
Part No: E37080
December 2014

Oracle® Solaris Studio 12.4: Thread
Analyzer User's Guide

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible or and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2007, 2014, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et
de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse
du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour
le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered
to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné
à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre
d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce
type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires
qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une
marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant
de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle
Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services
tiers, ou à leur utilisation.

3

Contents

Using This Documentation .. 7

1 What is Thread Analyzer and What Does It Do? ... 9
Getting Started With Thread Analyzer ... 9

What is a Data Race? ... 9
What is a Deadlock? .. 10

Thread Analyzer Usage Model ... 10
Usage Model for Detecting Data Races .. 11
Usage Model for Detecting Deadlocks ... 12
Usage Model for Detecting Data Races and Deadlocks 13

Thread Analyzer Interface ... 13

2 Data Race Tutorial ... 15
Data Race Tutorial Source Files ... 15

Getting the Data Race Tutorial Source Files .. 15
Source Code for prime_omp.c .. 16
Source Code for prime_pthr.c .. 17

How to Use Thread Analyzer to Find Data Races .. 19
Instrument the Code ... 20
Create a Data-Race-Detection Experiment .. 21
Examine the Data-Race-Detection Experiment .. 21

Understanding the Experiment Results ... 23
Data Races in prime_omp.c ... 23
Data Races in prime_pthr.c .. 26
Call Stack Traces of Data Races ... 29

Diagnosing the Cause of a Data Race .. 30
Check Whether or Not the Data Race is a False Positive 30
Check Whether or Not the Data Race is Benign .. 31
Fix the Bug, Not the Data Race .. 31

False Positives ... 34

Contents

4 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

User-Defined Synchronizations ... 34
Memory That is Recycled by Different Threads ... 35

Benign Data Races ... 36
A Program for Finding Primes ... 36
A Program that Verifies Array-Value Types .. 37
A Program Using Double-Checked Locking ... 38

3 Deadlock Tutorial ... 41
About Deadlocks ... 41
Getting the Deadlock Tutorial Source Files ... 42

Source Code Listing for din_philo.c ... 42
The Dining Philosophers Scenario .. 44

How the Philosophers Can Deadlock ... 45
Introducing a Sleep Time for Philosopher 1 .. 46

How to Use Thread Analyzer to Find Deadlocks ... 48
Compile the Source Code .. 49
Create a Deadlock-Detection Experiment ... 49
Examine the Deadlock-Detection Experiment .. 50

Understanding the Deadlock Experiment Results ... 51
Examining Runs That Deadlock ... 51
Examining Runs That Complete Despite Deadlock Potential 55

Fixing the Deadlocks and Understanding False Positives 58
Regulating the Philosophers With Tokens ... 59
An Alternative System of Tokens ... 63

A APIs Recognized by Thread Analyzer ... 69
Thread Analyzer User APIs ... 69
Other Recognized APIs ... 71

POSIX Thread APIs ... 71
Oracle Solaris Thread APIs ... 72
Memory Allocation APIs .. 72
Memory Operations APIs .. 73
String Operations APIs ... 73
Realtime Library APIs .. 74
Atomic Operations (atomic_ops) APIs .. 74
OpenMP APIs ... 74

B Tips for Using Thread Analyzer .. 75

Contents

5

Compiling the Application ... 75
Instrumenting the Application for Data Race Detection ... 75
Running the Application With collect .. 76
Reporting of Data Races ... 76

6 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Using This Documentation 7

Using This Documentation

■ Overview – Provides an introduction to the Thread Analyzer tool along with two detailed
tutorials. One tutorial focuses on data race detection and the other focuses on deadlock
detection. The manual also includes an appendix of APIs recognized by Thread Analyzer
and an appendix of useful tips.

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, aptitude to

build and compile software products

Product Documentation Library

The product documentation library is located at http://docs.oracle.com/cd/E37069_01.

System requirements and known problems are included in the “Oracle Solaris Studio 12.4:
Release Notes ”.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

http://docs.oracle.com/cd/E37069_01
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSRN
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/docfeedback

8 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Chapter 1 • What is Thread Analyzer and What Does It Do? 9

 1 ♦ ♦ ♦ C H A P T E R 1

What is Thread Analyzer and What Does It Do?

Thread Analyzer is an Oracle Solaris Studio tool that you can use to analyze the execution of a
multithreaded program. Thread Analyzer can detect multithreaded programming errors such as
data races and deadlocks in code that is written using the POSIX thread API, the Oracle Solaris
thread API, OpenMP directives, or a mix of these.
This chapter discusses the following topics:

■ “Getting Started With Thread Analyzer” on page 9
■ “What is a Data Race?” on page 9
■ “What is a Deadlock?” on page 10
■ “Thread Analyzer Usage Model” on page 10
■ “Thread Analyzer Interface” on page 13

Getting Started With Thread Analyzer

Thread Analyzer can show data races and deadlocks in experiments that you can create
specifically for examining these types of errors, as explained in this document.

Thread Analyzer is a specialized view of Performance Analyzer that is designed for examining
thread analysis experiments. See “Thread Analyzer Interface” on page 13 for more
information.

What is a Data Race?

Thread Analyzer detects data races that occur during the execution of a multithreaded process.
A data race occurs when all of the following are true:

■ Two or more threads in a single process access the same memory location concurrently
■ At least one of the accesses is for writing
■ The threads are not using any mutual exclusive locks to control their accesses to that

memory

Thread Analyzer Usage Model

10 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

When these three conditions hold, the order of accesses is non-deterministic, and the
computation might give different results from run to run depending on that order. Some data
races might be benign (for example, when the memory access is used for a busy-wait), but
many data races are bugs in the program.

Thread Analyzer works on a multithreaded program written using the POSIX thread API,
Oracle Solaris thread API, OpenMP, or a mix of these.

What is a Deadlock?

Deadlock describes a condition in which two or more threads are blocked forever because
they are waiting for each other. There are many causes of deadlocks. Thread Analyzer detects
deadlocks that are caused by the inappropriate use of mutual exclusion locks. This type of
deadlock is commonly encountered in multithreaded applications.
A process with two or more threads can deadlock when all of the following conditions are true:

■ Threads that are already holding locks request new locks
■ The requests for new locks are made concurrently
■ Two or more threads form a circular chain in which each thread waits for a lock which is

held by the next thread in the chain

Here is a simple example of a deadlock condition:

■ Thread 1 holds lock A and requests lock B
■ Thread 2 holds lock B and requests lock A

A deadlock can be of two types: A potential deadlock or an actual deadlock. A potential
deadlock does not necessarily occur in a given run, but can occur in any execution of the
program depending on the scheduling of threads and the timing of lock requests by the threads.
An actual deadlock is one that occurs during the execution of the program. An actual deadlock
causes the threads involved to hang, but might cause the whole process to hang.

Thread Analyzer Usage Model

The following steps show the process by which you can troubleshoot your multithreaded
program with Thread Analyzer.

1. Instrument the program, if doing data race detection.
2. Create a data-race-detection or deadlock-detection experiment.
3. Examine the experiment result and establish whether the multithreaded programming issues

revealed by Thread Analyzer are legitimate bugs or benign phenomena.

Thread Analyzer Usage Model

Chapter 1 • What is Thread Analyzer and What Does It Do? 11

4. Fix the legitimate bugs and create additional experiments (step 2 above) with varied factors
such as different input data, a different number of threads, varied loop schedules or even
different hardware. This repetition helps locate non-deterministic problems.

Steps 1 through 3 above are described in the following sections.

Usage Model for Detecting Data Races

You must perform three steps to detect data races:

1. Instrument the code to enable data race detection
2. Create an experiment on the instrumented code
3. Examine the experiment for data races

Instrument the Code for Data Race Detection

To enable data race detection in an application, the code must first be instrumented to monitor
memory accesses at runtime, meaning calls to the runtime support library libtha.somust be
inserted in the code to monitor memory accesses at runtime and determine whether there are
any data races.

You can instrument your code at the application source-level during compilation, or at the
application binary-level by running an additional tool on the binary.

Source-level instrumentation is done by the compiler when you use a special option. You
can also specify the optimization level and other compiler options to use. Source-level
instrumentation can result in faster runtime since the compiler can do some analysis and
instrument fewer memory accesses.

Binary-level instrumentation is useful when the source code is not available. You might also use
binary instrumentation if you have the source code, but cannot compile shared libraries that are
used by the application. Binary instrumentation using the discover tool instruments the binary
as well as all shared libraries as they are opened.

Source-level Instrumentation

To instrument at the source level, compile the source code with the special compiler option:

-xinstrument=datarace

With this compiler option, the code generated by the compiler will be instrumented for data race
detection.

Thread Analyzer Usage Model

12 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

The -g compiler option should also be used when building application binaries. This option
causes extra data to be generated which enables Thread Analyzer to display source code and
line number information when reporting data races.

Binary-level Instrumentation

To instrument at the binary level, you must use the discover tool. If the binary is named a.out,
you can create an instrumented binary a.outi by executing:

discover -i datarace -o a.outi a.out

The discover tool automatically instruments all shared libraries as they are opened, whether
they are statically linked in the program or opened dynamically by dlopen(). By default,
instrumented copies of libraries are cached in the directory $HOME/SUNW_Bit_Cache.

Some useful discover command line options are shown below. See the discover(1) man page
for details.

-o file Output the instrumented binary to the specified file name

-N lib Do not instrument the specified library

-T Do not instrument any libraries

-D dir Change the cache directory to dir

Create an Experiment on the Instrumented Application

To create a data-race-detection experiment, use the collect command with the -r race flag to
run the application and collect experiment data during the execution of the process. When you
use the -r race option, the collected data includes pairs of data accesses that constitute a race.

Examine the Experiment for Data Races

You can examine the data-race-detection experiment with the tha command, which starts
the Thread Analyzer graphical user interface. You can also use the er_print command-line
interface.

Usage Model for Detecting Deadlocks

Two steps are involved in detecting deadlocks:

Thread Analyzer Interface

Chapter 1 • What is Thread Analyzer and What Does It Do? 13

1. Create a deadlock-detection experiment.
2. Examine the experiment for deadlocks.

Create an Experiment for Detecting Deadlocks

To create a deadlock-detection experiment, use the collect command with the -r deadlock
flag to run the application and collect experiment data during the execution of the process.
When you use the -r deadlock option, the collected data includes lock holds and lock requests
that form a circular chain.

Examine the Experiment for Deadlocks

You can examine the deadlock-detection experiment with the tha command, which starts
the Thread Analyzer graphical user interface. You can also use the er_print command-line
interface.

Usage Model for Detecting Data Races and
Deadlocks

If you want to detect data races and deadlocks at the same time, follow the three steps in “Usage
Model for Detecting Data Races” on page 11 for detecting data races, but use the collect
command with the -r race,deadlock flag to run the application. The experiment will contain
both race-detection and deadlock-detection data.

Thread Analyzer Interface

You can start Thread Analyzer by using the tha command.

The Thread Analyzer interface is the Performance Analyzer (analyzer) interface that is
streamlined for multithreaded program analysis. Instead of the usual Performance Analyzer
views, you see the Races, Deadlocks, and Dual Source views. If you use Performance Analyzer
to look at multithreaded program experiments you see the traditional Performance Analyzer
views such as Functions, Callers-Callees, Disassembly, along with the views for data races and
deadlocks.

14 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Chapter 2 • Data Race Tutorial 15

 2 ♦ ♦ ♦ C H A P T E R 2

Data Race Tutorial

The following is a detailed tutorial on how to detect and fix data races with Thread Analyzer.
The tutorial is divided into the following sections:

■ “Data Race Tutorial Source Files” on page 15
■ “How to Use Thread Analyzer to Find Data Races” on page 19
■ “Understanding the Experiment Results” on page 23
■ “Diagnosing the Cause of a Data Race” on page 30
■ “False Positives” on page 34
■ “Benign Data Races” on page 36

Data Race Tutorial Source Files
This tutorial relies on two programs, both of which contain data races:

■ The first program finds prime numbers. It is written with C and is parallelized with OpenMP
directives. The source file is called prime_omp.c.

■ The second program also finds prime numbers and is also written with C. However, it is
parallelized with POSIX threads instead of OpenMP directives. The source file is called
prime_pthr.c.

Getting the Data Race Tutorial Source Files

You can download the source files used in this tutorial from the Download area (http://
www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html) of
the Oracle Solaris Studio developer portal.

After you download and unpack the sample files, you can find the samples in the
SolarisStudioSampleApplications/ThreadAnalyzer directory. The samples are located in
the prime_omp and prime_pthr subdirectories. Each sample directory includes a Makefile
and a DEMO file of instructions, but this tutorial does not follow those instructions or use the
Makefile. Instead, you are instructed to execute commands individually.

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html

Data Race Tutorial Source Files

16 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

To follow the tutorial, you can copy the prime_omp.c and prime_pthr.c files from the samples
directories to a different directory, or you can create your own files and copy the code from the
following code listings.

Source Code for prime_omp.c

This section shows the source code for prime_omp.c as follows:

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)prime_omp.c 1.3 (Oracle) 10/03/26

 4 */

 5

 6 #include <stdio.h>

 7 #include <math.h>

 8 #include <omp.h>

 9

 10 #define THREADS 4

 11 #define N 10000

 12

 13 int primes[N];

 14 int pflag[N];

 15

 16 int is_prime(int v)

 17 {

 18 int i;

 19 int bound = floor(sqrt(v)) + 1;

 20

 21 for (i = 2; i < bound; i++) {

 22 /* no need to check against known composites */

 23 if (!pflag[i])

 24 continue;

 25 if (v % i == 0) {

 26 pflag[v] = 0;

 27 return 0;

 28 }

 29 }

 30 return (v > 1);

 31 }

 32

 33 int main(int argn, char **argv)

 34 {

 35 int i;

 36 int total = 0;

 37

 38 #ifdef _OPENMP

 39 omp_set_dynamic(0);

 40 omp_set_num_threads(THREADS);

 41 #endif

 42

 43 for (i = 0; i < N; i++) {

Data Race Tutorial Source Files

Chapter 2 • Data Race Tutorial 17

 44 pflag[i] = 1;

 45 }

 46

 47 #pragma omp parallel for

 48 for (i = 2; i < N; i++) {

 49 if (is_prime(i)) {

 50 primes[total] = i;

 51 total++;

 52 }

 53 }

 54

 55 printf("Number of prime numbers between 2 and %d: %d\n",

 56 N, total);

 57

 58 return 0;

 59 }

Source Code for prime_pthr.c

This section shows source code for prime_pthr.c as follows:

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)prime_pthr.c 1.4 (Oracle) 10/03/26

 4 */

 5

 6 #include <stdio.h>

 7 #include <math.h>

 8 #include <pthread.h>

 9

 10 #define THREADS 4

 11 #define N 10000

 12

 13 int primes[N];

 14 int pflag[N];

 15 int total = 0;

 16

 17 int is_prime(int v)

 18 {

 19 int i;

 20 int bound = floor(sqrt(v)) + 1;

 21

 22 for (i = 2; i < bound; i++) {

 23 /* no need to check against known composites */

 24 if (!pflag[i])

 25 continue;

 26 if (v % i == 0) {

 27 pflag[v] = 0;

 28 return 0;

 29 }

 30 }

 31 return (v > 1);

Data Race Tutorial Source Files

18 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 32 }

 33

 34 void *work(void *arg)

 35 {

 36 int start;

 37 int end;

 38 int i;

 39

 40 start = (N/THREADS) * (*(int *)arg);

 41 end = start + N/THREADS;

 42 for (i = start; i < end; i++) {

 43 if (is_prime(i)) {

 44 primes[total] = i;

 45 total++;

 46 }

 47 }

 48 return NULL;

 49 }

 50

 51 int main(int argn, char **argv)

 52 {

 53 int i;

 54 pthread_t tids[THREADS-1];

 55

 56 for (i = 0; i < N; i++) {

 57 pflag[i] = 1;

 58 }

 59

 60 for (i = 0; i < THREADS-1; i++) {

 61 pthread_create(&tids[i], NULL, work, (void *)&i);

 62 }

 63

 64 i = THREADS-1;

 65 work((void *)&i);

 66

 67 for (i = 0; i < THREADS-1; i++) {

 68 pthread_join(tids[i], NULL);

 69 }

 70

 71 printf("Number of prime numbers between 2 and %d: %d\n",

 72 N, total);

 73

 74 return 0;

 75 }

Effect of Data Races in prime_omp.c and prime_pthr.c

When there is a race condition in the code, the order of memory accesses is non-deterministic
so the computation gives different results from run to run. The correct answer in the prime_omp
and prime_pthr programs is 1229.

How to Use Thread Analyzer to Find Data Races

Chapter 2 • Data Race Tutorial 19

You can compile and run the examples so you can see that the execution of prime_omp or
prime_pthr produces incorrect and inconsistent results because of the data races in the code.

In the following example, type the commands at the prompt to compile and run the prime_omp
program:

% cc -xopenmp=noopt -o prime_omp prime_omp.c -lm
%

% ./prime_omp
Number of prime numbers between 2 and 10000: 1229

% ./prime_omp
Number of prime numbers between 2 and 10000: 1228

% ./prime_omp
Number of prime numbers between 2 and 10000: 1180

In the following example, type the commands at the prompt to compile and run the prime_pthr
program:

% cc -mt -o prime_pthr prime_pthr.c -lm
%

% ./prime_pthr
Number of prime numbers between 2 and 10000: 1140

% ./prime_pthr
Number of prime numbers between 2 and 10000: 1122

% ./prime_pthr
Number of prime numbers between 2 and 10000: 1141

Notice the inconsistency of the results of the three runs of each program. You might need to run
the programs more than three times to see inconsistent results.

Next you instrument the code and create experiments so you can find where the data races are
occurring.

How to Use Thread Analyzer to Find Data Races

Thread Analyzer follows the same “collect-analyze” model that the Oracle Solaris Studio
Performance Analyzer uses.
There are three steps involved in using Thread Analyzer:

1. “Instrument the Code” on page 20
2. “Create a Data-Race-Detection Experiment” on page 21
3. “Examine the Data-Race-Detection Experiment” on page 21

How to Use Thread Analyzer to Find Data Races

20 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Instrument the Code
In order to enable data race detection in a program, the code must first be instrumented to
monitor memory accesses at runtime. The instrumentation can be done on application source
code or on the application binary. The tutorial shows how to use both methods of instrumenting
the programs.

To Instrument Source Code

To instrument the source code, you must compile the application with the special compiler
option -xinstrument=datarace. This option instructs the compiler to instrument the generated
code for data race detection.

Add the -xinstrument=datarace compiler option to the existing set of options you use to
compile your program.

Note - Be sure to also specify the -g option when you compile your program with -
xinstrument=datarace to generate additional information to enable Thread Analyzer's full
capabilities. Do not specify a high level of optimization when compiling your program for race
detection. Compile an OpenMP program with -xopenmp=noopt. The information reported, such
as line numbers and call stacks, might be incorrect when a high optimization level is used.

You can use the following commands for instrumenting the source code for the tutorial:

% cc -xinstrument=datarace -g -xopenmp=noopt -o prime_omp_inst prime_omp.c -lm

% cc -xinstrument=datarace -g -o prime_pthr_inst prime_pthr.c -lm

Notice that in the example, the output file is specified with _inst at the end so that you can tell
that the binary is the instrumented binary. This is not required.

To Instrument Binary Code

To instrument a program's binary code instead of the source code, you need to use the discover
tool, which is included in Oracle Solaris Studio and is documented in the discover(1) man
page and “Oracle Solaris Studio 12.4: Discover and Uncover User’s Guide ”.

For the tutorial examples, type the following command to compile the code:

% cc -xopenmp=noopt -g -o prime_omp prime_omp.c -lm

% cc -g -O2 -o prime_pthr prime_pthr.c -lm

Then run discover on the prime_omp and prime_pthr optimized binaries that you created:

% discover -i datarace -o prime_omp_disc prime_omp

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSDU

How to Use Thread Analyzer to Find Data Races

Chapter 2 • Data Race Tutorial 21

% discover -i datarace -o prime_pthr_disc prime_pthr

These commands create instrumented binaries, prime_omp_disc and prime_pthr_disc that you
can use with collect to create experiments that you can examine with Thread Analyzer.

Create a Data-Race-Detection Experiment

Use the collect command with the -r race flag to run the program and create a data-race-
detection experiment during the execution of the process. For OpenMP programs, make sure
that the number of threads used is larger than one. In the tutorial samples, four threads are used.

To create experiments from the binaries that you created by instrumenting the source code:

% collect -r race -o prime_omp_inst.er prime_omp_inst

% collect -r race -o prime_pthr_inst.er prime_pthr_inst

To create experiments from the binaries that you created by using the discover tool:

% collect -r race -o prime_omp_disc.er prime_omp_disc

% collect -r race -o prime_pthr_disc.er prime_pthr_disc

To increase the likelihood of detecting data races, it is recommended that you create several
data-race-detection experiments using collect with the -r race flag. Use a different number
of threads and different input data for each experiment.

For example, in prime_omp.c, the number of threads is set by the following line:

#define THREADS 4

The number of threads can be changed by changing 4 in the above to some other integer larger
than 1, for example 8.

The following line in prime_omp.c limits the program to look for prime numbers between 2 and
3000:

#define N 3000

You can provide different input data by changing the value of N to make the program do more or
less work.

Examine the Data-Race-Detection Experiment
You can examine a data-race-detection experiment with Thread Analyzer, Performance
Analyzer, or the er_print utility. Both Thread Analyzer and Performance Analyzer present
a GUI interface; Thread Analyzer presents a simplified set of default views, but is otherwise
identical to Performance Analyzer.

How to Use Thread Analyzer to Find Data Races

22 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Using Thread Analyzer to View the Data Race Experiment

To start Thread Analyzer, type the following command:

% tha

When you first start Thread Analyzer you see the Welcome screen.

Thread Analyzer has a menu bar, a tool bar, and vertical navigation bar on the left that enables
you to select data views.
The following data views are shown by default:

■ Overview screen shows a metrics overview of the loaded experiments.
■ Races view shows a list of data races detected in the program, and associated call stack

traces. This view is selected by default. When you select an item in the Races view, the
Race Details window shows detailed information about the data race or call stack trace
selected.

■ Dual Source view shows the two source locations corresponding to the two accesses of a
selected data race. The source line where a data race access occurred is highlighted.

■ Experiments view shows the load objects in the experiment, and lists error and warning
messages.

You can choose to see other views with the More Views options menu.

Using er_print to View the Data Race Experiment

The er_print utility presents a command-line interface. You can use the er_print utility in an
interactive session and specify sub-commands during the session. You can also use command-
line options to specify sub-commands non-interactively.

The following sub-commands are useful for examining races with the er_print utility:

■ -races

This reports any data races revealed in the experiment. Specify races at the (er_print)
prompt or -races on the er_print command line.

■ -rdetail race_id
This displays detailed information about the data race with the specified race_id. Specify
rdetail at the (er_print) prompt or -rdetail on the er_print command line. If the
specified race_id is all, then detailed information about all data races will be displayed.
Otherwise, specify a single race number such as 1 for the first data race.

■ -header
This displays descriptive information about the experiment, and reports any errors or
warnings. Specify header at the (er_print) prompt or -header on the command line.

Understanding the Experiment Results

Chapter 2 • Data Race Tutorial 23

Refer to the collect(1), tha(1), analyzer(1), and er_print(1) man pages for more
information.

Understanding the Experiment Results

This section shows how to use both the er_print command line and Thread Analyzer to
display the following information about each detected data race:

■ The unique ID of the data race.
■ The virtual address, Vaddr, associated with the data race. If there is more than one virtual

address, then the label Multiple Addresses is displayed in parentheses.
■ The memory accesses to the virtual address, Vaddr by two different threads. The type of the

access (read or write) is shown, as well as the function, offset, and line number in the source
code where the access occurred.

■ The total number of call stack traces associated with the data race. Each trace refers to the
pair of thread call stacks at the time the two data race accesses occurred.
If you are using Thread Analyzer, the two call stacks are displayed in the Race Details
window when you select an individual call stack trace in the Races view. If you are using
the er_print utility, the two call stacks will be displayed by the rdetail command.

Data Races in prime_omp.c

To examine data races in prime_omp.c, you can use one of the experiments you created in
“Create a Data-Race-Detection Experiment” on page 21.

To show the data race information in the prime_omp_instr.er experiment with er_print, type
the following command.

% er_print prime_omp_inst.er

At the (er_print) prompt, type races to see output similar to the following:

(er_print) races

Total Races: 3 Experiment: prime_omp_inst.er

Race #1, Vaddr: 0x219c8

 Access 1: Write, line 25 in "prime_omp.c",

 is_prime

 Access 2: Read, line 22 in "prime_omp.c",

 is_prime

 Total Callstack Traces: 1

Understanding the Experiment Results

24 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Race #2, Vaddr: (Multiple Addresses)

 Access 1: Write, line 49 in "prime_omp.c",

 main

 Access 2: Write, line 49 in "prime_omp.c",

 main

 Total Callstack Traces: 1

Race #3, Vaddr: 0xffbff604

 Access 1: Write, line 50 in "prime_omp.c",

 main

 Access 2: Write, line 50 in "prime_omp.c",

 main

 Total Callstack Traces: 1

Three data races occurred during this particular run of the program.

To open the prime_omp_inst.er experiment in Thread Analyzer, type the following command:

% tha prime_omp_inst.er

The following screen shot shows the races that were detected in prime_omp.c as displayed by
Thread Analyzer.

FIGURE 2-1 Data Races Detected in prime_omp.c

Understanding the Experiment Results

Chapter 2 • Data Race Tutorial 25

Three data races are shown in prime_omp.c:

■ Race #1 shows a race between a write in the function is_prime on line 25 and a read in the
same function on line 22. If you look at the source code you can see that on these lines, the
pflag[] array is being accessed. In Thread Analyzer, you can click the Dual Source view
to easily see the source code at both line numbers along with metrics showing the number of
race accesses on the affected lines of code.

■ Race #2 shows a race between two writes to line 49 of the main function. Click the Dual
Source view to see that there are multiple attempts to access the value of the primes []
array in line 49.

■ Race #3 shows a race between two writes to line 50 of the main function. Click the Dual
Source view to see that there are multiple attempts to access the value of the primes []
array in line 50.

Race #3 represents a group of data races that occur in different elements of the array
primes[]. This is indicated by the Vaddr specified as Multiple Addresses.

The Dual Source view in Thread Analyzer enables you to see the two source locations
associated with a data race at the same time. For example, select Race #3 for prime_pthr.c in
the Races view and then click on the Dual Source view. You will see something similar to the
following.

Understanding the Experiment Results

26 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

FIGURE 2-2 Source Code of Data Races Detected in prime_omp.c

Tip - You might need to drag the mouse on the header of each source panel to see the Race
Accesses metrics in the left margin of the Dual Source view.

Data Races in prime_pthr.c

To examine data races in prime_pthr.c, you can use one of the experiments you created in
“Create a Data-Race-Detection Experiment” on page 21.

To show the data race information in the prime_pthr_instr.er experiment with er_print,
type the following command:

% er_print prime_pthr_inst.er

At the (er_print) prompt, type races to see output similar to the following:

(er_print) races

Understanding the Experiment Results

Chapter 2 • Data Race Tutorial 27

Total Races: 5 Experiment: prime_pthr_inst.er

Race #1, Vaddr: 0x28c28

 Access 1: Write, line 26 in "prime_pthr.c",

 is_prime + 0x0000022C

 Access 2: Write, line 26 in "prime_pthr.c",

 is_prime + 0x0000022C

 Total Callstack Traces: 2

Race #2, Vaddr: (Multiple Addresses)

 Access 1: Read, line 23 in "prime_pthr.c",

 is_prime + 0x000000E4

 Access 2: Write, line 26 in "prime_pthr.c",

 is_prime + 0x0000022C

 Total Callstack Traces: 2

Race #3, Vaddr: 0xffbff5bc

 Access 1: Write, line 59 in "prime_pthr.c",

 main + 0x000001F4

 Access 2: Read, line 39 in "prime_pthr.c",

 work + 0x0000006C

 Total Callstack Traces: 1

Race #4, Vaddr: 0x216f0

 Access 1: Write, line 44 in "prime_pthr.c",

 work + 0x00000174

 Access 2: Write, line 44 in "prime_pthr.c",

 work + 0x00000174

 Total Callstack Traces: 2

Race #5, Vaddr: (Multiple Addresses)

 Access 1: Write, line 43 in "prime_pthr.c",

 work + 0x0000012C

 Access 2: Write, line 43 in "prime_pthr.c",

 work + 0x0000012C

 Total Callstack Traces: 1

Five data races occurred during this particular run of the program.

To open the prime_pthr_inst.er experiment in Thread Analyzer, type the following
command:

% tha prime_pthr_inst.er

The following screen shot shows the races detected in prime_pthr.c as displayed by Thread
Analyzer. Notice that they are the same as the races shown by er_print.

Understanding the Experiment Results

28 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

FIGURE 2-3 Data Races Detected in prime_pthr.c

Five data races are shown in prime_pthr.c:

■ Race #1 is a data race between a write to the pflag[] array in function is_prime on line
26 and another write to pflag[] on the same line.

■ Race #2 is a data race between a read on line 23 for pflag[]and a write on to pflag[]
array in function is_prime on line 26.

■ Race #3 is a data race between a write on line 59 to the memory location named i in main()
and a read on line 39 from the same memory location (named *arg in work()).

■ Race #4 is a data race between a write to primes[total] on line 44 and another write to
primes[total] the same line.

■ Race #5 is a data race between a write to total on line 46 and another write to total on the
same line.

If you select Race #3 and then click the Dual Source view, you see the two source locations,
similar to the following screen shot.

Understanding the Experiment Results

Chapter 2 • Data Race Tutorial 29

FIGURE 2-4 Source Code Details of a Data Race

The first access for Race #3 is at line 59 and is shown in the top panel. The second access is at
line 40 and is shown in the bottom panel. The Race Accesses metric is highlighted at the left
of the source code. This metric gives a count of the number of times a data race access was
reported on that line.

Call Stack Traces of Data Races

Each data race listed in the Races view of Thread Analyzer also has one or more associated
Call Stack Traces. The call stacks show the execution paths through the code that lead to a data
race. When you click a Call Stack Trace, the Race Details window in the right panel shows the
function calls that lead to the data race.

Diagnosing the Cause of a Data Race

30 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

FIGURE 2-5 Races View with Call Stack Traces for prime_omp.c

Diagnosing the Cause of a Data Race

This section provides a basic strategy to diagnosing the cause of data races.

Check Whether or Not the Data Race is a False
Positive

A false positive data race is a data race that is reported by Thread Analyzer, but has actually not
occurred. In other words, it is a "false alarm". Thread Analyzer tries to reduce the number of
false positives reported. However, there are cases where the tool is not able to do a precise job
and might report false positive data races.

You can ignore a false positive data race because it is not a genuine data race and, therefore,
does not affect the behavior of the program.

Diagnosing the Cause of a Data Race

Chapter 2 • Data Race Tutorial 31

See “False Positives” on page 34 for some examples of false positive data races. For
information on how to remove false positive data races from the report, see “Thread Analyzer
User APIs” on page 69.

Check Whether or Not the Data Race is Benign
A benign data race is an intentional data race whose existence does not affect the correctness of
the program.

Some multithreaded applications intentionally use code that might cause data races. Since the
data races are there by design, no fix is required. In some cases, however, it is quite tricky to get
such codes to run correctly. These data races should be reviewed carefully.

See “False Positives” on page 34 for more detailed information about benign races.

Fix the Bug, Not the Data Race
Thread Analyzer can help find data races in the program, but it cannot automatically find
bugs in the program nor suggest ways to fix the data races found. A data race might have been
introduced by a bug. It is important to find and fix the bug. Merely removing the data race is not
the right approach, and could make further debugging even more difficult.

Fixing Bugs in prime_omp.c

This section describes how to fix the bug in prime_omp.c. See “Source Code for
prime_omp.c” on page 16 for a complete file listing.

Move lines 50 and 51 into a critical section in order to remove the data race on elements of
the array primes[].

47 #pragma omp parallel for

48 for (i = 2; i < N; i++) {

49 if (is_prime(i)) {

 #pragma omp critical

 {

50 primes[total] = i;

51 total++;

 }

52 }

53 }

You could also move lines 50 and 51 into two critical sections as follows, but this change
fails to correct the program:

47 #pragma omp parallel for

Diagnosing the Cause of a Data Race

32 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

48 for (i = 2; i < N; i++) {

49 if (is_prime(i)) {

 #pragma omp critical

 {

50 primes[total] = i;

 }

 #pragma omp critical

 {

51 total++;

 }

52 }

53 }

The critical sections around lines 50 and 51 get rid of the data race because the threads are using
mutual exclusive locks to control their accesses to the primes[] array. However, the program
is still incorrect. Two threads might update the same element of primes[] using the same
value of total, and some elements of primes[] might not be assigned a value at all.

The second data race, between a read from pflag[] from line 23 and a write to pflag[] from
line 26, is actually a benign race because it does not lead to incorrect results. It is not essential
to fix benign data races.

Fixing Bugs in prime_pthr.c

This section describes how to fix the bug in prime_pthr.c. See “Source Code for
prime_pthr.c” on page 17 for a complete file listing.

Use a single mutex to remove the data race on prime[] at line 44, as well as the data race on
total at line 45.

The data race between the write to i on line 60 and the read from the same memory location
(named *arg) on line 40, as well as the data race on pflag[] on line 27, reveal a problem
in the shared access to the variable i by different threads. The initial thread in prime_pthr.c
creates the child threads in a loop in lines 60-62, and dispatches them to work on the function
work(). The loop index i is passed to work() by address. Since all threads access the same
memory location for i, the value of i for each thread will not remain unique, but will change
as the initial thread increments the loop index. As different threads use the same value of i,
the data races occur. One way to fix the problem is to pass i to work() by value, instead of by
address.

The following code is the corrected version of prime_pthr.c:

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)prime_pthr_fixed.c 1.3 (Oracle) 10/03/26

 4 */

 5

 6 #include <stdio.h>

Diagnosing the Cause of a Data Race

Chapter 2 • Data Race Tutorial 33

 7 #include <math.h>

 8 #include <pthread.h>

 9

 10 #define THREADS 4

 11 #define N 10000

 12

 13 int primes[N];

 14 int pflag[N];

 15 int total = 0;

 16 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

 17

 18 int is_prime(int v)

 19 {

 20 int i;

 21 int bound = floor(sqrt(v)) + 1;

 22

 23 for (i = 2; i < bound; i++) {

 24 /* no need to check against known composites */

 25 if (!pflag[i])

 26 continue;

 27 if (v % i == 0) {

 28 pflag[v] = 0;

 29 return 0;

 30 }

 31 }

 32 return (v > 1);

 33 }

 34

 35 void *work(void *arg)

 36 {

 37 int start;

 38 int end;

 39 int i;

 40

 41 start = (N/THREADS) * ((int)arg) ;

 42 end = start + N/THREADS;

 43 for (i = start; i < end; i++) {

 44 if (is_prime(i)) {

 45 pthread_mutex_lock(&mutex);

 46 primes[total] = i;

 47 total++;

 48 pthread_mutex_unlock(&mutex);

 49 }

 50 }

 51 return NULL;

 52 }

 53

 54 int main(int argn, char **argv)

 55 {

 56 int i;

 57 pthread_t tids[THREADS-1];

 58

 59 for (i = 0; i < N; i++) {

 60 pflag[i] = 1;

False Positives

34 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 61 }

 62

 63 for (i = 0; i < THREADS-1; i++) {

 64 pthread_create(&tids[i], NULL, work, (void *)i);

 65 }

 66

 67 i = THREADS-1;

 68 work((void *)i);

 69

 70 for (i = 0; i < THREADS-1; i++) {

 71 pthread_join(tids[i], NULL);

 72 }

 73

 74 printf("Number of prime numbers between 2 and %d: %d\n",

 75 N, total);

 76

 77 return 0;

 78 }

False Positives
Occasionally, Thread Analyzer might report data races that have not actually occurred in
the program. These are called false positives. In most cases, false positives are caused by
user-defined synchronizations or by memory that is recycled by different threads. For more
information, see “User-Defined Synchronizations” on page 34 and “Memory That is
Recycled by Different Threads” on page 35.

User-Defined Synchronizations
Thread Analyzer can recognize most standard synchronization APIs and constructs provided by
OpenMP, POSIX threads, and Oracle Solaris threads. However, the tool cannot recognize user-
defined synchronizations, and might report false positive data races if your code contains such
synchronizations.

Note - In order to avoid reporting this kind of false positive data race, Thread Analyzer provides
a set of APIs that can be used to notify the tool when user-defined synchronizations are
performed. See “Thread Analyzer User APIs” on page 69 for more information.

To illustrate why you might need to use the APIs, consider the following. Thread Analyzer
cannot recognize implementation of locks using CAS instructions, post and wait operations
using busy-waits, and so on. Here is a typical example of a class of false positives where the
program employs a common way of using POSIX thread condition variables:

/* Initially ready_flag is 0 */

/* Thread 1: Producer */

False Positives

Chapter 2 • Data Race Tutorial 35

100 data = ...

101 pthread_mutex_lock (&mutex);

102 ready_flag = 1;

103 pthread_cond_signal (&cond);

104 pthread_mutex_unlock (&mutex);

...

/* Thread 2: Consumer */

200 pthread_mutex_lock (&mutex);

201 while (!ready_flag) {

202 pthread_cond_wait (&cond, &mutex);

203 }

204 pthread_mutex_unlock (&mutex);

205 ... = data;

The pthread_cond_wait() call is usually made within a loop that tests the predicate to protect
against program errors and spurious wake-ups. The test and set of the predicate is often
protected by a mutex lock. In the above code, Thread 1 produces the value for the variable data
at line 100, sets the value of ready_flag to one at line 102 to indicate that the data has been
produced, and then calls pthread_cond_signal() to wake up the consumer thread, Thread
2. Thread 2 tests the predicate (!ready_flag) in a loop. When it finds that the flag is set, it
consumes the data at line 205.

The write of ready_flag at line 102 and read of ready_flag at line 201 are protected by the
same mutex lock, so there is no data race between the two accesses and the tool recognizes that
correctly.

The write of data at line 100 and the read of data at line 205 are not protected by mutex
locks. However, in the program logic, the read at line 205 always happens after the write at
line 100 because of the flag variable ready_flag. Consequently, there is no data race between
these two accesses to data. However, the tool reports that there is a data race between the
two accesses if the call to pthread_cond_wait() (line 202) is actually not called at run time.
If line 102 is executed before line 201 is ever executed, then when line 201 is executed, the
loop entry test fails and line 202 is skipped. The tool monitors pthread_cond_signal()
calls and pthread_cond_wait() calls and can pair them to derive synchronization. When the
pthread_cond_wait() at line 202 is not called, the tool does not know that the write at line
100 is always executed before the read at line 205. Therefore, it considers them as executed
concurrently and reports a data race between them.

The libtha(3C) man page and “Thread Analyzer User APIs” on page 69 explain how to
use the APIs to avoid reports of this kind of false positive data race.

Memory That is Recycled by Different Threads

Some memory management routines recycle memory that is freed by one thread for use by
another thread. Thread Analyzer is sometimes not able to recognize that the life spans of the
same memory location used by different threads do not overlap. When this happens, the tool

Benign Data Races

36 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

might report a false positive data race. The following example illustrates this kind of false
positive.

/*----------*/ /*----------*/

/* Thread 1 */ /* Thread 2 */

/*----------*/ /*----------*/

 ptr1 = mymalloc(sizeof(data_t));

 ptr1->data = ...

 ...

 myfree(ptr1);

 ptr2 = mymalloc(sizeof(data_t));

 ptr2->data = ...

 ...

 myfree(ptr2);

Thread 1 and Thread 2 execute concurrently. Each thread allocates a chunk of memory that
is used as its private memory. The routine mymalloc() might supply the memory freed by a
previous call to myfree(). If Thread 2 calls mymalloc() before Thread 1 calls myfree(), then
ptr1 and ptr2 get different values and there is no data race between the two threads. However,
if Thread 2 calls mymalloc() after Thread 1 calls myfree(), then ptr1 and ptr2 might have the
same value. There is no data race because Thread 1 no longer accesses that memory. However,
if the tool does not know mymalloc() is recycling memory, it reports a data race between the
write of ptr1 data and the write of ptr2 data. This kind of false positive often happens in
C++ applications when the C++ runtime library recycles memory for temporary variables.
It also often happens in user applications that implement their own memory management
routines. Currently, Thread Analyzer is able to recognize memory allocation and free operations
performed with the standard malloc(), calloc(), and realloc() interfaces.

Benign Data Races

Some multithreaded applications intentionally enable data races in order to get better
performance. A benign data race is an intentional data race whose existence does not affect the
correctness of the program. The following examples demonstrate benign data races.

Note - In addition to benign data races, a large class of applications enable data races because
they rely on lock-free and wait-free algorithms which are difficult to design correctly. Thread
Analyzer can help determine the locations of data races in these applications.

A Program for Finding Primes

The threads in prime_omp.c check whether an integer is a prime number by executing the
function is_prime().

Benign Data Races

Chapter 2 • Data Race Tutorial 37

 16 int is_prime(int v)

 17 {

 18 int i;

 19 int bound = floor(sqrt(v)) + 1;

 20

 21 for (i = 2; i < bound; i++) {

 22 /* no need to check against known composites */

 23 if (!pflag[i])

 24 continue;

 25 if (v % i == 0) {

 26 pflag[v] = 0;

 27 return 0;

 28 }

 29 }

 30 return (v > 1);

 31 }

Thread Analyzer reports that there is a data race between the write to pflag[] on line 26
and the read of pflag[] on line 23. However, this data race is benign as it does not affect the
correctness of the final result. At line 23, a thread checks whether or not pflag[i], for a given
value of i is equal to zero. If pflag[i] is equal to zero, that means that i is a known composite
number (in other words, i is known to be non-prime). Consequently, there is no need to check
whether or not v is divisible by i; you only need to check whether or not v is divisible by some
prime number. Therefore, if pflag[i] is equal to zero, the thread continues to the next value of
i. If pflag[i] is not equal to zero and v is divisible by i, the thread assigns zero to pflag[v] to
indicate that v is not a prime number.

It does not matter, from a correctness point of view, if multiple threads check the same
pflag[] element and write to it concurrently. The initial value of a pflag[] element is one.
When the threads update that element, they assign it the value zero. That is, the threads store
zero in the same bit in the same byte of memory for that element. On current architectures, it
is safe to assume that those stores are atomic. This means that, when that element is read by a
thread, the value read is either one or zero. If a thread checks a given pflag[] element (line
23) before it has been assigned the value zero, it then executes lines 25–28. If, in the meantime,
another thread assigns zero to that same pflag[] element (line 26), the final result is not
changed. Essentially, this means that the first thread executed lines 25–28 unnecessarily, but the
final result is the same.

A Program that Verifies Array-Value Types

A group of threads call check_bad_array() concurrently to check whether any element of array
data_array is “bad”. Each thread checks a different section of the array. If a thread finds that
an element is bad, it sets the value of a global shared variable is_bad to true.

20 volatile int is_bad = 0;

 ...

Benign Data Races

38 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 100 /*

 101 * Each thread checks its assigned portion of data_array, and sets

 102 * the global flag is_bad to 1 once it finds a bad data element.

 103 */

 104 void check_bad_array(volatile data_t *data_array, unsigned int thread_id)

 105 {

 106 int i;

 107 for (i=my_start(thread_id); i<my_end(thread_id); i++) {

 108 if (is_bad)

 109 return;

 110 else {

 111 if (is_bad_element(data_array[i])) {

 112 is_bad = 1;

 113 return;

 114 }

 115 }

 116 }

 117 }

There is a data race between the read of is_bad on line 108 and the write to is_bad on line 112.
However, the data race does not affect the correctness of the final result.

The initial value of is_bad is zero. When the threads update is_bad, they assign it the value
one. That is, the threads store one in the same bit in the same byte of memory for is_bad. On
current architectures, it is safe to assume that those stores are atomic. Therefore, when is_bad is
read by a thread, the value read will either be zero or one. If a thread checks is_bad (line 108)
before it has been assigned the value one, then it continues executing the for loop. If, in the
meantime, another thread has assigned the value one to is_bad (line 112), that does not change
the final result. It just means that the thread executed the for loop longer than necessary.

A Program Using Double-Checked Locking

A singleton ensures that only one object of a certain type exists throughout the program.
Double-checked locking is a common, efficient way to initialize a singleton in multithreaded
applications. The following code illustrates such an implementation.

100 class Singleton {

101 public:

102 static Singleton* instance();

103 ...

104 private:

105 static Singleton* ptr_instance;

106 };

107

108 Singleton* Singleton::ptr_instance = 0;

...

200 Singleton* Singleton::instance() {

201 Singleton *tmp;

Benign Data Races

Chapter 2 • Data Race Tutorial 39

202 if (ptr_instance == 0) {

203 Lock();

204 if (ptr_instance == 0) {

205 tmp = new Singleton;

206

207 /* Make sure that all writes used to construct new

208 Singleton have been completed. */

209 memory_barrier();

210

211 /* Update ptr_instance to point to new Singleton. */

212 ptr_instance = tmp;

213

214 }

215 Unlock();

216 }

217 return ptr_instance;

The read of ptr_instance on line 202 is intentionally not protected by a lock. This makes
the check to determine whether or not the Singleton has already been instantiated in a
multithreaded environment more efficient. Notice that there is a data race on variable
ptr_instance between the read on line 202 and the write on line 212, but the program works
correctly. However, writing a correct program that enables data races requires extra care. For
example, in the above double-checked-locking code, the call to memory_barrier() at line 209
is used to ensure that ptr_instance is not seen to be non-null by the threads until all writes to
construct the Singleton have been completed.

40 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Chapter 3 • Deadlock Tutorial 41

 3 ♦ ♦ ♦ C H A P T E R 3

Deadlock Tutorial

This tutorial explains how to use Thread Analyzer to detect potential deadlocks and actual
deadlocks in your multithreaded program.
The tutorial covers the following topics:

■ “About Deadlocks” on page 41
■ “Getting the Deadlock Tutorial Source Files” on page 42
■ “The Dining Philosophers Scenario” on page 44
■ “How to Use Thread Analyzer to Find Deadlocks” on page 48
■ “Understanding the Deadlock Experiment Results” on page 51
■ “Fixing the Deadlocks and Understanding False Positives” on page 58

About Deadlocks

The term deadlock describes a condition in which two or more threads are blocked forever
because they are waiting for each other. There are many causes of deadlocks such as erroneous
program logic and inappropriate use of synchronizations such as locks and barriers. This tutorial
focuses on deadlocks that are caused by the inappropriate use of mutexes, or mutual exclusion
locks. This type of deadlock is commonly encountered in multithreaded applications.
A process with two or more threads can enter deadlock when the following three conditions
hold:

■ Threads that are already holding locks request new locks
■ The requests for new locks are made concurrently
■ Two or more threads form a circular chain in which each thread waits for a lock which is

held by the next thread in the chain

Here is a simple example of a deadlock condition:

■ Thread 1 holds lock A and requests lock B
■ Thread 2 holds lock B and requests lock A

A deadlock can be of two types: A potential deadlock or an actual deadlock and they are
distinguished as follows:

Getting the Deadlock Tutorial Source Files

42 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

■ A potential deadlock does not necessarily occur in a given run, but can occur in any
execution of the program depending on the scheduling of threads and the timing of lock
requests by the threads.

■ An actual deadlock is one that occurs during the execution of a program. An actual deadlock
causes the threads involved to hang, but might cause the whole process to hang.

Getting the Deadlock Tutorial Source Files
You can download the source files used in this tutorial from the Download area (http://
www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html) of
the Oracle Solaris Studio developer portal.

After you download and unpack the sample files, you can find the samples in the
SolarisStudioSampleApplications/ThreadAnalyzer directory. The samples are located in
the din_philo subdirectory. The din_philo directory includes a Makefile and a DEMO file of
instructions, but this tutorial does not follow those instructions or use the Makefile. Instead,
you are instructed to execute commands individually.

To follow the tutorial, you can copy the din_philo.c file from the
SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory to a different
directory, or you can create your own file and copy the code from the following code listing.

The din_philo.c sample program which simulates the dining-philosophers problem is a C
program that uses POSIX threads. The program can exhibit both potential and actual deadlocks.

Source Code Listing for din_philo.c
The source code for din_philo.c is shown below:

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)din_philo.c 1.4 (Oracle) 10/03/26

 4 */

 5

 6 #include <pthread.h>

 7 #include <stdio.h>

 8 #include <unistd.h>

 9 #include <stdlib.h>

 10 #include <errno.h>

 11 #include <assert.h>

 12

 13 #define PHILOS 5

 14 #define DELAY 5000

 15 #define FOOD 100

 16

 17 void *philosopher (void *id);

http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html

Getting the Deadlock Tutorial Source Files

Chapter 3 • Deadlock Tutorial 43

 18 void grab_chopstick (int,

 19 int,

 20 char *);

 21 void down_chopsticks (int,

 22 int);

 23 int food_on_table ();

 24

 25 pthread_mutex_t chopstick[PHILOS];

 26 pthread_t philo[PHILOS];

 27 pthread_mutex_t food_lock;

 28 int sleep_seconds = 0;

 29

 30

 31 int

 32 main (int argn,

 33 char **argv)

 34 {

 35 int i;

 36

 37 if (argn == 2)

 38 sleep_seconds = atoi (argv[1]);

 39

 40 pthread_mutex_init (&food_lock, NULL);

 41 for (i = 0; i < PHILOS; i++)

 42 pthread_mutex_init (&chopstick[i], NULL);

 43 for (i = 0; i < PHILOS; i++)

 44 pthread_create (&philo[i], NULL, philosopher, (void *)i);

 45 for (i = 0; i < PHILOS; i++)

 46 pthread_join (philo[i], NULL);

 47 return 0;

 48 }

 49

 50 void *

 51 philosopher (void *num)

 52 {

 53 int id;

 54 int i, left_chopstick, right_chopstick, f;

 55

 56 id = (int)num;

 57 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

 58 right_chopstick = id;

 59 left_chopstick = id + 1;

 60

 61 /* Wrap around the chopsticks. */

 62 if (left_chopstick == PHILOS)

 63 left_chopstick = 0;

 64

 65 while (f = food_on_table ()) {

 66

 67 /* Thanks to philosophers #1 who would like to take a nap

 68 * before picking up the chopsticks, the other philosophers

 69 * may be able to eat their dishes and not deadlock.

 70 */

 71 if (id == 1)

The Dining Philosophers Scenario

44 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 72 sleep (sleep_seconds);

 73

 74 grab_chopstick (id, right_chopstick, "right ");

 75 grab_chopstick (id, left_chopstick, "left");

 76

 77 printf ("Philosopher %d: eating.\n", id);

 78 usleep (DELAY * (FOOD - f + 1));

 79 down_chopsticks (left_chopstick, right_chopstick);

 80 }

 81

 82 printf ("Philosopher %d is done eating.\n", id);

 83 return (NULL);

 84 }

 85

 86 int

 87 food_on_table ()

 88 {

 89 static int food = FOOD;

 90 int myfood;

 91

 92 pthread_mutex_lock (&food_lock);

 93 if (food > 0) {

 94 food--;

 95 }

 96 myfood = food;

 97 pthread_mutex_unlock (&food_lock);

 98 return myfood;

 99 }

100

101 void

102 grab_chopstick (int phil,

103 int c,

104 char *hand)

105 {

106 pthread_mutex_lock (&chopstick[c]);

107 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

108 }

109

110 void

111 down_chopsticks (int c1,

112 int c2)

113 {

114 pthread_mutex_unlock (&chopstick[c1]);

115 pthread_mutex_unlock (&chopstick[c2]);

116 }

The Dining Philosophers Scenario

The dining philosophers scenario is a classic which is structured as follows. Five philosophers,
numbered zero to four, are sitting at a round table, thinking. As time passes, different
individuals become hungry and decide to eat. There is a platter of noodles on the table but each

The Dining Philosophers Scenario

Chapter 3 • Deadlock Tutorial 45

philosopher only has one chopstick to use. In order to eat, they must share chopsticks. The
chopstick to the right of each philosopher (as they sit facing the table) has the same number as
that philosopher.

FIGURE 3-1 Dining Philosophers

Each philosopher first reaches for his own chopstick which is the one with his number. When he
has his assigned chopstick, he reaches for the chopstick assigned to his neighbor. After he has
both chopsticks, he can eat. After eating, he returns the chopsticks to their original positions on
the table, one on either side. The process is repeated until there are no more noodles.

How the Philosophers Can Deadlock

An actual deadlock occurs when every philosopher is holding his own chopstick and waiting for
the one from his neighbor to become available:

■ Philosopher 0 is holding chopstick 0, but is waiting for chopstick 1
■ Philosopher 1 is holding chopstick 1, but is waiting for chopstick 2
■ Philosopher 2 is holding chopstick 2, but is waiting for chopstick 3
■ Philosopher 3 is holding chopstick 3, but is waiting for chopstick 4
■ Philosopher 4 is holding chopstick 4, but is waiting for chopstick 0

The Dining Philosophers Scenario

46 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

In this situation, nobody can eat and the philosophers are in a deadlock. Run the program a
number of times. You will see that the program might hang sometimes, and run to completion at
other times. The program might hang as shown in the following sample run:

prompt% cc din_philo.c

prompt% a.out
Philosopher 0 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 2: got left chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 4 is done thinking and now ready to eat.

Philosopher 4: got right chopstick 4

Philosopher 2: eating.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 1 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 3: got right chopstick 3

Philosopher 2: got right chopstick 2

Philosopher 1: got right chopstick 1

(hang)

Execution terminated by pressing CTRL-C

Introducing a Sleep Time for Philosopher 1

One way to avoid deadlocks is for Philosopher 1 to wait before reaching for his chopstick. In
terms of the code, he can be put to sleep for a specified amount of time (sleep_seconds) before
reaching for his chopstick. If he sleeps long enough, then the program might finish without
any actual deadlock. You can specify the number of seconds he sleeps as an argument to the
executable. If you do not specify an argument, the philosopher does not sleep.

The following pseudo-code shows the logic for each philosopher:

 while (there is still food on the table)

 {

 if (sleep argument is specified and I am philosopher #1)

 {

 sleep specified amount of time

 }

 grab right chopstick

 grab left chopstick

 eat some food

 put down left chopstick

 put down right chopstick

 }

The Dining Philosophers Scenario

Chapter 3 • Deadlock Tutorial 47

The following listing shows one run of the program in which Philosopher 1 waits 30 seconds
before reaching for his chopstick. The program runs to completion and all five philosophers
finish eating.

% a.out 30
Philosopher 0 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 4 is done thinking and now ready to eat.

Philosopher 4: got right chopstick 4

Philosopher 3 is done thinking and now ready to eat.

Philosopher 3: got right chopstick 3

Philosopher 0: eating.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 1 is done thinking and now ready to eat.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

...

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

How to Use Thread Analyzer to Find Deadlocks

48 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0 is done eating.

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 4 is done eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 3 is done eating.

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 2 is done eating.

Philosopher 1: got right chopstick 1

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 1 is done eating.

%

Execution terminated normally

Try running the program several times and specifying different sleep arguments. What happens
when Philosopher 1 waits only a short time before reaching for his chopstick? How about when
he waits longer? Try specifying different sleep arguments to the executable a.out. Rerun the
program with or without a sleep argument several times. Sometimes the program hangs, while it
runs to completion at other times. Whether the program hangs or not depends on the scheduling
of threads and the timings of requests for locks by the threads.

How to Use Thread Analyzer to Find Deadlocks
You can use Thread Analyzer to check for potential and actual deadlocks in your program.
Thread Analyzer follows the same collect-analyze model that Oracle Solaris Studio
Performance Analyzer uses.
There are three steps involved in using Thread Analyzer:

■ Compile the source code.
■ Create a deadlock-detection experiment.
■ Examine the experiment results.

How to Use Thread Analyzer to Find Deadlocks

Chapter 3 • Deadlock Tutorial 49

Compile the Source Code

Compile your code and be sure to specify -g. Do not specify a high-level of optimization
because information such as line numbers and call stacks, might be reported incorrectly at a
high optimization level. Compile an OpenMP program with -g -xopenmp=noopt, and compile a
POSIX threads program with just -g -mt.

See cc(1), CC(1), or f95(1) man pages for more information about these compiler options.

For this tutorial, compile the code using the following command:

% cc -g -o din_philo din_philo.c

Create a Deadlock-Detection Experiment

Use the collect command with the -r deadlock option. This option creates a deadlock-
detection experiment during the execution of the program.

For this tutorial, create a deadlock-detection experiment named din_philo.1.er using the
following command:

% collect -r deadlock -o din_philo.1.er din_philo

The collect command accepts the following options, which are useful when creating a
deadlock-detection experiment:

terminate If an unrecoverable error is detected, terminate the program.

abort If an unrecoverable error is detected, terminate the program with a core
dump.

-continue If an unrecoverable error is detected, enable the program to continue.

The default behavior is terminate.

You can use any of the previous options with the collect command to get the behavior
you want. For example, to cause the program to terminate with a core dump when an actual
deadlock occurs use the following collect command.

% collect -r deadlock,abort -o din_philo.1.er din_philo

To cause the program to hang when an actual deadlock occurs, use the following collect
command:

% collect -r deadlock,continue -o din_philo.1.er din_philo

How to Use Thread Analyzer to Find Deadlocks

50 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

You can increase the likelihood of detecting deadlocks by creating several deadlock-detection
experiments. Use a different number of threads and different input data for the various
experiments. For example, in the din_philo.c code, you could change the values in the
following lines:

 13 #define PHILOS 5

 14 #define DELAY 5000

 15 #define FOOD 100

You could then compile as before and collect another experiment.

See collect(1) and collector(1) man pages for more information.

Examine the Deadlock-Detection Experiment
You can examine a deadlock-detection experiment with Thread Analyzer, Performance
Analyzer, or the er_print utility. Both Thread Analyzer and Performance Analyzer present
a GUI interface; Thread Analyzer presents a simplified set of default views, but is otherwise
identical to Performance Analyzer.

Using Thread Analyzer to View the Deadlock-Detection
Experiment

To start Thread Analyzer and open the din_philo.1.er experiment , type the following
command:

% tha din_philo.1.er

Thread Analyzer has a menu bar, a tool bar, and vertical navigation bar on the left that enables
you to select data views.
The following data views are shown by default when you open an experiment that was collected
for deadlock detection:

■ Overview screen shows the metrics overview of the loaded experiments.
■ Deadlocks view shows a list of potential and actual deadlocks that Thread Analyzer

detected in the program. This view is selected by default. The threads involved for each
deadlock are shown. These threads form a circular chain where each thread holds a lock and
requests another lock that the next thread in the chain holds.
When you select a deadlock, the Deadlock Details window in the right panel shows detailed
information about the threads involved.

■ Dual Source view shows the source location where the thread held a lock, and the source
location where the same thread requested a lock. The source lines where the thread held and
requested locks are highlighted. To display this view, select a thread in the circular chain on
the Deadlocks view and then click on the Dual Source view.

Understanding the Deadlock Experiment Results

Chapter 3 • Deadlock Tutorial 51

■ Experiments view shows the load objects in the experiment and lists any error and warning
messages.

You can choose to see other views with the More Views options menu.

Using er_print to View the Deadlock-Detection Experiment

The er_print utility presents a command-line interface. You can use the er_print utility in an
interactive session and specify sub-commands during the session. You can also use command-
line options to specify sub-commands non-interactively.

The following sub-commands are useful for examining deadlocks with the er_print utility:

■ -deadlocks
This option reports any potential and actual deadlocks detected in the experiment. Specify
deadlocks at the (er_print) prompt or -deadlocks on the er_print command line.

■ -ddetail deadlock-ID
This option returns detailed information about the deadlock with the specified deadlock-ID.
Specify ddetail at the (er_print) prompt or -ddetail on the er_print command line. If
the specified deadlock-ID is all, then detailed information about all deadlocks is displayed.
Otherwise, specify a single deadlock number such as 1 for the first deadlock.

■ -header
This option displays descriptive information about the experiment and reports any errors or
warnings. Specify header at the (er_print) prompt or -header on the command line.

Refer to the collect(1), tha(1), analyzer(1), and er_print(1) man pages for more
information.

Understanding the Deadlock Experiment Results

This section explains how to use Thread Analyzer to investigate the deadlocks in the dining
philosopher program.

Examining Runs That Deadlock

The following listing shows a run of the dining philosophers program that results in an actual
deadlock.

% cc -g -o din_philo din_philo.c

% collect -r deadlock -o din_philo.1.er din_philo

Understanding the Deadlock Experiment Results

52 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Creating experiment database din_philo.1.er ...

Philosopher 1 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 0 is done thinking and now ready to eat.

Philosopher 1: got right chopstick 1

Philosopher 3: got right chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 1: got left chopstick 2

Philosopher 3: got left chopstick 4

Philosopher 4 is done thinking and now ready to eat.

Philosopher 1: eating.

Philosopher 3: eating.

Philosopher 3: got right chopstick 3

Philosopher 4: got right chopstick 4

Philosopher 2: got right chopstick 2

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 1: got right chopstick 1

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 0: got right chopstick 0

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 4: got right chopstick 4

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 3: got right chopstick 3

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 2: got right chopstick 2

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 1: got right chopstick 1

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 0: got right chopstick 0

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

...

Philosopher 4: got right chopstick 4

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 2: got right chopstick 2

Philosopher 3: got right chopstick 3

(hang)

Execution terminated by pressing CTRL-C

Type the following commands to examine the experiment with er_print utility:

% er_print din_philo.1.er

(er_print) deadlocks

Deadlock #1, Potential deadlock

Understanding the Deadlock Experiment Results

Chapter 3 • Deadlock Tutorial 53

 Thread #2

 Lock being held: 0x21380, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x21398, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #3

 Lock being held: 0x21398, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213b0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #4

 Lock being held: 0x213b0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213c8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #5

 Lock being held: 0x213c8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213e0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #6

 Lock being held: 0x213e0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x21380, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

Deadlock #2, Actual deadlock

 Thread #2

 Lock being held: 0x21380, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x21398, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #3

 Lock being held: 0x21398, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213b0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #4

 Lock being held: 0x213b0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213c8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #5

 Lock being held: 0x213c8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213e0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #6

 Lock being held: 0x213e0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x21380, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

The following screen shot shows Thread Analyzer's presentation of the deadlock information.

Understanding the Deadlock Experiment Results

54 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

FIGURE 3-2 Deadlock Detected in din_philo.c

Thread Analyzer reports two deadlocks for din_philo.c, one potential and the other actual. On
closer inspection, you find that the two deadlocks are identical.

The circular chain involved in the deadlock is as follows:

Thread 2: holds lock at address 0x21380, requests lock at address 0x21398
Thread 3: holds lock at address 0x21398, requests lock at address 0x213b0
Thread 4: holds lock at address 0x213b0, requests lock at address 0x213c8
Thread 5: holds lock at address 0x213c8, requests lock at address 0x213e0
Thread 6: holds lock at address 0x213e0, requests lock at address 0x21380

Select the first thread in the chain (Thread #2) and then click on the Dual Source view to see
where in the source code Thread #2 acquired the lock at address 0x21380, and where in the
source code it requested the lock at address 0x21398.

The following screen shot shows the Dual Source view for Thread #2. The top half of
the screen shot shows that Thread #2 acquired the lock at address 0x21380 by calling
pthread_mutex_lock() on line 105. The bottom half of the screen shot shows that the same
thread requested the lock at address 0x21398 by calling pthread_mutex_lock() on line 105.

Understanding the Deadlock Experiment Results

Chapter 3 • Deadlock Tutorial 55

Each of the two calls to pthread_mutex_lock() used a different lock as the argument. In
general, the lock-acquire and lock-request operations might not be on the same source line.

The default metric (Exclusive Deadlocks metric) is shown to the left of each source line in the
screen shot. This metric gives a count of the number of times a lock-acquire or lock-request
operation, which was involved in a deadlock, was reported on that source line. Only source
lines that are part of a deadlock chain would have a value for this metric that is larger than zero.

FIGURE 3-3 Potential Deadlock in din_philo.c

Examining Runs That Complete Despite Deadlock
Potential

The dining philosophers program can avoid actual deadlock and terminate normally if you
supply a large enough sleep argument. Normal termination, however, does not mean the
program is safe from deadlocks. It simply means that the locks that were held and requested
did not form a deadlock chain during a given run. If the timing changes in other runs, an actual
deadlock can occur. The following listing shows a run of the dining philosophers program that
terminates normally because of the 40 second sleep time. However, the er_print utility and
Thread Analyzer report potential deadlocks.

Understanding the Deadlock Experiment Results

56 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

% cc -g -o din_philo_pt din_philo.c

% collect -r deadlock -o din_philo_pt.1.er din_philo_pt 40
Creating experiment database tha.2.er ...

Philosopher 0 is done thinking and now ready to eat.

Philosopher 2 is done thinking and now ready to eat.

Philosopher 1 is done thinking and now ready to eat.

Philosopher 3 is done thinking and now ready to eat.

Philosopher 2: got right chopstick 2

Philosopher 3: got right chopstick 3

Philosopher 0: got right chopstick 0

Philosopher 4 is done thinking and now ready to eat.

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 0: got right chopstick 0

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

...

Philosopher 4: got right chopstick 4

Philosopher 3: got right chopstick 3

Philosopher 2: got right chopstick 2

Philosopher 4: got left chopstick 0

Philosopher 4: eating.

Philosopher 4 is done eating.

Philosopher 3: got left chopstick 4

Philosopher 3: eating.

Philosopher 0: got right chopstick 0

Philosopher 0: got left chopstick 1

Philosopher 0: eating.

Philosopher 3 is done eating.

Philosopher 2: got left chopstick 3

Philosopher 2: eating.

Philosopher 0 is done eating.

Philosopher 2 is done eating.

Philosopher 1: got right chopstick 1

Philosopher 1: got left chopstick 2

Philosopher 1: eating.

Philosopher 1 is done eating.

%

Execution terminated normally

Type the following commands shown at the prompts to examine the experiment with er_print
utility:

% er_print din_philo_pt.1.er

(er_print) deadlocks
Deadlock #1, Potential deadlock

 Thread #2

 Lock being held: 0x21388, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

Understanding the Deadlock Experiment Results

Chapter 3 • Deadlock Tutorial 57

 Lock being requested: 0x213a0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #3

 Lock being held: 0x213a0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213b8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #4

 Lock being held: 0x213b8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213d0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #5

 Lock being held: 0x213d0, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x213e8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Thread #6

 Lock being held: 0x213e8, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

 Lock being requested: 0x21388, at: grab_chopstick + 0x00000024, line 105 in

 "din_philo.c"

Deadlocks List Summary: Experiment: din_philo_pt.1.er Total Deadlocks: 1

The following screen shot shows the potential deadlock information in Thread Analyzer.

Fixing the Deadlocks and Understanding False Positives

58 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

FIGURE 3-4 Potential deadlock in din_philo.c

Fixing the Deadlocks and Understanding False Positives
One way to remove potential and actual deadlocks is to use a system of tokens so that a
philosopher must receive a token before attempting to eat. The number of available tokens
must be less than the number of philosophers at the table. After a philosopher receives a token,
he can attempt to eat in accordance with the rules of the table. After eating, each philosopher
returns the token and repeats the process. The following pseudo-code shows the logic for each
philosopher when using the token system.

 while (there is still food on the table)

 {

 get token

 grab right fork

 grab left fork

 eat some food

 put down left fork

 put down right fork

 return token

 }

The following sections detail two different implementations for the system of tokens.

Fixing the Deadlocks and Understanding False Positives

Chapter 3 • Deadlock Tutorial 59

Regulating the Philosophers With Tokens

The following listing shows the fixed version of the dining philosophers program that uses the
token system. This solution incorporates four tokens, one less than the number of diners, so no
more than four philosophers can attempt to eat at the same time. This version of the program is
called din_philo_fix1.c:

Tip - If you downloaded the sample applications, you can copy the din_philo_fix1.c file from
the SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory.

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)din_philo_fix1.c 1.3 (Oracle) 10/03/26

 4 */

 5

 6 #include <pthread.h>

 7 #include <stdio.h>

 8 #include <unistd.h>

 9 #include <stdlib.h>

 10 #include <errno.h>

 11 #include <assert.h>

 12

 13 #define PHILOS 5

 14 #define DELAY 5000

 15 #define FOOD 100

 16

 17 void *philosopher (void *id);

 18 void grab_chopstick (int,

 19 int,

 20 char *);

 21 void down_chopsticks (int,

 22 int);

 23 int food_on_table ();

 24 void get_token ();

 25 void return_token ();

 26

 27 pthread_mutex_t chopstick[PHILOS];

 28 pthread_t philo[PHILOS];

 29 pthread_mutex_t food_lock;

 30 pthread_mutex_t num_can_eat_lock;

 31 int sleep_seconds = 0;

 32 uint32_t num_can_eat = PHILOS - 1;

 33

 34

 35 int

 36 main (int argn,

 37 char **argv)

 38 {

 39 int i;

 40

 41 pthread_mutex_init (&food_lock, NULL);

Fixing the Deadlocks and Understanding False Positives

60 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 42 pthread_mutex_init (&num_can_eat_lock, NULL);

 43 for (i = 0; i < PHILOS; i++)

 44 pthread_mutex_init (&chopstick[i], NULL);

 45 for (i = 0; i < PHILOS; i++)

 46 pthread_create (&philo[i], NULL, philosopher, (void *)i);

 47 for (i = 0; i < PHILOS; i++)

 48 pthread_join (philo[i], NULL);

 49 return 0;

 50 }

 51

 52 void *

 53 philosopher (void *num)

 54 {

 55 int id;

 56 int i, left_chopstick, right_chopstick, f;

 57

 58 id = (int)num;

 59 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

 60 right_chopstick = id;

 61 left_chopstick = id + 1;

 62

 63 /* Wrap around the chopsticks. */

 64 if (left_chopstick == PHILOS)

 65 left_chopstick = 0;

 66

 67 while (f = food_on_table ()) {

 68 get_token ();

 69

 70 grab_chopstick (id, right_chopstick, "right ");

 71 grab_chopstick (id, left_chopstick, "left");

 72

 73 printf ("Philosopher %d: eating.\n", id);

 74 usleep (DELAY * (FOOD - f + 1));

 75 down_chopsticks (left_chopstick, right_chopstick);

 76

 77 return_token ();

 78 }

 79

 80 printf ("Philosopher %d is done eating.\n", id);

 81 return (NULL);

 82 }

 83

 84 int

 85 food_on_table ()

 86 {

 87 static int food = FOOD;

 88 int myfood;

 89

 90 pthread_mutex_lock (&food_lock);

 91 if (food > 0) {

 92 food--;

 93 }

 94 myfood = food;

 95 pthread_mutex_unlock (&food_lock);

Fixing the Deadlocks and Understanding False Positives

Chapter 3 • Deadlock Tutorial 61

 96 return myfood;

 97 }

 98

 99 void

 100 grab_chopstick (int phil,

 101 int c,

 102 char *hand)

 103 {

 104 pthread_mutex_lock (&chopstick[c]);

 105 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

 106 }

 107

 108

 109

 110 void

 111 down_chopsticks (int c1,

 112 int c2)

 113 {

 114 pthread_mutex_unlock (&chopstick[c1]);

 115 pthread_mutex_unlock (&chopstick[c2]);

 116 }

 117

 118

 119 void

 120 get_token ()

 121 {

 122 int successful = 0;

 123

 124 while (!successful) {

 125 pthread_mutex_lock (&num_can_eat_lock);

 126 if (num_can_eat > 0) {

 127 num_can_eat--;

 128 successful = 1;

 129 }

 130 else {

 131 successful = 0;

 132 }

 133 pthread_mutex_unlock (&num_can_eat_lock);

 134 }

 135 }

 136

 137 void

 138 return_token ()

 139 {

 140 pthread_mutex_lock (&num_can_eat_lock);

 141 num_can_eat++;

 142 pthread_mutex_unlock (&num_can_eat_lock);

 143 }

Try compiling this fixed version of the dining philosophers program and running it several
times. The system of tokens limits the number of diners attempting to use the chopsticks and
thus avoids actual and potential deadlocks.

To compile, use the following command:

Fixing the Deadlocks and Understanding False Positives

62 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

% cc -g -o din_philo_fix1 din_philo_fix1.c

To collect an experiment:

% collect -r deadlock -o din_philo_fix1.1.er din_philo_fix1

A False Positive Report

Even when using the system of tokens, Thread Analyzer reports a potential deadlock for this
implementation when none exists. This is a false positive. Consider the following screen shot
which details the potential deadlock.

FIGURE 3-5 False Positive Report of a Potential Deadlock

Select the first thread in the chain (Thread #2) and then click the Dual Source view to see the
source code location in which Thread #2 held the lock at address 0x216a8, and where in the
source code it requested the lock at address 0x216c0. The following figure shows the Dual
Source view for Thread #2.

Fixing the Deadlocks and Understanding False Positives

Chapter 3 • Deadlock Tutorial 63

FIGURE 3-6 False Positive Potential Deadlock's Source

The get_token() function in din_philo_fix1.c uses a while loop to synchronize the threads.
A thread will not leave the while loop until it successfully gets a token (this occurs when
num_can_eat is greater than zero). The while loop limits the number of simultaneous diners
to four. However, the synchronization implemented by the while loop is not recognized by
Thread Analyzer. It assumes that all five philosophers attempt to grab the chopsticks and eat
concurrently, so it reports a potential deadlock. The following section details how to limit the
number of simultaneous diners by using synchronizations that Thread Analyzer recognizes.

An Alternative System of Tokens
The following listing shows an alternative implementation of the system of tokens. This
implementation still uses four tokens, so no more than four diners attempt to eat at the
same time. However, this implementation uses the sem_wait() and sem_post() semaphore
routines to limit the number of eating philosophers. This version of the source file is called
din_philo_fix2.c.

Tip - If you downloaded the sample applications, you can copy the din_philo_fix2.c file from
the SolarisStudioSampleApplications/ThreadAnalyzer/din_philo directory.

Fixing the Deadlocks and Understanding False Positives

64 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

The following listing details din_philo_fix2.c:

 1 /*

 2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.

 3 * @(#)din_philo_fix2.c 1.3 (Oracle) 10/03/26

 4 */

 5

 6 #include <pthread.h>

 7 #include <stdio.h>

 8 #include <unistd.h>

 9 #include <stdlib.h>

 10 #include <errno.h>

 11 #include <assert.h>

 12 #include <semaphore.h>

 13

 14 #define PHILOS 5

 15 #define DELAY 5000

 16 #define FOOD 100

 17

 18 void *philosopher (void *id);

 19 void grab_chopstick (int,

 20 int,

 21 char *);

 22 void down_chopsticks (int,

 23 int);

 24 int food_on_table ();

 25 void get_token ();

 26 void return_token ();

 27

 28 pthread_mutex_t chopstick[PHILOS];

 29 pthread_t philo[PHILOS];

 30 pthread_mutex_t food_lock;

 31 int sleep_seconds = 0;

 32 sem_t num_can_eat_sem;

 33

 34

 35 int

 36 main (int argn,

 37 char **argv)

 38 {

 39 int i;

 40

 41 pthread_mutex_init (&food_lock, NULL);

 42 sem_init(&num_can_eat_sem, 0, PHILOS - 1);

 43 for (i = 0; i < PHILOS; i++)

 44 pthread_mutex_init (&chopstick[i], NULL);

 45 for (i = 0; i < PHILOS; i++)

 46 pthread_create (&philo[i], NULL, philosopher, (void *)i);

 47 for (i = 0; i < PHILOS; i++)

 48 pthread_join (philo[i], NULL);

 49 return 0;

 50 }

 51

 52 void *

Fixing the Deadlocks and Understanding False Positives

Chapter 3 • Deadlock Tutorial 65

 53 philosopher (void *num)

 54 {

 55 int id;

 56 int i, left_chopstick, right_chopstick, f;

 57

 58 id = (int)num;

 59 printf ("Philosopher %d is done thinking and now ready to eat.\n", id);

 60 right_chopstick = id;

 61 left_chopstick = id + 1;

 62

 63 /* Wrap around the chopsticks. */

 64 if (left_chopstick == PHILOS)

 65 left_chopstick = 0;

 66

 67 while (f = food_on_table ()) {

 68 get_token ();

 69

 70 grab_chopstick (id, right_chopstick, "right ");

 71 grab_chopstick (id, left_chopstick, "left");

 72

 73 printf ("Philosopher %d: eating.\n", id);

 74 usleep (DELAY * (FOOD - f + 1));

 75 down_chopsticks (left_chopstick, right_chopstick);

 76

 77 return_token ();

 78 }

 79

 80 printf ("Philosopher %d is done eating.\n", id);

 81 return (NULL);

 82 }

 83

 84 int

 85 food_on_table ()

 86 {

 87 static int food = FOOD;

 88 int myfood;

 89

 90 pthread_mutex_lock (&food_lock);

 91 if (food > 0) {

 92 food--;

 93 }

 94 myfood = food;

 95 pthread_mutex_unlock (&food_lock);

 96 return myfood;

 97 }

 98

 99 void

 100 grab_chopstick (int phil,

 101 int c,

 102 char *hand)

 103 {

 104 pthread_mutex_lock (&chopstick[c]);

 105 printf ("Philosopher %d: got %s chopstick %d\n", phil, hand, c);

 106 }

Fixing the Deadlocks and Understanding False Positives

66 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

 107

 108 void

 109 down_chopsticks (int c1,

 110 int c2)

 111 {

 112 pthread_mutex_unlock (&chopstick[c1]);

 113 pthread_mutex_unlock (&chopstick[c2]);

 114 }

 115

 116

 117 void

 118 get_token ()

 119 {

 120 sem_wait(&num_can_eat_sem);

 121 }

 122

 123 void

 124 return_token ()

 125 {

 126 sem_post(&num_can_eat_sem);

 127 }

This new implementation uses the semaphore num_can_eat_sem to limit the number of
philosophers who can eat at the same time. The semaphore num_can_eat_sem is initialized to
four, one less than the number of philosophers. Before attempting to eat, a philosopher calls
get_token() which in turn calls sem_wait(&num_can_eat_sem). The call to sem_wait()
causes the calling philosopher to wait until the semaphore's value is positive, then changes
the semaphore's value by subtracting one from the value. When a philosopher is done eating,
he calls return_token() which in turn calls sem_post(&num_can_eat_sem). The call to
sem_post() changes the semaphore's value by adding one. Thread Analyzer recognizes the
calls to sem_wait() and sem_post(), and determines that not all philosophers attempt to eat
concurrently.

Note - You must compile din_philo_fix2.c with -lrt to link with the appropriate semaphore
routines.

To compile din_philo_fix2.c, use the following command:

% cc -g -lrt -o din_philo_fix2 din_philo_fix2.c

If you run this new implementation of the program din_philo_fix2 several times, you will find
that it terminates normally each time and does not hang.

To create an experiment on this new binary:

% collect -r deadlock -o din_philo_fix2.1.er din_philo_fix2

You will find that Thread Analyzer does not report any actual or potential deadlocks in the
din_philo_fix2.1.er experiment, as the following figure shows.

Fixing the Deadlocks and Understanding False Positives

Chapter 3 • Deadlock Tutorial 67

FIGURE 3-7 Deadlocks Not Reported in din_philo_fix2.c

See Appendix A, “APIs Recognized by Thread Analyzer” for a listing of the threading and
memory allocation APIs that Thread Analyzer recognizes.

68 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Appendix A • APIs Recognized by Thread Analyzer 69

 A ♦ ♦ ♦ A P P E N D I X A

APIs Recognized by Thread Analyzer

Thread Analyzer can recognize most standard synchronization APIs and constructs provided
by OpenMP, POSIX threads, and Solaris threads. However, the tool cannot recognize user-
defined synchronizations, and might report false positive data races if you employ such
synchronizations. For example, the tool cannot recognize spin locking that is implemented
through hand-coded assembly-language code.

Thread Analyzer User APIs

If your code includes user-defined synchronizations, insert user APIs supported by Thread
Analyzer into the program to identify those synchronizations. This identification enables Thread
Analyzer to recognize the synchronizations and reduce the number of false positives. Thread
Analyzer user APIs are defined in libtha.so and are listed below.

TABLE A-1 Thread Analyzer User APIs

Routine Name Description

tha_notify_acquire_lock() This routine can be called immediately before the program tries to
acquire a user-defined lock.

tha_notify_lock_acquired() This routine can be called immediately after a user-defined lock is
successfully acquired.

tha_notify_acquire_writelock() This routine can be called immediately before the program tries to
acquire a user-defined read/write lock in write mode.

tha_notify_writelock_acquired() This routine can be called immediately after a user-defined read/write
lock is successfully acquired in write mode.

tha_notify_acquire_readlock() This routine can be called immediately before the program tries to
acquire a user-defined read/write lock in read mode.

tha_notify_readlock_acquired() This routine can be called immediately after a user-defined read/write
lock is successfully acquired in read mode.

tha_notify_release_lock() This routine can be called immediately before a user-defined lock or
read/write lock is to be released.

tha_notify_lock_released() This routine can be called immediately after a user-defined lock or
read/write lock is successfully released.

tha_notify_sync_post_begin() This routine can be called immediately before a user-defined post
synchronization is performed.

Thread Analyzer User APIs

70 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

Routine Name Description

tha_notify_sync_post_end() This routine can be called immediately after a user-defined post
synchronization is performed.

tha_notify_sync_wait_begin() This routine can be called immediately before a user-defined wait
synchronization is performed.

tha_notify_sync_wait_end() This routine can be called immediately after a user-defined wait
synchronization is performed.

tha_check_datarace_mem() This routine instructs Thread Analyzer to monitor or ignore accesses
to a specified block of memory when doing data race detection.

tha_check_datarace_thr() This routine instructs Thread Analyzer to monitor or ignore memory
accesses by one or more threads when doing data race detection.

A C/C++ version and a Fortran version of the APIs are provided. Each API call takes a single
argument id, whose value should uniquely identify the synchronization object.

In the C/C++ version of the APIs, the type of the argument is uintptr_t, which is 4
bytes long in 32-bit mode and 8 bytes long in 64-bit mode. You need to add #include
<tha_interface.h> to your C/C++ source file when calling any of the APIs.

In the Fortran version of the APIs, the type of the argument is integer of kind tha_sobj_kind
which is 8-bytes long in both 32-bit and 64–bit mode. You need to add #include
"tha_finterface.h" to your Fortran source file when calling any of the APIs.

To uniquely identify a synchronization object, the argument id should have a different value for
each different synchronization object. One way to do this is to use the value of the address of
the synchronization object as the id. The following code example shows how to use the API to
avoid a false positive data race.

EXAMPLE A-1 Example Using Thread Analyzer APIs to Avoid False Positive Data Races

include <tha_interface.h>

...

/* Initially, the ready_flag value is zero */

...

/* Thread 1: Producer */

100 data = ...

101 pthread_mutex_lock (&mutex);

 tha_notify_sync_post_begin ((uintptr_t) &ready_flag);

102 ready_flag = 1;

 tha_notify_sync_post_end ((uintptr_t) &ready_flag);

103 pthread_cond_signal (&cond);

104 pthread_mutex_unlock (&mutex);

/* Thread 2: Consumer */

200 pthread_mutex_lock (&mutex);

 tha_notify_sync_wait_begin ((uintptr_t) &ready_flag);

201 while (!ready_flag) {

Other Recognized APIs

Appendix A • APIs Recognized by Thread Analyzer 71

202 pthread_cond_wait (&cond, &mutex);

203 }

 tha_notify_sync_wait_end ((uintptr_t) &ready_flag);

204 pthread_mutex_unlock (&mutex);

205 ... = data;

For more information on the user APIs, see the libtha(3) man page.

Other Recognized APIs
The following sections detail the threading APIs which Thread Analyzer recognizes.

POSIX Thread APIs
See the “Multithreaded Programming Guide” in the Oracle Solaris documentation for more
information about these APIs.

pthread_detach()

pthread_mutex_init()

pthread_mutex_lock()

pthread_mutex_timedlock()

pthread_mutex_reltimedlock_np()

pthread_mutex_timedlock()

pthread_mutex_trylock()

pthread_mutex_unlock()

pthread_rwlock_rdlock()

pthread_rwlock_tryrdlock()

pthread_rwlock_wrlock()

pthread_rwlock_trywrlock()

pthread_rwlock_unlock()

pthread_create()

pthread_join()

pthread_cond_signal()

pthread_cond_broadcast()

pthread_cond_wait()

pthread_cond_timedwait()

pthread_cond_reltimedwait_np()

pthread_barrier_init()

pthread_barrier_wait()

pthread_spin_lock()

pthread_spin_unlock()

pthread_spin_trylock()

Other Recognized APIs

72 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

pthread_rwlock_init()

pthread_rwlock_timedrdlock()

pthread_rwlock_reltimedrdlock_np()

pthread_rwlock_timedwrlock()

pthread_rwlock_reltimedwrlock_np()

sem_post()

sem_wait()

sem_trywait()

sem_timedwait()

sem_reltimedwait_np()

Oracle Solaris Thread APIs

See the “Multithreaded Programming Guide” in the Oracle Solaris documentation for more
information about these APIs.

mutex_init()

mutex_lock()

mutex_trylock()

mutex_unlock()

rw_rdlock()

rw_tryrdlock()

rw_wrlock()

rw_trywrlock()

rw_unlock()

rwlock_init()

thr_create()

thr_join()

cond_signal()

cond_broadcast()

cond_wait()

cond_timedwait()

cond_reltimedwait()

sema_post()

sema_wait()

sema_trywait()

Memory Allocation APIs

calloc()

Other Recognized APIs

Appendix A • APIs Recognized by Thread Analyzer 73

malloc()

realloc()

valloc()

memalign()

free()

See the malloc(3C) man page for information about the memory allocation APIs.

Memory Operations APIs

memcpy()

memccpy()

memmove()

memchr()

memcmp()

memset()

See the memcpy(3C) man page for information about the memory operations APIs.

String Operations APIs

strcat()

strncat()

strlcat()

strcasecmp()

strncasecmp()

strchr()

strrchr()

strcmp()

strncmp()

strcpy()

strncpy()

strlcpy()

strcspn()

strspn()

strdup()

strlen()

strpbrk()

strstr()

strtok()

Other Recognized APIs

74 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

See the strcat(3C) man page for information about the string operations APIs.

Realtime Library APIs

sem_post()

sem_wait()

sem_trywait()

sem_timedwait()

Atomic Operations (atomic_ops) APIs

atomic_add()

atomic_and()

atomic_cas()

atomic_dec()

atomic_inc()

atomic_or()

atomic_swap()

OpenMP APIs

Thread Analyzer recognizes OpenMP synchronizations, such as barriers, locks, critical regions,
atomic regions, and taskwait.

See the “Oracle Solaris Studio 12.4: OpenMP API User’s Guide ” for more information.

http://www.oracle.com/pls/topic/lookup?ctx=E37069&id=OSSMP

Appendix B • Tips for Using Thread Analyzer 75

 B ♦ ♦ ♦ A P P E N D I X B

Tips for Using Thread Analyzer

This appendix includes some tips for using Thread Analyzer.

Compiling the Application

Tips for compiling an application before collecting an experiment:

■ Use the -g compiler option when building application binaries. This enables Thread
Analyzer to report line number information for data races and deadlocks.

■ Compile with an optimization level less than -xO3 when building application binaries.
Compiler transformations might distort line number information and make the results
difficult to understand.

■ Thread Analyzer interposes on the routines shown in “Memory Allocation
APIs” on page 72. Linking to archive versions of memory allocation libraries might result in
false positive data races being reported.

Instrumenting the Application for Data Race Detection

Tips for instrumenting an application for data race detection before collecting an experiment:

■ The collect -r race command issues a warning if the binary is not instrumented for data
race detection, as shown here:

% collect -r races a.out

 WARNING: Target `a.out' is not instrumented for datarace

 detection; reported datarace data may be misleading

■ You can determine whether a binary is instrumented for data race detection by using the nm
command and looking for calls to tha routines. If routines whose names begin with __tha_
are shown, the binary is instrumented. Example output is shown below.
Source-level instrumentation:

% cc -xopenmp -g -xinstrument=datarace source.c

Running the Application With collect

76 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

% nm a.out | grep __tha_

 [71] | 135408| 0|FUNC |GLOB |0 |UNDEF |__tha_get_stack_id

 [53] | 135468| 0|FUNC |GLOB |0 |UNDEF |__tha_src_read_w_frame

 [61] | 135444| 0|FUNC |GLOB |0 |UNDEF |__tha_src_write_w_frame

Binary-level instrumentation:

% cc -xopenmp -g source.c

% discover -i datarace -o a.out.i a.out

% nm a.out.i | grep __tha_

 [88] | 0| 0|NOTY |GLOB |0 |UNDEF |__tha_read_w_pc_frame

 [49] | 0| 0|NOTY |GLOB |0 |UNDEF |__tha_write_w_pc_frame

Running the Application With collect
Tips for running an instrumented application to detect data races and deadlocks.

■ Make sure that the Oracle Solaris system has all the required patches installed. The collect
command lists any missing required patches. For OpenMP applications, the latest version of
libmtsk.so is required.

■ Instrumentation might cause a significant slowdown in execution time, 50 times or more,
and an increase in memory consumption. You can try reducing the execution time by using
a smaller data set. You can also try reducing the execution time by increasing the number of
threads.

■ To detect data races, make sure that the application is using more than one thread. For
OpenMP, the number of threads can be specified by setting the environment variable
OMP_NUM_THREADS to the desired number of threads, and setting the environment variable
OMP_DYNAMIC to FALSE.

Reporting of Data Races
Tips for reporting of data races:

■ Thread Analyzer detects data races at runtime. The runtime behavior of an application
depends on the input data set used and operating system scheduling. Run the application
under collect with different numbers of threads and with different input data sets. Also
repeat experiments with a single data set to maximize the tool's chance of detecting data
races.

■ Thread Analyzer detects data races between different threads that are spawned from a single
process. It does not detect data races between different processes.

■ Thread Analyzer does not report the name of the variable accessed in a data race. However,
you can determine the name of the variable by inspecting the source lines where the two

Reporting of Data Races

Appendix B • Tips for Using Thread Analyzer 77

data race accesses occurred, and determining which variables are written to and read from
on those source lines.

■ In some cases, Thread Analyzer might report data races that did not actually occur in
the program. These data races are called false positives. This usually happens when a
user-implemented synchronization is used or when memory is recycled between threads.
For example, if your code includes hand-coded assembly that implements spin locks,
Thread Analyzer will not recognize these synchronization points. Insert calls to Thread
Analyzer user APIs in your source code to notify Thread Analyzer about user-defined
synchronizations. See “False Positives” on page 34 and Appendix A, “APIs Recognized by
Thread Analyzer” for more information.

■ Data races reported using source-level instrumentation and binary-level instrumentation
might not be identical. In binary-level instrumentation, shared libraries are instrumented
by default as they are opened, whether they are statically linked in the program or opened
dynamically by dlopen(). In source-level instrumentation, libraries are instrumented only if
their sources are compiled with -xinstrument=datarace.

78 Oracle Solaris Studio 12.4: Thread Analyzer User's Guide • December 2014

	Oracle® Solaris Studio 12.4: Thread Analyzer User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Access to Oracle Support
	Feedback

	Chapter 1 • What is Thread Analyzer and What Does It Do?
	Getting Started With Thread Analyzer
	What is a Data Race?
	What is a Deadlock?

	Thread Analyzer Usage Model
	Usage Model for Detecting Data Races
	Instrument the Code for Data Race Detection
	Source-level Instrumentation
	Binary-level Instrumentation

	Create an Experiment on the Instrumented Application
	Examine the Experiment for Data Races

	Usage Model for Detecting Deadlocks
	Create an Experiment for Detecting Deadlocks
	Examine the Experiment for Deadlocks

	Usage Model for Detecting Data Races and Deadlocks

	Thread Analyzer Interface

	Chapter 2 • Data Race Tutorial
	Data Race Tutorial Source Files
	Getting the Data Race Tutorial Source Files
	Source Code for prime_omp.c
	Source Code for prime_pthr.c
	Effect of Data Races in prime_omp.c and prime_pthr.c

	How to Use Thread Analyzer to Find Data Races
	Instrument the Code
	To Instrument Source Code
	To Instrument Binary Code

	Create a Data-Race-Detection Experiment
	Examine the Data-Race-Detection Experiment
	Using Thread Analyzer to View the Data Race Experiment
	Using er_print to View the Data Race Experiment

	Understanding the Experiment Results
	Data Races in prime_omp.c
	Data Races in prime_pthr.c
	Call Stack Traces of Data Races

	Diagnosing the Cause of a Data Race
	Check Whether or Not the Data Race is a False Positive
	Check Whether or Not the Data Race is Benign
	Fix the Bug, Not the Data Race
	Fixing Bugs in prime_omp.c
	Fixing Bugs in prime_pthr.c

	False Positives
	User-Defined Synchronizations
	Memory That is Recycled by Different Threads

	Benign Data Races
	A Program for Finding Primes
	A Program that Verifies Array-Value Types
	A Program Using Double-Checked Locking

	Chapter 3 • Deadlock Tutorial
	About Deadlocks
	Getting the Deadlock Tutorial Source Files
	Source Code Listing for din_philo.c

	The Dining Philosophers Scenario
	How the Philosophers Can Deadlock
	Introducing a Sleep Time for Philosopher 1

	How to Use Thread Analyzer to Find Deadlocks
	Compile the Source Code
	Create a Deadlock-Detection Experiment
	Examine the Deadlock-Detection Experiment
	Using Thread Analyzer to View the Deadlock-Detection Experiment
	Using er_print to View the Deadlock-Detection Experiment

	Understanding the Deadlock Experiment Results
	Examining Runs That Deadlock
	Examining Runs That Complete Despite Deadlock Potential

	Fixing the Deadlocks and Understanding False Positives
	Regulating the Philosophers With Tokens
	A False Positive Report

	An Alternative System of Tokens

	Appendix A • APIs Recognized by Thread Analyzer
	Thread Analyzer User APIs
	Other Recognized APIs
	POSIX Thread APIs
	Oracle Solaris Thread APIs
	Memory Allocation APIs
	Memory Operations APIs
	String Operations APIs
	Realtime Library APIs
	Atomic Operations (atomic_ops) APIs
	OpenMP APIs

	Appendix B • Tips for Using Thread Analyzer
	Compiling the Application
	Instrumenting the Application for Data Race Detection
	Running the Application With collect
	Reporting of Data Races

