electrical circuit (feeder) or polygon feature, such as a service territory boundary, can be used to define a partition. The Oracle Utilities Network Management System model build engine processes partitions in three stages before committing it to the Oracle Utilities Network Management System operational electrical model: 1) GIS data extraction, 2) model pre-processing and 3) data import into Oracle Utilities Network Management System. 




The G/Electric Adapter extracts geospatial data in Oracle’s vendor-neutral model preprocessing file format (MP file). Geospatial data in G/Electric is stored in a number of geographic data and attribute data tables. The GIS stores and renders the geospatial data as a contiguous map. For performance and architectural reasons, Oracle Utilities Network Management System requires GIS data to be brought into the system as smaller chunks referred as partitions. 




An electrical circuit (feeder) or polygon feature, such as a service territory boundary can be used to define a partition. Land base features must be separated from electrical features because this data is inherently different, and because land base data is typically more static. 




Oracle’s G/Electric Adapter is able to: 








		

•




		



Extract the data by predefined partitions. 





















		

•




		



Extract the electric facility data by feeder; i.e. when a feeder is extracted, all the devices that take part in forming the feeder (i.e., are electrically connected) will be extracted into a single MP file. 





















		

•




		



Extracts land base features by predefined polygon boundary in a single MP file. 

















In order to minimize the data extraction and model build data volume, the extract is capable of identifying the changed partitions since the last data extract operation. 






[image: ]










OEBPS/Text/part0274.xhtml






 Alternate Names 




Alternate names can be given to elements, attributes, and variables. Their usage depends on the type of Document the entities are in. 




Input Documents 




In Input Documents, only elements can have alternate names. They are used to give the elements names, which are easier to use when the element is a deeply nested sub-element. For example: 




&Grandparent 




{ 




&Parent 




{ 




&son:::Jim<jattr1;>; 




&daughter; 




} 




} 











Declares an element ‘Grandparent’ with one sub-element ‘Parent’, which has, in turn, two sub-elements ‘son’ and ‘daughter’. ‘son’ has a name of ‘Jim’. The following example accesses the value of ‘daughter’: 











@dval = &Grandparent/Parent/daughter; 











while accessing the value of ‘son’ uses the shorter and less error prone: 











@sval = &Jim; 











To obtain the value of the attribute of ‘son’: 




@sattr = &Jim:<jattr1>; 











When an element has a name, the long form cannot be used. 




Output Documents 




In Output Documents elements, attributes, and variables can have alternate names. They have two usages: 








		

•




		



To allow other documents to set their values, for example using the function ‘setDocValue’, which needs the alternate name.   

















An example of this is when an order contains the estimated time of restoration (ETR), which is initially supplied by the Oracle Utilities Network Management System services. Subsequently, the field crew, after assessing the situation in the field, decides that this time is inappropriate and sends a message back. This message causes input XML to be sent to the adapter, which will then be processed in an Input Document. The document contains an API call to set the ETR in Oracle Utilities Network Management System to this value.  




The ETR value in Oracle Utilities Network Management System now matches the ETR value in the MDS. However, the Output Document holds the value of all elements of the order sent to the MDS, to prevent unnecessary updates, and, in this example, will hold the ETR previously sent to the MDS.  




The consequence of this situation is that the next time the event associated with the order changes, the Output Document will be triggered and a change to the ETR will be detected, even if no other elements have changed. This will cause an unnecessary transmission of an order update to the MDS.  




The solution to this defeating of the change detection mechanism is to call ‘setDocValue’ with the new value, and the name of the element that contains the estimated time of restoration. Similar situations can arise for attributes and variables. 








		

•




		



To uniquely name elements so that their values can be saved to the database so that change detection can continue to be effective over a adapter shutdown/restart cycle. This is further discussed in section  

MDS_ORDER_VALUE

.

















The name is specified in an alternate name specification following the (possibly empty) flag specification, and (possibly empty) default specification. For example: 




&ETR:S:"No ETR":etr = formatDateTime($E.estRestTime); 











This defines an element with the ‘S’ flag set, with a default of ‘No ETR’, and an alternate name of ‘etr’ which is set to the formatted value of the current event’s estimated time of restoration. 








OEBPS/Text/part0178.xhtml






PartitionGroupFeature Table 




The "PartitionGroupFeature" table is used to specify the spatial "Partition Group Name" to G3E feature relationship. The user can define the spatial PartitionGroupName in the Partition_Reference table and specify which G/Electric features belong to the partition group. 




The user can extract grouped GIS features in separate MP files based on the PartitionGroupName. For example, the spatial PartitionGroup named "Street" will be extracted in a separate MP file where features listed in the PartitionGroupFeature table will be extracted. 















		



Column Name 




		



Description 




		



Type 




		



Unique 




		



Required? 










		



PartitionGroupName 




		



Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions) Populated from PartitionReference table 




		



Integer 




		



Yes 




		



Yes 










		



G3E_FNO 




		



GIS Feature Number of a feature which should be extracted as a part of the PartitionGroup. This is the primary key. 




		



Text(80) 




		










		




















Example: 















		



Column Name 




		



Description 










		



PartitionGroupName 




		



Street 










		



G3E_FNO 




		



182 


















OEBPS/Text/part0098.xhtml






ESRI ArcGIS 9.x Adapter 




This chapter describes the ESRI ArcGIS 9.x Adapter for Oracle Utilities Network Management System. It includes the following topics: 








		

•




		





Adapter Overview 

























		

•




		





Modeling Guidelines 

























		

•




		





Adapter Functionality 

























		

•




		





Installing ArcGIS to Oracle Utilities Network Management System Adapter 

























		

•




		





Installing the Application 

























		

•




		





Configuring the Adapter 

























		

•




		





Freeze Versions Created and Used by the Adapter 

























		

•




		





Running the Adapter 

























		

•




		





Usage Scenarios 

























		

•




		





Populating the Partition Listbox Using PartitionQueue Table  

























		

•




		





Partition Loading 

























		

•




		





Output of Adapter 

























		

•




		





Performance 

























		

•




		





Issues 

























OEBPS/Text/part0097.xhtml






Data Model 




The following illustrates a CASE tool descriptive report for Oracle Utilities Network Management System GIS adapter. 






CASE Tool Descriptive Report 




































Objects: 















    omsa_extract_parameter (OMSA Extract Parameter ) 








    omsa_extract_parameter_history (OMSA Extract Parameter History) 








    omsa_map_tile (OMSA Map Tile ) 















Object name: omsa_extract_parameter ( OMSA Extract Parameter ) 















Properties: 















    Record exemplar:             omsa_extract_parameter 








    Visible fields ( default ):   








                                 type 








                                 last_extract 








                                 projection 








                                 output_directory 








                                 log_file_directory 








                                 configuration_directory 








                                 incremental_directory 








                                 report_directory 








                                 omsa_extract_parameter_historys 



















Field summary: 















       Physical fields          Field type            Mandatory  Default value  Unset value 








    *  id                       sys_id                True                       








     V type                     ces_map_tile_type     True       "unknown"       








     V projection               ds_charci_vec ( 32 )  False                     "" 








     V configuration_directory  ds_charci_vec ( 60 )  False                     "" 








     V output_directory         ds_charci_vec ( 60 )  True                       








     V log_file_directory       ds_charci_vec ( 60 )  True                       








     V incremental_directory    ds_charci_vec ( 60 )  False                     "" 








     V report_directory         ds_charci_vec ( 60 )  False                     "" 















    Logical fields  Field type 








    last_extract    ds_charci_vec ( 50 ) 















    Join fields                      Relationship type  To object 








    omsa_extract_parameter_historys  1:n                omsa_extract_parameter_history 















Object name: omsa_extract_parameter_history ( OMSA Extract Parameter History ) 















Properties: 















    Record exemplar:             omsa_extract_parameter_history 








    Visible fields ( default ):   








                                 omsa_extract_parameter 








                                 extract_type 








                                 type 








                                 started 








                                 completed 








                                 database 








                                 database_alternative 








                                 database_checkpoint 








                                 configuration_directory 








                                 output_directory 








                                 log_file_directory 








                                 incremental_directory 








                                 report_directory 








                                 omsa_map_tiles 












































Field summary: 















        Physical fields           Field type            Mandatory  Default value  Unset value 








    *   id                        sys_id                True                       








     V  extract_type              ces_extract_type      True                       








     V  type                      ces_map_tile_type     True       "unknown"       








     V  started                   ds_time               True                      date_time 








     V  completed                 ds_time               False                     date_time 








     V  database                  ds_charci_vec ( 32 )  True                       








     V  database_alternative      ds_charci_vec ( 32 )  True                       








     V  database_checkpoint       ds_charci_vec ( 32 )  False                     "" 








     V  configuration_directory   ds_charci_vec ( 60 )  False                     "" 








     V  output_directory          ds_charci_vec ( 60 )  True                       








     V  log_file_directory        ds_charci_vec ( 60 )  True                       








     V  incremental_directory     ds_charci_vec ( 60 )  False                     "" 








     V  report_directory          ds_charci_vec ( 60 )  False                     "" 








      I ces_extract_parameter_id  sys_id                True                       















    Join fields             Relationship type  To object 








    omsa_map_tiles          m:n                omsa_map_tile 








    omsa_extract_parameter  1:n                omsa_extract_parameter 






















Object name: omsa_map_tile ( OMSA Map Tile ) 















Properties: 















    Record exemplar:             omsa_map_tile 








    Visible fields ( default ):   








                                 known_as 








                                 name 








                                 tile_name 








                                 type 








                                 extract? 








                                 last_extract_count 








                                 last_extract 








                                 last_incremental 








                                 omsa_extract_parameter_historys 








                                 coverage 








                                 annotation 












































Field summary: 















       Physical fields     Field type            Mandatory  Default value  Unset value 








    *  id                  sys_id                True                       








     V known_as            ds_charci_vec ( 30 )  True                       








     V name                ds_charci_vec ( 30 )  False                     "" 








     V type                ces_map_tile_type     True       "unknown"       








     V extract?            ds_bool               True       _true           








     V last_extract        ds_time               False                     date_time 








     V last_incremental    ds_time               False                     date_time 








     V last_extract_count  ds_uint               False                     0 















    Logical fields  Field type 








    tile_name       ds_charci_vec ( 30 ) 















    Geometry fields                    Field type   Mandatory  Manifold 








    coverage                           simple_area  False       








    cadastral_coverage                 simple_area  False       








    diagram_coverage                   simple_area  False       








    dxf_coverage                       simple_area  False       








    feeder_coverage                    simple_area  False       








    gas_coverage                       simple_area  False       








    isolatable_section_coverage        simple_area  False       








    lv_feeder_coverage                 simple_area  False       








    map_coverage                       simple_area  False       








    overview_coverage                  simple_area  False       








    schematic_coverage                 simple_area  False       








    schematic_background_coverage      simple_area  False       








    schematic_dxf_coverage             simple_area  False       








    subtransmission_feeder_coverage    simple_area  False       








    annotation                         text         False       








    cadastral_annotation               text         False       








    diagram_annotation                 text         False       








    dxf_annotation                     text         False       








    feeder_annotation                  text         False       








    gas_annotation                     text         False       








    isolatable_section_annotation      text         False       








    lv_feeder_annotation               text         False       








    map_annotation                     text         False       








    overview_annotation                text         False       








    schematic_annotation               text         False       








    schematic_background_annotation    text         False       








    schematic_dxf_annotation           text         False       








    subtransmission_feeder_annotation  text         False       


























    Join fields                      Relationship type  To object 








    Join fields                      Relationship type  To object 








    omsa_extract_parameter_historys  m:n                omsa_extract_parameter_history 

















OEBPS/Text/part0096.xhtml






Performance  




Performance of the extraction is currently at "GIS speeds."  The non-spatial data extract (i.e. Electric feeders) does not depend upon the GIS Spatial Scanning ' AreaReportUtility application to locate the features located within a polygon partition so extracts is faster compare to spatial data extract. The spatial data extract uses Smallworld's AreaReportUtility application to identify features located within a polygon area.  




The number of class components being extracted will dramatically affect Adapter performance. Therefore, the ExcludeFeature and ExcludeComponent table should be populated. The ExclueComponent table ensures that feature information will be extracted but components listed in the ExcludeComponent table will not get extracted. For example detail document, raster, or hyperlink document components are not required for the OMS. These components should be listed in the ExcludeComponent table.  




The time required to perform change detection will vary and is dependent on the number of features that have changed since the last extract. The list of changed feature does not provide the spatial information so Adapter has to depend upon AreaReportUtility to identify the spatial polygon of the changed feature. 








OEBPS/Text/part0095.xhtml






Output of Adapter  




The model preprocessor import files (.mp), the log file, and the work order time stamp file are all placed in a folder with the work order name. This folder will appear in the output directory as designated in the "Defaults" table. If Change Detection was run, a log file of the process will be placed in the root of the output directory. 




Note that if the extract is still in progress or does not complete, the work order time stamp file will not appear in the output directory. The work order time stamp file will only appear if the complete extract finishes successfully. As such, external processes can use its presence as an indicator of a completed extract. 








OEBPS/Text/part0094.xhtml






Topology 




Full Smallworld topology is maintained when data is exported. The topology is exported at the node and link level. It is normally only Smallworld developers that would work at this level. Most customers are unaware of the topology at the base level. 




This means that split_link topology is handled correctly upon export. 




For example, an hv_cable is exported as a series of multiple links, or more that two ports 




There may be some customization required in this area. E.g., sometimes a pole-mounted switch is represented as a single point in the geographic, thus not using the standard two_pin_device behavior. This can be handled by overriding the method OMSA_write_port_info. An example of this is listed below: 




_pragma(classify_level=basic, topic={ces,extraction}, usage={internal}) 




_method switch.OMSA_write_port_info(extractor) 




##  




## 




if self.geolocation _isnt _unset 




_then # internal 2 pin switch 




_super.OMSA_write_port_info(extractor) # use std two_pin_mixin behavior 




_else 




                 # geo switch 




extractor.write_extract("   PORT_0=", self.geolocation.node_id, ";", newline_char) 




extractor.write_extract("   PORT_1=", self.geolocation.node_id, ";", newline_char) 




_endif 




_endmethod 















OEBPS/Text/part0093.xhtml






Batch Execution 




A batch method has been provided to enable extraction to be performed without a graphics system. If images are built correctly it should also be possible to build an Oracle Utilities Network Management System Extraction image that does extraction upon image startup. 




How to run from the Magik prompt? 




Batch_oms << spl_omsa_batch.new() 




Batch_oms.batch_process(:batch_run) 











The last statement executes the method batch_run in a separate thread. 




Support is provided for the following extraction types 








		

•




		



extract_full() 





















		

•




		



extract_partial() 





















		

•




		



extract_schematic() 





















		

•




		



incremental() 

















A sample setup is provided for spl_omsa_batch.batch_run 




For example, to run a feeder extraction: 




_method spl_omsa_batch.batch_run 




##  




## 




# set alternative paths 




_self.incremental("feeder") 




_self.extract_partial("feeder") 




_endmethod 











Consideration should be given to ensure the correct alternatives are used for extraction. 




If multiple copies of the adapter are required for extraction the following slots can be set: 








		

•




		



Spl_omsa_batch.number_of_extractors << n     





















		

•




		



SPL_omsa_batch.extractor_number << n 

















The extractor number should be in the range 0-(number of extractors -1) 








OEBPS/Text/part0092.xhtml






Launching Adapter Interactively 




The Smallworld Data Adapter can be launched from a Smallworld Application Menu or Toolbar. After a few moments, the program will then present a Smallworld Adapter dialog box. 








OEBPS/Text/part0091.xhtml






Adapter Execution 




The Adapter can be run either in the background with command line parameters or interactively with a GUI.   




The Adapter supports two formats: 








		

•




		



Classic - required form Unix execution and Smallworld CST releases prior to 4.0 





















		

•




		



Application Framework - commonly referred to as SWAF 





















OEBPS/Text/part0090.xhtml






Execution 




The following sections describe the modes of execution available for Oracle Utilities Network Management System GIS adapter.  








OEBPS/Text/part0179.xhtml






V_SPL_FIDFNO View 




The G/Electric Adapter requires an Oracle view called V_SPL_FIDFNO in the G/Electric Oracle Database. The system administrator must create the view V_SPL_FIDFNO on the G/Electrical Oracle database server. 




The V_SPL_FIDFNO view provides the G3E_FNO (feature number) for every G3E_FID in the G/Electric database. When the Adapter executes the G/Electric’s spatial query application AreaReportUtility to find the features within the specified spatial area, the application returns only the G3E_FID of the features. The V_SPL_FIDFNO view provides the feature number (G3E_FNO) of every G3E_FID (unique feature identifier) in the system, which reduces the overhead of querying each G3E_FID to find the corresponding G3E_FNO. 




The system administrator should execute the create_spl_view.sql file on the G/Electric GIS server using the SQL PLUS utility. The create_spl_view.sql file is located in the Reference subdirectory of the Adapter installation directory. 




The system administrator should edit the create_spl_view.sql file to make sure that the GIS COMMON component number is correct in the file. The create_spl_view.sql file lists "G3E_CNO=31". If the COMMON component number (G3E_CNO) in your G/Electric GIS database is different, then the G3E_CNO must be replaced with the correct G3E_CNO of the COMMON component  




The query result returned by the database should be captured in a text file by using the SQL Plus spool command. 




The spooled file should be edited to complete the Create view definition by: 








		

•




		



In the beginning of a spooled file add a statement: 





















		

•




		



Create or Replace View V_SPL_FID_FNO as   





















		

•




		



After the last union all statement in the spooled file add a statement: 





















		

•




		



Select G3E_FID, G3E_FNO from COMMON_N; 





















		

•




		



Execute the spooled file using the Oracle SQL Plus application to create the V_SPL_FIDFNO view. 

















If the V_SPL_FIDFNO view is not available, then the Adapter will disable the spatial (land base) data extract functionality and only non-spatial extraction (electric feeders) can be carried out. 








OEBPS/Text/part0089.xhtml






Data Model 




The OMSA partition contains the map tile definitions and extraction parameters. 






[image: ]










OEBPS/Text/part0180.xhtml






Third Party Products 




The G/Electric Data Adapter requires three third party products. Those products are: 








		

•




		



G/Electric GIS Database Server 





















		

•




		



Microsoft Access to configure the Adapter configuration database 





















		

•




		



Oracle SQL*NET Client 





















OEBPS/Text/part0183.xhtml






Launching the Adapter Interactively 




The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed. 




This window contains four main framed panels: 








		

•




		



Change Detection 





















		

•




		



Data Extraction Parameters 





















		

•




		



Status panel - Where information on the extraction process is reported to the user.  





















		

•




		



Work Order Details and the Launch Extract and Cancel buttons. 

















Debug Mode 




The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error. 




To run the Adapter in debug mode: 








		

•




		



Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe) 





















		

•




		



In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog. 





















		

•




		



After providing the name for the short cut click Finish button   to create the short cut. 





















		

•




		



Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected 





















		

•




		



In the Target Section for the shortcut, specify the flag  -DEBUG at the end of the existing value. For example 





















		

•




		



Before:  C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe 





















		

•




		



After:  "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.  





















		

•




		



Click Apply button to dismiss the Properties dialog. 





















		

•




		



Launch the Adapter using newly created shortcut. The log files will provide a lot more information. 

















Data Extraction Parameters Panel 




This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group. 




The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database. 




Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group. 




The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects. 




Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively. 




Extract Launch Controls 




The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database. 




The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field. 




Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process. 




Change Detection Panel 




This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name. 




The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time. 




If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration. 




G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT. 




When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null. 




The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions. 




The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported. 




Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions. 




To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features. 




Modification Log 




If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost. 




If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter.  The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database. 




Status Panel 




Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted. 








OEBPS/Text/part0184.xhtml






Launching the Adapter in Batch Mode 




The Adapter can be launched in a non-GUI mode from the Windows command line with parameters. However, because this launch method is "silent," no visual feedback will be provided to the workstation screen except for error reports. The user will have to view the output directory in order to determine progress. 




The Windows service scheduler can be used to schedule an automatic extract process. 




When launching the Adapter in non-GUI mode, only the non-GUI launch flag is required, while all other command line parameters are optional. If a parameter is omitted, the default is assumed. In default mode, the Adapter extracts the electric feeder data. 




The command line usage is: 




"[install directory]\ GElec2Oracle.exe" -NONGUI [-DEBUG] [-?] [-d dataset] [-r reference] [-p partition] [-w workorder] [-o] [-q queue] 











Where: 








		



-NONGUI 




		



(required) Indicates to launch Adapter in non-GUI mode. 










		



-DEBUG 




		



Launches the Adapter with Debug mode on. 










		



-? 




		



Command Line Help 










		



-r reference 




		



Path of application reference database file if other than the default GElec2Oracle.mdb in the extract install directory (e.g., -r c:\myrefdb.mdb) 










		



-p partition 




		



Partition type to use; as in PartitionReference table (e.g., -p Electric_Tile) 










		



-w workorder 




		



Workorder directory to create (e.g., -w Nov20-01) 










		



-o 




		



Force an Overwrite of existing workorder and version (if existing ones are found) 










		



-q queue 




		



Method to queue partitions: 




ALL - queues all partitions (e.g., -q ALL) 




CD - uses change detection to queue (e.g., -q CD) (default) 




LIST - user provides a list of partition names to be extracted which are separated by a comma. (If multiple partition types are in provided using -p option where Adapter cannot determine the PartitionGroup of listed partition queue then Adapter will report the warning and terminates. 


















OEBPS/Text/part0181.xhtml






Oracle Client Configuration 




The Adapter requires the Oracle client installed on the machine where the Adapter is installed. The Adapter administrator must configure the Oracle server name using the Oracle Net Configuration Assistant utility. The Oracle server name must be populated in the "Server" column of the Adapter configuration database’s "Default" table. 






[image: ]










OEBPS/Text/part0182.xhtml






Executing the Adapter 




The Adapter can be run either in the background with command line parameters or interactively with a GUI. In any event, ensure the Adapter configuration database file GElec2Oracle.mdb has been customized prior to running the Adapter for the first time. 




When the Adapter is launched interactively or in command line mode, it creates the "initialize.log" file in the Adapter installation directory. The log file reports initialization status of the Adapter. Once the Adapter is launched successfully and extraction has started, the "extracting.log" file is created in the Extract Work Order directory. 








OEBPS/Text/part0187.xhtml






Application Process Flows 




The following figure shows the G/Electric Adapter user process flow: 




The following figure shows the G/Electric Adapter module process flow: 








[image: ]








The following figure shows the G/Electric Adapter process flow: 






[image: ]










OEBPS/Text/part0188.xhtml






GIS Data Requirements 




Required Data for All Adapter Features 















		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Object type 




		



G3E_FNO and G3E_USERNAME, Feature Class and attributes 




		
















		



Object Unique ID 




		



G3E_FID 




		
















		



Object geometry (point, line, text) 




		



Feature Geometry 




		



Adapter produces diagram object of type point, line, or text. 










		



Points: 




(x, y) location 




angle, 




justification 




		



Point Feature Geometry 




		



Adapter produces diagram object characteristics of: location, angle, and scale. 










		



Lines: 




List of coordinates 




		



Linear Feature Geometry 




		



Adapter produces diagram object characteristics of: location, angle, scale 










		



Text: 




(x,y) location 




angle or endpoint 




string 




justification 




		



Feature Text Component 




		



Adapter produces diagram object characteristics of: location, angle, string, and justification. 


















OEBPS/Text/part0185.xhtml






Output of Adapter 




The model preprocessor import files (.MP), the log file, and the work order time stamp file are all placed in a folder with the work order name. This folder will appear in the output directory as designated in the "Defaults" table. If change detection was run, a log file of the process will be placed in the root of the output directory. 




Note that if the extract is still in progress or does not complete, the work order time stamp file will not appear in the output directory. The work order time stamp file will only appear if the complete extract finishes successfully. As such, external processes can use its presence as an indicator of a completed extract. 








OEBPS/Text/part0186.xhtml






Performance 




The non-spatial data extract (i.e., of electric feeders) does not depend upon the GIS’ AreaReportUtility application to find the features located within a polygon partition so these extracts are faster compared with a spatial data extract. The spatial data extract uses G/Electric’s AreaReportUtility application to identify features located within a polygon area. 




The number of class components being extracted will dramatically affect the Adapter performance. Therefore, if any of the features components are not required for the Oracle Utilities Network Management System then they should be listed in the ExcludeComponent table. The ExcludeComponent table ensures that feature information will be extracted but components listed in the ExcludeComponent table will not get extracted. For example detailed document, raster, or hyperlink document components are not required for the Oracle Utilities Network Management System. These components should be listed in the ExcludeComponent table. 




The time required to perform change detection will vary and is dependent on the number of features that have changed since the last extract. The list of changed features does not provide the partition information, so the Adapter depends upon G/Electric’s AreaReportUtility to identify the spatial polygon (partition) of the changed feature. 








OEBPS/Text/part0167.xhtml






Minimum System Requirements 




The PC is required to meet these minimum system requirements to install the G/Electric Data Adapter. 















		



Processor 




		



Pentium® III 800 MHz minimum 










		



Operating system 




		



Microsoft Windows 2000 or Microsoft XP 










		



Internet Explorer 




		



Obtain and install the appropriate language version of Internet Explorer 6.0 or higher prior to installing the G/Electric Adapter. See Note below.  










		



RAM  




		



256 MB minimum 























Note:   .NET Support Feature: The G/Electric Data Adapter is a .NET application that requires .NET Framework 1.1.  If.NET Framework 1.1 is not installed on the personal computer; the Installer program will display the following warning message:  "You can download the .NET Framework from Microsoft download site."








OEBPS/Text/part0288.xhtml






Configuration Tables 




The following tables are used in conjunction with the dml files to configure the MDS adapter. They are loaded at startup, or, in some cases, when a dml statement needs them. 








OEBPS/Text/part0168.xhtml






Disk Space Requirements 















		



Installation Drive 




		



5 MB 










		



System Drive 




		



Up to 1 MB 




Typically C:, where windows\system32 is located 


















OEBPS/Text/part0088.xhtml






Configuration Files 




Adapter configuration files need to defined to determine which objects and fields are to be exported. 




The format is <object_name>,field1,field2 




E.g.,   substation,known_as,type,pole_mounted?,date_built,location,annotation 




In most cases the main electrical will be defined in MAP.MPC with the Smallworld internals being defined in internals_schematic.MPC 




A utility has been provided to quickly generate some configuration files. The utilities set up the object list based on the Smallworld visibilities. 




E.g., for the Smallworld Electrical demo or Smallworld Electrical Starter Kit the following method will generate the configuration files. 




_method gis_ds_view.create_elec_demo_base_configuration(a_file_name) 




##  




##  




v.create_omsa_config_file(a_file_name, 




 {:auxiliary_cable, 




  :distribution_pillar, 




  :hv_cable, 




  :hv_line, 




  :hv_joint, 




  :lv_joint, 




  :link_box, 




  :lv_cable, 




  :lv_line, 




  :pole, 




  :substation, 




  :tower, 




  :supply_point, 




  :hypernode 




 }) 











_endmethod 




$ 















OEBPS/Text/part0087.xhtml






Incremental Adapter Parameters 




The following table describes Oracle Utilities Network Management System GIS adapter incremental parameters available for configuration. 








		



Value 




		



Default 




		



Description 










		



omsa_incremental_component. 




checkpoint_name 




		



{OMSA_<type>} 




		



Checkpoint name. Each map_class has a separate checkpoint. 










		



omsa_incremental_component omsa_alternative 




		



|OMSA 




		



Alternative that ALL changes are checked in. 










		



omsa_incremental_component. 




additional_date_checkpoint? 




		



_false 




		



Places and additional date checkpoint along with standard checkpoint_name. 










		



omsa_incremental_component.csv_report? 




		



_false 




		



Additional one line per object incremental report. 










		



omsa_incremental_component omsa_incremental_csv_heading 




		



Object,id,tiles 




		



Heading for CSV report 










		



<object>.incremental_csv_string 




		










		



Customization hook for csv report. 

























OEBPS/Text/part0086.xhtml






Other Parameters 




The following table describes Oracle Utilities Network Management System GIS adapter other parameters available for configuration. 








		



Value 




		



Default 




		



Description 










		



sector_rope.omsa_reproject() 




		



_self 




		



Enables local map projections to be applied to all sectors exported with the adapter 










		



omsa_map_tile.omsa_tile_name 




		



:known_as 




		



Customizable tile name 










		



omsa_extract_parameter.type_abbreviation 




		



Cadastral - CAD 




Feeder - FDR 




Isolatable section - IS 




LV feeder - LVF 




Subtransmission Feeder -STF 




Schematic - SCH 




Schematic - background - SCB 




Schematic - dxf - SCD 











		



Equality_hash_table of abbreviations to be used in file names 


















OEBPS/Text/part0085.xhtml






OMSA_component Parameters 




The following table describes Oracle Utilities Network Management System GIS adapter OMSA_component parameters. 








		



Value 




		



Default 




		



Description 










		



oms_component() 




		



oms_component 




		



Procedure to indicate which component to use 










		



omsa_component.attribute_name_lowercase? 




		



_true 




		



Force attribute names in MP files to be lowercase 










		



omsa_component.attribute_prefix 




		



Omsa 




		



Ensures compatibility with the prefixes used in earlier versions of the adapter 










		



omsa_component.attribute_value_strip_unset 




		



_true 




		



Forces unset values to appear as "" instead of "unset" in MP file 










		



omsa_component.cache_internal_worlds 




		



_true 




		



Caching ensures an internal world is on extracted once per run. 










		



omsa_component.catalogue_view 




		



Elec_view 




		



The Smallworld view to find the catalogue tables 










		



omsa_component.catalogues 




		



{hv_cable_catalogue} 




		



List of catalogue tables 










		



omsa_component.customised_tile_names? 




		



_false 




		



Enables localized of MP files 










		



omsa_component.distributor_join 




		



_unset 




		
















		



omsa_component.distributor_follow_joins 




		



{} 




		
















		



omsa_component.elec_view 




		



Gis_program_manager. Cached_dataset(:gis) 




		



Default electrical partition 










		



omsa_component.feeder_collection 




		



:feeder 




		



Name of the feeder table 










		



omsa_component.feeder_follow_isolatable_join? 




		



_true 




		
















		



omsa_component.feeder_follow_join 




		



:isolatable_sections 




		
















		



omsa_component.feeder_follow_joins 




		



{} 




		
















		



omsa_component.feeder_inline_world_joins 




		



{} 




		
















		



omsa_component.feeder_key 




		



:id 




		



Primary key of feeder table 










		



omsa_component.feeder_world_joins 




		



{} 




		
















		



omsa_component.include_hypernodes_with _parent 




		



Equality_hash_table 




		



Keys on omsa_map_class 










		



omsa_component.include_hypernodes_with_parent? 




		



_true 




		



Gives control over how many MP files a hypernode can exist in. 










		



omsa_component.include_world_owner_with_internals? 




		



_false 




		



e.g., Include substation details with the substation internals MP file. 










		



omsa_component.isolatable_section_collection 




		



:isolatable_section 




		



Name of isolatable_section table 










		



omsa_component.isolatable_section_follow_joins 




		



{} 




		



Join or pseudo joins to follow to pick up associated objects. 










		



omsa_component.isolatable_section_inline_world_joins 




		



{} 




		
















		



omsa_component.isolatable_section_key 




		



:id 




		



Primary key of feeder table 










		



omsa_component.siolatable_section_world_joins 




		



{} 




		
















		



omsa_component.land_view 




		



Gis_program_manager. Cached_dataset(:land) 




		



Default land / cadastre partition 










		



omsa_component.log_full_object_counts? 




		



_false 




		
















		



omsa_component.omsa_prime_location_hierarchy 




		



:centreline, 




:location, 




:coverage, 




:boundary, 




:annotation 




		



If an object does not have a ces_prime_location defined, the order described is used. 










		



omsa_component.report_attribute_errors? 




		



_false 




		



Useful to turn on to test adapter configuration files 










		



omsa_component.restrict_world? 




		



_false 




		
















		



omsa_component.skipped_derived_fields? 




		



_false 




		



Enables derived fields e.g., SAP fields to be ignored 










		



omsa_component.st_feeder_collection 




		



:xxx 




		



Name of the subtransmission feeder table 










		



omsa_component.st_feeder_follow_joins 




		



{} 




		
















		



omsa_component.st_feeder_key 




		



:st_feeder 




		



Primary key of subtransmission feeder table 










		



omsa_component.st_feeder_inline_world_joins 




		



{} 




		
















		



omsa_component.view_for_map_class() 




		



:gis 




		



Configure which partition to use for extraction class 










		



omsa_component.update_tile_extract_details? 




		



_true 




		



Add counts and date/time to omsa_map_tile when extracted or marked for incremental 










		



omsa_component.world_for_type 




		



_unset 




		



Default world for map type - used when schematics are in separate world. 

























OEBPS/Text/part0084.xhtml






Parameter Configuration 




The following table describes Oracle Utilities Network Management System GIS adapter SPL_OMS_gui parameters. 








		



Value 




		



Default 




		



Description 










		



SPL_OMS_gui.process_menu 




		










		



Rope defining the menu items to appear under process button. For example:[image: ]












		



SPL_OMS_gui.view_vector 




		



{:gis,:ces} 




		



List of what views to display on centricity_gui panel 










		



SPL_OMS _gui.show_views? 




		



_true 




		



List Smallworld partitions on centricity_gui panel.[image: ]












		



SPL_OMS_gui.debug? 




		



_false 




		



Enables debug logging to be enabled and controls. Also visible on centricity_gui panel.[image: ]












		



SPL_OMS_gui.toolbar? 




		



_true 




		



Places a toolbar at the top of centricity_gui panel. 


















OEBPS/Text/part0083.xhtml






OMSA_proto_record 




This object needs to used if transient objects need to be created for extraction. 




The best example of this is to generate a pseudo road intersection object from a road centerline object. 








OEBPS/Text/part0082.xhtml






Temporary Object 




The following section describes the configuration of an Oracle Utilities Network Management System GIS adapter temporary object. 








OEBPS/Text/part0081.xhtml






OMSA_extract_world 




Customization hook to control when "internals" are extracted. 








OEBPS/Text/part0080.xhtml






OMSA_additional_info 




A customization hook to extract additional information or attributes. Additional attributes can be exported by: 




a_omsa_engine.write_extract_attribute(<a_field_name>,<a_value>) 











It is advisable that is only additional info is to be extracted consideration should be given to just adding some logical or Magik fields, and just adding the new "fields" to the configuration files. 








OEBPS/Text/part0079.xhtml






Non_joined_connected_objects 




A customization hook to extract topologically connected objects. A rope or stream of objects should be returned. Used to get joints or hypernodes etc. when not joined to a feeder or feeder object. 








OEBPS/Text/part0289.xhtml






The Order Tables 




The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml. 




MDS_ORDER 




The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is: 















		



Column 




		



Type 




		



Description 










		



h_cls 




		



NUMBER 




		



Order class 










		



h_idx 




		



NUMBER 




		



Order Index 










		



event_cls 




		



NUMBER 




		



Key event class 










		



event_idx 




		



NUMBER 




		



Key event index 










		



active_event_cls 




		



NUMBER 




		



Event class for last active event 










		



active_event_idx 




		



NUMBER 




		



Event index for last active event 










		



active 




		



CHAR(1) 




		



Active flag (Y = active, N = inactive) 










		



when_xml_saved 




		



DATE 




		



When the xml data last sent to the MDS was saved in the database. 










		



when_created 




		



DATE 




		



When the order was created 










		



when_completed 




		



DATE 




		



When the order was completed or cancelled 










		



comp_reason 




		



VARCHAR2(64) 




		



Text explaining why the order was completed or cancelled 





















The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function. 




The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them. 




The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables. 




MDS_ORDER_FIELD 




The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are: 















		



Column 




		



Type 




		



Description 










		



name 




		



VARCHAR2(32) 




		



The field’s name. 










		



col 




		



VARCHAR2(32) 




		



The column in the MDS_ORDER table that holds the field’s value. 














MDS_ORDER_VALUE 




The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section  

Change Detection

. The columns in the table are:















		



Column 




		



Type 




		



Description 










		



name 




		



VARCHAR2(32) 




		



The element’s or attribute’s name. 










		



col 




		



VARCHAR2(32) 




		



The column in the MDS_ORDER table that holds the element’s or attribute’s value. 














The recommended way of naming the elements and attributes is to use the alternate name described in  

Alternate Names

. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.




An Example 




To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in  

DML Examples

.




The MDS_ORDER table schema: 








		



Column 




		



Type 










		



h_cls 




		



NUMBER 










		



h_idx 




		



NUMBER 










		



event_cls 




		



NUMBER 










		



event_idx 




		



NUMBER 










		



active 




		



CHAR(1) 










		



when_xml_saved 




		



DATE 










		



when_created 




		



DATE 










		



when_completed 




		



DATE 










		



comp_reason 




		



VARCHAR2(64) 










		



BODID 




		



VARCHAR2(128) 










		



E1 




		



VARCHAR2(64) 










		



E2 




		



VARCHAR2(64) 










		



E3 




		



VARCHAR2(64) 










		



E4 




		



VARCHAR2(64) 










		



E5 




		



VARCHAR2(64) 










		



E6 




		



VARCHAR2(64) 










		



E7 




		



VARCHAR2(64) 










		



E8 




		



VARCHAR2(64) 










		



E9 




		



VARCHAR2(100) 










		



E10 




		



VARCHAR2(64) 










		



E11 




		



VARCHAR2(64) 










		



E12 




		



VARCHAR2(64) 










		



E13 




		



VARCHAR2(64) 










		



E14 




		



VARCHAR2(64) 










		



E15 




		



VARCHAR2(64) 










		



E16 




		



VARCHAR2(100) 










		



E17 




		



VARCHAR2(64) 










		



E18 




		



VARCHAR2(32) 










		



E19 




		



VARCHAR2(32) 





















The contents of the MDS_ORDER_FIELD table: 















		



col 




		



name 










		



BODID 




		



BODId 





















The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements): 















		



col 




		



name 




		



Element tag 










		



E1 




		



e1 




		



Component 










		



E2 




		



e2 




		



Confirmation 










		



E3 




		



e3 




		



AuthorizationId 










		



E4 




		



e4 




		



CreationDateTime 










		



E5 




		



e5 




		



BODId 










		



E6 




		



e6 




		



ExternalNumber 










		



E7 




		



e7 




		



CreationDateTime 










		



E8 




		



e8 




		



Device 










		



E9 




		



e9 




		



Address 










		



E10 




		



e10 




		



DevPhases 










		



E11 




		



e11 




		



FuseSize 










		



E12 




		



e12 




		



WinterLoad 










		



E13 




		



e13 




		



SummerLoad 










		



E14 




		



e14 




		



NumCustOut 










		



E15 




		



e15 




		



CallerName 










		



E16 




		



e16 




		



CallerAddr 










		



E17 




		



e17 




		



CallerPhone 










		



E18 




		



e18 




		



CallerClues 










		



E19 




		



e19 




		



CallerDevice 

























OEBPS/Text/part0169.xhtml






Installing the G/Electric Data Adapter  




The Oracle Utilities Network Management System G/Electric Data Adapter Installer automates the tasks that must be performed in order to properly configure and install the Oracle Utilities Network Management System G/Electric Data Adapter. 








OEBPS/Text/part0290.xhtml






The Relationship Tables 




The relationship tables save event relationship data and configure the fields that are available to the dml in the external Relationship object, identified by ‘R’ in the dml.  




MDS_RELATION 




The MDS_RELATION table is used to save relationship data so that the adapter can continue to process event relationships, and to detect changes in these relationships over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Relationship object field values. The fixed set of columns is: 















		



Column 




		



Type 




		



Description 










		



h_cls 




		



NUMBER 




		



Relation class 










		



h_idx 




		



NUMBER 




		



Relation Index 










		



key_event_cls 




		



NUMBER 




		



Class of key event 










		



key_event_idx 




		



NUMBER 




		



Index of key event 










		



pseudo_dev_cls 




		



NUMBER 




		



Class of pseudo device 










		



pseudo_dev_idx 




		



NUMBER 




		



Index of pseudo device 










		



type 




		



NUMBER 




		



The type of relationship one of: 




NESTED_OUTAGE(1) MOMENTARY_OUTAGE(2) PARTIAL_RESTORATION(4) RELATED_OUTAGE(8)  




Pseudo relationships have the same number as their type, with the sign bit (bit 31) set.  










		



active 




		



CHAR(1) 




		



Active flag (Y = active, N = inactive) 










		



when_created 




		



DATE 




		



When the relationship was created 










		



when_completed 




		



DATE 




		



When the relationship was completed or cancelled 





















The columns that hold the field values can have any name, but they must match the contents of the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them. 




The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_RELATION and MDS_RELATION_FIELD tables. 




MDS_RELATION_EVENT 




The MDS_RELATION_EVENT table holds the events that are related to the key events in the MDS_RELATION table. It is not a configuration table. Its columns are: 















		



Column 




		



Type 




		



Description 










		



key_event_cls 




		



NUMBER 




		



Class of key event 










		



key_event_idx 




		



NUMBER 




		



Index of key event 










		



event_cls 




		



NUMBER 




		



Class of related event 










		



event_idx 




		



NUMBER 




		



Index of related event 










		



active 




		



CHAR(1) 




		



Active flag (Y = active, N = inactive) 














MDS_ RELATION_FIELD 




The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to the columns used to save their values in the MDS_RELATION table. In addition, it defines the names of all the fields that are available in the Relationship object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are: 















		



Column 




		



Type 




		



Description 










		



name 




		



VARCHAR2(32) 




		



The field’s name. 










		



col 




		



VARCHAR2(32) 




		





The column in the MDS_RELATION table that holds the field’s value. 




















OEBPS/Text/part0172.xhtml






Executing the Adapter Installer 




Follow these steps to install the adapter: 








		

1.




		



After verifying that the Adapter installation personal computer meets the system requirements, copy the Oracle Utilities Network Management System G/Electric Data Adapter Installer supplied to you by Oracle to the desktop of the personal computer you will be running the installation on. It can be found in the NMS_V1.10.0_Intergraph_GIS_Adapter subdirectory. 





















		

2.




		



Double-click the setup.exe file to start the installation. After a short time, the initial splash screen will display.  





















		

3.




		



Follow the on-screen instructions and prompts as required to advance to the next screen. Accept the default values unless they conflict with your system’s configuration (e.g., installation directory). The installation screens are listed below in the order they appear: 





















		

•




		



Welcome Screen. This screen describes the installation process. 





















		

•




		



Customer Information Screen. This screen prompts you for your name and your organization’s name. 





















		

•




		



License Information Screen. This screen displays the license agreement. You must click the I Agree button in order to proceed.  





















		

•




		



G/Electric Data Adapter Information Screen. This screen displays version information for the adapter. 





















		

•




		



Select Installation Folder Screen. This screen allows you to specify the installation directory. You can also specify whether the adapter should be available to anyone who uses this computer or only to you. 





















		

•




		



Confirm Installation Screen. This screen allows you to confirm the information you’ve entered before installation begins. If you need to change anything, use the Back button. Otherwise, click Next to proceed. 





















		

•




		



Installation Complete Screen. This screen indicates that the installation was successfully completed.  

















System Changes 




The Adapter does not add, modify or remove any of the Windows system DLL in the <windows>\system32 directory. 




The Adapter installation program installs SmoothProgressBar.dll in the installation directory of the Adapter. 




Following registry keys are created by the Adapter installation program: 




HKEY_LOCAL_MACHINE/Software/OracleTUGBU/Oracle Gelectric data Extractor 




String Value: VersionData: <Adapter version number> 








OEBPS/Text/part0293.xhtml






The High Priority Category Table 




The High Priority Category Table, MDS_HIGH_PRI_CAT, configures the priorities used by the functions ‘highPriTCCategoriesFromClues’. It has the following columns: 








		



Column 




		



Type 




		



Description 










		



group_order 




		



NUMBER 




		



A numeric representation of the trouble code categories 










		



code 




		



VARCHAR2(32) 




		



The trouble codes for each trouble code category 










		



priority 




		



NUMBER 




		



The priority of the trouble codes.  











Note: The smaller the number the higher the priority. The higher the number the lower the priority 





















This table assigns the priority of each trouble code within each trouble code category. 








OEBPS/Text/part0173.xhtml






Adapter Configuration 




The Adapter is configured using tables in a Microsoft Access database, commonly referred to as the "application configuration database". The specific configuration tables, their contents, several examples, and content requirements are in the following Entity Relationship diagram. 






[image: ]






The following diagram show the G/Electric Metadata Entity Relationship: 






[image: ]










OEBPS/Text/part0294.xhtml






Run Time Errors 




There are many configuration errors that can be detected at initialization time, causing the adapter to exit. However, some configuration and other errors can only be detected at run-time. 




All errors and diagnostic messages are output to the adapter’s log file. Important messages are output to the Windows Application Event log. Important errors can be output in XML formatted to an error queue, if an Error Output Document is configured in a Configuration Document. Note that, under some circumstances, it may be impossible to output errors to one or more of these destinations. 




The types of run-time errors, and the adapter’s reaction to them are: 








		

•




		



Data errors: These errors occur when badly formatted data is received. The input message is discarded. 





















		

•




		



Errors detected by the dml: The dml performs appropriate logic. Errors can be logged using the logging functions. Error XML can be sent by triggering the appropriate Output Document. 





















		

•




		



dml function call errors: These errors occur when a dml function is called and the prerequisites of the function are not met. The prerequisites of the functions are documented in  

DML Function Calls

. This is regarded as a configuration error, causing the adapter to exit.





















		

•




		



Mapping table errors: These errors occur when a map table function is called and the table name supplied by the dml does not exist in the database. This is regarded as a configuration error, causing the adapter to exit. 





















		

•




		



Errors when writing to the database: These are initially assumed to be transient, as some tables have constraints that contain time stamps. The adapter pauses for 1 second and re-tries. The adapter will retry 3 times. If all 3 re-tries fail, the adapter exits, on the assumption that there is a severe system problem. If the error occurred while an input message was being processed, and syncpoint is active  (configured using the config_MaxBackoutCount field), the message will be re-processed after the adapter restarts. If this cycle is repeated too many times, the message is discarded. 





















		

•




		



API call failure: These are treated in the same way as errors writing to the database. 





















OEBPS/Text/part0170.xhtml






Obtaining the Software 




The adapter setup files are included in the Oracle Utilities Network Management Optional Windows Applications download zip file that can be obtained from the Oracle e*Delivery site.  After downloading the zip file, find the appropriate Adapter zip file within the NMS_GIS_Adapters directory and unzip to a location on your Windows server. Application Installation 








OEBPS/Text/part0291.xhtml






The Code Mapping Tables 




The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. Typical usages include converting Oracle Utilities Network Management System control zones into dispatch areas on the MDS, and encoding long values in Oracle Utilities Network Management System to shorted encoded values. The dml uses these tables by calling ‘mapTableStr’ to convert from the MDS value to the Oracle Utilities Network Management System value, and ‘mapTableCode’ to convert from the Oracle Utilities Network Management System value to the MDS value. A table can be loaded using the function ‘loadMapTable’. All these functions take the name of the table as a parameter.  




The tables and views have the following columns: 








		



Column 




		



Type 




		



Description 










		



string 




		



VARCHAR2 




		



The value in Oracle Utilities Network Management System. 










		



code 




		



VARCHAR2 




		



The equivalent value in message. 





















The width of the columns can be any appropriate value.  




There are three types of mapping table: 








		

•




		



Those that map from string to code. In these cases the strings must be unique in the table. 





















		

•




		



Those that map from code to string. In these cases the code must be unique in the table. 





















		

•




		



Those that map both ways. In these cases the strings and codes must be unique. 

















This can be configured in a map configuration table, described below. If these is no configuration for the table, and informational message is output to the log, and the table is assumed to map both ways. 




It is sometimes convenient to add a code column to other Oracle Utilities Network Management System tables to avoid redundant data. Data from these tables can be accessed by use of a view that maps the appropriate column names to ‘string’ and ‘code’. 




If a value to be translated is not present in the table, a default value is used. If the default is not specified, the empty string is used.  




The types of the tables and their defaults are specified in a map configuration table, which has the following columns: 








		



Column 




		



Type 




		



Description 










		



tablename 




		



VARCHAR2 




		



The name of the table the default applies to. 










		



type 




		



CHAR(1) 




		



The type of the table. ‘C’ maps from string to code, ‘S’ maps from code to string, and ‘B’ maps both ways. 










		



string 




		



VARCHAR2 




		



The default Oracle Utilities Network Management System value. 










		



code 




		



VARCHAR2 




		



The default message value. 














The width of the columns can be any appropriate value. A map configuration table is loaded using a function call similar to ‘loadMapConfigTable(mds_map_config)’. The configuration document is a convenient place to do this. There can be multiple map configuration tables loaded. 








OEBPS/Text/part0171.xhtml






Application Installation 




If a previous version of the Adapter exists on the workstation, remove all the previous versions first. However, be sure to keep a backup copy of the application’s configuration database file for use with the new software. Notices of schema changes for this database can be found in the readme.rtf file in the installation directory. 




If this is the first installation, then an empty application configuration database file can be obtained from the installation package. Refer to the section labeled "Adapter Configuration Database" in this document for details on this required file. 




Be certain to install the software while logged on to the workstation as a Windows Administrator. 








OEBPS/Text/part0292.xhtml






The SRS Message Type Table 




The SRS Message Type Table, MDS_SRS_MSG_TYPE, configures the processing of SRSoutput InterSys messages. It has the following columns: 








		



Column 




		



Type 




		



Description 










		



message_type 




		



NUMBER 




		



The SRSoutput message type that this row configures 










		



action 




		



CHAR(1) 




		



How to process it. ‘I’, ‘D’, ‘P’ or ‘R’.  










		



proc_relation 




		



CHAR(1) 




		



Should special relationship processing be applied to it? ‘Y’ or ‘N’. 










		



special 




		



CHAR(1) 




		



Should special processing be applied to it? ‘Y’ or ‘N’. 










		



event_cls1 




		



NUMBER 




		



Event class for TRBL_ERT_UPDATE 










		



event_cls2 




		



NUMBER 




		



Event class for TRBL_ERT_UPDATE 





















The message_type column values are the SRSoutput message types listed in SRSoutput.h. 




The action column must be one of these values: 








		

•




		



‘I’: completely ignore this message type. Any message type not included in the table is ignored. 





















		

•




		



‘D’: do not process the message, but apply the proc_relation and special flags if they are set. 





















		

•




		



‘P’: process the message as is, after applying the flags. 





















		

•




		



‘R’: reprocess the message’s event after applying the flags. Some SRSoutput messages do not hold all of the event’s data (e.g., DAMAGE_RPT_UPDATE), and some are used to update the viewer when conditions are to be hidden and may or may not indicate that an event has changed state (e.g., TRBL_REMOVE_ALL). As a consequence, these messages do not hold all the data required to process them. In these cases, the adapter requests SRSService to send all the current data for the message’s event. 

















When set to a value of ‘Y’, the proc_relation flag instructs the adapter to apply special relation processing to the message. This processing is activated when the appliedRule field of the SRSoutput message contains one of the following values: OUTAGE_PART_REST, OUTAGE_RELATED or OUTAGE_UNRELATED. These indicate that the event is part of a relationship that has been created, deleted or modified. In these cases, the adapter loads the current state of all relationships, reacts to the changes, and reprocesses the message’s event after a delay to allow any upcoming changes to the event to arrive before rereading the event’s data. 




When set to a value of ‘Y’, the special flag instructs the adapter to apply special, message type specific, processing to the message. The following message types have special processing available: 








		

•




		



TRBL_CLEAR: If the applied rule is not OUTAGE_MERGED, the event is processed by all Output Documents with a ‘EventNonexistent trigger. 

















In addition to the processing of the special flag described above, the following message types are processed differently from normal SRSoutput messages because they are not formatted in the normal manner: 








		

•




		



TRBL_ERT_UPDATE: This message contains a list of estimated time of restoration updates. If this message type is not completely ignored, all the events in the message are reprocessed. As this message contains the events’ indexes, but not the events’ classes, the potential classes need to be supplied in the event_cls1 and event_cls2 columns. One or both of the classes (normal and momentary event classes) can be configured. If one is zero, it is ignored. 





















		

•




		



TRBL_WCB_UPDATE: This message type is not implemented in the adapter. If this message is not configured to be completely ignored, the adapter issues a warning to the log each time this message type is received. 





















OEBPS/Text/part0176.xhtml






ExcludeFeature Table 




The ExcludeFeature" table is used to indicate the G/Electric GIS features that should NOT be extracted by the Adapter. 















		



Column Name 




		



Description 




		



Type 




		



Unique 




		



Required? 










		



G3E_FNO 




		



Unique and valid G/Electric G3E_FNO from the G3E_FEATURE table. This is the primary key. 




		



Integer 




		



Yes 




		



Yes 










		



FeatureName 




		



Feature User Name (Not used by the Adapter. This is for the administrator’s reference.) 




		



Text(80) 




		










		




















Example: 















		



Column Name 




		



Value 










		



G3E_FNO 




		



229 










		



FeatureName 




		



Region 


















OEBPS/Text/part0297.xhtml






An Input Document 




The following is an example of an Input Document that processes a document containing completion data for an order. Various lines are numbered to allow reference to them in the explanation below. The numbers are not part of the syntax. 











1 InputDoc CompletionData 




2queue=$G.InRequestQueue; 




3&RootElement<environment=$G.environment; revision="1.0.0";> = 




4FieldReportSave; 




5BasePath=DataArea; 




6{ 




7&JobNumber:R; 




8&Crew 




9{ 




10&CrewKey 




11{ 




12&CrewName::"MDS"; 




13} 




14} 




15&CompletionData 




16{ 




17&System:R; 




18&Type:R; 




19&Failure:R; 




20&Cause:R; 




21&InterruptDev:R; 




22&Action:R; 




23&OtherAction::Other; 




24&RestoredTime; 




25&CustomerCaseNotes:::CCN; 




26} 




27 




28if (!findOrder(externalId, &JobNumber)) 




29{ 




30stop; 




31} 




32 




33@action=(&CompletionData/Action == "Other") 




? &CompletionData/OtherAction 




: &CompletionData/Action; 




34@restoredTime = decodeDateTime(&CompletionData/RestoredTime); 




35sqlupdate picklist_info_upd_tr | 




system_om,               type_om, 




failure_om,              cause_om, 




interrupt_dev_om,             action_text, 




crew_restore | 




&CompletionData/System,  &CompletionData/Type, 




&CompletionData/Failure, &CompletionData/Cause, 




&CompletionData/InterruptDev, @action, 




@restoredTime | 




ref_id | $O.event.idx; 











36# call SRS::setCaseNoteInfo if appropriate 




37if (isSet(&CCN)) 




38{ 




39setCaseNoteInfo(getCaseNotesForEvent($O.event) + " " + &CCN); 




40} 




41# set no dtr flag if appropriate 




42if (isIn(&CompletionData/Type, "Customer Trouble", 




43"Other Utilities",  




44"Scheduled/Customer Notified")) 




45{ 




46sqlupdate picklist_info_upd_tr | no_dtr_flag | Y | 




ref_id | $O.event.idx; 




47} 











# log change to event 




48@reason_for_update="Completion Information for Job " + 




&JobNumber + " from MDS"; 




49sqlinsert picklist_completion_log | 




ref_id,       who, 




reason_for_update, when | 




$O.event.idx, &Crew/CrewKey/CrewName,  




@reason_for_update, time(); 




50 




51} 











Line 1 declares the document to be an input document named ‘CompletionData’ .






Line 2 specifies the message queue that the document will be received on. The statement assigns the queue to be the value of the external data field named ‘InRequestQueue’ in the global configuration object. 




Line 3 contains the root element tag and attributes. The root element differs from other elements in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’, in this case ‘FieldReportSave’. The ‘environment’ attribute is set to the value of the external data field named ‘environment’ in the global configuration object. In contrast with output documents, the root element statement is in the header of the input document. 




A message arriving on the message queue with the name specified on line 2, and with a root element tag and attributes as specified on line 3, triggers the processing of the message by the input document. 




Line 5 specifies the base element’s tag. The base element specifies the sub-element of the root element at which to start processing the elements specified in the body of the input document. The base element is optional, but is convenient in that it reduces the element nesting level in the body of the input document. 




The ‘{‘ on line 6 and the ‘}’ on line 51 enclose the body of the document. 




Lines 7 to 26 define the tags for the elements that will be processed by the input document. 




Line 7 defines a required element ‘JobNumber’. The ‘R’ in the flags field of the element definition indicates that the element must be present in the input XML for the document to be processed. All required elements must be present, otherwise the XML will be ignored. 




Line 12 defines an optional element ‘CrewName’, a sub-element of  ‘CrewKey’, which is in turn a sub-element of  ‘Crew’. The element has a default value of ‘MDS’, which is the value used by references to the element in the rest of the document, when the element is not present. If a default value is not present, missing elements have a value of the empty string. 




Lines 15 to 26 define the ‘CompletionData’ element, which has 9 sub-elements, some of which are required. 




If all the required elements are present, the data can be processed. 




Line 28 calls the ‘findOrder’ function that finds the order object with an ‘externalId’ field equal to the JobNumber supplied in the XML. This function returns a boolean indicating whether such an order object was found, or not. This result is inverted by the ‘!’ so that line 30 is executed if ‘findOrder’ fails. Line 30 is a stop statement, which causes the processing of the document to terminate. 




Line 33 sets the variable ‘action’ to either the contents of the ‘OtherAction’ element or the ‘Action’ element, depending on whether ‘Action’ has a value of ‘Other’ or not. Both these elements are sub-elements of the ‘CompletionData’ element. A reference to a sub-element takes the form ‘&grandparent/parent/subelement’.  




Alternatively, an element can be named to make the references more succinct. The element definition of ‘CustomerCareNotes’ with a name of ‘CCN" on line 25, and the references to it on lines 37 and 39 are an example of this. 




Line 34 converts the time in the element ‘RestoredTime’ into a format suitable to be passed to the database, and saves it in the variable ‘restoredTime’. 




Line 35 saves the values of 5 elements and 2 variables in the ‘picklist_info_upd_tr’ table in the database using a sqlupdate statement. This table has a key column ‘ref_id’ that is set to the order’s event’s index number. If aggregate processing has been configured, and the intention is to save the data in the database for all events in the aggregation, the function ‘picklistInfoUpdTr’ would be more appropriate. 




Line 37 tests whether the element named ‘CCN’ (the ‘CustomerCaseNotes’ element in ‘CompletionData’), was present in the input XML, using the function ‘isSet’. If the element was set line 39 is executed . The function call to ‘getCaseNotesForEvent’ in the parameter list of the call to ‘setCaseNoteInfo’, calls an Oracle Utilities Network Management System API to read the current value of the order’s event case notes. The value returned is concatenated with a space and the value of the CCN element. The resulting value is saved to the event’s case notes using the function ‘setCaseNoteInfo’. 




Lines 42 to 47 set the ‘no_dtr_flag’ column in the ‘picklist_info_upd_tr’ table to ‘Y’, if the ‘CompletionData/Type’ element indicates that the trouble was not with the utility’s equipment. The function ‘isIn’ returns true if its first parameter matches any one of the rest of its parameters, false otherwise 




Lines 48 and 49 logs the change to the event by inserting a row into the picklist_completion_log table. If aggregate processing has been configured, and the intention is to save the data in the database for all events in the aggregation, the function ‘picklistCompLog’ would be more appropriate. 




The following XML would be processed by the example input document 











<FieldReportSave environment="Test" revision="1.0.0"> 




 <ApplicationArea> 




   <Sender> 




     <Component>MDS</Component> 




     <Confirmation>Never</Confirmation> 




     <AuthorizationId>MDS Interface</AuthorizationId> 




   </Sender> 




   <CreationDateTime>2003-05-01T14:30:17-05:00</CreationDateTime> 




   <BODId>guid</BODId> 




 </ApplicationArea> 




 <DataArea> 




  <JobNumber>MDS7704</JobNumber> 




  <CompletionData> 




   <System>4KV</System> 




   <Type>Lateral</Type> 




   <Failure>Fuse</Failure> 




   <Cause>Animal</Cause> 




   <InterruptDev>XFM12345678</InterruptDev> 




   <Action>Fuse replaced</Action> 




   <CustomerCaseNotes>Temporary Repair: Scheduled for Tuesday</CustomerCaseNotes> 




  </CompletionData> 




 </DataArea> 




</FieldReportSave> 






















OEBPS/Text/part0177.xhtml






ExcludeComponent Table 




The ExcludeComponent" table is used to indicate the G/Electric GIS components that should NOT be extracted by the Adapter. If a feature is listed in the ExcludeFeature table, then listing individual feature components in the ExcludeComponent Table is not required because all the components of the features will be excluded anyway. If a global component (such as Leader Line) needs to be excluded from the data extract, then it should be listed here only once. 















		



Column Name 




		



Description 




		



Type 




		



Unique 




		



Required? 










		



G3E_CNO 




		



Unique and valid G/Electric G3E_CNO from the G3E_COMPONENT table. This is the primary key. 




		



Integer 




		



Yes 




		



Yes 










		



ComponentName 




		



Component User Name (Not used by the Adapter. This is for administrator’s reference) 




		



Text(80) 




		










		




















Example: 















		



Column Name 




		



Description 










		



G3E_CNO 




		



33 










		



ComponentName 




		



Hyperlink Attributes 


















OEBPS/Text/part0298.xhtml






DML Reference 




This section contains a full reference for the dynamic message language used in the Generic WebSphere MQ Mobile Adapter configuration dml files. 








OEBPS/Text/part0174.xhtml






Defaults Table 




The "Defaults" table is used to indicate the default settings for the Adapter. These settings should reflect the most common parameters used for an extract. The Adapter will read only the first row in this table to apply the default settings.  















		



Column Name 




		



Description 




		



Type 




		



Unique 




		



Required? 










		



ExtractDirectory 




		



Directory for extracted data output 




		



Text(100) 




		



Yes 




		



Yes 










		



UserID 




		



G/Electric database user id 




		



Text(50) 




		



Yes 




		



Yes 










		



Password 




		



G/Electric database user password.(Masked in **** format) 




		



Text(50) 




		



Yes 




		



Yes 










		



Server 




		



G/Electric database connection configuration string 




		



Text(50) 




		



Yes 




		



Yes 










		



ServerDescription 




		



GIS Server information 




		



Text(100) 




		










		



No 










		



AreaReportUtilityPath 




		



Directory of the AreaReportUtility.exe If the path is not provided or application is not found in the provide path then Adapter will disable the Spatial (landbase) extract. 




		



Text(200) 




		










		



No 










		



ModificationLogTable 




		



Name of the G/Electric table where the modifications log is replicated. This value is required only if a table other than the modification log must be queried to check the changed features. 




		



Text(50) 




		










		



No 










		



AreaReportConfig 




		



G/Technology configuration name from connection configuration map If the config path is not provided then AreaReportUtility will not execute. The Spatial (landbase) extraction will be disabled. 




		



Text(50) 




		










		



No 










		



ChangeDetect_NonElectric_FNO 




		



Non Electrical Features, that need to be identified & extracted during Change Detect Extraction process. 




		



Text(200) 




		










		



No 










		



GetAnnotationCNO_AsAttributes 




		



GIS annotation feature component number list (separated by comma), where annotations also need to be extracted as attributes. 




		



Text(200) 




		



No 




		



No 










		



IgnoreComponentGeometry_CNO 




		



Allows grouping of all component geometries as one diagram. This can be helpful for linear features like conductors and bus bars. (LIST G3E_CNOs separated by comma). 




		



Text(50) 




		



No 




		



No 














Example 















		



Column Name 




		



Value 










		



ExtractDirectory 




		



C:\temp 










		



UserID 




		



Gear 










		



Password 




		



**** 










		



Server 




		



GearGIS 










		



ServerDescription 




		



GEAR GIS Database 










		



AreaReportUtilityPath 




		



c:\program files\ips\gtechnology\program 










		



ModificationLogTable 




		



ModLog 










		



AreaReportConfig 




		



GEAR 










		



ChangeDetect_NonElectric_FNO 




		



208, 209 










		



GetAnnotationCNO_AsAttributes 




		



45 










		



IgnoreComponentGeometry_CNO 




		



301 


















OEBPS/Text/part0295.xhtml






DML Examples 








OEBPS/Text/part0175.xhtml






Partition_Reference Table 




The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition. 




The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database. 















		



Column Name 




		



Description 




		



Type 




		



Unique 




		



Required? 










		



ExtractMethod 




		



Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data) 




		



Text(10) 




		



No 




		



Yes 










		



PartitionGroupName 




		



Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key. 




		



Text(50) 




		



Yes 




		



Yes 










		



GIS_TableName 




		



G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB 




		



Text(50) 




		



No 




		



Yes 










		



GIS_StartFeatureColumnName 




		



Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO 




		



Text(50) 




		



No 




		



Yes 










		



GIS_StartFeature 




		



G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features. 




		



Text(50) 




		



No 




		



No 










		



GIS_StartFeatureFNO 




		



G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided) 




		



Number(5) 




		



No 




		



No 










		



GIS_StartFeatureColumnANO 




		



Unique name column G3E_ANO from G3E_ATTRIBUTES table 




		



Text(50) 




		



No 




		



No 










		



GIS_WhereClause 




		



Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000 




		



Text(100) 




		



No 




		



No 










		



MPFileSuffix 




		



MP file suffix to distinguish between different partition group MP files 




		



Text(3) 




		



No 




		



No 










		



LastExtractDate 




		



The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration. 




		



Date 




		



No 




		



No 














Populate Feeder List Using a Source Feature  




When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter 















		



Column Name 




		



Value 










		



ExtractMethod 




		



NonSpatial 










		



PartitionGroupName 




		



Electric Feeder 










		



GIS_TableName 




		



BREAKER_N 










		



GIS_StartFeatureColumnName 




		



BREAKER_NUMBER 










		



GIS_StartFeature 




		



Breaker 










		



GIS_StartFeatureFNO 




		



300 










		



GIS_StartFeatureColumnName 




		



3000001 










		



GIS_WhereClause 




		
















		



MPFileSuffix 




		
















		



LastExtractDate 




		




















Populate Feeder List Using a Database Table  




If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values. 















		



Column Name 




		



Value 










		



ExtractMethod 




		



NonSpatial 










		



PartitionGroupName 




		



Electric_Feeder 










		



GIS_TableName 




		



CONNECTIVITY_N 










		



GIS_StartFeatureColumnName 




		



CIRCUIT_1 










		



GIS_StartFeature 




		
















		



GIS_StartFeatureFNO 




		
















		



GIS_StartFeatureColumnANO 




		
















		



GIS_WhereClause 




		



SYSTEM_VOLTAGE=’13.8’ 










		



MPFileSuffix 




		
















		



LastExtractDate 




		



15 Jun 2005 














Populate Detail Window Name Using a database Table 




All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table 















		



Column Name 




		



Value 










		



ExtractMethod 




		



Detail 










		



PartitionGroupName 




		



Detail 










		



GIS_TableName 




		



DETAIL_IND_LB 










		



GIS_StartFeatureColumnName 




		



DETAIL_USERNAME 










		



GIS_StartFeature 




		
















		



GIS_StartFeatureFNO 




		
















		



GIS_StartFeatureColumnANO 




		
















		



GIS_WhereClause 




		
















		



MPFileSuffix 




		



_dt 










		



LastExtractDate 




		




















Populate Spatial (Landbase) Partition List  




The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data. 















		



Column Name 




		



Value 










		



ExtractMethod 




		



Spatial 










		



PartitionGroupName 




		



Landbase 










		



GIS_TableName 




		



OMSGRID_N 










		



GIS_StartFeatureColumnName 




		



GRID_NUMBER 










		



GIS_StartFeature 




		



OMS_GRID 










		



GIS_StartFeatureFNO 




		



204 










		



GIS_StartFeatureColumnANO 




		



2040001 










		



GIS_WhereClause 




		



GRID_NUMBER<150 










		



MPFileSuffix 




		



_lb 










		



LastExtractDate 




		
























OEBPS/Text/part0296.xhtml






An Output Document 




The following is an example of an Output Document that generates a create request document for a small MDS order. Various lines are numbered to allow reference to them in the explanation below. The numbers are not part of the syntax. 




1OutputDoc Job 




2queue=$G.OutRequestQueue; associate=O; persist="Y"; 




3triggerCreate< SRSoutput; > = isIn($E.status, "ACK", "ASN", "ENR", "RST") && 




  ($E.outageHdl.cls != $G.momentary) && 




!findOrder(event, $E.outageHdl); 




4triggerUpdate:S < SRSoutput; > = findOrder(event, $E.outageHdl) && 




      (!isIn($E.status, "UNA", "CNL")); 




5{ 




6@docType = ChangeJob; 




7if (triggerCreate) 




8{ 




9@docType = CreateJob; 




10createOrder(); 




11} 




12&RootElement<environment = $G.environment; revision = "1.0.0";> = @docType; 




13&ApplicationArea 




14{ 




15&Sender 




16{ 




17&Component = NMS; 




18&Confirmation = "Always"; 




19&AuthorizationId = "NMS Interface"; 




20} 




21&CreationDateTime = formatDTNow(); 




22@BODId = getGuid(); 




23&BODId = @BODId; 




24} 




25&DataArea 




26{ 




27&ExternalNumber = "NMS:"+ $E.outageHdl.idx; 




28# CreationDateTime is outageTime which is   




29# either when the first customer called 




30# or when the device was opened in the model 




31&CreationDateTime=formatDateTime($E.outageTime); 




32&Device:S = $E.devAlias; 




33&Address:S = substring($E.dispAddress, 0, 100); 




34sqlselect @devPhases, @fuseSize, @winter_load,   @summer_load | 




phase_designation, fuse_size, kva_lod_win, kva_lod_sumr | 




classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx; 




35&DevPhases = @devPhases; 




36&FuseSize = @fuseSize; 




37&WinterLoad = @winter_load; 




38&SummerLoad = @summer_load; 




39&NumCustOut:S = $E.customersOut; 




40&CallerName = $I.0.getCustomerName; 




41&CallerAddr = $I.0.getAddrStreet + " " + $I.0.getAddrCity; 




42&CallerPhone = $I.0.getCustomerPhone; 




43&CallerClues = $I.0.getShortDesc; 




44&CallerDevice = $I.0.getDeviceAlias; 




45} 




46$O.BODId = @BODId; 




47} 











Line 1 declares the document to be an output document named ‘Job’. The name is used in diagnostics, and when a document is invoked in a ‘triggerOutputDoc’ function call (see below).  




Line 2 contains three specifications, and illustrates that more than one specification can be placed on one line.  








		

•




		



The first specifies the message queue that the document will be sent out on. The specification assigns the queue to be the value of the external data field named ‘OutRequestQueue’ in the global configuration object. The queue name is available to the rest of the document in the variable ‘@queue’, and could be changed, if required. 





















		

•




		



The second associates the document with the order object. Therefore this document will be used to hold the values of all the elements to be used for change detection when the event is updated with an SRSoutput message. 





















		

•




		



The third specifies that the message should be marked as persistent when placed on the queue. Not yet delivered messages are lost when the MQ server stops, if they are not marked as persistent. 

















Line 3 specifies a trigger, named ‘triggerCreate’ for the document, which causes an order to be created. It does not have the ‘send on change’ flag, so change detection is not in effect when this trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger should be evaluated to determine whether it should be fired. In this case the arrival of an asynchronous SRSoutput message causes the trigger to be evaluated. The expression following the ‘=’ is a boolean expression that fires the trigger when it evaluates to true. There may be more than one trigger for an output document. The values of the triggers are available to the rest of the document in variables with the same names as the triggers. 




Line 3 also illustrates that a specification can span multiple lines. 




Line 4 specifies a trigger, named ‘triggerUpdate’ for the document, which causes an order to be updated after it has been created. It has the ‘send on change’ flag, so change detection is in effect when this trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger should be evaluated to determine whether it should be fired. In this case the arrival of an asynchronous SRSoutput message causes the trigger to be evaluated. The expression following the ‘=’ is a boolean expression that fires the trigger when it evaluates to true. There may be more than one trigger for an output document. The values of the triggers are available to the rest of the document in variables with the same names as the triggers. 




The ‘{‘ on line 5 and the ‘}’ on line 47 enclose the body of the document. 




Line 6 sets a default value for the variable @docType, which will be used later to set the root element tag. 




Line 7 controls whether lines 9 and 10 are evaluated, depending on which trigger fired. If the triggerCreate trigger fired, 9 and 10 will be evaluated. 




Line 9 changes the value of the @docType variable to reflect that the order is new. 




Line 10 creates a new order object to save the values of the element’s data for change detection. 




Line 12 contains the root element tag and attributes. The root element differs from other elements in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’, in this case the value of the variable @docType. The reason for this is so that the same output document can be used for multiple message types, for example to create an order and to update the order. In this example, the ‘environment’ attribute is set to the value of the external data field named ‘environment’ in the global configuration object. The root element statement can be anywhere in the output document. All other elements appear in the generated XML in the order that they are within the output document. 




Lines 13 to 24 define the ‘ApplicationArea’ element, with 3 sub-elements, one of which has 3 sub-elements.  




The elements on lines 17 to 19 show how constants can be declared. On line 17 the ‘NMS’ is not surrounded by double quotes ("), because it only contains alphanumeric characters. On line 18 the ‘Always’ is surrounded by quotes, this acceptable, but not necessary because it only contains alphanumeric characters. On line 19 the ‘NMS Interface’ must be surrounded by quotes, because it contains a space. 




The value of the element on line 21 is supplied by the ‘formatDTNow’ function that formats the current data and time BOD format CCYY-MM-DDThh:mm:ss. 




Line 22 assigns a globally unique id to the variable ‘BODId’ for use on lines 23 and 46. 




Lines 25 to 45 define the ‘DataArea’ element, with 15 sub-elements. 




Line 27 assigns the concatenation of a constant (in quotes) with the event’s index. 




Lines 28 to 30 are comments and are ignored. Everything between a ‘#’ and the end of a line, inclusive, is a comment and is ignored. 




Line 31’s element is assigned the time the outage began in the format CCYY-MM-DDThh:mm:ss.  




Line 32’s element is assigned the alias (name) of the event’s interrupting device. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS. 




Line 33’s element is assigned the address of the event, truncated to 100 characters. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS. 




Line 34 reads four columns of the interrupting device’s facilities (attribute) table. The function ‘classTable’ supplies the name of the table.  




Lines 35 to 38 assigns the values read from the database in line 33 to the appropriate elements. 




Line 39’s element is set to the number of customers affected by the outage. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS. 




Lines 40 to 44 use the external object ‘Incidents’ to access customer call data. As there are potentially many incidents associated with an event, the dml has to specify which incident to use. The second component of the name, between the first and second period (.) is the offset into the array of incidents, in this case zero. The last component of the name is the name of the data access method in the Incident class. These examples access the first customer’s name, street address, city, phone number, clues, and transformer name. The incidents are normally ordered by the time that they called to report a problem, with the oldest first. If another ordering is required, by total priority for example, the  sortIncidents() function can be used to change the order.




Line 46 saves the document’s globally unique id in the external object for use later in another document. 




The XML generated by this output document would look similar to the following: 











<CreateJob environment="Test" revision="1.0.0"> 




  <ApplicationArea> 




    <Sender> 




      <Component>NMS</Component> 




      <Confirmation>Always</Confirmation> 




      <AuthorizationId>NMS Interface</AuthorizationId> 




    </Sender> 




    <CreationDateTime>2003-05-01T13:36:13-05:00</CreationDateTime> 




    <BODId>guid</BODId> 




  </ApplicationArea> 




  <DataArea> 




   <ExternalNumber>NMS2010</ExternalNumber> 




   <CreationDateTime>2003-05-01T13:26:13-05:00</CreationDateTime> 




   <Device>XFM12345678</Device> 




   <Address>5800 Yonge St. North York</Address> 




   <DevPhases>A</DevPhases> 




   <FuseSize>100</FuseSize> 




   <WinterLoad>40</WinterLoad> 




   <SummerLoad>45</SummerLoad> 




   <NumCustOut>4</NumCustOut> 




   <CallerName>M.J. McLaughlin</CallerName> 




   <CallerAddr>5802 Yonge St. North York</CallerAddr> 




   <CallerPhone>416 555-1212</CallerPhone> 




   <CallerClues>NC</CallerClues> 




   <CallerDevice>XFM12345678</CallerDevice> 




 </DataArea> 




</CreateJob> 















OEBPS/Text/part0038.xhtml






callbackFeederTimeout SRS Rule 




The maximum time allowed (in minutes) between the current time and the restoration time of a resolution in callback module before the resolution is deemed too old to remain or be loaded into the callback module. This rule holds outage info in JMService memory in a special data structure until this time expires OR all customer callbacks for the outage are complete. 




If this rule is set to 0 then resolutions will be kept in JMService until all callbacks are completed. 






Note:  This rule must be used in conjunction with the 

callbackInterfaceEnabled SRS Rule

.















		



Field Name 




		



Value 










		





INCIDENT_TYPE 






		



‘flowControlGeneral’ 










		





RULE_VALUE_1 






		





""     (not used) 












		





RULE_VALUE_2 






		





An integer, representing a number of minutes (Default: 2880 --  

48 hours)










		





RULE_VALUE_INTEGER_1 






		





0     (not used) 












		





RULE_VALUE_INTEGER_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_3 






		





0     (not used) 












		





RULE_VALUE_INTEGER_4 






		





0     (not used) 












		





RULE_VALUE_INTEGER_5 






		





0     (not used) 




















OEBPS/Text/part0037.xhtml






defaultCallbackAgent SRS Rule 




Specifies username of the default callback agent. All new callbacks will be automatically assigned to this agent. If this rule is not set then new callbacks will be left unassigned. 






Note:  This rule only takes effect if the rule callbackInterfaceEnabled set to ‘yes’. See 

callbackInterfaceEnabled SRS Rule

 for more information. The agent name used should be considered as an external agent in the CES_USER and ENV_ACCESS tables. Also, it is recommended that ‘IVR’ be used as a value of RULE_VALUE_1, as this is the default callback agent name that the Generic IVR Adapter uses when the adapter runs.















		



Field Name 




		



Value 










		



SET_NAME 




		



‘config’ 










		



INCIDENT_TYPE 




		



‘any’ 










		



RULE_VALUE_1 




		



callback agent username 










		



RULE_VALUE_2 




		



0     (not used) 










		



RULE_VALUE_INTEGER_1 




		



0     (not used) 










		



RULE_VALUE_INTEGER_2 




		



0     (not used) 










		



RULE_VALUE_INTEGER_3 




		



0     (not used) 










		



RULE_VALUE_INTEGER_4 




		



0     (not used) 










		



RULE_VALUE_INTEGER_5 




		



0     (not used) 


















OEBPS/Text/part0036.xhtml






customerPhoneParentheses SRS Rule 




If rule_value_1 set to ‘yes’, parentheses will be added to customer call phone numbers in the following format:  (AREA)NUMBER. Otherwise, the number and area will be concatenated together without parentheses.















		



Field Name 




		



Value 










		



SET_NAME 




		



‘config’ 










		



INCIDENT_TYPE 




		



‘any’ 










		



RULE_VALUE_1 




		



‘yes’ or ‘no’ (Default: ‘yes’) 










		



RULE_VALUE_2 




		



0     (not used) 










		



RULE_VALUE_INTEGER_1 




		



0     (not used) 










		



RULE_VALUE_INTEGER_2 




		



0     (not used) 










		



RULE_VALUE_INTEGER_3 




		



0     (not used) 










		



RULE_VALUE_INTEGER_4 




		



0     (not used) 










		



RULE_VALUE_INTEGER_5 




		



0     (not used) 


















OEBPS/Text/part0035.xhtml






useExternalCause SRS Rule 




If set to ‘yes’ then the IVR Adapter’s callback requests data flow will include the cause code when it populates the TROUBLE_CALLBACKS table. The cause code value will be taken from JOBS.CAUSE. 















		



Field Name 




		



Value 










		





SET_NAME 






		





‘config’ 












		





INCIDENT_TYPE 






		





‘any’ 












		





RULE_VALUE_1 






		





‘yes’ or ‘no’ (default: ‘yes’) 












		





RULE_VALUE_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_1 






		





0     (not used) 












		





RULE_VALUE_INTEGER_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_3 






		





0     (not used) 












		





RULE_VALUE_INTEGER_4 






		





0     (not used) 












		





RULE_VALUE_INTEGER_5 






		





0     (not used) 




















OEBPS/Text/part0034.xhtml






callbackInterfaceEnabled SRS Rule 




If set to ‘yes’ then SRS APIs for manipulating callback information will become available. It has to be set to ‘yes’ for Web Callback GUI to operate. This rule holds outage information in JMService memory on a special data structure until this time expires OR all customer callbacks for the outage are complete. 















		



Field Name 




		



Value 










		





SET_NAME 






		





‘config’ 












		





INCIDENT_TYPE 






		





‘any’ 












		





RULE_VALUE_1 






		





‘yes’ or ‘no’ (default: ‘no’) 












		





RULE_VALUE_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_1 






		





0     (not used) 












		





RULE_VALUE_INTEGER_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_3 






		





0     (not used) 












		





RULE_VALUE_INTEGER_4 






		





0     (not used) 












		





RULE_VALUE_INTEGER_5 






		





0     (not used) 




















OEBPS/Text/part0033.xhtml






Map Customer-Defined Fields in the INCIDENTS table 




Oracle Utilities Network Management System and the Generic IVR Adapter provides a mechanism to receive additional trouble call information from the external application and have this information stored in a new customer-defined field in the INCIDENTS table of Oracle Utilities Network Management System. 




The configurable TROUBLE_CALLS column name has special names ‘201’, ‘202’, up to ‘209’ to serve this purpose. Normally, a regular column name in TROUBLE_CALLS like CALL_COMMENT or COMMENT in JMS Input String is tied to a specific field of the INCIDENTS table by default. For this case, it's the OP_COMMENT field. A special name like ‘201’ could be mapped to a new field in the INCIDENTS table by using an SRS rule. The table below details how an SRS rule could be used to do this mapping. An SRS rule like this has to be used for each mapping. See  

Map Customer-Defined Fields in the INCIDENTS table

 for more information.















		



Field Name 




		



Value 










		



SET_NAME 




		



‘config_incident’ 










		



INCIDENT_TYPE 




		



‘customer_defined’ 










		



RULE_NAME 




		



the name of the new column in the INCIDENTS table 










		



RULE_VALUE_1 




		



‘str’, ‘date’, ‘int’, ‘float’ 




‘str’ is for strings, ‘date’ is for dates, ‘int’ is for integers, and ‘float’ is for floats. This represents the data type of the new column. 










		



RULE_VALUE_2 




		



An integer, representing the value of the SRS input configuration item specifying this field -- must have a value of 200 or greater 










		



RULE_VALUE_INTEGER_1 




		



0     (not used) 










		



RULE_VALUE_INTEGER_2 




		



0     (not used) 










		



RULE_VALUE_INTEGER_3 




		



0     (not used) 










		



RULE_VALUE_INTEGER_4 




		



0     (not used) 










		



RULE_VALUE_INTEGER_5 




		



0     (not used) 


















OEBPS/Text/part0032.xhtml






SRS Rules Configuration 




The following are SRS rules that could be used with the Generic IVR Adapter. These SRS rules can be included in the <project>_srs_rules.sql file. 








OEBPS/Text/part0031.xhtml






Trouble Callback Mapping Configuration 




IVR Adapter allows arbitrary information from the PICKLIST_INFO_UPD_TR table to be included into callback request. Columns CB_DETAIL1, CB_DETAIL2, CB_DETAIL3 and CB_DETAIL4 in the TROUBLE_CALLBACKS database table are used for this purpose. Database table IVR_ADAPTER_CONFIG is used to define if/how these columns should be populated. 















		



Field Name 




		



Nullable 




		



Data Type 




		



Description 










		



CONFIG_ITEM 




		



N 




		



VARCHAR2(32) 




		



Column name in the TROUBLE_CALLBACKS database table, which should be populated from the PICKLIST_INFO_UPD_TR table. Valid values are  










		



CONFIG_VALUE 




		



N 




		



VARCHAR2(32) 




		



Column name in the PICKLIST_INFO_UPD_TR table, which should be used as the data source. 


















OEBPS/Text/part0030.xhtml






Mapping to Customer-Defined Fields in Oracle Utilities Network Management System's INCIDENTS table 




A configurable TROUBLE_CALLS column can also be done through SRS_RULES.  




The following are the steps to map a new field in the TROUBLE_CALLS table with a new field in the INCIDENTS table: 








		

1.




		



Change the TROUBLE_CALLS table schema to include the customized field, for instance, TC_FIELD_ONE. 





















		

2.




		



Change the INCIDENTS table schema to include a new field that will be mapped to TC_FIELD_ONE. For instance the new field on the INCIDENTS table would be INC_FIELD_ONE. 





















		

3.




		



Create a new SRS Rule that maps the ‘201’ (TROUBLE_CALLS reserve name) with the new field in the INCIDENTS table, INC_FIELD_ONE. See the  

Map Customer-Defined Fields in the INCIDENTS table

 SRS rule for more information. 





















		

4.




		



Restart JMService and the Generic IVR Adapter. 



















Note:  Before considering the option of introducing new fields in the TROUBLE_CALLS table and the INCIDENTS table, it is advisable to discuss such option with your Project Engineer.








OEBPS/Text/part0029.xhtml






Trouble Call Mapping Configuration 




The fields of the Generic IVR Adapter's TROUBLE_CALLS table could be mapped with the fields of Oracle Utilities Network Management System' INCIDENTS and JOBS table. This is done through column matching of TROUBLE_CALLS fields with JMS Input String (JMS.h), which is the standard product column and user-defined configuration through SRS_RULES. 




For more information about the Generic IVR Adapter's TROUBLE_CALLS table, see  

TROUBLE_CALLS Table Schema



.






Mapping to the Base Fields in Oracle Utilities Network Management System Tables 




The following table explains how the base fields of the INCIDENTS and the JOBS tables of Oracle Utilities Network Management System are mapped with the fields of the TROUBLE_CALLS table of the Generic IVR Adapter. 




Below is a description of each column 








		

•




		



The JMS Input String (first column) is the standard product column found in JMS.h, which is used to create calls with the JMS::sendJMSinput() API, within the Oracle Utilities Network Management System. 





















		

•




		



The ‘Description’ column (second column) describes the content of the field.  





















		

•




		



The ‘Mapping to Oracle Utilities Network Management System Tables’ column (third column) identifies to what fields of the INCIDENTS table or the JOBS table a given JMS Input String is tied up to. In this column, INC.<database field name> indicates that the field name is part of the INCIDENTS table; JOBS.<database field name> indicates that the field name is part of the JOBS table. 





















		

•




		



The ‘Mapping to TROUBLE_CALLS table’ column (fourth column) identifies the TROUBLE_CALLS table column the JMS Input String is currently mapped to. 




























		



JMS Input String 




		



Description 




		



Mapping to System Tables 




		



Mapping to TROUBLE_CALLS table 










		



ADDR_BUILDING 




		



Customer building address. The building number portion of the street address of the customer. 




		



INC.ADDR_BUILDING 




		



 ADDR_BUILDING 










		



ADDR_CITY 




		



Customer city. The city or city/state portion of the address of the customer. 




		



INC.ADDR_CITY 




		



 ADDR_CITY 










		



ADDR_CROSS_STREET 




		



Intersection cross street name. Name of the second cross street should be in ADDR_STREET field. 




		



INC.ADDR_CROSS_STREET 




		



ADDR_CROSS_STREET 










		



ADDR_STREET 




		



Customer street address. The full street address of the customer. 




		



INC.ADDRESS 




JOBS.ADDR_STREET 




		



ADDR_STREET 










		



ALTERNATE_PHONE 




		



Alternative contact number. Alternate phone number for contacting the customer. 




		



INC.ALTERNATE_PHONE 




		



ALTERNATE_PHONE 










		



APPT_RANGE 




		



Appointment Range. 




		



INC.APPT_RANGE 




		



APPT_RANGE 










		



APPT_TIME 




		



Time of appointment. 




		



INC.APPT_TIME 




		



APPT_TIME 










		



APPT_TYPE 




		



Type of appointment. 




		



INC.APPT_TYPE 




		



APPT_TYPE 










		



CALL_ID 




		



Not used. 




		










		



CALL_ID 










		



CALL_TIME 




		



Input time of call. The input time of the incident. If not provided, the current time will be used. 




		



INC.INPUT_TIME 




		



CALL_TIME 










		



CALL_TYPE 




		



Type of call. 




		



INC.TYPE 




		



CALL_TYPE 










		



CALLBACK_LATE 




		



Callback late indicator. Indicates that it is OK to call back the customer beyond a defined ‘late’ time. This information is only stored in Oracle Utilities Network Management System. No other action is taken by Oracle Utilities Network Management System. 




		



INC.CALLBACK_LATE 




		



CALLBACK_LATE 










		



CALLBACK_REQUEST 




		



Indicates either a callback is requested or not. 




		



INC.CALLBACK_REQUEST 




		



CALLBACK_REQUEST 










		



CALLBACK_TIME 




		



Time callback requested. Time for which callback or a follow-up call was requested. 




		



INC.CALLBACK_TIME 




		



CALLBACK_TIME 










		



CANCEL_CALL 




		



Not used. 




		










		



CANCEL_CALL 










		



CHECK_CUTOFF 




		



Check cutoff customer indicator. If set to Y, check if the customer is disconnected, using the CES_DISCONNECTS table. If the customer is disconnected, the call will not be saved, an error will be returned and the VERIFY_DISCONNECTS table will be populated. 




		










		



CHECK_CUTOFF 










		



CID_ALIAS 




		



Not used. 




		










		



CID_ALIAS 










		



CLUE 




		



Indicates if call is clue if set to Y. 




		



INC.CLUE 




		



CLUE 










		



COMBINE_PRI 




		



Total priority of call. 




		










		



COMBINE_PRI 










		



COMMENT 




		



Call-taker Comments. Comments provided by the customer or call-taker about the incident. 




		



INC.OP_COMMENT 




		



CALL_COMMENT 










		



CUST_ADDRESS 




		



Not used. 




		










		



CUST_ADDRESS 










		



CUST_CALL_CANCEL 




		



Call cancel indicator. 




		



INC.CALL_CANCEL 




		



CUST_CALL_CANCEL 










		



CUST_CITY 




		



Not used. 




		










		



CUST_CITY 










		



CUST_CRITICAL 




		



Critical customer indicator. This is added to the critical C count of the outage. 




		



INC.CRITICAL_CUST 




		



 CUST_CRITICAL 










		



CUST_DEVICE_ALIAS 




		



The name of the device to which the customer is connected. This must be the alias of the device handle provided with CUST_DEVICE_CLS and CUST_DEVICE_IDX. If not provided, the service will query ODService to get this information, incurring a performance penalty in call processing. 




		



INC.OBJECT 




		



CUST_DEVICE_ALIAS 










		



CUST_DEVICE_CLS 




		



Customer device class. The class part of the handle for the device to which the customer is connected. If CUST_ID is provided, but the device is not, JMService will look up the customer device in the CES_CUSTOMERS table. If the provided device is a supply node, it will be put in SUPPLY_CLS & SUPPLY_IDX and the first stage device will be put in H_CLS & H_IDX. 




		



INC.H_CLS 




		



 CUST_DEVICE_CLS 










		



CUST_DEVICE_IDX 




		



Customer device index. The index part of the handle for the device to which the customer is connected. See CUST_DEVICE_CLS above. 




		



INC.H_IDX 




		



CUST_DEVICE_IDX 










		



CUST_DEVICE_NCG 




		



NCG of customer device. 




		



INC.NCG 




		



CUST_DEVICE_NCG 










		



CUST_DEVICE_PARTITION 




		



Partition of customer device. 




		



INC.PARTITION 




		



CUST_DEVICE_PARTITION 










		



CUST_FIRST_NAME 




		



Customer first name. The first name of the customer. If CUST_FIRST_NAME and CUST_LAST_NAME are both provided, they will be appended together with a space. The concatenated customer first and last name (with a space in the middle) may not be larger than 75 characters. This may be used for the full name of the customer if CUST_LAST_NAME is omitted. 




		



INC.CUSTOMER_NAME 




JOBS.CUSTOMER_NAME 




		



CUST_FIRST_NAME 










		



CUST_ID 




		



Unique identifier of a customer record in NMS. See CUST_DEVICE_CLS above. 




		



INC.CID 




		



CUST_ID 










		



CUST_INTERSECT_CLS 




		



Intersecting device class. 




		










		



CUST_INTERSECT_CLS 










		



CUST_INTERSECT_IDX 




		



Intersecting device index. 




		










		



CUST_INTERSECT_IDX 










		



CUST_INTERSECT_NCG 




		



Intersecting NCG. 




		










		



CUST_INTERSECT_NCG 










		



CUST_INTR_X 




		



Intersecting X coordinate. X coordinate used for intersection grouping. See  

streetXsectionOffset SRS Rule

 for more information.




		










		



CUST_INTR_X 










		



CUST_INTR_Y 




		



Intersecting Y coordinate. Y coordinate used for intersection grouping. See  

streetXsectionOffset SRS Rule

 for more information.




		










		



 CUST_INTR_Y 










		



CUST_KEY 




		



Customer account number. 




		



INC.ACCOUNT_NUM 




		



CUST_KEY 










		



CUST_LAST_NAME 




		



The last name of the customer. See CUST_FIRST_NAME above. 




		



INC.CUSTOMER_NAME 




JOBS.CUSTOMER_NAME 




		



 CUST_LAST_NAME 










		



CUST_LIFE_SUPPORT 




		



Life support customer. If set to ‘Y’, indicates a life support customer. This is added to the critical K count of the outage. 




		



INC.LIFE_SUPPORT 




		



CUST_LIFE_SUPPORT 










		



CUST_ORDER_NUM 




		



Customer order number. Not used in the Oracle Utilities Network Management System. 




		



INC.ORDER_NUMBER 




		



CUST_ORDER_NUM 










		



CUST_PHONE 




		



Customer phone number. The non-area code portion of the customer phone number. If both CUST_PHONE and CUST_PHONE_AREA are provided, they will be appended according to the customerPhoneParentheses SRS rule. The concatenated customer phone number and area (including parentheses) may not be larger than 32 characters. This field may be used for the full customer phone number if CUST_PHONE_AREA is omitted. See  

customerPhoneParentheses SRS Rule

 for more information.




		



INC.CUSTOMER_PHONE 




JOBS.CUSTOMER_PHONE 




		



CUST_PHONE 










		



CUST_PHONE_AREA 




		



Customer phone area code. The area code portion of the customer phone number. See CUST_PHONE above. 




		



INC.CUSTOMER_PHONE 




JOBS.CUSTOMER_PHONE 




		



 CUST_PHOHE_AREA 










		



CUST_PHONE_UPDATE 




		



Whether to update customer phone. If set to Y, the customer phone number will be updated in the CUSTOMER_PHONE_OVERRIDE table. 




		










		



CUST_PHONE_UPDATE 










		



CUST_PRIORITY 




		



Customer priority. This string is used to determine the critical customer type and priority of the customer. 




		



INC.CUSTOMER_TYPE 




		



CUST_PRIORITY 










		



CUST_STATUS 




		



Condition status of call. 




		










		



CUST_STATUS 










		



CUST_TROUBLE_CODE 




		



Customer complaint. The customer complaint (trouble code). This is a required field and must correspond with values in the SRS_TROUBLE_CODES table.  




		



INC.COMPLAINT 




		



CUST_TROUBLE_CODE 










		



CUST_TROUBLE_QUEUE 




		



Customer trouble queue. 




		



INC.TROUBLE_QUEUE 




JOBS.TROUBLE_QUEUE 




		



CUST_TROUBLE_QUEUE 










		



DRV_INST 




		



Driving instructions. 




		



INC.DRV_INSTR1 




		



 DRV_INST 










		



EXTERNAL_ID 




		



Unique call identifier. The unique identifier for the incident. 




		



INC.EXTERNAL_ID 




JOBS.EXTERNAL_ID 




		



EXTERNAL_ID 










		



FUZZY_NCG_CLS 




		



Fuzzy control zone class. 




		










		



FUZZY_NCG_CLS 










		



FUZZY_NCG_IDX 




		



Fuzzy control zone index. 




		










		



FUZZY_NCG_IDX 










		



GENERAL_AREA 




		



General Area. Not Used in the Oracle Utilities Network Management System. 




		



INC.GENERAL_AREA 




		



 GENERAL_AREA 










		



GROUP_BY_NAME 




		



Fuzzy control zone name. 




		










		



GROUP_BY_NAME 










		



GROUPABLE 




		



If set to Y, the call is groupable. 




		



INC.GROUPABLE 




		



GROUPABLE 










		



MEET_TIME 




		



Time of customer meet. If provided, meet created will be a future meet for the given time. Otherwise, if a meet is created it will be a critical meet. MEET_TYPE must be provided to create a meet. 




		



INC.MEET_TIME 




		



 MEET_TIME 










		



MEET_TYPE 




		



Customer meet type. If set to 1, a new meet will be created. If set to 2, an existing meet will be rescheduled. If set to 3, an existing meet will be canceled. If any other value is provided, no meet will be created. May be used in conjunction with MEET_TIME. 




		



INC.MEET_CODE 




		



 MEET_TYPE 










		



METER_ID 




		



Customer meter number. 




		



INC.METER_ID 




		



 METER_ID 










		



POWER_UP 




		



Power-up call. Used for power-up messages from CellNet. Used for AMR. 




		










		



 POWER_UP 










		



RELATED_EVT_APP 




		



Related event application. 




		










		



RELATED_EVT_APP 










		



RELATED_EVT_CLS 




		



Related event class. 




		



INC. RELATED_CLS 




		



RELATED_EVT_CLS 










		



RELATED_EVT_IDX 




		



Related event index. 




		



INC. RELATED_IDX 




		



RELATED_EVT_IDX 










		



REPORTED_ERT 




		



Est rest time reported to caller. 




		



INC. REPORTED_EST_REST_TIME 




		



REPORTED_ERT 










		



SHORT_DESC 




		



Short description of trouble. 




		



INC.SHORT_DESC 




		



SHORT_DESC 










		



TROUBLE_LOC 




		



Incident's trouble location. 




		



INC.TROUBLE_LOC 




		



TROUBLE_LOC 










		



UPDATE_EXISTING_INC 




		



Whether to update an existing incident. If set to 1, then JMService will replace an existing incident for the same customer with the values passed in this call. 




		










		



UPDATE_EXISTING_INC 










		



USER_NAME 




		



Call-taker user name. The name of the call-taker or interface that created the call. 




		



INC.USER_NAME 




		



USER_NAME 










		



X_REF 




		



Customer X coordinate. X coordinate of customer or customer device. 




		



INC.X_COORD 




		



 X_REF 










		



Y_REF 




		



Customer Y coordinate. Y coordinate of customer or customer device. 




		



INC.Y_COORD 




		



 Y_REF 





















During initialization of IVRAdapter, TROUBLE_CALLS column are matched with the standard product column (JMS.h). If TROUBLE_CALLS field does not match, error will be logged and IVRAdapter will exit.  




The following are some exceptions when matching TROUBLE_CALLS columns with JMS Input String: 








		

•




		



TROUBLE_CALLS.CALL_COMMENT - JMS Input String COMMENT 





















		

•




		



TROUBLE_CALLS.CALL_STATUS - special column in TROUBLE_CALLS table that indicates that the call is new (N) or already processed (C). 





















		

•




		



TROUBLE_CALLS.SUPPLY_ID - if this column exist it replaces the value of TROUBLE_CALLS. CUST_DEVICE_IDX and TROUBLE_CALLS. CUST_DEVICE_CLS is set to 994. 





















OEBPS/Text/part0028.xhtml






Overview 




This section will discuss the how to map pieces of trouble call information sent by the external application to specific database fields within Oracle Utilities Network Management System via the Trouble Call Mapping Properties Configuration file. Moreover, this section will discuss various SRS rules that could be used for the Generic IVR Adapter. 








OEBPS/Text/part0027.xhtml






Software Configuration 




This section is intended to help the user configure the Generic IVR Adapter that was installed on the previous section. This includes the default configuration used, and the modifications to the base configurations that need to be done in order to customize the adapter's behavior. 








OEBPS/Text/part0026.xhtml






Load the Generic IVR Adapter Database Tables and Stored Procedures 








		

•




		



The ces_ivr_gateway.ces script is responsible for loading various SQL files responsible for creating the Generic IVR Adapter tables and stored procedures. The ces_ivr_gateway.ces script could call some or all of the following scripts depending on how it was invoked: 





















		

•




		



product_retain_ivr_interface.sql - responsible for dropping and recreating the Generic IVR Adapter tables. 





















		

•




		



product_ivr_interface_head.sql - responsible for loading the Generic IVR Adapter stored procedure head. 





















		

•




		



product_ivr_interface_body.plb - responsible for loading the Generic IVR Adapter stored procedure body. 





















		

•




		



To create the Generic IVR Adapter tables and stored procedure, run the following command: 

















ces_ivr_gateway.ces -offline 






Note:  The command above recreates the Generic IVR Adapter table by dropping and creating it, therefore wiping out the contents of the Generic IVR Adapter tables. 








		

•




		



To create the Generic IVR Adapter stored procedure without dropping and recreating the Generic IVR Adapter tables, run the following command: 

















ces_ivr_gateway.ces 








OEBPS/Text/part0025.xhtml






IVRAdapter Command Line Options 




The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well. 




The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter. 




IVRAdapter -nodaemon 




           -help 




           -troublecall 




           -omscbreq 




           -omscbresp 




           -eventstatus 




           -cleantable 




           -synchronize 




           -debug [0-2] 




           -callperpoll NUMBERCALLS 




           -pollperiod SECONDS 




           -docustquery 




           -cbreqinterval SECONDS 




           -cbrespinterval SECONDS 




           -cleaninterval HOURS 




           -keepdbinfo DAYS 




           -cbagent AGENTNAME 




           -cbpassword PASSWORD 




         [ -cbAny | -cbLast ] 











This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to. 




Generic IVR Adapter Generic Command Line Options 




The following are the Generic IVR Adapter command line options that are independent from any Data Flow: 








		





Option 






		





Usage 






		





Description 












		



help 




		



IVRAdapter -help 




		



Displays the available command line options 










		



nodaemon 




		



IVRAdapter -nodaemon 




		



Runs the application on the foreground 










		



debug 




		



IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2) 




		



Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2. 














Trouble Call Data Flow Command Line Options 




The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see  

Trouble Calls

.








		



Option 




		



Usage 




		



Description 




		



Depends On 




		



Default Value 










		



troublecall 




		



IVRAdapter -troublecall 




		



Enables the Trouble Calls Data Flow. 






Note : This option must be enabled for CC&B - NMS integration.




		










		
















		



callperpoll 




		



IVRAdapter -callperpoll NUMBERCALLS(where NUMBERCALLS is an integer) 




		



Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information. 




		



troublecall 




		



100 calls per poll of information 










		



pollperiod 




		



IVRAdapter -pollperiod SECONDS(where SECONDS is an integer) 




		



Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table 




		



troublecall 




		



a 6 second interval between two successive polls 










		



docustquery 




		



IVRAdapter -docustquery 




		



If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.    






Note : This option should not be used in combination with the CC&B - NMS integration.




		



troublecall 




		




















Event Status and Affected Customers Data Flow Command Line Options 




The following are the Generic IVR Adapter command line options that are related to the Event Status and Affected Customers Data Flows. For more information, see  

Event Status

 and 

Affected Customers

.








		



Option 




		



Usage 




		



Description 




		



Depends On 




		



Default Value 










		



eventstatus 




		



IVRAdapter -eventstatus 




		



Enables the Event Status and the Affected Customers Data Flows.   Retrieves data from the trouble_status table.  




		










		
















		



synchronize 




		



IVRAdapter -synchronize 




		



Could be used for the Event Status and Affected Customers Data Flows. Rebuilds the TROUBLE_STATUS and TROUBLE_AFFECTED_CUSTOMERS tables with the recent information from Oracle Utilities Network Management System. This is useful when the Generic IVR Adapter was down for a long period of time. 




		



eventstatus 




		



























Callback Requests Data Flow Command Line Options 




The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see  

Callback Requests

.








		



Option 




		



Usage 




		



Description 




		



Depends On 




		



Default Value 










		



omscbreq 




		



IVRAdapter -omscbreq 




		



Enables the Callback Requests Data Flow 




		










		
















		



cbreqinterval 




		



IVRAdapter -cbreqinterval SECONDS(where SECONDS is an integer) 




		



Specifies the interval (in seconds) between two successive polls from the list of callback requests 




		



omscbreq 




		



a 5 second interval between two successive polls. 










		



cbAny 




		



IVRAdapter -cbAny 




		



Callback is submitted to IVR if requested by the customer during any call. 




		



omscbreq 




		
















		



cbLast 




		



IVRAdapter -cbLast 




		



Callback is submitted to IVR if requested by the customer during the last call. 




		



omscbreq 




		




















Callback Responses Data Flow Command Line Options 




The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see  

Callback Responses

.








		



Option 




		



Usage 




		



Description 




		



Depends On 




		



Default Value 










		



omscbresp 




		



IVRAdapter -omscbresp 




		



Enables the Callback Responses Data Flow 




		










		
















		



cbrespinterval 




		



IVRAdapter -cbrespinterval SECONDS (where SECONDS is an integer)




		



Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses 




		



omscbresp 




		



a 5 second interval between two successive polls. 





















Command Line Options Used by Multiple Data Flows 




The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘eventstatus’, ‘omscbreq’ and ‘omscbresp’. 








		



Option 




		



Usage 




		



Description 




		



Depends On 




		



Default Value 










		



cleantable 




		



IVRAdapter -cleantable 




		



Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some records from its tables. 




		



any option that enables a Data Flow  




		
















		



cleaninterval 




		



IVRAdapter -cleaninterval HOURS(where HOURS is an integer) 




		



Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old records from the Oracle Utilities Network Management System Generic IVR Adapter tables. 




		



Cleantable and any option that enables a Data Flow 




		



1 hour between to successive delete attempts 










		



keepdbinfo 




		



IVRAdapter -keepdbinfo DAYS (where DAYS is an integer)




		



Could be used for any of the five Data Flows.Records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.  




		



Cleantable and any option that enables a Data Flow 




		



 3 days 










		



cbagent 




		



IVRAdapter -cbagent AGENTNAME  (where AGENTNAME is a string)




		



Could be used for the Callback Requests and Callback Responses Data Flows. 




The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table. 




		



omscbreq or omscbresp 




		



IVR 










		



cbpassword 




		



IVRAdapter -cbpassword PASSWORD  (where PASSWORD is a string) 




		



Could be used for the Callback Requests and Callback Responses Data Flows. 




The password of the agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent passwords are located in the CES_USER table as well. 




		



(omscbreq or omscbresp) 




and cbagent 




		



IVR 





















For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 pm would we considered one day old when the next day with a time of 9:00 pm is reached (and not 12:00 am, which is just 3 hours from the time the record started aging). 




troubleCallCreate Tool Command Line Options 




Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device. 






Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.




The following are the command line options for the troubleCallCreate tool: 








		





Option 






		





Usage 






		





Description 






		





Default Value 












		





help 






		





troubleCallCreate -help 






		





Displays the available command line options 






		
















		





debug 






		





troubleCallCreate -debug 






		





Runs this tool in debug mode, defaulting the debug level to 2. 






		





Defaults to debug level 2 












		





totalcalls 






		





troubleCallCreate -totalcalls NUMBEROFCALLS 








(where NUMBEROFCALLS is an integer) 






		





Specifies the number of trouble calls to be created 






		
















		





troublecall 






		





troubleCallCreate -troublecall 






		





Creates one trouble call 






		



























troubleCallCreate tool on testing Trouble Calls Data Flow 






As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the Trouble Calls Data Flow. For more information about this Data Flow, see  



Trouble Calls

.






The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer information that would be used as entries in the TROUBLE_CALLS table. The tool always begins querying the CES_CUSTOMERS table starting from the first row, each time it is invoked. 








When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the troubleCallCreate tool would place a different permutation of trouble code bits for each trouble call in the TROUBLE_CALLS table. 








After running the troubleCallCreate tool, the results could be verified using the following database tables: 










		

•




		





The TR   OUBLE_CALLS table is populated with a new trouble call record (or with a certain number of trouble calls, assuming that the ‘totalcalls’ command line option was used). 























		

•




		





As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS table is populated with new records. 





















Note:  The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.




troubleCallCreate tool on testing Callback Requests Data Flow 






The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all trouble calls generated by such tool requires callback. For more information about this Data Flow, see  



Data Flow Details

.








		

•




		





For a generated trouble call, if part of the trouble code is described to be 'Power On', no record in the TROUBLE_CALLBACKS table will be generated even if the event is restored. 























OEBPS/Text/part0024.xhtml






Configure Adapter to run as NMS System Service 




Configure the Generic IVR Adapter to run as an Oracle Utilities Network Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic IVR Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic IVR Adapter. Search for IVRAdapter in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order to the Generic IVR Adapter to properly be monitored by SMService.   See the following section for details on command lines options for the Generic IVR Adapter. 








OEBPS/Text/part0023.xhtml






Setup the Generic IVR Adapter System Variables 




Include the following variables in the system variables definition: 








		



Variable 




		



Value 










		



IVR_RDBMS_USER 




		



same as $RDBMS_USER defined in the system 










		



IVR_RDBMS_PASSWD 




		



same as $RDBMS_PASSWD defined in the system 










		



IVR_RDBMS_HOST 




		



same as $RDBMS_HOST defined in the system 










		



IVR_ORACLE_SID 




		



same as $ORACLE_SID defined in the system 
















Note:  This is setup in the .nmsrc file located in the $NMS_HOME (and configured by running config_nmsrc.pl). After the setup of the system variables, make sure that the .nmsrc is rerun or a new terminal is opened. The above setup assumes that the database where the Generic IVR Adapter tables and stored procedures would reside would be the same database used by the Oracle Utilities Network Management System environment.








OEBPS/Text/part0022.xhtml






Ensure that the Generic IVR Adapter is installed. 








		

•




		



Verify that the following files are found in their respective folders 





















		

•




		



$CES_HOME/lib/libIVRAdapter.so 





















		

•




		



$CES_HOME/bin/IVRAdapter 





















		

•




		



$CES_HOME/bin/ces_ivr_gateway.ces 





















		

•




		



$CES_HOME/sql/product_retain_ivr_interface.sql 





















		

•




		



$CES_HOME/sql/product_ivr_interface_head.sql 





















		

•




		



$CES_HOME/sql/product_ivr_interface_body.plb 





















		

•




		



$CES_HOME/bin/troubleCallCreate 





















		

•




		



$CES_HOME/bin/ivrCallPerPoll.ces 





















		

•




		



$CES_HOME/bin/ivrPollPeriod.ces 





















OEBPS/Text/part0021.xhtml






Adapter Installation 




This section describes how to install the Oracle Utilities Network Management System Generic IVR Adapter.  








OEBPS/Text/part0020.xhtml






Callback Responses 




The external application calls the customer to confirm if power has been restored or not. The result of this call is passed from the external application to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure. 




Data Flow Characteristics 




The following are characteristics of the Callback Responses Data Flow: 








		



Characteristics 




		



Value 










		





Table 






		





TROUBLE_CALLBACKS. For schema information, see  



TROUBLE_CALLBACKS Table Schema

.










		





Stored Procedure 






		





pr_trouble_callback_responses. For stored procedure parameter information, see  



pr_trouble_callback_requests Stored Procedure

.










		





Direction 






		





external application to Oracle Utilities Network Management System 












		





Generic IVR Adapter Data Update Frequency to Oracle Utilities Network Management System 






		





Periodic (configurable) 
















Data Flow Steps 








		

1.




		



The external application calls the customer to confirm if power has been restored. The result of this call is passed back to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure. 





















		

2.




		



The stored procedure uses the incident number and premise ID combination (or the external ID and premise ID combination if the first combination is not provided) to identify a callback record in the TROUBLE_CALLBACKS table that would be receiving a response. 





















		

3.




		



The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table by updating the following fields: 





















		

•




		



The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.  





















		

•




		



The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the system date if no value was provided. 





















		

•




		



The callback's CALLBACK_STATUS field with the appropriate callback response code. 





















		

4.




		



The Oracle Utilities Network Management System Generic IVR Adapter queries the TROUBLE_CALLBACKS table for new callback responses received and sends this information to Oracle Utilities Network Management System. 





















		

5.




		



In Oracle Utilities Network Management System, the callback could get completed or cancelled or a new event (with the original call information) will be created, depending on the callback response. 

















Callback Responses Notes 




When a callback is made and no response from customer is received, a callback time will still be recorded. Any callback time that is submitted with a status is propagated, even if the status is no reply from the customer. It is understood in this case to be the last attempted callback. Also, when a nested outage is found, the new call and event are backdated to the original outage time. 






Note:  Oracle Utilities Network Management System does not track callback history.








OEBPS/Text/part0019.xhtml






Callback Requests Notes 




Once an outage event or a non-outage event is restored, callbacks are generated if the call is marked for a callback. All events have a restoration, either explicit or implicit, so any event can generate a callback. Also, in the event that the customer called multiple times, the customer will receive multiple callbacks if he requested a callback on each call. JMService gathers every call associated with an event, without filtering duplicate callers. Every call that is marked for callback will receive a callback. 








OEBPS/Text/part0190.xhtml






Required Attributes for Electrical Objects 















		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Connectivity information 




		



NODE1 and NODE2 from CONNECTIVITY component 




		
















		



Normal status of device 




		



NORMAL STATUS from CONNECTIVITY component 




		
















		



Orientation of the feature - OH or UG 




		



ORIENTATION from the CONNECTIVITY component 




		
















		



Phases for the device (PHASES) 




		



PHASE from CONNECTIVITY component 




		
















		



Voltage level (VOLTS) 




		



Voltage from CONNECTIVITY component 




		
























OEBPS/Text/part0191.xhtml






Optional Attributes for Electrical Objects 















		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		





Network protection direction 






		





N/A 






		
















		





Operations control authority zone (NCG) 






		





N/A 






		
























OEBPS/Text/part0189.xhtml






Optional Data for All Adapter Features 















		



Oracle Utilities Network Management System Requirement 




		



GIS Source 




		



Comments 










		



Diagram declutter ranking value 




		



N/A 




		



Not retrieved 










		



(x,y) offset for graphical attributes 




		



N/A 




		



Not retrieved 










		



Diagram groupings for multi-object hide/display 




		



N/A 




		



Not retrieved 










		



Symbology class 




		



N/A 




		



Not retrieved 










		



Scale factor 




		



Attribute 




		



E.g., urban or rural attribute prescribes a certain scale factor 










		



Object location ID 




		



Based on Partition 




		
























OEBPS/Text/part0194.xhtml






Microsoft Windows XP 




From the Start button, click Control Panel. Double-click the Add/Remove Programs Icon. Select the G/Electric Data Adapter application from the program list, and click the Remove button. 















OEBPS/Text/part0195.xhtml






Generic WebSphere MQ Adapter 




This chapter includes the following topics: 








		

•




		





Introduction 

























		

•




		





Hardware and Software Requirements 

























		

•




		





Functional Description 

























		

•




		





High Availability 

























		

•




		





Performance 

























		

•




		





Data Flows 

























		

•




		





Information Model 

























		

•




		





Configure Queues for Required Data Flows 

























OEBPS/Text/part0192.xhtml






Sample Model Preprocessor File 




The main products of the Adapter are the model preprocessor (".mp") files. There is one preprocessor file for each partition. 




A sample of a model preprocessor file that contains a partition identifier (feeder 1) and Switch feature (with switch unit and text annotation) is shown below: 




ADD Feeder1 { 




NAME = Elec1; 




COORD_SYSTEM = NAD_1927_StatePlane_Pennsylvania_South_FIPS_3702; 




SCALE_FACTOR = 1.0; 




Diagram[Feeder] = { 











    GEOMETRY ={ 




                            (-2147000000.00000,-2147000000.00000), 




                            (2147000000.00000,-2147000000.00000), 




                            (2147000000.00000,2147000000.00000), 




                            (-2147000000.00000,2147000000.00000), 




                            (-2147000000.00000,-2147000000.00000); 




}; 




   }; 











ADD Primary_Switch 815425 { 




   PORT_PORT_A=129493717; 




   PORT_PORT_B=129493718; 




   DIAGRAM[31303] = { 




    HEIGHT = 0; 




    ANGLE = 0.3130386; 




    SCALE = 0; 




   TEXT = "445SWITCH_NUMBER"; 




   GEOMETRY = { 




   (-553069.9375,-20248.82421875)}; 




}; 




   DIAGRAM[31302] = { 




    HEIGHT = 0; 




    ANGLE = 1.747896; 




    SCALE = 0; 




   GEOMETRY = { 




   (-553076.625,-20250.107421875)}; 




}; 




   ATTRIBUTE[G3E_FID]="815425"; 




   ATTRIBUTE[G3E_FNO]="313"; 




   ATTRIBUTE[FEATURENAME]="Primary Switch"; 




   ATTRIBUTE[SWITCH_NUMBER]="445"; 




   ATTRIBUTE[RATING]="600.00"; 




   ATTRIBUTE[SWITCH_OPERATOR]="MANUAL"; 




   ATTRIBUTE[SWITCH_TYPE]="AIR BREAK"; 




   ATTRIBUTE[SWITCH_SUB_TYPE]="Load Break"; 




   ATTRIBUTE[LTT_ID]="0"; 




   ATTRIBUTE[MIRROR]="NO"; 




   ATTRIBUTE[JOB_PLACE_NAME]="MetadataEdit"; 




   ATTRIBUTE[JOB_PLACE_DATE]="05/14/2004 1:34:57 PM"; 




   ATTRIBUTE[JOB_MODIFY_NAME]="JC_May20"; 




   ATTRIBUTE[JOB_MODIFY_DATE]="06/01/2004 2:30:12 PM"; 




   ATTRIBUTE[STATE]="In Service"; 




   ATTRIBUTE[ASSET_OWNER]="THESL"; 




   ATTRIBUTE[IPID]="35503"; 




   ATTRIBUTE[DISTRICT]="YK"; 




   ATTRIBUTE[LTT_ID]="0"; 




   ATTRIBUTE[LTT_DATE]="06/01/2004 2:30:12 PM"; 




   ATTRIBUTE[LTT_TID]="392702"; 




   ATTRIBUTE[REGION_NAME]="York"; 




   ATTRIBUTE[NORMAL_STATUS]="CLOSED"; 




   ATTRIBUTE[CIRCUIT1]="11-M1"; 




   ATTRIBUTE[CIRCUIT2]="11-M1"; 




   ATTRIBUTE[PHASE]="RWB"; 




   ATTRIBUTE[ORIENTATION]="OH"; 




   ATTRIBUTE[ACTUAL_STATUS]="CLOSED"; 




   ATTRIBUTE[STATE]="In Service"; 




   ATTRIBUTE[SYSTEM_VOLTAGE]="27.6"; 




   ATTRIBUTE[OPERATING_VOLTAGE]="27.6/16 kV"; 




   ATTRIBUTE[COLOUR_NO]="1"; 




   ATTRIBUTE[LTT_ID]="0"; 




   ATTRIBUTE[FEEDER_FLAG]="NO"; 




}; 








OEBPS/Text/part0193.xhtml






Uninstalling the G/Electric Data Adapter 




Microsoft Windows 2000 




From the Start button, click Settings, then Control Panel. Double-click the Add/Remove Programs Icon. Select the G/Electric Data Adapter application from the program list, and click the Change/Remove button. 








OEBPS/Text/part0198.xhtml






Hardware and Software Requirements 




Oracle Utilities Network Management System Environment 




The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system. 




Adapter Server 




The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server: 








		

•




		



All Oracle Utilities Network Management System UNIX operating systems are supported. 





















		

•




		



IBM WebSphere MQ messaging product must be installed. Note, however, that the queues may reside on a remote machine.  





















		

•




		



A LAN connection to the Oracle Utilities Network Management System server must be available. 





















		

•




		



ISIS must be installed and configured 

















Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy. 




Oracle Utilities Network Management System Server 




The Oracle Utilities Network Management System server environment is typically deployed on one or more UNIX servers configured with the following: 








		

•




		



UNIX operating system 





















		

•




		



Oracle RDBMS with Oracle Utilities Network Management System model 





















		

•




		



Oracle Utilities Network Management System service processes 





















		

•




		



LAN connection to adapter server 





















		

•




		



Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table. 





















		

•




		



ISIS  





















OEBPS/Text/part0196.xhtml






Introduction 




The purpose of this document is to provide an administration guide of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. This document will discuss the required process for installing and configuring the adapter to run with the appropriate Oracle Utilities Network Management System software.  




The Oracle Utilities Network Management System Generic WebSphere MQ Adapter can serve as a data adapter between the Network Management System and a number of external systems, such as a Customer Information System (CIS) or an Interactive Voice Response (IVR) system. Additionally, this adapter could be used with external systems that need to input trouble calls into Network Management System but do not require other sophisticated data flows, such as High Volume Call Applications (HVCA), Automated Meter Reading (AMR), or Work Management Systems (WMS). 




This interface depends upon IBM’s WebSphere MQ software as the intermediary repository for information passed between the Network Management System and the external system. This adapter is used only for the communication between IBM’s WebSphere MQ software and the Oracle Utilities Network Management System software suite. With the use of XML as the payload  for data transmission, the adapter exchanges data between Oracle Utilities Network Management System and external systems as defined in the Oracle Utilities Network Management System WebSphere MQ XML schema documents. The required configuration of the adapter is described in the sections that follow.










OEBPS/Text/part0197.xhtml






Terminology 




The following terms and acronyms are relevant to this specification 















		



OMS 




		



Outage Management System 










		



Network Management System 




		



Network Management System 










		



SMService 




		



System Monitor Service. SMService monitors the core processes in the system, essentially the services and interfaces. 










		



JMService  




		



Job Management Service. The Oracle Utilities Network Management System call processing and outage prediction engine. 










		



MQSeries 




		



A queue-based messaging system developed by IBM. This system has been renamed to WebSphere MQ. 










		



DTD 




		



Document type definition, used to define XML documents 










		



XML 




		



Extensible Markup Language 










		



XSL 




		



XML Style Sheet, used to reformat XML documents 










		



XML Schema 




		



An XML standard for defining XML documents 










		



CIS 




		



Customer Information System 










		



IVR 




		



Interactive Voice Response system 










		



SCADA 




		



Supervisory Control and Data Acquisition system 










		



HA 




		



High availability, where Oracle Utilities Network Management System is configured with a pair of redundant servers. This is usually in the form of a hardware cluster and a shared drive that contains the database. 


















OEBPS/Text/part0058.xhtml






Adapter Overview 




The Adapter makes use of Smallworld GIS metadata via a Magik Visual Basic .Net d developed application to access the Smallworld GIS features. It utilizes default values as set in an accompanying Microsoft Access database, which has the same name as the executable (GElec2SPL) and resides in the same subdirectory. This required database is the "application configuration" database. 








OEBPS/Text/part0057.xhtml






Model Build Process Overview 




GIS to Oracle Utilities Network Management System integration is a multi-step process that generates an operational topological representation of the existing GIS database for use by the Oracle Utilities Network Management System. This process is referred to as the model build interface. During the model build interface, a single spatial grouping of GIS objects (known as a partition) is processed by the Oracle Utilities Network Management System model build engine before incorporating the partition data into the OMS data model. An electrical circuit (feeder) or polygon feature, such as a service territory boundary, can be used to define a partition. The Oracle Utilities Network Management System model build engine processes partitions in three stages before committing it to the OMS operational data model: 1) GIS data extraction, 2) model pre-processing and 3) data import into Oracle Utilities Network Management System. 




The Smallworld Data Adapter extracts geospatial data in Oracle's vendor-neutral model preprocessing file format (MP file). Geospatial data in Smallworld is stored in a number of geographic data and attribute data tables. The GIS stores and renders the geospatial data as a contiguous map. For performance and architectural reasons, Oracle Utilities Network Management System requires GIS data to be brought into the system as smaller chunks referred as partitions. 




An electrical circuit (feeder) or polygon feature, such as a service territory boundary could be used to define a partition. Landbase features should be separated from electrical features because this data is inherently different, and because landbase data is typically more static. 




Oracle's Smallworld Data Adapter is able to: 








		

•




		



Extract the data by predefined partitions. 





















		

•




		



Extract the electric facility data by the feeder; i.e. when a feeder is extracted, all the devices that take part in forming the feeder (i.e. electrically connected) will be extracted in a single MP file. 





















		

•




		



Extracts Landbase features by predefined polygon boundary in a single MP file.  

















In order to minimize the data extraction and model build data volume, the extract is capable of identify the changed partitions since the last data extract operation. 








OEBPS/Text/part0056.xhtml






SmallWorld GIS Adapter 




This chapter describes the Oracle developed Smallworld data adapter. Since both the Oracle Utilities Network Management System and the Smallworld are highly configurable, there are many configuration options for the model build interface, but this document focuses only on the Smallworld Data Adapter. A related document, "Oracle Utilities Network Management System Model Build Interface" exists to provide details of Smallworld - Oracle Utilities Network Management System interface. 








OEBPS/Text/part0055.xhtml

















OEBPS/Text/part0054.xhtml






Information Model 




Database Schema 




SCADA_POINTS Database Table 




The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute. 




The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution. 




The schema for this table is defined in the file product_schema_scada_point.sql 




SCADA_IDS Database Table 








		



Column  




		



Data Type 




		



Description 










		



ID 




		



NUMBER 




		



Numeric identifier for each "scada source" that we want RTI to process. 










		



SCADA_NAME 




		



VARCHAR(32) 




		



Name for the scada source 





















The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID. 




SCADA_SYNONYMS Database Table 




The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.  








		



Column 




		



Data Type 




		



Description 










		



scada_name 




		



VARCHAR2(32) 




		



SCADA name - from scada_id name 










		



keyword 




		



VARCHAR2(32) 




		



SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank. 




If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column). 




For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias. 










		



value 




		



VARCHAR2(32) 




		



For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED). 




For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword. 




For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests. 










		



process_type 




		



VARCHAR2(5) 




		



For Digitals - 'D' 




For Analog - 'A' 




For threshold VOLT processing - ‘A_VOL’ 




For threshold AMP processing - ‘A_AMP’ 




For Conditions - ‘C’ 










		



attribute_alias 




		



VARCHAR2(20) 




		



Attribute name from attributes table. 




For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes. 




For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name. 




For conditions: This field is the condition class name (tag, note, etc). 










		



status_value 




		



VARCHAR2(20) 




		



Numeric or string from scada_states.alias table. 




For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN 




For analogs: This field is NULL. 




For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character. 





















For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms. 




SCADA_STATES 




This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2. 








		



Column  




		



Data Type 




		



Description 










		



SCADA_NAME 




		



VARCHAR2(32) 




		



Name of scada from scada_ids.scada_name 










		



ALIAS 




		



VARCHAR2(32) 




		



Alias to map to integer 










		



VALUE 




		



INTEGER 




		



Integer value to map to 





















OPAL_scada_states.sql defines the commonly used entries . 













SCADA_DIGITAL_IN 






The scada_digital_in table can be used by RTAdapter to queue incoming digital SCADA updates. RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found, RTAdapter will attempt to update the model according to data provided. Note that the database sequence scada_digital_in_sequence must be set up properly to create the primary key (scada_digital_in.id) value on insert. 








If the  

-retain option is not used, records are always deleted after they are processed and the only record of any failure is in the RTAdapter log itself. It is generally recommended that production systems run this way (i.e., without the -retain option).






If the  

-retain option is used all rows are retained in the SCADA_DIGITAL_IN table. Processed records have scada_digital_in.status column set to "S" after they are processed. If an error occurs the scada_digital_in.status column will be set to 'E', and the scada_digital_in.error_code and scada_digital_in.error_description columns should be populated with some indication of the problem.






Note that use of the  

-retain option is not generally intended as a production option; rather it is a temporary mechanism to help validate/test the interface. With the -retain option, a busy (noisy) SCADA system can cause the scada_digital_in table to grow without bound. This (size of the scada_digital_in table) must in turn be managed by the customer, which creates a maintenance issue.






If scada_digital_in.attribute is a numeric, it must match a valid NMS attribute number (for example, 0 is topology status). If non-numeric, both the scada_digital_in.attribute and scada_digital_in.operation values must be properly defined in the scada_synonyms and scada_states tables. 

















		



Column 




		



Data Type 




		



Description 










		



ID 




		



VARCHAR2(32) 




		



scada_digital_in sequence generated pk 










		



H_CLS 




		



NUMBER(38,0) 




		



NMS class of device - can be null if alias is not null. 










		



H_IDX 




		



NUMBER(38,0) 




		



NMS index of device - can be null if alias is not null. 










		



ALIAS 




		



VARCHAR2(128) 




		



SCADA point alias - can be null if h_cls and h_idx are NOT null. 










		



ATTRIBUTE 




		



VARCHAR(32) 




		



SCADA attribute. If numeric, it must match a valid NMS attribute number. If it is a string, it must map to a valid NMS attribute number via the scada_synonyms table. 










		



PHASES 




		



VARCHAR(4) 




		



Intended phases for operation. If numeric must be between 1 and 7 - where 1 is A and 7 is ABC. If a string must map to a valid numeric via the scada_states table. 










		



OPERATION 




		



VARCHAR(32) 




		



Operation. If numeric and used for attribute 0 (topology status) it must be 1(open) or 1(close) and the phase attribute must be set to indicate which phases are intended to operate. If a string it must map to a valid code for the attribute involved via a combination of the scada_synonyms table and/or the scada_states table. 










		



OPERATION_DATE 




		



DATE 




		



Operation. If numeric and used for attribute 0 (topology status) it must be 1(open) or 1(close) and the phase attribute must be set to indicate which phases are intended to operate. If a string it must map to a valid code for the attribute involved via a combination of the scada_synonyms table and/or the scada_states table. 










		



OPERATION_COUNT 




		



NUMBER(10) 




		



How many operations have occurred since the last scan - for momentaries (not presently supported). 










		



CAPTURE_DATE 




		



DATE 




		



When operation captured. 










		



QUALITY 




		



VARCHAR2(32) 




		



Quality code for attribute - can be numeric or a string. Either way it must be properly configured in NMS and must ultimately translate to be greater than 0x7FF (2047) and less than or equal to 0xFFFF. All quality codes below 0x7FF are reserved for NMS.  










		



SOURCE 




		



VARCHAR(32) 




		



source/user name 










		



STATUS 




		



VARCHAR2(1) 




		





Status of request: 








N = New 






E = Error 










		



ERROR_CODE 




		



NUMBER(38,0) 




		



Error code 










		



ERROR_DESCRIPTION 




		



VARCHAR(256) 




		



Error code description. 





















SCADA_ANALOG_IN 




The scada_analog_in table can be used by RTAdapter to queue incoming analog SCADA updates. RTAdapter, if configured to do so, should periodically poll this table and check for data that has changed since the last update of the scada_analog_in.capture_date column. If potential updates are found RTAdapter will attempt to update the model according to the data provided. If an error occurs an error is written to the RTAdapter log file. If the update is successful no changes are made to the scada_analog_in table. This is to support the idea of continuous update of the scada_analog_in table from an external entity. The scada_analog_in table can be updated many times between RTAdapter scans. RTAdapter will "harvest" whatever appears to have changed since the last scan. It is expected that some form of merge statement would be used to update the scada_analog_in table - inserting if a record does not exist and updating otherwise - which triggers an update on the capture_date column. 




Either a valid NMS handle OR a unique combination of analog_measurements.rti_alias and analog_measurements.attribute must provided for each record in the scada_analog_in table. If a valid rti_alias is provided but no valid handle is available you must set h_cls=0 and h_idx=0. This supports the scada_analog_in primary key and is a way of telling RTAdapter which scheme to use to find the appropriate analog to update. 















		





Column 






		





Data Type 






		





Description 












		





ID 






		





VARCHAR2(32) 






		





scada_digital_in_sequence generated pk 












		





H_CLS 






		





NUMBER(38,0) 






		





NMS class of device 












		





H_IDX 






		





NUMBER(38,0) 






		





NMS index of device 












		





ALIAS 






		





VARCHAR2(128) 






		





SCADA point alias - can be null if h_cls and h_idx are NOT 0. 












		





ATTRIBUTE 






		





VARCHAR(16) 






		





SCADA attribute. If it is numeric it must match a valid NMS attribute. If it is a string it must be defined in scada_synonyms and map to a avalid NMS attribute. 












		





MEASUREMENT 






		





NUMBER 






		





Analog update value. 












		





MEASUREMENT_DATE 






		





DATE 






		





When operation occurred in field - not presently used. 












		





CAPTURE_DATE 






		





DATE 






		





When measurement captured - could be updated by trigger on table update. This is the how RTAdapter determines what to examine during periodic polls. 












		





QUALITY 






		





VARCHAR2(32) 






		





Quality code for attribute - can be numeric or a string. Either way it must be properly configured in NMS and must ultimately translate to be greater than 0x7FF (2047) and less than or equal to 0xFFFF. All quality codes below 0x7FF  are reserved for NMS.  












		





SOURCE 






		





VARCHAR(32) 






		





source/user name 























ANALOG_MEASUREMENTS 















		



Column  




		



Data Type 




		



Description 










		



H_CLS 




		



SMALLINT 




		



Object handle 










		



H_IDX 




		



INTEGER 




		



Object index 










		



PARTITION 




		



INTEGER 




		



Object partition handle 










		



ATTRIBUTE 




		



SMALLINT 




		



Data attribute index (from ATTRIBUTES table) 










		



TTL 




		



SMALLINT 




		



Time-To-Live Value 










		



LIMIT_GROUP_ID 




		



INTEGER 




		



Object limit group 










		



RTI_ALIAS 




		



VARCHAR2(128) 




		



RTI device measurement name 










		



SCADA_ID 




		



INTEGER 




		



SCADA source identifier - matches scada_ids.id 










		



RTU_ID 




		



VARCHAR2(32) 




		



RTU IDID - unique name within SCADA system. 










		



QUALITY 




		



INTEGER 




		



Quality code 










		



VALUE 




		



FLOAT 




		



Manual Replace Value 










		



UPDATE_FLAG 




		



INTEGER 




		



Manual Replace Flag 










		



ICCP_OBJECT 




		



VARCHAR2(32) 




		



ICCP mms object name 










		



DISPLAY_ID 




		



VARCHAR2(64) 




		



ID for display call up 










		



CONTROLLABLE 




		



VARCHAR2(1) 




		



Is this row controllable 










		



ACTIVE 




		



VARCHAR2(1) 




		



Is this row active 










		



SOURCE 




		



VARCHAR2(33) 




		



Source of measurements 










		



COMMENTS 




		



VARCHAR2(512) 




		



Comment associated with 










		



OFF_NOMINAL_TIME 




		



DATE 




		



Time quality went off-nominal 





















DIGITAL_MEASUREMENTS 








		



Column  




		



Data Type 




		



Description 










		



H_CLS 




		



SMALLINT 




		



Object handle 










		



H_IDX 




		



INTEGER 




		



Object index 










		



PARTITION 




		



INTEGER 




		



Object partition handle 










		



ATTRIBUTE 




		



SMALLINT 




		



Data attribute index (from ATTRIBUTES table) 










		



TTL 




		



SMALLINT 




		



Time-To-Live Value 










		



LIMIT_GROUP_ID 




		



INTEGER 




		



Object limit group 










		



RTI_ALIAS 




		



VARCHAR2(128) 




		



RTI device measurement name 










		



SCADA_ID 




		



INTEGER 




		



SCADA source identifier 










		



RTU_ID 




		



VARCHAR2(32) 




		



RTU ID 










		



QUALITY 




		



INTEGER 




		



Quality code 










		



VALUE 




		



FLOAT 




		



Manual Replace Value 










		



UPDATE_FLAG 




		



INTEGER 




		



Manual Replace Flag 










		



ICCP_OBJECT 




		



VARCHAR2(32) 




		



ICCP mms object name 










		



DISPLAY_ID 




		



VARCHAR2(64) 




		



ID for display call up 










		



NORMAL_STATE 




		



INTEGER 




		



Normal state for measure 










		



CONTROLLABLE 




		



VARCHAR2(1) 




		



Is this row controllable 










		



ACTIVE 




		



VARCHAR2(1) 




		



Is this row active 










		



SOURCE 




		



VARCHAR2(33) 




		



Source of measurements 










		



COMMENTS 




		



VARCHAR2(512) 




		



Comment associated with 










		



OFF_NOMINAL_TIME 




		



DATE 




		



Time quality went off-nominal 





















This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include: 








		

•




		



Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.  





















		

•




		



Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network. 





















		

•




		



Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System. 





















		

•




		



Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.  





















		

•




		



Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.) 





















		

•




		



SQL queries, result sets and transactions. 





















		

•




		



Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility. 





















		

•




		



Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System. 

















The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point. 








OEBPS/Text/part0053.xhtml






Data Flows 




SCADA Entry 




The SCADA system sends fixed format files to the RTAdapter. The following format rules generally apply: 








		

1.




		



Actual SCADA data appears between ^DATA (the string DATA at the start of a line) and ^END_DATA. 





















		

2.




		



Records between DATA and END_DATA are identified by OBJECT which must match a unique analog_measurements.rti_alias or digital_measurements.rti_alias entry. 





















		

3.




		



SYNCHRONIZE|TRUE is a special case used to synchronize conditions and is outside the standard DATA/END_DATA block. If set the line following SYNCHRONIZE|TRUE should be something like TYPE|note - to indicate the data that follows is to be used to synchronize "note" class conditions. For SYNCHRONIZE scan files the condition action code should be "syn" - not "add" or "rem". 





















		

4.




		



All other fields are generally ignored. 





















		

5.




		



For digital_measurements: device status: open or closed, battery low, etc. Example: 





















		






		





DATA 























		






		





OBJECT|BR2414 























		






		





BREAKER_POS|OPEN 























		






		





END_DATA 























		

6.




		



For analog measurements: Amps (Amps_A, Amps_B, Amps_C): 





















		






		





DATA 























		






		





OBJECT|BR2413 























		






		





AMPS_A|1.1 























		






		





AMPS_B|1.2 























		






		





AMPS_C|1.3|SUSPECT 























		






		





OBJECT|BR2414-AMPS_A 























		






		





AMPS_A|2.1|4096 























		






		





OBJECT|BR2414-AMPS_B 























		






		





AMPS_B|2.2 























		






		





OBJECT|BR2414-AMPS_C 























		






		





AMPS_C|2.3 























		






		





END_DATA 



















Both digital and analog measurements can include quality codes for each attribute. Quality codes are part of the standard Oracle Utilities Network Management System attribute definition and are contained within a 32-bit integer field. Bits 0->10 are reserved for Oracle Utilities Network Management System purposes. Bits 11->31 are available for project specific configuration. Quality codes are generally defined in the quality_codes configuration table. In the analog example above (AMPS_C|1.3|SUSPECT) the SUSPECT string must be defined in the scada_states table and map to a valid quality code integer. Integers can also be used directly to provide quality codes (AMPS_A|2.1|4096). 








		

7.




		



Generic SCADA conditions (generally notes or tags - could be any condition) are also supported. To send a condition something like the following would be required: 





















		






		





DATA























		






		





OBJECT|BR2414 























		






		





NOTE_0|add|WHO=system|TIM=2009-02-27T16:22:17|TXT=NOTE_0 txt|EXT=BR2414-note_0 























		






		





END_DATA 



















The above text would "add" a note condition to the model on the device mapped to BR2414. The following keyword phrases can be used to specify common condition fields: 








		






		



WHO= (who should be recorded as the creator of the condition - must be a valid NMS user name). 





















		






		



TIM= ISO timestamp for when the condition was added. Timestamp format must be defined in your $DATEMSK file. 





















		






		



TXT= Text string for the condition.text field (notes.text. tags.text, etc). Condition text string cannot contain newlines or the separator character - whatever it is configured to be. Text will truncate at the first newline or separator character. 





















		






		



EXT= SCADA unique identifier for the created condition. This field is necessary to allow the external system to later remove the condition. 





















		

8.




		



To remote the SCADA condition above: 





















		






		





DATA 























		






		





OBJECT|BR2414 























		






		





NOTE_0|rem|WHO=system|TIM=2009-10-27T16:22:17|EXT=BR2414-note_0 























		






		





END_DATA 


























For potential use with the NMS MultiSpeak (other other Java based) SCADA adapters.  




If desired the generic SCADA adapter can be used in conjunction with the NMS MultiSpeak adapter. The intent is use the RTAdapter to provide a buffering mechanism for "noisy" SCADA systems that could potentially generate many periodic analog (or digital) updates. Using  RTAdapter to capture and bundle incoming changes reduces the impact on the NMS CORBA Gateway and NMS CORBA publisher - when compared to contacting an internal service directly. Using RTAdapter with the "-dir RDBMS" option allows changes to be captured and sent in bulk to internal NMS Services. 




If configured to do so the NMS Web Gateway APIs used by the MultiSpeak SCADA interface will write to the scada_digital_in and scada_analog_in tables when processing updates from an external SCADA. SCADA measurements submitted using Web Gateway APIs 'updateDigitalStatuses' and 'updateMeasurements' can be written into staging tables SCADA_DIGITAL_IN and SCADA_ANALOG_IN instead of being submitted directly to DDService. This behavior is controlled by three configuration properties, which can be added to the CentricityServer.properties file. 








		

1.




		



intersys.use_db_for_scada_statuses  

















If set to 'true' than device status updates received from SCADA system will be written to the SCADA_DIGITAL_IN database table.  








		

2.




		



intersys.use_db_for_scada_digitals  

















If set to 'true' than updates to digital values received from SCADA system will be written to the SCADA_DIGITAL_IN database table. 








		

3.




		



intersys.use_db_for_scada_analogs  

















If set to 'true' than updates to analog values received from SCADA system will be written to the SCADA_ANALOG_IN database table 




By default all the above properties are set to 'false', which means that SCADA measurements will be sent directly to the internal DDService process.  








OEBPS/Text/part0052.xhtml






Adapter Configuration 




RDBMS configuration: 




Tables involved: 








		

•




		





digital_measurements 

: standard SCADA configuration table for incoming digital data.





















		

•




		





analog_measurements 

: standard SCADA configuration table for incoming analog data.





















		

•




		





scada_ids 

: RTAdapter/rtipop SCADA definition table - required for both.





















		

•




		





scada_states 

: RTAdapter string state to integer mapping - required.





















		

•




		





scada_synonyms 

: RTAdapter scada data attribute value mapping - required.





















		

•




		





scada_analog_in:  RTAdapter polling table can be used to queue incoming analog SCADA updates - optional.



















Note:  The RTAdapter process does not require any population into the scada_analog_in table. The use of scada_digital_in is entirely optional but is intended to be used in conjunction with scada_digital_in.








		

•




		





scada_digital_in:  RTAdapter polling table can be used to queue incoming digital SCADA updates - optional.



















Note:  The RTAdapter process does not require any population into the scada_digital_in table. The use of scada_digital_in is entirely optional but is intended to be used in conjunction with scada_analog_in.








		

•




		





scada_points : optional rtipop staging table - to help populate analog/digital measurements



















Note:  The RTAdapter process does not require any population into the scada_points table. The use of the scada_points as a staging table is merely one solution for the ultimate problem of configuring the required SCADA interface tables (digital_measurements and analog_measurements). The use of rtipop is entirely optional.




To configure the standard SCADA input RDBMS tables (analog_measurements and digital_measuremens) using rtipop you might follow these steps: 








		

1.




		



Specify which devices have SCADA (via scada_points table and rtipop): 

















Two options: 


1.The scada_points table is generally populated via attribute population during model build construction/update but can be populated after the fact by a custom (project specific) process. 


2.Populate  scada_points RDBMS table via model build device attribute configuration.








		






		



This option involves populating two attributes in the scada_points table: 





















		

•




		





scada_name : the name of the SCADA, as defined in scada_ids.scada_name (for example, USA).





















		

•




		





rtu_alias : SCADA unique identifier for reporting field device.





















		






		



The rtu_alias must only be unique within a particular SCADA (scada_name). An individual rtu_alias may well report multiple analog values (AMP, VOLT, KVAR, etc.) as well as digital and/or status values. 





















		






		



To set up the scada_points table as a standard Network Management System attribute table generally involves the following RDBMS tables:  





















		

•




		





device_attributes: generic model build attribute configuration.





















		

•




		





scada_points: SCADA project specific attribute table.





















		






		



Once the scada_points table is populated, the rtipop program can be used to expand the information in the scada_points attribute table to fully populate the more generic analog_measurements and digital_measurements tables (see notes below for how to use rtipop). 



















Note:  A given "field device" corresponds to a given scada_points.rtu_alias and would typically be a breaker of some kind (often reporting both device status and multiple analog values). It could also be a transformer reporting analog values with or without status.








		






		



Below are two example device_attributes table entries to support population of the scada_points table via standard model build attribute population. For more information on this process, please consult the Network Management System Model Build process documentation. These are examples only. 





















		






		





INSERT INTO device_attributes ( 























		






		





        DEVICE_CLS, 























		






		





        ATTR_NAME, 























		






		





        TABLE_NAME, 























		






		





        COLUMN_NAME,    























		






		





        ATTR_TYPE, 























		






		





        LENGTH, 























		






		





        REQUIRED, 























		






		





        MAINTENANCE 























		






		





) VALUES ( 























		






		





        143, 'Rtu_Id', 'scada_points', 'rtu_alias', 3,         32, 'N', 'Y'); 























		






		





COMMIT WORK; 























		






		





       INSERT INTO device_attributes 























		






		





        DEVICE_CLS, 























		






		





        ATTR_NAME, 























		






		





        TABLE_NAME, 























		






		





        COLUMN_NAME,    























		






		





        ATTR_TYPE, 























		






		





        LENGTH, 























		






		





        REQUIRED, 























		






		





        MAINTENANCE 























		






		





) VALUES ( 























		






		





        143, 'Rtu_Desc', 'scada_points', 'scada_name', 3,        32, 'N', 'Y'); 























		






		





COMMIT WORK; 























		






		























Example data field explanation: 




143 Class of device which may report SCADA data.              + project specific 




scada_pointsAttribute table to populate. 




Rtu_IdAttribute id as appears in *.mb file for device. 




                           + project specific - SCADA device id (rtu_alias). 




rtu_alias scada_points column to populate with Rtu_Id value. 




Rtu_DescAttribute id as appears in *.mb file for device.+ project specific - SCADA system name (scada_name). 




scada_namescada_points column to populate with Rtu_Desc value. 




3 Data type of string (ASCII field); always a 3 for a string 




32Maximum length of this attribute string (bytes)+ project specific per scada_id len for SCADA. 




'N' Required attribute.               + project specific - generally (N)o. 




'Y'Set to Y for model builder maintenance. Set this to "Y" if you want the Model Builder to maintain this table via the incremental model build process. 








		






		



Once the scada_points table is populated the rtipop program can be used to expand this information to fully populate the more generic (required) analog_measurements and digital_measurements tables. 





















		






		



Run rtipop -h to get command line options. In general: 





















		

•




		



rtipop [-debug [n]] -partition <n> -initFile <file>  





















		

•




		



debug <n> - Turns debug on <to level n>  





















		

•




		



partition n - Populate partition n (0 = all partitions)  





















		

•




		



initFile - file - rti.dat initialization file (see below) 





















		






		



The rti.dat file is the configuration file used by the rtipop program. Based on data in this file, and entries in the scada_points table, rtipop populates the standard SCADA configuration (RDBMS) tables: 





















		

•




		



digital_measurements 





















		

•




		



analog_measurements  





















		






		



The scada_points table contains a record (row) for each device in the Network Management System model that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name" keyword in this configuration file. Where there is a match a row is populated in the appropriate (digital or analog) measurements table for each defined attribute. 





















		






		



Each defined Digital attribute for a given SCADA_Name populates an entry in the digital_measurements table. 





















		






		



Each defined Analog attribute for a given SCADA_Name populates an entry in the analog_measurements table. 

















The syntax rules for the rti.dat file are: 








		






		



Lines with a leading # are treated as comments (ignored). 





















		






		



Leading blank space is ignored. 





















		






		



Only the first two non-blank tokens on a line are recognized.The remaining tokens are treated as comments (ignored). 





















		






		



Blank lines are okay. 





















		






		



Attributes are associated to last defined SCADA_Name.  





















		






		























Keywords( they must match EXACTLY): 








		

•




		



SCADA_Name: 





















		

•




		



Analog: 





















		

•




		



Digital: 





















		






		





Note: The colon ":" character is a keyword delimiter. The colon must            appear as the first character after the keyword in order for            the keyword to be recognized.





















		






		



























		






		



Example rti.dat file: 



















SCADA_Name: USA 








Digital: status    (Switch Position or "Status") 








Analog: Amps_A 








Analog: Amps_B 








Analog: Amps_C 








Analog: Volts_A 








Analog: Volts_B 








Analog: Volts_C 










		






		



























		






		



Example rtipop commands: 

















rtipop -partition 0 -initFile ${CES_DATA_FILES}/OPAL_rti.dat 




rtipop -partition 3111 -initFile rti.dat -debug 















		

3.




		



Populate required measurement tables via device driven attribute population directly. 

















This option bypasses the scada_points table, rti.dat and rtipop. 




Depending on what information is available in the supporting GIS this may or may not be practical. In general this option requires the GIS to have near complete information about what SCADA (attributes) are available for each model device with SCADA. 




Other RTAdapter-specific RDBMS Population 




These tables are configuration tables that generally need to be populated by hand. Example configuration is provided for the Oracle (OPAL) model. 






scada_ids : RTAdapter name to unique integer value mapping.








		

•




		



Generally used to map SCADA name to a unique integer id. 





















		

•




		



$NMS_HOME/sql/OPAL_scada_ids.sql 



















scada_states : RTAdapter string to integer mapping.








		

•




		



Generally used to map topology state and/or quality code information 





















		

•




		



$NMS_HOME/sql/OPAL_scada_states.sql 



















scada_synonyms : RTAdapter scada data attribute/synonym value mapping.








		

•




		



Generally used to map SCADA reported attributes to Network Management System attributes. 





















		

•




		



$NMS_HOME/sql/OPAL_scada_synonyms.sql       

















Sample RTAdapter Configuration/Execution Sequence - File Based 




To get RTAdapter up and running, the following general steps should suffice. 




Start from the home directory for RTAdapter: 








		

1.




		



Login to Network Management System admin account with standard OPAL model configured and running.  





















		

2.




		



Create RTAdapter specific RDBMS tables: 

















ISQL.ces product_schema_scada.sql 








		

•




		



creates scada_ids table 





















		

•




		



creates scada_states table 





















		

•




		



creates scada_synonyms table 

















ISQL.ces <sql/OPAL_scada_points.sql 








		

•




		



creates scada_points table 





















		

3.




		



Create basic example configuration (change at will...) 

















ISQL.ces OPAL_scada_ids.sql 




ISQL.ces OPAL_scada_states.sql 




ISQL.ces OPAL_scada_synonyms.sql 




ISQL.ces OPAL_scada_points.sql 








		

•




		



Sample population data for scada_points table for OPAL model. 





















		

•




		



For example only. Need to hand edit to match your model objects. 





















		

4.




		



rtipop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat 





















		

•




		



This should populate  analog_measurements and digital_measurements tables.





















		

•




		



Make sure you have entries in the analog_measurements and/or digital_measurements tables when you are done with this step. 





















		

5.




		



Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above). 





















		

•




		



Recommend using  -watch and possibly the -debug option to start; helps to identify configuration issues.





















		

6.




		



If the system.dat file is using the  $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).





















		

7.




		



Stop and restart Oracle Utilities Network Management System services (sms_start.ces). 





















		

•




		



Make sure RTAdapter is running. 





















		

8.




		



The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.  


























For example: 






Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test. 


1.Copy the following lines into a file - say BR2413_open 








		






		





DATA 























		






		





OBJECT|BR2414 























		






		





BREAKER_POS|OPEN 























		






		





END_DATA 

















2.Copy the following lines into a file - say BR2413_close 








		






		





DATA 























		






		





OBJECT|BR2414 























		






		





BREAKER_POS|CLOSED 























		






		





END_DATA 

















3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).  


4.cd ~/usa/tst 


5.cp BR2413_open .. 








		






		



This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model. 















6.cp BR2413_close .. 








		






		



This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model. 















7.Follow other examples for conditions and quality codes. 








		






		



Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly: 





















		






		





Action any.USA debug on

















8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over. 






Sample RTAdapter polling configuration/execution sequence - RDBMS Table Polling Based 








To get  

RTAdapter up and running, the following general steps should suffice.






Start from the home directory for  

RTAdapter:








		

1.




		



Login to Network Management System admin account with standard OPAL model configured and running. 





















		

2.




		



Create RTAdapter specific RDBMS tables: 



















ISQL.ces ces_schema_scada.sql 










		

•




		



creates scada_ids table 





















		

•




		



creates scada_states table 





















		

•




		



creates scada_synonyms table 



















ISQL.ces ces_retain_scada.sql 

















		

•




		



creates scada_digital_in and scada_analog_in tables 





















		

3.




		



Create basic example configuration (change at will...) 



















ISQL.ces OPAL_scada_ids.sql 








ISQL.ces OPAL_scada_states.sql 








ISQL.ces OPAL_scada_synonyms.sql 








4.Validate the  

RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).








		

•




		



Verify -dir is set to ‘RDBMS’. 





















		

•




		



Recommend using -watch and possibly the -debug option to start - to help identify configuration issues. 



















5.Stop and restart Oracle Utilities Network Management System services (sms_start.ces). 










		

•




		



Make sure RTAdapter is running. 



















6.Insert row into SCADA_DIGITAL_IN table either using alias or h_cls and h_idx with status = ‘N’. The primary key on the scada_digital_in table is the id column - which is generally populated by a trigger on the scada_digital_in table that fires on insert and populates the id column with the next value in a sequence. 










		

•




		



Example sql statement: 



















INSERT into scada_digital_in ( 








h_cls, 








h_idx, 








alias, 








attribute, 






phases 






operation, 






quality 






source, 








status 








) VALUES ( 








   206, 








   1015054348, 








    '', 








   '0', 








   '7', 








   '1',', 








   'SCADA', 








   'N' 








); 








COMMIT WORK 










OEBPS/Text/part0051.xhtml






Software Configuration 




Overview 




The interface comes with a configuration support tool (rtipop) that can be used to help populate the standard SCADA configuration tables for incoming SCADA data (analog_measurements and digital_measurements). The rtipop process can be used to provide initial population of these tables. 








OEBPS/Text/part0050.xhtml






Command Line Options for Generic SCADA Adapter 




The command line for the Generic SCADA Adapter provides the following options: 








		



Command Line Option 




		



What it does 










		



-volbuffer <VOLTS> 




		



Threshold for analog VOLT attributes, report if changed by more than <VOLTS>. 










		



-ampbuffer <AMPS> 




		



Threshold for analog AMP attributes, report if changed by more than <AMPS>. 










		



-idle <cycles> 




		



Number of processing cycles to wait without processing any data before sending an alarm. 










		



-lock 




		



Use file locking to prevent file overwrite during file read (if scan file names are not unique). 










		



-error 




		



Show processing errors. 










		



-watch 




		



Show files being processed, minimal info. 










		



-debug 




		



Enable debugging. 










		



-operate 




		



Operate (change status of) model devices, otherwise generates pseudo alarms only. 










		



-controls 




		



Call the project/SCADA specific rti_project.ces script when an outbound control request (open/close) is made. This script can be customized to help trigger an action (some type of control request) on external system. Generally for testing. 










		



-offline 




		



For testing purposes - when a control request is received - simulate the external SCADA system and operate the device. 










		



-dir <directory> 




		



Value either directing RTAdapter to the directory containing scada data scan files or if set to 'RDBMS' enabling the scada_digital_in/scada_analog_in database polling functionality. (Required) 










		



-interval <interval> 




		



Seconds between file processing cycles. (Required) 










		



-scada <scada> 




		



SCADA source name. (Required) 










		



-delimiter <char> 




		



Allows a project to override the default (|) input file delimiter character with the specified character. 










		



-rtdbs 




		



Instructs RTAdapter to use a dedicated DBService instance. This is recommended if you are using the -dir RDBMS option to periodically scan scada_digital_in and scada_analog_in tables. To use this option you must have a DBService instance configured with a process name of rtdbs - see note above on RTDBService. 










		



-retain 




		



Retain data in scada_digital_in table after it is processed. Generally for validation/debug - not general purpose production use. 


















OEBPS/Text/part0049.xhtml






Configure Adapter to Run as an NMS System Service 




Configure the Generic SCADA Adapter to run as an Oracle Utilities Network Management System service by updating the  $NMS_HOME/etc/system.dat file to include the Generic SCADA Adapter as a system service. There are three main sections where this service needs to be defined: the service, program, and instance sections. 




See the  $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic SCADA Adapter. Search for USA (Universal SCADA Adapter) in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Generic SCADA Adapter to properly be monitored by SMService.






Notes: 










		

•




		



The adapter process is generally given a configuration name adapted from the SCADA system from which it is receiving data (such as the USA name used in the system.dat.template file noted above). 





















		

•




		



If the generic SCADA adapter is configured to use the "-dir RDBMS" option (where RTAdapter periodically scans the scada_digital_in and scada_analog_in tables for updates), it is recommended that a dedicated DBService instance be configured to support the RTAdapter. To do this you must configure RTAdapter with the -rtdbs option and you MUST configure an additional DBService process in your system.dat with the following program entry. You will also need appropriate corresponding "service" and "instance" records in your system.dat file. 

















       program  RTDBService     DBService       -nodaemon  




                 -service rt   -process_name RTDBService 








OEBPS/Text/part0048.xhtml






Generic SCADA Adapter Configuration 




Overview 




This section is used to guide the user in the configuration of the Oracle Utilities Network Management System Generic SCADA Adapter. The following are assumed to be true before the adapter is installed: 








		

•




		



Oracle database access has been confirmed. 





















		

•




		



ISIS messaging bus has been installed and verified. 





















		

•




		



Oracle Utilities Network Management System is installed and functional. 





















OEBPS/Text/part0047.xhtml






Introduction 




The Generic SCADA Adapter (executable name: RTAdapter) is an Oracle Utilities Network Management System interfacing adapter that can be used to interface to external SCADA systems. Generally one RTAdapter process is configured to communicate with each external SCADA system. Each external SCADA system must write some form of "scan file" to a defined (dedicated) directory (or RDBMS table) that RTAdapter can access in read/write mode. The "scan files" are read out of the named directory (or RDBMS table) by RTAdapter on a first-in-first-out basis (to support queuing of updates). The form of the scan files can be configured (to some degree) for each SCADA interface. 








OEBPS/Text/part0046.xhtml






Generic SCADA Adapter 




This chapter includes the following topics: 








		

•




		





Introduction 

























		

•




		





Generic SCADA Adapter Configuration 

























		

•




		





Software Configuration 

























		

•




		





Data Flows 

























		

•




		





Information Model 

























OEBPS/Text/part0045.xhtml






Terminology 




The following terms and acronyms are relevant to this specification 















		





OMS 






		





Outage Management System 












		





Network Management System 






		





Network Management System 












		





CIS 






		





Customer Information System 












		





IVR 






		





Interactive Voice Response 












		





Generic IVR Adapter 






		





A Unix application that generally executes on the OMS server machine. It supports the Trouble Call, Event Status, Affected Customers, Callback Request and Callback Response Data Flows. 












		





SMService 






		





System Monitor Service. SMService monitors the core processes in the system, essentially the services and interfaces. 












		





JMService  






		





Job Management Service. The Oracle Utilities Network Management System call processing and outage prediction engine. 












		





ODService  






		





Object Directory Service. ODService improves performance of the Oracle Utilities Network Management System by caching large amounts of device information that is likely to be requested by applications. This caching allows the requests to be handled very quickly without directly accessing the database. 












		





ISIS 






		





Clients access services and tools through a central concurrency management and messaging system called Isis. Isis is a real-time implementation of message oriented middleware and comprises the backbone of the system, providing access to the server for each client and the communication required between tools and services. Isis delivers the organized information to the client applications. 



























OEBPS/Text/part0044.xhtml






Stored Procedure Parameters 




pr_trouble_calls Stored Procedure 




The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to  

Trouble Calls

 for Data Flow details. 




Below is a high level description of what is done inside the stored procedure 








		

•




		



Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table. 





















		

•




		



Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table. 





















		

•




		



Several TROUBLE_CALLS columns will have default value when no parameter value is supplied. 





















		

•




		



Should there be an error in the record insert, an Oracle error is returned. 



















Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.




Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table. 




Parameters 








		



Parameter 




		



Direction 




		



Data Type 




		



Field Name 




		



Comment 










		





p_premise_id 






		





In 






		





VARCHAR2 






		





PREMISE_ID 






		





The value is inserted as is. 












		





p_trouble_code 






		





In 






		





VARCHAR2 






		





TROUBLE_CODE 






		





Defaults to ‘1’ followed by a certain number of ‘0’. If no value was supplied. The total length of the string is the total number of distinct groups in the SRS_TROUBLE_CODES table.  












		





p_callback_ind 






		





In 






		





VARCHAR2 






		





CALLBACK_INDICATOR 






		





The possible values are as follows: 








  ‘0’ - callback not requested 








  ‘1’ - callback requested 








Defaults to ‘1’ if no value is supplied.  








  ‘Y’ is translated to ‘1’. 








  ‘N’ is translated to ‘0’. 












		





p_call_time 






		





In 






		





DATE 






		





CALL_TIME 






		





Defaults to the database system date if no value is supplied 












		





p_call_taker_id 






		





In 






		





VARCHAR2 






		





CALL_TAKER_ID 






		





The value is inserted as is. 












		





p_alternate_phone 






		





In 






		





VARCHAR2 






		





ALTERNATE_PHONE 






		





The value is inserted as is. 












		





p_customer_comment 






		





In 






		





VARCHAR2 






		





CUSTOMER_COMMENT 






		





The value is inserted as is. 












		





p_customer_phone 






		





In 






		





VARCHAR2 






		





CUSTOMER_PHONE 






		





The value is inserted as is. 












		





p_customer_name 






		





In 






		





VARCHAR2 






		





CUSTOMER_NAME 






		





The value is inserted as is. 












		





p_customer_address 






		





In 






		





VARCHAR2 






		





CUSTOMER_ADDRESS 






		





The value is inserted as is. 












		





p_customer_city_state  






		





In 






		





VARCHAR2 






		





CUSTOMER_CITY_STATE 






		





The value is inserted as is. 












		





p_customer_priority 






		





In 






		





VARCHAR2 






		





CUSTOMER_PRIORITY 






		





The value is inserted as is. 












		





p_external_id 






		





In 






		





VARCHAR2 






		





EXTERNAL_ID 






		





The value is inserted as is. 












		





p_device_alias 






		





In 






		





VARCHAR2 






		





DEVICE_ALIAS 






		





The value is inserted as is. 












		





p_check_cutoff_ind 






		





In 






		





VARCHAR2 






		





CHECK_CUTOFF_IND 






		





The possible values are as follows: 








  ‘Y’ - check if the customer is disconnected 








  ‘N’ - do not perform checking. 








Defaults to ‘N’ if no value is supplied 












		





p_callback_late_ind 






		





In 






		





VARCHAR2 






		





CALLBACK_LATE_IND 






		





The possible values are as follows: 








  ‘Y’ - It is OK to call back even when it is already late. 








  ‘N’ - It is not OK to call back when it is already late. 








Defaults to ‘N’ if no value is supplied 












		





p_callback_before_time 






		





In 






		





DATE 






		





CALLBACK_BEFORE_TIME 






		





The value is inserted as is. 












		





p_trouble_queue 






		





In 






		





VARCHAR2 






		





TROUBLE_QUEUE 






		





The value is inserted as is. 












		





p_meter_id 






		





In 






		





VARCHAR2 






		





METER_ID 






		





The value is inserted as is. 












		





p_supply_id 






		





In 






		





NUMBER 






		





SUPPLY_ID 






		





The value is inserted as is. 












		



p_cust_phone_area 




		



In 




		



VARCHAR2 




		



CUST_PHONE_AREA 




		



The value is inserted as is. 










		



p_cust_last_name 




		



In 




		



VARCHAR2 




		



CUST_LAST_NAME 




		



The value is inserted as is. 










		



p_general_area 




		



In 




		



VARCHAR2 




		



GENERAL_AREA 




		



The value is inserted as is. 










		



p_cust_order_num 




		



In 




		



VARCHAR2 




		



CUST_ORDER_NUM 




		



The value is inserted as is. 










		



p_drv_inst 




		



In 




		



VARCHAR2 




		



DRV_INST 




		



The value is inserted as is. 










		



p_cust_life_support 




		



In 




		



VARCHAR2 




		



CUST_LIFE_SUPPORT 




		



The value is inserted as is. 










		



p_cust_call_cancel 




		



In 




		



VARCHAR2 




		



CUST_CALL_CANCEL 




		



The value is inserted as is. 










		



p_short_desc 




		



In 




		



VARCHAR2 




		



SHORT_DESC 




		



The value is inserted as is. 










		



p_addr_building 




		



In 




		



VARCHAR2 




		



ADDR_BUILDING 




		



The value is inserted as is. 










		



p_meet_time 




		



In 




		



DATE 




		



MEET_TIME 




		



The value is inserted as is. 










		



p_meet_type 




		



In 




		



NUMBER 




		



MEET_TYPE 




		



The value is inserted as is. 










		



p_groupable 




		



In 




		



NUMBER 




		



GROUPABLE 




		



The value is inserted as is. 










		



p_clue 




		



In 




		



NUMBER 




		



CLUE 




		



The value is inserted as is. 










		



p_combine_pri 




		



In 




		



NUMBER 




		



COMBINE_PRI 




		



The value is inserted as is. 










		



p_cust_status 




		



In 




		



NUMBER 




		



CUST_STATUS 




		



The value is inserted as is. 










		



p_cust_intr_x 




		



In 




		



NUMBER 




		



CUST_INTR_X 




		



The value is inserted as is. 










		



p_cust_intr_y 




		



In 




		



NUMBER 




		



CUST_INTR_Y 




		



The value is inserted as is. 










		



p_cust_intersect_cls 




		



In 




		



NUMBER 




		



CUST_INTERSECT_CLS 




		



The value is inserted as is. 










		



p_cust_intersect_idx 




		



In 




		



NUMBER 




		



CUST_INTERSECT_IDX 




		



The value is inserted as is. 










		



p_cust_intersect_ncg 




		



In 




		



NUMBER 




		



CUST_INTERSECT_NCG 




		



The value is inserted as is. 










		



p_update_existing_inc 




		



In 




		



NUMBER 




		



UPDATE_EXISTING_INC 




		



The value is inserted as is. 










		



p_fuzzy_ncg_cls 




		



In 




		



NUMBER 




		



FUZZY_NCG_CLS 




		



The value is inserted as is. 










		



p_fuzzy_ncg_idx 




		



In 




		



NUMBER 




		



FUZZY_NCG_IDX 




		



The value is inserted as is. 










		



p_group_by_name 




		



In 




		



VARCHAR2 




		



GROUP_BY_NAME 




		



The value is inserted as is. 










		



p_cust_critical 




		



In 




		



VARCHAR2 




		



CUST_CRITICAL 




		



The value is inserted as is. 










		



p_related_evt_cls 




		



In 




		



NUMBER 




		



RELATED_EVT_CLS 




		



The value is inserted as is. 










		



p_related_evt_idx 




		



In 




		



NUMBER 




		



RELATED_EVT_IDX 




		



The value is inserted as is. 










		



p_related_evt_app 




		



In 




		



NUMBER 




		



RELATED_EVT_APP 




		



The value is inserted as is. 










		



p_x_ref 




		



In 




		



NUMBER 




		



X_REF 




		



The value is inserted as is. 










		



p_y_ref 




		



In 




		



NUMBER 




		



Y_REF 




		



The value is inserted as is. 










		



p_call_type 




		



In 




		



VARCHAR2 




		



CALL_TYPE 




		



The value is inserted as is. 










		



p_cust_phone_update 




		



In 




		



VARCHAR2 




		



CUST_PHONE_UPDATE 




		



The value is inserted as is. 










		



p_trouble_loc 




		



In 




		



VARCHAR2 




		



TROUBLE_LOC 




		



The value is inserted as is. 










		



p_appt_type 




		



In 




		



VARCHAR2 




		



APPT_TYPE 




		



The value is inserted as is. 










		



p_appt_time 




		



In 




		



DATE 




		



APPT_TIME 




		



The value is inserted as is. 










		



p_appt_range 




		



In 




		



NUMBER 




		



APPT_RANGE 




		



The value is inserted as is. 










		



p_cust_device_ncg 




		



In 




		



NUMBER 




		



CUST_DEVICE_NCG 




		



The value is inserted as is. 










		



p_cust_device_partition 




		



In 




		



NUMBER 




		



CUST_DEVICE_PARTITION 




		



The value is inserted as is. 










		



p_err_premise_id 




		



Out 




		



VARCHAR2 




		



VARCHAR2(80) 




		



The erroneous premise ID input parameter 










		



p_err_oracle_error 




		



Out 




		



VARCHAR2 




		



VARCHAR2(80) 




		



Oracle’s error message. 























Note:  The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.






pr_trouble_status Stored Procedure 






The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. When the -eventstatus command line option is used, the data is retrieved from the TROUBLE_STATUS table by calling the stored procedure pr_table_trouble_status. Refer to the  

Event Status

 for Data Flow details. Otherwise, the stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.




Below is a high level description of what is done inside the stored procedure: 








		

•




		



If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables. 





















		

•




		



Else, an Oracle error is returned. 

















Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table. 




Parameters 








		



Parameter 




		



Direction 




		



Data Type 




		



Field Name 




		



Comments 










		





p_in_event_class 






		





In 






		





NUMBER 






		





EVENT_CLS 






		





Event class input parameter 












		





p_in_event_index 






		





In 






		





NUMBER 






		





EVENT_IDX 






		





Event index input parameter 












		





p_out_event_class 






		





Out 






		





NUMBER 






		





EVENT_CLS 






		





Similar to the event class input parameter 












		





p_out_event_index 






		





Out 






		





NUMBER 






		





EVENT_IDX 






		





Similar to the event index input parameter 












		





p_outage_status 






		





Out 






		





VARCHAR2 






		





OUTAGE_STATUS 






		





This is an abbreviation of the current state of the event, for instance, 'NEW', 'ASN', 'CMP', etc.  












		





p_outage_start_time 






		





Out 






		





DATE 






		





OUTAGE_START_TIME 






		





The time of the lead call of the job. 












		





p_first_dispatch_time 






		





Out 






		





DATE 






		





FIRST_DISPATCH_TIME 






		





The time the first crew was dispatched 












		





p_est_restore_time 






		





Out 






		





DATE 






		





EST_RESTORE_TIME 






		





The last estimate of restoration time. 












		





p_est_restore_time_src 






		





Out 






		





VARCHAR2 






		





EST_RESTORE_TIME_SRC 






		





The source of the ERT of the event. 








Possible values are as follows: 








'N' - none (no ERT) 








'S' - Storm Management  








'P' - Storm Management "non-published global ERT" 








'O' - Storm Management "onsite ERT" 








'G' - Storm Management "published global ERT" 








'D' -  Storm Management "published global ERT delay"                                                                                                                                                                                                         








'C' - User-entered (assumed to have been provided by the crew) 








'I' - Initial default ERT 








'M' - Storm Management ERT is further in the future than allowed. 












		





p_crew_arrival_time 






		





Out 






		





DATE 






		





CREW_ARRIVAL_TIME 






		





The time when the crew arrived on location 












		





p_completion_time 






		





Out 






		





DATE 






		





COMPLETION_TIME 






		





The time the event has been completed. This implies power restoration, the crew(s) are gone, and the event is completed in the Event Details window. 












		





p_restoration_time 






		





Out 






		





DATE 






		





RESTORATION_TIME 






		





The time that power has been restored.  












		





p_case_note 






		





Out 






		





VARCHAR2 






		





CASE_NOTE 






		





Comment 












		





p_status 






		





Out 






		





NUMBER 






		





STATUS 






		





Condition status 












		





p_active 






		





Out 






		





VARCHAR2 






		





ACTIVE 






		





Possible values are as follows: 








  'Y' - Outage Is Active 








  'N' - Outage Is Not Active 












		





p_alias 






		





Out 






		





VARCHAR2 






		





ALIAS 






		





The device alias.   












		





p_event_type 






		





Out 






		





VARCHAR2 






		





EVENT_TYPE 






		





Possible values are as follows: 








OUT                               








NON                               








MEET                              








PLAN                              








SWP    












		





p_feeder_name 






		





Out 






		





VARCHAR2 






		





FEEDER_NAME 






		





The name of the feeder.  












		





p_cause 






		





Out 






		





VARCHAR2 






		





CAUSE 






		





The cause of the outage if SRS Rule useExternalCause is on. 












		





p_num_calls 






		





Out 






		





NUMBER 






		





NUM_CALLS 






		





The number of calls.  












		





p_num_cust_out 






		





Out 






		





NUMBER 






		





NUM_CUST_OUT 






		





The number of customers out.  












		





p_err_event_class 






		





Out 






		





NUMBER 






		










		





The erroneous event class input parameter. 












		





p_err_event_index 






		





Out 






		





NUMBER 






		










		





The erroneous event index input parameter. 












		





p_err_oracle_error 






		





Out 






		





VARCHAR2 






		










		





Oracle’s error message. 























pr_affected_customers Stored Procedure 




The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. When the -eventstatus command line option is used, the data is retrieved from the TROUBLE_STATUS and TROUBLE_AFFECTED_CUSTOMERS tables by calling the stored procedure pr_table_affected_customers. Refer to the data flow for  

Affected Customers

. Otherwise, the stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.




Below is a high level description of what occurs inside the stored procedure. 








		

•




		



The stored procedure tries to get the latest  active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.





















		

•




		



If the customer is not part of an  active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure.   After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.





















		

•




		



If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type. 

















Parameters 




Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table. 















		



Parameter 




		



Direction  




		



Data Type 




		



Field Name 




		



Comments 










		





p_in_premise_id 






		





In 






		





VARCHAR2 






		










		





Premise ID input parameter with a corresponding entry in CC.SERV_LOC_ID 












		





p_out_premise_id 






		





Out 






		





VARCHAR2 






		





TAC.PREMISE_ID 






		





Similar to the Premise ID input parameter 












		





p_account_number 






		





Out 






		





VARCHAR2 






		





TAC.ACCOUNT_NUMBER 






		
















		





p_customer_name 






		





Out 






		





VARCHAR2 






		





TAC.CUSTOMER_NAME 






		
















		





p_customer_phone 






		





Out 






		





VARCHAR2 






		





TAC.CUSTOMER_PHONE 






		
















		





p_customer_address 






		





Out 






		





VARCHAR2 






		





TAC.CUSTOMER_ADDRESS 






		
















		





p_supply_node_index 






		





Out 






		





NUMBER 






		





TAC.SUPPLY_NODE_IDX 






		
















		





p_supply_node_restore_time 






		





Out 






		





DATE 






		





TAC.RESTORE_TIME 






		
















		





p_event_class 






		





Out 






		





NUMBER 






		





TS.EVENT_CLS 






		





The event class of the most recent active (or most recent inactive) event retrieved using the premise ID. 












		





p_event_index 






		





Out 






		





NUMBER 






		





TS.EVENT_IDX 






		





The event index of the most recent active (or most recent inactive) event retrieved using the premise ID. 












		





p_outage_status 






		





Out 






		





VARCHAR2 






		





TS.OUTAGE_STATUS 






		





This is an abbreviation of the current state of the event, for instance, 'NEW', 'ASN', 'CMP', etc. 












		





p_outage_start_time 






		





Out 






		





DATE 






		





TS.OUTAGE_START_TIME 






		





The time of the lead call of the job. 












		





p_first_dispatch_time 






		





Out 






		





DATE 






		





TS.FIRST_DISPATCH_TIME 






		





The time the first crew was dispatched 












		





p_est_restore_time 






		





Out 






		





DATE 






		





TS.EST_RESTORE_TIME 






		





The last estimate of restore time. 












		





p_est_restore_time_src 






		





Out 






		





VARCHAR2 






		





TS.EST_RESTORE_TIME_SRC 






		





The source of the ERT of the event. 








Possible values are as follows: 








'N' - none (no ERT) 








'S' - Storm Management  








'P' - Storm Management "non-published global ERT" 








'O' - Storm Management "onsite ERT" 








'G' - Storm Management "published global ERT" 








'D' - Storm Management "published global ERT delay" 








'C' - User-entered (assumed to have been provided by the crew) 








'I' - Initial default ERT 








'M' - Storm Management ERT is further in the future then allowed 












		





p_crew_arrival_time 






		





Out 






		





DATE 






		





TS.CREW_ARRIVAL_TIME 






		





The time when the crew arrived on location 












		





p_completion_time 






		





Out 






		





DATE 






		





TS.COMPLETION_TIME 






		





The time the event has been completed. This implies power restoration, the crew(s) are gone, and the event is completed in the Event Details window. 












		





p_restoration_time 






		





Out 






		





DATE 






		





TS.RESTORATION_TIME 






		





The time that power has been restored.  












		





p_case_note 






		





Out 






		





VARCHAR2 






		





TS.CASE_NOTE 






		





Comment 












		





p_status 






		





Out 






		





NUMBER 






		





TS.STATUS 






		





Condition status 












		





p_active 






		





Out 






		





VARCHAR2 






		





TS.ACTIVE 






		





Possible values are as follows: 








  'Y' - Outage Is Active 








  'N' - Outage Is Not Active 























pr_trouble_callback_requests Stored Procedure 




Below is a high level description of what is done inside the stored procedure 








		

•




		



From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No). 





















		

•




		



The list is captured within the stored procedure as a database cursor and returned to the calling application. 





















		

•




		



The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress). 



















Note:  Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.




Parameter 















		



Parameter 




		



Direction 




		



Cursor 










		





p_callback_requests 






		





In/Out 






		





CALLBACK_CURSOR 























Cursor Definition 




Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.  















		



Field Name from the Cursor 




		



Data Type 




		



Field Name from TROUBLE_CALLBACKS 




		



Comments 










		





EVENT_CLS 






		





NUMBER(38) 






		





TCB.EVENT_CLS 






		





Event class 












		





EVENT_IDX 






		





NUMBER(38) 






		





TCB.EVENT_IDX 






		





Event index 












		





INCIDENT_NUMB 






		





NUMBER(38) 






		





TCB.INCIDENT_NUMB 






		





Incident number 












		





PREMISE_ID 






		





VARCHAR2(50) 






		





TCB.PREMISE_ID 






		





Premise id 












		





CUSTOMER_NAME 






		





VARCHAR2(75) 






		





TCB.CUSTOMER_NAME 






		





Customer name 












		





CUSTOMER_PHONE 






		





VARCHAR2(38) 






		





TCB.CUSTOMER_PHONE 






		





Customer phone 












		





CUSTOMER_ADDRESS 






		





VARCHAR2(255) 






		





TCB.CUSTOMER_ADDRESS 






		





Customer address 












		





ALTERNATE_PHONE 






		





VARCHAR2(38) 






		





TCB.ALTERNATE_PHONE 






		





Customer alternate phone number 












		





TROUBLE_CODE 






		





VARCHAR2(32) 






		





TCB.TROUBLE_CODE 






		





This is the trouble code (e.g., ‘10000000’) of the incident rather than the clue (e.g., 'Out'). 'Out' is short for 'All Power Out'. 












		





SHORT_DESCRIPTION 






		





VARCHAR2(128) 






		





TCB.SHORT_DESCRIPTION 






		





This is the clue (e.g., 'Out') of the incident rather than the trouble code (e.g., ‘10000000’). 'Out' is short for 'All Power Out'. 












		





CUSTOMER_COMMENT 






		





VARCHAR2(255) 






		





TCB.CUSTOMER_COMMENT 






		





Call-taker Comments. Comments provided by the customer or call-taker about the incident. 












		





INCIDENT_TIME 






		





DATE 






		





TCB.INCIDENT_TIME 






		





Input time of call. The input time of the incident. 












		





EXTERNAL_ID 






		





VARCHAR2(16) 






		





TCB.EXTERNAL_ID 






		





Unique call identifier. The unique identifier for the incident. 












		





CALL_TAKER_ID 






		





VARCHAR2(32) 






		





TCB.CALL_TAKER_ID 






		





Call-taker user name. The name of the call-taker or interface that created the call. 












		





CALLBACK_LATE 






		





VARCHAR2(1) 






		





TCB.CALLBACK_LATE 






		





The possible values are as follows: 








  ‘Y’ - It is OK to call back even when it is already late. 








  ‘N’ - It is not OK to call back when it is already late. 












		





CALLBACK_LATE_TIME 






		





DATE 






		





TCB.CALLBACK_LATE_TIME 






		
















		





CALLBACK_REASON 






		





VARCHAR2(100) 






		





TCB.CALLBACK_REASON 






		





This will default to 'OMS'. 












		





CAUSE_CODE 






		





VARCHAR2(32) 






		





TCB.CAUSE_CODE 






		





Cause code of the event related to the callback. 























pr_trouble_callback_responses Stored Procedure 




Below is a high level description of what is done inside the stored procedure 








		

•




		



Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.  





















		

•




		



The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback). 





















		

•




		



The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied. 





















		

•




		



The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination.  The following fields are updated: 





















		

•




		



The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.  





















		

•




		



The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided. 





















		

•




		



The callback's CALLBACK_STATUS field with the appropriate callback response code. 





















		

•




		



Should any of these steps fail, the stored procedure exits and returns the appropriate error. 



















Note:  Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.




Parameters 















		



Parameter 




		



Direction  




		



Data Type 




		



Field Name 




		



Comments 










		





p_incident_numb 






		





In 






		





NUMBER 






		





INCIDENT_NUMB 






		





Incident Number. Either this or the p_external_id parameter has to be supplied 












		





p_external_id 






		





In 






		





VARCHAR2 






		





EXTERNAL_ID 






		





External Id. Either this or the p_incident_numb parameter has to be supplied 












		





p_premise_id 






		





In 






		





VARCHAR2 






		





PREMISE_ID 






		





Premise Id.  












		





p_callback_status 






		





In 






		





VARCHAR2 






		





CALLBACK_STATUS 






		





The valid values are as follows:  








  'F' - Not Restored Callback 








  'R' - Restored Callback 








  'N' - Cancel Callback, unable to get a response 












		





p_callback_time 






		





In 






		





DATE 






		





CALLBACK_TIME 






		





Defaulted to the system date if no value was supplied 












		





p_err_incident_numb 






		





Out 






		





NUMBER 






		










		





The erroneous incident number input parameter 












		





p_err_external_id 






		





Out 






		





VARCHAR2 






		










		





The erroneous external ID input parameter 












		





p_err_premise_id 






		





Out 






		





VARCHAR2 






		










		





The erroneous premise ID input parameter 












		





p_err_oracle_error 






		





Out 






		





VARCHAR2 






		










		





Oracle’s error message 























pr_customer_event_details Stored Procedure 




The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for  

Affected Customers

.




Below is a high level description of what is done inside the stored procedure. 








		

•




		



The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure. 

















Parameters 




Below are details about each parameter of the pr_customer_event_details stored procedure.  















		



Parameter 




		



Direction 




		



Data Type 




		



Comments 










		





p_in_premise_id 






		





In 






		





VARCHAR2 






		





Premise ID input parameter with a corresponding entry in CES_CUSTOMERS.SERV_LOC_ID 












		





p_out_event_class 






		





Out 






		





NUMBER 






		





Event class output parameter 












		





p_out_event_index 






		





Out 






		





NUMBER 






		





Event index output parameter 












		





p_out_outage_status 






		





Out 






		





VARCHAR2 






		





This is an abbreviation of the current state of the event, for instance, 'NEW', 'ASN', 'CMP', etc.  












		





p_ out_outage_start_time 






		





Out 






		





DATE 






		





The time of the lead call of the job. 












		





p_ out_first_dispatch_time 






		





Out 






		





DATE 






		





The time the first crew was dispatched 












		





p_ out_est_restore_time 






		





Out 






		





DATE 






		





The last estimate of restoration time. 












		





p_ out_est_restore_time_src 






		





Out 






		





VARCHAR2 






		





The source of the ERT of the event. 








Possible values are as follows: 








  'N' - none (no ERT) 








  'S' - Storm Management  








  'P' - Storm Management "non-published global ERT" 








  'O' -  Storm Management "onsite ERT" 








  'G' - Storm Management "published global ERT" 








  D' -  Storm Management "published global ERT delay" 








  'C' - User-entered (assumed to have been provided by the crew) 








  'I' - Initial default ERT 








  'M' - Storm Management ERT is further in the future then allowed 












		





p_ out_crew_arrival_time 






		





Out 






		





DATE 






		





The time when the crew arrived on location 












		





p_ out_completion_time 






		





Out 






		





DATE 






		





The time the event has been completed. This implies power restoration, the crew(s) are gone, and the event is completed in the Event Details window. 












		





p_ out_restoration_time 






		





Out 






		





DATE 






		





The time that power has been restored.  












		





p_ out_case_note 






		





Out 






		





VARCHAR2 






		





Comment 












		





p_ out_status 






		





Out 






		





NUMBER 






		





Condition status 












		





p_ out_active 






		





Out 






		





VARCHAR2 






		





Possible values are as follows: 








  'Y' - Outage Is Active 








  'N' - Outage Is Not Active 



















		



p_out_alias 




		



Out 




		



VARCHAR2 




		



The device alias. 










		



P_out_event_type 




		



Out 




		



VARCHAR2 




		



Possible values are as follows: 




OUT 




NON 




MEET 




PLAN 




SWP 










		



P_out_feeder_name 




		



Out 




		



VARCHAR2 




		



The name of the feeder. 










		



P_out_cause 




		



Out 




		



VARCHAR2 




		



The cause of the outage if the SRS Rule useExternalCause is on. 










		



P_out_num_calls 




		



Out 




		



NUMBER 




		



The number of calls. 










		



P_out_num_cust_out 




		



Out 




		



NUMBER 




		



The number of customers out. 










		



P_err_premise_id 




		



Out 




		



VARCHAR2 




		
















		



P_err_oracle_error 




		



Out 




		



VARCHAR2 




		































OEBPS/Text/part0043.xhtml






Database Table Schema 




TROUBLE_CALLS Table Schema 




The TROUBLE_CALLS table stores the trouble calls that are submitted by the external application. The Generic IVR Adapter polls this table and submits new trouble call records to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device. The external application indirectly inserts records to the TROUBLE_CALLS table by invoking the pr_trouble_calls stored procedure. See  

pr_trouble_calls Stored Procedure

 for more information.




Each field of the TROUBLE_CALLS table is matched with SRSinput field. The mapping is configurable. A column names are directly tied up to a specific field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System.  




In effect, each field in the TROUBLE_CALLS table is mapped (and the mapping is configurable) to a particular field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System. For more information, see  

Trouble Call Mapping Configuration

.




In the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table. Field names prefixed by 'JOBS.' would come from the JOBS table. Field names prefixed by 'CC.' would come from the CES_CUSTOMERS table. 















		



Field Name 




		



Nullable 




		



Data Type 




		



Description  (JMS Input String reference)












		





ADDR_BUILDING 






		





Y 






		





VARCHAR2(10) 






		





Customer building address. Refer to  



ADDR_BUILDING

 for more information.






Map to INC.ADDR_BUILDING 












		





ADDR_CITY 






		





Y 






		





VARCHAR2(45) 






		





Customer City/State. Refer to  



ADDR_CITY

 for more information.






Maps to INC.ADDR_CITY 












		





ADDR_CROSS_STREET 






		





Y 






		





VARCHAR2(255) 






		





Intersection cross street name. 








Maps to INC.ADDR_CROSS_STREET. 












		





ADDR_STREET 






		





Y 






		





VARCHAR2(255) 






		





Customer address. Refer to  



ADDR_STREET

 for more information.






Maps to INC.ADDRESS and JOBS.ADDR_STREET 












		





ALTERNATE_PHONE 






		





Y 






		





VARCHAR2(32) 






		





Alternative contact number. Refer to  



ALTERNATE_PHONE

 for more information.






Maps to INC.ALTERNATE_PHONE 












		





APPT_RANGE 






		





Y 






		





NUMBER 






		





Appointment Range. Refer to  



APPT_RANGE

 for more information.






Maps to INC.APPT_RANGE. 












		





APPT_TIME 






		





Y 






		





DATE 






		





Time of appointment. Refer to  



APPT_TIME

 for more information.






Maps to INC.APPT_TIME. 












		





APPT_TYPE 






		





Y 






		





VARCHAR2(16) 






		





Type of appointment. Refer to  



APPT_TYPE

 for more information.






Maps to INC.APPT_TYPE. 












		





CALL_COMMENT 






		





Y 






		





VARCHAR2(255) 






		





Customer Comment. Refer to  



COMMENT

 Property Name for more information.






Maps to INC.OP_COMMENT. 












		





CALL_ID 






		





Y 






		





VARCHAR2(16) 






		





Not used. 












		





CALL_STATUS 






		





Y 






		





VARCHAR2(1) 






		





Status of the trouble call in the TROUBLE_CALLS table. The Generic IVR Adapter uses this internally to identify the status of this trouble call.  








The possible values are as follows: 








  ‘N’ - New trouble call 








  ‘I’ - The Generic IVR Adapter is in the process of submitting this trouble call to Oracle Utilities Network Management System 








  ‘C’ - Trouble call submission to Oracle Utilities Network Management System is completed. 








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_CALLS table for 'old' records. Records with CALL_STATUS field = 'C' will be purged. 












		





CALL_TIME 






		





N 






		





DATE 






		





Input time of call. Refer to  



CALL_TIME

 for more information.






Maps to INC.INPUT_TIME  








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_CALLS table for 'old' records. The TROUBLE_CALL record is 'aged' based on the system date/time and the CALL_TIME field. Any record older than a predefined number of days will be removed. See  



keepdbinfo

 for more information.










		





CALL_TYPE 






		





Y 






		





VARCHAR2(8) 






		





Type of call. Refer to  



CALL_TYPE

 for more information.






Maps to INC.TYPE 












		





CALLBACK_LATE 






		





Y 






		





VARCHAR2(1) 






		





Callback late indicator. Refer to  



CALLBACK_LATE

 for more information.






The possible values are as follows: 








  ‘Y’ - It is OK to call back even when it is already late. 








  ‘N’ - It is not OK to call back when it is already late. 








If no value was supplied, this field will default to 'N'.  








This information is only passed from the external application to Oracle Utilities Network Management System (using the Trouble Calls Data Flow), and back to the external application (using the Callback Requests Data Flow). No other action is taken. 












		





CALLBACK_REQUEST 






		





Y 






		





NUMBER 






		





Callback request indicator. Refer to  



CALLBACK_REQUEST

 for more information.






The possible values are as follows: 








  ‘0’ - callback not requested 








  ‘1’ - callback requested 








Maps to INC.CALLBACK_REQUEST 












		





CALLBACK_TIME 






		





Y 






		





DATE 






		





Callback Before Time. Refer to  



CALLBACK_TIME

 for more information.






Maps to INC.CALLBACK_TIME 












		





CANCEL_CALL 






		





Y 






		





VARCHAR2(8) 






		





Not used. 












		





CHECK_CUTOFF 






		





Y 






		





VARCHAR2(1) 






		





Check cut-off customer indicator. Refer to  



CHECK_CUTOFF

 for more information.






The possible values are as follows: 








  ‘Y’ - check if the customer is disconnected 








  ‘N’ - do not perform checking.  












		





CID_ALIAS 






		





Y 






		





VARCHAR2(32) 






		





Not used. 












		





CLUE 






		





Y 






		





NUMBER 






		





Indicates if call is clue if set to Y. Refer to  



CLUE

 for more information.






Maps to INC.CLUE 












		





COMBINE_PRI 






		





Y 






		





NUMBER 






		





Total priority of call. Refer to  



COMBINE_PRI

 for more information.










		





CUST_ADDRESS 






		





Y 






		





VARCHAR2(200) 






		





Not used. 












		





CUST_CALL_CANCEL 






		





Y 






		





VARCHAR2(1) 






		





Call cancel indicator. Refer to  



CUST_CALL_CANCEL

 for more information.






Maps to INC.CALL_CANCEL 












		





CUST_CITY 






		





Y 






		





VARCHAR2(25) 






		





Not used. 












		





CUST_CRITICAL 






		





Y 






		





VARCHAR2(1) 






		





Critical customer indicator. This is added to the critical C count of the outage. Refer to  



CUST_CRITICAL

 for more information.






Maps to INC.CRITICAL_CUST 












		





CUST_DEVICE_ALIAS 






		





Y 






		





VARCHAR2(32) 






		





Customer Device Alias. Refer to  



CUST_DEVICE_ALIAS

 for more information.






Maps to INC.OBJECT  












		





 CUST_DEVICE_CLS 






		





Y 






		





NUMBER 






		





Corresponding CC.H_CLS field for the given CC.SERV_LOC_ID. This field does not have a corresponding input parameter in the pr_trouble_calls stored procedure. The stored procedure itself populates this field. Refer to  



CUST_DEVICE_CLS

 for more information.






Maps to INC.H_CLS 












		





 CUST_DEVICE_IDX 






		





Y 






		





NUMBER 






		





Corresponding CC.H_IDX field for the given CC.SERV_LOC_ID. This field does not have a corresponding input parameter in the pr_trouble_calls stored procedure. The stored procedure itself populates this field. Refer to  



CUST_DEVICE_IDX

 for more information.






Maps to INC.H_IDX 












		





CUST_DEVICE_NCG 






		





Y 






		





NUMBER 






		





NCG of customer device. Refer to  



CUST_DEVICE_NCG

 for more information.






Maps to INC.NCG 












		





CUST_DEVICE_PARTITION 






		





Y 






		





NUMBER 






		





Partition of customer device. Refer to  



CUST_DEVICE_ PARTITION

 for more information.






Maps to INC.PARTITION 












		





CUST_FIRST_NAME 






		





Y 






		





VARCHAR2(75) 






		





Customer Name. Refer to  



CUST_FIRST_NAME

 for more information.






Maps to INC.CUSTOMER_NAME and 








JOBS.CUSTOMER_NAME 












		





CUST_ID 






		





Y 






		





VARCHAR2(64) 






		





Unique customer record identifier. Maps to INC.CID. 












		





CUST_INTERSECT_CLS 






		





Y 






		





NUMBER 






		





Intersecting device class. Refer to  



CUST_INTERSECT_ CLS

 for more information.










		





CUST_INTERSECT_IDX 






		





Y 






		





NUMBER 






		





Intersecting device index. Refer to  



CUST_INTERSECT_ IDX

 for more information.










		





CUST_INTERSECT_NCG 






		





Y 






		





NUMBER 






		





Intersecting NCG. Refer to  



CUST_INTERSECT_ NCG

 for more information.










		





CUST_INTR_X 






		





Y 






		





NUMBER 






		





Intersecting X coordinate. X coordinate used for intersection grouping.  












		





CUST_INTR_Y 






		





Y 






		





NUMBER 






		





Intersecting Y coordinate.Y coordinate used for intersection grouping. 












		





CUST_KEY 






		





Y 






		





VARCHAR2(16) 






		





Corresponding CC.ACCOUNT_NUMBER field for the given CC.SERV_LOC_ID. This field does not have a corresponding input parameter in the pr_trouble_calls stored procedure. The stored procedure itself populates this field. Refer to  



CUST_KEY

 for more information.






Maps to INC.ACCOUNT_NUM 












		





CUST_LAST_NAME 






		





Y 






		





VARCHAR2(75) 






		





The last name of the customer. Refer to  



CUST_LAST_NAME

 for more information.






Maps to INC.CUSTOMER_NAME and 








JOBS.CUSTOMER_NAME 












		





CUST_LIFE_SUPPORT 






		





Y 






		





VARCHAR2(1) 






		





Life support customer. Refer to  



CUST_LIFE_SUPPORT

 for more information.






Maps to INC.LIFE_SUPPORT  












		





CUST_ORDER_NUM 






		





Y 






		





VARCHAR2(16) 






		





Customer order number. Refer to  



CUST_ORDER_NUM

 for more information.






Maps to INC.ORDER_NUMBER 












		





CUST_PHONE 






		





Y 






		





VARCHAR2(32) 






		





Customer phone number. Refer to  



CUST_PHONE

 for more information.






Maps to INC.CUSTOMER_PHONE and JOBS.CUSTOMER_PHONE 












		







CUST_PHONE_AREA




		



Y 




		





VARCHAR2(8) 






		





Customer phone area code. Refer to  



CUST_PHONE_AREA

 for more information.






Maps to INC.CUSTOMER_PHONE and 








JOBS.CUSTOMER_PHONE 












		





CUST_PHONE_UPDATE 






		





Y 






		





VARCHAR2(1) 






		





Whether to update customer phone. Refer to  



CUST_PHONE_ UPDATE

 for more information.










		





CUST_PRIORITY 






		





Y 






		





VARCHAR2(4) 






		





Customer Priority. Refer to  



CUST_PRIORITY

 for more information.






This is defined by customer and needs to be an integer string. 








Maps to INC.CUSTOMER_TYPE 












		





CUST_STATUS 






		





Y 






		





NUMBER 






		





Condition status of call. 












		





CUST_TROUBLE_CODE 






		





N 






		





VARCHAR2(10) 






		





Trouble code or customer complaint. Refer to  



CUST_TROUBLE_ CODE

 for more information.






This is the trouble or complaint that the customer reports when making a call. The trouble code determines the priority of the incident. 








Trouble code mapping setup in Oracle Utilities Network Management System should be synchronized with the trouble code mapping setup on the external application. This is to ensure that the trouble code sent from the external application is interpreted similarly when the trouble code is received by Oracle Utilities Network Management System.  








Maps to INC.COMPLAINT 












		





CUST_TROUBLE_QUEUE 






		





Y 






		





VARCHAR2(10) 






		





Customer trouble queue. Refer to  



CUST_TROUBLE_ QUEUE

 for more information.






This field contains the name of the work group queue that the event has been referred to. 








Maps to INC.TROUBLE_QUEUE and JOBS.TROUBLE_QUEUE 












		







DRV_INST




		





Y 






		





VARCHAR2(180) 






		





Driving instructions. 








Maps to INC.DRV_INSTR1 












		





EXTERNAL_ID 






		





N 






		





VARCHAR2(16) 






		





External ID. Refer to  



EXTERNAL_ID

 for more information






If it is used, its value should be unique. 








Maps to INC.EXTERNAL_ID and 








JOBS.EXTERNAL_ID 












		





FUZZY_NCG_CLS 






		





Y 






		





NUMBER 






		





Fuzzy control zone class. 












		





FUZZY_NCG_IDX 






		





Y 






		





NUMBER 






		





Fuzzy control zone index. 












		





GENERAL_AREA 






		





Y 






		





VARCHAR2(32) 






		





General Area. Not Used in the SPL OMS System. 








Maps to INC.GENERAL_AREA 












		





GROUP_BY_NAME 






		





Y 






		





VARCHAR2(127) 






		





Fuzzy control zone name. 












		





GROUPABLE 






		





Y 






		





NUMBER 






		





Indicates if call is groupable if set to 1. 








Maps to INC.GROUPABLE 












		





MEET_TIME 






		





Y 






		





DATE 






		





Time of customer meet. Refer to  



MEET_TIME

 for more information.






Maps to INC.MEET_TIME 












		





MEET_TYPE 






		





Y 






		





NUMBER 






		





Customer meet type. Refer to  



MEET_TYPE

 for more information.






Maps to INC.MEET_CODE 












		





METER_ID 






		





Y 






		





VARCHAR2(32) 






		





Customer meter number. 








Maps to INC.METER_ID 












		





POWER_UP 






		





Y 






		





NUMBER 






		





Power-up call. Refer to POWER_UP for more information. 












		





RELATED_EVT_APP 






		





Y 






		





NUMBER 






		





Related event application. 












		





RELATED_EVT_CLS 






		





Y 






		





NUMBER 






		





Related event class. 








Maps to INC. RELATED_CLS 












		





RELATED_EVT_IDX 






		





Y 






		





NUMBER 






		





Related event index. 








Maps to INC. RELATED_IDX 












		





REPORTED_ERT 






		





Y 






		





DATE 






		





Estimated restoration time reported to caller. 








Maps to INC. REPORTED_EST_REST_TIME 












		





SHORT_DESC 






		





Y 






		





VARCHAR2(128) 






		





Trouble short description. 








Maps to INC.SHORT_DESC 












		





TROUBLE_LOC 






		





Y 






		





VARCHAR2(255) 






		





Incident's trouble location. 








Maps to INC.TROUBLE_LOC 












		



UPDATE_EXISTING_INC 




		





Y 






		





NUMBER 






		





Whether to update an existing incident. Refer to  



UPDATE_EXISTING_ INC

 for more information.










		





USER_NAME 






		





Y 






		





VARCHAR2(32) 






		





Call-taker user name. Refer to  



USER_NAME

 for more information.






Maps to INC.USER_NAME  












		







X_REF




		





Y 






		





NUMBER 






		





Customer X coordinate. Refer to  



X_REF

 for more information.






Maps to INC.X_COORD 












		



 Y_REF 




		





Y 






		





NUMBER 






		





Customer Y coordinate. Refer to  



Y_REF

 for more information.






Maps to INC.Y_COORD 
















TROUBLE_STATUS Table Schema 




The Generic IVR Adapter inserts records to or updates records on the TROUBLE_STATUS table for each outage created, updated or merged within Oracle Utilities Network Management System. The external application can indirectly query this table to get outage status information using the pr_trouble_status stored procedure.  




On the 'Description' column, take note that field names prefixed with 'JOBS.' would come from the JOBS table. 















		



Field Name 




		



Nullable 




		



Data Type 




		



Description 










		





EVENT_CLS 






		





N 






		





NUMBER(38) 






		





The value is taken from JOBS.EVENT_CLS 












		





EVENT_IDX 






		





N 






		





NUMBER(38) 






		





The value is taken from JOBS.EVENT_IDX 












		





OUTAGE_STATUS 






		





Y 






		





VARCHAR2(32) 






		





The value is taken from JOBS.ALARM_STATE. 








This is an abbreviation of the current state of the event, for instance, 'NEW', 'ASN', 'CMP', etc. Valid values are defined in the STATE_NAME field of the TE_VALID_STATES table.  












		





OUTAGE_START_TIME 






		





Y 






		





DATE 






		





The time of the lead call of the job. 








The value is taken from JOBS.FIRST_CALL_TIME 












		





FIRST_DISPATCH_TIME 






		





Y 






		





DATE 






		





The time the first crew was dispatched 








The value is taken from JOBS.FIRST_CREW_TIME 












		





EST_RESTORE_TIME 






		





Y 






		





DATE 






		





The last estimate of restoration time. 








The value is taken from JOBS.EST_REST_TIME 












		





EST_RESTORE_TIME_SRC 






		





Y 






		





VARCHAR2(1) 






		





The source of the ERT of the event. 








Possible values are as follows: 








  'N' - none (no ERT) 








  'S' - Oracle Utilities Network Management System - Storm Management  








  'P' - Oracle Utilities Network Management System Storm Management "non-published global ERT" 








  'O' - Oracle Utilities Network Management System Storm Management "onsite ERT" 








'G' - Oracle Utilities Network Management System Storm Management "published global ERT" 








'D' - Oracle Utilities Network Management System Storm Management "published global ERT delay" 








'C' - User-entered (assumed to have been provided by the crew) 








'I' - Initial default ERT 








'M' - Oracle Utilities Network Management System Storm Management ERT is further in the future than allowed. 












		





CREW_ARRIVAL_TIME 






		





Y 






		





DATE 






		





The time when the crew arrived on location 








The value is taken from the WHEN_ARRIVED in the CREW_DISPATCHES table. 












		





COMPLETION_TIME 






		





Y 






		





DATE 






		





The value is taken from JOBS.JOB_COMPLETE_TIME.   








The time the event has been completed. This implies power restoration, the crew(s) are gone, and the event is completed in the Event Details window. 












		





RESTORATION_TIME 






		





Y 






		





DATE 






		





The value is taken from JOBS.RESTORE_TIME. 








The time that power has been restored.  








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_STATUS table for 'old' records. The TROUBLE_STATUS record is 'aged' based on the system date/time and the RESTORATION_TIME field. Any record older than a predefined number of days will be removed. See  



keepdbinfo

 for more information.










		





CASE_NOTE 






		





Y 






		





VARCHAR2(255) 






		





The value is taken from JOBS.OPERATOR_COMMENT 












		





STATUS 






		





Y 






		





NUMBER(38) 






		





Condition status 








The value is taken from JOBS.STATUS. 








Valid values are defined in the TRANS_STATUS field of the TE_STATUSES table. 












		





ACTIVE 






		





Y 






		





VARCHAR2(1) 






		





The value is taken from JOBS.ACTIVE  








Possible values are as follows: 








  'Y' - Outage Is Active 








  'N' - Outage Is Not Active 








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_STATUS table for 'old' records. Records with ACTIVE field = 'N' will be purged. 












		





ALIAS 






		





Y 






		





VARCHAR2(64) 






		





The device alias. 












		





EVENT_TYPE 






		





Y 






		





VARCHAR2(32) 






		





Possible values are as follows: 








OUT                               








NON                               








MEET                              








PLAN                              








SWP    












		





FEEDER_NAME 






		





Y 






		





VARCHAR2(32) 






		





The name of the feeder.  












		





CAUSE 






		





Y 






		





VARCHAR2(32) 






		





The cause of the outage if SRS Rule useExternalCause is on. 












		





NUM_CALLS 






		





Y 






		





NUMBER 






		





The number of calls.   












		





NUM_CUST_OUT 






		





Y 






		





NUMBER 






		





The number of customers out.  























TROUBLE_AFFECTED_CUSTOMERS Table Schema 




The Generic IVR Adapter updates the TROUBLE_AFFECTED_CUSTOMERS table for each customer affected by such outage. The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer is a part or has been a part of an outage, by querying the TROUBLE_STATUS and the TROUBLE_AFFECTED_CUSTOMERS tables. 




he TROUBLE_AFFECTED _CUSTOMERS table is purged based on the purge mechanism used in the TROUBLE_STATUS table.   Records in the TROUBLE_AFFECTED_CUSTOMER table with a corresponding purged event in the TROUBLE_STATUS table will be purged as well. 




On the 'Description' column, take note that field names prefixed with 'SNL.' would come from the SUPPLY_NODES_LOG table. Field names prefixed by 'CC.' would come from the CES_CUSTOMERS table. 















		



Field Name 




		



Nullable 




		



Data Type 




		



Description 










		





EVENT_CLS 






		





N 






		





NUMBER(38) 






		





Class field of the event.  








Maps to SNL.EVENT_CLS 












		





EVENT_IDX 






		





N 






		





NUMBER(38) 






		





Index field of the event.  








Maps to SNL.EVENT_IDX 












		





PREMISE_ID 






		





N 






		





VARCHAR2(50) 






		





Maps to CC.SERV_LOC_ID  












		





ACCOUNT_NUMBER 






		





N 






		





VARCHAR2(50) 






		





Maps to CC.ACCOUNT_NUMBER 












		





METER_ID 






		





N 






		





NUMBER(38) 






		





Maps to CC.METER_ID 












		





SUPPLY_NODE_IDX 






		





N 






		





NUMBER(38) 






		





Handle index of the affected supply node.  








The value is taken from SNL.SUPPLY_IDX 












		





CUSTOMER_NAME 






		





Y 






		





VARCHAR2(75) 






		





Maps to CC.ACCOUNT_NAME 












		





CUSTOMER_PHONE  






		





Y 






		





VARCHAR(38) 






		





Maps to CC.PHONE_NUMBER 












		





CUSTOMER_ADDRESS  






		





Y 






		





VARCHAR2(255) 






		





Maps to CC.ADDRESS 












		





RESTORE_TIME 






		





Y 






		





DATE 






		





The value is taken from SNL.RESTORE_TIME 























Since the CES_CUSTOMERS table varies on a project-to-project basis, consult your Project Engineer on what the expected values would be for the each field of the CES_CUSTOMERS table written above. 




TROUBLE_CALLBACKS Table Schema 




The TROUBLE_CALLBACKS table contains callback request information that has to be reported to the external application. The table also stores the corresponding callback response received from the external application. The Generic IVR Adapter directly inserts new callback requests to the said table. It also directly picks up processed callbacks from the same table. The external application is provided two stored procedures for indirectly reading and updating callback information from the table. 




From the table below, on the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table. 















		



Column Name 




		



Nullable 




		



Data Type 




		



Description 










		





EVENT_CLS 






		





Y 






		





NUMBER(38) 






		





Populated by the Callback Requests Data Flow from INC.EVENT_CLS. 












		





EVENT_IDX 






		





Y 






		





NUMBER(38) 






		





Populated by the Callback Requests Data Flow from INC.EVENT_IDX. 












		





INCIDENT_NUMB 






		





N 






		





NUMBER(38) 






		





Populated by the Callback Requests Data Flow from INC.NUMB. 












		





PREMISE_ID 






		





N 






		





VARCHAR2(50) 






		





Populated by the Callback Requests Data Flow from INC.ACCOUNT_NUM. 












		





CUSTOMER_NAME 






		





Y 






		





VARCHAR2(75) 






		





Populated by the Callback Requests Data Flow from INC.CUSTOMER_NAME. 












		





CUSTOMER_PHONE 






		





Y 






		





VARCHAR2(38) 






		





Populated by the Callback Requests Data Flow from INC.CUSTOMER_PHONE. 












		





CUSTOMER_ADDRESS 






		





Y 






		





VARCHAR2(255) 






		





Populated by the Callback Requests Data Flow by concatenating INC.ADDR_BUILDING, INC.ADDRESS and INC.ADDR_CITY 












		





ALTERNATE_PHONE 






		





Y 






		





VARCHAR2(38) 






		





Populated by the Callback Requests Data Flow from INC.ALTERNATE_PHONE.  












		





TROUBLE_CODE 






		





Y 






		





VARCHAR2(32) 






		





Populated by the Callback Requests Data Flow from INC.COMPLAINT.  








This is the trouble code (e.g., '10000000') of the incident rather than the clue (e.g., 'Out'). 'Out' is short for 'All Power Out'.  












		





SHORT_DESCRIPTION 






		





Y 






		





VARCHAR2(128) 






		





Populated by the Callback Requests Data Flow from INC.SHORT_DESC 








This is the clue (e.g., 'Out') of the incident rather than the trouble code (e.g., '10000000'). 'Out' is short for 'All Power Out'. 












		





CUSTOMER_COMMENT 






		





Y 






		





VARCHAR2(255) 






		





Populated by the Callback Requests Data Flow from INC.OP_COMMENT. 












		





INCIDENT_TIME 






		





Y 






		





DATE 






		





Populated by the Callback Requests Data Flow from INC.INPUT_TIME. 








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_CALLBACKS table for 'old' records. The TROUBLE_CALLBACKS table record is 'aged' based on the system date/time and the INCIDENT_TIME field. Any record older than a predefined number of days will be removed. See  



keepdbinfo

 for more information.










		





EXTERNAL_ID 






		





Y 






		





VARCHAR2(16) 






		





Populated by the Callback Requests Data Flow from INC.EXTERNAL_ID. 












		





CALLBACK_STATUS 






		





Y 






		





VARCHAR2(10) 






		





Initially populated by the Callback Requests Data Flow as NULL; 








The field is repopulated by the external application (using pr_trouble_callback_responses stored procedure). The valid values are as follows:  








  'F' - Not Restored Callback 








  'R' - Restored Callback 








  'N' - Cancel Callback, unable to get a response 








The Callback Response Data Flow is responsible for sending the updated value to Oracle Utilities Network Management System. A remapped value is placed in INC.CALLBACK_STATUS. 












		





CALLBACK_TIME 






		





Y 






		





DATE 






		





Initially populated by the Callback Requests Data Flow as NULL; 








The field could be repopulated by the external application (using pr_trouble_callback_responses stored procedure). The stored procedure defaults this field to the system date if no information was supplied by the external application. 








The Callback Response Data Flow is responsible for sending the updated value to Oracle Utilities Network Management System. The value is placed in INC.CB_CALL_TIME. 












		





CALL_TAKER_ID 






		





Y 






		





VARCHAR2(32) 






		





Populated by the Callback Requests Data Flow from INC.USER_NAME. 












		





CALLBACK_LATE 






		





Y 






		





VARCHAR2(1) 






		





Populated by the Callback Requests Data Flow from INC.CALLBACK_LATE 








The possible values are as follows: 








  ‘Y’ - It is OK to call back even when it is already late. 








  ‘N’ - It is not OK to call back when it is already late.  








This information is only passed from the external application to Oracle Utilities Network Management System (using the Trouble Calls Data Flow), and back to the external application (using the Callback Requests Data Flow). No other action is taken. 












		





CALLBACK_LATE_TIME 






		





Y 






		





DATE 






		





Populated by the Callback Requests Data Flow from INC.CALLBACK_TIME. 








This information is only passed from the external application to Oracle Utilities Network Management System (using the Trouble Calls Data Flow), and back to the external application (using the Callback Requests Data Flow). No other action is taken. 












		





CALLBACK_REASON 






		





Y 






		





VARCHAR2(100) 






		





This is used by the Generic IVR Adapter to indicate the source of the callback request. This will default to 'OMS'. 












		





PROCESS_STATUS 






		





Y 






		





VARCHAR2(1) 






		





Initially populated by the Callback Requests Data Flow as 'N', signifying that the record is a new callback 








Once the record was fetched by the external application (using pr_trouble_callback_requests stored procedure), the field is automatically updated by the stored procedure to 'I' signifying that the external system is currently processing the callback response. 








As soon as the external application successfully returns the callback response to the Generic IVR Adapter (using pr_trouble_callback_responses stored procedure), the field is updated to 'C', signifying that the external application has completed the processing of the callback response. 








This field is internally maintained by the Generic IVR Adapter. Below is a list of valid values for this field. 








  'N' - New Callback 








  'I' - In Processing Of Callback Response 








  'C' - Completed The Processing Of Callback Response 








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_CALLBACKS table for 'old' records. Records with PROCESS_STATUS field = 'C' will be purged. 












		





CALLBACK_DONE 






		





Y 






		





VARCHAR2(1) 






		





Initially populated by the Callback Requests Data Flow as 'N', signifying that the callback is not yet done. 








As soon as the external application successfully returns the callback response to the Generic IVR Adapter (using pr_trouble_callback_responses stored procedure), the field is updated to 'Y', signifying that the callback has been done. 








Below is a list of valid values for this field. 








  'N' - Callback Has Not Been Done 








  'Y' - Callback Has Been Done 








The Generic IVR Adapter uses this field as one of the criteria in purging the TROUBLE_CALLBACKS table for 'old' records. Records with CALLBACK_DONE field = 'Y' will be purged. 












		





CAUSE_CODE 






		





Y 






		





VARCHAR2(32) 






		





This is used to relay back to customers the cause of an outage when a callback is performed. 








Populated by the Callback Requests Data Flow from JOBS.CAUSE when the useExternalCause rule is set to ‘yes’ in the SRS_RULES. 












		





OUTAGE_DURATION 






		





Y 






		





NUMBER 






		





Outage duration in seconds. 








Populated by the Callback Requests Data with the difference between JOBS.RESTORE_TIME and JOBS.BEGIN_TIME. 












		





CUSTOMER_COUNT 






		





Y 






		





NUMBER 






		





Populated by the Callback Requests Data Flow from INC.USER_NAME. 












		





CB_DETAIL_1 






		





Y 






		





VARCHAR2(80) 






		





Populated by the Callback Requests Data Flow from a column in the PICKLIST_INFO_UPD_TR database table. Column name is configured in the IVR_ADAPTER_CONFIG database table. 












		





CB_DETAIL_2 






		





Y 






		





VARCHAR2(80) 






		





Populated by the Callback Requests Data Flow from a column in the PICKLIST_INFO_UPD_TR database table. Column name is configured in the IVR_ADAPTER_CONFIG database table. 












		





CB_DETAIL_3 






		





Y 






		





VARCHAR2(80) 






		





Populated by the Callback Requests Data Flow from a column in the PICKLIST_INFO_UPD_TR database table. Column name is configured in the IVR_ADAPTER_CONFIG database table. 












		





CB_DETAIL_4 






		





Y 






		





VARCHAR2(80) 






		





Populated by the Callback Requests Data Flow from a column in the PICKLIST_INFO_UPD_TR database table. Column name is configured in the IVR_ADAPTER_CONFIG database table. 




















OEBPS/Text/part0042.xhtml






Database Schema 




Overview 




The following section defines in detail the schema of each database tables used by the Generic IVR Adapter. These Generic IVR Adapter tables however are not captured by performance mart. Moreover, this section defines the parameters used by the Generic IVR Adapter's stored procedures. 








OEBPS/Text/part0041.xhtml






Generic IVR Adapter Troubleshooting 






This section identifies high-level messages that could be sent to the Generic IVR Adapter using the Action command for troubleshooting purposes.  

















		





Command 






		





Usage 






		





Description 












		





report 






		





Action -services any.IVRGateway report 






		





Reports back if the Generic IVR Adapter has started. 






		
















		





stop 






		





Action -services any.IVRGateway stop 






		





Stops the Generic IVR Adapter 






		
















		





debug 






		





Action -services any.IVRGateway debug LEVEL  








(where LEVEL is 0, 1 or 2) 






		





Sets the Generic IVR Adapter’s debug level 






		
















		





cleantable 






		





Action -services any.IVRGateway cleantable 






		





Toggles the ‘cleantable’ command line option.  Instructs if the Generic IVR Adapter should remove some records from its tables or not. 






		





























Note:  It is important that the Generic IVR Adapter is already included in the System Data file to run high-level messages properly. For more information, see 

Configure Adapter to run as NMS System Service

.








OEBPS/Text/part0040.xhtml






Generic IVR Adapter Trouble Call Performance 




The maximum rate at which the Generic IVR Adapter injects trouble calls into the Oracle Utilities Network Management System is initially determined using the -callperpoll and -pollperiod command line parameters in the system.dat file. If these parameters are not set, the Generic IVR Adapter will, by default, retrieve a maximum of 100 trouble calls from the TROUBLE_CALLS table every six seconds and send these calls into the MMM via JMService. This corresponds to a maximum hourly call rate of 60,000 calls per hour. 




If it is necessary to change this call rate while the adapter is running, two scripts are provided: ivrCallPerPoll.ces and ivrPollPeriod.ces. These scripts may be used to adjust the number of calls retrieved during each poll cycle and the period between poll cycles while the adapter is running.  






Note : If the adapter is restarted, these parameters (and the corresponding call rate) will revert to the command line parameters specified in the system.dat file (or the default values if no command line options are specified).















		





Command 






		





Usage 






		





Description 












		





ivrCallPerPoll.ces 






		





ivrCallPerPoll.ces NUM_CALLS_PER_POLL 






		





Changes the number of calls retrieved from the TROUBLE_CALLS table during one poll cycle. 






		
















		





IvrPollPeriod.ces 






		





IvrPollPeriod.ces NUM_SECONDS 






		





Changes the period between poll cycles where calls are retrieved from the TROUBLE_CALLS table and submitted to JMService. 






		































OEBPS/Text/part0039.xhtml






streetXsectionOffset SRS Rule 




Specifies the size of the maximum bounding rectangle to be used in grouping street intersection fuzzy calls to supply nodes. The rectangle will be the area where: 




  x E [xsection_x - THIS RULE VALUE, xsection_x + THIS RULE VALUE] 




                                 and 




  y E [xsection_y - THIS RULE VALUE, xsection_y + THIS RULE VALUE] 




This is an integer. Check your world coordinate system for a reasonable integer value. 




This rule is used once for each rectangle desired (i.e., multiple instances of this rule may exist in a single rule set). For example, a larger rectangle size may be desired in a rural control zone and a smaller rectangle in an urban control zone. 















		



Field Name 




		



Value 










		





RULE_VALUE_1 






		





‘‘     (not used) 












		





RULE_VALUE_2 






		





integer (Default: none) 












		





RULE_VALUE_INTEGER_1 






		





0     (not used) 












		





RULE_VALUE_INTEGER_2 






		





0     (not used) 












		





RULE_VALUE_INTEGER_3 






		





0     (not used) 












		





RULE_VALUE_INTEGER_4 






		





0     (not used) 












		





RULE_VALUE_INTEGER_5 






		





0     (not used) 












		





NCG_CLS 






		





integer, representing ncg_cls of desired applicable control zone level 












		





NCG_IDX 






		





integer, representing ncg_idx of desired applicable control zone level 




















OEBPS/Images/cover00738.jpeg
ORACLE"

Oracle Utilities Network
Management System

Adapters Guide

Release 1.10.0.6
E36983.01
December 2012

Copyrighs () 2014 Oracle Corporation. Al Righs Reserved.





OEBPS/Text/part0312.xhtml






Ordering of Incidents in the Incident Object 




When processing starts for a document, the incidents in the Incident Object are in their normal order, i.e. the order that they were received by Oracle Utilities Network Management System. This order can be changed during the processing of the document by calling the sortIncidents function. The ordering remains the same during the processing, unless sortIncidents is called again. The order is set back to normal when the document processing finishes. 




Interactions between Threads 




The adapter is a multi-threaded process. Therefore more than one document can be processed at the same time, increasing performance. There is at least one thread for Output Document processing, and at least one thread for each Input Document queue. More threads can be configured using a Configuration Document. The adapter uses a number of other threads for internal processing. 




This has a number of implications. 




While trigger events are queued internally in the order that they occur, and are extracted from this queue in the order that they were queued, there is no guarantee that the Output Documents triggered by these events will complete their processing in the order the events were queued. This means the XML messages may be delivered to the MQSeries queue in an unexpected order. If this behavior is inappropriate, it can be eliminated at the expense of performance by using only one output thread, and by setting the config_Event_QueueDelay configuration parameter to zero. 




A similar situation exists with input XML documents. They also cannot be guaranteed to update Oracle Utilities Network Management System in the order that they arrive. This situation can be improved at the expense of performance by limiting each input queue to one thread. It may be possible to eliminate it completely if the interface can be configured to use only one input queue. 




Note that trigger events and input XML that affect particular Oracle Utilities Network Management System events, Order Objects, and Relationship Objects are processed in the order that they are queued. These situations are discussed below. 




Note, however, that there is an inherent race condition in loosely coupled interfaces (the type implemented by the adapter) that use messages to communicate. Events can occur in Oracle Utilities Network Management System and the MDS that alter the state of Oracle Utilities Network Management System events and MDS orders almost simultaneously and it cannot be predicted whether the change on one system affects the other system first, or vice versa. Paradoxically, this situation can be improved by increasing the rate at which messages are processed, i.e. by increasing the number of threads. 




The input, output, and internal threads need to coordinate access to various shared resources. Most of this coordination is invisible on the dml level, but a number of aspects of the coordination are worth consideration when writing dml. 




One specific means of coordination is known as a mutex (for mutual exclusion). To access a shared resource that is protected by a mutex, the thread requests the mutex. If the mutex is free, the thread acquires the mutex. If another thread requests the mutex, it blocks (is suspended) until it is free. When the original thread has finished accessing the shared resource, it releases the mutex, making it free. The release unblocks one thread waiting for the mutex. When there is the potential for more than one mutex to be in use, there is a danger of a deadlock if one thread enters the mutexes in a different order from another thread. One a deadlock occurs, neither thread will ever run again.  




Each thread runs in a separate environment, with a copy of each relevant document, but needs to share a number of resources. The access to these objects must be properly coordinated to prevent inconsistent access due to multiple threads updating the resource at the same time. These resources and the mechanisms used to prevent inconsistent access are: 








		

•




		



The Global Data Object: The update of a single field is atomic (the update will be complete before any other thread can attempt to read or update the field). There is no coordination of updates to multiple fields. To avoid this problem, use a single field. 





















		

•




		



The Order Object: There is one Order Object for each order that has been created. Access to an individual Order Object is coordinated so that only one document can access the Order Object at one time. When a document in a thread needs to access an Order Object it calls findOrder. When successful, findOrder acquires the order’s mutex, preventing any other thread from accessing the Order Object. The order’s mutex is automatically acquired when the order is created by calling createOrder. The order’s mutex is automatically released in the following cases: when the document processing is terminated, and when findOrder or createOrder is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents needing the same order, or two Input Documents are triggered by one input XML message, the state of the order when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state. 





















		

•




		



The Relationship Object: There is one Relationship Object for each relationship that has been created. Access to an individual Relationship Object is coordinated so that only one document can access the Relationship Object at one time. When a document in a thread needs to access a Relationship Object it calls findRelation. When successful, findRelation acquires the relationship’s mutex, preventing any other thread from accessing the Relationship Object. The relationship’s mutex is automatically acquired when the relationship is created by calling createRelation. The relationship’s mutex is automatically released in the following cases: when the document processing is terminated, and when findRelation or createRelation is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents using needing the same relationship, or two Input Documents are triggered by one input XML message, the state of the relationship when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state. In addition, when findOrder or createOrder is called, the mutex for the order’s relationship is automatically acquired. This has the consequence that calling findOrder or createOrder after calling findRelation causes a configuration error if the order is not in the relationship. Similarly, calling findRelation after calling findOrder or createOrder causes a configuration error if the order is not in the relationship. This behavior is necessary to prevent deadlocks.  





















		

•




		



The current event: SRSoutput message for the same event must be processed in the order that they were sent by SRSService, otherwise the MDS will not receive up to date data. This prevented by a mutex that is acquired before the SRSoutput message is processed, and released automatically when it has been processed. 





















OEBPS/Text/part0313.xhtml






DML Function Calls 




The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows: 








		

•




		



The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions. 





















		

•




		



The current order is set: the current order is set by the createOrder and findOrder functions. 





















		

•




		



The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful. 





















		

•




		



The current damage report is set : the current damage report is set by a call to findOrCreateDamage 

















In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are: 








		

•




		



E: the current event is set. 





















		

•




		



I: the current event is set (and it has incidents) 





















		

•




		



O: the current order is set. 





















		

•




		



R: the current relation is set by a call to findRelation. 

















List of Functions 











Crew Functions 




These functions create and update crews. 




createCrew 




NAME: 




createCrew Create a new crew. 




SYNOPSIS: 




createCrew(  crew ID, crew field, data, [crew field, data], ..)




PARAMETERS: 






crew ID The crew ID






crew field The crew field to update.




crewTypecalls Crew::crewType() API 




zoneNamecalls Crew::zoneName() API 




crewSizecalls Crew::crewSize() API 




contactcalls Crew::contact() API 




crewIdcalls Crew::crewId() API 




mobileNumcalls Crew::mobileNum() API 




pagerNumcalls Crew::pagerNum() API 




zoneHdlcalls Crew::zoneHdl() API  




crewCategorycalls Crew::crewCategory() API 




crewCentercalls Crew::crewCenter() API 




crewGroupcalls Crew::crewGroup() API 




crewSupervisorcalls Crew::crewSupervisor() API 




externalKeycalls Crew::externalKey() API 






data The data written to the crew field






Note: If the Crew Icons Window is used make sure that the following  crew fields:  crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor,  are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:




The  crew field parameters are valid.




DESCRIPTION: 




Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew. 




RETURN VALUE: 




True when successful. 




False when unsuccessful.  




   A crew with the specified crew ID exists. This can be determined by a call to findCrewById(). 




The Crew::createCrew() API call fails. 




Note that the current crew is not set if the call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




findCrewById 




NAME: 




findCrewById Find an active or inactive crew based on  its crew ID SYNOPSIS: 




findCrewById(  crew ID )













crew ID The crew ID.




PRE-REQUISITE: 




None .






DESCRIPTION: 




Find the crew with the specified crew ID. 




RETURN VALUE: 




True when successful. The current crew is set to the crew that was found. 




False when unsuccessful.DIAGNOSTICS: 




None. 




findCrewByExternalKey 




NAME: 




    findCrewByExternalKey Find an active or inactive crew based on its external key  




SYNOPSIS: 




    findCrewByExternalKey(  externalKey )






externalKeyThe external key.




PRE-REQUISITE: 




None .






DESCRIPTION: 




Find the crew with the specified external key. 




RETURN VALUE: 




True, when successful. The current crew is set to the crew that was found. 




False when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




findCrewByIdSubStr 




NAME: 




findCrewByIdSubStr   Find an active or inactive crew based on  a substring of the crew ID  




SYNOPSIS: 




findCrewByIdSubStr(  string )






string A string.




PRE-REQUISITE: 




None .






DESCRIPTION: 




Find a crew whose crew ID contains the  string.




RETURN VALUE: 




True when successful. The current crew is set to the crew that was found. 




False when unsuccessful. 




DIAGNOSTICS: 




None. 




findCrewByExtKeySubStr 




NAME: 




findCrewByExtKeySubStr    Find an active or inactive crew based on a substring of its external key  




SYNOPSIS: 




    findCrewByExternalKey(  string )













stringA string.PRE-REQUISITE:




None .






DESCRIPTION: 




Find a crew whose external key contains the  string.RETURN VALUE:




True, when successful. The current crew is set to the crew that was found. 




False when unsuccessful.DIAGNOSTICS: 




Error messages are output to the error log. 




updateCrew 




NAME: 




updateCrew Update the current crew’s information. 




SYNOPSIS: 




updateCrew(  crew field, data, [crew field, data], ..)




PARAMETERS: 






crew field The crew’s field to update.




crewTypecalls Crew::crewType() API 




zoneNamecalls Crew::zoneName() API 




crewSizecalls Crew::crewSize() API 




contactcalls Crew::contact() API 




crewIdcalls Crew::crewId() API 




mobileNumcalls Crew::mobileNum() API 




pagerNumcalls Crew::pagerNum() API 




zoneHdlcalls Crew::zoneHdl() API  




crewCategorycalls Crew::crewCategory() API 




crewCentercalls Crew::crewCenter() API 




crewGroupcalls Crew::crewGroup() API 




crewSupervisorcalls Crew::crewSupervisor() API 




externalKeycalls Crew::externalKey() API 






data The data written to the crew field






PRE-REQUISITE: 




The current crew is set. 




The  crew field parameters are valid.




DESCRIPTION: 




Update the current crew’s  crew field with data and invoke the Crew::commit() API to commit the changes.




RETURN VALUE: 




True when successful. 




False when unsuccessful. 




The Crew::commit() API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




dispatchCrew 




NAME: 




dispatchCrew  Dispatch the current crew to the current order 






SYNOPSIS: 






dispatchCrew() 




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current crew is set. 




The current order is set. 




DESCRIPTION: 




If the crew is already dispatched to another event, the previous dispatch is changed to an assignment. 




Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




arriveCrew 




NAME: 




arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order. 




SYNOPSIS: 




arriveCrew() 




arriveCrew( time)




PARAMETERS: 






time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.




PRE-REQUISITE: 




The current crew is set. 




The current order is set. 




DESCRIPTION: 




If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function. 




If the time is zero or invalid it is set to the current time 




Invoke the CrewDispatch::arrived() API for the order’s active event. 




RETURN VALUE: 




The empty string.DIAGNOSTICS: 




Error messages are output to the error log. 




assignCrew 




NAME: 




assignCrew Assign the current crew to the current order 




SYNOPSIS: 




assignCrew() 




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current crew is set. 




The current order is set. 




DESCRIPTION: 




If the crew is dispatched to the order, undispatch it. 




Invoke the Crew::assign() API for all events associated with the order. 




RETURN VALUE: 




  The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 unassignCrew 




NAME: 




unassignCrew Unassign the current crew from the current order 




SYNOPSIS: 




unassignCrew() 






PARAMETERS: 






None. 




PRE-REQUISITE: 




The current crew is set. 




The current order is set. 




DESCRIPTION: 




If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events. 




RETURN VALUE: 




  The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 activateCrew 




NAME: 




activateCrew Change the state of the current crew to active or inactive. 




SYNOPSIS: 




activateCrew( state)




PARAMETERS: 






state The state of the crew.




YActivate the current crew. 




NDeactivate the current crew, set it off-shift, and remove all crew assignments and jobs. 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Invoke Crew::setActivation() API. 




RETURN VALUE: 




True when successful. 




False when unsuccessful. 




The assignments and jobs cannot be removed from the current crew 




The Crew::setActivation() API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 availableCrew 




NAME: 




availableCrew Change the availability of the current crew. 




SYNOPSIS: 




availableCrew( state)




PARAMETERS: 






state The availability of the crew.




YMake the current crew available. 




NMake the current crew unavailable; remove all crew assignments and jobs. 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Invoke Crew::setAvailability() API. 




RETURN VALUE: 




True when successful. 











False when unsuccessful. 




The assignments and jobs cannot be removed from the current crew 




The Crew::setAvailability() API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 











 releaseCrews 




NAME: 




releaseCrews Release all crews from the current order. 




SYNOPSIS: 




releaseCrews 




PARAMETERS: 




None. 




PRE-REQUISITE: 




Current order is set. 




DESCRIPTION: 




Undispatch and unassign all crews related to the current order. 




RETURN VALUE: 




  The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 











 crewActive 




NAME: 




crewActive Determine if the current crew is active. 




SYNOPSIS: 




crewActive() 




PARAMETERS: 




None 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Invoke Crew::isActive() API. 




RETURN VALUE: 




True, when the current crew is active. 




False, when current crew is not active. 




DIAGNOSTICS: 




Error messages are output to the error log. 




setCrewOnShift 




NAME: 




setCrewOnShift  Change the state of the current crew to on shfit or off shift. 




SYNOPSIS: 




setCrewOnShift(onShift, time) 




PARAMETERS: 




onShiftThe state of the crew 




YSet the current crew to on-shift. This will also activate the crew if it is currently inactive. 




NSet the current crew to off-shift and suspend any jobs. 




timeThe time the crew shift change occurred.  If this parameter is not supplied, the current time is used. 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Invoke Crew::setOnShift() API. 




RETURN VALUE: 




True when successful. 




False when unsuccessful. 




The Crew::setOnShift() API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




crewOnShift 




NAME: 




crewOnShift  Determine if the current crew is on shift. 




SYNOPSIS: 




crewOnShift() 




PARAMETERS: 




None 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Invoke Crew::isOnShift() API. 




RETURN VALUE: 




True, when the current crew is on shift. 




False, when current crew is not on shift. 




DIAGNOSTICS: 




Error messages are output to the error log. 




setVehicleId 




NAME: 




 setVehicleId  Update the current crew's vehicle information. 




SYNOPSIS: 




setVehicleId( unused, vehicleNumber, vehicleType ) 




PARAMETERS: 




unused                This parameter is not used. 




vehicleNumber   The vehicle number. 




vehicleType         The vehicle type name. 




PRE-REQUISITE: 




The current crew is set. 




The crew field parameters are valid. 




DESCRIPTION: 




Update the current crew’s vehicle information. If crew with given vehicle number exists then it will be used. If existing vehicle is inactive it will be activated. If crew with given vehicle number does not exist then new vehicle record will be created. 




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




updateCrewCoordinates 




NAME: 




updateCrewCoordinates Update the current crew's coordinates as well as its speed and heading. 




SYNOPSIS: 




updateCrewCoordinates(x, y, speed, heading) 




PARAMETERS: 




x       The X coordinate of the current crew. 




y       The Y coordinate of the current crew. 




speed   The speed of the current crew. 




heading The heading of the current crew (0 to 359, where 0 is North, 90 is East, 180 is South, 270 is West). 




PRE-REQUISITE: 




The current crew is set. 




DESCRIPTION: 




Updates the current crew's coordinates as well as its speed and heading. 




Coordinate values must be in the coordinate system used within NMS. This function does not perform conversion between different coordinate systems. 




RETURN VALUE: 




True when successful. 




False when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




Code Mapping Tables  




The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS.  These tables are cached to improve performance. 




loadMapConfigTable 




NAME: 




loadMapConfigTable Cache the contents of a table supplying information for the mapping tables. 




SYNOPSIS: 




loadMapConfigTable( table)




PARAMETERS: 






table A table name.




PRE-REQUISITE: 




None.  




DESCRIPTION: 




Read and cache  table. 




RETURN VALUE: 




True, when successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




loadMapTable 




NAME: 




loadMapTable Cache the contents of a mapping table. 




SYNOPSIS: 




loadMapTable( name)




PARAMETERS: 






name The name of the mapping table.




PRE-REQUISITE: 




The table,  name, exists in the database. 




DESCRIPTION: 




Read the contents of  name and cache its values. 




RETURN VALUE: 




True, when successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




mapTableStr 




NAME: 




mapTableStr Return a string given its reference code 




SYNOPSIS: 




mapTableStr( name, code)




PARAMETERS: 






name A mapping table name






code A reference code to a string.




PRE-REQUISITE: 




The table,  name, exists in the database.




DESCRIPTION: 




Check if the table,  name exists in memory, if not, call loadMapTable to load it.




Look up the string that corresponds to  code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.




RETURN VALUE: 




The string when successful. 




The empty string when  code is not found.




DIAGNOSTICS: 




Error messages are output to the error log. 




mapTableCode 




NAME: 




mapTableCode Return a code given its reference string  




SYNOPSIS: 




mapTableCode( name, string)




PARAMETERS: 






name A mapping table name






string A string




PRE-REQUISITE: 




The table,  name, exists in the database.




DESCRIPTION: 




Check if the table,  name exists in memory, if not, call loadMapTable to load it.











Look up the code that corresponds to  string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.




RETURN VALUE: 




The code when successful. 




The empty string when  string is not found.




DIAGNOSTICS: 




Error messages are output to the error log. 




Damage Assessment Functions 




These functions creates and updates damage reports. 




findOrCreateDamage 




NAME: 




findOrCreateDamageCreate a damage report for an device outage 




SYNOPSIS: 




findOrCreateDamage( event) 




PARAMETERS: 






event An event handle.




PRE-REQUISITE: 




None. 




DESCRIPTION: 




Load the damage report for  event. If no damage report exists for the event, create it.




RETURN VALUE: 




True, if the damage report was created. 




False, if the damage report existed before the call. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetCrewId 




NAME: 




damageSetCrewIdUpdate the damage report with a crew ID 




SYNOPSIS: 




damageSetCrewId( crewId) 




PARAMETERS: 






crewId A crew ID.




PRE-REQUISITE: 




The current damage report is set. 




DESCRIPTION: 




The crew ID field in the damage report is updated with  crewId.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 











damageSetReportTime 




NAME: 




damageSetReportTime           Update the damage report with a time 




SYNOPSIS: 




damageSetReportTime( time) 




PARAMETERS: 






time A time.






PRE-REQUISITE: 






The current damage report is set  




DESCRIPTION: 




The reported time field in the damage report is updated with  time.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetAddress 




NAME: 




damageSetAddress                Update the damage report with an Address  




SYNOPSIS: 




damageSetAddress( Address) 




PARAMETERS: 






Address An Address.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The Address field in the damage report is updated with  Address.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 











damageSetFeederName 




NAME: 




damageSetFeederName           Update the damage report with a feeder name 




SYNOPSIS: 




damageSetFeederName( feeder name) 




PARAMETERS: 






feeder name A feeder name.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The feeder name field in the damage report is updated with  feeder name.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetNcg 




NAME: 




damageSetNcgUpdate the damage report with an ncg 




SYNOPSIS: 




damageSetNcg( ncg) 




PARAMETERS: 






ncg An ncg.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The ncg field in the damage report is updated with  ncg.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetTransformer 




NAME: 




damageSetTransformer      Update the damage report with a transformer  




SYNOPSIS: 




damageSetTransformer( transformer) 




PARAMETERS: 






transformer A grid.






PRE-REQUISITE: 






The current damage report is set  




DESCRIPTION: 




The grid field in the damage report is updated with  grid.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetZoneName 




NAME: 




damageSetZoneName    Update the damage report with a zone name  




SYNOPSIS: 




damageSetZoneName( zone name) 






PARAMETERS: 








zone name A zone name.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The zone name field in the damage report is updated with  zone name.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetGrid 




NAME: 




damageSetGridUpdate the damage report with a grid number 




SYNOPSIS: 




damageSetGrid( grid) 




PARAMETERS: 






grid A grid number.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The grid field in the damage report is updated with  grid.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetSection 




NAME: 




damageSetSection    Update the damage report with the section affected. 




SYNOPSIS: 




damageSetSection( section) 




PARAMETERS: 






section The section affected.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The section field in the damage report is updated with  section.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetLocation 




NAME: 




damageSetLocation    Update the damage report with the affected location 




SYNOPSIS: 




damageSetLocation( location) 




PARAMETERS: 






location The affected location.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The location field in the damage report is updated with  location.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetPhase 




NAME: 




damageSetPhaseUpdate the damage report with the phases affected 




SYNOPSIS: 




damageSetLocation( location) 




PARAMETERS: 






phase The affected phases.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The phase field in the damage report is updated with  phase.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetLoadAffected 




NAME: 




damageSetLoadAffected   Update the damage report with the affected load. 




SYNOPSIS: 




damageSetLoadAffected( loadAffected) 




PARAMETERS: 






loadAffected The load affected.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The load affected field in the damage report is updated with  loadAffected.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetText1 




NAME: 




damageSetText1Update a user defined field in the damage report 




SYNOPSIS: 




damageSetText1( text) 




PARAMETERS: 






text A value.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The user defined text #1 field in the damage report is updated with  text.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 damageSetOption1 




NAME: 




damageSetOption1     Update a user defined field in the damage report 




SYNOPSIS: 




damageSetOption1( text) 




PARAMETERS: 






text A value.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The user defined option #1 field in the damage report is updated with  text.




RETURN VALUE: 




    The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetComment1 




NAME: 




damageSetComment1     Update the damage report with a comment 




SYNOPSIS: 




damageSetComment1( text) 




PARAMETERS: 






text A text.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The comment field in the damage report is updated with  text.




RETURN VALUE: 




   The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 damageSetText2 




NAME: 




damageSetText2    Update a user defined field in the damage report 




SYNOPSIS: 




damageSetText( text) 




PARAMETERS: 






text A value.




PRE-REQUISITE: 




The current damage report is set  




DESCRIPTION: 




The user defined text #2 field in the damage report is updated with  text.






RETURN VALUE: 






    The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




damageSetType 




NAME: 




damageSetType    Update the damage report with the number of affected items 




SYNOPSIS: 




damageSetType( item, number, accessible) 




PARAMETERS: 






item The type of item damaged.






number Number of item affected.






accessible Indicate whether the damage is accessible.




PRE-REQUISITE: 




The current damage report is set 




DESCRIPTION: 




The field containing the number of affected  items in the damage report is updated with number and the corresponding accessibility field is updated with accessible






RETURN VALUE: 




   The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 saveDamageDetails 




NAME: 




saveDamage    DetailsSave the damage report 




SYNOPSIS: 




saveDamageDetails()  






PARAMETERS: 






None. 






PRE-REQUISITE: 






The current damage report is set  




DESCRIPTION: 




Save the current damage report. 




RETURN VALUE: 




   The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




Logging 




logLocalError 




NAME: 




logLocalError    Log an error message to the local log file  




SYNOPSIS: 




logLocalError( text [, text] … ) 




PARAMETERS: 






text Text to include in the error message. Any number of parameters can besupplied.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Concatenate all the parameters (no spaces are inserted between the parameters). 




Invoke the logError API.  




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




EXAMPLE: 




logLocalError("This is an ", @example,  " of an ",  &error,  " message"); 




logFatalError 




NAME: 




logFatalError Log a fatal error message to the local log file and exit 




SYNOPSIS: 




logFatalError( text [, text] … ) 




PARAMETERS: 






text Text to include in the error message. Any number of parameters can besupplied.




PRE-REQUISITE: 




None 






DESCRIPTION: 






Concatenate all the parameters (no spaces are inserted between the parameters). 




Invoke the logFatal API. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




EXAMPLE: 




logFatalError("This is an ", @example,  " of a fatal ",  &error,  " message"); 




logDebug 




NAME: 




logDebug Log a debug message 




SYNOPSIS: 




logDebug( level, text) 




PARAMETERS: 






level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage. 






text Text to include in the debug message. Any number of parameters can besupplied




PRE-REQUISITE: 




None 




DESCRIPTION: 




Invoke the debug API. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




EXAMPLE: 




logDebug(0, "This is an ", @example,  " of a ",  &debug,  " message"); 











Event Manipulation 




These functions read and modify events. 




readIncidents 




NAME: 




readIncidentsPopulate the Incident Object for the current event 




SYNOPSIS: 




readIncidents()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current event is set. 




DESCRIPTION: 




If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event. 




RETURN VALUE: 




The number of incidents in the Incident Object, when successful. 




The empty string, when unsuccessful. 




API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




clearIncidents 




NAME: 




clearIncidentsClear the Incident Object, freeing the memory it uses 




SYNOPSIS: 




clearIncidents()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current event is set. 




DESCRIPTION: 




If the Incident Object for the current event has been populated previously, clear it. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




setCaseNoteInfo 




NAME: 




setCaseNoteInfoSet the case notes for the current order 




SYNOPSIS: 




setCaseNoteInfo( note) 




PARAMETERS: 






note Text to be entered in the Case Notes.




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




Invoke the SRS::setCaseNoteInfo API for all the events associated with the order. 




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




getCaseNotesForEvent 




NAME: 




getCaseNotesForEventGet the case notes for an event 




SYNOPSIS: 




getCaseNotesForEvent( event) 




PARAMETERS: 






event An event handle.




PRE-REQUISITE: 




None. 




DESCRIPTION: 




Invoke the SRS::getCaseNotesForEvent API. 




RETURN VALUE: 




The case notes for the event when successful. 




The empty string when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




setEventInfo 




NAME: 




setEventInfoSet event information for an order. 




SYNOPSIS: 




setEventInfo( outagefield1, value1, [outagefield2, value2], ...) 




PARAMETERS: 






outagefield1 The outage field to update/set.






value1 The value to set.






outagefield2 The outage field to update/set.






value2 The value to set.




PRE-REQUISITE: 




The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in  outagefield. 




DESCRIPTION: 




Update  outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.




RETURN VALUE: 




True, when successful. 




False when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




completeEvent 




NAME: 




completeEventComplete all events associated with the current order 




SYNOPSIS: 




completeEvent()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current order is set.DESCRIPTION: 




Restore and complete the event(s) associated with the current order. 




Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident(). 




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




Could not restore event. 




DIAGNOSTICS: 




Error messages are output to the error log. 




setGenericField 




NAME: 




setGenericFieldUpdate event information for the current order 




SYNOPSIS: 




setGenericField( field, value, user) 






PARAMETERS: 








field A field to update.






value A value.






user Who initiated the update.




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




For all events associated with the current order, update  field with value, indicating that user initiated the update.




The SRS API ‘setGenericField()’ is invoked. 




RETURN VALUE: 




True, when successful. 




False, when the API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




readGenericField 




NAME: 




readGenericFieldRead information for the current event 




SYNOPSIS: 




readGenericField( field) 




PARAMETERS: 






field A field to read.PRE-REQUISITE:




The current event is set. The value of  field is a valid generic field name.




DESCRIPTION: 




Read the value of  field for the current event.




The SRSoutput API ‘getGenericField()’ is invoked. 




RETURN VALUE: 




The value of  field.




DIAGNOSTICS: 




Error messages are output to the error log. 




ert 




NAME: 




ertSet the estimated restoration time for the current order 




SYNOPSIS: 




ert( time) 




PARAMETERS: 






time The estimated restoration time in internal format.




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




Call the SRS:: setEstRestTime() API for all events associated with the current order. 




RETURN VALUE: 




True, when successful. 




False, when the API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




requestRowAction 




NAME: 




requestRowAction    Press a button for the current event 




SYNOPSIS: 




requestRowAction( table, button) 




PARAMETERS: 






table The name of the table (work_agenda is most common).






button The name of the button to press.




PRE-REQUISITE: 




The current event is set. 




DESCRIPTION: 




Call the TES::requestRowAction API for the current event. 




RETURN VALUE: 




True, when the API call succeeds. 




False, when the API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




requestRowActionAll 




NAME: 




requestRowActionAll    Press a button for the current order 




SYNOPSIS: 




requestRowActionAll( table, button) 




PARAMETERS: 






table The name of the table (work_agenda is most common).






button The name of the button to press.




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




Call the TES::requestRowAction API for all events associated with the current order. 




RETURN VALUE: 




True, when the API call succeeds. 




False, when the API call fails. 




DIAGNOSTICS: 




Error messages are output to the error log. 




eventIsActive 




NAME: 




eventIsActiveCheck that the current order has at least one active event 




SYNOPSIS: 




eventIsActive()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




Determine if the order has at least one active event. 




RETURN VALUE: 




True, when active. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




confirmDeviceOutage 




NAME: 




confirmDeviceOutage    Confirm a device outage for all events associated with the current order. 




SYNOPSIS: 




confirmDeviceOutage( phases) 




PARAMETERS: 






phases The phases that are out 




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




For all events associated with the current order, confirm that it is a real device outage. If   phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.




Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident(). 




RETURN VALUE: 




True, when confirmation is successful. 




False, if an API call fails. This will occur if the device has tags which prevent opening the device. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 confirmServiceOutage 




NAME: 




confirmServiceOutage   Confirm a service outage for all events associated with the current order. 




SYNOPSIS: 




confirmServiceOutage()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).  




Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident(). 




Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation(). 




SEE ALSO: 




createPseudoRelationFromConfirmServiceOutage(), section  

createPseudoRelationFromConfirmServiceOutage

, and lockForEventCreation() section 

lockForEventCreation

.




RETURN VALUE: 




The number of customers confirmed, when confirmation is successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 











lockForEventCreation 




NAME: 




lockForEventCreation    Prevent the processing of new events until the current document is fully processed. 




SYNOPSIS: 




lockForEventCreation()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




None. 




DESCRIPTION: 




Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.  




SEE ALSO: 




confirmServiceOutage(), section  

confirmServiceOutage

, and createPseudoRelation(), section 

createPseudoRelation

.




RETURN VALUE: 




The empty string. 




False, otherwise. 




DIAGNOSTICS: 




None. 




 restoreOutage 




NAME: 




restoreOutageRestore all events for the current order 




SYNOPSIS: 




restoreOutage()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current order is set. 




DESCRIPTION: 




For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API. 




Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident(). 




RETURN VALUE: 




True, when restoration is successful. 




False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 picklistCompLog 




NAME: 




picklistCompLog  Update the database table picklist_completion_log for all the events associated with the current order. 




SYNOPSIS: 




picklistCompLog( who, reason) 




PARAMETERS: 






who Who performed the action.






reason What occurred




PRE-REQUISITE: 




Current order is set. 




DESCRIPTION: 




For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing  who and reason. 




RETURN VALUE: 




True, when successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 picklistInfoUpdTr 




NAME: 




picklistInfoUpdTr  Update the database table picklist_info_upd_tr for the current order. 




SYNOPSIS: 




picklistInfoUpdTr( field1, value1, [field2, value2], ..) 




PARAMETERS: 






field [1,2,..]Fields to update






value [1,2,..]Assignment Values




PRE-REQUISITE: 




Current order is set. 




DESCRIPTION: 




For all events associated with the current order, update the  fields with values in the database table ‘picklist_info_upd_tr’.




RETURN VALUE: 




True, when successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




Relation Functions 




These functions manipulate dml and aggregate relationships. 




Where these functions take a  type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).




findRelation 




NAME: 




findRelationFind a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found. 




SYNOPSIS: 




findRelation( type, fieldname, value) 




PARAMETERS: 






type A relationship type.






fieldname A field name






value A value




PRE-REQUISITE: 




The  type parameter is valid.




If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event  using findRelation(event, $O.event).) 




DESCRIPTION: 




Find the relation with a type of  type whose fieldname has a value of value.




RETURN VALUE: 




True, when successful. 




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




createPseudoRelation 




NAME: 




createPseudoRelation   Create a pseudo (non-Oracle Utilities Network Management System) relationship. 




SYNOPSIS: 




createPseudoRelation( type) 




PARAMETERS: 






type A relationship type.




PRE-REQUISITE: 




The current order is set  




The  type parameter is valid.




The relationship type must have been configured for aggregate processing (this may be changed in a future release). 




DESCRIPTION: 




Create a pseudo relationship of  type among all outage events whose device is that of the current order’s active event.




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




No events exist on device. 




The order’s event is already in another relation. 




All the other events on the device are in another relation. 




DIAGNOSTICS: 




Error messages are output to the error log. 




createPseudoRelationFromConfirmServiceOutage 




NAME: 




createPseudoRelationFromConfirmServiceOutage  Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage. 




SYNOPSIS: 




createPseudoRelationFromConfirmServiceOutage( type) 




PARAMETERS: 






type A relationship type.




PRE-REQUISITE: 




See confirmServiceOutage, section  

confirmServiceOutage

 and createPseudoRelation, section 

createPseudoRelation

.




DESCRIPTION: 




Confirm a service outage as described in confirmServiceOutage, section  

confirmServiceOutage

.




Create a pseudo relationship of  type as described in createPseudoRelation, section 

createPseudoRelation

.




This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because: 




There is no need to call lockForEventCreation() 




If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts. 




RETURN VALUE: 




The number of customers confirmed, when successful. 




False, when unsuccessful. 




No events exist on device. 




The order’s event is already in another relation. 




All the other events on the device are in another relation. 




DIAGNOSTICS: 




Error messages are output to the error log. 




triggerRelationChanged 




NAME: 




triggerRelationChanged   Trigger all output documents with a RelationChanged trigger. 




SYNOPSIS: 




triggerRelationChanged( relation) 




PARAMETERS: 






relation The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).




PRE-REQUISITE: 




There is at least one output document with a RelationChanged trigger. 




DESCRIPTION: 




For all events in the  relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




deleteRelation 




NAME: 




deleteRelationDelete the current relation. 




SYNOPSIS: 




deleteRelation()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current relation is set. 




DESCRIPTION: 




Delete the current relation. After the deletion, there is no current relation. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




Miscellaneous API Functions 




classTable 




NAME: 




classTableReturn the class table for a class. 




SYNOPSIS: 




classTable( class)




PARAMETERS: 






class The class number




PRE-REQUISITE: 




The  class parameter must be an integer.




DESCRIPTION: 




Call the ODS::getTable() API. If the table does not exist an empty string is returned. 




RETURN VALUE: 




The table name, when successful. 




The empty string when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




getClassDesc 




NAME: 




getClassDescReturns a textual description of the Class. 




SYNOPSIS: 




getClasDesc( class)






PARAMETERS: 








class The class number






PRE-REQUISITE: 






The  class parameter must be an integer.




DESCRIPTION: 




Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned. 




RETURN VALUE: 




The textual description, when successful. 











The empty string when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log 




isCls 




NAME: 




isCls Check if a class is one of classes in a list.  




SYNOPSIS: 




isCls( class, className1, className2, …) 




PARAMETERS: 






class A class number.






className1 , className2, …A list of class names.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Read and cache the class numbers for all the  className parameters, using the ODS::getClassIndex API. 




If  class is one of the class numbers, return true, false otherwise.




RETURN VALUE: 




True, when  class is in the list.




False, when  class is not in the list.




DIAGNOSTICS: 




Error messages are output to the error log. 




setAlarm 




NAME: 




setAlarm Send an alarm to the WorkAgenda  




SYNOPSIS: 




setAlarm( deviceHandle, alarmMsg) 




PARAMETERS: 






deviceHandle A device handle.






alarmMsg A alarm message.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Send an  alarmMsg regarding deviceHandle, using the DDS::sendAlarm API. 




RETURN VALUE: 




None. 




DIAGNOSTICS: 




Error messages are output to the error log. 




getGuid 




NAME: 




getGuidReturn a globally unique id.  




SYNOPSIS: 




getGuid()  




PARAMETERS: 






None 






PRE-REQUISITE: 




None 




DESCRIPTION: 




Invokes GatewayUtil::CreateGuid() API. 




RETURN VALUE: 




The GUID, when successful. 




The empty string when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




interfaceUp 




NAME: 




interfaceUpRegister the state of the interface 




SYNOPSIS: 




interfaceUp( )






PARAMETERS: 




None. 




PRE-REQUISITE: 




None 




DESCRIPTION: 




Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




interfaceDown 




NAME: 




interfaceDownRegister the state of the interface 




SYNOPSIS: 




interfaceDown( )






PARAMETERS: 




None. 




PRE-REQUISITE: 




None 




DESCRIPTION: 




Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




sql 




NAME: 




sqlExecute a non-select SQL statement  




SYNOPSIS: 




sql( sqlStatement) 




PARAMETERS: 






sqlStatement A non-select SQL statement.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Execute  sqlStatement using the DBS::sql() API. 




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




EXAMPLE: 




sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +  




      " and event_idx=" + $E.outageHdl.idx); 




Non API Functions 




This set of functions does not use the Oracle Utilities Network Management System API. 




isSet 




NAME: 




isSet Check if a parameter has been set. 




SYNOPSIS: 




isSet( param) 




PARAMETERS: 






param The parameter to check.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Check if the  param has been set.




RETURN VALUE: 




True, if  param has been set.




False, if not. 




DIAGNOSTICS: 




None. 




length 




NAME: 




length Return the number of characters in a string. 




SYNOPSIS: 




length( string) 




PARAMETERS: 






string A string value






PRE-REQUISITE: 






None 




DESCRIPTION: 




Determine the length of  string.




RETURN VALUE: 




The length of  string.




DIAGNOSTICS: 




None. 




substring 




NAME: 




substring Return a sub-string of a value 




SYNOPSIS: 




substring( string, start, length) 




PARAMETERS: 






string A string value






start The starting position of the subset in string








length The length of the sub-string to return




PRE-REQUISITE: 




None 




DESCRIPTION: 




Return a subset of  string whose size equals length, and starts at position start in string.




If  length is less than 1, return the empty string.




If  start is zero or positive, it is an offset from the start of string.




If  start is negative, it is an offset from the end of string.




If there are less than  length characters in string starting at start, return all the characters in string starting at start. 




Otherwise return  length characters from string starting at start. 




RETURN VALUE: 




The sub-string 




DIAGNOSTICS: 




None. 




stringbefore 




NAME: 




stringbefore Return a sub-string of a string value 




SYNOPSIS: 




stringbefore( string, stop) 




PARAMETERS: 






string A string value






stop A string to stop at.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Search  string for stop and return all characters before stop. If stop does not exist within string return string






RETURN VALUE: 




The sub-string. 




DIAGNOSTICS: 




None. 




isDigits 




NAME: 




isDigitsCheck if the string is made up of digits only 




SYNOPSIS: 




isDigits( string) 




PARAMETERS: 






string A string value






PRE-REQUISITE: 






None 




DESCRIPTION: 




Check if  string is made up of purely numeric values (i.e. 0 to 9)




RETURN VALUE: 




True, if  string is all digits.




False, otherwise. 




DIAGNOSTICS: 




Error messages are output to the error log. 




stringInString 




NAME: 




stringInString Check to see whether a sub-string exists in another string 




SYNOPSIS: 




stringInString( string1, string2) 




PARAMETERS: 






string1 A string value






string2 A string value




PRE-REQUISITE: 




None 




DESCRIPTION: 




Search  string2 for string1.




RETURN VALUE: 




True, if  string1 is found




False, otherwise. 




DIAGNOSTICS: 




None. 




removeDelim 




NAME: 




removeDelimReturn a substring without the contents contained within thedelimiters, including the delimiters. 




SYNOPSIS: 




removeDelim( string, start, end) 






PARAMETERS: 








string A string value






start A starting delimiter






end A end delimiter




PRE-REQUISITE: 




None 




DESCRIPTION: 




Search  string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.




RETURN VALUE: 




The sub-string value. 




DIAGNOSTICS: 




Error messages are output to the error log. 




decodeDateTime 




NAME: 




decodeDateTimeTranslate a formatted time string into internal format. 




SYNOPSIS: 




decodeDateTime( time) 






PARAMETERS: 








time A time in the format yyyy-mm-ddThh:mm:ss








PRE-REQUISITE: 






None 




DESCRIPTION: 




Return  time in internal time format. If time is not in the correct format, return the empty string.




RETURN VALUE: 




The time in internal format, when successful. 




False.  when unsuccessful. 




Format of  time is invalid




DIAGNOSTICS: 




Error messages are output to the error log. 




formatDateTime 




NAME: 




formatDateTimeTranslate a time in internal format into a formatted time string. 




SYNOPSIS: 




formatDateTime( time) 




PARAMETERS: 






time A time in internal format. 




PRE-REQUISITE: 




None 




DESCRIPTION: 




Format  time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.




RETURN VALUE: 




The formatted time, when successful. 




False.  when unsuccessful 




Invalid time supplied. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 formatDTNow 




NAME: 




formatDTNowFormat the current system time 




SYNOPSIS: 




formatDTNow()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




None 




DESCRIPTION: 




Return the results of formatDateTime(time()). 




RETURN VALUE: 




The formatted time. 




DIAGNOSTICS: 




None. 




 time 




NAME: 




timeReturn the current system time 




SYNOPSIS: 




time()  




PARAMETERS: 




None 




PRE-REQUISITE: 




None 




DESCRIPTION: 




Return the current system time 




RETURN VALUE: 




The current time, in internal format. 




DIAGNOSTICS: 




None. 




pause 




NAME: 




pausePause evaluation for a period of time 




SYNOPSIS: 




pause( seconds) 




PARAMETERS: 






seconds The number of seconds to pause




PRE-REQUISITE: 




None 




DESCRIPTION: 




Pause for  seconds.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




 isIn 




NAME: 




isInCheck if a value exists in a list 




SYNOPSIS: 




isIn( value, item1, item2,  item3, …) 




PARAMETERS: 






value A value 






item1 , item2,  item3, …A list of values.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Check  item1, item2,  item3, … for value.




RETURN VALUE: 




True, when  value is found.




False, when not found.   




DIAGNOSTICS: 




None. 




 selectValue 




NAME: 




selectValueSelect a value based on a input string. 




SYNOPSIS: 




selectValue( string, default, match1, value1, [match2, value2], [match3, value3], …) 




PARAMETERS: 






string A value to match






default A default value






match[123] A list of values to compare to 




value[123] The values to return if a match is found 






PRE-REQUISITE: 






None 




DESCRIPTION: 




Search  match for string and return the corresponding value. If string is not found return default.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




NOTES: 




For large lists, the use of a code mapping table would be more appropriate. 




EXAMPLE: 




@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later") 











Therefore,  string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later




In this example, @exp = later. 




 triggerOutputDoc 




NAME: 




triggerOutputDoc    Trigger an output document 




SYNOPSIS: 




triggerOutputDoc( doc, trig, [argument1, argument2, …]) 




PARAMETERS: 






doc An output document






trig The name of the trigger to fire.






argument Argument required to triggered the output document.




PRE-REQUISITE: 




A document named  doc must exist.




There must be an OnRequest trigger named  trig in doc.




The number of arguments must match the number of arguments expected by  trig.DESCRIPTION:






Validate  doc and argument. Queue doc for processing.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 sortIncidents 




NAME: 




sortIncidentsSort the incidents in the current event 




SYNOPSIS: 




sortIncidents( field1, sort order1, [field2, sort order2, …]) 




PARAMETERS: 






field An incident object field






sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).






PRE-REQUISITE: 






The current event is set. 




The  fields parameters must be valid incident fields See 

Incident Object Fields

, below for the available incident fields.




The  order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’




DESCRIPTION: 




Sort the incidents in the current event. When two incidents are compared, the specified  fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).




All comparisons are based on the internal types of the  fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




highPriTCCategoriesFromClues 




NAME: 




highPriTCCategoriesFromClues  Return the highest priority trouble code categories from all of the supplied clues. 




SYNOPSIS: 




highPriTCCategoriesFromClues( clues)




PARAMETERS: 






clues The clues to decode




PRE-REQUISITE: 




The MDS_HIGH_PRI_CAT table must exist in the database. 




DESCRIPTION: 




If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.  




Decode each clue into it’s group and numeric value 




Find the highest priority for each group in all the clues, and assemble these into a composite trouble code. 




RETURN VALUE: 




The composite trouble code. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 loadTroubleCodes 




NAME: 




loadTroubleCodes   Cache the trouble codes and their equivalent textual descriptions. 




SYNOPSIS: 




loadTroubleCodes() 




PARAMETERS: 




None. 




PRE-REQUISITE: 




The table SRS_TROUBLE_CODES exists in the database.  




DESCRIPTION: 




The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.  




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 formatClues 




NAME: 




formatCluesConvert a trouble code into a textual description 




SYNOPSIS: 




formatClues( trCode) 




PARAMETERS: 






trCode A trouble code




PRE-REQUISITE: 




The table SRS_TROUBLE_CODES exists in the database.  




DESCRIPTION: 




If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes(). 




Convert each digit in  trCode to its equivalent textual description. Concatenate the descriptions.




RETURN VALUE: 




The textual description. 




DIAGNOSTICS: 




None. 




 phaseStr 




NAME: 




phaseStrConvert a set of phases in internal bitmap format to a textual representation. 




SYNOPSIS: 




phaseStr( phases) 




PARAMETERS: 






phases The phases in internal bitmap format.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter. 




RETURN VALUE: 




The textual representation. 




DIAGNOSTICS: 




None. 




 phaseInt 




NAME: 




phaseIntConvert a set of phases in a textual representation to an internal bitmap format. 




SYNOPSIS: 




phaseInt( phases) 




PARAMETERS: 






phases A textual representation of the phases.




PRE-REQUISITE: 




None 




DESCRIPTION: 




Convert the textual phase in ‘ABC’ format to its internal bitmap format. 




RETURN VALUE: 




The internal bitmap format. 




DIAGNOSTICS: 




None. 











 setTimeout 




NAME: 




setTimeoutSet a time out to call a function 




SYNOPSIS: 




setTimeout( name, wait, function) 




PARAMETERS: 






name The name of the time out.






wait The time to wait, in seconds.






function The function to call at when the time expires.




PRE-REQUISITE: 




The  wait parameter must be an integer greater than zero.




The  function parameter must be a function call.




DESCRIPTION: 




If there is an un-expired timeout with the same  name, do nothing.




Evaluate all the parameters of the  function, if any.




Start a timeout with the specified  name.




Call the  function when the timeout expires (unless cancelled by cancelTimeout()).




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




cancelTimeout 




NAME: 




cancelTimeoutCancel a timeout. 




SYNOPSIS: 




cancelTimeout( name) 




PARAMETERS: 






name The name of the timeout to cancel.




PRE-REQUISITE: 




None 




DESCRIPTION: 




If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 











createOrder 




NAME: 




createOrder  Create an order. 




SYNOPSIS: 




createOrder() 




PARAMETERS: 




None. 




PRE-REQUISITE: 




The current event is set(usually due to the arrival of an SRSoutput message). 




The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl). 




If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event  using findRelation(event, $E.outageHdl.) 




DESCRIPTION: 




Create the order’s row in the MDS_ORDER table, and associate the event with the order.  




Populate internal data structures for the order. 




Set the current order to the order created. 




RETURN VALUE: 




True if successful. 




False if unsuccessful (current event already associated with another order). 




DIAGNOSTICS: 




Error messages are output to the error log. 




 findOrder 




NAME: 




findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found. 




SYNOPSIS: 




findOrder( field, value)




PARAMETERS: 






field An order object field name.






value The value to match




PRE-REQUISITE: 




The  field parameter must be a valid order field name.




If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).) 




DESCRIPTION: 




Search for an order with a  field whose value is value.




If found, set the current order object to the order that was found and return true.  




If none is found, return false. 




haveOrder 




NAME: 




haveOrderDetermine if there is an order matching the contents of an order object field, without entering any mutexes. 




SYNOPSIS: 




haveOrder( field, value)




PARAMETERS: 






field An order object field name.






value The value to match




PRE-REQUISITE: 




The  field parameter must be a valid order field name.




DESCRIPTION: 




Search for an order with a  field whose value is value.




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 completeOrder 




NAME: 




completeOrderComplete the current order, making it no longer active. 




SYNOPSIS: 




completeOrder( text) 






PARAMETERS: 








text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.






PRE-REQUISITE: 






The current order is set. 




DESCRIPTION: 




Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to  text in MDS_ORDER table. Clear all data structures relating to the order. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




haveEventOrder 




NAME: 




haveEventOrderDetermine whether these is an order for an event. 




SYNOPSIS: 




haveEventOrder( event) 




PARAMETERS: 






event The event’s handle.




PRE-REQUISITE: 




None. 




DESCRIPTION: 




Determine whether there is an order for the event handle is  event. 




RETURN VALUE: 




True, if the event has an order. 




False, if the event does not have an order. 




DIAGNOSTICS: 




None. 




findEventObject 




NAME: 




findEventObject   Find the External Event Object for an event. 




SYNOPSIS: 




findEventObject( event) 




PARAMETERS: 






event The event’s handle.






PRE-REQUISITE: 






None. 




DESCRIPTION: 




Find the event object whose handle is  event. If successful, make it the current event. 




RETURN VALUE: 




True, when successful. 




False, when unsuccessful. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 setDocValue 




NAME: 




setDocValueChange the value of an element, attribute or variable in an active document 




SYNOPSIS: 




setDocValue( object, doc, name, value) 




PARAMETERS: 






object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.






doc The name of the document






name The alternate name of the entity whose value is to be set.






value The value to set the entity to.






PRE-REQUISITE: 








object  must be a valid object identifier, and it must be a current object (for example, use findOrder()).






doc  must be a associated with the object.






name  must be the alternate name of an entity in doc.




DESCRIPTION: 




Find the active document  doc in the current object. 




In the document set the entity named  name to value.






RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




Error messages are output to the error log. 




 printEvntCrew 




NAME: 




printEvntCrewPrint the current assignments/dispatches of crews to orders to the log. 




SYNOPSIS: 




printEvntCrew()  




PARAMETERS: 




None. 




PRE-REQUISITE: 




None. 




DESCRIPTION: 




Print the crews assigned and dispatched to all orders to the log. 




RETURN VALUE: 




The empty string. 




DIAGNOSTICS: 




None. 




xml 




NAME: 




xmlReturn the current input xml document, if any. 




SYNOPSIS: 




xml()  




PARAMETERS: 




None. 






PRE-REQUISITE: 






None. 




DESCRIPTION: 




Return the current input document, or the empty string, if none. 




RETURN VALUE: 




The current input xml document, if any. 




The empty string, when an input xml document in not being processed. 




DIAGNOSTICS: 




None. 








OEBPS/Text/part0310.xhtml






Configuration Document 




This document is used to set configuration data and load configuration tables from the database at initialization time. It takes the form: 













ConfigDoc 

name






statement block 















OEBPS/Text/part0311.xhtml






Order of Document Processing and Other Considerations 




The dml is read during adapter initialization in the order that the files are specified in the command line. Files from the command line must contain only complete documents, but files read using the  include directive can contain any valid dml fragment, dependent on the context of the directive.




The processing of statements within a document is strictly from top to bottom in the order the statements were read during initialization, except when altered by a control flow statement (e.g.,  if and for statements). Statements in a document are processed until one of the following situations occur:




The last statement in the document is reached. If the document is an Output Document, the resulting XML is delivered to the queue specified in the document’s queue specification. 




A  stop statement is processed. If the document is a Configuration Document, the adapter sends an error message to the log and then exits.




A run time configuration error occurs. In all cases, the adapter sends an error message to the log and then exits. 




An unrecoverable run time error occurs (e.g., DBService is not available to read or write a database table). In all cases, the adapter sends an error message to the log and then exits. 




The processing of specifications in a document header is not necessarily in top to bottom order. Each document is described below. 




Output Documents 




Output Document specifications are processed in the following order: 




The association specification is processed once during initialization. 




The queue specification is evaluated just before the first statement of the document is processed. 




When a trigger event occurs, all Output Documents are examined in top to bottom order to determine whether the event should trigger each document. 




 If the trigger event’s type matches at least one trigger specification in the document, the triggers of that type are processed in top to bottom order, until one evaluates to  true. In this case, all other triggers have their value set to false, even if they have not been processed. If all triggers evaluate to false the document is not processed due to the trigger event.




If the Output Document is triggered, it is fully processed before the next Output Document is examined in order to determine whether the event should trigger the next document. 




Input Documents 




All Input Document header specifications are evaluated at initialization, in the order base path specification, queue specification, and then root element specification. 




When an input XML document arrives, each Input Document is examined in top to bottom order to determine whether the XML satisfies the root element specification. If no document matches the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements in the XML are delivered to the documents in the order they appear in the XML document. Once all elements have been delivered, each document is examined in top to bottom order to determine whether all required elements are present, and are processed in top to bottom order if the elements are present. Once all Input Documents have been processed, the XML is discarded. 




Configuration Documents 




Configuration Documents have no header specifications. All Configuration Documents are processed in top to bottom order. Once they all have been processed successfully, they are discarded. 








OEBPS/Text/part0316.xhtml






Permanent Order Object Fields 




These are the fields that are always available in the external order object ‘O’. These fields are read-only. The contents of each field are listed.  















		



Incident Field Name 




		



Contents 










		



order 




		



The order’s Handle 










		



event 




		



The order’s key event Handle 










		



eventless 




		



A boolean indicating that the order has lost all it’s events. This is true for a period between the time the key event became non-existent and the time the order is completed, often as a result of an EventNonexistent trigger triggering an Output Document that completes the order. 


















OEBPS/Text/part0317.xhtml






Permanent Relationship Object Fields 




These are the fields that are always available in the external relationship object ‘O’. These fields are read-only. The contents of each field are listed.  















		



Incident Field Name 




		



Contents 










		



relation 




		



The relationship’s Handle 










		



event 




		



The relationship’s key (parent) event Handle 










		



type 




		



The relationship’s type 










		



Active 

























		



A boolean indicating that the relationship is active. This is false for a period between the time the relationship was deleted in Oracle Utilities Network Management System and the time the relation is deleted, often as a result of a RelationDeleted trigger triggering an Output Document that deletes the relation. 


















OEBPS/Text/part0314.xhtml






Event Object Fields 




These are the fields available in the external event object ‘E’. For each field the equivalent SRSoutput data field is listed.  















		



Field Name 




		



SRSoutput Data Fields 










		



alarmHdl 




		



SRSoutput::alarmHdl 










		



devHdl 




		



SRSoutput::devHdl 










		



feederHdl 




		



SRSoutput::feederHdl 










		



outageHdl 




		



SRSoutput::outageHdl 










		



oldEvent 




		



SRSoutput::oldEvent 










		



condHdl 




		



SRSoutput::condHdl 










		



extraDevHdl 




		



SRSoutput::extraDevHdl 










		



devClsName 




		



SRSoutput::devClsName 










		



incidentType 




		



SRSoutput::incidentType 










		



description 




		



SRSoutput::description 










		



cause 




		



SRSoutput::cause 










		



preferredAlias 




		



SRSoutput::perferredAlias 










		



troubleCode 




		



SRSoutput::troubleCode 










		



troubleQueue 




		



SRSoutput::troubleQueue 










		



office 




		



SRSoutput::office 










		



circuit 




		



SRSoutput::circuit 










		



district 




		



SRSoutput::district 










		



dispAddress 




		



SRSoutput::dispAddress 










		



addrBuilding 




		



SRSoutput::addrBuilding 










		



addrStreet 




		



SRSoutput::addrStreet 










		



addrCity 




		



SRSoutput::addrCity 










		



city 




		



SRSoutput::city 










		



status 




		



SRSoutput::status 










		



feeder 




		



SRSoutput::feeder 










		



tags 




		



SRSoutput::tags 










		



est_source 




		



SRSoutput::est_source 










		



comment 




		



SRSoutput::comment 










		



devCode 




		



SRSoutput::devCode 










		



externId 




		



SRSoutput::externId 










		



crewId 




		



SRSoutput::crewId 










		



supplyNodeDevice 




		



SRSoutput::supplyNodeDevice 










		



supplyNodeIndexes 




		



SRSoutput::supplyNodeIndexes 










		



leafNcgs 




		



SRSoutput::leafNcgs 










		



numLeafNcgs 




		



SRSoutput::numLeafNcgs 










		



actionIDs 




		



SRSoutput::actionIDs 










		



numActionsIDs 




		



SRSoutput::numActionsIDs 










		



outageTime 




		



SRSoutput::outageTime 










		



firstIncTime 




		



SRSoutput::firstIncTime 










		



firstIncTimeStr 




		



SRSoutput::firstIncTimeStr 










		



estRestTime 




		



SRSoutput::estRestTime 










		



estRestTimeStr 




		



SRSoutput::estRestTimeStr 










		



estAssessTime 




		



SRSoutput::estAssessTime 










		



complete_time 




		



SRSoutput::complete_time 










		



job_complete_time 




		



SRSoutput::job_complete_time 










		



msgType 




		



SRSoutput::msgType 










		



validStateKey 




		



SRSoutput::validStateKey 










		



prevStateKey 




		



SRSoutput::prevStateKey 










		



stateValue 




		



SRSoutput::stateValue 










		



condStatus 




		



SRSoutput::condStatus 










		



condPhases 




		



SRSoutput::condPhases 










		



customersOut 




		



SRSoutput::customersOut 










		



typeMask 




		



SRSoutput::typeMask 










		



partition 




		



SRSoutput::partition 










		



ncg 




		



SRSoutput::ncg 










		



appliedRule 




		



SRSoutput::appliedRule 










		



priority 




		



SRSoutput::priority 










		



custCall 




		



SRSoutput::custCall 










		



pri_w 




		



SRSoutput::pri_w 










		



pri_sw 




		



SRSoutput::pri_sw 










		



pri_p 




		



SRSoutput::pri_p 










		



pri_e 




		



SRSoutput::pri_e 










		



custCrit 




		



SRSoutput::custCrit 










		



crit_1 




		



SRSoutput::crit_1 










		



crit_2 




		



SRSoutput::crit_2 










		



crit_3 




		



SRSoutput::crit_3 










		



crit_tot 




		



SRSoutput::crit_tot 










		



revenue 




		



SRSoutput::revenue 










		



numSndDev 




		



SRSoutput:: numSndDev 










		



numSupplied 




		



SRSoutput::numSupplied 










		



outageRef 




		



SRSoutput::outageRef 










		



oldCondID 




		



SRSoutput::oldCondID 










		



sort_col_1 




		



SRSoutput::sort_col_1 










		



sort_col_2 




		



SRSoutput::sort_col_2 










		



sort_col_3 




		



SRSoutput::sort_col_3 










		



sort_col_4 




		



SRSoutput::sort_col_4 










		



sort_col_5 




		



SRSoutput::sort_col_5 










		



sort_col_6 




		



SRSoutput::sort_col_6 










		



sort_col_7 




		



SRSoutput::sort_col_7 










		



sort_col_8 




		



SRSoutput::sort_col_8 










		



sort_col_9 




		



SRSoutput::sort_col_9 










		



life_support 




		



SRSoutput::life_support 










		



outage_type 




		



SRSoutput::outage_type 










		



old_outage_type 




		



SRSoutput::old_outage_type 










		



group_type 




		



SRSoutput::group_type 










		



messages 




		



SRSoutput::messages 










		



customer_phone 




		



SRSoutput::customer_phone 










		



numb 




		



SRSoutput::numb 










		



inc_outage 




		



SRSoutput::inc_outage 










		



devAlias 




		



SRSoutput::devAlias 










		



customerName 




		



SRSoutput::customerName 










		



rule_set 




		



SRSoutput::rule_set 










		



crit_k 




		



SRSoutput::crit_k 










		



crit_c 




		



SRSoutput::crit_c 










		



crit_d 




		



SRSoutput::crit_d 










		



from_str 




		



SRSoutput::from_str 










		



mergedEvents 




		



SRSoutput::mergedEvent 










		



numMerged 




		



SRSoutput::numMerged 










		



hasClue 




		



SRSoutput::hasClue 










		



ctrlZoneHdl1 




		



SRSoutput::ctrlZoneHdl1 










		



ctrlZoneHdl2 




		



SRSoutput::ctrlZoneHdl2 










		



ctrlZoneHdl3 




		



SRSoutput::ctrlZoneHdl3 










		



ctrlZoneHdl4 




		



SRSoutput::ctrlZoneHdl4 










		



ctrlZoneHdl5 




		



SRSoutput::ctrlZoneHdl5 










		



ctrlZoneHdl6 




		



SRSoutput::ctrlZoneHdl6 










		



ctrlZoneName1 




		



SRSoutput::ctrlZoneName1 










		



ctrlZoneName2 




		



SRSoutput::ctrlZoneName2 










		



ctrlZoneName3 




		



SRSoutput::ctrlZoneName3 










		



ctrlZoneName4 




		



SRSoutput::ctrlZoneName4 










		



ctrlZoneName5 




		



SRSoutput::ctrlZoneName5 










		



ctrlZoneName6 




		



SRSoutput::ctrlZoneName6 










		



who_responsible 




		



SRSoutput::who_responsible 










		



who_completed 




		



SRSoutput::who_completed 










		



resp_modify_time 




		



SRSoutput:: resp_modify_time 










		



xRef 




		



SRSoutput::xRef 










		



yRef 




		



SRSoutput::yRef 










		



highestIncPri 




		



SRSoutput::highestIncPri 










		



referralGroup 




		



SRSoutput::referralGroup 










		



who 




		



SRSoutput::who 










		



firstCrewTime 




		



SRSoutput::firstCrewTime 










		



additionalDevHdls 




		



SRSoutput::additionalDevHdls 










		



additionalCondHdls 




		



SRSoutput::additionalCondHdls 










		



relatedEvents 




		



SRSoutput::relatedEvents 










		



additionalCondStatuses 




		



SRSoutput::additionalCondStatuses 










		



numAdditional 




		



SRSoutput::numAdditional 










		



numRelated 




		



SRSoutput::numRelated 










		



maxNum 




		



SRSoutput::maxNum 










		



maxNumRelated 




		



SRSoutput::maxNumRelated 










		



routeId 




		



SRSoutput::routeId 










		



repair_minutes 




		



SRSoutput::repair_minutes 










		



crew_eta 




		



SRSoutput::crew_eta 










		



sheetNums 




		



SRSoutput::sheetNums 










		



generic_col_1 




		



SRSoutput::generic_col_1 










		



related_event 




		



SRSoutput::related_event 










		



related_type 




		



SRSoutput::related_type 


















OEBPS/Text/part0315.xhtml






Incident Object Fields 




These are the fields available in the external incident object ‘I’ and for sorting incidents. For each field the equivalent Incident data access function is listed.  















		



Incident Field Name 




		



Function Call 










		



getGroupingFlag 




		



Incident::getGroupingFlag() 










		



getMessages 




		



Incident::getMessages() 










		



getClosestMeshNode 




		



Incident::getClosestMeshNode() 










		



getHdl 




		



Incident::getHdl() 










		



getSnd 




		



Incident::getSnd() 










		



getCondHdl 




		



Incident::getCondHdl() 










		



getPartition 




		



Incident::getPartition() 










		



getPhases 




		



Incident::getPhases() 










		



getCondStatus 




		



Incident::getCondStatus() 










		



getEvent 




		



Incident::getEvent() 










		



getPriority 




		



Incident::getPriority() 










		



getType 




		



Incident::getType() 










		



getClue 




		



Incident::getClue() 










		



getBitmask 




		



Incident::getBitmask() 










		



getTotalPriority 




		



Incident::TotalPriority() 










		



getLifeSupportCode 




		



Incident::getLifeSupportCode() 










		



getCriticalCustomer 




		



Incident::getCriticalCustomer() 










		



getCallCancelInd 




		



Incident::getCallCancelInd() 










		



getCallbackLateInd 




		



Incident::getCallbackLateInd() 










		



getTcode 




		



Incident::getTcode() 










		



getTroubleQueue 




		



Incident::getTroubleQueue() 










		



getShortDesc 




		



Incident::getShortDesc() 










		



getDrvInst 




		



Incident::getDrvInst() 










		



getCID 




		



Incident::getCID() 










		



getCustomerName 




		



Incident::getCustomerName() 










		



getCtype 




		



Incident::getCtype() 










		



getAddrBuilding 




		



Incident::getAddrBuilding() 










		



getAddrStreet 




		



Incident::getAddrStreet() 










		



getAddrCity 




		



Incident::getAddrCity() 










		



getOrderNumber 




		



Incident::getOrderNumber() 










		



getGenernalArea 




		



Incident::getGeneralArea() 










		



getMeterId 




		



Incident::getMeterId() 










		



getDeviceAlias 




		



Incident::getDeviceAlias() 










		



getNcg 




		



Incident::getNcg() 










		



getExternalId 




		



Incident::getExternalId() 










		



getInputTime 




		



Incident::getInputTime() 










		



getCallbackRequest 




		



Incident::getCallbackRequest() 










		



getCallbackDataTime 




		



Incident::getCallbackDataTime() 










		



getOpComment 




		



Incident::getOpComment() 










		



getCustomerPhone 




		



Incident::getCustomerPhone() 










		



alternatePhone 




		



Incident::alternatePhone() 










		



userName 




		



Incident::userName() 










		



getXRef 




		



Incident::getXRef() 










		



getYRef 




		



Incident::getYRef() 










		



getExternallySent 




		



Incident::getExternallySent() 










		



getAONFlag 




		



Incident::getAONFlag() 










		



getROCFlag 




		



Incident::getROCFlag() 










		



active 




		



Incident::active() 


















OEBPS/Text/part0318.xhtml






ICCP Adapter 




This chapter includes the following topics: 








		

•




		





ICCP Adapter Overview 

























		

•




		





ICCP Adapter Configuration 
































OEBPS/Text/part0319.xhtml






ICCP Adapter Overview  






The ICCP Adapter is an application that integrates the Oracle Utilities Network Management System with a remote SCADA system through the Inter-control Center Communications Protocol (ICCP). The ICCP Adapter employs the LiveData Server product provided by LiveData, Inc. LiveData Server is a mandatory component of the Oracle Utilities Network Management System ICCP Adapter and must be separately licensed from LiveData, Inc. 








ICCP is a standard  interface protocol that can be used with Oracle Utilities Network Management System to provide data exchange with remote and local SCADA systems. ICCP is also an international standard: International Electrotechnical Commission (IEC) Telecontrol Application Service Element 2 (TASE.2). 








ICCP allows the exchange of real-time and historical power system monitoring and control data, including measured values, scheduling data, energy accounting data, and operator messages. Data exchange can occur between:  










		

•




		



Multiple control center Energy Management System (EMS) systems 





















		

•




		



EMS and power plant DCS systems 





















		

•




		



EMS and distribution SCADA systems 





















		

•




		



EMS and other utility systems 





















		

•




		



EMS/SCADA and substations 



















The ICCP standard consists of the following blocks: 










		



Block 




		



Description 




		



Notes 










		



Block 1  




		



 Basic Services 




		



Available on Oracle Utilities Network Management System ICCP interface 










		



Block 2  




		



 Extended Data Set Condition Monitoring 




		



Available on Oracle Utilities Network Management System ICCP interface 










		



Block 3  




		



 Blocked Transfers 




		
















		



Block 4  




		



 Operator Stations 




		
















		



Block 5  




		



 Device Control 




		



Available on Oracle Utilities Network Management System ICCP interface 










		



Block 6  




		



 Programs 




		
















		



Block 7  




		



 Events 




		
















		



Block 8  




		



 Accounts 




		
















		



Block 9  




		



 Time Series 




		
























OEBPS/Text/part0199.xhtml






External System Environment 




The external system is any system that can exchange information with Oracle Utilities Network Management System through an adapter. The environment of the external system has the following capabilities: 








		

•




		



Any operating system which supports IBM WebSphere MQ messaging 





















		

•




		



IBM WebSphere MQ messaging product 





















		

•




		



Applications that can request or publish information in a manner which is either directly or indirectly (through a translator) compliant with the XML specifications contained within this document via queues 





















		

•




		



Queues must be pre-configured 





















		

•




		



IBM WebSphere MQ Integrator can be used as needed for routing and translation. 





















OEBPS/Text/part0320.xhtml






ICCP Adapter Configuration 






This section guides the user through configuration of the Oracle Utilities Network Management System ICCP Adapter. The following are assumed to be true before the adapter is installed: 










		

•




		



Oracle database access has been confirmed. 





















		

•




		



Isis messaging bus has been installed and verified. 





















		

•




		



Oracle Utilities Network Management System is installed and functional. 





















		

•




		



LiveData Server is installed, functional, and licensed. 


























Configuring the ICCP Adapter requires: 










		

•




		





Configuring the Adapter to Run as a System Service 

























		

•




		





Populating the NMS Measurements Tables 

























OEBPS/Text/part0301.xhtml






Definitions and References 




There are a number of value bearing  entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.




Entities 




The  entities in a document carry values and have modifiers that change their behavior.




Variables 




A  variable is used to save intermediate results in a document. A variable

definition takes the form:













@ 

name

:

modifiers













The name must be unique amongst the  variables within the document. Other entities can have the same name. The :

modifiers is optional.




If the  :

modifiers are not required, variables can be implicitly defined when they are assigned to.




A  variable

reference takes the form:













@ 

name















Variables  can be set and referenced in all document types.




Elements 




An  element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.






plain element 

definitions and an array

element

definitions are known collectively as element

definitions.




Plain Element Definitions 




Plain elements are referred to as  elements in the rest of this section. 




An  element

definition takes the form:













& 

name

:

modifiers

< attribute definitions >













The name of an  element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :

modifiers and attribute definitions are optional. The format of attribute definitions is described below in section 

Attributes

. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).




Array Element Definitions 




Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An  array element definition takes one of two forms: with an unspecified index, and with a specified index attribute.




The unspecified index form is: 













& 

name

[]:

modifiers

<

 attribute definitions 

> 













The specified index form is: 













& 

name

[

name

]:

modifiers

< attribute definitions >

R(

constant list

)













where the name in square brackets is the name of the index attribute, and R( constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.




Array  element modifiers can only contain an alternate name for the array element.




The name of an array  element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :

modifiers and attribute definitions are optional. The format of attribute definitions is described below in section 

Attributes

. Array Elements must either have values but no sub-elements or must have sub-elements but no value. 




Element References 




The values of plain  elements with values in Input Documents can be obtained using a plain element

reference taking the form:













& 

element identifier













The  element identifier has two forms:




The  full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.




The element’s alternate name, which is defined in the element’s  modifiers.




If the element has an alternate name, the full element path cannot be used. 




The values of individual  elements in an array element with values can be obtained using an array

element

reference taking the form:













& 

element identifier

[index value]













The index value is either the value of the index attribute, in the case of  a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero. 






plain element 

references and an array

element

references are known collectively as element

references.




Elements can only be referenced in Input Documents. 








OEBPS/Text/part0302.xhtml






Attributes 




An  attribute generates an XML element attribute in Output Documents, and supplies an input XML element attribute value in Input Documents. An attribute definition is part of an element’s attribute definitions and takes the form:













name 

:

modifiers













The name of an  attribute is its XML attribute, and must be unique amongst the attributes within its immediately enclosing element or document. Other entities can have the same name. The :

modifiers are optional.




In Output Documents  attributes must have their values assigned to them where they are defined in the form:




NAME: modifiers

=

expression

;













The definition of an  attribute in an Input Document takes the form:




NAME: modifiers

;















Attributes  are defined as part of the attribute definitions of their element as described above in section  These attribute definitions are one or more attribute definitions.




The values of an  attribute can be obtained using an attribute reference taking the form:













element reference 

<

name

>















Attributes  can only be referenced in Input Documents.








OEBPS/Text/part0299.xhtml






Lexical Conventions 




A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents. 




Syntax notation 




In the syntax notation used in this Appendix, syntactic categories are indicated by  italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.




Tokens 




There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens. 




Comments 




The character # starts a comment which terminates at the end of the line on which it occurs. 




Include Directive 




The include directive can appear anywhere in an input file and takes the form: 













include 

file name













The contents of the  file name are processed as if they replaced the include directive itself.




Keywords 




The following names are reserved for use as keywords and may not be used otherwise: 











associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION 











The following characters are used as operators or for punctuation: 




@  $  &  /  !  |  =  :  ,  "  ;  .  (  )  [  ]  <  >  {  } + 











The following character combinations are used as operators: 











==  !=  &&  || 











Names 




A  name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.




Strings 




A  string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.




Quoted Strings 




A  quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".




Constants 




A constant is one of: 








		

•




		



name 





















		

•




		



string 





















		

•




		



quoted string 

















Version Directive 




The version directive takes the form: 











VERSION = string; 











The  VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.








OEBPS/Text/part0300.xhtml






Basic Concepts 




Type(s) 




DML is a typeless language, or perhaps more accurately, a singly typed language. All values consist of character strings. DML has no concept of numbers. To illustrate this,  strings can be used to pass positive integers to functions. For example:











@truncatedString = substring(@address, 0, 100); 











However,  quoted strings must be used to pass negative integers. For example:











@lastCharacter = substring(@characters, "-1", 1); 











It should be emphasized that it is the  function, not the dml that is interpreting the character string as an integer.




In certain contexts, a value is used as a  boolean, or logical, value. Any non-empty string is considered true, and the empty string (written as "") is considered false. A boolean

expression or function returns "Y" when true and "" when false.








OEBPS/Text/part0305.xhtml






Functions 




A  function is called using the following form:






name 

([paramter1] [, paramter2]  …)













Where  name is the name of the function and parmeter2, parameter2, … are expressions. All functions return a value, but in some cases the value is always the empty string, implying that they are only called for their side effects. The functions available and their parameters are described in 

DML Function Calls

.








OEBPS/Text/part0306.xhtml






Expressions 




An expression is a combination of dml components that yield a value.  Expressions are combined using operators. The following table shows the expressions and the operators: 















		



Expression 




		



Value 




		



Notes 










		



constant 




		



The constant 




		
















		



variable reference 




		



The variable’s current value 




		
















		





element 

reference






		



The element’s current value 




		
















		





attribute 

reference






		



The attribute’s current value 




		
















		



external field reference 




		



The field’s current value 




		
















		



function 




		



The function’s return value 




		
















		





expression1  

+

expression2






		



The concatenation of the two  expressions






		
















		





( 

expression

)






		



The expression’s value 




		



Used to alter the precedence of operators. 










		





expression1  

? 

expression2 

: 

expression3






		



If   expression1 is true, expression2.




If   expression1 is false, expression3.




		



Logical alternation. See note below. 










		





! 

expression






		



If   expression is true, false.




If   expression is false, true.




		



Logical NOT. 










		





expression1  

&&



expression2






		





true  if both expression1 and expression2 are true, false otherwise




		



Logical AND. See note below. 










		





expression1  

||



expression2






		





true  if either expression1 or expression2 is true, false otherwise




		



Logical OR. See note below. 










		





expression1 



==

 expression2






		





true  if expression1 is an exact duplicate of expression2 is true, false otherwise




		
















		





expression1 



!=

 expression2






		





true  if expression1 is not an exact duplicate of expression2 is true, false otherwise




		





























Note:  The logical alternation, AND, and OR expressions are evaluated left to right and expressions that do not need to be evaluated are not evaluated, and any side effects (e.g., due to a function call) do not occur. Specifically:




Alternation:  expression1 is evaluated. If it is true only expression2 is evaluated, otherwise only expression3 is evaluated.




AND:  expression1 is evaluated. If it is false, expression2 is not evaluated.




OR:  expression1 is evaluated. If it is true, expression2 is not evaluated.








OEBPS/Text/part0303.xhtml






Entity Modifiers 




There are three entity  modifiers they are:








		

•




		



The  flags which modify the behavior of the entity. See section 

Flags

 in the main document for the uses of flags.





















		

•




		



The  default value, which is used when entity is referenced but has no value. See section 

Defaults

 in the main document for the circumstances that the default is used.





















		

•




		



The  alternate name, which is used to give the entity an alternate name. See section 

Alternate Names

 in the main document for the circumstances that the alternate name is used.

















The  modifiers are defined in the order flags, default value, alternate name and take the form:













: 

constant

:

constant

:

name













If a  modifier at the end of the modifiers is empty the colon (:) must not be present. As a consequence, if all modifiers are empty, the modifiers are not present








OEBPS/Text/part0304.xhtml






External Data 




External data is available from the various external data objects, described above in section  

The External Objects

. All fields in the objects can be read, but some objects or individual fields are read-only, i.e. they cannot be written.




A reference to an external object field takes the form: 













$ 

external data object identifier

.

field name













where the  external data object identifier is the letter associated with the object and the field name is the name of the field (note that they are separated by a period (.)). Some fields (for example Handles) have sub-fields. A reference to a sub-field takes the form:













$ 

external data object identifier

.

field name

.

sub-field name













Most external objects have one instance at a time, but the Incident Object can have zero, one or more, depending on the number of incidents that have grouped to the current event. To reference an individual incident field, an offset to the incident into the array of incidents is required. This offset starts at zero, and is a  constant which must only contain digits, known as an offset. The normal order of incidents is the order that they were received by Oracle Utilities Network Management System. This order can be altered by use of the sortIncidents function. A reference to an incident field takes the form:













$I. 

offset

.

field name













Incident references can contain  sub-fields.These are known as external field references.




Note that some external object fields are read-only, i.e. they cannot be set by the dml. The read-only status of each external object is listed below: 








		

•




		



The Order Object (‘O’): All the fields listed in section  

Permanent Order Object Fields

, 

Permanent Order Object Fields

 of 

DML Function Calls

 are read-only. All other fields are read/write.





















		

•




		



The Relationship Object (‘R’): All the fields listed in section  

Permanent Relationship Object Fields

, 

Permanent Relationship Object Fields

 of 

DML Function Calls

 are read-only. All other fields are read/write.





















		

•




		



The Event Object (‘E’): All fields are read-only. 





















		

•




		



The Incident Object(‘I’): All fields are read-only. 





















		

•




		



The Global Data Object (‘G’): All fields are read/write. 





















		

•




		



The Trigger Parameter Object (‘T’): All fields are read/write. 





















OEBPS/Text/part0307.xhtml






Lists 




Name List 




A  name list is one or more names separated by commas (,). For example:




h_cls, h_idx 




Constant List 




A  constant list is one or more constants, separated by commas (,). For example:




None, "$%I99", 13, "-3", "This is a ""quoted"" string" 




Variable Reference Lists 




A  variable reference list is one or more variable references, separated by commas (,). For example:




@devPhases, @pole_number, @winter_load, @summer_load 




Expression List 




A  expression list is one or more expressions, separated by commas (,). For example:




@a + @b, formatDateTime(@time), $E.outageHdl.idx, none 








OEBPS/Text/part0308.xhtml






Statements 






Statements  are the basic processing units in dml. Many of them are terminated using the statement terminator, ; (semi-colon). 




Statement Blocks 




A number of statements require one or more  statements grouped together. This is achieved using a statement block, which takes the form:






{ 








statements






} 











Where  statements is one or more statements.






Variable Assignment Statement 




This statement assigns a value to a variable and takes the form: 






variable reference 

=

expression

;






Element Definition Statement 




Element definitions differ between elements with values (simple elements) and those with sub-elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections. 




Output Element Definition Statements 




These statements are only valid in Output Documents. 




Simple Output Element Definition Statement 




This statement assigns a value to an element and takes the form: 






element 

definition 

=

expression

;













Compound Output Element Definition Statement 




This statement defines an element with one or more sub-elements and takes the form: 






element 

definition






statement block 











The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.  




Input Element Definition Statements 




These statements are only valid in Input Documents. 




Simple Input Element Definition Statement 




This statement defines an element that can accept a value from incoming XML documents and takes the form: 






element 

definition

;













Compound Input Element Definition Statement 




This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form: 






element 

definition






statement block 











The statement block can only contain input element definition statements and must contain at least one.  




External Data Assignment Statement 




This statement assigns a value to an external object field and takes the form: 






external field reference 

=

expression

;













Function Statement 




This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form: 






function expression 

;













SQL Select Statement 




This statement is used to read data from the database and takes the form: 






sqlselect 

variable reference list

|

name list

| [static] expression [ |

expression …] ;













SQL Insert Statements 




This statement is used to insert a row of data in a database table and takes the form: 






sqlinsert 

expression

|

name list

|

expression list

;













SQL Update Statements 




This statement is used to insert or update a row of data in a database table and takes the form: 






sqlupdate 

expression

|

name list

|

expression list

|

name list

|

expression list

;













If Statement 




This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form: 













if ( 

expression

)












statement block 1








else if ( 

expression

)












statement block 2






else 










statement block 3















elseif  is a synonym for else if.











There can be any number of  else if’s, including none. The else is optional.




If the  expression of the if is true, it’s statement block (1 in this example) is evaluated.




Otherwise, if the  expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.




Otherwise, if the  expression of the next else if, if any, is true, it’s statement block is evaluated.




Otherwise, the  else’s

statement block (3 in this example) is evaluated.




A maximum of one  statement block will be evaluated in any if statement.




For Statement 




 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form: 













for 

(&

element identifier

[],

variable reference

)






statement block 




Stop Statement 




This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form: 











stop; 




Root Element Statement 




This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s  statement block. In an Input Document it is located in the input document header. It takes the form:













&RootElement  [ <

attribute definitions

> ] =

expression

;

















OEBPS/Text/part0309.xhtml






Documents 




Output Document Header 




The  output document header consists of the following specifications, in any order.




Queue Specification 




This specification specifies the queue to which the Output Document’s XML is directed to, and takes the form: 













queue = 

expression

;













The queue is available to the Output Document’s statement block as a variable named queue, and can be assigned to in the following manner: 













@queue 

=

expression

;













The queue specification is optional, and defaults to the empty string. If the queue specification is defaulted, it must be set in the Output Document’s statement block. There may only be a maximum of one queue specification in the header of each Output Document. 




Trigger Specification 




An Output Document must have at least one trigger specification, and can have an arbitrary number greater than one. 




Association Specification 




This specification associates the Output Document with an external object, and takes the form: 











associate = external data object identifier ; 











The only  external data object identifier currently supported is O, the Order Object. One and only one Output Document must be associated with the Order Object.




Persistence Specification 




This specification allows you to set the persistence flag for outgoing messages, and takes the form: 




persist = "Y" or "N"; 











If this specification is omitted, the message will have the default persistence setting configured for the queue it is being placed on. 




Output Document 




This document is used to generate XML and send it to the MDS. It takes the form: 













OutputDoc 

name






output document header 






statement block 






Input Document Header 




The  input document header consists of one and only one root element statement and the following specifications, in any order.




Queue Specification 




This specification specifies the queue on which the Input Document’s XML is received from, and takes the form: 













queue = 

expression

;













The queue is available to the Input Document’s statement block as a variable named queue. 




There must be one and only one queue specification in the header of each Input Document. 




Base Path Specification 




The specification specifies the sub-element of the root element of the XML document which contains all elements that will be processed by the Input Document. It takes the form: 













BasePath 

=

full element path

;













Input Document 




This document is used to process input XML from the MDS. It takes the form: 













InputDoc 

name






input document header 






statement block 

















OEBPS/Text/part0213.xhtml






Design Overview 




The general approach is to build an adapter process that passes messaging between the ISIS and WebSphere MQ messaging systems. Messages sent and received using WebSphere MQ will be formatted in XML. The types of messaging that will be supported include the following: 








		

•




		



Asynchronous publish from Oracle Utilities Network Management System to WebSphere MQ (using ‘fire and forget’ pattern) 





















		

•




		



Asynchronous publish from WebSphere MQ to Oracle Utilities Network Management System (using ‘fire and forget’ pattern) 





















		

•




		



Request/reply from WebSphere MQ to Oracle Utilities Network Management System (the requestor can process this either synchronously or asynchronously) 

















As the Oracle Utilities Network Management System currently supports a large number of messages internally, the principle of this interface is to externalize support for a key subset of those messages through the WebSphere MQ adapter. 








OEBPS/Text/part0334.xhtml






Oracle Utilities Network Management System AMR Configuration Rules 




Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter. 




amrDeadband 




Specifies the deadband for incoming AMR-reported incidents. If an incident is within the deadband from the outage restoration time, it will be discarded. This value must not be more than 86400 seconds (1 day). 




amrInterfacesEnabled 




This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value). 






Available types of AMR processing: 










		

•




		



1 - Outage detection 





















		

•




		



2 - PSO verification 





















		

•




		



4 - PDO verification 





















		

•




		



8 - Restoration verification 





















		

•




		



16 - Manual AMR processing 

















The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then outage detection and restoration verification will be enabled. 




meterOffThreshold 




Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0. 




meterOffTroubleCode 




Trouble code to be used when a call should be created because of information received from AMR system. 




meterOnThreshold 




Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100. 




meterQueryThreshold 




This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced. 




meterPingPercentage 




This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of downstream meters. Default value of this rule is 100. 




momentaryAmrDeadband 




Specifies the momentary deadband for incoming AMR-reported incidents. If an incident is within the deadband from a begin time of a momentary outage, it will be discarded. This value must not be more than 86400 seconds (1 day). 




powerOutWaitPeriod 




Wait period for AMR-reported power outs. System will hold onto AMR-reported power out messages for the specified period of time before making determination if the power out should be discarded, grouped into an existing outage, or if it should create a new outage. 




useMeterTimeForDetection 




This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality. 






Valid values: 










		

•




		



0 - Meter read time will not be used, instead current system time will be used (this is the default behavior) 





















		

•




		



1 - Meter read time will be used 

















suppressAmrIncidents 




This rule controls how AMR-reported power outs, which occur downstream of a non-momentary device outage, are processed. If this rule is set to "yes" then such power outs are discarded; otherwise, they are grouped into the device outage. 




useMeterTimeForRestoration 




This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality. 






Valid values: 










		

•




		



0 - outage restoration time will not be modified 





















		

•




		



1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior) 




























OEBPS/Text/part0214.xhtml






Data Flows 




Overview 




The purpose of this section is to describe the information flows that are relevant to this interface. The details of each of these flows and associated XML formats are provided in the appendices. 




All flows are formatted using XML, with specific XML definitions defined as to be consistent with Oracle Utilities Network Management System product direction. XML messages will provide well-formed XML, without a requirement for validation, as validity will be the responsibility of the sender. Consequentially, there is also no requirement for the specification of DTDs or XML Schema definitions. Specific XML requirements are defined in the appendixes of this document.     








OEBPS/Text/part0335.xhtml






Adapter Interface Communication Overview 




The Oracle Utilities Network Management System MultiSpeak Adapter provides a reliable and configurable way of connecting MultiSpeak-compliant AMR and AVL systems to the Oracle Utilities Network Management System. The interface connects to the AMR systems by use of MultiSpeak compliant SOAP/XML calls over the HTTPS protocol. The interface connects to the Oracle Utilities Network Management System through direct database access using JDBC and by use of a CORBA connection through the Oracle Utilities Network Management System Web Gateway. 








OEBPS/Text/part0211.xhtml






Performance 




This interface is intended to provide for high performance as needed to process frequent message exchange such as in the case of trouble calls during a storm. In order to provide optimum performance, there are aspects of both implementation and usage. Aspects of usage include: 








		

1.




		



Sending multiple trouble calls together in a single message when possible will improve the call volume. 





















		

2.




		



Providing a valid device identifier (supply node) on each trouble call. 





















		

3.




		



Avoiding unnecessary queries within Oracle Utilities Network Management System, which might otherwise degrade overall system performance either due to locking, CPU utilization and/or disk access. 





















		

4.




		



Using a customer account (service account), or premiseId as apposed to the custDeviceIdx with a supply node, will slow down the overall performance of trouble call processing and potentially outage prediction. 

















The following aspects of implementation can optimize performance: 




It is assumed that incoming XML messages are well formed, bypassing the validation step. It is assumed that the sender provided well-formed XML, which was transmitted using reliable communication mechanisms. The actual validation test is whether or not the code that internally parses a message can extract a sufficient set of parameters to make an InterSys request. XML that is not well formed will typically generate an error. It should also be noted that XML validation does not necessarily guarantee valid information provided by an external system. If this generates an error in the adapter, it will be generate an error. 




Use of multiple threads within the adapter, permitting parallel processing. This makes it possible to process multiple requests concurrently, providing the potential to increase performance. 








OEBPS/Text/part0332.xhtml






AVLInterface.properties file 




The AVLInterface.properties file contains configuration for the AVL component of the Oracle Utilities Network Management System MultiSpeak Adapter. It includes configuration for converting crew location information received from the AVL system into the Oracle Utilities Network Management System coordinate system. At least two reference points are required for coordinate conversion to work.  




The AVL properties are described in the following table: 








		



Property 




		



Description 










		



config.credentials 




		



Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System during initialization process. This property is required. 










		



avl.num_reference_points 




		



Number of configured reference points 










		



avl.reference_point<N>.x 




		



X coordinate of the reference point N in the Oracle Utilities Network Management System coordinate system 










		



avl.reference_point<N>.y 




		



Y coordinate of the reference point N in the Oracle Utilities Network Management System coordinate system 










		



avl.reference_point<N>.longitude 




		



Geographic longitude of the reference point N 










		



avl.reference_point<N>.latitude 




		



Geographic latitude of the reference point N 










		



avl.xy_scale 




		



Number of decimal points to use when rounding X/Y coordinates 










		



avl.lat_long_scale 




		



Number of decimal points for rounding longitude/latitude coordinates 










		



config.enabled 




		



Enables AVL processing 




Default: true 





















.The following illustration shows a sample AVL configuration. 




# 




# Enable AVL processing 




# 




config.enabled=true 











# Coordinate system mapping for AVL 




# 




avl.num_reference_points=2 




avl.reference_point1.x=0.0 




avl.reference_point1.y=0.0 




avl.reference_point1.longitude=-93.508 




avl.reference_point1.latitude=44.996 




avl.reference_point2.x=100.0 




avl.reference_point2.y=100.0 




avl.reference_pount2.longitude=-93.464 




avl.reference_point2.latitude=45.015 




avl.xy_scale=2 




avl.lat_long_scale=4 








OEBPS/Text/part0212.xhtml






Functional Requirements 




The purpose of this section is to describe the desired functionality. Key requirements include the following: 








		

•




		



Get customer(s) query using fuzzy keys (as through call entry application).  





















		

•




		



Get customer outage status information, which would indicate whether or not a customer is part of an existing outage. 





















		

•




		



Get customer outage history, which would provide the available outage history for a customer who may have been part of an old outage event. 





















		

•




		



Create incident, to send trouble calls to Oracle Utilities Network Management System for outage analysis. 





















		

•




		



Add, remove, and update condition. One example of possible usage would be to get tags from SCADA for display within Oracle Utilities Network Management System. 





















		

•




		



Get conditions for a specified device as maintained within Oracle Utilities Network Management System. 





















		

•




		



Create, Delete, and Update customer information, as might typically be used by a Customer Information System (CIS) to maintain customer information within Oracle Utilities Network Management System. Support a mechanism that will provide a means of generating a large number of customer transactions to initially load the customer model. 





















		

•




		



Check interface/InterSys status, permitting an external system to see whether or not the adapter is currently active and whether or not Oracle Utilities Network Management System is active. 





















		

•




		



Report Current outage status to indicate current state of an outage. 





















		

•




		



Report Crew outage states to indicate crew events that may change the state of an outage in Oracle Utilities Network Management System. 





















		

•




		



Receive customer disconnect and reconnect indications to identify if the utility has purposely disconnect power or restored power for a customer. 





















		

•




		



Network trace including planned outage and current feeder request. 





















		

•




		



SQL Queries and Database transactions to get reports or manipulate specific customer specific tables. 





















		

•




		



Support for style sheet translation on incoming and outgoing XML messages. 





















		

•




		



Support for external notification when the status of a device changes such as open or close. 





















		

•




		



Synchronize outage status between Oracle Utilities Network Management System and external system. 





















		

•




		



Create area summary list 





















		

•




		



Create callback list 





















OEBPS/Text/part0333.xhtml






Credentials Files 




Credentials files are used to configure usernames and passwords to be used by the parts of the adapter that communicate with the Oracle Utilities Network Management System. 




Credentials files should only be readably by the operating system account under which application server is running. 




The format of a credentials file is described in the following table: 








		



Property 




		



Description 










		



nms.username 




		



Valid NMS username. 










		



nms.password 




		



NMS user password 














The following illustration shows a sample credentials file. 




# 




nms.username=amr 




nms.password=amr-user-password 















OEBPS/Text/part0018.xhtml






Callback Requests 




A customer may request that he/she be called back as soon as the outage that he/she reported has been restored. The Generic IVR Adapter provides the stored procedure pr_trouble_callback_requests to be used by an external application that is managing the callback process. This procedure returns a list of calls where the customer has requested a callback. 




Data Flow Characteristics 




The following are characteristics for the Callback Request Data Flow: 








		



Characteristics 




		



Value 










		



Table 




		



TROUBLE_CALLBACKS. For schema information, see  

TROUBLE_CALLBACKS Table Schema

.










		



Stored Procedure 




		



pr_trouble_callback_requests. For stored procedure parameter information, see  

pr_trouble_callback_requests Stored Procedure














		



Direction 




		



Oracle Utilities Network Management System to external application 










		



Generic IVR Adapter Data Retrieval Frequency from Oracle Utilities Network Management System 




		



Periodic (configurable) 














Data Flow Steps 








		

1.




		



When an outage with a corresponding callback request is restored, Oracle Utilities Network Management System builds a callback list. 





















		

2.




		



From the list, callback requests could be assigned to callback agents or to the external application, either in a manual (using Oracle Utilities Network Management System Web Callbacks) or an automated manner (via SRS rules). 





















		

3.




		



The Generic IVR Adapter retrieves all callback requests assigned to the external application and inserts the callback requests to the TROUBLE_CALLBACKS table. The PROCESS_STATUS field of the callback request in the table would be set to 'N' signifying that the callback request is new. The CALLBACK_DONE field of the callback request in the table would be set to 'N' signifying that the callback has not yet been done. 





















		

4.




		



The Generic IVR Adapter provides the pr_trouble_callback_requests stored procedure, which picks new callback requests from the TROUBLE_CALLBACKS table.  





















		

5.




		



The external application could use the pr_trouble_callback_requests stored procedure to pick new callback requests. Callback requests that were picked are marked with a PROCESS_STATUS field equal to ‘I’ (callback response in progress) on the TROUBLE_CALLBACKS table. 





















OEBPS/Text/part0217.xhtml






Get Customer Outage History 




This is a request/reply interface that is used to obtain customer call and outage history.  








		

•




		



Call history 





















		

•




		



Outage history 

















This message will be processed using an asynchronous inquiry. It should be noted that several queries are required to collect this information, it will degrade the overall performance in storm situation.   This history is supply based on the current Ops database, and will not get history from any historical database. 








OEBPS/Text/part0338.xhtml






Database Schema 




Oracle Utilities Network Management System MultiSpeak Adapter uses several databases tables to store meter status information received from the AMR system and pending meter ping requests. 








OEBPS/Text/part0017.xhtml






Affected Customers 




Customers could be affected when an outage occurs. The external application may need to know if a customer is a part or has been a part of an outage. The Generic IVR Adapter provides the pr_affected_customers stored procedure that could be used by the external application to query if a given customer is a part or has been a part of an outage. If so, the most recent  active outage information (or the most recent inactive outage information, if an active outage was not found) is returned by the same stored procedure.




Data Flow Characteristics 




The following are characteristics of the Affected Customers Data Flow: 








		



Characteristics 




		



Value 










		



Table 




		



TROUBLE_AFFECTED_CUSTOMERS. For schema information, see  

TROUBLE_AFFECTED_CUSTOMERS Table Schema

.










		



Stored Procedure 




		



pr_affected_customers. For stored procedure parameter information, see  

pr_affected_customers Stored Procedure

.










		



Direction 




		



Oracle Utilities Network Management System to external application 










		



Generic IVR Adapter Data Update Frequency from Oracle Utilities Network Management System 




		



Event basis 














Data Flow Steps 








		

1.




		



The Generic IVR Adapter inserts records to or updates records on the TROUBLE_STATUS table for each outage created, updated or merged within Oracle Utilities Network Management System. 





















		

2.




		



The Generic IVR Adapter also updates the TROUBLE_AFFECTED_CUSTOMERS table for each customer affected by such outage. 





















		

3.




		



The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer is a part or has been a part of an outage, by querying the TROUBLE_STATUS and the TROUBLE_AFFECTED_CUSTOMERS tables. 





















		

•




		



If the customer is part of an active outage, the most recent active outage information is returned by the pr_affected_customers stored procedure. Some customer information from the TROUBLE_AFFECTED_CUSTOMERS table is returned by the same stored procedure as well. 





















		

•




		



If the customer is not part of an active outage anymore, but a part of an inactive outage, the most recent inactive outage information is returned by the pr_affected_customers stored procedure. Some customer information from the TROUBLE_AFFECTED_CUSTOMERS table is returned by the same stored procedure as well. 





















		

•




		



If the customer is not part of an active or inactive outage, no customer or event information is returned. 



















Note:  The pr_affected_customers stored procedure internally invokes the pr_trouble_status stored procedure to retrieve outage information.








		

4.




		



The external application invokes the pr_affected_customers stored procedure and passes a customer identifier to retrieve customer information and outage information, given the rules above. 





















OEBPS/Text/part0218.xhtml






Create, Delete, Update, Get Condition 




This interface would be used to report tags and other types of conditions. Conditions are objects that describe and manage important information associated with objects that are defined within the Oracle Utilities Network Management System model. Subclasses of the "condition" class include "tag" and "note", or any other configured condition in Oracle Utilities Network Management System.  




This message is an asynchronous input to the adapter.  








OEBPS/Text/part0016.xhtml






Event Status 




When an outage is created, updated or merged within Oracle Utilities Network Management System, the external application may need to know this information. The Generic IVR Adapter provides the pr_trouble_status stored procedure that the external application could use to retrieve outage information from Oracle Utilities Network Management System. 




Data Flow Characteristics 




The following are characteristics of the Event Status Data Flow: 








		



Characteristics 




		



Value 










		



Table 




		



TROUBLE_STATUS. For schema information, see  

TROUBLE_STATUS Table Schema

.










		



Stored Procedure 




		



pr_trouble_status. For stored procedure parameter information, see  

pr_trouble_status Stored Procedure

.










		



Direction 




		



Oracle Utilities Network Management System to external application 










		



Generic IVR Adapter Data Update Frequency from Oracle Utilities Network Management System 




		



Event basis 














Data Flow Steps 








		

1.




		



The Generic IVR Adapter inserts records to or updates records on the TROUBLE_STATUS table for each outage created, updated or merged within Oracle Utilities Network Management System. 





















		

2.




		



The Generic IVR Adapter provides the pr_trouble_status stored procedure that queries outage information from the TROUBLE_STATUS table for a given event handle parameter. 





















		

3.




		



The external application invokes the pr_trouble status stored procedure and supplies a handle to retrieve an outage information. 





















OEBPS/Text/part0215.xhtml






Create Incident 




This is an asynchronous input to the adapter to report trouble calls. Internally the SRS::sendSRSinput method is used to send the trouble call to Oracle Utilities Network Management System. This interface supports a variety data that might be input on a trouble call. 




This will be sent using an asynchronous fire and forget.  




Adapter can also process fuzzy call with street intersection data. This requires att_street_segment and att_street_intersect tables to be populated. 






Note:  Performance is optimized when the customer supply node is identified.








OEBPS/Text/part0336.xhtml






Adapter Design 




Supported Data Flows 




Oracle Utilities Network Management System MultiSpeak Adapter supports following data flows described in the MultiSpeak Web Services Version 4.0 specification. 




Oracle Utilities Network Management System to an AMR system: 








		

•




		





InitiateOutageDetectionEventRequest 



















Oracle Utilities Network Management System requests meter status information from the AMR system. 




An AMR system to Oracle Utilities Network Management System: 








		

•




		





ODEventNotification 



















AMR system reports meter status information to the Oracle Utilities Network Management System. 




An AVL system to Oracle Utilities Network Management System: 








		

•




		





AVLChangedNotification 



















AVL system reports crew location information to the Oracle Utilities Network Management System. 




Incoming requests (ODEventNotification and AVLChangedNotification) are authenticated against list of valid Oracle Utilities Network Management System users. Username and password has to be provided in the header of each incoming MultiSpeak message. 








OEBPS/Text/part0015.xhtml






Trouble Calls 




New trouble calls need to be sent to Oracle Utilities Network Management System to apply the outage analysis algorithm to predict the outage device. The Generic IVR Adapter provides the pr_trouble_calls stored procedure to pass trouble call information from the external application to Oracle Utilities Network Management System. 




Data Flow Characteristics 




The following are characteristics of the Trouble Calls Data Flow 















		



Characteristics 




		



Value 










		



Table 




		



TROUBLE_CALLS. For schema information, see  

TROUBLE_CALLS Table Schema

.










		



Stored Procedure 




		



pr_trouble_calls. For stored procedure parameter information, see  

pr_trouble_calls Stored Procedure

.










		



Direction 




		



external application to Oracle Utilities Network Management System 










		



Generic IVR Adapter Data Retrieval Frequency to Oracle Utilities Network Management System 




		



Periodic (configurable) 














Data Flow Steps 








		

1.




		



The external application invokes the pr_trouble_calls stored procedure to submit a trouble call. 





















		

2.




		



The pr_trouble_calls stored procedure inserts the trouble call in the TROUBLE_CALLS table. The CALL_STATUS field of the trouble call in the table will be set to 'N' signifying that the trouble call is new. 





















		

3.




		



The Generic IVR Adapter polls a configurable number of new records from the TROUBLE_CALLS table within a configurable poll period. The CALL_STATUS field of the trouble call in the table is updated to 'I' (in progress) signifying that the trouble call is in the process of being submitted to the Oracle Utilities Network Management System Job Management Service (JMService). 





















		

4.




		



Once processed, the retrieved records are submitted to Oracle Utilities Network Management System' JMService so the outage analysis algorithms could be used for the submitted trouble calls. The CALL_STATUS field of the trouble call in the table is updated to 'C' (complete) signifying the trouble call has been successfully submitted from the external application to Oracle Utilities Network Management System. 



















Note:  The Generic IVR Adapter also allows that some fields from the CES_CUSTOMERS table (rather than the parameter values supplied on the pr_trouble_calls stored procedure) be submitted to the Oracle Utilities Network Management System JMService. 








OEBPS/Text/part0216.xhtml






Get Customer Outage Status 




This is a request/reply interface that is used to obtain the current status of a customer. The information returned includes: 








		

•




		



Whether or not the customer is part of an existing outage 





















		

•




		



Estimated restoration time 





















		

•




		



Whether or not customer is part of a planned outage 

















This will be processed using an asynchronous inquiry. It should be noted that several queries are required to collect this information, it will degrade overall performance in storm situation.  








OEBPS/Text/part0337.xhtml






AMR Business Processes 




This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter. 




Outage Detection  




The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event. 






[image: ]






PSO Verification 




One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status. 




If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them. 






[image: ]






PDO Verification 




Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream. 






[image: ]






Restoration Verification 




An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration. 






[image: ]






Manual Ping 




In the diagram below, please note that the number indicates the sequence of actions: 




1. The operator or system has chosen a device to "Ping". 




2. Information about the new ping request is stored in the database. 




3. The AMR application notes the new ping request and verifies the device. 




4. A response is received from the meter.  




5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information. 






[image: ]










OEBPS/Text/part0014.xhtml






Data Flow Details 




Overview 




This section discusses in detail the data flows that are relevant to the Generic IVR Adapter. The data flows all involve bilateral database tables that are populated or polled by the adapter. The adapter data flows are turned on through command line switches, but the actual data transfer may be effected through the use of stored procedures. The Event Status and Affected Customers data flows have alternate stored procedures that access Oracle Utilities Network Management System operational tables rather than the advertised bilateral tables. The alternative procedures offer greater reliability at the expense of overall Oracle Utilities Network Management System performance. Oracle recommends the use of the alternative stored procedures, but using database replicated Oracle Utilities Network Management System tables to avoid impacting the production Oracle Utilities Network Management System. When the alternative stored procedures are used, the corresponding command line switches should NOT be turned on. 




The documentation in this section assumes the use of the dedicated bilateral tables. 








OEBPS/Text/part0013.xhtml






Interaction Diagram 




Below is a diagram of the interaction between Oracle Utilities Network Management System and various external applications via the Generic IVR Adapter. 






[image: ]








Note:  In this document, it is assumed that the Generic IVR Adapter's tables and stored procedures would reside in the database used by Oracle Utilities Network Management System.








OEBPS/Text/part0012.xhtml






Callbacks Application Data Flows with Oracle Utilities Network Management System 




The following are the Data Flows between a Callback application and Oracle Utilities Network Management System using the Generic IVR Adapter  








		

•




		



Callback request information from Oracle Utilities Network Management System to the Callback application 





















		

•




		



Callback response information from Callback application to Oracle Utilities Network Management System 





















OEBPS/Text/part0011.xhtml






CIS's Data Flows with Oracle Utilities Network Management System 




The following are the Data Flows between a CIS and Oracle Utilities Network Management System using the Generic IVR Adapter  








		

•




		



Creation of trouble calls from the CIS application to Oracle Utilities Network Management System 





















		

•




		



Event status information from Oracle Utilities Network Management System to the CIS application 





















OEBPS/Text/part0010.xhtml






Supported Application Data Flows 




IVR Data Flows with Oracle Utilities Network Management System 




The following are the Data Flows between an IVR system and Oracle Utilities Network Management System using the Generic IVR Adapter 








		

•




		



Creation of trouble calls from the IVR system to Oracle Utilities Network Management System 





















		

•




		



Event status information from Oracle Utilities Network Management System to the IVR system 





















		

•




		



Affected customer information from Oracle Utilities Network Management System to the IVR system 





















		

•




		



Callback request information from Oracle Utilities Network Management System to the IVR system 





















		

•




		



Callback response information from the IVR system to Oracle Utilities Network Management System 





















OEBPS/Text/part0009.xhtml






Introduction 




The purpose of this document is to provide an administration guide for the Oracle Utilities Network Management System Generic IVR Adapter. This document will discuss the required process for installing and configuring the Oracle Utilities Network Management System Generic IVR Adapter to run with various applications. This adapter has the following attributes: 








		

•




		



It is one of the adapters and tools that Oracle offers for integration with other product suites.   It is a Unix application that generally executes on the Oracle Utilities Network Management System services server and is monitored through SMService. 





















		

•




		



It has the ability to accept trouble calls from an external application and provide that external application with updates about existing outages.  





















		

•




		



It can submit callback requests to an external application and receive callback responses from the external application. 





















		

•




		



It can communicate with several external applications, such as Interactive Voice Response (IVR) systems, Customer Information System (CIS) and Callback applications. 





















OEBPS/Text/part0099.xhtml






Adapter Overview 




Oracle Utilities Network Management System model interface and the ArcGIS 9.x are highly configurable, there are many configuration options. This document includes a discussion of the choices and alternatives. A related document exists to provide project-specific configuration information. 




The Oracle Utilities Network Management System receives data from the ESRI ArcGIS 9.x to populate its topology model and provide graphic views of the electrical network and landbase. This is done as required using the ArcGIS:Oracle Utilities Network Management System interface to keep the Oracle Utilities Network Management System current with the network and landbase being maintained in the GIS. 




The interface is one-way: updates from the GIS flow to Oracle Utilities Network Management System for processing. The feedback to the GIS system is typically done using red lining on a map. 








OEBPS/Text/part0220.xhtml






Create, Delete, Update, Get Customer 




This is an asynchronous input interface used to report updates to the customer data model. These updates may be the addition, modification or deletion of a customer. To get information for an existing customer, the get verb is supported in order to retrieve this information. In the event of an update, only the modified information needs to be supplied. Internally this will use the DBS::sql method to perform updates to the appropriate tables that define the customer data model. It is assumed that CES_CUSTOMER and CUSTOMER_SUM are implemented as views, and the Oracle Utilities Network Management System MultiSpeak-based customer model is utilized. 




This interface is implemented in a manner to provide extensions over the capabilities of MultiSpeak, including multiple meters and/or transformers for a service location. The interface uses the internal service point entity to manage these relationships. 




Customer update can be configured to use separate DBService by using command line option  -custdbsname <

DBSNAME

> to improve overall performance. This requires the server side to have an instance of DBService reserved for this purpose.




There is a new command line option available -custsqlbundle which will greatly improve the performance for DELETECREATE/CUSTOMER request. 






Note:  It will be necessary to have JMService update its internal cache periodically. This will be triggered by the adapter nightly by the defined recache period that is supplied to the adapter. The default value is 24 hours and can be changed through -recache <

HOURS

>. Re-cache can also be configured to run at specific hour and minute by specifying -recachehour <

HOUR

> and -recacheminute <

MINUTE

>. These two command line options will override -recache <

HOURS

> option. The recache function can be disabled by using -nosndrecache option.








OEBPS/Text/part0341.xhtml






AMR_RESPONSES 




AMR_REQUESTS is populated by the outage prediction engine when a request for meter information is submitted. Every request in AMR_REQUESTS is represented, with one row for each meter requested.. 








		



Field 




		



DataType 




		



Nullable 




		



Comments 










		



REQUEST_IDX 




		



NUMBER 




		



No 




		



Instance of "amr_request". 




PRIMARY KEY 










		



METER_ID 




		



VARCHAR2(32) 




		



No 




		



Meter id string. 




PRIMARY_KEY 










		



RECEIVED_TIME 




		



DATE 




		










		



Time update received. Initially NULL 










		



PROBABILITY 




		



NUMBER 




		










		



Probability on/off (0-100)  










		



STATUS 




		



VARCHAR2(256) 




		










		



Response status string 


















OEBPS/Text/part0100.xhtml






Information Model 




The following dataflow diagram illustrates the information flows and processes relevant to the model interface. 




The GIS maintains several versions of the dataset. Drafters check out data versions to make changes typically related to a work order. When the changes are complete, the Drafter checks the version back in via reconciliation and posting tools. One specific version, typically "DEFAULT" is used by convention to maintain the "current" or "as-posted" data that is extracted and provided to the OMS. 




Changes to the GIS are extracted in groups of related changes called an Extracted Work Order. The specification of changes to the GIS is done either manually or by using automatic change detection, which is discussed later in this document. 




The extraction program is usually run after work order(s) with changed data have been posted back to the geodatabase. It can be run either manually (interactively) or scheduled to run periodically. The extraction runs on a PC-based ArcGIS workstation. 




The Extracted Work Order is a folder containing the GIS extracted files in Model Preprocessor (.mp) format. There is one file per partition. The folder also contains: 








		

•




		



Control file. This is used later in the Oracle Utilities Network Management System work order processing. Its timestamp facilities the correct sequencing of work orders. 





















		

•




		



Extract log file. The log file contains the detailed information about the entire data extract process such as extract process start and stop time, type and count of objects extracted and data errors 

















The default folder name contains a timestamp. However, the user can override it. 




Once the Extracted Work Orders are complete, they can be moved to the Model Maintenance Server by the Retrieve Extracted Work Orders process. This is a script that uses a file transfer such as FTP. This script can be scheduled to run periodically such as daily. 




On the Model Maintenance Server, the Preprocessor works on these files and generates Preprocessed Work Orders. 




The Preprocessed Work Order is a folder containing the files in model build import format (.mb). Similar to the Extracted Work Order, there is one file per tile, control files, and log files. Again, the folder name should contain a timestamp to facilitate processing the extracts in the correct sequence. For convenience it is the same as the Extracted Work Order name. 




The Model Build process on the Oracle Utilities Network Management System Model Maintenance Server builds the data model. Oracle Utilities Network Management System Model Validation tools verify the Model Build process results. The user can review the Model Build process log file to identify errors that could be corrected in the GIS or intermediate Model Preprocessor (MP) files. The process repeated until the work orders are correct. 




Validated Work Orders are posted to the Production Server. This is a script that uses a file transfer such as FTP. 




The Model Build process on the Production server builds the model. A model build is performed here so that any local edits, done by operators, are correctly merged in with the new work orders. After the build, the changes can either be accepted (committed) by the control room operator or rejected. 




Further details on the building of models in Oracle Utilities Network Management System are not specific to the ArcGIS interface and are documented in Oracle Utilities Network Management System Model Guide. 








OEBPS/Text/part0221.xhtml






SQL Transactions 




This is an asynchronous input interface is used to send SQL transactions to Oracle Utilities Network Management System. This internally uses the DBS::sql method. This interface is activated by the - sql command line option.  






WARNING: 

This interface, if activated, is a potential security issue in non-trusted environments, as it would be possible to execute destructive transactions against the Oracle Utilities Network Management System database.






WARNING:  This interface, if activated and used inappropriately, can be a source of system performance degradation or denial of service. This would be the case if long duration transactions were run against the Oracle Utilities Network Management System database, especially if done against key Oracle Utilities Network Management System tables.








OEBPS/Text/part0342.xhtml






AMR_CU_METERS 




Table AMR_CU_METERS contains information about all meters known to the Oracle Utilities Network Management System.. 








		



Field 




		



DataType 




		



Nullable 




		



Comments 










		



METER_ID 




		



VARCHAR2(14) 




		



No 




		



Meter identifier in Oracle Utilities Network Management System. 










		



METER_NO 




		



VARCHAR2(20) 




		



Yes 




		



Meter identifier used by the AMR system. 










		



RESULT_TIME 




		



DATE 




		



Yes 




		



Timestamp when the order was last updated. 










		



POWER_UP_TIME 




		



DATE 




		



Yes 




		



Timestamp of the latest power-up message. 










		



LAST_GASP_TIME 




		



DATE 




		



Yes 




		



Timestamp of the latest "last gasp" message. 










		



ALT_METER_NO 




		



VARCHAR2(256) 




		



Yes 




		



Alternative meter number. 










		



AMR_ENABLED 




		



VARCHAR2(1) 




		



Yes 




		



Indicator that meter is AMR-enabled. 










		



STATUS 




		



VARCHAR2(256) 




		



Yes 




		



Meter status ("ON" or "OFF").  For testing and simulation only. 


















OEBPS/Text/part0339.xhtml






Entity Relationship Diagram 




The following diagram illustrates entity relationships for the Oracle Utilities Network Management System MultiSpeak Adapter. 








OEBPS/Text/part0219.xhtml






Outage Status  




This interface is an asynchronous output from the adapter used to publish SRS output messages. SRS output messages describe creation, update, and closure of information related to outages. If TRBL_ERT_UPDATE message type is configured in the mq_adapter_config table, then global ERT changes from Stormman will trigger <postSrsOutput_001> message with type = 20 to be published for each event. For performance considerations, type = 20 message only has limited information. 








OEBPS/Text/part0340.xhtml






AMR_REQUESTS 




AMR_REQUESTS is populated by the outage prediction engine when a request for meter information is submitted. There is one row per request, and each request can involve multiple meters. 








		



Field 




		



DataType 




		



Nullable 




		



Comments 










		



REQUEST_IDX 




		



NUMBER 




		



No 




		



Instance of "amr_request". 




PRIMARY KEY 










		



EVENT_CLS 




		



NUMBER 




		



No 




		



Event cls for which this status was requested 










		



EVENT_IDX 




		



NUMBER 




		



No 




		



Event idx for which this status was requested.  










		



REQUEST_TIME 




		



DATE 




		










		



Time requested 










		



WHO_REQUESTED 




		



VARCHAR2(32) 




		










		



User name of requestor 










		



WHO_COMPLETED 




		



VARCHAR2(32) 




		










		



User name who completed (or cancelled) 










		



STATUS 




		



NUMBER 




		










		



Status of this AMR request. This will map to an enumerated list. 




1- active 




2 - explicitly completed 




3 -cancelled 










		



DEVICE_CLS 




		



NUMBER 




		










		



Device class where AMR request initiated (or Job device) 










		



DEVICE_IDX 




		



NUMBER 




		










		



Device index where AMR request initiated (or Job device) 










		



NCG 




		



NUMBER 




		










		



NCG of the device_cls, device_idx 


















OEBPS/Text/part0202.xhtml






Adapter Installation 




Overview 




This section guides the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed: 








		

1.




		



Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as ISIS message bus communication. 





















		

2.




		



WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System. 





















OEBPS/Text/part0323.xhtml






Information Model - Database Schema 




Quality Rules Table 




This database table will define the quality codes that may be used for analog and digital values. This table defines the meaning of each bit in the quality codes for SCADA measurements.  















		



Column Name 




		



Data Type 




		



Size 




		



Description 




		



Values 










		



PRIORITY 




		



NUMBER 




		










		



Ranking priority of the quality code 




		



Priority code, specifies relative importance of this quality bit over other quality bits 










		



VALUE 




		



NUMBER 




		










		



Bit value used for the quality code change.  




		



For Phase 1: 




2048=No Data 




4096=Old Data 










		



STRING 




		



VARCHAR2 




		



3 




		



Description of the quality code, which is displayed next to the value of the measurement when a quality exists for a measurement change. 




		



The actual character string displayed next to the device when viewed via the Viewer 










		



DESCRIPTION 




		



VARCHAR2 




		



128 




		



Descriptive string 




		



Any text string-usually the action taken from the SCADA Summary 










		



COLOR 




		



NUMBER 




		










		



Designates which color is used in the Viewer to display the measurement when a particular quality bit is set.  




Integer value for the color associated to the quality code change to be displayed 




		



The integers are mapped to the pre-allocated colors documented in separate application file.  










		



LOCATION 




		



NUMBER 




		










		



Location of symbol in relation to the device associated with the value. 




only used if a symbol is defined for the quality code as apposed to just a color for a quality change 




		



1-9; 5 overrides the device symbol 










		



SYMBOL 




		



NUMBER 




		










		



The symbol used to display the value. only used if a symbol is defined for the quality code as apposed to just a color for a quality change 




		



Valid Symbol Identification Number defined in <project>_SYMBOLS.sym. 0 if defining a text symbol.  










		



OFF_NOMINAL 




		



VARCHAR2 




		



1 




		



Whether or not the value is off-nominal 




		



Y or N 























Note:  If multiple bits in the quality code are set, then the color of the measurement text in the Viewer is determined by the color of the lowest order bit that is set in the quality code. 




Digital and Analog Measurements Tables 




These tables define digital and analog measurements as used by Oracle Utilities Network Management System. They also manage the existence of the measurement and linkage information. Manually overridden values may also be stored here. 




The Oracle Utilities Network Management System ICCP Adapter communicates dynamic information to the Oracle Utilities Network Management System services. The services will cache measurements defined by this table. Population is dependent upon customer-supplied information.  




Digital_Measurements Table 















		



Column Name 




		



Data Type 




		



Size 




		



Description 




		



Values 










		



H_CLS 




		



NUMBER 




		










		



Class component of handle 




		



Valid object class 










		



H_IDX 




		



NUMBER 




		










		



Index component of handle 




		



>0 










		



PARTITION 




		



NUMBER 




		










		



Partition number, index component of partition handle 




		



Valid partition or 0 for multi-partition objects 










		



ATTRIBUTE 




		



NUMBER 




		










		



Attribute number which identifies measurement type 




		



Valid attribute number 










		



TTL 




		



NUMBER 




		










		



Setting for displaying measurement value in the Viewer or not.  




		



1 or 0. 1=yes 










		



LIMIT_GROUP_ID 




		



NUMBER 




		










		



Limit group ID 




		



Customer defined 










		



RTI_ALIAS 




		



VARCHAR2 




		



128 




		



Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server 




		



Alphanumeric 










		



SCADA_ID 




		



NUMBER 




		










		



SCADA host ID 




		



0 (not a SCADA device), 1 (SCADA 1), 2  (SCADA 2)... 










		



RTU_ID 




		



VARCHAR2 




		



32 




		



SCADA RTU ID 




		



String (optional) 










		



QUALITY 




		



NUMBER 




		










		



Measurement quality code 




		



Bit mask of quality codes 










		



VALUE 




		



NUMBER  




		










		



Measurement/entered value 




		



Entered value 










		



UPDATE_FLAG 




		



NUMBER 




		










		



Manual replace flag 




		



1=true, 0=false 










		



ICCP_OBJECT 




		



VARCHAR2 




		



32 




		



ICCP Object type of the telemetered value 




		



Alphanumeric 










		



DISPLAY_ID 




		



VARCHAR2 




		



64 




		










		
















		



NORMAL_STATE 




		



NUMBER 




		










		










		
















		



CONTROLLABLE 




		



VARCHAR2 




		



1 




		










		
















		



ACTIVE 




		



VARCHAR2 




		



1 




		



Active flag for patch management, indicates whether the row is active within the model 




		



Y(yes=active), N(no=inactive), A(local                                                             add=active), D(local delete=inactive),                                                                    R(locally removed, dependent=inactive) 










		



SOURCE 




		



VARCHAR2 




		



33 




		



Source of the measurement.  




		



any character string.  










		



COMMENTS 




		



VARCHAR2 




		



512 




		



Operator-entered comments 




		



any character string. 










		



OFF_NOMINAL_TIME 




		



DATE 




		










		










		




















Analog_Measurements Table 








		



Column Name 




		



Data Type 




		



Size 




		



Description 




		



Values 










		



H_CLS 




		



NUMBER 




		










		



Class component of handle 




		



Valid object class 










		



H_IDX 




		



NUMBER 




		










		



Index component of handle 




		



>0 










		



PARTITION 




		



NUMBER 




		










		



Partition number, index component of partition handle 




		



Valid partition or 0 for multi-partition objects 










		



ATTRIBUTE 




		



NUMBER 




		










		



Attribute number which identifies measurement type 




		



Valid attribute number 










		



TTL 




		



NUMBER 




		










		



Setting for displaying measurement value in the Viewer or not.  




		



1 or 0. 1=yes 










		



LIMIT_GROUP_ID 




		



NUMBER 




		










		



Limit group ID 




		



Customer defined 










		



RTI_ALIAS 




		



VARCHAR2 




		



128 




		



Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server 




		



Alphanumeric 










		



SCADA_ID 




		



NUMBER 




		










		



SCADA host ID 




		



0 (not a SCADA device), 1 (SCADA 1), 2  (SCADA 2)... 










		



RTU_ID 




		



VARCHAR2 




		



32 




		



SCADA RTU ID 




		



String (optional) 










		



QUALITY 




		



NUMBER 




		










		



Measurement quality code 




		



Bit mask of quality codes 










		



VALUE 




		



FLOAT  




		



126 




		



Measurement/entered value 




		



Entered value 










		



UPDATE_FLAG 




		



NUMBER 




		










		



Manual replace flag 




		



1=true, 0=false 










		



ICCP_OBJECT 




		



VARCHAR2 




		



32 




		



ICCP Object type of the telemetered value 




		



Alphanumeric 










		



DISPLAY_ID 




		



VARCHAR2 




		



64 




		










		
















		



CONTROLLABLE 




		



VARCHAR2 




		



1 




		










		
















		



ACTIVE 




		



VARCHAR2 




		



1 




		



Active flag for patch management,  indicates whether the row is active within the model 




		



Y(yes=active), N(no=inactive), A(local                                                             add=active), D(local delete=inactive),                                                                    R(locally removed, dependent=inactive) 










		



SOURCE 




		



VARCHAR2 




		



33 




		



Source of the measurement.  




		



any character string.  










		



COMMENTS 




		



VARCHAR2 




		



512 




		



Operator-entered comments 




		



any character string. 










		



OFF_NOMINAL_TIME 




		



DATE 




		










		










		



























Controls Table 




This table defines control actions as used by Oracle Utilities Network Management System.  Population is dependent upon customer-supplied information. The information to be contained in this table is generated by the Auto Configuration Program.  















		



Column Name 




		



Data Type 




		



Size 




		



Description 




		



Values 










		



DEVICE_CLASS 




		



NUMBER 




		










		



Class component of device handle. 




		



Valid object class 










		



DEVICE_ID 




		



NUMBER 




		










		



Index component of device handle. 




		



>0 










		



CTLTYPE_ID 




		



NUMBER 




		










		



The Control Action ID number associated to the action. 




		



Valid control action ID.1 (OPEN),2 (CLOSE)… 










		



CONTROL_ID 




		



NUMBER 




		










		



Part of unique key to identify each control action for a single device. 




		



0..N, based on the number of control actions defined for the device. 










		



EXP_STATE 




		



NUMBER 




		










		



Expected return value.  




		



Numeric 










		



ATTRIBUTE 




		



NUMBER 




		










		



If non-zero, attribute number which identifies measurement type. 




		



0 (Ignore) orValid attribute number 










		



RTI_ALIAS 




		



VARCHAR2 




		



128 




		



Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server. 




		



Alphanumeric 










		



TIMEOUT 




		



NUMBER 




		










		



SCADA timeout for this device. 




		



0 = No Timeout, >0 =  timeout is seconds. 










		



NOT_IN_SERVICE 




		



VARCHAR2 




		



1 




		



Not in service flag. 




		



N (In Service),Y (Not in Service) 










		



SCADA_ID 




		



NUMBER 




		










		



SCADA server ID. 




		



0 (not a SCADA device), 1 (SCADA 1), 2  (SCADA 2)... 










		



RTU_ID 




		



VARCHAR2  




		



32 




		



SCADA RTU ID. 




		



String (optional) 










		



ACTIVE 




		



VARCHAR2 




		



1 




		



Active flag for patch management; indicates whether the row is active within the model. 




		



Y (yes=active), N (no=inactive), A (local add=active), D (local delete=inactive),R (locally removed,    dependent=inactive) 


















OEBPS/Text/part0203.xhtml






Check if the Generic WebSphere MQ Adapter is installed 




Verify that the following files are found in their respective folders 








		

•




		



$CES_HOME/bin/mqseriesgateway 





















		

•




		



$CES_HOME/bin/ces_mq_gateway.ces 





















OEBPS/Text/part0324.xhtml






MultiSpeak Adapter 




The Oracle Utilities Network Management System MultiSpeak Adapter provides the ability to request and receive meter status information from an Automated Meter Reading (AMR) system and provides the ability to receive crew location information from an Automated Vehicle Location (AVL) system. The interface uses communication protocols as defined in MultiSpeak Version 4.0 Web Services specification. (SOAP protocol version 1.1 is used unless otherwise noted.) HTTPS protocol is used as transport mechanism (plain HTTP is not supported). It allows Oracle Utilities Network Management System to communicate securely with any MultiSpeak-compliant AMR or AVL system. 




The Oracle Utilities Network Management System MultiSpeak Adapter is implemented as a Java application, running on the Oracle WebLogic Server or the JBoss Application Server platform. 




Please read through this chapter thoroughly before beginning your product installation.  








OEBPS/Text/part0200.xhtml






Required Installed Software: 




The following lists the required software that needs to be installed prior to any configuration of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter.  








		

•




		



IBM’s WebSphere MQ  





















		

•




		



ISIS (installed as part of the base Oracle Utilities Network Management System installation) 



















Note : ISIS is the messaging backbone for Oracle Utilities Network Management System and will already be present on any Network Management System servers. If the Generic WebSphere MQ Adapter is to be executed on a separate server than the Network Management System, then that server must also have ISIS installed and running. Every server installation must be running the same version of ISIS. The CMM_CELL environment variable must be set the same on any servers which are to communicate through ISIS.








OEBPS/Text/part0321.xhtml






Configuring the Adapter to Run as a System Service 






Configure the ICCP Adapter by updating  the

$NMS_HOME/etc/system.dat file to include the ICCP Adapter as a system service. There are three main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the ICCP Adapter. Search for IccpAdapter and make sure those lines are uncommented. You must restart the system services in order for the ICCP Adapter to be properly monitored by SMService.




Below is an example of the program section in the system.dat file: 




program  IccpAdapter   IccpAdapter  -prm_path /users/nms1/etc/ 






Note : It is assumed that the ICCP Adapter will reside on the same Unix or Linux server where the Oracle Utilities Network Management System services environment resides.




Command Line Options for ICCP Adapter 




The command line for the ICCP Adapter provides the following options: 








		



Command Line Option 




		



What it does 










		



-debug <level> 




		



Sets the level of debug messages generated by the adapter. <level> is a positive number, or zero. The higher the number, the more information is displayed. If <level> is omitted, it defaults to a value of 0. Debug facilities can also be specified on the command line; for example: 




-debug IA_RTP 3 




could be used to specifiy level 3 debug for the IA_RTP debug facility. 










		



-prm_path <IccpAdapter.prm path> 




		



Sets the path of the IccpAdapter.prm parameter file location. This file is used to configure the operation of the ICCP adapter. 










		





-help 






		



Returns the available IccpAdapter startup parameters and definitions, then terminates. 










		



-nodaemon 




		



Runs in the foreground, used when running by hand. 














IccpAdapter.prm 




The IccpAdapter.prm file is used to configure the operation of the Oracle Utilities Network Management System ICCP Adapter. The default location for this file is the same as where the IccpAdapter binary is located ( i.e.,  $CES_HOME/bin) but it is generally configured to be in a different location by using the -prm_path <IccpAdapter.prm path>

command line option. Lines in this file beginning with a ";" (semi-colon) are comments. Lines beginning with a "[" (left bracket) are block identifiers (markers). Fields marked as <Required> must be configured for proper operation and are generally site specific.  See the IccpAdapter.prm.template file in the standard $CES_HOME/templates directory for an example IccpAdapter configuration file.




Fields in the IccpAdapter.prm File 








		



Field name 




		



Type 




		



Default 




		



Valid Values 




		



Description 










		



[IccpAdapter] 




		



Marker 




		










		










		



Used for generic configuration of program.  










		





ServerHostname 






		





IP address 








List - blank 








separated 






		





<Required> 






		





128.168.148.43 etc 






		





The IP address(es) of the LiveData Server hostname(s) to connect to. It could be a blank separated list of IP address of several LiveData Servers. In case a failure of connection was detected by the ICCP Adapter with the current LiveData Server, it will traverse the ServerHostname list for the next  LiveData Server to connect to. 












		



Port 




		



Integer 




		



<Required> 




		



[1..MAX_INT] 




		



Blank separated list of TCP/IP port numbers that the ICCP Adapter will use for a connection attempt to a LiveData Server. Parallel to the ServerHostname, it could be a list of port numbers to use to connect to the corresponding LiveData server in ServerHostname. In case there was a failure of connection with the current LiveData Server, it would proceed to the next entry - in parallel with the next ServerHostname entry.  5002 is typical. 










		



Period 




		



Integer 




		



10 




		



[1..MAX_INT] 




		



Time in seconds between periodic transfers of non-time critical data. 










		



StatusUpdates 




		



Integer 




		



25 




		



[1..MAX_INT] 




		



The maximum number of status updates to be sent to DDService at one time. 










		



ScadaId 




		



Integer 




		



1 




		



[1..MAX_INT] 




		



Identification number assigned to the SCADA in Oracle Utilities Network Management System with which the ICCP Adapter is communicating. 










		



AnalogTolerance 




		



Double 




		



0.0F 




		



[0.01..0.99] 




		



Dead band for analog value updates.  It is the required percent change from the last reported value to trigger an update. 










		



Analogs 




		



Boolean 




		



F 




		



[T, F] 




		



Boolean value indicating use of the ANALOG_MEASUREMENTS table. 










		



Digitals 




		



Boolean 




		



T 




		



[T, F] 




		



Boolean value indicating use of the DIGITAL_MEASUREMENTS table. 










		



ReconnectPeriod 




		



Integer 




		



60 




		



[0..MAX_INT] 




		



Configurable duration of delay to wait after the LiveData Server instances failed in succession. 










		



Controls 




		



Boolean 




		



F 




		



[T, F] 




		



Boolean value indicating use of the controls table for Block 5 functionality. 










		



QualityCodeUseOnAssociationTimeOut 




		



Integer 




		



0 




		



[0..MAX_INT] 




		



Quality code that will be sent to DDService when the communication with LD server is lost. A valid QualityCode must be specified if this option is used.  










		



DisableStop 




		



Boolean 




		



F 




		



[T, F] 




		



Normally the adapter will accept and process a stop high level message. This option disables this feature. When this feature is enabled, the adapter will disregard a stop high level message. 










		



DisableCOV 




		



Boolean 




		



F 




		



[T, F] 




		



Normally the adapter will process a COV update (one or more open and close sequences within a scan cycle - normally indicating one or more momentaries) and send it to DDService. This option disables this feature. 










		



Vccs 




		



Integer 




		



<Required> 




		



[1..MAX_INT] 




		



The number of VCCs (Virtual Control Centers) that are configured in the LiveData Server. 










		



IgnoreCritInterSysServFail 




		



Boolean 




		



F 




		



[T, F] 




		



Normally the adapter will stop if SMSserivce reports a critical service failure and not restart until services are recovered. This option disables this feature. 










		



NoSwitchOpQualityMask 




		



Integer 




		



No Mask 




		



[0..MAX_INT] 




		



This parameter sets the quality codes that prevent switches from being operated. There is no effect on non-switch statuses. 










		



PhaseEncodeSwitch 




		



Boolean 




		



F 




		



[T, F] 




		



If set to true, this will enable Iccp Adapter to interpret data discrete values as three-bit phase encoded statuses. [e.g., A = ‘001’, B = ‘010’, C = ‘100’, etc.]  










		



PseudoAlarms 




		



Boolean 




		



F 




		



[T, F] 




		



If set to 1, then this will set the pseudo flag for the switch entry to be sent to DDService.  Generates pseudo (advisory) alarms for ICCP reported device ops rather than actually operating the switches in the Oracle Utilities Network Management System model. 










		





SendTimeout 






		





Integer 






		





10 






		





[0..MAX_INT] 






		





Number of seconds to wait when attempting to connect ICCP Adapter to the LiveData server. If no connection is received, it will move to the next available LiveData server (if configured). Generally leave as the default. 












		





DetachRead 






		





Boolean 






		





T 






		





[T,F] 






		





Detach the IccpAdapter internal thread that is reading the incoming RTP data stream from Isis.  Generally leave as the default. 












		





DetachWrite 






		





Boolean 






		





F 






		





[T,F] 






		





Detach the IccpAdapter internal thread that is writing the outgoing RTP data stream from Isis.  Generally leave as the default 












		





DetachHeartbeat 






		





Boolean 






		





F 






		





[T,F] 






		





Detach the IccpAdapter internal thread that is sending outgoing RTP data stream heartbeat requests from Isis.  Generally leave as the default 












		



[VCC#] 




		



Marker 




		










		










		



E.g., [VCC1]. Provides additional information for each VCC (Virtual Control Center).   










		



AssociationAddress 




		



Integer 




		



<Required> 




		



[1..MAX_INT] 




		



RTP address in LiveData Server for watching and controlling this VCCs association status 










		



TransferSetAddress 




		



Integer 




		



<Required> 




		



[1..MAX_INT] 




		



RTP address in LiveData Server for controlling the use of configured ICCP transfer sets 










		



NumTransferSets 




		



Integer 




		



<Required> 




		



[1..MAX_INT] 




		



The total number of transfer sets that are available for use in the VCC.  Number must be a multiple of 16. 










		



AssociationName 




		



String 




		



Vcc Label 




		



[a..z, A..Z, 0..9] 




		



The name of the ICCP Association. 










		



AssociationRestartTime 




		



Integer 




		



30 




		



[1..MAX_INT] 




		



Seconds allowed for restart before the association is considered failed. 










		



TransferSetRestartPeriod 




		



Integer 




		



30 




		



[1..MAX_INT] 




		



Seconds allowed to restart transferset before the restart is considered failed and no additional restart attempts will be made. 










		



TransferSetFailCountReset 




		



Integer 




		



60 




		



[1..MAX_INT] 




		



The number of fail count to be exhausted before marking the transfer set as not alive. 










		



MaxTransferSetRestarts 




		



Integer 




		



10 




		



[1..MAX_INT] 




		



Maximum number of restart for transfer set. 










		



TransferSetControlMask 




		



String 




		



<Required> 




		



[T, F] 




		



Transfer set control mask for the transfer set to be sent to LiveData Server. One T/F flag for each TransferSet. String length must be a multiple of 16. Example with one TransferSet enabled: "FTTTTTTTTTTTTTTT" 










		



[ValidityQuality] 




		



Marker 




		










		










		



Assign an Oracle Utilities Network Management System quality to ICCP Validity Quality values 










		



Valid 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



The value is valid. This is the default (normal) value should virtually always be 0. 










		



Held 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



Previous data value has been held over. Interpretation is local. 










		



Suspect  




		



Integer 




		



0 




		





2**n (n=11->31) 






		



Data value is questionable. Interpretation is local. 










		



Notvalid 




		



Integer 




		



0 




		



 2**n (n=11->31) 




		



The value is not valid.   










		



[CurrentSourceQuality] 




		



Marker 




		










		










		



Assign an Oracle Utilities Network Management System quality to ICCP Current Source Quality values. 










		



Telemetered 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



Value was received from a telemetered site. This is the default (normal) value should virtually always be 0. 










		



Calculated 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



Value was calculated based on other data. 










		



Entered 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



Value was entered manually.  










		



Estimated 




		



Integer 




		



0 




		





2**n (n=11->31) 






		



Value was estimated (State Estimator, etc.).  










		



[NormalValueQuality] 




		



Marker 




		










		










		



Assign an Oracle Utilities Network Management System quality to ICCP Normal Value Quality values. 










		



Normal 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



The point value is that which has been configured as normal for the point. This is the default (normal) value should virtually always be 0. 










		



Abnormal 




		



Integer 




		



0 




		



2**n (n=11->31) 




		



The point value is  not that which has been configured as normal for the point.










		



[TimeStampQuality] 




		



Marker 




		










		










		



Assign an Oracle Utilities Network Management System quality to ICCP Timestamp Quality values 










		



Valid 




		



Integer 




		



0 




		





2**n (n=11->31) 






		



Current value of the TimeStamp attribute contains the time stamp of when the value was last changed. This is the default (normal) value should virtually always be 0. 










		



Invalid 




		



Integer 




		



0 




		



2**n (n=1->31) 




		



Current value of the TimeStamp attribute contains the time stamp other than when the value was last changed. 










		





[SwitchStatusQuality] 






		





Marker 






		










		










		





Assign an Oracle Utilties Network Management System quality to the non-open/close statuses that can be returned in the two-bit ICCP status field. ICCP "open" is generally (1) and "closed" is (2). 












		





Between 






		





Integer 






		





262144 






		





2**n (n=11->31) 






		





Quality code to set if the two bit ICCP switch status is reported as "between" (0). 












		





Invalid 






		





Integer 






		





524288 






		





2**n (n=11->31) 






		





Quality code to set if the two bit ICCP switch status is reported as "invalid" (3). 























Sample IccpAdapter.prm Configuration File 




[IccpAdapter] 




Period=5 




ScadaId=1 




Analogs=0 




AnalogTolerance=.0001 




Digitals=1 




Controls=0 




Port=5002 




QualityCodeUseOnAssociationTimeOut=16384 




Vccs=1 




DisableCOV=0 




[VCC1] 




AssociationAddress=10 




TransferSetAddress=20 




NumTransferSets=16 




[ValidityQuality] 




Valid= 




Held= 




Suspect= 




Notvalid=1048576 




[CurrentSourceQuality] 




Telemetered= 




Calculated= 




Entered= 




Estimated=2097152 




[NormalValueQuality] 




Normal= 




Abnormal= 




[TimeStampQuality] 




Valid= 




Invalid= 











Quality Codes 






The IccpAdapter.prm file enables ICCP quality codes to be translated into Oracle Utilities Network Management System quality codes. In the simplest (and default) configuration, all of the ICCP quality codes (except the  

Between and Invalid SwitchStatusQuality codes, which need to be defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities Network Management System quality code (0). 






Note : Oracle Utilities Network Management System quality codes are always single bit values. Therefore, the only valid value for configuration is 0 or a proper value of 2^nth power where n=0->31. The 

Quality Rules Table

 table lists all the valid user-defined quality codes in Oracle Utilities Network Management System. 






If none of the predefined quality codes are applicable, then a new code must be created. The following steps accomplish this: 










		

•




		



Choose an ICCP quality listed in the IccpAdapter.prm. 





















		

•




		



Check the  

Quality Rules Table

 to see which values have already been assigned to qualities.





















		

•




		



Assign one of the values listed below to the ICCP quality and enter it in the  

Quality Rules Table

.





















		

•




		



Locate the quality in the IccpAdapter.prm file and enter the assigned value for it. 

















The assigned value must be the decimal representation of 32 bits, where no more than one bit has a value of 1. For example, if the bit position is 11, use the number 2048. The following list contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.  




Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new qualities because they are already defined and used within Oracle Utilities Network Management System. The ‘normal’ Oracle Utilities Network Management System quality code is 0. 




The adapter reads the IccpAdapter.prm file only during startup. If the quality code is added when the adapter is running, you must restart the adapter in order for it to recognize the new quality code. 




High Level Messages 




The ICCP Adapter can be dynamically controlled from Oracle Utilities Network Management System by using high-level messages. They can be used any time while running the Oracle Utilities Network Management System ICCP Adapter. The following high-level messages can be used: 








		

•




		





stop 



















Disconnect from the LiveData Server and stop the Oracle Utilities Network Management System ICCP Adapter. 








		

•




		





report 



















Empty message to determine how many Oracle Utilities Network Management System ICCP Adapters are running. 








		

•




		





debug [on | off | #] 



















Turn on/off debug, or set it to a specific level. On is equivalent to 1, off is 0. Level can be any integer value no less than 0. 








		

•




		





debug <facility> # 



















Turn facility specific debug on/off. For example, to turn IA_RTP debug on to level 3: 






 Action any.IccpAdapter debug IA_RTP 3






To turn off: 






 Action any.IccpAdapter debug IA_RTP 0






Check ICCP Adapter specific log file for other facilities specific to this adapter process. 








		

•




		





demote 



















Causes the Oracle Utilities Network Management System ICCP Adapter currently in control to relinquish control. 




Use IccpAdapterService with high-level messages for the Oracle Utilities Network Management System ICCP Adapter. For example:  






 Action any.IccpAdapter report










OEBPS/Text/part0201.xhtml






Functional Description 




Context Diagram 




Below is a diagram of the interaction between Oracle Utilities Network Management System and various external applications via the Generic WebSphere MQ Adapter. 






[image: ]






In this document, it is assumed that the Generic WebSphere MQ Adapter’s tables reside in the database used by Oracle Utilities Network Management System. 








OEBPS/Text/part0322.xhtml






Populating the NMS Measurements Tables 




ICCP points must first be mapped to devices in the Oracle Utilities Network Management System model before sending SCADA updates to Oracle Utilities Network Management System. These ICCP points are placed in DIGITAL_MEASUREMENTS and ANALOG_MEASUREMENTS tables of the Oracle Utilities Network Management System database. A process needs to be formalized to create and maintain this data. This process often depends on customer specific mechanisms used to maintain the SCADA side of the ICCP interface. As a result this process generally needs to be formalized by LiveData and the customer - potentially with help from NMS consulting. 




Required NMS Data from LiveData 




The following data items are required to be populated in the NMS measurements tables: 








		

•




		





ICCP Name 

























		

•




		





ICCP Type 

























		

•




		





Attribute 

























		

•




		





NMSDeviceID 





















ICCP Name 








		

•




		



ICCP Name has to be unique. 





















		

•




		



It is recommended for the name to be composed of alpha-numeric characters and underscore 





















		

•




		



It is recommended for the first character of the ICCP Name to be a letter 





















		

•




		



There should be no space, no periods and no dashes in the ICCP name. 

















ICCP Type 




Below is a list of supported ICCP Types. Please take note of the underscore. 








		

•




		



Data_State 





















		

•




		



Data_StateQ 





















		

•




		



Data_StateQTimeTag 





















		

•




		



Data_StateExtended 





















		

•




		



Data_Real 





















		

•




		



Data_RealQ 





















		

•




		



Data_RealQTimeTag 





















		

•




		



Data_RealExtended 





















		

•




		



Data_Discrete 





















		

•




		



Data_DiscreteQTimeTag 





















		

•




		



Data_DiscreteExtended 

















Attribute 








		

•




		



The attribute should have a corresponding entry in the ATTRIBUTES table, specifically, in the NAME field in the Oracle Utilities Network Management System database. Take note that entries under the attributes column of the flat file needs to exactly match the entries in the NAME field of the ATTRIBUTES table, taking into consideration case sensitivity, underscores, etc. 

















NMSDeviceID 








		

•




		



This is the ID of the SCADA device. This ID should match a unique attribute or device name in NMS that will allow the measurement table population process to grab the appropriate NMS device handle (h_cls and h_idx) of the SCADA device. Tables that could be used in NMS to reference SCADA devices handles could be SCADAMAP, ALIAS_MAPPING, or a model managed device attribute table such as ATT_SWITCH. Take note that matching should put into consideration several aspects like case sensitivity, special characters such as hyphens, underscores, etc. 





















OEBPS/Text/part0206.xhtml






High Availability 




The goal of the Oracle Utilities Network Management System MQ XML adapter redundancy is to provide assured message receipt and delivery between the Oracle Utilities Network Management System services and the WebSphere MQ queues. There are a number of availability approaches that could be utilized, with potentially different approaches being used for each system to be interfaced. The purpose of this section is to describe different availability approaches that can be used with the adapter.  








OEBPS/Text/part0327.xhtml






Adapter Installation Instructions for Oracle WebLogic Server 




The installation has two main steps: creating a Foreign JNDI Provider and deploying the adapter. 




Create Foreign JNDI Provider 




In order for the Oracle Utilities Network Management System MultiSpeak Adapter to communicate with the Oracle Utilities Network Management System (cesejb.ear), a foreign JNDI provider must be configured. 






Note:  This makes the cesejb.ear EJBs appear local to the Oracle Utilities Network Management System MultiSpeak adapter.




Creating the Foreign JNDI Provider can be done through the WebLogic Server Administration Console. 








		

1.




		



Access the WebLogic Server Administration Console by entering the following URL: 

















http:// hostname:port/console




Here  hostname represents the DNS name or IP address of the Administration Server, and port represents the number of the port on which the Administration Server is listening for requests (port 7001 by default).








		

2.




		



If you have not already done so, in the Change Center of the Administration Console, click  Lock & Edit.





















		

3.




		



In the  Domain Structure tree, expand Services, then select Foreign JNDI Providers to open the Summary of Foreign JNDI Providers page.





















		

4.




		



Click  New.





















		

5.




		



Enter a name for the new Foreign JNDI Provider. 





















		

6.




		



Click  Finish.





















		

7.




		



Click the link to the new Foreign JNDI Provider in the table to open the Settings. 





















		

8.




		



Populate following fields: 



















Initial Context Factory:  weblogic.jndi.WLInitialContextFactory






Provider URL:  JNDI provider URL for the NMS (cesejb.ear)






User:  valid NMS user






Password:  password for the NMS user






Confirm:  Password: same as Password








		

9.




		



Click  Save.





















		

10.




		



Click the  Links tab.





















		

11.




		



Create links to both the Local JNDI Name and the Remote JNDI Name fields set to 'cesejb/Session/remote'. 





















		

12.




		



Click  Targets tab.





















		

13.




		



Check the checkbox for the managed server where NMS MultiSpeak adapter will be deployed and click  Save.

















Deploy the Adapter 








		

1.




		



In the left pane of the Administration Console, select  Deployments.





















		

2.




		



In the right pane, click  Install.





















		

3.




		



In the Install Application Assistant, locate the nms-multispeak.ear file. 





















		

4.




		



Click  Next.





















		

5.




		



Specify that you want to target the installation as an application. 





















		

6.




		



Click  Next.





















		

7.




		



Select the servers and/or clusters to which you want to deploy the application.  



















Note:  If you have not created additional Managed Servers or clusters, you will not see this assistant page.








		

8.




		



Click  Next.





















		

9.




		



Set the deployed name of the application to:  nms-multispeak.





















		

10.




		



Click  Next.





















		

11.




		



Review the configuration settings you have specified, and click  Finish to complete the installation.




























OEBPS/Text/part0207.xhtml






Clustering 




One approach for high availability is to utilize WebSphere MQ clustering on Windows where persistent queues would be used. The adapter is then responsible for maintaining connection to InterSys. All messages would be persisted to one physical disk location, where either redundant Oracle Utilities Network Management System Generic WebSphere MQ Adapter would have access to the same message. 








OEBPS/Text/part0328.xhtml






Adapter Installation Instructions for JBoss Application Server 




To install the Utilities Network Management System MultiSpeak Adapter in the JBoss Application Server, do the following: 








		

•




		



Copy the nms-amr.ear file to the following directory: 

















     <JBoss installation directory>/server/default/deploy 








OEBPS/Text/part0204.xhtml






Configure Adapter to run as NMS System Service 






Configure the Generic WebSphere MQ Adapter to run as an Oracle Utilities Network Management System service by updating  the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections. 




See the  $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mqseriesgateway" in the file and copy those lines to the  $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Adapter to properly be monitored by SMService.






Note:  In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes.  Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.




Generic WebSphere MQ Adapter Command Line Options 








		



Command Line Option 




		



Arguments 




		



Required(Y/N) 




		



Description 










		



-areasummary 




		










		



N 




		



Enables the adapter to process area summary requests. The specified control zone level will be used to filter the outage list in the area summary. The default control zone level of 3 will be used when none is specified. 










		



-complete 




		



Minutes 




		



N 




		



Specifies how often the interface will save a timestamp which is used for synchronization on restart. The timestamp is used to go back to that timestamp to know how far back to get events on restart. 










		



-conditions 




		










		



N 




		



Enables the adapter to process condition data. 










		



-connect 




		










		



N 




		



Enables the adapter to process customer disconnect / reconnect information. 










		



-createincident 




		










		



N 




		



Enables the adapter to process trouble calls. 










		



-crewoutagestatus 




		










		










		



Enables the adapter to process crew outage status changes. 










		



-crewupdate 




		










		



N 




		



Enables crew assignments & dispatches to be sent. 










		



-custdbsname 




		



DBService name 




		



N 




		



Indicates mqseriesgateway to use separate DBService. 










		



-custhistory 




		










		



N 




		



Enables the adapter to process customer outage history information. 










		



-custstatus 




		










		



N 




		



Enables the adapter to process customer outage status information. 










		



-customer 




		










		



N 




		



Enables the adapter to modify the customer model. 










		



-custparseonly 




		










		



N 




		



Indicates that mqseriesgateway will only parse the customer update xml messages without modifying in the database. This is for performance testing purposes. 










		



-custsqlbundle 




		










		



N 




		



Enables the adapter to bundle all sql statements for DELETECREATE/CUSTOMER requests to improve speed. 










		



-custstatus 




		










		



N 




		



Enables the adapter to process customer outage status information. 










		



-debug 




		










		



N 




		



Enables the adapter to write to standard output the debug information. 










		



-defaultaccounttype 




		



Account Type 




		



N 




		



Sets the default account type for customer model. 










		



-getqueue 




		



Queue name 




		



N 




		



Changes the default get queue name. 










		



-help 




		










		



N 




		



Writes to standard output, the usage of the adapter. 










		



-includeincident 




		










		



N 




		



Places incidents information in <PostSrsOutput_001> message. This option is not recommended, because it will greatly degrade the performance of the adapter. 










		



-includepicklistinfo 




		










		



N 




		



Includes picklist info in the SRS output message if it exists. 










		



-nocompleteevent 




		










		



N 




		



This option should be used with the -synchronize option. It will exclude all complete event from the synchronization messages 










		



-nosndlist 




		










		



N 




		



Removes the supply node list from the <PostSrsOutput_001> and <PostSrsOutputStatus_001> messages to improve performance. 










		



-nosndrecache 




		










		



N 




		



This command line will disable the JMService supply node recache. 










		



-outageupdate 




		










		



N 




		



Enables outage updates to be sent. 










		



-putqueue 




		



Queue name 




		



N 




		



Changes the default put queue name. 










		



-query 




		










		



N 




		



Enables the adapter to process query statements to the Operations Database. 










		



-queuemanager 




		



<string queue manager name> 




		



N 




		



Enables the adapter to use the defined queue manager name instead of NMS_MGR. 










		



-recache  




		



<int hours> 




		



N 




		



Enables the adapter to recache SRSService for the customer model. 










		



-recachehour 




		



<hours> 




		



N 




		



This specifies when JMService will re-cache customer info in hours. This will override the        -recache option. 










		



-recacheminute 




		



<minutes> 




		



N 




		



This specifies when JMService will re-cache customer info in minutes. This will override the     -recache option. 










		



-requestedcblist 




		










		



N 




		



Enables the adapter to send restore messages containing a list of customers who requested a callback of a restored device. 










		



-sql 




		










		



N 




		



Enables the adapter to process sql statements to the Operations Database. 










		



-srsoutput 




		










		



N 




		



Enables the adapter to process outage status (Restored, complete, cancelled). 










		



-subsetcblist 




		



<percent affected> <minimum affected> <maximum affected> 




		



N 




		



This specifies that the Generic WebSphere MQ Adapter will send an SRSOutput message that contains a callback list of relatively random sampling of customers downstream of the restored device. Default values: percent affected=30%, minimum affected=10, maximum affected=300. Setting the percent affected alone is valid but setting the maximum affected needs all three parameters to be present. 










		



-synchronize 




		










		



N 




		



Sends synchronization messages when the adapter starts. This is only required to capture outage event update messages for events that were completed while the interface was down. 










		



-usecasenotes 




		










		



N 




		



Supplies case note information with outage messages. 










		



-usedeviceid 




		










		



N 




		



Enables the adapter to process device names instead of supply nodes index or premise identifiers. 










		



-useincidents 




		










		



N 




		



Includes a list of incidents with the outage messages. 










		



-usepremiseid 




		










		



N 




		



Enables the adapter to process premise identifiers instead of supply nodes. 










		



-xslpath 




		



<string path> 




		



N 




		



Indicates that Style Sheet Processing is used, and the literal path the directory that contains the .xsl files for the adapter. 





















The following table lists and describes command line options to support the bulk load for the customer model createSql process. 








		



Command Line Option 




		



Arguments 




		



Required (Y/N) 




		



Description 










		



-xmlfile 




		



<string path> 




		



N 




		



Indicates the name of the XML file to be used to create the SQL file to produce the customer model. 










		



-writetodb 




		



<> 




		



N 




		



Enables the adapter to write the SQL statements directly to the database when generating the SQL file. (Note when this option is used only a small portion of customers should be used because the entire SQL statement is run. 










		



-outputfile 




		



<string path> 




		



N 




		



Indicates the name of the SQL file to be produced, containing the SQL to create the customer model. 














Optionally Configure the Adapter to Run with another Instance of DBService 




In  $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.






Note : If using a separate DBService, you must start the Generic WebSphere MQ Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.




Configure the WebSphere MQ Server 








		

•




		



References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.  

















Create New Queue Manager 








		

1.




		



From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager 





















		

•




		



Queue Manager (name) = NMS_MGR.A  





















		

•




		



Check "Make this the default Queue Manager" (indicating yes)  





















		

2.




		



Click  Next - use default settings (circular logging) 





















		

3.




		



Click  Next - use default settings (start queue manager) 





















		

4.




		



Click  Next - uncheck "create listener configured for TCP/IP" 

















Create New Queues (2) 








		

1.




		



From WebSphere MQ Explorer tree, select: 

















Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue  








		

•




		



Queue Name = NMS.A.FROMNMS  





















		

2.




		



Click  OK - use all default settings 





















		

3.




		



Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A   ==> Queues ==> New ==> Local Queue  





















		

•




		



Queue Name = NMS.A.TONMS  





















		

4.




		



Click  OK - use all default settings 



















Note:  At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following: 








		

5.




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues 

















This should display a list of queues.  








		

6.




		



Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".  

















Create Server Connection Channel 








		

1.




		



From WebSphere MQ Explorer tree, select: 

















Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel  




A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL  








		

•




		



In the General tab, the Channel Name is SCH1  





















		

•




		



In the MCA tab, the MCA User ID is the local login userid 





















		

2.




		



Click  OK - use all default settings 



















Note:  At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following: 








		

3.




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.  

















This should display a list of connection channels.  








		

4.




		



Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".  





















		

5.




		



Select  Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)". 

















Create New Queue Manager Listener Service 




The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.  








OEBPS/Text/part0325.xhtml






Installation 




This chapter describes how you install the Oracle Utilities Network Management System MultiSpeak Adapter, including: 








		

•




		



Manual Installation Instructions for Oracle WebLogic Server 





















		

•




		



Manual Installation Instructions for JBoss Application Server 



















Note : It is assumed that the Oracle Utilities Network Management System Web Gateway component has already been installed. Refer to Oracle Utilities Network Management System Installation Guide for complete instructions on how to install and configure the Oracle Utilities Network Management System Web Gateway.








OEBPS/Text/part0205.xhtml






Stopping the original default Q manager listener 








		

1.




		



Select Console Root ==> WebSphere MQ Services (local) ==> ( the original default queue manager name). 

















This will cause a list of services to be displayed, one of which is the "listener" service.  








		

2.




		



Right-click on "listener ==> properties" and stop the listener.  





















		

3.




		



Change the startup from Automatic to Manual.  

















This listener should no longer start-up at reboot.  




Create new Q manager listener for new Q manager 








		

1.




		



Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.  

















This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.  








		

•




		



The Parameters tab port number must be 1414.  





















		

•




		



The General tab startup type should be "Automatic".  





















		

2.




		



Click the  Start button on the General tab. 





















		

3.




		



To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties  

















Configure the MQ Client  




Set environment variables 




The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:  






export MQSERVER=SCH1/TCP/10.115.3.85  






The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.  




Examples: 






export MQCHLLIB=/users/proj/MQ 








export MQCHLTAB=AMQCLCHL.TAB 






To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:  






http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/csqzal10203.htm 






View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER 




Test the connection between MQ Client and MQ Server 




Test the server connection channel (amqscnxc) 




On the Unix command line, type in the following command:  




/usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A 




where:  








		

•




		



-x is the IP address of the MQ Server host  





















		

•




		



-c is the Server Connection Channel Name  





















		

•




		



the third parameter is the desired Queue Manager Name  

















Test ‘putting’ a message from Server to Client (amqsputc) 




On the Unix command line, type in the following command:  




/usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS 




<MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end 




The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:  




Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages  




Test ‘getting’ a message on Client from Server (amqsgetc) 




First "get" the message just written  




/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end  




Test ‘putting’ a message from Client to Server using WebSphere MQ GUI 








		

1.




		



Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message  





















		

2.




		



Paste the following into "Message Data":  

















<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>  








		

3.




		



Click  OK.

















The following message should be displayed: "The test message was put successfully (amq4016)".  




Test ‘getting’ a message on Server from Client (amqsgetc) 




On the Unix command line:  




/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end 








OEBPS/Text/part0326.xhtml






Installation Overview 




The  nms-install-config script has to be used in order to apply adapter configuration changes and create the nms-amr.ear file, which can be deployed to the Java Application server (see 

Software Configuration

 for configuration instructions).




Note that the nms-multispeak.ear cannot be installed on the same managed server where the cesejb.ear is deployed since the cesejb.ear must be deployed to its own server. 















OEBPS/Text/part0208.xhtml






Non-Redundant Queue Approach 




This would be a classical implementation using WebSphere MQ. A single copy of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter would be used to retrieve information from a single (non-redundant) set of message queues. 




This approach is the simplest and most common way to implement WebSphere MQ queues for an application. However, a hard failure of the adapter or its server could result in message losses. 








OEBPS/Text/part0209.xhtml






Synchronization Process 




In the case in which both adapter servers are down, the Generic WebSphere MQ Adapter provides a synchronization process on startup by specifying  -synchronize command line option. This will retrieve all events information from OPS and put them on the queue with topic_type = ‘TRBL_UPDATE’ in <PostSrsOutput_001> message with <srsOutputMsgType>1</srsOutputMsgType> and <description>SYNCHRONIZE</description>. This synchronization can also be triggered again by issuing the following command from the UNIX server command prompt:




Action any.mq* synchronize 




The synchronized messages will include the latest status of all active events and completed/cancelled events in the past N days, where N is the number of days since the adapter was last running. 








OEBPS/Text/part0330.xhtml






Changing Configuration Files 




The AMRInterface.properties and AVLInterface.properties files are deployed into the application server as part of the nms_amr.ear file. Follow the instructions from the Java Application Configuration chapter of the Oracle Utilities Network Management System Configuration Guide to modify these configuration files for customer-specific changes and redeployment into the application server. Definitions of the contents of the property files are provided in the sections that follow. 






Note : In order for changes to the property files to take effect, the interface has to be redeployed or the application server has to be restarted (see 

Installation Overview

 for deployment instructions).








OEBPS/Text/part0210.xhtml






Troubleshooting 




High-level messages are typically used within Oracle Utilities Network Management System to permit one process to control another process. There are no special high-level messages that would be required for this adapter.  




Note that doing an Action any.any stop will stop the adapter, which needs to be taken into consideration for administering the adapter when starting and stopping it. 




Supported high level messages include the following: 








		

•




		



report 





















		

•




		



debug <debug level> 





















		

•




		



stop 

















Example usage:  Action any.mqseriesgateway report










OEBPS/Text/part0331.xhtml






AMRInterface.properties file 




The AMRInterface.properties file contains configuration for the AMR component of the Oracle Utilities Network Management System MultiSpeak Adapter.  




The following table describes the general configuration properties. 















		



Property 




		



Description 










		



config.credentials 




		



Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System. This property is required. 










		



config.amr_vendor 




		



AMR vendor. Supported AMR vendors: 











This property is required.  











Default = multispeak  




(any Multispeak-compliant AMR System) 










		



config.ping_request_interval 




		



Time interval (in minutes) between subsequent meter ping requests to the AMR system. 




Default = 3 










		



config.enabled 




		



Enables AMR processing. Default = true 





















The following table describes configuration properties specific to a particular AMR vendor. This could be any MultiSpeak-compliant AMR system. 








		



Property 




		



Description 










		



multispeak.meter_status.< external status>




		



This property configures mapping between external (MultiSpeak) and internal meter status values. Valid values are: 











ON - meter is energizedOFF - meter is deenergized UNKNOWN - external meter status has no configured mapping, 











Examples:multispeak.meter_status.Outage=OFF multispeak.meter_status.PowerOff=OFF multispeak.meter_status.PowerOn=ON multispeak.meter_status.Restoration=ON multispeak.meter_status.Instantaneous=UNKNOWN multispeak.meter_status.NoResponse=UNKNOWN multispeak.meter_status.Inferred=UNKNOWN  










		



multispeak.od_oa.url 




		



This property configures the URL of the AMR system web service.  




Default: https://localhost/multispeak 










		



multispeak.od_oa.username 




		



Username to use when connecting to the AMR system web service. 




Default: empty string 










		



multispeak.od_oa.password 




		



Password to use when connecting to the AMR system web service. 




Default: empty string 










		



multispeak.od_oa.header.<attribute> 




		



Used to set the values for MultiSpeak header attributes. For example, the following would set the MultiSpeak header attribute "Company" to the value "Oracle": 




multispeak.od_oa.header.Company=Oracle 










		



multispeak.od_oa.soap12 




		



Indicates the SOAP protocol version to use for communicating with the AMR/AMI system. If true, version 1.2 will be used. Otherwise, version 1.1 will be used. 




Default: false (SOAP version 1.1 is used) 










		



multispeak.max_ping_attempts 




		



Maximum number of attempts to ping a meter. 




Default: 3 










		



multispeak.ping_attempt_interval 




		



Amount of time (in seconds) to wait for reply from the AMR system before resending meter ping request. 




Default: 60 

























OEBPS/Text/part0329.xhtml






Software Configuration 




Configuration for the Oracle Utilities Network Management System MultiSpeak Adapter comes from the following sources: 








		

•




		



AMRInterface.properties file 





















		

•




		



AVLInterface.properties file 





















		

•




		



Oracle Utilities Network Management System configuration rules 





















