This document describes how to use Spacewalk 2.2 to provision and manage Spacewalk clients.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>1 Using the Spacewalk Web Interface and spacecmd</td>
<td>1</td>
</tr>
<tr>
<td>1.1 About the Spacewalk Web Interface</td>
<td>1</td>
</tr>
<tr>
<td>1.2 About spacecmd</td>
<td>8</td>
</tr>
<tr>
<td>2 Creating Software Channels and Repositories</td>
<td>11</td>
</tr>
<tr>
<td>2.1 About Channel Configuration</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Configuring Software Channels for ULN</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Configuring Software Channels to Obtain Packages from Oracle Public Yum</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Oracle Linux 7 software channels</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 Oracle Linux 6 Software Channels</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3 Oracle Linux 5 Software Channels</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Working with Repositories</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Working with Repositories Using the Spacewalk Web Interface</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Working with Repositories Using spacecmd</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Working with Software Channels</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1 Working with Software Channels Using the Spacewalk Web Interface</td>
<td>18</td>
</tr>
<tr>
<td>2.5.2 Working with Software Channels Using spacecmd</td>
<td>20</td>
</tr>
<tr>
<td>2.6 Synchronizing Software Channels</td>
<td>21</td>
</tr>
<tr>
<td>2.6.1 Synchronizing Software Channels Using the Spacewalk Web Interface</td>
<td>22</td>
</tr>
<tr>
<td>2.6.2 Synchronizing Software Channels using spacecmd</td>
<td>23</td>
</tr>
<tr>
<td>2.6.3 Synchronizing Software Channels using spacewalk-repo-sync</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Cloning Software Channels</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1 Cloning Software Channels Using the Spacewalk Web Interface</td>
<td>25</td>
</tr>
<tr>
<td>2.7.2 Cloning Software Channels Using spacecmd</td>
<td>26</td>
</tr>
<tr>
<td>2.7.3 Cloning Software Channels by Date Using spacewalk-clone-by-date</td>
<td>27</td>
</tr>
<tr>
<td>3 Creating Activation Keys</td>
<td>29</td>
</tr>
<tr>
<td>3.1 Working with Activation Keys Using the Spacewalk Web Interface</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Working with Activation Keys Using spacecmd</td>
<td>31</td>
</tr>
<tr>
<td>4 Provisioning Client Systems</td>
<td>33</td>
</tr>
<tr>
<td>4.1 About Kickstart Trees, Distributions, and Profiles</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Setting up Kickstart Trees</td>
<td>34</td>
</tr>
<tr>
<td>4.3 Working with Kickstart Distributions</td>
<td>35</td>
</tr>
<tr>
<td>4.3.1 Working with Kickstart Distributions Using the Spacewalk Web Interface</td>
<td>35</td>
</tr>
<tr>
<td>4.3.2 Working with Kickstart Distributions Using spacecmd</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Working with Kickstart Profiles</td>
<td>37</td>
</tr>
<tr>
<td>4.4.1 Working with Kickstart Profiles Using the Spacewalk Web Interface</td>
<td>38</td>
</tr>
<tr>
<td>4.4.2 Working with Kickstart Profiles Using spacecmd</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Installing Client Systems Using Kickstart</td>
<td>45</td>
</tr>
<tr>
<td>4.5.1 Configuring Cobbler and DHCP to Support Network Booting</td>
<td>45</td>
</tr>
<tr>
<td>4.5.2 Adding a PXE Client to be Provisioned by Spacewalk</td>
<td>47</td>
</tr>
<tr>
<td>4.5.3 About Boot-Loader Configuration Files</td>
<td>49</td>
</tr>
<tr>
<td>4.5.4 Configuring DHCP to Support iPXE Clients</td>
<td>51</td>
</tr>
<tr>
<td>4.6 Creating a Kickstart Profile in Cobbler</td>
<td>53</td>
</tr>
<tr>
<td>4.6.1 Adding a PXE Client to be Provisioned by Cobbler</td>
<td>55</td>
</tr>
<tr>
<td>4.6.2 Removing a PXE Client Definition from Cobbler</td>
<td>57</td>
</tr>
<tr>
<td>5 Registering Client Systems</td>
<td>59</td>
</tr>
<tr>
<td>5.1 Registering a Client System Using Kickstart</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Installing the Spacewalk Client Software and Registering a Client System Using rhnreg_ks</td>
<td>59</td>
</tr>
<tr>
<td>5.3 Registering a Client System Using rhnreg_ks Without First Installing the Spacewalk Client Software</td>
<td>60</td>
</tr>
<tr>
<td>6 Configuring Client Systems for Remote Management</td>
<td>63</td>
</tr>
</tbody>
</table>
6.1 Enabling the OSA Daemon in a Kickstart Profile Using the Spacewalk Web Interface 63
6.2 Enabling the OSA Daemon in a Kickstart File ... 63
6.3 Enabling the OSA Daemon Manually ... 64
6.4 Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface 64
6.5 Enabling Remote Configuration in a Kickstart File ... 65
6.6 Enabling Remote Configuration Manually ... 65

7 Querying the Status of Client Systems ... 67
 7.1 Querying the Status of a Client System Using the Spacewalk Web Interface 67
 7.2 Querying the Status of a Client System in spacecmd ... 68

8 Configuring System Groups to Manage Client Systems .. 69
 8.1 Working with System Groups Using the Spacewalk Web Interface 69
 8.2 Working with System Groups Using spacecmd ... 70
 8.3 Searching for Systems Using spacecmd .. 72

9 Updating Client Systems ... 73
 9.1 Subscribing Client Systems to Software Channels Using the Spacewalk Web Interface 73
 9.2 Subscribing Client Systems to Software Channels Using spacecmd 74
 9.3 Listing and Applying Available Security Updates and Other Errata Using the Spacewalk Web Interface ... 76
 9.4 Listing and Applying Available Security Updates and Other Errata Using spacecmd 77
 9.5 Managing Packages for Systems Using the Spacewalk Web Interface 80
 9.6 Managing Packages for Systems Using spacecmd .. 82
 9.7 Managing Packages for System Groups Using the Spacewalk Web Interface 84
 9.8 Managing Packages for System Groups Using spacecmd ... 86

10 Controlling and Configuring Client Systems .. 89
 10.1 Running Command Scripts on Remote Client Systems Using the Spacewalk Web Interface 89
 10.2 Running Command Scripts on Remote Client Systems Using spacecmd 90
 10.3 Working with Scheduled Events ... 91
 10.4 Working with Configuration Channels ... 91
 10.4.1 Working with Configuration Channels Using the Spacewalk Web Interface 92
 10.4.2 Defining Custom Information Keys Using the Spacewalk Web Interface 93
 10.4.3 Working with Configuration Channels Using spacecmd 94
 10.4.4 Defining Custom Information Keys Using spacecmd .. 95
 10.4.5 Subscribing Client Systems to Configuration Channels Using the Spacewalk Web Interface ... 95
 10.4.6 Subscribing Client Systems to Configuration Channels Using spacecmd 96
 10.4.7 Deploying Configuration Files to Client Systems Using the Spacewalk Web Interface ... 97
 10.4.8 Deploying Configuration Files to Client Systems Using spacecmd 98

11 Performing OpenSCAP Auditing of Client Systems ... 99
 11.1 Performing OpenSCAP Auditing of Client Systems Using the Spacewalk Web Interface 99
 11.2 Performing OpenSCAP Auditing of Client Systems Using spacecmd 100

12 Configuring Ksplice Offline Client for Client Systems ... 103
 12.1 Supported Kernels ... 103
 12.2 Configuring a Spacewalk Server to Act as a Ksplice Mirror 104
 12.3 Provisioning Client Systems as Ksplice Offline Clients ... 104
 12.4 Configuring Existing Client Systems as Ksplice Offline Clients 105

A Kickstart Options .. 107
B Sample Package Lists .. 111
C Configuration File Macros .. 113
D Spacewalk XML/RPC API .. 115
Preface

The Spacewalk 2.2 for Oracle Linux Client Life Cycle Management Guide describes how to use the Spacewalk 2.2 web interface and spacecmd command-line utility to provision and manage Spacewalk clients.

Audience

This document is written for system administrators who want to use Spacewalk to manage Oracle Linux systems. It is assumed that readers have a general understanding of the Linux operating system.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Chapter 1 Using the Spacewalk Web Interface and spacecmd

You can use the Spacewalk Web Interface or the spacecmd command to administer Spacewalk.

You can also create your own web and command interfaces by using the Spacewalk XML/RPC API. For more information, see Appendix D, Spacewalk XML/RPC API.

1.1 About the Spacewalk Web Interface

When you install a Spacewalk server, you are prompted to set up the main Spacewalk administrator account.

Installation complete.
Visit https://swksvr.mydom.com to create the Spacewalk administrator account.

Point your browser at the specified URL, create the account, and log in to Spacewalk.

Note
If you are using the self-signed SSL certificate generated during the installation, create an exemption for the Spacewalk server.

The Spacewalk web interface menu header provides the following administrative areas that you can select. The default page for each menu item displays summary information. You can obtain more detailed information or perform actions on the items by selecting items from the left-hand menu or tab views on a page.
The default Overview page presents a dashboard view of the state of the Spacewalk server. The page displays important information about systems that are inactive or in a critical state, recently scheduled actions, relevant security errata that you can apply to your systems, and lists of system groups and recently registered systems. The page also provides links to administrative tasks.

Refer to the Overview Legend pane for the meaning of any icons that the page displays for a system.

To customize the layout of the Overview page:

1. Select **Your Preferences**.
2. On the Your Preferences page in the "Overview" Start Page section, select or deselect the check boxes against the information that you want or do not want the page to display.

 You can configure other preferences on this page, such as whether to receive email notifications, the number of entries per page in lists, and the separator character for CSV files.
3. To save your changes, click **Save Preferences**.
The System Overview page displays a summary of the numbers of available updates, errata, packages, configuration files, and crashes, the name of the base channel, and the entitlements for each managed client system.

Refer to the System Legend pane for the meaning of any icons that the page displays for a system.
Errata

Figure 1.3 Errata Relevant to Your Systems Page

The Errata Relevant to Your Systems page displays information about the errata that are available for your registered systems.

Refer to the Errata Legend pane for the meaning of any icons that the page displays for a system.
 Channels

Figure 1.4 Full Software Channel List Page

The Full Software Channel List page displays the channels to which you can subscribe your registered systems. By default, only the base channels are shown. To display the child channels, click + next to the name of the base channel.

Audit

Figure 1.5 OpenSCAP Scans Page

The OpenSCAP Scans page displays a summary of any scans that you have performed on your systems.
Configuration

Figure 1.6 Configuration Overview Page

The Configuration Overview page displays a summary of the configuration files known to Spacewalk, links to actions you can perform with configuration files, and scheduled deployments of configuration files.

Schedule

Figure 1.7 Pending Actions Page

The Pending Actions page displays a list of actions that are scheduled to be performed.
The Active Users page displays a list of administrators or other users and their allocated roles.

The Spacewalk Administrator role permits a user to perform all actions in Spacewalk.

The Organization Administrator role can be configured to grant one or more of the following roles to a user who has administrative access to one or more organizations:

- System Group Administrator
- Channel Administrator
- Activation Key Administrator
- Configuration Administrator
- Monitoring Administrator

A read-only API user has limited access to the XML/RPC API but cannot access the web interface.
About spacecmd

The Organizations page displays the organizations that you have configured the Spacewalk server to administer and the number of systems, Spacewalk administrator users, and trusts that are configured for the system. If trust is enabled, you can share content and move systems between organizations.

1.2 About spacecmd

The `spacecmd` utility provides a command-line interface that you can use to perform most of the actions that you can perform using the web interface.

You can run `spacecmd` either directly on the Spacewalk server or remotely. If you run `spacecmd` remotely, specify the server by its IP address or resolvable domain name, for example:

```
$ spacecmd -s swksvr.mydom.com
Welcome to spacecmd, a command-line interface to Spacewalk.
```

Type: 'help' for a list of commands
 'help <cmd>' for command-specific help
 'quit' to quit

Spacewalk Username: `swadmin`
Spacewalk Password: `password`
INFO: Connected to https://swksvr.mydom.com/rpc/api as `swadmin`

Note
You must authenticate yourself as a Spacewalk user with an assigned role with sufficient privileges to perform the requested actions.

As an alternative to entering the Spacewalk user name and password at the prompts, you can use the `-u` and `-p` options to specify these values.

To display a list of `spacecmd` shell commands, type `help`.

To display more help about a command, type `help command`.

To exit the shell, type `exit` or `quit`.

`spacecmd` attempts `[Tab]` completion of partial commands or arguments.

You can run `spacecmd` as an interactive shell or non-interactively. This guide includes examples of using the interactive shell. If you want to run `spacecmd` non-interactively, specify the `spacecmd` shell command and its arguments after a `--` delimiter, for example:

```
$ spacecmd -s swksvr.mydom.com -u swuser -p password --
softwarechannel_create -l oraclelinux6-u6-x86_64-patch
   -n "Oracle Linux 6 Update 6 x86_64 Patch Channel"
   -p oraclelinux6-u6-x86_64 -- x86_64
INFO: Spacewalk Username: `swuser`
INFO: Connected to https://swksvr.mydom.com/rpc/api as `swuser`
```

```
$ spacecmd -s swksvr.mydom.com -u swuser -p password -q --
softwarechannel_list oraclelinux6-u6-x86_64-patch
```

```
$ spacecmd -s swksvr.mydom.com -u swadmin -p swadmin -q -y --
softwarechannel_delete oraclelinux6-u6-x86_64-patch
Channels
--------
oraclelinux6-u6-x86_64-patch
```

```
$ spacecmd -s swksvr.mydom.com -u swadmin -p swadmin -q --
softwarechannel_list oraclelinux6-u6-x86_64-patch
```
The `-q` option suppresses informational messages. The `-y` option specifies that you would answer `yes` to all prompts to confirm that you want to delete or change data. By default, `spacecmd` assumes the answer `no`.

For more information, see the `spacecmd(1)` manual page.
Chapter 2 Creating Software Channels and Repositories

This chapter describes how to create software channels in Spacewalk to which client systems can subscribe and obtain packages and errata. Each channel is associated with at least one repository, which defines the source of the packages and errata. The examples shown in this section are for the Unbreakable Linux Network (ULN) and Oracle Public Yum but you can use Spacewalk to obtain software packages from other external or internal sources.

2.1 About Channel Configuration

ULN provides an olN_arch_latest repository, which includes all packages for an Oracle Linux release. It also provides base and patch channels for each update of an Oracle Linux release. Depending on the Oracle Linux release, other channels might provide the latest packages for additional features such as DTrace user-space, Ksplice, and OFED.

Oracle Public Yum provides a public_olN_latest repository, which includes all packages for an entire Oracle Linux release in addition to a public_olN_un_base repository for each update. Unlike ULN, Oracle Public Yum does not provide patch channels for updates.

Some channels, such as those for Spacewalk Client and Spacewalk Server, are available on Oracle Public Yum but not on ULN. Other channels, such as those for DTrace user-space, Ksplice, and OFED packages, are available on ULN but not on Oracle Public Yum.

Oracle recommends that you design a channel configuration that is based on your own work flow. For example, if you intend to use Spacewalk's channel cloning feature to promote systems from development through testing to production, you could configure a base channel and child patch channel together with other child channels.

Avoid cloning latest channels as this takes a long time given that these channels are usually very large. If you duplicate child channels, you do not need to duplicate their repositories. These channels can use the same repositories as the channel from which they were cloned. For example, each cloned base channel might have a unique addons child channel, but each of these child channels would use the same repository. The packages are not duplicated, even though they are referenced in multiple channels.

If necessary, you can maintain the latest channels separately without subscribing any systems to these channels. If the need arises, you can copy errata packages form the latest channels to the patch channels to make the latest fixes available.

2.2 Configuring Software Channels for ULN

Spacewalk contains a ULN plug-in for the spacewalk-repo-sync tool. The plug-in enables you to synchronize software channels without having to register the Spacewalk server with ULN.

To configure the ULN plug-in:

1. Change the mode of /etc/rhn/spacewalk-repo-sync/uln.conf to 600 (read-write).

 # chmod 600 /etc/rhn/spacewalk-repo-sync/uln.conf

2. Edit /etc/rhn/spacewalk-repo-sync/uln.conf and add your SSO login user name and password for ULN:

 [main]
 username = ULN_SSO_username
 password = ULN_SSO_password
3. Change the mode of `/etc/rhn/spacewalk-repo-sync/uln.conf` to 400 (read-only).

```
# chmod 400 /etc/rhn/spacewalk-repo-sync/uln.conf
```

Important

To protect your ULN credentials, verify that `/etc/rhn/spacewalk-repo-sync/uln.conf` is read-only (file mode 0400) by root.

When you have configured the ULN plug-in, you can use either the Spacewalk web interface, `spacecmd`, or `spacewalk-common-channels` to create the Spacewalk software channels, repositories, and activation keys:

- Section 2.5, “Working with Software Channels”

Tip

Although the `spacewalk-common-channels` command configures software channels to access Oracle Public Yum, you can reconfigure the repository entries to access ULN instead. For example, if you want to use the Oracle Linux `base` and `patch` channels for an Oracle Linux release update on ULN, you can reconfigure the base software channel to access the `base` channel and create an additional child channel and associated repository entry for the `patch` channel.

See Section 2.3, “Configuring Software Channels to Obtain Packages from Oracle Public Yum”.

- Section 2.4, “Working with Repositories”
- Chapter 3, Creating Activation Keys

Once you have set up the software channels and repositories, download the packages by synchronizing the software channels with ULN. See Section 2.6, “Synchronizing Software Channels”.

2.3 Configuring Software Channels to Obtain Packages from Oracle Public Yum

You can use the `spacewalk-common-channels` utility in the `spacewalk-utils` package to configure software channels that use Oracle Public Yum. You can use this utility to configure the software channels, repositories, GPG keys, and activation keys for Oracle Linux 5, Oracle Linux 6, and Oracle Linux 7.

To list the available channels, use the `--list` option, for example:

```
# spacewalk-common-channels --list
Available channels:
... oraclelinux5:    i386, x86_64
oraclelinux5-addons: i386, x86_64
oraclelinux5-oracle-addons: i386, x86_64
oraclelinux5-spacewalk20-client: i386, x86_64
oraclelinux5-uek:    i386, x86_64
oraclelinux5-unsupported: i386, x86_64
oraclelinux6:        i386, x86_64
oraclelinux6-addons: i386, x86_64
oraclelinux6-mysql:  i386, x86_64
oraclelinux6-playground: x86_64
oraclelinux6-spacewalk20-client: i386, x86_64
oraclelinux6-spacewalk20-server: x86_64
oraclelinux6-spacewalk22-client: i386, x86_64
```
Oracle Linux 7 software channels

Note

Unlike ULN, Oracle Public Yum does not provide patch channels for each update of an Oracle Linux release. Instead, spacewalk-common-channels configures the base (parent) software channel to use the public_olN_latest repository, which includes all packages for the entire release.

Some ULN channels, such as those for DTrace userspace, Ksplice, and OFED, are not available on Oracle Public Yum.

For example, create the software channels for Oracle Linux 7 (x86_64):

```
# spacewalk-common-channels -v -u swadm -p swadm_passwd -a x86_64 -k unlimited 'oraclelinux7*' 
```

Connecting to http://localhost/rpc/api

Base channel 'Oracle Linux 7 (x86_64)' - creating...
* Activation key 'oraclelinux7-x86_64' - creating...
* Child channel 'Oracle Linux 7 Addons (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...
* Child channel 'Oracle Linux 7 MySQL 5.5 (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...
* Child channel 'Oracle Linux 7 MySQL 5.6 (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...
* Child channel 'Oracle Linux 7 Optional Packages (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...
* Child channel 'Spacewalk 2.2 Client for Oracle Linux 7 (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...
* Child channel 'Oracle Linux 7 UEK Release 3 (x86_64)' - creating...
** Activation key '1-oraclelinux7-x86_64' - adding child channel...

swadm and swadm_passwd are the user name and password of the Spacewalk administrator. The -k unlimited option specifies that the command should create an activation key with no limit on the number of servers with which you can use it.

You can use either the Spacewalk web interface or spacecmd to display, modify, or delete the available channels, repositories, and activation keys:

- Section 2.5, “Working with Software Channels”
- Section 2.4, “Working with Repositories”
- Chapter 3, Creating Activation Keys

Once you have set up the software channels and repositories, download the packages by synchronizing the software channels with Oracle Public Yum. See Section 2.6, “Synchronizing Software Channels”.

2.3.1 Oracle Linux 7 software channels

The following table lists the Oracle Linux 7 (x86_64) software channels that you can set up using spacewalk-common-channels:
Oracle Linux 6 Software Channels

<table>
<thead>
<tr>
<th>Software Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oraclelinux7</td>
<td>Base channel for Oracle Linux 7.</td>
</tr>
<tr>
<td>oraclelinux7-addons</td>
<td>Add-on packages.</td>
</tr>
<tr>
<td>oraclelinux7-mysql55</td>
<td>MySQL 5.5 packages.</td>
</tr>
<tr>
<td>oraclelinux7-mysql56</td>
<td>MySQL 5.6 packages.</td>
</tr>
<tr>
<td>oraclelinux7-optional</td>
<td>Optional packages.</td>
</tr>
<tr>
<td>oraclelinux7-spacewalk22-client</td>
<td>Spacewalk Client 2.2 packages.</td>
</tr>
<tr>
<td>oraclelinux7-uek-r3</td>
<td>Unbreakable Enterprise Kernel Release 3 (UEK R3) packages.</td>
</tr>
</tbody>
</table>

2.3.2 Oracle Linux 6 Software Channels

The following table lists the Oracle Linux 6 (i386 and x86_64) software channels that you can set up using `spacewalk-common-channels`:

<table>
<thead>
<tr>
<th>Software Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oraclelinux6</td>
<td>Base channel for Oracle Linux 6.</td>
</tr>
<tr>
<td>oraclelinux6-addons</td>
<td>Add-on packages.</td>
</tr>
<tr>
<td>oraclelinux6-mysql</td>
<td>MySQL packages.</td>
</tr>
<tr>
<td>oraclelinux6-playground</td>
<td>Playground packages.</td>
</tr>
<tr>
<td>oraclelinux6-spacewalk20-client</td>
<td>Spacewalk Client 2.0 packages.</td>
</tr>
<tr>
<td>oraclelinux6-spacewalk20-server</td>
<td>Spacewalk Server 2.0 packages.</td>
</tr>
<tr>
<td>oraclelinux6-spacewalk22-client</td>
<td>Spacewalk Client 2.2 packages.</td>
</tr>
<tr>
<td>oraclelinux6-spacewalk22-server</td>
<td>Spacewalk Server 2.2 packages.</td>
</tr>
<tr>
<td>oraclelinux6-uek</td>
<td>Unbreakable Enterprise Kernel Release 2 (UEK R2) packages.</td>
</tr>
<tr>
<td>oraclelinux6-uek-r3</td>
<td>Unbreakable Enterprise Kernel Release 3 (UEK R3) packages.</td>
</tr>
</tbody>
</table>

2.3.3 Oracle Linux 5 Software Channels

The following table lists the Oracle Linux 5 (i386 and x86_64) software channels that you can set up using `spacewalk-common-channels`:

<table>
<thead>
<tr>
<th>Software Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oraclelinux5</td>
<td>Base channel for Oracle Linux 5.</td>
</tr>
<tr>
<td>oraclelinux5-addons</td>
<td>Add-on packages.</td>
</tr>
<tr>
<td>oraclelinux5-mysql</td>
<td>MySQL packages.</td>
</tr>
<tr>
<td>oraclelinux5-playground</td>
<td>Playground packages.</td>
</tr>
<tr>
<td>oraclelinux5-spacewalk20-client</td>
<td>Spacewalk Client 2.0 packages.</td>
</tr>
<tr>
<td>oraclelinux5-spacewalk22-client</td>
<td>Spacewalk Client 2.2 packages.</td>
</tr>
<tr>
<td>oraclelinux5-uek</td>
<td>Unbreakable Enterprise Kernel Release 2 (UEK R2) packages.</td>
</tr>
</tbody>
</table>
2.4 Working with Repositories

Spacewalk repositories define where to obtain packages from ULN or Oracle Public Yum.

For ULN, a Spacewalk repository specifies the URL of a ULN channel, using the following format:

```
uln://ULN_channel_label
```

You can get a list of available ULN channel labels by logging in to ULN (https://linux.oracle.com) and selecting the **Channels** tab.

The URL must contain three forward slash (`/`) characters, for example:

```
uln:///ol6_x86_64_latest
```

For Oracle Public Yum, a Spacewalk repository specifies the URL of an Oracle Public Yum repository, using the following format:

```
http://public-yum.oracle.com/repository_path
```

You can obtain the URLs from the Oracle Public Yum repo files at http://public-yum.oracle.com/.

As each Spacewalk repository is specific to the i386 or x86_64 architecture, replace `$basearch` with the architecture, for example:

```
http://public-yum.oracle.com/repo/OracleLinux/OL6/6/base/x86_64/
```

2.4.1 Working with Repositories Using the Spacewalk Web Interface

Figure 2.1 Repositories Page

![Repositories Page](image)
Go to Channels, select Manage Software Channels, and then select Manage Repositories:

- To create a repository:
 1. Click **create new repository**.
 2. On the Create New Repository page, enter the repository settings in the following fields:

 Repository Label
 Enter a name for the repository, for example: **Oracle Linux 6 (x86_64)**.

 Repository URL
 Enter the URL of the source for the repository's packages. For example: **uln:///ol6_x86_64_latest** or **http://public-yum.oracle.com/repo/OracleLinux/OL6/6/base/x86_64/**.

 Leave the remaining fields unset for Oracle Linux.
 3. Click **Create Repository** to create the repository.

- To view a repository, select its entry to display its details.

- To modify a repository:
 1. Select the repository that you want to edit.
 2. On the Repository Details page, modify the repository settings and click **Update Repository** to save your changes.

- To delete a repository:
 1. Go to Channels, select Manage Software Channels, and then select Manage Repositories.
 2. Select the repository that you want to delete.
 3. On the Repository Details page, click **delete repository** and then click **Delete Repository** to confirm.

To associate a software channel with a repository, see Section 2.5.1, “Working with Software Channels Using the Spacewalk Web Interface”.

2.4.2 Working with Repositories Using spacecmd

To create a repository, use the `repo_create` command, for example:

```bash
spacecmd {SSM:0}> repo_create
Name: Ksplice for Oracle Linux 7
URL: uln://ol7_x86_64_ksplice
```

To list all repositories, use the `repo_list` command.

```bash
spacecmd {SSM:0}> repo_list
External - Oracle Linux 7 (x86_64)
External - Oracle Linux 7 Addons (x86_64)
External - Oracle Linux 7 MySQL 5.5 (x86_64)
External - Oracle Linux 7 MySQL 5.6 (x86_64)
External - Oracle Linux 7 Optional Packages (x86_64)
External - Oracle Linux 7 UEK Release 3 (x86_64)
External - Spacewalk 2.2 Client for Oracle Linux 7 (x86_64)
```

To list the details of a repository, use the `repo_details` command.
Working with Software Channels

The parentheses in the name must be quoted with backslashes to protect them from the shell.

To delete a repository, use the `repo_delete` command.

To associate a software channel with a repository, see Section 2.5.2, “Working with Software Channels Using spacecmd”.

2.5 Working with Software Channels

The main software channel for an Oracle Linux release is termed a base (or parent) software channel. You can associate a number of child software channels with the base software channel. Each child software channel usually provides packages that are not available with the base software channel. If multiple versions of a package exist in different subscribed channels, `yum` versioning and dependency resolution ensure that the most up-to-date version of a package is installed.

You can subscribe a client to a single base channel and its child channels. For channels that are not specific to an update, such as addons, you can create an addons child channel for each update-level base channel and associate this child channel with the same addons repository.

If you set up Spacewalk to obtain Oracle Linux packages from ULN, Oracle recommends that you configure a separate `olN_arch_un_base` base software channel and `olN_arch_un_patch` child software channel for each update of Oracle Linux as it becomes available. This keeps the software channels small and helps to speed up channel cloning. Client systems are not upgraded across update levels unless you either change the source channel used for channel cloning or reconfigure the channels to which a client system subscribes.

The following example illustrates a typical configuration of the base and child software channels for Oracle Linux, where the base and patch channels are synchronized with ULN:

```
oraclelinux7-x86_64-base
 |-- oraclelinux7-x86_64-addons
 |-- oraclelinux7-x86_64-ksplice
 |-- oraclelinux7-x86_64-optional
 |-- oraclelinux7-x86_64-patch
 |-- oraclelinux7-x86_64-spacewalk22-client
 |-- oraclelinux7-x86_64-uek-r3
```

Note

Software channels other than the base and patch software channels do not have to be associated with ULN.

Some channels, such as those for Spacewalk Client and Spacewalk Server, are available on Oracle Public Yum but not on ULN.

Other channels, such as those for DTrace user-space, Ksplice, and OFED packages, are available on ULN but not on Oracle Public Yum.
Oracle Public Yum provides a `public_olN_latest` channel, which includes all packages for an entire Oracle Linux release. As individual patch channels for each update are not available, configure the base software channel to use the `public_olN_latest` channel. You can use the `spacewalk-common-channels` utility to configure the software channels, repositories, GPG keys, and activation keys for Oracle Linux 5, Oracle Linux 6, and Oracle Linux 7. See Section 2.3, “Configuring Software Channels to Obtain Packages from Oracle Public Yum”.

The following example illustrates a typical configuration of the base and child software channels for Oracle Linux, where the base channel is synchronized with the `public_ol7_latest` channel on Oracle Public Yum:

```
oraclelinux7-x86_64-latest
  |-- oraclelinux7-x86_64-addons
  |-- oraclelinux7-x86_64-optional
  |-- oraclelinux7-x86_64-spacewalk22-client
  |-- oraclelinux7-x86_64-uek-r3
```

2.5.1 Working with Software Channels Using the Spacewalk Web Interface

Figure 2.2 Software Channel Management Page

Go to **Channels** and select **Manage Software Channels**:

- **To create a software channel:**
 1. Click **create new channel**.
 2. On the Create Software Channel page, enter channel settings in the following fields, which are the most important for the initial configuration of a channel:
Channel Name
Enter a descriptive short name for the channel. For example: Oracle Linux 6 (x86_64) Base.

Channel Label
Enter a unique label for the channel that is used by the software. For example: oraclelinux6-x86_64.

Parent Channel
Select None if this is a base software channel or select the name of the parent channel if this is a child software channel.

Architecture
Select IA32 (for i386 repositories) or x86_64, as appropriate.

Yum Repository Checksum Type
For Oracle Linux 5, select sha1.
For Oracle Linux 6 and Oracle Linux 7, select sha256.

Channel Summary
Enter a short, descriptive summary of the channel, for example the channel name. This field cannot be left blank.

Channel Description
Enter a long description of the channel or leave the field blank.

GPG key URL
Enter the URL of the local GPG key. For Oracle Linux, enter file:///etc/pki/rpm-gpg/RPM-GPG-KEY.
For third-party repositories, you must import the GPG key into Spacewalk and deploy the key by using provisioning or other method as appropriate to your site.

GPG key ID, GPG key Fingerprint
Enter the appropriate key ID and fingerprint for the Oracle Linux release from the following table:

<table>
<thead>
<tr>
<th>Release</th>
<th>Key ID</th>
<th>Key Fingerprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux 5</td>
<td>D303656F</td>
<td>99FD 2766 28EE DEC5B 5E5A F5F8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66CE D3DE 1E5E 0159</td>
</tr>
<tr>
<td>Oracle Linux 6</td>
<td>EC551F03</td>
<td>4214 4123 FEC5B 9086 313D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72F9 7B74 EC55 1F03</td>
</tr>
<tr>
<td>Oracle Linux 7</td>
<td>EC551F03</td>
<td>4214 4123 FEC5B 9086 313D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72F9 7B74 EC55 1F03</td>
</tr>
</tbody>
</table>

3. Click Create Channel to create the channel.

- To associate a software channel with a repository:
 1. Select the channel that you want to associate with a repository.
 2. On the Basic Channel Details page, select Repositories, select the check box of the repository, and click Update Repositories.

- To view a software channel, select its entry to display its details.
 Alternatively, go to Channels, select Software Channels and click + next to the name of the base channel to display its child channels. Select the entry for a software channel to display its details.

- To modify a software channel:
 1. Select the channel that you want to edit.
2. On the Basic Channel Details page, modify the channel settings and click **Update Channel** to save your changes.

![Note]

You cannot change the channel label.

- To delete a software channel:
 1. Select the channel that you want to delete.
 2. On the Basic Channel Details page, click **delete software channel** and then click **Delete Channel** to confirm.

2.5.2 Working with Software Channels Using spacecmd

To create a software channel, use the `softwarechannel_create` command, for example:

```bash
spacecmd {SSM:0}> softwarechannel_create
Channel Name: Ksplice for Oracle Linux 7
Channel Label: oraclelinux7-x86_64-ksplice
Base Channels
-------------
oraclelinux6-x86_64
oraclelinux7-x86_64
Select Parent [blank to create a base channel]: oraclelinux7-x86_64

Architecture
------------
i386-sun-solaris
ia32
ia64
ppc
sparc-sun-solaris
x86_64
Select: x86_64
```

![Note]

In Spacewalk 2.2, you must use the Spacewalk web interface to associate GPG key information with a software channel.

To associate a software channel with a repository, use the `softwarechannel_addrepo` command.

```bash
spacecmd {SSM:0}> softwarechannel_addrepo ksplice-ol7-x86_64 "Ksplice for Oracle Linux 7"
```

To list all software channels, use the `softwarechannel_list` command.

```bash
spacecmd {SSM:0}> softwarechannel_list oraclelinux7*
oraclelinux7-x86_64
oraclelinux7-x86_64-addons
oraclelinux7-x86_64-ksplice
oraclelinux7-x86_64-mysql55
oraclelinux7-x86_64-mysql56
oraclelinux7-x86_64-optional
oraclelinux7-x86_64-spacewalk22-client
oraclelinux7-x86_64-uek-r3
```

The `oraclelinux7*` argument filters out all channels except those whose labels start with `oraclelinux7`.

20
To list all base (parent) software channels, use the `softwarechannel_listbasechannels` command.

```
spacecmd {SSM:0}> softwarechannel_listbasechannels
oraclelinux6-x86_64
oraclelinux7-x86_64
```

To list the children of a base software channel, use the `softwarechannel_listchildchannels` command.

```
spacecmd {SSM:0}> softwarechannel_listchildchannels oraclelinux7-x86_64
oraclelinux7-x86_64-addons
oraclelinux7-x86_64-ksplice
oraclelinux7-x86_64-mysql55
oraclelinux7-x86_64-mysql56
oraclelinux7-x86_64-optional
oraclelinux7-x86_64-spacewalk22-client
oraclelinux7-x86_64-uek-r3
```

To list the systems that subscribe to a software channel, use the `softwarechannel_listsystems` command.

```
spacecmd {SSM:0}> softwarechannel_listsystems oraclelinux6-x86_64
svr1.mydom.com
svr2.mydom.com
...
```

To display the details of a software channel, use the `softwarechannel_details` command.

```
spacecmd {SSM:0}> softwarechannel_details oraclelinux7-x86_64
Label:              oraclelinux7-x86_64
Name:               Oracle Linux 7 (x86_64)
Architecture:       x86_64
Parent:             
Systems Subscribed: 0
Number of Packages: 0

Summary
-------
Oracle Linux 7 (x86_64)

GPG Key:            EC551F03
GPG Fingerprint:    4214 4123 FCEF C55B 9086  313D 72F9 7B74 EC55 1F03
GPG URL:            http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol7

Repos
-----
External - Oracle Linux 7 (x86_64)
```

To delete a software channel, use the `softwarechannel_delete` command.

```
spacecmd {SSM:0}> softwarechannel_delete oraclelinux7-x86_64
Channels
--------
oraclelinux7-x86_64
Delete these channels [y/N]: y
```

2.6 Synchronizing Software Channels

Once you have configured the software channels and associated repositories, you can synchronize the software either by performing an immediate manual synchronization or by scheduling a recurring synchronization job.

As a minimum, Oracle recommends that you update the Oracle Linux latest channels daily.
The initial synchronization of the Oracle Linux channels can take several days to complete. Oracle recommends that you perform an initial manual synchronization to populate the channels, and then configure a recurring job to keep them updated.

You can use the Spacewalk web interface, spacecmd, or spacewalk-repo-sync to synchronize software channels.

2.6.1 Synchronizing Software Channels Using the Spacewalk Web Interface

Figure 2.3 Channel Repositories Page

To synchronize software channels:

1. Go to Channels, select Manage Software Channels and then select the required channel.
2. On the Channel Details page, select Repositories and then select Sync.
3. On the Channel Repositories page:
 a. Check the following check boxes as required:
2.6.2 Synchronizing Software Channels Using spacecmd

To synchronize a software channel, use the `softwarechannel_syncrepos` command, for example:

```bash
spacecmd {SSM:0}> softwarechannel_syncrepos oraclelinux6-x86_64-addons
```

The command returns immediately and does not show the status of the synchronization. You can use the `tail -f` command to view the log file `/var/logs/rhn/reposync/channel_label.log`.

To set up a schedule for channel synchronization, use the `softwarechannel_setsyncschedule` command, for example:

```bash
spacecmd {SSM:0}> softwarechannel_setsyncschedule oraclelinux6-x86_64-addons 0 30 10 ? * *
```

The example configures the `oraclelinux6-x86_64-addons` channel to be resynchronized once every day at 10:30am. Specify the schedule in Quartz format. For more information, see the `CronTrigger Tutorial`.

2.6.3 Synchronizing Software Channels Using spacewalk-repo-sync

You can use the `spacewalk-repo-sync` utility to synchronize software channels. Using this command requires that you are `root` or that you have been granted permission in `/etc/sudoers`. You can run `spacewalk-repo-sync` manually or in a `cron` job. If you run the command in a `cron` job, include the `--quiet` option to prevent large email messages from being sent to `root`.

You can use the `spacewalk-repo-sync -l` command to display the channel label and the URL of the repository, for example:

```bash
# spacewalk-repo-sync -l | grep ksplist
ksplist-ol7-x86_64 | uln:///ol7_x86_64_ksplist
ksplist-ol6-1386 | uln:///ol6_1386_ksplist
ksplist-ol6-x86_64 | uln:///ol6_x86_64_ksplist

# spacewalk-repo-sync -l | grep addons
oraclelinux7-x86_64-addons | http://public-yum.oracle.com/repo/OracleLinux/OL7/addons/x86_64/
oraclelinux6-x86_64-addons | http://public-yum.oracle.com/repo/OracleLinux/OL6/addons/x86_64/
```
To synchronize a channel with a ULN repository, use the `spacewalk-repo-sync -t uln` command, and use the `-c` option to specify the channel label, for example:

```bash
# spacewalk-repo-sync -t uln -c ksplice-ol6-x86_64
### Channel label: ksplice-ol6-x86_64 ###
Repo URL: uln:///ol6_x86_64_ksplice
The download URL is: https://linux-update.oracle.com/XMLRPC/GET-REQ/ol6_x86_64_ksplice
Packages in repo: 1296
Packages already synced: 0
Packages to sync: 1296
1/1296 : ksplice-snmp-plugin-0.1.0-2.el6-0.x86_64
2/1296 : uptrack-updates-2.6.39-400.210.2.el6uek.x86_64-20150206-0-0.noarch
... 1295/1296 : uptrack-updates-2.6.32-220.el6.x86_64-20150130-0-0.noarch
1296/1296 : uptrack-updates-2.6.32-200.20.1.el6uek.x86_64-20141216-0-0.noarch
Linking packages to channel.
Repo uln:///ol6_x86_64_ksplice has 0 errata.
Sync completed.
Total time: 1 day, 8:56:47
```

In this example, all the packages were downloaded as the channel had not previously been synchronized with ULN. The total time taken was nearly 33 hours.

To synchronize a channel with an Oracle Public Yum repository, use the `spacewalk-repo-sync` command, and use the `-c` option to specify the channel label, for example:

```bash
# spacewalk-repo-sync -c oraclelinux6-x86_64-addons
### Channel label: oraclelinux6-x86_64-addons ###
Repo URL: http://public-yum.oracle.com/repo/OracleLinux/OL6/addons/x86_64/
Packages in repo: 308
No new packages to sync.
Sync completed.
Total time: 0:01:09
```

In this example, there were no new packages available to download.

For more information, see the `spacewalk-repo-sync(8)` manual page.

2.7 Cloning Software Channels

You can clone a software channel to capture the state of its packages and errata at a given point. Clone channels are useful for providing a stable reference base when developing and testing server systems before deployment. Clone channels are not recommended for deployed systems as they might be exposed to security vulnerabilities.

You can use the Spacewalk web interface to clone one channel at a time. If you want to clone a base channel and all of its child channels in one go, consider using the `spacecmd` or `spacewalk-clone-by-date` commands. If you want to clone a channel to preserve its state at a given date, use the `spacewalk-clone-by-date` command.
2.7.1 Cloning Software Channels Using the Spacewalk Web Interface

To clone a software channel:

1. Go to Channels and select Manage Software Channels.
2. Click clone channel.
3. On the Clone Channel page, select the source channel that you want to clone from the pull-down menu, and select the clone type:
 - **Current state of the channel (all errata)**: The clone channel includes all packages and errata from the source channel.
 - **Original state of the channel (no errata)**: The clone channel includes all of the packages that were originally in the source channel but no associated errata.
 - **Select errata**: The cloned channel includes all of the packages that were originally in the source channel and any errata that you select. Selecting all errata is equivalent to cloning the current state of the channel. Selecting no errata is equivalent to cloning the original state of the channel.
4. Click Create Channel.
5. On the Edit Software Channel page, you can change the channel details. The default label is the source channel label prefixed with clone-.
6. Click **Create Channel**

7. If you specified **Select errata** as the clone type, the Clone Errata page displays the available errata. For each erratum, you can choose to merge it with the source erratum, to create a separate cloned erratum, or to do nothing and exclude the erratum. By default, an erratum is merged with the source erratum, which means that the source erratum is used instead of creating a cloned copy.

Click **Clone Errata** when you have finished cloning errata.

8. On the Details page for the channel, you can also edit the channel details other than the channel label.

If you select the **Errata** tab, you can add errata from other channels or clone errata from the source channel.

If you select the **Packages** tab, you can add or remove packages from the channel.

2.7.2 Cloning Software Channels Using spacecmd

To clone a single channel, use the `softwarechannel_clone` command.

```
spacecmd {SSM:0}> softwarechannel_clone -s ol6u6-x86_64 -x "s/$/-clone/" -o
```

```
Label:              ol6u6-x86_64-clone
Name:               Oracle Linux 6 Update 6 Base Channel (x86_64)-clone
Architecture:       x86_64
Parent:             
System Subscribed: 0
Number of Packages: 5522

Summary
-------
Oracle Linux 6 Update 6 Base Channel (x86_64)-clone

GPG Key:            EC551F03
GPG Fingerprint:    4214 4123 FECF C55B 9086  313D 72F9 7B74 EC55 1F03
GPG URL:            file:///etc/pki/rpm-gpg/RPM-GPG-KEY
```

The `-x` option appends `-clone` to the new channel's name and label. The `-o` option excludes all errata from the cloned channel.

To diff the package contents of two channels, use the `softwarechannel_diff` command.

```
spacecmd {SSM:0}> softwarechannel_diff ol6u6-x86_64-clone ol6u6-x86_64
```

```
--- ol6u6-x86_64-clone
+++ ol6u6-x86_64
@@ -22,7 +22,18 @@

GConf2-devel-2.28.0-6.el6.i686
GConf2-devel-2.28.0-6.el6.x86_64
GConf2-gtk-2.28.0-6.el6.x86_64
+ImageMagick-6.5.4.7-7.el6_5.i686
+ImageMagick-6.5.4.7-7.el6_5.x86_64
+ImageMagick-c++-6.5.4.7-7.el6_5.i686
...
+zlib-devel-1.2.3-29.el6.i686
+zlib-devel-1.2.3-29.el6.x86_64
+zlib-static-1.2.3-29.el6.x86_64
+zsh-4.3.10-7.el6.x86_64
+zsh-html-4.3.10-8.el6_5.x86_64
```

To clone a base channel and all of its child channels, use the `softwarechannel_clonetree` command.
2.7.3 Cloning Software Channels by Date Using `spacewalk-clone-by-date`

You can use the `spacewalk-clone-by-date` utility to clone Oracle Linux channels for a given date, which preserves the state of the channel's errata and their associated packages from its original release up to and including that date. If required, you can blacklist or remove packages, and choose which types of errata to include or exclude.

The following example clones only security errata from the `ol6-x86_64-latest` channel up to July 4, 2015 to `ol6-x86_64-20150704`:

```
# spacewalk-clone-by-date --username=swadmin --password=swpasswd \
   --to_date=2015-07-04 --channels=ol6-x86_64-latest ol6-x86_64-latest-sec-150704 \
   --security_only --background --assumeyes
```

The command runs uninterrupted in the background. The specified spacewalk user must have Organizational Administrator or Channel Administrator privileges.

The next example clones both a base channel and a patch child channel up to August 15 2015, excluding all versions of the `ntp` package and packages that start with `fuse`.

```
# spacewalk-clone-by-date --username=swadmin --password=swpasswd \ 
   --to_date=2015-08-15 --channels=ol6-x86_64-base ol6-x86_64-base-150815 \ 
   --channels=ol6-x86_64-patch ol6-x86_64-patch-150815 \ 
   --to_date=2015-08-15 --blacklist=ntp,fuse*
```

You can run `spacewalk-clone-by-date` remotely by using the `-s` option to specify the Spacewalk server's URL for XML/RPC API connections, for example `-s https://swksvr_FQDN/rfc/api`.

A common use case is to run `spacewalk-clone-by-date` at regular intervals to keep cloned channels up to date. To generate a sample configuration file, use the following command:

```
# spacewalk-clone-by-date --sample-config
```

For more information, see the `spacewalk-clone-by-date(8)` manual page.
Chapter 3 Creating Activation Keys

Note

If you use `spacewalk-common-channels` to set up Oracle Linux software channels and repositories, this command also creates an activation key and associates this key with the software channels.

An activation key allows a client system to register with Spacewalk without needing to provide a user name and password. After you have configured and synchronized a base software channel and any child channels, create an activation key so that client systems can register with Spacewalk.

If required, you can also use an activation key to define the default parent and child software channel subscriptions and any configuration channels. Spacewalk subscribes a client to these channels during registration. However, you can change the channels at any later time without changing the activation key.

Note

Take care not to oversubscribe client systems to channels. Oracle recommends that you configure activation keys to subscribe a client to a minimal number of channels.

If required, you can create an activation key for each combination of base channel, system architecture, and server type. For example, you could create separate activation keys for web, mail, or application servers running on Oracle Linux 6 (i386), Oracle Linux 6 (x86_64), and Oracle Linux 7 (x86_64). Alternatively, you could create a single, default activation key without any channel assignments and use it for all server types.

Oracle recommends that you enter a meaningful label for the activation key in the **Key** field and that you do not use automatic key generation.

Create a key with a label that is easy to understand, for example based on the version number and architecture (`oraclelinux6-x86_64`), or based on the server type (`webserver` or `appserver`).

Spacewalk automatically adds a prefix to the activation key label. For example, if you select `oraclelinux-x86_64` as the label, the key that is actually created might be called `1-oraclelinux-x86_64`. This enables you to create multiple activation keys for the same base channel, each with different configuration options. The name that you use is presented during Spacewalk client registration. Creating your own key labels helps you to select the correct key.
3.1 Working with Activation Keys Using the Spacewalk Web Interface

Go to Systems and select Activation Keys:

- To create an activation key:
 1. Click + create new key.
 2. On the Create Activation Key page, enter the key settings in the following fields:

 - **Description**: Enter a description for the key. For example: Oracle Linux 6 (x86_64).
 - **Key**: Enter a meaningful label for the activation key. For example: oraclelinux6-x86_64.
 - **Usage**: Leave blank to allow unlimited use by clients.
 - **Base Channels**: Select the base channel with which the key is associated. For example: Oracle Linux 6 (x86_64) Base.
 - **Add-on Entitlements**: Select additional entitlements that the key grants, such as Monitoring, Provisioning, Virtualization, or Virtualization Host.
Note
Monitoring is deprecated in Spacewalk 2.2 and will be removed in a future release.

To allow Spacewalk to update packages, apply errata, or deploy configuration files on a client system that registers using this activation key, enable the Provisioning entitlement.

The Virtualization and Virtualization Host entitlements are mutually exclusive. Virtualization allows up to four KVM guests, whereas Virtualization Host allows unlimited KVM guests.

If you want to enable the configuration file deployment feature, this option is available if you modify the activation key after creating it.

Universal Default
Select if the key should be used as the default activation key for all newly-registered systems.

3. Click **Create Activation Key** to create the activation key.

• To view an activation key, select its entry to display its details.

• To modify an activation key:
 1. Select the activation key whose settings you want to edit.
 2. On the Activation Key Details page, modify the key settings.

Note
You cannot select Configuration File Deployment unless the Provisioning add-on entitlement is enabled. If you want to enable this feature and Provisioning is not enabled, select Provisioning and click **Update Activation Key** before selecting Configuration File Deployment.

3. Click **Update Activation Key** to save your changes.

• To delete an activation key:
 1. Select the activation key that you want to delete.
 2. On the Activation Key Details page, click **delete key** and then click **Delete Activation Key** to confirm.

3.2 Working with Activation Keys Using spacecmd

To create an activation key, use the **activationkey_create** command, for example:

```
spacesmd (SSM:0)> activationkey_create
```
Name (blank to autogenerate): oraclelinux6-x86_64
Description [None]: Oracle Linux 6 (x86_64)

Base Channels

oraclelinux6-x86_64
oraclelinux7-x86_64

Base Channel (blank for default): oraclelinux6-x86_64

provisioning_entitled Entitlement [y/N]: y
monitoring_entitled Entitlement [y/N]: N
virtualization_host Entitlement [y/N]: N
virtualization_host_platform Entitlement [y/N]: N

Universal Default [y/N]: N
INFO: Created activation key 1-oraclelinux6-x86_64

To list all activation keys, use the activationkey_list command.

```
spacecmd {SSM:0}> activationkey_list
1-oraclelinux6-x86_64
1-oraclelinux7-x86_64
```

To display the details of an activation key, use the activationkey_details command.

```
spacecmd {SSM:0}> activationkey_details 1-oraclelinux7-x86_64
Key:                    1-oraclelinux7-x86_64
Description:            Oracle Linux 7 x86_64
Universal Default:      False
Usage Limit:            0
Deploy Config Channels: False

Software Channels
-----------------
oraclelinux7-x86_64
  |-- oraclelinux7-x86_64-addons
  |-- oraclelinux7-x86_64-mysql55
  |-- oraclelinux7-x86_64-mysql56
  |-- oraclelinux7-x86_64-optional
  |-- oraclelinux7-x86_64-spacewalk22-client
  |-- oraclelinux7-x86_64-uek-r3

Configuration Channels
----------------------

Entitlements
-------------

System Groups
-------------

Packages
--------

To delete an activation key, use the activationkey_delete command.

```
spacecmd {SSM:0}> activationkey_delete 1-oraclelinux7-x86_64
1-oraclelinux7-x86_64
Delete activation key(s) [y/N]: y
```

To delete an activation key, use the activationkey_delete command.

```
spacecmd {SSM:0}> activationkey_delete 1-oraclelinux7-x86_64
1-oraclelinux7-x86_64
Delete activation key(s) [y/N]: y
```

To delete an activation key, use the activationkey_delete command.

```
spacecmd {SSM:0}> activationkey_delete 1-oraclelinux7-x86_64
1-oraclelinux7-x86_64
Delete activation key(s) [y/N]: y
```
Chapter 4 Provisioning Client Systems

Oracle supports the provisioning of Oracle Linux servers as Spacewalk client systems. You can use Spacewalk to manage Fedora-based clients and other systems by using upstream client binaries and repositories but Oracle does not provide support for these clients.

Oracle provides Spacewalk client packages for Oracle Linux 5 and 6 for both i386 and x86_64 architectures. For Oracle Linux 7, packages for the x86_64 architecture only are provided.

If you configure a Spacewalk server to mirror the Spacewalk Client 2.2 channel provided on Oracle Public Yum and enable this channel for a Kickstart profile, Spacewalk automatically installs the Spacewalk Client software on any Oracle Linux server that it provisions and it registers this server as a Spacewalk client. You can use the `spacewalk-common-channels` command to configure the Spacewalk Client 2.2 channel as described in Section 2.3, “Configuring Software Channels to Obtain Packages from Oracle Public Yum”.

4.1 About Kickstart Trees, Distributions, and Profiles

You can use Kickstart to automate the installation of Oracle Linux systems and use Spacewalk to provide the packages during the installation.

If you want to provision bare-metal and virtual machine systems, create a distribution in Spacewalk for each combination of Oracle Linux release and system architecture that you want to be able to install using Kickstart.

You need to set up a local directory such as `/var/distro-trees` on your Spacewalk server that contains the entire Kickstart tree for each distribution that includes the installation kernel, the initial ram-disk image, installation files, and information about the repositories. This directory must be readable and accessible by the `httpd` and `tomcat6` services. The Kickstart tree does not need to include any packages, as Spacewalk provides these.

Relative to the root of the Kickstart tree, the installation kernel and initial ram-disk images should be located at `./images/pxeboot`. For example, if the root of the Kickstart tree for Oracle Linux 6 (x86_64) server installations is `/var/distro-trees/ol6-x86_64-server`, the installation kernel and initial ram-disk images would be located at `/var/distro-trees/ol6-x86_64-server/images/pxeboot`.

See Section 4.2, “Setting up Kickstart Trees”.

You create a Kickstart distribution by associating a Kickstart tree with existing channels. A client boots using the Kickstart tree but installs its software packages from the existing channels. The packages installed on the client will be as up to date as those that are currently available from the channels.

See Section 4.3, “Working with Kickstart Distributions”.

Note

It is not currently possible to use the `spacewalk-repo-sync --sync-kickstart` command to create a Kickstart distribution from the channels that are available on Oracle Public Yum or ULN.

Once you have created a Kickstart distribution, you can use it with Kickstart profiles. Typically, each profile provisions a different type of server. You can configure a profile to generate a Kickstart file or you can use an existing Kickstart file. You can associate as many profiles with a single distribution as you need to provision servers that share the same combination of Oracle Linux release and system architecture.

See Section 4.4, “Working with Kickstart Profiles”.
4.2 Setting up Kickstart Trees

To set up the Kickstart tree for a distribution on the Spacewalk server:

1. If the root for all Kickstart trees (typically, `/var/distro-trees`) does not already exist, create this directory and, if required, set its SELinux file type as `httpd_sys_content_t` so that `httpd` and `tomcat6` can make the files available:
   
   a. Create the root directory for the Kickstart tree, for example:

   ```bash
 # mkdir -p /var/distro-trees/ol6-x86_64-server
   ```

   b. If SELinux is enabled in enforcing mode on your system:

      i. Use the `semanage` command to define the default file type of the Kickstart tree as `httpd_sys_content_t`:

      ```bash
 # /usr/sbin/semanage fcontext -a -t httpd_sys_content_t "/var/distro-trees(/.*)?"
      ```

      ii. Use the `restorecon` command to apply the file type to the entire directory hierarchy.

      ```bash
 # /sbin/restorecon -R -v /var/distro-trees
      ```

   Note

   The `semanage` and `restorecon` commands are provided by the `policycoreutils-python` and `policycoreutils` packages.

2. Download the full Oracle Linux Media Pack DVD image for the Oracle Linux release and system architecture from the Oracle Software Delivery Cloud at [http://edelivery.oracle.com/linux](http://edelivery.oracle.com/linux) and mount it on a suitable mount point, for example:

   ```bash
 # mount -o loop /var/ISOs/DVDimage.iso /var/distro-trees/ol7u1-x86_64-server
   ```

   The following table lists some of the full Oracle Linux Media Pack DVD image files that are available for Oracle Linux releases:

<table>
<thead>
<tr>
<th>Release</th>
<th>Architecture</th>
<th>DVD Image File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux 5 Update 11</td>
<td>x86 (32-bit)</td>
<td>V47134-01.iso</td>
</tr>
<tr>
<td>Oracle Linux 5 Update 11</td>
<td>x86_64 (64-bit)</td>
<td>V47133-01.iso</td>
</tr>
<tr>
<td>Oracle Linux 6 Update 6</td>
<td>x86 (32-bit)</td>
<td>V52221-01.iso</td>
</tr>
<tr>
<td>Oracle Linux 6 Update 6</td>
<td>x86_64 (64-bit)</td>
<td>V52218-01.iso</td>
</tr>
<tr>
<td>Oracle Linux 7 Update 1</td>
<td>x86_64 (64-bit)</td>
<td>V74844-01.iso</td>
</tr>
</tbody>
</table>

3. Create an entry in `/etc/fstab` so that the system always mounts the DVD image after a reboot, for example:

   ```bash
 /var/ISOs/V74844-01.iso /var/OSimage/OL7u1-x86_64-server iso9660 loop,ro 0 0
   ```

4. If SELinux is enabled in enforcing mode on your system:

   a. Set the `public_content_t` file type on the `/var/distro-trees` directory hierarchy.

   ```bash
 # /usr/sbin/semanage fcontext -a -t public_content_t "/var/distro-trees(/.*)?"
   ```

   b. Use the `restorecon` command to apply the file type to the entire directory hierarchy.
5. If you want to associate a Kickstart tree with a software channel or to be able to boot iPXE clients, create a symbolic link from `/var/www/html` to `/var/distro-trees`.

```
ln -s /var/distro-trees /var/www/html/distro-trees
```

The installation images will then be available at a URL such as `https://swksvr_FQDN/distro-trees/olNun-arch-server/images`, where `swksvr_FQDN` is the FQDN of the Spacewalk server or proxy.

Using a browser, you should be able to see the contents of the mounted installation image listed at the URL. If you cannot see the files:

a. Edit `/etc/httpd/conf/httpd.conf` and enable support for directory indexing and symbolic links by specifying `Options Indexes FollowSymLinks` in the `<Directory "/var/www/html">` section.

b. Reload the `httpd` service.

```
service httpd reload
```

4.3 Working with Kickstart Distributions

If you want to create a Kickstart distribution that uses a Kickstart tree with existing software channels, you can use either the Spacewalk web interface or `spacecmd`.

4.3.1 Working with Kickstart Distributions Using the Spacewalk Web Interface

**Figure 4.1 Kickstartable Distributions Page**

<table>
<thead>
<tr>
<th>Overview</th>
<th>Systems</th>
<th>Errata</th>
<th>Channels</th>
<th>Audit</th>
<th>Configuration</th>
<th>Schedule</th>
<th>Users</th>
<th>Admin</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Kickstartable Distributions**

The following kickstart distributions are available.

<table>
<thead>
<tr>
<th>Label</th>
<th>Base Channel</th>
<th>Valid?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No kickstartable distributions available.

**Tip:** Kickstart distributions may be invalid due to wrong or non-existent base path to the kernel or initrd image. To make your custom distribution valid please select the distribution and modify its base path appropriately.
Go to **Systems**, select **Kickstart** and then **Distributions**:

- To create a distribution:
  1. Click **create new distribution**.
  2. On the Create Activation Key page, enter the key settings in the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Label</td>
<td>Enter a label for the distribution. For example: ol6-x86_64-server.</td>
</tr>
<tr>
<td>Tree Path</td>
<td>Enter the path of the Kickstart tree for the distribution. For example: /var/distro-trees/ol6-x86_64-server.</td>
</tr>
<tr>
<td>Base Channel</td>
<td>Select the base channel with which the distribution is associated. For example: Oracle Linux 6 (x86_64) Base.</td>
</tr>
<tr>
<td>Installer Generation</td>
<td>Select the operating system release that provided the installer. For example: Red Hat Enterprise Linux 6/Oracle Linux 6.</td>
</tr>
<tr>
<td>Kernel Options</td>
<td>Enter any options that should be specified when booting the installation kernel, for example, noapic or text.</td>
</tr>
<tr>
<td>Post Kernel Options</td>
<td>Enter any options that should be specified when booting the installed system's kernel, for example, 3 or selinux=0.</td>
</tr>
</tbody>
</table>

3. Click **Create Kickstart Distribution** to create the distribution.

- To view a distribution, select its entry to display its details.

- To modify a distribution:
  1. Select the distribution whose settings you want to edit.
  2. On the Edit Kickstart Distribution page, modify the settings as required.
  3. If you want to create, modify, or delete Kickstart variables:
     a. Select the **Variables** tab.
     b. On the Kickstart Variables page, define new variables or edit or delete existing variable entries.
     c. Click **Update Variables** to save your changes.
     d. Select the Edit tab to return to the Edit Kickstart Distribution page.
  4. Click **Update Kickstart Distribution** to save your changes.

- To delete a distribution:
  1. Select the distribution that you want to delete.
  2. On the Edit Kickstart Distribution page, click **delete distribution** and then click **Delete Distribution** to confirm.
4.3.2 Working with Kickstart Distributions Using spacecmd

To create a distribution, use the `distribution_create` command, for example:

```
spacecmd [SSM:0]> distribution_create
Name: ol7-x86_64-server
Path to Kickstart Tree: /var/distro-trees/ol7-x86_64-server

Base Channels

ol6u6-x86_64
oraclelinux7-x86_64

Base Channel: oraclelinux7-x86_64

Install Types

fedora
generic_rpm
rhel_2.1
rhel_3
rhel_4
rhel_5
rhel_6
rhel_7
suse

Install Type: rhel_7
```

To list all activation keys, use the `distribution_list` command.

```
spacecmd [SSM:0]> distribution_list
ol6-x86_64-server
ol7-x86_64-server
```

To display the details of an activation key, use the `distribution_details` command.

```
spacecmd [SSM:0]> distribution_details ol7-x86_64-server
Name: ol7-x86_64-server
Path: /var/distro-trees/ol7-x86_64-server
Channel: oraclelinux7-x86_64
```

To delete an activation key, use the `distribution_delete` command.

```
spacecmd [SSM:0]> distribution_delete ol7-x86_64-server
ol7-x86_64-server
Delete distribution tree(s) [y/N]: y
```

4.4 Working with Kickstart Profiles

A Kickstart configuration file contains all the information that Kickstart requires to perform an automated installation of a server. Every Oracle Linux installation creates a Kickstart file, `/root/anaconda-ks.cfg`. You can use this file to repeat an installation, or you can customize the settings in this file for different system configurations. The file is also useful for troubleshooting a boot-time problem with an installed system. You can use Spacewalk to create a Kickstart profile that generates a Kickstart file or you can create a profile that contains a Kickstart file that you have uploaded or copied into Spacewalk.

You can use either the Spacewalk web interface or `spacecmd` to configure Kickstart profiles.
4.4.1 Working with Kickstart Profiles Using the Spacewalk Web Interface

Figure 4.2 Kickstart Profiles Page

Go to Systems, select Kickstart and then Profiles:

- To create a profile that contains a Kickstart file generated by Spacewalk:
  1. Click + create new kickstart profile.
  2. On the Step 1: Create Kickstart Profile page, enter the profile settings in the following fields:
     - **Label**: Enter a label for the profile. For example: `ol6-x86_64-minimal`.
     - **Base Channel**: Select the base channel with which the distribution is associated. For example: Oracle Linux 6 (x86_64) Base.
     - **Kickstartable Tree**: Select the Kickstart distribution with which the profile is associated. For example: `ol6-x86_64:1:SpacewalkDefaultOrganization`.
     - **Virtualization Type**: Select the virtualization type.
       - For Oracle Linux installations on virtual machines that are hosted by Oracle VM or Oracle VM VirtualBox, select None.
       - For Oracle Linux 6 and Oracle Linux 7 on a KVM guest, select KVM Virtualized Guest.
  3. On the Step 2: Distribution File Location page, click Next to accept the default download location that Spacewalk creates from the Kickstart tree.
  4. On the Step3: Root Password page, enter and verify the root password for newly installed systems, and click Finish to create the profile.
You can now configure the Kickstart profile itself. The following steps describe the changes that are usually required to create a usable profile.

Note
At any stage, you can select **Kickstart File** to view the Kickstart file that Spacewalk would generate from the profile using the saved configuration settings.

5. Select **Kickstart Details** to display the Details page:

   a. On the Details page, you can:
      - Edit the Kickstart label.
      - Change the virtualization type.
      - Activate or de-activate the profile.
      - Configure custom post and pre script logging.
      - Choose whether to save a copy of the Kickstart configuration to `/root` on an installed system.
      - Select an organization default profile.
      - Specify installation and post-installation kernel options.
      - Add a description of the profile.

      Click **Update Kickstart** to save your changes.

   b. Select **Operating System** and select the check boxes for the child channels that you want to associate with the profile.

      Note
      To allow Spacewalk to register the system automatically, select the Spacewalk Client channel.
      
      The **Software URL** path is the virtual location where Spacewalk hosts the installation packages. It is not a real path in the file system.

      Click **Update Kickstart** to save your changes.

   c. (Optional) Select **Variables**, define any Kickstart variables that you require, and click **Update Variables** to save your changes.

   d. Select **Advanced Options**, modify the Kickstart options, and click **Update Kickstart** to save your changes.

      For more information about the available Kickstart options, see Appendix A, **Kickstart Options**.

   e. If you intend to install bare-metal systems, select **Bare Metal Kickstart** and follow the instructions on the Bare Metal Kickstart page, which lists the URL of the Kickstart file that you can use to install bare-metal systems and allows you to define the IP address ranges that are associated with the profile.
6. Select **System Details** to display the Details page:

   a. On the Details page, you can:

      • Choose the default SELinux mode for the installed system.

      • Enable or disable Spacewalk configuration file management by selecting or deselecting the **Enable Spacewalk Configuration Management** check box.

         **Note**
         You must also include the `rhncfg`, `rhncfg-actions`, and `rhncfg-client` packages for installation.

      • Enable or disable Spacewalk remote commands by selecting or deselecting the **Enable Spacewalk Remote Commands** check box.

         **Note**
         You must also include the `rhncfg`, `rhncfg-actions`, and `rhncfg-client` packages for installation.

      • Choose whether to reuse an existing profile, replace the existing profile, or create a new profile but retain the existing profile.

      • Change the root password for installed systems.

         **Note**
         If you make any other changes on this page, you must re-enter and verify the root password.

   Click **Update System Details** to save your changes.

   b. Select **Locale**, select the default time zone for installed systems and whether the hardware clock uses UTC, and click **Update Locale Preferences** to save your changes.

   c. Select **Partitioning**, define the partitions to be created during installation, and click **Update Partitions** to save your changes.

      **Note**
      Clear the partitioning configuration if you select the automatic-partitioning option `autopart` on the Advanced Options page.

7. Select **Software** to display the Package Groups page:

   a. Edit the list of packages to be installed:

      • For sample lists of packages, see **Appendix B, Sample Package Lists**.

      • The `@Base` entry installs a minimal group of packages that are required to install a system.

         If you want to specify the list of base packages explicitly, select the **Don't install @Base package group** check box.
Working with Kickstart Profiles Using the Spacewalk Web Interface

- If you do not want the installation to halt if it cannot locate a package, select the **Ignore missing packages** check box.

- If you have associated the Spacewalk Client channel with the profile, Spacewalk installs the Spacewalk Client packages automatically. You do not need to specify them in this list.

- If you enable configuration file management and remote commands by selecting the **Enable Spacewalk Configuration Management** and **Enable Spacewalk Remote Commands** check boxes on the Details page, include the *rhncfg, rhncfg-actions, and rhncfg-client* packages.

- If you want to be able to apply updates and actions to a client system immediately from the Spacewalk server, include the *osad* package.

- For Oracle Linux 5 installations, exclude the *pirut, up2date, and up2date-gnome* packages from installation by inserting a dash character (-) in front of the package names, for example:

```
@Base
 -pirut
 -up2date
 -up2date-gnome
```

b. Click **Update Packages** to save your changes.

8. Select **Activation Keys**, select the activation key to associate with the profile, and click **Update Activation Keys** to save your changes.

9. Select **Scripts** to define commands that you want to run on the system before or after installation.

You can configure a pre- or post-installation script by using the following fields:

**Scripting Language**
(Optional) The path name of the script language interpreter, such as `/usr/bin/python`.

Leave blank if you want to run **bash** shell commands.

**Script Name**
Enter a name for the script.

**Script Contents**
Select the script type from the pull-down list: **Shell**, **XML**, **Ruby**, **Python**, or **perl**, and enter the script in the text area.

**Script Execution Time**
Select the time at which the script is executed from the pull-down list: **Pre Script** for before installation or **Post Script** for after installation.

**nochroot**
(Optional) Select if the script should run outside a **chroot** jail.

**erroronfail**
(Optional) Select to stop the installation if an error occurs when the script runs.

**Template**
(Optional) Select to enable Cobbler templating for the script.

---

**Note**
If you want to be able to apply updates and actions to a client system immediately from the Spacewalk server, include the *osad* package for installation, which
contains the OSA daemon and use the following Kickstart option to enable the osad service:

```
services --enabled=osad
```

If you do not enable configuration file management and remote commands by selecting the Enable Spacewalk Configuration Management and Enable Spacewalk Remote Commands check boxes on the Details page, you can alternatively include the rhncfg, rhncfg-actions, and rhncfg-client packages for installation and configure the command rhn-actions-control to run on the client system in the post-installation shell, for example:

```
rhn-actions-control --enable-all
```

For more information, see the `rhn-actions-control(8)` manual page.

• To create a profile that contains a Kickstart file that you upload or copy into Spacewalk:

1. Click upload new kickstart file.
2. On the Kickstart Details page, enter the key settings in the following fields:
   
   **Label** Enter a label for the profile. For example: `ol6-x86_64-custom`.
   
   **Kickstartable Tree** Select the Kickstart distribution with which the profile is associated. For example: `ol6-x86_64-server`.
   
   **Virtualization Type** Select the virtualization type. For Oracle Linux installations on virtual machines that are hosted by Oracle VM or Oracle VM VirtualBox, select None.

3. Do one of the following:

   • Copy and paste the contents of a Kickstart file into the File Contents text box.
   
   • Click Browse..., select the path of a Kickstart file and click Upload file to upload it to the File Contents text box.

4. If necessary, edit the Kickstart file contents in the File Contents text box.
5. Click Update.

• To view a profile, select its entry to display its details.

• To modify a profile:

1. Select the profile whose settings you want to modify.
2. Select each tab and page that contains settings that you want to modify.
3. Click the confirmation button on each page to save your changes.

• To delete a profile:

1. Select the distribution that you want to delete.
2. On the Kickstart Details page, click delete kickstart and then click Delete Kickstart to confirm.
4.4.2 Working with Kickstart Profiles Using spacecmd

To list all Kickstart profiles, use the `kickstart_list` command.

```
spacecmd {SSM:0}> kickstart_list
ol6u6-x86_64-minimal
```

To display the details of a Kickstart profile, use the `kickstart_details` command.

```
spacecmd {SSM:0}> kickstart_details ol6u6-x86_64-minimal
Name: ol6u6-x86_64-minimal
Label: ol6u6-x86_64-minimal
Tree: ol6-x86_64-server
Active: True
Advanced: False
Org Default: False
Configuration Management: False
Remote Commands: False

Software Channels

ol6u6-x86_64

Advanced Options

auth --enables shadow --passalgo=sha256
bootloader --location mbr
clearpart --all
firewall --disabled
keyboard us
lang en_US
network --bootproto dhcp
rootpw 5ZdYxHxbNqU76Q5dG$KWi0PyrgK8V5q/FEqYbWpcZD5St38?sn7jOyPH400
selinux --permissive
timezone America/New_York
url --url /var/distro-trees/ol6-x86_64-server

Software

@ Base

Crypto Keys

RHN-ORG-TRUSTED-SSL-CERT

Variables

org = 1
```

To display the contents of the Kickstart file that a profile generates, use the `kickstart_getcontents` command.

```
spacecmd {SSM:0}> kickstart_getcontents ol6u6-x86_64-minimal
Kickstart config file generated by Spacewalk Config Management
Profile Label : ol6u6-x86_64-minimal
Date Created : 2015-06-11 11:34:15.157666
install
text
network --bootproto dhcp
url --url http://swksvr.mydom.com/ks/dist/ol6-x86_64-server
lang en_US
keyboard us
zerombr
clearpart --all
```
Working with Kickstart Profiles Using spacecmd

```
bootloader --location mbr
timezone America/New_York
auth --enablesudo --passalgo=sha256
rootpw --iscrypted 5ZdYXHxbNQu76Q5dG$.KWiOPyrGk8V5q/FExYbWpcZdJ5St387an7jOyPH400
selinux --permissive
reboot
firewall --disabled
skipx
autopart
...
```

`spacecmd` provides a large number of commands for managing Kickstart profiles. Use the `help` command to find out more information, for example:

```
spacecmd {SSM:0}> help

Documented commands (type help <topic>):
--
...
kickstart_addactivationkeys
kickstart_addchildchannels
kickstart_addcryptokeys
kickstart_addfilepreservations
kickstart_addoption
kickstart_addpackages
kickstart_addscript
kickstart_addvariable
kickstart_clone
kickstart_create
kickstart_delete
kickstart_details
kickstart_diff
kickstart_disableconfigmanagement
kickstart_disableremotecommmands
kickstart_enableconfigmanagement
kickstart_enablelogging
kickstart_enableremotecommmands
kickstart_export
kickstart_getcontents
kickstart_getupdatetype
kickstart_import
kickstart_import_raw
kickstart_importjson
kickstart_list
kickstart_listactivationkeys
kickstart_listchildchannels
kickstart_listcryptokeys
kickstart_listcustomoptions
kickstart_listoptions
kickstart_listpackages
kickstart_listscripts
kickstart_listvariables
kickstart_removeactivationkeys
kickstart_removechildchannels
kickstart_removecryptokeys
kickstart_removefilepreservations
kickstart_removeoptions
kickstart_removelpackages
kickstart_removescript
kickstart_removevariables
kickstart_rename
kickstart_setcustomoptions
kickstart_setdistribution
kickstart_setlocale
kickstart_setpartitions
kickstart_setselinux
kickstart_setselinux
```
4.5 Installing Client Systems Using Kickstart

To install a client system from a generated Kickstart file, do one of the following:

- Boot the system from a real or virtual CD-ROM drive, using a boot ISO image or a full DVD image that you have downloaded from the Oracle Software Delivery Cloud at http://edelivery.oracle.com/linux, specifying the network location of the Kickstart file as a boot option.

  This installation method is suitable for installing virtual machines or if you need to install only a small number of bare-metal systems at a local site.

- Boot the system from the network, having configured DHCP to support network booting of PXE clients and Cobbler to support the requirements of individual clients.

  This installation method is suitable for installing virtual machines or if you need to install bare-metal systems at both local and remote sites.

4.5.1 Configuring Cobbler and DHCP to Support Network Booting

The procedure in this section assumes that you configure a DHCP server on the same system as the Spacewalk server. If you want to configure Cobbler and DHCP on a different system from the Spacewalk server, see Configuring a Cobbler Provisioning Server in the Oracle Linux 6 Installation Guide.

To configure Cobbler and DHCP to support booting client systems across the network:

1. Install the `cobbler-loaders` and `dhcp` packages:

   ```bash
 # yum install cobbler-loaders dhcp
   ```

2. To configure Cobbler to manage the DHCP service, edit `/etc/cobbler/settings` and modify the `manage_dhcp` setting:

   ```bash
 manage_dhcp: 1
   ```

3. Edit the DHCP server configuration template file `/etc/cobbler/dhcp.template` and change the subnet configuration for your local configuration.

   The following example demonstrates how to select either the pxelinux boot loader for BIOS-based PXE clients or the GRUB boot loader for UEFI-based PXE clients:

   ```bash
 # **
 # Cobbler managed dhcpcd.conf file
 # # generated from cobbler dhcp.conf template ($date)
 # # Do NOT make changes to /etc/dhcpcd.conf. Instead, make your changes
 # # in /etc/cobbler/dhcp.template, as /etc/dhcpcd.conf will be
 # # overwritten.
 # # **
   ```
The example also configures a pool of generally available IP addresses in the range 192.168.1.101 through 192.168.1.200 on the 192.168.1/24 subnet. Systems in this pool do not boot using PXE.
Adding a PXE Client to be Provisioned by Spacewalk

All comments or commented-out DHCP directives in `/etc/cobbler/dhcp.template` are preceded by a double hash (##) to prevent Cobbler from interpreting them.

Spacewalk configures Cobbler to use TFTP to serve the boot-loader configuration files from the `/var/lib/tftpboot` directory. For more information about the format of these files, see Section 4.5.3, “About Boot-Loader Configuration Files”.

If you want DHCP to support network booting of iPXE clients, see Section 4.5.4, “Configuring DHCP to Support iPXE Clients”.

4. If SELinux is enabled in enforcing mode on your system, configure SELinux for Cobbler operation:
   a. Permit the `httpd` service to act as a proxy for Cobbler.

   ```bash
 # setsebool -P httpd_can_network_connect=1
   ```

   b. Set the `public_content_t` file type on the `/var/lib/tftpboot` and `/var/www/cobbler/images` directory hierarchies.

   ```bash
 # /usr/sbin/semanage fcontext -a -t public_content_t "/var/lib/tftpboot/.*"
 # /usr/sbin/semanage fcontext -a -t public_content_t "/var/www/cobbler/images/.*"
   ```

   **Note**
   The `semanage` command is provided by the `policycoreutils-python` package.

5. Restart the `cobblerd` service:

   ```bash
 # service cobblerd restart
   ```

6. Start the `httpd` service and configure it to start after a reboot.

   ```bash
 # service httpd start
 # chkconfig httpd on
   ```

   **Note**
   If you make any changes to `/etc/cobbler/dhcp.template`, run the `cobbler sync` command.

   If you make any changes to `/etc/cobbler/settings`, restart the `cobblerd` service and then run the `cobbler sync` command.


   ```bash
 # cp /boot/efi/EFI/redhat/grub.efi /var/lib/tftpboot/grub
   ```

8. Configure the firewall to allow access by DHCP requests, for example:

   ```bash
 # iptables -I INPUT -i eth1 -p udp --dport 67:68 --sport 67:68 -j ACCEPT
 # service iptables save
   ```

   In this example, the server expects to receive requests on interface `eth1`.

4.5.2 Adding a PXE Client to be Provisioned by Spacewalk

To add a PXE client to be provisioned by Spacewalk:
1. List the Kickstart profiles in Spacewalk that are usable by Cobbler.

```
cobbler profile list
ol6u6-x86_64-devsys:1:SpacewalkDefaultOrganization
ol6u6-x86_64-server:1:SpacewalkDefaultOrganization
```

2. Use the `cobbler system add` command to define the host name, MAC address, and IP address of the target PXE client and the profile that you want to install, for example:

```
cobbler system add --name=svr1.mydom.com --hostname=svr1.mydom.com --mac=08:00:27:c6:a1:16
--ip=92.168.1.253 --profile=ol6u6-x86_64-server:1:SpacewalkDefaultOrganization
```

If you are provisioning a client that uses an IP address from a DHCP address pool, you might use a command such as the following:

```
cobbler system add --name=devsys2 --hostname=devsys2
--profile=ol6u6-x86_64-devsys:1:SpacewalkDefaultOrganization
--kopts="ksdevice=eth0"
```

The `--kopts` option allows you to specify options to be added to the kernel boot line. In this example, `ksdevice=eth0` specifies the network interface that Kickstart should use for installation, which prevents the installation pausing to prompt you to choose which network interface to use.

In this example, the `ol6_desktop` profile would use a Kickstart configuration that installs a set of packages to configure a development system rather than a server system.

3. By default, GRUB displays a boot menu for UEFI-based clients and prompts you to choose an entry. To prevent GRUB from displaying this menu, edit `/etc/cobbler/pxe/grubsystem.template` and add `default=0, hiddenmenu, and timeout=0` entries, for example:

```
default=0
hiddenmenu
timeout=0

title $profile_name
root (nd)
kernel $kernel_path $kernel_options
initrd $initrd_path
```

4. Run `cobbler sync`.

```
cobbler sync

task started: YYYY-MM-DD_hhmmss_sync
task started (id=Sync, time=date)
...
generating PXE configuration files
generating: /var/lib/tftpboot/pxelinux.cfg/01-08-00-27-c6-a1-16
generating: /var/lib/tftpboot/grub/01-08-00-27-c6-a1-16
rendering DHCP files
generating /etc/dhcp/dhcpd.conf
...
*** TASK COMPLETE ***
```

Cobbler creates `pxelinux` and GRUB boot configuration files for the client in `/var/lib/tftpboot/pxelinux.cfg` and `/var/lib/tftpboot/grub`. These files are named for the client's MAC address prefixed by `01-`, which represents the ARP hardware type for Ethernet, and use dashes to separate each byte value instead of colons. These client-specific files are based on `/etc/cobbler/pxe/pxesystem.template` and `/etc/cobbler/pxe/grubsystem.template`.

Cobbler also creates generic `pxelinux.cfg/default` and `grub/efidefault` boot configuration files from `/etc/cobbler/pxe/pxeprofile.template` and `/etc/cobbler/pxe/grubprofile.template`. 
Cobbler adds an entry for the client to `/etc/dhcp/dhcpd.conf`, which is based on `/etc/cobbler/dhcp.template`, for example:

```
group for Cobbler DHCP tag: default
group {
 host generic1 {
 hardware ethernet 08:00:27:c6:a1:16;
 fixed-address 192.168.1.253;
 option host-name "svr1.mydom.com";
 if substring(vendorclass, 0, 9)="PXEClient" {
 if pxetype=00:06 or pxetype=00:07 {
 filename "'/grub/grub.efi";
 } else {
 filename "'/pxelinux.0";
 }
 }
 next-server swksvr.mydom.com;
 }
}
```

5. Enter the `cobbler system list` command to display the PXE systems that are known to Cobbler.

```
cobbler system list
svr1.mydom.com
```

### 4.5.3 About Boot-Loader Configuration Files

A boot-loader configuration file for BIOS-based PXE clients uses pxelinux configuration settings, for example:

```
default linux
prompt 0
timeout 1
label linux
 kernel /images/ol6-x86_64:1:SpacewalkDefaultOrganization/vmlinuz
 ipappend 2
 append initrd=/images/ol6-x86_64:1:SpacewalkDefaultOrganization/initrd.img \
 ksdevice=bootif lang=en_US kssendmac text \
 ks=http://192.168.1.3/cblr/svc/op/ks/system/svr1.mydom.com
```

Do not use the \ line-continuation character. This character is used in the example to denote that the line has been broken for printing. The `append` directive and all of its arguments must be on the same line.

To allow the `boot:` prompt to be displayed, change the value of `prompt` to 1. To display the prompt, press `Shift` or `Alt` at the console.

The `default` directive identifies the default boot entry by its `label` value, `ol6u6`.

Pxelinux boots the client using the default boot entry after `timeout/10` seconds.

The `kernel` directive defines the name of the kernel executable and the `append` directive defines any parameters that should be appended when loading the kernel, such as the name of the ram-disk image and the location of the Kickstart file.

The `ipappend` directive specifies that the Installer should use the same network interface as the system used to boot.

For pxelinux, the kernel and ram-disk image file paths are relative to `/var/lib/tftpboot`. The default boot loader configuration file for pxelinux is `/var/lib/tftpboot/pxelinux.cfg/default`

A boot-loader configuration file for UEFI-based PXE clients uses GRUB configuration settings, for example:

```
default=0
```
hiddenmenu
timeout=0
title ol6u6-x86_64-server:1:SpacewalkDefaultOrganization
   root (nd)
   kernel /images/ol6-x86_64:1:SpacewalkDefaultOrganization/vmlinuz \ 
      ksdevice=bootif lang=en_US kssendmac text \ 
      ks=http://192.168.1.3/cblr/svc/op/ks/system/svr1.mydom.com
   initrd /images/ol6-x86_64:1:SpacewalkDefaultOrganization/initrd.img

Do not use the \ line-continuation character. This character is used in the example to denote that the line has been broken for printing. The *kernel* directive and all of its arguments must be on the same line.

The *timeout=0* and *hiddenmenu* directives cause the default kernel to boot immediately without allowing you to press a key to display a menu or modify the configuration of a boot entry. The default kernel is defined as the first entry (0), which is the only entry listed in this file.

The *root* directive defines that the kernel and initial ram-disk image files are available on the network device (nd), indicating that the files are available using TFTP.

The *kernel* directive defines the name of the kernel executable and any parameters that should be appended when loading the kernel, such as the location of the installation packages, and how to access these packages. The *initrd* directive specifies the initial ram-disk image file.

For GRUB, the kernel and ram-disk image file paths are relative to `/var/lib/tftpboot/grub`. The default boot loader configuration file for GRUB is `/var/lib/tftpboot/grub/efidefault`.

To support different types of client, a configuration file can be named for:

- A client's UUID (for example, `a8943708-c6f6-51b9-611e-74e6ac80b93d`)
- A client's MAC address prefixed by `01-`, which represents the ARP hardware type for Ethernet, and using dashes to separate each byte value instead of colons (for example, `01-80-00-27-c6-a1-16`)
- A client's IP address expressed in hexadecimal without any leading 0x (for example, `C0A801FD` represents the IP address 192.168.1.253)
- Cobbler writes client boot configuration files to both `/var/lib/tftpboot/grub` and `/var/lib/tftpboot/pxelinux.cfg` to handle both UEFI or BIOS-based PXE clients.

The boot loader looks for a configuration file in the following order until it finds a matching file name:

- *UUID* (for example, `a8943708-c6f6-51b9-611e-74e6ac80b93d`)
- *01-MAC_address* (for example, `01-80-00-27-c6-a1-16`)
- Full 32 bits of the IP address (for example, `C0A801FD`)
- Most significant 28 bits of the IP address (for example, `C0A801F`)
- Most significant 24 bits of the IP address (for example, `C0A801`)
- Most significant 20 bits of the IP address (for example, `C0A80`)
- Most significant 16 bits of the IP address (for example, `C0A8`)
- Most significant 12 bits of the IP address (for example, `C0A`)
- Most significant 8 bits of the IP address (for example, `C0`)
- Most significant 4 bits of the IP address (for example, `C`)
- *default* (BIOS) or *efidefault* (EFI)
For more information about GRUB, enter the `info grub` command to access the GRUB manual.


### 4.5.4 Configuring DHCP to Support iPXE Clients

iPXE extends the capabilities of PXE in many ways, including:

- iPXE clients can boot using HTTP, iSCSI, AoE, and FCoE
- The boot process can be controlled using scripts
- DNS lookup is available
- Booting across wide area networks or the Internet is possible

The `gpxelinux.0` boot loader provides some iPXE features, such as DNS lookup and HTTP file transfer, and is available in the `syslinux` package. It does not support iPXE commands or scripts.

You can use `gpxelinux.0` with BIOS-based PXE clients and with UEFI-based PXE clients in legacy mode but not in UEFI mode.

To configure the DHCP service to support iPXE clients:

1. Edit the DHCP server configuration template file `/etc/cobbler/dhcp.template`:
   
   Add the following lines to define the iPXE options for DHCP:

   ```
 option space ipxe;
 option ipxe-encap-opts code 175 = encapsulate ipxe;
 option ipxe.priority code 1 = signed integer 8;
 option ipxe.keep-san code 8 = unsigned integer 8;
 option ipxe.skip-san-boot code 9 = unsigned integer 8;
 option ipxe.syslogs code 85 = string;
 option ipxe.cert code 91 = string;
 option ipxe.privkey code 92 = string;
 option ipxe.crosscert code 93 = string;
 option ipxe.no-pxedhcp code 176 = unsigned integer 8;
 option ipxe.bus-id code 177 = string;
 option ipxe.bios-drive code 189 = unsigned integer 8;
 option ipxe.username code 190 = string;
 option ipxe.password code 191 = string;
 option ipxe.reverse-username code 192 = string;
 option ipxe.reverse-password code 193 = string;
 option ipxe.version code 235 = string;
 option iscsi-initiator-iqn code 203 = string;
 option ipxe.pxeext code 16 = unsigned integer 8;
 option ipxe.iscsi code 17 = unsigned integer 8;
 option ipxe.aoe code 18 = unsigned integer 8;
 option ipxe.http code 19 = unsigned integer 8;
 option ipxe.https code 20 = unsigned integer 8;
 option ipxe.tftp code 21 = unsigned integer 8;
 option ipxe.ftp code 22 = unsigned integer 8;
 option ipxe.dns code 23 = unsigned integer 8;
 option ipxe.bzimage code 24 = unsigned integer 8;
 option ipxe.multiboot code 25 = unsigned integer 8;
 option ipxe.slam code 26 = unsigned integer 8;
 option ipxe.srp code 27 = unsigned integer 8;
 option ipxe.nbi code 32 = unsigned integer 8;
 option ipxe.pxe code 33 = unsigned integer 8;
 option ipxe.elf code 34 = unsigned integer 8;
 option ipxe.comboot code 35 = unsigned integer 8;
 option ipxe.EFI code 36 = unsigned integer 8;
 option ipxe.fcoe code 37 = unsigned integer 8;
 option ipxe.vlan code 38 = unsigned integer 8;
   ```
Configuring DHCP to Support iPXE Clients

```plaintext
option ipxe.menu code 39 = unsigned integer 8;
option ipxe.sdi code 40 = unsigned integer 8;
option ipxe.nfs code 41 = unsigned integer 8;
```

b. If you do not use a proxy DHCP server, specify the following line to speed up negotiation with the DHCP server:

```plaintext
option ipxe.no-pxedhcp 1;
```

c. Add the following line to define the `user-class` option:

```plaintext
option user-class code 77 = string;
```

d. Configure the DHCP server to provide the IP addresses of name servers that iPXE clients can use to resolve domain names to IP addresses, for example:

```plaintext
option domain-name-servers 192.168.1.1, 192.168.1.4, 192.168.1.8;
```

e. Configure DHCP to specify the `gpxelinux.0` boot loader for non-iPXE clients and the URI of a boot script for iPXE clients, for example:

```plaintext
if exists user-class and option user-class = "iPXE" {
 filename "http://web.mydom.com/pxeboot.php";
} else {
 filename "gpxelinux.0";
}
```

In this example, pure iPXE clients run the HTTP-served boot script `pxeboot.php`.

The following is an example of a boot script for an iPXE client:

```plaintext
#!/ipxe
dhcp
kernel http://swksvr.mydom.com/distro-trees/ol6u6-x86_64-server/images/pxeboot/vmlinuz
initrd http://swksvr.mydom.com/distro-trees/ol6u6-x86_64-server/images/pxeboot/initrd.img
boot vmlinuz initrd=initrd.img ksdevice=bootif lang=en_US kssendmac text \ks=http://192.168.1.3/chlr/svc/op/ks/profile/ol6-x86_64-minimal:1:SpacewalkDefaultOrganization
```

dhcp configures the client's network interfaces.

`kernel` downloads the installation kernel.

`initrd` downloads the initial ram-disk image file.

`boot` boots the downloaded installation kernel. Boot line parameters, such as the name of the initial ram-disk file and the location of the Kickstart file, are specified as additional arguments.

Do not use the `\` line-continuation character. This character is used in the example to denote that the line has been broken for printing. The `boot` command and all of its arguments must be on the same line.

For more information, see `http://ipxe.org/scripting` and `http://ipxe.org/cmd`.

Non-iPXE clients boot using `gpxelinux.0`. A configuration file for `gpxelinux.0` is named in the same way as for `pxelinux.0` as described in Section 4.5.3, “About Boot-Loader Configuration Files”. Unlike `pxelinux.0`, you can use HTTP to access the installation kernel and initial ram-disk image files.

The following is an example of a configuration file for `gpxelinux.0`:
Creating a Kickstart Profile in Cobbler

```plaintext
prompt 0
default ol6u6
timeout 0

label ol6u6
kernel http://swksvr.mydom.com/distro-trees/ol6u6-x86_64-server/images/pxeboot/vmlinuz
append initrd=http://swksvr.mydom.com/distro-trees/ol6u6-x86_64-server/images/pxeboot/initrd.img \
kaddevice=bootif lang=en_US ksendmac text \ks=http://192.168.1.3/cblr/svc/op/ks/profile/ol6-x86_64-minimal:1:SpacewalkDefaultOrganization\ipappend 2
```

Do not use the \ line-continuation character. This character is used in the example to denote that the line has been broken for printing. The `append` keyword and all of its arguments must be on the same line.

2. Run the `cobbler sync` command:

```plaintext
cobbler sync
task started: YYYY-MM-DD_hhmmss_sync
task started (id=Sync, time=date)
...rendering DHCP files
generating /etc/dhcp/dhcpd.conf
...*** TASK COMPLETE ***
```

The Cobbler service regenerates the `/etc/dhcp/dhcpd.conf` file and reloads the `dhcpd` service.

If you make any further changes to `/etc/cobbler/dhcp.template`, run the `cobbler sync` command. You do not need to run this command if you change the content of the boot loader configuration files.

### 4.6 Creating a Kickstart Profile in Cobbler

You can also create Kickstart profiles in Cobbler outside of Spacewalk. As for Spacewalk, a profile defines how to configure an installation if the target client has to perform a certain role. For example, you might want to configure a system as a web or database server. To create a profile in Cobbler, you associate a Kickstart file with a distribution.

You can use the `cobbler profile list` command to list the profiles that are known to Cobbler, for example:

```plaintext
cobbler profile list
ol6u6-x86_64
```

To find out which Kickstart file a profile uses, run the `cobbler profile report` command, for example:

```plaintext
cobbler profile report ol6u6-x86_64 | grep Kickstart
Kickstart : /var/lib/cobbler/kickstarts/sample.ks
Kickstart Metadata : {}
```

The default `sample.ks` and other Kickstart files that Cobbler provides in `/var/lib/cobbler/kickstarts` are unlikely to be suitable for provisioning clients.

To create a new profile for a distribution:

1. Create the Kickstart file to associate with a distribution.

   For example, the following file, named `ol6u6_basic_server.ks`, contains a Kickstart definition for a basic Oracle Linux 6 server:
Creating a Kickstart Profile in Cobbler

# Oracle Linux 6 Basic Server
# Use text-based installation
text
# Install using HTTP from a URL provided by Cobbler
url --url=$tree
# Define localized settings
lang en_US.UTF-8
keyboard us
timezone --utc America/New_York
# Configure network interface settings
network --onboot yes --device eth0 --bootproto dhcp --noipv6
# root password is an SHA-512 hash provided by Cobbler
rootpw --iscrypted $default_password_crypted
authconfig --enableshadow --passalgo=sha512
# Allow only SSH connections
firewall --service=ssh
# Configure SELinux enforcing mode
selinux --enforcing
# Perform a new installation, removing all existing partitions
# before configuring the new boot loader and disk partitions
install
clearpart --drives=sda --all --initlabel
bootloader --location=mbr --driveorder=sda --append="crashkernel=auto rhgb quiet"
autopart
# Shutdown and power off the system after installation is finished
# to allow you to change the boot order or make other changes.
poweroff
# Alternatives are halt (default), reboot, and shutdown,
# which might not be suitable for unattended installations
packages
...
$end

For sample package lists, see Appendix B, Sample Package Lists.

Note

This example requires that you configure an SHA-512 password hash for the default_password_crypted setting in /etc/cobbler/settings.

This example does not take advantage of the power of Kickstart templating and snippets for managing large numbers of profiles and systems in Cobbler. For more information, see the cobbler(1) manual page and http://www.cobblerd.org/.

2. If SELinux is enabled in enforcing mode on your system and you create the Kickstart file in a directory other than /var/lib/cobbler/kickstarts, for example /var/kickstart:

   a. Use the semanage command to define the default file type of the directory hierarchy as cobbler_var_lib_t, for example:

      ```bash
 # /usr/sbin/semanage fcontext -a -t cobbler_var_lib_t "'/var/kickstart(/.*)?"$
      ```

   b. Use the restorecon command to apply the file type to the entire directory hierarchy.

      ```bash
 # /sbin/restorecon -R -v /var/kickstart
      ```

   c. For each Kickstart file in the directory, use the chcon command to set the SELinux user to system_u.
# chcon -u system_u /var/kickstart/*.ks

If SELinux is enabled in enforcing mode on your system and you create the Kickstart file in `/var/lib/cobbler/kickstarts` or in a directory on which you have defined the default file type as `cobbler_var_lib_t`, use the `chcon` command to set the SELinux user of the file to `system_u`, for example:

```
chcon -u system_u ol6u6_basic_server.ks
```

You can use the `ls -Z` command to display the context, for example:

```
ls -Z ol6u6_basic_server.ks
-rw-rw-r--. root root system_u:object_r:cobbler_var_lib_t:s0 ol6u6_basic_server.ks
```

The correct SELinux context for a Kickstart file used by Cobbler is `system_u:object_r:cobbler_var_lib_t:s0`.

3. Use the `cobbler profile add` command to create the profile, for example:

```
cobbler profile add --name=ol6u6_basic_server --distro=ol6u6-x86_64 --kickstart=/var/lib/cobbler/kickstarts/ol6u6_basic_server.ks
```

Note

If this command returns the error `kickstart not found` for a file that does exist at the specified path, the file's SELinux context is incorrect. See the previous step for details of how to set the correct SELinux context on a file.

4. Enter the `cobbler profile list` command to display the profiles that are now known to Cobbler.

```
cobbler profile list
ol6u6-x86_64
ol6u6_basic_server
```

The `ol6u6-x86_64` profile is unlikely to be usable. If you want to remove a profile, use the `cobbler profile remove` command.

```
cobbler profile remove --name=ol6u6-x86_64
cobbler profile list
ol6u6_basic_server
```

Note

Removing a profile also removes any client `system` definitions that you have created from that profile.

You can now define PXE clients that Cobbler can provision based on a profile that you have created. See Section 4.6.1, “Adding a PXE Client to be Provisioned by Cobbler”.

### 4.6.1 Adding a PXE Client to be Provisioned by Cobbler

To add a PXE client to be provisioned by Cobbler:

1. Use the `cobbler system add` command to define the host name, MAC address, and IP address of the target PXE client and the profile that you want to install, for example:

```
cobbler system add --name=svr1 --hostname=svr1 --mac=08:00:27:c6:a1:16 --ip=10.0.0.253 --profile=ol6u6_basic_server
```
Adding a PXE Client to be Provisioned by Cobbler

If you are provisioning a desktop client that uses an IP address from a DHCP address pool, you might use a command such as the following:

```bash
cobbler system add --name=devsys2 --hostname=devsys2 --profile=ol6u6_devsys --kopts="ksdevice=eth0"
```

The `--kopts` option allows you to specify options to be added to the kernel boot line. In this example, `ksdevice=eth0` specifies the network interface that Kickstart should use for installation, which prevents the installation pausing to prompt you to choose which network interface to use.

In this example, the `ol6u6_desktop` profile would use a Kickstart configuration that installs a set of packages to configure a development system rather than a server system.

2. By default, GRUB displays a boot menu for UEFI-based clients and prompts you to choose an entry. To prevent GRUB from displaying this menu, edit `/etc/cobbler/pxe/grubsystem.template` and add `default=0`, `hiddenmenu`, and `timeout=0` entries, for example:

```bash
default=0
hiddenmenu
timeout=0
title $profile_name
root (nd)
kernel $kernel_path $kernel_options
initrd $initrd_path
```

3. Run `cobbler sync`.

```bash
cobbler sync
task started: YYYY-MM-DD_hhmmss_sync
task started (id=Sync, time=)
... generating PXE configuration files
generating: /var/lib/tftpboot/pxelinux.cfg/01-08-00-27-c6-a1-16
generating: /var/lib/tftpboot/grub/01-08-00-27-c6-a1-16
rendering DHCP files
generating /etc/dhcp/dhcpd.conf
... *** TASK COMPLETE ***
```

Cobbler creates `pxelinux` and GRUB boot configuration files for the client in `/var/lib/tftpboot/pxelinux.cfg` and `/var/lib/tftpboot/grub`. These files are named for the client's MAC address prefixed by `01-`, which represents the ARP hardware type for Ethernet, and use dashes to separate each byte value instead of colons. These client-specific files are based on `/etc/cobbler/pxe/pxesystem.template` and `/etc/cobbler/pxe/grubsystem.template`.

Cobbler also creates generic `pxelinux.cfg/default` and `grub/efidefault` boot configuration files from `/etc/cobbler/pxe/pxeprofile.template` and `/etc/cobbler/pxe/grubprofile.template`.

Cobbler adds an entry for the client to `/etc/dhcp/dhcpd.conf`, which is based on `/etc/cobbler/dhcp.template`:

```bash
group for Cobbler DHCP tag: default
group {
group {
 host generic1 {
 hardware ethernet 08:00:27:c6:a1:16;
 fixed-address 10.0.0.253;
 option host-name "svr1";
 if substring(vendorclass, 0, 9)="PXEClient" {
 if pxetype=00:06 or pxetype=00:07 {
 filename "/grub/grub.efi";
 }
 }
 }
 group {
 host generic2 {
 hardware ethernet 08:00:27:c6:a1:16;
 fixed-address 10.0.0.253;
 option host-name "svr2";
 if substring(vendorclass, 0, 9)="PXEClient" {
 if pxetype=00:06 or pxetype=00:07 {
 filename "/grub/grub.efi";
 }
 }
 }
 }
}
```
4. Enter the `cobbler system list` command to display the systems that are known to Cobbler.

```bash
cobbler system list
svr1
svr2
```

### 4.6.2 Removing a PXE Client Definition from Cobbler

To remove a PXE Client definition from Cobbler:

1. Enter the `cobbler system list` command to display the systems that are known to Cobbler.

```bash
cobbler system list
svr1
svr2
```

2. Use the `cobbler system remove` command to specify the name of the system that you want to remove, for example `svr2`:

```bash
cobbler system remove --name=svr2
```

3. Run `cobbler sync` to update the Cobbler configuration.

```bash
cobbler sync
task started: YYYY-MM-DD_hhmmss_sync
task started (id=Sync, time=date)
... generating PXE configuration files
... rendering DHCP files
generating /etc/dhcp/dhcpd.conf
... *** TASK COMPLETE ***
```

4. Verify that `svr2` has been removed:

```bash
cobbler system list
svr1
```
Chapter 5 Registering Client Systems

Before you can register any systems with Spacewalk, you must have created an activation key for use with client systems, as described in Chapter 3, Creating Activation Keys. Oracle recommends using an activation key that is specific to the Oracle Linux release and system architecture rather than a default activation key.

Spacewalk registration is usually performed by Spacewalk’s provisioning service. For existing or manually installed systems, you can alternatively use the `rhnreg_ks` command to register the system with Spacewalk.

5.1 Registering a Client System Using Kickstart

If you install a system using a Kickstart file generated from a Spacewalk profile, Spacewalk automatically registers the system as a Spacewalk client if the following conditions are met:

- The Spacewalk Client channel must be selected on the Modify Operating System page under the profile’s Kickstart Details tab.
- An activation key is associated with the profile on the Kickstart Details page under the profile’s Activation Keys tab.

5.2 Installing the Spacewalk Client Software and Registering a Client System Using `rhnreg_ks`

Note

Starting with Oracle Linux 7 Update 1 and Oracle Linux 6 Update 7, you do not need to install the Spacewalk Client 2.2 software before you register an Oracle Linux 7 or Oracle Linux 6 server with Spacewalk. See Section 5.3, “Registering a Client System Using `rhnreg_ks` Without First Installing the Spacewalk Client Software”.

To install the Spacewalk Client 2.2 software on an Oracle Linux server and register the server as a Spacewalk client:

1. Enable access to the Spacewalk Client repository.

   Download the latest the Oracle public yum repository configuration file from [http://public-yum.oracle.com/](http://public-yum.oracle.com/) and save it to the yum repositories directory (by default `/etc/yum.repos.d`). Edit the configuration file and enable the repository:

   - For Oracle Linux 7, enable the `ol7_spacewalk22_client` repository.
   - Alternatively, create a `/etc/yum.repos.d/spacewalk22-client.repo` file with the following content:

```
[ol7_spacewalk22_client]
name=Spacewalk Client 2.2 for Oracle Linux 7 ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

   - For Oracle Linux 6, enable the `ol6_spacewalk22_client` repository.

   Alternatively, create a `/etc/yum.repos.d/spacewalk22-client.repo` file with the following content:

```
[ol6_spacewalk22_client]
name=Spacewalk Client 2.2 for Oracle Linux 6 ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

   - For Oracle Linux 6, enable the `ol6_spacewalk22_client` repository.
Alternatively, create a `/etc/yum.repos.d/spacewalk22-client.repo` file with the following content:

```
[ol6_spacewalk22_client]
name=Spacewalk Client 2.2 for Oracle Linux 6 ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

- For Oracle Linux 5, enable the `ol5_spacewalk22_client` repository.

Alternatively, create a `/etc/yum.repos.d/spacewalk22-client.repo` file with the following content:

```
[ol5_spacewalk22_client]
name=Spacewalk Client 2.2 for Oracle Linux 5 ($basearch)
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
```

2. For Oracle Linux 5 only, use the `rpm -e --nodeps` command to remove the `pirut`, `up2date`, and `up2date-gnome` packages.

```
rpm -e --nodeps pirut up2date up2date-gnome
```

3. Install the Spacewalk Client software:

```
yum install rhn-client-tools rhn-check rhn-setup m2crypto yum-rhn-plugin
```

This command replaces the existing packages and deletes any previous registration with ULN.

4. Register the system with Spacewalk using the `rhnreg_ks` command.

```
rhnreg_ks --serverUrl=http://swksvr_FQDN/XMLRPC --activationkey=activation_key
```

Specify the Spacewalk server or proxy by its fully qualified domain name.

If you need to re-register a Spacewalk client with a Spacewalk server, additionally specify the `--force` option.

5. Disable access to the Spacewalk Client repository in the Oracle public yum repository configuration file, or delete `/etc/yum.repos.d/spacewalk22-client.repo`.

### 5.3 Registering a Client System Using `rhnreg_ks` Without First Installing the Spacewalk Client Software

Starting with Oracle Linux 7 Update 1 and Oracle Linux 6 Update 7, you do not need to install the Spacewalk Client 2.2 software before you register an Oracle Linux 7 or Oracle Linux 6 server with Spacewalk.

To register an Oracle Linux server as a Spacewalk client:

1. Download the CA certificate file `RHN-ORG-TRUSTED-SSL-CERT` to the server.

```
In a browser tab, navigate to `http://swksvr_FQDN/pub`, where `swksvr_FQDN` is the fully qualified domain name of the Spacewalk server, and download the CA certificate file `RHN-ORG-TRUSTED-SSL-CERT` to `/usr/share/rhn/`.
```
Alternatively, you can use `wget` from the command line, for example:

```bash
wget -q -O /usr/share/rhn/RHN-ORG-TRUSTED-SSL-CERT
 http://swksvr_FQDN/pub/RHN-ORG-TRUSTED-SSL-CERT
```

2. Register the system with Spacewalk using the `rhnreg_ks` command, using the `--sslCACert` option to specify the certificate.

```bash
rhnreg_ks --sslCACert=/usr/share/rhn/RHN-ORG-TRUSTED-SSL-CERT
 --serverUrl=http://swksvr_FQDN/XMLRPC --activationkey=activation_key
```

Specify the Spacewalk server or proxy by its fully qualified domain name.

If you need to re-register a Spacewalk client with a Spacewalk server, additionally specify the `--force` option.

3. To install the Spacewalk Client software after registration, subscribe the server to a Spacewalk Client 2.2 software channel and use `yum` to install the packages:

```bash
yum install rhn-client-tools rhn-check rhn-setup rhnsd m2crypto yum-rhn-plugin
```

**Note**

Oracle recommends that you install the Spacewalk Client software after registration to support all of the features provided by Spacewalk, which include provisioning and auditing.
Chapter 6 Configuring Client Systems for Remote Management

By default, the `rhnsd` daemon on a client system connects to the Spacewalk server every four hours and performs any updates or actions that you have scheduled. If you install the OSA daemon, you can apply updates and actions to client systems immediately from the Spacewalk server.

To allow you to perform remote configuration of client system from Spacewalk, you can install the remote configuration client packages on the remote system.

6.1 Enabling the OSA Daemon in a Kickstart Profile Using the Spacewalk Web Interface

Note
The procedure in this section applies if you use Spacewalk to generate the Kickstart file.

To configure a Kickstart profile to install and enable the OSA daemon on a client system:

1. Go to Systems, select Kickstart and then Profiles.
2. Select the profile, and then select Software to display the Package Groups page.
3. On the Package Groups page, include `osad` in the list of packages to install.
4. Select System Details to display the Details page.
5. On the Details page, select Advanced Options, enable the services option and add the following entry:

```
--enabled=osad
```

Spacewalk adds the following option to the generated Kickstart file:

```
services --enabled=osad
```

The `osad` service starts automatically at the default run level when the target client system reboots following installation.

6. Click Update Kickstart Distribution to save your changes.

6.2 Enabling the OSA Daemon in a Kickstart File

Note
The procedure in this section applies if you upload a Kickstart file into a profile.

If you want to be able to apply updates and actions to a client system immediately from the Spacewalk server:

• Include the `osad` package for installation.

• Include the following Kickstart option to enable the `osad` service:

```
services --enabled=osad
```
6.3 Enabling the OSA Daemon Manually

To install and enable the OSA daemon manually:

1. Log in as root on the client system.
2. Use yum to install the osad package:

   ```
 # yum install osad
   ```
3. Enable and start the osad service:

   - On an Oracle Linux 5 or Oracle Linux 6 client system:
     ```
 # chkconfig osad on
 # service osad start
     ```
   - On an Oracle Linux 7 client system:
     ```
 # systemctl enable osad
 # systemctl start osad
     ```

   **Note**

   If the osad service does not start and displays the error SSLDisabledError, edit /etc/sysconfig/rhn/up2date and verify that the entry for serverURL uses the fully qualified domain name of the Spacewalk server or proxy, for example:

   ```
 serverURL=http://swksvr.mydom.com/XMLRPC
   ```

6.4 Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface

   **Note**

   The procedure in this section applies if you use Spacewalk to generate the Kickstart file.

To configure a Kickstart profile to install and enable the remote configuration client software on a client system:

1. Go to Systems, select Kickstart and then Profiles.
2. Select the profile, and then select Software to display the Package Groups page.
3. On the Package Groups page, include rhncfg, rhncfg-actions, and rhncfg-client in the list of packages to install.
4. Select System Details to display the Details page.
5. On the Details page, select the Enable Spacewalk Configuration Management and Enable Spacewalk Remote Commands check boxes.
6. Click Update Kickstart Distribution to save your changes.
6.5 Enabling Remote Configuration in a Kickstart File

Note
The procedure in this section applies if you upload a Kickstart file into a profile.

If you want to be able to deploy configuration files and run commands remotely from the Spacewalk web interface:

- Include the `rhncfg`, `rhncfg-actions`, and `rhncfg-client` packages for installation.

- Configure `rhn-actions-control` to run on the client system in the post-installation shell, for example:

```
%post --nochroot
rhn-actions-control --enable-all
%end
```

For more information, see the `rhn-actions-control(8)` manual page.

6.6 Enabling Remote Configuration Manually

To install and configure remote configuration manually:

1. Log in as `root` on the client system.

2. Use `yum` to install the `rhncfg`, `rhncfg-actions`, and `rhncfg-client` packages:

```
yum install rhncfg rhncfg-actions rhncfg-client
```

3. Use the `rhn-actions-control` command to configure the permitted remote actions, for example:

```
rhn-actions-control --enable-all
```

The `--report` option lists the remote actions that the client permits.

```
rhn-actions-control --report
deploy is enabled
diff is enabled
upload is enabled
mtime_upload is enabled
run is enabled
```

For more information, see the `rhn-actions-control(8)` manual page.
Chapter 7 Querying the Status of Client Systems

You can use the Spacewalk web interface or spacecmd to query the status of client systems.

7.1 Querying the Status of a Client System Using the Spacewalk Web Interface

To verify the status of an active client system:

1. Go to Systems and select the client system from the list.

   The Overview page shows the following information for the client system:

   - The System Status pane shows how many critical errata updates, non-critical errata updates, and packages are available to install on the client system. Select Critical, Non-Critical, or Packages to view and optionally install the available errata and packages.

   - The System Info pane shows the host name, IP addresses, kernel version, Spacewalk system ID, activation key, and whether the system is locked.

   - The Subscribed Channels pane shows the base and child channels to which the client system is subscribed.
• The System Events pane shows when the client system last checked in, when it was registered, when it last booted, and when the OSA daemon last started.

• The System Properties pane shows the entitlements, notifications, automatic errata update status, system name, summary of the installed operating system, and location.

2. If the OSA status is shown as online as of unknown, select **Ping System**.

3. Wait a few seconds and then reload the page. The status should update and display when the OSA daemon was last started.

### 7.2 Querying the Status of a Client System in spacecmd

To verify the status of a client system, use the **system_details** command.

```
$ spacecmd {SSM:0} > system_details svr1.mydom.com
Name: svr1.mydom.com
System ID: 1000010160
Locked: False
Registered: 20150615T12:55:05
Last Checkin: 20150615T13:17:45
OSA Status: online
Last Boot: 20150615T12:38:08
Hostname: svr1.mydom.com
IP Address: 192.168.1.253
Kernel: 2.6.32-504.el6.x86_64

Activation Keys

1-ol6-x86_64

Software Channels

oraclemysql-x86_64
 |-- ol6_x86_64_spacewalk22_client
 |-- ol6_x86_64_uekr3_latest

Entitlements

enterprise_entitled
provisioning_entitled
virtualization_host
```
Chapter 8 Configuring System Groups to Manage Client Systems

To allow you to perform the same actions on multiple client systems, you can create system groups. Typically, a system group contains systems that have a common installation base, architecture, and profile, for example Oracle Linux 6 (x86_64) servers.

If you manage large numbers of systems, creating system groups is a powerful way of applying errata, installing or upgrading packages, changing channel subscriptions, deploying configuration files, or reconfiguring Kickstart provisioning with a minimum of effort.

Spacewalk provides the System Set Manager, which maintains a current working system group or system set to which you can add or remove systems and system groups. You can perform actions on the systems in the system set or you can save the system set as a new system group.

Note

If a system is present in the system set, the Spacewalk web interface shows a check mark in its associated check box on the Systems page. You can select or deselect system check boxes to add or remove systems from the system set.

8.1 Working with System Groups Using the Spacewalk Web Interface

Figure 8.1 System Groups Page

Select Systems and then System Groups:

• To create a system group:

  1. Click + create new group.

  2. On the Create System Group page, enter a name and description for the system group.

  3. Click Create Group.
• To add client systems to a system group:
  1. Click the system group name.
  2. Select the Target Systems tab.
  3. On the Target Systems page, select the check boxes for the systems that you want to add to the group and click Add Systems.

• To work with a system group:
  1. Click the system group name.
  2. On the Details page, click work with group.

    Spacewalk loads the group into the System Set Manager.

    The Selected Systems List page under System Set Manager displays the member systems of the system group. Any actions that you take on the tabs under System Set Manager apply only to these systems.

• To work with the union or intersection of two or more system groups:
  1. Select the check boxes next to the system groups.
  2. Click either Work With Union or Work With Intersection.

    • Work With Union creates a union group that includes all member systems of the selected groups.

    • Work With Intersection creates an intersection group that includes only systems that are members of all of the selected groups. If no systems are members of all of the groups, the intersection group does not have any members.

    • The Selected Systems List page under System Set Manager displays the member systems of the union or intersection group. Any actions that you take on the tabs under System Set Manager apply only to these systems.

    • To save a union or intersection group as a new system group, select the Groups tab, click + create new group, enter a name and description for the system group, and click Create Group.

• To remove client systems from a system group:
  1. Click the system group name.
  2. Select the Systems tab.
  3. On the Systems page, select the check boxes of the systems that you want to remove from the group and click Remove Systems.

• To delete a system group:
  1. Click the system group name.
  2. Click delete group and then click Confirm Deletion.

**8.2 Working with System Groups Using spacecmd**

To create a system group, use the group_create command, for example:
Working with System Groups Using `spacecmd`

To list system groups, use the `group_list` command, for example:

```
spacecmd {SSM:0}> group_list
group1
group2
group3
```

To add client systems to a system group, use the `group_addsystems` command.

```
spacecmd {SSM:0}> group_addsystems group3 svr1.mydom.com
```

You can also specify systems by the software channels to which they are subscribed or the results of a system search, for example:

```
spacecmd {SSM:0}> group_addsystems group3 channel:ol6-x86_64
```

```
spacecmd {SSM:0}> group_addsystems group3 ip:192.168.1
```

See Section 8.3, “Searching for Systems Using `spacecmd`”.

To display the details of a system group, use the `group_details` command.

```
spacecmd {SSM:0}> group_details group3
Name group3
Description: Example system group 3
Number of Systems: 1

Members

svr1.mydom.com
```

To work with a system group, specify it using `group:group_name` to a `spacecmd` command, for example:

```
spacecmd {SSM:0}> system_listerrata group:group3
```

```
Security Errata

ELSA-2015-1115 Moderate: openssl security update 6/15/15
ELSA-2015-0863 Moderate: glibc security and bug fix update 4/21/15
...
```

To create a union of two or more system groups, create an empty group and specify the groups to the `group_addsystems` command.

```
spacecmd {SSM:0}> group_create group4 "Example system group 4"
spacecmd {SSM:0}> group_addsystems group4 group:group1 group:group2
```

To create an intersection of two or more system groups, clear the contents of the system set in the System Set Manager, use the `ssm_intersect` command to create the intersection as the new system set, create an empty group and specify the system set as `ssm` to the `group_addsystems` command.

```
spacecmd {SSM:0}> ssm_clear
spacecmd {SSM:0}> ssm_intersect group:group1 group:group2
spacecmd {SSM:2}> group_create group5 "Example system group 5"
spacecmd {SSM:2}> group_addsystems group5 ssm
spacecmd {SSM:2}> ssm_clear
```

**Note**

(SSM:N) shows the number of systems that are members of the system set.
To remove client systems from a system group, use the `group_removesystems` command.

```
 spacecmd {SSM:0}> group_removesystems group3 svr1.mydom.com
 Systems

 svr1.mydom.com
 Remove these systems [y/N]: y
```

To delete a system group, use the `group_delete` command.

```
 spacecmd {SSM:0}> group_delete group3
 group3
 Delete these groups [y/N]: y
```

### 8.3 Searching for Systems Using `spacecmd`

To search for systems, use the `system_search` command.

```
 spacecmd {SSM:0}> system_search criterion:value
```

You can search on the following criteria:

- **device**: System device name. For example: "xen platform device".
- **driver**: System driver name. For example: `ata_piix`.
- **hostname**: FQDN of the system. For example: `svr1.mydom.com`.
- **id**: System ID in Spacewalk. For example: `1000010100`.
- **ip**: IP address. For example: `192.168.1`.
- **name**: System name in Spacewalk. For example: `svr1.mydom.com`.
- **uuid**: System UUID. For example: `0004fb0000060000a4d43e4f737f4f5d`.
- **vendor**: System vendor name. For example: `GenuineIntel`.

For example, search for systems that have an IP address that contains `192.168.1`:

```
 spacecmd {SSM:0}> system_search ip:192.168.1
 svr1.mydom.com 192.168.1.201
 svr2.mydom.com 192.168.1.202
 ...
```

You can also use a `search` query instead of a system name with `spacecmd` commands, for example:

```
 spacecmd {SSM:0}> group_addsystems group3 search:ip:192.168.1
```

To search for systems that subscribe to a software channel, use the `softwarechannel_listsystems` command.

```
 spacecmd {SSM:0}> softwarechannel_listsystems ol6-x86_64
 svr1.mydom.com
 svr2.mydom.com
 ...
```
Chapter 9 Updating Client Systems

You can use the Spacewalk web interface or `spacecmd` to subscribe client systems to software channels and update the client systems from these channels.

9.1 Subscribing Client Systems to Software Channels Using the Spacewalk Web Interface

Figure 9.1 Software Channel Subscriptions Page

To subscribe systems to software channels:

1. Go to Systems and click the system name.
2. Select Software and then select the Software Channels tab.
3. Change the child or base software channels:

To subscribe systems to software channels:

1. Go to Systems and click the system name.
2. Select Software and then select the Software Channels tab.
3. Change the child or base software channels:
• To change the child software channels to which a system is subscribed:
  a. In the Software Channel Subscriptions section, select or deselect the check boxes next to the
     child software channels to which you want to subscribe or unsubscribe the client.
  b. Click Change Subscriptions.

• To change the base software channel to which a system is subscribed:
  a. In the Base Software Channel section, select the new base software channel.
  b. Click Confirm.
  c. On the Confirm Base Software Channel page, click Modify Base Software Change.

**Note**
Changing the base software channel unsubscribes a system from all other
software channels.

### 9.2 Subscribing Client Systems to Software Channels Using spacecmd

To list the base and child software channels to which a system is subscribed, use the
`system_listbasechannel` and `system_listchildchannels` commands.

```bash
spacecmd {SSM:0}> system_listbasechannel svr1.mydom.com
ol6-x86_64
spacecmd {SSM:0}> system_listchildchannels svr1.mydom.com
ksplice-ol6-x86_64
ol6_x86_64_addons
ol6_x86_64_spacewalk22_client
ol6_x86_64_uekr3_latest
```

To list the available child channels of a base channel, use the `softwarechannel_listchildchannels` command.

```bash
spacecmd {SSM:0}> softwarechannel_listchildchannels oraclelinux6-x86_64
ksplice-ol6-x86_64
ol6_x86_64_addons
ol6_x86_64_playground
ol6_x86_64_spacewalk22_client
ol6_x86_64_spacewalk22_server
ol6_x86_64_uekr3_latest
```

To add or remove child channels, use the `system_addchildchannels` and
`system_removechildchannels` commands.

```bash
spacecmd {SSM:0}> system_removechildchannels svr1.mydom.com ol6_x86_64_addons
Systems

svr1.mydom.com
Removing Channels

ol6_x86_64_addons
Is this ok [y/N]: y
```
Subscribing Client Systems to Software Channels Using spacecmd

```bash
spacecmd {SSM:0}> system_addchildchannels svr2.mydom.com ol6_x86_64_playground
Adding Channels

ol6_x86_64_playground
Is this ok [y/N]: y
```

To list the available base channels, use the `softwarechannel_listbasechannels` command.

```bash
spacecmd {SSM:0}> softwarechannel_listbasechannels
oraclelinux7u0-x86_64
oraclelinux7u1-x86_64
```

To change the base channel to which a system is subscribed, use the `system_setbasechannel` command.

```bash
spacecmd {SSM:0}> system_setbasechannel svr5.mydom.com oraclelinux7u1-x86_64
System: svr5.mydom.com
Old Base Channel: oraclelinux7u0-x86_64
New Base Channel: oraclelinux7u1-x86_64
Is this ok [y/N]: y
```

**Note**

Changing the base software channel unsubscribes a system from all other software channels.

You can change the subscribed channels for multiple systems by specifying the following arguments in place of a system name:

- **channel:** `channel_name`
  Matches systems that are subscribed to the specified software channel.

- **group:** `group_name`
  Specifies the systems in the named system group, for example:

```bash
spacecmd {SSM:0}> system_removechildchannels group:group3 ol6_x86_64_playground
 Systems

svr1.mydom.com
svr2.mydom.com
Removing Channels

ol6_x86_64_playground
Is this ok [y/N]: y
```

- **search:** `criterion:value`
  Matches systems that match a search criterion. See Section 8.3, “Searching for Systems Using spacecmd”.

- **ssm**
Listing and Applying Available Security Updates and Other Errata Using the Spacewalk Web Interface

9.3 Listing and Applying Available Security Updates and Other Errata Using the Spacewalk Web Interface

To list the available security updates and other errata for systems or system groups:

1. For systems:
   a. Go to **Systems** and click the system name.
   b. Select **Software** and then select the **Errata** tab.

Alternatively, click **Critical** or **Non-Critical** in the System Status pane to display the Relevant Errata page with security advisory or non-critical errata selected for display.

For system groups:
a. Go to **System Groups** and click the system group name.

b. On the **Details** page, click **work with group**.

   Spacewalk loads the group into the System Set Manager.

c. In the System Set Manager, select the **Errata** tab.

2. On the Relevant Errata List page, select **All**, **Non-Critical**, **Bug Fix Advisory**, **Product Enhancement Advisory**, or **Security Advisory** from the pull-down list and click **Show**.

   • You can filter the list on the **Synopsis** value or sort the list by clicking **Advisory**, **Synopsis**, **Status**, **Affected** (system groups only), or **Updated**.

   • To see more details about an erratum listed under **Advisory**, select its name.

   The CVEs section lists the CVEs that are fixed by an erratum. Click on a CVE name for more details.

   • To display the packages that are affected by an erratum, select the **Packages** tab.

   • To display the systems to which you can apply the erratum, select the **Affected Systems** tab.

3. To apply errata to systems or system groups:

   a. Select the check boxes for the errata that you want to apply, or click **Select All** to select all of the listed errata.

   b. Click **Apply Errata**.

   c. On the Relevant Errata Confirm page, change the schedule if required, and click **Confirm**.

   The page updates to include a link to the scheduled action.

   If you have not edited the schedule and you have enabled the OSA daemon on the client, the OSA daemon usually installs the errata packages immediately. Otherwise, **rhnsd** applies the errata when it next runs on the client.

   d. Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the status and details of the errata update on the client.

### 9.4 Listing and Applying Available Security Updates and Other Errata Using `spacecmd`

To list the security, bug-fix, and product-enhancement advisory errata that are available for a client system, use the `system_listerrata` command:

```
spacecmd {SSM:0}> system_listerrata svr1.mydom.com
Security Errata

ELSA-2015-0863 Moderate: glibc security and bug fix update 4/21/15
ELSA-2015-0794 Moderate: krb5 security update 4/9/15
ELSA-2015-0700 Moderate: unzip security update 3/18/15
ELSA-2015-0672 Moderate: bind security update 3/12/15
ELSA-2015-0092 Critical: glibc security update 1/27/15
ELSA-2015-0074 Important: jasper security update 1/22/15
```
### Bug Fix Errata

<table>
<thead>
<tr>
<th>Erratum ID</th>
<th>Description</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELSA-2015-0066</td>
<td>openssl security update</td>
<td>1/20/15</td>
</tr>
<tr>
<td>ELBA-2015-1085</td>
<td>db4 bug fix update</td>
<td>6/10/15</td>
</tr>
<tr>
<td>ELBA-2015-1033</td>
<td>glibc bug fix update</td>
<td>5/27/15</td>
</tr>
<tr>
<td>ELBA-2015-1018</td>
<td>lvm2 bug fix update</td>
<td>5/20/15</td>
</tr>
</tbody>
</table>

### Enhancement Errata

<table>
<thead>
<tr>
<th>Erratum ID</th>
<th>Description</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEA-2015-0913</td>
<td>tzdata enhancement update</td>
<td>4/28/15</td>
</tr>
<tr>
<td>ELEA-2015-0855</td>
<td>tzdata enhancement update</td>
<td>4/18/15</td>
</tr>
<tr>
<td>ELEA-2015-3031</td>
<td>kexec-tools enhancement update</td>
<td>4/17/15</td>
</tr>
</tbody>
</table>

To find out more details about an erratum, use the `errata_details` command.

```
spacecmd {SSM:0}> errata_details ELSA-2015-1115
Name: ELSA-2015-1115
Product: Oracle Linux 6
Type: Security Advisory
Issue Date: 6/15/15

Description

CVEs

CVE-2014-8176
CVE-2015-1789
CVE-2015-1790
CVE-2015-1791
CVE-2015-1792
CVE-2015-3216

Solution

References

Affected Channels

ol6u6-x86_64

Affected Systems

3

Affected Packages

Listing and Applying Available Security Updates and Other Errata Using spacecmd

To find the errata that fix a CVE, use the `errata_findbycve` command.

```
spacecmd [SSM:0]> errata_findbycve CVE-2015-3216
CVE-2015-3216:
ELSA-2015-1115
```

To list the systems to which you could apply an erratum, use the `errata_listaffectedsystems` command.

```
spacecmd [SSM:0]> errata_listaffectedsystems ELSA-2015-1115
ELSA-2015-1115:
svr1.mydom.com
svr2.mydom.com
svr3.mydom.com
```

To apply an erratum to a system, use the `system_applyerrata` command.

```
spacecmd [SSM:0]> system_applyerrata svr1.mydom.com ELSA-2015-1115
Errata          Systems
--------------   -------
ELSA-2015-1115   1
Apply these errata [y/N]: y
INFO: Scheduled 1 system(s) for ELSA-2015-1115
```

You can apply errata to multiple systems by specifying the following arguments in place of a system name:

- **channel:** `channel_name`
 Matches systems that are subscribed to the specified software channel.

- **group:** `group_name`
 Specifies the systems in the named system group.

- **search:** `criterion=value`
 Matches systems that match a search criterion. See Section 8.3, “Searching for Systems Using spacecmd”.

- **ssm**
 Specifies the systems that are currently in the system set, for example:

```
spacecmd [SSM:0]> ssm_add svr2.mydom.com svr3.mydom.com
spacecmd [SSM:2]> system_applyerrata ssm ELSA-2015-1115
Errata          Systems
--------------   -------
ELSA-2015-1115   2
Apply these errata [y/N]: y
INFO: Scheduled 2 system(s) for ELSA-2015-1115
spacecmd [SSM:2]> ssm_clear
```
9.5 Managing Packages for Systems Using the Spacewalk Web Interface

Figure 9.3 Packages Page

To manage packages for a system:

1. Go to **Systems** and click the system name.

2. Select **Software**.

3. On the Packages page, select the tab or link for the package operation that you want to perform:

 Extra Packages

 The Extra Packages page displays packages that are installed on a system, but which are not present in any of the subscribed channels.

 Note

 If you registered an existing system, such as the Spacewalk server itself, as a client, it is likely that some of the installed packages are not present in any subscribed channel.

 If one or more packages should not have been installed on a system:

 a. Select the packages that you want to remove and click **Remove Packages**.

 b. On the Confirm Package Removal page, change the schedule if required, and click **Confirm**.

 The page updates to include a link to the scheduled action.

 If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually removes the packages immediately.
Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details and status of the package removals.

Install

a. On the Installable Packages page, select the packages that you want to install and click **Install Selected Packages**.

Tip

Use the package filter to locate a package.

To see more information about a package, click its name.

The Details page for the package lists any errata that include the package. To find out more information about an erratum, click its name.

The Details page for the erratum lists the CVEs that the erratum fixes. To find out more information about a CVE, click its name.

b. On the Confirm Package Install page, change the schedule if required, and click **Confirm**.

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually installs the packages immediately.

Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details and status of the package installations.

List/Remove

a. On the Removable Packages page, select the packages that you want to remove and click **Remove Packages**.

b. On the Confirm Package Removal page, change the schedule if required, and click **Confirm**.

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually removes the packages immediately.

Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details and status of the package removals.

Profiles

On the Profiles page, you can:

- Create a package profile from the set of packages that are currently installed on the system:

 a. Click **Create System Profile**.

 b. On the Create Stored Profile page, enter a name and description for the profile and then click **Create Profile**.
• Compare the packages installed on this system with a stored package profile for this system or for another system:
 • In the Compare to Stored Profile section, select the profile name from the pull-down list and click **Compare**.
• Compare the packages installed on this system with those installed on another system:
 • In the Compare to System section, select the system name from the pull-down list and click **Compare**.

Upgrade

a. On the Upgradable Packages page, select the packages that you want to upgrade and click **Upgrade Packages**.

b. On the Confirm Package Upgrade page, change the schedule if required, and click **Confirm**.

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually upgrades the packages immediately.

Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details and status of the package upgrades.

Verify

a. On the Verifiable Packages page, select the packages that you want to verify and click **Verify Selected Packages**.

b. On the Confirm Package Verification page, change the schedule if required, and click **Confirm**.

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually verifies the packages immediately.

Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details and status of the package verifications.

9.6 Managing Packages for Systems Using spacecmd

To create a package profile from the set of packages that are currently installed on a system, use the `system_createpackageprofile` command.

```bash
spacecmd {SSM:0}> system_createpackageprofile svr1.mydom.com -n svr1-profile1 -d "svr1 profile 1"
INFO: Created package profile 'svr1-profile1'
```

To compare the packages installed on this system with a stored package profile for this system or for another system, use the `system_comparepackageprofile` command.

```bash
spacecmd {SSM:0}> system_comparepackageprofile svr2.mydom.com svr1-profile1
```

<table>
<thead>
<tr>
<th>Package</th>
<th>This System</th>
<th>Other System</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
Managing Packages for Systems Using spacecmd

To compare the packages installed on this system with those installed on another system, use the `system_comparepackageprofile` command.

```
spacecmd {SSM:0}> system_comparepackages svr1.mydom.com svr2.mydom.com
svr2.mydom.com:
Package  This System      Other System  Difference
-------  -----------      ------------  ----------
ypbind   1.20.4-30.el6:3  None          Only here
zsh      None             4.3.10-9.el6  Only there
```

To display the details of an installable package, use the `package_details` command.

```
spacecmd {SSM:0}> package_details zsh
...
Name:    zsh
Version: 4.3.10
Release: 9.el6
Epoch:   
Arch:    x86_64
File:    zsh-4.3.10-9.el6.x86_64.rpm
Path:    redhat/1/f5a/zsh/4.3.10-9.el6/x86_64/f5a...59c/zsh-4.3.10-9.el6.x86_64.rpm
Size:    2238632
MD5:     None
Installed Systems: 1
Description
------------
The zsh shell is a command interpreter usable as an interactive login
shell and as a shell script command processor. Zsh resembles the ksh
shell (the Korn shell), but includes many enhancements. Zsh supports
command line editing, built-in spelling correction, programmable
command completion, shell functions (with autoloading), a history
mechanism, and more.

Available From Channels
-----------------------
oraclelinux6-x86_64
...
```

To install a package on a system, use the `system_installpackage` command.

```
spacecmd {SSM:0}> system_installpackage svr1.mydom.com zsh
svr1.mydom.com:
** Generating package cache **
zsh-4.3.10-9.el6.x86_64
Install these packages [y/N]: y
INFO: Scheduled 1 system(s)
```

```
spacecmd {SSM:0}> schedule_list
ID      Date                 C    F    P     Action
--      ----                ---  ---  ---    ------
401     20150618T15:22:51     0    0    1    Package Install
...
```

```
spacecmd {SSM:0}> schedule_details 401
ID:        401
Action:    Package Install
User:      swadmin
Date:      20150618T15:22:51
Completed: 0
Failed:    0
Pending:   1
```
Pending Systems

svr1.mydom.com

To list the package upgrades that are available for a system, use the `system_listupgrades` command.

```
spacecmd {SSM:0}> system_listupgrades svr1.mydom.com
bash-4.1.2-29.el6.0.1.x86_64
wget-1.12-5.el6_6.1.x86_64
```

To upgrade the packages on a system, use the `system_upgradepackage` command.

```
spacecmd {SSM:0}> system_upgradepackage svr1.mydom.com *
svr1.mydom.com:
bash-4.1.2-29.el6.0.1.x86_64
wget-1.12-5.el6_6.1.x86_64
Install these packages [y/N]: y
INFO: Scheduled 1 system(s)
```

To remove a package from a system, use the `system_removepackage` command.

```
spacecmd {SSM:0}> system_removepackage svr1.mydom.com busybox*
svr1.mydom.com:
busybox-1.15.1-20.el6:1.x86_64
Remove these packages [y/N]: y
INFO: Action ID: 403
INFO: Scheduled 1 system(s)
```

9.7 Managing Packages for System Groups Using the Spacewalk Web Interface

Figure 9.4 Package Operations Page

To manage packages for system groups:

1. Go to System Groups and click the system group name.
2. On the **Details** page, click **work with group**.

 Spacewalk loads the group into the System Set Manager.

3. In the System Set Manager, select the **Packages** tab.

4. On the Package Operations page, select the tab or link for the package operation that you want to perform:

 Install

 a. On the Select Channel page, select the channel that contains the packages that you want to install on the systems in the system group.

 b. On the Select Packages to Install page, select the packages that you want to install and click **Install Selected Packages**.

 Tip

 Use the package filter to locate a package.

 To see more information about a package, click its name.

 The Details page for the package lists any errata that include the package. To find out more information about an erratum, click its name.

 The Details page for the erratum lists the CVEs that the erratum fixes. To find out more information about a CVE, click its name.

 c. On the Confirm Package Install page, change the schedule if required, and click **Confirm**.

 The page updates to include a link to the scheduled action.

 If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually installs the packages immediately.

 The Tasks Log page in the System Set Manager shows the status of the package installations.

 Remove

 a. On the Package Removal page, select the packages that you want to remove and click **Remove Selected Packages**.

 b. On the Confirm Package Removal page, change the schedule if required, and click **Confirm**.

 The page updates to include a link to the scheduled action.

 If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually removes the packages immediately.

 The Tasks Log page in the System Set Manager shows the status of the package removals.

 Upgrade

 a. On the Select Packages to Upgrade page, select the packages that you want to upgrade and click **Upgrade Selected Packages**.

 b. On the Confirm Package Upgrade page, change the schedule if required, and click **Confirm**.
Managing Packages for System Groups Using spacecmd

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually upgrades the packages immediately.

The Tasks Log page in the System Set Manager shows the status of the package upgrades.

Verify

a. On the Verifiable Packages page, select the packages that you want to verify and click **Verify Selected Packages**.

b. On the Confirm Package Verification page, change the schedule if required, and click **Confirm**.

The page updates to include a link to the scheduled action.

If you have not edited the schedule and you have enabled the OSA daemon on the clients, the OSA daemon usually verifies the packages immediately.

The Tasks Log page in the System Set Manager shows the status of the package verifications.

9.8 Managing Packages for System Groups Using spacecmd

To compare the packages installed on the systems in a system group with a stored package profile, use the `system_comparepackageprofile` command.

```
空间(cmd {SSM:0})> system_comparepackageprofile group:group1 svr1-profile1
svr3.mydom.com:
Package  This System  Other System  Difference
-------  -----------  ------------  ----------
zsh      None         4.3.10-9.el6  Only there

svr4.mydom.com:
Package  This System  Other System  Difference
-------  -----------  ------------  ----------
zsh      None         4.3.10-9.el6  Only there
```

To install a package on the systems in a system group, use the `system_installpackage` command.

```
空间(cmd {SSM:0})> system_installpackage group:group1 zsh
svr3.mydom.com:
zsh-4.3.10-9.el6.x86_64

svr4.mydom.com:
zsh-4.3.10-9.el6.x86_64

Install these packages [y/N]: y
INFO: Scheduled 2 system(s)
```

To list the package upgrades that are available for the systems in a system group, use the `system_listupgrades` command.

```
空间(cmd {SSM:0})> system_listupgrades group:group1
svr3.mydom.com:
bash-4.1.12-29.el6.0.1.x86_64
```
To upgrade the packages on the systems in a system group, use the `system_upgradepackage` command.

```
spacecmd [SSM:0]> system_upgradepackage group:group1 *
```
```
svr3.mydom.com:
bash-4.1.2-29.el6.0.1.x86_64
wget-1.12-5.el6_6.1.x86_64

###############################################################
svr4.mydom.com:
wget-1.12-5.el6_6.1.x86_64
```
```
Install these packages [y/N]: y
INFO: Scheduled 2 system(s)
```

To remove a package from the systems in a system group, use the `system_removepackage` command.

```
spacecmd [SSM:0]> system_removepackage svr1.mydom.com busybox* 
```
```
svr3.mydom.com:
busybox-1.15.1-20.el6:1.x86_64

###############################################################
svr4.mydom.com:
busybox-1.15.1-20.el6:1.x86_64
```
```
Remove these packages [y/N]: y
INFO: Action ID: 407
INFO: Action ID: 408
INFO: Scheduled 2 system(s)
```

Managing Packages for System Groups Using `spacecmd`
Chapter 10 Controlling and Configuring Client Systems

You can use the Spacewalk web interface or `spacecmd` to run command scripts on remote client systems. You can also set up configuration channels, subscribe client systems to these channels, and customize the client systems by using the channels to deploy configuration files.

10.1 Running Command Scripts on Remote Client Systems Using the Spacewalk Web Interface

Figure 10.1 Remote Command Page

Note

The client system must permit the Spacewalk server to run remote commands. See Section 6.4, “Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface” and Section 6.6, “Enabling Remote Configuration Manually”.

To run a command on a remote client:
1. Go to **Systems** and select the client system from the list.

2. Select **Details** and then select the **Remote Command** tab.

3. If required, change the user and group ID of the user that should run the command, the command timeout, and a command label of up to 10 characters.

4. In the **Script** text box, enter the command script that you want to run. The following example runs the `yum update` command:

   ```
   #!/bin/sh
   yum update
   ```

5. If required, change the schedule for the command.

6. Click **Schedule** to commit the command script to run according to the schedule that you specify.

 If you have not edited the schedule and you have enabled the OSA daemon on the client, the OSA daemon usually runs the command immediately.

7. Select **Events** and then select the **Pending** or **History** tab to view scheduled or completed actions. Click the summary name to display the details of the script and any output if it has already run on the client.

10.2 Running Command Scripts on Remote Client Systems Using spacecmd

Note

The client system must permit the Spacewalk server to run remote commands. See Section 6.4, “Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface” and Section 6.6, “Enabling Remote Configuration Manually”.

To run a command on client systems, use the `system_runscript` command, for example:

```
 spacecmd {SSM:0}> system_runscript group:group3 -s 20150617T0130 -t 60 -f /root/myscript
```

User: root
Group: root
Timeout: 60 seconds
Start Time: 20150617T01:30:00

Script Contents

```
#!/bin/sh
yum update
```

Systems

svr2.mydom.com
svr3.mydom.com

Is this ok [y/N]: y
INFO: Action ID: 343
INFO: Scheduled: 2 system(s)

To specify the date and time when an event should start, use the format `YYYYMMDD[hhmm]` with the `-s` option. If you do not specify a start time, Spacewalk assumes `0000` (midnight).
The \texttt{-t} option defines a timeout for a client to confirm that it has run a command. After this time has elapsed, Spacewalk assumes that the command has failed.

10.3 Working with Scheduled Events

To display a list of completed, failed, and pending events, use the \texttt{schedule_list} command.

\begin{verbatim}
spacecmd {SSM:0}> schedule_list
<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>C</th>
<th>F</th>
<th>P</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>20150617T01:30:00</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Run an arbitrary script</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}

The \texttt{C}, \texttt{F}, and \texttt{P} columns show the number of systems on which the event has completed, failed, or is pending. To display only completed, failed, or pending events, use the \texttt{schedule_listcompleted}, \texttt{schedule_listfailed}, or \texttt{schedule_listpending} commands.

To display the details of a pending event, use the \texttt{schedule_details} command.

\begin{verbatim}
spacecmd {SSM:0}> schedule_details 343
ID: 343
Action: Run an arbitrary script
User: swadmin
Date: 20150617T01:30:00
Completed: 0
Failed: 0
Pending: 2

Pending Systems

svr2.mydom.com
svr3.mydom.com
\end{verbatim}

To cancel a pending event, use the \texttt{schedule_cancel} command.

\begin{verbatim}
spacecmd {SSM:0}> schedule_cancel 343
INFO: Canceled action 343
Canceled 1 action(s)
\end{verbatim}

To re-run a failed event, use the \texttt{schedule_reschedule} command.

\begin{verbatim}
spacecmd {SSM:0}> schedule_reschedule 382
Rescheduled 1 action(s)
\end{verbatim}

10.4 Working with Configuration Channels

\textbf{Note}

The client system must permit the Spacewalk server to deploy files, the activation key for the system must permit the provisioning add-on entitlement and configuration file deployment, and the provisioning entitlement must be enabled for the system. See Section 6.4, “Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface”, Section 6.6, “Enabling Remote Configuration Manually”, and Chapter 3, \textit{Creating Activation Keys}.

In the same way that a software channel in Spacewalk contains packages for installation on multiple client systems, a configuration channel contains files for configuring client systems. For example, the files might contain configuration information for services, applications, or users.
10.4.1 Working with Configuration Channels Using the Spacewalk Web Interface

Figure 10.2 New Config Channel Page

To create a configuration channel:

1. Go to Configuration and select Configuration Channels.
2. On the Centrally Managed Configuration Channels page, click + create new config channel.
3. Enter a name, label, and description for the channel. The label should be a short representation of the target operating system, architecture (if appropriate), and the purpose of the channel. For example: ol6_generic_configuration.
4. Click Create Config Channel.
5. To add files to the configuration channel, on the New Channel page, select the Add Files tab.
 a. To create a text file, directory, or symbolic link:
 i. Select the Create File tab.
 ii. On the Create New Configuration File page, you can create a text file, directory, or symbolic link.
 For example, to set up a message-of-the-day file that contains configuration information about the client, you might enter the following details:

 - **File Type**: Select Text file.
 - **Filename/Path**: Enter /etc/motd.
 - **Ownership**: Enter root for both the user name and group. (These are the default entries.)
 - **File Permissions Mode**: Enter 644. (This is the default mode.)
File Contents

Select the file type as **Shell** from the drop-down list, and enter the file contents in the text field.

For example, the following file uses macros that Spacewalk replaces with the appropriate values for the system on which the file is deployed:

```
System Information
==================
Client system: {rhn.system.hostname}
Spacewalk SID: {rhn.system.sid}
Asset tag:     {rhn.system.custom_info(asset_tag) = 'Asset tag missing' }
Profile:       {rhn.system.profile_name}
Description:   {rhn.system.description}
IP address:    {rhn.system.ip_address(eth0)}
MAC address:   {rhn.system.net_interface.hardware_address(eth0)}
```

The custom macro `rhn.system.custom_info` substitutes the value of the custom system information key named `asset_tag` as assigned on the Custom Info tab for the system. Otherwise, it inserts the value `Asset tag missing`.

See Section 10.4.2, “Defining Custom Information Keys Using the Spacewalk Web Interface”.

See Appendix C, **Configuration File Macros**.

c. After entering the details of the file, click **Create Configuration File**.

- To import files:
 a. Select the **Import Files** tab.

 On the Import Configuration File(s) from Another Channel page, you can import configuration files from other configuration channels.

 b. Select the check boxes of the configuration files that you want to import.

 c. Click **Import Configuration File(s)**.

- To upload files:
 a. Select the **Upload File** tab.

 b. On the Upload New Configuration File page, click **Browse...** and select the path of the file to upload.

 c. Select the file type: **Text file** or **Binary file**.

 d. Enter other details for the file, such as ownership and permissions, as required.

 e. Click **Upload Configuration File**.

10.4.2 Defining Custom Information Keys Using the Spacewalk Web Interface

To define a custom information key and assign it to a system:

1. Go to **Systems** and select **Custom System Info**.

2. Click **+ create new key**.
3. On the Create Custom Info Key page, enter a key label (for example, `asset_tag`) and description, and then click **Create Key**.

4. Go to **Systems** and click the name of the system for which you want to assign a value to the key.

5. Select the **Custom Info** tab.

6. On the Custom System Information page, click **+ create new value**.

7. On the Edit Custom Info Key page, select the key to which you want to assign a value.

 The page updates to display information about the key and a **Value** text box.

8. Enter the key value in the **Value** text box and click **Update Key**.

 The Custom System Information page displays the key-value pairs that are associated with a system. You can modify a value by selecting the associated **Edit this value** link.

 Note

 You can also define custom information keys for a system by using the **Custom Info** tab of a system's Kickstart profile.

You can define as many key-value pairs for a system as you require.

10.4.3 Working with Configuration Channels Using spacecmd

To create a configuration channel, use the `configchannel_create` command.

```
spacecmd {SSM:0}> configchannel_create
Name: Oracle Linux 6 Server Configuration
Label: ol6-server-config
Description: Generic configuration channel for Oracle Linux 6 servers
```

To add a configuration file to a channel, use the `configchannel_addfile` command.

```
spacecmd {SSM:0}> configchannel_addfile ol6-server-config
Path: /etc/motd
Symlink [y/N]: N
Directory [y/N]: N
Owner [root]: [Enter]
Group [root]: [Enter]
Mode [0644]: [Enter]
SELinux Context [None]: [Enter]
Revision [next]: [Enter]
Read an existing file [y/N]: y
File: /var/config_file_templates/ol6-server/etc/motd
Path: /etc/motd
Directory: False
Owner: root
Group: root
Mode: 0644
SELinux Context:

Contents
--------
System Information
-------------------
Client system: {rhn.system.hostname}
Spacewalk SID: {rhn.system.sid}
Asset tag: {rhn.system.custom_info(asset_tag) = 'Asset tag missing'}
Profile: {rhn.system.profile_name}
Description: {rhn.system.description}
IP address: {rhn.system.ip_address(eth0)}
```
Defining Custom Information Keys Using spacecmd

MAC address: {rhn.system.net_interface.hardware_address(eth0)}

Is this ok [y/N]: y

The custom macro rhn.system.custom_info substitutes the value of the custom system information key named asset_tag as assigned on the Custom Info tab for the system. Otherwise, it inserts the value Asset tag missing.

See Section 10.4.4, “Defining Custom Information Keys Using spacecmd”.

See Appendix C, Configuration File Macros.

To display the details of a configuration channel, use the configchannel_details command.

```
spacecmd {SSM:0}> configchannel_details ol6-server-config
Label:       ol6-server-config
Name:        Oracle Linux 6 Server Configuration
Description: Configuration channel for generic Oracle Linux 6 servers
```

10.4.4 Defining Custom Information Keys Using spacecmd

To create a custom information key, use the custominfo_createkey command.

```
spacecmd {SSM:0}> custominfo_createkey admin_user "Email of admin contact"
```

To list the available custom information keys, use the custominfo_listkeys command.

```
spacecmd {SSM:0}> custominfo_listkeys
asset_tag
admin_user
```

To assign a custom information key to a system or system group, use the system_addcustomvalue command.

```
spacecmd {SSM:0}> system_addcustomvalue asset_tag "fc01568a" svr3.mydom.com
spacecmd {SSM:0}> system_addcustomvalue admin_user "an.admin@mydom.com" group:group3
```

To list the custom information keys for a system or system group, use the system_listcustomvalues command.

```
spacecmd {SSM:0}> system_listcustomvalues svr3.mydom.com
asset_tag = fc01568a
admin_user = an.admin@mydom.com
```

10.4.5 Subscribing Client Systems to Configuration Channels Using the Spacewalk Web Interface

To subscribe a client system to a configuration channel:
1. Go to Systems and click the system name.

2. Select the Configuration tab, then the Manage Configuration Channels tab, and finally the Subscribe to Channels tab.

3. On the Step 1: Select Channels for Subscription page, select the check boxes for the channels to which you want to subscribe the system and click Continue.

4. On the Step 2: Rank Channels for Subscription page, you can optionally change the order of the configuration channels according to priority. Higher-rank entries override lower-rank entries if several entries can modify the same files or directories.

5. To save your changes, click Update Channel Rankings.

See Section 10.4.7, “Deploying Configuration Files to Client Systems Using the Spacewalk Web Interface”.

10.4.6 Subscribing Client Systems to Configuration Channels Using spacecmd

To list the available configuration channels, use the configchannel_list command.

```bash
spacecmd {SSM:0}> configchannel_list
ol6-dns-server-config
ol6-http-server-config
ol6-nfs-server-config
ol6-server-config
```

To subscribe a system or system group to a configuration channel, use the system_addconfigchannels command.

```bash
spacecmd {SSM:0}> system_addconfigchannels svr3.mydom.com ol6-nfs-server-config -t
spacecmd {SSM:0}> system_addconfigchannels group:group3 ol6-server-config -b
```

To list the configuration channels to which a system or system group is subscribed, use the system_listconfigchannels command.

```bash
spacecmd {SSM:0}> system_listconfigchannels group:group3
System: svr3.mydom.com
ol6-nfs-server-config
ol6-server-config

System: svr4.mydom.com
ol6-server-config
```

To edit the configuration channels for a system, you can use the system_setconfigchannelorder command.

```bash
spacecmd {SSM:0}> system_setconfigchannelorder svr1.mydom.com
Current Selections
------------------
1. ol6-server-config

Available Configuration Channels
-------------------------------
ol6-dns-server-config
ol6-http-server-config
ol6-nfs-server-config
```
Deploying Configuration Files to Client Systems Using the Spacewalk Web Interface

ol6-server-config

Channel: ol6-dns-server-config
New Rank: 1

Current Selections

1. ol6-dns-server-config
2. ol6-server-config

To unsubscribe a system from a configuration channel, use the `system_removeconfigchannels` command.

```
spacecmd {SSM:0}> system_removeconfigchannels svr3.mydom.com ol6-server-config
```

10.4.7 Deploying Configuration Files to Client Systems Using the Spacewalk Web Interface

Note

You must have previously subscribed the system to the appropriate configuration channel for the configuration files that you want to deploy. See Section 10.4.5, "Subscribing Client Systems to Configuration Channels Using the Spacewalk Web Interface".

The first deployment to a client system can fail if the `/var/log/rhncfg-actions` log file does not exist on the client. If the deployment fails, the log file is created automatically, and you can reschedule the deployment event. Alternatively, run the command `touch /var/log/rhncfg-actions` on the client system before deploying any files to it.

Figure 10.3 Deploy Files Page
Deploying Configuration Files to Client Systems Using spacecmd

To deploy a configuration file to a client system:

1. Go to Systems and click the system name.
2. Select the Configuration tab and then the Deploy Files tab.
3. On the Deploy Files page, select the check boxes for the files that you want to deploy, and click Deploy Files.
4. On the Confirm Deploy Files page, change the schedule if required, and click Schedule Deploy.
5. Select Events and then select the Pending or History tab to view scheduled or completed actions. Click the summary name to display the details of the deployment event.

10.4.8 Deploying Configuration Files to Client Systems Using spacecmd

Note

You must have previously subscribed the system to the appropriate configuration channel for the configuration files that you want to deploy. See Section 10.4.6, “Subscribing Client Systems to Configuration Channels Using spacecmd”.

The first deployment to a client system can fail if the /var/log/rhncfg-actions log file does not exist on the client. If the deployment fails, the log file is created automatically, and you can reschedule the deployment event. Alternatively, run the command touch /var/log/rhncfg-actions on the client system before deploying any files to it.

To deploy all configuration files to a system or system group, use the system_deployconfigfiles command.

```
spacecmd {SSM:0}> system_deployconfigfiles group:group3
Systems
svr3.mydom.com
svr4.mydom.com
Deploy ALL configuration files to these systems [y/N]: y
INFO: Scheduled deployment for 2 system(s)
```

To display the details of a pending deployment event, use the schedule_details command. See Section 10.3, “Working with Scheduled Events”.
Chapter 11 Performing OpenSCAP Auditing of Client Systems

Note

The client system must permit the Spacewalk server to run remote commands. See Section 6.4, “Enabling Remote Configuration in a Kickstart Profile Using the Spacewalk Web Interface” and Section 6.6, “Enabling Remote Configuration Manually”.

To be able to run OpenSCAP scans on a client system, install the `spacewalk-openscap` package on that system.

You can use the OpenSCAP tools to audit Spacewalk clients. You can use the SCAP Security Guide, which is provided by the Extra Packages for Enterprise Linux (EPEL) project, or any OpenSCAP compliant eXtensible Configuration Checklist Description Format (XCCDF) or Open Vulnerability and Assessment Language (OVAL) files. The `scap-security-guide` package, which is available for Oracle Linux 6 and Oracle Linux 7, provides SCAP Security Guides that have been updated to include Common Platform Enumeration (CPE) definitions for Oracle Linux.

11.1 Performing OpenSCAP Auditing of Client Systems Using the Spacewalk Web Interface

Note

Typically, you would use the `oscap` command with Spacewalk to perform scans. See Using OpenSCAP to Scan for Vulnerabilities in the Oracle Linux 6 Security Guide for more information about using this command.

Figure 11.1 Schedule New XCCDF Scan Page

To schedule a scan for a system or system group:
1. For a system:
 • Go to Systems, click the system name, select the Audit tab, and then select the Schedule tab.

 For a system group:
 a. Go to Systems and select System Groups.
 b. Click the system group name.
 c. On the Details page, click work with group.
 Spacewalk loads the group into the System Set Manager.
 d. Select the Audit tab.

2. On the Schedule New XCCDF Scan page, enter the scan settings in the following fields:

 Command
 Enter the command to use for the scan. The default command is `/usr/bin/oscap xccdf eval`, which scans a system against a profile in an installed XCCDF checklist file.

 To run an OVAL auditing scan, use the command `/usr/bin/oscap oval eval`. You can download OVAL definition files from http://linux.oracle.com/security.

 Command-line arguments
 Enter any command-line arguments to the command that you are using to perform the scan. For example: `--profile server`.

 Path to XCCDF document
 Enter the path of the XCCDF checklist file, for example `/usr/share/xml/scap/ssg/content/ssg-rhel6-xccdf.xml`, or downloaded OVAL definition file, for example `com.oracle.elsa-2014.xml`.

3. Change the schedule if required, and click Schedule.

 When the scan is complete, a summary of the results of the scan are displayed under the List Scans tab. Oracle recommends that you schedule regular scans to check for security regressions.

11.2 Performing OpenSCAP Auditing of Client Systems Using spacecmd

Note

spacecmd supports XCCDF scans but not OVAL scans. Instead, you can use Spacewalk's remote command execution facility to run `oscap oval eval` on Spacewalk clients. See Using OpenSCAP to Scan for Vulnerabilities in the Oracle Linux 6 Security Guide for more information about using the `oscap` command.

To schedule an XCCDF scan for systems, use the `scap_schedulexccdfscan` command.

```
 spacecmd {SSM:0} > scap_schedulexccdfscan '/usr/share/xml/scap/ssg/content/ssg-rhel6-xccdf.xml' 'profile server' svr1.mydom.com
```

To list scheduled auditing scans, use the `schedule_list` command. See Section 10.3, “Working with Scheduled Events”.

Performing OpenSCAP Auditing of Client Systems Using spacecmd

spacecmd [SSM:0]> schedule_list

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>C</th>
<th>F</th>
<th>P</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>522</td>
<td>20150625T12:56:01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>OpenSCAP xccdf scanning</td>
</tr>
</tbody>
</table>

...To list the summary results of completed XCCDF scans, use the `scap_listxccdfscans` command:

spacecmd [SSM:0]> scap_listxccdfscans svr1.mydom.com

To list the details and results of an XCCDF scan, specified by its scan ID, use the `scap_getxccdfscandetails` and `scap_getxccdfscanruleresults` commands.

spacecmd [SSM:0]> scap_getxccdfscandetails scan_ID
spacecmd [SSM:0]> scap_getxccdfscanruleresults scan_ID
Chapter 12 Configuring Ksplice Offline Client for Client Systems

On average, the Linux kernel receives security updates and bug fixes about once per month. Traditionally, applying such updates would require you to obtain and install the updated kernel RPMs, to schedule downtime, and to reboot the server into the new kernel with the critical updates. As system setups become more complex with many interdependencies, and access to services and applications must remain as undisrupted as possible, scheduling such reboots becomes more difficult and costly.

Oracle Ksplice allows you to keep your systems secure and highly available by allowing you to update your systems with the latest kernel security errata and other critical updates. Oracle Ksplice updates the running kernel image without requiring a reboot. Your systems remain up to date with their OS vulnerability patches and downtime is minimized. A Ksplice update takes effect immediately it is applied. It is not an on-disk change that only takes effect after a subsequent reboot.

Oracle creates each Ksplice update from a kernel update that originates either from Oracle or from the Linux kernel community.

Ksplice Offline Client removes the requirement for a server on your intranet to have a direct connection to the Oracle Uptrack server. All available Ksplice updates for each supported kernel version are bundled into an RPM that is specific to that version, and this package is updated every time that a new Ksplice patch becomes available for the kernel.

Note
Ksplice Offline Client is freely available for Oracle Linux customers that subscribe to Oracle Linux Premier Support. If you are an Oracle Linux Basic, Basic Limited, or Network Support subscriber, contact your sales representatives to discuss a potential upgrade of your subscription to a Premier Support plan.

You can configure a Spacewalk server as a mirror of the Ksplice for Oracle Linux channels on ULN. The Spacewalk server does not require access to the Oracle Uptrack server. Instead, you schedule Spacewalk to download the latest Ksplice update packages to a software channel. After installing Ksplice Offline Client on your Spacewalk client systems, they can install the Ksplice update packages from the Spacewalk server. The clients also do not require access the Oracle Uptrack server.

Note
You cannot use the web interface or the Ksplice Uptrack API to monitor systems that are running Ksplice Offline Client as such systems are not registered with https://uptrack.ksplice.com.

12.1 Supported Kernels

You can use Ksplice Uptrack to bring the following Oracle Linux kernels up to date with the latest important security and bug fix patches:

- All Oracle Linux 6 and Oracle Linux 7 kernels starting with the official release.

- All Oracle Unbreakable Enterprise Kernel versions for Oracle Linux 5 and Oracle Linux 6 starting with 2.6.32-100.28.9 (released March 16, 2011).

- All Oracle Linux 5 Red Hat Compatible Kernels starting with Oracle Linux 5.4 (2.6.18-164.el5, released September 9, 2009).

- All Oracle Linux 5 Red Hat Compatible Kernels with bug fixes added by Oracle starting with Oracle Linux 5.6 (2.6.18-238.0.0.0.1.el5, released January 22, 2011).
To confirm whether a particular kernel is supported, install the Uptrack client on a system that is running the kernel.

If you have a question about supported kernels, send e-mail to ksplice-support_ww@oracle.com.

12.2 Configuring a Spacewalk Server to Act as a Ksplice Mirror

To configure a Spacewalk server to act as a Ksplice mirror, configure repositories and associated software channels for the Oracle Linux releases and architectures of the clients on which you want to run Ksplice Offline Client. Each Ksplice channel should be a child of the appropriate base software channel. See Section 2.4, “Working with Repositories” and Section 2.5, “Working with Software Channels”.

The following table shows the channels that are available for Ksplice on Oracle Linux.

<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Channel Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ksplice for Oracle Linux 5 (i386)</td>
<td>ol5_i386_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5 on i386 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 5 (x86_64)</td>
<td>ol5_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 5 on x86-64 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 6 (i386)</td>
<td>ol6_i386_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6 on i386 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 6 (x86_64)</td>
<td>ol6_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 6 on x86-64 systems.</td>
</tr>
<tr>
<td>Ksplice for Oracle Linux 7 (x86_64)</td>
<td>ol7_x86_64_ksplice</td>
<td>Oracle Ksplice clients, updates, and dependencies for Oracle Linux 7 on x86_64 systems.</td>
</tr>
</tbody>
</table>

For example, you would specify the URL of the Ksplice for Oracle Linux 6 (x86_64) channel on ULN as:

```
uln:///ol6_x86_64_ksplice
```

12.3 Provisioning Client Systems as Ksplice Offline Clients

To provision a client system as a Ksplice offline client, configure its Kickstart profile as follows:

- Under Kickstart Details, select the Operating System tab, ensure that the check box for the Ksplice child software channel is checked, and click Update Kickstart.
- Under Software, include uptrack-offline in the list of packages to install.
- Under Scripts, create a post-installation, nochroot shell script that installs the Ksplice update packages.

For Oracle Linux 6 or Oracle Linux 7:

```
yum install uptrack-updates-`uname -r`
```

For Oracle Linux 5:

```
yum install uptrack-updates-`uname -r`,`uname -m`
```

Install new Ksplice updates as they become available. You can schedule Spacewalk to update the client system or you can set up an anacron script on the client itself. For example, you could use the following script with an Oracle Linux 6 or Oracle Linux 7 client:

```
#!/bin/sh
```
12.4 Configuring Existing Client Systems as Ksplice Offline Clients

Once you have set up a local ULN mirror that can act as a Ksplice mirror, you can configure your other systems to receive yum and Ksplice updates.

To configure a system as a Ksplice offline client:

1. Subscribe the client system to the Ksplice software channel that corresponds to the Oracle Linux release and architecture.

2. Install the Ksplice offline client package (uptrack-offline) on the system.

 You can run the yum command directly on the client system, for example:

   ```bash
   yum install uptrack-offline
   ```

 Alternatively, use the Spacewalk web interface or spacecmd to install the package or to run the yum command remotely.

3. Install the Ksplice updates that are available for the kernel.

 For an Oracle Linux 5 client, install the update packages. You can use the following yum command to install the update packages:

   ```bash
   # yum install uptrack-updates-`uname -r`.`uname -m`
   ```

 For an Oracle Linux 6 or Oracle Linux 7 client, install the update packages. You can use the following yum command to install the update packages:

   ```bash
   # yum install uptrack-updates-`uname -r`
   ```

 Install new Ksplice updates as they become available. You can schedule Spacewalk to update the client system or you can set up an anacron script on the client itself. For example, you could use the following script with an Oracle Linux 6 or Oracle Linux 7 client:

   ```bash
   #!/bin/sh
   yum install uptrack-updates-`uname -r`
   ```

 The script must be executable and be owned by root. If you place the script in /etc/cron.daily on the client, it runs once every day.
Appendix A Kickstart Options

Using the Spacewalk web interface, you can specify the following Kickstart options for a Kickstart profile:

auth

(Mandatory) Specifies whether the shadow password file is used and the password algorithm. The default setting is `--enablesystem shadow --passalgo=sha256`, which enables the shadow password file and specifies SHA256 as the password algorithm. If you change the password algorithm, the password hash specified for `rootpwd` must have been generated by using the same algorithm or you will not be able to log in to the installed system.

See the `authconfig(8)` manual page for a list of the options that you can specify.

autopart

Specifies whether the installation should perform automatic partitioning. If you specify this option, you should also specify `clearpart` and `zerombr`. Use `ignoredisk` to specify the disks that the Installer should or should not use.

autostep

`autostep [--autoscreenshot]`

Specifies that the Installer should step through every screen.

bootloader

`bootloader --location={mbr|none|partition} [--append="boot-loader kernel parameters"]`

(Mandatory) Specifies whether the boot loader is installed in the MBR or in a disk partition. The default setting is `--location mbr`.

cdrom

Specifies that the installation is from the first CD-ROM drive on the system.

clearpart

`clearpart [--all [--initlabel] | --linux | --list=part1,... | --none] [--drives=drive1,...] [--initlabel]`

Specifies whether to clear any existing partitions. For example, `--drives-sda --all --initlabel` would clear all partitions on the disk device sda and reinitialize the disk label.

Caution

The default setting of `--all` clears all partitions on all attached disks.

cmdline

Specifies that the installation should be performed in non-interactive, command-line mode.

device

`device {eth|scsi}module_name --opts="module options"`

Specifies the module name and options for a system device.

deviceprobe

Specifies how to probe for devices.

driverdisk

`driverdisk partition [--type=ftype]`
driverdisk --source=ftp://image_path
driverdisk --source=http://server/image_path
driverdisk --source=nfs:server:image_path

Specifies a driver disk.

firewall

```
firewall [ --disabled | --enabled ] [ --ftp ] [ --http ]
[ --port=inbound_port1:{tcp|udp},... ]
[ --smtp ] [ --ssh ]
[ --trust=network_interface ]...
```

Specifies the configuration of the system firewall. The default value is --disabled.

firstboot

```
firstboot { --enable | --disable | --reconfig }
```

Specifies how the setup agent starts when the system is first booted. If enabled, the initial-setup package must be installed.

graphical

Perform a graphical installation. It is not usual to select this option for non-interactive Kickstart installations.

halt

Specifies that the Installer should halt the system after installation is complete and wait for a key to be pressed on the console before rebooting.

harddrive

```
harddrive [ --biospart=BIOS_partition | --partition=partition ]
[ --dir=install_directory ]
```

Specifies an installation directory on a local hard drive.

ignoredisk

```
ignoredisk { --drives=[disk1,...] | --only-use=[disk1,...]
```

Specifies disks that the Installer should or should not use during installation.

install

Specifies that the Installer should perform a new installation. This option is specified by default.

interactive

Specifies that the installation should be interactive.

iscsi

```
iscsi --ipaddr=target_addr --target=target_IQN
[ --iface=network_interface ] [ --port=target_port ]
[ --user=target_username --password=target_password ]
[ --reverse-username=initiator_username
--reverse-password=initiator_password ]
```

Specifies iSCSI storage to be used during installation.

iscsiname

Specifies the iSCSI initiator name for the system.

key

Specifies an installation key for package selection and system identification.

keyboard

(Mandatory) Specifies the keyboard layout. The default setting is us.

lang

(Mandatory) Specifies the language to be used for installation and the default locale on the installed system. The default setting is en_US.
logging

logging [--host=remote_host]
[--level={critical|debug|error|info|warning}]
[--port=remote_port]

Configures installation error logging.

monitor

monitor [--hsync=Hfreq] [--vsync=Vfreq]

Specifies the monitor’s horizontal and vertical synchronization frequency settings.

mouse

Mouse

Depreciated. Do not use.

multipath

multipath --name=pathname --device=device --rule=rule

Specifies a multipath device.

network

network --bootproto=dhcp [--device=interface]
[--onboot={no|yes}]

network --bootproto=static [--device=network_interface]
[--onboot={no|yes}]
[--noipv4 | --ip=IP_addr --netmask=netmask]
[--ipv6={auto|dhcp|IPv6_addr/prefix}]
[--gateway=gateway_addr]
[--nameserver=namesvr_addr]

Specifies the configuration of the network interfaces. The default setting is --bootproto dhcp, which configures the network interface used for installation to use DHCP to obtain its network settings.

nfs

nfs --server=NFSserver --dir=install_directory
[--opts=mount_options]

Specifies an NFS server and directory path to use for installation.

poweroff

poweroff

Specifies that the Installer should power down the system after installation is complete.

reboot

reboot

Specifies that the Installer should reboot the system after installation is complete. This option is specified by default. For unattended installations, the poweroff option might be preferable.

rootpw

rootpw { --iscrypted | --plaintext } password

(Mandatory) Specifies the root password as a hash value or in plain text. This option is specified by default. If you specify a plain text password, select the Encrypt check box.

selinux

selinux { --disabled | --enforcing | --permissive }

Specifies the SELinux mode as disabled, enforcing, or permissive. The default setting is --permissive.

services

services [--disabled=service1,...]
[--enabled=serviceA,...]

Specifies which services to disable or enable at the default run level.

shutdown

shutdown

Specifies that the Installer should shut down the system after installation is complete but not power it down.
skipx
Do not install X on the system. This option is specified by default.
text
Perform a text-only installation. This option is specified by default as Kickstart installations are usually non-interactive.
timezone
timezone [--utc] timezone
(Mandatory) Specifies the time zone and whether the hardware clock uses UTC (--utc). The default setting is America/New_York.
upgrade
Specifies that the Installer should perform an upgrade installation.
url
url --url={file_path | ftp://username:password@server/path | http://server/path}
Specifies the URL of the Kickstart file. By default, the Kickstart URL is specified as a file path and Spacewalk writes the correct, full URL to the Kickstart file, depending on whether the system being installed connects directly to a Spacewalk server or via a Spacewalk proxy. If you enter a full URL instead of a file path, Spacewalk does not modify the URL.
user
user --name=username [--groups=group1,...]
[--homedir=directory]
[--password=password] [--iscrypted]
[--shell=shell_path] [--uid=UID]
Specifies a user to be created on the system.
vnc
vnc [--host=hostname] [--port=port]
[--password=password]
Specifies parameters for running a VNC server on the system being installed.
xconfig
xconfig [--defaultdesktop={GNOME|KDE}]
[--depth={8|16|24|32}]
[--resolution=XxY]
[--startxonboot]
Specifies X Window System parameters.
zerombr
Specifies whether to clear the existing disk partitions. This option is specified by default.
zfcp
zfcp [--devnum=num] [--fcplun=lun]
[--scsiid=id] [--scsilun=lun]
[--wwpn=name]
Specifies zFCP parameters for Fibre Channel-attached SCSI devices.
Appendix B Sample Package Lists

The following packages provide a suitable minimum *(Just Enough OS)* installation to support Spacewalk OSA and remote configuration. You can use *yum* to install any other packages that you require to configure an Oracle Linux server.

```plaintext
@ Base
osad
rhncfg
rhncfg-actions
rhncfg-client
rhncfg-management
```

The following package list is suitable for a basic Oracle Linux 6 server without desktop support.

```plaintext
@ Base
@ client-mgmt-tools
@ console-internet
@ core
@ debugging
@ directory-client
@ hardware-monitoring
@ java-platform
@ large-systems
@ network-file-system-client
@ performance
@ perl-runtime
@ server-platform
@ server-policy
@ uek3-kernel-repo
certmonger
device-mapper-persistent-data
krb5-workstation
oddjob
osad
pam_krb5
pax
perl-DBD-SQLite
python-dmidecode
samba-winbind
sgpio
```

The following package list is suitable for an Oracle Linux 6 development system with desktop support.

```plaintext
@ Base
@ additional-devel
@ basic-desktop
@ client-mgmt-tools
@ compat-libraries
@ console-internet
@ core
@ debugging
@ desktop-debugging
@ desktop-platform
@ desktop-platform-devel
@ development
@ directory-client
@ eclipse
@ fonts
@ general-desktop
@ graphical-admin-tools
@ input-methods
@ internet-browser
@ java-platform
@ legacy-x
```
@ network-file-system-client
@ network-tools
@ perl-runtime
@ print-client
@ remote-desktop-clients
@ server-platform
@ server-platform-devel
@ server-policy
@ storage-client-iscsi
@ system-admin-tools
@ x11
 abrt-gui
 ant
 certmonger
 desktop-file-utils
 genisoimage
 gnu11s-devel
 jpackage-utils
 junit
 krb5-workstation
 libbonobo-devel
 libdrm-devel
 libgcrypt-devel
 libglade2-devel
 libgnomeui-devel
 libXau-devel
 libXinerama-devel
 libXm
 libXm-devel
 libX
 libXau
 libXrandr-devel
 libxslt-devel
 mtools
 oddjob
 opensmif
 opensmif-devel
 osad
 pam_krb5
 pax
 perl-DBD-SQLite
 popt-devel
 python-dmidecode
 rpmdevtools
 rpmlint
 sgpio
 startup-notification-devel
 wodim
 xorg-x11-proto-devel
Appendix C Configuration File Macros

You can use the following standard macros with configuration files:

\texttt{rhn.system.custom_info(key_name)}

Value of the key \textit{key_name} associated with the system.

\texttt{rhn.system.description}

System description.

\texttt{rhn.system.hostname}

System host name.

\texttt{rhn.system.ip_address}

Default system IP address.

\texttt{rhn.system.net_interface.broadcast(ethN)}

Broadcast address associated with \texttt{ethN}.

\texttt{rhn.system.net_interface.driver_module(ethN)}

Network interface driver module associated with \texttt{ethN}.

\texttt{rhn.system.net_interface.hardware_address(ethN)}

MAC address associated with \texttt{ethN}.

\texttt{rhn.system.net_interface.ip_address(ethN)}

IP address associated with \texttt{ethN}.

\texttt{rhn.system.net_interface.netmask(ethN)}

Network mask associated with \texttt{ethN}.

\texttt{rhn.system.profile_name}

Kickstart profile associated with a system.

\texttt{rhn.system.sid}

Spacewalk system ID.
Appendix D Spacewalk XML/RPC API

Advanced users can use the Spacewalk XML/RPC API to create web interfaces or scripts to perform or automate tasks. More information about the API is available at https://swksvr_FQDN/rpc/api on a Spacewalk server.

For example, the following Python script get-channel-summaries uses the API to obtain a list of channels, the numbers of packages in each channel, and the number of systems that are subscribed to each channel.

```python
#!/usr/bin/python

# get-channel-summaries [--server URL <url>] [--username <user>] [--password <passwd>]

import getopt, struct, sys, xmlrpclib
from array import *

# Insert default values for the Spacewalk server API URL, Spacewalk admin user name, and Spacewalk admin password
url = "https://swksvr.mydom.com/rpc/api"
username = "swadmin"
password = "swadmin"

usage1 = "Usage: get-channel-summaries [--serverUrl <url>] \n"
usage2 = " [--username <user>] [--password <passwd>]"

try:
    opts, args = getopt.getopt(sys.argv[1:], "s:u:p:", ["serverUrl=", "username=", "password="])  
except getopt.GetoptError as err:  
    print(usage1+usage2)  
    sys.exit(1)

for o, a in opts:
    if o in ("-s", "--serverUrl"):
        url = a
    elif o in ("-u", "--username"):
        username = a
    elif o in ("-p", "--password"):
        password = a
    else:
        assert False, "Unknown option"

# Connect to Spacewalk
client = xmlrpclib.Server(url, verbose=0)
session = client.auth.login(username, password)

# Get channel list
channels = client.channel.listAllChannels(session)

# Build channel arrays indexed by channel ID
channel_label = {}
channel_packages = {}
channel_systems = {}

for channel in channels:
    channel_label[channel['id']] = channel['label']
    channel_packages[channel['id']] = channel['packages']
    channel_systems[channel['id']] = channel['systems']

# Print output header
fmt1 = '{0:<40s}{1:<10s}{2:<10s}'
print fmt1.format('Channel label','Packages','Systems')
print fmt1.format('-------------','--------','-------')

# Print channel label, package count, and system count -- sorted by label
```
fmt2 = '{0:<40s}{1:<10d}{2:<10d}'
for key,value in sorted(channel_label.iteritems(),key=lambda(k,v): (v,k)):
 id = int(key)
 print fmt2.format(value,channel_packages[id],channel_systems[id])

Disconnect from Spacewalk
client.auth.logout(session)

The following is sample output from this command:

<table>
<thead>
<tr>
<th>Channel label</th>
<th>Packages</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>oraclelinux6-x86_64</td>
<td>6595</td>
<td>4</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-addons</td>
<td>230</td>
<td>4</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-mysql</td>
<td>204</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-playground</td>
<td>826</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk20-client</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk20-server</td>
<td>270</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk22-client</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk22-server</td>
<td>274</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-uek</td>
<td>387</td>
<td>0</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-uek-r3</td>
<td>292</td>
<td>4</td>
</tr>
<tr>
<td>oraclelinux6_x86_x86_64-patch</td>
<td>1332</td>
<td>4</td>
</tr>
</tbody>
</table>

The next example script `get-reposync-list` displays the schedules for synchronizing repositories.

```bash
#!/usr/bin/python
# Usage: get-reposync-list [--serverUrl <url>] [--username <user>] [--password <passwd>]

import getopt, struct, sys, xmlrpclib
from array import *

# Insert default values for the Spacewalk server API URL, Spacewalk admin user name, and Spacewalk admin password
url = "https://swksvr.mydom.com/rpc/api"
username = "swadmin"
password = "swadmin"

usage1 = "Usage: get-reposync-list [--serverUrl <url>] \n--username <user>] [--password <passwd>]"
usage2 = "

try:
    opts, args = getopt.getopt(sys.argv[1:], "s:u:p:", ["--serverUrl=", "--username=", "--password="])
except getopt.GetoptError as err:
    print (usage1 + usage2)
    sys.exit(1)

for o, a in opts:
    if o in ("-s", "--serverUrl"):
        url = a
    elif o in ("-u", "--username"):
        username = a
    elif o in ("-p", "--password"):
        password = a
    else:
        assert False, "Unknown option"

# Connect to Spacewalk
client = xmlrpclib.Server(url, verbose=0)
session = client.auth.login(username, password)

# Get channel list
channels = client.channel.listAllChannels(session)

# Build channel name array indexed by channel ID
channel_label = {}
channel_schedule = {}
for channel in channels:
  id = int(channel["id"])  
  channel_label[id] = channel["label"]
  channel_schedule[id] = ''

# Get repository synchronization list
schedules = client.taskomatic.org.listActiveSchedulesByBunch(session,'repo-sync-bunch')

# Construct schedule array indexed by channel ID
for schedule in schedules:
  channel_schedule[int(schedule["data_map"]["channel_id"])]) = schedule["cron_expr"]

# Print output header
fmt = '{0:<40s}{1:<40s}'
print fmt.format('Channel label','Schedule')
print fmt.format('-------------','--------')

# Print channel labels and repository synchronization schedule (if defined)
for key,value in sorted(channel_label.iteritems(),key=lambda(k,v):(v,k)): 
  id = int(key)
  sched = channel_schedule[id]
  if (len(sched) > 0):
    print fmt.format(value,sched)
  else:
    print fmt.format(value,"Sync not scheduled")

# Disconnect from Spacewalk
client.auth.logout(session)

The following is sample output from this command:

<table>
<thead>
<tr>
<th>Channel label</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>oraclelinux6-x86_64</td>
<td>0 30 0 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-addons</td>
<td>0 30 2 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-mysql</td>
<td>0 30 4 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-playground</td>
<td>0 30 3 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk20-client</td>
<td>0 0 5 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk20-server</td>
<td>0 30 5 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk22-client</td>
<td>0 0 2 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-spacewalk22-server</td>
<td>0 0 3 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-uek</td>
<td>0 0 4 ? * *</td>
</tr>
<tr>
<td>oraclelinux6-x86_64-uek-r3</td>
<td>0 0 1 ? * *</td>
</tr>
<tr>
<td>oraclelinux6_u6_x86_64-patch</td>
<td>0 0 1 ? * *</td>
</tr>
</tbody>
</table>