Oracle® Linux
Table of Contents
	Preface
	1. The Unbreakable Enterprise Kernel
		1.1. About the Unbreakable Enterprise Kernel
		1.1.1. About UEK Release 1
	1.1.2. About UEK Release 2
	1.1.3. About UEK Release 3

	1.2. Obtaining and Installing the UEK Packages
	1.3. For More Information About the UEK

	2. Yum
		2.1. About Yum
	2.2. Yum Configuration
		2.2.1. Configuring Use of a Proxy Server
	2.2.2. Yum Repository Configuration

	2.3. Downloading the Oracle Public Yum Repository Files
	2.4. Using Yum from the Command Line
	2.5. Yum Groups
	2.6. Installing and Using the Yum Security Plugin
	2.7. Switching CentOS or Scientific Linux Systems to Use the Oracle Public Yum Server
	2.8. Creating and Using a Local ULN Mirror
		2.8.1. Prerequisites for the Local ULN Mirror
	2.8.2. Setting up a Local ULN Mirror
	2.8.3. ULN Mirror Configuration
	2.8.4. Updating the Repositories on a Local ULN Mirror
	2.8.5. Configuring yum on a Local ULN Mirror
	2.8.6. Configuring Oracle Linux Yum Clients of a Local ULN Mirror

	2.9. Creating a Local Yum Repository Using an ISO Image
	2.10. Setting up a Local Yum Server Using an ISO Image
	2.11. For More Information About Yum

	3. The Unbreakable Linux Network
		3.1. About the Unbreakable Linux Network
	3.2. About ULN Channels
	3.3. About Software Errata
	3.4. Registering as a ULN User
	3.5. Registering an Oracle Linux 6 System
	3.6. Registering an Oracle Linux 4 or Oracle Linux 5 System
	3.7. Configuring an Oracle Linux 5 System to Use yum with ULN
	3.8. Disabling Package Updates
	3.9. Subscribing Your System to ULN Channels
	3.10. Browsing and Downloading Errata Packages
	3.11. Downloading Available Errata for a System
	3.12. Updating System Details
	3.13. Deleting a System
	3.14. About CSI Administration
		3.14.1. Becoming a CSI Administrator
	3.14.2. Listing Active CSIs and Transferring Their Registered Servers
	3.14.3. Listing Expired CSIs and Transferring Their Registered Servers
	3.14.4. Removing a CSI Administrator

	3.15. Switching from RHN to ULN
	3.16. For More Information About ULN

	4. Ksplice Uptrack
		4.1. About Ksplice Uptrack
		4.1.1. Supported Kernels

	4.2. Registering to Use Ksplice Uptrack
	4.3. Installing Ksplice Uptrack
	4.4. Configuring Ksplice Uptrack
	4.5. Managing Ksplice Updates
	4.6. Patching and Updating Your System
	4.7. Removing the Ksplice Uptrack software
	4.8. About Ksplice Offline Client
		4.8.1. Modifying a Local Yum Server to Act as a Ksplice Mirror
	4.8.2. Configuring Ksplice Offline Clients

	4.9. For More Information About Ksplice Uptrack

	5. The Btrfs File System
		5.1. About the Btrfs File System
	5.2. Creating a Btrfs File System
	5.3. Modifying a Btrfs File System
	5.4. Compressing and Defragmenting a Btrfs File System
	5.5. Resizing a Btrfs File System
	5.6. Creating Subvolumes and Snapshots
		5.6.1. Cloning Virtual Machine Images and Linux Containers

	5.7. Using the Send/Receive Feature
		5.7.1. Using Send/Receive to Implement Incremental Backups

	5.8. Using Quota Groups
	5.9. Replacing Devices on a Live File System
	5.10. Creating Snapshots of Files
	5.11. Converting an Ext2, Ext3, or Ext4 File System to a Btrfs File System
		5.11.1. Converting a Non-root File System
	5.11.2. Converting the root File System
	5.11.3. Mounting the Image of the Original File System
	5.11.4. Deleting the Snapshot of the Original File System
	5.11.5. Recovering an Original Non-root File System

	5.12. Installing a Btrfs root File System
		5.12.1. Setting up a New NFS Server
	5.12.2. Configuring an Existing NFS Server
	5.12.3. Setting up a New HTTP Server
	5.12.4. Configuring an Existing HTTP Server
	5.12.5. Setting up a Network Installation Server
	5.12.6. Installing from a Network Installation Server
	5.12.7. About the Installation root File System
	5.12.8. Creating Snapshots of the root File System
	5.12.9. Mounting Alternate Snapshots as the root File System
	5.12.10. Deleting Snapshots of the root File System

	5.13. For More Information About Btrfs

	6. The XFS File System
		6.1. About the XFS File System
		6.1.1. About External XFS Journals
	6.1.2. About XFS Write Barriers
	6.1.3. About Lazy Counters

	6.2. Installing the XFS Packages
	6.3. Creating an XFS File System
	6.4. Modifying an XFS File System
	6.5. Growing an XFS File System
	6.6. Freezing and Unfreezing an XFS File System
	6.7. Setting Quotas on an XFS File System
		6.7.1. Setting Project Quotas

	6.8. Backing up and Restoring XFS File Systems
	6.9. Defragmenting an XFS File System
	6.10. Checking and Repairing an XFS File System
	6.11. For More Information About XFS

	7. Oracle Cluster File System Version 2
		7.1. About OCFS2
	7.2. Installing and Configuring OCFS2
		7.2.1. Preparing a Cluster for OCFS2
	7.2.2. Configuring the Firewall
	7.2.3. Configuring the Cluster Software
	7.2.4. Creating the Configuration File for the Cluster Stack
	7.2.5. Configuring the Cluster Stack
	7.2.6. Configuring the Kernel for Cluster Operation
	7.2.7. Starting and Stopping the Cluster Stack
	7.2.8. Creating OCFS2 volumes
	7.2.9. Mounting OCFS2 Volumes
	7.2.10. Querying and Changing Volume Parameters

	7.3. Troubleshooting OCFS2
		7.3.1. Recommended Tools for Debugging
	7.3.2. Mounting the debugfs File System
	7.3.3. Configuring OCFS2 Tracing
	7.3.4. Debugging File System Locks
	7.3.5. Configuring the Behavior of Fenced Nodes

	7.4. Use Cases for OCFS2
		7.4.1. Load Balancing
	7.4.2. Oracle Real Application Cluster (RAC)
	7.4.3. Oracle Databases

	7.5. For More Information About OCFS2

	8. Control Groups
		8.1. About cgroups
	8.2. Subsystems
		8.2.1. blkio Parameters
	8.2.2. cpu Parameters
	8.2.3. cpuacct Parameters
	8.2.4. cpuset Parameters
	8.2.5. devices Parameters
	8.2.6. freezer Parameter
	8.2.7. memory Parameters
	8.2.8. net_cls Parameter

	8.3. Enabling the cgconfig Service
	8.4. Enabling PAM to Work with cgroup Rules
	8.5. Restarting the cgconfig Service
	8.6. About the cgroups Configuration File
	8.7. About the cgroup Rules Configuration File
	8.8. Displaying and Setting Subsystem Parameters
	8.9. Use Cases for cgroups
		8.9.1. Pinning Processes to CPU Cores
	8.9.2. Controlling CPU and Memory Usage
	8.9.3. Restricting Access to Devices
	8.9.4. Throttling I/O Bandwidth

	8.10. For More Information About cgroups

	9. Linux Containers
		9.1. About Linux Containers
	9.2. Configuring Operating System Containers
		9.2.1. Installing and Configuring the Software
	9.2.2. Setting up the File System for the Containers
	9.2.3. Creating and Starting a Container
	9.2.4. About the lxc-oracle Template Script
	9.2.5. About Veth and Macvlan
	9.2.6. Modifying a Container to Use Macvlan

	9.3. Logging in to Containers
	9.4. Creating Additional Containers
	9.5. Monitoring and Shutting Down Containers
	9.6. Starting a Command Inside a Running Container
	9.7. Controlling Container Resources
	9.8. Deleting Containers
	9.9. Running Application Containers
	9.10. For More Information About Linux Containers

	10. HugePages
		10.1. About HugePages
	10.2. Configuring HugePages for Oracle Database
	10.3. For More Information About HugePages

	11. Using kexec for Fast Rebooting
		11.1. About kexec
	11.2. Setting up Fast Reboots of the Current Kernel
	11.3. Controlling Fast Reboots
	11.4. For More Information About kexec

	12. DTrace
		12.1. About DTrace
	12.2. Installing and Configuring DTrace
		12.2.1. Changing the Mode of the DTrace Helper Device
	12.2.2. Loading DTrace Kernel Modules

	12.3. Differences Between DTrace on Oracle Linux and Oracle Solaris
	12.4. Calling DTrace from the Command Line
	12.5. About Programming for DTrace
	12.6. Introducing the D Programming Language
		12.6.1. Probe Clauses
	12.6.2. Pragmas
	12.6.3. Global Variables
	12.6.4. Predicates
	12.6.5. Scalar Arrays and Associative Arrays
	12.6.6. Pointers and External Variables
	12.6.7. Address Spaces
	12.6.8. Thread-local Variables
	12.6.9. Speculations
	12.6.10. Aggregations

	12.7. DTrace Command Examples
	12.8. Tracing User-Space Applications
		12.8.1. Examining the Stack Trace of a User-Space Application

	12.9. For More Information About DTrace

	13. Support Diagnostic Tools
		13.1. About sosreport
		13.1.1. Configuring and Using sosreport

	13.2. About Kdump
		13.2.1. Configuring and Using Kdump
	13.2.2. Files Used by Kdump

	13.3. About OSWatcher Black Box
		13.3.1. Installing OSWbb
	13.3.2. Running OSWbb

	13.4. For More Information About the Diagnostic Tools

Oracle® Linux

Administrator's Solutions Guide for Release 6

 Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle Legal Notices

 Copyright Notice

 Copyright © 1994-2014, Oracle and/or its affiliates. All
 rights reserved.

 Trademark Notice

 Oracle and Java are registered trademarks of Oracle and/or its
 affiliates. Other names may be trademarks of their respective
 owners.

 Intel and Intel Xeon are trademarks or registered trademarks of
 Intel Corporation. All SPARC trademarks are used under license and
 are trademarks or registered trademarks of SPARC International, Inc.
 AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
 or registered trademarks of Advanced Micro Devices. UNIX is a
 registered trademark of The Open Group.

 License Restrictions Warranty/Consequential
 Damages Disclaimer

 This software and related documentation are provided under a license
 agreement containing restrictions on use and disclosure and are
 protected by intellectual property laws. Except as expressly
 permitted in your license agreement or allowed by law, you may not
 use, copy, reproduce, translate, broadcast, modify, license,
 transmit, distribute, exhibit, perform, publish, or display any
 part, in any form, or by any means. Reverse engineering,
 disassembly, or decompilation of this software, unless required by
 law for interoperability, is prohibited.

 Warranty Disclaimer

 The information contained herein is subject to change without notice
 and is not warranted to be error-free. If you find any errors,
 please report them to us in writing.

 Restricted Rights Notice

 If this is software or related documentation that is delivered to
 the U.S. Government or anyone licensing it on behalf of the U.S.
 Government, the following notice is applicable:

 U.S. GOVERNMENT END USERS: Oracle programs, including any operating
 system, integrated software, any programs installed on the hardware,
 and/or documentation, delivered to U.S. Government end users are
 "commercial computer software" pursuant to the applicable
 Federal Acquisition Regulation and agency-specific supplemental
 regulations. As such, use, duplication, disclosure, modification,
 and adaptation of the programs, including any operating system,
 integrated software, any programs installed on the hardware, and/or
 documentation, shall be subject to license terms and license
 restrictions applicable to the programs. No other rights are granted
 to the U.S. Government.

 Hazardous Applications Notice

 This software or hardware is developed for general use in a variety
 of information management applications. It is not developed or
 intended for use in any inherently dangerous applications, including
 applications that may create a risk of personal injury. If you use
 this software or hardware in dangerous applications, then you shall
 be responsible to take all appropriate fail-safe, backup,
 redundancy, and other measures to ensure its safe use. Oracle
 Corporation and its affiliates disclaim any liability for any
 damages caused by use of this software or hardware in dangerous
 applications.

 Third-Party Content, Products, and Services
 Disclaimer

 This software or hardware and documentation may provide access to or
 information on content, products, and services from third parties.
 Oracle Corporation and its affiliates are not responsible for and
 expressly disclaim all warranties of any kind with respect to
 third-party content, products, and services. Oracle Corporation and
 its affiliates will not be responsible for any loss, costs, or
 damages incurred due to your access to or use of third-party
 content, products, or services.

 Alpha and Beta Draft Documentation Notice
 Disclaimer

 If this document is in preproduction status:

 This documentation is in preproduction status and is intended for
 demonstration and preliminary use only. It may not be specific to
 the hardware on which you are using the software. Oracle Corporation
 and its affiliates are not responsible for and expressly disclaim
 all warranties of any kind with respect to this documentation and
 will not be responsible for any loss, costs, or damages incurred due
 to the use of this documentation.

E37355-31

July 2014

Abstract

 This manual provides information about the advanced features for
 this version of Oracle Linux that have been engineered by
 Oracle.

 Document generated on:

 2014-07-09

 (revision: 2072)

Preface

 The Oracle Linux Administrator's Solutions Guide
 provides information about the advanced features of Oracle Linux
 and, in particular, the Unbreakable Enterprise Kernel (UEK).

 Audience

 This document is intended for administrators who need to configure
 the advanced features of Oracle Linux and the Unbreakable Enterprise
 Kernel (UEK). It is assumed that readers are familiar with web and
 virtualization technologies and have a general understanding of the
 Linux operating system.

 Document Organization

 The document is organized as follows:

	
 Chapter 1, The Unbreakable Enterprise Kernel describes the advanced features that
 are available with the Unbreakable Enterprise Kernel (UEK).

	
 Chapter 2, Yum describes how to use the
 yum utility to install and upgrade software
 packages.

	
 Chapter 3, The Unbreakable Linux Network describes how to access and use the
 software channels that are available on the Unbreakable Linux
 Network (ULN).

	
 Chapter 4, Ksplice Uptrack describes how to configure Ksplice Uptrack to update a running
 system kernel.

	
 Chapter 5, The Btrfs File System describes how to deploy and use the
 advanced features of the btrfs file system.

	
 Chapter 6, The XFS File System describes how to deploy and use the
 advanced features of the XFS file system.

	
 Chapter 7, Oracle Cluster File System Version 2 describes how to configure and use
 the Oracle Cluster File System Version 2 (OCFS2).

	
 Chapter 8, Control Groups describes how to use Control Groups
 (cgroups) to manage the resource utilization of sets of
 processes.

	
 Chapter 9, Linux Containers describes how to use Linux Containers (LXC) to isolate
 applications and entire operating system images from the other processes that are running on
 a host system.

	
 Chapter 10, HugePages describes how to set up the
 HugePages feature on a system that is running several Oracle
 Database instances.

	
 Chapter 11, Using kexec for Fast Rebooting describes how to use the kexec command to enable fast system rebooting.

	
 Chapter 12, DTrace introduces the dynamic tracing
 (DTrace) facility that you can use to examine the behavior of the operating system and the operating system kernel.

	
 Chapter 13, Support Diagnostic Tools describes the
 sosreport, Kdump, and OSWbb tools that can
 help diagnose problems with a system.

 Documentation Accessibility

 For information about Oracle's commitment to accessibility, visit
 the Oracle Accessibility Program website at
 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

 Access to Oracle Support

 Oracle customers have access to electronic support through My Oracle
 Support. For information, visit
 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
 or visit
 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
 if you are hearing impaired.

 Related Documents

 The documentation for this product is available at:

 http://www.oracle.com/technetwork/server-storage/linux/documentation/index.html.

 Conventions

 The following text conventions are used in this document:

	
 Convention

	
 Meaning

	
 boldface

	
 Boldface type indicates graphical user interface elements
 associated with an action, or terms defined in text or the
 glossary.

	
 italic

	
 Italic type indicates book titles, emphasis, or
 placeholder variables for which you supply particular
 values.

	
 monospace

	
 Monospace type indicates commands within a paragraph,
 URLs, code in examples, text that appears on the screen,
 or text that you enter.

Chapter 1. The Unbreakable Enterprise Kernel

Table of Contents
	1.1. About the Unbreakable Enterprise Kernel
		1.1.1. About UEK Release 1
	1.1.2. About UEK Release 2
	1.1.3. About UEK Release 3

	1.2. Obtaining and Installing the UEK Packages
	1.3. For More Information About the UEK

 This chapter describes the advanced features that are available
 with the Unbreakable Enterprise Kernel (UEK).

1.1. About the Unbreakable Enterprise Kernel

 In September 2010, Oracle announced the new Unbreakable Enterprise Kernel (UEK) for
 Oracle Linux as a recommended kernel for deployment with Oracle Linux 5. Beginning with Oracle
 Linux 5.5, you could choose to use either the Red Hat Compatible Kernel or the UEK. In Oracle
 Linux 5.6, the UEK became the default kernel.

 The prime motivation for creating the UEK was to provide a modern,
 high performance Linux kernel for the Exadata and Exalogic
 engineered systems. The kernel needed to scale as the number of
 CPUs, memory and InfiniBand connects was increased.

 Oracle tests the UEK intensively with demanding Oracle workloads, and recommends the UEK
 for Oracle deployments and all other enterprise deployments. Oracle is committed to offering
 compatibility with Red Hat, and continues to release and support the Red Hat Compatible Kernel
 as part of Oracle Linux for customers that require strict RHEL compatibility. Under the Oracle
 Linux Support Program, customers can receive full support for Oracle Linux running with either
 kernel.
Oracle releases new versions of the UEK every 12-18 months. The latest version of the UEK
 receives quarterly patch updates including drivers for new hardware support, bug fixes, and
 critical security patches. Oracle also provides critical security patches for previous
 versions of the UEK. These patches are available as new installable kernels and, with the
 exception of device driver updates, as Ksplice patches.
 Using the UEK instead of the Red Hat Compatible Kernel changes only the operating system
 kernel. There are no changes to any libraries, APIs, or any user-space applications Existing
 applications run unchanged regardless of which kernel you use. Using a different kernel does
 not change system libraries such as glibc. The version of
 glibc in Oracle Linux 6 remains the same, regardless of the kernel
 version.
1.1.1. About UEK Release 1

 Release 1 of the UEK is based on a stable 2.6.32 Linux kernel and provides additional
 performance improvements, including:
	 Improved IRQ (interrupt request) balancing.

	 Reduced lock contention across the kernel.

	 Improved network I/O by the use of receive packet steering and RDS improvements.

	 Improved virtual memory performance.

 The UEK release 1 includes optimizations developed in
 collaboration with Oracle’s Database, Middleware, and Hardware
 engineering teams to ensure stability and optimal performance
 for demanding enterprise workloads. In addition to performance
 improvements for large systems, the following UEK features are
 relevant to using Linux in the data center:

	
 The Infiniband OpenFabrics Enterprise Distribution (OFED)
 1.5.1 implements Remote Direct Memory Access (RDMA) and
 kernel bypass mechanisms to deliver high-efficiency
 computing, wire-speed messaging, ultra-low microsecond
 latencies and fast I/O for servers, block storage and file
 systems. This also includes an improved RDS (reliable
 datagram sockets) stack for high-speed, low-latency
 networking. As an InfiniBand Upper Layer Protocol (ULP), RDS
 allows the reliable transmission of IPC datagrams up to 1 MB
 in size, and is currently used in Oracle Real Application
 Clusters (RAC), and in the Exadata and Exalogic products.

	
 A number of additional patches significantly improve the
 performance of Non-Uniform Memory Access (NUMA) systems with
 many CPUs, CPU cores, and memory nodes.

	 Receive Packet Steering (RPS) is a software implementation of Receive Side Scaling
 (RSS) that improves overall networking performance, especially for high loads. RPS
 distributes the load of received network packet processing across multiple CPUs and
 ensures that the same CPU handles all packets for a specific combination of IP address
 and port.
To configure the list of CPUs to which RPS can forward traffic, use
 /sys/class/net/interface/queues/rx-N/rps_cpus,
 which implements a CPU bitmap for a specified network interface and receive queue. The
 default value is zero, which disables RPS and results in the CPU that is handling the
 network interrupt also processing the incoming packet. To enable RPS and allow a
 particular set of CPUs to handle interrupts for the receive queue on an interface, set
 the value of their positions in the bitmap to 1. For example, to enable RPS to use CPUs
 0, 1, 2, and 3 for the rx-0 queue on eth0, set the
 value of rps_cpus to f (that is, 1+2+4+8 = 15 in
 hexadecimal):
cat f > /sys/class/net/eth0/queues/rx-0/rps_cpus
There is no benefit in configuring RPS on a system with a multiqueue network device
 as RSS is usually automatically configured to map a CPU to each receive queue.
For an interface with a single transmit queue, you should typically set
 rps_cpus for CPUs in the same memory domain so that they share the
 same queue. On a non-NUMA system, this means that you would set all the available CPUs
 in rps_cpus.
Tip
To verify which CPUs are handling receive interrupts, use the command watch
 -n1 cat /proc/softirqs and monitor the value of NET_RX
 for each CPU.

	 Receive Flow Steering (RFS) extends RPS to coordinate how the system processes
 network packets in parallel. RFS performs application matching to direct network traffic
 to the CPU on which the application is running.
To configure RFS, use /proc/sys/net/core/rps_sock_flow_entries,
 which sets the number of entries in the global flow table, and
 /sys/class/net/interface/queues/rx-N/rps_flow_cnt,
 which sets the number of entries in the per-queue flow table for a network interface.
 The default values are both zero, which disables RFS. To enable RFS, set the value of
 rps_sock_flow_entries to the maximum expected number of
 concurrently active connections, and the value of rps_flow_cnt to
 rps_sock_flow_entries/Nq, where
 Nq is the number of receive queues on a device. Any value
 that you enter is rounded up to the nearest power of 2. The suggested value of
 rps_sock_flow_entries is 32768 for a moderately loaded
 server.

	
 The kernel can detect solid state disks (SSDs), and tune
 itself for their use by bypassing the optimization code for
 spinning media and by dispatching I/O without delay to the
 SSD.

	 The data integrity features verify data from the database all the way down to the
 individual storage spindle or device. The Linux data integrity framework (DIF) allows
 applications or kernel subsystems to attach metadata to I/O operations, allowing devices
 that support DIF to verify the integrity before passing them further down the stack and
 physically committing them to disk. The Data Integrity Extensions (DIX) feature enables
 the exchange of protection metadata between the operating system and the host bus
 adapter (HBA), and helps to prevent silent data corruption. The data-integrity enabled
 Automatic Storage Manager (ASM) that is available as an add-on with Oracle Database also
 protects against data corruption from application to disk platter.
For more information about the data integrity features, including programming with
 the block layer integrity API, see http://www.kernel.org/doc/Documentation/block/data-integrity.txt.

	
 Oracle Cluster File System 2 (OCFS2) version 1.6 includes a
 large number of features. For more information, see
 Chapter 7, Oracle Cluster File System Version 2.

1.1.2. About UEK Release 2

Note
 The kernel version in UEK Release 2 (UEK R2) is stated as 2.6.39, but it is actually
 based on the 3.0-stable Linux kernel. This renumbering allows some low-level system
 utilities that expect the kernel version to start with 2.6 to run without change.

 UEK R2 includes the following improvements over release 1:
	 Interrupt scalability is refined, and scheduler tuning is improved, especially
 for Java workloads.

	 Transcendent memory helps the performance of virtualization solutions for a broad
 range of workloads by allowing a hypervisor to cache clean memory pages and
 eliminating costly disk reads of file data by virtual machines, allowing you to
 increase their capacity and usage level. Transcendent memory also implements an
 LZO-compressed page cache, or zcache, which reduces disk I/O.

	 Transmit packet steering (XPS) distributes outgoing network packets from a
 multiqueue network device across the CPUs. XPS chooses the transmit queue for outgoing
 packets based on the lock contention and NUMA cost on each CPU, and it selects which
 CPU uses that queue to send a packet.
To configure the list of CPUs to which XPS can forward traffic, use
 /sys/class/net/interface/queues/tx-N/xps_cpus,
 which implements a CPU bitmap for a specified network interface and transmit queue.
 The default value is zero, which disables XPS. To enable XPS and allow a particular
 set of CPUs to use a specified transmit queue on an interface, set the value of their
 positions in the bitmap to 1. For example, to enable XPS to use CPUs 4, 5, 6, and 7
 for the tx-0 queue on eth0, set the value of
 rps_cpus to f0 (that is, 16+32+64+128 = 240 in
 hexadecimal):
cat f0 > /sys/class/net/eth0/queues/tx-0/xps_cpus
There is no benefit in configuring XPS for a network device with a single transmit
 queue.
For a system with a multiqueue network device, configure XPS so that each CPU maps
 onto one transmit queue. If a system has an equal number of CPUs and transit queues,
 you can configure exclusive pairings in XPS to eliminate queue contention. If a system
 has more CPUs than queues, configure CPUs that share the same cache to the same
 transmit queue.

	 The btrfs file system for Linux is designed to meet the expanding scalability
 requirements of large storage subsystems. For more information, see Chapter 5, The Btrfs File System.

	 Cgroups provide fine-grained control of CPU, I/O and memory resources. For more
 information, see Chapter 8, Control Groups.

	 Linux containers provide multiple user-space versions of the operating system on
 the same server.Each container is an isolated environment with its own process and
 network space. For more information, see Chapter 9, Linux Containers.

	 Transparent huge pages take advantage of the memory management capabilities of
 modern CPUs to allow the kernel to manage physical memory more efficiently by reducing
 overhead in the virtual memory subsystem, and by improving the caching of frequently
 accessed virtual addresses for memory-intensive workloads. For more information, see
 Chapter 10, HugePages.

	DTrace allows you to explore your system to understand how it works, to track down
 performance problems across many layers of software, or to locate the causes of
 aberrant behavior. DTrace is currently available only on ULN. For more information,
 see Chapter 12, DTrace.

	 The configfs virtual file system, engineered by Oracle, allows
 you to configure the settings of kernel objects where a file system or device driver
 implements this feature. configfs provides an alternative mechanism
 for changing the values of settings to the ioctl() system call, and
 complements the intended functionality of sysfs as a means to view
 kernel objects.
 The cluster stack for OCFS2, O2CB, uses configfs to set
 cluster timeouts and to examine the cluster status.
 The low-level I/O (LIO) driver uses configfs as a
 multiprotocal SCSI target to support the configuration of FCoE, Fibre Channel, iSCSI
 and InfiniBand using the lio-utils tool set.
 For more information about the implementation of configfs, see
 http://www.kernel.org/doc/Documentation/filesystems/configfs/configfs.txt.

	The dm-nfs feature creates virtual disk devices (LUNs) where
 the data is stored in an NFS file instead of on local storage. Managed networked
 storage has many benefits over keeping virtual devices on a disk that is local to the
 physical host.
The dm-nfs kernel module provides a device-mapper target that
 allows you to treat a file on an NFS file system as a block device that can be
 loopback-mounted locally.
The following sample code demonstrates how to use dmsetup to
 create a mapped device
 (/dev/mapper/$dm_nfsdev) for the file
 $filename that is accessible on a mounted NFS file
 system:
nblks=`stat -c '%s' $filename`
echo -n "0 $nblks nfs $filename 0" | dmsetup create $dm_nfsdev
A sample use case is the fast migration of guest VMs for load balancing or if a
 physical host requires maintenance. This functionality is also possible using iSCSI
 LUNs, but the advantage of dm-nfs is that you can manage new
 virtual drives on a local host system, rather than requiring a storage administrator
 to initialize new LUNs.
dm-nfs uses asynchronous direct I/O so that I/O is performed
 efficiently and coherently. A guest's disk data is not cached locally on the host. If
 the host crashes, there is a lower probability of data corruption. If a guest is
 frozen, you can take a clean backup of its virtual disk, as you can be certain that
 its data has been fully written out.

1.1.3. About UEK Release 3

Note
The kernel version in UEK Release 3 (UEK R3) is based on the mainline Linux kernel
 version 3.8.13. Low-level system utilities that expect the kernel version to start with
 2.6 can run without change if they use the UNAME26 personality (for
 example, by using the uname26 wrapper utility).

UEK R3 includes the following major improvements over UEK R2:
	Integrated DTrace support in the UEK R3 kernel and user-space tracing of
 DTrace-enabled applications.

	Device mapper support for an external, read-only device as the origin for a
 thinly-provisioned volume.

	The loop driver provides the same I/O functionality as
 dm-nfs by extending the AIO interface to perform direct I/O. To
 create the loopback device, use the losetup command instead of
 dmsetup. The dm-nfs module is not provided with
 UEK R3.

	Btrfs send and receive subcommands allow you
 to record the differences between two subvolumes, which can either be snapshots of the
 same subvolume or parent and child subvolumes.

	Btrfs quota groups (qgroups) allow you to set different size
 limits for a volume and its subvolumes.

	Btrfs supports replacing devices without unmounting or otherwise disrupting access
 to the file system.

	Ext4 quotas are enabled as soon as the file system is mounted.

	TCP controlled delay management (CoDel) is a new active queue
 management algorithm that is designed to handle excessive buffering across a network
 connection (bufferbloat). The algorithm is based on for how long
 packets are buffered in the queue rather than the size of the queue. If the minimum
 queuing time rises above a threshold value, the algorithm discards packets and reduces
 the transmission rate of TCP.

	TCP connection repair implements process checkpointing and restart, which allows a
 TCP connection to be stopped on one host and restarted on another host. Container
 virtualization can use this feature to move a network connection between hosts.

	TCP and STCP early retransmit allows fast retransmission (under certain conditions)
 to reduce the number of duplicate acknowledgements.

	TCP fast open (TFO) can speed up the opening of successive TCP connections between
 two endpoints by eliminating one round time trip (RTT) from some TCP
 transactions.

	The TCP small queue algorithm is another mechanism intended to help deal with
 bufferbloat. The algorithm limits the amount of data that can be queued for transmission
 by a socket.

	The secure computing mode feature (seccomp) is a simple sandbox
 mechanism that, in strict mode, allows a thread to transition to a state where it cannot
 make any system calls except from a very restricted set (_exit(),
 read(), sigreturn(), and
 write()) and it can only use file descriptors that were already
 open. In filter mode, a thread can specify an arbitrary filter of permitted systems
 calls that would be forbidden in strict mode. Access to this feature is by using the
 prctl() system call. For more information, see the
 prctl(2) manual page.

	The OpenFabrics Enterprise Distribution (OFED) 2.0 stack supports the following
 protocols:
	SCSI RDMA Protocol (SRP) enables access to remote SCSI devices via remote direct
 memory access (RDMA)

	iSCSI Extensions for remote direct memory access (iSER) provide access to iSCSI
 storage devices

	Reliable Datagram Sockets (RDS) is a high-performance, low-latency, reliable
 connectionless protocol for datagram delivery

	Sockets Direct Protocol (SDP) supports stream sockets for RDMA network
 fabrics

	Ethernet over InfiniBand (EoIB)

	IP encapsulation over InfiniBand (IPoIB)

	Ethernet tunneling over InfiniBand (eIPoIB)

The OFED 2.0 stack also supports the following RDS features:
	Async Send (AS)

	Quality of Service (QoS)

	Automatic Path Migration (APM)

	Active Bonding (AB)

	Shared Request Queue (SRQ)

	Netfilter (NF)

	Paravirtualization support has been enabled for Oracle Linux guests on Windows
 Server 2008 Hyper-V or Windows Server 2008 R2 Hyper-V.

	The Virtual Extensible LAN (VXLAN) tunneling protocol overlays a virtual network on
 an existing Layer 3 infrastructure to allow the transfer of Layer 2 Ethernet packets
 over UDP. This feature is intended for use by a virtual network infrastructure in a
 virtualized environment. Use cases include virtual machine migration and
 software-defined networking (SDN).

The UEK R3 kernel packages are available on the
 ol6_x86_64_UEKR3_latest channel. For more information, see the Unbreakable
 Enterprise Kernel Release 3 Release Notes.

1.2. Obtaining and Installing the UEK Packages

You can obtain and install the UEK and associated firmware packages in the following ways:
	If you have a valid Oracle Linux Support subscription, you can obtain the latest
 Oracle Linux and UEK packages from the Unbreakable Linux Network (ULN) at http://linux.oracle.com. After you have logged
 in to ULN and registered your system, you can subscribe the system to the UEK channel
 for the appropriate Oracle Linux release and machine architecture. This channel will
 provide the latest Oracle Linux packages and updates for your system as they become
 available.
For more information about ULN, see Chapter 3, The Unbreakable Linux Network

	You can obtain Oracle Linux and UEK packages from the public yum package repository.
 To enable access, download the appropriate configuration file, such as http://public-yum.oracle.com/public-yum-ol6.repo to the
 /etc/yum.repos.d directory, and edit the file to enable the
 repositories from which you want to receive updates, such as
 ol6_UEK_base for the base Oracle Linux 6 Unbreakable Enterprise
 Kernel repository, ol6_UEK_latest for UEK bug fixes, errata and
 quarterly driver updates, and ol6_x86_64_UEKR3_latest for the kernel
 packages that are specific to UEK R3. You can use the yum command to
 download and install the packages.
For more information about yum, see Chapter 2, Yum

To list the installed kernel packages and also the kernel packages that are available to
 be installed from the repositories that you have enabled, use the following
 yum
 command:
yum list kernel*
Installed Packages
kernel.x86_64 2.6.32-220.el6 @anaconda-OracleLinuxServer-2011...x86_64/6.2
kernel.x86_64 2.6.32-279.el6 @ol6_latest
kernel.x86_64 2.6.32-279.2.1.el6 @ol6_latest
kernel-devel.x86_64 2.6.32-220.el6 @anaconda-OracleLinuxServer-2011...x86_64/6.2
kernel-devel.x86_64 2.6.32-279.el6 @ol6_latest
kernel-devel.x86_64 2.6.32-279.2.1.el6 @ol6_latest
kernel-firmware.noarch 2.6.32-279.2.1.el6 @ol6_latest
kernel-uek.x86_64 2.6.39-200.24.1.el6uek installed
kernel-uek-devel.x86_64 2.6.32-300.32.1.el6uek @ol6_latest
kernel-uek-devel.x86_64 2.6.39-200.24.1.el6uek @ol6_UEK_latest
kernel-uek-devel.x86_64 2.6.39-200.29.2.el6uek @ol6_UEK_latest
kernel-uek-firmware.noarch 2.6.39-200.24.1.el6uek installed
kernel-uek-headers.x86_64 2.6.32-300.32.1.el6uek @ol6_latest
Available Packages
kernel.x86_64 2.6.32-279.5.2.el6 ol6_latest
kernel-debug.x86_64 2.6.32-279.5.2.el6 ol6_latest
kernel-debug-devel.x86_64 2.6.32-279.5.2.el6 ol6_latest
kernel-devel.x86_64 2.6.32-279.5.2.el6 ol6_latest
kernel-doc.noarch 2.6.32-279.5.2.el6 ol6_latest
kernel-firmware.noarch 2.6.32-279.5.2.el6 ol6_latest
kernel-headers.x86_64 2.6.32-279.5.2.el6 ol6_latest
kernel-uek.x86_64 2.6.39-200.29.3.el6uek ol6_UEK_latest
kernel-uek-debug.x86_64 2.6.39-200.29.3.el6uek ol6_UEK_latest
kernel-uek-debug-devel.x86_64 2.6.39-200.29.3.el6uek ol6_UEK_latest
kernel-uek-devel.x86_64 2.6.39-200.29.3.el6uek ol6_UEK_latest
kernel-uek-doc.noarch 2.6.39-200.29.3.el6uek ol6_UEK_latest
kernel-uek-firmware.noarch 2.6.39-200.29.3.el6uek ol6_UEK_latest
Alternatively, you can use the rpm -qa command to list the installed
 packages:
rpm -qa | grep ^kernel | sort
kernel-2.6.32-220.el6.x86_64
kernel-2.6.32-279.2.1.el6.x86_64
kernel-2.6.32-279.el6.x86_64
kernel-devel-2.6.32-220.el6.x86_64
kernel-devel-2.6.32-279.2.1.el6.x86_64
kernel-devel-2.6.32-279.el6.x86_64
kernel-firmware-2.6.32-279.2.1.el6.noarch
kernel-uek-2.6.39-200.24.1.el6uek.x86_64
kernel-uek-devel-2.6.32-300.32.1.el6uek.x86_64
kernel-uek-devel-2.6.39-200.24.1.el6uek.x86_64
kernel-uek-devel-2.6.39-200.29.2.el6uek.x86_64
kernel-uek-firmware-2.6.39-200.24.1.el6uek.noarch
kernel-uek-headers-2.6.32-300.32.1.el6uek.x86_64

1.3. For More Information About the UEK

 For more information about the UEK, see http://www.oracle.com/technetwork/server-storage/linux/technologies/uek-overview-2043074.html.

Chapter 2. Yum

Table of Contents
	2.1. About Yum
	2.2. Yum Configuration
		2.2.1. Configuring Use of a Proxy Server
	2.2.2. Yum Repository Configuration

	2.3. Downloading the Oracle Public Yum Repository Files
	2.4. Using Yum from the Command Line
	2.5. Yum Groups
	2.6. Installing and Using the Yum Security Plugin
	2.7. Switching CentOS or Scientific Linux Systems to Use the Oracle Public Yum Server
	2.8. Creating and Using a Local ULN Mirror
		2.8.1. Prerequisites for the Local ULN Mirror
	2.8.2. Setting up a Local ULN Mirror
	2.8.3. ULN Mirror Configuration
	2.8.4. Updating the Repositories on a Local ULN Mirror
	2.8.5. Configuring yum on a Local ULN Mirror
	2.8.6. Configuring Oracle Linux Yum Clients of a Local ULN Mirror

	2.9. Creating a Local Yum Repository Using an ISO Image
	2.10. Setting up a Local Yum Server Using an ISO Image
	2.11. For More Information About Yum

 This chapter describes how you can use the yum
 utility to install and upgrade software packages.

2.1. About Yum

 Oracle Linux provides the yum utility which you can use to install or
 upgrade RPM packages. The main benefit of using yum is that it also installs or upgrades any
 package dependencies. yum downloads the packages from repositories such as
 those that are available on the Oracle public yum server, but you can also set up your own
 repositories on systems that do not have Internet access.
The Oracle public yum server is a convenient way to install Oracle Linux and Oracle VM
 packages, including bug fixes, security fixes and enhancements, rather than installing them
 from installation media. You can access the server at http://public-yum.oracle.com/.
You can also subscribe to the Oracle Linux and Oracle VM errata mailing lists to be
 notified when new packages are released. You can access the mailing lists at https://oss.oracle.com/mailman/listinfo/el-errata and https://oss.oracle.com/mailman/listinfo/oraclevm-errata.
 If you have registered your system with the Unbreakable Linux Network (ULN), you can use
 yum with ULN channels to maintain the software on your system, as
 described in Chapter 3, The Unbreakable Linux Network.

2.2. Yum Configuration

 The main configuration file for yum is /etc/yum.conf. The global
 definitions for yum are located under the [main] section heading of the yum
 configuration file. The following table lists the important directives.
	
 Directive

 	
 Description

	
 cachedir

 	
 Directory used to store downloaded packages.

	
 debuglevel

 	
 Logging level, from 0 (none) to 10 (all).

	
 exactarch

 	
 If set to 1, only update packages for the correct architecture.

	
 exclude

 	
 A space separated list of packages to exclude from installs or updates, for
 example: exclude=VirtualBox-4.? kernel*.

	
 gpgcheck

 	
 If set to 1, verify the authenticity of the packages by checking the GPG
 signatures. You might need to set gpgcheck to 0 if a package is
 unsigned, but you should be wary that the package could have been maliciously
 altered.

	
 gpgkey

 	
 Pathname of the GPG public key file.

	
 installonly_limit

 	
 Maximum number of versions that can be installed of any one package.

	
 keepcache

 	
 If set to 0, remove packages after installation.

	
 logfile

 	
 Pathname of the yum log file.

	
 obsoletes

 	
 If set to 1, replace obsolete packages during upgrades.

	
 plugins

 	
 If set to 1, enable plugins that extend the functionality of
 yum.

	
 proxy

 	
 URL of a proxy server including the port number. See Section 2.2.1, “Configuring Use of a Proxy Server”.

	
 proxy_password

 	
 Password for authentication with a proxy server.

	
 proxy_username

 	
 User name for authentication with a proxy server.

	
 reposdir

 	
 Directories where yum should look for repository files
 with a .repo extension. The default directory is
 /etc/yum.repos.d.

 See the yum.conf(5) manual page for more
 information.
 The following listing shows an example [main] section from the yum
 configuration file.
[main]
cachedir=/var/cache/yum
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgkey=file://media/RPM-GPG-KEY
gpgcheck=1
pligins=1
installonly_limit=3
It is possible to define repositories below the [main] section in
 /etc/yum.conf or in separate repository configuration files. By default,
 yum expects any repository configuration files to be located in the
 /etc/yum.repos.d directory unless you use the reposdir
 directive to define alternate directories.
2.2.1. Configuring Use of a Proxy Server

If your organization uses a proxy server as an intermediary for Internet access, specify
 the proxy setting in /etc/yum.conf as shown in the
 following example.
proxy=http://proxysvr.yourdom.com:3128
If the proxy server requires authentication, additionally specify the
 proxy_username, and proxy_password
 settings.
proxy=http://proxysvr.yourdom.com:3128
proxy_username=yumacc
proxy_password=clydenw
If you use the yum plugin (yum-rhn-plugin) to access the ULN, specify
 the enableProxy and httpProxy settings in
 /etc/sysconfig/rhn/up2date as shown in this
 example.
enableProxy=1
httpProxy=http://proxysvr.yourdom.com:3128
If the proxy server requires authentication, additionally specify the
 enableProxyAuth, proxyUser, and
 proxyPassword
 settings.
enableProxy=1
httpProxy=http://proxysvr.yourdom.com:3128
enableProxyAuth=1
proxyUser=yumacc
proxyPassword=clydenw
Caution
All yum users require read access to
 /etc/yum.conf or /etc/sysconfig/rhn/up2date. If
 these files must be world-readable, do not use a proxy password that is the same as any
 user's login password, and especially not root's password.

2.2.2. Yum Repository Configuration

 The yum configuration file or yum repository configuration files can contain one or more
 sections that define repositories.
 The following table lists the basic directives for a repository.
	
 Directive

 	
 Description

	

 baseurl

 	
 Location of the repository channel (expressed as a
 file://, ftp://,
 http://, or https:// address). This
 directive must be specified.

	

 enabled

 	
 If set to 1, permit yum to use the channel.

	

 name

 	
 Descriptive name for the repository channel. This directive must be
 specified.

 Any other directive that appears in this section overrides the corresponding global
 definition in [main] section of the yum configuration file. See the
 yum.conf(5) manual page for more information.

 The following listing shows an example repository section from a
 configuration file.

[ol6_u2_base]
name=Oracle Linux 6 U2 - $basearch - base
baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/2/base/$basearch
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

 In this example, the values of gpgkey and
 gpgcheck override any global setting.
 yum substitutes the name of the current
 system's architecture for the variable
 $basearch.

2.3. Downloading the Oracle Public Yum Repository Files

Note
The following procedure assumes that yum on your system is configured to expect
 to find repository files in the default /etc/yum.repos.d directory.

To download the Oracle public yum repository configuration file:

	
 As root, change directory to
 /etc/yum.repos.d.

cd /etc/yum.repos.d

	 Use the wget utility to download the repository configuration
 file that is appropriate for your system.
wget http://public-yum.oracle.com/public-yum-release.repo
 For Oracle Linux 6, enter:
wget http://public-yum.oracle.com/public-yum-ol6.repo
 The /etc/yum.repos.d directory is updated with the repository
 configuration file, in this example, public-yum-ol6.repo.

	You can enable or disable repositories in the file by setting the value of the
 enabled directive to 1 or 0 as required.

2.4. Using Yum from the Command Line

 The following table shows some examples of common tasks that you can perform using
 yum.
	
 Command

 	
 Description

	

 yum repolist

 	
 Lists all enabled repositories.

	

 yum list

 	
 Lists all packages that are available in all enabled repositories and all
 packages that are installed on your system.

	

 yum list installed

 	
 Lists all packages that are installed on your system.

	

 yum list available

 	
 Lists all packages that are available to be installed in all enabled
 repositories.

	

 yum search
 string

 	
 Searches the package descriptions for the specified string.

	

 yum provides
 feature

 	
 Finds the name of the package to which the specified file or feature belongs.
 For example:

 yum provides /etc/sysconfig/atd

	

 yum info
 package

 	
 Displays detailed information about a package. For example:

 yum info bind

	

 yum install
 package

 	
 Installs the specified package, including packages on which it depends. For
 example:

 yum install ocfs2-tools

	

 yum check-update

 	
 Checks whether updates exist for packages that are already installed on your
 system.

	

 yum update
 package

 	
 Updates the specified package, including packages on which it depends. For
 example:

 yum upgrade nfs-utils

	

 yum update

 	
 Updates all packages, including packages on which they depend.

	

 yum remove
 package

 	
 Removes the specified package. For example:

 yum erase nfs-utils

	

 yum erase
 package

 	
 Removes the specified package. This command has the same effect as the
 yum remove command.

	

 yum update

 	
 Updates all packages, including packages on which they depend.

	

 yum clean all

 	
 Removes all cached package downloads and cached headers that contain
 information about remote packages. Running this command can help to clear problems
 that can result from unfinished transactions or out-of-date headers.

	

 yum help

 	
 Displays help about yum usage.

	

 yum help
 command

 	
 Displays help about the specified yum command. For
 example:

 yum help upgrade

	

 yum shell

 	
 Runs the yum interactive shell.

See the yum(8) manual page for more information.
To list the files in a package, use the repoquery utility, which is
 included in the yum-utils package. For example, the following command lists
 the files that the btrfs-progs package provides.

repoquery -l btrfs-progs
/sbin/btrfs
/sbin/btrfs-convert
/sbin/btrfs-debug-tree
.
.
.
Note

 yum makes no distinction between installing
 and upgrading a kernel package. yum always
 installs a new kernel regardless of whether you specify
 update or install.

2.5. Yum Groups

 A set of packages can themselves be organized as a yum group.
 Examples include the groups for Eclipse, fonts, and system administration tools. The following
 table shows the yum commands that you can use to manage these groups.

	
 Command

 	
 Description

	

 yum grouplist

 	
 Lists installed groups and groups that are available for installation.

	

 yum groupinfo
 groupname

 	
 Displays detailed information about a group.

	

 yum groupinstall
 groupname

 	
 Installs all the packages in a group.

	

 yum groupupdate
 groupname

 	
 Updates all the packages in a group.

	

 yum groupremove
 groupname

 	
 Removes all the packages in a group.

2.6. Installing and Using the Yum Security Plugin

The yum-plugin-security package allows you to use
 yum to obtain a list of all of the errata that are available for your
 system, including security updates. You can also use Oracle Enterprise Manager 12c Cloud
 Control or management tools such as Katello, Pulp, Red Hat Satellite, Spacewalk, and SUSE
 Manager to extract and display information about errata.
To install the yum-plugin-security package, enter the following
 command:
yum install yum-plugin-security
To list the errata that are available for your system, enter:
yum updateinfo list
Loaded plugins: refresh-packagekit, rhnplugin, security
ELBA-2012-1518 bugfix NetworkManager-1:0.8.1-34.el6_3.x86_64
ELBA-2012-1518 bugfix NetworkManager-glib-1:0.8.1-34.el6_3.x86_64
ELBA-2012-1518 bugfix NetworkManager-gnome-1:0.8.1-34.el6_3.x86_64
ELBA-2012-1457 bugfix ORBit2-2.14.17-3.2.el6_3.x86_64
ELBA-2012-1457 bugfix ORBit2-devel-2.14.17-3.2.el6_3.x86_64
ELSA-2013-0215 Important/Sec. abrt-2.0.8-6.0.1.el6_3.2.x86_64
ELSA-2013-0215 Important/Sec. abrt-addon-ccpp-2.0.8-6.0.1.el6_3.2.x86_64
ELSA-2013-0215 Important/Sec. abrt-addon-kerneloops-2.0.8-6.0.1.el6_3.2.x86_64
ELSA-2013-0215 Important/Sec. abrt-addon-python-2.0.8-6.0.1.el6_3.2.x86_64
ELSA-2013-0215 Important/Sec. abrt-cli-2.0.8-6.0.1.el6_3.2.x86_64
ELSA-2013-0215 Important/Sec. abrt-desktop-2.0.8-6.0.1.el6_3.2.x86_64
...
The output from the command sorts the available errata in order of their IDs, and it also
 specifies whether each erratum is a security patch
 (severity/Sec.), a bug fix
 (bugfix), or a feature enhancement (enhancement).
 Security patches are listed by their severity: Important,
 Moderate, or Low.
You can use the --sec-severity option to filter the security errata by
 severity, for example:
yum updateinfo list --sec-severity=Moderate
Loaded plugins: refresh-packagekit, rhnplugin, security
ELSA-2013-0269 Moderate/Sec. axis-1.2.1-7.3.el6_3.noarch
ELSA-2013-0668 Moderate/Sec. boost-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-date-time-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-devel-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-filesystem-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-graph-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-iostreams-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-program-options-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-python-1.41.0-15.el6_4.x86_64
...
To list the security errata by their Common Vulnerabilities and Exposures (CVE) IDs
 instead of their errata IDs, specify the keyword cves as an
 argument:
yum updateinfo list cves
Loaded plugins: refresh-packagekit, rhnplugin, security
 CVE-2012-5659 Important/Sec. abrt-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5660 Important/Sec. abrt-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5659 Important/Sec. abrt-addon-ccpp-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5660 Important/Sec. abrt-addon-ccpp-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5659 Important/Sec. abrt-addon-kerneloops-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5660 Important/Sec. abrt-addon-kerneloops-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5659 Important/Sec. abrt-addon-python-2.0.8-6.0.1.el6_3.2.x86_64
 CVE-2012-5660 Important/Sec. abrt-addon-python-2.0.8-6.0.1.el6_3.2.x86_64
...
Similarly, the keywords bugfix, enhancement, and
 security filter the list for all bug fixes, enhancements, and security
 errata.
You can use the --cve option to display the errata that correspond to a
 specified CVE, for example:
yum updateinfo list --cve CVE-2012-2677
Loaded plugins: refresh-packagekit, rhnplugin, security
ELSA-2013-0668 Moderate/Sec. boost-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-date-time-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-devel-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-filesystem-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-graph-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-iostreams-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-program-options-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-python-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-regex-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-serialization-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-signals-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-system-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-test-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-thread-1.41.0-15.el6_4.x86_64
ELSA-2013-0668 Moderate/Sec. boost-wave-1.41.0-15.el6_4.x86_64
updateinfo list done
To display more information, specify info instead of
 list, for
 example:
yum updateinfo info --cve CVE-2012-2677
Loaded plugins: refresh-packagekit, rhnplugin, security
===
 boost security update
===
 Update ID : ELSA-2013-0668
 Release : Oracle Linux 6
 Type : security
 Status : final
 Issued : 2013-03-21
 CVEs : CVE-2012-2677
Description : [1.41.0-15]
 : - Add in explicit dependences between some boost
 : subpackages
 :
 : [1.41.0-14]
 : - Build with -fno-strict-aliasing
 :
 : [1.41.0-13]
 : - In Boost.Pool, be careful not to overflow
 : allocated chunk size (boost-1.41.0-pool.patch)
 :
 : [1.41.0-12]
 : - Add an upstream patch that fixes computation of
 : CRC in zlib streams.
 : - Resolves: #707624
 Severity : Moderate
updateinfo info done
To update all packages for which security-related errata are available to the latest
 versions of the packages, even if those packages include bug fixes or new features but not
 security errata,
 enter:
yum --security update
To update all packages to the latest versions that contain security errata, ignoring any
 newer packages that do not contain security errata,
 enter:
yum --security update-minimal
To update all kernel packages to the latest versions that contain security errata,
 enter:
yum --security update-minimal kernel*
You can also update only those packages that correspond to a CVE or erratum, for
 example:
yum update --cve CVE-2012-3954

yum update --advisory ELSA-2012-1141
Note
Some updates might require you to reboot the system. By default, the boot manager will
 automatically enable the most recent kernel version.

For more information, see the yum-security(8) manual page.

2.7. Switching CentOS or Scientific Linux Systems to Use the Oracle Public Yum Server

You can use the centos2ol.sh script to convert CentOS 5 and 6 or
 Scientific Linux 5 and 6 systems to Oracle Linux. The script configures yum
 to use the Oracle's public yum server and installs a few additional packages that are
 required. There is no need to reboot the system.
To perform the switch to Oracle Linux, run the following commands as
 root:
curl -O https://linux.oracle.com/switch/centos2ol.sh
sh centos2ol.sh
 For more information, see https://linux.oracle.com/switch/centos/.

2.8. Creating and Using a Local ULN Mirror

The following sections describe how to create and use a yum server that acts as a local
 mirror of the ULN channels.
2.8.1. Prerequisites for the Local ULN Mirror

The system that you want to set up as a local ULN mirror must meet the following criteria:
	You must have registered the system with ULN. See The Unbreakable Linux Network.

	The system must be running Oracle Linux 5, Oracle Linux 6, or Oracle Linux 7.

	The system must have a least 6 GB of memory to create the yum metadata.

	The system must have enough disk space to store copies of the packages that it hosts.
 The following table shows the approximate amount of space that is required for Oracle
 Linux channels:
	
 Oracle Linux Channel

 	
 Space Required per Channel for Binaries Only

 	
 Space Required per Channel for Both Binaries and Source

	
 [oe]l*_latest

 	
 Up to 10 GB

 	
 Up to 15 GB

	
 [oe]l*_addons

 	
 600 MB

 	
 1 GB

	
 [oe]l*_oracle

 	
 1 GB

 	
 Not applicable

	
 [oe]l*_base

 	
 3 GB

 	
 5.5 GB

	
 [oe]l*_patch

 	
 1 GB

 	
 2 GB

The next table shows the approximate amount of space that is required for Oracle VM
 channels:
	
 Oracle VM Channel

 	
 Space Required per Channel for Binaries Only

 	
 Space Required per Channel for Both Binaries and Source

	
 ovm*_latest

 	
 500 MB

 	
 1 GB

	
 ovm*_base

 	
 400 MB

 	
 800 MB

	
 ovm*_patch

 	
 100 MB

 	
 200 MB

2.8.2. Setting up a Local ULN Mirror

To set up a local system as a local ULN mirror:
	Using a browser, log in at http://linux.oracle.com with the ULN user name and password that you used to
 register the system, and configure its properties on ULN as follows:
	On the Systems tab, click the link named for your system in the list of registered
 machines.

	On the System Details page, click Edit.

	On the Edit System Properties page, select the Yum
 Server check box and click Apply
 Changes.

	On the System Details page, click Manage
 Subscriptions.

	On the System Summary page, select channels from the list of available or
 subscribed channels and click the arrows to move the channels between the
 lists.
Modify the list of subscribed channels to include the channels that you want to
 make available to local systems.
Note
You must subscribe the system to the latest and
 addons channels for the installed operating system release
 (Oracle Linux 5, Oracle Linux 6, or Oracle Linux 7) and the system architecture
 (i386 or x86-64) to be able to install the yum-uln_mirror
 package. This package contains the uln-yum-mirror script that
 enables the system to act as a local ULN mirror.

For example, the following table shows some examples of the channels that are
 available for Oracle Linux 6 on the x86_64 architecture.
	
 Channel

 	
 Description

	
 ol6_ga_x86_64_base

 	
 All packages for Oracle Linux 6 as initially released. This channel
 does not include errata.

	
 ol6_x86_64_addons

 	
 Oracle Linux 6 add ons, including the
 yum-uln_mirror package.

	
 ol6_x86_64_ksplice

 	
 Oracle Ksplice clients, updates, and dependencies for Oracle Linux
 6. Note that access to this channel requires an Oracle Linux Premier
 Support account.

	
 ol6_x86_64_latest

 	
 All packages released for Oracle Linux 6, including the latest
 errata packages.

	
 ol6_x86_64_UEK_latest

 	
 Latest Unbreakable Enterprise Kernel Release 2 packages for Oracle
 Linux 6.

	
 ol6_x86_64_UEKR3_latest

 	
 Latest Unbreakable Enterprise Kernel Release 3 packages for Oracle
 Linux 6.

If you subsequently update the list of channels to which the system is
 subscribed, the uln-yum-mirror script updates the channels that
 the system mirrors. If you want to be able to use yum to update
 the server from the repositories that it hosts rather than from ULN, follow the
 procedure in Section 2.8.5, “Configuring yum on a Local ULN Mirror”.
If you have an Oracle Linux Premier Support account and you want the yum server to
 host Ksplice packages for local Ksplice offline clients, subscribe to the Ksplice for
 Oracle Linux channels for the architectures and Oracle Linux releases that you want to
 support.
For a complete and up-to-date list of the available release channels, log on to
 ULN at http://linux.oracle.com.

	When you have finished selecting channels, click Save
 Subscriptions and log out of ULN.

	Install the Apache HTTP
 server.
yum install httpd

	Create a base directory for the yum repositories, for example
 /var/yum or
 /var/www/html/yum.
mkdir -p /var/www/html/yum
Note
The yum repository owner must have read and write permissions on this
 directory.

	If you created a base directory for the yum repository that is not under
 /var/www/html and SELinux is enabled in enforcing mode on your system:
	Use the semanage command to define the default file type of
 the repository root directory hierarchy as
 httpd_sys_content_t:

/usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/yum(/.*)?"

	Use the restorecon command to apply the file type to the
 entire
 repository.
/sbin/restorecon -R -v /var/yum

	If you created a base directory for the yum repository that is not under
 /var/www/html, create a symbolic link in
 /var/www/html that points to the repository, for
 example:
ln -s /var/yum /var/www/html/yum

	Edit the HTTP server configuration file,
 /etc/httpd/conf/httpd.conf, as follows:
	Specify the resolvable domain name of the server in the argument to
 ServerName.
ServerName server_addr:80
If the server does not have a resolvable domain name, enter its IP address
 instead.

	Verify that the setting of the Options directive in the
 <Directory "/var/www/html"> section specifies
 Indexes and FollowSymLinks to allow you to
 browse the directory hierarchy, for
 example:
Options Indexes FollowSymLinks

	Save your changes to the file.

	Start the HTTP server, and configure it to start after a reboot.
	On Oracle Linux 5 or Oracle Linux 6, enter the following commands:

service httpd start
chkconfig httpd on

	On Oracle Linux 7, enter the following commands:

systemctl start httpd
systemctl enable httpd

	If you have enabled a firewall on your system, configure it to allow incoming HTTP
 connection requests on TCP port 80.
	On Oracle Linux 5 or Oracle Linux 6, enter the following
 commands:
iptables -I INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT
service iptables save

	On Oracle Linux 7, enter the following
 commands:
firewall-cmd --zone=zone --add-port=80/udp
firewall-cmd --permanent --zone=zone --add-port=80/udp

	Install the uln-yum-mirror package:
yum install uln-yum-mirror
This package contains the uln-yum-mirror script that enables the
 system to act as a local ULN mirror.
Note
If you have not subscribed the system to the correct Oracle Linux latest and
 addons channels for your system, the command fails with the error
 No package uln-yum-mirror available.

	To configure the operation of the /usr/bin/uln-yum-mirror script,
 edit the /etc/sysconfig/uln-yum-mirror file.
For example, if the base directory for the yum repositories is not
 /var/www/html/yum, set the value of the REP_BASE
 parameter to the correct base
 directory:
REP_BASE=/var/yum
Installing the uln-yum-mirror package also configures an
 anacron job (/etc/cron.daily/uln-yum-mirror)
 that updates the local yum repositories once every day. You can disable this job by
 setting the value of CRON_ENABLED to 0:
CRON_ENABLED=0
For more information about the configuration options in
 /etc/sysconfig/uln-yum-mirror file, see Section 2.8.3, “ULN Mirror Configuration”.
The repositories are populated when the anacron job runs the
 /usr/bin/uln-yum-mirror script. Alternatively, you can run the
 script manually at any time to update the repositories. See Section 2.8.4, “Updating the Repositories on a Local ULN Mirror”.

2.8.3. ULN Mirror Configuration

The /etc/sysconfig/uln-yum-mirror file contains the following
 configuration parameters that affect the behavior of the
 /usr/bin/uln-yum-mirror script:
	ALL_PKGS
	Specifies whether uln-yum-mirror mirrors all versions of every
 available package or downloads only the latest version of each package. The default
 value of 1 causes uln-yum-mirror to mirror all versions of every
 available package. A value of 0 causes uln-yum-mirror to download
 only the latest version of each package.

	CRON_ENABLED
	Specifies whether uln-yum-mirror runs automatically once per day.
 The default value of 1 enables uln-yum-mirror to be run automatically
 as an anacron job. A value of 0 disables the job. You must run
 uln-yum-mirror manually to update the packages.

	HARDLINK_RPMS
	Specifies whether uln-yum-mirror runs
 hardlinkpy to create hard links between identical RPMs after the
 mirror process finishes. The default value of 1 enables hard linking, which saves
 storage space. It is not possible to create hard links across file systems. Set the
 value to 0 if the repository storage spans more than one file system.

	LOG_OUTPUT
	Specifies whether uln-yum-mirror logs its output. The default
 value of 1 enables logging. A value of 0 disables logging.

	REP_BASE
	Specifies the base directory for the repositories. The default setting is
 /var/www/html/yum. Do not change this setting unless you customize
 the configuration of the HTTP server.

	REP_EL, REP_ENG, REP_OL, REP_OVM, REP_UEK
	Specify the names of the repositories. If required, you can configure alternate
 names.

	REPO_FILE_DIR
	Not currently used.

	SRC
	Specifies whether uln-yum-mirror mirrors source RPMs in addition
 to binary RPMs. The default value of 0 prevents uln-yum-mirror from
 mirroring source RPMs. A value to 1 causes uln-yum-mirror to mirror
 source RPMs.

	YUM_GLOBAL_CACHE
	Specifies the yum global cache directory. The default setting is
 /var/cache/yum. Do not change this setting unless you customize the
 configuration of the HTTP server.

2.8.4. Updating the Repositories on a Local ULN Mirror

To update the repositories for the subscribed channels immediately without waiting for
 the anacron job to run or if you have disabled the job, enter the following
 command on the local ULN mirror server:

/usr/bin/uln-yum-mirror

Note
If you have not yet set up the contents of the repositories, it can take many hours to
 download all the packages.

2.8.5. Configuring yum on a Local ULN Mirror

The following procedure configures the yum command on a server that is
 acting as a local ULN mirror to install package updates from itself rather than from ULN. The
 procedure does not affect the operation of the uln-yum-mirror script.
To configure a server that is acting as a local ULN Mirror to be able to install updated
 packages from itself:
	Use the following command to list the channels that the server is mirroring from
 ULN:
yum repolist
Loaded plugins: rhnplugin, security
This system is receiving updates from ULN.
0 packages excluded due to repository protections
repo id repo name status
ol6_addons Oracle Linux 6 Server Add ons (x86_64) 112
ol6_x86_64_latest Oracle Linux 6 Latest (x86_64) 17,976
ol6_x86_64_UEKR3_latest Latest Unbreakable Enterprise Kernel
 Release 3 for Oracle Linux 6 (x86_64) 41
In this example, the server mirrors the ol6_addons,
 ol6_x86_64_latest, and ol6_x86_64_UEKR3_latest
 channels from ULN.

	Edit /etc/yum/pluginconf.d/rhnplugin.conf and disable the mirrored
 channels by adding the following stanza for each channel:

[repo_id]
enabled=0
For
 example, to disable the ol6_addons,
 ol6_x86_64_latest, and ol6_x86_64_UEKR3_latest
 channels, you would add the following stanzas:

[ol6_addons]
enabled=0

[ol6_x86_64_latest]
enabled=0

[ol6_x86_64_UEKR3_latest]
enabled=0
Note
If you subsequently subscribe the system to any additional channels on ULN, you must
 also disable those channels in
 /etc/yum/pluginconf.d/rhnplugin.conf.

	Configure the server as a yum client as described in Section 2.8.6, “Configuring Oracle Linux Yum Clients of a Local ULN Mirror”.

2.8.6. Configuring Oracle Linux Yum Clients of a Local ULN Mirror

If you have set up a local ULN mirror, you can configure your local Oracle Linux systems
 to receive yum updates from that server.
To configure an Oracle Linux system as a yum client:
	Import the GPG key:
rpm --import /usr/share/rhn/RPM-GPG_KEY

	In the /etc/yum.repos.d directory, edit the existing repository
 file, such as public-yum-ol6.repo or
 ULN-base.repo, and disable all entries by setting
 enabled=0.

	In the /etc/yum.repos.d directory, create the file
 local-yum.repo, which contains entries such as the following for an
 Oracle Linux 6 yum client:
[local_ol6_latest]
name=Oracle Linux $releasever - $basearch - latest
baseurl=http://local_uln_mirror/yum/OracleLinux/OL6/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

[local_ol6_UEKR3_latest]
name=Unbreakable Enterprise Kernel Release 3 for Oracle Linux $releasever - $basearch - latest
baseurl=http://local_uln_mirror/yum/OracleLinux/OL6/UEKR3/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

[local_ol6_addons]
name=Oracle Linux $releasever - $basearch - addons
baseurl=http://local_uln_mirror/yum/OracleLinux/OL6/addons/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1
To distinguish the local repositories from the ULN repositories, prefix the names of
 their entries with a string such as local_.
Replace local_uln_mirror with the IP address or
 resolvable host name of the local ULN mirror.
The example configuration enables the local_ol6_latest,
 local_ol6_UEKR3_latest, and local_ol6_addons
 channels.

	To test the configuration:
	Clear the yum metadata cache:
yum clean metadata

	Use yum repolist to verify the configuration, for
 example:
yum repolist
 Loaded plugins: rhnplugin, security
 This system is receiving updates from ULN.
0 packages excluded due to repository protections
repo id repo name status
local_ol6_addons Oracle Linux 6 - x86_64 - latest 112
local_ol6_x86_64_latest Oracle Linux 6 - x86_64 - latest 17,976
local_ol6_x86_64_UEKR3_latest Unbreakable Enterprise Kernel Release 3
 for Oracle Linux 6 - x86_64 - latest 41
If yum cannot connect to the local ULN mirror, check that the
 firewall settings on the local ULN mirror server allow incoming TCP connections to
 the HTTP port (usually, port 80).

	You can now run yum update to pick up new updates from the local
 ULN mirror.

2.9. Creating a Local Yum Repository Using an ISO Image

Note
The system must have sufficient storage space to host a full Oracle Linux Media Pack DVD
 image (approximately 3.5 GB for Oracle Linux Release 6 Update 3).

To create a local yum repository (for example, if a system does not have Internet access):
	On a system with Internet access, download a full Oracle Linux DVD image from the
 Oracle Software Delivery Cloud at http://edelivery.oracle.com/linux onto removable storage (such as a USB
 memory stick). For example, V33411-01.iso contains the Oracle Linux
 Release 6 Update 3 Media Pack for x86 (64 bit).
Note
You can verify that the ISO was copied correctly by comparing its checksum with
 the digest value that is listed on edelivery.oracle.com, for
 example:
sha1sum V33411-01.iso
7daae91cc0437f6a98a4359ad9706d678a9f19de V33411-01.iso

	Transfer the removable storage to the system on which you want to create a local yum
 repository, and copy the DVD image to a directory in a local file
 system.
cp /media/USB_stick/V33411-01.iso /ISOs

	Create a suitable mount point, for example
 /var/OSimage/OL6.3_x86_64, and mount the DVD image on
 it.
mkdir -p /var/OSimage/OL6.3_x86_64
mount -o loop,ro /ISOs/V33411-01.iso /var/OSimage/OL6.3_x86_64
Note
Include the read-only mount option (ro) to avoid changing the
 contents of the ISO by mistake.

	Create an entry in /etc/fstab so that the system always mounts
 the DVD image after a
 reboot.
/ISOs/V33411-01.iso /var/OSimage/OL6.3_x86_64 iso9660 loop,ro 0 0

	In the /etc/yum.repos.d directory, edit the existing repository
 files, such as public-yum-ol6.repo or
 ULN-base.repo, and disable all entries by setting
 enabled=0.

	Create the following entries in a new repository file (for example,
 /etc/yum.repos.d/OL63.repo).

[OL63]
name=Oracle Linux 6.3 x86_64
baseurl=file:///var/OSimage/OL6.3_x86_64
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

	Clean up the yum cache.

yum clean all

	Test that you can use yum to access the
 repository.
yum repolist
Loaded plugins: refresh-packagekit, security
...
repo id repo name status
OL63 Oracle Linux 6.3 x86_64 25,459
repolist: 25,459

2.10. Setting up a Local Yum Server Using an ISO Image

To set up a local yum server (for example, if you have a network of systems that do not
 have Internet access):
	Choose one of the systems to be the yum server, and create a local yum repository on
 it as described in Section 2.9, “Creating a Local Yum Repository Using an ISO Image”.

	Install the Apache HTTP server from the local yum
 repository.
yum install httpd

	If SELinux is enabled in enforcing mode on your system:
	Use the semanage command to define the default file type of
 the repository root directory hierarchy as
 httpd_sys_content_t:

/usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/OSimage(/.*)?"

	Use the restorecon command to apply the file type to the
 entire
 repository.
/sbin/restorecon -R -v /var/OSimage

Note
The semanage and restorecon commands are
 provided by the policycoreutils-python and
 policycoreutils packages.

	Create a symbolic link in /var/www/html that points to the
 repository:
ln -s /var/OSimage /var/www/html/OSimage

	Edit the HTTP server configuration file,
 /etc/httpd/conf/httpd.conf, as follows:
	Specify the resolvable domain name of the server in the argument to
 ServerName.
ServerName server_addr:80
If the server does not have a resolvable domain name, enter its IP address
 instead.

	Verify that the setting of the Options directive in the
 <Directory "/var/www/html"> section specifies
 Indexes and FollowSymLinks to allow you to
 browse the directory hierarchy, for
 example:
Options Indexes FollowSymLinks

	Save your changes to the file.

	Start the Apache HTTP server, and configure it to start after a
 reboot.
service httpd start
chkconfig httpd on

	If you have enabled a firewall on your system, configure it to allow incoming HTTP
 connection requests on TCP port 80.
For example, the following command configures iptables to allow
 incoming HTTP connection requests and saves the change to the firewall
 configuration:
iptables -I INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT
service iptables save

	Edit the repository file on the server (for example,
 /etc/yum.repos.d/OL63.repo):

[OL63]
name=Oracle Linux 6.3 x86_64
baseurl=http://server_addr/OSimage/OL6.3_x86_64
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

Replace server_addr with the IP address or resolvable
 host name of the local yum server.

	On each client, copy the repository file from the server to the
 /etc/yum.repos.d directory.

	In the /etc/yum.repos.d directory, edit any other repository
 files, such as public-yum-ol6.repo or
 ULN-base.repo, and disable all entries by setting
 enabled=0.

	On the server and each client, test that you can use yum to
 access the
 repository.
yum repolist
Loaded plugins: refresh-packagekit, security
...
repo id repo name status
OL63 Oracle Linux 6.3 x86_64 25,459
repolist: 25,459

2.11. For More Information About Yum

For more information about yum, see http://yum.baseurl.org/.
For more information about how to download the latest packages from the Unbreakable Linux
 Network and make the packages available through a local yum server, see http://www.oracle.com/technetwork/articles/servers-storage-admin/yum-repo-setup-1659167.html.

Chapter 3. The Unbreakable Linux Network

Table of Contents
	3.1. About the Unbreakable Linux Network
	3.2. About ULN Channels
	3.3. About Software Errata
	3.4. Registering as a ULN User
	3.5. Registering an Oracle Linux 6 System
	3.6. Registering an Oracle Linux 4 or Oracle Linux 5 System
	3.7. Configuring an Oracle Linux 5 System to Use yum with ULN
	3.8. Disabling Package Updates
	3.9. Subscribing Your System to ULN Channels
	3.10. Browsing and Downloading Errata Packages
	3.11. Downloading Available Errata for a System
	3.12. Updating System Details
	3.13. Deleting a System
	3.14. About CSI Administration
		3.14.1. Becoming a CSI Administrator
	3.14.2. Listing Active CSIs and Transferring Their Registered Servers
	3.14.3. Listing Expired CSIs and Transferring Their Registered Servers
	3.14.4. Removing a CSI Administrator

	3.15. Switching from RHN to ULN
	3.16. For More Information About ULN

 This chapter describes how to access and use the software channels
 that are available on the Unbreakable Linux Network (ULN).

3.1. About the Unbreakable Linux Network

 If you have a subscription to Oracle Unbreakable Linux support, you can use the
 comprehensive resources of the Unbreakable Linux Network (ULN). ULN offers software patches,
 updates, and fixes for Oracle Linux and Oracle VM, as well as information on
 yum, Ksplice, and support policies. You can also download useful packages
 that are not included in the original distribution. The ULN Alert Notification Tool
 periodically checks with ULN and alerts you when updates are available. You can access ULN at
 https://linux.oracle.com/, where you will also find instructions for
 registering with ULN, for creating local yum repositories, and for
 switching from the Red Hat Network (RHN) to ULN.
 If you want to use yum with ULN to manage your systems, you must
 register the systems with ULN and subscribe each system to one or more ULN channels. When you
 register a system with ULN, the channel that contains the latest version is chosen
 automatically according to the architecture and operating system revision of the system.

 When you run yum, it connects to the ULN server
 repository and downloads the latest software packages in RPM
 format onto your system. yum then presents you
 with a list of the available packages so that you can choose which
 ones you want to install.

3.2. About ULN Channels

 ULN provides more than 100 unique channels, which support the i386, x86_64, and ia64
 architectures, for releases of Oracle Linux 4 update 6 and later.

 You can choose for your system to remain at a specific OS
 revision, or you can allow the system to be updated with packages
 from later revisions.

 You should subscribe to the channel that corresponds to the architecture of your system
 and the update level at which you want to maintain it. Patches and errata are available for
 specific revisions of Oracle Linux, but you do not need to upgrade from a given revision level
 to install these fixes. ULN channels also exist for MySQL, Oracle VM, OCFS2, RDS, and
 productivity applications.
 The following table describes the main channels that are available.

	Channel
	Description

	
 _latest

 	
 Provides all the packages in a distribution, including any errata that are
 also provided in the patch channel. Unless you explicitly specify the version, any
 package that you download on this channel will be the most recent that is
 available. If no vulnerabilities have been found in a package, the package version
 might be the same as that included in the original distribution. For other
 packages, the version will be the same as that provided in the patch channel for
 the highest update level. For example, the
 ol6_arch_latest
 channel for Oracle Linux 6 Update 3 contains a combination of the
 ol6_u3_arch_base
 and
 ol6_u3_arch_patch
 channels.

	
 _base

 	
 Provides the packages for each major version and minor update of Oracle Linux
 and Oracle VM. This channel corresponds to the released ISO media image. For
 example, there is a base channel for each of the updates to Oracle Linux 6 as well
 as for Oracle Linux 6. Oracle does not publish security errata and bugfixes on
 these channels.

	
 _patch

 	
 Provides only those packages that have changed since the initial release of a
 major or minor version of Oracle Linux or Oracle VM. The patch channel always
 provides the most recent version of a package, including all fixes that have been
 provided since the initial version was released.

	
 _addons

 	
 Provides packages that are not included in the base distribution, such as the
 package that you can use to create a yum repository on Oracle Linux 6.

	
 _oracle

 	
 Provides freely downloadable RPMs from Oracle that you can install on Oracle
 Linux, such as ASMLib and Oracle Instant Client.

	
 _optional

 	
 Provides optional packages for Oracle Linux 7 that have been sourced from
 upstream. This channel includes most development packages
 (*-devel).

 Other channels may also be available, such as _beta channels for the
 beta versions of packages.
As each new major version or minor update of Oracle Linux becomes available, Oracle
 creates new base and patch channels for each supported architecture to distribute the new
 packages. The existing base and patch channels for the previous versions or updates remain
 available and do not include the new packages. The _latest channel
 distributes the highest possible version of any package, and tracks the top of the development
 tree independently of the update level.
Caution
You can choose to maintain your system at a specific update level of Oracle Linux and
 selectively apply errata to that level by subscribing the system to the
 _base and _patch channels and unsubscribing it from
 the _latest channel. However, for Oracle Linux 7, patches are not added
 to the _patch channel for previous updates after a new update has been
 released. For example, after the release of Oracle Linux 7 Update 1, no further errata will
 be released on the ol7_x86_64_u0_patch channel.
Oracle recommends that you keep you system subscribed to the _latest
 channel. If you unsubscribe from the _latest channel, your system will
 become vulnerable to security-related issues when a new update is released.

3.3. About Software Errata

Oracle releases important changes to Oracle Linux and Oracle VM software as individual
 package updates known as errata, which are made available for download on ULN before they are
 gathered into a release or are distributed via the _patch channel.
Errata packages can contain:

	Security advisories, which have names prefixed by ELSA-* (for
 Oracle Linux) and OVMSA-* (for Oracle VM).

	Bug fix advisories, which have names prefixed by ELBA-* and
 OVMBA-*.

	Feature enhancement advisories, which have names prefixed by
 ELEA-* and OVMEA-*.

To be notified when new errata packages are released, you can subscribe to the Oracle
 Linux and Oracle VM errata mailing lists at https://oss.oracle.com/mailman/listinfo/el-errata and https://oss.oracle.com/mailman/listinfo/oraclevm-errata.
If you are logged into ULN, you can also subscribe to these mailing lists by following the
 Subscribe to Enterprise Linux Errata mailing list and
 Subscribe to Oracle VM Errata mailing list links that are
 provided on the Errata tab.

3.4. Registering as a ULN User

When you register a system with ULN, your Oracle Single Signon (SSO) user name is also
 registered as your ULN user name. If you want to use ULN without first registering a system,
 you can register as a ULN user provided that you have a valid customer support identifier
 (CSI) for Oracle Linux support or Oracle VM support. To purchase Oracle Linux or Oracle VM
 support, go to the online Oracle Linux Store or contact your sales representative.
To register as a ULN user:
	In a browser, go to https://linux.oracle.com/register.

	If you do not have an SSO account, click Create New Single
 Signon Account and follow the onscreen instructions to create one.
If you already have an SSO account, click Sign
 On.

	Log in using your SSO user name and password.

	On the Create New ULN User page, enter your CSI and click Create New User.
Note
If no administrator is currently assigned to manage the CSI, you are prompted to
 click Confirm to become the CSI administrator. If you
 click Cancel, you cannot access the CSI
 administration feature. See Section 3.14, “About CSI Administration”.
If your user name already exists on the system, you are prompted to proceed to ULN
 by clicking the link Unbreakable Linux Network. If
 you enter a different CSI from your existing CSIs, your user name is associated with
 the new CSI in addition to your existing CSIs.

3.5. Registering an Oracle Linux 6 System

 To register an Oracle Linux 6 system with ULN.
	Run the uln_register
 command.
uln_register
Alternatively,
 if you use the GNOME graphical user desktop, select System >
 Administration > ULN Registration. You can also register your system with
 ULN if you configure networking when installing Oracle Linux 6.

	When prompted, enter your ULN user name, password, and customer support identifier
 (CSI).

	Enter a name for the system that will allow you to identify it on ULN, and choose
 whether to upload hardware and software profile data that allows ULN to select the
 appropriate packages for the system.

	If you have an Oracle Linux Premier Support account, you can choose to configure an
 Oracle Linux 6 system that is running a supported kernel to receive kernel updates from
 Oracle Ksplice. See Section 4.2, “Registering to Use Ksplice Uptrack”.

The yum-rhn-plugin is enabled and your system is subscribed to the
 appropriate software channels.
If you use a proxy server for Internet access, see Section 2.2.1, “Configuring Use of a Proxy Server”.

3.6. Registering an Oracle Linux 4 or Oracle Linux 5 System

 To register an Oracle Linux 4 or Oracle Linux 5 system with ULN.

	Import the RPM GPG key.

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY

	Run the text-mode version of the up2date command.

up2date-nox --register

	 When prompted, enter your ULN user name, password, and CSI.

	Enter the name of the system that will be displayed on ULN, and choose whether to
 upload hardware and software profile data that will allow ULN to select the appropriate
 packages for your system.

3.7. Configuring an Oracle Linux 5 System to Use yum with ULN

If your Oracle Linux 5 system is registered with ULN, you can use yum
 instead of up2date to download and install packages. If you have installed
 a full update since Oracle Linux 5.6 was released on January 20, 2010, your system should
 already be able to use yum with ULN.
To enable yum support:
	Install
 yum-rhn-plugin.
up2date --install yum-rhn-plugin

	If your organization uses a proxy server as an intermediary for Internet access,
 specify the enableProxy and httpProxy settings in
 /etc/sysconfig/rhn/up2date as shown in this
 example.
enableProxy=1
httpProxy=http://proxysvr.yourdom.com:3128
If the proxy server requires authentication, additionally specify the
 enableProxyAuth, proxyUser, and
 proxyPassword
 settings:
enableProxy=1
enableProxyAuth=1
httpProxy=http://proxysvr.yourdom.com:3128
proxyUser=yumacc
proxyPassword=clydenw
Caution
All yum users require read access to
 /etc/sysconfig/rhn/up2date. If this file must be world-readable,
 do not use a password that is the same as any user's login password, and especially
 not root's password.

With the plugin installed, you can immediately start to use yum instead
 of up2date.

3.8. Disabling Package Updates

To disable package updates by ULN (for example, if you have deleted your system from ULN),
 edit the /etc/yum/pluginconf.d/rhnplugin.conf file, and change the value of
 enabled flag from 1 to 0 in the [main] section, for
 example:

[main]
enabled = 0
gpgcheck = 1

To disable updates for particular packages, add an exclude statement to
 the [main] section of the /etc/yum.conf file. For
 example, to exclude updates for VirtualBox and
 kernel:
exclude=VirtualBox* kernel*
Note
Excluding certain packages from being updated can cause dependency errors for other packages.
 Your machine might also become vulnerable to security-related issues if you do not install
 the latest updates.

3.9. Subscribing Your System to ULN Channels

If you have registered your system with ULN, you can subscribe the system to the channels
 that are available for the level of support associated with the CSI.
To subscribe your system to ULN channels:
	Log in to http://linux.oracle.com with
 your ULN user name and password.

	On the Systems tab, click the link named for the system in the list of registered
 machines.

	On the System Details page, click Manage
 Subscriptions.

	On the System Summary page, select channels from the list of available or subscribed
 channels and click the arrows to move the channels between the lists.

	When you have finished selecting channels, click Save
 Subscriptions.

3.10. Browsing and Downloading Errata Packages

You can browse the advisories that are available on ULN, and download the errata RPMs for
 the supported combinations of the software release and the system architecture.
To browse the advisories and download errata RPMs:
	Log in to http://linux.oracle.com with
 your ULN user name and password.

	Select the Errata tab.
The Errata page displays a table of the available errata for all releases that are
 available on ULN.

	On the Errata page, you can perform the following actions on the displayed
 errata:
	To sort the table of available errata, click the title of the Type, Severity, Advisory, Systems Affected,
 or Release Date column. Click the title again to
 reverse the order of sorting.
Note
The Systems Affected column shows how many of your systems
 are potentially affected by an advisory.

	To display or hide advisories of different types, select or deselect the
 Bug, Enhancement,
 and Security check boxes and click Go.

	To display only advisories for a certain release of Oracle Linux or Oracle VM,
 select that release from the Release drop-down list
 and click Go.

	To search within the table, enter a string in the Search field and click Go.

	To see more detail about an advisory and to download the RPMs:
	Click the link for the advisory.

	On the Errata Detail page for an advisory, you can download the RPMs for the
 supported releases and system architectures. The Superseded By
 Advisory column displays a link to the most recent advisory (if any)
 that replaces the advisory you are browsing.

3.11. Downloading Available Errata for a System

You can download a comma-separated values (CSV) report file of the errata that are
 available for your system and you can download errata RPMs.
To download a CSV report or the errata RPMs:
	Log in to http://linux.oracle.com with
 your ULN user name and password.

	On the Systems tab, click the link named for the system in the list of registered
 machines.
The System Details page lists the available errata for the system in the Available
 Errata table, which might be split over several pages.

	To download the CSV report file, click the link Download All
 Available Errata for this System.

	To see more detail about an advisory and download the RPMs:
	Click the link for the advisory.

	On the System Errata Detail page for an advisory, you can download the RPMs for
 the affected releases and system architectures.

3.12. Updating System Details

If you have registered your system with ULN, you can update the details that ULN records
 for the system.
To update the details for your system:
	Log in to http://linux.oracle.com with
 your ULN user name and password.

	On the Systems tab, click the link named for the system in the list of registered
 machines.

	On the System Details page, click Edit.

	On the Edit System Properties page, you can change the name associated with your
 system, register it as a local yum server for your site, or change the CSI with which it
 is registered.
Note
You cannot change the CSI of a system unless it is registered to your user name.

	When you have finished making changes, click Apply
 Changes.

3.13. Deleting a System

To delete a system that is registered on ULN:
	Log in to http://linux.oracle.com with
 your ULN user name and password.

	On the Systems tab, click the link named for the system in the list of registered
 machines.

	On the System Details page, click Delete.
Note
You cannot delete a system unless it is registered to your user name.

	When prompted to confirm the deletion, click OK.

3.14. About CSI Administration

The CSI administration feature of ULN provides a unified view of all of your
 organization's CSIs and the systems that are registered with those CSIs. To be able to manage
 the registered systems, you must become an administrator for one or more of your
 organization's CSIs. To be able to view and change the details of any system that is not
 registered to your ULN user name, you must become an administrator for the CSI under which
 that system is registered.
If you are registered as a CSI administrator, you can access the CSI Administration tab
 while logged in to ULN and perform the following tasks:
	Assign yourself as administrator of a CSI, or assign someone else as administrator
 of a CSI. See Section 3.14.1, “Becoming a CSI Administrator”.

	List active CSIs, list the servers that are currently registered with an active CSI,
 and transfer those servers to another user or to another CSI. See Section 3.14.2, “Listing Active CSIs and Transferring Their Registered Servers”.

	List expired CSIs, list the servers that are currently registered with an expired
 CSI, and transfer those servers to another user or to another CSI. See Section 3.14.3, “Listing Expired CSIs and Transferring Their Registered Servers”.

	Remove yourself or someone else as administrator of a CSI. See Section 3.14.4, “Removing a CSI Administrator”.

3.14.1. Becoming a CSI Administrator

You can become an administrator of a CSI in one of the following ways:
	When you register with ULN, if no administrator is currently assigned to manage
 the CSI, you are prompted to click Confirm to become
 the CSI administrator. If you click Cancel, you
 cannot access the CSI administration feature.

	When logged into ULN, if you access the System tab and no administrator is
 currently assigned to manage one of the CSIs for which you are registered, you are
 prompted to choose whether to become the CSI administrator.
To become a CSI administrator:
	Click the red link labeled enter the CSI you would
 like to be the administrator for in this page.

	On the Add CSI page, verify the CSI and click Confirm.

Note
On the Systems page, the CSIs of all systems that have no assigned administrator
 are also shown in red.

	If you are already an administrator of a CSI, you can add yourself as
 administrator of another CSI provided that you have registered either a server or your
 ULN user name with the other CSI.
To assign yourself as administrator of an additional CSI:

	Log in to ULN and select the CSI Administration tab.

	On the Managed CSIs page, click Add
 CSI.

	On the Assign Administrator page, enter the CSI, and click Add.

	If there are existing administrators, the page lists these administrators
 and prompts you to click Confirm to confirm
 your request. Each administrator is sent an email to inform them that you have
 added yourself as an administrator of the CSI.

	An administrator for a CSI can add you as an administrator for the same CSI.
To assign another administrator to a CSI:
	Log in to ULN as administrator of the CSI, and select the CSI Administration
 tab.

	On the Managed CSIs page, click List
 Administrators.

	On the CSI Administrators page, click Assign
 Administrator.

	On the Assign Administrator page in the Select New Administrator list, click the
 + icon that is next to the user name of the
 user that you want to add as an administrator. Their user name is added to the
 Administrator box.

	If you administer more than one CSI, select the CSI that the user will
 administer from the CSI drop down list.

	Click Assign Administrator.

Note
If you want to become the administrator of a CSI but the person to whom it is registered is no
 longer with your organization, contact an Oracle support representative to request that
 you be made the administrator for the CSI.

3.14.2. Listing Active CSIs and Transferring Their Registered Servers

To list details of the active CSIs for which you are the administrator:
	Log in to ULN as administrator of the CSI, and select the CSI Administration
 tab.

	On the Managed CSIs page in the Select Managed CSI Services pane, select the
 Active link. The Managed Active CSI Services pane
 displays the service details for each active CSI that you administer.

	Click the View #
 Server(s) link to display the details of the servers that are registered
 to an active CSI.

	On the Registered Servers page, you can transfer one or more systems to another user
 or to another CSI that you administer.
Note
If you transfer a system to another user, at least one of the following conditions must be true:
	His or her user name must be registered to this CSI.

	One or more of the servers, for which they are the owner, must be
 registered to this CSI.

	He or she must be an administrator of at least one CSI for which you are
 also an administrator.

To transfer systems to another user:
	Select the Transfer System check boxes for
 the systems that you want to transfer.

	Click Transfer Selected Systems to Another
 Owner.

	On the Transfer Registered System(s) - Owner page in the Transfer To column,
 click the red arrow icon that is next to the user name of the user to whom you
 want to transfer ownership.

	On the Confirm Transfer Profile - Owner page, click Apply Changes to confirm the transfer to the new owner.

To transfer systems to another CSI:
	Select the Transfer System check boxes for
 the systems that you want to transfer.

	Click Transfer Selected Systems to Another
 CSI.

	On the Transfer Registered System(s) - CSI page in the Transfer To column,
 click the red arrow icon that is next to the CSI to which you want to transfer
 the systems.

	On the Confirm Transfer Profile - CSI page, click Apply
 Changes to confirm the transfer to the new CSI.

3.14.3. Listing Expired CSIs and Transferring Their Registered Servers

To list details of the expired CSIs for which you are the administrator:
	Log in to ULN as administrator of the CSI, and select the CSI Administration
 tab.

	On the Managed CSIs page in the Select Managed CSI Services pane, select the
 Expired link. The Managed Expired CSI Services pane
 displays the service details for each expired CSI that you administer.

	Click the View #
 Server(s) link to display the details of the servers that are registered
 to an expired CSI.

	On the Registered Servers page, you can transfer one or more systems to another user
 or to another CSI that you administer.
Note
If you transfer a system to another user, at least one of the following conditions
 must be true:
	His or her user name must be registered to this CSI.

	One or more of the servers, for which they are the owner, must be
 registered to this CSI.

	He or she must be an administrator of at least one CSI for which you are
 also an administrator.

To transfer systems to another user:
	Select the Transfer System check boxes for
 the systems that you want to transfer.

	Click Transfer Selected Systems to Another
 Owner.

	On the Transfer Registered System(s) - Owner page in the Transfer To column,
 click the red arrow icon that is next to the user name of the user to whom you
 want to transfer ownership.

	On the Confirm Transfer Profile - Owner page, click Apply Changes to confirm the transfer to the new owner.

To transfer systems to another CSI:
	Select the Transfer System check boxes for
 the systems that you want to transfer.

	Click Transfer Selected Systems to Another
 CSI.

	On the Transfer Registered System(s) - CSI page in the Transfer To column,
 click the red arrow icon that is next to the CSI to which you want to transfer
 the systems.

	On the Confirm Transfer Profile - CSI page, click Apply
 Changes to confirm the transfer to the new CSI.

3.14.4. Removing a CSI Administrator

To remove an administrator who is registered for a CSI:
	Log in to ULN and select the CSI Administration tab.

	On the Managed CSIs page, click List
 Administrators.

	On the CSI Administrators page in the Delete? column, click the trash can icon that
 is next to the user name of the user that you want to remove as administrator for the
 CSI specified in the same row.

	When prompted to confirm that you want to revoke administration privileges for the
 CSI from that user, click OK.

3.15. Switching from RHN to ULN

Note
This procedure is for a Red Hat Enterprise Linux 6 system. For details of equivalent
 procedures for Red Hat Enterprise Linux 3, 4, and 5, see http://linux.oracle.com/switch.html.
If you have an Oracle Linux 6 system that is registered with the Red Hat Network (RHN),
 you can use the uln_register utility to register it as described in Section 3.5, “Registering an Oracle Linux 6 System”.
You must have a ULN account before you can register a system with ULN. You can create a
 ULN account at http://linux.oracle.com/register.

 To register your system with ULN instead of RHN:
	 Download the uln_register.tgz package from http://linux-update.oracle.com/rpms
 to a temporary directory.
 If the rhn-setup-gnome package is already installed on your
 system, also download the uln_register-gnome.tgz from the same URL.

	 Extract the packages using the following command.
tar -xzf uln_register.tgz
 If the rhn-setup-gnome package is installed on your system,
 extract the packages from uln_register-gnome.tgz.
tar -xzf uln_register-gnome.tgz

	 Change to the uln_migrate directory and install the registration
 packages.
cd ./uln_migrate
rpm -Uvh *.rpm

	 Run the uln_register command.

uln_register

	 Follow the instructions on the screen to complete the registration. The
 uln_register utility collects information about your system and
 uploads it to Oracle.

3.16. For More Information About ULN

 You can find out more information about ULN at https://linux.oracle.com/.

Chapter 4. Ksplice Uptrack

Table of Contents
	4.1. About Ksplice Uptrack
		4.1.1. Supported Kernels

	4.2. Registering to Use Ksplice Uptrack
	4.3. Installing Ksplice Uptrack
	4.4. Configuring Ksplice Uptrack
	4.5. Managing Ksplice Updates
	4.6. Patching and Updating Your System
	4.7. Removing the Ksplice Uptrack software
	4.8. About Ksplice Offline Client
		4.8.1. Modifying a Local Yum Server to Act as a Ksplice Mirror
	4.8.2. Configuring Ksplice Offline Clients

	4.9. For More Information About Ksplice Uptrack

 This chapter describes how to configure Ksplice Uptrack to update the kernel on a running
 system.

4.1. About Ksplice Uptrack

Ksplice Uptrack can update a running Linux kernel without requiring an immediate reboot of
 the system. You can apply Ksplice updates to both the Unbreakable Enterprise Kernel and the
 Red Hat Compatible Kernel. Oracle creates each Ksplice patch from a kernel update that
 originates from either Oracle or the Linux kernel community. Ksplice Uptrack allows you to
 apply the latest kernel security errata for Common Vulnerabilities and Exposures (CVEs)
 without halting the system or restarting applications. Ksplice Uptrack applies the update
 patches in the background with a negligible impact, usually consisting of a pause of at most a
 few milliseconds. Ksplice Uptrack allows you to keep your systems secure and highly available.
 You can use Ksplice Uptrack and still upgrade your kernel using your usual mechanism, such as
 by using yum.
4.1.1. Supported Kernels

You can use Ksplice Uptrack to bring the following Oracle Linux kernels up to date with
 the latest important security and bug fix patches:
	All Oracle Unbreakable Enterprise Kernel versions for Oracle Linux 5 and Oracle
 Linux 6 starting with 2.6.32-100.28.9 (released March 16, 2011).

	All Oracle Linux 6 kernels starting with the official release.

	All Oracle Linux 5 Red Hat Compatible Kernels starting with Oracle Linux 5.4
 (2.6.18-164.el5, released September 9, 2009).

	All Oracle Linux 5 Red Hat Compatible Kernels with bug fixes added by Oracle
 starting with Oracle Linux 5.6 (2.6.18-238.0.0.0.1.el5, released January 22,
 2011).

To confirm whether a particular kernel is supported, install the Uptrack client on a
 system that is running the kernel.
If you have a question about supported kernels, send e-mail to ksplice-support_ww@oracle.com.

4.2. Registering to Use Ksplice Uptrack

When you register your systems with ULN, you can opt to use Oracle Ksplice if you have an
 Oracle Linux Premier Support account. If you choose to use Ksplice, you can subscribe your
 systems to the Ksplice for Oracle Linux channel and install the Ksplice Uptrack software on
 them. To install the uptrack package after registration is complete, you
 can use yum on an Oracle Linux 6 system or up2date on an
 Oracle Linux 5 system. The Uptrack client downloads the access key from ULN and automatically
 configures itself so that you can immediately begin to use Ksplice Uptrack.
If you already have an account on ULN, you can register your system to use Ksplice Uptrack
 at http://linux.oracle.com.
	From your browser, log in to ULN with your existing user name and password. If your
 subscription grants you access to Ksplice, the ULN home page displays the Ksplice Uptrack Registration button.

	 Click Ksplice Uptrack Registration. The screen
 displays all valid Customer Support Identifiers (CSIs) for your account.

	 Select the CSI that you want to use and click Register. The screen displays an
 acknowledgment that a Ksplice account has been created and that an e-mail containing the
 Ksplice access key, a temporary password for Ksplice, and a URL for confirming your
 registration has been sent to your e-mail account.

	 When you receive the e-mail, open the URL that it contains.

	 Complete the form to confirm your registration, and click Continue.

After registering to use Ksplice Uptrack, you can log in at https://uptrack.ksplice.com using your e-mail address as your user name, and
 the temporary password. You must change your password when you first log in. You can view the
 status of your registered systems, the patches that have been applied, and the patches that
 are available. You can also create access control groups for your registered systems.

4.3. Installing Ksplice Uptrack

If you have an Oracle Linux Premier Support account and you have registered to use
 Oracle Ksplice, you can configure your registered systems to use Ksplice Uptrack through the
 Ksplice for Oracle Linux channel on ULN by using yum.
The system on which you want to install Ksplice Uptrack must meet the following
 criteria:

	The system must be registered with ULN.

	The operating system must be Oracle Linux 5 or Oracle Linux 6 with a supported
 version of either the Unbreakable Enterprise Kernel or the Red Hat Compatible Kernel
 installed. You can verify the kernel version by using the uname -a
 command. See Section 4.1.1, “Supported Kernels”.

	 The kernel that is running currently is assumed to be the one that you want to
 update. Ksplice Uptrack applies updates only to the running kernel.

	 The system must have access to the Internet.

 To install Ksplice Uptrack from ULN:
	 Log in as root on the system.

	 If you use an Internet proxy, configure the HTTP and HTTPS settings for the proxy
 in the shell.
	 For the sh, ksh, or
 bash shells, use commands such as the following:
http_proxy=http://proxy_URL:http_port
https_proxy=http://proxy_URL:https_port
export http_proxy https_proxy
 For the csh shell, use commands such as the following:
setenv http_proxy=http://proxy_URL:http_port
setenv https_proxy=http://proxy_URL:https_port

	Using a browser, log in at http://linux.oracle.com with the ULN user name and password that you used
 to register the system, and perform the following steps:
	On the Systems tab, click the link named for your system in the list of
 registered machines.

	On the System Details page, click Manage
 Subscriptions.

	On the System Summary page, select the Ksplice for Oracle Linux channel for
 the correct release and your system's architecture (i386 or
 x86_64) from the list of available channels and click the
 right arrow (>) to move it to the list of
 subscribed channels.

	Click Save Subscriptions and log out of the
 ULN.

	On your system, use yum to install the
 uptrack package.
yum install -y uptrack
The access key for Ksplice Uptrack is retrieved from ULN and added to
 /etc/uptrack/uptrack.conf, for example:
[Auth]
accesskey = 0e1859ad8aea14b0b4306349142ce9160353297daee30240dab4d61f4ea4e59b

	To enable the automatic installation of updates, change the following entry in
 /etc/uptrack/uptrack.conf:
autoinstall = no
so that it reads:
autoinstall = yes

For information about configuring Ksplice Uptrack, see Section 4.4, “Configuring Ksplice Uptrack”.
For information about managing Ksplice updates, see Section 4.5, “Managing Ksplice Updates”.

4.4. Configuring Ksplice Uptrack

The configuration file for Ksplice Uptrack is
 /etc/uptrack/uptrack.conf. You can modify this file to configure a proxy
 server, to install updates automatically at boot time, or to check for and apply new updates
 automatically.
Ksplice Uptrack communicates with the Uptrack server by connecting to
 https://updates.ksplice.com:443. You can either configure your firewall
 to allow connection via port 443, or you can configure Ksplice Uptrack to use a proxy server.
 To configure Ksplice Uptrack to use a proxy server, set the following entry in
 /etc/uptrack/uptrack.conf:

https_proxy = https://proxy_URL:https_port
You
 receive e-mail notification when Ksplice updates are available for your system.
To make Ksplice Uptrack install all updates automatically as they become available, set
 the following entry:
autoinstall = yes
Note
Enabling automatic installation of updates does not automatically update Ksplice
 Uptrack itself. Oracle notifies you by e-mail when you can upgrade the Ksplice Uptrack
 software using yum.

To install updates automatically at boot time, the following entry must appear in
 /etc/uptrack/uptrack.conf:
install_on_reboot = yes
When you boot the system into the same kernel, the /etc/init.d/uptrack
 script reapplies the installed Ksplice updates to the kernel.
To prevent Ksplice Uptrack from automatically reapplying updates to the kernel when you
 reboot the system, set the entry to:

install_on_reboot = no
To install all available updates at boot time, even if you boot the system into a
 different kernel, uncomment the following entry in
 /etc/uptrack/uptrack.conf:
#upgrade_on_reboot = yes
so that it reads:
upgrade_on_reboot = yes

4.5. Managing Ksplice Updates

Ksplice patches are stored in /var/cache/uptrack. Following a reboot,
 Ksplice Uptrack automatically re-applies these patches very early in the boot process before
 the network is configured, so that the system is hardened before any remote connections can be
 established.
To list the available Ksplice updates, use the uptrack-upgrade command:

uptrack-upgrade -n
To
 install all available Ksplice updates, enter:

uptrack-upgrade -y
To install an individual Ksplice update, specify the update's ID as the argument (in this
 example, the ID is dfvn0zq8):

uptrack-upgrade dfvn0zq8
After Ksplice has applied updates to a running kernel, the kernel has an effective version
 that is different from the original boot version displayed by the uname –a
 command. Use the uptrack-uname command to display the effective version of
 the kernel:

uptrack-uname -a
uptrack-uname supports the commonly used uname
 flags, including -a and -r, and provides a way for
 applications to detect that the kernel has been patched. The effective version is based on the
 version number of the latest patch that Ksplice Uptrack has applied to the kernel.
To view the updates that Ksplice has made to the running
 kernel:
uptrack-show
To
 view the updates that are available to be
 installed:
uptrack-show --available
To
 remove all updates from the
 kernel:
uptrack-remove --all
To prevent Ksplice Uptrack from reapplying the updates at the next system reboot, create
 the empty file /etc/uptrack/disable:

touch /etc/uptrack/disable
Alternatively, specify nouptrack as a parameter on the boot command
 line when you next restart the system.

4.6. Patching and Updating Your System

Ksplice patches allow you to keep a system up to date while it is running. You should also
 use yum or rpm to install the regular kernel RPM
 packages for released errata that are available from the Unbreakable Linux Network (ULN) or
 the Oracle Public Yum server. Your system will then be ready for the next maintenance window
 or reboot. When you do restart the system, you can boot it from a newer kernel version.
 Ksplice Uptrack uses the new kernel as a baseline for applying patches as they become
 available.

4.7. Removing the Ksplice Uptrack software

To remove the Ksplice Uptrack software from a system, enter:

yum -y remove uptrack

4.8. About Ksplice Offline Client

Ksplice Offline Client removes the requirement for a server on your intranet to have a
 direct connection to the Oracle Uptrack server. All available Ksplice updates for each
 supported kernel version are bundled into an RPM that is specific to that version, and this
 package is updated every time that a new Ksplice patch becomes available for the
 kernel.
A Ksplice offline client does not require a network connection to be able to apply the
 update package to the kernel. For example, you could use rpm to install the
 update package from a memory stick. However, a more usual arrangement would be to create a
 local yum server that acts as a mirror of the Ksplice for Oracle Linux channels on ULN. At
 regular intervals, you download the latest Ksplice update packages to this server. Only the
 local yum server requires access the Oracle Uptrack server. After installing Ksplice Offline
 Client on your other systems, they need only to be able to connect to the local yum
 server.
Note
You cannot use the web interface or the Ksplice Uptrack API to monitor systems that are
 running Ksplice Offline Client as such systems are not registered with https://uptrack.ksplice.com.

4.8.1. Modifying a Local Yum Server to Act as a Ksplice Mirror

The system that you want to set up as a Ksplice mirror must meet the following criteria:
	You must have registered the system with ULN.

	You must have configured the system as a local yum server.
 See Section 2.8, “Creating and Using a Local ULN Mirror”.

	The system should also have enough disk space to store copies of the packages that
 it hosts. As a general rule, you require between 6 and 10 GB of space for the packages
 of each major release.

To set up a local yum server as a Ksplice mirror:
	Using a browser, log in at http://linux.oracle.com with the ULN user name and password that you used
 to register the system.

	On the Systems tab, click the link named for your system in the list of
 registered machines.

	On the System Details page, click Edit.

	On the Edit System Properties page, verify that the Yum
 Server check box is selected and click Apply
 Changes.

	On the System Details page, click Manage
 Subscriptions.

	On the System Summary page, select channels from the list of available or
 subscribed channels and click the arrows to move the channels between the
 lists.
Modify the subscribed channels to include Ksplice for Oracle Linux for the
 system architectures that you want to support as well as any other channels that you
 want to make available to local systems.
For example, the following table shows the channels that are available for
 Ksplice on Oracle Linux.
	
 Channel Name

 	
 Channel Label

 	
 Description

	
 Ksplice for Oracle Linux 5 (i386)

 	
 ol5_i386_ksplice

 	
 Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5
 on i386 systems.

	
 Ksplice for Oracle Linux 5 (x86_64)

 	
 ol5_x86_64_ksplice

 	
 Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5
 on x86_64 systems.

	
 Ksplice for Oracle Linux 6 (i386)

 	
 ol6_i386_ksplice

 	
 Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6
 on i386 systems.

	
 Ksplice for Oracle Linux 6 (x86_64)

 	
 ol6_x86_64_ksplice

 	
 Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6
 on x86_64 systems.

For more information about the release channels that are available, see http://www.oracle.com/technetwork/articles/servers-storage-admin/yum-repo-setup-1659167.html.

	When you have finished selecting channels, click Save
 Subscriptions and log out of ULN.

4.8.2. Configuring Ksplice Offline Clients

Once you have set up a local yum server that can act as a Ksplice mirror, you can
 configure your other systems to receive yum and Ksplice updates.
To configure a system as a Ksplice offline client:
	In the /etc/yum.repos.d directory, edit the existing repository
 file, such as public-yum-ol6.repo or
 ULN-base.repo, and disable all entries by setting
 enabled=0.

	In the /etc/yum.repos.d directory, create the file
 local-yum.repo, which contains entries such as the following for
 an Oracle Linux 6
 client:
[ol6_x86_64_ksplice]
name=Ksplice for $releasever - $basearch
baseurl=http://local_yum_server/yum/OracleLinux/OL6/ksplice/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

[ol6_latest]
name=Oracle Linux $releasever - $basearch - latest
baseurl=http://local_yum_server/yum/OracleLinux/OL6/latest/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=1

[ol6_addons]
name=Oracle Linux $releasever - $basearch - addons
baseurl=http://local_yum_server/yum/OracleLinux/OL6/addons/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_oracle]
name=Oracle Linux $releasever - $basearch - oracle
baseurl=http://local_yum_server/yum/OracleLinux/OL6/oracle/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_ga_base]
name=Oracle Linux $releasever GA - $basearch - base
baseurl=http://local_yum_server/yum/OracleLinux/OL6/0/base/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u1_base]
name=Oracle Linux $releasever U1 - $basearch - base
baseurl=http://local_yum_server/yum/OracleLinux/OL6/1/base/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u2_base]
name=Oracle Linux $releasever U2 - $basearch - base
baseurl=http://local_yum_server/yum/OracleLinux/OL6/2/base/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u3_base]
name=Oracle Linux $releasever U3 - $basearch - base
baseurl=http://local_yum_server/yum/OracleLinux/OL6/3/base/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_ga_patch]
name=Oracle Linux $releasever GA - $basearch - patch
baseurl=http://local_yum_server/yum/OracleLinux/OL6/0/patch/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u1_patch]
name=Oracle Linux $releasever U1 - $basearch - patch
baseurl=http://local_yum_server/yum/OracleLinux/OL6/1/patch/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u2_patch]
name=Oracle Linux $releasever U2 - $basearch - patch
baseurl=http://local_yum_server/yum/OracleLinux/OL6/2/patch/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0

[ol6_u3_patch]
name=Oracle Linux $releasever U3 - $basearch - patch
baseurl=http://local_yum_server/yum/OracleLinux/OL6/3/patch/$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY
gpgcheck=1
enabled=0
Replace local_yum_server with the IP address or
 resolvable host name of the local yum server.
In the sample configuration, only the ol6_latest and
 ol6_x86_64_ksplice channels are enabled.
Note
As an alternative to specifying a gpgkey entry for each
 repository definition, you can use the following command to import the GPG
 key:
rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY

	Install the Ksplice offline
 client.
yum install uptrack-offline
If
 yum cannot connect to the local yum server, check that the
 firewall settings on that server allow incoming TCP connections to port 80.

	Install the Ksplice updates that are available for the
 kernel.
yum install uptrack-updates-`uname -r`
For an Oracle Linux 5 client, use this form of the command instead:

yum install uptrack-updates-`uname -r`.`uname -m`

As new Ksplice updates are made available, you can use this command to pick up
 these updates and apply them. It is recommended that you set up a
 cron job to perform this task. For example, the following
 crontab entry for root runs the command once
 per day at
 7am:
0 7 * * * yum install uptrack-updates-`uname -r`

To display information about Ksplice updates, use the rpm -qa | grep
 uptrack-updates and uptrack-show commands.

4.9. For More Information About Ksplice Uptrack

 You can find out more information about Ksplice Uptrack at http://www.ksplice.com/.

Chapter 5. The Btrfs File System

Table of Contents
	5.1. About the Btrfs File System
	5.2. Creating a Btrfs File System
	5.3. Modifying a Btrfs File System
	5.4. Compressing and Defragmenting a Btrfs File System
	5.5. Resizing a Btrfs File System
	5.6. Creating Subvolumes and Snapshots
		5.6.1. Cloning Virtual Machine Images and Linux Containers

	5.7. Using the Send/Receive Feature
		5.7.1. Using Send/Receive to Implement Incremental Backups

	5.8. Using Quota Groups
	5.9. Replacing Devices on a Live File System
	5.10. Creating Snapshots of Files
	5.11. Converting an Ext2, Ext3, or Ext4 File System to a Btrfs File System
		5.11.1. Converting a Non-root File System
	5.11.2. Converting the root File System
	5.11.3. Mounting the Image of the Original File System
	5.11.4. Deleting the Snapshot of the Original File System
	5.11.5. Recovering an Original Non-root File System

	5.12. Installing a Btrfs root File System
		5.12.1. Setting up a New NFS Server
	5.12.2. Configuring an Existing NFS Server
	5.12.3. Setting up a New HTTP Server
	5.12.4. Configuring an Existing HTTP Server
	5.12.5. Setting up a Network Installation Server
	5.12.6. Installing from a Network Installation Server
	5.12.7. About the Installation root File System
	5.12.8. Creating Snapshots of the root File System
	5.12.9. Mounting Alternate Snapshots as the root File System
	5.12.10. Deleting Snapshots of the root File System

	5.13. For More Information About Btrfs

 This chapter describes how to deploy and use the advanced features
 of the btrfs file system.

5.1. About the Btrfs File System

The btrfs file system is designed to meet the expanding scalability requirements of large
 storage subsystems. As the btrfs file system uses B-trees in its implementation, its name
 derives from the name of those data structures, although it is not a true acronym. A B-tree is
 a tree-like data structure that enables file systems and databases to efficiently access and
 update large blocks of data no matter how large the tree grows.
 The btrfs file system provides the following important features:
	 Copy-on-write functionality allows you to create both readable and writable
 snapshots, and to roll back a file system to a previous state, even after you have
 converted it from an ext3 or ext4 file system.

	 Checksum functionality ensures data integrity.

	 Transparent compression saves disk space.

	 Transparent defragmentation improves performance.

	 Integrated logical volume management allows you to implement RAID 0, RAID 1, or
 RAID 10 configurations, and to dynamically add and remove storage capacity.

 Starting with Oracle Linux 6 Update 3, an installation ISO is available that
 boots the Unbreakable Enterprise Kernel as the installation kernel. which allows you to
 configure a btrfs root file system. Prior to Oracle Linux 6 Update 3, you could not create a
 btrfs root file system during installation. For more information, see Section 5.12, “Installing a Btrfs root File System”.
With UEK R3, btrfs supports the following additional features:
	The send/receive feature allows you to record the differences between two subvolumes,
 which can either be snapshots of the same subvolume or parent and child subvolumes.

	Quota groups (qgroups) allow you to set different size limits for
 a volume and its subvolumes.

	You can replace devices without unmounting or otherwise disrupting access to the file
 system.

5.2. Creating a Btrfs File System

Note

 If the btrfs-progs package is not already
 installed on your system, use yum to
 install it.

You can use the mkfs.btrfs command to create a btrfs file system that
 is laid out across one or more block devices. The default configuration is to stripe the file
 system data and to mirror the file system metadata across the devices. If you specify a single
 device, the metadata is duplicated on that device unless you specify that only one copy of the
 metadata is to be used. The devices can be simple disk partitions, loopback devices (that is,
 disk images in memory), multipath devices, or LUNs that implement RAID in hardware.

 The following table illustrates how to use the
 mkfs.btrfs command to create various btrfs
 configurations.

	
 Command

	
 Description

	
 mkfs.btrfs
 block_device

	
 Create a btrfs file system on a single device. For
 example:

 mkfs.btrfs /dev/sdb1

	
 mkfs.btrfs -L
 label
 block_device

	
 Create a btrfs file system with a label that you can use
 when mounting the file system. For example:

 mkfs.btrfs -L myvolume /dev/sdb2

 Note

 The device must correspond to a partition if you
 intend to mount it by specifying the name of its
 label.

	
 mkfs.btrfs -m single
 block_device

	
 Create a btrfs file system on a single device, but do
 not duplicate the metadata on that device. For example:

 mkfs.btrfs -m single /dev/sdc

	
 mkfs.btrfs
 block_device1
 block_device2 ...

	
 Stripe the file system data and mirror the file system
 metadata across several devices. For example:

 mkfs.btrfs /dev/sdd /dev/sde

	
 mkfs.btrfs -m raid0
 block_device1
 block_device2 ...

	
 Stripe both the file system data and metadata across
 several devices. For example:

 mkfs.btrfs -m raid0 /dev/sdd /dev/sde

	
 mkfs.btrfs -d raid1
 block_device1
 block_device2 ...

	
 Mirror both the file system data and metadata across
 several devices. For example:

 mkfs.btrfs -d raid1 /dev/sdd /dev/sde

	
 mkfs.btrfs -d raid10 -m raid10
 block_device1
 block_device2
 block_device3
 block_device4

	
 Stripe the file system data and metadata across several
 mirrored devices. You must specify an even number of
 devices, of which there must be at least four. For
 example:

 mkfs.btrfs -d raid10 -m raid10 /dev/sdf
 \

 /dev/sdg /dev/sdh /dev/sdi /dev/sdj
 /dev/sdk

 When you want to mount the file system, you can specify it by any of its component
 devices, for example:

mkfs.btrfs -d raid10 -m raid10 /dev/sd[fghijk]
mount /dev/sdf /raid10_mountpoint
 To find out the RAID configuration of a mounted btrfs file system, use this command:
btrfs filesystem df mountpoint
Note
The btrfs filesystem df command displays more accurate information about the space used by a
 btrfs file system than the df command does.

Use the following form of the btrfs command to display information
 about all the btrfs file systems on a system:

btrfs filesystem show

5.3. Modifying a Btrfs File System

 The following table shows how you can use the
 btrfs command to add or remove devices, and to
 rebalance the layout of the file system data and metadata across
 the devices.

	
 Command

	
 Description

	
 btrfs device add
 device
 mountpoint

	
 Add a device to the file system that is mounted on the
 specified mount point. For example:

 btrfs device add /dev/sdd /myfs

	
 btrfs device delete
 device
 mountpoint

	
 Remove a device from a mounted file system. For
 example:

 btrfs device delete /dev/sde /myfs

	
 btrfs device delete missing
 mountpoint

	
 Remove a failed device from the file system that is
 mounted in degraded mode. For example:

 btrfs device remove missing /myfs

 To mount a file system in degraded mode, specify the
 -o degraded option to the
 mount command.

 For a RAID configuration, if the number of devices
 would fall below the minimum number that are required,
 you must add the replacement device before removing
 the failed device.

	
 btrfs filesystem balance
 mountpoint

	
 After adding or removing devices, redistribute the
 file system data and metadata across the available
 devices.

5.4. Compressing and Defragmenting a Btrfs File System

 You can compress a btrfs file system to increase its effective capacity, and you can
 defragment it to increase I/O performance.
 To enable compression of a btrfs file system, specify one of the following
 mount options:
	
 Mount Option

 	
 Description

	

 compress=lzo

 	
 Use LZO compression.

	

 compress=zlib

 	
 Use zlib compression.

 LZO offers a better compression ratio, while zlib offers faster compression.
 You can also compress a btrfs file system at the same time that you defragment it.
 To defragment a btrfs file system, use the following command:

btrfs filesystem defragment filesystem_name
 To defragment a btrfs file system and compress it at the same time:

btrfs filesystem defragment -c filesystem_name
 You can also defragment, and optionally compress, individual file system objects, such as
 directories and files, within a btrfs file system.
btrfs filesystem defragment [-c] file_name ...
Note
 You can set up automatic defragmentation by specifying the
 autodefrag option when you mount the file system. However, automatic
 defragmentation is not recommended for large databases or for images of virtual machines.
 Defragmenting a file or a subvolume that has a copy-on-write copy results breaks the
 link between the file and its copy. For example, if you defragment a subvolume that has a
 snapshot, the disk usage by the subvolume and its snapshot will increase because the
 snapshot is no longer a copy-on-write image of the subvolume.

5.5. Resizing a Btrfs File System

 You can use the btrfs command to increase the size of a mounted btrfs
 file system if there is space on the underlying devices to accommodate the change, or to
 decrease its size if the file system has sufficient available free space. The command does not
 have any effect on the layout or size of the underlying devices.
 For example, to increase the size of /mybtrfs1 by 2 GB:

btrfs filesystem resize +2g /mybtrfs1

 Decrease the size of /mybtrfs2 by 4 GB:

btrfs filesystem resize -4g /mybtrfs2

 Set the size of /mybtrfs3 to 20 GB:

btrfs filesystem resize 20g /mybtrfs3

5.6. Creating Subvolumes and Snapshots

 The top level of a btrfs file system is a subvolume consisting of a named b-tree
 structure that contains directories, files, and possibly further btrfs subvolumes that are
 themselves named b-trees that contain directories and files, and so on. To create a subvolume,
 change directory to the position in the btrfs file system where you want to create the
 subvolume and enter the following command:

btrfs subvolume create subvolume_name
 Snapshots are a type of subvolume that records the contents of their parent subvolumes at
 the time that you took the snapshot. If you take a snapshot of a btrfs file system and do not
 write to it, the snapshot records the state of the original file system and forms a stable
 image from which you can make a backup. If you make a snapshot writable, you can treat it as a
 alternate version of the original file system. The copy-on-write functionality of btrfs file
 system means that snapshots are quick to create, and consume very little disk space initially.

Note
 Taking snapshots of a subvolume is not a recursive process. If you create a snapshot
 of a subvolume, every subvolume or snapshot that the subvolume contains is mapped to an
 empty directory of the same name inside the snapshot.

The following table shows how to perform some common snapshot operations:
	
 Command

 	
 Description

	

 btrfs subvolume snapshot
 pathname
 pathname/snapshot_path

 	
 Create a snapshot snapshot_path of a parent
 subvolume or snapshot specified by pathname. For
 example:

 btrfs subvolume snapshot /mybtrfs /mybtrfs/snapshot1

	

 btrfs subvolume list
 pathname

 	
 List the subvolumes or snapshots of a subvolume or snapshot specified by
 pathname. For example:

 btrfs subvolume list /mybtrfs

Note
 You can use this command to determine the ID of a subvolume or snapshot.

	

 btrfs subvolume set-default
 ID
 pathname

 	
 By default, mount the snapshot or subvolume specified by its ID instead of
 the parent subvolume. For example:

 btrfs subvolume set-default 4 /mybtrfs

	
 btrfs subvolume get-default
 pathname

 	
 Displays the ID of the default subvolume that is mounted for the specified
 subvolume. For example:

 btrfs subvolume get-default /mybtrfs

You can mount a btrfs subvolume as though it were a disk device. If you mount a snapshot
 instead of its parent subvolume, you effectively roll back the state of the file system to the
 time that the snapshot was taken. By default, the operating system mounts the parent btrfs
 volume, which has an ID of 0, unless you use set-default to change the
 default subvolume. If you set a new default subvolume, the system will mount that subvolume
 instead in future. You can override the default setting by specifying either of the following
 mount options:
	
 Mount Option

 	
 Description

	

 subvolid=snapshot_ID

 	
 Mount the subvolume or snapshot specified by its subvolume ID instead of the
 default subvolume.

	

 subvol=pathname/snapshot_path

 	
 Mount the subvolume or snapshot specified by its pathname instead of the
 default subvolume.

 Note
 The subvolume or snapshot must be located in the root of the btrfs file
 system.

When you have rolled back a file system by mounting a snapshot, you can take snapshots of
 the snapshot itself to record its state.
When you no longer require a subvolume or snapshot, use the following command to delete
 it:

btrfs subvolume delete subvolume_path

Note
Deleting a subvolume deletes all subvolumes that are below it in the b-tree hierarchy.
 For this reason, you cannot remove the topmost subvolume of a btrfs file system, which has
 an ID of 0.

5.6.1. Cloning Virtual Machine Images and Linux Containers

You can use a btrfs file system to provide storage space for virtual machine images and
 Linux Containers. The ability to quickly clone files and create snapshots of directory
 structures makes btrfs an ideal candidate for this purpose. For an example of using the
 snapshot feature of btrfs to implement Linux Containers, see Section 9.2, “Configuring Operating System Containers”.

5.7. Using the Send/Receive Feature

Note
The send/receive feature requires that you boot the system using UEK R3.

The send operation compares two subvolumes and writes a description of how to convert one
 subvolume (the parent subvolume) into the other (the
 sent subvolume). You would usually direct the output to a file for
 later use or pipe it to a receive operation for immediate use.
The simplest form of the send operation writes a complete description of a
 subvolume:
btrfs send [-v] [-f sent_file] ... subvol
You can specify multiple instances of the -v option to display
 increasing amounts of debugging output. The -f option allows you to save
 the output to a file. Both of these options are implicit in the following usage
 examples.
The following form of the send operation writes a complete description of how to convert
 one subvolume into another:
btrfs send -p parent_subvol sent_subvol
If a subvolume such as a snapshot of the parent volume, known as a clone
 source, will be available during the receive operation from which some of the
 data can be recovered, you can specify the clone source to reduce the size of the output
 file:
btrfs send [-p parent_subvol] -c clone_src [-c clone_src] ... subvol
You can specify the -c option multiple times if there is more than one
 clone source. If you do not specify the parent subvolume, btrfs chooses a suitable parent from
 the clone sources.
You use the receive operation to regenerate the sent subvolume at a specified path:
btrfs receive [-f sent_file] mountpoint
5.7.1. Using Send/Receive to Implement Incremental Backups

The following procedure is a suggestion for setting up an incremental backup and restore
 process for a subvolume.
	Create a read-only snapshot of the subvolume to serve as an initial reference point
 for the backup:
btrfs subvolume snapshot -r /vol /vol/backup_0

	Run sync to ensure that the snapshot has been written to
 disk:
sync

	Create a subvolume or directory on a btrfs file system as a backup area to receive
 the snapshot, for example, /backupvol.

	Send the snapshot to /backupvol:
btrfs send /vol/backup_0 | btrfs receive /backupvol
This command creates the subvolume /backupvol/backup_0.
Having created the reference backup, you can then create incremental backups as
 required.

	To create an incremental backup:
	Create a new snapshot of the subvolume:
btrfs subvolume snapshot -r /vol /vol/backup_1

	Run sync to ensure that the snapshot has been written to
 disk:
sync

	Send only the differences between the reference backup and the new backup to the
 backup area:
btrfs send -p /vol/backup_0 /vol/backup_1 | btrfs receive /backupvol
 This command creates the subvolume
 /backupvol/backup_1.

5.8. Using Quota Groups

Note
The quota groups feature requires that you boot the system using UEK R3.

To enable quotas, use the following command on a newly created btrfs file system before
 any creating any subvolumes:
btrfs quota enable volume
To assign a quota-group limit to a subvolume, use the following command:
btrfs qgroup limit size /volume/subvolume
For example:
btrfs qgroup limit 1g /myvol/subvol1
btrfs qgroup limit 512m /myvol/subvol2
To find out the quota usage for a subvolume, use the btrfs qgroup show
 path command:

5.9. Replacing Devices on a Live File System

Note
The device replacement feature requires that you boot the system using UEK R3.

You can replace devices on a live file system. You do not need to unmount the file system
 or stop any tasks that are using it. If the system crashes or loses power while the
 replacement is taking place, the operation resumes when the system next mounts the file
 system.
Use the following command to replace a device on a mounted btrfs file system:
btrfs replace start source_dev target_dev [-r] mountpoint
source_dev and target_dev specify
 the device to be replaced (source device) and the replacement device
 (target device). mountpoint specifies the
 file system that is using the source device. The target device must be the same size as or
 larger than the source device. If the source device is no longer available or you specify the
 -r option, the data is reconstructed by using redundant data obtained
 from other devices (such as another available mirror). The source device is removed from the
 file system when the operation is complete.
You can use the btrfs replace status
 mountpoint and btrfs replace cancel
 mountpoint commands to check the progress of the replacement
 operation or to cancel the operation.

5.10. Creating Snapshots of Files

You can use the --reflink option to the cp command
 to create lightweight copies of a file within the same subvolume of a btrfs file system. The
 copy-on-write mechanism saves disk space and allows copy operations to be almost
 instantaneous. The btrfs file system creates a new inode that shares the same disk blocks as
 the existing file, rather than creating a complete copy of the file's data or creating a
 link that points to the file's inode. The resulting file appears to be a copy of the
 original file, but the original data blocks are not duplicated. If you subsequently write to
 one of the files, the btrfs file system makes copies of the blocks before they are written
 to, preserving the other file's content.
For example, the following command creates the snapshot bar of the
 file foo:

cp -reflink foo bar

5.11. Converting an Ext2, Ext3, or Ext4 File System to a Btrfs File System

 You can use the btrfs-convert utility to convert an
 ext2, ext3, or ext4 file system to
 btrfs. The utility preserves an image of the original file system in a
 snapshot named ext2_saved. This snapshot allows you to roll back the
 conversion, even if you have made changes to the btrfs file system.
 If you convert the root file system to btrfs, you can use snapshots to roll back changes
 such as upgrades that you have made to the file system.
Note
You cannot convert a bootable partition, such as /boot to a btrfs
 file system.

5.11.1. Converting a Non-root File System

Caution
 Before performing a file system conversion, make a backup of the file system from
 which you can restore its state.

 To convert an ext2, ext3, or
 ext4 file system other than the root file system to
 btrfs:
	 Unmount the file system.

umount mountpoint

	 Run the correct version of fsck (for example,
 fsck.ext4) on the underlying device to check and correct the
 integrity of file system.

fsck.extN -f device

	 Convert the file system to a btrfs file system.

btrfs-convert device

	 Edit the file /etc/fstab, and change the file system type of
 the file system to btrfs, for example:

/dev/sdb /myfs btrfs defaults 0 0

	 Mount the converted file system on the old mount point.

mount device mountpoint

5.11.2. Converting the root File System

Caution
 Before performing a root file system conversion, make a full
 system backup from which you can restore its state.

 To convert an ext2, ext3, or
 ext4
 root file system to btrfs:
	 Run the mount command to determine the device that is
 currently mounted as the root file system, and the type of the file
 system.
 In the following example, the root file system is configured
 as an LVM logical volume lv_root in the volume group
 vg_hostol6, and the file system type is ext4.
 Using the ls -l command confirms that the mapped device corresponds
 to /dev/vg_hostol6/lv_root.

mount
/dev/mapper/vg_hostol6-lv_root on / type ext4 (rw)
.
.
.
ls -al /dev/mapper/vg_hostol6-lv_root
lrwxrwxrwx. 1 root root 7 Sep 14 14:00 /dev/mapper/vg_hostol6-lv_root -> ../dm-0
ls -al /dev/vg_hostol6/lv_root
lrwxrwxrwx. 1 root root 7 Sep 14 14:00 /dev/vg_hostol6/lv_root -> ../dm-0
 In the next example, the root file system corresponds to the
 disk partition /dev/sda2:

mount
/dev/sda2 on / type ext4 (rw)

	Shut down the system.

	 Boot the system from an Oracle Linux boot CD, DVD or ISO. You can download the
 ISO from https://edelivery.oracle.com/linux.

	 From the installation menu, select Rescue Installed
 System. When prompted, choose a language and keyboard, select Local CD/DVD as the installation media, select No to bypass starting the network interface, and select
 Skip to bypass selecting a rescue environment.

	 Select Start shell to obtain a
 bash shell prompt (bash-4.1#) at the bottom of
 the screen.

	 If the existing root file system is configured as an LVM
 volume, use the following command to start the volume group (for example,
 vg_hostol6):

bash-4.1# lvchange -ay vg_hostol6

	 Run the correct version of fsck (for example,
 fsck.ext3 or fsck.ext4) to check and correct
 the integrity of the file system.

bash-4.1# fsck.extN -f device
 where device is the root file system device (for
 example, /dev/vg_hostol6/lv_root or /dev/sda2).

	 Convert the file system to a btrfs file system.

bash-4.1# btrfs-convert device

	Create a mount point (/mnt1) and mount the converted
 root file system on it.

bash-4.1# mkdir /mnt1
bash-4.1# mount -t btrfs device /mnt1

	 Use the vi command to edit the file
 /mnt1/etc/fstab, and change the file system type of the
 root file system to btrfs, for example:

/dev/mapper/vg_hostol6-lv_root / btrfs defaults 1 1

	 Create the file .autorelabel in the root of the mounted file
 system.

bash-4.1# touch /mnt1/.autorelabel
 The presence of the .autorelabel file in /
 instructs SELinux to recreate the security attributes of all files on the file system.
Note
 If you do not create the .autorelabel file, you might not be
 able to boot the system successfully. If you forget to create the file and the
 reboot fails, either disable SELinux temporarily by specifying
 selinux=0 to the kernel boot parameters, or run SELinux in
 permissive mode by specifying enforcing=0.

	 Unmount the converted root file system.

bash-4.1# umount /mnt1

	 Remove the boot CD, DVD, or ISO, and reboot the system.

5.11.3. Mounting the Image of the Original File System

 To mount the image of the original file system read-only:
	 Mount the snapshot of the original file system on a temporary mount point.

mount -t btrfs -o subvol=ext2_saved device temp_mountpoint1

	 Mount the image of the original file system read-only on another temporary mount
 point, specifying the correct file system type (ext2,
 ext3, or ext4) to the -t
 option.

mount -t extN -o loop,ro temp_mountpoint1/image temp_mountpoint2

5.11.4. Deleting the Snapshot of the Original File System

Caution
 If you delete the snapshot of the original file system to save storage space, you
 will no longer be able to recover the original file system.

 To delete the snapshot of the original file system and recover the space that it uses:
	 Delete the ext2_saved subvolume.

btrfs subvolume delete mountpoint/ext2_saved

 For example, if you converted the root file system (/) file
 system, you would enter:

btrfs subvolume delete //ext2_saved

 For another file system, such as /usr, you would enter:

btrfs subvolume delete /usr/ext2_saved

	 Rebalance the btrfs file system.

btrfs filesystem balance device

5.11.5. Recovering an Original Non-root File System

Caution
 If you roll back a conversion, you will lose any changes that you have made to the
 btrfs file system. Make a back up of the changes that you want to reapply to the restored
 file system.

 To roll back the conversion of the file system and recover the original file system:
	 Unmount the btrfs file system and all of its snapshots and images in the reverse
 order from which you originally mounted them.

umount temp_mountpoint2
umount temp_mountpoint1/image
umount mountpoint

	 Roll back the conversion.

btrfs-convert -r device

	 Mount the original file system.

mount -t extN device mountpoint

5.12. Installing a Btrfs root File System

For compatibility reasons, the default installation image of Oracle Linux boots the Red
 Hat compatible kernel to perform the installation. Oracle provides an alternative installation
 image (UEK Boot ISO) that supports the installation of Oracle Linux 6 Update 3 or later using
 the Unbreakable Enterprise Kernel (UEK) as the installation kernel. This installation method
 allows you to create a btrfs root file system.
As the UEK Boot ISO contains only the bootable installation image, you must set up a
 network installation server for the RPM packages. This server must have sufficient storage
 space to host the full Oracle Linux Release 6 Update 3 or later Media Pack DVD image
 (approximately 3.5 GB), and you must configure it to serve the image files using either NFS or
 HTTP to the target system on which you want to install Oracle Linux 6 Update 3 or
 later.

	Section 5.12.1, “Setting up a New NFS Server”

	Section 5.12.2, “Configuring an Existing NFS Server”

	Section 5.12.3, “Setting up a New HTTP Server”

	Section 5.12.4, “Configuring an Existing HTTP Server”

	Section 5.12.5, “Setting up a Network Installation Server”

	Section 5.12.6, “Installing from a Network Installation Server”

5.12.1. Setting up a New NFS Server

Note
This procedure assumes that you are setting up an Oracle Linux 6 system as an NFSv4 server.
 Using NFSv4 greatly simplifies firewall configuration as you need only configure a single
 rule for TCP port 2049.

To set up an NFS server:
	Install the nfs-utils
 package.
yum install nfs-utils

	Create the directory where you will copy the full Oracle Linux Release 6 Media Pack
 DVD image, for example
 /var/OSimage/OL6.3:
mkdir -p /var/OSimage/OL6.3

	Edit the configuration file, /etc/exports, as follows.
	Add an entry for the directory where you will copy the DVD image.
The following example allows read-only access to the directory
 /var/OSimage/OL6.3 for any NFS client on the 192.168.1
 subnet:
/var/OSimage/OL6.3 192.168.1.0/24(ro)

	Save your changes to the file.

	Start the NFS server, and configure it to start after a
 reboot.
service rpcbind start
service nfs start
service nfslock start
chkconfig rpcbind on
chkconfig nfs on
chkconfig nfslock on

	If you have configured a firewall on your system, configure it to allow incoming
 NFSv4 requests from NFS clients.
For example, use the following commands to configure iptables to
 allow NFSv4 connections and save the change to the firewall
 configuration:
iptables -I INPUT -p tcp -m state --state NEW -m tcp --dport 2049 -j ACCEPT
service iptables save

5.12.2. Configuring an Existing NFS Server

To configure an existing NFS server:
	Create the directory where you will copy the full Oracle Linux Release 6 Media
 Pack DVD image, for example
 /var/OSimage/OL6.3:
mkdir -p /var/OSimage/OL6.3

	Use the exportfs command to export the
 directory.
exportfs -i -o options client:export_dir
For example, to allow read-only access to the directory
 /var/OSimage/OL6.3 for any NFS client on the 192.168.1
 subnet:

exportfs -i -o ro 192.168.1.0/24:/var/OSimage/OL6.3

5.12.3. Setting up a New HTTP Server

Note
These instructions assume that you are setting up an Oracle Linux 6 system as an Apache HTTP
 server.

To set up an HTTP server:
	Install the Apache HTTP server
 package.
yum install httpd

	 Create the directory where you will copy the full Oracle Linux Release 6 Media Pack
 DVD image, for example
 /var/www/html/OSimage/OL6.3:
mkdir -p /var/www/html/OSimage/OL6.3
Note
If SELinux is enabled in enforcing mode on your system, create the directory under the
 /var/www/html directory hierarchy so that the
 httpd_sys_content_t file type is set automatically on all the
 files in the repository.

	Edit the HTTP server configuration file,
 /etc/httpd/conf/httpd.conf, as follows:
	Specify the resolvable domain name of the server in the argument to
 ServerName.
ServerName server_addr:80
If the server does not have a resolvable domain name, enter its IP address
 instead. For example, the following entry would be appropriate for an HTTP server
 with the IP address
 192.168.1.100.
ServerName 192.168.1.100:80

	If the directory to which you will copy the DVD image in not under
 /var/www/html, change the default setting of
 DocumentRoot.
In this example, the DVD image will be copied to
 /var/www/html/OSimage/OL6.3 so the setting of
 DocumentRoot can remain
 unchanged.
DocumentRoot "/var/www/html"

	Verify that the <Directory> setting points to the same
 setting as
 DocumentRoot.
#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "/var/www/html">

	If you want to be able to browse the directory hierarchy, verify that the
 Options directive specifies the Indexes
 option, for
 example:
Options Indexes FollowSymLinks
Note
The Indexes option is not required for
 installation.

	Save your changes to the file.

	Start the Apache HTTP server, and configure it to start after a
 reboot.
service httpd start
chkconfig httpd on

	If you have enabled a firewall on your system, configure it to allow incoming HTTP
 connection requests on TCP port 80.
For example, the following command configures iptables to allow
 incoming HTTP connection requests and saves the change to the firewall
 configuration:
iptables -I INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT
service iptables save

5.12.4. Configuring an Existing HTTP Server

To configure an existing Apache HTTP server:
	Under the DocumentRoot hierarchy that is defined in the HTTP
 server configuration file (/etc/httpd/conf/httpd.conf), create the
 directory where you will copy the full Oracle Linux Release 6 Media Pack DVD image,
 for example
 /var/www/html/OSimage/OL6.3:
mkdir -p /var/www/html/OSimage/OL6.3

	Edit the HTTP server configuration file,
 /etc/httpd/conf/httpd.conf, and add a
 <Directory> section, for
 example:
<Directory "/var/www/html/OSimage/OL6.3">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>
Place this section after the closing </Directory> statement
 for the <Directory DocumentRoot>
 section.
Note
The Indexes option is not required for installation. Specify
 this option if you want to be able to browse the directory hierarchy.

5.12.5. Setting up a Network Installation Server

Note
 This procedure assumes that you have set up the system as an NFS or HTTP server.

To set up a network installation server:
	Download the full Oracle Linux Media Pack DVD image (for example,
 V41362-01.iso for x86_64 (64 bit) Oracle Linux Release 6 Update
 5) from the Oracle Software Delivery Cloud at http://edelivery.oracle.com/linux.

	Mount the DVD image on a suitable mount point (for example,
 /mnt):
mount -t iso9660 -o loop V41362-01.iso mount_dir

	Use the following command to extract the contents of the DVD image into a
 directory (output_dir) whose contents are shareable using
 NFS or
 HTTP:
cp -a -T mount_dir output_dir
For example, to copy the DVD image mounted on /mnt to
 /var/OSimage/OL6.5:
cp -a -T /mnt /var/OSimage/OL6.5
or to
 /var/www/html/OSimage/OL6.5:
cp -a -T /mnt /var/www/html/OSimage/OL6.5

	Unmount the DVD
 image:
umount mount_dir

	Download the UEK Boot ISO image for the desired architecture (for example,
 V41364-01.iso for x86_64 (64 bit)).

	Mount the UEK Boot ISO
 image:
mount -t iso9660 -o loop V41364-01.iso

	Replace the contents of the images directory that you copied
 from the DVD image with the contents of the images directory from
 the UEK Boot ISO
 image:
rm -rf output_dir/images
cp -r mount_dir/images output_dir
For example, to replace
 /var/OSimage/OL6.5/images:
rm -rf /var/OSimage/OL6.5/images
cp -r /mnt/images /var/OSimage/OL6.5
or to replace
 /var/www/html/OSimage/OL6.5/images:
rm -rf /var/www/html/OSimage/OL6.5/images
cp -r /mnt/images /var/www/html/OSimage/OL6.5

	If SELinux is enabled in enforcing mode on your system and you have configured the
 system as an HTTP server but you did not copy the DVD image to a directory under
 /var/www/html:
	Use the semanage command to define the default file type
 of the directory hierarchy as httpd_sys_content_t:

/usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/OSimage(/.*)?"

	Use the restorecon command to apply the file type to the
 entire directory
 hierarchy.
/sbin/restorecon -R -v /var/OSimage

Note
The semanage and restorecon commands are
 provided by the policycoreutils-python and
 policycoreutils packages.

	Copy the UEK Boot ISO image to a suitable medium from which you can boot the
 target system on which you want to install Oracle Linux 6 Update 5.

	Unmount the UEK Boot ISO
 image:
umount mount_dir

5.12.6. Installing from a Network Installation Server

To install a target system from a network installation server:
	Boot the target system using the UEK Boot ISO.

	Select Install or upgrade an existing system,
 press Tab, and enter askmethod as an additional
 parameter on the boot command
 line:
> vmlinuz initrd=initrd.img askmethod

	On the Installation Method screen, select either
 NFS directory or URL depending on whether you configured your installation server to use
 NFS or HTTP respectively.

	After configuring the network settings, enter the settings for the NFS or HTTP
 installation server.
For installation using NFS, enter the path of the full DVD image, for example
 /var/OSimage/OL6.5.
For installation using HTTP, enter the URL of the full DVD image, for example
 http://192.168.1.100/OSimage/OL6.5.

	The default disk layout creates a btrfs root file system.
Note
You cannot configure a bootable partition, such as /boot, as
 a btrfs file system.

5.12.7. About the Installation root File System

The mounted root file system is a snapshot (named
 install) of the root file system taken at the end of
 installation. To find out the ID of the parent of the root file system subvolume, use
 the following
 command:
btrfs subvolume list /
ID 258 top level 5 path install
In this example, the installation root file system subvolume has an ID of 5. The
 subvolume with ID 258 (install) is currently mounted as
 /. Figure 5.1, “Layout of the root File System Following Installation” illustrates the layout of the
 file system:

Figure 5.1. Layout of the root File System Following Installation
[image: The diagram illustrates the layout of the example root file system with the top level subvolume (ID 5) containing the root file system as it existed after installation and the subvolume install (ID 258) containing the currently active root file system.]

The top-level subvolume with ID 5 records the contents of the root file system
 file system at the end of installation. The default subvolume (install)
 with ID 258 is currently mounted as the active root file system.
The mount command shows the device that is currently mounted as the
 root file system:
mount
/dev/mapper/vg_btrfs-lv_root on / type btrfs (rw)
...
To mount the installation root file system volume, you can use the following
 commands:
mkdir /instroot
mount -o subvolid=5 /dev/mapper/vg_btrfs-lv_root /instroot
If
 you list the contents of /instroot, you can see both the contents of the
 installation root file system volume and the install snapshot, for
 example:
ls /instroot
bin cgroup etc install lib64 misc net proc sbin srv tmp var
boot dev home lib media mnt opt root selinux sys usr
The
 contents of / and /instroot/install are identical as
 demonstrated in the following example where a file (foo) created in
 /instroot/install is also visible in
 /:
touch /instroot/install/foo
ls /
bin cgroup etc home lib media mnt opt root selinux sys usr
boot dev foo instroot lib64 misc net proc sbin srv tmp var
ls /instroot/install
bin cgroup etc home lib media mnt opt root selinux sys usr
boot dev foo instroot lib64 misc net proc sbin srv tmp var
rm -f /foo
ls /
bin cgroup etc instroot lib64 misc net proc sbin srv tmp var
boot dev home lib media mnt opt root selinux sys usr
ls /instroot/install
bin cgroup etc instroot lib64 misc net proc sbin srv tmp var
boot dev home lib media mnt opt root selinux sys usr

5.12.8. Creating Snapshots of the root File System

To take a snapshot of the current root file system:
	Mount the top level of the root file system on a suitable mount
 point.
mount -o subvolid=5 /dev/mapper/vg_btrfs-lv_root /mnt

	Change directory to the mount point and take the snapshot. In this example, the
 install subvolume is currently mounted as the
 root file system
 system.
cd /mnt
btrfs subvolume snapshot install root_snapshot_1
Create a snapshot of 'install' in './root_snapshot_1'

	Change directory to / and unmount the top level of the file
 system.
cd /
umount /mnt
The list of subvolumes now includes the newly created
 snapshot.
btrfs subvolume list /
ID 258 top level 5 path install
ID 260 top level 5 path root_snapshot_1

5.12.9. Mounting Alternate Snapshots as the root File System

If you want to roll back changes to your system, you can mount a snapshot as the
 root file system by specifying its ID as the default subvolume, for
 example:
btrfs subvolume set-default 260 /
Reboot
 the system for the change to take effect.

5.12.10. Deleting Snapshots of the root File System

To delete a snapshot:
	Mount the top level of the file system, for
 example:
mount -o subvolid=5 /dev/mapper/vg_btrfs-lv_root /mnt

	Change directory to the mount point and delete the
 snapshot.
cd /mnt
btrfs subvolume delete install
Delete subvolume '/mnt/install'

	Change directory to / and unmount the top level of the file
 system.
cd /
umount /mnt
The list of subvolumes now does not include
 install.
btrfs subvolume list /
ID 260 top level 5 path root_snapshot_1

5.13. For More Information About Btrfs

 You can find more information about the btrfs file system at
 https://btrfs.wiki.kernel.org/index.php/Main_Page.

Chapter 6. The XFS File System

Table of Contents
	6.1. About the XFS File System
		6.1.1. About External XFS Journals
	6.1.2. About XFS Write Barriers
	6.1.3. About Lazy Counters

	6.2. Installing the XFS Packages
	6.3. Creating an XFS File System
	6.4. Modifying an XFS File System
	6.5. Growing an XFS File System
	6.6. Freezing and Unfreezing an XFS File System
	6.7. Setting Quotas on an XFS File System
		6.7.1. Setting Project Quotas

	6.8. Backing up and Restoring XFS File Systems
	6.9. Defragmenting an XFS File System
	6.10. Checking and Repairing an XFS File System
	6.11. For More Information About XFS

This chapter describes how to configure and use the XFS file system.

6.1. About the XFS File System

Note
You must have an Oracle Linux Premier Support account to obtain technical support for XFS with
 Oracle Linux.
The XFS file system is supported for the Unbreakable Enterprise Kernel Release 2
 (2.6.39) and the Unbreakable Enterprise Kernel Release 3 (3.8.13) on the x86_64 architecture
 only.

XFS is a high-performance journaling file system that was initially created by Silicon
 Graphics, Inc. for the IRIX operating system and later ported to Linux. The parallel I/O
 performance of XFS provides high scalability for I/O threads, file system bandwidth, file and
 file system size, even when the file system spans many storage devices.
A typical use case for XFS is to implement a several-hundred terabyte file system across
 multiple storage servers, each server consisting of multiple FC-connected disk arrays.
XFS is not supported for use with the root (/) or
 boot file systems on Oracle Linux.
XFS has a large number of features that make it suitable for deployment in an
 enterprise-level computing environment that requires the implementation of very large file
 systems:
	On x86_64 systems, XFS supports a maximum file system size and maximum file size of
 nearly 8 EB. The maximum supported limit for XFS on Oracle Linux is 100 TB.

	XFS implements journaling for metadata operations, which guarantees the consistency of
 the file system following loss of power or a system crash. XFS records file system updates
 asynchronously to a circular buffer (the journal) before it can
 commit the actual data updates to disk. The journal can be located either internally in
 the data section of the file system, or externally on a separate device to reduce
 contention for disk access. If the system crashes or loses power, it reads the journal
 when the file system is remounted, and replays any pending metadata operations to ensure
 the consistency of the file system. The speed of this recovery does not depend on the size
 of the file system.

	XFS is internally partitioned into allocation groups, which are virtual storage
 regions of fixed size. Any files and directories that you create can span multiple
 allocation groups. Each allocation group manages its own set of inodes and free space
 independently of other allocation groups to provide both scalability and parallelism of
 I/O operations. If the file system spans many physical devices, allocation groups can
 optimize throughput by taking advantage of the underlying separation of channels to the
 storage components.

	XFS is an extent-based file system. To reduce file fragmentation and file scattering,
 each file's blocks can have variable length extents, where each extent consists of one or
 more contiguous blocks. XFS's space allocation scheme is designed to efficiently locate
 free extents that it can use for file system operations. XFS does not allocate storage to
 the holes in sparse files. If possible, the extent allocation map for a file is stored in
 its inode. Large allocation maps are stored in a data structure maintained by the
 allocation group.

	To maximize throughput for XFS file systems that you create on an underlying striped,
 software or hardware-based array, you can use the su and
 sw arguments to the -d option of the
 mkfs.xfs command to specify the size of each stripe unit and the
 number of units per stripe. XFS uses the information to align data, inodes, and journal
 appropriately for the storage. On lvm and md volumes
 and some hardware RAID configurations, XFS can automatically select the optimal stripe
 parameters for you.

	To reduce fragmentation and increase performance, XFS implements delayed
 allocation, reserving file system blocks for data in the buffer cache, and
 allocating the block when the operating system flushes that data to disk.

	XFS supports extended attributes for files, where the size of each attribute's value
 can be up to 64 KB, and each attribute can be allocated to either a
 root or a user name space.

	Direct I/O in XFS implements high throughput, non-cached I/O by performing DMA
 directly between an application and a storage device, utilising the full I/O bandwidth of
 the device.

	To support the snapshot facilities that volume managers, hardware subsystems, and
 databases provide, you can use the xfs_freeze command to suspend and
 resume I/O for an XFS file system. See Section 6.6, “Freezing and Unfreezing an XFS File System”.

	To defragment individual files in an active XFS file system, you can use the
 xfs_fsr command. See Section 6.9, “Defragmenting an XFS File System”.

	To grow an XFS file system, you can use the xfs_growfs command. See
 Section 6.5, “Growing an XFS File System”.

	To back up and restore a live XFS file system, you can use the
 xfsdump and xfsrestore commands. See Section 6.8, “Backing up and Restoring XFS File Systems”.

	XFS supports user, group, and project disk quotas on block and inode usage that are
 initialized when the file system is mounted. Project disk quotas allow you to set limits
 for individual directory hierarchies within an XFS file system without regard to which
 user or group has write access to that directory hierarchy.

6.1.1. About External XFS Journals

The default location for an XFS journal is on the same block device as the data. As
 synchronous metadata writes to the journal must complete successfully before any associated
 data writes can start, such a layout can lead to disk contention for the typical workload
 pattern on a database server. To overcome this problem, you can place the journal on a
 separate physical device with a low-latency I/O path. As the journal typically requires very
 little storage space, such an arrangement can significantly improve the file system's I/O
 throughput. A suitable host device for the journal is a solid-state drive (SSD) device or a
 RAID device with a battery-backed write-back cache.
To reserve an external journal with a specified size when you create an XFS file system,
 specify the -l
 logdev=device,size=size
 option to the mkfs.xfs command. If you omit the size
 parameter, mkfs.xfs selects a journal size based on the size of the file
 system. To mount the XFS file system so that it uses the external journal, specify the
 -o logdev=device option to the
 mount command.

6.1.2. About XFS Write Barriers

A write barrier assures file system consistency on storage hardware that supports
 flushing of in-memory data to the underlying device. This ability is particularly
 important for write operations to an XFS journal that is held on a device with a volatile
 write-back cache.
By default, an XFS file system is mounted with a write barrier. If you create an XFS
 file system on a LUN that has a battery-backed, non-volatile cache, using a write barrier
 degrades I/O performance by requiring data to be flushed more often than necessary. In
 such cases, you can remove the write barrier by mounting the file system with the
 -o nobarrier option to the mount command.

6.1.3. About Lazy Counters

With lazy-counters enabled on an XFS file system, the free-space and inode counters are
 maintained in parts of the file system other than the superblock. This arrangement can significantly
 improve I/O performance for application workloads that are metadata intensive.
Lazy counters are enabled by default, but if required, you can disable them by
 specifying the -l lazy-count=0 option to the mkfs.xfs
 command.

6.2. Installing the XFS Packages

Note
You can also obtain the XFS packages from Public Yum.

To install the XFS packages on a system:
	Log in to ULN, and subscribe your system to the ol6_x86_64_latest
 channel.

	On your system, use yum to install the
 xfsprogs and xfsdump
 packages:
yum install xfsprogs xfsdump

	If required, use yum to install the XFS development and QA
 packages:
yum install xfsprogs-devel xfsprogs-qa-devel

6.3. Creating an XFS File System

You can use the mkfs.xfs command to create an XFS file system, for
 example.

mkfs.xfs /dev/vg0/lv0
meta-data=/dev/vg0/lv0 isize=256 agcount=32, agsize=8473312 blks
 = sectsz=512 attr=2, projid32bit=0
data = bsize=4096 blocks=271145984, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal log bsize=4096 blocks=32768, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0
To create an XFS file system with a stripe-unit size of 32 KB and 6 units per stripe, you
 would specify the su and sw arguments to the
 -d option, for example:

mkfs.xfs -d su=32k,sw=6 /dev/vg0/lv1

For more information, see the mkfs.xfs(8) manual page.

6.4. Modifying an XFS File System

Note
You cannot modify a mounted XFS file system.

You can use the xfs_admin command to modify an unmounted XFS file
 system. For example, you can enable or disable lazy counters, change the file system UUID, or
 change the file system label.
To display the existing label for an unmounted XFS file system and then apply a new
 label:
xfs_admin -l /dev/sdb
label = ""
xfs_admin -L "VideoRecords" /dev/sdb
writing all SBs
new label = "VideoRecords"
Note
The label can be a maximum of 12 characters in length.

To display the existing UUID and then generate a new UUID:
xfs_admin -u /dev/sdb
UUID = cd4f1cc4-15d8-45f7-afa4-2ae87d1db2ed
xfs_admin -U generate /dev/sdb
writing all SBs
new UUID = c1b9d5a2-f162-11cf-9ece-0020afc76f16
To clear the UUID altogether:
xfs_admin -U nil /dev/sdb
Clearing log and setting UUID
writing all SBs
new UUID = 00000000-0000-0000-0000-000000000000
To disable and then re-enable lazy counters:
xfs_admin -c 0 /dev/sdb
Disabling lazy-counters
xfs_admin -c 1 /dev/sdb
Enabling lazy-counters
For more information, see the mkfs_admin(8) manual page.

6.5. Growing an XFS File System

Note
You cannot grow an XFS file system that is currently unmounted.
There is currently no command to shrink an XFS file system.

You can use the xfs_growfs command to increase the size of a
 mounted XFS file system if there is space on the underlying devices to accommodate the
 change. The command does not have any effect on the layout or size of the underlying
 devices. If necessary, use the underlying volume manager to increase the physical storage
 that is available.
For example, to increase the size of /myxfs1 to 4 TB, assuming a
 block size of 4 KB:

xfs_growfs -D 1073741824 /myxfs1
To
 increase the size of the file system to the maximum size that the underlying device supports,
 specify the -d option:

xfs_growfs -d /myxfs1
For more information, see the xfs_growfs(8) manual page.

6.6. Freezing and Unfreezing an XFS File System

If you need to take a hardware-based snapshot of an XFS file system, you can temporarily
 stop write operations to it.
Note
You do not need to explicitly suspend write operations if you use the
 lvcreate command to take an LVM snapshot.

To freeze and unfreeze an XFS file system, use the -f and
 -u options with the xfs_freeze command, for
 example:
xfs_freeze -f /myxfs
... Take snapshot of file system ...
xfs_freeze -u /myxfs
Note
You can also use the xfs_freeze command with btrfs,
 ext3, and ext4 file systems.

For more information, see the xfs_freeze(8) manual page.

6.7. Setting Quotas on an XFS File System

The following table shows the mount options that you can specify to
 enable quotas on an XFS file system:
	Mount Option	Description
	
 gqnoenforce

 	
 Enable group quotas. Report usage, but do not enforce usage limits.

	
 gquota

 	
 Enable group quotas and enforce usage limits.

	
 pqnoenforce

 	
 Enable project quotas. Report usage, but do not enforce usage limits.

	
 pquota

 	
 Enable project quotas and enforce usage limits.

	
 uqnoenforce

 	
 Enable user quotas. Report usage, but do not enforce usage limits.

	
 uquota

 	
 Enable user quotas and enforce usage limits.

To show the block usage limits and the current usage in the myxfs file
 system for all users, use the xfs_quota command:
xfs_quota -x -c 'report -h' /myxfs
User quota on /myxfs (/dev/vg0/lv0)
 Blocks
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 0 0 0 00 [------]
guest 0 200M 250M 00 [------]
The following forms of the command display the free and used counts for blocks and inodes
 respectively in the manner of the df -h command:
xfs_quota -c 'df -h' /myxfs
Filesystem Size Used Avail Use% Pathname
/dev/vg0/lv0 200.0G 32.2M 20.0G 1% /myxfs

xfs_quota -c 'df -ih' /myxfs
Filesystem Inodes Used Free Use% Pathname
/dev/vg0/lv0 21.0m 4 21.0m 1% /myxfs
If you specify the -x option to enter expert mode, you can use
 subcommands such as limit to set soft and hard limits for block and inode
 usage by an individual user, for example:
xfs_quota -x -c 'limit bsoft=200m bhard=250m isoft=200 ihard=250 guest' /myxfs
Of course, this command requires that you mounted the file system with user quotas
 enabled.
To set limits for a group on an XFS file system that you have mounted with group quotas
 enabled, specify the -g option to limit, for
 example:
xfs_quota -x -c 'limit -g bsoft=5g bhard=6g devgrp' /myxfs
For more information, see the xfs_quota(8) manual page.
6.7.1. Setting Project Quotas

User and group quotas are supported by other file systems, such as
 ext4. The XFS file system additionally allows you to set quotas on
 individual directory hierarchies in the file system that are known as managed
 trees. Each managed tree is uniquely identified by a project
 ID and an optional project name. Being able to control the
 disk usage of a directory hierarchy is useful if you do not otherwise want to set quota
 limits for a privileged user (for example, /var/log) or if many users or
 groups have write access to a directory (for example, /var/tmp).
To define a project and set quota limits on it:
	Mount the XFS file system with project quotas enabled:
mount -o pquota device mountpoint
For example, to enable project quotas for the /myxfs file
 system:
mount -o pquota /dev/vg0/lv0 /myxfs

	Define a unique project ID for the directory hierarchy in the
 /etc/projects file:
echo project_ID:mountpoint/directory >> /etc/projects
For example, to set a project ID of 51 for the directory hierarchy
 /myxfs/testdir:
echo 51:/myxfs/testdir >> /etc/projects

	Create an entry in the /etc/projid file that maps a project
 name to the project ID:
echo project_name:project_ID >> /etc/projid
For example, to map the project name testproj to the project
 with ID 51:
echo testproj:51 >> /etc/projid

	Use the project subcommand of xfs_quota to
 define a managed tree in the XFS file system for the project:
xfs_quota -x -c ’project -s project_name’ mountpoint
For example, to define a managed tree in the /myxfs file system
 for the project testproj, which corresponds to the directory
 hierarchy /myxfs/testdir:
xfs_quota -x -c ’project -s testproj’ /myxfs

	Use the limit subcommand to set limits on the disk usage of the
 project:
xfs_quota -x -c ’limit -p arguments project_name’ mountpoint
For example, to set a hard limit of 10 GB of disk space for the project
 testproj:
xfs_quota -x -c ’limit -p bhard=10g testproj’ /myxfs

For more information, see the projects(5),
 projid(5), and xfs_quota(8) manual pages.

6.8. Backing up and Restoring XFS File Systems

The xfsdump package contains the xfsdump and
 xfsrestore utilities. xfsdump examines the files in an
 XFS file system, determines which files need to be backed up, and copies them to the storage
 medium. Any backups that you create using xfsdump are portable between
 systems with different endian architectures. xfsrestore restores a full or
 incremental backup of an XFS file system. You can also restore individual files and directory
 hierarchies from backups.
Note
Unlike an LVM snapshot, which immediately creates a sparse clone of a volume,
 xfsdump takes time to make a copy of the file system data.

You can use the xfsdump command to create a backup of an XFS file
 system on a device such as a tape drive, or in a backup file on a different file system. A
 backup can span multiple physical media that are written on the same device, and you can write
 multiple backups to the same medium. You can write only a single backup to a file. The command
 does not overwrite existing XFS backups that it finds on physical media. You must use the
 appropriate command to erase a physical medium if you need to overwrite any existing
 backups.
For example, the following command writes a level 0 (base) backup of the XFS file system,
 /myxfs to the device /dev/st0 and assigns a session
 label to the backup:
xfsdump -l 0 -L "Backup level 0 of /myxfs `date`" -f /dev/st0 /myxfs
You can make incremental dumps relative to an existing backup by using the command:
xfsdump -l level -L "Backup level level of /myxfs `date`" -f /dev/st0 /myxfs
A level 1 backup records only file system changes since the level 0 backup, a level 2
 backup records only the changes since the latest level 1 backup, and so on up to level
 9.
If you interrupt a backup by typing Ctrl-C and you did not specify the
 -J option (suppress the dump inventory) to xfsdump ,
 you can resume the dump at a later date by specifying the -R option:
xfsdump -R -l 1 -L "Backup level 1 of /myxfs `date`" -f /dev/st0 /myxfs
In this example, the backup session label from the earlier, interrupted session is
 overridden.
You use the xfsrestore command to find out information about the
 backups you have made of an XFS file system or to restore data from a backup.
The xfsrestore -I command displays information about the available
 backups, including the session ID and session label. If you want to restore a specific backup
 session from a backup medium, you can specify either the session ID or the session
 label.
For example, to restore an XFS file system from a level 0 backup by specifying the session
 ID:
xfsrestore -f /dev/st0 -S c76b3156-c37c-5b6e-7564-a0963ff8ca8f /myxfs
If you specify the -r option, you can cumulatively recover all data
 from a level 0 backup and the higher-level backups that are based on that backup:
xfsrestore -r -f /dev/st0 -v silent /myxfs
The command searches the archive looking for backups based on the level 0 backup, and
 prompts you to choose whether you want to restore each backup in turn. After restoring the
 backup that you select, the command exits. You must run this command multiple times, first
 selecting to restore the level 0 backup, and then subsequent higher-level backups up to and
 including the most recent one that you require to restore the file system data.
Note
After completing a cumulative restoration of an XFS file system, you should delete the
 housekeeping directory that xfsrestore creates in the
 destination directory.

You can recover a selected file or subdirectory contents from the backup medium, as shown
 in the following example, which recovers the contents of
 /myxfs/profile/examples to /tmp/profile/examples from
 the backup with a specified session label:
xfsrestore -f /dev/sr0 -L "Backup level 0 of /myxfs Sat Mar 2 14:47:59 GMT 2013" \
 -s profile/examples /usr/tmp
Alternatively, you can interactively browse a backup by specifying the
 -i option:
xfsrestore -f /dev/sr0 -i
This form of the command allows you browse a backup as though it were a file system. You
 can change directories, list files, add files, delete files, or extract files from a
 backup.
To copy the entire contents of one XFS file system to another, you can combine
 xfsdump and xfsrestore, using the
 -J option to suppress the usual dump inventory housekeeping that the
 commands perform:
xfsdump -J - /myxfs | xfsrestore -J - /myxfsclone
For more information, see the xfsdump(8) and
 xfsrestore(8) manual pages.

6.9. Defragmenting an XFS File System

You can use the xfs_fsr command to defragment whole XFS file systems
 or individual files within an XFS file system. As XFS is an extent-based file system, it is
 usually unnecessary to defragment a whole file system, and doing so is not recommended.
To defragment an individual file, specify the name of the file as the argument to
 xfs_fsr.
xfs_fsr pathname
If you run the xfs_fsr command without any options, the command
 defragments all currently mounted, writeable XFS file systems that are listed in
 /etc/mtab. For a period of two hours, the command passes over each file
 system in turn, attempting to defragment the top ten percent of files that have the greatest
 number of extents. After two hours, the command records its progress in the file
 /var/tmp/.fsrlast_xfs, and it resumes from that point if you run the
 command again.
For more information, see the xfs_fsr(8) manual page.

6.10. Checking and Repairing an XFS File System

Note
If you have an Oracle Linux Premier Support account and encounter a problem mounting an
 XFS file system, send a copy of the /var/log/messages file to Oracle
 Support and wait for advice.

If you cannot mount an XFS file system, you can use the xfs_check
 command to check its consistency. Usually, you would only run this command on the device file
 of an unmounted file system that you believe has a problem. If xfs_check
 displays any output when you do not run it in verbose mode, the file system has an
 inconsistency.
xfscheck device
If you can mount the file system and you do not have a suitable backup, you can use
 xfsdump to attempt to back up the existing file system data, However, the
 command might fail if the file system's metadata has become too corrupted.
You can use the xfs_repair command to attempt to repair an XFS file
 system specified by its device file. The command replays the journal log to fix any
 inconsistencies that might have resulted from the file system not being cleanly unmounted.
 Unless the file system has an inconsistency, it is usually not necessary to use the command,
 as the journal is replayed every time that you mount an XFS file system.
xfs_repair device
If the journal log has become corrupted, you can reset the log by specifying the
 -L option to xfs_repair.
Warning
Resetting the log can leave the file system in an inconsistent state, resulting in data
 loss and data corruption. Unless you are experienced in debugging and repairing XFS file
 systems using xfs_db, it is recommended that you instead recreate the file
 system and restore its contents from a backup.

If you cannot mount the file system or you do not have a suitable backup, running
 xfs_repair is the only viable option unless you are experienced in using
 xfs_db.
xfs_db provides an internal command set that allows you to debug and
 repair an XFS file system manually. The commands allow you to perform scans on the file
 system, and to navigate and display its data structures. If you specify the
 -x option to enable expert mode, you can modify the data
 structures.
xfs_db [-x] device
For more information, see the xfs_check(8),
 xfs_db(8) and xfs_repair(8) manual pages, and the
 help command within xfs_db.

6.11. For More Information About XFS

 You can find more information about XFS at http://xfs.org/index.php/XFS_Papers_and_Documentation.

Chapter 7. Oracle Cluster File System Version 2

Table of Contents
	7.1. About OCFS2
	7.2. Installing and Configuring OCFS2
		7.2.1. Preparing a Cluster for OCFS2
	7.2.2. Configuring the Firewall
	7.2.3. Configuring the Cluster Software
	7.2.4. Creating the Configuration File for the Cluster Stack
	7.2.5. Configuring the Cluster Stack
	7.2.6. Configuring the Kernel for Cluster Operation
	7.2.7. Starting and Stopping the Cluster Stack
	7.2.8. Creating OCFS2 volumes
	7.2.9. Mounting OCFS2 Volumes
	7.2.10. Querying and Changing Volume Parameters

	7.3. Troubleshooting OCFS2
		7.3.1. Recommended Tools for Debugging
	7.3.2. Mounting the debugfs File System
	7.3.3. Configuring OCFS2 Tracing
	7.3.4. Debugging File System Locks
	7.3.5. Configuring the Behavior of Fenced Nodes

	7.4. Use Cases for OCFS2
		7.4.1. Load Balancing
	7.4.2. Oracle Real Application Cluster (RAC)
	7.4.3. Oracle Databases

	7.5. For More Information About OCFS2

 This chapter describes how to configure and use the Oracle Cluster File System Version 2
 (OCFS2) file system.

7.1. About OCFS2

 Oracle Cluster File System version 2 (OCFS2) is a general-purpose, high-performance,
 high-availability, shared-disk file system intended for use in clusters. It is also possible
 to mount an OCFS2 volume on a standalone, non-clustered system.
Although it might seem that there is no benefit in mounting ocfs2
 locally as compared to alternative file systems such as ext4 or
 btrfs, you can use the reflink command with OCFS2 to
 create copy-on-write clones of individual files in a similar way to using the cp
 --reflink command with the btrfs file system. Typically, such clones allow you to
 save disk space when storing multiple copies of very similar files, such as VM images or Linux
 Containers. In addition, mounting a local OCFS2 file system allows you to subsequently migrate
 it to a cluster file system without requiring any conversion.
Almost all applications can use OCFS2 as it provides local file-system semantics.
 Applications that are cluster-aware can use cache-coherent parallel I/O from multiple cluster
 nodes to balance activity across the cluster, or they can use of the available file-system
 functionality to fail over and run on another node in the event that a node fails. The
 following examples typify some use cases for OCFS2:
	 Oracle VM to host shared access to virtual machine images.

	 Oracle VM and VirtualBox to allow Linux guest machines to share a file system.

	 Oracle Real Application Cluster (RAC) in database clusters.

	 Oracle E-Business Suite in middleware clusters.

 OCFS2 has a large number of features that make it suitable for
 deployment in an enterprise-level computing environment:

	
 Support for ordered and write-back data journaling that
 provides file system consistency in the event of power failure
 or system crash.

	 Block sizes ranging from 512 bytes to 4 KB, and file-system cluster sizes ranging
 from 4 KB to 1 MB (both in increments in power of 2). The maximum supported volume size is
 16 TB, which corresponds to the maximum possible for a cluster size of 4 KB. A volume size
 as large as 4 PB is theoretically possible for a cluster size of 1 MB, although this limit
 has not been tested.

	
 Extent-based allocations for efficient storage of very large
 files.

	
 Optimized allocation support for sparse files, inline-data,
 unwritten extents, hole punching, reflinks, and allocation
 reservation for high performance and efficient storage.

	
 Indexing of directories to allow efficient access to a
 directory even if it contains millions of objects.

	
 Metadata checksums for the detection of corrupted inodes and
 directories.

	
 Extended attributes to allow an unlimited number of
 name:value pairs to be attached to file
 system objects such as regular files, directories, and
 symbolic links.

	
 Advanced security support for POSIX ACLs and SELinux in
 addition to the traditional file-access permission model.

	
 Support for user and group quotas.

	
 Support for heterogeneous clusters of nodes with a mixture of
 32-bit and 64-bit, little-endian (x86, x86_64, ia64) and
 big-endian (ppc64) architectures.

	
 An easy-to-configure, in-kernel cluster-stack (O2CB) with a
 distributed lock manager (DLM), which manages concurrent
 access from the cluster nodes.

	
 Support for buffered, direct, asynchronous, splice and
 memory-mapped I/O.

	 A tool set that uses similar parameters to the ext3 file
 system.

7.2. Installing and Configuring OCFS2

The procedures in the following sections describe how to set up a cluster to use OCFS2.
	Section 7.2.1, “Preparing a Cluster for OCFS2”

	Section 7.2.2, “Configuring the Firewall”

	Section 7.2.3, “Configuring the Cluster Software”

	Section 7.2.4, “Creating the Configuration File for the Cluster Stack”

	Section 7.2.5, “Configuring the Cluster Stack”

	Section 7.2.6, “Configuring the Kernel for Cluster Operation”

	Section 7.2.7, “Starting and Stopping the Cluster Stack”

	Section 7.2.9, “Mounting OCFS2 Volumes”

7.2.1. Preparing a Cluster for OCFS2

For best performance, each node in the cluster should have at least two network
 interfaces. One interface is connected to a public network to allow general access to the
 systems. The other interface is used for private communication between the nodes; the
 cluster heartbeat that determines how the cluster nodes coordinate
 their access to shared resources and how they monitor each other's state. These interface must
 be connected via a network switch. Ensure that all network interfaces are configured and
 working before continuing to configure the cluster.
You have a choice of two cluster heartbeat configurations:
	Local heartbeat thread for each shared device. In this mode, a node starts a heartbeat thread when it mounts an OCFS2 volume and stops the thread when it unmounts the volume. This is the default heartbeat mode. There is a large CPU overhead on nodes that mount a large number of OCFS2 volumes as each mount requires a separate heartbeat thread. A large number of mounts also increases the risk of a node fencing itself out of the cluster due to a heartbeat I/O timeout on a single mount.

	Global heartbeat on specific shared devices. You can configure any OCFS2 volume as a global
 heartbeat device provided that it occupies a whole disk device and not a partition. In
 this mode, the heartbeat to the device starts when the cluster comes online and stops
 when the cluster goes offline. This mode is recommended for clusters that mount a large
 number of OCFS2 volumes. A node fences itself out of the cluster if a heartbeat I/O
 timeout occurs on more than half of the global heartbeat devices. To provide redundancy
 against failure of one of the devices, you should therefore configure at least three
 global heartbeat devices.

 Figure 7.1 shows a shows a cluster of four
 nodes connected via a network switch to a LAN and a network storage server. The nodes and
 the storage server are also connected via a switch to a private network that they use for
 the local cluster heartbeat.

Figure 7.1. Cluster Configuration Using a Private Network
[image: The diagram shows a cluster of four nodes connected via a network switch to a LAN and a network storage server. The nodes and the storage server are also connected via a switch to a private network that they use for the cluster heartbeat.]

It is possible to configure and use OCFS2 without using a private network but such a
 configuration increases the probability of a node fencing itself out of the cluster due to
 an I/O heartbeat timeout.

7.2.2. Configuring the Firewall

 Configure or disable the firewall on each node to allow access on the interface that
 the cluster will use for private cluster communication. By default, the cluster uses both
 TCP and UDP over port 7777.
To allow incoming TCP connections and UDP datagrams on port 7777 from the private
 network, use the following commands:
iptables -I INPUT -s subnet_addr/prefix_length -p tcp \
 -m state --state NEW -m tcp -–dport 7777 -j ACCEPT
iptables -I INPUT -s subnet_addr/prefix_length -p udp \
 -m udp -–dport 7777 -j ACCEPT
service iptables save
where
 subnet_addr/prefix_length
 specifies the network address of the private network, for example
 10.0.1.0/24.

7.2.3. Configuring the Cluster Software

Ideally, each node should be running the same version of the OCFS2 software and a
 compatible version of the Oracle Linux Unbreakable Enterprise Kernel (UEK). It is possible
 for a cluster to run with mixed versions of the OCFS2 and UEK software, for example, while
 you are performing a rolling update of a cluster. The cluster node that is running the
 lowest version of the software determines the set of usable features.
 Use yum to install or upgrade the following packages to the same
 version on each node:
	
 kernel

	
 oracle-linux

	
 ocfs2-tools

Note
If you want to use the global heartbeat feature, you must install
 ocfs2-tools-1.8.0-11 or later.

7.2.4. Creating the Configuration File for the Cluster Stack

 You can create the configuration file by using the o2cb command or a
 text editor.
 To configure the cluster stack by using the o2cb command:
	 Use the following command to create a cluster definition.

o2cb add-cluster cluster_name
 For example, to define a cluster named mycluster with four
 nodes:

o2cb add-cluster mycluster
 The command creates the configuration file
 /etc/ocfs2/cluster.conf if it does not already exist.

	 For each node, use the following command to define the node.

o2cb add-node cluster_name node_name --ip ip_address
 The name of the node must be same as the value of system's
 HOSTNAME that is configured in
 /etc/sysconfig/network. The IP address is the one that the node
 will use for private communication in the cluster.
 For example, to define a node named node0 with the IP address
 10.1.0.100 in the cluster mycluster:

o2cb add-node mycluster node0 --ip 10.1.0.100

	 If you want the cluster to use global heartbeat devices, use the following
 commands.

o2cb add-heartbeat cluster_name device1
.
.
.
o2cb heartbeat-mode cluster_name global
Note
You must configure global heartbeat to use whole disk devices. You cannot
 configure a global heartbeat device on a disk partition.

For example, to use /dev/sdd, /dev/sdg, and
 /dev/sdj as global heartbeat devices:

o2cb add-heartbeat mycluster /dev/sdd
o2cb add-heartbeat mycluster /dev/sdg
o2cb add-heartbeat mycluster /dev/sdj
o2cb heartbeat-mode mycluster global

	 Copy the cluster configuration file /etc/ocfs2/cluster.conf to
 each node in the cluster.

Note
 Any changes that you make to the cluster configuration file do not take
 effect until you restart the cluster stack.

 The following sample configuration file
 /etc/ocfs2/cluster.conf defines a 4-node cluster named
 mycluster with a local heartbeat.

node:
	name = node0
	cluster = mycluster
	number = 0
	ip_address = 10.1.0.100
	ip_port = 7777

node:
 name = node1
 cluster = mycluster
 number = 1
 ip_address = 10.1.0.101
 ip_port = 7777

node:
 name = node2
 cluster = mycluster
 number = 2
 ip_address = 10.1.0.102
 ip_port = 7777

node:
 name = node3
 cluster = mycluster
 number = 3
 ip_address = 10.1.0.103
 ip_port = 7777

cluster:
 name = mycluster
 heartbeat_mode = local
 node_count = 4
If you configure your cluster to use a global heartbeat, the file also include entries
 for the global heartbeat
 devices.
node:
 name = node0
 cluster = mycluster
 number = 0
 ip_address = 10.1.0.100
 ip_port = 7777

node:
 name = node1
 cluster = mycluster
 number = 1
 ip_address = 10.1.0.101
 ip_port = 7777

node:
 name = node2
 cluster = mycluster
 number = 2
 ip_address = 10.1.0.102
 ip_port = 7777

node:
 name = node3
 cluster = mycluster
 number = 3
 ip_address = 10.1.0.103
 ip_port = 7777

cluster:
 name = mycluster
 heartbeat_mode = global
 node_count = 4

heartbeat:
 cluster = mycluster
 region = 7DA5015346C245E6A41AA85E2E7EA3CF

heartbeat:
 cluster = mycluster
 region = 4F9FBB0D9B6341729F21A8891B9A05BD

heartbeat:
 cluster = mycluster
 region = B423C7EEE9FC426790FC411972C91CC3
The cluster heartbeat mode is now shown as global, and the heartbeat
 regions are represented by the UUIDs of their block devices.
If you edit the configuration file manually, ensure that you use the following layout:
	 The cluster:, heartbeat:, and
 node: headings must start in the first column.

	 Each parameter entry must be indented by one tab space.

	 A blank line must separate each section that defines the cluster, a heartbeat
 device, or a node.

7.2.5. Configuring the Cluster Stack

 To configure the cluster stack:
	 Run the following command on each node of the cluster:

service o2cb configure
 The following table describes the values for which you are prompted.

	
 Prompt

 	
 Description

	
 Load O2CB driver on boot (y/n)

 	
 Whether the cluster stack driver should be loaded at boot time. The
 default response is n.

	
 Cluster stack backing O2CB

 	
 The name of the cluster stack service. The default and usual response
 is o2cb.

	
 Cluster to start at boot (Enter "none" to
 clear)

 	
 Enter the name of your cluster that you defined in the cluster
 configuration file, /etc/ocfs2/cluster.conf.

	
 Specify heartbeat dead threshold (>=7)

 	
 The number of 2-second heartbeats that must elapse without response
 before a node is considered dead. To calculate the value to enter, divide
 the required threshold time period by 2 and add 1. For example, to set the
 threshold time period to 120 seconds, enter a value of 61. The default
 value is 31, which corresponds to a threshold time period of 60 seconds.

 Note
 If your system uses multipathed storage, the recommended value is
 61 or greater.

	
 Specify network idle timeout in ms (>=5000)

 	
 The time in milliseconds that must elapse before a network connection
 is considered dead. The default value is 30,000 milliseconds.

 Note
 For bonded network interfaces, the recommended value is 30,000
 milliseconds or greater.

	
 Specify network keepalive delay in ms
 (>=1000)

 	
 The maximum delay in milliseconds between sending keepalive packets to
 another node. The default and recommended value is 2,000
 milliseconds.

	
 Specify network reconnect delay in ms
 (>=2000)

 	
 The minimum delay in milliseconds between reconnection attempts if a
 network connection goes down. The default and recommended value is 2,000
 milliseconds.

 To verify the settings for the cluster stack, enter the service o2cb
 status command:

service o2cb status
Driver for "configfs": Loaded
Filesystem "configfs": Mounted
Stack glue driver: Loaded
Stack plugin "o2cb": Loaded
Driver for "ocfs2_dlmfs": Loaded
Filesystem "ocfs2_dlmfs": Mounted
Checking O2CB cluster "mycluster": Online
 Heartbeat dead threshold: 61
 Network idle timeout: 30000
 Network keepalive delay: 2000
 Network reconnect delay: 2000
 Heartbeat mode: Local
Checking O2CB heartbeat: Active
In this example, the cluster is online and is using local heartbeat mode. If no
 volumes have been configured, the O2CB heartbeat is shown as Not
 active rather than Active.
The next example shows the command output for an online cluster that is using
 three global heartbeat devices:
service o2cb status
Driver for "configfs": Loaded
Filesystem "configfs": Mounted
Stack glue driver: Loaded
Stack plugin "o2cb": Loaded
Driver for "ocfs2_dlmfs": Loaded
Filesystem "ocfs2_dlmfs": Mounted
Checking O2CB cluster "mycluster": Online
 Heartbeat dead threshold: 61
 Network idle timeout: 30000
 Network keepalive delay: 2000
 Network reconnect delay: 2000
 Heartbeat mode: Global
Checking O2CB heartbeat: Active
 7DA5015346C245E6A41AA85E2E7EA3CF /dev/sdd
 4F9FBB0D9B6341729F21A8891B9A05BD /dev/sdg
 B423C7EEE9FC426790FC411972C91CC3 /dev/sdj

	 Configure the o2cb and ocfs2 services so
 that they start at boot time after networking is enabled:

chkconfig o2cb on
chkconfig ocfs2 on

 These settings allow the node to mount OCFS2 volumes automatically when the system
 starts.

7.2.6. Configuring the Kernel for Cluster Operation

 For the correct operation of the cluster, you must configure the kernel settings shown
 in the following table:
	
 Kernel Setting

 	
 Description

	
 panic

 	
 Specifies the number of seconds after a panic before a system will
 automatically reset itself.

 If the value is 0, the system hangs, which allows you to collect detailed
 information about the panic for troubleshooting. This is the default
 value.

 To enable automatic reset, set a non-zero value. If you require a memory
 image (vmcore), allow enough time for Kdump to create this
 image. The suggested value is 30 seconds, although large systems will require a
 longer time.

	
 panic_on_oops

 	
 Specifies that a system must panic if a kernel oops occurs. If a kernel
 thread required for cluster operation crashes, the system must reset itself.
 Otherwise, another node might not be able to tell whether a node is slow to
 respond or unable to respond, causing cluster operations to hang.

 On each node, enter the following commands to set the recommended values for
 panic and panic_on_oops:

sysctl kernel.panic = 30
sysctl kernel.panic_on_oops = 1
To make the change persist across reboots, add the following entries to the
 /etc/sysctl.conf
 file:
Define panic and panic_on_oops for cluster operation
kernel.panic = 30
kernel.panic_on_oops = 1

7.2.7. Starting and Stopping the Cluster Stack

 The following table shows the commands that you can use to perform various operations
 on the cluster stack.
	
 Command

 	
 Description

	
 service o2cb status

 	
 Check the status of the cluster stack.

	
 service o2cb online

 	
 Start the cluster stack.

	
 service o2cb offline

 	
 Stop the cluster stack.

	
 service o2cb unload

 	
 Unload the cluster stack.

7.2.8. Creating OCFS2 volumes

 You can use the mkfs.ocfs2 command to create an OCFS2 volume on a
 device. If you want to label the volume and mount it by specifying the label, the device
 must correspond to a partition. You cannot mount an unpartitioned disk device by specifying
 a label. The following table shows the most useful options that you can use when creating an
 OCFS2 volume.
	
 Command Option

 	
 Description

	

 -b
 block-size

 --block-size
 block-size

 	
 Specifies the unit size for I/O transactions to and from the file system,
 and the size of inode and extent blocks. The supported block sizes are 512
 bytes, 1 KB, 2 KB, and 4 KB. The default and recommended block size is 4K (4
 KB).

	

 -C
 cluster-size

 --cluster-size
 cluster-size

 	
 Specifies the unit size for space used to allocate file data. The supported
 cluster sizes are 4KB, 8KB, 16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, and 1
 MB. The default cluster size is 4K (4 KB). If you intend the volume to store
 database files, do not specify a cluster size that is smaller than the block
 size of the database.

	

 --fs-feature-level=feature-level

 	
 Allows you select a set of file-system features:
	
 default

	 Enables support for the sparse files, unwritten extents, and inline
 data features.

	
 max-compat

	 Enables only those features that are understood by older versions
 of OCFS2.

	
 max-features

	 Enables all features that OCFS2 currently supports.

	

 --fs_features=feature

 	
 Allows you to enable or disable individual features such as support for
 sparse files, unwritten extents, and backup superblocks. For more information,
 see the mkfs.ocfs2(8) manual page.

	

 -J
 size=journal-size

 --journal-options
 size=journal-size

 	
 Specifies the size of the write-ahead journal. If not specified, the size is
 determined from the file system usage type that you specify to the
 -T option, and, otherwise, from the volume size. The
 default size of the journal is 64M (64 MB) for datafiles,
 256M (256 MB) for mail, and 128M (128 MB) for
 vmstore.

	

 -L
 volume-label

 --label
 volume-label

 	
 Specifies a descriptive name for the volume that allows you to identify it
 easily on different cluster nodes.

	

 -N
 number

 --node-slots
 number

 	
 Determines the maximum number of nodes that can concurrently access a
 volume, which is limited by the number of node slots for system files such as
 the file-system journal. For best performance, set the number of node slots to
 at least twice the number of nodes. If you subsequently increase the number of
 node slots, performance can suffer because the journal will no longer be
 contiguously laid out on the outer edge of the disk platter.

	
 -T
 file-system-usage-type

 	
 Specifies the type of usage for the file system:
	
 datafiles

	Database files are typically few in number, fully allocated, and
 relatively large. Such files require few metadata changes, and do not
 benefit from having a large journal.

	
 mail

	 Mail server files are typically many in number, and relatively
 small. Such files require many metadata changes, and benefit from having
 a large journal.

	
 vmstore

	 Virtual machine image files are typically few in number, sparsely
 allocated, and relatively large. Such files require a moderate number of
 metadata changes and a medium sized journal.

 For example, create an OCFS2 volume on /dev/sdc1 labeled as
 myvol using all the default settings for generic usage (4 KB block and
 cluster size, eight node slots, a 256 MB journal, and support for default file-system
 features).

mkfs.ocfs2 -L "myvol" /dev/sdc1
Create an OCFS2 volume on /dev/sdd2 labeled as dbvol
 for use with database files. In this case, the cluster size is set to 128 KB and the journal
 size to 32 MB.

mkfs.ocfs2 -L "dbvol" -T datafiles /dev/sdd2
Create an OCFS2 volume on /dev/sde1 with a 16 KB cluster size, a 128 MB
 journal, 16 node slots, and support enabled for all features except refcount trees.

mkfs.ocfs2 -C 16K -J size=128M -N 16 --fs-feature-level=max-features \
 --fs-features=norefcount /dev/sde1
Note
Do not create an OCFS2 volume on an LVM logical volume. LVM is not
 cluster-aware.
You cannot change the block and cluster size of an OCFS2 volume after it has been
 created. You can use the tunefs.ocfs2 command to modify other settings
 for the file system with certain restrictions. For more information, see the
 tunefs.ocfs2(8) manual page.

7.2.9. Mounting OCFS2 Volumes

 As shown in the following example, specify the _netdev option in
 /etc/fstab if you want the system to mount an OCFS2 volume at boot time
 after networking is started, and to unmount the file system before networking is stopped.

myocfs2vol /dbvol1 ocfs2 _netdev,defaults 0 0
Note

 The file system will not mount unless you have enabled the
 o2cb and ocfs2 services to
 start after networking is started. See
 Section 7.2.5, “Configuring the Cluster Stack”.

7.2.10. Querying and Changing Volume Parameters

You can use the tunefs.ocfs2 command to query or change volume
 parameters. For example, to find out the label, UUID and the number of node slots for a
 volume:
tunefs.ocfs2 -Q "Label = %V\nUUID = %U\nNumSlots =%N\n" /dev/sdb
Label = myvol
UUID = CBB8D5E0C169497C8B52A0FD555C7A3E
NumSlots = 4
Generate a new UUID for a volume:
tunefs.ocfs2 -U /dev/sda
tunefs.ocfs2 -Q "Label = %V\nUUID = %U\nNumSlots =%N\n" /dev/sdb
Label = myvol
UUID = 48E56A2BBAB34A9EB1BE832B3C36AB5C
NumSlots = 4

7.3. Troubleshooting OCFS2

 The following sections describes some techniques that you can use
 for investigating any problems that you encounter with OCFS2.

7.3.1. Recommended Tools for Debugging

 To you want to capture an oops trace, it is recommended that you
 set up netconsole on the nodes.

 If you want to capture the DLM's network traffic between the nodes, you can use
 tcpdump. For example, to capture TCP traffic on port 7777 for the private network interface
 eth1, you could use a command such as the following:

tcpdump -i eth1 -C 10 -W 15 -s 10000 -Sw /tmp/`hostname -s`_tcpdump.log \
 -ttt 'port 7777' &
 You can use the debugfs.ocfs2 command, which is similar in behavior
 to the debugfs command for the ext3 file system, and
 allows you to trace events in the OCFS2 driver, determine lock statuses, walk directory
 structures, examine inodes, and so on.
For more information, see the debugfs.ocfs2(8) manual page.
The o2image command saves an OCFS2 file system's metadata (including
 information about inodes, file names, and directory names) to an image file on another file
 system. As the image file contains only metadata, it is much smaller than the original file
 system. You can use debugfs.ocfs2 to open the image file, and analyze the
 file system layout to determine the cause of a file system corruption or performance
 problem.
For example, the following command creates the image /tmp/sda2.img
 from the OCFS2 file system on the device
 /dev/sda2:
o2image /dev/sda2 /tmp/sda2.img
For more information, see the o2image(8) manual page.

7.3.2. Mounting the debugfs File System

OCFS2 uses the debugfs file system to allow access from user space to
 information about its in-kernel state. You must mount the debugfs file
 system to be able to use the debugfs.ocfs2 command.
To mount the debugfs file system, add the following line to
 /etc/fstab:

debugfs /sys/kernel/debug debugfs defaults 0 0

and run the mount -a command.

7.3.3. Configuring OCFS2 Tracing

 The following table shows some of the commands that are useful for tracing problems in
 OCFS2.
	
 Command

 	
 Description

	
 debugfs.ocfs2 -l

 	
 List all trace bits and their statuses.

	
 debugfs.ocfs2 -l SUPER allow

 	
 Enable tracing for the superblock.

	
 debugfs.ocfs2 -l SUPER off

 	
 Disable tracing for the superblock.

	
 debugfs.ocfs2 -l SUPER deny

 	
 Disallow tracing for the superblock, even if implicitly enabled by another
 tracing mode setting.

	
 debugfs.ocfs2 -l HEARTBEAT \

 ENTRY EXIT allow

 	
 Enable heartbeat tracing.

	
 debugfs.ocfs2 -l HEARTBEAT off \

 ENTRY EXIT deny

 	
 Disable heartbeat tracing. ENTRY and
 EXIT are set to deny as they exist in
 all trace paths.

	
 debugfs.ocfs2 -l ENTRY EXIT \

 NAMEI INODE allow

 	
 Enable tracing for the file system.

	
 debugfs.ocfs2 -l ENTRY EXIT \

 deny NAMEI INODE allow

 	
 Disable tracing for the file system.

	
 debugfs.ocfs2 -l ENTRY EXIT \

 DLM DLM_THREAD allow

 	
 Enable tracing for the DLM.

	
 debugfs.ocfs2 -l ENTRY EXIT \

 deny DLM DLM_THREAD allow

 	
 Disable tracing for the DLM.

 One method for obtaining a trace its to enable the trace, sleep
 for a short while, and then disable the trace. As shown in the
 following example, to avoid seeing unnecessary output, you
 should reset the trace bits to their default settings after you
 have finished.

debugfs.ocfs2 -l ENTRY EXIT NAMEI INODE allow && sleep 10 && \
 debugfs.ocfs2 -l ENTRY EXIT deny NAMEI INODE off

 To limit the amount of information displayed, enable only the
 trace bits that you believe are relevant to understanding the
 problem.

 If you believe a specific file system command, such as
 mv, is causing an error, the following
 example shows the commands that you can use to help you trace
 the error.

debugfs.ocfs2 -l ENTRY EXIT NAMEI INODE allow
mv source destination & CMD_PID=$(jobs -p %-)
echo $CMD_PID
debugfs.ocfs2 -l ENTRY EXIT deny NAMEI INODE off
 As the trace is enabled for all mounted OCFS2 volumes, knowing the correct process ID
 can help you to interpret the trace.

 For more information, see the
 debugfs.ocfs2(8) manual page.

7.3.4. Debugging File System Locks

 If an OCFS2 volume hangs, you can use the following steps to help you determine which
 locks are busy and the processes that are likely to be holding the locks.
	 Mount the debug file system.

mount -t debugfs debugfs /sys/kernel/debug

	 Dump the lock statuses for the file system device (/dev/sdx1
 in this example).

echo "fs_locks" | debugfs.ocfs2 /dev/sdx1 >/tmp/fslocks 62
Lockres: M00000000000006672078b84822 Mode: Protected Read
Flags: Initialized Attached
RO Holders: 0 EX Holders: 0
Pending Action: None Pending Unlock Action: None
Requested Mode: Protected Read Blocking Mode: Invalid
 The Lockres field is the lock name used by the DLM. The lock
 name is a combination of a lock-type identifier, an inode number, and a generation
 number. The following table shows the possible lock types.
	
 Identifier

 	
 Lock Type

	
 D

 	
 File data.

	
 M

 	
 Metadata.

	
 R

 	
 Rename.

	
 S

 	
 Superblock.

	
 W

 	
 Read-write.

	 Use the Lockres value to obtain the inode number and
 generation number for the lock.

echo "stat <M00000000000006672078b84822>" | debugfs.ocfs2 -n /dev/sdx1
Inode: 419616 Mode: 0666 Generation: 2025343010 (0x78b84822)
...

	 Determine the file system object to which the inode number relates by using the
 following command.

echo "locate <419616>" | debugfs.ocfs2 -n /dev/sdx1
419616 /linux-2.6.15/arch/i386/kernel/semaphore.c

	 Obtain the lock names that are associated with the file system object.

echo "encode /linux-2.6.15/arch/i386/kernel/semaphore.c" | \
 debugfs.ocfs2 -n /dev/sdx1
M00000000000006672078b84822 D00000000000006672078b84822 W00000000000006672078b84822
 In this example, a metadata lock, a file data lock, and a read-write lock are
 associated with the file system object.

	 Determine the DLM domain of the file system.

echo "stats" | debugfs.ocfs2 -n /dev/sdX1 | grep UUID: | while read a b ; do echo $b ; done
82DA8137A49A47E4B187F74E09FBBB4B

	 Use the values of the DLM domain and the lock name with the following command,
 which enables debugging for the DLM.

echo R 82DA8137A49A47E4B187F74E09FBBB4B \
 M00000000000006672078b84822 > /proc/fs/ocfs2_dlm/debug

	 Examine the debug messages.

dmesg | tail
struct dlm_ctxt: 82DA8137A49A47E4B187F74E09FBBB4B, node=3, key=965960985
 lockres: M00000000000006672078b84822, owner=1, state=0 last used: 0,
 on purge list: no granted queue:
 type=3, conv=-1, node=3, cookie=11673330234144325711, ast=(empty=y,pend=n),
 bast=(empty=y,pend=n)
 converting queue:
 blocked queue:
 The DLM supports 3 lock modes: no lock (type=0), protected
 read (type=3), and exclusive (type=5). In this
 example, the lock is mastered by node 1 (owner=1) and node 3 has
 been granted a protected-read lock on the file-system resource.

	Run the following command, and look for processes that are in an uninterruptable
 sleep state as shown by the D flag in the STAT
 column.
ps -e -o pid,stat,comm,wchan=WIDE-WCHAN-COLUMN
At least one of the processes that are in the uninterruptable sleep state will be
 responsible for the hang on the other node.

If a process is waiting for I/O to complete, the problem could be anywhere in
 the I/O subsystem from the block device layer through the drivers to the disk array. If the
 hang concerns a user lock (flock()), the problem could lie in the
 application. If possible, kill the holder of the lock. If the hang is due to lack of memory
 or fragmented memory, you can free up memory by killing non-essential processes. The most
 immediate solution is to reset the node that is holding the lock. The DLM recovery process
 can then clear all the locks that the dead node owned, so letting the cluster continue to
 operate.

7.3.5. Configuring the Behavior of Fenced Nodes

 If a node with a mounted OCFS2 volume believes that it is no longer in contact with the
 other cluster nodes, it removes itself from the cluster in a process termed
 fencing. Fencing prevents other nodes from hanging when they try to
 access resources held by the fenced node. By default, a fenced node restarts instead of
 panicking so that it can quickly rejoin the cluster. Under some circumstances, you might
 want a fenced node to panic instead of restarting. For example, you might want to use
 netconsole to view the oops stack trace or to diagnose the cause of
 frequent reboots. To configure a node to panic when it next fences, run the following
 command on the node after the cluster starts:

echo panic > /sys/kernel/config/cluster/cluster_name/fence_method
where cluster_name is the name of the cluster. To set the
 value after each reboot of the system, add this line to /etc/rc.local. To
 restore the default behavior, use the value reset instead of
 panic.

7.4. Use Cases for OCFS2

 The following sections describe some typical use cases for OCFS2.

7.4.1. Load Balancing

 You can use OCFS2 nodes to share resources between client
 systems. For example, the nodes could export a shared file
 system by using Samba or NFS. To distribute service requests
 between the nodes, you can use round-robin DNS, a network load
 balancer, or specify which node should be used on each client.

7.4.2. Oracle Real Application Cluster (RAC)

 Oracle RAC uses its own cluster stack, Cluster Synchronization
 Services (CSS). You can use O2CB in conjunction with CSS, but
 you should note that each stack is configured independently for
 timeouts, nodes, and other cluster settings. You can use OCFS2
 to host the voting disk files and the Oracle cluster registry
 (OCR), but not the grid infrastructure user's home, which must
 exist on a local file system on each node.

 As both CSS and O2CB use the lowest node number as a tie breaker
 in quorum calculations, you should ensure that the node numbers
 are the same in both clusters. If necessary, edit the O2CB
 configuration file /etc/ocfs2/cluster.conf to
 make the node numbering consistent, and update this file on all
 nodes. The change takes effect when the cluster is restarted.

7.4.3. Oracle Databases

 Specify the noatime option when mounting
 volumes that host Oracle datafiles, control files, redo logs,
 voting disk, and OCR. The noatime option
 disables unnecessary updates to the access time on the inodes.

 Specify the nointr mount option to prevent
 signals interrupting I/O transactions that are in progress.

 By default, the init.ora parameter
 filesystemio_options directs the database to
 perform direct I/O to the Oracle datafiles, control files, and
 redo logs. You should also specify the
 datavolume mount option for the volumes that
 contain the voting disk and OCR. Do not specify this option for
 volumes that host the Oracle user's home directory or Oracle
 E-Business Suite.

 To avoid database blocks becoming fragmented across a disk,
 ensure that the file system cluster size is at least as big as
 the database block size, which is typically 8KB. If you specify
 the file system usage type as datafiles to
 the mkfs.ocfs2 command, the file system
 cluster size is set to 128KB.

 To allow multiple nodes to maximize throughput by concurrently streaming data to an
 Oracle datafile, OCFS2 deviates from the POSIX standard by not updating the modification
 time (mtime) on the disk when performing non-extending direct I/O writes.
 The value of mtime is updated in memory, but OCFS2 does not write the
 value to disk unless an application extends or truncates the file, or performs a operation
 to change the file metadata, such as using the touch command. This
 behavior leads to results in different nodes reporting different time stamps for the same
 file. You can use the following command to view the on-disk timestamp of a file:

debugfs.ocfs2 -R "stat /file_path" device | grep "mtime:"

7.5. For More Information About OCFS2

 You can find more information about OCFS2 at
 https://oss.oracle.com/projects/ocfs2/documentation/.

Chapter 8. Control Groups

Table of Contents
	8.1. About cgroups
	8.2. Subsystems
		8.2.1. blkio Parameters
	8.2.2. cpu Parameters
	8.2.3. cpuacct Parameters
	8.2.4. cpuset Parameters
	8.2.5. devices Parameters
	8.2.6. freezer Parameter
	8.2.7. memory Parameters
	8.2.8. net_cls Parameter

	8.3. Enabling the cgconfig Service
	8.4. Enabling PAM to Work with cgroup Rules
	8.5. Restarting the cgconfig Service
	8.6. About the cgroups Configuration File
	8.7. About the cgroup Rules Configuration File
	8.8. Displaying and Setting Subsystem Parameters
	8.9. Use Cases for cgroups
		8.9.1. Pinning Processes to CPU Cores
	8.9.2. Controlling CPU and Memory Usage
	8.9.3. Restricting Access to Devices
	8.9.4. Throttling I/O Bandwidth

	8.10. For More Information About cgroups

 This chapter describes how to use Control Groups (cgroups) to
 manage the resource utilization of sets of processes.

8.1. About cgroups

 A cgroup is a collection of processes (tasks) that you bind together
 by applying a set of criteria that control the cgroup's access to system resources. You can
 create a hierarchy of cgroups, in which child cgroups inherits its characteristics from the
 parent cgroup. You can use cgroups to manage processes in the following ways:
	 Limit the CPU, I/O, and memory resources that are available to a group.

	 Change the priority of a group relative to other groups.

	 Measure a group's resource usage for accounting and billing purposes.

	 Isolate a group's files, processes, and network connections from other groups.

	 Freeze a group to allow you to create a checkpoint.

 You can create and manage cgroups in the following ways:
	 By editing the cgroup configuration file /etc/cgconfig.conf.

	 By using cgroups commands such as cgcreate,
 cgclassify, and cgexec.

	 By manipulating a cgroup's virtual file system, for example, by adding process IDs
 to tasks directories under /sys/fs/cgroup.

	 By editing the cgroup rules file /etc/cgrules.conf so that the
 rules engine or PAM move processes into cgroups automatically.

	 By using additional application software such as Linux Containers.

	 By using the APIs that are provided in libvirt.

 Because you might ultimately want to deploy cgroups in a production environment, this
 chapter demonstrates how to configure cgroups by editing the
 /etc/cgconfig.conf and /etc/cgrules.conf files, and
 how to configure PAM to associate processes with cgroups.
Note

 To use cgroups, you must install the
 libcgroup package on your system.

8.2. Subsystems

 You control the access that cgroups have to system resources by
 specifying parameters to various kernel modules known as
 subsystems (or as resource controllers in some cgroups
 documentation).

 The following table lists the subsystems that are provided with
 the cgroups package.

	Subsystem
	Description

	blkio
	
 Controls and reports block I/O operations. See
 Section 8.2.1, “blkio Parameters”.

 Note
 The blkio subsystem is enabled in the 2.6.39 UEK, but
 not in the 2.6.32 UEK.

	cpu
	
 Controls access to CPU resources. See
 Section 8.2.2, “cpu Parameters”.

	cpuacct
	
 Reports usage of CPU resources. See
 Section 8.2.3, “cpuacct Parameters”.

	cpuset
	
 Controls access to CPU cores and memory nodes (for
 systems with NUMA architectures). See
 Section 8.2.4, “cpuset Parameters”.

	devices
	
 Controls access to system devices. See
 Section 8.2.5, “devices Parameters”.

	freezer
	
 Suspends or resumes cgroup tasks. See
 Section 8.2.6, “freezer Parameter”.

	memory
	
 Controls access to memory resources, and reports on
 memory usage. See Section 8.2.7, “memory Parameters”.

	net_cls
	
 Tags network packets for use by network traffic
 control. See Section 8.2.8, “net_cls Parameter”.

 The following sections describe the parameters that you can set
 for each subsystem.

8.2.1. blkio Parameters

 The following blkio parameters are defined:

 blkio.io_merged

 Reports the number of BIOS requests that have been merged into
 async, read,
 sync, or write I/O
 operations.

 blkio.io_queued

 Reports the number of requests for async,
 read, sync, or
 write I/O operations.

 blkio.io_service_bytes

 Reports the number of bytes transferred by
 async, read,
 sync, or write I/O
 operations to or from the devices specified by their major and
 minor numbers as recorded by the completely fair queueing (CFQ)
 scheduler, but not updated while it is operating on a request
 queue.

 blkio.io_serviced

 Reports the number of async,
 read, sync, or
 write I/O operations to or from the devices
 specified by their major and minor numbers as recorded by the
 CFQ scheduler, but not updated while it is operating on a
 request queue.

 blkio.io_service_time

 Reports the time in nanoseconds taken to complete
 async, read,
 sync, or write I/O
 operations to or from the devices specified by their major and
 minor numbers.

 blkio.io_wait_time

 Reports the total time in nanoseconds that a cgroup spent
 waiting for async, read,
 sync, or write I/O
 operations to complete to or from the devices specified by their
 major and minor numbers.

 blkio.reset_stats

 Resets the statistics for a cgroup if an integer is written to
 this parameter.

 blkio.sectors

 Reports the number of disk sectors written to or read from the
 devices specified by their major and minor numbers.

 blkio.throttle.io_service_bytes

 Reports the number of bytes transferred by
 async, read,
 sync, or write I/O
 operations to or from the devices specified by their major and
 minor numbers even while the CFQ scheduler is operating on a
 request queue.

 blkio.throttle.io_serviced

 Reports the number of async,
 read, sync, or
 write I/O operations to or from the devices
 specified by their major and minor numbers even while the CFQ
 scheduler is operating on a request queue.

 blkio.throttle.read_bps_device

 Specifies the maximum number of bytes per second that a cgroup may read from a device
 specified by its major and minor numbers. For example, the setting 8:1
 4194304 specifies that a maximum of 4 MB per second may be read from
 /dev/sda1.

 blkio.throttle.read_iops_device

 Specifies the maximum number of read operations per second that
 a cgroup may perform on a device specified by its major and
 minor numbers. For example, the setting 8:1
 100 specifies that a maximum of 100 read operations
 per second may be performed on/dev/sda1.

 blkio.throttle.write_bps_device

 Specifies the maximum number of bytes per second that a cgroup may write to a device
 specified by its major and minor numbers. For example, the setting 8:2
 2097152 specifies a maximum of 2 MB per second may be written to
 /dev/sda2.

 blkio.throttle.write_iops_device

 Specifies the maximum number of write operations per second that
 a cgroup may perform on a device specified by its major and
 minor numbers. For example, the setting 8:2
 50 specifies that a maximum of 50 write operations per
 second may be performed on /dev/sda2.

 blkio.time

 Reports the time in milliseconds that I/O access was available
 to a device specified by its major and minor numbers.

 blkio.weight

 Specifies a bias value from 100 to 1000 that determines a
 cgroup's share of access to block I/O. The default value is
 1000. The value is overridden by the setting for an individual
 device (see blkio.weight_device).

 blkio.weight_device

 Specifies a bias value from 100 to 1000 that determines a
 cgroup's share of access to block I/O on a device specified by
 its major and minor numbers. For example, the setting
 8:17 100 specifies a bias value of 100 for
 /dev/sdb1.

8.2.2. cpu Parameters

 The following cpu parameters are defined:

 cpu.rt_period_us

 Specifies how often in microseconds that a cgroup's access to a
 CPU should be rescheduled. The default value is 1000000 (1
 second).

 cpu.rt_runtime.us

 Specifies for how long in microseconds that a cgroup has access
 to a CPU between rescheduling operations. The default value is
 950000 (0.95 seconds).

 cpu.shares

 Specifies the bias value that determines a cgroup's share of CPU
 time. The default value is 1024.

8.2.3. cpuacct Parameters

 The following cpuacct parameters are defined:

 cpuacct.stat

 Reports the total CPU time in nanoseconds spent in user and
 system mode by all tasks in the cgroup.

 cpuacct.usage

 Reports the total CPU time in nanoseconds for all tasks in the
 cgroup. Setting this parameter to 0 resets its value, and also
 resets the value of cpuacct.usage_percpu.

 cpuacct.usage_percpu

 Reports the total CPU time in nanoseconds on each CPU core for
 all tasks in the cgroup.

8.2.4. cpuset Parameters

 The following cpuset parameters are defined:

 cpuset.cpu_exclusive

 Specifies whether the CPUs specified by cpuset.cpus are exclusively
 allocated to this CPU set and cannot be shared with other CPU sets. The default value of 0
 specifies that CPUs are not exclusively allocated. A value of 1 enables exclusive use of the
 CPUs by a CPU set.

 cpuset.cpus

 Specifies a list of CPU cores to which a cgroup has access. For
 example, the setting 0,1,5-8 allows access to
 cores 0, 1, 5, 6, 7, and 8. The default setting includes all the
 available CPU cores.

Note

 If you associate the cpuset subsystem with
 a cgroup, you must specify a value for the
 cpuset.cpus parameter.

 cpuset.mem_exclusive

 Specifies whether the memory nodes specified by cpuset.mems are
 exclusively allocated to this CPU set and cannot be shared with other CPU sets. The default
 value of 0 specifies that memory nodes are not exclusively allocated. A value of 1 enables
 exclusive use of the memory nodes by a CPU set.

 cpuset.mem_hardwall

 Specifies whether the kernel allocates pages and buffers to the memory nodes specified
 by cpuset.mems exclusively to this CPU set and cannot be shared with
 other CPU sets. The default value of 0 specifies that memory nodes are not exclusively
 allocated. A value of 1 allows you to separate the memory nodes that are allocated to
 different cgroups.

 cpuset.memory_migrate

 Specifies whether memory pages are allowed to migrate between
 memory nodes if the value of cpuset.mems
 changes. The default value of 0 specifies that memory nodes are
 not allowed to migrate. A value of 1 allows pages to migrate
 between memory nodes, maintaining their relative position on the
 node list where possible.

 cpuset.memory_pressure

 If cpuset.memory_pressure_enabled has been
 set to 1, reports the memory pressure,
 which represents the number of attempts per second by processes
 to reclaim in-use memory. The reported value scales the actual
 number of attempts up by a factor of 1000.

 cpuset.memory_pressure_enabled

 Specifies whether the memory pressure statistic should be
 gathered. The default value of 0 disables the counter. A value
 of 1 enables the counter.

 cpuset.memory_spread_page

 Specifies whether file system buffers are distributed between
 the allocated memory nodes. The default value of 0 results in
 the buffers being placed on the same memory node as the process
 that owns them. A value of 1 allows the buffers to be
 distributed across the memory nodes of the CPU set.

 cpuset.memory_spread_slab

 Specifies whether I/O slab caches are distributed between the
 allocated memory nodes. The default value of 0 results in the
 caches being placed on the same memory node as the process that
 owns them. A value of 1 allows the caches to be distributed
 across the memory nodes of the CPU set.

 cpuset.mems

 Specifies the memory nodes to which a cgroup has access. For
 example, the setting 0-2,4 allows access to
 memory nodes 0, 1, 2, and 4. The default setting includes all
 available memory nodes. The parameter has a value of 0 on
 systems that do not have a NUMA architecture.

Note

 If you associate the cpuset subsystem with
 a cgroup, you must specify a value for the
 cpuset.mems parameter.

 cpuset.sched_load_balance

 Specifies whether the kernel should attempt to balance CPU load
 by moving processes between the CPU cores allocated to a CPU
 set. The default value of 1 turns on load balancing. A value of
 0 disables load balancing. Disabling load balancing for a cgroup
 has no effect if load balancing is enabled in the parent cgroup.

 cpuset.sched_relax_domain_level

 If cpuset.sched_load_balance is set to 1, specifies one of the
 following load-balancing schemes.
	
 Setting

 	
 Description

	

 -1

 	
 Use the system's default load balancing scheme. This is the default
 behavior.

	

 0

 	
 Perform periodic load balancing. Higher numeric values enable immediate
 load balancing.

	

 1

 	
 Perform load balancing for threads running on the same core.

	

 2

 	
 Perform load balancing for cores of the same CPU.

	

 3

 	
 Perform load balancing for all CPU cores on the same system.

	

 4

 	
 Perform load balancing for a subset of CPU cores on a system with a NUMA
 architecture.

	

 5

 	
 Perform load balancing for all CPU cores on a system with a NUMA
 architecture.

8.2.5. devices Parameters

 The following devices parameters are defined:

 devices.allow

 Specifies a device that a cgroup is allowed to access by its type (a
 for any, b for block, or c for character), its major
 and minor numbers, and its access modes (m for create permission,
 r for read access, and w for write access).

 For example, b 8:17 rw would allow read and
 write access to the block device /dev/sdb1.

 You can use the wildcard * to represent any
 major or minor number. For example, b 8:* rw
 would allow read and write access to any
 /dev/sd* block device.

 Each device that you specify is added to the list of allowed
 devices.

 devices.deny

 Specifies a device that a cgroup is not allowed to access.

 Removes each device that you specify from the list of allowed
 devices.

 devices.list

 Reports those devices for which access control is set. If no devices are controlled,
 all devices are reported as being available in all access modes: a *:*
 rwm.

8.2.6. freezer Parameter

 The following freezer parameter is defined:

 freezer.state

 Specifies one of the following operations.
	
 Setting

 	
 Description

	

 FROZEN

 	
 Suspends all the tasks in a cgroup. You cannot move a process into a frozen
 cgroup.

	

 THAWED

 	
 Resumes all the tasks in a cgroup.

Note

 You cannot set the FREEZING state. If
 displayed, this state indicates that the system is currently
 suspending the tasks in the cgroup.

 The freezer.state parameter is not
 available in the root cgroup.

8.2.7. memory Parameters

 The following memory parameters are defined:

 memory.failcnt

 Specifies the number of times that the amount of memory used by
 a cgroup has risen to memory.limit_in_bytes.

 memory.force_empty

 If a cgroup has no tasks, setting the value to 0 removes all
 pages from memory that were used by tasks in the cgroup. Setting
 the parameter in this way avoids a parent cgroup from being
 assigned the defunct page caches when you remove its child
 cgroup.

 memory.limit_in_bytes

 Specifies the maximum usage permitted for user memory including
 the file cache. The default units are bytes, but you can also
 specify a k or K,
 m or M, and
 g or G suffix for
 kilobytes, megabytes, and gigabytes respectively. A value of -1
 removes the limit.

 To avoid an out-of-memory error, set the value of
 memory.limit_in_bytes lower than
 memory.memsw.limit_in_bytes, and set
 memory.memsw.limit_in_bytes lower than the
 amount of available swap space.

 memory.max_usage_in_bytes

 Reports the maximum amount of user memory in bytes used by tasks
 in the cgroup.

 memory.memsw.failcnt

 Specifies the number of times that the amount of memory and swap
 space used by a cgroup has risen to
 memory.memsw.limit_in_bytes.

 memory.memsw.limit_in_bytes

 Specifies the maximum usage permitted for user memory plus swap
 space. The default units are bytes, but you can also specify a
 k or K,
 m or M, and
 g or G suffix for
 kilobytes, megabytes, and gigabytes respectively. A value of -1
 removes the limit.

 memory.memsw.max_usage_in_bytes

 Reports the maximum amount of user memory and swap space in
 bytes used by tasks in the cgroup.

 memory.memsw.usage_in_bytes

 Reports the total size in bytes of the memory and swap space
 used by tasks in the cgroup.

 memory.move_charge_at_immigrate

 Specifies whether a task's charges are moved when you migrate the task between cgroups.
 You can specify the following values.
	
 Setting

 	
 Description

	
 0

 	
 Disable moving task charges.

	
 1

 	
 Moves charges for an in-use or swapped-out anonymous page exclusively owned
 by the task.

	
 2

 	
 Moves charges for file pages that are memory mapped by the task.

	
 3

 	
 Equivalent to specifying both 1 and 2.

 memory.numa_stat

 Reports the NUMA memory usage in bytes for each memory node (N0, N1,...) together with
 the following statistics.
	
 Statistic

 	
 Description

	
 anon

 	
 The size in bytes of anonymous and swap cache.

	
 file

 	
 The size in bytes of file-backed memory.

	
 total

 	
 The sum of the anon, file and
 unevictable values.

	
 unevictable

 	
 The size in bytes of unreclaimable memory.

 memory.oom_control

 Displays the values of the out-of-memory (OOM) notification control feature.

	
 Setting

 	
 Description

	
 oom_kill_disable

 	
 Whether the OOM killer is enabled (0) or disabled (1).

	
 under_oom

 	
 Whether the cgroup is under OOM control (1) allowing tasks to be stopped,
 or not under OOM control (0).

 memory.soft_limit_in_bytes

 Specifies a soft, upper limit for user memory including the file
 cache. The default units are bytes, but you can also specify a
 k or K,
 m or M, and
 g or G suffix for
 kilobytes, megabytes, and gigabytes respectively. A value of -1
 removes the limit.

 The soft limit should be lower than the hard-limit value of
 memory.limit_in_bytes as the hard limit
 always takes precedence.

 memory.stat

 Reports the following memory statistics.
	
 Statistic

 	
 Description

	
 active_anon

 	
 The size in bytes of anonymous and swap cache on active least-recently-used
 (LRU) list (includes tmpfs).

	
 active_file

 	
 The size in bytes of file-backed memory on active LRU list.

	
 cache

 	
 The size in bytes of page cache (includes tmpfs).

	
 hierarchical_memory_limit

 	
 The size in bytes of the limit of memory for the cgroup hierarchy.

	
 hierarchical_memsw_limit

 	
 The size in bytes of the limit of memory plus swap for the cgroup
 hierarchy.

	
 inactive_anon

 	
 The size in bytes of anonymous and swap cache on inactive LRU list
 (includes tmpfs).

	
 inactive_file

 	
 The size in bytes of file-backed memory on inactive LRU list.

	
 mapped_file

 	
 The size in bytes of memory-mapped files (includes
 tmpfs).

	
 pgfault

 	
 The number of page faults, where the kernel has to allocate and initialize
 physical memory for use in the virtual address space of a process.

	
 pgmajfault

 	
 The number of major page faults, where the kernel has to actively free
 physical memory before allocation and initialization.

	
 pgpgin

 	
 The number of paged-in pages of memory.

	
 pgpgout

 	
 The number of paged-out pages of memory.

	
 rss

 	
 The size in bytes of anonymous and swap cache (does not include
 tmpfs). The actual resident set size is given by the sum of
 rss and mapped_file.

	
 swap

 	
 The size in bytes of used swap space.

	
 total_*

 	
 The value of the appended statistic for the cgroup and all of its children.

	
 unevictable

 	
 The size in bytes of memory that in not reclaimable.

 memory.swappiness

 Specifies a bias value for the kernel to swap out memory pages
 used by processes in the cgroup rather than reclaim pages from
 the page cache. A value smaller than the default value of 60
 reduces the kernel's preference for swapping out. A value
 greater than 60 increases the preference for swapping out. A
 value greater than 100 allows the system to swap out pages that
 fall within the address space of the cgroup's tasks.

 memory.usage_in_bytes

 Reports the total size in bytes of the memory used by all the
 tasks in the cgroup.

 memory.use_hierarchy

 Specifies whether the kernel should attempt to reclaim memory
 from a cgroup's hierarchy. The default value of 0 prevents
 memory from being reclaimed from other tasks in the hierarchy. A
 value of 1 allows memory to be reclaimed from other tasks in the
 hierarchy.

8.2.8. net_cls Parameter

 The following net_cls parameter is defined:

 net_cls.classid

 Specifies the hexadecimal class identifier that the system uses
 to tag network packets for use with the Linux traffic
 controller.

8.3. Enabling the cgconfig Service

 To enable the cgroup services on a system:
	 Install the libcgroup package.

yum install libcgroup

	 Start the cgconfig service and configure it to start when the
 system is booted.

service cgconfig start
chkconfig cgconfig on

8.4. Enabling PAM to Work with cgroup Rules

 To configure PAM to use the rules that you configure in the
 /etc/cgrules.conf file:
	 Install the libcgroup-pam package.

yum install libcgroup-pam
 The pam_cgroup.so module is installed in
 /lib64/security on 64-bit systems, and in
 /lib/security on 32-bit systems.

	 Edit the /etc/pam.d/su configuration file, and add the following
 line for the pam_cgroup.so module:

session optional pam_cgroup.so

Note
 For a service that has a configuration file in /etc/sysconfig, you
 can add the following line to the start section of the file to start the
 service in a specified cgroup:

CGROUP_DAEMON="*:cgroup

8.5. Restarting the cgconfig Service

 If you make any changes to the cgroups configuration file,
 /etc/cgconfig.conf, restart the cgconfig service to
 make it reread the file.

service cgconfig restart

8.6. About the cgroups Configuration File

 The cgroups configuration file, /etc/cgconfig.conf, contains a mount
 definition and one or more group definitions.
mount Definitions
 A mount definition specifies the virtual file systems that you use to
 mount resource subsystems before you attach them to cgroups. The configuration file can
 contain only one mount definition.
 The mount entry takes the following form:

mount {
 subsystem1 = /cgroup/resource_path1;
 [subsystem2 = /cgroup/resource_path2;]
.
.
.
}
 For example, the following mount definition combines the
 cpu, cpuset, and memory subsystems
 under the /cgroup/cpumem subsystem hierarchy, and also creates entries for
 the blkio and devices subsystems under
 /cgroup/iolimit and /cgroup/devlist. You cannot
 include a subsystem in more than one subsystem hierarchy.

mount {
 cpu = /cgroup/cpumem;
 cpuset = /cgroup/cpumem;
 memory = /cgroup/cpumem;
 blkio = /cgroup/iolimit;
 devices = /cgroup/devlist;
}
group Definitions
 A group definition specifies a cgroup, its access permissions, the
 resource subsystems that it uses, and the parameter values for those subsystems. The
 configuration file can contain more than one group definition.
 A group entry takes the following form:

group cgroup_name {
 [perm {
 task {
 uid = task_user;
 gid = task_group;
 }
 admin {
 uid = admin_user;
 gid = admin_group;
 }
 }]
 subsystem {
 subsystem.parameter1 = value1;
 [subsystem.parameter2 = value2;]
 .
 .
 .
 }
 .
 .
 .
}

 The cgroup_name argument defines the
 name of the cgroup. The task section of the
 optional perm (permissions) section defines the
 user and group combination that can add tasks to the cgroup. The
 admin section defines the user and group
 combination that can modify subsystem parameters and create
 subgroups. Whatever settings exist under perm,
 the root user always has permission to make any
 admin or task change.

 One or more subsystem sections define the parameter settings for
 the cgroup. You can associate only one virtual subsystem hierarchy
 from /cgroup with a cgroup. If a several
 subsystems are grouped in the same hierarchy, you must include
 definitions for all the subsystems. For example, if the
 /cgroup/cpumem hierarchy includes the
 cpu, cpuset, and
 memory subsystems, you must include definitions
 for all of these subsystems.

 For example, the following group definition defines the cgroup
 dbgrp for database processes, allows the oracle user
 to add tasks, and sets various parameters for CPU and memory usage:

group dbgrp {
 perm {
 task {
 uid = oracle;
 gid = dba;
 }
 admin {
 uid = root;
 gid = root;
 }
 }
 cpu {
Reallocate CPU resources once per second
 cpu.rt_period_us="1000000";
Allocate 50% of runtime to tasks in the cgroup
 cpu.rt_runtime_us="500000";
 }
 cpuset {
 cpuset.mems="0";
Allocate CPU cores 4 through 7 to tasks in the cgroup
 cpuset.cpus="4-7";
 }
 memory {
Allocate at most 4 GB of memory to tasks
 memory.limit_in_bytes="4G";
Allocate at most 8 GB of memory plus swap to tasks
 memory.memsw.limit_in_bytes="8G";
Apply a soft limit of 2 GB to tasks
 memory.soft_limit_in_bytes="2G";
 }
}
 You can include comments in the file by preceding them with a #
 character, which must be at the start of a line.

8.7. About the cgroup Rules Configuration File

 The cgroup rules definition file,
 /etc/cgrules.conf, defines the control groups
 to which the kernel should assign processes when they are created.
 Each line of the file consists of a definition in one of the
 following formats.

 Define a cgroup and permitted subsystems for the named user. The
 optional command_name specifies the
 name or full pathname of a command. If you specify the subsystem
 as *, the user can use all subsystems that are
 associated with the cgroup.

user_name[:command_name]
 subsystem_name[,...]
 cgroup_name

 Define a cgroup and subsystems for the named group.

@group_name[:command_name]
 subsystem_name[,...]
 cgroup_name

 Define a cgroup and subsystems for the same user or group as was
 specified on the previous line.

%[:command_name]
 subsystem_name[,...]
 cgroup_name

 Define a cgroup and subsystems for all users.

*[:command_name]
 subsystem_name[,...]
 cgroup_name

 You can include comments in the file by preceding them with a
 # character.

 The following example shows some rule definitions for users and groups:

Assign tasks run by the oracle user to dbgrp
oracle cpu,cpuset,memory dbgrp
Assign tasks run by the guest group to devgrp
except for rm tasks, which are assigned to devgrp/rm
@guest devices devgrp
%:rm devices devgrp/rm

8.8. Displaying and Setting Subsystem Parameters

 To display the value of a subsystem parameter, use the cgget command.
 The following example shows how to display the memory statistics for the cgroup
 hipri.

cgget -r memory.stat hipri
 rss 168132608
 mapped_file 57577472
 .
 .
 .

 You can use the cgset command to change the value of subsystem parameters
 for a cgroup. The next example removes input throttling from the device
 /dev/sda1 for the cgroup iocap1 by setting the value
 of blkio.throttle.read_bps_device to 0.

cgset -r blkio.throttle.read_bps_device="8:1 0" iocap1
 Any change that you make to a parameter is effective only while the
 cgconfig service continues to run. The cgset command
 does not write the new value to the configuration file, /etc/cgconfig.conf.
 You can use the cgsnapshot command to display the current cgroup
 configuration in a form that you can use as the basis for a new
 /etc/cgconfig.conf file.

cgsnapshot -s > current_cgconfig.conf

 For more information, see the cgget(1),
 cgset(1), and cgsnapshot(1)
 manual pages.

8.9. Use Cases for cgroups

 The following sections describe sample /etc/cgconfig.conf entries for
 cgroups that can control the access that processes have to system resources.
8.9.1. Pinning Processes to CPU Cores

 Define two cgroups that can be used to assign tasks to run on different sets of CPU
 cores.

mount {
 cpuset = /cgroup/coregrp;
}

group locores {
 cpuset {
 cpuset.mems="0";
Run tasks on cores 0 through 3
 cpuset.cpus="0-3";
 }
}

group hicores {
 cpuset {
 cpuset.mems="0";
Run tasks on cores 4 through 7
 cpuset.cpus="4-7";
 }
}

8.9.2. Controlling CPU and Memory Usage

 Define two cgroups with different allocations of available CPU time and memory
 resources.

mount {
 cpu = /cgroup/cpumem;
 cpuset = /cgroup/cpumem;
 memory = /cgroup/cpumem;
}

High priority group
group hipri {
 cpu {
Set the relative share of CPU resources equal to 75%
 cpu.shares="750";
 }
 cpuset {
No alternate memory nodes if the system is not NUMA
 cpuset.mems="0";
Make all CPU cores available to tasks
 cpuset.cpus="0-7";
 }
 memory {
Allocate at most 2 GB of memory to tasks
 memory.limit_in_bytes="2G";
Allocate at most 4 GB of memory+swap to tasks
 memory.memsw.limit_in_bytes="4G";
Apply a soft limit of 1 GB to tasks
 memory.soft_limit_in_bytes="1G";
 }
}

Low priority group
group lopri {
 cpu {
Set the relative share of CPU resources equal to 25%
 cpu.shares="250";
 }
 cpuset {
No alternate memory nodes if the system is not NUMA
 cpuset.mems="0";
Make only cores 0 and 1 available to tasks
 cpuset.cpus="0,1";
 }
 memory {
Allocate at most 1 GB of memory to tasks
 memory.limit_in_bytes="1G";
Allocate at most 2 GB of memory+swap to tasks
 memory.memsw.limit_in_bytes="2G";
Apply a soft limit of 512 MB to tasks
 memory.soft_limit_in_bytes="512M";
 }
}

8.9.3. Restricting Access to Devices

Define a cgroup that denies access to the disk devices /dev/sd[bcd].

mount {
 devices = /cgroup/devlist;
}

group blkdev {
 devices {
Deny access to /dev/sdb
 devices.deny="b 8:16 mrw";
Deny access to /dev/sdc
 devices.deny="b 8:32 mrw";
Deny access to /dev/sdd
 devices.deny="b 8:48 mrw";
 }
}

8.9.4. Throttling I/O Bandwidth

Define a cgroup that limits the I/O bandwidth to 50MB/s when reading from
 /dev/sda1.
mount {
 blkio = /cgroup/iolimit;
}

group iocap1 {
 blkio {
Limit reads from /dev/sda1 to 50 MB/s
 blkio.throttle.read_bps_device="8:1 52428800";
 }
}
Define a cgroup that limits the number of read transactions to 100 per second when
 reading from /dev/sdd.
mount {
 blkio = /cgroup/iolimit;
}

group iocap2 {
 blkio {
Limit read tps from /dev/sdd to 100 per second
 blkio.throttle.read_iops_device="8:48 100";
 }
}
Define two cgroups with different shares of I/O access to /dev/sdb .

mount {
 blkio = /cgroup/iolimit;
}

Low access share group
group iolo {
 blkio {
Set the share of I/O access by /dev/sdb to 25%
 blkio.weight_device="8:16 250";
 }
}

High access share group
group iohi {
 blkio {
Set the share of I/O access by /dev/sdb to 75%
 blkio.weight_device="8:16 750";
 }
}

8.10. For More Information About cgroups

 You can find out more information about cgroups at
 http://www.kernel.org/doc/Documentation/cgroups/.

Chapter 9. Linux Containers

Table of Contents
	9.1. About Linux Containers
	9.2. Configuring Operating System Containers
		9.2.1. Installing and Configuring the Software
	9.2.2. Setting up the File System for the Containers
	9.2.3. Creating and Starting a Container
	9.2.4. About the lxc-oracle Template Script
	9.2.5. About Veth and Macvlan
	9.2.6. Modifying a Container to Use Macvlan

	9.3. Logging in to Containers
	9.4. Creating Additional Containers
	9.5. Monitoring and Shutting Down Containers
	9.6. Starting a Command Inside a Running Container
	9.7. Controlling Container Resources
	9.8. Deleting Containers
	9.9. Running Application Containers
	9.10. For More Information About Linux Containers

 This chapter describes how to use Linux Containers (LXC) to isolate applications and
 entire operating system images from the other processes that are running on a host system. The
 version of LXC described here is 0.8.0 or later, which ships with Oracle Linux 6.4 and which
 has some significant enhancements over previous versions.

9.1. About Linux Containers

Note
Prior to UEK R3, LXC was a Technology Preview feature that was made available for testing and
 evaluation purposes, but was not recommended for production systems. LXC is a supported
 feature with UEK R3.

The Linux Containers (LXC) feature is a lightweight virtualization mechanism that does not
 require you to set up a virtual machine on an emulation of physical hardware. The Linux
 Containers feature takes the cgroups resource management facilities as its basis and adds
 POSIX file capabilities to implement process and network isolation. You can run a single
 application within a container (an application container) whose name
 space is isolated from the other processes on the system in a similar manner to a
 chroot jail. However, the main use of Linux Containers is to allow you to
 run a complete copy of the Linux operating system in a container (a system
 container) without the overhead of running a level-2 hypervisor such as
 VirtualBox. In fact, the container is sharing the kernel with the host system, so its
 processes and file system are completely visible from the host. When you are logged into the
 container, you only see its file system and process space. Because the kernel is shared, you
 are limited to the modules and drivers that it has loaded.

 Typical use cases for Linux Containers are:

	Running Oracle Linux 5 and Oracle Linux 6 containers in parallel. Both versions of the
 operating system support the Unbreakable Enterprise Kernel Release 2. You can even run an
 Oracle Linux 5 container on an Oracle Linux 6 system with the UEK R3 kernel, even though
 UEK R3 is not supported for Oracle Linux 5. You can also run an i386 container on an
 x86_64 kernel. However, you cannot run an x86_64 container on an i386 kernel.

	Running applications that are supported only by Oracle Linux 5 in an Oracle Linux 5
 container on an Oracle Linux 6 host. However, incompatibilities might exist in the modules
 and drivers that are available.

	Running many copies of application configurations on the same system. An example
 configuration would be a LAMP stack, which combines Linux, Apache HTTP server, MySQL, and
 Perl, PHP, or Python scripts to provide specialised web services.

	Creating sandbox environments for development and testing.

	Providing user environments whose resources can be tightly controlled, but which do
 not require the hardware resources of full virtualization solutions.

	Creating containers where each container appears to have its own IP address. For
 example you can use the lxc-sshd template script to create isolated
 environments for untrusted users. Each container runs an sshd daemon to
 handle logins. By bridging a container's Virtual Ethernet interface to the host's network
 interface, each container can appear to have its own IP address on a LAN.

 When you use the lxc-start command to start a system container, by
 default the copy of /sbin/init in the container is started to spawn other
 processes in the container's process space. Any system calls or device access are handled by
 the kernel running on the host. If you need to run different kernel versions or different
 operating systems from the host, use a true virtualization solution such as Oracle VM or
 Oracle VM VirtualBox instead of Linux Containers.

 There are a number of configuration steps that you need to perform
 on the file system image for a container so that it can run
 correctly:

	Disable any init scripts that load modules to access hardware
 directly.

	Disable udev and instead create static device nodes in
 /dev for any hardware that needs to be accessible from within the
 container.

	Configure the network interface so that it is bridged to the network interface of the
 host system.

LXC provides a number of template scripts in /usr/share/lxc/templates
 that perform much of the required configuration of system containers for you. However, it is
 likely that you will need to modify the script to allow the container to work correctly as the
 scripts cannot anticipate the idiosyncrasies of your system's configuration. You use the
 lxc-create command to create a system container by invoking a template
 script. For example, the lxc-busybox template script creates a lightweight
 BusyBox system container.
The example system container in this chapter uses the template script for Oracle Linux
 (lxc-oracle). The container is created on a btrfs file system
 (/container) to take advantage of its snapshot feature. A btrfs file
 system allows you to create a subvolume that contains the root file system
 (rootfs) of a container, and to quickly create new containers by cloning
 this subvolume.
You can use control groups to limit the system resources that are available to
 applications such as web servers or databases that are running in the container.
Application containers are not created by using template scripts. Instead, an application
 container mounts all or part of the host's root file system to provide access to the binaries
 and libraries that the application requires. You use the lxc-execute
 command to invoke lxc-init (a cut-down version of
 /sbin/init) in the container. lxc-init mounts any
 required directories such as /proc, /dev/shm, and
 /dev/mqueue, executes the specified application program, and then waits
 for it to finish executing. When the application exits, the container instance ceases to
 exist.

9.2. Configuring Operating System Containers

 The procedures in the following sections describe how to set up Linux Containers that
 contain a copy of the root file system installed from packages in the Public Yum repository.
	Section 9.2.1, “Installing and Configuring the Software”

	Section 9.2.2, “Setting up the File System for the Containers”

	Section 9.2.3, “Creating and Starting a Container”

Note
Throughout the following sections in this chapter, the prompts [root@host
 ~]# and [root@ol6ctr1 ~]# distinguish between commands run by
 root on the host and in the container.
The software functionality described requires that you boot the system with at least the
 Unbreakable Enterprise Kernel Release 2 (2.6.39).

9.2.1. Installing and Configuring the Software

To install and configure the software that is required to run Linux Containers:
	 Use yum to install the btrfs-progs
 package.
[root@host ~]# yum install btrfs-progs

	 Install the lxc packages.

[root@host ~]# yum install lxc
This command installs all of the required packages, such as
 libvirt, libcgroup, and
 lxc-libs. The LXC template scripts are installed in
 /usr/share/lxc/templates.

	Start the Control Groups (cgroups) service, cgconfig, and
 configure the service to start at boot time.

[root@host ~]# service cgconfig start
[root@host ~]# chkconfig cgconfig on
LXC uses the cgroups service to control the system resources that are available to
 containers.

	Start the virtualization management service, libvirtd, and
 configure the service to start at boot time.

[root@host ~]# service libvirtd start
[root@host ~]# chkconfig libvirtd on
LXC uses the virtualization management service to support network bridging for
 containers.

	If you are going to compile applications that require the LXC header files and
 libraries, install the lxc-devel
 package.
[root@host ~]# yum install lxc-devel

9.2.2. Setting up the File System for the Containers

Note
The LXC template scripts assume that containers are created in
 /container. You must edit the script if your system's configuration
 differs from this assumption.

To set up the /container file system:
	 Create a btrfs file system on a suitably sized device such as
 /dev/sdb, and create the /container mount point.

[root@host ~]# mkfs.btrfs /dev/sdb
[root@host ~]# mkdir /container

	 Mount the /container file system.

[root@host ~]# mount /dev/sdb /container

	Add an entry for /container to the
 /etc/fstab file.

/dev/sdb /container btrfs defaults 0 0

For more information, see Chapter 5, The Btrfs File System.

9.2.3. Creating and Starting a Container

Note
The procedure in this section uses the LXC template script for Oracle Linux
 (lxc-oracle), which is located in
 /usr/share/lxc/templates.
An Oracle Linux container requires a minimum of 400 MB of disk space.

To create and start a container:
	Create an Oracle Linux 6 container named ol6ctr1 using the
 lxc-oracle template script.

[root@host ~]# lxc-create -n ol6ctr1 -t oracle -- --release=6.latest

lxc-create: No config file specified, using the default config /etc/lxc/default.conf
Host is OracleServer 6.4
Create configuration file /container/ol6ctr1/config
Downloading release 6.latest for x86_64
 .
 .
 .
 yum-metadata-parser.x86_64 0:1.1.2-16.el6
 zlib.x86_64 0:1.2.3-29.el6

Complete!
The
 lxc-create command runs the template script
 lxc-oracle to create the container in
 /container/ol6ctr1 with the btrfs subvolume
 /container/ol6ctr1/rootfs as its root file system. The command
 then uses yum to install the latest available update of Oracle
 Linux 6 from the Public Yum repository. It also writes the container's configuration
 settings to the file /container/ol6ctr1/config and its
 fstab file to /container/ol6ctr1/fstab. The
 default log file for the container is
 /container/ol6ctr1/ol6ctr1.log.
You can specify the following template options after the --
 option to lxc-create:
	--arch=i386|x86_64
	Specifies the architecture. The default value is the architecture of the
 host.

	--release=major.minor
	Specifies the major release number and minor update number of the Oracle
 release to install. The value of major can be set to
 4, 5, or 6. If you specify latest for
 minor, the latest available release packages for
 the major release are installed. If the host is running Oracle Linux, the
 default release is the same as the release installed on the host. Otherwise, the
 default release is the latest update of Oracle Linux 6.

	--templatefs=rootfs
	Specifies the path to the root file system of an existing system, container,
 or Oracle VM template that you want to copy. Do not specify this option with any
 other template option. See Section 9.4, “Creating Additional Containers”.

	--url=repo_URL
	Specifies a yum repository other than the Public Yum repository. For
 example, you might want to perform the installation from a local yum server. The
 repository file in configured in /etc/yum.repos.d in the
 container's root file system. The default URL is
 http://public-yum.oracle.com.

	If you want to create additional copies of the container in its initial state,
 create a snapshot of the container's root file system, for example:
btrfs subvolume snapshot /container/ol6ctr1/rootfs /container/ol6ctr1/rootfs_snap
See Chapter 5, The Btrfs File System and Section 9.4, “Creating Additional Containers”.

	Start the container ol6ctr1 as a daemon that writes its
 diagnostic output to a log file other than the default log
 file.
[root@host ~]# lxc-start -n ol6ctr1 -d -o /container/ol6ctr1_debug.log -l DEBUG
Note
If you omit the -d option, the container's console opens in
 the current shell.
The following logging levels are available: FATAL,
 CRIT, WARN, ERROR,
 NOTICE, INFO, and DEBUG.
 You can set a logging level for all lxc-* commands.

If you run the ps -ef --forest command on the host system and
 the process tree below the lxc-start process shows that the
 /usr/sbin/sshd and /sbin/mingetty processes
 have started in the container, you can log in to the container from the host. See
 Section 9.3, “Logging in to Containers”.

9.2.4. About the lxc-oracle Template Script

Note
If you amend a template script, you alter the configuration files of all containers that you
 subsequently create from that script. If you amend the config file for
 a container, you alter the configuration of that container and all containers that you
 subsequently clone from it.

The lxc-oracle template script defines system settings and resources
 that are assigned to a running container, including:
	the default passwords for the oracle and root
 users, which are set to oracle and root
 respectively

	the host name (lxc.utsname), which is set to the name of the
 container

	the number of available terminals (lxc.tty), which is set to
 4

	the location of the container's root file system on the host
 (lxc.rootfs)

	the location of the fstab mount configuration file
 (lxc.mount)

	all system capabilities that are not available to the container
 (lxc.cap.drop)

	the local network interface configuration (lxc.network)

	all whitelisted cgroup devices (lxc.cgroup.devices.allow)

The template script sets the virtual network type (lxc.network.type)
 and bridge (lxc.network.link) to veth and
 virbr0. If you want to use a macvlan bridge or Virtual Ethernet Port
 Aggregator that allows external systems to access your container via the network, you must
 modify the container's configuration file. See Section 9.2.5, “About Veth and Macvlan” and Section 9.2.6, “Modifying a Container to Use Macvlan”.
To enhance security, you can uncomment lxc.cap.drop capabilities to
 prevent root in the container from performing certain actions. For
 example, dropping the sys_admin capability prevents
 root from remounting the container's fstab entries
 as writable. However, dropping sys_admin also prevents the container from
 mounting any file system and disables the hostname command. By default,
 the template script drops the following capabilities: mac_admin,
 mac_override, setfcap, setpcap,
 sys_module, sys_nice, sys_pacct,
 sys_rawio, and sys_time.
For more information, see Chapter 8, Control Groups and the
 capabilities(7) and lxc.conf(5) manual pages.
When you create a container, the template script writes the container's configuration
 settings and mount configuration to
 /container/name/config and
 /container/name/fstab, and sets up the
 container's root file system under
 /container/name/rootfs.
Unless you specify to clone an existing root file system, the template script installs the
 following packages under rootfs (by default, from Public Yum at
 http://public-yum.oracle.com):
	
 Package

 	
 Description

	
 chkconfig

 	
 chkconfig utility for maintaining the
 /etc/rc*.d hierarchy.

	
 dhclient

 	
 DHCP client daemon (dhclient) and
 dhclient-script.

	
 initscripts

 	
 /etc/inittab file and /etc/init.d
 scripts.

	
 openssh-server

 	
 Open source SSH server daemon, /usr/sbin/sshd.

	
 oraclelinux-release

 	
 Oracle Linux 6 release and information files.

	
 passwd

 	
 passwd utility for setting or changing passwords using
 PAM.

	
 policycoreutils

 	
 SELinux policy core utilities.

	
 rootfiles

 	
 Basic files required by the root user.

	
 rsyslog

 	
 Enhanced system logging and kernel message trapping daemons.

	
 vim-minimal

 	
 Minimal version of the VIM editor.

	
 yum

 	
 yum utility for installing, updating and managing RPM
 packages.

The template script edits the system configuration files under rootfs
 to set up networking in the container and to disable unnecessary services including volume
 management (LVM), device management (udev), the hardware clock,
 readahead, and the Plymouth boot system.

9.2.5. About Veth and Macvlan

By default, the lxc-oracle template script sets up networking by
 setting up a veth bridge. In this mode, a container obtains its IP address from the
 dnsmasq server that libvirtd runs on the private
 virtual bridge network (virbr0) between the container and the host. The
 host allows a container to connect to the rest of the network by using NAT rules in
 iptables, but these rules do not allow incoming connections to the
 container. Both the host and other containers on the veth bridge have network access to the
 container via the bridge.

 Figure 9.1 illustrates a host system with
 two containers that are connected via the veth bridge virbr0.

Figure 9.1. Network Configuration of Containers Using a Veth Bridge
[image: The diagram illustrates a host system with two containers that are connected via the veth bridge virbr0. The host uses NAT rules to allow the containers to connect to the rest of the network via eth0, but these rules do not allow incoming connections to the container.]

If you want to allow network connections from outside the host to be able to connect to
 the container, the container needs to have an IP address on the same network as the host.
 One way to achieve this configuration is to use a macvlan bridge to create an independent
 logical network for the container. This network is effectively an extension of the local
 network that is connected the host's network interface. External systems can access the
 container as though it were an independent system on the network, and the container has
 network access to other containers that are configured on the bridge and to external
 systems. The container can also obtain its IP address from an external DHCP server on your
 local network. However, unlike a veth bridge, the host system does not have network access
 to the container.

 Figure 9.2 illustrates a host system
 with two containers that are connected via a macvlan bridge.

Figure 9.2. Network Configuration of Containers Using a Macvlan Bridge
[image: The diagram illustrates a host system with two containers that are connected via a macvlan bridge, which is effectively an extension of the network that is connected via eth0.]

If you do not want containers to be able to see each other on the network, you can
 configure the Virtual Ethernet Port Aggregator (VEPA) mode of macvlan. Figure 9.3 illustrates a host system with
 two containers that are separately connected to a network by a macvlan VEPA. In effect, each
 container is connected directly to the network, but neither container can access the other
 container nor the host via the network.

Figure 9.3. Network Configuration of Containers Using a Macvlan VEPA
[image: The diagram illustrates a host system with two containers that are separately connected by a macvlan VEPA to the network.]

For information about configuring macvlan, see Section 9.2.6, “Modifying a Container to Use Macvlan” and the
 lxc.conf(5) manual page.

9.2.6. Modifying a Container to Use Macvlan

To modify a container so that it uses the bridge or VEPA mode of macvlan, edit
 /container/name/config and replace the
 following lines:
lxc.network.type = veth
lxc.network.flags = up
lxc.network.link = virbr0
with these lines for bridge mode:
lxc.network.type = macvlan
lxc.network.macvlan.mode = bridge
lxc.network.flags = up
lxc.network.link = eth0
or these lines for VEPA mode:
lxc.network.type = macvlan
lxc.network.macvlan.mode = vepa
lxc.network.flags = up
lxc.network.link = eth0
In these sample configurations, the setting for
 lxc.network.link assumes that you want the container's network
 interface to be visible on the network that is accessible via the host's
 eth0 interface.
9.2.6.1. Modifying a Container to Use a Static IP Address

By default, a container connected by macvlan relies on the DHCP server on your
 local network to obtain its IP address. If you want the container to act as a server, you
 would usually configure it with a static IP address. You can configure DHCP to serve a
 static IP address for a container or you can define the address in the container's
 config file.
To configure a static IP address that a container does not obtain using DHCP:
	Edit /container/name/rootfs/etc/sysconfig/network-scripts/ifcfg-iface,
 where iface is the name of the network interface, and
 change the following line:
BOOTPROTO=dhcp
to read:
BOOTPROTO=none

	Add the following line to
 /container/name/config:
lxc.network.ipv4 = xxx.xxx.xxx.xxx/prefix_length
where
 xxx.xxx.xxx.xxx/prefix_length
 is the IP address of the container in CIDR format, for example:
 192.168.56.100/24.
Note
The address must not already be in use on the network or potentially be
 assignable by a DHCP server to another system.
You might also need to configure the firewall on the host to allow access to a
 network service that is provided by a container.

9.3. Logging in to Containers

 You can use the lxc-console command to log in to a running container.

[root@host ~]# lxc-console -n name [-t tty_number]
 If you do not specify a tty number, you log in to the first available terminal.
 For example, log in to a terminal on
 ol6ctr1:
[root@host ~]# lxc-console -n ol6ctr1
To exit an lxc-console session, type Ctrl-A followed
 by Q.
Alternatively, you can use ssh to log in to a container if you install
 the lxc-0.9.0-2.0.5 package (or later version of this package).
Note
To be able to log in using lxc-console, the container must be running
 an /sbin/mingetty process for the terminal. Similarly, using
 ssh requires that the container is running the SSH daemon
 (/usr/sbin/sshd).

9.4. Creating Additional Containers

To clone an existing container, use the lxc-clone command, as shown in
 this example:
[root@host ~]# lxc-clone -o ol6ctr1 -n ol6ctr2
Alternatively, you can use the lxc-create command to create a container
 by copying the root file system from an existing system, container, or Oracle VM template.
 Specify the path of the root file system as the argument to the
 --templatefs template option:

[root@host ~]# lxc-create -n ol6ctr3 -t oracle -- --templatefs=/container/ol6ctr1/rootfs_snap
This example copies the new container's rootfs from a snapshot of the
 rootfs that belongs to container ol6ctr1. The
 additional container is created in /container/ol6ctr3 and a new
 rootfs snapshot is created in
 /container/ol6ctr3/rootfs.
Note
To change the host name of the container, edit the HOSTNAME settings in
 /container/name/rootfs/etc/sysconfig/network
 and
 /container/name/rootfs/etc/sysconfig/network-scripts/ifcfg-iface,
 where iface is the name of the network interface, such as
 eth0.

9.5. Monitoring and Shutting Down Containers

To display the containers that are configured, use the lxc-ls command
 on the host.
[root@host ~]# lxc-ls
ol6ctr1
ol6ctr2
To display
 the containers that are running on the host system, specify the --active
 option.
[root@host ~]# lxc-ls --active
ol6ctr1
 To display the state of a container, use the lxc-info command on the
 host.

[root@host ~]# lxc-info -n ol6ctr1
state: RUNNING
pid: 10171
A container can be in one of the following states: ABORTING,
 RUNNING, STARTING, STOPPED, or
 STOPPING. Although lxc-info might show your container
 to be in the RUNNING state, you cannot log in to it unless the
 /usr/sbin/sshd or /sbin/mingetty processes have
 started running in the container. You must allow time for the /sbin/init
 process in the container to first start networking and the various other services that you
 have configured.
To view the state of the processes in the container from the host, either run ps
 -ef --forest and look for the process tree below the lxc-start
 process or use the lxc-attach command to run the ps
 command in the
 container.
[root@host ~]# ps -ef --forest
UID PID PPID C STIME TTY TIME CMD
...
root 3171 1 0 09:57 ? 00:00:00 lxc-start -n ol6ctr1 -d
root 3182 3171 0 09:57 ? 00:00:00 _ /sbin/init
root 3441 3182 0 09:57 ? 00:00:00 _ /sbin/dhclient -H ol6ctr1 ...
root 3464 3182 0 09:57 ? 00:00:00 _ /sbin/rsyslogd ...
root 3493 3182 0 09:57 ? 00:00:00 _ /usr/sbin/sshd
root 3500 3182 0 09:57 pts/5 00:00:00 _ /sbin/mingetty ... /dev/console
root 3504 3182 0 09:57 pts/1 00:00:00 _ /sbin/mingetty ... /dev/tty1
root 3506 3182 0 09:57 pts/2 00:00:00 _ /sbin/mingetty ... /dev/tty2
root 3508 3182 0 09:57 pts/3 00:00:00 _ /sbin/mingetty ... /dev/tty3
root 3510 3182 0 09:57 pts/4 00:00:00 _ /sbin/mingetty ... /dev/tty4
...
[root@host ~]# lxc-attach -n ol6ctr1 -- /bin/ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 19284 1516 ? Ss 04:57 0:00 /sbin/init
root 202 0.0 0.0 9172 588 ? Ss 04:57 0:00 /sbin/dhclient
root 225 0.0 0.1 245096 1332 ? Ssl 04:57 0:00 /sbin/rsyslogd
root 252 0.0 0.1 66660 1192 ? Ss 04:57 0:00 /usr/sbin/sshd
root 259 0.0 0.0 4116 568 lxc/console Ss+ 04:57 0:00 /sbin/mingett
root 263 0.0 0.0 4116 572 lxc/tty1 Ss+ 04:57 0:00 /sbin/mingetty
root 265 0.0 0.0 4116 568 lxc/tty2 Ss+ 04:57 0:00 /sbin/mingetty
root 267 0.0 0.0 4116 572 lxc/tty3 Ss+ 04:57 0:00 /sbin/mingetty
root 269 0.0 0.0 4116 568 lxc/tty4 Ss+ 04:57 0:00 /sbin/mingetty
root 283 0.0 0.1 110240 1144 ? R+ 04:59 0:00 /bin/ps aux
Tip
If a container appears not to be starting correctly, examining its process tree from the host
 will often reveal where the problem might lie.

If you were logged into the container, the output from the ps -ef
 command would look similar to the
 following.
[root@ol6ctr1 ~]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 07:58 ? 00:00:00 /sbin/init
root 183 1 0 07:58 ? 00:00:00 /sbin/dhclient -H ol6ctr1 ...
root 206 1 0 07:58 ? 00:00:00 /sbin/rsyslogd -i ...
root 247 1 0 07:58 ? 00:00:00 /usr/sbin/sshd
root 254 1 0 07:58 lxc/console 00:00:00 /sbin/mingetty /dev/console
root 258 1 0 07:58 ? 00:00:00 login -- root
root 260 1 0 07:58 lxc/tty2 00:00:00 /sbin/mingetty /dev/tty2
root 262 1 0 07:58 lxc/tty3 00:00:00 /sbin/mingetty /dev/tty3
root 264 1 0 07:58 lxc/tty4 00:00:00 /sbin/mingetty /dev/tty4
root 268 258 0 08:04 lxc/tty1 00:00:00 -bash
root 279 268 0 08:04 lxc/tty1 00:00:00 ps -ef

 Note that the process numbers differ from those of the same processes on the host, and that
 they all descend from the process 1, /sbin/init, in the container.
To suspend or resume the execution of a container, use the lxc-freeze
 and lxc-unfreeze commands on the host.

[root@host ~]# lxc-freeze -n ol6ctr1
[root@host ~]# lxc-unfreeze -n ol6ctr1
From the host, you can use the lxc-shutdown command to shut down the
 container in an orderly manner.
[root@host ~]# lxc-shutdown -n ol6ctr1
Alternatively, you can run a command such as halt or init
 0 while logged in to the container.

[root@ol6ctr1 ~]# halt

Broadcast message from root@ol6ctr1
	(/dev/tty2) at 22:52 ...

The system is going down for halt NOW!
lxc-console: Input/output error - failed to read

[root@host ~]#
As shown in the example, you are returned to the shell prompt on the host.
To shut down a container by terminating its processes immediately, use the
 lxc-stop command on the host.

[root@host ~]# lxc-stop -n ol6ctr1
If you are debugging the operation of a container, using lxc-stop is
 the quickest method as you would usually destroy the container and create a new version after
 modifying the template script.
To monitor the state of a container, use the lxc-monitor command.

[root@host ~]# lxc-monitor -n ol6ctr1
'ol6ctr1' changed state to [STARTING]
'ol6ctr1' changed state to [RUNNING]
'ol6ctr1' changed state to [STOPPING]
'ol6ctr1' changed state to [STOPPED]
 To wait for a container to change to a specified state, use the
 lxc-wait command.

lxc-wait -n $CTR -s ABORTING && lxc-wait -n $CTR -s STOPPED && \
 echo "Container $CTR terminated with an error."

9.6. Starting a Command Inside a Running Container

Note
The lxc-attach command is supported by UEK R3 with the
 lxc-0.9.0-2.0.4 package or later.

You can use lxc-attach to execute an arbitrary command inside a
 container that is already running from outside the container, for example:
[root@host ~]# lxc-attach -n ol6ctr1 -- ps aux
For more information, see the lxc-attach(1) manual page.

9.7. Controlling Container Resources

Linux containers use cgroups in their implementation, and you can use the
 lxc-cgroup command to control the access that a container has to system
 resources relative to other containers. For example, to display the CPU cores to which a
 container can run on, enter:

[root@host ~]# lxc-cgroup -n ol6ctr1 cpuset.cpus
0-7
To restrict a container to cores 0 and 1, you would enter a command such as the following:

[root@host ~]# lxc-cgroup -n ol6ctr1 cpuset.cpus 0,1
To change a container's share of CPU time and block I/O access, you would enter:

[root@host ~]# lxc-cgroup -n ol6ctr2 cpu.shares 256
[root@host ~]# lxc-cgroup -n ol6ctr2 blkio.weight 500
Limit a container to 256 MB of memory when the system detects memory contention or low
 memory; otherwise, set a hard limit of 512 MB:
[root@host ~]# lxc-cgroup -n ol6ctr2 memory.soft_limit_in_bytes 268435456
[root@host ~]# lxc-cgroup -n ol6ctr2 memory.limit_in_bytes 53687091
To make the changes to a container's configuration permanent, add the settings to the file
 /container/name/config, for example:

Permanently tweaked resource settings
lxc.cgroup.cpu.shares=256
lxc.cgroup.blkio.weight=500
For more information, see Chapter 8, Control Groups.

9.8. Deleting Containers

 To delete a container and its snapshot, use the lxc-destroy command as
 shown in the following example.

[root@host ~]# lxc-destroy -n ol6ctr2
Delete subvolume '/container/ol6ctr2/rootfs'
This command also deletes the rootfs subvolume.

9.9. Running Application Containers

You can use the lxc-execute command to create a temporary application
 container in which you can run a command that is effectively isolated from the rest of the
 system. For example, the following command creates an application container named
 guest that runs sleep for 100 seconds.
[root@host ~]# lxc-execute -n guest -- sleep 100
While the container is active, you can monitor it by running commands such as
 lxc-ls --active and lxc-info -n guest from another
 window.
[root@host ~]# lxc-ls --active
guest
[root@host ~]# lxc-info -n guest
state: RUNNING
pid: 7021
If you need to customize an application container, you can use a configuration file. For
 example, you might want to change the container's network configuration or the system
 directories that it mounts.
The following example shows settings from a sample configuration file where the
 rootfs is mostly not shared except for mount entries to ensure that
 lxc-init and certain library and binary directory paths are
 available.
lxc.utsname = guest
lxc.tty = 1
lxc.pts = 1
lxc.rootfs = /tmp/guest/rootfs
lxc.mount.entry=/lib /tmp/guest/rootfs/lib none ro,bind 0 0
lxc.mount.entry=/usr/libexec /tmp/guest/rootfs/usr/lib none ro,bind 0 0
lxc.mount.entry=/lib64 /tmp/guest/rootfs/lib64 none ro,bind 0 0
lxc.mount.entry=/usr/lib64 /tmp/guest/rootfs/usr/lib64 none ro,bind 0 0
lxc.mount.entry=/bin /tmp/guest/rootfs/bin none ro,bind 0 0
lxc.mount.entry=/usr/bin /tmp/guest/rootfs/usr/bin none ro,bind 0 0
lxc.cgroup.cpuset.cpus=1
The mount entry for /usr/libexec is required so that the container can
 access /usr/libexec/lxc/lxc-init on the host system.
The example configuration file mounts both /bin and
 /usr/bin. In practice, you should limit the host system directories that
 an application container mounts to only those directories that the container needs to run the
 application.
Note
To avoid potential conflict with system containers, do not use the
 /container directory for application containers.

You must also configure the required directories under the rootfs
 directory:
[root@host ~]# TMPDIR=/tmp/guest/rootfs
[root@host ~]# mkdir -p $TMPDIR/lib $TMPDIR/usr/lib $TMPDIR/lib64 $TMPDIR/usr/lib64 \
$TMPDIR/bin $TMPDIR/usr/bin $TMPDIR/dev/pts $TMPDIR/dev/shm $TMPDIR/proc
In this example, the directories include /dev/pts,
 /dev/shm, and /proc in addition to the mount point
 entries defined in the configuration file.
You can then use the -f option to specify the configuration file
 (config) to lxc-execute:
[root@host ~]# lxc-execute -n guest -f config -- ps -ef
UID PID PPID C STIME TTY TIME CMD
0 1 0 0 08:56 ? 00:00:00 /usr/lib/lxc/lxc-init -- ps -ef
0 2 1 0 08:56 ? 00:00:00 ps -ef
This example shows that the ps command runs as a child of
 lxc-init.
As for system containers, you can set cgroup entries in the
 configuration file and use the lxc-cgroup command to control the system
 resources to which an application container has access.
Note
lxc-execute is intended to run application containers that share the host's
 root file system, and not to run system containers that you create using
 lxc-create. Use lxc-start to run system
 containers.

For more information, see the lxc-execute(1) and
 lxc.conf(5) manual pages.

9.10. For More Information About Linux Containers

 For more information, see https://wiki.archlinux.org/index.php/Linux_Containers and the LXC manual pages.

Chapter 10. HugePages

Table of Contents
	10.1. About HugePages
	10.2. Configuring HugePages for Oracle Database
	10.3. For More Information About HugePages

 This chapter describes how to set up the HugePages feature on a
 system that is running several Oracle Database instances.

10.1. About HugePages

 The HugePages feature enables the Linux kernel to manage large
 pages of memory in addition to the standard 4KB (on x86 and
 x86_64) or 16KB (on IA64) page size. If you have a system with
 more than 16GB of memory running Oracle databases with a total
 System Global Area (SGA) larger than 8GB, you should enable the
 HugePages feature to improve database performance.

Note

 The Automatic Memory Management (AMM) and HugePages features are
 not compatible in Oracle Database 11g and later. You must
 disable AMM to be able to use HugePages.

 The memory allocated to huge pages is pinned to primary storage,
 and is never paged nor swapped to secondary storage. You reserve
 memory for huge pages during system startup, and this memory
 remains allocated until you change the configuration.

 In a virtual memory system, the tables store the mappings between
 virtual addresses and physical addresses. When the system needs to
 access a virtual memory location, it uses the page tables to
 translate the virtual address to a physical address. Using huge
 pages means that the system needs to load fewer such mappings into
 the Translation Lookaside Buffer (TLB), which is the cache of page
 tables on a CPU that speeds up the translation of virtual
 addresses to physical addresses. Enabling the HugePages feature
 allows the kernel to use hugetlb entries in the
 TLB that point to huge pages. The hugetbl
 entries mean that the TLB entries can cover a larger address
 space, requiring many fewer entries to map the SGA, and releasing
 entries that can map other portions of the address space.

 With HugePages enabled, the system uses fewer page tables,
 reducing the overhead for maintaining and accessing them. Huges
 pages remain pinned in memory and are not replaced, so the kernel
 swap daemon has no work to do in managing them, and the kernel
 does not need to perform page table lookups for them. The smaller
 number of pages reduces the overhead involved in performing memory
 operations, and also reduces the likelihood of a bottleneck when
 accessing page tables.

 Huge pages are 4MB in size on x86, 2MB on x86_64, and 256MB on
 IA64.

10.2. Configuring HugePages for Oracle Database

 The steps in this section are for configuring HugePages on a
 64-bit Oracle Linux system running one or more Oracle Database
 instances.

 To configure HugePages:

	
 Verify that the soft and
 hard values in kilobytes of
 memlock that are configured in
 /etc/security/limits.conf are slightly
 smaller than the amount of installed memory. For example, if
 the system has 64GB of RAM, the values shown here would be
 appropriate:

soft memlock 60397977
hard memlock 60397977

	 Log in as the Oracle account owner (usually oracle) and use the
 following command to verify the value of memlock:

$ ulimit -l
60397977

	
 If your system is running Oracle Database 11g or later,
 disable AMM by setting the values of both of the
 initialization parameters memory_target and
 memory_max_target to 0.

 If you start the Oracle Database instances with a server parameter file, which is the
 default if you created the database with the Database Configuration Assistant (DBCA),
 enter the following commands at the SQL prompt:

SQL> alter system set memory_target=0;
System altered.
SQL> alter system set memory_max_target=0;
System altered.

 If you start the Oracle Database instances with a text
 initialization parameter file, manually edit the file so that
 it contains the following entries:

memory_target = 0
memory_max_target = 0

	
 Verify that all the Oracle Database instances are running
 (including any Automatic Storage Management (ASM) instances)
 as they would run on the production system.

	
 Create the file hugepages_settings.sh with
 the following content (taken from the My Oracle Support (MOS)
 note 401749.1).

#!/bin/bash
#
hugepages_settings.sh
#
Linux bash script to compute values for the
recommended HugePages/HugeTLB configuration
#
Note: This script does calculation for all shared memory
segments available when the script is run, no matter it
is an Oracle RDBMS shared memory segment or not.
Check for the kernel version
KERN=`uname -r | awk -F. '{ printf("%d.%d\n",$1,$2); }'`
Find out the HugePage size
HPG_SZ=`grep Hugepagesize /proc/meminfo | awk {'print $2'}`
Start from 1 pages to be on the safe side and guarantee 1 free HugePage
NUM_PG=1
Cumulative number of pages required to handle the running shared memory segments
for SEG_BYTES in `ipcs -m | awk {'print $5'} | grep "[0-9][0-9]*"`
do
 MIN_PG=`echo "$SEG_BYTES/($HPG_SZ*1024)" | bc -q`
 if [$MIN_PG -gt 0]; then
 NUM_PG=`echo "NUM_PG+MIN_PG+1" | bc -q`
 fi
done
Finish with results
case $KERN in
 '2.4') HUGETLB_POOL=`echo "NUM_PG*HPG_SZ/1024" | bc -q`;
 echo "Recommended setting: vm.hugetlb_pool = $HUGETLB_POOL" ;;
 '2.6') echo "Recommended setting: vm.nr_hugepages = $NUM_PG" ;;
 *) echo "Unrecognized kernel version $KERN. Exiting." ;;
esac
End

	 Make the file executable, and run it to calculate the recommended value for the
 vm.nr_hugepages kernel parameter.

$ chmod u+x ./hugepages_setting.sh
$./hugepages_settings.sh
.
.
.
Recommended setting: vm.nr_hugepages = 22960

	
 As root, edit the file
 /etc/sysctl.conf and set the value of the
 vm.nr_hugepages parameter to the
 recommended value.

vm.nr_hugepages = 22960

	
 Stop all the database instances and reboot the system.

 After rebooting the system, verify that the database instances (including any ASM
 instances) have started, and use the following command to display the state of the huge pages.

grep ^Huge /proc/meminfo
HugePages_Total: 22960
HugePages_Free: 2056
HugePages_Rsvd: 2016
HugePages_Surp: 0
Hugepagesize: 2048 kB

 The value of HugePages_Free should be smaller
 than that of HugePages_Total, and the value of
 HugePages_Rsvd should be greater than zero. As
 the database instances allocate pages dynamically and proactively
 as required, the sum of the Hugepages_Free and
 HugePages_Rsvd values is likely to be smaller
 than the total SGA size.

 If you subsequenty change the amount of system memory, add or
 remove any database instances, or change the size of the SGA for a
 database instance, use hugepages_settings.sh to
 recalculate the value of vm.nr_hugepages,
 readjust the setting in /etc/sysctl.conf, and
 reboot the system.

10.3. For More Information About HugePages

 For more information about using HugePages with Oracle Database,
 see
 http://docs.oracle.com/cd/E11882_01/server.112/e10839/appi_vlm.htm#CACDCGAH.

Chapter 11. Using kexec for Fast Rebooting

Table of Contents
	11.1. About kexec
	11.2. Setting up Fast Reboots of the Current Kernel
	11.3. Controlling Fast Reboots
	11.4. For More Information About kexec

 This chapter describes how to configure the kexec to enable fast rebooting
 of a system.

11.1. About kexec

 kexec is a fast-boot mechanism that allows a kernel to boot from inside the
 context of a kernel that is already running without initializing the BIOS or firmware,
 performing memory and device discovery, or passing through the boot-loader stage.
When you reboot a system, the init process goes to run-level 6 and runs
 the /etc/init.d/halt script. If you have configured
 kexec on the system, the script will execute the kexec -e command,
 and cause the system to bypass the standard boot sequence.
The total amount of time saved when rebooting is highly dependent on your server, and can
 range from several tens of seconds to several minutes.
Caution
As fast reboots bypass device initialization, some devices might fail to work correctly, or a
 device driver might malfunction if it sees a device in an unexpected state. Before enabling
 this feature on your systems, test it to ensure that the hardware devices and their drivers
 continue to behave correctly across fast reboots.

11.2. Setting up Fast Reboots of the Current Kernel

 To set up your system so that you can enable fast reboots of the current kernel:
	Create the file /etc/init.d/runkexec with the following
 contents:
#!/bin/sh
#
runkexec
#
BEGIN INIT INFO
Provides: runkexec
Required-Start:
Required-Stop:
Default-Stop:
Description: Enable or disable fast system rebooting
Short-Description: enable or disable fast system rebooting
END INIT INFO

KV=`uname -r`

case "$1" in
 start|restart|load|reload)
 kexec -l --append="`cat /proc/cmdline`" --initrd=/boot/initramfs-${KV}.img \
 /boot/vmlinuz-${KV}
 ;;
 stop|unload)
 kexec -u && echo "Target kexec kernel unloaded."
 ;;
 status)
 echo "Status not available for kexec."
 ;;
 *)
 echo "Usage: runkexec {start|restart|load|reload|stop|unload|status}"
 exit 2
esac
exit 0

	Set the ownership and mode of the
 file.
chown root:root /etc/init.d/runkexec
chmod 755 /etc/init.d/runkexec

	Create the symbolic link S00kexec to the file from the
 /etc/rc1.d
 directory.
ln -s /etc/init.d/runkexec /etc/rc1.d/S00kexec

	To enable fast reboots without needing to reboot the system,
 enter:
service runkexec start

11.3. Controlling Fast Reboots

Once you have enabled fast reboots, running reboot will cause the
 system to shut down all services and then directly execute the kernel image.
If you want to execute the new kernel immediately without shutting down any services, use
 the following
 commands.
sync; umount -a; kexec -e
To re-enable fast reboots of the current kernel at any time,
 enter:
service runkexec restart
Alternatively, specify a different kernel that you want the system to reboot into by
 entering the following
 command:
kexec -l --append="kernel_options" --initrd=initial_ramdisk_image kernel_path
where kernel_options are the options that you want to specify
 to the kernel, and initial_ramdisk_image and
 kernel_path are the paths to the initial ramdisk image and the
 kernel that you want to use.
To unload a target kernel,
 enter:
service runkexec stop
Alternatively,
 you can
 enter:
kexec -u

11.4. For More Information About kexec

 For more information, see the kexec(8) manual page.

Chapter 12. DTrace

Table of Contents
	12.1. About DTrace
	12.2. Installing and Configuring DTrace
		12.2.1. Changing the Mode of the DTrace Helper Device
	12.2.2. Loading DTrace Kernel Modules

	12.3. Differences Between DTrace on Oracle Linux and Oracle Solaris
	12.4. Calling DTrace from the Command Line
	12.5. About Programming for DTrace
	12.6. Introducing the D Programming Language
		12.6.1. Probe Clauses
	12.6.2. Pragmas
	12.6.3. Global Variables
	12.6.4. Predicates
	12.6.5. Scalar Arrays and Associative Arrays
	12.6.6. Pointers and External Variables
	12.6.7. Address Spaces
	12.6.8. Thread-local Variables
	12.6.9. Speculations
	12.6.10. Aggregations

	12.7. DTrace Command Examples
	12.8. Tracing User-Space Applications
		12.8.1. Examining the Stack Trace of a User-Space Application

	12.9. For More Information About DTrace

 This chapter introduces the dynamic tracing (DTrace) facility that you can use to examine
 the behavior of the operating system and the operating system kernel. Version 0.4 of DTrace is
 described, which is supported for use with UEK R3.

12.1. About DTrace

 DTrace is a comprehensive dynamic tracing facility that was first developed for the
 Oracle Solaris operating system, and subsequently ported to Oracle Linux. DTrace allows you to
 explore your system to understand how it works, to track down performance problems across many
 layers of software, or to locate the causes of aberrant behavior.

 Using DTrace, you can record data at locations of interest in the
 kernel, called probes. A probe is a location
 to which DTrace can bind a request to perform a set of actions,
 such as recording a stack trace, a timestamp, or the argument to a
 function. Probes function like programmable sensors that record
 information. When a probe is triggered, DTrace gathers data from
 it and reports the data back to you.

 Using DTrace's D programming language, you can query the system probes to provide
 immediate, concise answers to arbitrary questions that you formulate.

12.2. Installing and Configuring DTrace

Note
The DTrace dtrace-utils package is available from ULN. Your system
 must be registered with ULN and be installed with or be updated to Oracle Linux 6 Update 4
 or later.

 To install and configure DTrace, perform the following steps:
	On ULN, subscribe your system to the following channels:
	Oracle Linux 6 Latest (x86_64) (ol6_x86_64_latest)

	Unbreakable Enterprise Kernel Release 3 for Oracle Linux 6 (x86_64) - Latest
 (ol6_x86_64_UEKR3_latest)

	Oracle Linux 6 Dtrace Userspace Tools (x86_64) - Latest
 (ol6_x86_64_Dtrace_userspace_latest)

Make sure that your system is not subscribed to the following
 channels:
	Latest Unbreakable Enterprise Kernel for Oracle Linux 6 (x86_64)
 (ol6_x86_64_UEK_latest)

	Dtrace for Oracle Linux 6 (x86_64) - Latest
 (ol6_x86_64_Dtrace_latest)

	Dtrace for Oracle Linux 6 (x86_64) - Beta release
 (ol6_x86_64_Dtrace_BETA)

	Unbreakable Enterprise Kernel Release 3 (3.8 based) for Oracle Linux 6 (x86_64)
 - Beta release (ol6_x86_64_UEK_BETA)

These channels are applicable to UEK R2, DTrace for UEK R2, the beta release of
 DTrace for UEK R2, and the beta release of UEK R3.

	If your system is not already running the latest version of the Unbreakable
 Enterprise Kernel Release 3 (UEK R3):
	Use yum to update your system to use UEK
 R3:
yum update

	Reboot the system, selecting the Oracle Linux Server (3.8.13) kernel in the GRUB
 menu if it is not the default kernel.

	Use yum to install the DTrace utilities package:
yum install dtrace-utils

If you subsequently use yum update to install a new kernel,
 yum does not automatically install the matching
 dtrace-modules package that the kernel requires. If the appropriate
 dtrace-modules package for the running kernel is not present on the
 system, the dtrace command downloads and installs the package from ULN. To
 invoke this action without performing a trace, use a command such as the following:
dtrace -l
Alternatively, run the following command to install the DTrace module that is appropriate
 to the running kernel:
yum install dtrace-modules-`uname -r`
If you want to implement a libdtrace consumer or develop a DTrace
 provider, use yum to install the dtrace-utils-devel or
 dtrace-modules-provider-headers package respectively.
To be able to trace user-space processes that are run by users other than
 root, change the mode of the DTrace helper device as described in Section 12.2.1, “Changing the Mode of the DTrace Helper Device”.
 You can find files that contain the latest information about the implementation of DTrace
 in /usr/share/doc/dtrace-DTrace_version.
12.2.1. Changing the Mode of the DTrace Helper Device

The DTrace helper device (/dev/dtrace/helper) allows a user-space
 application that contains DTrace probes to send probe provider information to DTrace.
To trace user-space processes that are run by users other than root,
 you must change the mode of the DTrace helper device to allow the user to record tracing
 information, for example:
chmod 666 /dev/dtrace/helper
Alternatively, if the acl package is installed on your system, you can
 use an ACL rule to limit access to a specific user, for example:
setfacl -m u:guest:rw /dev/dtrace/helper
Note
You must change the mode on the device before the user runs the program.

You can create a udev rules file such as
 /etc/udev/rules.d/10-dtrace.rules to change the permissions on the device
 file when the system starts.
To change the mode of the device file, the udev rules file should contain the following
 line:
kernel=="dtrace/helper", MODE="0666"
To change the ACL settings for the device file, use a line such as the following in the
 udev rules file:
kernel=="dtrace/helper", RUN="/usr/bin/setfacl -m u:guest:rw /dev/dtrace/helper"
To apply the udev rule without needing to restart the system, run the
 start_udev command.

12.2.2. Loading DTrace Kernel Modules

Use the modprobe command to load the modules that support the DTrace
 probes that you want to use. For example, if you wanted to use the probes that the
 proc provider publishes, you would load the sdt
 module.
modprobe sdt
Note
The fasttrap, profile, sdt, and
 systrace modules automatically load the dtrace
 module, and the dtrace module automatically loads the
 ctf module.

To list the probes that a specific provider publishes, use the following
 command:
dtrace -l -P provider
To
 verify that a probe is
 available:
dtrace -l -n probe_name
To display the probes that are available for a specific module:

dtrace -l -m module_name

For example, display the probes that are provided by the libphp5.so and
 mysqld modules for DTrace-enabled PHP and MySQL:
dtrace -l -m libphp5.so -m mysqld
 ID PROVIDER MODULE FUNCTION NAME
 4 php3566 libphp5.so dtrace_compile_file compile-file-entry
 5 php3566 libphp5.so dtrace_compile_file compile-file-return
 6 php3566 libphp5.so zend_error error
 7 php3566 libphp5.so ZEND_CATCH_SPEC_CONST_CV_HANDLER exception-caught
 8 php3566 libphp5.so zend_throw_exception_internal exception-thrown
 9 php3566 libphp5.so dtrace_execute_ex execute-entry
 10 php3566 libphp5.so dtrace_execute_internal execute-entry
 11 php3566 libphp5.so dtrace_execute_ex execute-return
 12 php3566 libphp5.so dtrace_execute_internal execute-return
 13 php3566 libphp5.so dtrace_execute_ex function-entry
 14 php3566 libphp5.so dtrace_execute_ex function-return
 15 php3566 libphp5.so php_request_shutdown request-shutdown
 16 php3566 libphp5.so php_request_startup request-startup
...
 121 mysql3684 mysqld _Z16dispatch_command19enum_server_commandP3THDPcj
 command-done
 122 mysql3684 mysqld _Z16dispatch_command19enum_server_commandP3THDPcj
 command-start
 123 mysql3684 mysqld _Z16close_connectionP3THDj connection-done
 124 mysql3684 mysqld _Z22thd_prepare_connectionP3THD connection-start
 125 mysql3684 mysqld _Z21mysql_execute_commandP3THD delete-done
 126 mysql3684 mysqld _ZN7handler13ha_delete_rowEPKh delete-row-done
 127 mysql3684 mysqld _ZN7handler13ha_delete_rowEPKh delete-row-start
 128 mysql3684 mysqld _Z21mysql_execute_commandP3THD delete-start
 129 mysql3684 mysqld _Z8filesortP3THDP5TABLEP8FilesortbPyS5_
 filesort-done
 130 mysql3684 mysqld _Z8filesortP3THDP5TABLEP8FilesortbPyS5_
 filesort-start
...
Note
For DTrace-enabled, user-space programs, this command requires the
 fasttrap module to have been loaded before the program was started, and
 it does not return any probes if no instance of the program is running.
 dtrace appends the PID of the process to the DTrace provider name that
 was defined for the program when it was built.

12.3. Differences Between DTrace on Oracle Linux and Oracle Solaris

 Note the following main differences that exist in the implementation of DTrace on Oracle
 Linux relative to Oracle Solaris.
	 The following providers are available in the Oracle Linux implementation of DTrace.

	
 Provider

 	
 Kernel Module

 	
 Description

	
 dtrace

 	
 dtrace

 	
 Provides probes that relate to DTrace itself, such as
 BEGIN, ERROR, and
 END. You can use these probes to initialize DTrace's
 state before tracing begins, process its state after tracing has completed,
 and handle unexpected execution errors in other probes.

	
 fasttrap

 	
 fasttrap

 	
 Supports user-space tracing of DTrace-enabled applications.

	
 io

 	
 sdt

 	
 Provides probes that relate to data input and output. The
 io provider enables quick exploration of behavior
 observed through I/O monitoring tools such as
 iostat.

	
 proc

 	
 sdt

 	
 Provides probes for monitoring process creation and termination, LWP
 creation and termination, execution of new programs, and signal
 handling.

	
 profile

 	
 profile

 	
 Provides probes associated with an interrupt that fires at a fixed,
 specified time interval. These probes are associated with the asynchronous
 interrupt event rather than with any particular point of execution. You can
 use these probes to sample some aspect of a system's state.

	
 sched

 	
 sdt

 	
 Provides probes related to CPU scheduling. Because CPUs are the one
 resource that all threads must consume, the sched
 provider is very useful for understanding systemic behavior.

	
 syscall

 	
 systrace

 	
 Provides probes at the entry to and return from every system call.
 Because system calls are the primary interface between user-level
 applications and the operating system kernel, these probes can offer you an
 insight into the interaction between applications and the system.

Other providers, such as the pid provider, the Function Boundary
 Tracing (fbt) provider, and the providers for the network protocols
 (ip, iscsi, nfsv3,
 nfsv4, srp, tcp, and
 udp), have not yet been implemented.

	Solaris-specific features such as
 projects, zones, tasks, contracts, and message queues are not supported.

	The names of kernel probes are specific to the Linux kernel.

	The
 -Xa, -Xc, and -Xt options to
 dtrace all include the option -std=gnu99
 (conformance with 1999 C standard including GNU extensions) when invoking the C
 preprocessor (cpp) on D programs.
 The -Xs option includes the
 option -traditional-cpp (conformance with K&R C).

	Anonymous tracing is not supported (-a and -A
 options to dtrace).

	The 32-bit data model is not supported (-32 option to
 dtrace).

	Various definitions in the <dtrace.h> header file for flags,
 types, structures, and function prototypes reflect intrinsic differences between the
 implementation of Oracle Solaris and Oracle Linux.

	SDT probes do not work in IRQ context. As a result, the
 proc:::signal-discard probe does not fire if a signal that is sent
 as event notification for a POSIX timer expiration should be discarded.

 See the INCOMPATIBILITIES file in
 /usr/share/doc/dtrace-DTrace_version for
 more information.

12.4. Calling DTrace from the Command Line

The dtrace command accepts the following options:

dtrace [-CeFGhHlqSvVwZ]
[-b bufsz] [-c command] [-D name[=value]] [-I pathname] [-L pathname]
[-o pathname] [-p PID] [-s source_pathname]
[-U name] [-x option[=value]][-X[a|c|s|t]]
[-P provider[[predicate]action]]
[-m [[provider:]module[[predicate]action]]]
[-f [[provider:]module:]function[[predicate]action]]
[-n [[[provider:]module:]function:]name[[predicate]action]]
[-i probe-id[[predicate]action]]

 where predicate is any D predicate enclosed in slashes
 // and action is any D statement list enclosed
 in braces {} according to the D language syntax. If D program code is
 provided as an argument to the -P, -m,
 -f, -n, or -i options. this text
 must be appropriately quoted to avoid interpretation by the shell.
The options are as follows:
	
 -b bufsize

	 Set the principal trace buffer size, which can include any
 of the size suffixes k (kilobyte), m
 (megabyte), g (gigabyte), or t (terabyte).
 If the buffer space cannot be allocated, dtrace
 attempts to reduce the buffer size or exit depending on the setting of
 the bufresize property.

	
 -c command

	 Run the specified command and exit upon its completion. If you specify more
 than one -c option, dtrace exits when all the
 commands have exited, and reports the exit status for each child
 process as it terminates. dtrace makes the process
 ID of the first command available
 to D programs as the $target macro variable.

	
 -C

	 Run the C preprocessor (cpp) on D programs before compiling
 them. You can pass options to the C preprocessor by
 using the -D, -H,
 -I, and -U options. You can use the
 -X option to select the degree of conformance with the C
 standard.

	
 -D name[=value]

	 Define the specified macro name and optional value
 when invoking cpp using the -C option. You can
 specify the -D option multiple times to the command.

	
 -e

	 Exit after compiling any requests and before enabling any probes. You can combine
 this option with the -D option to verify that your D
 programs compile without executing them or enabling the corresponding instrumentation.

	
 -f
 [[[provider]:][module]:]function['D-probe_clause']

	 Specify a function (optionally specifying the provider and module) that you want
 to trace or list. You can append an optional D-probe clause. You can specify the
 -f option multiple times to the command.

	
 -F

	 Reduce trace output by combining the output for function and system
 call entry and return points. dtrace indents entry probe reports
 and leaves return probe reports unindented. dtrace prefixes the
 output from function entry probe reports with -> and the output
 from function return probe reports with <-.
 dtrace prefixes the output from system call entry probe reports
 with => and the output from system call return probe reports
 with <=.

	
 -G

	 Generate an ELF file that contains an embedded D
 program. dtrace saves the DTrace probes that are
 specified in the program using a relocatable ELF
 object that can be linked with another program. If you specify the
 -o option, dtrace saves the ELF file to
 the specified path name. If you do not specify the -o option,
 the ELF file is given the same name as the source file for the D program, except with
 a .o extension instead of .s.
 Otherwise, the ELF file is saved with the name d.out.

	-h
	Create a header file based on probe definitions in the file that is specified as
 the argument to the -s option. If you specify the
 -o option, dtrace saves the header file to
 the specified path name. If you do not specify the -o option,
 the header file is given the same name as the source file for the D program, except
 with a .h extension instead of .d. You should
 amend the source file of the program to be traced so that it includes this header
 file.

	
 -H

	 Print the path names of included files on stderr when you
 invoke cpp using the -C option.

	
 -i
 probe_ID['D-probe_clause']

	 Specify a probe identifier that you want to trace or list. You must specify the
 probe ID as a decimal integer (as displayed by dtrace -l). You can
 append an optional D-probe clause. You can specify the -i option
 multiple times to the command.

	
 -I pathname

	 Add the specified directory path to the search path for
 #include files when you invoke cpp using the
 -C option. The specified directory is inserted at the
 head of the default directory list.

	
 -l

	 List probes instead of enabling them. dtrace filters the list
 of probes based on the arguments to the -f, -i,
 -m, -n,
 -P, and -s options. If no options
 are specified, dtrace lists all probes.

	
 -L pathname

	 Add the specified directory path to the end of the library search path. Use this
 option to specify the path to DTrace libraries, which contain common definitions
 for D programs.

	
 -m
 [provider:]module['D-probe_clause']

	 Specify a module (optionally specifying the provider) that you want
 to trace or list. You can append an optional D-probe clause. You can specify the
 -m option multiple times to the command.

	
 -n
 [[[provider]:][module]:][function]]probe['D-probe_clause']

	 Specify a probe name (optionally specifying the provider, module, and function)
 that you want to trace or list. You can append an optional D-probe clause. You can
 specify the -n option multiple times to the command.

	
 -o pathname

	 Specify the output file for the -G
 and -l options, or for traced data.

	
 -p PID

	 Grab a process specified by its process ID, cache its symbol tables, and exit
 upon its completion. If you specify more
 than one -p option, dtrace exits when all the
 processes have exited, and reports the exit status for each process as it terminates.
 dtrace makes the first process ID specified available
 to D programs as the $target macro variable.

	
 -P
 provider['D-probe_clause']

	 Specify a provider that you want to trace or list. You can append an
 optional D-probe clause. You can specify the -P option multiple
 times to the command.

	
 -q

	 Set quiet mode. dtrace suppresses informational messages,
 column headers, the CPU ID, the probe ID, and additional newlines. Only data that
 is traced and formatted by the printa(),
 printf(), and trace() D program
 statements is displayed on stdout. This option is equivalent to
 specifying #pragma D option quiet in a D program.

	
 -s source_pathname

	Specifies a D program source file to be compiled by
 dtrace.
If you specify the -h option, dtrace creates
 a header file using the probe definitions in the file.
If you specify the -G option, dtrace
 generates a relocatable ELF object that can be linked with another program.
If you specify the -e option, dtrace
 compiles the program, but it does not enable any instrumentation.
If you specify the -l option, dtrace
 compiles the program and lists the set of matching probes, but it does not
 enable any instrumentation.
If you do not specify an option, dtrace
 enables the instrumentation specified by the D program and begins tracing.

	
 -S

	 Show the D compiler intermediate code. The D compiler writes a
 report of the intermediate code that it generated for each D program to
 stderr.

	
 -U name

	 Undefine the specified name
 when invoking cpp using the -C option. You can
 specify the -U option multiple times to the command.

	
 -v

	 Set verbose mode. dtrace produces a
 program stability report showing the minimum interface stability and
 dependency level for any specified D programs.

	
 -V

	 Write the highest D programming interface version supported by
 dtrace to stdout.

	
 -w

	 Permit destructive actions by D programs. If you do not specify this
 option, dtrace does not compile or enable a D program that
 contains destructive actions. This option is equivalent to specifying #pragma
 D option destructive in a D program.

	
 -x
 option[=value]

	 Enable or modify a DTrace runtime option or D compiler option.

	
 -X[a|c|t]

	 Include the option -std=gnu99 (conformance with 1999 C
 standard including GNU extensions) when
 invoking cpp using the -C option.

	
 -Xs

	 Include the option -traditional-cpp (conformance with K&R
 C) when invoking cpp using the -C option.

	
 -Z

	 Permit probe descriptions that do not match any probes. If you do not specify
 this option, dtrace reports an error and exits if a probe
 description does not match a known probe.

12.5. About Programming for DTrace

When you use the dtrace command, you invoke the compiler for the D
 language. Once DTrace has compiled your program, it sends it to the operating system kernel
 for execution, where it activates the probes that your program uses.
DTrace enables probes only when you are using them. No instrumented code is present for
 inactive probes, so your system does not experience performance degradation when you are not
 using DTrace. Once your D program exits, all of the probes it used are automatically disabled
 and their instrumentation is removed, returning your system to its original state. No
 effective difference exists between a system where DTrace is not active and one where the
 DTrace software is not installed.
DTrace implements the instrumentation for each probe dynamically on the live, running
 operating system. DTrace neither quiesces nor pauses the system in any way, and it adds
 instrumentation code only for the probes that you enable. As a result, the effect of using
 DTrace probes is limited to exactly what you ask DTrace to do. DTrace instrumentation is
 designed to be as efficient as possible, and enables you to use it in production to solve real
 problems in real time.
The DTrace framework provides support for an arbitrary number of virtual clients. You can
 run as many simultaneous D programs as you like, limited only by your system's memory
 capacity, and all the programs operate independently using the same underlying
 instrumentation. This same capability also permits any number of distinct users on the system
 to take advantage of DTrace simultaneously on the same system without interfering with one
 another.
Unlike a C or C++ program, but similar to a Java program, DTrace compiles your D program
 into a safe intermediate form that it executes when a probe fires. DTrace validates whether
 this intermediate form can run safely, reporting any run-time errors that might occur during
 the execution of your D program, such as dividing by zero or dereferencing invalid memory. As
 a result, you cannot construct an unsafe D program. You can use DTrace in a production
 environment without worrying about crashing or corrupting your system. If you make a
 programming mistake, DTrace disables the instrumentation and reports the error to you.

 Figure 12.1 illustrates the different
 components of the DTrace architecture, including probe providers, the DTrace driver, the
 DTrace library, and the dtrace command.

Figure 12.1. Components of the DTrace Architecture
[image: The diagram illustrates the different components of the DTrace architecture, including probe providers that are loaded into kernel space and which communicate with the DTrace driver, the DTrace library in user space, and the dtrace command, which makes calls into the DTrace library.]

12.6. Introducing the D Programming Language

 D programs describe the probes that are to be enabled together
 with the predicates and actions that are bound to the probes. D
 programs can also declare variables and define new types. This
 section provides an introduction to the important features that
 you are likely to encounter in simple D programs.

12.6.1. Probe Clauses

 D programs consist of a set of one or more probe clauses. Each probe clause takes the
 general form shown here:

probe_description_1 [, probe_description_2]...
[/ predicate_statement /]
{
 [action_statement;]
 .
 .
 .
}
 Every probe clause begins with a list of one or more probe descriptions in this form:

provider:module:function:probe_name

 where the fields are as follows:
	provider
	The name of the DTrace provider that is publishing this probe. For kernel probes, the provider
 name typically corresponds to the name of the DTrace kernel module that performs the
 instrumentation to enable the probe, for example, proc. When
 tracing a DTrace-enabled, user-space application or library, this field takes the
 form namePID, where
 name is the name of the provider as defined in the
 provider definition file that was used to build the application or library and
 PID is the process ID of the running executable.

	module
	The name of the kernel module, library, or user-space program in which the probe is located,
 if any, for example, vmlinux. This module is not the same as the
 kernel module that implements a provider.

	function
	The name of the function in which the probe is located, for example,
 do_fork.

	probe_name
	The name of the probe usually describes its location within a function, for example,
 create, entry, or
 return.

The compiler interprets the fields from right to left. For example, the probe
 description settimeofday:entry would match a probe with function
 settimeofday and name entry regardless of the value
 of the probe's provider and module fields. You can regard a probe description as a pattern
 that matches one or more probes based on their names. You can omit the leading colons before
 a probe name if the probe that you want to use has a unique name. If several providers
 publish probes with the same name, use the available fields to obtain the correct probe. If
 you do not specify a provider, you might obtain unexpected results if multiple probes have
 the same name. Specifying a provider but leaving the module, function, and probe name fields
 blank, matches all probes in a provider. For example, syscall::: matches
 every probe published by the syscall provider.
 The optional predicate statement uses criteria such as process ID, command name, or
 timestamp to determine whether the associated actions should take place. If you omit the
 predicate, any associated actions always run if the probe is triggered.
 You can use the ?, *, and []
 shell wildcards with probe clauses. For example, syscall::[gs]et*:
 matches all syscall probes for function names that begin with
 get or set. If necessary, use the
 \ character to escape wildcard characters that form part of a name.
 You can enable the same actions for more than one probe description. For example, the
 following D program uses the trace() function to record a timestamp each
 time that any process invokes a system call containing the string mem or
 soc:

syscall::*mem*:entry, syscall::*soc*:entry
{
 trace(timestamp);
}

 By default, the trace() function writes the result to the principal
 buffer, which is accessible by other probe clauses within a D program, and whose contents
 dtrace displays when the program exits.

12.6.2. Pragmas

 You can use compiler directives called pragmas in a D program. Pragma lines begin with
 a # character, and are usually placed at the beginning of a D program.
 The primary use of pragmas is to set run-time DTrace options. For example, the following
 pragma statements suppress all output except for traced data and permit destructive
 operations.

#pragma D option quiet
#pragma D option destructive

12.6.3. Global Variables

D provides fundamental data types for integers and floating-point constants. You can
 perform arithmetic only on integers in D programs. D does not support floating-point
 operations. D provides floating-point types for compatibility with ANSI-C declarations and
 types. You can trace floating-point data objects and use the printf()
 function to format them for output. In the current implementation, DTrace supports only the
 64-bit data model for writing D programs.
You can use declarations to introduce D variables and external C symbols, or to define
 new types for use in D. The following example program, tick.d, declares
 and initializes the variable i when the D program starts, displays its
 initial value, increments the variable and prints its value once every second, and displays
 the final value when the program exits.

BEGIN
{
 i = 0;
 trace(i);
}

profile:::tick-1sec
{
 printf("i=%d\n",++i);
}

END
{
 trace(i);
}

 When run, the program produces output such as the following until you type
 Ctrl-C:

dtrace -s tick.d
dtrace: script 'tick.d' matched 3 probes
CPU ID FUNCTION:NAME
 1 1 :BEGIN 0
 1 618 :tick-1sec i=1

 1 618 :tick-1sec i=2

 1 618 :tick-1sec i=3

 1 618 :tick-1sec i=4

 1 618 :tick-1sec i=5

^C
 0 2 :END 5
 Whenever a probe is triggered, dtrace displays the number of the CPU
 core on which the process indicated by its ID is running, and the name of the function and
 the probe. BEGIN and END are DTrace probes that
 trigger when the dtrace program starts and finishes.
 To suppress all output except that from printa(),
 printf(), and trace(), specify #pragma D
 option quiet in the program or the -q option to
 dtrace.
dtrace -q -s tick.d
0i=1
i=2
i=3
i=4
i=5
^C
5

12.6.4. Predicates

 Predicates are logic statements that select whether DTrace invokes the actions that are
 associated with a probe. For example, the predicates in the following program
 sc1000.d examine the value of the variable i. This
 program also demonstrates how to include C-style comments.

#pragma D option quiet

BEGIN
{
 /* Initialize i */
 i = 1000;
}

syscall:::entry
/i > 0/
{
 /* Decrement i */
 i--;
}

syscall:::entry
/(i % 100) == 0/
{
 /* Print i after every 100 system calls */
 printf("i = %d\n",i);
}

syscall:::entry
/i == 0/
{
 printf("i = 0; 1000 system calls invoked\n");
 exit(0); /* Exit with a value of 0 */
}

 The program initializes i with a value of 1000, decrements its value
 by 1 whenever a process invokes a system call, prints its value after every 100 system
 calls, and exits when the value of 1 reaches 0. Running the program in quite mode produces
 output similar to the following:

dtrace -s sc1000.d
i = 900
i = 700
i = 800
i = 600
i = 500
i = 400
i = 300
i = 200
i = 100
i = 0
i = 0; 1000 system calls invoked
 Note that the order of the countdown sequence is not as expected. The output for
 i=800 appears after the output for i=700. If you
 turn off quiet mode, it becomes apparent that the reason is that dtrace
 is collecting information from probes that can be triggered on all the CPU cores. You cannot
 expect runtime output from DTrace to be sequential in a multithreaded
 environment.
dtrace -s sc1000.d
dtrace: script 'sc1000.d' matched 889 probes
CPU ID FUNCTION:NAME
 0 457 clock_gettime:entry i = 900

 0 413 futex:entry i = 700

 1 41 lseek:entry i = 800

 1 25 read:entry i = 600

 1 25 read:entry i = 500

 1 25 read:entry i = 400

 1 71 select:entry i = 300

 1 71 select:entry i = 200

 1 25 read:entry i = 100

 1 25 read:entry i = 0

 1 25 read:entry i = 0; 1000 system calls invoked

 The next example is an executable DTrace script that displays the file descriptor,
 output string, and string length specified to the write() system call
 whenever the date command is run on the system.

#!/usr/sbin/dtrace -s
#pragma D option quiet

syscall::write:entry
/execname == "date"/
{
 printf("%s(%d, %s, %4d)\n", probefunc, arg0, copyinstr(arg1), arg2);
}
 If you run the script from one window, while typing the date command
 in another, you see output such as the following in the first window:

write(1, Wed Aug 15 10:42:34 BST 2012
, 29)

12.6.5. Scalar Arrays and Associative Arrays

The D language supports scalar arrays, which correspond directly in
 concept and syntax with arrays in C. A scalar array is a fixed-length group of consecutive
 memory locations that each store a value of the same type. You access scalar arrays by
 referring to each location with an integer starting from zero. In D programs, you would
 usually use scalar arrays to access array data within the operating system.
For example, you would use the following statement to declare a scalar array
 sa of 5 integers:
int sa[5];
As in C, sa[0] refers to the first array element,
 sa[1] refers to the second, and so on up to sa[4]
 for the fifth element.
The D language also supports a special kind of variable called an associative
 array. An associative array is similar to a scalar array in that it associates
 a set of keys with a set of values, but in an associative array the keys are not limited to
 integers of a fixed range. In the D language, you can index associative arrays by a list of
 one or more values of any type. Together the individual key values form a
 tuple that you use to index into the array and access or modify the
 value that corresponds to that key. Each tuple key must be of the same length and must have
 the same key types in the same order. The value associated with each element of an
 associative array is also of a single fixed type for the entire array.
For example, the following statement defines a new associative array
 aa of value type int with the tuple signature
 string, int, and stores the integer value 828 in the
 array:
aa["foo", 271] = 828;
Once you have defined an array, you can access its elements in the same way as any other
 variable. For example, the following statement modifies the array element previously stored
 in a by incrementing the value from 828 to
 829:
a["foo", 271]++;
You can define additional elements for the array by specifying a different tuple with
 the same tuple signature, as shown
 here:
aa["bar", 314] = 159;
aa["foo", 577] = 216;
The array elements aa["foo", 271] and aa["foo", 577] are
 distinct because the values of their tuples differ in the value of their second key.
Syntactically, scalar arrays and associative arrays are very similar. You can declare an
 associative array of integers referenced by an integer key as
 follows:
int ai[int];
You could reference an element of this array using the expression such as
 ai[0]. However, from a storage and implementation perspective, the two
 kinds of array are very different. The scalar array sa consists of five
 consecutive memory locations numbered from zero, and the index refers to an offset in the
 storage allocated for the array. An associative array such as ai has no
 predefined size and it does not store elements in consecutive memory locations. In addition,
 associative array keys have no relationship to the storage location of the corresponding
 value. If you access the associative array elements a[0] and
 a[-5], DTrace allocates only two words of storage, which are not
 necessarily consecutive in memory. The tuple keys that you use to index associative arrays
 are abstract names for the corresponding value, and they bear no relationship to the
 location of the value in memory.
If you create an array using an initial assignment and use a single integer expression
 as the array index, for example, a[0] = 2;, the D compiler always creates
 a new associative array, even though a could also be interpreted as an
 assignment to a scalar array. If you want to use a scalar array, you must explicitly declare
 its type and size.

12.6.6. Pointers and External Variables

The implementation of pointers in the D language gives you the ability to create and
 manipulate the memory addresses of data objects in the operating system kernel, and to store
 the contents of those data objects in variables and associative arrays. The syntax of D
 pointers is the same as the syntax of pointers in ANSI-C. For example, the following
 statement declares a D global variable named p that is a pointer to an
 integer.
int *p;
This declaration means that p itself is a 64-bit integer whose value
 is the address in memory of another integer.
If you want to create a pointer to a data object inside the kernel, you can compute its
 address by using the & reference operator. For example, the kernel
 source code declares an unsigned long max_pfn variable. You can access
 the value of such an external variable in the D language by prefixing
 it with the ` (backquote) scope
 operator:
value = `max_pfn;
If more than one kernel module declares a variable with the same name, prefix the scoped
 external variable with the name of the module. For example, foo`bar would
 refer to the address of the bar() function provided by the module
 foo.
You can extract the address of an external variable by applying the
 & operator and store it as a
 pointer:
p = &`max_pfn;
You can use the * dereference operator to refer to the object that a
 pointer addresses:
value = *p;
You cannot apply the
 & operator to DTrace objects such as associative arrays, built-in
 functions, and variables. If you create composite structures, it is possible to construct
 expressions that retrieve the kernel addresses of DTrace objects. However, DTrace does not
 guarantee to preserve the addresses of such objects across probe firings.
You cannot use the * dereference operator on the left-hand side of an
 assignment expression. You may only assign values directly to D variables by name or by
 applying the array index operator [] to a scalar array or an associative
 array.
You cannot use pointers to perform indirect function calls. You may only call DTrace
 functions directly by name.

12.6.7. Address Spaces

DTrace executes D programs within the address space of the operating system kernel.
 Your entire Oracle Linux system manages one address space for the operating system kernel,
 and one for each user process. As each address space provides the illusion that it can
 access all of the memory on the system, the same virtual address might be used in different
 address spaces, but it would translate to different locations in physical memory. If your D
 programs use pointers, you need to be aware which address space corresponds to those
 pointers.
For example, if you use the syscall provider to instrument entry to a
 system call such as pipe() that takes a pointer to an integer or to an
 array of integers as an argument, it is not valid to use the * or [] operators to
 dereference that pointer or array. The address is in the address space of the user process
 that performed the system call, and not in the address space of the kernel. Dereferencing
 the address in D accesses the kernel's address space, which would result in an invalid
 address error or return unexpected data to your D program.
To access user process memory from a DTrace probe, use one of the
 copyin(), copyinstr(), or
 copyinto() functions with an address in user space.
The following D programs show two alternate and equivalent ways to print the file
 descriptor, string, and string length arguments that a process passed to the
 write() system
 call:
syscall::write:entry
{
 printf("fd=%d buf=%s count=%d", arg0, stringof(copyin(arg1, arg2)), arg2);
}

syscall::write:entry
{
 printf("fd=%d buf=%s count=%d", arg0, copyinstr(arg1, arg2), arg2);
}
The arg0, arg1 and arg2
 variables contain the value of the fd, buf, and
 count arguments to the system call. Note that the value of
 arg1 is an address in the address space of the process, and not in the
 address space of the kernel.
In this example, it is necessary to use the stringof() function with
 copyin() so that DTrace converts the retrieved user data to a string.
 The copyinstr() function always returns a string.
To avoid confusion, you should name and comment variables that store user addresses
 appropriately. You should also store user addresses as variables of type
 uintptr_t so that you do not accidentally compile D code that
 dereferences them.

12.6.8. Thread-local Variables

 Thread-local variables are defined within the scope of execution of a thread on the
 system. To indicate that a variable is thread-local, you prefix it with
 self-> as shown in the following example.

#pragma D option quiet

syscall::read:entry
{
 self->t = timestamp; /* Initialize a thread-local variable */
}

syscall::read:return
/self->t != 0/
{
 printf("%s (pid:tid=%d:%d) spent %d microseconds in read()\n",
 execname, pid, tid, ((timestamp - self->t)/1000)); /* Divide by 1000 -> microseconds */

 self->t = 0; /* Reset the variable */
}
 This D program (dtrace.d) displays the command name, process ID,
 thread ID, and expired time in microseconds whenever a process invokes the
 read() system call.

dtrace -s readtrace.d
nome-terminal (pid:tid=2774:2774) spent 27 microseconds in read()
gnome-terminal (pid:tid=2774:2774) spent 16 microseconds in read()
hald-addon-inpu (pid:tid=1662:1662) spent 26 microseconds in read()
hald-addon-inpu (pid:tid=1662:1662) spent 17 microseconds in read()
Xorg (pid:tid=2046:2046) spent 18 microseconds in read()
...

12.6.9. Speculations

The speculative tracing facility in DTrace allows you to tentatively trace data and then
 later decide whether to commit the data to a tracing buffer or discard the data. Predicates
 are the primary mechanism for filtering out uninteresting events. Predicates are useful when
 you know at the time that a probe fires whether or not the probe event is of interest.
 However, in some situations, you might not know whether a probe event is of interest until
 after the probe fires.
For example, if a system call is occasionally failing with an error code in
 errno, you might want to examine the code path leading to the error
 condition. You can write trace data at one or more probe locations to speculative buffers,
 and then choose which data to commit to the principal buffer at another probe location. As a
 result, your trace data contains only the output of interest, no post-processing is
 required, and the DTrace overhead is minimized.
To create a speculative buffer, use the speculation() function. This
 function returns a speculation identifier, which you use in subsequent calls to the
 speculate() function.
Call the speculate() function before performing any data-recording
 actions in a clause. DTrace directs all subsequent data that you record in a clause to the
 speculative buffer. You can create only one speculation in any given clause.
Typically, you assign a speculation identifier to a thread-local variable, and then use
 that variable as a predicate to other probes as well as an argument to
 speculate(). For
 example:
#!/usr/sbin/dtrace -Fs

syscall::open:entry
{
 /*
 * The call to speculation() creates a new speculation. If this fails,
 * dtrace will generate an error message indicating the reason for
 * the failed speculation(), but subsequent speculative tracing will be
 * silently discarded.
 */
 self->spec = speculation();
 speculate(self->spec);

 /*
 * Because this printf() follows the speculate(), it is being
 * speculatively traced; it will only appear in the data buffer if the
 * speculation is subsequently commited.
 */
 printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
 /*
 * To balance the output with the -F option, we want to be sure that
 * every entry has a matching return. Because we speculated the
 * open entry above, we want to also speculate the open return.
 * This is also a convenient time to trace the errno value.
 */
 speculate(self->spec);
 trace(errno);
}

If a speculative buffer contains data that you want to retain, use the
 commit() function to copy its contents to the principal buffer. If you
 want to delete the contents of a speculative buffer, use the discard()
 function. The following example clauses commit or discard the speculative buffer based on
 the value of the errno
 variable:
syscall::open:return
/self->spec && errno != 0/
{
 /*
 * If errno is non-zero, we want to commit the speculation.
 */
 commit(self->spec);
 self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
 /*
 * If errno is not set, we discard the speculation.
 */
 discard(self->spec);
 self->spec = 0;
}
Running this script produces output similar to the following example when the
 open() system call fails:
./specopen.d
dtrace: script ’./specopen.d’ matched 4 probes
CPU FUNCTION
 1 => open /var/ld/ld.config
 1 <= open 2
 1 => open /images/UnorderedList16.gif
 1 <= open 4
...

12.6.10. Aggregations

 DTrace provides the following built-in functions for aggregating the data that
 individual probes gather.
	
 Aggregating Function

 	
 Description

	
 avg(scalar_expression)

 	
 Returns the arithmetic mean of the expressions that are specified as
 arguments.

	
 count()

 	
 Returns the number of times that the function has been called.

	
 lquantize(scalar_expression,
 lower_bound,
 upper_bound,
 step_interval)

 	
 Returns a linear frequency distribution of the expressions that are
 specified as arguments, scaled to the specified lower bound, upper bound, and
 step interval. Increments the value in the highest bucket that is smaller than
 the specified expression.

	
 max(scalar_expression)

 	
 Returns the maximum value of the expressions that are specified as
 arguments.

	
 min(scalar_expression)

 	
 Returns the minimum value of the expressions that are specified as
 arguments.

	
 quantize(scalar_expression)

 	
 Returns a power-of-two frequency distribution of the expressions that are
 specified as arguments. Increments the value of the highest power-of-two bucket
 that is smaller than the specified expression.

	
 stddev(scalar_expression)

 	
 Returns the standard deviation of the expressions that are specified as
 arguments.

	
 sum(scalar_expression)

 	
 Returns the sum of the expressions that are specified as arguments.

 DTrace indexes the results of an aggregation using a tuple expression similar to that
 used for an associative array:

@name[list_of_keys] = aggregating_function(args);
 The name of the aggregation is prefixed with an @ character. All
 aggregations are global. If you do not specify a name, the aggregation is anonymous. The
 keys describe the data that the aggregating function is collecting.
 For example, the following command counts the number of write()
 system calls invoked by processes until you type Ctrl-C.

dtrace -n syscall::write:entry'{ @["write() calls"] = count(); }'
dtrace: description 'syscall:::' matched 1 probe
^C

 write() calls 9
 The next example counts the number of both read() and
 write() system calls:

dtrace -n syscall::write:entry,syscall::read:entry\
'{ @[strjoin(probefunc,"() calls")] = count(); }'
dtrace: description 'syscall::write:entry,syscall::read:entry' matched 2 probes
^C

 write() calls 150
 read() calls 1555
Note
If you specify the -q option to dtrace or
 #pragma D option quiet in a D program, DTrace suppresses the
 automatic printing of aggregations. In this case, you must use a
 printa() statement to display the information.

12.7. DTrace Command Examples

 Display the probes that are available with the proc provider.

 # dtrace -l -P proc
 ID PROVIDER MODULE FUNCTION NAME
 4066 proc vmlinux schedule_tail start
 4067 proc vmlinux schedule_tail lwp-start
 4069 proc vmlinux get_signal_to_deliver signal-handle
 4074 proc vmlinux do_sigtimedwait signal-clear
 4075 proc vmlinux do_fork lwp-create
 4076 proc vmlinux do_fork create
 4077 proc vmlinux do_exit lwp-exit
 4078 proc vmlinux do_exit exit
 4079 proc vmlinux do_execve_common exec-failure
 4080 proc vmlinux do_execve_common exec
 4081 proc vmlinux do_execve_common exec-success
 4085 proc vmlinux __send_signal signal-send
 4086 proc vmlinux __send_signal signal-discard
 Monitor the system as it loads and executes process images.

dtrace -n 'proc::do_execve_common:exec { trace(stringof(arg0)); }'
dtrace: description 'proc:::exec' matched 1 probe
CPU ID FUNCTION:NAME
 0 600 do_execve_common:exec /bin/uname
 0 600 do_execve_common:exec /bin/mkdir
 0 600 do_execve_common:exec /bin/sed
 0 600 do_execve_common:exec /usr/bin/dirname
 1 600 do_execve_common:exec /usr/lib64/qt-3.3/bin/firefox
 1 600 do_execve_common:exec /usr/local/bin/firefox
 1 600 do_execve_common:exec /usr/bin/firefox
 1 600 do_execve_common:exec /bin/basename
 1 600 do_execve_common:exec /bin/uname
 1 600 do_execve_common:exec /usr/bin/mozilla-plugin-config
 1 600 do_execve_common:exec /usr/lib64/nspluginwrapper/plugin-config
 1 600 do_execve_common:exec /usr/lib64//xulrunner-1.9.2/mozilla-xremote-client
 1 600 do_execve_common:exec /bin/sed
 1 600 do_execve_common:exec /usr/lib64/firefox-3.6/run-mozilla.sh
 1 600 do_execve_common:exec /bin/basename
 1 600 do_execve_common:exec /bin/uname
 1 600 do_execve_common:exec /usr/lib64/firefox-3.6/firefox
 Display the names of commands that invoke the open() system call and
 the name of the file being opened.

dtrace -q -n 'syscall::open:entry { printf("%-16s %-16s\n",execname,copyinstr(arg0)); }'
udisks-daemon /dev/sr0
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/present
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/energy_now
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/voltage_max_design
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/voltage_min_design
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/status
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/current_now
devkit-power-da /sys/devices/LNXSYSTM:00/.../PNP0C0A:00/power_supply/BAT0/voltage_now
VBoxService /var/run/utmp
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore.js
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore-1.js
firefox /home/guest/.mozilla/firefox/qeaojiol.default/sessionstore-1.js
^C
 Display the system calls invoked by the process with ID 3007 and the number of times that
 it invoked each system call.

dtrace -p 3007 -n 'syscall:::entry { @num[probefunc] = count(); }'
dtrace: description 'syscall:::entry ' matched 296 probes
^C

 getuid 1
 ptrace 1
 socket 1
 waitid 1
 lseek 3
 statfs 3
 access 4
 write 6
 munmap 15
 newfstat 16
 newstat 17
 mmap 19
 fcntl 20
 close 24
 alarm 30
 inotify_add_watch 30
 open 32
 rt_sigaction 50
 nanosleep 52
 rt_sigprocmask 64
 ioctl 117
 futex 311
 clock_gettime 579
 rt_sigreturn 744
 gettimeofday 1461
 setitimer 2093
 select 2530
 writev 3162
 poll 4720
 read 10552
 Display the distribution of the sizes specified to read() calls
 invoked by running firefox.

dtrace -n 'syscall::read:entry /execname=="firefox"/{@dist["firefox"]=quantize(arg2);}'
dtrace: description 'syscall::read:entry ' matched 1 probe
^C

 firefox
 value ------------- Distribution ------------- count
 0 | 0
 1 |@ 566
 2 | 0
 4 | 0
 8 | 7
 16 | 4
 32 | 0
 64 | 0
 128 | 8
 256 |@ 436
 512 | 8
 1024 |@@ 959
 2048 |@ 230
 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 13785
 8192 | 3
 16384 | 4
 32768 | 0
 65536 | 0
 131072 | 73
 262144 | 0
 Run the syscalls.d script to examine which system calls PID 5178 is
 using and the number of times that it invoked each system call.

ls -l syscalls.d
-rwxr-xr-x. 1 root root 85 Aug 14 14:48 syscalls.d

cat syscalls.d
#!/usr/sbin/dtrace -qs
syscall:::entry
/pid == $1/
{
 @num[probefunc] = count();
}

./syscalls.d 5178
^C

 ftruncate 1
 newuname 1
 clone 5
 close 5
 sched_setscheduler 5
 newlstat 6
 access 7
 open 7
 newfstat 9
 sched_get_priority_max 10
 sched_get_priority_min 10
 fcntl 12
 lseek 73
 newstat 100
 write 155
 futex 752
 writev 1437
 poll 4423
 read 5397
 gettimeofday 9292

12.8. Tracing User-Space Applications

A number of DTrace-enabled applications will be made available following the release of
 DTrace 0.4, including MySQL and PHP. These applications have been instrumented to contain
 statically defined DTrace probes. You can find details about the probes for MySQL at http://dev.mysql.com/doc/refman/5.5/en/dba-dtrace-mysqld-ref.html and about the
 probes for PHP at http://php.net/manual/features.dtrace.php.
The MySQL query-probes query-start(query,
 connectionid, database,
 user, host) and
 query-done(status) are triggered when the
 MySQL server receives a query is received by the server and when the query has been completed
 and the server has successfully sent the information to the client.
For example, the following script reports the execution time for each database query:
#!/usr/sbin/dtrace -qs

dtrace:::BEGIN
{
 printf("%-20s %-10s %-40s %-9s\n", "Who", "Database", "Query", "Time(microseconds)");
}

mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
}

mysql*:::query-done
{
 printf("%-20s %-10s %-40s %-9d\n",self->who,self->db,self->query,
 (timestamp - self->querystart) / 1000);
}
The following is sample output from this script:
./query.d
Who Database Query Time(microseconds)
webuser@localhost namedb select * from table1 order by n ASC 1135
webuser@localhost namedb delete from table1 where n='Bill' 10383
The MySQL query-parsing probes
 query-parse-start(query) and
 query-parse-done(status) are triggered
 immediately before and after MySQL parses a SQL statement. For example, you could use the
 following script to monitor the execution time for parsing queries:
#!/usr/sbin/dtrace -qs

mysql*:::query-parse-start
{
 self->parsestart = timestamp;
 self->parsequery = copyinstr(arg0);
}

mysql*:::query-parse-done
/arg0 == 0/
{
 printf("Parsing %s: %d microseconds\n", self->parsequery,
 ((timestamp - self->parsestart)/1000));
}

mysql*:::query-parse-done
/arg0 != 0/
{
 printf("Error parsing %s: %d microseconds\n", self->parsequery,
 ((timestamp - self->parsestart)/1000));
}
The following is sample output from this script:
./query-parse.d
Parsing select * from table1 where n like 'B%' order by n ASC: 29 microseconds
Error parsing select from table1 join (table2) on (table1.i = table2.i)
 order by table1.s,table1.i limit 10: 36 microseconds
The following script uses the PHP probe
 error(error_message,
 request_file,
 line_number), to report PHP errors:
#!/usr/sbin/dtrace -qs

php*:::error
{
 printf("PHP error\n");
 printf(" error message %s\n", copyinstr(arg0));
 printf(" request file %s\n", copyinstr(arg1));
 printf(" line number %d\n\n", (int)arg2);
}
For example, you can use the PHP trigger_error() function to trigger a
 PHP error if a MySQL function returns an error:
<?php
ini_set('error_reporting', E_ALL); /* Report all errors */
ini_set('display_errors', 'Off'); /* but do not display them */
...
 $mysqli->query($QUERY) or trigger_error($mysqli->error."[$QUERY]",E_USER_ERROR);
...
?>
You could use the script to report errors that might indicate incorrectly queries or
 attempted SQL injection attacks, for example:
./php_error.d
...
PHP error
 error message You have an error in your SQL syntax; check the manual that
 corresponds to your MySQL server version for the right syntax
 to use near '='1'; --'' at line 1[select * from table1 where n
 like 'B%' or '1'='1'; --']
 request file /var/www/html/example.php
 line number 61

...
PHP error
 error message You have an error in your SQL syntax; check the manual that
 corresponds to your MySQL server version for the right syntax
 to use near 'drop table table1; --'' at line 1[select * from
 table1 where n like 'B%';drop table table1; --']
 request file /var/www/html/example.php
 line number 61
...
12.8.1. Examining the Stack Trace of a User-Space Application

You can use the ustack() function to perform a stack trace of any
 user-space application, for example:
dtrace -n syscall::write:entry'/pid == $target/ \
{ustack(); \
exit(0)}' -c "ls -l /"
dtrace: description 'syscall::write:entry' matched 1 probe
total 125
dr-xr-xr-x. 2 root root 4096 Apr 22 09:11 bin
dr-xr-xr-x. 5 root root 4096 Sep 24 09:42 boot
...
drwxr-xr-x. 14 root root 4096 Nov 2 2012 usr
drwxr-xr-x. 25 root root 4096 Apr 20 13:18 var
CPU ID FUNCTION:NAME
 1 6 write:entry
 libc.so.6`_IO_file_write+0x43
 libc.so.6`_IO_do_write+0x95
 libc.so.6`_IO_file_close_it+0x160
 libc.so.6`fclose+0x178
 ls`0x411fc9
 ls`close_stdout+0x14
 libc.so.6`exit+0xe2
 ls`0x409620
 libc.so.6`_IO_file_underflow+0x138
 libc.so.6`flush_cleanup
 libc.so.6`fclose+0x14d
 libc.so.6`fclose+0x14d
 libselinux.so.1`0x3f1840ce6f
 ls`0x412040
 ls`0x40216b
 ls`0x4027e0
 libc.so.6`__libc_start_main+0xfd
 ls`0x408480
 ls`0x4027e0
 ls`0x4027e0
 ls`0x402809
DTrace can translate the stack frames into symbols for shared libraries (such as
 libc) and unstripped executables. As ls is a stripped
 executable, the addresses remain unconverted. dtrace can translate stack
 frames for stripped executables if the --export-dynamic option was
 specified when the program was linked. This option causes the linker to add all symbols to the
 dynamic symbol table.

12.9. For More Information About DTrace

 For more information, see the Oracle Linux Dynamic Tracing
 Guide.

Chapter 13. Support Diagnostic Tools

Table of Contents
	13.1. About sosreport
		13.1.1. Configuring and Using sosreport

	13.2. About Kdump
		13.2.1. Configuring and Using Kdump
	13.2.2. Files Used by Kdump

	13.3. About OSWatcher Black Box
		13.3.1. Installing OSWbb
	13.3.2. Running OSWbb

	13.4. For More Information About the Diagnostic Tools

 This chapter describes the sosreport, Kdump,
 and OSWbb tools that you can use to help diagnose problems with a
 system.

13.1. About sosreport

 The sosreport utility collects information
 about a system such as hardware configuration, software
 configuration, and operational state. You can also use
 sosreport to enable diagnostics and analytical
 functions. To assist in troubleshooting a problem,
 sosreport records the information in a
 compressed file that you can send to a support representative.

13.1.1. Configuring and Using sosreport

 If the sos package is not already installed on your system, use
 yum to install it.

 Use the following command to list the available plugins and
 plugin options.

sosreport –l
The following plugins are currently enabled:

acpid acpid related information
anaconda Anaconda / Installation information
.
.
.
The following plugins are currently disabled:

amd Amd automounter information
cluster cluster suite and GFS related information
.
.
.
The following plugin options are available:
apache.log off gathers all apache logs
auditd.syslogsize 15 max size (MiB) to collect per syslog file
.
.
.

 See the sosreport(1) manual page for
 information about how to enable or disable plugins, and how to
 set values for plugin options.

 To run sosreport:
	 Enter the command, specifying any options that you need to tailor the report to
 report information about a problem area.

sosreport [options ...]
 For example, to record only information about Apache and Tomcat, and to gather
 all the Apache logs:

sosreport -o apache,tomcat -k apache.log=on

sosreport (version 2.2)
.
.
.
Press ENTER to continue, or CTRL-C to quit.
To
 enable all boolean options for all loaded plugins except the
 rpm.rpmva plugin that verifies all packages, and which takes a
 considerable time to
 run:
sosreport -a -k rpm.rpmva=off

	 Type Enter, and enter additional information when prompted.

Please enter your first initial and last name [email_address]: AName
Please enter the case number that you are generating this report for: case#

 Running plugins. Please wait ...

 Completed [55/55] ...
Creating compressed archive...

Your sosreport has been generated and saved in:
 /tmp/sosreport-AName.case#-datestamp-ID.tar.xz

The md5sum is: checksum

Please send this file to your support representative.

 sosreport saves the report as an xz-compressed
 tar file in /tmp.

13.2. About Kdump

 Kdump is the Linux kernel crash-dump mechanism. Oracle recommends
 that you enable the Kdump feature. In the event of a system crash,
 Kdump creates a memory image (vmcore) that can
 help in determining the cause of the crash. Enabling Kdump
 requires you to reserve a portion of system memory for exclusive
 use by Kdump. This memory is unavailable for other uses.

 Kdump uses kexec to boot into a second kernel
 whenever the system crashes. kexec is a
 fast-boot mechanism which allows a Linux kernel to boot from
 inside the context of a kernel that is already running without
 passing through the bootloader stage.

13.2.1. Configuring and Using Kdump

 During installation, you are given the option of enabling Kdump
 and specifying the amount of memory to reserve for it. If you
 prefer, you can enable kdump at a later time as described in
 this section.

 If the kexec-tools package is not already installed on your system,
 use yum to install it.
 To enable Kdump by using the Kernel Dump Configuration GUI.
	 Enter the following command.

system-config-kdump
 The Kernel Dump Configuration GUI starts. If Kdump is currently disabled, the
 green Enable button is selectable and the Disable button is greyed out.

	 Click Enable to enable Kdump.

	 You can select the following settings tags to adjust the configuration of Kdump.
	 Basic Settings
	 Allows you to specify the amount of memory to reserve for Kdump. The
 default setting is 128 MB.

	 Target Settings
	 Allows you to specify the target location for the
 vmcore dump file on a locally accessible file system, to
 a raw disk device, or to a remote directory using NFS or SSH over IPv4. The
 default location is /var/crash.
 You cannot save a dump file on an eCryptfs file system, on remote
 directories that are NFS mounted on the rootfs file system,
 or on remote directories that access require the use of IPv6, SMB, CIFS, FCoE,
 wireless NICs, multipathed storage, or iSCSI over software initiators to
 access them.

	 Filtering Settings
	 Allows to select which type of data to include in or exclude from the
 dump file. Selecting or deselecting the options alters the value of the
 argument that Kdump specifies to the -d option of the core
 collector program, makedumpfile.

	 Expert Settings
	 Allows you to choose which kernel to use, edit the command line options
 that are passed to the kernel and the core collector program, choose the
 default action if the dump fails, and modify the options to the core collector
 program, makedumpfile.
 For example, if Kdump fails to start, and the following error appears in
 /var/log/messages:

kdump: No crashkernel parameter specified for running kernel
 set the offset for the reserved memory to 48 MB or greater in the command
 line options, for example: crashkernel=128M@48M.
 For systems with more than 128 GB of memory, the recommended setting is
 crashkernel=512M@64M.

 Click Help for more information on these
 settings.

	 Click Apply to save your changes. The GUI
 displays a popup message to remind you that you must reboot the system for the changes
 to take effect.

	 Click OK to dismiss the popup messages.

	 Select File > Quit.

	 Reboot the system at a suitable time.

13.2.2. Files Used by Kdump

 The Kernel Dump Configuration GUI modifies the following files:
	
 File

 	
 Description

	
 /boot/grub/grub.conf

 	
 Appends the crashkernel option to the kernel line to
 specify the amount of reserved memory and any offset value.

 Note
The Unbreakable Enterprise Kernel supports the use of the setting
 crashkernel=auto for UEK release 3 quarterly update 1 and
 later.

	
 /etc/kdump.conf

 	
 Sets the location where the dump file can be written, the filtering level
 for the makedumpfile command, and the default behavior to
 take if the dump fails. See the comments in the file for information about the
 supported parameters.

 If you edit these files, you must reboot the system to have the
 changes take effect.

13.3. About OSWatcher Black Box

 Oracle OSWatcher Black Box (OSWbb) collects and archives operating
 system and network metrics that you can use to diagnose
 performance issues. OSWbb operates as a set of background
 processes on the server and gathers data on a regular basis,
 invoking such Unix utilities as vmstat,
 netstat, iostat, and
 top.

 From release v4.0.0, you can use the OSWbba analyzer to provide information on system
 slowdowns, system hangs and other performance problems, and also to graph data collected from
 iostat, netstat, and vmstat. OSWbba
 requires that you have installed Java version 1.4.2 or higher on your system. You can use
 yum to install Java, or you can download a Java RPM for Linux from http://www.java.com.

 OSWbb is particularly useful for Oracle RAC (Real Application
 Clusters) and Oracle Grid Infrastructure configurations. The
 RAC-DDT (Diagnostic Data Tool) script file includes OSWbb, but
 does not install it by default.

13.3.1. Installing OSWbb

 To install OSWbb:
	 Log on to My Oracle Support (MOS) at http://support.oracle.com.

	 Download the file oswbb601.tar, which is available at https://support.oracle.com/epmos/main/downloadattachmentprocessor?attachid=301137.1:OSW_file.

	 Copy the file to the directory where you want to install OSWbb, and run the
 following command:

tar xvf oswbb601.tar
 Extracting the tar file creates a directory named oswbb, which
 contains all the directories and files that are associated with OSWbb, including the
 startOSWbb.sh script.

	 If the ksh package is not already installed on your system,
 use yum to install it.

yum install ksh

	 Create a symbolic link from /usr/bin/ksh to
 /bin/ksh.

ln –s /bin/ksh /usr/bin/ksh
 This link is required because the OSWbb scripts expect to find
 ksh in /usr/bin.

	To enable the collection of iostat information for NFS volumes,
 edit the OSWatcher.sh script in the oswbb
 directory, and set the value of nfs_collect to
 1:
nfs_collect=1
Note
This feature is available from release v5.1.

13.3.2. Running OSWbb

To start OSWbb, run the startOSWbb.sh script from the
 oswbb directory.

./startOSWbb.sh [frequency duration]

 The optional frequency and duration arguments specifying how often in seconds OSWbb should
 collect data and the number of hours for which OSWbb should run. The default values are 30
 seconds and 48 hours. The following example starts OSWbb recording data at intervals of 60
 seconds, and has it record data for 12 hours:

./startOSWbb.sh 60 12
Testing for discovery of OS Utilities
.
.
.
VMSTAT found on your system.
IOSTAT found on your system.
MPSTAT found on your system.
NETSTAT found on your system.
TOP found on your system.
Testing for discovery of OS CPU COUNT
.
.
.
Starting Data Collection...
oswbb heartbeat: date/time
oswbb heartbeat: date/time + 60 seconds
.
.
.
 To stop OSWbb prematurely, run the stopOSWbb.sh script from the
 oswbb directory.

./stopOSWbb.sh
 OSWbb collects data in the following directories under the
 oswbb/archive directory:
	
 Directory

 	
 Description

	
 oswiostat

 	
 Contains output from the iostat utility.

	
 oswmeminfo

 	
 Contains a listing of the contents of /proc/meminfo.

	
 oswmpstat

 	
 Contains output from the mpstat utility.

	
 oswnetstat

 	
 Contains output from the netstat utility.

	
 oswprvtnet

 	
 If you have enable private network tracing for RAC, contains information
 about the status of the private networks.

	
 oswps

 	
 Contains output from the ps utility.

	
 oswslabinfo

 	
 Contains a listing of the contents of /proc/slabinfo.

	
 oswtop

 	
 Contains output from the top utility.

	
 oswvmstat

 	
 Contains output from the vmstat utility.

 OSWbb stores data in hourly archive files named
 system_name_utility_name_timestamp.dat,
 and each entry in a file is preceded by the characters
 *** and a timestamp.

13.4. For More Information About the Diagnostic Tools

For more information about sosreport, see the
 sosreport(1) manual page.
For more information about Kdump, refer to the help in the Kernel Dump Configuration GUI,
 and the makedumpfile(8) manual page.
For more information about OSWbb and OSWbba, refer to the OSWatcher Black Box User Guide (Article ID 301137.1) and
 the OSWatcher Black Box Analyzer User Guide (Article ID
 461053.1), which are available from My Oracle Support (MOS) at http://support.oracle.com.

OEBPS/images/vethbridge.png
Host

Veth
Bridge
Container 1

virbr0 p-eth0

NAT

Container 2

OEBPS/images/macvlanvepa.png
Host

Macvlan
VEPA
Container 1

Container 2

OEBPS/images/macvlanbridge.png
Host

Macvlan
Bridge
Container 1

Container 2

OEBPS/images/dtrace.png
\\ \\ \\ D Program
Source Files
DTrace Command
libdtrace DTrace Library
User Space

Kernel Space f

DTrace Providers

(5)-
@"

OEBPS/images/dirtree.png
/ _L }Top level ID 5

— boot
— dev
—etc
[— home

—install

— lib
F— 1lib64
— media
— misc

bin } Directory in subvolume ID 5

} Default subvolume ID 258

bin } Directory in subvolume ID 258
boot

dev

etc

OEBPS/images/cluster1.png
Storage Server

Switch Network

