
Part No: E37076
March 2015

Oracle® Solaris Studio 12.4: Fortran
User's Guide

Copyright © 1991, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 1991, 2015, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services
tiers, ou à leur utilisation.

5

Contents

Using This Documentation .. 15

1 Introduction ... 17
1.1 Standards Conformance .. 17
1.2 Features of the Fortran Compiler .. 18
1.3 Other Fortran Utilities .. 18
1.4 Debugging Utilities .. 19
1.5 Sun Performance Library .. 19
1.6 Interval Arithmetic ... 19
1.7 Man Pages .. 20
1.8 Command-Line Help .. 20

2 Using Solaris Studio Fortran ... 23
2.1 A Quick Start .. 23
2.2 Invoking the Compiler .. 24

2.2.1 Compile-Link Sequence .. 25
2.2.2 Command-Line File Name Conventions .. 25
2.2.3 Source Files ... 26
2.2.4 Source File Preprocessors ... 26
2.2.5 Separate Compiling and Linking .. 27
2.2.6 Consistent Compiling and Linking .. 27
2.2.7 Unrecognized Command-Line Arguments .. 27
2.2.8 Modules ... 28

2.3 Directives ... 28
2.3.1 General Directives ... 29
2.3.2 Parallelization Directives .. 35
2.3.3 IVDEP Directive ... 36

2.4 Library Interfaces and system.inc .. 37
2.5 Compiler Usage Tips .. 38

2.5.1 Determining Hardware Platform ... 38

Contents

6 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

2.5.2 Using Environment Variables .. 38
2.5.3 Memory Size .. 39

2.6 User-Supplied Default Options File ... 41

3 Fortran Compiler Options .. 43
3.1 Command Syntax .. 43
3.2 Options Syntax .. 43
3.3 Options Summary .. 45

3.3.1 Commonly Used Options .. 49
3.3.2 Macro Flags ... 50
3.3.3 Backward Compatibility and Legacy Options 50
3.3.4 Obsolete Option Flags .. 51

3.4 Options Reference .. 51
3.4.1 –aligncommon[={1|2|4|8|16}] .. 51
3.4.2 –ansi .. 52
3.4.3 –arg=local .. 52
3.4.4 –autopar ... 53
3.4.5 –B{static|dynamic} .. 54
3.4.6 –C ... 54
3.4.7 –c ... 55
3.4.8 –copyargs .. 55
3.4.9 –Dname[=def] .. 55
3.4.10 –dalign ... 56
3.4.11 –dbl_align_all[={yes|no}] ... 57
3.4.12 –depend[={yes|no}] .. 58
3.4.13 –dryrun ... 58
3.4.14 –d{y|n} ... 58
3.4.15 –e ... 59
3.4.16 –erroff[={%all|%none|taglist}] .. 59
3.4.17 –errtags[={yes|no}] ... 59
3.4.18 –errwarn[={%all|%none|taglist}] ... 60
3.4.19 –ext_names=e ... 60
3.4.20 –F ... 60
3.4.21 –f ... 61
3.4.22 –f77[=list] .. 61
3.4.23 –fast ... 62
3.4.24 –fixed ... 64

Contents

7

3.4.25 –flags ... 64
3.4.26 –fma[={none|fused}] .. 65
3.4.27 –fnonstd .. 65
3.4.28 –fns[={yes|no}] ... 66
3.4.29 -fopenmp .. 67
3.4.30 –fpover[={yes|no}] .. 67
3.4.31 –fpp .. 67
3.4.32 –fprecision={single|double|extended} ... 67
3.4.33 –free ... 68
3.4.34 –fround={nearest|tozero|negative|positive} 68
3.4.35 –fserialio ... 68
3.4.36 –fsimple[={1|2|0}] ... 69
3.4.37 –fstore ... 70
3.4.38 –ftrap=t .. 70
3.4.39 –G ... 71
3.4.40 -g ... 71
3.4.41 –g[n] ... 71
3.4.42 –hname .. 72
3.4.43 –help ... 73
3.4.44 –Ipath ... 73
3.4.45 -i8 .. 74
3.4.46 –inline=[%auto][[,][no%]f1,…[no%]fn] ... 74
3.4.47 –iorounding[={compatible|processor-defined}] 75
3.4.48 –keepmod[={yes|no}] .. 75
3.4.49 –keeptmp .. 76
3.4.50 –Kpic ... 76
3.4.51 –KPIC ... 76
3.4.52 –Lpath ... 76
3.4.53 –lx .. 77
3.4.54 –libmil ... 77
3.4.55 -library=sunperf ... 77
3.4.56 –loopinfo .. 77
3.4.57 –Mpath ... 78
3.4.58 –m32 | –m64 ... 79
3.4.59 –moddir=path .. 79
3.4.60 -mt[={yes|no}] .. 80
3.4.61 –native ... 80

Contents

8 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.62 –noautopar ... 80
3.4.63 –nodepend .. 81
3.4.64 -nofstore .. 81
3.4.65 –nolib ... 81
3.4.66 –nolibmil .. 81
3.4.67 –noreduction ... 82
3.4.68 –norunpath ... 82
3.4.69 –O[n] ... 82
3.4.70 –o filename ... 83
3.4.71 –onetrip .. 84
3.4.72 –openmp ... 84
3.4.73 –p ... 84
3.4.74 –pad[=p] ... 84
3.4.75 –pg .. 85
3.4.76 –pic .. 86
3.4.77 –PIC .. 87
3.4.78 –preserve_argvalues[=simple|none|complete] 87
3.4.79 –Qoption pr ls .. 87
3.4.80 –qp .. 88
3.4.81 –R ls .. 88
3.4.82 –r8const .. 88
3.4.83 –recl=a[,b] .. 89
3.4.84 –reduction ... 89
3.4.85 –S ... 89
3.4.86 –s ... 90
3.4.87 –silent ... 90
3.4.88 –stackvar .. 90
3.4.89 –stop_status[={yes|no}] .. 91
3.4.90 –temp=dir ... 92
3.4.91 –time ... 92
3.4.92 –traceback[={%none|common|signals_list}] .. 92
3.4.93 –U ... 93
3.4.94 –Uname .. 93
3.4.95 –u ... 94
3.4.96 –unroll=n .. 94
3.4.97 –use=list .. 94
3.4.98 –V ... 95

Contents

9

3.4.99 –v ... 95
3.4.100 –vax=keywords .. 95
3.4.101 –vpara ... 96
3.4.102 -Wc,arg .. 96
3.4.103 –w[n] .. 97
3.4.104 -Xlinker arg .. 97
3.4.105 –Xlist[x] .. 97
3.4.106 –xaddr32[={yes|no}] .. 99
3.4.107 –xalias[=keywords] ... 99
3.4.108 –xannotate[={yes|no}] .. 101
3.4.109 –xarch=isa .. 101
3.4.110 –xassume_control[=keywords] .. 105
3.4.111 –xautopar ... 106
3.4.112 –xbinopt={prepare | off} ... 106
3.4.113 –xcache=c ... 107
3.4.114 –xcheck[=keyword[,keyword]] ... 108
3.4.115 –xchip=c ... 109
3.4.116 -xcode[=v] .. 110
3.4.117 –xcommonchk[={yes|no}] ... 112
3.4.118 –xdebugformat={dwarf|stabs} ... 112
3.4.119 -xdebuginfo=a[,a...] ... 113
3.4.120 –xdepend .. 115
3.4.121 –xF .. 115
3.4.122 –xfilebyteorder=options .. 115
3.4.123 -xglobalize[={yes|no}] .. 117
3.4.124 –xhasc[={yes|no}] .. 118
3.4.125 –xhelp=flags .. 118
3.4.126 –xhwcprof[={enable | disable}] ... 119
3.4.127 –xia[={widestneed|strict}] .. 120
3.4.128 –xinline=list ... 120
3.4.129 -xinline_param=a[,a[,a]...] .. 120
3.4.130 -xinline_report[=n] .. 122
3.4.131 –xinstrument=[%no]datarace .. 123
3.4.132 –xinterval[={widestneed|strict|no}] .. 123
3.4.133 –xipo[={0|1|2}] .. 124
3.4.134 –xipo_archive[={none|readonly|writeback}] 126
3.4.135 -xipo_build=[yes|no] ... 127

Contents

10 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.136 –xivdep[=p] ... 128
3.4.137 -xjobs{=n|auto} .. 128
3.4.138 -xkeep_unref[={[no%]funcs,[no%]vars}] 129
3.4.139 –xkeepframe[=[%all,%none,name,no%name]] 129
3.4.140 –xknown_lib=library_list ... 130
3.4.141 –xl .. 131
3.4.142 –xlang=f77 ... 131
3.4.143 –xld ... 132
3.4.144 –xlibmil .. 132
3.4.145 –xlibmopt ... 132
3.4.146 –xlic_lib=sunperf .. 132
3.4.147 –xlinkopt[={1|2|0}] .. 132
3.4.148 –xloopinfo ... 134
3.4.149 –xM .. 134
3.4.150 –xmaxopt[=n] ... 135
3.4.151 –xmemalign[=<a>] ... 135
3.4.152 –xmodel=[small | kernel | medium] .. 136
3.4.153 –xnolib .. 137
3.4.154 –xnolibmil ... 137
3.4.155 –xnolibmopt .. 137
3.4.156 –xOn ... 137
3.4.157 –xopenmp[={parallel|noopt|none}] ... 138
3.4.158 –xpad ... 139
3.4.159 –xpagesize=size ... 139
3.4.160 –xpagesize_heap=size ... 140
3.4.161 –xpagesize_stack=size ... 140
3.4.162 -xpatchpadding[={fix|patch|size}] ... 140
3.4.163 –xpec[={yes|no}] .. 141
3.4.164 –xpg ... 141
3.4.165 –xpp={fpp|cpp} .. 141
3.4.166 –xprefetch[=a[,a]] ... 141
3.4.167 –xprefetch_auto_type=indirect_array_access 144
3.4.168 –xprefetch_level={1|2|3} ... 144
3.4.169 –xprofile=p .. 144
3.4.170 –xprofile_ircache[=path] .. 147
3.4.171 –xprofile_pathmap=collect_prefix:use_prefix 147
3.4.172 –xrecursive .. 148

Contents

11

3.4.173 –xreduction .. 148
3.4.174 –xregs=r ... 149
3.4.175 -xs[={yes|no}] ... 150
3.4.176 –xsafe=mem ... 151
3.4.177 -xsegment_align=n .. 151
3.4.178 –xspace .. 152
3.4.179 –xtarget=t .. 152
3.4.180 -xtemp=path .. 155
3.4.181 -xthroughput[={yes|no}] .. 155
3.4.182 –xtime .. 156
3.4.183 –xtypemap=spec ... 156
3.4.184 -xunboundsym={yes|no} .. 157
3.4.185 –xunroll=n ... 157
3.4.186 -xvector[=a] ... 157
3.4.187 –ztext .. 158

4 Solaris Studio Fortran Features and Extensions ... 161
4.1 Source Language Features ... 161

4.1.1 Continuation Line Limits .. 161
4.1.2 Fixed-Form Source Lines .. 161
4.1.3 Tab Form ... 161
4.1.4 Source Form Assumed .. 162
4.1.5 Limits and Defaults .. 163

4.2 Data Types .. 163
4.2.1 Boolean Type .. 163
4.2.2 Abbreviated Size Notation for Numeric Data Types 166
4.2.3 Size and Alignment of Data Types .. 167

4.3 Cray Pointers ... 168
4.3.1 Syntax ... 168
4.3.2 Purpose of Cray Pointers ... 169
4.3.3 Declaring Cray Pointers and Fortran 95 Pointers 169
4.3.4 Features of Cray Pointers .. 170
4.3.5 Restrictions on Cray Pointers ... 170
4.3.6 Restrictions on Cray Pointees ... 171
4.3.7 Usage of Cray Pointers ... 171

4.4 STRUCTURE and UNION (VAX Fortran) ... 172
4.5 Unsigned Integers .. 172

4.5.1 Arithmetic Expressions ... 173

Contents

12 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

4.5.2 Relational Expressions .. 173
4.5.3 Control Constructs ... 173
4.5.4 Input/Output Constructs .. 174
4.5.5 Intrinsic Functions ... 174

4.6 Fortran 200x Features ... 174
4.6.1 Interoperability with C .. 174
4.6.2 IEEE Floating-Point Exception Handling ... 175
4.6.3 Command-Line Argument Intrinsics .. 175
4.6.4 PROTECTED Attribute ... 176
4.6.5 Fortran 2003 Asynchronous I/O ... 176
4.6.6 Extended ALLOCATABLE Attribute .. 176
4.6.7 VALUE Attribute ... 176
4.6.8 Fortran 2003 Stream I/O ... 177
4.6.9 Fortran 2003 IMPORT Statement .. 177
4.6.10 Fortran 2003 FLUSH I/O Statement ... 177
4.6.11 Fortran 2003 POINTER INTENT Feature ... 177
4.6.12 Fortran 2003 Enhanced Array Constructor 178
4.6.13 Object-Oriented Fortran Support ... 178
4.6.14 FINAL Subroutine Support .. 179
4.6.15 Procedure Pointer Support ... 179
4.6.16 Additional Fortran 2003 and Fortran 2008 Features 179

4.7 Additional I/O Extensions .. 180
4.7.1 I/O Error Handling Routines .. 180
4.7.2 Variable Format Expressions .. 181
4.7.3 NAMELIST Input Format ... 181
4.7.4 Binary Unformatted I/O .. 181
4.7.5 Miscellaneous I/O Extensions .. 182

4.8 Directives ... 182
4.8.1 Form of Special f95 Directive Lines ... 182
4.8.2 FIXED and FREE Directives ... 183
4.8.3 Parallelization Directives ... 184

4.9 Module Files ... 184
4.9.1 Searching for Modules .. 185
4.9.2 The -use=list Option Flag ... 185
4.9.3 The fdumpmod Command ... 186

4.10 Intrinsics ... 186
4.11 Forward Compatibility ... 186
4.12 Mixing Languages .. 187

Contents

13

5 FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 189
5.1 Compatible f77 Features ... 189
5.2 Incompatibility Issues ... 194
5.3 Linking With Legacy FORTRAN 77-Compiled Routines 195

5.3.1 Fortran Intrinsics ... 196
5.4 Additional Notes About Migrating to the f95 Compiler 196
5.5 The f77 Command ... 197

A Runtime Error Messages ... 199
A.1 Operating System Error Messages .. 199
A.2 f95 Runtime I/O Error Messages .. 199

B Features Release History .. 207
B.1 Oracle Solaris Studio 12.4 Fortran Release ... 207
B.2 Oracle Solaris Studio 12.3 Fortran Release ... 209
B.3 Oracle Solaris Studio 12.2 Fortran Release ... 210
B.4 Sun Studio 12 Update 1 Fortran Release .. 211
B.5 Sun Studio 12 Fortran Release ... 212
B.6 Sun Studio 11 Fortran Release ... 212

C Fortran Directives Summary .. 215
C.1 General Fortran Directives .. 215
C.2 Special Fortran Directives ... 216
C.3 Fortran OpenMP Directives ... 217

Index ... 219

14 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Using This Documentation 15

Using This Documentation

■ Overview – Describes the Oracle Solaris Studio Fortran compiler and environment
■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

Late-breaking information and known issues for this product are included in the documentation
library at http://docs.oracle.com/cd/E37069_01.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

16 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Chapter 1 • Introduction 17

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction

The Oracle Solaris Studio Fortran compiler, f95, described here and in the companion Fortran
Programming Guide, is available under the Oracle Solaris operating environment on SPARC®,
UltraSPARC®, and x64/x86 platforms, and Linux environments on x86/x64 platforms. The
compiler conforms to published Fortran language standards, and provides many extended
features, including multiprocessor parallelization, sophisticated optimized code compilation,
and mixed C/Fortran language support.

The f95 compiler also provides a Fortran 77 compatibility mode that accepts most legacy
Fortran 77 source codes. A separate Fortran 77 compiler is no longer included. See Chapter 5
for information on FORTRAN 77 compatibility and migration issues.

1.1 Standards Conformance

■ f95 conforms to part one of the ISO/IEC 1539-1:1997 Fortran standards document.
■ Floating-point arithmetic is based on IEEE standard 754-1985, and international standard

IEC 60559:1989.
■ See Chapter 4, “Solaris Studio Fortran Features and Extensions” for a list of Fortran 2003

and Fortran 2008 features and other language extensions implemented in this release.
■ f95 provides support for the optimization-exploiting features of the SPARC and x86

families of processor architectures: UltraSPARC, SPARC64, AMD64, Pentium Pro, and
Xeon Intel®64, on Solaris and Linux (x86) platforms.

■ Oracle Solaris Studio compilers support the OpenMP API forshared memory parallelism,
Version 4.0. See the OpenMP API User's Guide for details.

■ In this document, “Standard” means conforming to the versions of the standards listed
above. “Non-standard” or “Extension” refers to features that go beyond these versions of
these standards.

The responsible standards bodies may revise these standards from time to time. The versions
of the applicable standards to which these compilers conform may be revised or replaced,
resulting in features in future releases of the Oracle Solaris Studio Fortran compilers that create
incompatibilities with earlier releases.

1.2 Features of the Fortran Compiler

18 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

1.2 Features of the Fortran Compiler

The Oracle Solaris Studio Fortran compiler, f95, provides the following features and
extensions:

■ Global program checking across routines for consistency of arguments, commons,
parameters, and the like. (Only available on Solaris platforms).

■ Optimized automatic and explicit loop parallelization for multiprocessor systems.
■ VAX/VMS Fortran extensions.
■ OpenMP parallelization directives.
■ Global, peephole, and potential parallelization optimizations produce high performance

applications. Benchmarks show that optimized applications can run significantly faster
when compared to unoptimized code.

■ Common calling conventions permit routines written in C or C++ to be combined with
Fortran programs.

■ Support for 64-bit enabled Solaris and Linux environments.
■ IEEE quadruple precision REAL and COMPLEX support on all platforms.
■ Compatibility between Fortran 77 and Fortran 95/Fortran 2003 programs and object

binaries.
■ Interval Arithmetic programming.
■ Support for unsigned integer types.
■ Many Fortran 2003 and Fortran 2008 features.

See Appendix B for details on new and extended features added to the compiler with each
software release.

See also the What's New In Oracle Solaris Studio 12.4 guide for latest information about
new and changed features in this release of the compilers and tools, as well as known
issues, workarounds, and limitations. The What's New guide can be accessed from the
documentation index for this release at http://www.oracle.com/technetwork/server-
storage/solarisstudio/documentation

1.3 Other Fortran Utilities

The following utilities provide assistance in the development of software programs in Fortran:

■ Solaris Studio Performance Analyzer— In depth performance analysis tool for single
threaded and multi-threaded applications. See analyzer(1).

■ asa— This Solaris utility is a Fortran output filter for printing files that have Fortran
carriage-control characters in column one. Use asa to transform files formatted with

http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation

1.4 Debugging Utilities

Chapter 1 • Introduction 19

Fortran carriage-control conventions into files formatted according to UNIX line-printer
conventions. See asa(1).

■ fdumpmod— A utility to display the names of modules contained in a file or archive. See
fdumpmod(1).

■ fpp— A Fortran source code preprocessor. See fpp(1).
■ fsplit — This utility splits one Fortran file of several routines into several files, each with

one routine per file. See fsplit(1)

1.4 Debugging Utilities

The following debugging utilities are available:

■ -Xlist— A compiler option to check across routines for consistency of arguments,
COMMON blocks, and so on. (Solaris platforms only)

■ Solaris Studio dbx—Provides a robust and feature-rich runtime and static debugger, and
includes a performance data collector.

1.5 Sun Performance Library

The Sun Performance Library™ is a library of optimized subroutines and functions for
computational linear algebra and Fourier transforms. It is based on the standard libraries
LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK generally
available through Netlib.

Each subprogram in the Sun Performance Library performs the same operation and has the
same interface as the standard library versions, but is generally much faster and accurate and
can be used in a multiprocessing environment.

See the Sun Performance Library User’s Guide for details. (Man pages for the performance
library routines are in section 3P.)

1.6 Interval Arithmetic

The f95 compiler provides the compiler flags -xia and -xinterval to enable new language
extensions and generate the appropriate code to implement interval arithmetic computations.
See the Fortran 95 Interval Arithmetic Programming Reference for details.

http://www.netlib.org

1.7 Man Pages

20 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

1.7 Man Pages

Online manual (man) pages provide immediate documentation about a command, function,
subroutine, or collection of such things. The user's MANPATH environment variable should be set
to the path to the installed Solaris Studio man directory to access the Oracle Solaris Studio man
pages.

You can display a man page by running the command:

demo% man topic

Throughout the Fortran documentation, man page references appear with the topic name
and man section number: f95(1) is accessed with man f95. Other sections, denoted by
ieee_flags(3M) for example, are accessed using the -s option on the man command:

demo% man -s 3M ieee_flags

The Fortran library routines are documented in the man page section 3F.

The following lists man pages of interest to Fortran users:

f95(1) The Fortran 95 command-line options

analyzer(1) Solaris Studio Performance Analyzer

asa(1) Fortran carriage-control print output post-processor

dbx(1) Command-line interactive debugger

fpp(1) Fortran source code preprocessor

cpp(1) C source code preprocessor

fdumpmod(1) Display contents of a MODULE (.mod) file.

fsplit(1) Preprocessor splits Fortran source routines into single files

ieee_flags(3M) Examine, set, or clear floating-point exception bits

ieee_handler(3M) Handle floating-point exceptions

matherr(3M) Math library error handling routine

ld(1) Link editor for object files

1.8 Command-Line Help

You can view very brief descriptions of the f95 command line options by invoking the
compiler’s -help option as shown below:

%f95 -help=flags

1.8 Command-Line Help

Chapter 1 • Introduction 21

Items within [] are optional. Items within < > are variable parameters.

Bar | indicates choice of literal values.

-someoption[={yes|no}] implies -someoption is equivalent to -someoption=yes

-a Collect data for tcov basic block profiling

-aligncommon[=<a>] Align common block elements to the specified

 boundary requirement; <a>={1|2|4|8|16}

-ansi Report non-ANSI extensions.

-autopar Enable automatic loop parallelization

-Bdynamic Allow dynamic linking

-Bstatic Require static linking

-C Enable runtime subscript range checking

-c Compile only; produce .o files but suppress

 linking

...etc.

22 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Chapter 2 • Using Solaris Studio Fortran 23

 2 ♦ ♦ ♦ C H A P T E R 2

Using Solaris Studio Fortran

This chapter describes how to use the Fortran compiler.

The principal use of any compiler is to transform a program written in a procedural language
like Fortran into a data file that is executable by the target computer hardware. As part of its
job, the compiler may also automatically invoke a system linker to generate the executable file.

The compiler can also be used to:

■ Generate a parallelized executable file for execution by multiple threads (-openmp).
■ Analyze program consistency across source files and subroutines and generate a report (-

Xlist).
■ Transform source files into:

■ Relocatable binary (.o) files, to be linked later into an executable file or static library
(.a) file.

■ A dynamic shared library (.so) file (-G).

Link files into an executable file.
■ Compile an executable file with runtime debugging enabled (-g).
■ Compile with runtime statement or procedure level profiling (-pg).
■ Check source code for ANSI standards conformance (-ansi).

2.1 A Quick Start

This section provides a quick overview of how to use the Fortran compiler to compile and run
Fortran programs. A full reference to command-line options appears in the next chapter.

The very basic steps to running a Fortran application involve using an editor to create a Fortran
source file with a .f, .for, .f90, .f95, .F, .F90, .F95, .f03, or .F03 filename suffix; (see
Table Table 2-1), invoking the compiler to produce an executable; and finally, launching the
program into execution by typing the name of the file:

Example: This program displays a message on the screen:

2.2 Invoking the Compiler

24 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

demo% cat greetings.f
 PROGRAM GREETINGS

 PRINT *, ’Real programmers write Fortran!’

 END

demo% f95 greetings.f

demo% a.out
 Real programmers write Fortran!

demo%

In this example, f95 compiles source file greetings.f and links the executable program onto
the file, a.out, by default. To launch the program, the name of the executable file, a.out, is
typed at the command prompt.

Traditionally, UNIX compilers write executable output to the default file called a.out. It can
be awkward to have each compilation write to the same file. Moreover, if such a file already
exists, it will be overwritten by the next run of the compiler. Instead, use the -o compiler option
to explicitly specify the name of the executable output file:

demo% f95 -o greetings greetings.f

demo% greetings
 Real programmers write Fortran!

demo%

In the preceding example, the -o option tells the compiler to write the executable code to the
file greetings. (By convention, executable files usually are given the same name as the main
source file, but without an extension.)

Alternatively, the default a.out file could be renamed via the mv command after each
compilation. Either way, run the program by typing the name of the executable file at a shell
prompt.

The next sections of this chapter discuss the conventions used by the f95 commands, compiler
source line directives, and other issues concerning the use of these compiler. The next chapter
describes the command-line syntax and all the options in detail.

2.2 Invoking the Compiler

The syntax of a simple compiler command invoked at a shell prompt is:

f95 [options] files...

Here files… is one or more Fortran source file names ending in .f, .F, .f90, .f95, .F90, .F95,
or .for; options is one or more of the compiler option flags. (Files with names ending in a
.f90 or .f95 extension are “free-format” Fortran 95 source files recognized only by the f95
compiler.)

2.2 Invoking the Compiler

Chapter 2 • Using Solaris Studio Fortran 25

In the example below, f95 is used to compile two source files to produce an executable file
named growth with runtime debugging enabled:

demo% f95 -g -o growth growth.f fft.f95

Note - You can invoke the Fortran compiler with either the f95 or f90 command.

New: The compiler will also accept source files with the extension .f03 or .F03. These are
treated as equivalent to .f95 and .F95 and could be used as a way to indicate that a source file
contains Fortran 2003 extensions.

“2.2.2 Command-Line File Name Conventions” on page 25, describes the various source
file extensions accepted by the compiler.

2.2.1 Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files, growth.o
and fft.o, and then invokes the system linker to create the executable program file growth.

After compilation, the object files, growth.o and fft.o, will remain. This convention permits
easy relinking and recompilation of files.

If the compilation fails, you will receive a message for each error. No .o files are generated for
those source files with errors, and no executable program file is written.

2.2.2 Command-Line File Name Conventions
The suffix extension attached to file names appearing on the command-line determine how the
compiler will process the file. File names with a suffix extension other than one of those listed
below, or without an extension, are passed to the linker.

TABLE 2-1 Filename Suffixes Recognized by the Fortran Compiler

Suffix Language Action

.f Fortran77 or
Fortran 95 fixed-
format

Compile Fortran source files, put object files in current directory; default name
of object file is that of the source but with .o suffix.

.f95

.f90

Fortran 95 free-
format

Same action as .f

.f03 Fortran 2003 free-
format

Same action as .f

.for Fortran 77 or
Fortran 95 fixed-
format

Same action as .f.

2.2 Invoking the Compiler

26 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Suffix Language Action

.F Fortran 77 or
Fortran 95 fixed-
format

Apply the Fortran (or C) preprocessor to the Fortran 77 source file before
compilation.

.F95

.F90

Fortran 95 free-
format

Apply the Fortran (or C) preprocessor to the Fortran 95 free-format source file
before Fortran compiles it.

.F03 Fortran 2003 free-
format

Same as .F95

.s Assembler Assemble source files with the assembler.

.S Assembler Apply the C preprocessor to the assembler source file before assembling it.

.il Inline expansion Process template files for inline expansion. The compiler will use templates to
expand inline calls to selected routines. (Template files are special assembler
files; see the inline(1) man page.)

.o Object files Pass object files through to the linker.

.a, .so,.

.so.n
Libraries Pass names of libraries to the linker. .a files are static libraries, .so and .so.n

files are dynamic libraries.

Fortran 95 free-format is described in “4.1 Source Language Features” on page 161.

2.2.3 Source Files
The Fortran compiler will accept multiple source files on the command line. A single source
file, also called a compilation unit, may contain any number of procedures (main program,
subroutine, function, block data, module, and so on). Applications may be configured with
one source code procedure per file, or by gathering procedures that work together into single
files. The Fortran Programming Guide describes the advantages and disadvantages of these
configurations.

2.2.4 Source File Preprocessors

f95 supports two source file preprocessors, fpp and cpp. Either can be invoked by the compiler
to expand source code “macros” and symbolic definitions prior to compilation. The compiler
will use fpp by default; the -xpp=cpp option changes the default from fpp to cpp. (See also the
discussion of the -Dname option).

fpp is a Fortran-specific source preprocessor. See the fpp(1) man page for details. It is invoked
by default on files with a .F, .F90, F95, or .F03 extension.

The source code for fpp is available from Netlib.

See cpp(1) for information on the standard Unix C language preprocessor. Use of fpp over cpp
is recommended on Fortran source files.

http://www.netlib.org

2.2 Invoking the Compiler

Chapter 2 • Using Solaris Studio Fortran 27

2.2.5 Separate Compiling and Linking

You can compile and link in separate steps. The -c option compiles source files and generates
.o object files, but does not create an executable. Without the -c option the compiler
will invoke the linker. By splitting the compile and link steps in this manner, a complete
recompilation is not needed just to fix one file, as shown in the following example:

Compile one file and link with others in separate steps:

demo% f95 -c file1.f (Make new object file)
demo% f95 -o prgrm file1.o file2.o file3.o (Make executable file)

Be sure that the link step lists all the object files needed to make the complete program. If any
object files are missing from this step, the link will fail with undefined external reference errors
(missing routines).

2.2.6 Consistent Compiling and Linking

Ensuring a consistent choice of compiling and linking options is critical whenever compilation
and linking are done in separate steps. Compiling any part of a program with some options
requires linking with the same options. Also, a number of options require that all source files be
compiled with that option, including the link step.

The option descriptions in Chapter 3 identify such options.

Example: Compiling sbr.f with -fast, compiling a C routine, and then linking in a separate
step:

demo% f95 -c -fast sbr.f

demo% cc -c -fast simm.c

demo% f95 -fast sbr.o simm.o link step; passes -fast to the linker

2.2.7 Unrecognized Command-Line Arguments

Any arguments on the command-line that the compiler does not recognize are interpreted as
being possibly linker options, object program file names, or library names.

The basic distinctions are:

■ Unrecognized options (with a -) generate warnings.
■ Unrecognized non-options (no -) generate no warnings. However, they are passed to the

linker and if the linker does not recognize them, they generate linker error messages.

For example:

2.3 Directives

28 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

demo% f95 -bit move.f <- -bit is not a recognized f95 option
f95: Warning: Option -bit passed to ld, if ld is invoked, ignored otherwise

demo% f95 fast move.f <- The user meant to type -fast
ld: fatal: file fast: cannot open file; errno=2

ld: fatal: File processing errors. No output written to a.out

Note that in the first example, -bit is not recognized by f95 and the option is passed on to the
linker (ld), who tries to interpret it. Because single letter ld options may be strung together,
the linker sees -bit as -b -i -t, which are all legitimate ld options! This may (or may not) be
what the user expects, or intended.

In the second example, the user intended to type the f95 option -fast but neglected the leading
dash. The compiler again passes the argument to the linker which, in turn, interprets it as a file
name.

These examples indicate that extreme care should be observed when composing compiler
command lines!

2.2.8 Modules

f95 automatically creates module information files for each MODULE declaration encountered
in the source files, and searches for modules referenced by a USE statement. For each
module encountered (MODULE module_name), the compiler generates a corresponding file,
module_name.mod, in the current directory. For example, f95 generates the module information
file list.mod for the MODULE list unit found on file mysrc.f95.

See the -Mpath and -moddir dirlist option flags for information on how to set the defaults paths
for writing and searching for module information files.

See also the -use compiler option for implicitly invoking MODULE declarations in all compilation
units.

Use the fdumpmod(1) command to display information about the contents of a .mod module
information file.

For detailed information, see “4.9 Module Files” on page 184.

2.3 Directives

Use a source code directive, a form of Fortran comment, to pass specific information to the
compiler regarding special optimization or parallelization choices. Compiler directives are
also sometimes called pragmas. The compiler recognizes a set of general directives and
parallelization directives, including OpenMP directives.

2.3 Directives

Chapter 2 • Using Solaris Studio Fortran 29

Directives unique to f95 are described in “4.8 Directives” on page 182. A complete summary
of all the directives recognized by f95 appears in Appendix C, “Fortran Directives Summary”.

Note - Directives are not part of the Fortran standard.

2.3.1 General Directives

The various forms of a general Fortran directive are:

!$PRAGMA keyword (a [, a] …) [, keyword (a [, a] …)] ,…

!$PRAGMA SUN keyword (a [, a] …) [, keyword (a [, a] …)] ,…

The variable keyword identifies the specific directive. Additional arguments or suboptions may
also be allowed. (Some directives require the additional keyword SUN, as shown above.)

A general directive has the following syntax:

■ In column one, any of the comment-indicator characters c, C, !, or *
■ For f95 free-format, ! is the only comment-indicator recognized (!$PRAGMA). The examples

in this chapter assume Fortran 95 free-format.
■ The next seven characters are $PRAGMA, no blanks, in either uppercase or lowercase.
■ Directives using the ! comment-indicator character may appear in any position on the line

for free-format source programs.

Observe the following restrictions:

■ After the first eight characters, blanks are ignored, and uppercase and lowercase are
equivalent, as in Fortran text.

■ Because it is a comment, a directive cannot be continued, but you can have many !$PRAGMA
lines, one after the other, as needed.

■ If a comment satisfies the above syntax, it is expected to contain one or more directives
recognized by the compiler; if it does not, a warning is issued.

■ The C preprocessor, cpp, will expand macro symbol definitions within a comment or
directive line; the Fortran preprocessor, fpp, will not expand macros in comment lines. fpp
will recognize legitimate f95 directives and allow limited substitution outside directive
keywords. However, be careful with directives requiring the keyword SUN. cpp will replace
lower-case sun with a predefined value. Also, if you define a cpp macro SUN, it might
interfere with the SUN directive keyword. A general rule would be to spell those pragmas in
mixed case if the source will be processed by cpp or fpp, as in:

!$PRAGMA Sun UNROLL=3.

Another workaround might be to add -Usun when compiling a .F file.

2.3 Directives

30 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

The Fortran compiler recognizes the following general directives:

TABLE 2-2 Summary of General Fortran Directives

C Directive !$PRAGMA C(list)

Declares a list of names of external functions as C language routines.

IGNORE_TKR Directive !$PRAGMA IGNORE_TKR {name {, name} ...}

The compiler ignores the type, kind, and rank of the specified dummy argument
names appearing in a generic procedure interface when resolving a specific call.

UNROLL Directive !$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a length n.

WEAK Directive !$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPT Directive !$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

PIPELOOP Directive !$PRAGMA SUN PIPELOOP=n

Assert dependency in the following loop exists between iterations n apart.

PREFETCH Directives !$PRAGMA SUN_PREFETCH_READ_ONCE(name)
!$PRAGMA SUN_PREFETCH_READ_MANY(name)
!$PRAGMA SUN_PREFETCH_WRITE_ONCE(name)
!$PRAGMA SUN_PREFETCH_WRITE_MANY(name)

Request compiler generate prefetch instructions for references to name. (Requires -
xprefetch option, which is enabled by default. Prefetch directives can be disabled
by compiling with —xprefetch=no. Target architecture must also support prefetch
instructions, and the compiler optimization level must be greater than —xO2.)

ASSUME Directives !$PRAGMA [BEGIN} ASSUME (expression [,probability])

!$PRAGMA END ASSUME

Make assertions about conditions at certain points in the program that the compiler
can assume are true.

2.3.1.1 The C Directive

The C() directive specifies that its arguments are external functions.It is equivalent to an
EXTERNAL declaration except that unlike ordinary external names, the Fortran compiler will
not append an underscore to these argument names. See the C-Fortran Interface chapter in the
Fortran Programming Guide for more details.

The C() directive for a particular function should appear before the first reference to that
function in each subprogram that contains such a reference.

Example - compiling ABC and XYZ for C:

2.3 Directives

Chapter 2 • Using Solaris Studio Fortran 31

 EXTERNAL ABC, XYZ

!$PRAGMA C(ABC, XYZ)

2.3.1.2 The IGNORE_TKR Directive

This directive causes the compiler to ignore the type, kind, and rank of the specified dummy
argument names appearing in a generic procedure interface when resolving a specific call.

For example, in the procedure interface below, the directive specifies that SRC can be any
data type, but LEN can be either KIND=4 or KIND=8.The interface block defines two specific
procedures for a generic procedure name.This example is shown in Fortran 95 free format.

INTERFACE BLCKX

SUBROUTINE BLCK_32(LEN,SRC)

 REAL SRC(1)

!$PRAGMA IGNORE_TKR SRC

 INTEGER (KIND=4) LEN

END SUBROUTINE

SUBROUTINE BLCK_64(LEN,SRC)

 REAL SRC(1)

!$PRAGMA IGNORE_TKR SRC

 INTEGER (KIND=8) LEN

END SUBROUTINE

END INTERFACE

The subroutine call:

INTEGER L

REAL S(100)

CALL BLCKX(L,S)

The call to BLCKX will call BLCK_32 when compiled normally, and BLCK_64 when compiled with
-xtypemap=integer:64. The actual type of S does not determine which routine to call. This
greatly simplifies writing generic interfaces for wrappers that call specific library routines based
on argument type, kind, or rank.

Note that dummy arguments for assumed-shape arrays, Fortran pointers, or allocatable arrays
cannot be specified on the directive. If no names are specified, the directive applies to all
dummy arguments to the procedure, except dummy arguments that are assumed-shape arrays,
Fortran pointers, or allocatable arrays.

2.3.1.3 The UNROLL Directive

The UNROLL directive requires that you specify SUN after !$PRAGMA.

2.3 Directives

32 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

The !$PRAGMA SUN UNROLL=n directive instructs the compiler to unroll the following loop n
times during its optimization pass. (The compiler will unroll a loop only when its analysis
regards such unrolling as appropriate.)

n is a positive integer. The choices are:

■ If n=1, the optimizer may not unroll any loops.
■ If n>1, the optimizer may unroll loops n times.

If any loops are actually unrolled, the executable file becomes larger. For further information,
see the Fortran Programming Guide chapter on performance and optimization.

Example - unrolling loops two times:

!$PRAGMA SUN UNROLL=2

2.3.1.4 The WEAK Directive

The WEAK directive defines a symbol to have less precedence than an earlier definition of the
same symbol. This pragma is used mainly in sources files for building libraries. The linker does
not produce an error message if it is unable to resolve a weak symbol.

!$PRAGMA WEAK (name1 [=name2])

WEAK (name1) defines name1 to be a weak symbol. The linker does not produce an error
message if it does not find a definition for name1.

WEAK (name1=name2) defines name1 to be a weak symbol and an alias for name2.

If your program calls but does not define name1, the linker uses the definition from the library.
However, if your program defines its own version of name1, then the program’s definition is
used and the weak global definition of name1 in the library is not used. If the program directly
calls name2, the definition from library is used; a duplicate definition of name2 causes an error.
See the Solaris Linker and Libraries Guide for more information.

2.3.1.5 The OPT Directive

The OPT directive requires that you specify SUN after !$PRAGMA.

The OPT directive sets the optimization level for a subprogram, overriding the level specified
on the compilation command line. The directive must appear immediately before the target
subprogram, and only applies to that subprogram. For example:

!$PRAGMA SUN OPT=2

 SUBROUTINE smart(a,b,c,d,e)

2.3 Directives

Chapter 2 • Using Solaris Studio Fortran 33

 ...etc

When the above is compiled with an f95 command that specifies -O4, the directive will override
this level and compile the subroutine at -O2. Unless there is another directive following this
routine, the next subprogram will be compiled at -O4.

The routine must also be compiled with the -xmaxopt[=n] option for the directive to be
recognized. This compiler option specifies a maximum optimization value for PRAGMA OPT
directives: if a PRAGMA OPT specifies an optimization level greater than the -xmaxopt level, the -
xmaxopt level is used.

2.3.1.6 The PIPELOOP[=n] Directive

The PIPELOOP=n directive requires that you specify SUN after !$PRAGMA.

This directive must appear immediately before a DO loop. n is a positive integer constant,
or zero, and asserts to the optimizer a dependence between loop iterations. A value of zero
indicates that the loop has no inter-iteration (loop-carried) dependencies and can be freely
pipelined by the optimizer. A positive n value implies that the I-th iteration of the loop has a
dependency on the (I-n)-th iteration, and can be pipelined at best for only n iterations at a time.
(Default if n is not specified is 0)

C We know that the value of K is such that there can be no

C cross-iteration dependencies (E.g. K>N)

!$PRAGMA SUN PIPELOOP=0

 DO I=1,N

 A(I)=A(I+K) + D(I)

 B(I)=B(I) + A(I)

 END DO

For more information on optimization, see the Fortran Programming Guide.

2.3.1.7 The PREFETCH Directives

The -xprefetch option flag, “3.4.166 –xprefetch[=a[,a]]” on page 141, enables a set of
PREFETCH directives that advise the compiler to generate prefetch instructions for the specified
data element on processors that support prefetch.

!$PRAGMA SUN_PREFETCH_READ_ONCE(name)
!$PRAGMA SUN_PREFETCH_READ_MANY(name)
!$PRAGMA SUN_PREFETCH_WRITE_ONCE(name)
!$PRAGMA SUN_PREFETCH_WRITE_MANY(name)

See also the C User’s Guide, or the SPARC Architecture Manual, Version 9 for further
information about prefetch instructions.

2.3 Directives

34 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

2.3.1.8 The ASSUME Directives

The ASSUME directive gives the compiler hints about conditions at certain points in the program.
These assertions can help the compiler to guide its optimization strategies. The programmer can
also use these directives to check the validity of the program during execution. There are two
formats for ASSUME.

The syntax of the “point assertion” ASSUME is

!$PRAGMA ASSUME (expression [,probability])

Alternatively, the “range assertion” ASSUME is:

!$PRAGMA BEGIN ASSUME [expression [, probability)
 block of statements
!$PRAGMA END ASSUME

Use the point assertion form to state a condition that the compiler can assume at that point in the
program. Use the range assertion form to state a condition that holds over the enclosed range of
statements. The BEGIN and END pairs in a range assertion must be properly nested.

The required expression is a boolean expression that can be evaluated at that point in the
program that does not involve user-defined operators or function calls except for those listed
below.

The optional probability value is a real number from 0.0 to 1.0, or an integer 0 or 1, giving the
probability of the expression being true. A probability of 0.0 (or 0) means never true, and 1.0
(or 1) means always true. If not specified, the expression is considered to be true with a high
probability, but not a certainty. An assertion with a probability other than exactly 0 or 1 is a
non-certain assertion. Similarly, an assertion with a probability expressed exactly as 0 or 1 is a
certain assertion.

For example, if the programmer knows that the length of a DO loop is always greater than
10,000, giving this hint to the compiler can enable it to produce better code. The following loop
will generally run faster with the ASSUME pragma than without it.

!$PRAGMA BEGIN ASSUME(__tripcount().GE.10000,1) !! a big loop

 do i = j, n

 a(i) = a(j) + 1

 end do

!$PRAGMA END ASSUME

Two intrinsic functions are available for use specifically in the expression clause of the ASSUME
directive. (Note that their names are prefixed by two underscores.)

__branchexp() Use in point assertions placed immediately before a branching statement with a boolean
controlling expression. It yields the same result as the boolean expression controlling
the branching statement.

2.3 Directives

Chapter 2 • Using Solaris Studio Fortran 35

__tripcount() Yields the trip count of the loop immediately following or enclosed by the directive.
When used in a point assertion, the statement following the directive must be the first
line of a DO. When used in a range assertion, it applies to the outermost enclosed loop.

This list of special intrinsics might expand in future releases.

Use with the -xassume_control compiler option. (See “3.4.110 –
xassume_control[=keywords]” on page 105) For example, when compiled with -
xassume_control=check, the example above would produce a warning if the trip count ever
became less than 10,000.

Compiling with -xassume_control=retrospective will generate a summary report at program
termination of the truth or falsity of all assertions. See the f95 man page for details on -
xassume_control.

Another example:

!$PRAGMA ASSUME(__tripcount.GT.0,1)

 do i=n0, nx

Compiling the above example with -xassume_control=check will issue a runtime warning
should the loop not be taken because the trip count is zero or negative.

2.3.2 Parallelization Directives

OpenMP parallelization directives are only recognized when compiling with -openmp. Details
regarding OpenMP parallelization can be found in the OpenMP API User's Guide.

The Fortran compiler supports the OpenMP API for shared memory parallelism, Version 4.0.
Legacy Sun and Cray parallelization directives are now deprecated and should not be used.

2.3.2.1 OpenMP Parallelization Directives

The Fortran compiler recognizes the OpenMP API for shared memory parallelism as the
preferred parallel programming model. The API is specified by the OpenMP Architecture
Review Board (http://www.openmp.org).

You must compile with the command-line option -xopenmp, to enable OpenMP directives. (see
“3.4.157 –xopenmp[={parallel|noopt|none}]” on page 138.)

For more information about the OpenMP directives accepted by f95, see the OpenMP API
User’s Guide.

http://www.openmp.org

2.3 Directives

36 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

2.3.2.2 Legacy Sun/Cray Parallelization Directives

Note - Legacy Sun and Cray style parallelization directives are now deprecated. The OpenMP
parallelization API is preferred.

2.3.3 IVDEP Directive

The !DIR$ IVDEP directive tells the compiler to ignore some or all loop-carried dependences on
array references that it finds in a loop, allowing it to perform various loop optimizations such as
microvectorization, distribution, software pipelining, among others, that would not be otherwise
possible. It is employed in situations where the user knows either that the dependences do not
matter or that they never occur in practice.

For example:

 DO I = 1, N

 A(V(I)) = A(V(I)) + C(I)

 END DO

In this loop there are several loop-carried dependences on A(V(I)), because V(I) may contain
duplicate values to index A, and reordering the loop might result in different results. But if it
is known that V contains only distinct values, the loop could be reordered safely, and an IVDEP
directive could be used to allow optimization.

The —xivdep compiler option (see “3.4.136 –xivdep[=p]” on page 128) can be used to
disable or determine the interpretation of IVDEP directives.

Some legacy interpretations of the IVDEP directive only assert that there are no backward loop-
carried dependences. The Fortran compiler's default is —xivdep=loop, indicating that the IVDEP
directive asserts there are no assumed loop dependences.

The following examples illustrate backward and forward dependences.

 do i = 1, n ! BACKWARD LOOP-CARRIED DEPENDENCE

 ... = a(i-1) ! S1

 a(i) = ... ! S2

 end do

 do i = 1, n ! FORWARD LOOP-CARRIED DEPENDENCE

 a(i) = ... ! S3

 ... = a(i-1) ! S4

 end do

The first loop has a backward loop-carried dependence from S2 to S1, and the second loop has
a forward loop-carried dependence from S3 to S4. Since the second loop has only a forward
dependence, it can be distributed and/or microvectorized safely while the first one cannot.

2.4 Library Interfaces and system.inc

Chapter 2 • Using Solaris Studio Fortran 37

Here is an example of the use of IVDEP under the default value of -xivdep=loop:

integer target a(n)

integer, pointer :: p(:), q(:)

!DIR$ IVDEP

do i = 1, n

 p(i) = q(i)

 a(i) = a(i-1)

end do

The assumed dependences between p(i) and q(i) and between p(i) and a(*) are ignored, but
the obvious dependences between a(i) and a(i-1) are not. The loop can be divided into two
loops and the resulting p(i) = q(i) loop can be microvectorized.

The IVDEP directive applies to the immediately following DO loop. No other code is allowed
between the directive and the loop. !DIR$ IVDEP can also be applied to an array assignment,
FORALL, or WHERE construct. If multiple directives are present for a particular loop (such as
IVDEP and UNROLL), the compiler will obey all of them, if possible.

2.4 Library Interfaces and system.inc

The Fortran compiler provides an include file, system.inc, that defines the interfaces for most
non-intrinsic library routines. Declare this include file to insure that functions you call and their
arguments are properly typed, especially when default data types are changed with -xtypemap.

For example, the following may produce an arithmetic exception because function getpid() is
not explicitly typed:

 integer(4) mypid

 mypid = getpid()

 print *, mypid

The getpid() routine returns an integer value but the compiler assumes it returns a real value
if no explicit type is declared for the function. This value is further converted to integer, most
likely producing a floating-point error.

To correct this you should explicitly type getuid() and functions like it that you call:

 integer(4) mypid, getpid

 mypid = getpid()

 print *, mypid

Problems like these can be diagnosed with the -Xlist (global program checking) option. The
Fortran include file ”system.inc’ provides explicit interface definitions for these routines.

 include ’system.inc’

 integer(4) mypid

2.5 Compiler Usage Tips

38 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

 mypid = getpid()

 print *, mypid

Including system.inc in program units calling routines in the Fortran library will automatically
define the interfaces for you, and help the compiler diagnose type mismatches. (See the Fortran
Library Reference for more information.)

2.5 Compiler Usage Tips
The next sections suggest a number of ways to use the Fortran compiler efficiently. A complete
compiler options reference follows in the next chapter.

2.5.1 Determining Hardware Platform
Some compiler flags allow the user to tune code generation to a specific set of hardware
platform options. The compiler’s -dryrun option can be used to determine the native processor:

<sparc>% f95 -dryrun -xtarget=native
command line files and options (expanded):

-dryrun -xarch=sparcvis2 -xcache=64/32/4:1024/64/4 -xchip=ultra3i

<x64>% f95 -dryrun -xtarget=native
command line files and options (expanded):

-dryrun -xarch=sse2a -xcache=64/64/2:1024/64/16 -xchip=opteron

2.5.2 Using Environment Variables

You can specify options by setting the FFLAGS or OPTIONS variables.

Either FFLAGS or OPTIONS can be used explicitly in the command line. When you are using the
implicit compilation rules of make, FFLAGS is used automatically by the make program.

Example: Set FFLAGS: (C Shell)

demo% setenv FFLAGS ’-fast -Xlist’

Example: Use FFLAGS explicitly:

demo% f95 $FFLAGS any.f

When using make, if the FFLAGS variable is set as above and the makefile’s compilation rules are
implicit, that is, there is no explicit compiler command line, then invoking make will result in a
compilation equivalent to:

2.5 Compiler Usage Tips

Chapter 2 • Using Solaris Studio Fortran 39

f95 -fast -Xlist files…

make is a very powerful program development tool that can easily be used with all Oracle
Solaris Studio compilers. See the make(1) man page and the Program Development chapter in
the Fortran Programming Guide.

Note - Default implicit rules assumed by make may not recognize files with extensions .f95 and
.mod (Module files). See the Fortran Programming Guide for details.

2.5.3 Memory Size

A compilation may need to use a lot of memory. This will depend on the optimization level
chosen and the size and complexity of the files being compiled. If the optimizer runs out of
memory, it tries to recover by retrying the current procedure at a lower level of optimization and
resumes subsequent routines at the original level specified in the -On option on the command
line.

A processor running the compiler should have at least 64 megabytes of memory; 256 megabytes
are recommended. Enough swap space should also be allocated. 200 megabytes is the
minimum; 300 megabytes is recommended.

Memory usage depends on the size of each procedure, the level of optimization, the limits set
for virtual memory, the size of the disk swap file, and various other parameters.

Compiling a single source file containing many routines could cause the compiler to run out of
memory or swap space.

If the compiler runs out of memory, try reducing the level of optimization, or split multiple-
routine source files into files with one routine per file, using fsplit(1).

2.5.3.1 Swap Space Limits

The Oracle Solaris operating system command, swap -s, displays available swap space. See
swap(1M).

Example: Use the swap command:

demo% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used, 1058708k available

To determine the actual real memory:

demo% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)

avail mem = 602476544

2.5 Compiler Usage Tips

40 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

2.5.3.2 Increasing Swap Space

Use mkfile(1M) and swap(1M) to increase the size of the swap space on a workstation. You
must become superuser to do this. mkfile creates a file of a specific size, and swap -a adds the
file to the system swap space:

demo# mkfile -v 90m /home/swapfile
/home/swapfile 94317840 bytes

demo# /usr/sbin/swap -a /home/swapfile

2.5.3.3 Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at optimization
level -O3 or higher may require additional memory that could degrade compile-time
performance. You can control this by limiting the amount of virtual memory available to a
single process.

In a sh shell, use the ulimit command. See sh(1).

Example: Limit virtual memory to 16 Mbytes:

demo$ ulimit -d 16000

In a csh shell, use the limit command. See csh(1).

Example: Limit virtual memory to 16 Mbytes:

demo% limit datasize 16M

Each of these command lines causes the optimizer to try to recover at 16 Mbytes of data space.

This limit cannot be greater than the system’s total available swap space and, in practice, must
be small enough to permit normal use of the system while a large compilation is in progress. Be
sure that no compilation consumes more than half the space.

Example: With 32 Mbytes of swap space, use the following commands:

In a sh shell:

demo$ ulimit -d 1600

In a csh shell:

demo% limit datasize 16M

The best setting depends on the degree of optimization requested and the amount of real and
virtual memory available.

2.6 User-Supplied Default Options File

Chapter 2 • Using Solaris Studio Fortran 41

In 64-bit Solaris environments, the soft limit for the size of an application data segment is
2 Gbytes. If your application needs to allocate more space, use the shell’s limit or ulimit
command to remove the limit.

For csh use:

demo% limit datasize unlimited

For sh or ksh, use:

demo$ ulimit -d unlimited

See the Oracle Solaris 64-bit Developer’s Guide for more information.

2.6 User-Supplied Default Options File

The default compiler options file enables the user to specify a set of default options that are
applied to all compiles, unless otherwise overridden. For example, the file could specify that all
compiles default at —xO2, or automatically include the file setup.il.

At startup, the compiler searches for a default options file listing default options it should
include for all compiles. The environment variable SPRO_DEFAULTS_PATH specifies a colon
separated list of directories to search for the the defaults file.

If the environment variable is not set, a standard set of defaults is used. If the environment
variable is set but is empty, no defaults are used.

The defaults file name must be of the form compiler.defaults, where compiler is one of the
following: cc, c89, c99, CC, ftn, or lint. For example, the defaults for the Fortran
compiler would be ftn.defaults

If a defaults file for the compiler is found in the directories listed in SPRO_DEFAULTS_PATH,
the compiler will read the file and process the options prior to processing the options on the
command line. The first defaults file found will be used and the search terminated.

System administrators may create system-wide default files in Studio-install-path/lib/
compilers/etc/config. If the environment variable is set, the installed defaults file will not be
read.

The format of a defaults file is similar to the command line. Each line of the file may contain
one or more compiler options separated by white space. Shell expansions, such as wild cards
and substitutions, will not be applied to the options in the defaults file.

The value of the SPRO_DEFAULTS_PATH and the fully expanded command line will be displayed
in the verbose output produced by the —dryrun option.

2.6 User-Supplied Default Options File

42 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Options specified by the user on the command line will usually override options read from
the defaults file. For example, if the defaults file specifies compiling with —xO4 and the user
specifies —xO2 on the command line, —xO2 will be used.

Some options appearing in the default options file will be appended after the options specified
on the command line. These are the preprocessor option —I, linker options —B, —L, —R, and —
l, and all file arguments, such as source files, object files, archives, and shared objects.

The following is an example of how a user-supplied default compiler option startup file might
be used.

demo% cat /project/defaults/ftn.defaults
-I/project/src/hdrs —L/project/libs —llibproj —xvpara

demo% setenv SPRO_DEFAULTS_PATH /project/defaults

demo% f95 —c —I/local/hdrs —L/local/libs —lliblocal tst.f

This command is now equivalent to:

f95 -fast —xvpara —c —I/local/hdrs —L/local/libs —lliblocal tst.f \

 —I/project/src/hdrs —L/project/libs —llibproj

While the compiler defaults file provides a convenient way to set the defaults for an entire
project, it can become the cause of hard to diagnose problems. Set the environment variable
SPRO_DEFAULTS_PATH to an absolute path rather than the current directory to avoid such
problems.

The interface stability of the default options file is uncommitted. The order of option processing
is subject to change in a future release.

Chapter 3 • Fortran Compiler Options 43

 3 ♦ ♦ ♦ C H A P T E R 3

Fortran Compiler Options

This chapter details the command–line options for the f95 compiler.

■ A description of the syntax used for compiler option flags starts at “3.1 Command
Syntax” on page 43.

■ Summaries of options arranged by functionality starts at “3.3 Options
Summary” on page 45.

■ The complete reference detailing each compiler option flag starts at “3.4 Options
Reference” on page 51.

3.1 Command Syntax

The general syntax of the compiler command line is:

f95 [options] list_of_files additional_options

Items in square brackets indicate optional parameters. The brackets are not part of the
command. The options are a list of option keywords prefixed by dash (–). Some keyword
options take the next item in the list as an argument. The list_of_files is a list of source, object,
or library file names separated by blanks. Also, there are some options that must appear after
the list of source files, and these could include additional lists of files (for example, -B, -l, and
-L).

3.2 Options Syntax

Typical compiler option formats are:

TABLE 3-1 Options Syntax

Syntax Format Example

–flag –g

3.2 Options Syntax

44 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Syntax Format Example

–flagvalue –Dnostep

–flag=value –xunroll=4

–flag value –o outfile

The following typographical conventions are used when describing the individual options:

TABLE 3-2 Typographic Notations for Options

Notation Meaning Example: Text/Instance

[] Square brackets contain arguments that are optional. -O[n]

-O4, -O

{ } Curly brackets (braces) contain a set of choices for a required
option.

-d{y|n}

-dy

| The “pipe” or “bar” symbol separates arguments, only one of
which may be chosen.

-B{dynamic|static}

-Bstatic

: The colon, like the comma, is sometimes used to separate
arguments.

-Rdir[:dir]

-R/local/libs:/U/a

… The ellipsis indicates omission in a series. -xinline=f1[,…fn]

-xinline=alpha,dos

Brackets, pipe, and ellipsis are meta-characters used in the descriptions of the options and are
not part of the options themselves.

Some general guidelines for options are:

■ –lx is the option to link with library libx.a. It is always safer to put -lx after the list of file
names to insure the order libraries are searched.

■ In general, processing of the compiler options is from left to right, allowing selective
overriding of macro options (options that include other options). This rule does not apply
to linker options. However, some options, -I, -L, and -R for example, accumulate values
rather than override previous values when repeated on the same command line.

■ In an optional list of choices, such as -xhasc[={yes|no}], the first choice listed is the value
assumed when the option flag appears on the command line without a value. For example, -
xhasc is equivalent to -xhasc=yes.

■ Source files, object files, and libraries are compiled and linked in the order in which they
appear on the command line.

3.3 Options Summary

Chapter 3 • Fortran Compiler Options 45

3.3 Options Summary

In this section, the compiler options are grouped by function to provide an easy reference. The
details will be found on the pages in the following sections, as indicated.

Note that not all options are available on both SPARC and x64/x86 platforms. Check the
detailed reference section for availability.

The following table summarizes the f95 compiler options by functionality. The table does not
include obsolete and legacy option flags. Some flags serve more than one purpose and appear
more than once.

TABLE 3-3 Compiler Options Grouped by Functionality

Function Option Flag

Compilation Mode:

 Compile only; do not produce an executable file -c

 Show commands built by the driver but do not compile -dryrun

 Support Fortran 77 extensions and compatibility -f77

 Do not replace a module file whose content is not changed by the
compilation of the associated Fortran module

-keepmod

 Retains the temporary files that are created during compilation. -keeptmp

 Specify path for writing compiled .mod Module files -moddir=path

 Specify name of object, library, or executable file to write -o filename

 Compile and generate only assembly code -S

 Strip symbol table from executable -s

 Suppress compiler messages, except error messages -silent

 Define path to directory for temporary files -temp=path

 Show elapsed time for each compilation phase -time

 Show version number of compiler and its phases -V

 Verbose messages -v

 Specify non-standard aliasing situations -xalias=list

 Compile with multiple processors -xjobs=n

 Generate make dependencies -xM

 (Oracle Solaris) Link debug information from object files into
executable

-xs

Compiled Code:

 Add/suppress trailing underscores on external names -ext_names=x

 Inline specified user functions -inline=list

 Compile position independent code -KPIC/-kpic

 Inline certain math library routines -libmil

3.3 Options Summary

46 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Function Option Flag

 (x86) Save copies of register-based function arguments in the stack -preserve_argvalues

 STOP returns integer status value to shell -stop_status[=yn]

 Specify code address space -xcode=x

 Equivalent to -inline -xinline

 Manually change the heuristics used by the compiler for deciding
when to inline a function call

-xinline_param

 Generate a report written to standard output on the inlining of
functions by the compiler

-xinline_report

 Enable prefetch instructions -xprefetch[=x]

 Specify use of optional registers -xregs=x

 Specify default data mappings -xtypemap=x

Data Alignment:

 Specify alignment of data in COMMON blocks -aligncommon[=n]

 Force COMMON block data alignment to allow double word fetch/
store

-dalign

 Force alignment of all data on 8-byte boundaries -dbl_align_all

 Align COMMON block data on 8-byte boundaries -f

 Support file sharing between little-endian and big-endian platforms. -xfilebyteorder

 Specify memory alignment and behavior -xmemalign[=ab]

Debugging:

 Enable runtime subscript range checking -C

 Compile for debugging with dbx -g

 Flag use of undeclared variables -u

 Check !$PRAGMA ASSUME assertions -xassume_control=check

 Check for stack overflow at runtime -xcheck=stkovf

 Enable runtime task common check -xcommonchk

 Control how much debugging and observability information is
emitted

-xdebuginfo

 Compile for Performance Analyzer -xF

 Control globalization of file static variables but not functions -xglobalize

 Keep definitions of unreferenced functions and variables -xkeep_unref

 Generate cross-reference listings -Xlistx

 Enable debugging without object files -xs

Diagnostics:

 Flag use of non-standard extensions -ansi

 Suppress named warning messages -erroff=

 Display error tag names with error messages -errtags

 Show summary of compiler options -flags, -help

3.3 Options Summary

Chapter 3 • Fortran Compiler Options 47

Function Option Flag

 Show version number of the compiler and its phases -V

 Verbose messages -v

 Verbose parallelization messages -vpara

 Show/suppress warning messages -wn

 (Oracle Solaris) Link debug information from object files into
executable

-xs

Linking and Libraries:

 Allow/require dynamic/static libraries -Bx

 Allow only dynamic/static library linking -dy, -dn

 Build a dynamic (shared object) library -G

 Assign name to dynamic library -hname

 Add directory to library search path -Lpath

 Link with library libname.a or libname.so -lname

 Do not build library search path into executable. -norunpath

 Build runtime library search path into executable -Rpath

 Disable use of incremental linker, ild -xildoff

 Link with optimized math library -xlibmopt

 Link with Sun Performance Library -xlic_lib=sunperf

 Reserve an area of memory before the start of each function -xpatchpadding

 Specify whether the program contains references to dynamically
bound symbols

-xunboundsym

 Link editor option -zx

 Generate pure libraries with no relocations -ztext

Numerics and Floating-Point:

 Use non-standard floating-point preferences -fnonstd

 Select non-standard floating point -fns

 Enable runtime floating-point overflow during input -fpover

 Select IEEE floating-point rounding mode -fround=r

 Select floating-point optimization level -fsimple=n

 Select floating-point trapping mode -ftrap=t

 Specify rounding method for formatted input/output -iorounding=mode

 Promote single precision constants to double precision -r8const

 Enable interval arithmetic and set the appropriate floating-point
environment (includes -xinterval)

-xia[=e]

 Enable interval arithmetic extensions -xinterval[=e]

Optimization and Performance:

 Analyze loops for data dependencies -depend

3.3 Options Summary

48 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Function Option Flag

 Optimize using a selection of options -fast

 Specify that the program does not perform I/O in more than one
thread at a time.

-fserialio

 Specify optimization level -On

 Pad data layout for efficient use of cache -pad[=p]

 Allocate local variables on the memory stack -stackvar

 Enable loop unrolling -unroll[=m]

 Invoke interprocedural optimizations pass -xipo[=n]

 Reduce compile time by avoiding optimizations during the initial
pass through the compiler, optimizing only at link time

-xipo_build

 Set highest optimization level for #pragma OPT -xmaxopt[=n]

 Compile for post-compilation optimizations -xbinopt=prepare

 Enable/adjust compiler generated prefetch instructions -xprefetch=list

 Control automatic generation of prefetch instructions -xprefetch_level=n

 Enable generation or use of performance profiling data -xprofile=p

 Assert that no memory-based traps will occur -xsafe=mem

 Cause the driver to include a special mapfile on the link line. -xsegment_align

 Do no optimizations that increase code size -xspace

 Specify that the application will be run in situations where many
processes are simultaneously running on the system

-xthroughput

 Generate calls to vector library functions automatically -xvector[=yn]

Parallelization:

 Enable automatic parallelization of DO loops -autopar

 Equivalent to -xopenmp=parallel -fopenmp

 Show loop parallelization information -loopinfo

 Compile for hand-coded multithreaded programming -mt

 Accept OpenMP API directives. The -xopenmp option flag accepts
the following suboption keywords: parallel, noopt, and none.

-xopenmp[=keyword]

 Recognize reduction operations in loops with automatic
parallelization

-reduction

 Verbose parallelization messages -vpara

 Specify that the application will be run in situations where many
processes are simultaneously running on the system

-xthroughput

Source Code:

 Define preprocessor symbol -Dname[=val]

 Undefine preprocessor symbol -Uname

 Accept extended (132 character) source lines -e

 Apply preprocessor to .F and/or .F90 and .F95 files but do not
compile

-F

3.3 Options Summary

Chapter 3 • Fortran Compiler Options 49

Function Option Flag

 Accept Fortran 95 fixed-format input -fixed

 Preprocess all source files with the fpp preprocessor -fpp

 Accept Fortran 95 free-format input -free

 Add directory to include file search path -Ipath

 Add directory to module search path -Mpath

 Recognize upper and lower case as distinct -U

 Tread hollerith as character in actual arguments -xhasc={yes|no}

 Select preprocessor, cpp or fpp, to use -xpp[={fpp|cpp}]

 Allow recursive subprogram calls -xrecursive

Target Platform:

 Specify memory model, 32 or 64 bits. -m32 | —m64

 Specify target platform instruction set for the optimizer -xarch=a

 Specify target cache properties for optimizer -xcache=a

 Specify target processor for the optimizer -xchip=a

 Specify target platform for the optimizer -xtarget=a

3.3.1 Commonly Used Options

The compiler has many features that are selectable by optional command–line parameters. The
short list below of commonly used options is a good place to start.

TABLE 3-4 Commonly Used Options

Action Option

Debug—global program checking across routines for consistency of arguments, commons, and so
on.

–Xlist

Debug—produce additional symbol table information to enable the dbx and debugging. –g

Performance—invoke the optimizer to produce faster running programs. –O[n]

Performance—Produce efficient compilation and run times for the native platform, using a set of
predetermined options.

–fast

Dynamic (–Bdynamic) or static (–Bstatic) library binding. –Bx

Compile only—Suppress linking; make a .o file for each source file. –c

Output file—Name the executable output file nm instead of a.out. –o nm

Source code—Compile fixed format Fortran source code. -fixed

3.3 Options Summary

50 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.3.2 Macro Flags

Some option flags are macros that expand into a specific set of other flags. These are provided
as a convenient way to specify a number of options that are usually expressed together to select
a certain feature.

TABLE 3-5 Macro Option Flags

Option Flag Expansion

-dalign -xmemalign=8s -aligncommon=16

-f -aligncommon=16

-fast See description of —fast for complete current expansion.

-fnonstd -fns -ftrap=common

-xia=widestneed -xinterval=widestneed -ftrap=%none -fns=no -fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

-xtarget -xarch=a -xcache=b -xchip=c

Settings that follow the macro flag on the command line override or add to the the expansion of
the macro.

3.3.3 Backward Compatibility and Legacy Options

The following options are provided for backward compatibility with earlier compiler releases,
and certain Fortran legacy capabilities.

TABLE 3-6 Backward Compatibility Options

Action Option

Preserve actual arguments over ENTRY statements -arg=local

Allow assignment to constant arguments. –copyargs

Treat hollerith constant as character or typeless in call argument lists. -xhasc[={yes|no}]

Support Fortran 77 extensions and conventions -f77

Nonstandard arithmetic—allow nonstandard arithmetic. –fnonstd

Optimize performance for the host system. –native

DO loops—use one trip DO loops. –onetrip

Allow legacy aliasing situations -xalias=keywords

Use of these option flags is not recommended for producing portable Fortran programs.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 51

3.3.4 Obsolete Option Flags

The following options are considered obsolete and should not be used. They might be removed
from later releases of the compiler.

TABLE 3-7 Obsolete f95 Options

Option Flag Equivalent

-a -xprofile=tcov

-native -xtarget=native

-noqueue License queueing. No longer needed.

-p Profiling. Use -pg or the Performance Analyzer

-pic -xcode=pic13

-PIC -xcode=pic32

-silent Ignored.

-xarch={v7,v8,v8a} Use —m32

3.4 Options Reference

This section describes all of the f95 compiler command–line option flags, including various
risks, restrictions, caveats, interactions, examples, and other details.

Unless indicated otherwise, each option is valid on both SPARC and x64/x86 platforms. Option
flags valid only on SPARC platforms are marked (SPARC). Option flags valid only on x64/x86
platforms are marked (x86).

Option flags marked (Obsolete) are obsolete and should not be used. In many cases they have
been superceded by other options or flags that should be used instead.

3.4.1 –aligncommon[={1|2|4|8|16}]
Specify the alignment of data in common blocks and standard numeric sequence types.

The value indicates the maximum alignment (in bytes) for data elements within common blocks
and standard numeric sequence types.

Note - A standard numeric sequence type is a derived type containing a SEQUENCE statement
and only default component data types (INTEGER, REAL, DOUBLEPRECISION, COMPLEX without
KIND= or * size) . Any other type, such as REAL*8, will make the type non-standard.

3.4 Options Reference

52 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

For example, -aligncommon=4 would align data elements with natural alignments of 4 bytes or
more on 4-byte boundaries.

This option does not affect data with natural alignment smaller than the specified size.

Without -aligncommon, the compiler aligns elements in common blocks and numeric sequence
types on (at most) 4-byte boundaries.

Specifying -aligncommon without a value defaults to 1 - all common block and numeric
sequence type elements align on byte boundaries (no padding between elements).

-aligncommon=16 reverts to -aligncommon=8 on platforms that are not 64-bit enabled.

Do not use -aligncommon=1 with -xmemalign as these declarations will conflict and could
cause a segmentation fault on some platforms and configurations.

Using —aligncommon=1 on SPARC platforms might result in a bus error due to misalignment,
requiring an appropriate choice of the —xmemalign option be used. Depending on the
application, —xmemalign=1s, —xmemalign=4i, or —xmemalign=8i should give optimal
performance while avoiding the segmentation fault.

See also —xmemalign

3.4.2 –ansi

Identify many nonstandard extensions.

Warning messages are issued for any uses of non–standard Fortran extensions in the source
code.

3.4.3 –arg=local

Preserve actual arguments over ENTRY statements.

When you compile a subprogram with alternate entry points with this option, f95 uses copy/
restore to preserve the association of dummy and actual arguments.

This option is provided for compatibility with legacy Fortran 77 programs. Code that relies on
this option is non-standard.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 53

3.4.4 –autopar

Enable automatic loop parallelization.

Finds and parallelizes appropriate loops for running in parallel on multiple processors. Analyzes
loops for inter–iteration data dependencies and loop restructuring. If the optimization level is
not specified -O3 or higher, it will automatically be raised to -O3.

Also specify the -stackvar option when using any of the parallelization options, including
-autopar. The -stackvar option may provide better performance when using -autopar
because it may allow the optimizer to detect additional opportunities for parallelization. See the
description of the -stackvar option for information on how to set the sizes for the main thread
stack and for the slave thread stacks.

Avoid -autopar if the program already contains explicit calls to the libthread threads library.
See note in “3.4.60 -mt[={yes|no}]” on page 80.

The -autopar option is not appropriate on a single–processor system, and the compiled code
will generally run slower.

Use the OMP_NUM_THREADS environment variable to specify the number of threads to use
when running a program automatically parallelized by the -xautopar compiler option. If
OMP_NUM_THREADS is not set, the default number of threads used is equal to the number of cores
on the machine, capped at 32. Set OMP_NUM_THREADS to 1 to run with just one thread. For best
performance, the number of threads used should not exceed the number of hardware threads
(or virtual processors) available on the machine. On Oracle Solaris systems, this number can
be determined by using the psrinfo(1M) command. On Linux systems, this number can be
determined by inspecting the file /proc/cpuinfo. See the OpenMP API User's Guide for more
information.

In addition to OMP_NUM_THREADS, other environment variables that apply to an OpenMP
programs may be used with a program automatically parallelized by the -xautopar compiler
option. See the Oracle Solaris Studio OpenMP API User's Guide for descriptions of the
environment variables.

If you use -autopar and compile and link in one step, the multithreading library and the
thread–safe Fortran runtime library will automatically be linked. If you use -autopar and
compile and link in separate steps, then you must also link with -autopar to insure linking the
appropriate libraries.

Use the -reduction option in conjunction with -autopar to recognize reduction operations in
loops.

Use the -loopinfo option to show which loops were and were not parallelized.

For explicit, user-controlled parallelization, use OpenMP directives and the -xopenmp option.

3.4 Options Reference

54 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.5 –B{static|dynamic}
Prefer dynamic or require static library linking.

No space is allowed between -B and dynamic or static. The default, without -B specified, is
-Bdynamic.

■ –Bdynamic: Prefer dynamic linking (try for shared libraries).
■ –Bstatic: Require static linking (no shared libraries).

Also note:

■ If you specify static, but the linker finds only a dynamic library, then the library is not
linked with a warning that the “library was not found.”

■ If you specify dynamic, but the linker finds only a static version, then that library is linked,
with no warning.

You can toggle -Bstatic and -Bdynamic on the command line. That is, you can link some
libraries statically and some dynamically by specifying -Bstatic and -Bdynamic any number
of times on the command line, as follows:

f95 prog.f -Bdynamic -lwells -Bstatic -lsurface

These are loader and linker options. Compiling and linking in separate steps with -Bx on the
compile command will require it in the link step as well.

You cannot specify both -Bdynamic and -dn on the command line because -dn disables
linking of dynamic libraries.

In a 64-bit Solaris environment, many system libraries are available only as shared dynamic
libraries. These include libm.so and libc.so (libm.a and libc.a are not provided). This
means that -Bstatic and -dn may cause linking errors in 64-bit Solaris environments.
Applications must link with the dynamic libraries in these cases.

Mixing static Fortran runtime system libraries with dynamic Fortran runtime system libraries is
not recommended and can result in linker errors or silent data corruption. Always link with the
latest shared dynamic Fortran runtime system libraries.

See the Fortran Programming Guide for more information on static and dynamic libraries.

3.4.6 –C

Check array references for out of range subscripts and conformance at runtime.

Subscripting arrays beyond their declared sizes may result in unexpected results, including
segmentation faults. The -C option checks for possible array subscript violations in the source

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 55

code and during execution. -C also adds runtime checks for array conformance in array syntax
expressions

Specifying -C may make the executable file larger.

If the -C option is used, array subscript violations are treated as an error. If an array subscript
range violation is detected in the source code during compilation, it is treated as a compilation
error.

If an array subscript violation can only be determined at runtime, the compiler generates range–
checking code into the executable program. This may cause an increase in execution time. As a
result, it is appropriate to enable full array subscript checking while developing and debugging
a program, then recompiling the final production executable without subscript checking.

3.4.7 –c

Compile only; produce object .o files, but suppress linking.

Compile a .o file for each source file. If only a single source file is being compiled, the -o
option can be used to specify the name of the .o file written.

3.4.8 –copyargs

Allow assignment to constant arguments.

Allow a subprogram to change a dummy argument that is a constant. This option is provided
only to allow legacy code to compile and execute without a runtime error.

■ Without -copyargs, if you pass a constant argument to a subroutine, and then within the
subroutine try to change that constant, the run aborts.

■ With -copyargs, if you pass a constant argument to a subroutine, and then within the
subroutine change that constant, the run does not necessarily abort.

Code that aborts unless compiled with -copyargs is, of course, not Fortran standard compliant.
Also, such code is often unpredictable.

3.4.9 –Dname[=def]
Define symbol name for the preprocessor.

This option only applies to .F, .F90, .F95, and .F03 source files.

3.4 Options Reference

56 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

–Dname=def Define name to have value def

–Dname Define name to be 1

On the command line, this option will define name as if

#define name[=def]

had appeared in the source file. If no =def specified, the name name is defined as the value 1.
The macro symbol name is passed on to the preprocessor fpp (or cpp— see the -xpp option)
for expansion.

The predefined macro symbols have two leading underscores. The Fortran syntax may not
support the actual values of these macros—they should appear only in fpp or cpp preprocessor
directives. (Note the two leading underscores.)

■ The compiler version is predefined (in hex) in _ _SUNPRO_F90, and _ _SUNPRO_F95. For
example _ _SUNPRO_F95 is 0x860 for version 8.6 of the Fortran compiler in the Oracle
Solaris Studio 12.4 release.

■ The following macros are predefined on appropriate systems:

_ _sparc, _ _unix, _ _sun, _ _SVR4, __i386, _ _SunOS_5_10, _ _SunOS_5_11

The symbols _ _sparc, _ _sparcv8, and _ _sparcv9 are defined on their respective
SPARC systems.

■ The following are predefined with no underscores, but they might be deleted in a future
release: sparc, unix, sun

■ On 64-bit x86 systems, the macros __amd64 and __x86_64 are defined.

Compile a .F, .F90, .F95, or .F03 source file with the -v verbose option to see the preprocessor
definitions assumed by the compiler.

You can use these values in such preprocessor conditionals as the following:

#ifdef _ _sparc

f95 uses the fpp(1) preprocessor by default. Like the C preprocessor cpp(1), fpp expands
source code macros and enables conditional compilation of code. Unlike cpp, fpp understands
Fortran syntax, and is preferred as a Fortran preprocessor. Use the -xpp=cpp flag to force the
compiler to specifically use cpp rather than fpp.

3.4.10 –dalign

Align COMMON blocks and standard numerical sequence types, and generate faster multi-
word load/stores.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 57

This flag changes the data layout in COMMON blocks, numeric sequence types, and
EQUIVALENCE classes, and enables the compiler to generate faster multi-word load/stores for
that data.

The data layout effect is that of the -f flag: double- and quad-precision data in COMMON
blocks and EQUIVALENCE classes are laid out in memory along their “natural” alignment,
which is on 8-byte boundaries (or on 16-byte boundaries for quad-precision when compiling
for 64-bit environments with -m64). The default alignment of data in COMMON blocks is on 4-
byte boundaries. The compiler is also allowed to assume natural alignment and generate faster
multi-word load/stores to reference the data.

Using -dalign along with -xtypemap=real:64,double:64,integer:64 also causes 64-bit
integer variables to be double-word aligned on SPARC processors.

Note - -dalign may result in nonstandard alignment of data, which could cause problems with
variables in EQUIVALENCE or COMMON and may render the program non-portable if -dalign is
required.

-dalign is a macro equivalent to:

-xmemalign=8s -aligncommon=16 on SPARC platforms

-aligncommon=8 on 32-bit x86 platforms

-aligncommon=16 on 64-bit x86 platforms.

If you compile one subprogram with -dalign, compile all subprograms of the program with -
dalign. This option is included in the -fast option.

Note that because -dalign invokes -aligncommon, standard numeric sequence types are also
affected by this option. See “3.4.1 –aligncommon[={1|2|4|8|16}]” on page 51

3.4.11 –dbl_align_all[={yes|no}]
Force alignment of data on 8–byte boundaries

The value is either yes or no. If yes, all variables will be aligned on 8–byte boundaries. Default
is -dbl_align_all=no.

When compiling for 64-bit environments with -m64, this flag will align quad-precision data on
16-byte boundaries.

This flag does not alter the layout of data in COMMON blocks or user-defined structures.

Use with -dalign to enable added efficiency with multi-word load/stores.

3.4 Options Reference

58 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

If used, all routines must be compiled with this flag.

3.4.12 –depend[={yes|no}]

Analyze loops for inter-iteration data dependencies and performs loop restructuring. Loop
restructuring includes loop interchange, loop fusion, and scalar replacement.

If you do not specify -depend, the default is -depend=yes. If you specify -depend but do not
specify an argument, the compiler assumes -depend=yes.

To turn off dependence analysis, compile with -depend=no.

-xdepend is a synonym for -depend.

3.4.13 –dryrun

Show commands built by the f95 command-line driver, but do not compile.

Useful when debugging, this option displays the commands and suboptions the compiler will
invoke to perform the compilation.

3.4.14 –d{y|n}

Allow or disallow dynamic libraries for the entire executable.

■ –dy: Yes, allow dynamic/shared libraries.
■ –dn: No, do not allow dynamic/shared libraries.

The default, if not specified, is -dy.

Unlike -Bx, this option applies to the whole executable and need appear only once on the
command line.

–dy|–dn are loader and linker options. If you compile and link in separate steps with these
options, then you need the same option in the link step.

In a 64-bit Solaris environment, many system libraries are not available only as shared dynamic
libraries. These include libm.so and libc.so (libm.a and libc.a are not provided). This

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 59

means that -dn and -Bstatic may cause linking errors in 64-bit Solaris environments and 32-
bit x86 Solaris platforms, and all 32-bit Solaris platforms starting with the Solaris 10 release.
Applications must link with the dynamic libraries in these cases.

3.4.15 –e

Accept extended length input source line.

Extended source lines can be up to 132 characters long. The compiler pads on the right with
trailing blanks to column 132. If you use continuation lines while compiling with -e, then do
not split character constants across lines, otherwise, unnecessary blanks may be inserted in the
constants.

3.4.16 –erroff[={%all|%none|taglist}]

Suppress warning messages listed by tag name.

Suppress the display of warning messages specified in the comma–separated list of tag names
taglist. If %all, suppress all warnings, which is equivalent to the -w option. If %none, no
warnings are suppressed. —erroff without an argument is equivalent to —erroff=%all.

Example:

f95 -erroff=WDECL_LOCAL_NOTUSED ink.f

Use the -errtags option to see the tag names associated with warning messages.

3.4.17 –errtags[={yes|no}]

Display the message tag with each warning message.

With-errtags=yes, the compiler’s internal error tag name will appear along with warning
messages. -errtags alone is equivalent to -errtags=yes.

The default is not to display the tag (-errtags=no).

demo% f95 -errtags ink.f
ink.f:

 MAIN:

"ink.f", line 11: Warning: local variable "i" never used (WDECL_LOCAL_NOTUSED)

3.4 Options Reference

60 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.18 –errwarn[={%all|%none|taglist}]

Treat warning messages as errors.

The taglist specifies a list of comma-separated tag names of warning messages that should be
treated as errors. If %all, treat all warnings as errors. If %none, no warnings are treated as errors.

See also -errtags.

3.4.19 –ext_names=e

Create external names with or without trailing underscores.

e must be either plain, underscores, or fsecond-underscore The default is underscores.

–ext_names=plain: Do not add trailing underscore.

–ext_names=underscores: Add trailing underscore.

–ext_names=fsecond-underscore: Append two underscores to external names that contain an
underscore, and a single underscore to those that do not.

An external name is a name of a subroutine, function, block data subprogram, or labeled
common. This option affects both the name of the routine’s entry point and the name used in
calls to it. Use this flag to allow Fortran routines to call (and be called by) other programming
language routines.

fsecond-underscore is provided for compatibility with gfortran.

3.4.20 –F

Invoke the source file preprocessor, but do not compile.

Apply the fpp preprocessor to .F, .F90, .F95, and .F03 source files listed on the command
line, and write the processed result on a file with the same name but with filename extension
changed to .f (or .f95 or .f03), but do not compile.

Example:

f95 -F source.F

writes the processed source file to source.f

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 61

fpp is the default preprocessor for Fortran. The C preprocessor, cpp, can be selected instead by
specifying -xpp=cpp.

3.4.21 –f

Align double- and quad-precision data in COMMON blocks.

-f is a legacy option flag equivalent to -aligncommon=16. Use of -aligncommon is preferred.

The default alignment of data in COMMON blocks is on 4-byte boundaries. -f changes the data
layout of double- and quad-precision data in COMMON blocks and EQUIVALENCE classes to
be placed in memory along their “natural” alignment, which is on 8-byte boundaries (or on 16-
byte boundaries for quad-precision when compiling for 64-bit environments with -m64).

Note - -f may result in nonstandard alignment of data, which could cause problems with
variables in EQUIVALENCE or COMMON and may render the program non-portable if -f is
required.

Compiling any part of a program with -f requires compiling all subprograms of that program
with -f.

By itself, this option does not enable the compiler to generate faster multi-word fetch/store
instructions on double and quad precision data. The -dalign option does this and invokes -f
as well. Use of -dalign is preferred over the older -f. See “3.4.10 –dalign” on page 56.
Because -dalign is part of the -fast option, so is -f.

3.4.22 –f77[=list]

Select FORTRAN 77 compatibility mode.

This option flag enables porting legacy FORTRAN 77 source programs, including those with
language extensions accepted by the Sun WorkShop f77 compiler, to the f95 Fortran compiler.
(There is no longer a separate FORTRAN 77 compiler.)

list is a comma-separated list selected from the following possible keywords:

keyword meaning

%all Enable all the Fortran 77 compatibility features.

3.4 Options Reference

62 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

keyword meaning

%none Disable all the Fortran 77 compatibility features.

backslash Accept backslash as an escape sequence in character strings.

input Allow input formats accepted by f77.

intrinsics Limit recognition of intrinsics to only Fortran 77 intrinsics.

logical Accept Fortran 77 usage of logical variables, such as:

■ assigning integer values to logical variables
■ allowing arithmetic expressions in logical conditional statements, with .NE.0 representing

.TRUE.

■ allowing relational operators .EQ. and .NE. with logical operands

misc Allow miscellaneous f77 Fortran 77 extensions.

output Generate f77-style formatted output, including list-directed and NAMELIST output.

subscript Allow non-integer expressions as array subscripts.

tab Enable f77-style TAB-formatting, including unlimited source line length. No blank padding
will be added to source lines shorter than 72 characters.

All keywords can be prefixed by no% to disable the feature, as in:

-f77=%all,no%backslash

The default, when -f77 is not specified, is -f77=%none. Using -f77 without a list is equivalent
to specifying -f77=%all.

Exceptions Trapping and -f77:

Specifying -f77 does not change the Fortran trapping mode, which is -ftrap=common. f95
differs from the Fortran 77 compiler’s behavior regarding arithmetic exception trapping. The
Fortran 77 compiler allowed execution to continue after an arithmetic exception occurred.
Compiling with -f77 also causes the program to call ieee_retrospective on program exit to
report on any arithmetic exceptions that might have occurred. Specify -ftrap=%none following
the -f77 option flag on the command line to mimic the original Fortran 77 behavior.

See “4.12 Mixing Languages” on page 187 for complete information on f77 compatibility
and Fortran 77 to Fortran 95 migration.

See also the -xalias flag for handling non-standard programming syndromes that may cause
incorrect results.

3.4.23 –fast

Select options that optimize execution performance.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 63

Note - This option is defined as a particular selection of other options that is subject to change
from one release to another, and between compilers. Also, some of the options selected by
-fast might not be available on all platforms. Compile with the -dryrun flag to see the
expansion of -fast.

-fast provides high performance for certain benchmark applications. However, the particular
choice of options may or may not be appropriate for your application. Use -fast as a good
starting point for compiling your application for best performance. But additional tuning
may still be required. If your program behaves improperly when compiled with -fast, look
closely at the individual options that make up -fast and invoke only those appropriate to your
program that preserve correct behavior.

Note also that a program compiled with -fast may show good performance and accurate
results with some data sets, but not with others. Avoid compiling with -fast those programs
that depend on particular properties of floating-point arithmetic.

Because some of the options selected by -fast have linking implications, if you compile and
link in separate steps be sure to link with -fast also.

–fast selects the following options:

■ The -xtarget=native hardware target.
If the program is intended to run on a different target than the compilation machine, follow
the -fast with a code–generator option. For example: f95 -fast -xtarget=ultraT2 ...

■ The -O5 optimization level option.
■ The -depend option analyzes loops for data dependencies and possible restructuring. (This

option is always enabled when compiling at optimizations levels -xO3 and greater.)
■ The -libmil option for system–supplied inline expansion templates.

For C functions that depend on exception handling, follow -fast by -nolibmil (as
in -fast -nolibmil). With -libmil, exceptions cannot be detected with errno or
matherr(3m).

■ The -fsimple=2 option for aggressive floating–point optimizations.

–fsimple=2 is unsuitable if strict IEEE 754 standards compliance is required. See “3.4.36 –
fsimple[={1|2|0}]” on page 69.

■ The -dalign option to generate double loads and stores for double and quad data in
common blocks. Using this option can generate nonstandard Fortran data alignment in
common blocks.

■ The -xlibmopt option selects optimized math library routines.
■ -pad=local inserts padding between local variables, where appropriate, to improve cache

usage. (SPARC)
■ -xvector=lib transforms certain math library calls within DO loops to single calls to a

vectorized library equivalent routine with vector arguments. (SPARC)

3.4 Options Reference

64 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ -fma=fused enables automatic generation of floating-point fused multiply-add instructions.
■ –fns selects non-standard floating-point arithmetic exception handling and gradual

underflow. See “3.4.28 –fns[={yes|no}]” on page 66.
■ -fround=nearest is selected because —xvector and —xlibmopt require it. (Oracle Solaris)
■ Trapping on common floating-point exceptions, -ftrap=common, is the enabled with f95.
■ -nofstore cancels forcing expressions to have the precision of the result. (x86)
■ -xregs=frameptr on x86 allows the compiler to use the frame-pointer register as a general

purpose register. See the description of —xregs=frameptr for details and especially if
compiling mixed C, C++, and Fortran source code. Specify -xregs=no%frameptr after -
fast and the frame pointer register will not be used as a general purpose register. (x86)

It is possible to add or subtract from this list by following the -fast option with other options,
as in:

f95 -fast -fsimple=1 -xnolibmopt ...

which overrides the -fsimple=2 option and disables the -xlibmopt selected by -fast.

Because -fast invokes -dalign, -fns, -fsimple=2, programs compiled with -fast can result
in nonstandard floating-point arithmetic, nonstandard alignment of data, and nonstandard
ordering of expression evaluation. These selections might not be appropriate for most programs.

Note that the set of options selected by the -fast flag can change with each compiler release.
Invoking the compiler with -dryrun displays the -fast expansion:

<sparc>% f95 -dryrun -fast |& grep ###
 ### command line files and options (expanded):

 ### -dryrun -xO5 -xarch=sparcvis2 -xcache=64/32/4:1024/64/4

 -xchip=ultra3i -xdepend=yes -xpad=local -xvector=lib

 -dalign -fsimple=2 -fns=yes -ftrap=common -xlibmil

 -xlibmopt -fround=nearest

3.4.24 –fixed

Specify fixed–format Fortran 95 source input files.

All source files on the command–line will be interpreted as fixed format regardless of filename
extension. Normally, f95 interprets only .f files as fixed format, .f95 as free format.

3.4.25 –flags

Synonym for -help.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 65

3.4.26 –fma[={none|fused}]

Enables automatic generation of floating-point fused multiply-add instructions. -fma=none
disables generation of these instructions. -fma=fused allows the compiler to attempt to find
opportunities to improve the performance of the code by using floating-point fused multiply-
add instructions.

The default is -fma=none.

The minimum architecture requirement is-xarch=sparcfmaf on SPARC and -xarch=avx2 on
x86 to generate fused multiply-add instructions. The compiler marks the binary program if
fused multiply-add instructions are generated to prevent execution of the program on platforms
that do not support fused multiply-add instructions. When the minimum architecture is not used,
then -fma=fused has no effect.

Fused multiply-add instructions eliminate the intermediate rounding step between the multiply
and add. Consequently, programs may produce different results when compiled with -
fma=fused, although precision will tend to increase rather than decrease.

3.4.27 –fnonstd

Initialize floating–point hardware to non–standard preferences.

This option is a macro for the combination of the following option flags:

–fns -ftrap=common

Specifying -fnonstd is approximately equivalent to the following two calls at the beginning of
a Fortran main program.

i=ieee_handler("set", "common", SIGFPE_ABORT)

call nonstandard_arithmetic()

The nonstandard_arithmetic() routine replaces the obsolete abrupt_underflow() routine of
earlier releases.

To be effective, the main program must be compiled with this option.

Using this option initializes the floating-point hardware to:

■ Abort (trap) on floating-point exceptions.
■ Flush underflow results to zero if it will improve speed, rather than produce a subnormal

number as the IEEE standard requires.

3.4 Options Reference

66 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

See -fns for more information about gradual underflow and subnormal numbers.

The -fnonstd option allows hardware traps to be enabled for floating–point overflow, division
by zero, and invalid operation exceptions. These are converted into SIGFPE signals, and if the
program has no SIGFPE handler, it terminates with a dump of memory.

For more information, see the ieee_handler(3m) and ieee_functions(3m) man pages, the
Numerical Computation Guide, and the Fortran Programming Guide.

3.4.28 –fns[={yes|no}]

Select nonstandard floating–point mode.

The default is the standard floating–point mode (–fns=no). (See the “Floating–Point
Arithmetic” chapter of the Fortran Programming Guide.)

Optional use of =yes or =no provides a way of toggling the -fns flag following some other
macro flag that includes it, such as -fast. -fns without a value is the same as -fns=yes.

This option flag enables nonstandard floating-point mode when the program begins execution.
On SPARC platforms, specifying nonstandard floating-point mode disables “gradual
underflow”, causing tiny results to be flushed to zero rather than producing subnormal numbers.
It also causes subnormal operands to be silently replaced by zero. On those SPARC systems that
do not support gradual underflow and subnormal numbers in hardware, use of this option can
significantly improve the performance of some programs.

Where x does not cause total underflow, x is a subnormal number if and only if |x| is in one of
the ranges indicated:

TABLE 3-8 Subnormal REAL and DOUBLE

Data Type Range

REAL 0.0 < |x| < 1.17549435e–38

DOUBLE PRECISION 0.0 < |x| < 2.22507385072014e–308

See the Numerical Computation Guide for details on subnormal numbers, and the Fortran
Programming Guide chapter “Floating–Point Arithmetic” for more information about this
and similar options. (Some arithmeticians use the term denormalized number for subnormal
number.)

The standard initialization of floating–point preferences is the default:

■ IEEE 754 floating–point arithmetic is nonstop (do not abort on exception).
■ Underflows are gradual.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 67

On x86 platforms, this option is enabled only for Pentium III and Pentium 4 processors (SSE or
SSE2 instruction sets).

On x86, -fns selects SSE flush-to-zero mode and where available, denormals-are-zero mode.
This flag causes subnormal results to be flushed to zero. Where available, this flag also causes
subnormal operands to be treated as zero. This flag has no effect on traditional x87 floating-
point operations not utilizing the SSE or SSE2 instruction set.

To be effective, the main program must be compiled with this option.

3.4.29 -fopenmp

Same as -xopenmp=parallel.

3.4.30 –fpover[={yes|no}]
Detect floating-point overflow in formatted input.

With -fpover=yes specified, the I/O library will detect runtime floating-point overflows in
formatted input and return an error condition (1031). The default is no such overflow detection
(–fpover=no). -fpover without a value is equivalent to -fpover=yes. Combine with —ftrap to
get full diagnostic information.

3.4.31 –fpp

Force preprocessing of input with fpp.

Pass all the input source files listed on the f95 command line through the fpp preprocessor,
regardless of file extension. (Normally, only files with .F, .F90, or .F95 extension are
automatically preprocessed by fpp.) See also “3.4.165 –xpp={fpp|cpp}” on page 141.

3.4.32 –fprecision={single|double|extended}
(x86) Initialize non-default floating-point rounding precision mode.

Sets the floating-point precision mode to either single, double, or extended on x86 platforms.

With a value of single or double, this flag causes the rounding precision mode to be set to
single or double precision respectively at program initiation. With extended, or by default when

3.4 Options Reference

68 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

the -fprecision flag is not specified, the rounding precision mode is initialized to extended
precision.

This option is effective only on x86 systems and only if used when compiling the main
program, but is ignored if compiling for 64–bit (-m64) or SSE2–enabled (-xarch=sse2)
processors. It is also ignored on SPARC systems.

3.4.33 –free

Specify free–format source input files.

All source files on the command–line will be interpreted as f95 free format regardless of
filename extension. Normally, f95 interprets .f files as fixed format, .f95 as free format.

3.4.34 –fround={nearest|tozero|negative|positive}

Set the IEEE rounding mode in effect at startup.

The default is -fround=nearest.

To be effective, compile the main program with this option.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions.
■ Is established at runtime during the program initialization.

When the value is tozero, negative, or positive, the option sets the rounding direction to
round-to-zero, round-to-negative-infinity, or round-to-positive-infinity, respectively, when the
program begins execution. When -fround is not specified, -fround=nearest is used as the
default and the rounding direction is round-to-nearest. The meanings are the same as those
for the ieee_flags function. (See the “Floating–Point Arithmetic” chapter of the Fortran
Programming Guide.)

3.4.35 –fserialio

A linking option that specifies that the program does not perform I/O in more than one thread
at a time. It allows Fortran I/O statements to be executed without performing synchronization

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 69

to avoid race conditions. This option should be specified only when creating an executable
program. It should not be specified when creating a shared object library nor should it be
specified if the program includes code compiled with versions of Sun f77 before the Sun Forte 7
release.

3.4.36 –fsimple[={1|2|0}]

Select floating–point optimization preferences.

Allow the optimizer to make simplifying assumptions concerning floating–point arithmetic.
(See the “Floating–Point Arithmetic” chapter of the Fortran Programming Guide.)

For consistent results, compile all units of a program with the same -fsimple option.

The defaults are:

■ Without the -fsimple flag, the compiler defaults to -fsimple=0
■ With -fsimple without a value, the compiler uses -fsimple=1

The different floating–point simplification levels are:

–fsimple=0 Permit no simplifying assumptions. Preserve strict IEEE 754
conformance.

–fsimple=1 Allow conservative simplifications. The resulting code does not strictly
conform to IEEE 754.

With -fsimple=1, the optimizer can assume the following:
■ IEEE 754 default rounding/trapping modes do not change after

process initialization.
■ Computations producing no visible result other than potential floating

point exceptions may be deleted.
■ Computations with Infinity or NaNs (“Not a Number”) as operands

need not propagate NaNs to their results; for example, x*0 may be
replaced by 0.

■ Computations do not depend on sign of zero.

With -fsimple=1, the optimizer is not allowed to optimize completely
without regard to roundoff or exceptions. In particular, a floating–point
computation cannot be replaced by one that produces different results
with rounding modes held constant at run time.

–fsimple=2 In addition to —fsimple=1, permit aggressive floating point
optimizations. This can cause some programs to produce different

3.4 Options Reference

70 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

numeric results due to changes in the way expressions are evaluated. In
particular, the Fortran standard rule requiring compilers to honor explicit
parentheses around subexpressions to control expression evaluation order
may be broken with -fsimple=2. This could result in numerical rounding
differences with programs that depend on this rule.

For example, with -fsimple=2, the compiler may evaluate C-(A-B)
as (C-A)+B, breaking the standard’s rule about explicit parentheses, if
the resulting code is better optimized. The compiler might also replace
repeated computations of x/y with x*z, where z=1/y is computed once
and saved in a temporary, to eliminate the costly divide operations.
Programs that depend on particular properties of floating-point arithmetic
should not be compiled with -fsimple=2.

Even with -fsimple=2, the optimizer still is not permitted to introduce a
floating point exception in a program that otherwise produces none.

–fast selects -fsimple=2.

3.4.37 –fstore

(x86) Force precision of floating-point expressions.

For assignment statements, this option forces all floating-point expressions to the precision of
the destination variable. This is the default. However, the -fast option includes -nofstore to
disable this option. Follow -fast with -fstore to turn this option back on.

3.4.38 –ftrap=t

Set floating–point trapping mode in effect at startup.

t is a comma–separated list that consists of one or more of the following:

%all, %none, common, [no%]invalid, [no%]overflow, [no%]underflow, [no%]division, [no
%]inexact.

-ftrap=common is a macro for -ftrap=invalid,overflow,division.

The f95 default is -ftrap=common. This differs from the C and C++ compiler defaults, -
ftrap=none.

Sets the IEEE 745 trapping mode in effect at startup but does not install a SIGFPE handler.
You can use ieee_handler(3M) or fex_set_handling(3M) to simultaneously enable traps and

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 71

install a SIGFPE handler. If you specify more than one value, the list is processed sequentially
from left to right. The common exceptions, by definition, are invalid, division by zero, and
overflow.

Example: -ftrap=%all,no%inexact means set all traps, except inexact.

The meanings for -ftrap=t are the same as for ieee_flags(), except that:

■ %all turns on all the trapping modes, and will cause trapping of spurious and expected
exceptions. Use common instead.

■ %none turns off all trapping modes.
■ A no% prefix turns off that specific trapping mode.

To be effective, compile the main program with this option.

For further information, see the “Floating–Point Arithmetic” chapter in the Fortran
Programming Guide.

3.4.39 –G

Build a dynamic shared library instead of an executable file.

Direct the linker to build a shared dynamic library. Without -G, the linker builds an executable
file. With -G, it builds a dynamic library. Use -o with -G to specify the name of the file to be
written. See the Fortran Programming Guide chapter “Libraries” for details.

3.4.40 -g

See -g[n].

3.4.41 –g[n]

Compile for debugging and performance analysis.

Produce additional symbol table information for debugging with dbx(1) debugging utility and
for performance analysis with the Performance Analyzer.

Although some debugging is possible without specifying -g, the full capabilities of dbx and
debugger are only available to those compilation units compiled with -g.

3.4 Options Reference

72 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Some capabilities of other options specified along with -g may be limited. See the dbx
documentation for details.

To use the full capabilities of the Performance Analyzer, compile with -g. While some
performance analysis features do not require -g, you must compile with -g to view annotated
source, some function level information, and compiler commentary messages. (See the
analyzer(1) man page and the manual Solaris Studio Performance Analyzer.)

The commentary messages generated with -g describe the optimizations and transformations
the compiler made while compiling your program. The messages, interleaved with the source
code, can be displayed by the er_src(1) command.

Note that commentary messages only appear if the compiler actually performed any
optimizations. You are more likely to see commentary messages when you request high
optimization levels, such as with -xO4, or -fast.

-g is implemented as a macro that expands to various other, more primitive, options. See -
xdebuginfo for the details of the expansions.

-g Produce standard debugging information.

-gnone Do not produce any debugging information. This is the default.

-g1 Produce file and line number as well as simple parameter information
that is considered crucial during post-mortem debugging.

-g2 Same as -g.

-g3 Produce additional debugging information, which currently consists only
of macro definition information. This added information can result in
an increase in the size of the debug information in the resulting .o and
executable when compared to using only -g.

3.4.42 –hname

Specify the name of the generated dynamic shared library.

This option is passed on to the linker. For details, see the Oracle Solaris Linker and Libraries
Guide, and the Fortran Programming Guide chapter “Libraries.”

The -hname option records the name name to the shared dynamic library being created as the
internal name of the library. A space between -h and name is optional (except if the library

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 73

name is elp, for which the space will be needed). In general, name must be the same as what
follows the -o. Use of this option is meaningless without also specifying -G.

Without the -hname option, no internal name is recorded in the library file.

If the library has an internal name, whenever an executable program referencing the library
is run the runtime linker will search for a library with the same internal name in any path the
linker is searching. With an internal name specified, searching for the library at runtime linking
is more flexible. This option can also be used to specify versions of shared libraries.

If there is no internal name of a shared library, then the linker uses a specific path for the shared
library file instead.

3.4.43 –help

Display a summary list of compiler options.

See also “3.4.125 –xhelp=flags” on page 118.

3.4.44 –Ipath

Add path to the INCLUDE file search path.

Insert the directory path path at the start of the INCLUDE file search path. A space is allowed
between -I and path. Invalid directories are ignored with no warning message.

The include file search path is the list of directories searched for INCLUDE files—file names
appearing on preprocessor #include directives, or Fortran INCLUDE statements.

The search path is also used to find MODULE files.

Example: Search for INCLUDE files in /usr/app/include:

demo% f95 -I/usr/app/include growth.F

Multiple -Ipath options may appear on the command line. Each adds to the top of the search
path list (first path searched).

The search order for relative paths on INCLUDE or #include is:

1. The directory that contains the source file

3.4 Options Reference

74 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

2. The directories that are named in the -I options
3. The directories in the compiler’s internal default list
4. /usr/include/

To invoke the preprocessor, you must be compiling source files with a .F, .F90, .F95, or .F03
suffix.

3.4.45 -i8

(There is no -i8 option.)

Use —xtypemap=integer:64 to specify 8–byte INTEGER with this compiler.

3.4.46 –inline=[%auto][[,][no%]f1,…[no%]fn]

Enable or disable inlining of specified routines.

Request the optimizer to inline the user–written routines appearing in a comma-separated list
of function and subroutine names. Prefixing a routine name with no% disables inlining of that
routine.

Inlining is an optimization technique whereby the compiler effectively replaces a subprogram
reference such as a CALL or function call with the actual subprogram code itself. Inlining often
provides the optimizer more opportunities to produce efficient code.

Specify %auto to enable automatic inlining at optimization levels -O4 or -O5. Automatic
inlining at these optimization levels is normally turned off when explicit inlining is specified
with -inline.

Specifying -xinline= without naming any functions or %auto indicates that none of the
routines in the source files are to be inlined.

Example: Inline the routines xbar, zbar, vpoint:

demo% f95 -O3 -inline=xbar,zbar,vpoint *.f

Following are the restrictions; no warnings are issued:

■ Optimization must be -O3 or greater.
■ The source for the routine must be in the file being compiled, unless -xipo or–xcrossfile

are also specified.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 75

■ The compiler determines if actual inlining is profitable and safe.

The appearance of -inline with -O4 disables the automatic inlining that the compiler would
normally perform, unless %auto is also specified. With -O4, the compilers normally try to inline
all appropriate user–written subroutines and functions. Adding -inline with -O4 may degrade
performance by restricting the optimizer’s inlining to only those routines in the list. In this case,
use the %auto suboption to enable automatic inlining at -O4 and -O5.

demo% f95 -O4 -inline=%auto,no%zpoint *.f

In the example above, the user has enabled -O4’s automatic inlining while disabling any
possible inlining of the routine zpoint() that the compiler might attempt.

3.4.47 –iorounding[={compatible|processor-defined}]

Set floating-point rounding mode for formatted input/output.

Sets the ROUND= specifier globally for all formatted input/output operations.

With -iorounding=compatible, the value resulting from data conversion is the one closer to
the two nearest representations, or the value away from zero if the value is halfway between
them.

With -iorounding=processor-defined, the rounding mode is the processor’s default mode.
This is the default when -iorounding is not specified.

3.4.48 –keepmod[={yes|no}]

If a module file exists and its content is not changed by the latest compilation, it will not be
replaced even though the compilation is supposed to create a new module file with the same
name. Since the content of the module file is unchanged by the compilation, the only effect is
that the time stamp of the existing module file will be preserved.

The default, when -keepmod is not specified, is -keepmod=yes. Note that this default is different
from previous releases of Oracle Solaris Studio Fortran.

This option is best used together with the dependencies generated by the -xM compilation
option. By retaining the time stamp of a module file when its content is unchanged, this option
prevents cascading compilation for the source files depending on this module file. This is very
helpful in an incremental build and can significantly reduce the build time.

When this option is used with user-specified dependencies and the user has an explicit build
rule on how to create the module with a dependency on the corresponding source file, the

3.4 Options Reference

76 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

option can cause the source file to be recompiled multiple times even though the source file is
modified only once because of the outdated time stamp of the module file.

3.4.49 –keeptmp

Retains the temporary files that are created during compilation.

3.4.50 –Kpic

(Obsolete) Synonym for -pic.

3.4.51 –KPIC

(Obsolete) Synonym for -PIC.

3.4.52 –Lpath

Add path to list of directory paths to search for libraries.

Adds path to the front of the list of object–library search directories. A space between -L and
path is optional. This option is passed to the linker. See also “3.4.53 –lx” on page 77.

While building the executable file, ld(1) searches path for archive libraries (.a files) and
shared libraries (.so files). ld searches path before searching the default directories. (See the
Fortran Programming Guide chapter “Libraries” for information on library search order.) For
the relative order between LD_LIBRARY_PATH and -Lpath, see ld(1).

Note - Specifying /usr/lib or /usr/ccs/lib with -L path may prevent linking the unbundled
 libm. These directories are searched by default.

Example: Use -Lpath to specify library search directories:

demo% f95 -L./dir1 -L./dir2 any.f

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 77

3.4.53 –lx

Add library libx.a to linker’s list of search libraries.

Pass -lx to the linker to specify additional libraries for ld to search for unresolved references.
ld links with object library libx. If shared library libx.so is available (and -Bstatic or -dn
are not specified), ld uses it, otherwise, ld uses static library libx.a. If it uses a shared library,
the name is built in to a.out. No space is allowed between -l and x character strings.

Example: Link with the library libVZY:

demo% f95 any.f -lVZY

Use -lx again to link with more libraries.

Example: Link with the libraries liby and libz:

demo% f95 any.f -ly -lz

See also the “Libraries” chapter in the Fortran Programming Guide for information on library
search paths and search order.

3.4.54 –libmil

Inline selected libm library routines for optimization.

There are inline templates for some of the libm library routines. This option selects those
inline templates that produce the fastest executable for the floating–point options and platform
currently being used.

For more information, see the man pages libm_single(3F) and libm_double(3F)

3.4.55 -library=sunperf

Link with the Oracle Solaris Studio supplied performance libraries. (See the Sun Performance
Library User’s Guide.)

3.4.56 –loopinfo

Show loop parallelization results.

3.4 Options Reference

78 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Show which loops were and were not parallelized with the –autopar option.

–loopinfo displays a list of messages on standard error:

demo% f95 -c -fast -autopar -loopinfo shalow.f
...

"shalow.f", line 172: PARALLELIZED, and serial version generated

"shalow.f", line 173: not parallelized, not profitable

"shalow.f", line 181: PARALLELIZED, fused

"shalow.f", line 182: not parallelized, not profitable

...

...etc

3.4.57 –Mpath

Specify MODULE directory, archive, or file.

Look in path for Fortran modules referenced in the current compilation. This path is searched in
addition to the current directory.

path can specify a directory, .a archive file of precompiled module files, or a .mod precompiled
module file. The compiler determines the type of the file by examining its contents.

An archive .a file must be explicitly specified on a -M option flag to be searched for modules.
The compiler will not search archive files by default.

Only .mod files with the same names as the MODULE names appearing on USE statements will be
searched. For example, the statement USE ME causes the compiler to look only for the module
file me.mod

When searching for modules, the compiler gives higher priority to the directory where the
module files are being written. This is controlled by the -moddir compiler option, or the MODDIR
environment variable. When neither are specified, the default write-directory is the current
directory. When both are specified, the write-directory is the path specified by the -moddir flag.

This means that if only the -M flag appears, the current directory will be searched for modules
first before any object listed on the -M flag. To emulate the behavior of previous releases, use:

-moddir=empty-dir -Mdir -M

where empty-dir is the path to an empty directory.

Directories named in —I path will be searched for module files if the files are not found in any
of the other locations that are searched.

A space between the -M and the path is allowed. For example, -M /home/siri/PK15/Modules

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 79

On Solaris, if the path identifies a regular file that is not an archive or a module file, the
compiler passes the option to the linker, ld, which will treat it as a linker mapfile. This feature
is provided as a convenience similar to the C and C++ compilers.

See “4.9 Module Files” on page 184 for more information about modules in Fortran.

3.4.58 –m32 | –m64

Specify memory model for compiled binary object.

Use -m32 to create 32-bit executables and shared libraries. Use -m64 to create 64-bit executables
and shared libraries.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Solaris
platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model (64-
bit long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64 is
permitted only on platforms that are enabled for the LP64 model.

Object files or libraries compiled with -m32 cannot be linked with object files or libraries
compiled with -m64.

When compiling applications with large amounts of static data on x64 platforms using -m64, -
xmodel=medium may also be required.

Be aware that some Linux platforms do not support the medium model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by
the choice of the instruction set with -xarch. Starting with the Solaris Studio 12 compilers, this
is no longer the case. On most platforms, just adding -m64 to the command line is sufficient to
create 64-bit objects.

On Solaris, -m32 is the default. On Linux systems supporting 64-bit programs, -m64 -
xarch=sse2 is the default.

3.4.59 –moddir=path

Specify where the compiler will write compiled .mod MODULE files.

The compiler will write the .mod MODULE information files it compiles in the directory
specified by path. The directory path can also be specified with the MODDIR environment
variable. If both are specified, this option flag takes precedence.

The compiler uses the current directory as the default for writing .mod files.

3.4 Options Reference

80 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

See “4.9 Module Files” on page 184 for more information about modules in Fortran.

3.4.60 -mt[={yes|no}]

Use this option to compile and link multithreaded code using the Oracle Solaris threads or
POSIX threads API. The -mt=yes option assures that libraries are linked in the appropriate
order.

This option passes -D_REENTRANT to the preprocessor.

On Linux platforms, only the POSIX threads API is available. (There is no libthread on Linux
platforms.) Consequently, -mt=yes on Linux platforms adds -lpthread instead of -lthread.
To use POSIX threads on Linux platforms, compile with -mt.

Note that when compiling with -G, neither -lthread nor -lpthread are automatically included
by -mt=yes. You will need to explicitly list these libraries when building a shared library.

The -xopenmp option (for using the OpenMP shared-memory parallelization API) includes -
mt=yes automatically.

If you compile with -mt=yes and link in a separate step, you must use the -mt=yes option in
the link step as well as the compile step. If you compile and link one translation unit with -
mt=yes, you must compile and link all units of the program with -mt=yes

-mt=yes is the default behavior of the compiler. If this behavior is not desired, compile with -
mt=no.

The option -mt is equivalent to -mt=yes.

3.4.61 –native

(Obsolete) Optimize performance for the host system.

This option is a synonym for -xtarget=native, which is preferred. The -fast option sets -
xtarget=native.

3.4.62 –noautopar

Disables automatic parallelization invoked by -autopar earlier on the command line.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 81

3.4.63 –nodepend

Cancel any -depend appearing earlier on the command line. -depend=no is the preferred usage
over -nodepend.

3.4.64 -nofstore

(x86) Cancel -fstore on command line.

The compiler default is -fstore. -fast includes -nofstore.

3.4.65 –nolib

Disable linking with system libraries.

Do not automatically link with any system or language library; that is do not pass any default
-lx options on to ld. The normal behavior is to link system libraries into the executables
automatically, without the user specifying them on the command line.

The -nolib option makes it easier to link one of these libraries statically. The system and
language libraries are required for final execution. It is your responsibility to link them in
manually. This option provides you with complete control.

Link libm statically and libc dynamically with f95:

demo% f95 -nolib any.f95 -Bstatic -lm -Bdynamic -lc

The order for the -lx options is important. Follow the order shown in the examples.

3.4.66 –nolibmil

Cancel -libmil on command line.

Use this option after the -fast option to disable inlining of libm math routines:

demo% f95 -fast -nolibmil …

3.4 Options Reference

82 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.67 –noreduction

Disable -reduction on command line.

This option disables -reduction.

3.4.68 –norunpath

Do not build a runtime shared library search path into the executable.

The compiler normally builds into an executable a path that tells the runtime linker where to
find the shared libraries it will need. The path is installation dependent. The -norunpath option
prevents that path from being built in to the executable.

This option is helpful when libraries have been installed in some nonstandard location, and you
do not wish to make the loader search down those paths when the executable is run at another
site. Compare with -Rpaths.

See the Fortran Programming Guide chapter on “Libraries” for more information.

3.4.69 –O[n]

Specify optimization level.

n can be 1, 2, 3, 4, or 5. No space is allowed between -O and n.

If -O[n] is not specified, only a very basic level of optimization limited to local common
subexpression elimination and dead code analysis is performed. A program’s performance may
be significantly improved when compiled with an optimization level than without optimization.
Use of -O (which sets -O3) or -fast (which sets -O5) is recommended for most programs.

Each -On level includes the optimizations performed at the levels below it. Generally, the
higher the level of optimization a program is compiled with, the better runtime performance
obtained. However, higher optimization levels may result in increased compilation time and
larger executable files.

Debugging with -g does not suppress -On, but -On limits -g in certain ways; see the dbx
documentation.

The -O3 and -O4 options reduce the utility of debugging such that you cannot display variables
from dbx, but you can still use the dbx where command to get a symbolic traceback.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 83

If the optimizer runs out of memory, it attempts to proceed over again at a lower level of
optimization, resuming compilation of subsequent routines at the original level.

For details on optimization, see the Fortran Programming Guide chapters “Performance
Profiling” and “Performance and Optimization.”

–O This is equivalent to -O3.

–O1 Provides a minimum of statement–level optimizations.
Use if higher levels result in excessive compilation time, or exceed
available swap space.

–O2 Enables basic block level optimizations.

This level usually gives the smallest code size. (See also -xspace.)

–O3 is preferred over -O2 unless -O3 results in unreasonably long
compilation time, exceeds swap space, or generates excessively large
executable files.

–O3 Adds loop unrolling and global optimizations at the function level. Adds
-depend automatically.

Usually -O3 generates larger executable files.

–O4 Adds automatic inlining of routines contained in the same file.

Usually -O4 generates larger executable files due to inlining.

The -g option suppresses the -O4 automatic inlining described above.–
xcrossfile increases the scope of inlining with -O4.

–O5 Attempt aggressive optimizations.
Suitable only for that small fraction of a program that uses the largest
fraction of compute time. -O5’s optimization algorithms take more
compilation time, and may also degrade performance when applied to too
large a fraction of the source program.
Optimization at this level is more likely to improve performance if done
with profile feedback. See -xprofile=p.

3.4.70 –o filename

Specify the name of the executable file to be written.

There must be a blank between -o and filename. Without this option, the default is to write the
executable file to a.out. When used with -c, -o specifies the target .o object file; with -G it
specifies the target .so library file.

3.4 Options Reference

84 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.71 –onetrip

Enable one trip DO loops.

Compile DO loops so that they are executed at least once. DO loops in standard Fortran are
not performed at all if the upper limit is smaller than the lower limit, unlike some legacy
implementations of Fortran.

3.4.72 –openmp

 Synonym for -xopenmp.

3.4.73 –p

(Obsolete) Compile for profiling with the prof profiler.

Prepare object files for profiling, see prof (1). If you compile and link in separate steps, and
also compile with the -p option, then be sure to link with the -p option. -p with prof is
provided mostly for compatibility with older systems. -pg profiling with gprof is possibly a
better alternative. See the Fortran Programming Guide chapter on Performance Profiling for
details.

3.4.74 –pad[=p]

Insert padding for efficient use of cache.

This option inserts padding between arrays or character variables, if they are static local and not
initialized, or if they are in common blocks. The extra padding positions the data to make better
use of cache. In either case, the arrays or character variables can not be equivalenced.

p, if present, must be either %none or either (or both) local or common:

local Add padding between adjacent local variables.

common Add padding between variables in common blocks.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 85

%none Do not add padding. (Compiler default.)

If both local and common are specified, they can appear in any order.

Defaults for -pad:

■ The compiler does no padding by default.
■ Specifying -pad, but without a value is equivalent to -pad=local,common.

The -pad[=p] option applies to items that satisfy the following criteria:

■ The items are arrays or character variables
■ The items are static local or in common blocks

For a definition of local or static variables, see “3.4.88 –stackvar” on page 90.

The program must conform to the following restrictions:

■ Neither the arrays nor the character strings are equivalenced
■ If -pad=common is specified for compiling a file that references a common block, it must be

specified when compiling all files that reference that common block. The option changes
the spacing of variables within the common block. If one program unit is compiled with
the option and another is not, references to what should be the same location within the
common block might reference different locations.

■ If -pad=common is specified, the declarations of common block variables in different
program units must be the same except for the names of the variables.The amount of
padding inserted between variables in a common block depends on the declarations of those
variables. If the variables differ in size or rank in different program units, even within the
same file, the locations of the variables might not be the same.

■ If -pad=common is specified, EQUIVALENCE declarations involving common block variables
are flagged with a warning message and the block is not padded.

■ Avoid overindexing arrays in common blocks with -pad=common specified. The altered
positioning of adjacent data in a padded common block will cause overindexing to fail in
unpredictable ways.

It is the programmer’s responsibility to make sure that common blocks are compiled
consistently when -pad is used. Common blocks appearing in different program units that are
compiled inconsistently with -pad=common will cause errors. Compiling with -Xlist will report
when common blocks with the same name have different lengths in different program units.

3.4.75 –pg

Compile for profiling with the gprof profiler. (-xpg is a synonym for -pg)

3.4 Options Reference

86 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Compile self–profiling code in the manner of -p, but invoke a runtime recording mechanism
that keeps more extensive statistics and produces a gmon.out file when the program terminates
normally. Generate an execution profile by running gprof. See the gprof(1) man page and the
Fortran Programming Guide for details.

Library options must be after the source and .o files (–pg libraries are static).

Note - There is no advantage compiling with -xprofile if you specify -pg. These two features
do not prepare or use data provided by the other.

Profiles generated by using prof(1) or gprof(1) on 64 bit Solaris platforms or just gprof on
32 bit Solaris platforms include approximate user CPU times. These times are derived from
PC sample data (see pcsample(2)) for routines in the main executable and routines in shared
libraries specified as linker arguments when the executable is linked. Other shared libraries
(libraries opened after process startup using dlopen(3DL)) are not profiled.

On 32 bit Solaris systems, profiles generated using prof(1) are limited to routines in the
executable. 32 bit shared libraries can be profiled by linking the executable with -pg and using
gprof(1).

The Solaris 10 software does not include system libraries compiled with -p. As a result, profiles
collected on Solaris 10 platforms do not include call counts for system library routines.

The compiler options -p, -pg, or -xpg should not be used to compile multi-threaded programs,
because the runtime support for these options is not thread-safe. If a program that uses multiple
threads is compiled with these options invalid results or a segmentation fault could occur at
runtime.

Binaries compiled with -xpg for gprof profiling should not be used with binopt(1) as they are
incompatible and can result in internal errors.

If you compile and link in separate steps, and you compile with -pg, then be sure to link with -
pg.

On x86 systems, -pg is incompatible with -xregs=frameptr, and these two options should not
be used together. Note also that -xregs=frameptr is included in -fast.

3.4.76 –pic

Compile position–independent code for shared library.

On SPARC, –pic is equivalent to -xcode=pic13. See “3.4.116 -xcode[=v]” on page 110 for
more information on position-indepented code.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 87

On x86, produces position-independent code. Use this option to compile source files when
building a shared library. Each reference to a global datum is generated as a dereference of a
pointer in the global offset table. Each function call is generated in pc-relative addressing mode
through a procedure linkage table.

3.4.77 –PIC

Compile position–independent code with 32-bit addresses.

On SPARC, –PIC is equivalent to -xcode=pic32. See “3.4.116 -xcode[=v]” on page 110 for
more information about position-independent code.

On x86, —PIC is equivalent to —pic.

3.4.78 –preserve_argvalues[=simple|none|complete]

(x86) Saves copies of register-based function arguments in the stack.

When none is specified or if the -preserve_argvalues option is not specified on the command
line, the compiler behaves as usual.

When simple is specified, up to six integer arguments are saved.

When complete is specified, the values of all function arguments in the stack trace are visible to
the user in the proper order.

The values are not updated during the function lifetime on assignments to formal parameters.

3.4.79 –Qoption pr ls

Pass the suboption list ls to the compilation phase pr.

There must be blanks separating Qoption, pr, and ls. The Q can be uppercase or lowercase. The
list is a comma–delimited list of suboptions, with no blanks within the list. Each suboption must
be appropriate for that program phase, and can begin with a minus sign.

This option is provided primarily for debugging the internals of the compiler by support staff.
Use the LD_OPTIONS environment variable to pass options to the linker. See the chapter on
linking and libraries in the Fortran Programming Guide.

3.4 Options Reference

88 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.80 –qp

Synonym for -p.

3.4.81 –R ls

Build dynamic library search paths into the executable file.

With this option, the linker, ld(1), stores a list of dynamic library search paths into the
executable file.

ls is a colon–separated list of directories for library search paths. The blank between -R and ls
is optional.

Multiple instances of this option are concatenated together, with each list separated by a colon.

The list is used at runtime by the runtime linker, ld.so. At runtime, dynamic libraries in the
listed paths are scanned to satisfy any unresolved references.

Use this option to let users run shippable executables without a special path option to find
needed dynamic libraries.

Building an executable file using -Rpaths adds directory paths to a default path that is always
searched last.

For more information, see the “Libraries” chapter in the Fortran Programming Guide, and the
Oracle Solaris Linker and Libraries Guide.

3.4.82 –r8const

Promote single-precision constants to REAL*8 constants.

All single-precision REAL constants are promoted to REAL*8. Double-precision (REAL*8)
constants are not changed. This option only applies to constants. To promote both constants and
variables, see “3.4.183 –xtypemap=spec” on page 156.

Use this option flag carefully. It could cause interface problems when a subroutine or function
expecting a REAL*4 argument is called with a REAL*4 constant that gets promoted to REAL*8.
It could also cause problems with programs reading unformatted data files written by an
unformatted write with REAL*4 constants on the I/O list.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 89

3.4.83 –recl=a[,b]

Set default output record length.

Set the default record length (in characters) for either or both preconnected units output
(standard output) and error (standard error). This option must be specified using one of the
following forms:

■ –recl=out:N
■ –recl=error:N
■ –recl=out:N1,error:N2
■ –recl=error:N1,out:N2
■ –recl=all:N

where N, N1, N2 are all positive integers in the range from 72 to 2147483646. out refers to
standard output, error to standard error, and all sets the default record length to both. The
default is –recl=all:80. This option is only effective if the program being compiled has a
Fortran main program.

3.4.84 –reduction

Recognize reduction operations in loops.

Analyze loops for reduction operations during automatic parallelization. There is potential for
roundoff error with the reduction.

A reduction operation accumulates the elements of an array into a single scalar value. For
example, summing the elements of a vector is a typical reduction operation. Although these
operations violate the criteria for parallelizability, the compiler can recognize them and
parallelize them as special cases when -reduction is specified. See the Fortran Programming
Guide chapter “Parallelization” for information on reduction operations recognized by the
compilers.

This option is usable only with the automatic parallelization option —autopar. It is ignored
otherwise. Explicitly parallelized loops are not analyzed for reduction operations.

3.4.85 –S

Compile and only generate assembly code.

3.4 Options Reference

90 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Compile the named programs and leave the assembly–language output on corresponding files
suffixed with .s. No .o file is created.

3.4.86 –s

Strip the symbol table out of the executable file.

This option makes the executable file smaller and more difficult to reverse engineer. However,
this option inhibits debugging with dbx or other tools, and overrides -g.

3.4.87 –silent

(Obsolete) Suppress compiler messages.

Normally, the f95 compiler does not issue messages, other than error diagnostics, during
compilation. This option flag is provided for compatibility with the legacy f77 compiler, and its
use is redundant except with the -f77 compatibility flag.

3.4.88 –stackvar

Allocate local variables on the stack whenever possible.

This option makes writing recursive and re-entrant code easier and provides the optimizer more
freedom when parallelizing loops.

Use of -stackvar is recommended with any of the parallelization options.

Local variables are variables that are not dummy arguments, COMMON variables, variables
inherited from an outer scope, or module variables made accessible by a USE statement.

With -stackvar in effect, local variables are allocated on the stack unless they have the
attributes SAVE or STATIC. Note that explicitly initialized variables are implicitly declared
with the SAVE attribute. A structure variable that is not explicitly initialized but some of
whose components are initialized is, by default, not implicitly declared SAVE. Also, variables
equivalenced with variables that have the SAVE or STATIC attribute are implicitly SAVE or
STATIC.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 91

A statically allocated variable is implicitly initialized to zero unless the program explicitly
specifies an initial value for it. Variables allocated on the stack are not implicitly initialized
except that components of structure variables can be initialized by default.

Putting large arrays onto the stack with -stackvar can overflow the stack causing segmentation
faults. Increasing the stack size may be required.

The initial thread executing the program has a main stack, while each slave thread of a
multithreaded program has its own thread stack.

For slave threads, the default thread stack size is 4 Megabytes on 32–bit systems and 8
Megabytes on 64–bit systems. The limit command (with no parameters) shows the current
main stack size. If you get a segmentation fault using -stackvar, try increasing the main and
thread stack sizes.

Example: Show the current main stack size:

demo% limit
cputime unlimited

filesize unlimited

datasize 523256 kbytes

stacksize 8192 kbytes <–––

coredumpsize unlimited

descriptors 64

memorysize unlimited

demo%

Example: Set the main stack size to 64 Megabytes:

demo% limit stacksize 65536

You can set the size of the thread stack used by each slave thread by setting the STACKSIZE or
OMP_STACKSIZE environment variable. See the OpenMP API User's Guide for more information
about these environment variables.

Compile with -xcheck=stkovf to enable runtime checking for stack overflow situations. See
the -xcheck option for more information.

3.4.89 –stop_status[={yes|no}]

Permit STOP statement to return an integer status value.

The default is -stop_status=no.

With -stop_status=yes, a STOP statement may contain an integer constant. That value will be
passed to the environment as the program terminates:

3.4 Options Reference

92 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

STOP 123

The value must be in the range 0 to 255. Larger values are truncated and a run–time message
issued. Note that

STOP ”stop string’

is still accepted and returns a status value of 0 to the environment, although a compiler warning
message will be issued.

The environment status variable is $status for the C shell csh, and $? for the Bourne and Korn
shells, sh and ksh.

3.4.90 –temp=dir

Define directory for temporary files.

Set directory for temporary files used by the compiler to be dir. No space is allowed within this
option string. Without this option, the files are placed in the /tmp directory.

This option takes precedence over the value of the TMPDIR environment variable.

3.4.91 –time

Time each compilation phase.

The time spent and resources used in each compiler pass is displayed.

3.4.92 –traceback[={%none|common|signals_list}]

Issue a stack trace if a severe error occurs in execution.

The -traceback option causes the executable to issue a stack trace to stderr, dump core, and
exit if certain signals are generated by the program. If multiple threads generate a signal, a stack
trace will only be produced for the first one.

To use traceback, add the -traceback option to the compiler command line when linking. The
option is also accepted at compile-time but is ignored unless an executable binary is generated.
Using -traceback with -G to create a shared library is an error.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 93

TABLE 3-9 -traceback Options

Option Meaning

common specifies that a stack trace should be issued if any of a set of common signals occurs:
sigill, sigfpe, sigbus, sigsegv, or sigabrt.

signals_list specifies a comma-separated list of names of signals that should generate a stack trace,
in lower case. The following signals (those that cause the generation of a core file) can
be caught: sigquit, sigill, sigtrap, sigabrt, sigemt, sigfpe, sigbus, sigsegv,
sigsys, sigxcpu, sigxfsz.

Any of these can be preceded with no% to disable catching the signal.

For example: -traceback=sigsegv,sigfpe will produce a stack trace and core dump if
either sigsegv or sigfpe occurs.

%none or none disables traceback

If the option is not specified, the default is -traceback=%none

-traceback alone, without a value, implies -traceback=common

Note: If the core dump is not wanted, users may set the coredumpsize limit to zero using:

% limit coredumpsize 0

The -traceback option has no effect on runtime performance.

3.4.93 –U

Recognize upper and lower case in source files.

Do not treat uppercase letters as equivalent to lowercase. The default is to treat uppercase as
lowercase except within character–string constants. With this option, the compiler treats Delta,
DELTA, and delta as different symbols. Calls to intrinsic functions are not affected by this
option.

Portability and mixing Fortran with other languages may require use of -U. See the Fortran
Programming Guide chapter on porting programs to Solaris Studio Fortran.

3.4.94 –Uname

Undefine preprocessor macro name.

3.4 Options Reference

94 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

This option applies only to source files that invoke the fpp or cpp preprocessor. It removes any
initial definition of the preprocessor macro name created by -Dname on the same command line,
including those implicitly placed there by the command-line driver, regardless of the order the
options appear. It has no effect on any macro definitions in source files. Multiple -Uname flags
can appear on the command line. There must be no space between -U and the macro name.

3.4.95 –u

Report undeclared variables.

Make the default type for all variables be undeclared rather than using Fortran implicit typing,
as if IMPLICIT NONE appeared in each compilation unit. This option warns of undeclared
variables, and does not override any IMPLICIT statements or explicit type statements.

3.4.96 –unroll=n

Enable unrolling of DO loops where possible.

n is a positive integer. The choices are:

■ n=1 inhibits all loop unrolling.
■ n>1 suggests to the optimizer that it attempt to unroll loops n times.

Loop unrolling generally improves performance, but will increase the size of the executable
file. For more information on this and other compiler optimizations, see the “Performance
and Optimization” chapter in the Fortran Programming Guide. See also “2.3.1.3 The UNROLL
Directive” on page 31.

3.4.97 –use=list

Specify implicit USE modules.

list is a comma-separated list of module names or module file names.

Compiling with -use=module_name has the effect of adding a USE module_name statement to
each subprogram or module being compiled. Compiling with -use=module_file_name has the
effect of adding a USE module_name for each of the modules contained in the specified file.

See “4.9 Module Files” on page 184 for more information about modules in Fortran.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 95

3.4.98 –V

Show name and version of each compiler pass.

This option prints the name and version of each pass as the compiler executes.

3.4.99 –v

Verbose mode -show details of each compiler pass.

Like -V, shows the name of each pass as the compiler executes, and details the options, macro
flag expansions, and environment variables used by the driver.

3.4.100 –vax=keywords

Specify choice of legacy VAX VMS Fortran extensions enabled.

The keywords specifier must be one of the following suboptions or a comma-delimited list of a
selection of these.

blank_zero Interpret blanks in formatted input as zeros on internal files.

debug Interpret lines starting with the character ’D’ to be regular Fortran statements rather
than comments, as in VMS Fortran.

rsize Interpret unformatted record size to be in words rather than bytes.

struct_align Layout components of a VAX structure in memory as in VMS Fortran, without
padding. Note: this can cause data misalignments, and should be used with —xmemalign
to avoid such errors.

%all Enable all these VAX VMS features.

%none Disable all these VAX VMS features.

Sub-options can be individually selected or turned off by preceding with no%.

Example:

-vax=debug,rsize,no%blank_zero

The default is -vax=%none. Specifying -vax without any suboptions is equivalent to -vax=%all.

3.4 Options Reference

96 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.101 –vpara

Show parallelization warning messages.

Issues warnings about potential parallel programming problems in OpenMP programs.

Use with the -xopenmp option.

The compiler issues warnings when it detects the following situations:

■ Loops are parallelized using OpenMP directives when there are data dependencies between
different loop iterations.

■ OpenMP data-sharing attributes-clauses are problematic. For example, declaring a variable
"shared" whose accesses in an OpenMP parallel region may cause data race, or declaring a
variable "private" whose value in a parallel region is used after the parallel region.

No warnings appear if all parallelization directives are processed without problems.

3.4.102 -Wc,arg

Passes the argument arg to a specified component c.

Arguments must be separated from the preceding only by a comma. All -W arguments are
passed after the rest of the command-line arguments. To include a comma as part of an
argument, use the escape character \ (backslash) immediately before the comma. All -W
arguments are passed after the regular command-line arguments.

For example, -Wa,-o,objfile passes -o and objfile to the assembler in that order. Also, -Wl,-
I,name causes the linking phase to override the default name of the dynamic linker, /usr/lib/
ld.so.1.

The order in which the arguments are passed to a tool with respect to the other specified
command line options might change in subsequent compiler releases.

The possible values for c are listed in the following table.

TABLE 3-10 -W Flags

Flag Meaning

a Assembler: (fbe); (gas)

c Fortran code generator: (cg) (SPARC) ;

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 97

Flag Meaning

d f95 driver

l Link editor (ld)

m mcs

O (Capital o) Interprocedural optimizer

o (Lowercase o) Postoptimizer

p Preprocessor (cpp)

0 (Zero) Compiler (f90comp)

2 Optimizer: (iropt)

Note: You cannot use -Wd to pass f95 options to the Fortran compiler.

3.4.103 –w[n]

Show or suppress warning messages.

This option shows or suppresses most warning messages. However, if one option overrides all
or part of an option earlier on the command line, you do get a warning.

n may be 0, 1, 2, 3, or 4.

-w0 shows just error messages. This is equivalent to -w. -w1 shows errors and warnings. This
is the default without -w.-w2 shows errors, warnings, and cautions.-w3 shows errors, warnings,
cautions, and notes.-w4 shows errors, warnings, cautions, notes, and comments.

3.4.104 -Xlinker arg

Pass arg to linker ld(1). Equivalent to —z arg

3.4.105 –Xlist[x]

(Solaris only) Produce listings and do global program checking (GPC).

Use this option to find potential programming bugs. It invokes an extra compiler pass to check
for consistency in subprogram call arguments, common blocks, and parameters, across the

3.4 Options Reference

98 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

global program. The option also generates a line–numbered listing of the source code, including
a cross reference table. The error messages issued by the -Xlist options are advisory warnings
and do not prevent the program from being compiled and linked.

Note - Be sure to correct all syntax errors in the source code before compiling with -Xlist.
Unpredictable reports may result when run on a source code with syntax errors.

Example: Check across routines for consistency:

 demo% f95 -Xlist fil.f

The above example writes the following to the output file fil.lst:

■ A line–numbered source listing (default)
■ Error messages (embedded in the listing) for inconsistencies across routines
■ A cross reference table of the identifiers (default)

By default, the listings are written to the file name.lst, where name is taken from the first listed
source file on the command line.

A number of sub–options provide further flexibility in the selection of actions. These are
specified by suffixes to the main -Xlist option, as shown in the following table

TABLE 3-11 –Xlist Sub-options

Option Feature

–Xlist Show errors, listing, and cross reference table

–Xlistc Show call graphs and errors

–XlistE Show errors

–Xlisterr[nnn] Suppress error nnn messages

–Xlistf Show errors, listing, and cross references, but no object files

–Xlisth Terminate compilation if errors detected

–XlistI Analyze #include and INCLUDE files as well as source files

–XlistL Show listing and errors only

–Xlistln Set page length to n lines

-XlistMP Check OpenMP directives (SPARC)

–Xlisto name Output report file to name instead of file.lst

–Xlists Suppress unreferenced names from the cross–reference table

–Xlistvn Set checking level to n (1,2,3, or 4) -default is 2

–Xlistw[nnn] Set width of output line to nnn columns -default is 79

–Xlistwar[nnn] Suppress warning nnn messages

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 99

Option Feature

–XlistX Show cross–reference table and errors

See the Fortran Programming Guide chapter “Program Analysis and Debugging” for details.

This option is not available on Linux systems.

3.4.106 –xaddr32[={yes|no}]

(x86/x64 only) The -xaddr32=yes compilation flag restricts the resulting executable or shared
object to a 32-bit address space.

An executable that is compiled in this manner results in the creation of a process that is
restricted to a 32-bit address space. When -xaddr32=no is specified a usual 64 bit binary is
produced. If the -xaddr32 option is not specified, -xaddr32=no is assumed. If only -xaddr32 is
specified -xaddr32=yes is assumed.

This option is only applicable to -m64 compilations and only on Solaris platforms supporting
SF1_SUNW_ADDR32 software capability. Since Linux kernel does not support address space
limitation this option is not available on Linux. The -xaddr32 option is ignored on Linux.

When linking, if a single object file was compiled with -xaddr32=yes the whole output file
is assumed to be compiled with -xaddr32=yes. A shared object that is restricted to a 32-bit
address space must be loaded by a process that executes within a restricted 32-bit mode address
space. For more information refer to the SF1_SUNW_ADDR32 software capabilities definition,
described in the Linker and Libraries Guide.

3.4.107 –xalias[=keywords]

Specify degree of aliasing to be assumed by the compiler.

Some non-standard programming techniques can introduce situations that interfere with the
compiler’s optimization strategies. The use of overindexing, pointers, and passing global or
non-unique variables as subprogram arguments, can introduce ambiguous aliasing situations
that could result code that does not work as expected.

Use the -xalias flag to inform the compiler about the degree to which the program deviates
from the aliasing requirements of the Fortran standard.

The flag may appear with or without a list of keywords. The keywords list is comma-separated,
and each keyword indicates an aliasing situation present in the program.

3.4 Options Reference

100 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Each keyword may be prefixed by no% to indicate an aliasing type that is not present.

The aliasing keywords are:

TABLE 3-12 -xalias Option Keywords

keyword meaning

dummy Dummy (formal) subprogram parameters can alias each other and global variables.

no%dummy (Default). Usage of dummy parameters follows the Fortran standard and do not alias
each other or global variables.

craypointer (Default). Cray pointers can point at any global variable or a local variable whose
address is taken by the LOC() function. Also, two Cray pointers might point at the same
data. This is a safe assumption that could inhibit some optimizations.

no%craypointer Cray pointers point only at unique memory addresses, such as obtained from malloc().
Also, no two Cray pointers point at the same data. This assumption enables the
compiler to optimize Cray pointer references.

actual The compiler treats actual subprogram arguments as if they were global variables.
Passing an argument to a subprogram might result in aliasing through Cray pointers.

no%actual (Default) Passing an argument does not result in further aliasing.

overindex ■ A reference to an element in a COMMON block might refer to any element in a
COMMON block or equivalence group.

■ Passing any element of a COMMON block or equivalence group as an actual
argument to a subprogram gives access to any element of that COMMON block or
equivalence group to the called subprogram.

■ Variables of a sequence derived type are treated as if they were COMMON blocks,
and elements of such a variable might alias other elements of that variable.

■ Individual array bounds may be violated, but except as noted above, the referenced
array element is assumed to stay within the array. Array syntax, WHERE, and FORALL
statements are not considered for overindexing. If overindexing occurs in these
constructs, they should be rewritten as DO loops.

no%overindex (Default) Array bounds are not violated. Array references do not reference other
variables.

ftnpointer Calls to external functions might cause Fortran pointers to point at target variables of
any type, kind, or rank.

no%ftnpointer (Default) Fortran pointers follow the rules of the standard.

Specifying -xalias without a list gives the best performance for most programs that do not
violate Fortran aliasing rules, and corresponds to:

no%dummy,no%craypointer,no%actual,no%overindex,no%ftnpointer

To be effective, -xalias should be used when compiling with optimization levels -xO3 and
higher.

The compiler default, with no -xalias flag specified, assumes that the program conforms to the
Fortran standard except for Cray pointers:

no%dummy,craypointer,no%actual,no%overindex,no%ftnpointer

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 101

Examples of various aliasing situations and how to specify them with -xalias are given in the
Porting chapter of the Fortran Programming Guide.

3.4.108 –xannotate[={yes|no}]

Create binaries that can later be used by the optimization and observability tools binopt(1),
code-analyzer(1), discover(1), collect(1), and uncover(1).

The default on Oracle Solaris is -xannotate=yes. The default on Linux is -xannotate=no.
Specifying -xannotate without a value is equivalent to -xannotate=yes.

For optimal use of the optimization and observability tools, -xannotate=yes must be in effect
at both compile and link time. Compile and link with -xannotate=no to produce slightly
smaller binaries and libraries when optimization and observability tools will not be used.

3.4.109 –xarch=isa

Specify instruction set architecture (ISA).

The following table lists the -xarch keywords common to both SPARC and x86 platforms.

TABLE 3-13 -xarch keywords common to both SPARC and x86 platforms

Flag Meaning

generic Uses the instruction set common to most processors. This is the default.

generic64 Compile for good performance on most 64-bit platforms.
This option is equivalent to -m64 -xarch=generic and is provided for compatibility with earlier
releases.

native Compile for good performance on this system. The compiler chooses the appropriate setting for
the current system processor it is running on.

native64 Compile for good performance on 64–bit this system.
This option is equivalent to -m64 -xarch=native and is provided for compatibility with earlier
releases.

Note that although -xarch can be used alone, it is part of the expansion of the –xtarget option
and may be used to override the -xarch value that is set by a specific -xtarget option. For
example:

% f95 -xtarget=ultra2 -xarch=sparcfmaf ...

overrides the -xarch set by -xtarget=ultra2

3.4 Options Reference

102 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

This option limits the code generated by the compiler to the instructions of the specified
instruction set architecture by allowing only the specified set of instructions. This option does
not guarantee use of any target–specific instructions.

If this option is used with optimization, the appropriate choice can provide good performance of
the executable on the specified architecture. An inappropriate choice results in a binary program
that is not executable on the intended target platform.

Note the following:

■ Object binary files (.o) compiled with generic,sparc, sparcvis2, sparcvis3,
sparcfmaf, sparcima can be linked and can execute together, but can only run on a
processor supporting all the instruction sets linked.

■ For any particular choice, the generated executable might not run or run much more slowly
on legacy architectures. Also, because quad-precision (REAL*16 and long double) floating-
point instructions are not implemented in any of these instruction set architectures, the
compiler does not use these instructions in the code it generates.

The default when -xarch is not specified is generic.

Table 3-14 gives details for each of the -xarch keywords on SPARC platforms.

TABLE 3-14 -xarch Values for SPARC Platforms

-xarch= Meaning (SPARC)

sparc Compile for the SPARC–V9 ISA. Compile for the V9 ISA, but without the Visual Instruction
Set (VIS), and without other implementation-specific ISA extensions. This option enables the
compiler to generate code for good performance on the V9 ISA.

sparc4 Compile for the SPARC4 version of the SPARC- V9 ISA.
Enables the compiler to use instructions from the SPARC-V9 instruction set, plus the Ultra
SPARC extensions, which includes VIS 1.0, the UltraSPARC-III extensions, which includes
VIS2.0, the fused floating-point multiply-add instructions, VIS 3.0, and SPARC4 instructions.

sparc4b Compile for the SPARC4B version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, which includes
VIS 1.0, the UltraSPARC-III extensions, which includes VIS2.0, the SPARC64 VI extensions
for floating-point multiply-add, the SPARC64 VII extensions for integer multiply-add, and the
PAUSE and CBCOND instructions from the SPARC T4 extensions.

sparc4c Compile for the SPARC4C version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, which includes
VIS 1.0, the UltraSPARC-III extensions, which includes VIS2.0, the SPARC64 VI extensions for
floating-point multiply-add, the SPARC64 VII extensions for integer multiply-add, the VIS3B
subset of the VIS 3.0 instructions a subset of the SPARC T3 extensions, called the VIS3B subset
of VIS 3.0, and the PAUSE and CBCOND instructions from the SPARC T4 extensions.

sparc5 Compile for the SPARC5 version of the SPARC-V9 ISA. Enables the compiler to use instructions
from the SPARC-V9 instruction set, plus the extensions, which includes VIS 1.0, the Ultra
SPARC-III extensions, which includes VIS2.0, the fused floating-point multiply-add instructions,
VIS 3.0, SPARC4, and SPARC5 instructions.

sparcvis Compile for the SPARC–V9 ISA with UltraSPARC extensions. Compile for SPARC-V9 plus the
Visual Instruction Set (VIS) version 1.0, and with UltraSPARC extensions. This option enables
the compiler to generate code for good performance on the UltraSPARC architecture.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 103

-xarch= Meaning (SPARC)

sparcvis2 Compile for the SPARC-V9 ISA with UltraSPARC-III extensions. Enables the compiler to
generate object code for the UltraSPARC architecture, plus the Visual Instruction Set (VIS)
version 2.0, and with UltraSPARC III extensions.

sparcvis3 Compile for the SPARC VIS version 3 of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the fused multiply-add instructions, and the Visual Instruction
Set (VIS) version 3.0

sparcfmaf Compile for the sparcfmaf version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, and the SPARC64 VI extensions for floating-point multiply-
add.

Note that you must use -xarch=sparcfmafin conjunction with -fma=fused and some
optimization level to get the compiler to attempt to find opportunities to use the multiply-add
instructions automatically.

sparcace Compile for the sparcace version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add,
the SPARC64 VII extensions for integer multiply-add, and the SPARC64 X extensions for ACE
floating-point.

sparcaceplus Compile for the sparcaceplus version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add, the
SPARC64 VII extensions for integer multiply-add, the SPARC64 X extensions for SPARCACE
floating-point, and the SPARC64 X+ extensions for SPARCACE floating-point.

sparcima Compile for the sparcima version of the SPARC-V9 ISA. Enables the compiler to use
instructions from the SPARC-V9 instruction set, plus the UltraSPARC extensions, including the
Visual Instruction Set (VIS) version 1.0, the UltraSPARC-III extensions, including the Visual
Instruction Set (VIS) version 2.0, the SPARC64 VI extensions for floating-point multiply-add,
and the SPARC64 VII extensions for integer multiply-add.

v9 Equivalent to -m64 -xarch=sparc
Legacy makefiles and scripts that use -xarch=v9 to obtain the 64-bit memory model need only
use -m64.

v9a Equivalent to -m64 -xarch=sparcvis and is provided for compatibility with earlier releases.

v9b Equivalent to -m64 -xarch=sparcvis2 and is provided for compatibility with earlier releases.

Table 3-15 details each of the -xarch keywords on x86 platforms. The default on x86 is
generic (or generic64 if —m64 is specified) if -xarch is not specified.

TABLE 3-15 -xarch Values for x86 Platforms

-xarch= Meaning (x86)

386 Limits instruction set to the Intel 386/486 architecture.

pentium_pro Limits instruction set to the Pentium Pro architecture.

3.4 Options Reference

104 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-xarch= Meaning (x86)

pentium_proa Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit Pentium Pro architecture.

sse Adds the SSE instruction set to pentium_pro. (See Note below.)

ssea Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit SSE architecture.

sse2 Adds the SSE2 instruction set to the pentium_pro. (See Note below.)

sse2a Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX extensions) to
the 32-bit SSE2 architecture.

sse3 Adds the SSE3 instruction set to the SSE2 instruction set.

sse3a Adds the AMD extended instructions including 3dnow to the SSE3 instruction set.

amd64 On Solaris platforms, this is equivalent to -m64 -xarch=sse2
Legacy makefiles and scripts that use -xarch=amd64 to obtain the 64-bit memory model
should use -m64.

amd64a On Solaris platforms, this is equivalent to —m64 —xarch=sse2a.

sse3a Adds AMD extended instructions, including 3DNow! to the SSE3 instruction set.

ssse3 Adds the SSSE3 instructions to the SSE3 instruction set.

sse4_1 Adds the SSE4.1 instructions to the SSSE3 instruction set.

sse4_2 Adds the SSE4.2 instructions to the SSE4.1 instruction set.

amdsse4a Adds the SSE4a instructions to the AMD instruction set.

aes Adds the Intel Advanced Encryption Standard instruction set. Note that the compiler
does not generate AES instructions automatically when -xarch=aes is specified unless
the source code includes .il inline code, _asm statements, or assembler code that use
AES instructions, or references to AES intrinsic functions.

avx Uses Intel Advanced Vector Extensions instruction set.

avx_i Uses Intel Advanced Vector Extensions instruction set with the RDRND, FSGSBASE
and F16C instruction sets.

avx2 Uses Intel Advanced Vector Extensions 2 instruction set.

3.4.109.1 Special Cautions for x86/x64 Platforms:

There are some important considerations when compiling for x86 Solaris platforms.

■ If any part of a program is compiled or linked on an x86 platform with —m64, then all parts
of the program must be compiled with one of these options as well. For details on the
various Intel instruction set architectures (SSE, SSE2, SSE3, SSSE3, and so on) refer to the
Intel-64 and IA-32 Intel Architecture Software Developer's Manual

■ Programs compiled with -xarch set to sse, sse2, sse2a, or sse3 and beyond must be run on
platforms supporting these features and extensions..

■ With this release, the default instruction set and the meaning of -xarch=generic has
changed to sse2. Now, compiling without specifying a target platform option results in an
sse2 binary incompatible with older Pentium III or earlier systems.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 105

■ If you compile and link in separate steps, always link using the compiler and with same -
xarch setting to ensure that the correct startup routine is linked.

■ Arithmetic results on x86 may differ from results on SPARC due to the x86 80-byte
floating-point registers. To minimize these differences, use the -fstore option or compile
with -xarch=sse2 if the hardware supports SSE2.

■ Running programs compiled with these -xarch options on platforms that are not enabled
with the appropriate features or instruction set extensions could result in segmentation faults
or incorrect results occurring without any explicit warning messages.

■ This warning extends also to programs that employ .il inline assembly language functions
or __asm() assembler code that utilize SSE, SSE2, SSE2a, and SSE3 (and beyond)
instructions and extensions.

3.4.110 –xassume_control[=keywords]

Set parameters to control ASSUME pragmas.

Use this flag to control the way the compiler handles ASSUME pragmas in the source code.

The ASSUME pragmas provide a way for the programmer to assert special information that the
compiler can use for better optimization. These assertions may be qualified with a probability
value. Those with a probability of 0 or 1 are marked as certain; otherwise they are considered
non-certain.

You can also assert, with a probability or certainty, the trip count of an upcoming DO loop, or
that an upcoming branch will be taken.

See “2.3.1.8 The ASSUME Directives” on page 34, for a description of the ASSUME pragmas
recognized by the f95 compiler.

The keywords on the -xassume_control option can be a single suboption keyword or a comma-
separated list of keywords. The keyword suboptions recognized are:

optimize The assertions made on ASSUME pragmas affect optimization of the program.

check The compiler generates code to check the correctness of all assertions marked
as certain, and emits a runtime message if the assertion is violated; the program
continues if fatal is not also specified.

fatal When used with check, the program will terminate when an assertion marked
certain is violated.

retrospective[:d] The d parameter is an optional tolerance value, and must be a real positive constant
less than 1. The default is ".1". retrospective compiles code to count the truth or
falsity of all assertions. Those outside the tolerance value d are listed on output at
program termination.

%none All ASSUME pragmas are ignored.

3.4 Options Reference

106 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

The compiler default is

-xassume_control=optimize

This means that the compiler recognizes ASSUME pragmas and they will affect optimization, but
no checking is done.

If specified without parameters, -xassume_control implies

-xassume_control=check,fatal

In this case the compiler accepts and checks all certain ASSUME pragmas, but they do not affect
optimization. Assertions that are invalid cause the program to terminate.

3.4.111 –xautopar

Synonym for -autopar.

3.4.112 –xbinopt={prepare | off}

(SPARC) This option is now obsolete and will be removed in a future release of the compilers.
See “3.4.108 –xannotate[={yes|no}]” on page 101

Prepare binary for post-compilation optimization.

The compiled binary file is enabled for later optimizations, transformations, and analysis by
binopt(1). This option may be used when building executables or shared objects, and it must be
used with an optimization level of -O1 or higher to be effective.

There will be a modest increase in the size of the binary file when built with this option, on the
order of 5%.

If you compile and link in separate steps, -xbinopt must appear on both the compile and link
steps.

If not all the source code for an application is compiled with -xbinopt, the -xbinopt flag
should still appear on the final link step that builds the program binary, as shown below:

example% f95 -0 program -xbinopt=prepare a.o b.o c.f95

Only code compiled with -xbinopt can be optimized by binopt(1).

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 107

Binaries compiled with -xpg for gprof profiling should not be used with binopt as they are
incompatible and can result in internal errors.

The default is -xbinopt=off.

3.4.113 –xcache=c

Define cache properties for the optimizer.

This option specifies the cache properties that the optimizer can use. It does not guarantee that
any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the –xtarget option; it is
provided to allow overriding an -xcache value implied by a specific -xtarget option.

TABLE 3-16 –xcache Values

Value Meaning

generic Define the cache properties for good performance on most
processors without any major performance degradation.
This is the default.

native Define the cache properties for good performance on this
host platform.

s1/l1/a1[/t1] Define level 1 cache properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2] Define levels 1 and 2 cache properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2]:s3/l3/a3[/t3] Define levels 1, 2, and 3 cache properties

The si/li/ai/ti fields are defined as follows:

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

ti The number of hardware threads sharing the cache at level i (optional)

Example: xcache=16/32/4:1024/32/1 specifies the following:

A Level 1 cache has: 16K bytes, 32 byte line size, 4–way associativity.

A Level 2 cache has: 1024K bytes, 32 byte line size, direct mapping associativity.

3.4 Options Reference

108 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.114 –xcheck[=keyword[,keyword]]
Generate special runtime checks and initializations.

The keyword must be one of the following:

keyword Feature

stkovf[action] Generate code to detect stack overflow errors at runtime, optionally specifying an
action to be taken when a stack overflow error is detected.

A stack overflow error occurs when a thread's stack pointer is set beyond the thread's
allocated stack bounds. The error may not be detected if the new top of stack address is
writable.

A stack overflow error is detected if a memory access violation occurs as a direct result
of the error, raising an associated signal (usually SIGSEGV). The signal thus raised is
said to be associated with the error.

If -xcheck=stkovf[action] is specified, the compiler generates code to detect stack
overflow errors in cases involving stack frames larger than the system page size. The
code includes a library call to force a memory access violation instead of setting the
stack pointer to an invalid but potentially mapped address (see _stack_grow(3C)).

The optional action, if specified, must be either :detect or :diagnose.

If action is :detect, a detected stack overflow error is handled by executing the signal
handler normally associated with the error.

If action is :diagnose, a detected stack overflow error is handled by catching the
associated signal and calling stack_violation(3C) to diagnose the error. This is the
default behavior if no action is specified.

If a memory access violation is diagnosed as a stack overflow error, the following
message is printed to stderr:

ERROR: stack overflow detected: pc=<inst_addr>, sp=<sp_addr>

where <inst_addr> is the address of the instruction where the error was detected, and
<sp_addr> is the value of the stack pointer at the time that the error was detected. After
checking for stack overflow and printing the above message if appropriate, control
passes to the signal handler normally associated with the error.

-xcheck=stkovf:detect adds a stack bounds check on entry to routines with stack
frames larger than system page size (see _stack_grow(3C)). The relative cost of the
additional bounds check should be negligible in most applications.

-xcheck=stkovf:diagnose adds a system call to thread creation (see sigaltstack(2)).
The relative cost of the additional system call depends on how frequently the
application creates and destroys new threads.

-xcheck=stkovf is supported only on Oracle Solaris. The C runtime library on Linux
does not support stack overflow detection.

no%stkovf Disable runtime checking for stack overflow.

init_local Perform special initialization of local variables.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 109

keyword Feature
The compiler initializes local variables to a value that is likely to cause an arithmetic
exception if it is used by the program before it is assigned. Memory allocated by the
ALLOCATE statement will also be initialized in this manner.

Module variables, STATIC and SAVE local variables, and variables in COMMON blocks are
not initialized.

For details, see the C User's Guide.

no%init_local Disable local variable initialization. This is the default.

%all Turn on all these runtime checking features.

%none Disable all these runtime checking features.

Stack overflows, especially in multithreaded applications with large arrays allocated on the
stack, can cause silent data corruption in neighboring thread stacks. Compile all routines with -
xcheck=stkovf if stack overflow is suspected. But note that compiling with this flag does not
guarantee that all stack overflow situations will be detected since they could occur in routines
not compiled with this flag.

3.4.115 –xchip=c

Specify target processor for the optimizer.

This option specifies timing properties by specifying the target processor.

Although this option can be used alone, it is part of the expansion of the –xtarget option; it is
provided to allow overriding a -xchip value implied by the a specific -xtarget option.

Some effects of -xchip=c are:

■ Instruction scheduling
■ The way branches are compiled
■ Choice between semantically equivalent alternatives

The following tables list the valid -xchip processor name values:

TABLE 3-17 Common –xchip SPARC Processor Names

-xchip= Optimize for:

generic most SPARC processors. (This is the default.)

native this host platform.

sparc64vi SPARC64 VI processor

3.4 Options Reference

110 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-xchip= Optimize for:

sparc64vii SPARC64 VII processor

sparc64viiplus SPARC64 VII+ processor

sparc64x SPARC64 X processor

sparc64xplus SPARC64 X+ processor

ultra UltraSPARC processor

ultra2 UltraSPARC II processor

ultra2e UltraSPARC IIe processor

ultra2i UltraSPARC IIi processor

ultra3 UltraSPARC III processor

ultra3cu UltraSPARC IIIcu processor

ultra3i UltraSPARC IIIi processor

ultra4 UltraSPARC IV processor

ultra4plus UltraSPARC IV+ processor

ultraT1 UltraSPARC T1 processor

ultraT2 UltraSPARC T2 processor

ultraT2plus UltraSPARC T2+ processor

ultraT3 UltraSPARC T3 processor

T3 SPARC T3 processor

T4 SPARC T4 processor

T5 Uses the timing properties of the SPARC T5 processor.

T7 Uses the timing properties of the SPARC T7 processor.

M5 Uses the timing properties of the SPARC M5 processor.

M6 Uses the timing properties of the SPARC M6 processor.

M7 Uses the timing properties of the SPARC M7 processor.

Note - The following SPARC -xchip values are obsolete and may be removed in a future
release: ultra, ultra2, ultra2e, ultra2i, ultra3, ultra3cu, ultra3i, ultra4, and
ultra4plus.

On x86 platforms, the -xchip values are pentium, pentium_pro, pentium3, pentium4, generic,
opteron, core2, penryn, nehalem, amdfam10, sandybridge, ivybridge, haswell, westmere,
and native.

3.4.116 -xcode[=v]
(SPARC) Specify code address space.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 111

Note - Build shared objects by specifying -xcode=pic13 or -xcode=pic32. While you can build
workable shared objects with -m64 -xcode=abs64 they will be inefficient. Shared objects built
with -m64, -xcode=abs32, or -m64, -xcode=abs44 will not work.

The following table lists the values for v.

TABLE 3-18 The -xcode Flags

Value Meaning

abs32 This is the default on 32-bit architectures. Generates 32-bit absolute addresses. Code + data + BSS
size is limited to 2**32 bytes.

abs44 This is the default on 64-bit architectures. Generates 44-bit absolute addresses. Code + data + BSS
size is limited to 2**44 bytes. Available only on 64–bit architectures.

abs64 Generates 64-bit absolute addresses. Available only on 64-bit architectures.

pic13 Generates position-independent code for use in shared libraries (small model). Equivalent to -
Kpic. Permits references to at most 2**11 unique external symbols on 32-bit architectures, 2**10
on 64-bit architectures.

pic32 Generates position-independent code for use in shared libraries (large model). Equivalent to -KPIC.
Permits references to at most 2**30 unique external symbols on 32-bit architectures, 2**29 on 64-
bit architectures.

The default is -xcode=abs32 for 32–bit architectures. The default for 64–bit architectures is-
xcode=abs44.

When building shared dynamic libraries, the default -xcode values of abs44 and abs32 will not
work with 64–bit architectures. Specify -xcode=pic13 or -xcode=pic32 instead. Two nominal
performance costs with -xcode=pic13 and -xcode=pic32 on SPARC are:.

■ A routine compiled with either -xcode=pic13 or -xcode=pic32 executes a few extra
instructions upon entry to set a register to point at a table (_GLOBAL_OFFSET_TABLE_) used
for accessing a shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory reference
through _GLOBAL_OFFSET_TABLE_. If the compilation includes -xcode=pic32, there are two
additional instructions per global and static memory reference.

When considering these costs, remember that the use of -xcode=pic13 and -xcode=pic32 can
significantly reduce system memory requirements due to the effect of library code sharing.
Every page of code in a shared library compiled -xcode=pic13 or -xcode=pic32 can be shared
by every process that uses the library. If a page of code in a shared library contains even a single
non-pic (that is, absolute) memory reference, the page becomes nonsharable, and a copy of the
page must be created each time a program using the library is executed.

The easiest way to tell whether a .o file has been compiled with -xcode=pic13 or -
xcode=pic32 is by using the nm command:

% nm file.o | grep _GLOBAL_OFFSET_TABLE_ U _GLOBAL_OFFSET_TABLE_

3.4 Options Reference

112 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

A .o file containing position-independent code contains an unresolved external reference to
_GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use -xcode=pic13 or -xcode=pic32, check the size of the Global
Offset Table (GOT) by using elfdump -c looking for the section header sh_name: .got.
The sh_size value is the size of the GOT. If the GOT is less than 8,192 bytes, specify -
xcode=pic13. Otherwise specify -xcode=pic32.See the elfdump(1) man page for more
information.

Follow these guidelines to determine how you should use -xcode:

■ If you are building an executable, do not use -xcode=pic13 or -xcode=pic32.
■ If you are building an archive library only for linking into executables, do not use -

xcode=pic13 or -xcode=pic32.
■ If you are building a shared library, start with -xcode=pic13 and, once the GOT size

exceeds 8,192 bytes, use -xcode=pic32.
■ If you are building an archive library for linking into shared libraries, use -xcode=pic32.

3.4.117 –xcommonchk[={yes|no}]

Enable runtime checking of common block inconsistencies.

This option provides a debug check for common block inconsistencies in programs using
TASK COMMON and parallelization. (See the discussion of the TASK COMMON directive in the
“Parallelization” chapter in the Fortran Programming Guide.)

The default is -xcommonchk=no; runtime checking for common block inconsistencies is
disabled because it will degrade performance. Use -xcommonchk=yes only during program
development and debugging, and not for production-quality programs.

Compiling with -xcommonchk=yes enables runtime checking. If a common block declared in
one source program unit as a regular common block appears somewhere else on a TASK COMMON
directive, the program will stop with an error message indicating the first such inconsistency. -
xcommonchk without a value is equivalent to -xcommonchk=yes.

3.4.118 –xdebugformat={dwarf|stabs}
Solaris Studio compilers are migrating the format of debugger information from the "stabs"
format to the "dwarf" format. The default setting for this release is -xdebugformat=dwarf.

If you maintain software which reads debugging information, you now have the option to
transition your tools from the stabs format to the dwarf format.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 113

Use this option as a way of accessing the new format for the purpose of porting tools. There is
no need to use this option unless you maintain software which reads debugger information, or
unless a specific tool tells you that it requires debugger information in one of these formats.

-xdebugformat=stabs generates debugging information using the stabs standard format.

-xdebugformat=dwarf generates debugging information using the dwarf standard format.

If you do not specify -xdebugformat, the compiler assumes -xdebugformat=dwarf. It is an
error to specify the option without an argument.

This option affects the format of the data that is recorded with the -g option. Some the format
of that information is also controlled with this option. So -xdebugformat has a an effect even
when -g is not used.

The dbx and Performance Analyzer software understand both stabs and dwarf format so using
this option does not have any effect on the functionality of either tool.

This is a transitional interface so expect it to change in incompatible ways from release to
release, even in a minor release. The details of any specific fields or values in either stabs or
dwarf are also evolving.

Use the dwarfdump(1) command to determine the format of the debugging information in a
compiled object or executable file.

3.4.119 -xdebuginfo=a[,a...]

Control how much debugging and observability information is emitted.

The term tagtype refers to tagged types: structs, unions, enums, and classes.

The following list contains the possible values for suboptions a. The prefix no% applied to a
suboption disables that suboption. The default is -xdebuginfo=%none. Specifying -xdebuginfo
without a suboption is forbidden.

%none No debugging information is generated. This is the default.

[no%]line Emit line number and file information.

[no%]param Emit location list info for parameters. Emit full type information for
scalar values (for example, int, char *) and type names but not full
definitions of tagtypes.

[no%]variable Emit location list information for lexically global and local variables,
including file and function statics but excluding class statics and

3.4 Options Reference

114 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

externs. Emit full type information for scalar values such as int and
char * and type names but not full definitions of tagtypes.

[no%]decl Emit information for function and variable declarations, member
functions, and static data members in class declarations.

[no%]tagtype Emit full type definitions of tagtypes referenced from param and
variable datasets, as well as template definitions.

[no%]macro Emit macro information.

[no%]codetag Emit DWARF codetags (also known as Stabs N_PATCH). This is
information regarding bitfields, structure copy, and spills used by RTC
and discover.

[no%]hwcpro Generate information critical to hardware counter profiling. This
information includes ldst_map, a mapping from ld/st instructions to the
symbol table entry being referenced, and branch_target table of branch-
target addresses used to verify that backtracking did not cross a branch-
target. See -xhwcprof for more information.

Note - ldst_map requires the presence of tagtype information. The driver will issue an error if
this requirement is not met.

These are macros which expand to combinations of -xdebuginfo and other options as follows:

-g = -g2

-gnone =

 -xdebuginfo=%none

 -xglobalize=no

 -xpatchpadding=fix

 -xkeep_unref=no%funcs,no%vars

-g1 =

 -xdebuginfo=line,param,codetag

 -xglobalize=no

 -xpatchpadding=fix

 -xkeep_unref=no%funcs,no%vars

-g2 =

 -xdebuginfo=line,param,decl,variable,tagtype,codetag

 -xglobalize=yes

 -xpatchpadding=fix

 -xkeep_unref=funcs,vars

-g3 =

 -xdebuginfo=line,param,decl,variable,tagtype,codetag,macro

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 115

 -xglobalize=yes

 -xpatchpadding=fix

 -xkeep_unref=funcs,vars

3.4.120 –xdepend

Synonym for -depend.

3.4.121 –xF

Allow function–level reordering by the Performance Analyzer.

Allow the reordering of functions (subprograms) in the core image using the compiler, the
performance analyzer and the linker. If you compile with the -xF option, then run the analyzer,
you can generate a map file that optimizes the ordering of the functions in memory depending
on how they are used together. A subsequent link to build the executable file can be directed to
use that map by using the linker -Mmapfile option. It places each function from the executable
file into a separate section. (The f95 —Mpath option also passes a regular file to the linker; see
the description of the f95 —Mpath option.)

Reordering the subprograms in memory is useful only when the application text page fault
time is consuming a large percentage of the application time. Otherwise, reordering may not
improve the overall performance of the application. See the Program Performance Analysis
Tools manual for further information on the analyzer.

3.4.122 –xfilebyteorder=options

Support file sharing between little-endian and big-endian platforms.

The flag identifies the byte-order and byte-alignment of data on unformatted I/O files. options
must specify any combination of the following, but at least one specification must be present:

littlemax_align:spec

bigmax_align:spec

native:spec

max_align declares the maximum byte alignment for the target platform. Permitted values are 1,
2, 4, 8, and 16. The alignment applies to Fortran VAX structures and Fortran derived types that
use platform-dependent alignments for compatibility with C language structures.

3.4 Options Reference

116 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

little specifies a "little-endian" file on platforms where the maximum byte alignment is
max_align. For example, little4 specifies a 32-bit x86 file, while little16 describes a 64-bit
x86 file.

big specifies a "big-endian" file with a maximum alignment of max_align. For example, big8
describes a 32-bit SPARC file, while big16 describes a 64-bit SPARC file.

native specifies a "native" file with the same byte order and alignment used by the compiling
processor platform. The following are assumed to be "native":

Platform "native" corresponds to:

32-bit SPARC big8

64-bit SPARC big16

32-bit x86 little4

64-bit x86 little16

spec must be a comma-separated list of the following:

%all

unit

filename

%all refers to all files and logical units except those opened as "SCRATCH", or named explicitly
elsewhere in the -xfilebyteorder flag. %all can only appear once.

unit refers to a specific Fortran unit number opened by the program.

filename refers to a specific Fortran file name opened by the program.

3.4.122.1 Examples:

-xfilebyteorder=little4:1,2,afile.in,big8:9,bfile.out,12

-xfilebyteorder=little8:%all,big16:20

3.4.122.2 Notes:

This option does not apply to files opened with STATUS="SCRATCH". I/O operations done on
these files are always with the byte-order and byte-alignment of the native processor.

The first default, when -xfilebyteorder does not appear on the command line, is -
xfilebyteorder=native:%all.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 117

A file name or unit number can be declared only once in this option.

When -xfilebyteorder does appear on the command line, it must appear with at least one of
the little, big, or native specifications.

Files not explicitly declared by this flag are assumed to be native files. For example, compiling
with -xfilebyteorder=little4:zork.out declares zork.out to be a little-endian 32-bit x86
file with a 4-byte maximum data alignment. All other files in the program are native files.

When the byte-order specified for a file is the same as the native processor but a different
alignment is specified, the appropriate padding will be used even though no byte swapping is
done. For example, this would be the case when compiling with -m64 for 64-bit x86 platforms
and -xfilebyteorder=little4:filename is specified.

The declared types in data records shared between big-endian and little-endian platforms must
have the same sizes. For example, a file produced by a SPARC executable compiled with -
xtypemap=integer:64,real:64,double:128 cannot be read by an x86 executable compiled
with -xtypemap=integer:64,real:64,double:64 since the default double precision data types
will have different sizes. (However, note that starting with the release of Solaris Studio 12
Update 1, double:128 is accepted on x64 processors.)

If an option that changes the alignment of the components within a VAX structure (such as
—vax=struct_align) or a derived type (such as —aligncommon or —dalign) is used on one
platform, the same alignment option has to be used on other platforms sharing the same
unformatted data file whose content is affected by the alignment option.

An I/O operation with an entire UNION/MAP data object on a file specified as non-native will
result in a runtime I/O error. You can only execute I/O operations using the individual members
of the MAP (and not an entire VAX record containing the UNION/MAP) on non-native files.

3.4.123 -xglobalize[={yes|no}]
Control globalization of file static variables but not functions.

Globalization is a technique needed by fix and continue and interprocedural optimization
whereby file static symbols are promoted to global while a prefix is added to the name to keep
identically named symbols distinct.

The default is -xglobalize=no. Specifying -xglobalize is equivalent to specifying -
xglobalize=yes.

3.4.123.1 Interactions

See -xpatchpadding.

3.4 Options Reference

118 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-xipo requires globalization as well and will override -xglobalize.

3.4.124 –xhasc[={yes|no}]

Treat Hollerith constant as a character string in an actual argument list.

With -xhasc=yes, the compiler treats Hollerith constants as character strings when they appear
as an actual argument on a subroutine or function call. This is the default, and complies with the
Fortran standard. (The actual call list generated by the compiler contains hidden string lengths
for each character string.)

With -xhasc=no, Hollerith constants are treated as typeless values in subprogram calls, and only
their addresses are put on the actual argument list. (No string length is generated on the actual
call list passed to the subprogram.)

Compile routines with -xhasc=no if they call a subprogram with a Hollerith constant and the
called subprogram expects that argument as INTEGER (or anything other than CHARACTER).

Example:

demo% cat hasc.f
 call z(4habcd, ’abcdefg’)

 end

 subroutine z(i, s)

 integer i

 character *(*) s

 print *, "string length = ", len(s)

 return

 end

demo% f95 -o has0 hasc.f

demo% has0
 string length = 4 <-- should be 7
demo% f95 -o has1 -xhasc=no hasc.f

demo% has1
 string length = 7 <-- now correct length for s

Passing 4habcd to z is handled correctly by compiling with -xhasc=no.

This flag is provided to aid porting legacy Fortran 77 programs.

3.4.125 –xhelp=flags

List the compiler option flags. Equivalent to -help.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 119

3.4.126 –xhwcprof[={enable | disable}]

(SPARC) Enable compiler support for dataspace profiling.

With -xhwcprof enabled, the compiler generates information that helps tools associate profiled
load and store instructions with the data-types and structure members (in conjunction with
symbolic information produced with -g) to which they refer. It associates profile data with the
data space of the target, rather than the instruction space, and provides insight into behavior that
is not easily obtained from only instruction profiling.

While you can compile a specified set of object files with -xhwcprof, this option is most useful
when applied to all object files in the application. This will provide coverage to identify and
correlate all memory references distributed in the application's object files.

If you are compiling and linking in separate steps, use -xhwcprof at link time as well.

An instance of -xhwcprof=enable or -xhwcprof=disable overrides all previous instances of -
xhwcprof in the same command line.

-xhwcprof is disabled by default. Specifying -xhwcprof without any arguments is the
equivalent to -xhwcprof=enable.

-xhwcprof requires that optimization be turned on and that the debug data format be set
to dwarf (-xdebugformat=dwarf), which is the default with current Oracle Solaris Studio
compilers. The occurrence of -xhwcprof and -xdebugformat=stabs on the same command line
is not permitted.

-xhwcprof uses -xdebuginfo to automatically enable the minimum amount of debugging
information it needs, so -g is not required.

The combination of -xhwcprof and -g increases compiler temporary file storage requirements
by more than the sum of the increases due to -xhwcprof and -g specified alone.

-xhwcprof is implemented as a macro that expands to various other, more primitive, options as
follows:

-xhwcprof

 -xdebuginfo=hwcprof,tagtype,line

-xhwcprof=enable

 -xdebuginfo=hwcprof,tagtype,line

-xhwcprof=disable

 -xdebuginfo=no%hwcprof,no%tagtype,no%line

The following command compiles example.f and specifies support for hardware counter
profiling and symbolic analysis of data types and structure members using DWARF symbols:

f95 -c -O -xhwcprof -g example.f

3.4 Options Reference

120 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

For more information on hardware counter-based profiling, see the Oracle Solaris Studio
Performance Analyzer manual.

3.4.127 –xia[={widestneed|strict}]

(Solaris) Enable interval arithmetic extensions and set a suitable floating-point environment.

The default if not specified is -xia=widestneed.

Fortran extensions for interval arithmetic calculations are detailed in
the Interval Arithmetic Programming Reference. See also “3.4.132 –
xinterval[={widestneed|strict|no}]” on page 123.

The -xia flag is a macro that expands as follows:

-xia or-xia=widestneed -xinterval=widestneed -ftrap=%none -fns=no -fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0

3.4.128 –xinline=list

Synonym for -inline.

3.4.129 -xinline_param=a[,a[,a]...]

Use this option to manually change the heuristics used by the compiler for deciding when to
inline a function call.

This option only has an effect at -O3 or higher. The following sub-options have an effect only at
-O4 or higher when automatic inlining is on.

In the following sub-options n must be a positive integer; a can be one of the following:

TABLE 3-19 -xinline_param Sub-options

Sub-option Meaning

default Set the values of all the sub-options to their default values.

max_inst_hard[:n] Automatic inlining only considers functions smaller than n pseudo
instructions (counted in compiler's internal representation) as possible
inline candidates.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 121

Sub-option Meaning
Under no circumstances will a function larger than this be considered for
inlining.

max_inst_soft[:n] Set inlined function's size limit to n pseudo instructions (counted in
compiler's internal representation).

Functions of greater size than this may sometimes be inlined.

When interacting with max_inst_hard, the value of max_inst_soft should
be equal to or smaller than the value of max_inst_hard, i.e, max_inst_
soft <= max_inst_hard.

In general, the compiler's automatic inliner only inlines calls whose called
function's size is smaller than the value of max_inst_soft. In some cases a
function may be inlined when its size is larger than the value of max_inst_
soft but smaller than that of max_inst_hard. An example of this would be
if the parameters passed into a function were constants.

When deciding whether to change the value of max_inst_hard or max_
inst_soft for inlining one specific call site to a function, use -xinline_
report=2 to report detailed inlining message and follow the suggestion in
the inlining message.

max_function_inst[:n] Allow functions to increase due to automatic inlining by up to n pseudo
instructions (counted in compiler's internal representation).

max_growth[:n] The automatic inliner is allowed to increase the size of the program by up
to n% where the size is measured in pseudo instructions.

min_counter[:n] The minimum call site frequency counter as measured by profiling
feedback (-xprofile) in order to consider a function for automatic
inlining.

This option is valid only when the application is compiled with profiling
feedback (-xprofile=use).

level[:n] Use this suboption to control the degree of automatic inlining that is
applied. The compiler will inline more functions with higher settings for -
xinline_param=level.

n must be one of 1, 2, or 3.

The default value of n is 2 when this option is not specified, or when the
options is specified without :n.

Specify the level of automatic inline:

 level:1 basic inlining
 level:2 medium inlining (default)
 level:3 aggressive inlining

The level decides the specified values for the combination of the
following inlining parameters:

 max_growth
 + max_function_inst
 + max_inst
 + max_inst_call

When level = 1, all the parameters are half the values of the default.

3.4 Options Reference

122 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Sub-option Meaning

When level = 2, all the parameters are the default value.

When level = 3, all the parameters are double the values of the default.

max_recursive_depth[:n] When a function calls itself either directly or indirectly, it is said to be
making a recursive call.

This suboption allows a recursive call to be automatically inlined up to n
levels.

max_recursive_inst[:n] Specifies the maximum number of pseudo instructions (counted in
compiler's internal representation) the caller of a recursive function can
grow to by performing automatic recursive inlining.

When interactions between max_recursive_inst and max_recursive_
depth occur, recursive function calls will be inlined until either the max_
recursive_depth number of recursive calls, or until the size of the
function being inlined into exceeds max_recursive_inst. The settings
of these two parameters control the degree of inlining of small recursive
functions.

If -xinline_param=default is specified, the compiler will set all the values of the subopitons
to the default values.

If the option is not specified, the default is -xinline_param=default.

The list of values and options accumulate from left to right. So for a specification of -
xinline_param=max_inst_hard:30,..,max_inst_hard:50, the value max_inst_hard:50 will
be passed to the compiler.

If multiple -xinline_param options are specified on the command line, the list of sub-options
likewise accumulate from left to right. For example, the effect of

 -xinline_param=max_inst_hard:50,min_counter:70 ...

 -xinline_param=max_growth:100,max_inst_hard:100

will be the same as that of

-xinline_param=max_inst_hard:100,min_counter:70,max_growth:100

3.4.130 -xinline_report[=n]

This option generates a report written to standard output on the inlining of functions by the
compiler. The type of report depends on the value of n, which must be 0, 1, or 2.

0 No report is generated.

1 A summary report of default values of inlining parameters is generated.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 123

2 A detailed report of inlining messages is generated, showing which
callsites are inlined and which are not, with a short reason for not inlining
a callsite. In some cases, this report will include suggested values for -
xinline_param that can be used to inline a callsite that is not inlined.

When -xinline_report is not specified, the default value for n is 0. When -xinline_report is
specified without =n, the default value is 1.

When -xlinkopt is present, the inlining messages about the callsites that are not inlined might
not be accurate.

The report is limited to inlining performed by the compiler that is subject to the heuristics
controllable by the -xinline_param option. Callsites inlined by the compiler for other reasons
may not be reported.

3.4.131 –xinstrument=[%no]datarace

Specify this option to compile and instrument your program for analysis by the Thread
Analyzer.

(For information on the Thread Analyzer, see tha(1) for details.)

By compiling with this option you can then use the Performance Analyzer to run the
instrumented program with collect -r races to create a data-race-detection experiment. You
can run the instrumented code standalone but it runs more slowly.

Specify -xinstrument=no%datarace to turn off this feature. This is the default.

-xinstrument must be specified with an argument.

If you compile and link in separate steps, you must specify -xinstrument=datarace in both the
compilation and linking steps.

This option defines the preprocessor token __THA_NOTIFY. You can specify #ifdef
__THA_NOTIFY to guard calls to libtha(3) routines.

This option also sets -g.

3.4.132 –xinterval[={widestneed|strict|no}]

(Oracle Solaris) Enable interval arithmetic extensions.

The optional value can be one of either no, widestneed or strict. The default if not specified
is widestneed.

3.4 Options Reference

124 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

no Interval arithmetic extensions not enabled.

widestneed Promotes all non-interval variables and literals in any mixed-mode expression to the widest
interval data type in the expression.

strict Prohibits mixed-type or mixed-length interval expressions. All interval type and length
conversions must be explicit.

Fortran extensions for interval arithmetic calculations are detailed in the
Fortran 95 Interval Arithmetic Programming Reference. See also “3.4.127 –
xia[={widestneed|strict}]” on page 120.

3.4.133 –xipo[={0|1|2}]

Perform interprocedural optimizations.

Performs whole-program optimizations by invoking an interprocedural analysis pass. -xipo
performs optimizations across all object files in the link step, and is not limited to just the
source files on the compile command.

-xipo is particularly useful when compiling and linking large multi-file applications. Object
files compiled with this flag have analysis information compiled within them that enables
interprocedural analysis across source and pre-compiled program files. However, analysis and
optimization is limited to the object files compiled with -xipo, and does not extend to object
files on libraries.

-xipo=0 disables, and -xipo=1 enables, interprocedural analysis. -xipo=2 adds interprocedural
aliasing analysis and memory allocation and layout optimizations to improve cache
performance. The default is -xipo=0, and if -xipo is specified without a value, -xipo=1 is
used.

When compiling with -xipo=2, there should be no calls from functions or subroutines compiled
without -xipo=2 (for example, from libraries) to functions or subroutines compiled with -
xipo=2.

As an example, if you interpose on the function malloc() and compile your own version of
malloc() with -xipo=2, all the functions that reference malloc() in any library linked with
your code would also have to be compiled with -xipo=2. Since this might not be possible for
system libraries, your version of malloc should not be compiled with -xipo=2.

When compiling and linking are performed in separate steps, -xipo must be specified in both
steps to be effective.

Example using -xipo in a single compile/link step:

demo% f95 -xipo -xO4 -o prog part1.f part2.f part3.f

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 125

The optimizer performs crossfile inlining across all three source files. This is done in the final
link step, so the compilation of the source files need not all take place in a single compilation
and could be over a number of separate compilations, each specifying -xipo.

Example using -xipo in separate compile/link steps:

demo% f95 -xipo -xO4 -c part1.f part2.f

demo% f95 -xipo -xO4 -c part3.f

demo% f95 -xipo -xO4 -o prog part1.o part2.o part3.o

The object files created in the compile steps have additional analysis information compiled
within them to permit crossfile optimizations to take place at the link step.

A restriction is that libraries, even if compiled with -xipo do not participate in crossfile
interprocedural analysis, as shown in this example:

demo% f95 -xipo -xO4 one.f two.f three.f

demo% ar -r mylib.a one.o two.o three.o
...

demo% f95 -xipo -xO4 -o myprog main.f four.f mylib.a

Here interprocedural optimizations will be performed between one.f, two.f and three.f, and
between main.f and four.f, but not between main.f or four.f and the routines on mylib.a.
(The first compilation may generate warnings about undefined symbols, but the interprocedural
optimizations will be performed because it is a compile and link step.)

Other important information about -xipo:

■ requires at least optimization level -xO4
■ Building executables compiled with -xipo using a parallel make tool can cause problems if

object files used in the build are common to the link steps running in parallel. Each link step
should have its own copy of the object file being optimized prior to linking.

■ objects compiled without -xipo can be linked freely with objects compiled with -xipo.
■ The -xipo option generates significantly larger object files due to the additional information

needed to perform optimizations across files. However, this additional information does not
become part of the final executable binary file. Any increase in the size of the executable
program will be due to the additional optimizations performed

■ If you have .o files compiled with the -xipo option from different compiler versions,
mixing these files can result in failure with an error message about "IR version mismatch".
When using the -xipo option, all the files should be compiled with the same version of the
compiler.

■ In this release, crossfile subprogram inlining is the only interprocedural optimization
performed by -xipo.

■ .s assembly language files do not participate in interprocedural analysis.
■ The -xipo flag is ignored if compiling with -S.

When Not To Compile With -xipo:

3.4 Options Reference

126 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Working with the set of object files in the link step, the compiler tries to perform whole-
program analysis and optimizations. For any function or subroutine foo() defined in this set of
object files, the compiler makes the following two assumptions:

1. At runtime, foo() will not be called explicitly by another routine defined outside this set of
object files, and

2. calls to foo() from any routine in the set of object files will be not be interposed upon by a
different version of foo() defined outside this set of object files.

If assumption (1) is not true for the given application, do not compile with -xipo=2.If
assumption (2) is not true, do not compile with either -xipo=1 or -xipo=2.

As an example, consider interposing on the function malloc() with your own source version
and compiling with -xipo=2. Then all the functions in any library that reference malloc() that
are linked with your code would have to also be compiled with -xipo=2 and their object files
would need to participate in the link step. Since this might not be possible for system libraries,
your version of malloc() should not be compiled with -xipo=2.

As another example, suppose that you build a shared library with two external calls, foo()
and bar() inside two different source files, and bar() calls foo() inside its body. If there is
a possibility that the function call foo() could be interposed at runtime, then compile neither
source file for foo() or bar() with -xipo=1 or -xipo=2. Otherwise, foo() could be inlined into
bar(), which could cause incorrect results when compiled with -xipo.

3.4.134 –xipo_archive[={none|readonly|writeback}]

(SPARC) Allow crossfile optimization to include archive (.a) libraries.

The value must be one of the following:

none No processing of archive files is performed. The compiler does not apply cross-module
inlining or other cross-module optimizations to object files compiled using -xipo and
extracted from an archive library at link time. To do that, both -xipo and either -xipo_
archive=readonlyor -xipo_archive=writeback must be specified at link time.

readonly The compiler optimizes object files passed to the linker with object files compiled with
-xipo that reside in the archive library (.a) before producing an executable.

The option -xipo_archive=readonly enables cross-module inlining and
interprocedural data flow analysis of object files in an archive library specified at link
time. However, it does not enable cross-module optimization of the archive library's
code except for code that has been inserted into other modules by cross module
inlining.

To apply cross-module optimization to code within an archive library, -xipo_archive=
writeback is required. Note that doing so modifies the contents of the archive library
from which the code was extracted.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 127

writeback The compiler optimizes object files passed to the linker with object files compiled with
-xipo that reside in the archive library (.a) before producing an executable. Any object
filed contained in the library that were optimized during the compilation are replaced
with their optimized version.

For parallel links that use a common set of archive libraries, each link should create its
own copy of archive libraries to be optimized before linking.

If you do not specify a setting for -xipo_archive, the compiler assumes -xipo_archive=none.

3.4.135 -xipo_build=[yes|no]

Building -xipo without -xipo_build involves two passes through the compiler—once when
producing the object files, and then again later at link time when performing the cross file
optimization. Setting -xipo_build reduces compile time by avoiding optimizations during the
initial pass and optimizing only at link time. Optimization is not needed for the object files, as
with -xipo it will be performed at link time. If unoptimized object files built with -xipo_build
are linked without including -xipo to perform optimization, the application will fail to link with
an unresolved symbol error.

3.4.135.1 -xipo_build Examples

The following example performs a fast build of .o files, followed by crossfile optimization at
link time:

% cc -O -xipo -xipo_build -o code1.o -c code1.c

% cc -O -xipo -xipo_build -o code2.o -c code2.c

% cc -O -xipo -o a.out code1.o code2.o

The -xipo_build will turn off -O when creating the .o files, to build these quickly. Full -O
optimization will be performed at link time as part of -xipo crossfile optimization.

The following example links without using -xipo.

% cc -O -o a.out code1.o code2.o

If either code1.o or code2.o were generated with -xipo_build, the result will be a link-time
failure indicating the symbol __unoptimized_object_file is unresolved.

When building .o files separately, the default behavior is -xipo_build=no. However, when the
executable or library is built in a single pass from source files, -xipo_build will be implicitly
enabled. For example:

% cc -fast -xipo a.c b.c c.c

3.4 Options Reference

128 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

will implicitly enable -xipo_build=yes for the first passes that generate a.o, b.o, and c.o.
Include the option -xipo_build=no to disable this behavior.

3.4.136 –xivdep[=p]

Disable or set interpretation of !DIR$ IVDEP directives

The IVDEP directive tells the compiler to ignore some or all loop-carried dependences on array
references that it finds in a loop, allowing it to perform various loop optimizations such as
microvectorization, distribution, software pipelining, among others, that would not be otherwise
possible. It is employed in situations where the user knows either that the dependences do not
matter or that they never occur in practice.

The interpretation of !DIR$ IVDEP directives depend upon the value of the -xivdep option. The
following values for p are interpreted as follows:

loop — ignore assumed loop-carried vector dependences
loop_any — ignore all loop-carried vector dependences
back — ignore assumed backward loop-carried vector dependences
back_any — ignore all backward loop-carried vector dependences
none — do not ignore any dependences (disables IVDEP directives)

These interpretations are provided for compatibility with other vendor's interpretations of the
IVDEP directive.

The default when —xivdep is not specified, and when —xivdep is specified without an argument,
are both —xivdep=loop, which implies that the !DIR$ IVDEP directives are enabled by default.

For more information, see “2.3.3 IVDEP Directive” on page 36 for details.

3.4.137 -xjobs{=n|auto}

Compile with multiple processes. If this flag is not specified, the default behavior is -
xjobs=auto.

Specify the -xjobs option to set how many processes the compiler creates to complete its work.
This option can reduce the build time on a multi-cpu machine. Currently, -xjobs works only
with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer uses n as the
maximum number of code generator instances it can invoke to compile different files.

Generally, a safe value for n is 1.5 multiplied by the number of available processors. Using a
value that is many times the number of available processors can degrade performance because

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 129

of context switching overheads among spawned jobs. Also, using a very high number can
exhaust the limits of system resources such as swap space.

When -xjobs=auto is specified, the compiler will automatically choose the appropriate number
of parallel jobs.

You must always specify -xjobs with a value. Otherwise, an error diagnostic is issued and
compilation aborts.

If -xjobs is not specified, the default behavior is -xjobs=auto. This can be overridden by
adding -xjobs=n to the command line. Multiple instances of -xjobs on the command line
override each other until the right-most instance is reached.

3.4.137.1 -xjobs Examples

The following example links with up to three parallel processes for -xipo:

% cc -xipo -xO4 -xjobs=3 t1.o t2.o t3.o

The following example links serially with a single process for -xipo:

% cc -xipo -xO4 -xjobs=1 t1.o t2.o t3.o

The following example links in parallel, with the compiler choosing the number of jobs for -
xipo:

% cc -xipo -xO4 t1.o t2.o t3.o

Note that this is exactly the same behavior as when explicitly specifying -xjobs=auto:

% cc -xipo -xO4 -xjobs=auto t1.o t2.o t3.o

3.4.138 -xkeep_unref[={[no%]funcs,[no%]vars}]

Keep definitions of unreferenced functions and variables. The no% prefix allows the compiler to
potentially remove the definitions.

The default is no%funcs,no%vars. Specifying -xkeep_unref is equivalent to specifying -
xkeep_unref=funcs,vars, meaning that -keep_unref keeps everything.

3.4.139 –xkeepframe[=[%all,%none,name,no%name]]

Prohibit stack related optimizations for the named functions (name).

3.4 Options Reference

130 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

%all Prohibit stack related optimizations for all the code.

%none Allow stack related optimizations for all the code.

This option is accumulative and can appear multiple times on the command line. For example,
—xkeepframe=%all —xkeepframe=no%func1 indicates that the stack frame should be kept for
all functions except func1. Also, —xkeepframe overrides —xregs=frameptr. For example, —
xkeepframe=%all —xregs=frameptr indicates that the stack should be kept for all functions,
but the optimizations for —xregs=frameptr would be ignored.

If not specified on the command line, the compiler assumes -xkeepframe=%none as the default.
If specified but without a value, the compiler assumes -xkeepframe=%all

3.4.140 –xknown_lib=library_list

Recognize calls to a known library.

When specified, the compiler treats references to certain known libraries as intrinsics, ignoring
any user-supplied versions. This enables the compiler to perform optimizations over calls to
library routines based on its special knowledge of that library.

The library_list is a comma-delimited list of keywords currently to blas, blas1, blas2,
blas3, and intrinsics. The compiler recognizes calls to the following BLAS1, BLAS2, and
BLAS3 library routines and is free to optimize appropriately for the Sun Performance Library
implementation. The compiler will ignore user-supplied versions of these library routines and
use the BLAS routines in the Sun Performance Library or inline the routines.

The —library=sunperf option is needed to link with the Sun Performance Library.

-xknown_lib= Feature

blas1 The compiler recognizes calls to the following BLAS1 library routines:

caxpy ccopy cdotc cdotu crotg cscal csrot csscal cswap dasum daxpy dcopy

ddot drot drotg drotm drotmg dscal dsdot dswap dnrm2 dzasum dznrm2 icamax

idamax isamax izamax sasum saxpy scasum scnrm2 scopy sdot sdsdot snrm2

srot srotg srotm srotmg sscal sswap zaxpy zcopy zdotc zdotu zdrot zdscal

zrotg zscal zswap

blas2 The compiler recognizes calls to the following BLAS2 library routines:

cgemv cgerc cgeru ctrmv ctrsv dgemv dger dsymv dsyr dsyr2 dtrmv dtrsv

sgemv sger ssymv ssyr ssyr2 strmv strsv zgemv zgerc zgeru ztrmv ztrsv

blas3 The compiler recognizes calls to the following BLAS2 library routines:

cgemm csymm csyr2k csyrk ctrmm ctrsm dgemm dsymm dsyr2k dsyrk dtrmm dtrsm

sgemm ssymm ssyr2k ssyrk strmm strsm zgemm zsymm zsyr2k zsyrk ztrmm ztrsm

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 131

-xknown_lib= Feature

blas Selects all the BLAS routines. Equivalent to -xknown_lib=blas1,blas2,blas3

intrinsics The compiler ignores any explicit EXTERNAL declarations for Fortran intrinsics, thereby
ignoring any user-supplied intrinsic routines. (See the Fortran Library Reference for
lists of intrinsic function names.)

3.4.141 –xl

(Obsolete) This legacy f77 option is no longer supported. For the equivalent options in the
current Fortran compiler, use: -f77=%all,no%backslash -vax=$all,no%debug

3.4.142 –xlang=f77

(SPARC) Prepare for linking with runtime libraries compatible with objects created by earlier
versions of the legacy f77 compiler.

f95 -xlang=f77 implies linking with the f77compat library, and is a shorthand way for linking
f95 object files with older Fortran 77 object files. Compiling with this flag insures the proper
runtime environment.

Use f95 -xlang=f77 when linking f95 and f77 compiled objects together into a single
executable.

Note the following when compiling with -xlang:

■ Do not compile with both -xnolib and -xlang.
■ When mixing Fortran object files with C++, link using the C++ compiler and specify -

xlang=f95 on the CC command line.
■ When mixing C++ objects with Fortran object files compiled with any of the parallelization

options, the linking CC command line must also specify -mt.

To determine which driver to use for mixed-language linking, use the following language
hierarchy:

C++ Use the CC command. See the C++ Uder's Guide for details.

Fortran 95 (or
Fortran 90)

Use the f95 command.

Fortran 77 Use f95 -xlang=f77.

3.4 Options Reference

132 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

C Use the cc command. See the C Uder's Guide for details.

3.4.143 –xld

(Obsolete) This (f77) option is no longer supported. For the equivalent options in the current
Fortran compiler, use: -f77=%all,no%backslash -vax=$all,no%debug

3.4.144 –xlibmil

Synonym for -libmil.

3.4.145 –xlibmopt

Use library of optimized math routines.

Use selected math routines optimized for speed. This option usually generates faster code. It
may produce slightly different results; if so, they usually differ in the last bit. The order on the
command line for this library option is not significant.

3.4.146 –xlic_lib=sunperf

Obsolete. Use —library=sunperf to link with the Sun Performance Library.

3.4.147 –xlinkopt[={1|2|0}]

Perform link-time optimizations on relocatable object files.

The post-optimizer performs a number of advanced performance optimizations on the binary
object code at link-time. The optional value sets the level of optimizations performed, and must
be 0, 1, or 2.

0 The post-optimizer is disabled. (This is the default.)

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 133

1 Perform optimizations based on control flow analysis, including instruction cache coloring and branch
optimizations, at link time.

2 Perform additional data flow analysis, including dead-code elimination and address computation
simplification, at link time.

Specifying the -xlinkopt flag without a value implies -xlinkopt=1.

These optimizations are performed at link time by analyzing the object binary code. The object
files are not rewritten but the resulting executable code may differ from the original object
codes.

This option is most effective when used to compile the whole program, and with profile
feedback.

When compiling in separate steps, -xlinkopt must appear on both compile and link steps.

demo% f95 -c -xlinkopt a.f95 b.f95

demo% f95 -o myprog -xlinkopt=2 a.o b.o

Note that the level parameter is only used when the compiler is linking. In the example above,
the post-optimization level used is 2 even though the object binaries were compiled with an
implied level of 1.

The link-time post-optimizer cannot be used with the incremental linker, ild. The -xlinkopt
flag will set the default linker to be ld. Enabling the incremental linker explicitly with the -
xildon flag will disable the -xlinkopt option if both are specified together.

For the -xlinkopt option to be useful, at least some, but not necessarily all, of the routines in
the program must be compiled with this option. The optimizer can still perform some limited
optimizations on object binaries not compiled with -xlinkopt.

The -xlinkopt option optimizes code coming from static libraries that appear on the compiler
command line, but does not optimize code coming from shared (dynamic) libraries that appear
on the command line. You can also use -xlinkopt when building shared libraries (compiling
with -G).

The -xlinkopt option requires profile feedback (-xprofile) in order to optimize the program.
Profiling reveals the most- and least-used parts of the code, which enables the optimizer
to focus its effort accordingly. Link-time optimization is particularly important with large
applications where optimal placement of code can substantially reduce instruction cache misses.
Additionally, -xlinkopt is most effective when used to compile the whole program. Use this
option as follows:

demo% f95 -o progt -xO5 -xprofile=collect:prog file.f95

demo% progt

demo% f95 -o prog -xO5 -xprofile=use:prog -xlinkopt file.95

For details on using profile feedback, see the -xprofile option

3.4 Options Reference

134 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Note that compiling with this option will increase link time slightly. Object file sizes also
increase, but the size of the executable remains the same. Compiling with the -xlinkopt and -g
flags increases the size of the executable by including debugging information.

3.4.148 –xloopinfo

Synonym for -loopinfo.

3.4.149 –xM

Generate make dependencies.

This option produces make dependencies for the compiled source file on standard output. The
option covers all make dependencies for the source file, both header files and Fortran modules.

For module dependencies, this option uses an object-based module dependency scheme to
eliminate the need for explicit build rules to create the module files.

This compilation cannot be used with -c, -S, -Xlist, or any other compilation options that
produce different compilation outputs.

The generated dependency output does not contain any build rules, only dependencies for the
files. The user will need to specify the build rules for all the files needed for the build. However,
for the module files, no explicit build rules are needed, as the module files are created at the
same time as the associated object files. Therefore, the module files only need to have a generic
build rule:

%.mod:

 @ echo $@ is already up to date.

The module file build rule is only needed to prevent the 'make' process from stripping all the
dependencies related to module files if there are no build rules for them. Other than that, the
build rule does not do anything, as shown in the example above.

When used with the -keepmod option, the dependencies generated by the -xM option will
prevent compilation cascade due to the unnecessarily updated modules files, as well as prevent
the problem with recompilation on the same source files due to the use of the -keepmod option
to prevent unnecessary updates on the module files.

This option works in conjunction with the -M, -I, and -moddir options to determine the
appropriate directories for the module files needed in the build. Pre-compiled module files, for
example those shipped by third parties, should be located at a directory pointed to by the -M
option so the correct dependencies can be generated.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 135

3.4.150 –xmaxopt[=n]

Enable optimization pragma and set maximum optimization level.

n has the value 1 through 5 and corresponds to the optimization levels of -O1 through -O5. If
not specified, the compiler uses 5.

This option enables the !$PRAGMA SUN OPT=n directive when it appears in the source input.
Without this option, the compiler treats these lines as comments. See “2.3.1.5 The OPT
Directive” on page 32.

If this pragma appears with an optimization level greater than the maximum level on the -
xmaxopt flag, the compiler uses the level set by -xmaxopt.

3.4.151 –xmemalign[=<a>]

(SPARC) Specify maximum assumed memory alignment and behavior of misaligned data
accesses.

For memory accesses where the alignment is determinable at compile time, the compiler will
generate the appropriate load/store instruction sequence for that data alignment.

For memory accesses where the alignment cannot be determined at compile time, the compiler
must assume an alignment to generate the needed load/store sequence.

The -xmemalign flag allows the user to specify the maximum memory alignment of data to be
assumed by the compiler for those indeterminate situations. It also specifies the error behavior
at runtime when a misaligned memory access does take place.

The value specified consists of two parts: a numeric alignment value, <a>, and an alphabetic
behavior flag, .

Allowed values for alignment, <a>, are:

1 Assume at most 1-byte alignment.

2 Assume at most 2-byte alignment.

4 Assume at most 4-byte alignment.

8 Assume at most 8-byte alignment.

16 Assume at most 16-byte alignment.

3.4 Options Reference

136 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Allowed values for error behavior on accessing misaligned data, , are:

i Interpret access and continue execution

s Raise signal SIGBUS

f On 64–bit platforms, raise signal SIGBUS only for alignments less or
equal to 4, otherwise interpret access and continue execution. On other
platforms f is equivalent to i.

The defaults when compiling without -xmemalign specified are:

■ 8i for 32–bit platforms
■ 8s for 64–bit platforms with C and C++
■ 8f for 64–bit platforms with Fortran

The default for -xmemalign appearing without a value is 1i for all platforms.

Note that -xmemalign itself does not force any particular data alignment to take place. Use -
dalign or -aligncommon to force data alignment.

You must also specify -xmemalign whenever you link to an object file that was compiled with a
b value of either i or f.

The -dalign option is a macro:

-dalign is a macro for: -xmemalign=8s -aligncommon=16

Do not use -aligncommon=1 with -xmemalign as these declarations will conflict and could
cause a segmentation fault on some platforms and configurations.

See “3.4.1 –aligncommon[={1|2|4|8|16}]” on page 51 for details.

3.4.152 –xmodel=[small | kernel | medium]

(x86) Specify the data address model for shared objects on Solaris x64 platforms.

The -xmodel option enables the compiler to create 64- bit shared objects for the Oracle Solaris
x64 platforms and should only be specified for the compilation of such objects.

This option is valid only when -m64 is specified on 64–bit enabled x86 platforms (“x64”).

small This option generates code for the small model in which the virtual
address of code executed is known at link time and all symbols are

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 137

known to be located in the virtual addresses in the range from 0 to 231 –
224 - 1.

kernel Generates code for the kernel model in which all symbols are defined to
be in the range from 264 - 231 to 264 - 224.

medium Generates code for the medium model in which no assumptions are
made about the range of symbolic references to data sections. Size
and address of the text section have the same limits as the small code
model. Applications with large amounts of static data might require -
xmodel=medium when compiling with —m64.

If you do not specify -xmodel, the compiler assumes -xmodel=small. Specifying -xmodel
without an argument is an error.

It is not necessary to compile all routines with this option as long as you an ensure that objects
being accessed are within range.

3.4.153 –xnolib

Synonym for -nolib.

3.4.154 –xnolibmil

Synonym for -nolibmil.

3.4.155 –xnolibmopt

Do not use fast math library.

Use with -fast to override linking the optimized math library:

f95 -fast -xnolibmopt …

3.4.156 –xOn

Synonym for -On.

3.4 Options Reference

138 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.157 –xopenmp[={parallel|noopt|none}]

Enable explicit parallelization with OpenMP directives.

The flag accepts the following suboption keywords:

parallel Enables recognition of OpenMP pragmas. The optimization level under -
xopenmp=parallel is -xO3. The compiler raises the optimization level to
-xO3 if necessary and issues a warning.

This flag also defines the preprocessor macro _OPENMP. The _OPENMP
macro is defined to have the decimal value yyyymm where yyyy and mm
are the year and month designations of the version of the OpenMP API
that the implementation supports. Refer to the Oracle Solaris Studio
OpenMP API User's Guide for the value of the _OPENMP macro for a
particular release.

noopt Enables recognition of OpenMP pragmas. The compiler does not raise
the optimization level if it is lower than -xO3. If you explicitly set the
optimization lower than -xO3, as in f95 -xO2 -xopenmp=noopt, the
compiler issues an error. If you do not specify an optimization level with
-xopenmp=noopt, the OpenMP pragmas are recognized, the program is
parallelized accordingly, but no optimization is done. This suboption also
defines the preprocessor macro _OPENMP.

none Does not enable the recognition of OpenMP pragmas, makes no change
to the optimization level of your program, and does not define any
preprocessor macros. This is the default when -xopenmp is not specified.

If you specify -xopenmp, but do not specify a suboption keyword, the compiler assumes
-xopenmp=parallel. If you do not specify -xopenmp at all, the compiler assumes -
xopenmp=none.

Suboptions parallel and noopt will invoke -stackvar automatically.

If you are debugging an OpenMP program with dbx, compile with -g -xopenmp=noopt so you
can breakpoint within parallel regions and display the contents of variables.

The default for -xopenmp might change in a future release. You can avoid warning messages by
explicitly specifying an appropriate optimization level.

Use the OMP_NUM_THREADS environment variable to specify the number of threads to use when
running an OpenMP program. If OMP_NUM_THREADS is not set, the default number of threads
used to execute a parallel region is the number of cores available on the machine, capped at 32.
You can specify a different number of threads by setting the OMP_NUM_THREADS environment

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 139

variable, or by calling the omp_set_num_threads() OpenMP runtime routine, or by using
the num_threads clause on the parallel region directive. For best performance, the number of
threads used to execute a parallel region should not exceed the number of hardware threads
(or virtual processors) available on the machine. On Oracle Solaris systems, this number can
be determined by using the psrinfo(1M) command. On Linux systems, this number can be
determined by inspecting the file /proc/cpuinfo. See the OpenMP API User's Guide for more
information.

Nested parallelism is disabled by default. To enable nested parallelism, you must set the
OMP_NESTED environment variable to TRUE. See the OpenMP API User’s Guide.

If you compile and link in separate steps, specify -xopenmp in both the compilation step and the
link step. When used with the link step, the -xopenmp option will link with the OpenMP runtime
support library, libmtsk.so.

For up-to-date functionality and performance, make sure that the latest patch of the OpenMP
runtime library, libmtsk.so, is installed on the system.

For more information about the OpenMP Fortran 95, C, and C++ application program interface
(API) for building multithreaded applications, see the Oracle Solaris Studio OpenMP API
User's Guide.

3.4.158 –xpad

Synonym for -pad.

3.4.159 –xpagesize=size

Set the preferred page size for the stack and the heap.

On SPARC platforms, the size value must be one of the following:

8K 64K 512K 4M 32M 256M 2G 16G or default

On x86 platforms, the size value must be one of the following:

4K 2M 4M or default

For example: -xpagesize=4M

Not all these page sizes are supported on all platforms and depend on the architecture and
Oracle Solaris environment. The page size specified must be a valid page size for the Oracle
Solaris operating environment on the target platform. If it is not, the request will be silently
ignored at run-time.

3.4 Options Reference

140 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Use the pagesize(1) Oracle Solaris command to determine the number of bytes in a page.
The operating system offers no guarantee that the page size request will be honored. However,
appropriate segment alignment can be used to increase the likelihood of obtaining the requested
page size. See the -xsegment_align option on how to set the segment alignment. You can use
pmap(1) or meminfo(2) to determine page size of the target platform.

If you specify -xpagesize=default, the flag is ignored; -xpagesize specified without a size
value is equivalent to -xpagesize=default.

This option is a macro for the combination -xpagesize_heap=size -xpagesize_stack=size.
These two options accept the same arguments as -xpagesize. You can set them both with the
same value by specifying -xpagesize=size or you can specify them individually with different
values.

Compiling with this flag has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Oracle Solaris command ppgsz(1)
with the equivalent options, before starting the program. See the Oracle Solaris man pages for
details.

3.4.160 –xpagesize_heap=size

Set the preferred page size for the heap.

The size value is the same as described for -xpagesize.

See -xpagesize for details.

3.4.161 –xpagesize_stack=size

(SPARC) Set the preferred page size for the stack.

The size value is the same as described for -xpagesize.

See -xpagesize for details.

3.4.162 -xpatchpadding[={fix|patch|size}]

Reserve an area of memory before the start of each function. If fix is specified, the compiler
will reserve the amount of space required by fix and continue. This is the first default. If either

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 141

patch or no value is specified, the compiler will reserve a platform-specific default value. A
value of -xpatchpadding=0 will reserve 0 bytes of space. The maximum value for size on x86
is 127 bytes and on SPARC is 2048 bytes.

3.4.163 –xpec[={yes|no}]

Generate a PEC (Portable Executable Code) binary.

This option puts the program intermediate representations in the object file and the binary. This
binary may be used later for tuning and troubleshooting.

A binary built with -xpec is usually 5 to 10 times larger than if it is built without. The default is
-xpec=no.

Without an argument, -xpec is equivalent to -xpec=yes.

3.4.164 –xpg

Synonym for -pg.

3.4.165 –xpp={fpp|cpp}

Select source file preprocessor.

The default is -xpp=fpp.

The compilers use fpp(1) to preprocess .F, .F95, or .F03 source files. This preprocessor is
appropriate for Fortran. Previous versions used the standard C preprocessor cpp. To select cpp,
specify -xpp=cpp.

3.4.166 –xprefetch[=a[,a]]

Enable prefetch instructions on those architectures that support prefetch.

See “2.3.1.7 The PREFETCH Directives” on page 33 for a description of the Fortran PREFETCH
directives.

3.4 Options Reference

142 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

a must be one of the following:

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

latx:factor (SPARC) Adjust the compiler’s assumed prefetch-to-load and prefetch-
to-store latencies by the specified factor. The factor must be a positive
floating-point or integer number.
If you are running computationally intensive codes on large
SPARC multiprocessors, you might find it advantageous to use -
xprefetch=latx:factor. This option instructs the code generator to
adjust the default latency time between a prefetch and its associated load
or store by the specified factor.
The prefetch latency is the hardware delay between the execution of a
prefetch instruction and the time the data being prefetched is available
in the cache. The compiler assumes a prefetch latency value when
determining how far apart to place a prefetch instruction and the load or
store instruction that uses the prefetched data.

Note - The assumed latency between a prefetch and a load may not be the same as the assumed
latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance
across a wide range of machines and applications. This tuning may
not always be optimal. For memory-intensive applications, especially
applications intended to run on large multiprocessors, you may be able to
obtain better performance by increasing the prefetch latency values. To
increase the values, use a factor that is greater than 1. A value between .5
and 2.0 will most likely provide the maximum performance.
For applications with datasets that reside entirely within the external
cache, you may be able to obtain better performance by decreasing the
prefetch latency values. To decrease the values, use a factor that is less
than 1.

To use the -xprefetch=latx:factor option, start with a factor value near
1.0 and run performance tests against the application. Then increase or
decrease the factor, as appropriate, and run the performance tests again.
Continue adjusting the factor and running the performance tests until you
achieve optimum performance. When you increase or decrease the factor
in small steps, you will see no performance difference for a few steps,
then a sudden difference, then it will level off again.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 143

yes -xprefetch=yes is the same as -xprefetch=auto,explicit

no -xprefetch=no is the same as -xprefetch=no%auto,no%explicit

With -xprefetch, -xprefetch=auto, and -xprefetch=yes, the compiler is free to insert
prefetch instructions into the code it generates. This may result in a performance improvement
on architectures that support prefetch.

3.4.166.1 Defaults:

If -xprefetch is not specified, -xprefetch=auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

If automatic prefetching is enabled, such as with -xprefetch or -xprefetch=yes, but a
latency factor is not specified, then -xprefetch=latx:1.0 is assumed.

3.4.166.2 Interactions:

With -xprefetch=explicit, the compiler will recognize the directives:

!$PRAGMA SUN_PREFETCH_READ_ONCE (name)
!$PRAGMA SUN_PREFETCH_READ_MANY (name)
!$PRAGMA SUN_PREFETCH_WRITE_ONCE (name)
!$PRAGMA SUN_PREFETCH_WRITE_MANY (name)

The -xchip setting effects the determination of the assumed latencies and therefore the result of
a latx:factor setting.

The latx:factor suboption is valid only when automatic prefetching (auto) is enabled on
SPARC processors.

3.4.166.3 Warnings:

Explicit prefetching should only be used under special circumstances that are supported by
measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications, you should only use -xprefetch=latx:factor when the
performance tests indicate there is a clear benefit. The assumed prefetch latencies may change
from release to release. Therefore, retesting the effect of the latency factor on performance
whenever switching to a different release is highly recommended.

3.4 Options Reference

144 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

3.4.167 –xprefetch_auto_type=indirect_array_access

Generate indirect prefetches for a data arrays accessed indirectly.

Generates indirect prefetches for the loops indicated by the option -xprefetch_level={1|2|3}
in the same fashion the prefetches for direct memory accesses are generated. The prefix no% can
be added to negate the declaration.

The default is -xprefetch_auto_type=no%indirect_array_access.

Requires -xprefetch=auto and an optimization level -xO3 or higher.

Options such as -xdepend can affect the aggressiveness of computing the indirect prefetch
candidates and therefore the aggressiveness of the automatic indirect prefetch insertion due to
better memory alias disambiguation information.

3.4.168 –xprefetch_level={1|2|3}
Control the automatic generation of prefetch instructions.

This option is only effective when compiling with:

■ -xprefetch=auto,
■ with optimization level 3 or greater,
■ on a platform that supports prefetch.

The default for -xprefetch=auto without specifying -xprefetch_level is level 2.

Prefetch level 2 generates additional opportunities for prefetch instructions than level 1.
Prefetch level 3 generates additional prefetch instructions than level 2.

Prefetch levels 2 and 3 may note be effective on older SPARC or x86 platforms.

3.4.169 –xprofile=p

Collects data for a profile or uses a profile to optimize.

p must be collect[:profdir], use[:profdir], or tcov[:profdir].

This option causes execution frequency data to be collected and saved during execution, then
the data can be used in subsequent runs to improve performance. Profile collection is safe for
multithreaded applications. That is, profiling a program that does its own multitasking (-mt)
produces accurate results. This option is only valid when you specify -xO2 or greater level of

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 145

optimization. If compilation and linking are performed in separate steps, the same -xprofile
option must appear on the link step as well as the compile step.

collect[:profdir] Collects and saves execution frequency for later use by the optimizer
with -xprofile=use. The compiler generates code to measure statement
execution-frequency.

-xMerge, -ztext, and -xprofile=collect should not be used together.
While -xMerge forces statically initialized data into read-only storage,
-ztext prohibits position-dependent symbol relocations in read-only
storage, and -xprofile=collect generates statically initialized, position-
dependent symbol relocations in writable storage.
The profile directory name profdir, if specified, is the pathname of
the directory where profile data are to be stored when a program or
shared library containing the profiled object code is executed. If the
profdir pathname is not absolute, it is interpreted relative to the current
working directory when the program is compiled with the option
-xprofile=use:profdir.

If no profile directory name is specified with —
xprofile=collect:prof_dir or —xprofile=tcov:prof_dir, profile
data are stored at run time in a directory named program.profile

where program is the basename of the profiled process's main
program. In this case, the environment variables SUN_PROFDATA and
SUN_PROFDATA_DIR can be used to control where the profile data are
stored at run time. If set, the profile data are written to the directory given
by $SUN_PROFDATA_DIR/$SUN_PROFDATA. If a profile directory name is
specified at compilation time, SUN_PROFDATA_DIR and SUN_PROFDATA
have no effect at run time. These environment variables similarly control
the path and names of the profile data files written by tcov, as described
in the tcov(1) man page.
If these environment variables are not set, the profile data is written
to the directory profdir.profile in the current directory, where
profdir is the name of the executable or the name specified in the
-xprofile=collect:profdir flag. -xprofile does not append.
profile to profdir if profdir already ends in .profile. If you run the
program several times, the execution frequency data accumulates in the
profdir.profile directory; that is output from prior executions is not
lost.
If you are compiling and linking in separate steps, make sure that any
object files compiled with -xprofile=collect are also linked with -
xprofile=collect.

use[:profdir] Uses execution frequency data collected from code compiled with —
xprofile=collect[:profdir] or —xprofile=tcov[:profdir] to optimize

3.4 Options Reference

146 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

for the work performed when the profiled code was executed. profdir is
the pathname of a directory containing profile data collected by running
a program that was compiled with —xprofile=collect[:profdir] or —
xprofile=tcov[:profdir].

To generate data that can be used by both tcov and —
xprofile=use[:profdir], a profile directory must be specified at
compilation time, using the option —xprofile=tcov[:profdir]. The same
profile directory must be specified in both —xprofile=tcov:profdir and
—xprofile=use:profdir. To minimize confusion, specify profdir as an
absolute pathname.
The profdir pathname is optional. If profdir is not specified, the name
of the executable binary is used. a.out is used if -o is not specified.
The compiler looks for profdir.profile/feedback, or a.out.profile/
feedback when profdir is not specified. For example:

demo% f95 -xprofile=collect -o myexe prog.f95

demo% f95 -xprofile=use:myexe -xO5 -o myexe prog.f95

The program is optimized by using the execution frequency data
previously generated and saved in the feedback files written by a
previous execution of the program compiled with -xprofile=collect.

Except for the -xprofile option, the source files and other compiler
options must be exactly the same as those used for the compilation that
created the compiled program that generated the feedback file. The same
version of the compiler must be used for both the collect build and the
use build as well.

If compiled with -xprofile=collect:profdir, the same profile
directory name profdir must be used in the optimizing compilation: -
xprofile=use:profdir.

See also -xprofile_ircache for speeding up compilation between
collect and use phases.

tcov[:profdir] Instrument object files for basic block coverage analysis using tcov(1).
If the optional profdir argument is specified, the compiler will create a
profile directory at the specified location The data stored in the profile
directory can be used either by tcov(1) or by the compiler with -
xprofile=use:profdir. If the optional profdir pathname is omitted, a
profile directory will be created when the profiled program is executed.
The data stored in the profile directory can only be used by tcov(1). The
location of the profile directory can be controlled using environment
variables SUN_PROFDATA and SUN_PROFDATA_DIR.
If the location specified by profdir is not an absolute pathname, it is
interpreted at compilation time relative to the current working directory

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 147

at the time of compilation. If profdir is specified for any object file, the
same location must be specified for all object files in the same program.
The directory whose location is specified by profdir must be accessible
from all machines where the profiled program is to be executed. The
profile directory should not be deleted until its contents are no longer
needed, because data stored there by the compiler cannot be restored
except by recompilation.
Example [1]: if object files for one or more programs are compiled
with -xprofile=tcov:/test/profdata, a directory named /test/
profdata.profile will be created by the compiler and used to store data
describing the profiled object files. The same directory will also be used
at execution time to store execution data associated with the profiled
object files.

Example [2]: if a program named myprog is compiled with -
xprofile=tcov and executed in the directory /home/joe, the directory /
home/joe/myprog.profile will be created at run time and used to store
runtime profile data.

3.4.170 –xprofile_ircache[=path]

(SPARC) Save and reuse compilation data between collect and use profile phases.

Use with -xprofile=collect|use to improve compilation time during the use phase by reusing
compilation data saved from the collect phase.

If specified, path will override the location where the cached files are saved. By default, these
files will be saved in the same directory as the object file. Specifying a path is useful when the
collect and use phases happen in two different places.

A typical sequence of commands might be:

demo% f95 -xO5 -xprofile=collect -xprofile_ircache t1.c t2.c

demo% a.out collects feedback data

demo% f95 -xO5 -xprofile=use -xprofile_ircache t1.c t2.c

With large programs, compilation time in the use phase can improve significantly by saving
the intermediate data in this manner. But this will be at the expense of disk space, which could
increase considerably.

3.4.171 –xprofile_pathmap=collect_prefix:use_prefix

(SPARC) Set path mapping for profile data files.

3.4 Options Reference

148 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Use the -xprofile_pathmap option with the -xprofile=use option.

Use -xprofile_pathmap when the compiler is unable to find profile data for an object file that
is compiled with -xprofile=use, and:

■ You are compiling with -xprofile=use into a directory that is not the directory used when
previously compiling with -xprofile=collect.

■ Your object files share a common basename in the profile but are distinguished from each
other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which object files
were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object files are to
be compiled using -xprofile=use.

If you specify multiple instances of -xprofile_pathmap, the compiler processes them in the
order of their occurrence. Each use-prefix specified by an instance of -xprofile_pathmap is
compared with the object file pathname until either a matching use-prefix is identified or the last
specified use-prefix is found not to match the object file pathname.

3.4.172 –xrecursive

Allow routines without RECURSIVE attribute call themselves recursively.

Normally, only subprograms defined with the RECURSIVE attribute can call themselves
recursively.

Compiling with -xrecursive enables subprograms to call themselves, even if they are not
defined with the RECURSIVE attribute. But, unlike subroutines defined RECURSIVE, use of this
flag does not cause local variables to be allocated on the stack by default. For local variables
to have separate values in each recursive invocation of the subprogram, compile also with -
stackvar to put local variables on the stack.

Indirect recursion (routine A calls routine B which then calls routine A) can give inconsistent
results at optimization levels greater than -xO2. Compiling with the -xrecursive flag
guarantees correctness with indirect recursion, even at higher optimization levels.

Compiling with -xrecursive can cause performance degradations.

3.4.173 –xreduction

Synonym for -reduction.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 149

3.4.174 –xregs=r

Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following suboptions: appl,
float,frameptr.

Prefixing a suboption with no% disables that suboption.

Note that —xregs suboptions are restricted to specific hardware platforms.

Example: -xregs=appl,no%float

TABLE 3-20 The -xregs Suboptions

Value Meaning

appl (SPARC) Allow the compiler to generate code using the application registers as scratch
registers. The application registers are:

g2, g3, g4 (on 32–bit platforms)

g2, g3 (on 64–bit platforms)

It is strongly recommended that all system software and libraries be compiled using
-xregs=no%appl. System software (including shared libraries) must preserve these
registers’ values for the application. Their use is intended to be controlled by the
compilation system and must be consistent throughout the application.

In the SPARC ABI, these registers are described as application registers. Using these
registers can improve performance because fewer load and store instructions are needed.
However, such use can conflict with some old library programs written in assembly code.

float (SPARC) Allow the compiler to generate code by using the floating-point registers as
scratch registers for integer values. Use of floating-point values may use these registers
regardless of this option. If you want your code to be free of all references to floating
point registers, you need to use -xregs=no%float and also make sure your code does not
in any way use floating point types.

frameptr (x86) Allow the compiler to use the frame-pointer register (%ebp on IA32, %rbp on
AMD64) as a general-purpose register.

The default is -xregs=no%frameptr

With -xregs=framptr the compiler is free to use the frame-pointer register to improve
program performance. However, some features of the debugger and performance
measurement tools may be limited as a result. Stack tracing, debuggers, and performance
anayzers cannot report on functions compiled with —xregs=frameptr

Mixed C, Fortran, and C++ code should not be compiled with —xregs=frameptr if a
C++ function, called directly or indirectly from a C or Fortran function, can throw an
exception. If compiling such mixed source code with —fast, add —xregs=no%frameptr
after the —fast option on the command line.

3.4 Options Reference

150 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Value Meaning

With more available registers on 64–bit platforms, compiling with —xregs=frameptr has
a better chance of im proving 32–bit code performance than 64–bit code.

The compiler ignores -xregs=frameptr and issues a warning if you also specify -pg.
Also, -xkeepframe overrides -xregs=frameptr.

The SPARC default is -xregs=appl,float.

The x86 default is -xregs=no%frameptr. -xregs=frameptr in included in the expansion of -
fast.

It is strongly recommended that you compile code intended for shared libraries that will link
with applications, with -xregs=no%appl,float. At the very least, the shared library should
explicitly document how it uses the application registers so that applications linking with those
libraries are aware of these register assignments.

For example, an application using the registers in some global sense (such as using a register
to point to some critical data structure) would need to know exactly how a library with code
compiled without -xregs=no%appl is using the application registers in order to safely link with
that library.

On x86 systems, -pg is incompatible with -xregs=frameptr, and these two options should not
be used together. Note also that -xregs=frameptr is included in -fast.

3.4.175 -xs[={yes|no}]

(Oracle Solaris) Link debug information from object files into executable.

-xs is the same as -xs=yes.

The default for -xdebugformat=dwarf is the same as -xs=yes.

The default for -xdebugformat=stabs is the same as -xs=no.

This option controls the trade-off of executable size versus the need to retain object files in
order to debug. For dwarf, use -xs=no to keep the executable small but depend on the object
files. For stabs, use -xs or -xs=yes to avoid dependence on the object files at the cost of a
larger executable. This option has almost no effect on dbx performance or the runtime per
formance of the program.

When the compile command forces linking (that is, -c is not specified) there will be no
object file(s) and the debug information must be placed in the executable. In this case, -xs=no
(implicit or explicit) will be ignored.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 151

The feature is implemented by having the compiler adjust the section flags and/or section
names in the object file that it emits, which then tells the linker what to do for that object file's
debug information. It is therefore a compiler option, not a linker option. It is possible to have an
executable with some object files compiled -xs=yes and others compiled -xs=no.

Linux compilers accept but ignore -xs. Linux compilers do not accept -xs={yes|no}.

3.4.176 –xsafe=mem

(SPARC) Allow the compiler to assume that no memory protection violations occur.

Using this option allows the compiler to assume no memory–based traps occur. It grants
permission to use the speculative load instruction on the SPARC V9 platforms.

This option takes effect only when used with optimization level -xO5 and one of the following
-xarch values: sparc, sparcvis, sparcvis2, or sparcvis3 for both -m32 and -m64.

Caution - Because non-faulting loads do not cause a trap when a fault such as address
misalignment or segmentation violation occurs, you should use this option only for programs
in which such faults cannot occur. Because few programs incur memory-based traps, you can
safely use this option for most programs. Do not use this option with programs that explicitly
depend on memory-based traps to handle exceptional conditions.

3.4.177 -xsegment_align=n

(Oracle Solaris) This option causes the driver to include a special mapfile on the link line.
The mapfile aligns the text, data, and bss segments to the value specified by n. When using
very large pages, it is important that the heap and stack segments are aligned on an appropriate
boundary. If these segments are not aligned, small pages will be used up to the next boundary,
which could cause a performance degradation. The mapfile ensures that the segments are
aligned on an appropriate boundary.

The n value must be one of the following:

SPARC: The following values are valid: 8K, 64K, 512K, 2M, 4M, 32M, 256M, 1G, and none.

x86: The following values are valid: 4K, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 1G, and none.

The default for both SPARC and x86 is none.

Recommended usage is as follows:

3.4 Options Reference

152 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

SPARC 32-bit compilation: -xsegment_align=64K

SPARC 64-bit compilation: -xsegment_align=4M

x86 32-bit compilation: -xsegment_align=8K

x86 64-bit compilation: -xsegment_align=4M

The driver will include the appropriate mapfile. For example, if the user specifies -
xsegment_align=4M, the driver adds -M install-directory/lib/compilers/mapfiles/
map.4M.align to the link line, where install-directory is the installation directory. The
aforementioned segments will then be aligned on a 4M boundary.

3.4.178 –xspace

Do no optimizations that increase the code size.

Example: Do not unroll or parallelize loops if it increases code size.

3.4.179 –xtarget=t

Specify the target platform for the instruction set and optimization.

t must be one of: native, native64, generic, generic64, platform–name.

The -xtarget option permits a quick and easy specification of the -xarch, -xchip, and -
xcache combinations that occur on real platforms. The only meaning of -xtarget is in its
expansion.

The performance of some programs may benefit by providing the compiler with an accurate
description of the target computer hardware. When program performance is critical, the proper
specification of the target hardware could be very important. This is especially true when
running on the newer SPARC processors. However, for most programs and older SPARC
processors, the performance gain is negligible and a generic specification is sufficient.

The actual expansion of -xtarget values can change from release to release. You can always
determine the expansion that the compiler will use with the -dryrun flag:

demo% f95 -dryrun -xtarget=ultra4plus
command line files and options (expanded):

-dryrun -xarch=sparcvis

 -xcache=64/32/4/1:2048/64/4/2:32768/64/4/2 -xchip=ultra4plus

Note that the —xtarget expansion for a particular named platform might not be the same as —
xtarget=native on that same platform.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 153

3.4.179.1 Generic and Native Platforms

native Optimize performance for the host platform (32–bits).

Expands to —m32 —xarch=native —xchip=native —xcache=native

native64 Obsolete. Use —xtarget=native —m64 instead.

generic Get the best performance for most 32–bit platforms.

This is the default and expands to: -m32 -xarch=generic -
xchip=generic -xcache=generic

generic64 Obsolete. Use -xtarget=generic -m64 instead.

platform–name Get the best performance for the specified platform listed below.

3.4.179.2 SPARC Platforms

The following table gives a list of the commonly used system platform names accepted by the
compiler.

TABLE 3-21 Expansions of Commonly Used -xtarget System Platforms

-xtarget= platform-name -xarch -xchip -xcache

sparc64vi sparcfmaf sparc64vi 128/64/2:5120/64/10

sparc64vii sparcima sparc64vii 64/64/2:5120/256/10

sparc64viiplus sparcima sparc64viiplus 64/64/2:11264/256/11

sparc64x sparcace sparc64x 64/128/4/2:24576/128/24/32

sparc64xplus sparcaceplus sparc64xplus 64/128/4/2:24576/128/24/32

ultra sparcvis ultra 16/32/1:512/64/1

ultra1/140 sparcvis ultra 16/32/1:512/64/1

ultra1/170 sparcvis ultra 16/32/1:512/64/1

ultra1/200 sparcvis ultra 16/32/1:512/64/1

ultra2 sparcvis ultra2 16/32/1:512/64/1

ultra2/1170 sparcvis ultra 16/32/1:512/64/1

ultra2/1200 sparcvis ultra 16/32/1:1024/64/1

ultra2/1300 sparcvis ultra2 16/32/1:2048/64/1

ultra2/2170 sparcvis ultra 16/32/1:512/64/1

ultra2/2200 sparcvis ultra 16/32/1:1024/64/1

ultra2/2300 sparcvis ultra2 16/32/1:2048/64/1

ultra2e sparcvis ultra2e 16/32/1:256/64/4

3.4 Options Reference

154 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-xtarget= platform-name -xarch -xchip -xcache

ultra2i sparcvis ultra2i 16/32/1:512/64/1

ultra3 sparcvis2 ultra3 64/32/4:8192/512/1

ultra3cu sparcvis2 ultra3cu 64/32/4:8192/512/2

ultra3i sparcvis2 ultra3i 64/32/4:1024/64/4

ultra4 sparcvis2 ultra4 64/32/4:8192/128/2

ultra4plus sparcvis2 ultra4plus 64/32/4/1:2048/64/4/2:32768/64/4/2

ultraT1 sparc ultraT1 8/16/4/4:3072/64/12/32

ultraT2 sparcvis2 ultraT2 8/16/4:4096/64/16

ultraT2plus sparcvis2 ultraT2plus 8/16/4:4096/64/16

ultraT3 sparcvis3 ultraT3 8/16/4:6144/64/24

T3 sparcvis3 T3 8/16/4:6144/64/24

T4 sparc4 T4 16/32/4:128/32/8:4096/64/16

T5 sparc4 T5 16/32/4/8:128/32/8/8:8192/64/16/128

T7 sparc5 T7 16/32/4/8:256/64/8/16:8192/64/8/32

M5 sparc4 M5 16/32/4/8:128/32/8/8:49152/64/12/48

M6 sparc4 M6 16/32/4/8:128/32/8/8:49152/64/12/96

M7 sparc5 M7 16/32/4/8:256/64/8/16:8192/64/8/32

Note - The following SPARC -xtarget values are obsolete and may be removed in a
future release: ultra, ultra1/140, ultra1/170, ultra1/200, ultra2, ultra2e, ultra2i,
ultra2/1170, ultra2/1200, ultra2/1300, ultra2/2170, ultra2/2200, ultra2/2300, ultra3,
ultra3cu, ultra3i, ultra4, and ultra4plus.

Compiling for a 64-bit Solaris OS on 64–bit enabled platforms is indicated by the -m64 flag. If -
xtarget is specified, -m64 must appear after the -xtarget flag, as in:

-xtarget=ultra2 ... -m64

otherwise the default 32–bit memory model will be used.

3.4.179.3 x86 Platforms

The valid -xtarget platform names for x86 systems and their expansions are shown in the
following table.

TABLE 3-22 -xtarget Values on x86 Platforms

-xtarget= -xarch -xchip -xcache

pentium 386 pentium generic

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 155

-xtarget= -xarch -xchip -xcache

pentium_pro pentium_pro pentium_pro generic

pentium3 sse pentium3 16/32/4:256/32/4

pentium4 sse2 pentium4 8/64/4:256/128/8

opteron sse2a opteron 64/64/2:1024/64/16

woodcrest ssse3 core2 32/64/8:4096/64/16

barcelona amdsse4a amdfam10 64/64/2:512/64/16

penryn sse4_1 penryn 2/64/8:6144/64/24

nehalem sse4_2 nehalem 32/64/8:256/64/8:

8192/64/16

westmere aes westmere 32/64/8:256/64/8:30720/64/24

sandybridge avx sandybridge 32/64/8/2:256/64/8/2:

20480/64/20/16

ivybridge avx_i ivybridge 32/64/8/2:256/64/8/2:

20480/64/20/16

haswell avx2 haswell 32/64/8/2:256/64/8/2:

20480/64/20/16

Compiling for 64-bit Solaris OS on 64-bit enabled x86 platform is indicated by the -m64 flag.
For example, compiling with -xtarget=opteron is not necessary or sufficient. If -xtarget is
specified, the -m64 option must appear after the -xtarget flag, as in:

-xtarget=opteron -m64

otherwise the compilation will be 32-bit x86.

3.4.180 -xtemp=path

Equivalent to -temppath.

3.4.181 -xthroughput[={yes|no}]

The -xthroughput option tells the compiler that the application will be run in situations where
many processes are simultaneously running on the system

If -xthroughput=yes, the compiler will favor optimizations that slightly reduce performance
for a single process while improving the amount of work achieved by all the processes on the
system. As an example, the compiler might choose to be less aggressive in prefetching data.
Such a choice would reduce the memory bandwidth consumed by the process, and as such the

3.4 Options Reference

156 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

process may run slower, but it would also leave more memory bandwidth to be shared among
other processes.

The default is -xthroughput=no.

3.4.182 –xtime

Synonym for -time.

3.4.183 –xtypemap=spec

Specify default data mappings.

This option provides a flexible way to specify the byte sizes for default data types. This option
applies to both default-size variables and constants.

The specification string spec may contain any or all of the following in a comma-delimited list:

real:size,double:size,integer:size

The allowable combinations on each platform are:

■ real:32

■ real:64

■ double:64

■ double:128

■ integer:16

■ integer:32

■ integer:64

For example:

■ –xtypemap=real:64,double:64,integer:64

maps both default REAL and DOUBLE to 8 bytes.

This option applies to all variables declared with default specifications (without explicit byte
sizes), as in REAL XYZ (resulting in a 64-bit XYZ). Also, all single-precision REAL constants are
promoted to REAL*8.

Note that INTEGER and LOGICAL are treated the same, and COMPLEX is mapped as two REALs.
Also, DOUBLE COMPLEX will be treated the way DOUBLE is mapped.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 157

3.4.184 -xunboundsym={yes|no}

Specify whether the program contains references to dynamically bound symbols.

-xunboundsym=yes means the program contains references dynamically bound symbols.

-xunboundsym=no means the program does not contain references to dynamically bound
symbols.

The default is -xunboundsym=no.

3.4.185 –xunroll=n

Synonym for -unroll=n.

3.4.186 -xvector[=a]

Enables automatic generation of calls to the vector library functions or the generation of the
SIMD (Single Instruction Multiple Data) instructions on x86 processors that support SIMD.
You must use default rounding mode by specifying -fround=nearest when you use this option.

The -xvector option requires optimization level -xO3 or greater. Compilation will not proceed
if the optimization level is unspecified or lower than -xO3, and a message is issued.

The possible values for a are listed in the following table. The no% prefix disables the associated
suboption.

TABLE 3-23 -xvector Suboptions

Value Meaning

[no%]lib (Oracle Solaris) Enables the compiler to transform math library calls within loops
into single calls to the equivalent vector math routines when such transformations are
possible. This could result in a performance improvement for loops with large loop
counts. Use no%lib to disable this option.

[no%]simd (SPARC) For -xarch=sparcace and -xarch=sparcaceplus, directs the compiler
to use floating point and integral SIMD instructions to improve the performance
of certain loops. Contrary to that of the other SPARC platforms, -xvector=simd
is always effective under -xarch=sparcace and -xarch=sparcaceplus with the
specification of any -xvector option, except -xvector=none and -xvector=no%simd.
In addition -O greater than 3 is required for -xvector=simd, otherwise it is skipped
without any warning.

3.4 Options Reference

158 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Value Meaning

For all other -xarch values, directs the compiler to use the Visual Instruction Set
[VIS1, VIS2, ViS3, etc.] SIMD instructions to improve the performance of certain
loops. Basically with explicit -xvector=simd option, the compiler will perform loop
transformation enabling the generation of special vectorized SIMD instructions to
reduce the number of loop iterations. The -xvector=simd option is effective only if -
O is greater than 3 and -xarch is sparcvis3 and above. Otherwise -xvector=simd is
skipped without any warning.

[no%]simd (x86) Directs the compiler to use the native x86 SSE SIMD instructions to improve
performance of certain loops. Streaming extensions are used on x86 by default at
optimization level 3 and above where beneficial. Use no%simd to disable this option..

The compiler will use SIMD only if streaming extensions exist in the target
architecture; that is, if target ISA is at least SSE2. For example, you can specify -
xtarget=woodcrest, —xarch=generic64, -xarch=sse2, -xarch=sse3, or -fast
on a modern platform to use it. If the target ISA has no streaming extensions, the
suboption will have no effect.

%none Disable this option completely.

yes This option is deprecated; specify -xvector=lib instead.

no This option is deprecated; specify -xvector=%none instead.

The default is -xvector=simd on x86 and -xvector=%none on SPARC platforms. If you specify
-xvector without a suboption, the compiler assumes -xvector=simd,lib on x86 Solaris, -
xvector=lib on SPARC Solaris, and -xvector=simd on Linux platforms.

The compiler includes the libmvec libraries in the load step.

If you compile and link with separate commands, be sure to use -xvector in the linking CC
command as well.

3.4.187 –ztext

Generate only pure libraries with no relocations.

The general purpose of -ztext is to verify that a generated library is pure text; instructions are
all position–independent code. Therefore, it is generally used with both -G and -pic.

With -ztext, if ld finds an incomplete relocation in the text segment, then it does not build the
library. If it finds one in the data segment, then it generally builds the library anyway; the data
segment is writable.

Without -ztext, ld builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where you do not
know if the object files were made with -pic.

3.4 Options Reference

Chapter 3 • Fortran Compiler Options 159

Example: Make library from both source and object files:

demo% f95 -G -pic -ztext -o MyLib -hMyLib a.f b.f x.o y.o

An alternate use is to ask if the code is position–independent already: compile without -pic,
but ask if it is pure text.

Example: Ask if it is pure text already—even without -pic:

demo% f95 -G -ztext -o MyLib -hMyLib a.f b.f x.o y.o

The options -ztext and -xprofile=collect should not be used together. While -ztext
prohibits position-dependent symbol relocations in read-only storage, -xprofile=collect
generates statically initialized, position-dependent symbol relocations in writable storage.

If you compile with -ztext and ld does not build the library, then you can recompile without
-ztext, and ld will build the library. The failure to build with -ztext means that one or more
components of the library cannot be shared; however, maybe some of the other components can
be shared. This raises questions of performance that are best left to you, the programmer.

160 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Chapter 4 • Solaris Studio Fortran Features and Extensions 161

 4 ♦ ♦ ♦ C H A P T E R 4

Solaris Studio Fortran Features and Extensions

This chapter describes some of the major language features and extensions in the Oracle Solaris
Studio Fortran compiler, f95.

4.1 Source Language Features
The f95 compiler provides the following source language features and extensions to the Fortran
standard.

4.1.1 Continuation Line Limits
f95 allows 999 continuation lines (1 initial and 999 continuation lines). Standard Fortran 95
allows 19 for fixed-form and 39 for free-form.

4.1.2 Fixed-Form Source Lines
In fixed-form source, lines can be longer than 72 characters, but everything beyond column 73
is ignored. Standard Fortran 95 only allows 72-character lines.

4.1.3 Tab Form
The f95 fixed-format source text is defined as follows:

■ A tab in any of columns 1 through 6 makes the line as a tab form source line.
■ A comment indicator or a statement number may precede the tab.
■ If a tab is the first nonblank character, then:

■ If the character after the tab is anything other than a nonzero digit, then the text
following the tab is an initial line.

■ If there is a nonzero digit after the first tab, the line is a continuation line. The text
following the nonzero digit is the next part of the statement.

4.1 Source Language Features

162 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

The f95 default maximum line length is 72 columns for fixed form and 132 for free form. Use
the -e compiler option to extend the lines in fixed-format source to 132 columns.

Example: The tab form source on the left is treated as shown on the right.

!^IUses of tabs

^ICHARACTER *3 A = ’A’

^IINTEGER B = 2

^IREAL C = 3.0

^IWRITE(*,9) A, B, C

9^IFORMAT(1X, A3,

^I1 I3,

^I2 F9.1)

^IEND

! Uses of tabs

 CHARACTER *3 A = ’A’

 INTEGER B = 2

 REAL C = 3.0

 WRITE(*,9) A, B, C

9 FORMAT(1X, A3,

 1 I3,

 2 F9.1)

 END

In the example above, ”^I” stands for the tab character, and the line starting with “1” and
“2” are continuation lines. The coding is shown to illustrate various tab situations, and not to
advocate any one style.

Tabs in f95 force the rest of the line to be padded out to column 72. This may cause unexpected
results if the tab appears within a character string that is continued onto the next line:

Source file:

^Iprint *, "Tab on next line

^I1this continuation line starts with a tab."

^Iend

Running the code:

Tab on next line this continuation

 line starts with a tab.

When tab formatting is used with the —f77 option, there is no 132 character limit to the line
length. The line can be much longer.

4.1.4 Source Form Assumed

The source form assumed by f95 depends on options, directives, and suffixes.

Files with a .f or .F suffix are assumed to be in fixed format. Files with a .f90, .f95, .F90, or
.F95 suffix are assumed to be in free format.

TABLE 4-1 F95 Source Form Command-line Options

Option Action

-fixed Interpret all source files as Fortran fixed form

4.2 Data Types

Chapter 4 • Solaris Studio Fortran Features and Extensions 163

Option Action

-free Interpret all source files as Fortran free form

If the -free or -fixed option is used, it overrides the file name suffix. If either a !DIR$ FREE or
!DIR$ FIXED directive is used, it overrides the option and file name suffix.

4.1.4.1 Mixing Forms

Some mixing of source forms is allowed.

■ In the same f95 command, some source files can be fixed form, some free.
■ In the same file, free form can be mixed with fixed form by using !DIR$ FREE and !DIR$

FIXED directives.
■ In the same program unit, tab form can be mixed with free or fixed form.

4.1.4.2 Case

Solaris Studio Fortran 95 is case insensitive by default. That means that a variable AbcDeF is
treated as if it were spelled abcdef. Compile with the -U option to have the compiler treat upper
and lower case as unique.

4.1.5 Limits and Defaults

■ A single Fortran program unit can define up to 65,535 derived types and 16,777,215 distinct
constants.

■ Names of variables and other objects can be up to 127 characters long. 31 is standard.

4.2 Data Types

This section describes features and extensions to the Fortran data types.

4.2.1 Boolean Type

f95 supports constants and expressions of Boolean type. However, there are no Boolean
variables or arrays, and there is no Boolean type statement.

4.2 Data Types

164 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

4.2.1.1 Rules Governing Boolean Type

■ For masking operations, a bitwise logical expression has a Boolean result; each of its bits is
the result of one or more logical operations on the corresponding bits of the operands.

■ For binary arithmetic operators, and for relational operators:
■ If one operand is Boolean, the operation is performed with no conversion.
■ If both operands are Boolean, the operation is performed as if they were integers.

■ No user-specified function can generate a Boolean result, although some (nonstandard)
intrinsics can.

■ Boolean and logical types differ as follows:
■ Variables, arrays, and functions can be of logical type, but they cannot be Boolean type.
■ There is a LOGICAL statement, but no BOOLEAN statement.
■ A logical variable, constant, or expression represents only two values, .TRUE. or

.FALSE. A Boolean variable, constant, or expression can represent any binary value.
■ Logical entities are invalid in arithmetic, relational, or bitwise logical expressions.

Boolean entities are valid in all three.

4.2.1.2 Alternate Forms of Boolean Constants

f95 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the following alternate
forms (no binary). Variables cannot be declared Boolean. Standard Fortran does not allow these
forms.

Octal

ddddddB, where d is any octal digit

■ You can use the letter B or b.
■ There can be 1 to 11 octal digits (0 through 7).
■ 11 octal digits represent a full 32-bit word, with the leftmost digit allowed to be 0, 1, 2, or 3.
■ Each octal digit specifies three bit values.
■ The last (right most) digit specifies the content of the right most three bit positions (bits 29,

30, and 31).
■ If less than 11 digits are present, the value is right-justified—it represents the right most bits

of a word: bits n through 31. The other bits are 0.
■ Blanks are ignored.

Within an I/O format specification, the letter B indicates binary digits; elsewhere it indicates
octal digits.

4.2 Data Types

Chapter 4 • Solaris Studio Fortran Features and Extensions 165

Hexadecimal

X’ddd’ or X"ddd", where d is any hexadecimal digit

■ There can be 1 to 8 hexadecimal digits (0 through 9, A-F).
■ Any of the letters can be uppercase or lowercase (X, x, A-F, a-f).
■ The digits must be enclosed in either apostrophes or quotes.
■ Blanks are ignored.
■ The hexadecimal digits may be preceded by a + or - sign.
■ 8 hexadecimal digits represent a full 32-bit word and the binary equivalents correspond to

the contents of each bit position in the 32-bit word.
■ If less than 8 digits are present, the value is right-justified—it represents the right most bits

of a word: bits n through 31. The other bits are 0.

Hollerith

Accepted forms for Hollerith data are:

nH… ’…’H "…"H

nL… ’…’L "…"L

nR… ’…’R "…"R

Above, “…” is a string of characters and n is the character count.

■ A Hollerith constant is type Boolean.
■ If any character constant is in a bitwise logical expression, the expression is evaluated as

Hollerith.
■ A Hollerith constant can have 1 to 4 characters.

Examples: Octal and hexadecimal constants.

Boolean Constant Internal Octal for 32-bit Word

0B 00000000000

77740B 00000077740

X"ABE" 00000005276

X"-340" 37777776300

X’1 2 3’ 00000000443

X’FFFFFFFFFFFFFFFF’ 37777777777

4.2 Data Types

166 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Examples: Octal and hexadecimal in assignment statements.

i = 1357B

j = X"28FF"

k = X’-5A’

Use of an octal or hexadecimal constant in an arithmetic expression can produce undefined
results and do not generate syntax errors.

4.2.1.3 Alternate Contexts of Boolean Constants

f95 allows BOZ constants in the places other than DATA statements.

B’bbb’ O’ooo’ Z’zzz’

B"bbb" O"ooo" Z"zzz"

If these are assigned to a real variable, no type conversion occurs.

Standard Fortran allows these only in DATA statements.

4.2.2 Abbreviated Size Notation for Numeric Data Types

f95 allows the following nonstandard type declaration forms in declaration statements, function
statements, and IMPLICIT statements. The form in column one is nonstandard Fortran, though in
common use. The kind numbers in column two can vary by vendor.

TABLE 4-2 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

INTEGER*1 INTEGER(KIND=1) INTEGER(1) One-byte signed integers

INTEGER*2 INTEGER(KIND=2) INTEGER(2) Two-byte signed integers

INTEGER*4 INTEGER(KIND=4) INTEGER(4) Four-byte signed integers

LOGICAL*1 LOGICAL(KIND=1) LOGICAL(1) One-byte logicals

LOGICAL*2 LOGICAL(KIND=2) LOGICAL(2) Two-byte logicals

LOGICAL*4 LOGICAL(KIND=4) LOGICAL(4) Four-byte logicals

REAL*4 REAL(KIND=4) REAL(4) IEEE single-precision four-byte
floating-point

REAL*8 REAL(KIND=8) REAL(8) IEEE double-precision eight-byte
floating-point

REAL*16 REAL(KIND=16) REAL(16) IEEE quad-precision sixteen-byte
floating-point

4.2 Data Types

Chapter 4 • Solaris Studio Fortran Features and Extensions 167

Nonstandard Declarator Short Form Meaning

COMPLEX*8 COMPLEX(KIND=4) COMPLEX(4) Single-precision complex (four bytes
each part)

COMPLEX*16 COMPLEX(KIND=8) COMPLEX(8) Double-precision complex (eight bytes
each part)

COMPLEX*32 COMPLEX(KIND=16) COMPLEX(16) Quad-precision complex (sixteen bytes
each part)

4.2.3 Size and Alignment of Data Types
Storage and alignment are always given in bytes. Values that can fit into a single byte are byte-
aligned.

The size and alignment of types depends on various compiler options and platforms, and how
variables are declared. The default maximum alignment in COMMON blocks is to 4-byte
boundaries.

Default data alignment and storage allocation can be changed by compiling with special
options, such as -aligncommon, -f, -dalign, -dbl_align_all,- xmemalign,, and- xtypemap.
The default descriptions in this manual assume that these options are not in force.

There is additional information in the Fortran Programming Guide regarding special cases of
data types and alignment on certain platforms.

The following table summarizes the default size and alignment, ignoring other aspects of types
and options.

TABLE 4-3 Default Data Sizes and Alignments (in Bytes)

Fortran Data Type Size DefaultAlignment Alignment inCOMMON

BYTE X

CHARACTER X

CHARACTER*n X

1

1

n

1

1

1

1

1

1

COMPLEX X

COMPLEX*8 X

DOUBLE COMPLEX X

COMPLEX*16 X

COMPLEX*32 X

8

8

16

16

32

4

4

8

8

8/16

4

4

4

4

4

DOUBLE PRECISION X

REAL X

8

4

4

8

4

4

4

4

4

4.3 Cray Pointers

168 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Fortran Data Type Size DefaultAlignment Alignment inCOMMON

REAL*4 X

REAL*8 X

REAL*16 X

8

16

8

8/16

4

4

INTEGER X

INTEGER*2 X

INTEGER*4 X

INTEGER*8 X

4

2

4

8

4

2

4

8

4

2

4

4

LOGICAL X

LOGICAL*1 X

LOGICAL*2 X

LOGICAL*4 X

LOGICAL*8 X

4

1

2

4

8

4

1

2

4

8

4

1

2

4

4

Note the following:

■ REAL*16 and COMPLEX*32: in 64-bit environments (compiling with -m64) the default
alignment is on 16-byte (rather than 8-byte) boundaries, as indicated by 8/16 in the table.
This data type is often referred to as quad precision.

■ Arrays and structures align according to their elements or fields. An array aligns the same as
the array element. A structure aligns the same as the field with the widest alignment.

Options -f or -dalign force alignment of all 8, 16, or 32-byte data onto 8-byte boundaries.
Option -dbl_align_all causes all data to be aligned on 8-byte boundaries. Programs that
depend on the use of these options may not be portable.

4.3 Cray Pointers

A Cray pointer is a variable whose value is the address of another entity, called the pointee.

f95 supports Cray pointers; Standard Fortran 95 does not.

4.3.1 Syntax

The Cray POINTER statement has the following format:

POINTER (pointer_name, pointee_name [array_spec]), …

4.3 Cray Pointers

Chapter 4 • Solaris Studio Fortran Features and Extensions 169

Where pointer_name, pointee_name, and array_spec are as follows:

pointer_name Pointer to the corresponding pointee_name.
pointer_name contains the address of pointee_name.Must be a scalar
variable name (but not a derived type).Cannot be: a constant, a name of a
structure, an array, or a function.

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or non-
constant bounds), or assumed-size.

For example, we can declare Cray pointers to two pointees:

 POINTER (p, b), (q, c)

The above example declares Cray pointer p and its pointee b, and Cray pointer q and its pointee
c.

We can also declare a Cray pointer to an array:

 POINTER (ix, x(n, 0:m))

The above example declares Cray pointer ix and its pointee x; and declares x to be an array of
dimensions n by m+1.

4.3.2 Purpose of Cray Pointers

You can use pointers to access user-managed storage by dynamically associating variables to
particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

4.3.3 Declaring Cray Pointers and Fortran 95 Pointers

Cray pointers are declared as follows:

POINTER (pointer_name, pointee_name [array_spec])

Fortran 95 pointers are declared as follows:

POINTER object_name

4.3 Cray Pointers

170 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

The two kinds of pointers cannot be mixed.

4.3.4 Features of Cray Pointers
■ Whenever the pointee is referenced, f95 uses the current value of the pointer as the address

of the pointee.
■ The Cray pointer type statement declares both the pointer and the pointee.
■ The Cray pointer is of type Cray pointer.
■ The value of a Cray pointer occupies one storage unit on 32-bit processors, and two storage

units on 64-bit processors.
■ The Cray pointer can appear in a COMMON list or as a dummy argument.
■ The Cray pointee has no address until the value of the Cray pointer is defined.
■ If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:
■ A separate type statement
■ A separate DIMENSION statement
■ The pointer statement itself

If the array declarator is in a subprogram, the dimensioning can refer to:
■ Variables in a common block, or
■ Variables that are dummy arguments

The size of each dimension is evaluated on entrance to the subprogram, not when the
pointee is referenced.

4.3.5 Restrictions on Cray Pointers
■ pointee_name must not be a variable typed CHARACTER*(*).
■ If pointee_name is an array declarator, it must be explicit shape, (constant or non-constant

bounds), or assumed-size.
■ An array of Cray pointers is not allowed.
■ A Cray pointer cannot be:

■ Pointed to by another Cray pointer or by a Fortran pointer.
■ A component of a structure.
■ Declared to be any other data type.

A Cray pointer cannot appear in:
■ A PARAMETER statement or in a type declaration statement that includes the PARAMETER

attribute.

4.3 Cray Pointers

Chapter 4 • Solaris Studio Fortran Features and Extensions 171

■ A DATA statement.

4.3.6 Restrictions on Cray Pointees

■ A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON, or PARAMETER
statement.

■ A Cray pointee cannot be a dummy argument.
■ A Cray pointee cannot be a function result variable.
■ A Cray pointee cannot be a structure name or a structure component.
■ The type of a Cray pointee cannot be finalizable.

4.3.7 Usage of Cray Pointers

Cray pointers can be assigned values as follows:

■ Set to an absolute address

Example: q = 0
■ Assigned to or from integer variables, plus or minus expressions

Example: p = q + 100
■ Cray pointers are not integers. You cannot assign them to a real variable.
■ The LOC function (nonstandard) can be used to define a Cray pointer.

Example: p = LOC(x)

Example: Use Cray pointers as described above.

 SUBROUTINE sub (n)

 COMMON pool(100000)

 INTEGER blk(128), word64

 REAL a(1000), b(n), c(100000-n-1000)

 POINTER (pblk, blk), (ia, a), (ib, b), &

 (ic, c), (address, word64)

 DATA address / 64 /

 pblk = 0

 ia = LOC(pool)

 ib = ia + 4000

 ic = ib + n

 ...

Remarks about the above example:

■ word64 refers to the contents of absolute address 64
■ blk is an array that occupies the first 128 words of memory

4.4 STRUCTURE and UNION (VAX Fortran)

172 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ a is an array of length 1000 located in blank common
■ b follows a and is of length n
■ c follows b
■ a, b, and c are associated with pool
■ word64 is the same as blk(17) because Cray pointers are byte address and the integer

elements of blk are each 4 bytes long

4.4 STRUCTURE and UNION (VAX Fortran)

To aid the migration of programs from legacy FORTRAN 77, f95 accepts VAX Fortran
STRUCTURE and UNION statements, a precursor to the “derived types” in Fortran 95. For syntax
details see the FORTRAN 77 Language Reference manual.

The field declarations within a STRUCTURE can be one of the following:

■ A substructure— either another STRUCTURE declaration, or a record that has been previously
defined.

■ A UNION declaration.
■ A TYPE declaration, which can include initial values.
■ A derived type having the SEQUENCE attribute. (This is particular to f95 only.)

As with the legacy f77 compiler, a POINTER statement cannot be used as a field declaration.

f95 also allows:

■ Either ”.” or ”%”T can be used as a structure field dereference symbol:struct.field or
struct%field.

■ Structures can appear in a formatted I/O statement.
■ Structures can be initialized in a PARAMETER statement; the format is the same as a derived

type initialization.
■ Structures can appear as components in a derived type, but the derived type must be

declared with the SEQUENCE attribute.

4.5 Unsigned Integers

The Fortran compiler accepts a new data type, UNSIGNED, as an extension to the language. Four
KIND parameter values are accepted with UNSIGNED: 1, 2, 4, and 8, corresponding to 1-, 2-, 4-,
and 8-byte unsigned integers, respectively.

4.5 Unsigned Integers

Chapter 4 • Solaris Studio Fortran Features and Extensions 173

The form of an unsigned integer constant is a digit-string followed by the upper or lower case
letter U, optionally followed by an underscore and kind parameter. The following examples
show the maximum values for unsigned integer constants:

 255u_1

 65535u_2

 4294967295U_4

 18446744073709551615U_8

Expressed without a kind parameter (12345U), the default is the same as for default integer. This
is U_4 but can be changed by the -xtypemap option, which will change the kind type for default
unsigned integers.

Declare an unsigned integer variable or array with the UNSIGNED type specifier:

 UNSIGNED U

 UNSIGNED(KIND=2) :: A

 UNSIGNED*8 :: B

4.5.1 Arithmetic Expressions
■ Binary operations, such as + - * / cannot mix signed and unsigned operands. That is, U*N

is illegal if U is declared UNSIGNED, and N is a signed INTEGER.
■ Use the UNSIGNED intrinsic function to combine mixed operands in a binary operation, as

in U*UNSIGNED(N)
■ An exception is when one operand is an unsigned integer and the other is a signed

integer constant expression with positive or zero value; the result is an unsigned integer.
■ The kind of the result of such a mixed expression is the largest kind of the operands.

Exponentiation of a signed value is signed while exponentiation of an unsigned value is
unsigned.

■ Unary minus of an unsigned value is unsigned.
■ Unsigned operands may mix freely with real, complex operands. (Unsigned operands

cannot be mixed with interval operands.)

4.5.2 Relational Expressions
Signed and unsigned integer operands may be compared using intrinsic relational operations.
The result is based on the unaltered value of the operands.

4.5.3 Control Constructs
■ The CASE construct accepts unsigned integers as case-expressions.

4.6 Fortran 200x Features

174 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ Unsigned integers are not permitted as DO loop control variables, or in arithmetic IF control
expressions.

4.5.4 Input/Output Constructs

■ Unsigned integers can be read and written using the I, B, O, and Z edit descriptors.
■ They can also be read and written using list-directed and namelist I/O. The written form of

an unsigned integer under list-directed or namelist I/O is the same as is used for positive
signed integers.

■ Unsigned integers can also be read or written using unformatted I/O.

4.5.5 Intrinsic Functions

■ Unsigned integers are allowed in intrinsic functions, except for SIGN and ABS.
■ A new intrinsic function, UNSIGNED, is analogous to INT but produces a result of unsigned

type. The form is

UNSIGNED(v [,kind]).
■ Another new intrinsic function, SELECTED_UNSIGNED_KIND(var), returns the kind parameter

for var.
■ Intrinsic functions do not allow both signed and unsigned integer operands, except for the

MAX and MIN functions, which allow both signed and unsigned integer operands only if there
is at least one operand of REAL type.

■ Unsigned arrays cannot appear as arguments to array intrinsic functions.

4.6 Fortran 200x Features

A number of new features in the Fortran 2003 and Fortran 2008 standards appear in this release
of the Oracle Solaris Studio Fortran compiler. For details, refer to the appropriate Fortran
standard.

4.6.1 Interoperability with C

The new standard for Fortran provides:

■ a means of referencing C language procedures and, conversely, a means of specifying that a
Fortran subprogram can be referenced from a C function, and

4.6 Fortran 200x Features

Chapter 4 • Solaris Studio Fortran Features and Extensions 175

■ a means of declaring global variables that are linked with external C variables

The ISO_C_BINDING module provides access to named constants that are kind type parameters
representing data that is compatible with C types.

The standard also introduces the BIND(C) attribute. A Fortran derived type is interoperable with
C if it has the BIND attribute.

The Fortran compiler implements the features described in Chapter 15 of the Fortran standard.
All intrinsic functions defined in Chapter 15 have been implemented. Fortran also provides
facilities for defining derived types and enumerations that correspond to C types, as described
in Chapter 4 of the standard.

4.6.2 IEEE Floating-Point Exception Handling

New intrinsic modules IEEE_ARITHMETIC, and IEEE_FEATURES provide support for exceptions
and IEEE arithmetic in the Fortran language. Full support of these features is provided by:

USE, INTRINSIC :: IEEE_ARITHMETIC

USE, INTRINSIC :: IEEE_FEATURES

The INTRINSIC keyword is new in Fortran 2003.These modules define a set of derived types,
constants, rounding modes, inquiry functions, elemental functions, kind functions, and
elemental and non-elemental subroutines. The details are contained in Chapter 14 of the Fortran
2003 standard.

4.6.3 Command-Line Argument Intrinsics

The Fortran 2003 standard introduces three new intrinsics for processing command-line
arguments and environment variables. These are:

■ GET_COMMAND(command, length, status)
Returns in command the entire command line that invoked the program.

■ GET_COMMAND_ARGUMENT(number, value, length, status)
Returns a command-line argument in value.

■ GET_ENVIRONMENT_VARIABLE(name, value, length, status, trim_name)
Return the value of an environment variable.

4.6 Fortran 200x Features

176 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

4.6.4 PROTECTED Attribute

The Fortran compiler now accepts the Fortran 2003 PROTECTED attribute. PROTECTED imposes
limitations on the usage of module entities. Objects with the PROTECTED attribute are only
definable within the module that declares them.

4.6.5 Fortran 2003 Asynchronous I/O

The compiler recognizes the ASYNCHRONOUS specifier on I/O statements:

ASYNCHRONOUS=[’YES’ | ’NO’]

This syntax is as proposed in the Fortran 2003 standard, Chapter 9. In combination with the
WAIT statement it allows the programmer to specify I/O processes that may be overlapped
with computation. While the compiler recognizes ASYNCHRONOUS=’YES’, the standard does not
require actual asynchronous I/O. In this release of the compiler, I/O is always synchronous.

4.6.6 Extended ALLOCATABLE Attribute

Fortran 2003 extends the data entities allowed for the ALLOCATABLE attribute. Previously this
attribute was limited to locally stored array variables. It is now allowed with:

■ array components of structures
■ dummy arrays
■ array function results
■ polymorphic entities in a CLASS type specifier

Allocatable entities remain forbidden in all places where they may be storage-associated:
COMMON blocks and EQUIVALENCE statements. Allocatable array components may appear in
SEQUENCE types, but objects of such types are then prohibited from COMMON and EQUIVALENCE.

4.6.7 VALUE Attribute

The f95 compiler accepts the Fortran 2003 VALUE type declaration attribute.

Specifying a subprogram dummy input argument with this attribute indicates that the actual
argument is passed “by value”. The following example demonstrates the use of the VALUE
attribute with a C main program calling a Fortran subprogram with a literal value as an
argument:

4.6 Fortran 200x Features

Chapter 4 • Solaris Studio Fortran Features and Extensions 177

C code:

#include <stdlib.h>

int main(int ac, char *av[])

{

 to_fortran(2);

}

Fortran code:

 subroutine to_fortran(i)

 integer, value :: i

 print *, i

 end

4.6.8 Fortran 2003 Stream I/O
The Fortran 2003 standard defines a new “stream” I/O scheme. Stream I/O access treats a data
file as a continuous sequence of bytes, addressable by a positive integer starting from 1. The
data file can be connected for either formatted or unformatted access.

Declare a stream I/O file with the ACCESS=’STREAM’ specifier on the OPEN statement. File
positioning to a byte address requires a POS=scalar_integer_expression specifier on a
READ or WRITE statement. The INQUIRE statement accepts ACCESS=’STREAM’, a specifier
STREAM=scalar_character_variable, and POS=scalar_integer_variable.

4.6.9 Fortran 2003 IMPORT Statement

The IMPORT statement specified entities in the host scoping unit that are accessible by host
association. It is allowed only in an interface body.

4.6.10 Fortran 2003 FLUSH I/O Statement

The f95 compiler accepts the Fortran 2003 FLUSH statement. The FLUSH statement makes data
written to an external file available to other processes, or causes data placed in an external file
by means other than Fortran to be available to a READ statement.

4.6.11 Fortran 2003 POINTER INTENT Feature

The Fortran compiler now supports the INTENT attribute for POINTER dummy arguments:
INTENT(IN), INTENT(OUT), or INTENT(INOUT) may be specified for pointer dummies.

For example,

4.6 Fortran 200x Features

178 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

subroutine sub(P)

integer, pointer, intent(in) :: p

...

end

The INTENT attribute for pointers applies to the pointer and not what it points to, so for
INTENT(IN) pointers, the following are illegal because they modify the pointer:

 p => t

 allocate(p)

 deallocate(p)

But the following is legal for INTENT(IN) pointers, because it modifies the pointee:

 p = 400

4.6.12 Fortran 2003 Enhanced Array Constructor

Use of square brackets in place of (/ and /) in array constructors is allowed:

X = [3.2, 4.01, 6.5]

The Fortran 2003 standard allows the use of square brackets as array constructors. This can
conflict with interval constants. When the square brackets are used without the -xia option (or
similar options to enable interval arithmetic) they are treated as array constructors. When -xia
option is used, they are treated as constants. Interval users should continue using (/ and /)
array constructors to avoid compilation errors.

The array components within an array constructor can have two forms:

type-spec ::

or

[type-spec ::] ac-value-list

When the optional type-spec is present, the types and kinds of the array components do not have
to be the same as long as they are type compatible to the type-spec.

type-spec can be an intrinsic type or a derived type.

4.6.13 Object-Oriented Fortran Support

Complete support for polymorphism in Fortran 2003 is available.

4.6 Fortran 200x Features

Chapter 4 • Solaris Studio Fortran Features and Extensions 179

4.6.14 FINAL Subroutine Support

FINAL subroutines, a Fortran 2003 feature, is supported.

4.6.15 Procedure Pointer Support

Procedure pointers, a Fortran 2003 feature, is supported.

4.6.16 Additional Fortran 2003 and Fortran 2008 Features

Refer to the published Fortran 2003 and Fortran 2008 standards for details.

■ 2003 extensions to allocatable arrays — reallocation on assignment, and allocatable scalars.
■ 2003 extensions to ALLOCATE/DEALLOCATE statements — ERRMSG and SOURCE.
■ 2003 extensions MOVE_ALLOC intrinsic.
■ 2003 extensions pointer assignment with remapping.
■ 2003 extensions MIN/MAX, MIN/MAXVAL and MIN/MAXLOC with character arguments.
■ 2003 intrinsics IS_IOSTAT_END, IS_IOSTAT_EOR, NEW_LINE.
■ 2003 intrinsic SELECTED_CHAR_KIND.
■ 2003 REAL type for argument COUNT_RATE of intrinsic SYSTEM_CLOCK.
■ 2003 new restriction on complex SQRT intrinsic result.
■ 2008: Use of null pointers as missing optional arguments.
■ 2008 Bit Intrinsics: BGE, BGT, BLE, BLT, DSHIFTL, DSHIFTR, LEADZ, POPCNT,

POPPAR, TRAILZ, MASKL, MASKR, SHIFTA, SHIFTL, SHIFTR, MERGE_BITS, IALL,

IANY, IPARITY.
■ Enhanced structure constructor: using component names to construct a structure constant.
■ Enhanced PUBLIC/PRIVATE access control on module derived types and components.
■ More Fortran 2008 math intrinsic function support. Most Fortran 2008 math intrinsic

functions are now supported except for ERFC_SCALED, NORM2 and some REAL*16 variants on
x86 platforms.

■ Derived types with no components.
■ The KIND argument was added to ICHAR, IACHAR, ACHAR, SHAPE, UBOUND, LBOUND,

SIZE, MINLOC, MAXLOC, COUNT, LEN, LEN_TRIM, INDEX, SCAN and VERIFY intrinsics.
■ The BACK argument was added to MINLOC and MAXLOC intrinsics.
■ New intrinsics FINDLOC and STORAGE_SIZE were added.
■ New keywords ERRMSG, SOURCE and MOLD were added to ALLOCATE statement, and ERRMSG

was added to DEALLOCATE statement.

4.7 Additional I/O Extensions

180 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ Enumeration with ENUM.
■ VOLATILE keyword.
■ PUBLIC/PRIVATE accessibility on individual components.
■ Public entities of private types.
■ Enhanced complex constants.
■ Fortran 2003 ISO_FORTRAN_ENV module.
■ New KIND= optional argument to intrinsics.
■ Names of length up to 127 characters, except for module names, which are limited to 31

characters.
■ ID= and PENDING= specifier in INQUIRE statement.
■ POS= specifier in data transfer and INQUIRE statements.
■ BLANK, DECIMAL, DELIM, PAD, ROUND, SIZE specifiers.
■ DC, DP, RD, RC, RN, RP, RU, RZ edit descriptors.
■ INTRINSIC and NON_INTRINSIC keywords in USE.
■ IS_IOSTAT_END and IS_IOSTAT_EOR intrinsics.
■ Support for deferred-length character declarations. For example, CHARACTER (LEN=:),

POINTER :: STR.
■ Support passing TARGET objects to INTENT(IN) pointer dummies. This is a Fortran 2008

feature.

4.7 Additional I/O Extensions

The section describes extensions to Fortran 95 Input/Output handling that are accepted by
the f95 compiler that are not part of the Fortran 2003 standard. Some are I/O extensions that
appeared in the Fortran 77 compiler, f77, and are now part of the Fortran compiler.

4.7.1 I/O Error Handling Routines
Two new functions enable the user to specify their own error handling routine for formatted
input on a logical unit. When a formatting error is detected, the runtime I/O library calls the
specified user-supplied handler routine with data pointing at the character in the input line
causing the error. The handler routine can supply a new character and allow the I/O operation to
continue at the point where the error was detected using the new character; or take the default
Fortran error handling.

The new routines, SET_IO_ERR_HANDLER(3f) and GET_IO_ERR_HANDLER(3f), are module
subroutines and require USE SUN_IO_HANDLERS in the routine that calls them. See the man pages
for these routines for details.

4.7 Additional I/O Extensions

Chapter 4 • Solaris Studio Fortran Features and Extensions 181

4.7.2 Variable Format Expressions
Fortran 77 allowed any integer constant in a format to be replaced by an arbitrary expression
enclosed in angle brackets:

1 FORMAT(… < expr > …)

Variable format expressions cannot appear as the n in an nH… edit descriptor, in a FORMAT
statement that is referenced by an ASSIGN statement, or in a FORMAT statement within a parallel
region.

This feature is enabled natively in f95, and does not require the -f77 compatibility option flag.

4.7.3 NAMELIST Input Format
■ The group name may be preceded by $ or & on input. The & is the only form accepted by the

Fortran 95 standard, and is what is written by NAMELIST output.
■ Accepts $ as the symbol terminating input except if the last data item in the group is

CHARACTER data, in which case the $ is treated as input data.
■ Allows NAMELIST input to start in the first column of a record.

4.7.4 Binary Unformatted I/O

Opening a file with FORM=’BINARY’ has roughly the same effect as FORM=’UNFORMATTED’,
except that no record lengths are embedded in the file. Without this data, there is no way to tell
where one record begins, or ends. Thus, it is impossible to BACKSPACE a FORM=’BINARY’ file,
because there is no way of telling where to backspace to. A READ on a ’BINARY’ file will read as
much data as needed to fill the variables on the input list.

■ WRITE statement: Data is written to the file in binary, with as many bytes transferred as
specified by the output list.

■ READ statement: Data is read into the variables on the input list, transferring as many bytes
as required by the list. Because there are no record marks on the file, there will be no “end-
of-record” error detection. The only errors detected are “end-of-file” or abnormal system
errors.

■ INQUIRE statement: INQUIRE on a file opened with FORM=”BINARY” returns:

FORM=”BINARY”ACCESS=”SEQUENTIAL”DIRECT=”NO”FORMATTED=”NO”UNFORMATTED=”YES”RECL=

AND NEXTREC= are undefined
■ BACKSPACE statement: Not allowed—returns an error.
■ ENDFILE statement: Truncates file at current position, as usual.

4.8 Directives

182 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ REWIND statement: Repositions file to beginning of data, as usual.

4.7.5 Miscellaneous I/O Extensions
■ Recursive I/O possible on different units (this is because the f95 I/O library is "MT-Warm").
■ RECL=2147483646 (231-2) is the default record length on sequential formatted, list directed,

and namelist output.
■ ENCODE and DECODE are recognized and implemented as described in the FORTRAN 77

Language Reference Manual.
■ Non-advancing I/O is enabled with ADVANCE=’NO’, as in:

write(*,’(a)’,ADVANCE=’NO’) ’n= ’ read(*,*) n

4.8 Directives

A compiler directive directs the compiler to do some special action. Directives are also called
pragmas.

A compiler directive is inserted into the source program as one or more lines of text. Each line
looks like a comment, but has additional characters that identify it as more than a comment
for this compiler. For most other compilers, it is treated as a comment, so there is some code
portability.

A complete summary of Fortran directives appears in Appendix C, “Fortran Directives
Summary”.

4.8.1 Form of Special f95 Directive Lines

f95 recognizes its own special directives in addition to those described in “1.8 Command-Line
Help” on page 20. These have the following syntax:

!DIR$ d1, d2, …

4.8.1.1 Fixed-Form Source

■ Put CDIR$ or !DIR$ in columns 1 through 5.
■ Directives are listed in columns 7 and beyond.
■ Columns beyond 72 are ignored.
■ An initial directive line has a blank in column 6.

4.8 Directives

Chapter 4 • Solaris Studio Fortran Features and Extensions 183

■ A continuation directive line has a nonblank in column 6.

4.8.1.2 Free-Form Source

■ Put !DIR$ followed by a space anywhere in the line.

The !DIR$ characters are the first nonblank characters in the line (actually, non-whitespace).
■ Directives are listed after the space.
■ An initial directive line has a blank, tab, or newline in the position immediately after the !

DIR$.
■ A continuation directive line has a character other than a blank, tab, or newline in the

position immediately after the !DIR$.

Thus, !DIR$ in columns 1 through 5 works for both free-form source and fixed-form source.

4.8.2 FIXED and FREE Directives

These directives specify the source form of lines following the directive line.

4.8.2.1 Scope

They apply to the rest of the file in which they appear, or until the next FREE or FIXED directive
is encountered.

4.8.2.2 Uses

■ They allow you to switch source forms within a source file.
■ They allow you to switch source forms for an INCLUDE file. You insert the directive at the

start of the INCLUDE file. After the INCLUDE file has been processed, the source form reverts
back to the form being used prior to processing the INCLUDE file.

4.8.2.3 Restrictions

The FREE/FIXED directives:

■ Each must appear alone on a compiler directive line (not continued).
■ Each can appear anywhere in your source code. Other directives must appear within the

program unit they affect.

4.9 Module Files

184 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Example: A FREE directive.

!DIR$ FREE

 DO i = 1, n

 a(i) = b(i) * c(i)

 END DO

4.8.3 Parallelization Directives
A parallelization directive is a special comment that directs the compiler to attempt to
parallelize a region of code. Both Sun and Cray style parallelization directives are now
deprecated as obsolete. The OpenMP directives and parallelization model are preferred.
OpenMP parallelization is described in the OpenMP API User’s Guide.

4.9 Module Files

Compiling a file containing a Fortran 95 MODULE generates a module interface file (.mod file) for
every MODULE encountered in the source. The file name is derived from the name of the MODULE;
file xyz.mod (all lowercase) will be created for MODULE xyz.

Compilation also generates a .o module implementation object file for the source file
containing the MODULE statements. Link with the module implementation object file along with
the all other object files to create an executable.

The compiler creates module interface files and implementation object files in the directory
specified by the -moddir=dir flag or the MODDIR environment variable. If not specified, the
compiler writes .mod files in the current working directory.

The compiler looks in the current working directory for the interface files when compiling USE
modulename statements. The- Mpath option allows you to give the compiler an additional path
to search. Module implementation object files must be listed explicitly on the command line for
the link step.

Typically, programmers define one MODULE per file and assign the same name to the MODULE and
the source file containing it. However, this is not a requirement.

In this example, all the files are compiled at once. The module source files appear first before
their use in the main program.

demo% cat mod_one.f90
 MODULE one

 ...

 END MODULE

demo% cat mod_two.f90

4.9 Module Files

Chapter 4 • Solaris Studio Fortran Features and Extensions 185

 MODULE two

 ...

 END MODULE

demo% cat main.f90
 USE one

 USE two

 ...

 END

demo% f95 -o main mod_one.f90 mod_two.f90 main.f90

Compilation creates the files:

mainmain.oone.modmod_one.otwo.modmod_two.o

The next example compiles each unit separately and links them together.

demo% f95 -c mod_one.f90 mod_two.f90

demo% f95 -c main.f90

demo% f95 -o main main.o mod_one.o mod_two.o

When compiling main.f90, the compiler searches the current directory for one.mod and
two.mod. These must be compiled before compiling any files that reference the modules on
USE statements. The link step requires the module implementation object files mod_one.o and
mod_two.o appear along with all other object files to create the executable.

4.9.1 Searching for Modules

With the release of the version 7.0 of the Fortran compiler, .mod files can be stored into an
archive (.a) file. An archive must be explicitly specified in a -Mpath flag on the command line
for it to be searched for modules. The compiler does not search archive files by default.

Only .mod files with the same names that appear on USE statements will be searched. For
example, the Fortran statement USE mymod causes the compiler to search for the module file
mymod.mod by default.

While searching, the compiler gives higher priority to the directory where the module files
are being written. This can be controlled by the -moddir=dir option flag and the MODDIR
environment variable. This implies that if only the -Mpath option is specified, the current
directory will be searched for modules first, before the directories and files listed on the -M flag.

4.9.2 The -use=list Option Flag

The -use=list flag forces one or more implicit USE statements into each subprogram or module
subprogram compiled with this flag. By using the flag, it is not necessary to modify source
programs when a module or module file is required for some feature of a library or application.

4.10 Intrinsics

186 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Compiling with -use=module_name has the effect of adding a USE module_name to each
subprogram or module being compiled. Compiling with -use=module_file_name has the effect
of adding a USE module_name for each of the modules contained in the module_file_name file.

4.9.3 The fdumpmod Command

Use the fdumpmod(1) command to display information about the contents of a compiled module
information file.

demo% fdumpmod x.mod group.mod
x 1.0 v8,i4,r4,d8,n16,a4 x.mod

group 1.0 v8,i4,r4,d8,n16,a4 group.mod

The fdumpmod command will display information about modules in a single .mod file, files
formed by concatenating .mod files, and in .a archives of .mod files. The display includes the
name of the module, a version number, the target architecture, and flags indicating compilation
options with which the module is compatible. See the fdumpmod(1) man page for details.

4.10 Intrinsics

f95 supports some intrinsic procedures that are extensions beyond the standard.

TABLE 4-4 Nonstandard Intrinsics

Name Definition Function Type Argument Types Arguments Notes

COT Cotangent real real ([X=]x) P, E

DDIM Positive difference double precision double precision ([X=]x,[Y=]y) P, E

Notes:P: The name can be passed as an argument. E: External code for the intrinsic is called at
run time.

See the Fortran Library Reference for a more complete discussion of intrinsics, including those
from Fortran 77 that are recognized by the Fortran compiler.

4.11 Forward Compatibility

Future releases of f95 are intended to be source code compatible with this release.

Module information files generated by this release of f95 are not guaranteed to be compatible
with future releases.

4.12 Mixing Languages

Chapter 4 • Solaris Studio Fortran Features and Extensions 187

4.12 Mixing Languages

Routines written in C can be combined with Fortran programs, since these languages have
common calling conventions. See the C/Fortran Interface chapter in the Fortran Programming
Guide for details on how to interoperate between C and Fortran routines.

188 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 189

 5 ♦ ♦ ♦ C H A P T E R 5

FORTRAN 77 Compatibility: Migrating to Solaris
Studio Fortran

A separate FORTRAN 77 compiler is no longer provided. The Oracle Solaris Studio Fortran
compiler, f95, will compile most legacy FORTRAN 77 programs, including programs utilizing
non-standard extensions previously compiled by the Sun WorkShop f77 compiler.

f95 will accept many of these FORTRAN 77 features directly. Others require compiling in
FORTRAN 77 compatibility mode (f95 -f77).

This chapter describes the FORTRAN 77 features accepted by f95, and lists those f77 features
that are incompatible with f95. For details on any of the non-standard FORTRAN 77 extensions
that were accepted by the Sun WorkShop f77 compiler, see the legacy FORTRAN 77 Language
Reference manual at http://docs.sun.com/source/806-3594/index.html.

See Chapter 4, “Solaris Studio Fortran Features and Extensions” for other extensions to the
Fortran language accepted by the f95 compiler.

f95 will compile standard-conforming FORTRAN 77 programs. To ensure continued
portability, programs utilizing non-standard FORTRAN 77 features should migrate to standard-
conforming Fortran 95/2003. Compiling with the -ansi option will flag all non-standard usages
in your program.

5.1 Compatible f77 Features

f95 accepts the following non-standard features of the legacy FORTRAN 77 compiler, f77,
either directly or when compiling in -f77 compatibility mode:

Source Format

■ Continuation lines can start with ”&’ in column 1. [-f77=misc]
■ The first line in an include file can be a continuation line. [-f77=misc]
■ Use f77 tab-format. [-f77=tab]

5.1 Compatible f77 Features

190 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ Tab-formatting can extend source lines beyond column 72. [-f77=tab]
■ f95 tab-formatting will not pad character strings to column 72 if they extend over a

continuation line. [-f77]

I/O:

■ You can open a file with ACCESS=’APPEND’ in Fortran 95.
■ List-directed output uses formats similar to the f77 compiler. [-f77=output]
■ f95 allows BACKSPACE on a direct-access file, but not ENDFILE.
■ f95 allows implicit field-width specifications in format edit descriptors. For example,

FORMAT(I) is allowed.
■ f95 will recognize f77 escape sequences (for example, \n \t \’) in output formats. [-

f77=backslash.]
■ f95 recognizes FILEOPT= in OPEN statements.
■ f95 allows SCRATCH files to be closed with STATUS=’KEEP’ [-f77]. When the program

exits, the scratch file is not deleted. SCRATCH files can also be opened with FILE=name when
compiled with -f77.

■ Direct I/O is permitted on internal files. [-f77]
■ f95 recognizes FORTRAN 77 format edit descriptors A, $, and SU. [-f77]
■ FORM=’PRINT’ can appear on OPEN statements. [-f77]
■ f95 recognizes the legacy FORTRAN input/output statements ACCEPT and TYPE.
■ Compile with -f77=output to write FORTRAN 77 style NAMELIST output.
■ A READ with only ERR= specified (no IOSTAT= or END= branches) treats the ERR= branch as an

END= when an EOF is detected. [-f77]
■ VMS Fortran NAME=’filename’ is accepted on OPEN statements. [-f77]
■ f95 accepts an extra comma after READ() or WRITE(). [-f77]
■ END= branch can appear on direct access READ with REC=. [-f77=input]
■ Allow format edit descriptor Ew.d.e and treat it as Ew.d.Ee. [-f77]
■ Character strings can be used in the FORMAT of an input statement. [-f77=input]
■ IOSTAT= specifier can appear in ENCODE/DECODE statements.
■ List-directed I/O is allowed with ENCODE/DECODE statements.
■ Asterisk (*) can be used to stand in for STDIN and STDOUT when used as a logical unit in an

I/O statement.
■ Arrays can appear in the FMT= specifier. [-f77=misc]
■ PRINT statement accepts namelist group names. [-f77=output]
■ The compiler accepts redundant commas in FORMAT statements.
■ While performing NAMELIST input, entering a question mark (?) responds with the name of

the namelist group being read. [-f77=input]

5.1 Compatible f77 Features

Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 191

Data Types, Declarations, and Usage:

■ In a program unit, the IMPLICIT statement may follow any other declarative statement in the
unit.

■ f95 accepts the IMPLICIT UNDEFINED statement.
■ f95 accepts the AUTOMATIC statement, a FORTRAN 77 extension.
■ f95 accepts the STATIC statement and treats it like a SAVE statement.
■ f95 accepts VAX STRUCTURE, UNION, and MAP statements.(See “4.4 STRUCTURE and UNION

(VAX Fortran)” on page 172)
■ LOGICAL and INTEGER variables can be used interchangeably. [-f77=logical]
■ INTEGER variables can appear in conditional expressions, such as DO WHILE. [-f77=logical]
■ Cray pointers can appear in calls to intrinsic functions.
■ f95 will accept data initializations using slashes on type declarations. For example: REAL

MHW/100.101/, ICOMX/32.223/
■ f95 allows assigning Cray character pointers to non-pointer variables and to other Cray

pointers that are not character pointers.
■ f95 allows the same Cray pointer to point to items of different type sizes (for example,

REAL*8 and INTEGER*4).
■ A Cray pointer can be declared INTEGER in the same program unit where it is declared as a

POINTER. The INTEGER declaration is ignored. [-f77=misc]
■ A Cray pointer can be used in division and multiplication operations. [-f77=misc]
■ Variables in an ASSIGN statement can be of type INTEGER*2. [-f77=misc]
■ Expressions in alternate RETURN statements can be non-integer type. [-f77=misc]
■ Variables with the SAVE attribute can be equivalenced to an element of a COMMON block.
■ Initializers for the same array can be of different types. Example:REAL*8 ARR(5) /12.3 1,

3, 5.D0, 9/

■ Type declarations for namelist items can follow the NAMELIST statement.
■ f95 accepts the BYTE data type.
■ f95 allows non-integers to be used as array subscripts. [-f77=subscript]
■ f95 allows relational operators .EQ. and .NE. to be used with logical operands. [-

f77=logical]
■ f95 will accept the legacy f77 VIRTUAL statement, and treats it as a DIMENSION statement.
■ Different data structures can be equivalenced in a manner that is compatible with the f77

compiler. [-f77=misc]
■ Like the f77 compiler, f95 allows many intrinsics to appear in initialization expressions on

PARAMETER statements.
■ f95 allows assignment of an integer value to CHARACTER*1 variables. [-f77=misc]
■ BOZ constants can be used as exponents. [-f77=misc]

5.1 Compatible f77 Features

192 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ BOZ constants can be assigned to character variables. For example: character*8 ch ch
="12345678"X

■ BOZ constants can be used as arguments to intrinsic function calls. [-f77=misc]
■ A character variable can be initialized with an integer value in a DATA statement. The first

character in the variable is set to the integer value and the rest of the string, if longer than
one character, is blank-filled.

■ An integer array of hollerith characters can be used as a format descriptor. [-f77].
■ Constant folding will not be done at compile time if it results in a floating-point exception.

[-f77=misc]
■ When compiling with -f77=misc, f95 will automatically promote a REAL constant to the

appropriate kind (REAL*8 or REAL*16) in assignments, data, and parameter statements, in the
manner of the f77 compiler. [-f77=misc]

■ Equivalenced variables are allowed on an assigned GOTO. [-f77]
■ Non-constant character expressions can be assigned to numeric variables.
■ Compiling with -f77=misc allows *kind after the variable name in type declarations. [-

f77=misc]. For example REAL Y*4, X*8(21)) INTEGER FUNCTION FOO*8(J)
■ A character substring may appear as an implied-DO target in a DATA statement. [-

f77=misc]For example: DATA (a(i:i), i=1,n) /n*’+’/
■ Integer expressions within parentheses can appear as a type size. For example: PARAMETER

(N=2) INTEGER*(N+2) K

Programs, Subroutines, Functions, and Executable Statements:

■ f95 does not require a PROGRAM statement to have a name.
■ Functions can be called by a CALL statement as if they were subroutines. [-f77]
■ Functions do not have to have their return value defined. [-f77]
■ An alternate return specifier (*label or &label) can appear in the actual parameter list and in

different positions. [-f77=misc]
■ %VAL can be used with an argument of type COMPLEX. [-f77=misc]
■ %REF and %LOC are available. [-f77=misc]
■ A subroutine can call itself recursively without declaring itself with a RECURSIVE keyword.

[-f77=misc] However, programs that perform indirect recursion (routine A calls routine
B which then calls routine A) should also be compiled with the -xrecursive flag to work
correctly.

■ A subroutine with alternate returns can be called even when the dummy argument list does
not have an alternate return list.

■ Compiling with -f77=misc allows statement functions to be defined with arguments typed
other than INTEGER or REAL, and actual arguments will be converted to the type defined by
the statement function. [-f77=misc]

■ Allow null actual arguments. For example: CALL FOO(I,,,J) has two null arguments
between the first I and the final J argument.

5.1 Compatible f77 Features

Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 193

■ f95 treats a call to the function %LOC() as a call to LOC(). [-f77=misc]
■ Allow unary plus and unary minus after another operator such as ** or *.
■ Allow a second argument with the CMPLX() intrinsic function even when the first argument

is a COMPLEX type. In this case, the real part of the first argument is used. [-f77=misc]
■ Allow the argument to the CHAR() intrinsic function to exceed 255 with only a warning, not

an error. [-f77=misc]
■ Allow negative shift counts with only a warning, not an error.
■ Search for an INCLUDE file in the current directory as well as those specified in the -I

option. [-f77=misc]
■ Allow consecutive .NOT. operations, such as .NOT..NOT..NOT.(I.EQ.J). [-f77=misc]

Miscellaneous

■ The f95 compiler normally does not issue progress messages to standard out. The
f77 compiler did issue progress messages, displaying the names of the routines it was
compiling. This convention is retained when compiling with the -f77 compatibility flag.

■ Programs compiled by the f77 compiler did not trap on arithmetic exceptions, and
automatically called ieee_retrospective on exit to report on any exceptions that may have
occurred during execution. Compiling with the -f77 flag mimics this behavior of the f77
compiler. By default, the f95 compiler traps on the first arithmetic exception encountered
and does not call ieee_retrospective.

■ The f77 compiler treated a REAL*4 constant as if it had higher precision in contexts where
higher precision was needed. When compiling with the -f77 flag, the f95 compiler allows a
REAL*4 constant to have double or quad precision when the constant is used with a double or
quad precision operand, respectively.

■ Allow the DO loop variable to be redefined within the loop. [-f77=misc]
■ Display the names of program units being compiled. [-f77=misc]
■ Allow the types of the variables used in a DIMENSION statement to be declared after the

DIMENSION statement. Example:

 SUBROUTINE FOO(ARR,G)

 DIMENSION ARR(G)

 INTEGER G

 RETURN

 END

For details on the syntax and semantics of non-standard language extensions accepted by the
legacy Sun WorkShop FORTRAN 77 compiler, see the archived FORTRAN 77 Language
Reference at http://docs.sun.com/source/806-3594/index.html.

5.2 Incompatibility Issues

194 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

5.2 Incompatibility Issues

The following lists known incompatibilities that arise when compiling and testing legacy f77
programs with this release of f95. These are due to either missing comparable features in f95,
or differences in behavior. These items are non-standard extensions to FORTRAN 77 supported
in the legacy Sun WorkShop FORTRAN 77 compiler, but not in the current f95 compiler.

Source Format

■ An ANSI warning is given for names longer than 6 characters when the -f77 option is
specified.

I/O:

■ f95 does not allow ENDFILE on a direct-access file.
■ f95 does not recognize the ’n form for specifying a record number in direct access I/O:

READ (2 ’13) X,Y,Z

■ f95 does not recognize the legacy f77 “R” format edit descriptor.
■ f95 does not allow the DISP= specifier in a CLOSE statement.
■ Bit constants are not allowed on a WRITE statement.
■ Fortran 95 NAMELIST does not allow arrays and character strings with variable lengths.
■ Opening a direct access file with RECL=1 cannot be used as a “stream” file. Use

FORMAT=’STREAM’ instead.
■ Fortran 95 reports illegal I/O specifiers as errors. f77 gave only warnings.

Data Types, Declarations, and Usage:

■ f95 allows only 7 array subscripts; f77 allowed 20.
■ f95 does not allow non-constants in PARAMETER statements.
■ Integer values cannot be used in the initializer of a CHARACTER type declaration.
■ The REAL() intrinsic returns the real part of a complex argument instead of converting the

argument to REAL*4. This gives different results when the argument is DOUBLE COMPLEX or
COMPLEX*32

■ Fortran 95 will not allow array elements in boundary expressions before the array is
declared. For example:

subroutine s(i1,i2)

integer i1(i2(1):10)

dimension i2(10)

...ERROR: "I2" has been used as a function,
therefore it must not be declared with the explicit-shape DIMENSION attribute.

5.3 Linking With Legacy FORTRAN 77-Compiled Routines

Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 195

end

Programs, Subroutines, Functions, Statements:

■ The maximum length for names is 127 characters.

Command-line Options:

■ f95 does not recognize the f77 compiler options -dbl -oldstruct -i2 -i4 and some
suboptions of -vax.

FORTRAN 77 Library Routines Not Supported by f95:

■ The POSIX library.
■ The IOINIT() library routine.
■ The tape I/O routines topen, tclose, twrite, tread, trewin, tskipf, tstate.
■ start_iostats and end_iostats library routines.
■ f77_init() function.
■ f95 does not allow the IEEE_RETROSPECTIVE subroutine to be bypassed by defining the

user’s own routine with the same name.

5.3 Linking With Legacy FORTRAN 77-Compiled
Routines

■ To mix f77 and f95 object binaries, link with f95 compiler and the -xlang=f77 option.
Perform the link step with f95 even if the main program is an f77 program

■ Example: Compiling an f95 main program with an f77 object file.

demo% cat m.f95

CHARACTER*74 :: c = ’This is a test.’

 CALL echo1(c)

END

demo% f95 -xlang=f77 m.f95 sub77.o

demo% a.out

 This is a test.

demo%

■ The FORTRAN 77 library and intrinsics are available to f95 programs and are listed in the
Fortran Library Reference Manual.

Example: f95 main calls a routine from the FORTRAN 77 library.

demo% cat tdtime.f95

5.4 Additional Notes About Migrating to the f95 Compiler

196 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

 REAL e, dtime, t(2)

 e = dtime(t)

 DO i = 1, 100000

 as = as + cos(sqrt(float(i)))

 END DO

 e = dtime(t)

 PRINT *, ’elapsed:’, e, ’, user:’, t(1), ’, sys:’, t(2)

 END

demo% f95 tdtime.f95

demo% a.out

elapsed: 0.14 , user: 0.14 , sys: 0.0E+0

demo%

See dtime(3F).

5.3.1 Fortran Intrinsics

The Fortran standard supports intrinsic functions that FORTRAN 77 did not have. The full
set of Fortran intrinsics, including non-standard intrinsics, appears in the Fortran Library
Reference manual.

If you use any of the intrinsic names listed in the Fortran Library Reference as a function name
in your program, you must add an EXTERNAL statement for f95 to use your routine rather than
the intrinsic one.

The Fortran Library Reference also lists all the intrinsics recognized by earlier releases of the
f77 compiler. The f95 compiler recognizes these names as intrinsics as well.

Compiling with -f77=intrinsics limits the compiler’s recognition of intrinsic functions to just
those that were known to the f77 compiler, ignoring the Fortran intrinsics.

5.4 Additional Notes About Migrating to the f95 Compiler
■ The floatingpoint.h header file replaces f77_floatingpoint.h, and should be used in

source programs as follows:

#include "floatingpoint.h"

■ Header file references of the form f77/filename should be changed to remove the f77/
directory path.

■ Some programs utilizing non-standard aliasing techniques (by overindexing arrays, or
by overlapping Cray or Fortran pointers) may benefit by compiling with the appropriate
-xalias flag. See “3.4.107 –xalias[=keywords]” on page 99. This is discussed with

5.5 The f77 Command

Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran 197

examples in the chapter on porting “dusty deck” programs in the Fortran Programming
Guide.

5.5 The f77 Command

Solaris Studio software no longer includes a separate FORTRAN 77 compiler, f77. Recent
releases migrated many FORTRAN 77 features into the Fortran 95 compiler, f95. Much of
the functionality of the legacy FORTRAN 77 compiler is now available with the Fortran 95
compiler. Current Solaris Studio compiler releases provide an f77 script, which calls the f95
compiler with an appropriate set of default options. Invoking f77 is equivalent to:

f95 -f77 -ftrap=%none

If it is necessary to link to library routines that were compiled with a previously released f77
compiler, add -xlang=f77 to the command line. However, if you are compiling and linking in
separate steps and explicitly specify -xlang=f77, or -lM77, or -lF77, or -lsunmath, you must
link with f95 (or the f77 script) and not with cc or CC. If you are also compiling with the -fast
flag, add -ftrap=%none after -fast to retain FORTRAN 77's trapping behavior on arithmetic
exceptions since -fast sets the trapping mode to "common".

f77 -fast -ftrap=%none

Invoking the f77 script issues a message to alert you to the fact that you are using the
f95 compiler in -f77 compatibility mode. You can disable this message by adding -
errtags=INVOKE to the command line. See “3.4.22 –f77[=list]” on page 61 for more
information.

198 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Appendix A • Runtime Error Messages 199

 A ♦ ♦ ♦ A P P E N D I X A

Runtime Error Messages

This appendix describes the error messages generated by the Fortran runtime I/O library and
operating system.

A.1 Operating System Error Messages
Operating system error messages include system call failures, C library errors, and shell
diagnostics. The system call error messages are found in intro(2). System calls made through
the Fortran library do not produce error messages directly. The following system routine in the
Fortran library calls C library routines which produce an error message:

 integer system, status

 status = system("cp afile bfile")

 print*, "status = ", status

 end

The following message is displayed:

cp: cannot access afile

 status = 512

A.2 f95 Runtime I/O Error Messages

The f95 I/O library issues diagnostic messages when errors are detected at runtime. Here is an
example, compiled and run with f95:

demo% cat wf.f
 WRITE(6) 1

 END

demo% f95 -o wf wf.f

demo% wf

 ****** FORTRAN RUN-TIME SYSTEM ******

 Error 1003: unformatted I/O on formatted unit

 Location: the WRITE statement at line 1 of "wf.f"

A.2 f95 Runtime I/O Error Messages

200 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

 Unit: 6

 File: standard output

Abort

Because the f95 message contains references to the originating source code filename and line
number, application developers should consider using the ERR= clause in I/O statements to softly
trap runtime I/O errors.

Table A-1 lists the runtime I/O messages issued by f95.

TABLE A-1 f95 Runtime I/O Messages

Error Message

1000 format error

1001 illegal unit number

1002 formatted I/O on unformatted unit

1003 unformatted I/O on formatted unit

1004 direct-access I/O on sequential-access unit

1005 sequential-access I/O on direct-access unit

1006 device does not support BACKSPACE

1007 off beginning of record

1008 can’t stat file

1009 no * after repeat count

1010 record too long

1011 truncation failed

1012 incomprehensible list input

1013 out of free space

1014 unit not connected

1015 read unexpected character

1016 illegal logical input field

1017 ’new’ file exists

1018 can’t find ’old’ file

1019 unknown system error

1020 requires seek ability

1021 illegal argument

1022 negative repeat count

1023 illegal operation for channel or device

1024 reentrant I/O

1025 incompatible specifiers in open

1026 illegal input for namelist

A.2 f95 Runtime I/O Error Messages

Appendix A • Runtime Error Messages 201

Error Message

1027 error in FILEOPT parameter

1028 writing not allowed

1029 reading not allowed

1030 integer overflow on input

1031 floating-point overflow on input

1032 floating-point underflow on input

1051 default input unit closed

1052 default output unit closed

1053 direct-access READ from unconnected unit

1054 direct-access WRITE to unconnected unit

1055 unassociated internal unit

1056 null reference to internal unit

1057 empty internal file

1058 list-directed I/O on unformatted unit

1059 namelist I/O on unformatted unit

1060 tried to write past end of internal file

1061 unassociated ADVANCE specifier

1062 ADVANCE specifier is not ’YES’ or ’NO’

1063 EOR specifier present for advancing input

1064 SIZE specifier present for advancing input

1065 negative or zero record number

1066 record not in file

1067 corrupted format

1068 unassociated input variable

1069 more I/O-list items than data edit descriptors

1070 zero stride in subscript triplet

1071 zero step in implied DO-loop

1072 negative field width

1073 zero-width field

1074 character string edit descriptor reached on input

1075 Hollerith edit descriptor reached on input

1076 no digits found in digit string

1077 no digits found in exponent

1078 scale factor out of range

1079 digit equals or exceeds radix

1080 unexpected character in integer field

A.2 f95 Runtime I/O Error Messages

202 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Error Message

1081 unexpected character in real field

1082 unexpected character in logical field

1083 unexpected character in integer value

1084 unexpected character in real value

1085 unexpected character in complex value

1086 unexpected character in logical value

1087 unexpected character in character value

1088 unexpected character before NAMELIST group name

1089 NAMELIST group name does not match the name in the program

1090 unexpected character in NAMELIST item

1091 unmatched parenthesis in NAMELIST item name

1092 variable not in NAMELIST group

1093 too many subscripts in NAMELIST object name

1094 not enough subscripts in NAMELIST object name

1095 zero stride in NAMELIST object name

1096 empty section subscript in NAMELIST object name

1097 subscript out of bounds in NAMELIST object name

1098 empty substring in NAMELIST object name

1099 substring out of range in NAMELIST object name

1100 unexpected component name in NAMELIST object name

1111 unassociated ACCESS specifier

1112 unassociated ACTION specifier

1113 unassociated BINARY specifier

1114 unassociated BLANK specifier

1115 unassociated DELIM specifier

1116 unassociated DIRECT specifier

1117 unassociated FILE specifier

1118 unassociated FMT specifier

1119 unassociated FORM specifier

1120 unassociated FORMATTED specifier

1121 unassociated NAME specifier

1122 unassociated PAD specifier

1123 unassociated POSITION specifier

1124 unassociated READ specifier

1125 unassociated READWRITE specifier

1126 unassociated SEQUENTIAL specifier

A.2 f95 Runtime I/O Error Messages

Appendix A • Runtime Error Messages 203

Error Message

1127 unassociated STATUS specifier

1128 unassociated UNFORMATTED specifier

1129 unassociated WRITE specifier

1130 zero length file name

1131 ACCESS specifier is not ’SEQUENTIAL’ or ’DIRECT’

1132 ACTION specifier is not ’READ’, ’WRITE’ or ’READWRITE’

1133 BLANK specifier is not ’ZERO’ or ’NULL’

1134 DELIM specifier is not ’APOSTROPHE’, ’QUOTE’, or ’NONE’

1135 unexpected FORM specifier

1136 PAD specifier is not ’YES’ or ’NO’

1137 POSITION specifier is not ’APPEND’, ’ASIS’, or ’REWIND’

1138 RECL specifier is zero or negative

1139 no record length specified for direct-access file

1140 unexpected STATUS specifier

1141 status is specified and not ’OLD’ for connected unit

1142 STATUS specifier is not ’KEEP’ or ’DELETE’

1143 status ’KEEP’ specified for a scratch file

1144 impossible status value

1145 a file name has been specified for a scratch file

1146 attempting to open a unit that is being read from or written to

1147 attempting to close a unit that is being read from or written to

1148 attempting to open a directory

1149 status is ’OLD’ and the file is a dangling symbolic link

1150 status is ’NEW’ and the file is a symbolic link

1151 no free scratch file names

1152 specifier ACCESS=’STREAM’ for default unit

1153 stream-access to default unit

1161 device does not support REWIND

1162 read permission required for BACKSPACE

1163 BACKSPACE on direct-access unit

1164 BACKSPACE on binary unit

1165 end-of-file seen while backspacing

1166 write permission required for ENDFILE

1167 ENDFILE on direct-access unit

1168 stream-access to sequential or direct-access unit

1169 stream-access to unconnected unit

A.2 f95 Runtime I/O Error Messages

204 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Error Message

1170 direct-access to stream-access unit

1171 incorrect value of POS specifier

1172 unassociated ASYNCHRONOUS specifier

1173 unassociated DECIMAL specifier

1174 unassociated IOMSG specifier

1175 unassociated ROUND specifier

1176 unassociated STREAM specifier

1177 ASYNCHRONOUS specifier is not ’YES’ or ’NO’

1178 ROUND specifier is not ’UP’, ’DOWN’, ’ZERO’, ’NEAREST’, ’COMPATIBLE’ or ’PROCESSOR-

DEFINED’

1179 DECIMAL specifier is not ’POINT’ or ’COMMA’

1180 RECL specifier is not allowed in OPEN statement for stream-access unit

1181 attempting to allocate an allocated array

1182 deallocating an unassociated pointer

1183 deallocating an unallocated allocatable array

1184 deallocating an allocatable array through a pointer

1185 deallocating an object not allocated by an ALLOCATE statement

1186 deallocating a part of an object

1187 deallocating a larger object than was allocated

1191 unallocated array passed to array intrinsic function

1192 illegal rank

1193 small source size

1194 zero array size

1195 negative elements in shape

1196 illegal kind

1197 nonconformable array

1213 asynchronous I/O on unconnected unit

1214 asynchronous I/O on synchronous unit

1215 a data edit descriptor and I/O list item type are incompatible

1216 current I/O list item doesn’t match with any data edit descriptor

1217 illegal CORR_ACCTION value

1218 infinite loop occurred due to I/O handler enabled

1220 the number of requested bytes is greater than is supported on the target platform

1221 data in a UNION cannot be read from or written to an incompatible file type

2001 invalid constant, structure, or component name

2002 handle not created

A.2 f95 Runtime I/O Error Messages

Appendix A • Runtime Error Messages 205

Error Message

2003 character argument too short

2004 array argument too long or too short

2005 end of file, record, or directory stream

2021 lock not initialized (OpenMP)

2022 deadlock in using lock variable (OpenMP)

2023 lock not set (OpenMP)

206 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Appendix B • Features Release History 207

 B ♦ ♦ ♦ A P P E N D I X B

Features Release History

This Appendix lists the new and changed features in this release and recent releases of the
Fortran compiler.

B.1 Oracle Solaris Studio 12.4 Fortran Release

The Oracle Solaris Studio Fortran 95 compiler version 8.7 is a component of the Oracle Solaris
Studio 12.4 release.

■ New -xarch, -xchip, and -xtarget values for Intel Ivy Bridge processor on x86.
■ New -xarch, -xchip, and -xtarget values for SPARC T5, M5, M6, and M10+ processors.
■ Support for Ivy Bridge assembler instructions.
■ Support for Ivy Bridge intrinsic functions, which can be found in solstudio-install-dir/lib/

compilers/include/cc/immintrin.h.
■ Default value for -xarch=generic set to sse2 for -m32 on x86.
■ Support for -xlinkopt on x86. Inter-module, inter-procedural code ordering optimizations

for large enterprise applications tuned for modern Intel processors. An up to 5%
performance boost over a fully optimized binary can be seen for large applications.

■ Enhanced -xs option to control the trade-off of executable size versus the need to retain
object files in order to debug.

■ Support for -xanalyze and -xannotate on Linux.
■ Support for -fopenmp as a synonym for -xopenmp=parallel.
■ Compile time for applications using modules is substantially improved and memory

overflows due to module processing are eliminated.
■ #pragma ident can be used in a source file to identify the source version of the compiled

object.
■ Support for a deferred type parameter (colon) as the LEN type parameter in a character type

used in a declaration. For example:

character(LEN=:), pointer :: str

■ Support for procedure pointer.

B.1 Oracle Solaris Studio 12.4 Fortran Release

208 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ Support for the C_F_PROCPOINTER function in the Fortran 2003 standard for the
ISO_C_BINDING module. The C_FUNLOC function is extended to allow procedure pointer as
argument.

■ Support for the Fortran 2003 feature for ABSTRACT interface.
■ Full support for object-oriented Fortran. Typebound procedures with the GENERIC,

DEFERRED, NON_OVERRIDABLE, PASS, and NOPASS attributes are now allowed.
■ Support for the Fortran 2003 feature to enable derived type and generic function to have the

same name.
■ Support for the Fortran 2008 feature to enable passing TARGET objects to INTENT(IN) pointer

dummies.
■ Support for the Fortran 2003 feature to allow finalizing routines in derived types.
■ New compiler options:

■ -fma enables automatic generation of floating-point fused multiply-add instructions.
■ -fserialio specifies that the program does not perform I/O in more than one thread at a

time.
■ (x86) -preserve_argvalues saves copies of register-based function arguments in the

stack.
■ -xdebuginfo controls how much debugging and observability information is emitted.
■ -xglobalize controls globalization of file static variables but not functions.
■ -xinline_param allows for changing the heuristics used by the compiler for deciding

when to inline a function call.
■ -xinline_report generates a report written to standard output on the inlining of

functions by the compiler.
■ -xipo_build reduces compile time by avoiding optimizations during the initial pass

through the compiler, optimizing only at link time.
■ -xkeep_unref keeps definitions of unreferenced functions and variables.
■ -keepmod retains a module which is not changed when compiled. The default is -

xkeepmod=yes, which replaces the old behavior when a new module file is created each
time even without any changes from the previous compilation.

■ -xM generates makefile dependency automatically. In conjunction with the new -
keepmod=yes option, it allows the most optimal incremental build on Fortran application
using modules.

■ -xpatchpadding reserves an area of memory before the start of each function.
■ (Oracle Solaris) -xsegment_align causes the driver to include a special mapfile on the

link line.
■ -xthroughput indicates that the application will be run in situations where many

processes are simultaneously running on the system.
■ -xunboundsym specifies whether the program contains references to dynamically bound

symbols.

B.2 Oracle Solaris Studio 12.3 Fortran Release

Appendix B • Features Release History 209

■ The libraries libfmaxlai, libfmaxvai, libfminlai, libfminvai, libfprodai and
libfsumai on SPARC platform have not been used by the Studio Fortran compilers since
the Sun Studio 10 release in 2005.
These libraries will be removed in a future release. At that point, object files and
executables produced by Studio compilers earlier than the Sun Studio 10 release can no
longer be used and must be recompiled with newer Studio compilers. If you have old object
files and executables that require any of these libraries and recompiling is not feasible, you
should keep the old compiler installation or copy the specific libraries you need from the old
compiler installation into the new compiler installation.

B.2 Oracle Solaris Studio 12.3 Fortran Release

The Oracle Solaris Studio Fortran 95 compiler version 8.6 is a component of the Oracle Solaris
Studio 12.3 release.

■ The Fortran runtime library now supports sequential-access unformatted records larger than
2GB.

■ Support for new SPARC T4 platform: —xtarget=T4, —xchip=T4, —xarch=sparc4
■ Support for new x86 Platform Sandy Bridge / AVX: —xtarget=sandybridge —

xchip=sandybridge —xarch=avx

■ Support for new x86 Platform Westmere / AES: —xtarget=westmere —xchip=westmere —
xarch=aes

■ New compiler option: —Xlinker arg passes argument to linker, ld(1). Equivalent to —
Wl,arg. (“3.4.104 -Xlinker arg” on page 97)

■ The OpenMP default number of threads, OMP_NUM_THREADS is now 2 (was 1). (“3.4.157 –
xopenmp[={parallel|noopt|none}]” on page 138)

■ Support for the OpenMP 3.1 shared memory parallelization specifications. (“3.4.157 –
xopenmp[={parallel|noopt|none}]” on page 138)

■ Use —library=sunperf to link to the Sun Performance Library. This obsoletes -
xlic_lib=sunperf. (“3.4.55 -library=sunperf” on page 77)

■ Intrinsic routines LEADZ, POPCNT, and POPPAR previously had the return type as the type
of the argument. In this release, to be conforming with the Fortran 2008 standard, the
intrinsics return a default integer, regardless of argument type. This introduces a minor
incompatibility with previous releases.

■ Object Oriented Fortran features related to polymorphism are now supported:
■ Supported OOF features: type extension and polymorphic entities: CLASS statement,

unlimited polymorphism, SELECT TYPE construct, ABSTRACT derived type,
EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsics, and sequence type assignments to
unlimited pointers.

B.3 Oracle Solaris Studio 12.2 Fortran Release

210 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ Unsupported OOF features: typebound procedures: typebound PROCEDURE declaration,
GENERIC, DEFERRED, NON_OVERRIDABLE, PASS, NOPASS.

■ Other new F2003/2008 features:
■ Enhanced structure constructor: using component names to construct a structure

constant.
■ Enhanced PUBLIC/PRIVATE access control on module derived types and components.
■ More Fortran 2008 math intrinsic function support. Most Fortran 2008 math intrinsic

functions are now supported except for ERFC_SCALED, NORM2 and some REAL*16
variants on x86 platforms.

■ Derived types with no components.
■ The KIND argument was added to ICHAR, IACHAR, ACHAR, SHAPE, UBOUND, LBOUND,

SIZE, MINLOC, MAXLOC, COUNT, LEN, LEN_TRIM, INDEX, SCAN and VERIFY
intrinsics.

■ The BACK argument was added to MINLOC and MAXLOC intrinsics.
■ New intrinsics FINDLOC and STORAGE_SIZE were added.
■ New keywords ERRMSG, SOURCE and MOLD were added to ALLOCATE statement, and

ERRMSG was added to DEALLOCATE statement.

B.3 Oracle Solaris Studio 12.2 Fortran Release

The Oracle Solaris Studio Fortran 95 compiler version 8.5 is a component of the Oracle Solaris
Studio 12.2 release.

■ Support for the SPARC VIS3 version of the SPARC-V9 instruction set. Compiling with the
-xarch=sparcvis3 option enables the compiler to use instructions from the SPARC-V9
instruction set, plus the UltraSPARC extensions, including the Visual Instruction Set (VIS)
version 1.0, the UltraSPARC-III extensions, including the Visual Instruction Set (VIS)
version 2.0 the fused multiply-add instructions, and the Visual Instruction Set (VIS) version
3.0.

■ The default for the -xvector option has changed on x86-based systems to -xvector=simd.
Streaming extensions are used on x86-based systems by default where beneficial
at optimization level 3 and above. The suboption no%simd can be used to disable
it. On SPARC-based systems, the default is -xvector=%none. See “3.4.186 -
xvector[=a]” on page 157

■ Support for the AMD SSE4a instruction set is now available. Compile with the -
xarch=amdsse4a option.

■ The new -traceback option enables an executable to print a stack trace if a severe error
occurs. This option causes the executable to trap a set of signals and print a stack trace
and core dump before exiting. If multiple threads generate a signal, a stack trace will be
produced only for the first one. To use traceback, add the -traceback option when linking

B.4 Sun Studio 12 Update 1 Fortran Release

Appendix B • Features Release History 211

a program with f95, cc, or CC. For convenience, the option is also accepted at compile-time
but is ignored. Using the -traceback option with the -G option to create a shared library is
an error. See “3.4.92 –traceback[={%none|common|signals_list}]” on page 92

■ The -mt option has been changed to -mt=yes or -mt=no. The -mt=yes option assures that
libraries are linked in the appropriate order. See “3.4.60 -mt[={yes|no}]” on page 80

■ The -xprofile=tcovoption has been enhanced to support an optional profile directory
pathname, and possibly the ability to generate tcov-compatible feedback data. See “3.4.169
–xprofile=p” on page 144

■ The new -xkeepframe[=[%all,%none] option prohibits stack related optimizations for
the named functions. %all prohibits stack related optimizations for all the code. %none
allows stack related optimizations for all the code. The default is -xkeepframe=%none. See
“3.4.139 –xkeepframe[=[%all,%none,name,no%name]]” on page 129

■ Additional F2003 features have been implemented. See “4.6 Fortran 200x
Features” on page 174

■ The IVDEP directive tells the compiler to ignore some or all loop-carried dependences
on array references that it finds in a loop for purposes of optimization. This enables the
compiler to perform various loop optimizations that would not be otherwise possible.
The -xivdep option can be used to disable the IVDEP directives, or to determine how the
directives should be interpreted. See “2.3.3 IVDEP Directive” on page 36

B.4 Sun Studio 12 Update 1 Fortran Release

■ Object files created by the compilers on the Solaris OS on x86 platforms or the Linux
OS are incompatible with previous compiler versions if the application code contains
functions with parameters or return values using _m128/_m64 data types. Users with .il
inline function files, assembler code, or asm inline statements calling these functions also
need to be aware of this incompatibility.

■ New x86 —xtarget values woodcrest, penryn, nehalem.
■ New SPARC —xtarget values ultraT2plus and sparc64vii.
■ New x86 —xarch and —xchip values ssse3, sse4_1, sse4_2, core2, penryn, nehalem,

barcelona.
■ New SPARC —xarch and —xchip values sparcima, sparc64vii, and ultraT2plus.
■ The -xprofile=collect and -xprofile=use options provide improved support for

profiling multi-threaded, dynamically linked applications.
■ On Solaris platforms, the -xpec[=yes|no] option generates a PEC binary that is

recompilable for use with the Automatic Tuning System (ATS).
■ The -xdepend option is now implicitly enabled for optimization levels -xO3 or higher, and is

no longer included in the expansion of the -fast option.
■ Support for OpenMP 3.0 tasking..

B.5 Sun Studio 12 Fortran Release

212 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

■ -xannotate[=yes|no] (SPARC platforms only) instructs the compiler to create binaries that
can be transformed later by binary modification tools like binopt(1).

■ Quad precision (REAL*16) is implemented on x86 platforms. REAL*16 is 128-bit IEEE
floating point.

■ The compiler normally creates temporary files in the /tmp directory. You can specify
another directory by setting the TMPDIR environment variable.

■ The behavior of the cpu_time() Fortran intrinsic routine is different between Solaris and
Linux platforms.

■ The Fortran 2003 IMPORT statement is implemented.

B.5 Sun Studio 12 Fortran Release
■ The Fortran compiler is now available on the following Linux (x86 and x64) distributions:

SuSe Linux Enterprise Server 9 with Service Pack 3 (or later), Red Hat Enterprise Linux
4, and other Linux distributions based on the 2.6 kernel (although these are not officially
supported).

■ Use -m64 to create 64-bit executables and shared libraries.
■ New flags for -xarch replace obsolete flags.
■ New values for -xtarget and -xchip provide code generation for the UltraSPARC T2 and

SPARC64vi processors.
■ New flag -fma=fused to enable generation of fused multiply-add instructions on processors

that support them.
■ New flag -xhwcprof enables compiler support for dataspace profiling.
■ New flag -xinstrument to enable performance analysis by the Thread Analyzer
■ -xregs=frameptr added to -fast on x86.
■ Support for interval arithmetic on Solaris x86 platform with the -xarch=sse2 and -xia

options.
■ Explicit prefetch directives accepted on x86 platforms as well as SPARC platforms. (—

xprefetch=explicit)
■ Default format for debugging information has changed from the "stabs" standard to the

"dwarf" standard format. (-xdebugformat=dwarf).

B.6 Sun Studio 11 Fortran Release
■ New -xmodel option:The new -xmodel option lets you specify the kernel, small, or medium

memory models on the 64-bit AMD architecture. If the size of your global and static
variables exceeds two gigabytes, specify -xmodel=medium. Otherwise, use the default -
xmodel=small setting. See “3.4.152 –xmodel=[small | kernel | medium]” on page 136.

B.6 Sun Studio 11 Fortran Release

Appendix B • Features Release History 213

■ The -xvector option extended for x86 SSE2 platforms:The -xvector option enables
automatic generation of calls to the vector library functions and/or the generation of the
SIMD (Single Instruction Multiple Data) instructions. This option now offers the expanded
syntax on x86 SSE2 platforms.

■ STACKSIZE environment variable enhanced:The syntax of the STACKSIZE environment
variable has been enhanced to include a units keyword.

■ -xpagesize options available on x86 platforms:Options -xpagesize, -xpagesize_heap,
and -xpagesize_stack are now enabled on x86 platforms as well as SPARC. See “3.4.159
–xpagesize=size” on page 139.

■ New UltraSPARC T1 and UltraSPARC IV+ targets enabled:Values for -xarch, -
xchip, -xcache, and -xtarget support new UltraSPARC processors. See “3.4.179 –
xtarget=t” on page 152.

214 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

Appendix C • Fortran Directives Summary 215

 C ♦ ♦ ♦ A P P E N D I X C

Fortran Directives Summary

This appendix summarizes the directives recognized by f95 Fortran compiler:

■ General Fortran Directives
■ Sun Parallelization Directives
■ Cray Parallelization Directives
■ OpenMP Fortran 95 Directives, Library Routines, and Environment

C.1 General Fortran Directives

General directives accepted by f95 are described in “2.3 Directives” on page 28.

TABLE C-1 Summary of General Fortran Directives

Format

!$PRAGMA keyword (a [, a] …) [, keyword (a [, a] …)] ,…

!$PRAGMA SUN keyword (a [, a] …) [, keyword (a [, a] …)] ,…

Comment-indicator in column 1 may be c, C, !, or *. (We use ! in these examples. f95 free-format must use !.)

C Directive !$PRAGMA C(list)

Declares a list of names of external functions as C language routines.

IGNORE_TKR Directive !$PRAGMA IGNORE_TKR {name {, name} ...}

The compiler ignores the type, kind, and rank of the specified dummy argument
names appearing in a generic procedure interface when resolving a specific call.

UNROLL Directive !$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a length n.

WEAK Directive !$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPT Directive !$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

C.2 Special Fortran Directives

216 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

PIPELOOP Directive !$PRAGMA SUN PIPELOOP[=n]

Assert dependency in loop between iterations n apart.

PREFETCH Directives !$PRAGMA SUN_PREFETCH_READ_ONCE (name)

!$PRAGMA SUN_PREFETCH_READ_MANY (name)

!$PRAGMA SUN_PREFETCH_WRITE_ONCE (name)

!$PRAGMA SUN_PREFETCH_WRITE_MANY (name)

Request compiler generate prefetch instructions for references to name. (Requires -
xprefetch option, which is enabled by default. Prefetch directives can be disabled
by compiling with —xprefetch=no. Target architecture must also support prefetch
instructions, and the compiler optimization level must be set greater than —xO2.)

ASSUME Directives !$PRAGMA [BEGIN} ASSUME (expression [,probability])

!$PRAGMA END ASSUME

Make assertions about conditions at certain points in the program that the compiler
can assume are true.

C.2 Special Fortran Directives

The following directives are only available with f95. See “4.8.2 FIXED and FREE
Directives” on page 183 for details.

TABLE C-2 Special Fortran Directives

Format !DIR$ directive : initial line

!DIR$& ... : continuation line

With fixed-format source, C is also accepted as a directive-indicator:

CDIR$ directive...

The line must start in column 1. With free-format source, the line may be preceded by
blanks.

FIXED/FREE Directives !DIR$ FREE!DIR$ FIXED

These directives specify the source format of the lines following the directive. They
apply to the rest of the source file in which they appear, up to the next FREE or FIXED
directive.

IVDEP !DIR$ IVDEP

Assert that the following DO, FORALL, or WHERE loop is free of loop-carried
dependences, and can be optimized. Interpretation determined by the -xivdep option.
See “2.3.3 IVDEP Directive” on page 36

C.3 Fortran OpenMP Directives

Appendix C • Fortran Directives Summary 217

C.3 Fortran OpenMP Directives

The Oracle Solaris Studio Fortran compiler supports the OpenMP 3.1 Fortran
API. The -openmp compiler flag enables these directives. (See “3.4.157 –
xopenmp[={parallel|noopt|none}]” on page 138).

See the OpenMP API User’s Guide for complete details.

218 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

219

Index

Numbers and Symbols
!DIR$ in directives, 182
-xcode, 110
-xdebuginfo, 113
-xglobalize, 117
-xinline_param, 120
-xinline_report, 122
-xtemp, 155
-xvector, 157
.mod file, module file , 184

A
abrupt_underflow, 65
address space, 99
aliasing, 99

-xalias, 99
align, 61

See also data
-dalign, 56
data in COMMON with -aligncommon, 51

alignment of data types, 167
ALLOCATABLE

extensions, 176
analyzer compile option, xF, 115
arguments, agreement, Xlist, 97
arithmetic See floating-point
array bounds checking, 54
asa, Fortran print utility, 19
assembly code, 90
ASSUME directive, 34

B
backward compatibility, command-line options, 50

binary I/O, 180
binding, dynamic/shared libraries, 58
Boolean

constant, alternate forms, 164
type, constants, 163

C
C(..) directive, 30
cache

padding for, 84
specify hardware cache, 107

CALL

inlining subprogram calls with -inline, 74
case, preserve upper and lower case, 93
cc command-line options

-xdebuginfo, 113
-xinline_param, 120
-xinline_report, 122

CDIR$ in directives, 182
code size, 152
command-line

help, 20
command-line options

-a (obsolete), 51
-aligncommon, 51
-ansi, 52
-arg=local, 52
-autopar, parallelize automatically, 53
-Bdynamic, 54
-Bstatic, 54
-C, check subscripts, 54
-c, compile only, 55
-copyargs, allow stores to literal arguments, 55
-dalign, 56, 63

Index

220 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-dbl_align_all, force data alignment, 57
-depend, 63

data dependency analysis, 58
-dn, 58
-Dname, define symbol, 55
-dryrun, 58
-dy, 58
-e, extended source lines, 59
-erroff, suppress warnings, 59
-errtags, display message tag with warnings, 59
-errwarn, error warnings, 60
-ext_names, externals without underscore, 60
-F, 60
-f, align on 8-byte boundaries, 61
-f77, 61
-fast, 62
-fixed, 64
-flags, 64
-fma, 64, 65
-fnonstd, 65
-fns, 64, 66
-fopenmp, 67
-fpp, Fortran preprocessor, 67
-fprecision, x86 precision mode, 67
-free, 68
-fround=r, 68
-fserialior, 68
-fsimple, 63

simple floating-point model, 69
-fstore, 70
-ftrap, 70
-G, 71
-g, 71, 71
-help, 73
-hname, 72
-i8 — use —xtypemap=integer:64 instead, 74
-Idir, 73
-inline, 74
-iorounding, 75
-keepmod, 75
-keeptmp, 76
-Kpic, 76

-KPIC, 76
-Ldir, 76
-libmil, 63, 77
-library=sunperf, 77
-llibrary, 77
-loopinfo, show parallelization, 77
-m32 | —m64, 79
-Mdir, f95 modules, 184
-moddir, 79
-mt, multithread safe libraries, 80
-native, 80
-native (obsolete), 51
-noautopar, 80
-nodepend, 81
-nofstore, 81
-nolib, 81
-nolibmil, 81
-noqueue (obsolete), 51
-noreduction, 82
-norunpath, 82
-o, output file, 83
-On, 63, 82, 82, 83
-onetrip, 84
-openmp, 84
-p, profile (obsolete), 84
-pad=p, 63, 84
-pg, profile by procedure, 85
-pic, 86
-PIC, 87
-pic (obsolete), 51
-PIC (obsolete), 51
-preserve_argvalues, 87
-Qoption, 87
-R list, 88
-r8const, 88
-recl=a[,b], 89
-S, 89
-s, 90
-silent, 90
-stackvar, 90, 148
-stop_status, 91
-temp, 92

Index

221

-time, 92
-traceback, 92
-u, 94
-U, do not convert to lowercase, 93
-Uname, undefine preprocessor macro, 93
-unroll, unroll loops, 94
-use, 185
-V, 95
-v, 95
-vax, 95
-vpara, 96
-W, 96
-w, 97
-xaddr32, 99
-xalias=list, 99
-xannotate[={yes|no}], 101
-xarch=isa, 101
-xassume_control, 35, 105
-xautopar, 106
-xbinopt, 106
-xcache=c, 107
-xchip=c, 109
-xcode=c, 110
-xcommoncheck, 112
-xdebugformat, 112
-xdepend, 115
-xF, 115
-xglobalize, 117
-xhasc, Hollerith as character, 118
-xhelp=h, 118
-xhwcprof, 119
-xia, interval arithmetic, 120
-xinline, 120
-xinstrument, 123
-xinterval=v for interval arithmetic, 123
-xipo, interprocedural optimizations, 124
-xipo_archive, 126
-xipo_build, 127
-xivdep, 128
-xjobs, multiprocessor compilation, 128
-xkeepframe, prohibit stack-related
optimizations, 129

-xknown_lib, optimize library calls, 130
-xl, (obsolete), 131
-xlang=f77, link with Fortran 77 libraries, 131
-xld, (obsolete), 132
-xlibmil, 132
-xlibmopt, 63, 132
-xlic_lib=sunperf obsolete, 132
-Xlinker, 97
-xlinkopt, 132
-xlinkopt, link-time optimizations, 132
-Xlist, global program checking, 97
-xloopinfo, 134
-xM, 134
-xmaxopt, 135
-xmemalign, 135
-xnolib, 137, 137
-xnolibmopt, 137
-xOn, 137
-xopenmp, 138
-xpagesize, 139
-xpagesize_heap, 140
-xpagesize_stack, 140
-xpatchpadding, 140
-xpec, 141
-xpg, 141
-xpp=p, 141
-xprefetch, 33, 33
-xprefetch_auto_type, 144
-xprofile=p, 144
-xprofile_ircache, 147
-xprofile_pathmap=param, 147
-xrecursive, 148
-xreduction, 148
-xregs=r, 149
-xs, 150
-xsafe=mem, 151
-xsegment_align, 151
-xspace, 152
-xtarget=native, 63
-xtarget=t, 152
-xtemp, 155
-xthroughput, 155

Index

222 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

-xtime, 156
-xtypemap, 156
-xunboundsym, 157
-xunroll, 157
-xvector, 63, 157
-ztext, 158
Reference to all option flags, 51
grouped by function, 45
summary, 45
commonly used, 49
default options file, 41
legacy, 50
macros, 50
obsolete, 51
obsolete f77 flags not supported, 195
order of processing, 44
pass option to compilation phase, 87
syntax, 43
unrecognized options, 27

comments
as directives, 182

COMMON

alignment, 51
global consistency, -Xlist, 97
padding, 84
TASKCOMMON consistency checking, 112

compatibility
Fortran 77, 61, 189
forward, 186
with C, 187

compile and link, 25, 27
and -B, 54
build a dynamic shared library, 71
compile only, 55
dynamic (shared) libraries, 58

compiler
command line, 24
driver, show commands with -dryrun, 58, 58
show version, 95
timing, 92
verbose messages, 95

constant arguments, -copyargs, 55
continuation lines, 59, 161
conventions

file name suffixes, 25

coverage analysis (tcov), 146
cpp, C preprocessor, 26, 56, 61
Cray

pointer, 168
pointer and Fortran pointer, 169

cross reference table, Xlist, 98

D
data

alignment with -dbl_align_all, 57
alignment with -f, 61
alignment with -xmemalign, 135
COMMON, alignment with aligncommon, 51
mappings with -xtypemap, 156
promote constants to REAL*8, 88
size and alignment, 167

data dependence
-depend, 58

dbx

compile with -g option, 71, 71
debugging

-g option, 71, 71
-Xlist, 19
check array subscripts with -C, 55
cross-reference table, 97
global program checking with -Xlist, 97
link debug information from object files into
executable, 150
show compiler commands with -dryrun, 58, 58
utilities, 19
with optimization, 72

default
data sizes and alignment, 167
include file paths, 74

define symbol for cpp, Dname, 55
directives

ASSUME, 34
FIXED, 183
Fortran 77, 28
FREE, 183
IGNORE_TKR, 31
loop unrolling, 31
OpenMP (Fortran), 35, 217

Index

223

optimization level, 32
parallelization, 35, 184
special Fortran, 182
summary of all directives, 215
weak linking, 32

directory
temporary files, 92

dynamic library
build, -G, 71
name a dynamic library, 72

E
elfdump, 112
environment

program terminations by STOP, 91
environment variables, 38
error messages

f95, 199
message tags, 59
suppress with -erroff, 59

exceptions, floating-point, 69
trapping, 70

executable file
built-in path to dynamic libraries, 88
name, 83
strip symbol table from, 90

explicit
typing, 94

explicit parallelization directives, 35
extensions

ALLOCATABLE, 176
non-ANSI, -ansi flag, 52
other I/O, 180
stream I/O, 177
VALUE, 176
VAX structures and unions, 172

extensions and features, 18
external C functions, 30
external names, 60

F
f95 command line, 24, 43
fdumpmod for viewing module contents, 28, 186

features
Fortran 95, 161
release history, 207

features and extensions, 18
FFLAGS environment variable, 38
file

executable, 25
object, 25
size too big, 39

file names
recognized by the compiler, 25, 162

FIXED directive, 183, 183
fixed-format source, 64
flags See command-line options
floating-point

interval arithmetic, 123
non-standard, 66
preferences, -fsimple, 69
rounding, 68
trapping mode, 70

FLUSH statement, 177
form

tab, 161
Fortran

compatibility with legacy, 52, 61, 189
directives, 182, 182
features and extensions, 18
handling nonstandard Fortran 77 aliasing, 196
incompatibilities with legacy, 194
modules, 184
preprocessor, 56

invoking with -F, 60
utilities, 18

Fortran 200x , 174
Fortran 95

case, 163
features, 161
I/O extensions, 180
linking with Fortran 77, 195

fpp, Fortran preprocessor, 26, 56, 60, 67
FREE directive, 183, 183
free-format source, 68
fsecond-underscore, 60
fsplit, Fortran utility, 19
function

Index

224 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

external C, 30
function-level reordering, 115

G
global program checking, -Xlist, 97
global symbols

weak, 32
gprof

-pg, profile by procedure, 86

H
hardware architecture, 101, 109
heap page size, 139, 140, 140
help

command-line, 20
hexadecimal, 165
Hollerith, 165

I
I/O extensions, 180
#ifdef, 26
IGNORE_TKR directive, 31
IMPORT statement, 177
#include, 26
#include path, 73
INCLUDE files, 73

floatingpoint.h, 196
system.inc, 37

incompatibilities, FORTRAN 77, 194
initialization of local variables, 108
inline

templates, -libmil, 77
with -fast, 63

inlining
automatic with -O4, 83
with -inline, 74

installation
path, 74

interfaces
library, 37

interval arithmetic

-xia option, 120
-xinterval option, 123

intrinsics
extensions, 186
interfaces, 37
legacy Fortran, 196

invalid, floating-point, 70
ISA, instruction set architecture, 101
IVDEP directive, 36, 128

L
large files, 39
legacy compiler options, 50
libm

searched by default, 76
libraries

building shared libraries, 112
Sun Performance Library, 19

library
build, -G, 71
disable system libraries, 81
dynamic search path in executable, 88
interfaces, 37
linking with -l, 77
name a shared library, 72
path to shared library in executable, 82
position-independent and pure, 158
Sun Performance Library, 77, 132

limit

command, 40
stack size, 91

limits
Fortran compiler, 163

linear algebra routines, 77, 132
link-time optimizations, 132
linking

consistent compile and link, 27
consistent with compilation, 27
disable system libraries, 81
enable dynamic linking, shared libraries, 58
linker -Mmapfile option, 115
separate from compilation, 27
specifying libraries with -l, 77
weak names, 32

Index

225

with automatic parallelization, -autopar, 53
with compilation, 25

list of command-line options, 73
list of directives, 215
loop

automatic parallelization, 53
dependence analysis, -depend, 58
executed once, -onetrip, 84
parallelization messages, 77
unrolling with -unroll, 94
unrolling with directive, 31

M
macro command-line options, 50
man pages, 20
math library

and -L dir option, 76
optimized version, 132

memory
actual real memory, display, 39
limit virtual memory, 40
optimizer out of memory, 39

messages
parallelization, 77, 96
runtime, 199
suppress with -silent, 90
verbose, 95

misaligned data, specifying behavior, 135
mixed-language linking

-xlang, 131
MODDIR environment variable, 79
modules, 184

-use, 185
.mod file , 184
creating and using, 28
default path, 79
fdumpmod for displaying module files, 186
fdumpmod for viewing module contents, 28

multithreading, 80 See parallelization

N
name

argument, do not append underscore, 30
object, executable file, 83

nonstandard_arithmetic(), 65
numeric sequence type, 51

O
object files

compile only, 55
name, 83

object library search directories, 76
object-oriented Fortran, 178
obsolete command-line options, 51
octal, 164
OMP_NUM_THREADS, number of threads, 53
one-trip DO loops, 84
OpenMP, 35

directives summary, 217
OPT directive, 32

-xmaxopt option, 135
optimization

across source files, 124
aliasing, 99
floating-point, 69
inline user-written routines, 74
interprocedural, 124
levels, 82
link-time, 132
loop unrolling, 94
loop unrolling by directive, 31
math library, 132
OPT directive, 32, 135
PIPELOOP directive, 33
PREFETCH directive, 33
specify cache, 107
specify instruction set architecture, 101
specify processor, 109
target hardware, 80
with -fast, 63
with debugging, 72

options See command-line options
order of

functions, 115
order of processing, options, 44
overflow

Index

226 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

stack, 91
trap on floating-point, 70

overindexing
aliasing, 99

P
padding, 84
page size, setting stack or heap, 139, 140, 140
parallelization

automatic, 53
directives, 184
loop information, 77
messages, 96
OpenMP, 35, 138
OpenMP directives summarized, 217
reduction operations, 89

parameters, global consistency, Xlist, 97
passes of the compiler, 95
path

dynamic libraries in executable, 88
library search, 76
to standard include files, 74

Pentium, 154
performance

optimization, 63
Sun Performance Library, 19

performance library, 77, 132
PIPELOOP directive, 33
pointee, 168
pointer, 168

aliasing, 99
position-independent code, 86, 87
POSIX library, not supported, 195
POSIX threads, 80
pragma See directives
precision on x86

-fprecision, 67
-fstore, 70

PREFETCH directive, 33, 33, 33
preprocessor, source file

define symbol, 55
force -fpp, 67
fpp, cpp, 26
specify with -xpp=p, 141

undefine symbol, 94
preserve case, 93
print

asa, 19
processor

specify target processor, 109
profile data path map, 147
profiling

-pg, -gprof, 86
-xprofile, 144

R
range of subscripts, 54
recursive subprograms, 148
release history, 207
reorder functions, 115
rounding, 68, 69

S
search

object library directories, 76
shared library

build, -G, 71
disallow linking, -dn, 58
name a shared library, 72
pure, no relocations, 158

shell
limits, 40

SIGFPE, floating-point exception, 66
size of compiled code, 152
Solaris threads, 80
source file

preprocessing, 26
source format

mixing format of source lines (f95), 163
options (f95), 162

source lines
extended, 59
fixed-format, 64
free-format, 68
line length, 161
preprocessor, 141
preserve case, 93

Index

227

SPARC platform
cache, 107
chip, 109
code address space, 110
instruction set architecture, 102

stack
increase stack size, 91
overflow, 91
setting page size, 139, 140, 140

standard
include files, 74

standard numeric sequence type, 51
standards

conformance, 17
identify non-ANSI extensions, -ansi flag, 52

static
binding, 58

STOP statement, return status, 91
stream I/O, 177
strict (interval arithmetic), 124
strip executable of symbol table, s, 90
suffix

of file names recognized by compiler, 25, 162
suppress

implicit typing, 94
linking, 55
warnings, 97
warnings by tag name, -erroff, 59

swap command, 39
swap space

display actual swap space, 39
limit amount of disk swap space, 39

symbol table
for dbx, 71, 71

syntax
command line options, 43
compiler command line, 43
f95 command, 24, 43

system.inc, 37

T
tab

form source tab, 161
tape I/O, not supported, 195

tcov

-xprofile, 146
templates, inline, 77
temporary files, directory for, 92
traceback, 92
trapping

floating-point exceptions, 70
on memory, 151

type declaration alternate form, 166

U
ulimit command, 40
underflow

gradual, 66
trap on floating-point, 70

underscore, 60
do not append to external names, 30

UNROLL directive, 31
usage

compiler, 24
utilities, 18

V
variables

alignment, 167
local, 90
undeclared, 94

VAX VMS Fortran extensions, 95, 172
version

id of each compiler pass, 95

W
warnings

message tags, 59
suppress messages, 97
suppress with -erroff, 59
undeclared variables, 94
use of non-standard extensions, 52

WEAK directive, 32
weak linker symbols, 32
widestneed (interval arithmetic), 124

228 Oracle Solaris Studio 12.4: Fortran User's Guide • March 2015

	Oracle® Solaris Studio 12.4: Fortran User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • Introduction
	1.1 Standards Conformance
	1.2 Features of the Fortran Compiler
	1.3 Other Fortran Utilities
	1.4 Debugging Utilities
	1.5 Sun Performance Library
	1.6 Interval Arithmetic
	1.7 Man Pages
	1.8 Command-Line Help

	Chapter 2 • Using Solaris Studio Fortran
	2.1 A Quick Start
	2.2 Invoking the Compiler
	2.2.1 Compile-Link Sequence
	2.2.2 Command-Line File Name Conventions
	2.2.3 Source Files
	2.2.4 Source File Preprocessors
	2.2.5 Separate Compiling and Linking
	2.2.6 Consistent Compiling and Linking
	2.2.7 Unrecognized Command-Line Arguments
	2.2.8 Modules

	2.3 Directives
	2.3.1 General Directives
	2.3.1.1 The C Directive
	2.3.1.2 The IGNORE_TKR Directive
	2.3.1.3 The UNROLL Directive
	2.3.1.4 The WEAK Directive
	2.3.1.5 The OPT Directive
	2.3.1.6 The PIPELOOP[=n] Directive
	2.3.1.7 The PREFETCH Directives
	2.3.1.8 The ASSUME Directives

	2.3.2 Parallelization Directives
	2.3.2.1 OpenMP Parallelization Directives
	2.3.2.2 Legacy Sun/Cray Parallelization Directives

	2.3.3 IVDEP Directive

	2.4 Library Interfaces and system.inc
	2.5 Compiler Usage Tips
	2.5.1 Determining Hardware Platform
	2.5.2 Using Environment Variables
	2.5.3 Memory Size
	2.5.3.1 Swap Space Limits
	2.5.3.2 Increasing Swap Space
	2.5.3.3 Control of Virtual Memory

	2.6 User-Supplied Default Options File

	Chapter 3 • Fortran Compiler Options
	3.1 Command Syntax
	3.2 Options Syntax
	3.3 Options Summary
	3.3.1 Commonly Used Options
	3.3.2 Macro Flags
	3.3.3 Backward Compatibility and Legacy Options
	3.3.4 Obsolete Option Flags

	3.4 Options Reference
	3.4.1 –aligncommon[={1|2|4|8|16}]
	3.4.2 –ansi
	3.4.3 –arg=local
	3.4.4 –autopar
	3.4.5 –B{static|dynamic}
	3.4.6 –C
	3.4.7 –c
	3.4.8 –copyargs
	3.4.9 –Dname[=def]
	3.4.10 –dalign
	3.4.11 –dbl_align_all[={yes|no}]
	3.4.12 –depend[={yes|no}]
	3.4.13 –dryrun
	3.4.14 –d{y|n}
	3.4.15 –e
	3.4.16 –erroff[={%all|%none|taglist}]
	3.4.17 –errtags[={yes|no}]
	3.4.18 –errwarn[={%all|%none|taglist}]
	3.4.19 –ext_names=e
	3.4.20 –F
	3.4.21 –f
	3.4.22 –f77[=list]
	3.4.23 –fast
	3.4.24 –fixed
	3.4.25 –flags
	3.4.26 –fma[={none|fused}]
	3.4.27 –fnonstd
	3.4.28 –fns[={yes|no}]
	3.4.29 -fopenmp
	3.4.30 –fpover[={yes|no}]
	3.4.31 –fpp
	3.4.32 –fprecision={single|double|extended}
	3.4.33 –free
	3.4.34 –fround={nearest|tozero|negative|positive}
	3.4.35 –fserialio
	3.4.36 –fsimple[={1|2|0}]
	3.4.37 –fstore
	3.4.38 –ftrap=t
	3.4.39 –G
	3.4.40 -g
	3.4.41 –g[n]
	3.4.42 –hname
	3.4.43 –help
	3.4.44 –Ipath
	3.4.45 -i8
	3.4.46 –inline=[%auto][[,][no%]f1,…[no%]fn]
	3.4.47 –iorounding[={compatible|processor-defined}]
	3.4.48 –keepmod[={yes|no}]
	3.4.49 –keeptmp
	3.4.50 –Kpic
	3.4.51 –KPIC
	3.4.52 –Lpath
	3.4.53 –lx
	3.4.54 –libmil
	3.4.55 -library=sunperf
	3.4.56 –loopinfo
	3.4.57 –Mpath
	3.4.58 –m32 | –m64
	3.4.59 –moddir=path
	3.4.60 -mt[={yes|no}]
	3.4.61 –native
	3.4.62 –noautopar
	3.4.63 –nodepend
	3.4.64 -nofstore
	3.4.65 –nolib
	3.4.66 –nolibmil
	3.4.67 –noreduction
	3.4.68 –norunpath
	3.4.69 –O[n]
	3.4.70 –o filename
	3.4.71 –onetrip
	3.4.72 –openmp
	3.4.73 –p
	3.4.74 –pad[=p]
	3.4.75 –pg
	3.4.76 –pic
	3.4.77 –PIC
	3.4.78 –preserve_argvalues[=simple|none|complete]
	3.4.79 –Qoption pr ls
	3.4.80 –qp
	3.4.81 –R ls
	3.4.82 –r8const
	3.4.83 –recl=a[,b]
	3.4.84 –reduction
	3.4.85 –S
	3.4.86 –s
	3.4.87 –silent
	3.4.88 –stackvar
	3.4.89 –stop_status[={yes|no}]
	3.4.90 –temp=dir
	3.4.91 –time
	3.4.92 –traceback[={%none|common|signals_list}]
	3.4.93 –U
	3.4.94 –Uname
	3.4.95 –u
	3.4.96 –unroll=n
	3.4.97 –use=list
	3.4.98 –V
	3.4.99 –v
	3.4.100 –vax=keywords
	3.4.101 –vpara
	3.4.102 -Wc,arg
	3.4.103 –w[n]
	3.4.104 -Xlinker arg
	3.4.105 –Xlist[x]
	3.4.106 –xaddr32[={yes|no}]
	3.4.107 –xalias[=keywords]
	3.4.108 –xannotate[={yes|no}]
	3.4.109 –xarch=isa
	3.4.109.1 Special Cautions for x86/x64 Platforms:

	3.4.110 –xassume_control[=keywords]
	3.4.111 –xautopar
	3.4.112 –xbinopt={prepare | off}
	3.4.113 –xcache=c
	3.4.114 –xcheck[=keyword[,keyword]]
	3.4.115 –xchip=c
	3.4.116 -xcode[=v]
	3.4.117 –xcommonchk[={yes|no}]
	3.4.118 –xdebugformat={dwarf|stabs}
	3.4.119 -xdebuginfo=a[,a...]
	3.4.120 –xdepend
	3.4.121 –xF
	3.4.122 –xfilebyteorder=options
	3.4.122.1 Examples:
	3.4.122.2 Notes:

	3.4.123 -xglobalize[={yes|no}]
	3.4.123.1 Interactions

	3.4.124 –xhasc[={yes|no}]
	3.4.125 –xhelp=flags
	3.4.126 –xhwcprof[={enable | disable}]
	3.4.127 –xia[={widestneed|strict}]
	3.4.128 –xinline=list
	3.4.129 -xinline_param=a[,a[,a]...]
	3.4.130 -xinline_report[=n]
	3.4.131 –xinstrument=[%no]datarace
	3.4.132 –xinterval[={widestneed|strict|no}]
	3.4.133 –xipo[={0|1|2}]
	3.4.134 –xipo_archive[={none|readonly|writeback}]
	3.4.135 -xipo_build=[yes|no]
	3.4.135.1 -xipo_build Examples

	3.4.136 –xivdep[=p]
	3.4.137 -xjobs{=n|auto}
	3.4.137.1 -xjobs Examples

	3.4.138 -xkeep_unref[={[no%]funcs,[no%]vars}]
	3.4.139 –xkeepframe[=[%all,%none,name,no%name]]
	3.4.140 –xknown_lib=library_list
	3.4.141 –xl
	3.4.142 –xlang=f77
	3.4.143 –xld
	3.4.144 –xlibmil
	3.4.145 –xlibmopt
	3.4.146 –xlic_lib=sunperf
	3.4.147 –xlinkopt[={1|2|0}]
	3.4.148 –xloopinfo
	3.4.149 –xM
	3.4.150 –xmaxopt[=n]
	3.4.151 –xmemalign[=<a>]
	3.4.152 –xmodel=[small | kernel | medium]
	3.4.153 –xnolib
	3.4.154 –xnolibmil
	3.4.155 –xnolibmopt
	3.4.156 –xOn
	3.4.157 –xopenmp[={parallel|noopt|none}]
	3.4.158 –xpad
	3.4.159 –xpagesize=size
	3.4.160 –xpagesize_heap=size
	3.4.161 –xpagesize_stack=size
	3.4.162 -xpatchpadding[={fix|patch|size}]
	3.4.163 –xpec[={yes|no}]
	3.4.164 –xpg
	3.4.165 –xpp={fpp|cpp}
	3.4.166 –xprefetch[=a[,a]]
	3.4.166.1 Defaults:
	3.4.166.2 Interactions:
	3.4.166.3 Warnings:

	3.4.167 –xprefetch_auto_type=indirect_array_access
	3.4.168 –xprefetch_level={1|2|3}
	3.4.169 –xprofile=p
	3.4.170 –xprofile_ircache[=path]
	3.4.171 –xprofile_pathmap=collect_prefix:use_prefix
	3.4.172 –xrecursive
	3.4.173 –xreduction
	3.4.174 –xregs=r
	3.4.175 -xs[={yes|no}]
	3.4.176 –xsafe=mem
	3.4.177 -xsegment_align=n
	3.4.178 –xspace
	3.4.179 –xtarget=t
	3.4.179.1 Generic and Native Platforms
	3.4.179.2 SPARC Platforms
	3.4.179.3 x86 Platforms

	3.4.180 -xtemp=path
	3.4.181 -xthroughput[={yes|no}]
	3.4.182 –xtime
	3.4.183 –xtypemap=spec
	3.4.184 -xunboundsym={yes|no}
	3.4.185 –xunroll=n
	3.4.186 -xvector[=a]
	3.4.187 –ztext

	Chapter 4 • Solaris Studio Fortran Features and Extensions
	4.1 Source Language Features
	4.1.1 Continuation Line Limits
	4.1.2 Fixed-Form Source Lines
	4.1.3 Tab Form
	4.1.4 Source Form Assumed
	4.1.4.1 Mixing Forms
	4.1.4.2 Case

	4.1.5 Limits and Defaults

	4.2 Data Types
	4.2.1 Boolean Type
	4.2.1.1 Rules Governing Boolean Type
	4.2.1.2 Alternate Forms of Boolean Constants
	Octal
	Hexadecimal
	Hollerith

	4.2.1.3 Alternate Contexts of Boolean Constants

	4.2.2 Abbreviated Size Notation for Numeric Data Types
	4.2.3 Size and Alignment of Data Types

	4.3 Cray Pointers
	4.3.1 Syntax
	4.3.2 Purpose of Cray Pointers
	4.3.3 Declaring Cray Pointers and Fortran 95 Pointers
	4.3.4 Features of Cray Pointers
	4.3.5 Restrictions on Cray Pointers
	4.3.6 Restrictions on Cray Pointees
	4.3.7 Usage of Cray Pointers

	4.4 STRUCTURE and UNION (VAX Fortran)
	4.5 Unsigned Integers
	4.5.1 Arithmetic Expressions
	4.5.2 Relational Expressions
	4.5.3 Control Constructs
	4.5.4 Input/Output Constructs
	4.5.5 Intrinsic Functions

	4.6 Fortran 200x Features
	4.6.1 Interoperability with C
	4.6.2 IEEE Floating-Point Exception Handling
	4.6.3 Command-Line Argument Intrinsics
	4.6.4 PROTECTED Attribute
	4.6.5 Fortran 2003 Asynchronous I/O
	4.6.6 Extended ALLOCATABLE Attribute
	4.6.7 VALUE Attribute
	4.6.8 Fortran 2003 Stream I/O
	4.6.9 Fortran 2003 IMPORT Statement
	4.6.10 Fortran 2003 FLUSH I/O Statement
	4.6.11 Fortran 2003 POINTER INTENT Feature
	4.6.12 Fortran 2003 Enhanced Array Constructor
	4.6.13 Object-Oriented Fortran Support
	4.6.14 FINAL Subroutine Support
	4.6.15 Procedure Pointer Support
	4.6.16 Additional Fortran 2003 and Fortran 2008 Features

	4.7 Additional I/O Extensions
	4.7.1 I/O Error Handling Routines
	4.7.2 Variable Format Expressions
	4.7.3 NAMELIST Input Format
	4.7.4 Binary Unformatted I/O
	4.7.5 Miscellaneous I/O Extensions

	4.8 Directives
	4.8.1 Form of Special f95 Directive Lines
	4.8.1.1 Fixed-Form Source
	4.8.1.2 Free-Form Source

	4.8.2 FIXED and FREE Directives
	4.8.2.1 Scope
	4.8.2.2 Uses
	4.8.2.3 Restrictions

	4.8.3 Parallelization Directives

	4.9 Module Files
	4.9.1 Searching for Modules
	4.9.2 The -use=list Option Flag
	4.9.3 The fdumpmod Command

	4.10 Intrinsics
	4.11 Forward Compatibility
	4.12 Mixing Languages

	Chapter 5 • FORTRAN 77 Compatibility: Migrating to Solaris Studio Fortran
	5.1 Compatible f77 Features
	5.2 Incompatibility Issues
	5.3 Linking With Legacy FORTRAN 77-Compiled Routines
	5.3.1 Fortran Intrinsics

	5.4 Additional Notes About Migrating to the f95 Compiler
	5.5 The f77 Command

	Appendix A • Runtime Error Messages
	A.1 Operating System Error Messages
	A.2 f95 Runtime I/O Error Messages

	Appendix B • Features Release History
	B.1 Oracle Solaris Studio 12.4 Fortran Release
	B.2 Oracle Solaris Studio 12.3 Fortran Release
	B.3 Oracle Solaris Studio 12.2 Fortran Release
	B.4 Sun Studio 12 Update 1 Fortran Release
	B.5 Sun Studio 12 Fortran Release
	B.6 Sun Studio 11 Fortran Release

	Appendix C • Fortran Directives Summary
	C.1 General Fortran Directives
	C.2 Special Fortran Directives
	C.3 Fortran OpenMP Directives

	Index

