Abstract

This document contains information on Oracle Linux Release 6 Update 7. This document may be updated after it is released. To check for updates to this document, and to view other Oracle documentation, refer to the Documentation section on the Oracle Technology Network (OTN) Web site:

http://www.oracle.com/technology/documentation/

This document is intended for users and administrators of Oracle Linux. It describes potential issues and the corresponding workarounds you may encounter while using Oracle Linux. Oracle recommends that you read this document before installing or upgrading Oracle Linux.

Document generated on: 2015-09-10 (revision: 3258)
Table of Contents

Preface ... v

1 New Features and Changes .. 1
 1.1 Supported Kernels .. 1
 1.2 Unbreakable Enterprise Kernel Release 2 .. 1
 1.3 Unbreakable Enterprise Kernel Release 3 .. 2
 1.3.1 Notable New Features of UEK R3 .. 2
 1.4 OpenSCAP ... 3
 1.5 Load Balancing and High Availability .. 4
 1.6 Hyper-V Daemons .. 4
 1.7 Enhanced SSSD Support for Active Directory 4
 1.8 Removing the RHCK from a System ... 5
 1.9 Technology Preview Features .. 6
 1.9.1 Technology Preview Features in UEK R2 6
 1.9.2 Technology Preview Features in UEK R3 7
 1.9.3 Technology Preview Features in RHCK 7

2 Fixed and Known Issues ... 9
 2.1 Fixed Issues ... 10
 2.1.1 Receive Packet Steering Errors ... 10
 2.1.2 Using SELinux with Linux Containers 10
 2.1.3 XFS File System Panic .. 10
 2.2 Known Issues ... 10
 2.2.1 avahi-daemon Fails to Start with UEK R2 10
 2.2.2 Booting UEK R2 as a PVHM Guest .. 10
 2.2.3 Btrfs File System Issues .. 11
 2.2.4 Console Appears to Hang when Booting 11
 2.2.5 Default I/O Scheduler ... 11
 2.2.6 Default NFS Mount Options ... 11
 2.2.7 Default Reverse Path Filtering Mode Affects Certain Oracle Products 11
 2.2.8 dm-cache and dm-era ... 11
 2.2.9 DTrace Issues ... 11
 2.2.10 Enabling FIPS Mode ... 12
 2.2.11 Error message Following First Reboot on an HP ProLiant Server ... 12
 2.2.12 ext4 Inline Data ... 13
 2.2.13 gcc-libraries Package ... 13
 2.2.14 ib_core Fails to Unload when the RDMA Service Is Stopped 13
 2.2.15 Incorrect Package Count ... 13
 2.2.16 Intel TCO Watchdog Timer Messages 13
 2.2.17 Journal Corruption in Virtualized Systems 13
 2.2.18 Kdump Service Configuration .. 14
 2.2.19 Kdump Service Cannot Be Enabled by Using system-config-kdump Under UEK R3 .. 14
 2.2.20 kernel-uek-headers Package ... 14
 2.2.21 Linux Containers (LXC) ... 14
 2.2.22 Mellanox ConnectX Drivers .. 15
 2.2.23 mlx4_core Conflicts Between the mlx4_en and ofa Packages 15
 2.2.24 mlx4_ib Insertion Error when RDMA Starts 15
 2.2.25 Oracle Clusterware Fails to Start on ASM Storage with SELinux Enabled ... 16
 2.2.26 Oracle RDBMS Server 11gR2 Preinstall Settings Not Visible After Installation ... 16
 2.2.27 Oracle VM 3.0 Guests Crash During Oracle Database Installation ... 16
 2.2.28 Oracle VM 3.3.1 32-bit Guests with UEK R2 Panic 16
 2.2.29 Paravirtualized Drivers in a Hardware Virtualized Guest 16
Preface

The Oracle Linux Release Notes provides a summary of the new features, changes, and fixed and known issues in Oracle Linux Release 6 Update 7.

Audience

This document is written for system administrators who want to install or update Oracle Linux. It is assumed that readers have a general understanding of the Linux operating system.

Document Organization

The document is organized as follows:

• Chapter 1, New Features and Changes contains a summary of the new features and changes in this release.

• Chapter 2, Fixed and Known Issues contains details of the fixed and known issues with the software.

• Chapter 3, Upgrading to Oracle Linux 6 Update 7 contains information about how to install updates on your system.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

The latest version of this document and other documentation for this product are available at:

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Chapter 1 New Features and Changes

Table of Contents

1.1 Supported Kernels ... 1
1.2 Unbreakable Enterprise Kernel Release 2 1
1.3 Unbreakable Enterprise Kernel Release 3 2
 1.3.1 Notable New Features of UEK R3 2
1.4 OpenSCAP .. 3
1.5 Load Balancing and High Availability 4
1.6 Hyper-V Daemons .. 4
1.7 Enhanced SSSD Support for Active Directory 4
1.8 Removing the RHCK from a System 5
1.9 Technology Preview Features ... 6
 1.9.1 Technology Preview Features in UEK R2 6
 1.9.2 Technology Preview Features in UEK R3 7
 1.9.3 Technology Preview Features in RHCK 7

This chapter describes the new features that are introduced by Oracle Linux 6 Update 7.

1.1 Supported Kernels

Oracle Linux 6 Update 7 ships with three sets of kernel packages:

• Unbreakable Enterprise Kernel Release 3 (kernel-uek-3.8.13-68.3.4.el6uek) for x86-64
• Unbreakable Enterprise Kernel Release 2 (kernel-uek-2.6.39-400.250.7.el6uek) for i386
• Red Hat Compatible Kernel (kernel-2.6.32-573.el6) for i386 and x86-64

By default, both the Unbreakable Enterprise Kernel and the Red Hat Compatible Kernel for the specific architecture (i386 or x86-64) are installed and the system boots the Unbreakable Enterprise Kernel.

The ISO image for Oracle Linux 6 Update 7 for i386 includes the Red Hat Compatible Kernel and the Unbreakable Enterprise Kernel Release 2 but not the Unbreakable Enterprise Kernel Release 3, which does not support i386.

The ISO image for Oracle Linux 6 Update 7 for x86-64 includes the Red Hat Compatible Kernel and the Unbreakable Enterprise Kernel Release 3 but not the Unbreakable Enterprise Kernel Release 2.

To make your system boot the Red Hat Compatible Kernel by default:

1. Edit /etc/grub.conf and change the value of the default parameter to indicate the Red Hat Compatible Kernel. (Each entry for a bootable kernel in the file starts with a title definition. The entries are effectively numbered from 0 upwards, where 0 corresponds to the first entry in the file, 1 to the second entry, and so on. To view the GRUB manual, use the info grub command.)

2. Edit /etc/sysconfig/kernel and change the setting for the default kernel package type from DEFAULTKERNEL=kernel-uek to DEFAULTKERNEL=kernel.

1.2 Unbreakable Enterprise Kernel Release 2

The Unbreakable Enterprise Kernel Release 2 (UEK R2) is based on the upstream kernel 3.0.36 stable source tree.
The Unbreakable Enterprise Kernel supports a wide range of hardware and devices. In close cooperation with hardware and storage vendors, a number of device drivers have been updated by Oracle in the 2.6.39-400 kernel. For details, see the Oracle Linux Unbreakable Enterprise Kernel Release 2 Quarterly Update 5 Release Notes.

1.3 Unbreakable Enterprise Kernel Release 3

The Unbreakable Enterprise Kernel Release 3 (UEK R3) is based on the upstream kernel 3.8.13 stable source tree. For more information about UEK R3, see the Oracle Linux Unbreakable Enterprise Kernel Release 3 Release Notes.

A very large number of changes have taken place in mainline Linux between 3.0.x, on which UEK R2 is based, and 3.8.13, on which UEK R3 is based. For details of all these changes, see the kernel change logs that the Linux Kernel Newbies maintain at http://kernelnewbies.org/LinuxVersions.

1.3.1 Notable New Features of UEK R3

UEK R3 includes the following major improvements over UEK R2:

- Integrated DTrace support in the UEK R3 kernel and user-space tracing of DTrace-enabled applications.
- Device mapper support for an external, read-only device as the origin for a thinly-provisioned volume.
- The `loop` driver provides the same I/O functionality as `dm-nfs` by extending the AIO interface to perform direct I/O. To create the loopback device, use the `losetup` command instead of `dmsetup`. The `dm-nfs` module is not provided with UEK R3.
- Btrfs `send` and `receive` subcommands allow you to record the differences between two subvolumes, which can either be snapshots of the same subvolume or parent and child subvolumes.
- Btrfs quota groups (`qgroups`) allow you to set different size limits for a volume and its subvolumes.
- Btrfs supports replacing devices without unmounting or otherwise disrupting access to the file system.
- Ext4 quotas are enabled as soon as the file system is mounted.
- TCP controlled delay management (`CoDel`) is a new active queue management algorithm that is designed to handle excessive buffering across a network connection (`bufferbloat`). The algorithm is based on how long packets are buffered in the queue rather than the size of the queue. If the minimum queuing time rises above a threshold value, the algorithm discards packets and reduces the transmission rate of TCP.
- TCP connection repair implements process checkpointing and restart, which allows a TCP connection to be stopped on one host and restarted on another host. Container virtualization can use this feature to move a network connection between hosts.
- TCP and STCP early retransmit allows fast retransmission (under certain conditions) to reduce the number of duplicate acknowledgements.
- TCP fast open (TFO) can speed up the opening of successive TCP connections between two endpoints by eliminating one round trip time (RTT) from some TCP transactions.
- The TCP small queue algorithm is another mechanism intended to help deal with bufferbloat. The algorithm limits the amount of data that can be queued for transmission by a socket.
- The secure computing mode feature (`seccomp`) is a simple sandbox mechanism that, in strict mode, allows a thread to transition to a state where it cannot make any system calls except from a very
restricted set (_exit(), read(), sigreturn(), and write()) and it can only use file descriptors that were already open. In filter mode, a thread can specify an arbitrary filter of permitted systems calls that would be forbidden in strict mode. Access to this feature is by using the \texttt{prctl()} system call. For more information, see the \texttt{prctl(2)} manual page.

- The OpenFabrics Enterprise Distribution (OFED) 2.0 stack supports the following protocols:
 - SCSI RDMA Protocol (SRP) enables access to remote SCSI devices via remote direct memory access (RDMA)
 - iSCSI Extensions for remote direct memory access (iSER) provide access to iSCSI storage devices
 - Reliable Datagram Sockets (RDS) is a high-performance, low-latency, reliable connectionless protocol for datagram delivery
 - Sockets Direct Protocol (SDP) supports stream sockets for RDMA network fabrics
 - Ethernet over InfiniBand (EoIB)
 - IP encapsulation over InfiniBand (IPoIB)
 - Ethernet tunneling over InfiniBand (eIPoIB)

The OFED 2.0 stack also supports the following RDS features:
- Async Send (AS)
- Quality of Service (QoS)
- Automatic Path Migration (APM)
- Active Bonding (AB)
- Netfilter (NF)

- Paravirtualization support has been enabled for Oracle Linux guests on Windows Server 2008 Hyper-V or Windows Server 2008 R2 Hyper-V.
- The Virtual Extensible LAN (VXLAN) tunneling protocol overlays a virtual network on an existing Layer 3 infrastructure to allow the transfer of Layer 2 Ethernet packets over UDP. This feature is intended for use by a virtual network infrastructure in a virtualized environment. Use cases include virtual machine migration and software-defined networking (SDN).

\textbf{Note}

The kernel version in UEK R3 is based on the mainline Linux kernel version 3.8.13. Low-level system utilities that expect the kernel version to start with 2.6 can run without change if they use the \texttt{UNAME26} personality (for example, by using the \texttt{uname26} wrapper utility, which is available in the \texttt{uname26} package).

For more information about the new functionality that UEK R3 provides, see the Oracle Linux Unbreakable Enterprise Kernel Release 3 Release Notes.

\subsection*{1.4 OpenSCAP}

The Open Security Content Automation Protocol (OpenSCAP) Guide package, \texttt{scap-security-guide}, provides guidance, baselines, and validation mechanisms for implementing security hardening of an Oracle
Linux 6 system. OpenSCAP includes the oscap utility that you use to test the security compliance of a system and produce an online report that describes security policy requirements and how your system measures up to these requirements. OpenSCAP allows you to check system compliance as required by your site security policy.

For more information, see Using OpenSCAP to Scan for Vulnerabilities in the Oracle Linux 6 Security Guide.

1.5 Load Balancing and High Availability

Oracle Linux 6 now includes the Keepalived and HAProxy technologies for balancing access to network services while maintaining continuous access to those services.

Keepalived uses the IP Virtual Server (IPVS) kernel module to provide transport layer (Layer 4) load balancing, redirecting requests for network-based services to individual members of a server cluster. IPVS monitors the status of each server and uses the Virtual Router Redundancy Protocol (VRRP) to implement high availability.

HAProxy is an application layer (Layer 7) load balancing and high availability solution that you can use to implement a reverse proxy for HTTP and TCP-based Internet services.

For more information, see Load Balancing and High Availability Configuration in the Oracle Linux 6 Administrator's Guide.

1.6 Hyper-V Daemons

The hyperv-daemons package, which includes the hypervfcopyd, hypervkvpd, and hypervvssd packages, provides the Hyper-V file-copy, key-value pair (KVP), and volume shadow copy service (VSS) daemons for an Oracle Linux guest that is running under Hyper-V on a Microsoft Windows host.

The file-copy daemon (hv_fcopy_daemon) implements a file-copying service (hypervfcopyd) between the host and a guest.

The KVP daemon (hv_kvp_daemon) implements the hypervkvpd service, which uses the virtual machine bus (VMbus) to send information about a guest to the host.

The VSS daemon (hv_vss_daemon) implements the hypervvssd service, which allows you to create snapshots and backups of volumes from the host without preventing processes that are running in a guest from writing to or reading from those volumes.

Reboot the guest after installing the package.

1.7 Enhanced SSSD Support for Active Directory

The System Security Services Daemon (SSSD) now supports the following features when using Oracle Linux clients with Active Directory (AD):

- Dynamic updates to DNS.
- Group and user lookups of NetBIOS names.
- Site discovery of domain controllers.
- User and group resolution and user authentication for trusted domains within a single AD forest.
1.8 Removing the RHCK from a System

If you need to remove the Red Hat Compatible Kernel (RHCK) from a system, you can use the `kernel-transition` package to prepare the system for removing the RHCK without removing dependent packages such as `bluez`, `fuse`, and `irqbalance` that might be needed for system operation. The `kernel-transition` package does not contain any files itself but instead it transfers the package dependencies from the `kernel` package to the `kernel-uek` package.

Note

You must have subscribed the system to be transitioned to the `ol6_latest` channel on ULN.

Because the `xorg-x11-drv-nouveau` package requires `kernel-drm-nouveau` version 16 but `kernel-uek` provides `kernel-uek-drm-nouveau` version 12, removing the RHCK also removes `xorg-x11-drv-nouveau`. If you use this procedure on systems with Nvidia graphics hardware, the graphical interface will become low resolution and slow.

To transition a system from the RHCK to the UEK:

1. **Install the `kernel-transition` package on the system:**

   ```
   # yum install kernel-transition
   
   This command changes the dependencies for important packages from the RHCK to the UEK.
   ```

2. **Remove the RHCK:**

   ```
   # yum remove kernel
   
   This command prompts you before removing remaining packages that depend on the RHCK.
   ```

 Caution

 When `yum` prompts you to remove a package, only remove packages that relate to the `kernel` package. If you are prompted to remove a package that your system requires, enter `n` to prevent the package being removed. You should also retain any other dependent packages.

 Running the `yum update` command subsequently will update only the UEK.

If you want to reinstall the RHCK, use the following command:

```
# yum install kernel
```

You can also use `kernel-transition` with kickstart installation. Include the following lines in the `%packages` section to install the `kernel-uek` and `kernel-transition` packages but not the `kernel` package:

```
-kernel
kernel-transition
```

If you create a customized installation ISO, you can replace the `kernel` package with `kernel-transition` so that dependency resolution will pull in `kernel-transition` instead of `kernel`. If `kernel-transition` is present on the installation media, it cannot be installed accidentally because it provides a kernel version that is lower than that of any RHCK.
1.9 Technology Preview Features

Technology Preview features are still under development but are made available for testing and evaluation purposes and to give the features wider exposure. These features are not supported under Oracle Linux support subscriptions and are not suitable for production use.

The following Technology Preview features are currently not supported under Oracle Linux 6 and might not be functionally complete:

- FS-Cache
- fsfreeze
- IPv6 support in IPVS
- LVM API
- LVM RAID support
- Open multicast ping (omping)
- System Information Gatherer and Reporter (SIGAR)
- Trusted Platform Module (TPM)
- Trusted Boot
- vios-proxy

1.9.1 Technology Preview Features in UEK R2

The following technology preview features are provided with UEK R2:

- **Distributed Replicated Block Device** (Oracle Linux 6 only)
 Distributed Replicated Block Device (DRBD) shared-nothing, synchronously replicated block device (RAID1 over network), designed to serve as a building block for high availability (HA) clusters. It requires a cluster manager (for example, pacemaker) to implement automatic failover.

- **Kernel module signing facility**
 Applies cryptographic signature checking to modules on module load, checking the signature against a ring of public keys compiled into the kernel. GPG is used to do the cryptographic work and determines the format of the signature and key data.

 The kernel module signing facility is a supported feature in the UEK R3 distribution.

- **Linux Containers** (Oracle Linux 6 and x86-64 only)
 Based on the Linux cgroups and name spaces functionality, Linux Containers (LXC) allow you to safely and securely run multiple applications or instances of an operating system on a single host without risking them interfering with each other. Containers are lightweight and resource-friendly, which saves both rack space and power. In order to get started with containers, you need to install the lxc package, which is included in the package repository of the Unbreakable Enterprise Kernel.

 LXC is a supported feature in the UEK R3 distribution.

- **Transcendent memory**
Transcendent Memory (tmem) provides a new approach for improving the utilization of physical memory in a virtualized environment by claiming underutilized memory in a system and making it available where it is most needed. From the perspective of an operating system, tmem is fast pseudo-RAM of indeterminate and varying size that is useful primarily when real RAM is in short supply. To learn more about this technology and its use cases, see the Transcendent Memory project page on oss.oracle.com: http://oss.oracle.com/projects/tmem/

1.9.2 Technology Preview Features in UEK R3

The following technology preview features are provided with UEK R3:

- **Distributed Replicated Block Device**

 Distributed Replicated Block Device (DRBD) shared-nothing, synchronously replicated block device (*RAID1 over network*), designed to serve as a building block for high availability (HA) clusters. It requires a cluster manager (for example, pacemaker) to implement automatic failover.

- **Transcendent memory**

 Transcendent Memory (tmem) provides a new approach for improving the utilization of physical memory in a virtualized environment by claiming underutilized memory in a system and making it available where it is most needed. From the perspective of an operating system, tmem is fast pseudo-RAM of indeterminate and varying size that is useful primarily when real RAM is in short supply. To learn more about this technology and its use cases, see the Transcendent Memory project page on oss.oracle.com: http://oss.oracle.com/projects/tmem/

1.9.3 Technology Preview Features in RHCK

The following Technology Preview features are available when running the Red Hat Compatible Kernel (RHCK):

- Apache IPA identity management modules
- Btrfs file system
- Closed Process Group (CPG) API for inter-node locking
- Corosync redundant ring with autorecovery

 `corosync-cpgtool` dual-ring configuration
- Cross Realm Kerberos Trust Functionality (relies on the Samba 4 client library)
- DIF/DIX support for SCSI

 dm-era is a device mapper target that records when blocks are written to a device and is typically intended for use by backup applications
- `fence_ipmilan` agent diagnostic pulse
- `fence_sanlock` agent for luci
- FUSE (Filesystem in Userspace)
- `keepalived` daemon for network load balancing and high availability
- Kerberos v1.10 DIR cache storage type to handle TGTs for multiple KDCs
Technology Preview Features in RHCK

- Kernel Media support
- *libqb* library for high performance logging, tracing, inter-process communication, and polling by Pacemaker
- Linux Containers (LXC)
- LVM metadata dynamic aggregation (using *lvmetad* daemon)
- LVM support for thinly-provisioned snapshots (single system only)
- LVM support for thinly-provisioned logical volumes (single system only)
- Pacemaker high-availability cluster manager
- *pcs* utility for cluster configuration and management
- Performance Co-Pilot (PCP) provides support for monitoring and managing performance at the system level
- Precision Time Protocol (PTP) *linuxptp* implementation
- PTP kernel driver support
- QFQ queuing discipline
- *rgmanager* support for disabling via `/etc/cluster.conf`
- Thin-provisioning and scalable snapshots
- *trousers* and *tpm-tools* packages that support Trusted Platform Module (TPM) hardware

Note

Btrfs and FUSE are supported features in the UEK R2 and UEK R3 distributions.
LXC is a supported feature in the UEK R3 distribution.
Chapter 2 Fixed and Known Issues

Table of Contents

2.1 Fixed Issues .. 10
 2.1.1 Receive Packet Steering Errors ... 10
 2.1.2 Using SELinux with Linux Containers .. 10
 2.1.3 XFS File System Panic .. 10
2.2 Known Issues .. 10
 2.2.1 avahi-daemon Fails to Start with UEK R2 ... 10
 2.2.2 Booting UEK R2 as a PVHVM Guest .. 10
 2.2.3 Btrfs File System Issues ... 11
 2.2.4 Console Appears to Hang when Booting ... 11
 2.2.5 Default I/O Scheduler .. 11
 2.2.6 Default NFS Mount Options ... 11
 2.2.7 Default Reverse Path Filtering Mode Affects Certain Oracle Products 11
 2.2.8 dm-cache and dm-era .. 11
 2.2.9 DTrace Issues ... 11
 2.2.10 Enabling FIPS Mode .. 12
 2.2.11 Error message Following First Reboot on an HP ProLiant Server 12
 2.2.12 ext4 Inline Data .. 13
 2.2.13 gcc-libraries Package .. 13
 2.2.14 ib_core Fails to Unload when the RDMA Service Is Stopped 13
 2.2.15 Incorrect Package Count ... 13
 2.2.16 Intel TCO Watchdog Timer Messages ... 13
 2.2.17 Journal Corruption in Virtualized Systems ... 13
 2.2.18 Kdump Service Configuration .. 14
 2.2.19 Kdump Service Cannot Be Enabled by Using system-config-kdump Under UEK R3 .. 14
 2.2.20 kernel-uek-headers Package .. 14
 2.2.21 Linux Containers (LXC) .. 14
 2.2.22 Mellanox ConnectX Drivers .. 15
 2.2.23 mlx4_core Conflicts Between the mlnx_en and ofa Packages 15
 2.2.24 mlx4_ib Insertion Error when RDMA Starts ... 15
 2.2.25 Oracle Clusterware Fails to Start on ASM Storage with SElinux Enabled 16
 2.2.26 Oracle RDBMS Server 11gR2 Preinstall Settings Not Visible After Installation . 16
 2.2.27 Oracle VM 3.0 Guests Crash During Oracle Database Installation 16
 2.2.28 Oracle VM 3.3.1 32-bit Guests with UEK R2 Panic .. 16
 2.2.29 Paravirtualized Drivers in a Hardware Virtualized Guest 16
 2.2.30 Post-Installation Anaconda Errors ... 16
 2.2.31 RHCK Panics When an ext4 File System Is Defragmented 17
 2.2.32 sched_yield() Settings for the Completely Fair Scheduler 17
 2.2.33 Setting the Serial Console in a Hardware Virtualized Guest 17
 2.2.34 Shared Receive Queue Panic .. 17
 2.2.35 Support for crashkernel=auto with Xen .. 17
 2.2.36 Support for Large Memory 32-bit Systems ... 18
 2.2.37 Unable to Register Oracle Linux Guest with ULN .. 18
 2.2.38 Unable to Register with ULN After First Reboot ... 18
 2.2.39 XFS File System Corruption .. 18
 2.2.40 xguest Package Not Installable with SElinux Disabled 18

This chapter describes the fixed and known issues for Oracle Linux 6 Update 7.
Important

Run the `yum update` command regularly to ensure that the latest bug fixes and security errata are installed on your system.

For details of the fixed and known issues with the Unbreakable Enterprise Kernel Release 3, see the Oracle Linux Unbreakable Enterprise Kernel Release 3 Release Notes.

For details of the fixed and known issues with the Unbreakable Enterprise Kernel Release 2 Quarterly Update 5, see the Oracle Linux Unbreakable Enterprise Kernel Release 2 Quarterly Update 5 Release Notes.

2.1 Fixed Issues

The following sections describe the major issues that are fixed in this update:

2.1.1 Receive Packet Steering Errors

Certain network operations that utilize receive packet steering could cause errors on the system. (Bug ID 11071685)

2.1.2 Using SELinux with Linux Containers

The correct operation of Linux Containers (LXC) no longer requires you to disable SELinux on the host system.

2.1.3 XFS File System Panic

Growing an XFS file system does not cause a system panic. (Bug ID 19247345, 19427033)

2.2 Known Issues

The following sections describe known issues in this update.

2.2.1 avahi-daemon Fails to Start with UEK R2

The `avahi-daemon` fails to start with UEK R2 and messages such as the following are logged:

```
avahi-daemon[PID]: SO_REUSEPORT failed: Protocol not available
avahi-daemon[PID]: Failed to create server: No suitable network protocol available
```

The workaround is to comment out the `disallow-other-stacks` entry in `/etc/avahi/avahi-daemon.conf` as shown here:

```
#disallow-other-stacks=yes
```

(Bug ID 19712845)

2.2.2 Booting UEK R2 as a PVHVM Guest

When booting UEK R2 as a PVHVM guest, you can safely ignore the kernel message `register_vcpu_info failed: err=-38`, which might be displayed. (Bug ID 13713774)
2.2.3 Btrfs File System Issues

For a description of the known issues for btrfs with Unbreakable Enterprise Kernel Release 2 Quarterly Update 5, see the Oracle Linux Unbreakable Enterprise Kernel Release 2 Quarterly Update 5 Release Notes.

For a description of the known issues for btrfs with Unbreakable Enterprise Kernel Release 3 Quarterly Update 5, see the Oracle Linux Unbreakable Enterprise Kernel Release 3 Quarterly Update 5 Release Notes.

2.2.4 Console Appears to Hang when Booting

On some hardware, the console may appear to hang during the boot process after starting udev. However, the system does boot properly and is accessible. A workaround to this problem is to add nomodeset as a kernel boot parameter in /etc/grub.conf. (Bug ID 10094052, 13485328)

2.2.5 Default I/O Scheduler

For the Unbreakable Enterprise Kernel, deadline is the default I/O scheduler.

For the Red Hat Compatible Kernel, cfq is the default I/O scheduler.

2.2.6 Default NFS Mount Options

By default, mount assumes NFS v4. To mount an NFS v3 volume (the default in Oracle Linux 5), use the following mount options:

```
-o vers=3,mountproto=tcp
```

2.2.7 Default Reverse Path Filtering Mode Affects Certain Oracle Products

Oracle Linux 6 defaults to reverse path filtering in strict mode. Some Oracle products and network storage devices work more reliably with reverse path filtering in loose mode. To enable loose mode, issue the following command (where iface is the network interface, for example, eth1).

```
# sysctl net.ipv4.conf.iface.rp_filter=2
```

The default setting is 1 for strict mode. (Bug ID 10649976)

2.2.8 dm-cache and dm-era

The UEK does not support the dm-cache and dm-era device mapper targets. (Bug ID 19611720)

2.2.9 DTrace Issues

- If you want to use the DTrace-enabled version of the UEK R2 kernel, subscribe your system to the Dtrace for Oracle Linux 6 (x86_64) - Latest channel (ol6_x86_64_Dtrace_latest) but not to the Oracle Linux 6 Dtrace Userspace Tools (x86_64) - Latest channel (ol6_x86_64_Dtrace_userspace_latest). The ol6_x86_64_Dtrace_userspace_latest channel is provided for use with UEK R3 and installs that kernel as a dependency.

- Using kill -9 to terminate dtrace can leave breakpoints outstanding in processes being traced, which might sooner or later kill them.

- Argument declarations for static probe definitions cannot be declared with derived types such as enum, struct, or union.
2.2.10 Enabling FIPS Mode

To make an Oracle Linux Release 6 Update 7 system compliant with Federal Information Processing Standard (FIPS) Publication 140-2, perform the following steps:

1. Install the `dracut-fips` package:

   ```bash
   # yum install dracut-fips
   ```

2. Recreate the `initramfs` file system:

   ```bash
   # dracut -f
   ```

3. Identify either the device file path (`device`) under `/dev` of your system's boot device or its UUID (`uuid`) by using `ls -l` to examine the entries under `/dev/disk/by-uuid`.

4. Add either a `boot=device` entry or a `boot=UUID=uuid` entry for the boot device to the `kernel` command line in `/etc/grub.conf`.

5. Add a `fips=1` entry to the `kernel` command line in `/etc/grub.conf` to specify strict FIPS compliance.

6. Disable prelinking by setting `PRELINKING=no` in `/etc/sysconfig/prelink`.

7. Remove all existing prelinking from binaries and libraries:

   ```bash
   # prelink -ua
   ```

8. Install the `openssh-server-fips` and `openssh-client-fips` packages and their dependent packages:

   ```bash
   # yum install openssh-server-fips openssh-client-fips
   ```

9. Shut down and reboot the system.

Note

If you specify `fips=1` on the kernel command line but omit a valid `boot=` entry, the system crashes because it cannot locate the kernel's `.hmac` file.

If you do not disable and remove all prelinking, users cannot log in and `/usr/sbin/sshd` does not start.

(Bug ID 17759117)

2.2.11 Error message Following First Reboot on an HP ProLiant Server

You might see a message similar to the following during the first reboot of an HP ProLiant server:

```
[Firmware Bug]: the BIOS has corrupted hw-PMU resources (MSR 186 is 43003c)
```

You can safely ignore this message. The functionality and performance of the operating system and the server are not affected.
2.2.12 ext4 Inline Data

The inline data feature that allows the data of small files to be stored inside their inodes is not yet available with the UEK. The -O inline_data option to the mkfs.ext4 and tune2fs commands is not supported. (Bug ID 17210654)

2.2.13 gcc-libraries Package

The gcc-libraries package has been replaced by individual packages for libatomic, libcilkrt5, and libitmed. (Bug ID 19829494)

2.2.14 ib_core Fails to Unload when the RDMA Service Is Stopped

If you stop the rdma service, the ib_core module fails to unload and the error Failed to unload ib_core is reported. If you change the configuration of the rdma service, you must reboot the system. (Bug ID 21411321)

2.2.15 Incorrect Package Count

Selecting all packages in certain groups during installation might not show the correct package count. (Bug ID 11684244)

2.2.16 Intel TCO Watchdog Timer Messages

Some server hardware does not support the Intel TCO watchdog driver. dmesg might display messages such as the following at boot time:

```
ITCO_vendor_support: vendor-support=0
ITCO_wdt: Intel TCO WatchDog Timer Driver v1.05
ITCO_wdt: failed to reset NO_REBOOT flag, reboot disabled by hardware
ITCO_wdt: No card detected
intel_rng: FWH not detected
```

To suppress this warning at boot time, disable the TCO watchdog timer driver by adding the following line to /etc/modprobe.d/blacklist-watchdog:

```
blacklist iTCO_wdt
```

2.2.17 Journal Corruption in Virtualized Systems

On virtualized systems that are built on Xen version 3, including all releases of Oracle VM 2 including 2.2.2 and 2.2.3, disk synchronization requests for ext3 and ext4 file systems result in journal corruption with kernel messages similar to the following being logged:

```
blkfront: barrier: empty write xvda op failed
blkfront: xvda: barrier or flush: disabled
```

In addition, journal failures such as the following might be reported:

```
Aborting journal on device xvda1
```

The workaround is to add the mount option barrier=0 to all ext3 and ext4 file systems in the guest VM before upgrading to UEK R3. For example, you would change a mount entry such as:

```
UUID=4e4287b1-87dc-47a8-b69a-075c7579eaf1 / ext3 defaults 1 1
```

so that it reads:
Kdump Service Configuration

This issue does not apply to Xen 4 based systems, such as Oracle VM 3. (Bug ID 17310816, 17313428)

2.2.18 Kdump Service Configuration

By default, the Kernel Dump service (Kdump) is enabled and configured for UEK R3 on x86-64 using the `crashkernel=auto` setting, but must be manually configured for UEK R2 on i386, which does not support `crashkernel=auto`.

The following boot-time message indicates that Kdump needs to be configured.

```
kdump: No crashkernel parameter specified for running kernel
```

To prevent this message from being displayed, use the Kernel Dump Configuration GUI (`system-config-kdump`) to configure or disable Kdump. (Bug ID 16242031)

2.2.19 Kdump Service Cannot Be Enabled by Using `system-config-kdump` Under UEK R3

The `system-config-kdump` utility fails to enable the kdump service when run under UEK R3. The following warning is reported.

```
libglade-WARNING ***: could not look up stock id 'Enable kdump'
```

The workaround is to configure the `kdump` service manually:

1. Add the `crashkernel` boot parameter to the kernel command line, for example:
   ```
crashkernel=448M
   ```
2. Enable the `kdump` service so that it starts when the system is next rebooted.
   ```
   # chkconfig kdump on
   ```
3. Shut down and reboot the system.
   ```
   # reboot
   ```
4. Verify that the `kdump` service is running.
   ```
   # service kdump status
   Kdump is operational
   ```

(Bug ID 21300512)

2.2.20 kernel-uek-headers Package

An updated `kernel-uek-headers` package is provided that reinstates `kernel-headers` to avoid certain build problems. This new version of `kernel-uek-headers` effectively hides older versions of the package in the repository. You no longer need to exclude `kernel-uek-headers` in the yum configuration for new installations if you had to do this previously. (Note that you do not require `kernel-uek-headers` to build kernel modules.) (Bug ID 19265353)

2.2.21 Linux Containers (LXC)

- The Linux Containers package (`lxc`) is available for the x86-64 architecture with UEK R3 but not i386.
The default location for a container’s configuration has changed from /etc/lxc/name to /container/name in lxc 0.8.0 onward.

To start a container that you created with a previous update of Oracle Linux, specify the -f option to lxc-start, for example:

```
# lxc-start -n ol6u3 -f /etc/lxc/ol6u3/config
```

To convert an existing container to use the new location:

1. Move the container’s configuration directory to /container/name:

```
# mv /etc/lxc/name /container
```

2. Edit the /container/name/config file and change the values of any lxc.rootfs and lxc.mount parameters to refer to /container instead of /etc/lxc.

For example, the config file might contain the following entries:

```
lxc.rootfs = /etc/lxc/example/rootfs
lxc.mount.entry=/lib /etc/lxc/example/rootfs/lib none ro,bind 0 0
lxc.mount.entry=/usr/lib /etc/lxc/example/rootfs/usr/lib none ro,bind 0 0
lxc.mount.entry=/lib64 /etc/lxc/example/rootfs/lib64 none ro,bind 0 0
lxc.mount.entry=/usr/lib64 /etc/lxc/example/rootfs/usr/lib64 none ro,bind 0 0
```

You would change these entries to read:

```
lxc.rootfs = /container/example/rootfs
lxc.mount.entry=/lib /container/example/rootfs/lib none ro,bind 0 0
lxc.mount.entry=/usr/lib /container/example/rootfs/usr/lib none ro,bind 0 0
lxc.mount.entry=/lib64 /container/example/rootfs/lib64 none ro,bind 0 0
lxc.mount.entry=/usr/lib64 /container/example/rootfs/usr/lib64 none ro,bind 0 0
```

After converting the container, you do not need to specify the -f option to lxc-start. (Bug ID 15967411)

• Attempting to create an lxc-oracle container on a remote file system mounted using NFS v4 fails. In addition, attempting to mount a remote file system using NFS v4 from within an lxc-oracle container also fails. The workaround is to use NFS v3 instead. (Bug ID 16316266)

2.2.22 Mellanox ConnectX Drivers

The Mellanox ConnectX core, Ethernet, and InfiniBand drivers are supported only for the x86-64 architecture. (Bug ID 16228063)

2.2.23 mlx4_core Conflicts Between the mlnx_en and ofa Packages

Both the mlnx_en and ofa packages contain mlx4_core. Only one of these packages should be installed. Attempting to install both packages on a single server results in a package conflict error. If you have a Mellanox Ethernet Controller, install mlnx_en. If you have a Mellanox InfiniBand Controller, install ofa. If your system has both controllers, use ofa as it supports both the Ethernet and InfiniBand controllers.

2.2.24 mlx4_ib Insertion Error when RDMA Starts

You can safely ignore the following error when the Oracle-supported RDMA service starts:

```
Loading OpenIB kernel modules: insmod: error inserting
'/lib/modules/3.8.13-68.3.4.el6uek.x86_64/kernel/drivers/infiniband/hw/mlx4/
```
Oracle Clusterware Fails to Start on ASM Storage with SELinux Enabled

2.2.25 Oracle Clusterware Fails to Start on ASM Storage with SELinux Enabled

If the SELinux policy packages have not been updated recently, Cluster Ready Services (CRS) might fail to start with messages such as the following in /var/log/messages:

```
SELinux is preventing /usr/lib/oracleasm/oracleasm-instantiate-disk from associate access on the filesystem DATA1.
```

The solution is to upgrade the `selinux-policy` and `selinux-policy-targeted` packages to ensure that you are running a version no earlier than 3.7.195.0.1.el6_4.5:

```
# yum update 'selinux-policy*'
```

After upgrading the packages, reboot the system. (Bug ID 13925445)

2.2.26 Oracle RDBMS Server 11gR2 Preinstall Settings Not Visible After Installation

On an x86-64 system, if you install the `pam.i386` package either manually or via a package dependency, and the `oracle-rdbms-server-11gR2-preinstall` package is also selected, this overwrites the settings for Oracle Database in `/etc/security/limits.conf`. This is most likely to occur during a Kickstart-automated installation that includes non-standard packages. To restore the settings, run the `oracle-rdbms-server-11gR2-preinstall-verify` script. (Bug ID 14212822)

2.2.27 Oracle VM 3.0 Guests Crash During Oracle Database Installation

PVHVM guests on Oracle VM 3.0 crash during Oracle Database installation if the value of the maximum memory (`maxmem`) parameter set for the guest is greater than the amount specified at boot time (`memory`). To avoid this issue, ensure that the values of the `maxmem` and `memory` parameters are the same. This issue has been resolved in Oracle VM 3.1.1. (Bug ID 13396734, 13970935)

2.2.28 Oracle VM 3.3.1 32-bit Guests with UEK R2 Panic

A panic can occur in 32-bit guests with UEK R2 on Oracle VM 3.3.1. (Bug ID 20057995)

2.2.29 Paravirtualized Drivers in a Hardware Virtualized Guest

The Unbreakable Enterprise Kernel adds support for PV drivers in an HVM guest (PVHVM) on Oracle VM. The default is to present only PV drivers when running in an HVM guest. To run `kernel-uek` fully hardware virtualized, including the drivers, add the parameter `xen_emul_unplug=never` to the boot parameters in `/etc/grub.conf`, for example:

```
kernels /vmlinuz-2.6.32-300.2.1.el6uek ro root=/dev/VolGroup00/LogVol100 xen_emul_unplug=never
```

Adding this parameter makes the kernel also present the emulated drivers as previously (for example, the `8139cp` network driver).

2.2.30 Post-Installation Anaconda Errors

In certain cases, after successfully completing installation and rebooting the system, it is possible for errors such as the following to occur:
RHCK Panics When an ext4 File System Is Defragmented

Error in sys.excepthook:

```
Traceback (most recent call last):
  File "/usr/lib/python2.6/site-packages/meh/handler.py", line 161, in (lambda)
    File "/usr/lib/anaconda/exception.py", line 44, in handleException
      File "/usr/lib/python2.6/site-packages/meh/handler.py", line 106, in handleException
        File "/usr/lib/anaconda/gui.py", line 1169, in mainExceptionWindow
    ImportError: No module named ui.gui
```

14:05:55 CRITICAL: anaconda 11.5.0.47 exception report

Traceback (most recent call first):

```
File "/usr/lib64/python2.6/site-packages/gtk-2.0/gtk/_lazyutils.py", line 32, in __getattr__
  File "/usr/lib/anaconda/gui.py", line 1453, in keyRelease
    if (event.keyval == gtk.keysyms.KP_Delete
        ImportError: No module named keysyms
```

These errors can safely be ignored.

2.2.31 RHCK Panics When an ext4 File System Is Defragmented

Under certain conditions, the RHCK can panic if an ext4 file system is defragmented. (Bug ID 21163148)

2.2.32 sched_yield() Settings for the Completely Fair Scheduler

For the Unbreakable Enterprise Kernel, the default setting is `kernel.sched_compat_yield=1`.

For the Red Hat Compatible Kernel, the default setting is `kernel.sched_compat_yield=0`.

2.2.33 Setting the Serial Console in a Hardware Virtualized Guest

To set the serial console in a hardware virtualized guest, use following settings in the guest:

- Add the following parameters to the kernel boot line in `/etc/grub.conf`:

  ```
  console=tty0 console=ttyS0,57600n8
  ```

- Add the following line to `/etc/securetty`:

  ```
  ttyS0
  ```

2.2.34 Shared Receive Queue Panic

Stopping or restarting the `rdma` service while the RDS Shared Receive Queue (SRQ; a feature of the OFED 2.0 stack) is in use can cause a system panic.

(Bug ID 20170251)

2.2.35 Support for crashkernel=auto with Xen

Xen does not support the `crashkernel=auto` parameter for Kdump configuration. If you use the `crashkernel` parameter, specify a suitable fixed-memory range. For example, `crashkernel=256M@64M`.

(Bug ID 18174580)
2.2.36 Support for Large Memory 32-bit Systems

Releases of Oracle Linux prior to Oracle Linux 5 supplied a *hugemem* kernel to allow a system to address up to 64 GB of memory in 32-bit mode. The *hugemem* kernel is no longer available in Oracle Linux 5 and later releases.

The Unbreakable Enterprise Kernel (UEK) supports a maximum of 16 GB of memory for 32-bit kernels on bare metal and hardware virtualized machine (HVM) systems, and 8 GB for fully paravirtualized machine (PVM) systems. 32-bit PVM guest operating systems must be located in the first 128 GB of physical memory on the host.

The Red Hat Compatible Kernel (RHCK) has the same limitations, except that PVM systems can have up to 16 GB of memory. The limitation of 8 GB for PVM on UEK was chosen for reasons of reliability.

A 32-bit system uses the PAE (physical address extension) memory feature to map physical memory beyond 4 GB into the 32-bit address space that is available to each process. A 64-bit system can address memory beyond 4 GB without requiring an extra layer of memory abstraction.

Oracle Linux on x86-64 includes 32-bit libraries, which allow applications built for both 64-bit and 32-bit Linux to run on the same system. This capability provides scalability to virtually unlimited memory sizes, while retaining the ability to run 32-bit applications. Oracle recommends this configuration for any system with more than 4 GB of memory. (Bug ID 16974301)

2.2.37 Unable to Register Oracle Linux Guest with ULN

Registering an Oracle Linux guest running under Virtual Box with the Unbreakable Linux Network (ULN) might fail with a server communication error. The workaround is to run the following command as root on the guest:

```
# echo "uuid=`uuidgen -t`" >> /etc/sysconfig/rhn/up2date
```

You can then run `uln_register` again. (Bug ID 14696776)

2.2.38 Unable to Register with ULN After First Reboot

Following the first reboot after installing Oracle Linux 6, you are prompted to register your system with ULN. If you did not configure your network during the installation, the registration process to ULN cannot succeed. To register your system, log in as root, configure the system's network manually, and run `uln_register`.

2.2.39 XFS File System Corruption

An XFS file system can become corrupted if all of its inodes are used. (Bug ID 19217280)

2.2.40 xguest Package Not Installable with SELinux Disabled

If the *xguest* package fails to install with a PREIN script error, enable SELinux by setting `SELINUX=enforcing` in `/etc/selinux/config`, reboot the system, and reinstall the *xguest* package. (Bug ID 13495388)
Chapter 3 Upgrading to Oracle Linux 6 Update 7

Table of Contents

3.1 Supported Upgrade Paths ... 19
3.2 Obtaining Oracle Linux 6 Update 7 Packages .. 19
 3.2.1 About the Unbreakable Linux Network .. 19
 3.2.2 About Public Yum .. 20
 3.2.3 About Oracle Linux Installation Media .. 21
3.3 Upgrading the Unbreakable Enterprise Kernel .. 22
3.4 Applying the Update ... 23

This chapter describes how to upgrade your system to Oracle Linux 6 Update 7.

3.1 Supported Upgrade Paths

On i386 systems, upgrading from Oracle Linux 6 GA or a previous update to Oracle Linux 6 is supported for the Unbreakable Enterprise Kernel Release 2 and the Red Hat Compatible Kernel. The Unbreakable Enterprise Kernel Release 3 is not supported on the i386 architecture.

On x86-64 systems, upgrading from a previous update to Oracle Linux 6 or from Oracle Linux 6 GA or is supported for the Unbreakable Enterprise Kernel Release 2, the Unbreakable Enterprise Kernel Release 3, and the Red Hat Compatible Kernel.

Upgrading from a beta release is not supported.

In-place upgrading from a major version of Oracle Linux 5 or earlier is not supported. Although Anaconda provides an option to perform an upgrade, fresh installation is strongly recommended.

If you have an Oracle Linux 5.8 system, you can use new features in the Unbreakable Enterprise Kernel Release 2 without upgrading to Oracle Linux 6 as Oracle Linux 5.8 includes the Unbreakable Enterprise Kernel Release 2. You cannot use features from the Unbreakable Enterprise Kernel Release 3 as this kernel is not available for Oracle Linux 5.8.

3.2 Obtaining Oracle Linux 6 Update 7 Packages

You can download a full Oracle Linux installation media image from the Oracle Software Delivery Cloud at http://edelivery.oracle.com/linux. You can also obtain Oracle Linux packages from the Unbreakable Linux Network (ULN) and the Oracle Public Yum server.

3.2.1 About the Unbreakable Linux Network

You have the option of registering a system with ULN when you install Oracle Linux 6 on a system. To register with ULN after installation, use the uln_register command.

To obtain Oracle Linux updates from ULN, you must have an Oracle Linux support subscription. For more information about ULN, see http://linux.oracle.com.

From Oracle Linux 6 Update 5, ULN registration subscribes a server to the Oracle Linux 6 latest channel and either the UEK R2 latest channel (ol6_i386_UEK_latest) for i386 or the UEK R3 latest channel (ol6_UEKR3_latest) for x86-64.
If you want to install UEK R3 on a ULN-registered x86-64 system that is currently running UEK R2, manually subscribe the system to the UEK R3 latest channel ([ol6_UEKR3_latest](#)) and unsubscribe the server from the UEK R2 latest channel ([ol6_x86_64_UEK_latest](#)) before running `yum update`.

ULN also provides channels for Oracle-specific software packages such as Oracle’s *ASMlib* user-space package and the Oracle Instant Client. To enable access to these packages, log in to ULN and subscribe your system to the Oracle Software channel.

3.2.2 About Public Yum

Oracle also provides all errata and updates for Oracle Linux via the Public Yum service, which includes updates to the base distribution, but does not include Oracle-specific software. You do not require an Oracle Linux support subscription to use this service. For more information on how to obtain updates from Public Yum, see http://public-yum.oracle.com.

By default, all new installations of Oracle Linux 6 Update 7 are automatically configured to use the public yum update service. If you subsequently register the system with ULN, the public yum service is automatically disabled.

The following entries in the `/etc/yum.repos.d/public-yum-ol6.repo` file enable you to download the latest available packages for Oracle Linux 6 and UEK R2:

```
[ol6_latest]
name=Oracle Linux $releasever Latest ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol6_UEK_latest]
name=Latest Unbreakable Enterprise Kernel for Oracle Linux $releasever ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

The following entries in the `/etc/yum.repos.d/public-yum-ol6.repo` file enable you to download the latest available packages for Oracle Linux 6 and UEK R3:

```
[ol6_latest]
name=Oracle Linux $releasever Latest ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

[ol6_UEKR3_latest]
name=Latest Unbreakable Enterprise Kernel Release 3 for Oracle Linux $releasever ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

Note

The [ol6_UEKR3_latest](#) repository is not available for i386 systems.

If you want to install packages from the playground or OFED repositories, add the following entries and enable them by setting the value of `enabled` to 1:

```
[ol6_playground_latest]
```
About Oracle Linux Installation Media

Oracle Linux 6 Update 7 contains three distinct repository sources on the installation media for the Unbreakable Enterprise Kernel Release 2, the Unbreakable Enterprise Kernel Release 3, and the Red Hat Compatible Kernel.

To configure `yum` to use both an Unbreakable Enterprise Kernel Release 2 and the Red Hat Compatible Kernel repositories from an ISO image of the installation media, create the file `/etc/yum.repos.d/Media.repo` containing entries similar to the following:

```
[ol6_base_media]
name=Oracle Linux 6 Update 7 Base Media
baseurl=file:///media/ISOimage/Server
gpgkey=file:///media/ISOimage/RPM-GPG-KEY
gpgcheck=1
enabled=1
```

```
[ol6_uek_media]
name=Oracle Linux 6 Update 7 UEK Media
baseurl=file:///media/ISOimage/UEK2
gpgkey=file:///media/ISOimage/RPM-GPG-KEY
gpgcheck=1
enabled=1
```

To configure `yum` to use both an Unbreakable Enterprise Kernel Release 3 and the Red Hat Compatible Kernel repositories from an ISO image of the installation media, create the file `/etc/yum.repos.d/Media.repo` containing entries similar to the following:

```
[ol6_base_media]
name=Oracle Linux 6 Update 7 Base Media
baseurl=file:///media/ISOimage/Server
gpgkey=file:///media/ISOimage/RPM-GPG-KEY
gpgcheck=1
```

Note

On a freshly installed Oracle Linux 6 Update 7 system, the `public-yum-ol6.repo` file uses the variables `uek` and `uekr3` to enable or disable `ol6_UEK_latest` and `ol6_UEKR3_latest`. For an i386 system, the value of `uek` is set to 1 in `/etc/yum-vars/uek` to enable `ol6_UEK_latest` and the value of `uekr3` is set to 0 in `/etc/yum-vars/uekr3` to disable `ol6_UEKR3_latest`. For an x86-64 system, the value of `uekr3` is set to 1 in `/etc/yum-vars/uekr3` to enable `ol6_UEKR3_latest` and the value of `uek` is set to 0 in `/etc/yum-vars/uek` to disable `ol6_UEK_latest`.

If you subsequently register the system with ULN, the repository entries in `public-yum-ol6.repo` are disabled and the values of both `uek` and `uekr3` are set to 0.
Upgrading the Unbreakable Enterprise Kernel

 enabled=1

[ol6_uekr3_media]
name=Oracle Linux 6 Update 7 UEK Media
baseurl=file:///media/ISOimage/UEK3
gpgkey=file:///media/ISOimage/RPM-GPG-KEY
gpgcheck=1
enabled=1

Note
The ol6_uekr3_media repository is not available for i386 systems.

Adjust the value of the baseurl and gpgkey parameters to match the mount point of the ISO image on your system. If you do not require one of the repositories, set the value of the corresponding enabled parameter to 0.

3.3 Upgrading the Unbreakable Enterprise Kernel

Oracle Linux 6 Update 7 ships with the latest Unbreakable Enterprise Kernel Release 2 for i386 and Unbreakable Enterprise Kernel Release 3 for x86-64. If you upgrade your system from the installation media, there are four upgrade scenarios:

- If the UEK R2 or UEK R3 is not currently installed on the system, only the latest Red Hat Compatible Kernel is installed. The UEK R2 or UEK R3 kernel is not installed.
- If UEK R2 is currently installed on an i386 system, the latest version of the UEK R2 kernel is installed.
- If UEK R2 is currently installed on an x86-64 system and you upgrade using the Oracle Linux 6 Update 7 installation media for x86-64, which do not contain a UEK R2 repository, the latest version of UEK R2 is not installed.
- If UEK R3 is currently installed on an x86-64 system, the latest version of the UEK R3 kernel is installed.

yum uses whatever repositories you have configured on your system to upgrade it. You can find the latest UEK R2 packages in the ol6_i386_UEK_latest and ol6_x86_64_UEK_latest repositories and the latest UEK R3 packages in the ol6_UEKR3_latest repository.

If you want to install the latest UEK R2 kernel on an i386 or x86-64 system, subscribe your system to the ol6_i386_UEK_latest or ol6_x86_64_UEK_latest channel on ULN, or configure the repository in the /etc/yum.repos.d/public-yum-ol6.repo file as shown here:

[ol6_UEK_latest]
name=Latest Unbreakable Enterprise Kernel for Oracle Linux $releasever ($basearch)
gpgcheck=1
enabled=1

If you want to update an x86-64 system to use the latest UEK R3 kernel, subscribe your system to the ol6_x86_64_UEKR3_latest channel on ULN, or configure the repositories in the /etc/yum.repos.d/public-yum-ol6.repo file as shown here:

[ol6_UEKR3_latest]
name=Latest Unbreakable Enterprise Kernel Release 3 for Oracle Linux $releasever ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

gpgcheck=1
enabled=1
3.4 Applying the Update

Once you have set up the ULN channels, Public Yum repositories, or installation media repositories that yum should use, you can update all installed packages by running the following command:

```
$ yum update
```

This command upgrades your system to Update 7.

You can use the following command to update a specific package:

```
$ yum update package
```

For example, to update the Z-shell package (zsh), you would enter:

```
$ yum update zsh
```

For more information, see the yum(8) manual page.
Appendix A Packages

Table of Contents

A.1 Packages Added to the Upstream Release ... 25
A.2 Packages Modified from the Upstream Release ... 25
A.3 Packages Removed from the Upstream Release ... 30
A.4 Packages Added by Oracle .. 31

The following sections list the packages that have been added to, modified from, or removed from the upstream release, or which have been added to the base release by Oracle.

A.1 Packages Added to the Upstream Release

The following packages have been added to the upstream release:

- clufter
- libgovirt1shw
- python-argparse
- python-backports
- python-backports-ssl_match_hostname
- python-chardet
- python-requests
- python-six
- python-urllib3
- redhat-access-insights
- rest satyr
- scap-workbench

A.2 Packages Modified from the Upstream Release

The following packages have been modified from the upstream release:

- abrt
- anaconda
- autofs
- basesystem
- bfa-firmware
- bind
• boost
• britty
• btrfs-progs
• compat-glibc
• coreutils
• cpuspeed
• crash
• createrepo
• dbus
• device-mapper-multipath
• dhcp
• dracut
• e2fsprogs
• efax
• firefox
• firstaidkit
• firstboot
• fuse
• gdm
• git
• glusterfs
• gnome-desktop
• grub
• grubby
• gstreamer
• httpd
• hypervkvpd
• initscripts
• iptables
• irqbalance
• iscsi-initiator-utils
• java-1.6.0-openjdk
• java-1.7.0-openjdk
• kabi-whitelists
• kabi-yum-plugins
• kdeadmin
• kdebase
• kdebase-workspace
• kdelibs
• kde-settings
• kexec-tools
• ksc
• libitm
• libreoffice
• libreport
• libvirt
• libxml2
• libxslt
• luci
• mkbootdisk
• module-init-tools
• net-snmp
• netxen-firmware
• nmap
• nss
• ocaml-libvirt
• openmpi
• openoffice.org
• openscap
• openssl098e
• oprofile
• PackageKit
• pango
• pcs
• pilot-link
• piranha
• plymouth
• policycoreutils
• procps
• publican
• python
 python-virtinst
• ql2400-firmware
• ql2500-firmware
• qperf
• qpid-cpp
• qpid-qmf
• rdma
• redhat-bookmarks
• redhat-indexhtml
• redhat-lsb
• redhat-release-server
• redhat-rpm-config
• rhn-client-tools
• rhnlib
• rhnsd
• rpmdevtools
• rsyslog
• samba
• sanlock
Packages Modified from the Upstream Release

- `scap-security-guide`
- `scsi-target-utils`
- `selinux-policy`
- `setroubleshoot`
- `setroubleshoot-plugins`
- `sos`
- `system-config-date`
- `system-config-date-docs`
- `system-config-kickstart`
- `system-config-network`
- `system-config-services`
- `system-config-services-docs`
- `system-config-users-docs`
- `system-icon-theme`
- `systemtap`
- `tar`
- `thunderbird`
- `tog-pegasus`
- `udev`
- `util-linux-ng`
- `wireshark`
- `xfsdump` *(x86-64 only)*
- `xfsprogs` *(x86-64 only)*
- `xkeyboard-config`
- `xsane`
- `xulrunner`
- `yum`
- `yum-rhn-plugin`
- `yum-utils`

Unless otherwise noted, changes relate to branding, trademark usage, or user-interface modifications.
A.3 Packages Removed from the Upstream Release

The following packages from the upstream release are not included:

- iprutils
- libehca
- libica
- libreport-plugin-rhtsupport
- librtas
- libservicelog
- libvpd
- lsvpd
- openssl-ibmca
- powerpc-utils
- ppc64-diag
- ppc64-utils
- publican-redhat
- python-rhsmm
- Red_Hat_Enterprise_Linux-Release_Notes-6-as-IN
- Red_Hat_Enterprise_Linux-Release_Notes-6-bn-IN
- Red_Hat_Enterprise_Linux-Release_Notes-6-de-DE
- Red_Hat_Enterprise_Linux-Release_Notes-6-en-US
- Red_Hat_Enterprise_Linux-Release_Notes-6-es-ES
- Red_Hat_Enterprise_Linux-Release_Notes-6-fr-FR
- Red_Hat_Enterprise_Linux-Release_Notes-6-gu-IN
- Red_Hat_Enterprise_Linux-Release_Notes-6-hi-IN
- Red_Hat_Enterprise_Linux-Release_Notes-6-it-IT
- Red_Hat_Enterprise_Linux-Release_Notes-6-ja-JP
- Red_Hat_Enterprise_Linux-Release_Notes-6-ko-KR
- Red_Hat_Enterprise_Linux-Release_Notes-6-m1-IN
- Red_Hat_Enterprise_Linux-Release_Notes-6-mr-IN
A.4 Packages Added by Oracle

The following packages have been added to the base release by Oracle:

- **dtrace-modules-3.8.13-68.3.4.el6uek** (x86-64 only)
- **kernel-uek** (2.6.39 for i386 and 3.8.13 for x86-64)
- **libdtrace-ctf** (x86-64 only)
- **lxc** (x86-64 only)
- **ocfs2-tools**
- **oracleasm-support**
- **oraclelinux-release**
• `oraclelinux-release-notes-6Server`
• `oracle-logos`
• `oracle-rdbms-server-11gR2-preinstall`
• `oracle-rdbms-server-12cR1-preinstall`
• `relink`
• `uname26 (x86-64 only)`
• `yum-plugin-uhninfo`
Appendix B Deprecated Packages

The following packages and components have been deprecated in this release. These packages might not receive future updates or they might be removed from the distribution altogether. You should consider using alternative solutions.

- fence_scsi
- libvirt-qpid
- mingw
- openscap-perl
- python-qmf
- python-qpid
- qemu-kvm
- qpid-cpp
- qpid-qmf
- qpid-tests
- qpid-tools
- ruby-qpid
- saslwrapper
- virtio-win