Oracle® Solaris Cluster Data Services
Planning and Administration Guide
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Contents

Preface ... 9

1 **Planning for Oracle Solaris Cluster Data Services** ... 13
 Configuration Guidelines for Oracle Solaris Cluster Data Services ... 14
 Identifying Data Service Special Requirements .. 14
 Determining the Location of the Application Binaries .. 14
 Verifying the *nsswitch.conf* File Contents .. 15
 Planning the Cluster File System Configuration .. 15
 Enabling Oracle Solaris SMF Services to Run Under the Control of Oracle Solaris Cluster ... 16
 Relationship Between Resource Groups and Device Groups ... 17
 Understanding *HAStoragePlus* ... 17
 Determining Whether Your Data Service Requires *HAStoragePlus* ... 18
 Considerations for Installing and Configuring a Data Service .. 19
 Overview of the Installation and Configuration Process ... 19
 Installation and Configuration Task Flow .. 20
 Example of Configuring a Failover Data Service ... 21
 Tools for Data Service Resource Administration ... 22
 Oracle Solaris Cluster Manager Graphical User Interface (GUI) .. 22
 clsetup Utility .. 23
 Oracle Solaris Cluster Maintenance Commands ... 23
 Task Summary for Administering Data Service Resources ... 23

2 **Standard Properties** ... 24
 Cluster Properties .. 24
 Resource Type Properties .. 25
 Resource Properties .. 25
 Resource Group Properties .. 25
 Resource Property Attributes ... 25
2 Administering Data Service Resources ... 29

Overview of Tasks for Administering Data Service Resources 30
Configuring and Administering Oracle Solaris Cluster Data Services 33
Registering a Resource Type ... 34
 ▼ How to Register a Resource Type .. 34
Upgrading a Resource Type .. 35
 ▼ How to Install and Register an Upgrade of a Resource Type 36
 ▼ How to Migrate Existing Resources to a New Version of the Resource Type 37
Downgrading a Resource Type ... 41
 ▼ How to Downgrade a Resource to an Older Version of Its Resource Type 41
Creating a Resource Group ... 42
 ▼ How to Create a Failover Resource Group ... 43
 ▼ How to Create a Scalable Resource Group ... 45
Configuring Failover and Scalable Data Services on Shared File Systems 47
 ▼ How to Configure a Failover Application Using the ScalMountPoint Resource 47
 ▼ How to Configure a Scalable Application Using the ScalMountPoint Resource ... 48
Tools for Adding Resources to Resource Groups ... 49
 ▼ How to Add a Logical Hostname Resource to a Resource Group by Using the clsetup Utility .. 50
 ▼ How to Add a Logical Hostname Resource to a Resource Group Using the Command-Line Interface ... 53
 ▼ How to Add a Shared Address Resource to a Resource Group by Using the clsetup Utility .. 55
 ▼ How to Add a Shared Address Resource to a Resource Group Using the Command-Line Interface ... 57
 ▼ How to Add a Failover Application Resource to a Resource Group 59
 ▼ How to Add a Scalable Application Resource to a Resource Group 62
Bringing Resource Groups Online .. 64
 ▼ How to Bring Resource Groups Online .. 65
Switching Resource Groups to Preferred Primaries .. 66
 ▼ How to Switch Resource Groups to Preferred Primaries 66
Enabling a Resource ... 67
 ▼ How to Enable a Resource ... 67
Quiescing Resource Groups ... 68
 ▼ How to Quiesce a Resource Group .. 68
 ▼ How to Quiesce a Resource Group Immediately 69
SUSpending and Resuming the Automatic Recovery Actions of Resource Groups 69
 Immediately Suspending Automatic Recovery by Killing Methods 70
 ▼ How to Suspend the Automatic Recovery Actions of a Resource Group 71
 ▼ How to Suspend the Automatic Recovery Actions of a Resource Group Immediately 71
 ▼ How to Resume the Automatic Recovery Actions of a Resource Group 71
Disabling and Enabling Resource Monitors ... 72
 ▼ How to Disable a Resource Fault Monitor 72
 ▼ How to Enable a Resource Fault Monitor 73
Removing Resource Types ... 74
 ▼ How to Remove a Resource Type ... 74
Removing Resource Groups ... 75
 ▼ How to Remove a Resource Group ... 75
Removing Resources .. 76
 ▼ How to Remove a Resource .. 76
Switching the Current Primary of a Resource Group ... 77
 ▼ How to Switch the Current Primary of a Resource Group 77
Disabling Resources and Moving Their Resource Group Into the UNMANAGED State 79
 ▼ How to Disable a Resource and Move Its Resource Group Into the UNMANAGED State 79
Displaying Resource Type, Resource Group, and Resource Configuration Information 82
Changing Resource Type, Resource Group, and Resource Properties 82
 ▼ How to Change Resource Type Properties 83
 ▼ How to Change Resource Group Properties 84
 ▼ How to Change Resource Properties ... 85
 ▼ How to Change Resource Dependency Properties .. 86
 ▼ How to Modify a Logical Hostname Resource or a Shared Address Resource 89
Clearing the STOP_FAILED Error Flag on Resources .. 90
 ▼ How to Clear the STOP_FAILED Error Flag on Resources 90
Clearing the Start.failed Resource State ... 92
 ▼ How to Clear a Start_failed Resource State by Switching Over a Resource Group 92
 ▼ How to Clear a Start_failed Resource State by Restarting a Resource Group 94
 ▼ How to Clear a Start_failed Resource State by Disabling and Enabling a Resource 95
Contents

- Upgrading From HAStorage to HAStoragePlus ... 132
 - How to Upgrade From HAStorage to HAStoragePlus When Using Device Groups or CFS ... 135
 - How to Upgrade From HAStorage With CFS to HAStoragePlus With Highly Available Local File System .. 136
- Modifying Online the Resource for a Highly Available File System 138
 - How to Add File Systems Other Than Solaris ZFS to an Online HAStoragePlus Resource .. 138
 - How to Remove File Systems Other Than Solaris ZFS From an Online HAStoragePlus Resource .. 140
 - How to Add a Solaris ZFS Storage Pool to an Online HAStoragePlus Resource 142
 - How to Remove a Solaris ZFS Storage Pool From an Online HAStoragePlus Resource 143
 - Changing a ZFS Pool Configuration That is Managed by an HAStoragePlus Resource ... 145
 - How to Change a ZFS Pool Configuration That is Managed by an HAStoragePlus Resource in an Offline State ... 145
 - How to Change a ZFS Pool Configuration That is Managed by an Online HAStoragePlus Resource .. 146
 - How to Recover From a Fault After Modifying the FileSystemMountPoints Property of an HAStoragePlus Resource .. 146
 - How to Recover From a Fault After Modifying the Zpools Property of an HAStoragePlus Resource .. 147
- Changing the Cluster File System to a Local File System in an HAStoragePlus Resource 149
 - How to Change the Cluster File System to Local File System in an HAStoragePlus Resource .. 149
- Upgrading the HAStoragePlus Resource Type .. 149
 - Information for Registering the New Resource Type Version .. 150
 - Information for Migrating Existing Instances of the Resource Type 150
- Distributing Online Resource Groups Among Cluster Nodes .. 151
 - Resource Group Affinities ... 151
 - Enforcing Collocation of a Resource Group With Another Resource Group 152
 - Specifying a Preferred Collocation of a Resource Group With Another Resource Group 154
 - Distributing a Set of Resource Groups Evenly Among Cluster Nodes 155
 - Specifying That a Critical Service Has Precedence .. 156
 - Delegating the Failover or Switchover of a Resource Group 157
 - Combining Affinities Between Resource Groups ... 158
 - Zone Cluster Resource Group Affinities .. 159
- Replicating and Upgrading Configuration Data for Resource Groups, Resource Types, and
Contents

Resources .. 160
 ▼ How to Replicate Configuration Data on a Cluster Without Configured Resource Groups,
 Resource Types, and Resources .. 160
 ▼ How to Upgrade Configuration Data on a Cluster With Configured Resource Groups,
 Resource Types, and Resources .. 161
Enabling Oracle Solaris SMF Services to Run With Oracle Solaris Cluster 163
 ▼ Encapsulating an SMF Service Into a Failover Proxy Resource Configuration 164
 ▼ Encapsulating an SMF Service Into a Multi-Master Proxy Resource Configuration 166
 ▼ Encapsulating an SMF Service Into a Scalable Proxy Resource Configuration 169
Tuning Fault Monitors for Oracle Solaris Cluster Data Services ... 173
 Setting the Interval Between Fault Monitor Probes ... 173
 Setting the Timeout for Fault Monitor Probes ... 174
 Defining the Criteria for Persistent Faults .. 174
 Specifying the Failover Behavior of a Resource .. 176
Denying Cluster Services For a Selected Non-Global Zone ... 176
 ▼ How to Deny Cluster Services For a Non-Global Zone .. 176
 ▼ How to Allow Cluster Services For a Non-Global Zone .. 177

Index ... 179
Preface

Oracle Solaris Cluster Data Services Planning and Administration Guide explains how to install and configure Oracle Solaris Cluster data services.

Note – This Oracle Solaris Cluster release supports systems that use the SPARC and x86 families of processor architectures: UltraSPARC, SPARC64, AMD64, and Intel 64. In this document, x86 refers to the larger family of 64-bit x86 compatible products. Information in this document pertains to all platforms unless otherwise specified.

This document is intended for system administrators with extensive knowledge of Oracle software and hardware. Do not use this document as a planning or presales guide. Before reading this document, you should have already determined your system requirements and purchased the appropriate equipment and software.

The instructions in this book assume knowledge of the Oracle Solaris operating system and expertise with the volume-manager software that is used with Oracle Solaris Cluster software.

Using UNIX Commands

This document contains information about commands that are specific to installing and configuring Oracle Solaris Cluster data services. The document does *not* contain comprehensive information about basic UNIX commands and procedures, such as shutting down the system, booting the system, and configuring devices. Information about basic UNIX commands and procedures is available from the following sources:

- Online documentation for the Oracle Solaris operating system
- Oracle Solaris operating system man pages
- Other software documentation that you received with your system
Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| AaBbCc123 | The names of commands, files, and directories, and onscreen computer output | Edit your .login file.
Use \ls -a to list all files.
machine_name% you have mail. |
| AaBbCc123 | What you type, contrasted with onscreen computer output | machine_name% su
Password: |
| aabbcc123 | Placeholder: replace with a real name or value | The command to remove a file is rm filename. |
| AaBbCc123 | Book titles, new terms, and terms to be emphasized | Read Chapter 6 in the User's Guide.
A cache is a copy that is stored locally.
Do not save the file.
Note: Some emphasized items appear bold online. |

Shell Prompts in Command Examples

The following table shows UNIX system prompts and superuser prompts for shells that are included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether the command should be executed by a regular user or a user with privileges.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Related Documentation

Information about related Oracle Solaris Cluster topics is available in the documentation that is listed in the following table. All Oracle Solaris Cluster documentation is available at http://www.oracle.com/technetwork/indexes/documentation/index.html#sys_sw.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts</td>
<td>Oracle Solaris Cluster Concepts Guide</td>
</tr>
<tr>
<td>Hardware installation and administration</td>
<td>Oracle Solaris Cluster 3.3 3/13 Hardware Administration Manual</td>
</tr>
<tr>
<td>Software installation</td>
<td>Oracle Solaris Cluster Software Installation Guide</td>
</tr>
<tr>
<td>Data service installation and administration</td>
<td>Oracle Solaris Cluster Data Services Planning and Administration Guide</td>
</tr>
<tr>
<td>Data service development</td>
<td>Oracle Solaris Cluster Data Services Developer's Guide</td>
</tr>
<tr>
<td>System administration</td>
<td>Oracle Solaris Cluster System Administration Guide</td>
</tr>
<tr>
<td></td>
<td>Oracle Solaris Cluster Quick Reference</td>
</tr>
<tr>
<td>Software upgrade</td>
<td>Oracle Solaris Cluster Upgrade Guide</td>
</tr>
<tr>
<td>Error messages</td>
<td>Oracle Solaris Cluster Error Messages Guide</td>
</tr>
<tr>
<td>Command and function references</td>
<td>Oracle Solaris Cluster Reference Manual</td>
</tr>
<tr>
<td></td>
<td>Oracle Solaris Cluster Data Services Reference Manual</td>
</tr>
</tbody>
</table>

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Getting Help

If you have problems installing or using Oracle Solaris Cluster, contact your service provider and provide the following information.

- Your name and email address (if available)
- Your company name, address, and phone number
- The model number and serial number of your systems
- The release number of the operating environment (for example, Oracle Solaris 10)
The release number of Oracle Solaris Cluster (for example, Oracle Solaris Cluster 3.3)

Use the following commands to gather information about your system for your service provider.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>prtconf -v</td>
<td>Displays the size of the system memory and reports information about peripheral devices</td>
</tr>
<tr>
<td>psrinfo -v</td>
<td>Displays information about processors</td>
</tr>
<tr>
<td>showrev -p</td>
<td>Reports which patches are installed</td>
</tr>
<tr>
<td>prtdiag -v</td>
<td>Displays system diagnostic information</td>
</tr>
<tr>
<td>/usr/cluster/bin/clnode show-rev -v</td>
<td>Displays Oracle Solaris Cluster release and package version information for each node</td>
</tr>
</tbody>
</table>

Also have available the contents of the /var/adm/messages file.
Planning for Oracle Solaris Cluster Data Services

This chapter provides planning information and guidelines to install and configure Oracle Solaris Cluster data services. This chapter contains the following sections.

- “Configuration Guidelines for Oracle Solaris Cluster Data Services” on page 14
- “Relationship Between Resource Groups and Device Groups” on page 17
- “Understanding HAStoragePlus” on page 17
- “Considerations for Installing and Configuring a Data Service” on page 19
- “Overview of the Installation and Configuration Process” on page 19
- “Tools for Data Service Resource Administration” on page 22
- “Standard Properties” on page 24
- “Node List Properties” on page 25
- “Legal RGM Names” on page 26

For introductory information about data services, see Oracle Solaris Cluster Concepts Guide.

Oracle Solaris Cluster software can provide service only for those data services that are either supplied with the Oracle Solaris Cluster product or are created with the Oracle Solaris Cluster data services application programming interfaces (APIs).

If an Oracle Solaris Cluster data service is not provided for your application, consider developing a custom data service for the application. To develop a custom data service, use the Oracle Solaris Cluster data services APIs. For more information, see Oracle Solaris Cluster Data Services Developer’s Guide.

Note - Oracle Solaris Cluster does not provide a data service for the sendmail(1M) subsystem. The sendmail subsystem can run on the individual cluster nodes, but the sendmail functionality is not highly available. This restriction applies to all the sendmail functionality, including the functionality of mail delivery and mail routing, queuing, and retry.
Configuration Guidelines for Oracle Solaris Cluster Data Services

This section provides configuration guidelines for Oracle Solaris Cluster data services.

Identifying Data Service Special Requirements

Identify requirements for all of the data services before you begin Oracle Solaris and Oracle Solaris Cluster installation. Failure to do so might result in installation errors that require that you completely reinstall the Oracle Solaris and Oracle Solaris Cluster software.

For example, the Oracle Data Guard option of Oracle Solaris Cluster Support for Oracle Real Application Clusters has special requirements for the hostnames that you use in the cluster. Oracle Solaris Cluster HA for SAP also has special requirements. You must accommodate these requirements before you install Oracle Solaris Cluster software because you cannot change hostnames after you install Oracle Solaris Cluster software.

Note – Some Oracle Solaris Cluster data services are not supported for use in x86 based clusters. For more information, see the release notes for your release of Oracle Solaris Cluster at http://www.oracle.com/technetwork/indexes/documentation/index.html.

Determining the Location of the Application Binaries

You can install the application software and application configuration files on one of the following locations.

- **The local disks of each cluster node** – Placing the software and configuration files on the individual cluster nodes provides the following advantage. You can upgrade application software later without shutting down the service.

 The disadvantage is that you then have several copies of the software and configuration files to maintain and administer.

- **The cluster file system** – If you put the application binaries on the cluster file system, you have only one copy to maintain and manage. However, you must shut down the data service in the entire cluster to upgrade the application software. If you can spare a short period of downtime for upgrades, place a single copy of the application and configuration files on the cluster file system.

 For information about how to create cluster file systems, see "Planning the Global Devices, Device Groups, and Cluster File Systems" in Oracle Solaris Cluster Software Installation Guide.
Highly available local file system – Using HAStoragePlus, you can integrate your local file system into the Oracle Solaris Cluster environment, making the local file system highly available. HAStoragePlus provides additional file system capabilities such as checks, mounts, and unmounts that enable Oracle Solaris Cluster to fail over local file systems. To fail over, the local file system must reside on global disk groups with affinity switchovers enabled.

For information about how to use the HAStoragePlus resource type, see “Enabling Highly Available Local File Systems” on page 121.

Verifying the nsswitch.conf File Contents

The nsswitch.conf file is the configuration file for name-service lookups. This file determines the following information:

- The databases within the Oracle Solaris environment to use for name-service lookups
- The order in which the databases are to be consulted

Some data services require that you direct “group” lookups to “files” first. For these data services, change the “group” line in the nsswitch.conf file so that the “files” entry is listed first. See the documentation for the data service that you plan to configure to determine whether you need to change the “group” line.

For additional information about how to configure the nsswitch.conf file for the Oracle Solaris Cluster environment, see “Planning the Oracle Solaris Cluster Environment” in Oracle Solaris Cluster Software Installation Guide.

Planning the Cluster File System Configuration

Depending on the data service, you might need to configure the cluster file system to meet Oracle Solaris Cluster requirements. To determine whether any special considerations apply, see the documentation for the data service that you plan to configure.

For information about how to create cluster file systems, see “Planning the Global Devices, Device Groups, and Cluster File Systems” in Oracle Solaris Cluster Software Installation Guide.

The resource type HAStoragePlus enables you to use a highly available local file system in an Oracle Solaris Cluster environment that is configured for failover. For information about setting up the HAStoragePlus resource type, see “Enabling Highly Available Local File Systems” on page 121.
Enabling Oracle Solaris SMF Services to Run Under the Control of Oracle Solaris Cluster

The Service Management Facility (SMF) enables you to automatically start and restart SMF services, during a node boot or service failure. This feature is similar to the Oracle Solaris Cluster Resource Group Manager (RGM), which facilitates high availability and scalability for cluster applications. SMF services and RGM features are complementary to each other.

Oracle Solaris Cluster includes three new SMF proxy resource types that can be used to enable SMF services to run with Oracle Solaris Cluster in a failover, multi-master, or scalable configuration. The SMF proxy resource types enable you to encapsulate a set of interrelated SMF services into a single resource, SMF proxy resource to be managed by Oracle Solaris Cluster. In this feature, SMF manages the availability of SMF services on a single node. Oracle Solaris Cluster provides cluster-wide high availability and scalability of the SMF services.

For information about how to encapsulate these services, see "Enabling Oracle Solaris SMF Services to Run With Oracle Solaris Cluster" on page 163.

You might require Oracle Solaris Cluster to make highly available an application other than NFS or DNS that is integrated with the Solaris Service Management Facility (SMF). To ensure that Oracle Solaris Cluster can restart or fail over the application correctly after a failure, you must disable SMF service instances for the application as follows:

- For any application other than NFS or DNS, disable the SMF service instance on all potential primary nodes for the Oracle Solaris Cluster resource that represents the application.
- If multiple instances of the application share any component that you require Oracle Solaris Cluster to monitor, disable all service instances of the application. Examples of such components are daemons, file systems, and devices.

Note – If you do not disable the SMF service instances of the application, both the Solaris SMF and Oracle Solaris Cluster might attempt to control the startup and shutdown of the application. As a result, the behavior of the application might become unpredictable.

For more information, see the following documentation:

- "How to Disable a Service Instance" in Oracle Solaris Administration: Basic Administration
- Oracle Solaris Cluster Data Service for Network File System (NFS) Guide
- Oracle Solaris Cluster Concepts Guide
Relationship Between Resource Groups and Device Groups

Oracle Solaris Cluster uses the concept of **node lists** for device groups and resource groups. Node lists are ordered lists of primary nodes, which are potential masters of the disk device group or resource group. Oracle Solaris Cluster uses a **failback policy** to determine the behavior of Oracle Solaris Cluster in response to the following set of conditions:

- A node that has failed and left the cluster rejoins the cluster.
- The node that is rejoining the cluster appears earlier in the node list than the current primary node.

If failback is set to True, the device group or resource group is switched off the current primary and switched onto the rejoining node, making the rejoining node the new primary.

For example, assume that you have a disk device group, `disk-group-1`, that has nodes `phys-schost-1` and `phys-schost-2` in its node list, with the failback policy set to Enabled. Assume that you also have a failover resource group, `resource-group-1`, which uses `disk-group-1` to hold its application data. When you set up `resource-group-1`, also specify `phys-schost-1` and `phys-schost-2` for the resource group’s node list, and set the failback policy to True.

To ensure high availability of a scalable resource group, make the scalable resource group’s node list a superset of the node list for the disk device group. This setting ensures that the nodes that are directly connected to the disks are also nodes that can run the scalable resource group. The advantage is that, when at least one cluster node connected to the data is up, the scalable resource group runs on that same node, making the scalable services available also.

For more information about the relationship between device groups and resource groups, see "Device Groups" in *Oracle Solaris Cluster Concepts Guide*.

For information about how to set up device groups, see the following documentation:

- "Planning Device Groups" in *Oracle Solaris Cluster Software Installation Guide*

Understanding HAStoragePlus

The HAStoragePlus resource type can be used to configure the following options.

- Coordinate the boot order of disk devices and resource groups. Other resources in the resource group that contains the HAStoragePlus resource are brought online only after the disk device resources become available.
- With **AffinityOn** set to True, enforce collocation of resource groups and device groups on the same node. This enforced collocation enhances the performance of disk-intensive data services.
- Monitor entities managed by the HASP resource, including global devices, file systems, and ZFS storage pools.
In addition, HAStragePlus is capable of mounting local and global file systems. For more information, see “Planning the Cluster File System Configuration” on page 15.

Note – If the device group is switched to another node while the HAStragePlus resource is online, AffinityOn has no effect. The resource group does not migrate with the device group. However, if the resource group is switched to another node, the setting of AffinityOn to True causes the device group to follow the resource group to the new node.

See “Synchronizing the Startups Between Resource Groups and Device Groups” on page 111 for information about the relationship between device groups and resource groups.

See "Enabling Highly Available Local File Systems" on page 121 for procedures for mounting of file systems such as VxFS and Solaris ZFS (Zettabyte File System) in a local mode. The SUNW.HAStragePlus(5) man page provides additional details.

Determining Whether Your Data Service Requires HAStragePlus

The following types of data services require HAStragePlus:

- Data services with nodes that are not directly connected to storage
- Data services that are disk intensive

Data Services With Nodes That Are Not Directly Connected to Storage

Some nodes in the node list of a data service’s resource group might not be directly connected to the storage. In this situation, you must coordinate the boot order between the storage and the data service. To meet this requirement, configure the resource group as follows:

- Configure HAStragePlus resources in the resource group.
- Set the dependency of the other data service resources to the HAStragePlus resource.

Data Services That Are Disk Intensive

Some data services, such as Oracle Solaris Cluster HA for Oracle and Oracle Solaris Cluster HA for NFS are disk intensive. If your data service is disk intensive, ensure that the resource groups and device groups are collocated on the same node. To meet this requirement, perform the following tasks.

- Adding an HAStragePlus resource to your data service resource group
- Switching the HAStragePlus resource online
- Setting the dependency of your data service resources to the HAStragePlus resource
- Setting AffinityOn to True
The failback settings must be identical for both the resource group and device groups.

Some data services are not disk intensive. For example, HA for DNS, which reads all of its files at startup, is not disk intensive. If your data service is **not** disk intensive, configuring the HAS*oragePlus resource type is optional.

Considerations for Installing and Configuring a Data Service

Use the information in this section to plan the installation and configuration of any data service. The information in this section encourages you to think about the impact your decisions have on the installation and configuration of any data service. For specific considerations for a data service, see the documentation for the data service.

- Retries within the I/O subsystem during disk failures might cause applications whose data services are disk intensive to experience delays. Disk-intensive data services are I/O intensive and have a large number of disks configured in the cluster. An I/O subsystem might require several minutes to retry and recover from a disk failure. This delay can cause Oracle Solaris Cluster to fail over the application to another node, even though the disk might have eventually recovered on its own. To avoid failover during these instances, consider increasing the default probe timeout of the data service. If you need more information or help with increasing data service timeouts, contact your local support engineer.

- For better performance, install and configure your data service on the cluster nodes with direct connection to the storage.

- Client applications that run on cluster nodes should not map to logical IP addresses of an HA data service. After a failover, these logical IP addresses might no longer exist, leaving the client without a connection.

Overview of the Installation and Configuration Process

Use the following procedures to install and configure a data service.

- Install the data service packages from the installation medium on which the packages are supplied.

- Install and configure the application to run in the cluster environment.

- Configure the resources and resource groups that the data service uses. When you configure a data service, specify the resource types, resources, and resource groups that the Resource Group Manager (RGM) is to manage. The documentation for the individual data services describes these procedures.
Before you install and configure data services, see *Oracle Solaris Cluster Software Installation Guide*, which includes instructions for the following tasks:

- Installing the data service software packages
- Configuring IP network multipathing groups that the network resources use

Note – You can use Oracle Solaris Cluster Manager to install and configure the following data services: Oracle Solaris Cluster HA for Oracle, Oracle Solaris Cluster HA for Java System Web Server, HA for Java System Web Server, Oracle Solaris Cluster HA for Apache, HA for DNS, and Oracle Solaris Cluster HA for NFS. See the Oracle Solaris Cluster Manager online help for more information.

Installation and Configuration Task Flow

The following table summarizes the tasks for installing and configuring Oracle Solaris Cluster data services. The table also provides cross-references to detailed instructions for performing the tasks.

TABLE 1-1 Tasks for Installing and Configuring Oracle Solaris Cluster Data Services

<table>
<thead>
<tr>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the Oracle Solaris and Oracle Solaris Cluster software</td>
<td>Oracle Solaris Cluster Software Installation Guide</td>
</tr>
<tr>
<td>Set up IPMP groups</td>
<td>Oracle Solaris Cluster Software Installation Guide and Chapter 28, "Administering IPMP (Tasks)," in Oracle Solaris Administration: IP Services</td>
</tr>
<tr>
<td>Set up multihost disks</td>
<td>Oracle Solaris Cluster Software Installation Guide</td>
</tr>
<tr>
<td>Plan resources and resource groups</td>
<td>Chapter 1, "Planning for Oracle Solaris Cluster Data Services"</td>
</tr>
</tbody>
</table>
| Decide the location for application binaries, and configure the nsswitch.conf file | "Determining the Location of the Application Binaries" on page 14
"Verifying the nsswitch.conf File Contents" on page 15 |
| Install and configure the application software | The appropriate Oracle Solaris Cluster data services book |
| Install the data service software packages | *Oracle Solaris Cluster Software Installation Guide* or the appropriate Oracle Solaris Cluster data services book |
| Register and configure the data service | The appropriate Oracle Solaris Cluster data services book |
Example of Configuring a Failover Data Service

This example summarizes how to set up the resource types, resources, and resource groups that a failover data service for the Oracle application requires. For complete instructions for configuring the data service for the Oracle application, see Oracle Solaris Cluster Data Service for Oracle Guide.

The principal difference between this example and an example of a scalable data service is as follows: In addition to the failover resource group that contains the network resources, a scalable data service requires a separate resource group (scalable resource group) for the application resources.

The Oracle application has two components: a server and a listener. Oracle supplies the Oracle Solaris Cluster HA for Oracle data service, and therefore these components have already been mapped into Oracle Solaris Cluster resource types. Both of these resource types are associated with resources and resource groups.

Because this example is a failover data service, the example uses logical hostname network resources, which are the IP addresses that fail over from a primary node to a secondary node. Place the logical hostname resources into a failover resource group, and then place the Oracle server resources and listener resources into the same resource group. This ordering enables all of the resources to fail over as a group.

For Oracle Solaris Cluster HA for Oracle to run on the cluster, you must define the following objects:

- LogicalHostname resource type – This resource type is built in, and therefore you do not need to explicitly register the resource type.
- Oracle resource types – Oracle Solaris Cluster HA for Oracle defines two Oracle resource types—a database server and a listener.
- Logical hostname resources – These resources host the IP addresses that fail over in a node failure.
- Oracle resources – You must specify two resource instances for Oracle Solaris Cluster HA for Oracle—a server and a listener.
- Failover resource group – This container is composed of the Oracle server and listener and logical hostname resources that will fail over as a group.
Tools for Data Service Resource Administration

This section describes the tools that you can use to perform installation and configuration tasks.

Oracle Solaris Cluster Manager Graphical User Interface (GUI)

Oracle Solaris Cluster Manager is a web-based tool that enables you to perform the following tasks.

- Installing a cluster
- Administering a cluster
- Creating and configuring resources and resource groups
- Configuring data services with the Oracle Solaris Cluster software

Oracle Solaris Cluster Manager provides wizards to automate the configuration of Oracle Solaris Cluster data services for the following applications.

- Apache Web Server
- NFS
- Oracle
- Oracle Real Application Clusters
- SAP Web Application Server

Each wizard enables you to configure Oracle Solaris Cluster resources that the data service requires. The wizard does not automate the installation and configuration of the application software to run in an Oracle Solaris Cluster configuration. To install and configure application software to run in an Oracle Solaris Cluster configuration, use utilities of the application and Oracle Solaris Cluster maintenance commands. For more information, see your application documentation and the Oracle Solaris Cluster documentation set. Each wizard supports only a limited subset of configuration options for a data service. To configure options that a wizard does not support, use Oracle Solaris Cluster Manager or Oracle Solaris Cluster maintenance commands to configure the data service manually. For more information, see the Oracle Solaris Cluster documentation.

Oracle Solaris Cluster Manager provides wizards to automate the configuration of the following Oracle Solaris Cluster resources.

- Logical hostname resource
- Shared address resource
- Highly available storage resource

You can use a resource that you create by using a wizard with any data service regardless of how you configure the data service.
For instructions on using Oracle Solaris Cluster Manager to install cluster software, see Oracle Solaris Cluster Software Installation Guide. Oracle Solaris Cluster Manager provides online help for most administrative tasks.

clsetup Utility

The `clsetup(1CL)` utility is a menu-driven interface that you can use for general Oracle Solaris Cluster administration. You can also use this utility to configure data service resources and resource groups. Select option 2 from the `clsetup` main menu to launch the Resource Group Manager submenu.

Oracle Solaris Cluster Maintenance Commands

You can use the Oracle Solaris Cluster maintenance commands to register and configure data service resources. See the procedure for how to register and configure your data service in the book for the data service. If, for example, you are using Oracle Solaris Cluster HA for Oracle, see “Registering and Configuring HA for Oracle” in Oracle Solaris Cluster Data Service for Oracle Guide.

For more information about how to use the commands to administer data service resources, see Chapter 2, “Administering Data Service Resources.”

Task Summary for Administering Data Service Resources

Use the Oracle Solaris Cluster Manager and the `clsetup` utility to administer data service resources. For more information about these tasks and for details about how to use the command line to complete related procedures, see Chapter 2, "Administering Data Service Resources."

<table>
<thead>
<tr>
<th>Task</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Register a resource type</td>
<td></td>
</tr>
<tr>
<td>Create a resource group</td>
<td></td>
</tr>
<tr>
<td>Add a resource to a resource group</td>
<td></td>
</tr>
<tr>
<td>Suspend the automatic recovery actions of a resource group</td>
<td></td>
</tr>
<tr>
<td>Resume the automatic recovery actions of a resource group</td>
<td></td>
</tr>
</tbody>
</table>
Standard Properties

You can specify the following standard cluster, resource type, resource, and resource group properties when configuring data services. Resource property attributes are also available to change system-defined properties and create extension properties.

This section lists the following properties:

- **Cluster Properties**
- **Resource Type Properties**
- **Resource Properties**
- **Resource Group Properties**
- **Resource Property Attributes**

Cluster Properties

Cluster properties are used to manage data services. For information about cluster properties, see the `cluster(1CL)` man page.
Resource Type Properties

Resource type properties cannot be updated by administrative utilities with the exception of Installed_nodes and RT_system. Installed_nodes cannot be declared in the RTR file and can only be set by the cluster administrator. RT_system can be assigned an initial value in the RTR file, and can also be set by the cluster administrator.

For information about each resource type property that is defined by Oracle Solaris Cluster, see the `rt_properties(5)` man page.

Resource Properties

For information about each resource property that is defined by Oracle Solaris Cluster software, see the `r_properties(5)` man page.

Resource Group Properties

For information about each resource group property that is defined by Oracle Solaris Cluster software, see the `rg_properties(5)` man page.

Resource Property Attributes

You can use resource property attributes to change system-defined properties or to create extension properties. For information about each property attribute, see the `property_attributes(5)` man page.

Node List Properties

You can specify the following node list properties when configuring data services:

- Installed_nodes Property – See the `rt_properties(5)` man page for more information.
- Nodelist Property – See the `rg_properties(5)` man page for more information.
- Auxnodelist Property – See the `clressharedaddress(1CL)` man page for more information.
Legal RGM Names

This section lists the requirements for legal characters for Resource Group Manager (RGM) names and values.

This section covers the following topics:

- “RGM Legal Names” on page 26
- “RGM Values” on page 28

RGM Legal Names

RGM names fall into the following categories:

- Resource group names
- Resource type names
- Resource names
- Property names
- Enumeration literal names

Rules for Names Except Resource Type Names

Except for resource type names, all names must comply with these rules:

- Names must be in ASCII.
- Names must start with a letter.
- Names can contain uppercase and lowercase letters, digits, dashes (-), and underscores (_).
- The maximum number of characters that you can use in a name is 255.

Format of Resource Type Names

The format of the complete name of a resource type depends on the resource type, as follows:

- If the resource type’s resource type registration (RTR) file contains the #$upgrade directive, the format is as follows:

 vendor-id. base-rt-name: rt-version

- If the resource type’s RTR file does not contain the #$upgrade directive, the format is as follows:

 vendor-id. base-rt-name

A period separates vendor-id and base-rt-name. A colon separates base-rt-name and rt-version.

The variable elements in this format are as follows:
vendor-id

Specifies the vendor ID prefix, which is the value of the `Vendor_id` resource type property in the RTR file. If you are developing a resource type, choose a vendor ID prefix that uniquely identifies the vendor, such as your company's stock ticker symbol. For example, the vendor ID prefix of resource types that are developed by Oracle is `ORCL`.

base-rt-name

Specifies the base resource type name, which is the value of the `Resource_type` resource type property in the RTR file.

rt-version

Specifies the version suffix, which is the value of the `RT_version` resource type property in the RTR file. The version suffix is only part of the complete resource type name if the RTR file contains the `#$upgrade` directive. The `#$upgrade` directive was introduced in Release 3.1 of the Sun Cluster product.

Note - If only one version of a base resource type name is registered, you do not have to use the complete name in administrative commands. You can omit the vendor ID prefix, the version number suffix, or both.

For more information, see “Resource Type Properties” on page 25.

EXAMPLE 1-1 Complete Name of a Resource Type With the `#$upgrade` Directive

This example shows the complete name of a resource type for which properties in the RTR file are set, as follows:

- `Vendor_id=ORCL`
- `Resource_type=sample`
- `RT_version=2.0`

The complete name of the resource type that is defined by this RTR file is as follows:

```
ORCL.sample:2.0
```

EXAMPLE 1-2 Complete Name of a Resource Type Without the `#$upgrade` Directive

This example shows the complete name of a resource type for which properties in the RTR file are set, as follows:

- `Vendor_id=ORCL`
- `Resource_type=abc`

The complete name of the resource type that is defined by this RTR file is as follows:

```
ORCL.abc
```
RGM Values

RGM values fall into two categories: property values and description values. Both categories share the same rules:

- Values must be in ASCII.
- The maximum length of a value is 4 megabytes minus 1, that is, 4,194,303 bytes.
- Values cannot contain the following characters:
 - Null
 - Newline
 - Comma (,)
 - Semicolon (;)
This chapter describes how to use the Oracle Solaris Cluster maintenance commands to manage resources, resource groups, and resource types within the cluster. To determine if you can use other tools to complete a procedure, see “Tools for Data Service Resource Administration” on page 22.

For overview information about resource types, resource groups, and resources, see Chapter 1, “Planning for Oracle Solaris Cluster Data Services,” and Oracle Solaris Cluster Concepts Guide.

This chapter contains the following sections.

- “Overview of Tasks for Administering Data Service Resources” on page 30
- “Configuring and Administering Oracle Solaris Cluster Data Services” on page 33
- “Registering a Resource Type” on page 34
- “Upgrading a Resource Type” on page 35
- “Downgrading a Resource Type” on page 41
- “Creating a Resource Group” on page 42
- “Configuring Failover and Scalable Data Services on Shared File Systems” on page 47
- “Tools for Adding Resources to Resource Groups” on page 49
- “Bringing Resource Groups Online” on page 64
- “Switching Resource Groups to Preferred Primaries” on page 66
- “Enabling a Resource” on page 67
- “Quiescing Resource Groups” on page 68
- “Suspending and Resuming the Automatic Recovery Actions of Resource Groups” on page 69
- “Disabling and Enabling Resource Monitors” on page 72
- “Removing Resource Types” on page 74
- “Removing Resource Groups” on page 75
- “Removing Resources” on page 76
- “Switching the Current Primary of a Resource Group” on page 77
- “Disabling Resources and Moving Their Resource Group Into the UNMANAGED State” on page 79
Overview of Tasks for Administering Data Service Resources

The following table summarizes the tasks for installing and configuring Oracle Solaris Cluster data services. The table also provides cross-references to detailed instructions for performing the tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register a resource type</td>
<td>"How to Register a Resource Type" on page 34</td>
</tr>
<tr>
<td>Upgrade a resource type</td>
<td>"How to Migrate Existing Resources to a New Version of the Resource Type" on page 37</td>
</tr>
<tr>
<td></td>
<td>"How to Install and Register an Upgrade of a Resource Type" on page 36</td>
</tr>
<tr>
<td>Downgrade a resource type</td>
<td>"How to Downgrade a Resource to an Older Version of Its Resource Type" on page 41</td>
</tr>
<tr>
<td>Task</td>
<td>Instructions</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Create failover or scalable resource groups</td>
<td>“How to Create a Failover Resource Group” on page 43</td>
</tr>
<tr>
<td></td>
<td>“How to Create a Scalable Resource Group” on page 45</td>
</tr>
<tr>
<td>Add logical hostnames or shared addresses and data service resources</td>
<td>“How to Add a Logical Hostname Resource to a Resource Group by Using the <code>clsetup</code> Utility” on page 50</td>
</tr>
<tr>
<td></td>
<td>“How to Add a Logical Hostname Resource to a Resource Group Using the Command-Line Interface” on page 53</td>
</tr>
<tr>
<td></td>
<td>“How to Add a Shared Address Resource to a Resource Group by Using the <code>clsetup</code> Utility” on page 55</td>
</tr>
<tr>
<td></td>
<td>“How to Add a Shared Address Resource to a Resource Group Using the Command-Line Interface” on page 57</td>
</tr>
<tr>
<td></td>
<td>“How to Add a Failover Application Resource to a Resource Group” on page 59</td>
</tr>
<tr>
<td></td>
<td>“How to Add a Scalable Application Resource to a Resource Group” on page 62</td>
</tr>
<tr>
<td>Enableresources and resource monitors, manage the resource group,</td>
<td>“How to Enable a Resource” on page 67</td>
</tr>
<tr>
<td>and bring the resource group and its associated resources online</td>
<td>“How to Bring Resource Groups Online” on page 65</td>
</tr>
<tr>
<td></td>
<td>“How to Switch Resource Groups to Preferred Primaries” on page 66</td>
</tr>
<tr>
<td>Quiesce a resource group</td>
<td>“How to Quiesce a Resource Group” on page 68</td>
</tr>
<tr>
<td></td>
<td>“How to Quiesce a Resource Group Immediately” on page 69</td>
</tr>
<tr>
<td>Suspend and resume automatic recovery actions of a resource group</td>
<td>“How to Suspend the Automatic Recovery Actions of a Resource Group” on page 71</td>
</tr>
<tr>
<td></td>
<td>“How to Suspend the Automatic Recovery Actions of a Resource Group Immediately” on page 71</td>
</tr>
<tr>
<td></td>
<td>“How to Resume the Automatic Recovery Actions of a Resource Group” on page 71</td>
</tr>
<tr>
<td>Disable and enable resource monitors independent of the resource</td>
<td>“How to Disable a Resource Fault Monitor” on page 72</td>
</tr>
<tr>
<td></td>
<td>“How to Enable a Resource Fault Monitor” on page 73</td>
</tr>
<tr>
<td>Remove resource types from the cluster</td>
<td>“How to Remove a Resource Type” on page 74</td>
</tr>
<tr>
<td>Remove resource groups from the cluster</td>
<td>“How to Remove a Resource Group” on page 75</td>
</tr>
<tr>
<td>Remove resources from resource groups</td>
<td>“How to Remove a Resource” on page 76</td>
</tr>
<tr>
<td>Switch the primary for a resource group</td>
<td>“How to Switch the Current Primary of a Resource Group” on page 77</td>
</tr>
<tr>
<td>Task</td>
<td>Instructions</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Disable resources and move their resource group into the UNMANAGED state</td>
<td>"How to Disable a Resource and Move Its Resource Group Into the UNMANAGED State" on page 80</td>
</tr>
<tr>
<td>Display resource type, resource group, and resource configuration information</td>
<td>"Displaying Resource Type, Resource Group, and Resource Configuration Information" on page 82</td>
</tr>
<tr>
<td>Change resource type, resource group, and resource properties</td>
<td>"How to Change Resource Type Properties" on page 83</td>
</tr>
<tr>
<td></td>
<td>"How to Change Resource Group Properties" on page 84</td>
</tr>
<tr>
<td></td>
<td>"How to Change Resource Properties" on page 85</td>
</tr>
<tr>
<td>Clear error flags for failed Resource Group Manager (RGM) processes</td>
<td>"How to Clear the STOP_FAILED Error Flag on Resources" on page 90</td>
</tr>
<tr>
<td>Clear the Start_failed resource state</td>
<td>"How to Clear a Start_failed Resource State by Switching Over a Resource Group" on page 92</td>
</tr>
<tr>
<td></td>
<td>"How to Clear a Start_failed Resource State by Restarting a Resource Group" on page 94</td>
</tr>
<tr>
<td></td>
<td>"How to Clear a Start_failed Resource State by Disabling and Enabling a Resource" on page 95</td>
</tr>
<tr>
<td>Reregister the built-in resource types LogicalHostname and SharedAddress</td>
<td>"How to Reregister Preregistered Resource Types After Inadvertent Deletion" on page 99</td>
</tr>
<tr>
<td>Update the network interface ID list for the network resources, and update the node list for the resource group</td>
<td>"Adding a Node to a Resource Group" on page 100</td>
</tr>
<tr>
<td>Remove a node from a resource group</td>
<td>"Removing a Node From a Resource Group" on page 103</td>
</tr>
<tr>
<td>Migrate an application from a global-cluster voting node to a global-cluster non-voting node</td>
<td>"How to Migrate the Application From a Global-Cluster Voting Node to a Global-Cluster Non-Voting Node" on page 108</td>
</tr>
<tr>
<td>Set up HASstoragePlus for resource groups to synchronize the startups between those resource groups and device groups</td>
<td>"How to Set Up the HASstoragePlus Resource Type for New Resources" on page 115</td>
</tr>
<tr>
<td></td>
<td>"How to Set Up the HASstoragePlus Resource Type for Existing Resources" on page 117</td>
</tr>
<tr>
<td></td>
<td>"How to Set Up the HASstoragePlus Resource for Cluster File Systems" on page 119</td>
</tr>
<tr>
<td></td>
<td>"How to Set Up the HASstoragePlus Resource Type by Using the clsetup Utility" on page 124</td>
</tr>
<tr>
<td>Set up the HASstoragePlus to make a local Solaris ZFS highly available</td>
<td>"How to Set Up the HASstoragePlus Resource Type to Make a Local Solaris ZFS Highly Available" on page 128</td>
</tr>
</tbody>
</table>
Configuring and Administering Oracle Solaris Cluster Data Services

Configuring an Oracle Solaris Cluster data service involves the following tasks.

- Registering a resource type
- Upgrading a resource type
- Creating resource groups
- Adding resources to resource groups
- Bringing resources online

Note – The procedures in this chapter describe how to use the Oracle Solaris Cluster maintenance commands to complete these tasks. Other tools also enable you to administer your resources. See “Tools for Data Service Resource Administration” on page 22 for details about these options.
Use the procedures in this chapter to update your data service configuration after the initial configuration. For example, to change resource type, resource group, and resource properties, go to “Changing Resource Type, Resource Group, and Resource Properties” on page 82.

Registering a Resource Type

A resource type provides specification of common properties and callback methods that apply to all of the resources of the given type. You must register a resource type before you create a resource of that type. For details about resource types, see Chapter 1, “Planning for Oracle Solaris Cluster Data Services.”

An administrator can register a resource type for a zone cluster by specifying a resource type registration (RTR) file that resides inside the zone cluster. In other words, the file must be under the zone root path. The RTR file inside the zone cluster cannot have the Global_zone property set to TRUE. The RTR file inside the zone cluster cannot be of type RTR_LOGICAL_HOSTNAME or RTR_SHARED_ADDRESS.

Note – If you want to register a resource type in a zone cluster that uses the Trusted Extensions feature of Oracle Solaris, and you want to set the Global_zone resource-type property to TRUE, you must place the RTR file in the /usr/cluster/lib/rgm/rtreg directory of the global cluster.

The administrator can also register a resource type for a zone cluster from the location /usr/cluster/lib/rgm/rtreg. The administrator in the zone cluster cannot modify any RTR files in this directory. This enables registering system resource types for a zone cluster, even when the RTR file has one of the properties that cannot be set directly from the zone cluster. This process provides a secure way of delivering system resource types.

▼ How to Register a Resource Type

Note – Perform this procedure from any cluster node.

Before You Begin

Ensure that you have the name for the resource type that you plan to register. The resource type name is an abbreviation for the data service name. For information about resource type names of data services that are supplied with Oracle Solaris Cluster, see the release notes for your release of Oracle Solaris Cluster.

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.
2 **Register the resource type.**

 # clresourcetype register resource-type

 resource-type Specifies name of the resource type to add. See the release notes for your release of Oracle Solaris Cluster to determine the predefined name to supply.

3 **Verify that the resource type has been registered.**

 # clresourcetype show

Example 2–1 Registering a Resource Type

The following example registers the SUNW.krb5 resource type, which represents the Oracle iPlanet Web Server application in an Oracle Solaris Cluster configuration.

 # clresourcetype register SUNW.krb5
 # clresourcetype show SUNW.krb5

<table>
<thead>
<tr>
<th>Resource Type:</th>
<th>SUNW.krb5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT_description:</td>
<td>HA-Kerberos KDC server for Sun Cluster</td>
</tr>
<tr>
<td>RT_version:</td>
<td>3.2</td>
</tr>
<tr>
<td>API version:</td>
<td>6</td>
</tr>
<tr>
<td>RT_basedir:</td>
<td>/opt/SUNWscrb5/bin</td>
</tr>
<tr>
<td>Single_instance:</td>
<td>False</td>
</tr>
<tr>
<td>Proxy:</td>
<td>False</td>
</tr>
<tr>
<td>Init_nodes:</td>
<td>All potential masters</td>
</tr>
<tr>
<td>Installed_nodes:</td>
<td><All></td>
</tr>
<tr>
<td>Failover:</td>
<td>True</td>
</tr>
<tr>
<td>Pkglist:</td>
<td>SUNWscrb5</td>
</tr>
<tr>
<td>RT_system:</td>
<td>False</td>
</tr>
</tbody>
</table>

Next Steps After registering resource types, you can create resource groups and add resources to the resource group. For details, see “Creating a Resource Group” on page 42.

See Also The following man pages:

- clresourcetype(1CL)
- clresourcegroup(1CL)
- clresource(1CL)

Upgrading a Resource Type

Upgrading a resource type enables you to use new features that are introduced in the new version of the resource type. A new version of a resource type might differ from a previous version in the following ways.

- Default settings of resource type properties might change.
Upgrading a Resource Type

- New extension properties of the resource type might be introduced.
- Existing extension properties of the resource type might be withdrawn.
- The set of standard properties that are declared for the resource type might change.
- The attributes of resource properties such as min, max, arraymin, arraymax, default, and tunability might change.
- The set of declared methods might differ.
- The implementation of methods or the fault monitor might change.

Upgrading a resource type involves the tasks that are explained in the following sections:

1. “How to Install and Register an Upgrade of a Resource Type” on page 36
2. “How to Migrate Existing Resources to a New Version of the Resource Type” on page 37

▼ How to Install and Register an Upgrade of a Resource Type

The instructions that follow explain how to use the `clresource(1CL)` command to perform this task. However, you are not restricted to using the `clresource` command for this task. Instead of the `clresource` command, you can use Oracle Solaris Cluster Manager or the Resource Group option of the `clsetup(1CL)` command to perform this task.

Before You Begin
Consult the documentation for the resource type to determine what you must do before installing the upgrade package on a node. One action from the following list will be required:

- You must reboot the node in noncluster mode.
- You may leave the node running in cluster mode, but you must turn off monitoring of all instances of the resource type.
- You may leave the node running in cluster mode and leave monitoring turned on for all instances of the resource type.

If you must reboot the node in noncluster mode, prevent a loss of service by performing a rolling upgrade. In a rolling upgrade, you install the package on each node individually while leaving the remaining nodes running in cluster mode.

1. **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2. **Install the package for the resource type upgrade on all cluster nodes where instances of the resource type are to be brought online.**
Register the new version of the resource type.
To ensure that the correct version of the resource type is registered, you must specify the following information:

- The resource type name
- The resource type registration (RTR) file that defines the resource type

```
# clresourcetype register -f path-to-new-rtr-file resource-type-name
```

The format of the resource type name is as follows:

```
vendor-id.base-rt-name:rt-version
```

For an explanation of this format, see “Format of Resource Type Names” on page 26.

Display the newly registered resource type.
```
# clresourcetype show resource-type-name
```

If necessary, set the Installed_nodes property to the nodes where the package for the resource type upgrade is installed.
You must perform this step if the package for the resource type upgrade is not installed on all cluster nodes.

The nodelist property of all resource groups that contain instances of the resource type must be a subset of the Installed_nodes property of the resource type.

```
# clresourcetype set -n installed-node-list resource-type
```

- `-n installed-node-list` Specifies the names of nodes on which this resource type is installed.

How to Migrate Existing Resources to a New Version of the Resource Type

The instructions that follow explain how to use the clresource(1CL) command to perform this task. However, you are not restricted to using the clresource command for this task. Instead of the clresource command, you can use Oracle Solaris Cluster Manager or the Resource Group option of the clsetup(1CL) command to perform this task.

Before You Begin
Consult the instructions for upgrading the resource type to determine when you can migrate resources to a new version of the resource type.

- Any time
- Only when the resource is unmonitored
- Only when the resource is offline
- Only when the resource is disabled
Only when the resource group is unmanaged

The instructions might state that you cannot upgrade your existing version of the resource. If you cannot migrate the resource, consider the following alternatives:

- Deleting the resource and replacing it with a new resource of the upgraded version
- Leaving the resource at the old version of the resource type

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. For each resource of the resource type that is to be migrated, change the state of the resource or its resource group to the appropriate state.

 - If you can migrate the resource at any time, no action is required.

 - If you can migrate the resource only when the resource is unmonitored, type the following command:

 `# clresource unmonitor resource`

 - If you can migrate the resource only when the resource is offline, type the following command:

 `# clresource disable resource`

 Note – If other resources depend on the resource that you are migrating, this step fails. In this situation, consult the error message that is printed to determine the names of the dependent resources. Then repeat this step, specifying a comma-separated list that contains the resource that you are migrating and any dependent resources.

 - If you can migrate the resource only when the resource is disabled, type the following command:

 `# clresource disable resource`

 Note – If other resources depend on the resource that you are migrating, this step fails. In this situation, consult the error message that is printed to determine the names of the dependent resources. Then repeat this step, specifying a comma-separated list that contains the resource that you are migrating and any dependent resources.

 - If you can migrate the resource only when the resource group is unmanaged, type the following commands:

 `# clresource disable -g resource-group`

 `# clresourcegroup offline resource-group`

 `# clresourcegroup unmanage resource-group`
The replaceable items in these commands are as follows:

resource-group
Specifies the resource group that is to be unmanaged

3 For each resource of the resource type that is to be migrated, change the Type_version property to the new version.

If necessary, set other properties of the same resource to appropriate values in the same command. To set these properties, specify the -p option in the command.

To determine whether you are required to set other properties, consult the instructions for upgrading the resource type. You might be required to set other properties for the following reasons:

- An extension property has been introduced in the new version of the resource type.
- The default value of an existing property has been changed in the new version of the resource type.

```
# clresource set -p Type_version=new-version \ 
  [-p extension-property=new-value] [-p standard-property=new-value] resource
```

Note – If the existing version of the resource type does not support upgrades to the new version, this step fails.

4 Restore the previous state of the resource or resource group by reversing the command that you typed in Step 2.

- If you can migrate the resource at any time, no action is required.

Note – After migrating a resource that can be migrated at any time, the resource probe might not display the correct resource type version. In this situation, disable and re-enable the resource’s fault monitor to ensure that the resource probe displays the correct resource type version.

- If you can migrate the resource only when the resource is unmonitored, type the following command:

 # clresource monitor resource

- If you can migrate the resource only when the resource is offline, type the following command:

 # clresource enable resource
Example 2–2 Migrating a Resource That Can Be Migrated Only When Offline

This example shows the migration of a resource that can be migrated only when the resource is offline. The new resource type package contains methods that are located in new paths. Because the methods are not overwritten during the installation, the resource does not need to be disabled until after the upgraded resource type is installed.

The characteristics of the resource in this example are as follows:

- The new resource type version is 2.0.
- The resource name is `myresource`.
- The resource type name is `myrt`.
- The new RTR file is in `/opt/XYZmyrt/etc/XYZ.myrt`.
- No dependencies on the resource that is to be migrated exist.
- The resource that is to be migrated can be taken offline while leaving the containing resource group online.

This example assumes that the upgrade package is already installed on all cluster nodes according to the supplier's directions.

```bash
# clresourcetype register -f /opt/XYZmyrt/etc/XYZ.myrt myrt
# clresource disable myresource
# clresource set -p Type_version=2.0 myresource
# clresource enable myresource
```
Example 2–3 Migrating a Resource That Can Be Migrated Only When Unmonitored

This example shows the migration of a resource that can be migrated only when the resource is unmonitored. The new resource type package contains only the monitor and RTR file. Because the monitor is overwritten during installation, monitoring of the resource must be disabled before the upgrade package is installed.

The characteristics of the resource in this example are as follows:

■ The new resource type version is 2.0.
■ The resource name is myresource.
■ The resource type name is myrt.
■ The new RTR file is in /opt/XYZmyrt/etc/XYZ.myrt.

The following operations are performed in this example.

1. Before the upgrade package is installed, the following command is run to disable monitoring of the resource:

 # clresource unmonitor myresource

2. The upgrade package is installed on all cluster nodes according to the supplier’s directions.

3. To register the new version of the resource type, the following command is run:

 # clresourcetype register -f /opt/XYZmyrt/etc/XYZ.myrt myrt

4. To change the Type_version property to the new version, the following command is run:

 # clresource set -p Type_version=2.0 myresource

5. To enable monitoring of the resource after its migration, the following command is run:

 # clresource monitor myresource

Downgrading a Resource Type

You can downgrade a resource to an older version of its resource type. The conditions for downgrading a resource to an older version of the resource type are more restrictive than the conditions for upgrading to a newer version of the resource type. The resource group that contains the resource must be unmanaged.

▼ How to Downgrade a Resource to an Older Version of Its Resource Type

The instructions that follow explain how to use the clresource(1CL) command to perform this task. However, you are not restricted to using the clresource command for this task. Instead of
the clresource command, you can use Oracle Solaris Cluster Manager or the Resource Group option of the clsetup(1CL) command to perform this task.

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify and solaris.cluster.admin RBAC authorizations.

2 Switch offline the resource group that contains the resource that you are downgrading.
 clresourcegroup offline resource-group

3 Disable all resources in the resource group that contains the resource that you are downgrading.
 clresource disable -g resource-group +

4 Unmanage the resource group that contains the resource that you are downgrading.
 clresourcegroup unmanage resource-group

5 If necessary, reregister the old version of the resource type to which you are downgrading.
 Perform this step only if the version to which you are downgrading is no longer registered. If the version to which you are downgrading is still registered, omit this step.
 clresourcetype register resource-type-name

6 For the resource that you are downgrading, set the Type_version property to old version to which you are downgrading.
 If necessary, edit other properties of the same resource to appropriate values in the same command.
 clresource set -p Type_version=old-version resource-to-downgrade

7 Enable all the resources that you disabled in Step 3.
 # clresource enable -g resource-group +

8 Bring to a managed state the resource group that contains the resource that you downgraded.
 # clresourcegroup manage resource-group

9 Bring online the resource group that contains the resource that you downgraded.
 # clresourcegroup online resource-group

Creating a Resource Group

Creating a Resource Group

A resource group contains a set of resources, all of which are brought online or offline together on a given node or set of nodes. You must create an empty resource group before you place resources into it. A resource group can be configured to run in global-cluster non-voting nodes.
Note – The global-cluster non voting nodes that are specified in the resource group’s node list do not need to exist when the resource group is created. If the node specified in the node list is not detected by the RGM, a warning message is displayed but does not result in an error.

The two resource group types are failover and scalable. A failover resource group can be online on one node only at any time, while a scalable resource group can be online on multiple nodes simultaneously.

The following procedures explain how to use the clresourcegroup(1CL) command to create a resource group.

For conceptual information about resource groups, see Chapter 1, “Planning for Oracle Solaris Cluster Data Services,” and Oracle Solaris Cluster Concepts Guide.

▼ How to Create a Failover Resource Group

A failover resource group contains the following types of resources:

- Network address resources, which are instances of the built-in resource types LogicalHostname and SharedAddress
- Failover resources, which are the data service application resources for a failover data service

The network address resources and their dependent data service resources move between cluster nodes when data services fail over or are switched over.

Note – Perform this procedure from any cluster node.

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2 Create the failover resource group.

```
# clresourcegroup create [-n node-zone-list] resource-group
```

- `-n node-zone-list` specifies a comma-separated, ordered list of nodes that can master this resource group. The format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `node`.
Creating a Resource Group

This list is optional. If you omit this list, the resource group is created on all nodes in the cluster.

Note – To achieve highest availability, specify global-cluster non-voting nodes on different global-cluster voting nodes in a failover resource group’s node list instead of different nodes on the same global-cluster voting node.

```
resource-group
```

Specifies your choice of the name of the failover resource group to add. This name must begin with an ASCII character.

3 Verify that the resource group has been created.

```
# clresourcegroup show resource-group
```

Example 2–4 Creating a Failover Resource Group

This example shows the creation of the failover resource group `resource-group-1`. The global cluster voting nodes `phys-schost-1` and `phys-schost-2` can master this resource group.

```
# clresourcegroup create -n phys-schost1,phys-schost-2 resource-group-1
# clresourcegroup show -v resource-group-1
```

Resource Groups and Resources

<table>
<thead>
<tr>
<th>Resource Group:</th>
<th>resource-group1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG description:</td>
<td><NULL></td>
</tr>
<tr>
<td>RG mode:</td>
<td>Failover</td>
</tr>
<tr>
<td>RG state:</td>
<td>Unmanaged</td>
</tr>
<tr>
<td>RG project name:</td>
<td>default</td>
</tr>
<tr>
<td>RG affinities:</td>
<td><NULL></td>
</tr>
<tr>
<td>RG SLM type:</td>
<td>manual</td>
</tr>
<tr>
<td>Auto_start_on_new_cluster:</td>
<td>True</td>
</tr>
<tr>
<td>Failback:</td>
<td>False</td>
</tr>
<tr>
<td>Nodelist:</td>
<td>phys-schost-1 phys-schost-2</td>
</tr>
<tr>
<td>Maximum primaries:</td>
<td>1</td>
</tr>
<tr>
<td>Desired primaries:</td>
<td>1</td>
</tr>
<tr>
<td>RG dependencies:</td>
<td><NULL></td>
</tr>
<tr>
<td>Implicit_network_dependencies:</td>
<td>True</td>
</tr>
<tr>
<td>Global_resources_used:</td>
<td><All></td>
</tr>
<tr>
<td>Pingpong_interval:</td>
<td>3600</td>
</tr>
<tr>
<td>Pathprefix:</td>
<td><NULL></td>
</tr>
<tr>
<td>RG System:</td>
<td>False</td>
</tr>
<tr>
<td>Suspend_automatic_recovery:</td>
<td>False</td>
</tr>
</tbody>
</table>

Next Steps After you create a failover resource group, you can add application resources to this resource group. See “Tools for Adding Resources to Resource Groups” on page 49 for the procedure.
How to Create a Scalable Resource Group

A scalable resource group is used with scalable services. The shared address feature is the Oracle Solaris Cluster networking facility that enables the multiple instances of a scalable service to appear as a single service. You must first create a failover resource group that contains the shared addresses on which the scalable resources depend. Next, create a scalable resource group, and add scalable resources to that group. The node list of a scalable resource group or of the shared address resource group must not contain more than one global-cluster non-voting node on the same node. Each instance of the scalable service must run on a different cluster node.

You can configure a scalable resource group to run in a global-cluster non-voting node as well. Do not configure a scalable resource to run in multiple global-cluster non-voting nodes on the same node.

Note – Perform this procedure from any cluster node.

1. On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2. Create the failover resource group that holds the shared addresses that the scalable resource is to use.

3. Create the scalable resource group.

```bash
# clresourcegroup create -S [-p Maximum_primaries=m] [-p Desired_primaries=n] \ [-n node-zone-list] resource-group
```

- `-S` Specifies that the resource group is to be multi-mastered. If the `-p Maximum_primaries` and `-p Desired_primaries` options are omitted, both properties are set to the number of nodes in the resource group’s node list.

- `-p Maximum_primaries=m` Specifies the maximum number of active primaries for this resource group.

- `-p Desired_primaries=n` Specifies the number of active primaries on which the resource group should attempt to start.

- `-n node-zone-list` Specifies a comma-separated, ordered list of nodes in which this resource group is to be available. The format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node.
Creating a Resource Group

To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only node. This list is optional. If you omit this list, the resource group is created on all nodes in the cluster.

The node list of the scalable resource can contain the same list or a subset of nodename:zonename pairs as the node list of the shared address resource.

resource-group

Specifies your choice of the name of the scalable resource group to add. This name must begin with an ASCII character.

4 Verify that the scalable resource group has been created.

```bash
# clresourcegroup show resource-group
```

Example 2–5 Creating a Scalable Resource Group

This example shows the creation of the scalable resource group resource-group-1. This resource group is to be hosted in the global cluster of nodes phys-schost-1 and phys-schost-2. The scalable resource group depends on the failover resource group resource-group-2, which contains the shared address resources.

```bash
# clresourcegroup create -S
-p Maximum_primaries=2 \
-p Desired_primaries=2 \ 
-p RG_dependencies=resource-group-2 \
-n phys-schost-1, phys-schost-2 \
resource-group-1

# clresourcegroup show resource-group-1
```

```bash
== Resource Groups and Resources ==
Resource Group: resource-group-1
RG description: <NULL>
RG mode: Scalable
RG state: Unmanaged
RG project name: default
RG affinities: <NULL>
Auto_start_on_new_cluster: True
Failback: False
Nodelist: phys-schost-1 phys-schost-2
Maximum_primaries: 2
Desired_primaries: 2
RG dependencies: resource-group2
Implicit_network_dependencies: True
Global_resources_used: <All>
Pingpong_interval: 3600
Pathprefix: <NULL>
RG_System: False
```
After you have created a scalable resource group, you can add scalable application resources to the resource group. See “How to Add a Scalable Application Resource to a Resource Group” on page 62 for details.

The clresourcegroup(1CL) man page.

Configuring Failover and Scalable Data Services on Shared File Systems

After the NAS device is installed and configured, you can use the ScalMountPoint resource to configure failover and scalable applications.

An instance of the ScalMountPoint resource type represents the mount point of one of the following types of file systems:

- QFS shared file systems
- File systems on a network-attached storage (NAS) device.

The NAS device and the file system must already be configured for use with Oracle Solaris Cluster.

The ScalMountPoint resource type is a scalable resource type. An instance of this resource type is online on each node in the node list of the resource group that contains the resource.

How to Configure a Failover Application Using the ScalMountPoint Resource

Before You Begin

This procedure provides the long forms of the Oracle Solaris Cluster commands. Most commands also have short forms. Except for the forms of the command names, the commands are identical.

To perform this procedure, become superuser or assume a role that provides solaris.cluster.read and solaris.cluster.modify RBAC (role-based access control) authorization.

1. Create a scalable resource group containing the ScalMountPoint resource for the NAS NFS file system.

 # clrg create -p RG_mode=Scalable \
 -p Desired_primaries=num_active_primary \

Maximum_primaries=max_num_active_primary scalmp-rs

clrt register SUNW.ScalMountPoint

clrs create -g scalmp-rs -t SUNW.ScalMountPoint
-p TargetFileSystem=nas_device:path
-p FileSystemType=nas
-p MountPointDir=fs_mountpoint scalmp-rs

clrg online -eM scalmp-rs

Create a failover resource group that contains the failover application resource.

clrg create -p rg_affinities=++
 scalmp-rs app-fo-rg

The failover application resource group must have a strong positive affinity upon the resource group created in Step 1.

clrt register app_resource_type

clrs create -g app-fo-rg -t app_resource_type
-p Resource_dependencies_offline_restart=scalmp-rs
...app-fo-rs

The failover application resource must have an offline restart dependency upon the ScalMountPoint resource created in Step 1.

clrg online -eM app-fo-rg

How to Configure a Scalable Application Using the ScalMountPoint Resource

Before You Begin
This procedure provides the long forms of the Oracle Solaris Cluster commands. Most commands also have short forms. Except for the forms of the command names, the commands are identical.

To perform this procedure, become superuser or assume a role that provides solaris.cluster.read and solaris.cluster.modify RBAC (role-based access control) authorization.

Create a scalable resource group containing the ScalMountPoint resource for the NAS NFS file system.

clrg create -p RG_mode=Scalable
 -p Desired_primaries=num_active_primary
Tools for Adding Resources to Resource Groups

A resource is an instantiation of a resource type. You must add resources to a resource group before the RGM can manage the resources. This section describes the following three resource types.

- Logical hostname resources
- Shared-address resources
- Data service (application) resources

Oracle Solaris Cluster provides the following tools for adding resources to resource groups:

- **Oracle Solaris Cluster Manager.** For more information, see the Oracle Solaris Cluster Manager online help.
- **The clsetup(1CL) utility.**
- **Oracle Solaris Cluster maintenance commands.**
You can use the wizards in the Oracle Solaris Cluster Manager, the clsetup utility, or the Oracle Solaris Cluster maintenance commands to add the logical hostname resources and shared-address resources to the resource group.

Oracle Solaris Cluster Manager and the clsetup utility enable you to add resources to the resource group interactively. Configuring these resources interactively reduces the possibility for configuration errors that might result from command syntax errors or omissions. Oracle Solaris Cluster Manager and the clsetup utility ensure that all required resources are created and that all required dependencies between resources are set.

Always add logical hostname resources and shared address resources to failover resource groups. Add data service resources for failover data services to failover resource groups. Failover resource groups contain both the logical hostname resources and the application resources for the data service. Scalable resource groups contain only the application resources for scalable services. The shared address resources on which the scalable service depends must reside in a separate failover resource group. You must specify dependencies between the scalable application resources and the shared address resources for the data service to scale across cluster nodes.

Note – The DEPRECATED flag marks the logical hostname or shared address resource as a deprecated address. These addresses are not suitable for outbound requests since they can migrate to a different cluster node due to a failover or switchover.

For more information about resources, see *Oracle Solaris Cluster Concepts Guide* and Chapter 1, “Planning for Oracle Solaris Cluster Data Services.”

How to Add a Logical Hostname Resource to a Resource Group by Using the clsetup Utility

The following instructions explain how to add a logical hostname resource to a resource group by using the clsetup utility. Perform this procedure from one node only.

This procedure provides the long forms of the Oracle Solaris Cluster maintenance commands. Most commands also have short forms. Except for the forms of the command names, the commands are identical.
Before You Begin

Ensure that the following prerequisites are met:

- An entry for each logical hostname that is to be made available by the resource is added to the name service database.
- If you are using IP Networking Multipathing (IPMP) groups, the groups are configured on the nodes where the logical hostname resource can be brought online.
- Any global-cluster non-voting node that can master the resource is already configured on your cluster nodes.

Ensure that you have the following information:

- The hostnames that you plan to add to the resource group

1. Become superuser on any cluster node.

2. Start the clsetup utility.

 # clsetup

 The clsetup main menu is displayed.

3. Type the number that corresponds to the option for data services and press Return.

 The Data Services menu is displayed.

4. Type the number that corresponds to the option for configuring the Logical Hostname resource and press Return.

 The clsetup utility displays the list of prerequisites for performing this task.

5. Verify that the prerequisites are met, and press Return to continue.

 The clsetup utility displays a list of the cluster nodes where the logical hostname resource can be brought online.

6. Select the nodes where the logical hostname resource can be brought online.

 - To accept the default selection of all listed nodes in an arbitrary order, type a and press Return.

 - To select a subset of the listed nodes, type a comma-separated or space-separated list of the numbers that correspond to the nodes. Then press Return.

 - To select all nodes in a particular order, type a comma-separated or space-separated ordered list of the numbers that correspond to the nodes and press Return.

 Ensure that the nodes are listed in the order in which the nodes are to appear in the logical hostname resource group's node list. The first node in the list is the primary node of this resource group.
To confirm your selection of nodes, type d and press Return.
The clsetup utility displays a screen where you can specify the logical hostname that the resource is to make available.

Type the logical hostname that this resource is to make available and press Return.
The clsetup utility displays the names of the Oracle Solaris Cluster objects that the utility will create.

If you require a different name for any Oracle Solaris Cluster object, change the name as follows.

a. Type the number that corresponds to the name that you are changing and press Return.
The clsetup utility displays a screen where you can specify the new name.

b. At the New Value prompt, type the new name and press Return.
The clsetup utility returns you to the list of the names of the Oracle Solaris Cluster objects that the utility will create.

To confirm your selection of Oracle Solaris Cluster object names, type d and press Return.
The clsetup utility displays information about the Oracle Solaris Cluster configuration that the utility will create.

To create the configuration, type c and press Return.
The clsetup utility displays a progress message to indicate that the utility is running commands to create the configuration. When configuration is complete, the clsetup utility displays the commands that the utility ran to create the configuration.

(Optional) Type q and press Return repeatedly until you quit the clsetup utility.
If you prefer, you can leave the clsetup utility running while you perform other required tasks before using the utility again. If you choose to quit clsetup, the utility recognizes your existing logical hostname resource group when you restart the utility.

Verify that the logical hostname resource has been created.
Use the clresource(1CL) utility for this purpose. By default, the clsetup utility assigns the name node_name-rg to the resource group.

clresource show node_name-rg
How to Add a Logical Hostname Resource to a Resource Group Using the Command-Line Interface

Note – When you add a logical hostname resource to a resource group, the extension properties of the resource are set to their default values. To specify a non default value, you must modify the resource after you add the resource to a resource group. For more information, see “How to Modify a Logical Hostname Resource or a Shared Address Resource” on page 89.

Note – Perform this procedure from any cluster node.

Before You Begin
Ensure that you have the following information.

- The name of the failover resource group to which you are adding the resource
- The hostnames that you plan to add to the resource group

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2 Add the logical hostname resource to the resource group.

`# clreslogicalhostname create -g resource-group -h hostnamelist, ... [-N netiflist] resource`

- `g resource-group` Specifies the name of the resource group in which this resource resides.
- `h hostnamelist, ...` Specifies a comma-separated list of UNIX hostnames (logical hostnames) by which clients communicate with services in the resource group. When a logical hostname resource is added to a resource group that runs in a global-cluster non-voting node, the corresponding IP addresses are configured in that node. These IP addresses are available only to applications that are running in that global-cluster non-voting node.

You must specify the fully qualified name with the `-h` option if you require a fully qualified hostname.

- `N netiflist` Specifies an optional, comma-separated list that identifies the IPMP groups that are on each node. Each element in `netiflist` must be in the form of `netif@node`. `netif` can be given as an IPMP group name, such as `sc_ipmp0`. The node can be identified by the node name or node ID, such as `sc_ipmp0@1` or `sc_ipmp@phys-schost-1`
Note — Oracle Solaris Cluster does not support the use of the adapter name for netif.

resource

Specifies an optional resource name of your choice. You cannot use the fully qualified name in the resource name.

3 Verify that the logical hostname resource has been added.

 # clresource show resource

Example 2–6 Adding a Logical Hostname Resource to a Resource Group

This example shows the addition of logical hostname resource (resource-1) to a resource group (resource-group-1).

 # clreslogicalhostname create -g resource-group-1 -h schost-1 resource-1
 # clresource show resource-1

 === Resources ===
 Resource: resource-1
 Type: SUNW.LogicalHostname:2
 Type_version: 2
 Group: resource-group-1
 R_description:
 Resource_project_name: default
 Enabled(phats1): True
 Enabled(phats2): True
 Monitored(phats1): True
 Monitored(phats2): True

Example 2–7 Adding Logical Hostname Resources That Identify IPMP Groups

This example shows the addition of the following logical host name resources to the resource group nfs-fo-rg:

- A resource that is named cs23-rs, which identifies the IPMP group sc_ipmp0 on node 1 and node 2
- A resource that is named cs24-rs, which identifies the IPMP group sc_ipmp1 on node 1 and node 2

 # clreslogicalhostname create -g nfs-fo-rg -h cs23-rs -N sc_ipmp0@1,sc_ipmp0@2 cs23-rs
 # clreslogicalhostname create -g nfs-fo-rg -h cs24-rs -N sc_ipmp1@1,sc_ipmp1@2 cs24-rs

Next Steps After you add logical hostname resources, see "How to Bring Resource Groups Online" on page 65 to bring the resources online.
Adding a resource causes the Oracle Solaris Cluster software to validate the resource. If the validation fails, the `clreslogicalhostname` command prints an error message and exits. To determine why the validation failed, check the `syslog` on each node for an error message. The message appears on the node that performed the validation, not necessarily the node on which you ran the `clreslogicalhostname` command.

See Also The `clreslogicalhostname(1CL)` man page.

How to Add a Shared Address Resource to a Resource Group by Using the `clsetup` Utility

The following instructions explain how to add a shared address resource to a resource group by using the `clsetup` utility. Perform this procedure from any cluster node.

This procedure provides the long forms of the Oracle Solaris Cluster maintenance commands. Most commands also have short forms. Except for the forms of the command names, the commands are identical.

Before You Begin

Ensure that the following prerequisites are met:

- The shared address that is to be made available by the resource has an entry in a name service database.
- If you are using IP Networking Multipathing (IPMP) groups, the groups are configured on the nodes where the shared address resource can be brought online.
- Any global-cluster non-voting node that can master the resource is already configured on your cluster nodes.

Ensure that you have the following information:

- The hostnames that you plan to add to the resource group.

1. **Become superuser on any cluster node.**

2. **Start the `clsetup` utility.**
   ```bash
   # clsetup
   ```
 The `clsetup` main menu is displayed.

3. **Type the number for the option for data services and press Return.**
 The Data Services menu is displayed.
4 Type the number for the option for configuring the shared address resource and press Return.
 The clsetup utility displays the list of prerequisites for performing this task.

5 Verify that the prerequisites are met, and press Return to continue.
 The clsetup utility displays a list of the cluster nodes where the shared address resource can be
 brought online.

6 Select the nodes where the shared address resource can be brought online.
 ■ To accept the default selection of all listed nodes in an arbitrary order, type a and press
 Return.
 ■ To select a subset of the listed nodes, type a comma-separated or space-separated list of the
 numbers that correspond to the nodes. Then press Return.
 ■ To select all nodes in a particular order, type a comma-separated or space-separated
 ordered list of the numbers that correspond to the nodes and press Return.

7 To confirm your selection of nodes, type d and press Return.
 The clsetup utility displays a screen where you can specify the shared address that the resource
 is to make available.

8 Type the shared address that this resource is to make available and press Return.
 The clsetup utility displays the names of the Oracle Solaris Cluster objects that the utility will
 create.

9 If you require a different name for any Oracle Solaris Cluster object, change the name as follows.
 a. Type the number that corresponds to the name that you are changing and press Return.
 The clsetup utility displays a screen where you can specify the new name.
 b. At the New Value prompt, type the new name and press Return.
 The clsetup utility returns you to the list of the names of the Oracle Solaris Cluster objects that
 the utility will create.

10 To confirm your selection of Oracle Solaris Cluster object names, type d and press Return.
 The clsetup utility displays information about the Oracle Solaris Cluster configuration that the
 utility will create.
11 **To create the configuration, type c and Press Return.**
The `clsetup` utility displays a progress message to indicate that the utility is running commands to create the configuration. When configuration is complete, the `clsetup` utility displays the commands that the utility ran to create the configuration.

12 *(Optional)* Type `q` and press Return repeatedly until you quit the `clsetup` utility.
If you prefer, you can leave the `clsetup` utility running while you perform other required tasks before using the utility again. If you choose to quit `clsetup`, the utility recognizes your existing shared address resource group when you restart the utility.

13 **Verify that the shared address resource has been created.**
Use the `clresource(1CL)` utility for this purpose. By default, the `clsetup` utility assigns the name `node_name-rg` to the resource group.

```bash
# clresource show node_name-rg
```

How to Add a Shared Address Resource to a Resource Group Using the Command-Line Interface

Note – When you add a shared address resource to a resource group, the extension properties of the resource are set to their default values. To specify a non-default value, you must modify the resource after you add the resource to a resource group. For more information, see “How to Modify a Logical Hostname Resource or a Shared Address Resource” on page 89.

Note – Perform this procedure from any cluster node.

Before You Begin
Ensure that you have the following information.
- The name of the resource group into which you are adding the resource. This group must be a failover resource group that you created previously.
- The hostnames that you plan to add to the resource group.

1 **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2 **Add the shared address resource to the resource group.**

```bash
# clresourceaddaddress create -g resource-group -h hostnamelist, ... \[-X auxnodelist] [-N netiflist] resource
```
Tools for Adding Resources to Resource Groups

- **-g resource-group** Specifies the resource group name. In the node list of a shared address resource, do not specify more than one global-cluster non-voting node on the same global-cluster voting node. Specify the same list of *nodename:zonename* pairs as the node list of the scalable resource group.

- **-h hostnamelist, ...** Specifies a comma-separated list of shared address hostnames.

- **-X auxnodelist** Specifies a comma-separated list of node names or IDs that identify the cluster nodes that can host the shared address but never serve as primary if failover occurs. These nodes are mutually exclusive, with the nodes identified as potential masters in the resource group's node list. If no auxiliary node list is explicitly specified, the list defaults to the list of all cluster node names that are not included in the node list of the resource group that contains the shared address resource.

Note – To ensure that a scalable service runs in all global-cluster non-voting nodes that were created to master the service, the complete list of nodes must be included in the node list of the shared address resource group or the auxnodelist of the shared address resource. If all the nodes are listed in the node list, the auxnodelist can be omitted.

- **-N netiflist** Specifies an optional, comma-separated list that identifies the IPMP groups that are on each node. Each element in netiflist must be in the form of netif@node. netif can be given as an IPMP group name, such as sc_ipmp0. The node can be identified by the node name or node ID, such as sc_ipmp0@1 or sc_ipmp@phys-schost-1.

Note – Oracle Solaris Cluster does not support the use of the adapter name for netif.

resource Specifies an optional resource name of your choice.

3 Verify that the shared address resource has been added and validated.

```bash
# clresource show resource
```

Example 2-8 Adding a Shared Address Resource to a Resource Group

This example shows the addition of a shared address resource (resource-1) to a resource group (resource-group-1).
clesssharedaddress create -g resource-group-1 -h schost-1 resource-1
cresource show resource-1

Resources

<table>
<thead>
<tr>
<th>Resource:</th>
<th>resource-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>SUNW.SharedAddress:2</td>
</tr>
<tr>
<td>Type_version:</td>
<td>2</td>
</tr>
<tr>
<td>Group:</td>
<td>resource-group-1</td>
</tr>
<tr>
<td>R_description:</td>
<td>default</td>
</tr>
<tr>
<td>Enabled(phats1):</td>
<td>False</td>
</tr>
<tr>
<td>Enabled(phats2):</td>
<td>False</td>
</tr>
<tr>
<td>Monitored(phats1):</td>
<td>True</td>
</tr>
<tr>
<td>Monitored(phats2):</td>
<td>True</td>
</tr>
</tbody>
</table>

Next Steps

After you add a shared address resource, use the procedure "How to Bring Resource Groups Online" on page 65 to enable the resource.

Troubleshooting

Adding a resource causes the Oracle Solaris Cluster software to validate the resource. If the validation fails, the clesssharedaddress command prints an error message and exits. To determine why the validation failed, check the syslog on each node for an error message. The message appears on the node that performed the validation, not necessarily the node on which you ran the clesssharedaddress command.

See Also
The clesssharedaddress(1CL) man page.

How to Add a Failover Application Resource to a Resource Group

A failover application resource is an application resource that uses logical hostnames that you previously created in a failover resource group.

Note - Perform this procedure from any cluster node.

Before You Begin

Ensure that you have the following information.

- The name of the failover resource group to which you are adding the resource
- The name of the resource type for the resource
- The logical hostname resources that the application resource uses, which are the logical hostnames that you previously included in the same resource group
Note – This procedure also applies to proxy resources.

1. **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2. **Add a failover application resource to the resource group.**

   ```bash
   # clresource create -g resource-group -t resource-type \[ -p "extension-property{(node-specifier)}"=value, ... ] [ -p standard-property=value, ... ] resource
   -g resource-group
   Specifies the name of a failover resource group. This resource group must already exist.
   -t resource-type
   Specifies the name of the resource type for the resource.
   -p "extension-property{(node-specifier)}"=value, ...
   Specifies a comma-separated list of extension properties that you are setting for the resource.
   The extension properties that you can set depend on the resource type. To determine which extension properties to set, see the documentation for the resource type.

   The node-specifier is an optional qualifier to the -p and -x options. This qualifier indicates that the extension property or properties on only the specified node or nodes are to be set when the resource is created. The specified extension properties on other nodes in the cluster are not set. If you do not include node-specifier, the specified extension properties on all nodes in the cluster are set. You can specify a node name or a node identifier for node-specifier. Examples of the syntax of node-specifier include the following:

   -p "myprop{phys-schost-1}"

   The braces ({})) indicate that you are setting the specified extension property on only node phys-schost-1. For most shells, the double quotation marks (") are required.

   You can also use the following syntax to set an extension property in two different global-cluster voting nodes on two different nodes:

   -x "myprop{phys-schost-1:zoneA,phys-schost-2:zoneB}"

   Note – The extension property that you specify with node-specifier must be declared in the RTR file as a per-node property.

   -p standard-property=value, ...

   Specifies a comma-separated list of standard properties that you are setting for the resource.
   The standard properties that you can set depend on the resource type. To determine which standard properties to set, see the following man pages: `cluster(1CL)`, `rt_properties(5)` `rg_properties(5)`, `r_properties(5)`, and `property_attributes(5)`.```
resource
   Specifies your choice of the name of the resource to add.

The resource is created in the enabled state.

3 Verify that the failover application resource has been added and validated.
   
   # clresource show resource

Example 2–9 Adding a Failover Application Resource to a Resource Group

This example shows the addition of a resource (resource-1) to a resource group (resource-group-1). The resource depends on logical hostname resources (schost-1, schost-2), which must reside in the same failover resource groups that you defined previously.

   # clresource create -g resource-group-1 -t resource-type-1 \
   -p Resource_dependencies=schost-1,schost2 resource-1 \
   # clresource show resource-1

=== Resources ===
   Resource: resource-1
   Type: resource-type-1
   Type_version: 
   Group: resource-group-1
   R_description: 
   Resource_project_name: default
   Enabled(phats1): False
   Enabled(phats2): False
   Monitored(phats1): True
   Monitored(phats2): True

Next Steps After you add a failover application resource, use the procedure "How to Bring Resource Groups Online" on page 65 to enable the resource.

Troubleshooting Adding a resource causes the Oracle Solaris Cluster software to validate the resource. If the validation fails, the clresource command prints an error message and exits. To determine why the validation failed, check the syslog on each node for an error message. The message appears on the node that performed the validation, not necessarily the node on which you ran the clresource command.

See Also The clresource(1CL) man page.
How to Add a Scalable Application Resource to a Resource Group

A scalable application resource is an application resource that uses the network load balancing features of Oracle Solaris Cluster software. The scalable application resource is in a multi-mastered resource group and has a dependency on one or more shared-address resources. The shared-address resources are in a failover resource group.

Note – Perform this procedure from any cluster node.

Before You Begin

Ensure that you have the following information.

- The name of the scalable resource group to which you are adding the resource
- The name of the resource type for the resource
- The shared address resources that the scalable service resource uses, which are the shared addresses that you previously included in a failover resource group

Note – This procedure also applies to proxy resources.

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2 Add a scalable application resource to the resource group.

```bash
clresource create -S -g resource-group -t resource-type \
-p Resource_dependencies=network-resource[.network-resource...] \
-p Scalable=True \
[-p "extension-property[(node-specifier)]=value, ...] [-p standard-property=value, ...] resource
-S
```

Specifies that the resource group is to be multi-mastered. If the -p Maximum_primaries and -p Desired_primaries options are omitted, both properties are set to the number of nodes in the resource group’s node list.

- `-g resource-group`
  Specifies the name of a scalable service resource group that you previously created.

- `-t resource-type`
  Specifies the name of the resource type for this resource.

- `-p Resource_dependencies= network-resource[.network-resource...]`
  Specifies the list of network resources (shared addresses) on which this resource depends.

- `-p Scalable=True`
  Specifies that this resource uses the network load balancing feature of Oracle Solaris Cluster software.
-p "extension-property\{\{node-specifier\}\}"=value, …
Specifies a comma-separated list of extension properties that you are setting for the resource.
The extension properties that you can set depend on the resource type. To determine which
extension properties to set, see the documentation for the resource type.

node-specifier is an optional qualifier to the -p and -x options. This qualifier indicates that
the extension property or properties on only the specified node or nodes are to be set when
the resource is created. The specified extension properties on other nodes in the cluster are
not set. If you do not include node-specifier, the specified extension properties on all nodes in
the cluster are set. You can specify a node name or a node identifier for node-specifier.
Examples of the syntax of node-specifier include the following:

- p "myprop\{phys-schost-1\}"

The braces ({})) indicate that you are setting the specified extension property on only node
phys-schost-1. For most shells, the double quotation marks (")) are required.

You can also use the following syntax to set an extension property in two different
global-cluster voting nodes on two different nodes:

- x "myprop\{phys-schost-1:zoneA,phys-schost-2:zoneB\}"

Note – The extension property that you specify with node-specifier must be declared in the
RTR file as a per-node property.

-p standard-property=value, …
Specifies a comma-separated list of standard properties that you are setting for the resource.
The standard properties that you can set depend on the resource type. For scalable services,
you typically set the Port_list, Load_balancing_weights, and Load_balancing_policy
properties. To determine which standard properties to set, see the following man pages:
cluster(1CL), rt_properties(5)rg_properties(5), r_properties(5), and
property_attributes(5).

resource
Specifies your choice of the name of the resource to add.
The resource is created in the enabled state.

3 Verify that the scalable application resource has been added and validated.
# c1resource show resource

Example 2-10 Adding a Scalable Application Resource to a Resource Group

This example shows the addition of a resource (resource-1) to a resource group
(resource-group-1). Note that resource-group-1 depends on the failover resource group that
contains the network addresses that are in use (schost-1 and schost-2 in the following
example). The resource depends on shared address resources (schost-1, schost-2), which must reside in one or more failover resource groups that you defined previously.

```bash
clresource create -S -g resource-group-1 -t resource-type-1 \
-p Resource_dependencies=schost-1,schost-2 resource-1 \
-p Scalable=True
clresource show resource-1
```

After you add a scalable application resource, follow the procedure “How to Bring Resource Groups Online” on page 65 to enable the resource.

**Next Steps**

**Troubleshooting**

Adding a resource causes the Oracle Solaris Cluster software to validate the resource. If the validation fails, the clresource command prints an error message and exits. To determine why the validation failed, check the syslog on each node for an error message. The message appears on the node that performed the validation, not necessarily the node on which you ran the clresource command.

**See Also**

The clresource(1CL) man page.

**Bringing Resource Groups Online**

To enable resources to begin providing HA services, you must perform the following operations:

- Bring resource groups online
- Enable the resources in their resource groups
- Enable the resource monitors
- Make the resource groups managed

You can perform these tasks individually or by using a single command.

After you bring a resource group online, it is configured and ready for use. If a resource or node fails, the RGM switches the resource group online on alternate nodes to maintain availability of the resource group.
How to Bring Resource Groups Online

Perform this task from any cluster node.

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.admin` RBAC authorization.

2. Type the command to bring online the resource groups.

   - If you have intentionally disabled a resource or a fault monitor that must remain disabled, type the following command:
     
     ```
 # clresourcegroup online -M rg-list

 rg-list Specifies a comma-separated list of the names of the resource groups to manage and bring online. The resource groups must exist. The list may contain one resource group name or more than one resource group name.
     ```

   - If you require the resources and their fault monitors to be enabled when the resource groups are brought online, type the following command:
     
     ```
 # clresourcegroup online -emM rg-list

 rg-list Specifies a comma-separated list of the names of the resource groups to manage and bring online. The resource groups must exist. The list can contain one resource group name or more than one resource group name.
     ```

Note – If any resource group that you are bringing online declares a strong affinity for other resource groups, this operation might fail. For more information, see "Distributing Online Resource Groups Among Cluster Nodes" on page 151.

3. Verify that each resource group that you specified in Step 2 is online.
   
   The output from this command indicates on which nodes each resource group is online.
   
   ```
 # clresourcegroup status
   ```

Example 2-11  Bringing Online a Resource Group

This example shows how to bring online the resource group `resource-group-1` and verify its status. All resources in this resource group and their fault monitors are also enabled.

```
clresourcegroup online -emM resource-group-1
clresourcegroup status
```
If you brought resource groups online without enabling their resources and fault monitors, enable the fault monitors of any resources that you require to be enabled. For more information, see “How to Enable a Resource Fault Monitor” on page 73.

Switching Resource Groups to Preferred Primaries

The clresourcegroup remaster command can switch the resource group offline from current primaries in order to switch the resource group online on preferred nodes or zones. Similar to the clresourcegroup online command, the RGM computes the most preferred set of nodes or zones based on the resource group's Nodelist property, but also takes into account the following factors:

- The RG_affinities property settings
- The Load_factors property settings, compared against node load limits and current loads
- The failure history of each resource group

How to Switch Resource Groups to Preferred Primaries

Perform this task from any cluster node.

1. On a cluster member, become superuser or assume a role that provides solaris.cluster.admin RBAC authorization.

2. Type the command to switch the resource groups to their preferred primaries.

   - If you have intentionally disabled a resource or a fault monitor that must remain disabled, type the following command:
     
     ```
 # clresourcegroup remaster rg-list
     ```
     
     **rg-list** Specifies a comma-separated list of the names of the resource groups to switch to the preferred primaries. The resource groups must exist. The list may contain one resource group name or more than one resource group name.

   - If you require the resources and their fault monitors to be enabled when the resource groups are switched to the preferred primary, type the following command:
     
     ```
 # clresourcegroup remaster -emM rg-list
     ```
     
     **rg-list** Specifies a comma-separated list of the names of the resource groups to switch to the preferred primaries. The resource groups must exist. The list can contain one
resource group name or more than one resource group name.

3 Verify that each resource group that you specified in Step 2 has been switched to the preferred primary.
   The output from this command indicates the new nodes for the resource groups that were switched.
   
   # clresourcegroup status

Enabling a Resource

You can enable a resource that you neglected to enable when you brought online a resource group.

▼ How to Enable a Resource

Note – Perform this procedure from any cluster node.

Before You Begin

Ensure that you have created and have the name of the resource that you intend to enable.

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.admin RBAC authorization.

2 Enable the resource.

   # clresource enable [-n node-zone-list] resource

   -n node-zone-list Specifies a comma-separated, ordered list of nodes on which to enable the resource. If you specify a global-cluster non-voting node, the format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only node.

   This list is optional. If you omit this list, the resource is enabled on all nodes in its resource group’s node list.

   Note – If you specify more than one node with the -n option, you can specify only one resource.
resource Specifies the name of the resource that you want to enable.

3 Verify that the resource has been enabled.
   
   
   # clresource status
   The output from this command indicates the state of the resource that you have enabled.

See Also The `clresource(1CL)` man page.

Quiescing Resource Groups

To stop a resource group from continuously switching from one node to another when a START or STOP method fails, bring it to a quiescent state. To bring a resource group to a quiescent state, you issue the `clresourcegroup quiesce` command.

When you quiesce a resource group, resource methods that are executing are allowed to run until they are completed. If a serious problem occurs, you might need to quiesce a resource group immediately. To do so, you specify the `-k` command option, which kills the following methods:

- Prenet_start
- Start
- Monitor_start
- Monitor_stop
- Stop
- Postnet_stop

**Note** – The Init, Fini Boot, and Update methods are not killed when you specify this command option.

However, if you immediately quiesce a resource group by killing methods, you might leave one of its resources in an error state such as `Start_failed` or `Stop_failed`. You must clear these error states yourself.

How to Quiesce a Resource Group

1 Become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.
2 Quiesce the resource group.
   
   # clresourcegroup quiesce resource-group

▼ How to Quiesce a Resource Group Immediately

1 Become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2 Immediately quiesce the resource group.
   
   # clresourcegroup quiesce -k resource-group
   
   The Prenet_start, Start, Monitor_start, Monitor_stop, Stop, and Postnet_stop methods that are associated with the resource group are killed immediately. The resource group is brought to a quiescent state.

   The clresourcegroup quiesce -k command blocks until the specified resource group has reached a quiescent state.

Suspending and Resuming the Automatic Recovery Actions of Resource Groups

You can temporarily suspend the automatic recovery actions of a resource group. You might need to suspend the automatic recovery of a resource group to investigate and fix a problem in the cluster. Or, you might need to perform maintenance on resource group services.

To suspend the automatic recovery actions of a resource group, you issue the clresourcegroup suspend command. To resume automatic recovery actions, you issue the clresourcegroup resume command.

When you suspend the automatic recovery actions of a resource group, you also bring the resource group to a quiescent state.

A suspended resource group is not automatically restarted or failed over until you explicitly issue the command that resumes automatic recovery. Whether online or offline, suspended data services remain in their current state. You can still manually switch the resource group to a different state on specified nodes. You can also still enable or disable individual resources in the resource group.

A dependency or affinity is suspended and not enforced when you suspend the automatic recovery actions of a resource group that does one of the following:

- Contains a resource that has a restart dependency on another resource
Declares a strong positive or negative affinity for another resource group

When you suspend one of these categories of resource groups, Oracle Solaris Cluster displays a warning that the dependency or affinity is suspended as well.

**Note** – Setting the `RG_system` property does not affect your ability to suspend or resume the automatic recovery actions of a resource group. However, if you suspend a resource group for which the `RG_system` property is set to `TRUE`, a warning message is produced. The `RG_system` property specifies that a resource group contains critical system services. If set to `TRUE`, the `RG_system` property prevents users from inadvertently stopping, deleting, or modifying a resource group or its resources.

### Immediately Suspending Automatic Recovery by Killing Methods

When you suspend the automatic recovery actions of a resource group, resource methods that are executing are allowed to run until they are completed. If a serious problem occurs, you might need to suspend the automatic recovery actions of a resource group immediately. To do so, you specify the `-k` command option, which kills the following methods:

- `Prenet_start`
- `Start`
- `Monitor_start`
- `Monitor_stop`
- `Stop`
- `Postnet_stop`

**Note** – The `Init`, `Fini Boot`, and `Update` methods are not killed when you include this command option.

However, if you immediately suspend automatic recovery actions by killing methods, you might leave one of its resources in an error state such as `Start_failed` or `Stop_failed`. You must clear these error states yourself.
How to Suspend the Automatic Recovery Actions of a Resource Group

1. Become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Suspend the automatic recovery actions of the resource group.
   
   ```
 # clresourcegroup suspend resource-group
   ```

   The resource group that you specify is not automatically started, restarted, or failed over until you resume automatic recovery actions. See “How to Resume the Automatic Recovery Actions of a Resource Group” on page 71.

How to Suspend the Automatic Recovery Actions of a Resource Group Immediately

1. Become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Immediately suspend the automatic recovery actions of the resource group.
   
   ```
 # clresourcegroup suspend -k resource-group
   ```

   The Prenet_start, Start, Monitor_start, Monitor_stop, Stop, and Postnet_stop methods that are associated with the resource group are killed immediately. Automatic recovery actions of the resource group is suspended. The resource group is not automatically started, restarted, or failed over until you resume automatic recovery actions. See “How to Resume the Automatic Recovery Actions of a Resource Group” on page 71.

   The `clresourcegroup suspend -k` command blocks until the specified resource group has reached a quiescent state.

How to Resume the Automatic Recovery Actions of a Resource Group

1. Become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Resume the automatic recovery actions of the resource group.
   
   ```
 # clresourcegroup resume resource-group
   ```
Theresourcegroupthatyouspecifyisautomaticallystarted,restarted,orfailedover.

Disabling and Enabling Resource Monitors

The procedures in this section explain how to disable or enable resource fault monitors, not the resources themselves. A resource can continue to operate normally while its fault monitor is disabled. However, if the fault monitor is disabled and a data service fault occurs, automatic fault recovery is not initiated.

Seethe**clresource(1CL)**man page for additional information.

**Note** – Perform these procedures from any cluster node.

▼ How to Disable a Resource Fault Monitor

1. **On any cluster member, become superuser or assume a role that provides** `solaris.cluster.modify`RBACauthorization.

2. **Disable the resource fault monitor.**

   ```
 # clresource unmonitor [-n node-zone-list] resource
 -n node-zone-list Specifies a comma-separated, ordered list of nodes on which to unmonitor the resource. If you specify a global-cluster non-voting node, the format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node or to specify a node without global-cluster non-voting nodes, specify only node.

 This list is optional. If you omit this list, the resource is unmonitored on all nodes in its resource group's node list.
   ```

   **Note** – If you specify more than one node with the `-n` option, you can specify only one resource.

   resource Specifies the name of the resource or resources.

3. **Run the clresource command on each cluster node and check for monitored fields (RS Monitored) to verify that the resource fault monitor has been disabled.**

   ```
 # clresource show -v
   ```
Disabling a Resource Fault Monitor

```
cresource unmonitor resource-1
cresource show -v
... RS Monitored: no...
```

How to Enable a Resource Fault Monitor

1. On any cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Enable the resource fault monitor.
   
   ```
 # cresource monitor [-n node-zone-list] resource

 -n node-zone-list Specifies a comma-separated, ordered list of nodes on which to monitor the resource. If you specify a global-cluster non-voting node, the format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node. To specify the global cluster, or to specify a node without global-cluster non-voting nodes, specify only `node`.

 This list is optional. If you omit this list, the resource is monitored on all nodes in its resource group’s node list.
   ```

   ```
 Note – If you specify more than one node with the `-n` option, you can specify only one resource.
   ```

   resource  Specifies the name of the resource or resources.

3. Run the `cresource` command on each cluster node and check for monitored fields (RS Monitored) to verify that the resource fault monitor has been enabled.
   
   ```
 # cresource show -v
   ```

Example 2–13  Enabling a Resource Fault Monitor

```
cresource monitor resource-1
cresource show -v
... RS Monitored: yes...
```
Removing Resource Types

You do not need to remove resource types that are not in use. However, if you want to remove a resource type, follow this procedure.

Note – Perform this procedure from any cluster node.

▼ How to Remove a Resource Type

Removing a resource type involves disabling and removing all resources of that type in the cluster before unregistering the resource type.

Before You Begin

To identify all instances of the resource type that you are removing, type the following command:

```
clresource-type show -v
```

1 On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2 Disable each resource of the resource type that you are removing.
   ```
 # clresource disable resource
 resource
   ```
   Specifies the name of the resource to disable.

3 Remove each resource of the resource type that you are removing.
   ```
 # clresource delete resource
 resource
   ```
   Specifies the name of the resource to remove.

4 Unregister the resource type.
   ```
 # clresource-type unregister resource-type
 resource-type
   ```
   Specifies the name of the resource type to unregister.

5 Verify that the resource type has been removed.
   ```
 # clresource-type show
   ```
Removing a Resource Type

This example shows how to disable and remove all of the resources of a resource type (resource-type-1) and then unregister the resource type. In this example, resource-1 is a resource of the resource type resource-type-1.

```
clresource disable resource-1
clresource delete resource-1
clresourcetype unregister resource-type-1
```

See Also

The following man pages:

- `clresource(1CL)`
- `clresourcetype(1CL)`

Removing Resource Groups

To remove a resource group, you must first remove all of the resources from the resource group.

Note – Perform this procedure from any cluster node.

How to Remove a Resource Group

Before You Begin

To identify all resources in the resource group that you are removing, type the following command:

```
clresource show -v
```

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Run the following command to switch the resource group offline.

   ```
 # clresourcetype offline resource-type
 resource-type Specifies the name of the resource group.
   ```

3. Disable all of the resources in the resource group that you are removing.

   ```
 # clresource disable resource
 resource Specifies the name of the resource to disable.
   ```
4 Remove all of the resources from the resource group.
   For each resource, type the following command.
   
   ```
 # clresource delete resource
 resource Specifies the name of the resource to be removed.
   ```

5 Remove the resource group.
   
   ```
 # clresourcegroup delete resource-group
 resource-group Specifies the name of the resource group to be removed.
   ```

6 Verify that the resource group has been removed.
   
   ```
 # clresourcegroup show
   ```

Example 2–15 Removing a Resource Group

This example shows how to remove a resource group (resource-group-1) after you have removed its resource (resource-1).

```
clresourcegroup offline resource-group-1
clresource disable resource-1
clresource delete resource-1
clresourcegroup delete resource-group-1
```

See Also  
The following man pages:
- clresource(1CL)
- clresourcegroup(1CL)

Removing Resources

Disable the resource before you remove it from a resource group.

Note – Perform this procedure from any cluster node.

How to Remove a Resource

1 On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.
2 Disable the resource that you are removing.
   
   # clresource disable resource
   
   resource Specifies the name of the resource to disable.

3 Remove the resource.
   
   # clresource delete resource
   
   resource Specifies the name of the resource to remove.

4 Verify that the resource has been removed.
   
   # clresource show

Example 2–16 Removing a Resource

This example shows how to disable and remove a resource (resource-1).

   # clresource disable resource-1
   # clresource delete resource-1

See Also clresource(1CL)

Switching the Current Primary of a Resource Group

Use the following procedure to switch over a resource group from its current primary to another node that is to become the new primary.

▼ How to Switch the Current Primary of a Resource Group

Note – Perform this procedure from any cluster node.

Before You Begin

Ensure that the following conditions are met:

- You have the following information:
  - The name of the resource group that you are switching over
  - The names of the nodes where the resource group is to be brought online or to remain online
The nodes where the resource group is to be brought online or to remain online are in the cluster.

These nodes have been set up to be potential masters of the resource group that you are switching.

To see a list of potential primaries for the resource group, type the following command:

```
cresourcegroup show -v
```

1. **On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.**

2. **Switch the resource group to a new set of primaries.**

```
cresourcegroup switch [-n node-zone-list] resource-group
```

- `-n node-zone-list` Specifies a comma-separated, ordered list of global-cluster non-voting nodes that can master this resource group. The resource group is switched offline on all of the other nodes. The format of each entry in the list is `<node>:<zone>`. In this format, `<node>` specifies the node name and `<zone>` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `<node>`.

   This list is optional. If you omit this list, the resource group is switched on all nodes in the resource group’s node list.

- `resource-group` Specifies the name of the resource group to switch.

**Note** – If any resource group that you are switching declares a strong affinity for other resource groups, the attempt to switch might fail or be delegated. For more information, see “Distributing Online Resource Groups Among Cluster Nodes” on page 151.

3. **Verify that the resource group has been switched to the new primary.**

   The output from this command indicates the state of the resource group that has been switched over.

```
cresourcegroup status
```

**Example 2–17**  Switching a Resource Group to a New Primary

This example shows how to switch the resource group `resource-group-1` from its current primary `phys-schost-1` to the potential primary `phys-schost-2`.

1. To verify that the resource group is online on `phys-schost-1`, the following command is run:
phys-schost-1# clresourcegroup status

=== Cluster Resource Groups ===

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Node Name</th>
<th>Suspended</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource-group1</td>
<td>phys-schost-1</td>
<td>No</td>
<td>Online</td>
</tr>
<tr>
<td></td>
<td>phys-schost-2</td>
<td>No</td>
<td>Offline</td>
</tr>
</tbody>
</table>

2. To perform the switch, the following command is run:

   phys-schost-1# clresourcegroup switch -n phys-schost-2 resource-group-1

3. To verify that the group is switched to be online on phys-schost-2, the following command is run:

   phys-schost-1# clresourcegroup status

=== Cluster Resource Groups ===

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Node Name</th>
<th>Suspended</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource-group1</td>
<td>phys-schost-1</td>
<td>No</td>
<td>Offline</td>
</tr>
<tr>
<td></td>
<td>phys-schost-2</td>
<td>No</td>
<td>Online</td>
</tr>
</tbody>
</table>

See Also  The clresourcegroup(1CL) page.

Disabling Resources and Moving Their Resource Group Into the UNMANAGED State

At times, you must bring a resource group into the UNMANAGED state before you perform an administrative procedure on it. Before you move a resource group into the UNMANAGED state, you must disable all of the resources that are part of the resource group and bring the resource group offline.

See the clresourcegroup(1CL) man page for additional information.

Note  Perform this procedure from any cluster node.
How to Disable a Resource and Move Its Resource Group Into the UNMANAGED State

Note – When a shared address resource is disabled, the resource might still be able to respond to ping(1M) commands from some hosts. To ensure that a disabled shared address resource cannot respond to ping commands, you must bring the resource’s resource group to the UNMANAGED state.

Before You Begin

Ensure that you have the following information.

- The name of each resource to be disabled
- The name of the resource group to move into the UNMANAGED state

To determine the resource and resource group names that you need for this procedure, type:

```
clresourcegroup show -v
```

1 On any cluster member, become superuser or assume a role that provides solaris.cluster.admin RBAC authorization.

2 Disable all resources in the resource group.

```
clresource disable [-n node-zone-list] -g resource-group +
```

- `-n node-zone-list` Specifies a comma-separated, ordered list of nodes on which to disable the resource. If you specify a global-cluster non-voting node, the format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `node`.

This list is optional. If you omit this list, the resource is disabled on all nodes in its resource group's node list.

Note – If you specify more than one node with the `-n` option, you can specify only one resource.

3 Switch the resource group offline.

```
clresourcegroup offline resource-group
```

`resource-group` Specifies the name of the resource group to take offline.
4 Move the resource group into the UNMANAGED state.
   
   # clresourcegroup unmanage resource-group
   
   resource-group       Specifies the name of the resource group to move into the UNMANAGED state.
   
5 Verify that the resources are disabled and that the resource group is in the UNMANAGED state.
   
   # clresourcegroup show resource-group

Example 2–18 Disabling a Resource and Moving Its Resource Group Into the UNMANAGED State

This example shows how to disable the resource (resource-1) and then move the resource group (resource-group-1) into the UNMANAGED state.

   # clresource disable resource-1
   # clresourcegroup offline resource-group-1
   # clresourcegroup unmanage resource-group-1
   # clresourcegroup show resource-group-1

   === Resource Groups and Resources ===

   Resource Group:                              resource-group-1
   RG description:                             <NULL>
   RG mode:                                    Failover
   RG state:                                   Unmanaged
   Failback:                                   False
   Nodelist:                                   phys-schost-1 phys-schost-2

   --- Resources for Group resource-group-1 ---

   Resource:                                   resource-1
   Type:                                       SUNW.LogicalHostname:2
   Type version:                                2
   Group:                                      resource-group-1
   R description:                              <NULL>
   Resource project name:                     default
   Enabled(phys-schost-1):                     False
   Enabled(phys-schost-2):                     False
   Monitored(phys-schost-1):                   True
   Monitored(phys-schost-2):                   True

The following man pages:
  
  ■ clresource(1CL)
  ■ clresourcegroup(1CL)
Displaying Resource Type, Resource Group, and Resource Configuration Information

Before you perform administrative procedures on resources, resource groups, or resource types, view the current configuration settings for these objects.

**Note** – You can view configuration settings for resources, resource groups, and resource types from any cluster node.

You can also use the `clresourcetype`, `clresourcegroup`, and `clresource` commands to check status information about specific resource types, resource groups, and resources. For example, the following command specifies that you want to view specific information about the resource apache-1 only.

```
clresource show apache-1
```

For more information, see the following man pages:
- `clresourcetype(1CL)`
- `clresourcegroup(1CL)`
- `clresource(1CL)`

Changing Resource Type, Resource Group, and Resource Properties

Oracle Solaris Cluster defines standard properties for configuring resource types, resource groups, and resources. These standard properties are described in the following sections:
- “Resource Type Properties” on page 25
- “Resource Properties” on page 25
- “Resource Group Properties” on page 25

Resources also have extension properties, which are predefined for the data service that represents the resource. For a description of the extension properties of a data service, see the documentation for the data service.

To determine whether you can change a property, see the Tunable entry for the property in the description of the property.

The following procedures describe how to change properties for configuring resource types, resource groups, and resources.
\section*{How to Change Resource Type Properties}

\textbf{Note} – Perform this procedure from any cluster node.

\begin{itemize}
  \item The name of the resource type to change.
  \item The name of the resource type property to change. For resource types, you can change only certain properties. To determine whether you can change a property, see the Tunable entry for the property in the \texttt{rt\_properties(5)} man page.
\end{itemize}

\textbf{Note} – You cannot change the \texttt{Installed\_nodes} property explicitly. To change this property, specify the \texttt{-n installed\_node\_list} option of the \texttt{cl\_resource\_type} command.

\section*{Before You Begin}
Ensure that you have the following information.

1. On a cluster member, become superuser or assume a role that provides \texttt{solaris\_cluster\_modify} RBAC authorization.

2. Run the \texttt{cl\_resource\_type} command to determine the name of the resource type that you need for this procedure.
   \begin{verbatim}
   # clresource\_type show -v
   \end{verbatim}

3. Change the resource type property.
   For resource types, you can change only certain properties. To determine whether you can change a property, see the Tunable entry for the property in the \texttt{rt\_properties(5)} man page.
   \begin{verbatim}
   # clresource\_type set -n installed\_node\_list \[ -p property=new\_value \]
   \end{verbatim}
   \begin{itemize}
     \item \texttt{-n installed\_node\_list} specifies the names of nodes on which this resource type is installed.
     \item \texttt{-p property=new\_value} specifies the name of the standard property to change and the new value of the property.
   \end{itemize}
   You cannot change the \texttt{Installed\_nodes} property explicitly. To change this property, specify the \texttt{-n installed\_node\_list} option of the \texttt{cl\_resource\_type} command.

4. Verify that the resource type property has been changed.
   \begin{verbatim}
   # clresource\_type show resource\_type
   \end{verbatim}
Changing a Resource Type Property

This example shows how to change the SUNW.apache property to define that this resource type is installed on the global-cluster voting nodes of (phys-schost-1 and phys-schost-2).

```
clresourcetype set -n phys-schost-1,phys-schost-2 SUNW.apache
clresourcetype show SUNW.apache
```

Resource Type:	SUNW.apache:4
RT_description:	Apache Web Server on Sun Cluster
RT_version:	4
API_version:	2
RT_basedir:	/opt/SUNWscapc/bin
Single_instance:	False
Proxy:	False
Init_nodes:	All potential masters
Installed_nodes:	All
Failover:	False
Pkglist:	SUNWscapc
RT_system:	False

How to Change Resource Group Properties

This procedure explains how to change resource group properties. For a description of resource group properties, see the `rg_properties(5)` man page.

**Note** – Perform this procedure from any cluster node.

---

**Before You Begin**

Ensure that you have the following information.

- The name of the resource group to change
- The name of the resource group property to change and its new value

1. **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2. **Change the resource group property.**
   ```
 # clresourcegroup set -p property=new-value resource-group
 -p property Specifies the name of the property to change
 resource-group Specifies the name of the resource group
   ```

3. **Verify that the resource group property has been changed.**
   ```
 # clresourcegroup show resource-group
   ```
Example 2-20  Changing a Resource Group Property

This example shows how to change the Failback property for the resource group (resource-group-1).

```
clrresourcegroup set-p Failback=True resource-group-1
clrresourcegroup show resource-group-1
```

▼ How to Change Resource Properties

This procedure explains how to change extension properties and standard properties of a resource.

- For a description of standard resource properties, see the `r_properties(5)` man page.
- For a description of the extension properties of a resource, see the documentation for the resource's resource type.

---

**Note** - Perform this procedure from any cluster node.

### Before You Begin

Ensure that you have the following information.

- The name of the resource with the property to change
- The name of the property to change

1. **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify RBAC authorization`.**

2. **View the current resource property settings.**

   ```
 # clrresource show -v resource
   ```

3. **Change the resource property.**

   ```
 # clrresource set -p standard-property=new-value | -p "extension-property" {{node-specifier}}=new-value resource

 -p standard-property=new-value

 Specifies the name of the standard property to change.

 -p "extension-property"{{node-specifier}}=new-value

 Specifies the name of the extension property to change.
   ```

   *node-specifier* is an *optional* qualifier to the `-p` and `-x` options. This qualifier indicates that the extension property or properties on only the specified node or nodes are to be set when the resource is created. The specified extension properties on other nodes in the cluster are not set. If you do not include *node-specifier*, the specified extension properties on all nodes in
the cluster are set. You can specify a node name or a node identifier for node-specifier. Examples of the syntax of node-specifier include the following:

- `p "myprop{phys-schost-1}"`

The braces ({})) indicate that you are setting the specified extension property on only node phys-schost-1. For most shells, the double quotation marks (") are required.

You can also use the following syntax to set an extension property in two different
global-cluster non-voting nodes on two different global-cluster voting nodes:

- `x "myprop{phys-schost-1:zoneA, phys-schost-2:zoneB}"`

**Note** – The extension property that you specify with node-specifier must be declared in the RTR file as a per-node property.

**resource**

Specifies the name of the resource.

4 Verify that the resource property has been changed.

```
clresource show -v resource
```

**Example 2-21 Changing a Standard Resource Property**

This example shows how to change the system-defined Start_timeout property for the resource (resource-1).

```
clresource set -p start_timeout=30 resource-1
clresource show -v resource-1
```

**Example 2-22 Changing an Extension Resource Property**

This example shows how to change an extension property (Log_level) for the resource (resource-1).

```
clresource set -p Log_level=3 resource-1
clresource show -v resource-1
```

**▼ How to Change Resource Dependency Properties**

This procedure explains how to set a resource dependency property. The RGM supports
dependencies of one resource upon another. You can specify per-node resource dependencies,
which might differ for each per-node instance of a resource. Per-node instances are instances of
the resource that are online simultaneously (in a multi-mastered resource group) or disjointly
in time (in a failover resource group) on different nodes. For a description of resource properties, see the r_properties(5) man page.
You can use the `clsetup` utility or the CLI to set a resource dependency. The following procedure shows the steps for the `clsetup` utility.

1. **Assume the root role on any cluster node.**

2. **Start the `clsetup` utility.**
   ```
 # clsetup
   ```
   The `clsetup` main menu is displayed.

   **Note** – If you want to use the CLI to set a per-node dependency on a subset of cluster nodes, specify each per-node dependency in the following form: `resourcename@nodename`.

3. **Type the number for the option for resource groups and press Return.**
   The Resource Group menu is displayed.

4. **Type the number for the option for changing the properties of a resource and press Return.**
   The Change Properties of a Resource screen provides a description of this task.

5. **Type yes and press Return.**
   A menu of options for this task is displayed.

6. **Type the number for the option for changing standard resource properties and press Return.**
   A menu of options for this task is displayed.

7. **Type the number for the option for the resource whose properties you want to change and press Return.**
   Only those standard properties that can be changed while the resource is in this state are shown.
   You might have to disable the resource in order to change certain properties. Check the `r_properties(5)` man page for more information on setting standard resource properties.
   You can choose to change the `resource_dependencies`, `resource_dependencies_weak`, `resource_dependencies_restart`, or `resource_dependencies_offline_restart` properties.

8. **Press Return when the resource state is displayed.**

9. **Type the number for the option for the dependency property you want to change and press Return.**
   The current property name, type, description, and value are displayed.
Type the new values for the dependency list and press Return.

Specify each resource on which this resource is to depend using the following format:
resource-name, resource-name{qualifier}, or resource-name@node. See the text on the screen for more information.

For example, you can change the value of the resource_dependencies property from rs1 to rs1@mynode1, rs2@mynode2, rs3.

Type yes and press Return.

Verify that the dependency was set by pressing Return after the Command completed successfully message appears.

The new value you typed appears in the Current Setting column for the property.

Example 2–23 Changing Resource Dependency Properties

The following example shows how to use the clresource command to set a per-node resource dependency that is dependent on two different logical hostname resources. The example uses a scalable resource called gds-rs and sets the dependency of gds-rs on trancos-3-rs on ptrancos1 and trancos-4-rs on ptrancos2.

```
ptrancos1# clresource set -p resource_dependencies=trancos-3-rs@ptrancos1, \
 trancos-4-rs@ptrancos2 gds-rs
ptrancos1# clresource show -p resource_dependencies gds-rs
```

```
=== Resources ===
Resource: gds-rs
 Resource_dependencies: trancos-3-rs@ptrancos1 trancos-4-rs@ptrancos2

--- Standard and extension properties ---
```

Example 2–24 Viewing Resource Dependency Properties

The following example shows how to use the scha_resource_get command to retrieve a per-node resource dependency that is dependent on two different logical hostname resources. For this example, we continue to use the per-node resource dependencies settings from Example 2–23. This example further assumes that trancos-3-rs and trancos-4-rs are both network address resources of type LogicalHostname or SharedAddress.

From the ptrancos1 node:

```
ptrancos1(/root)$ scha_resource_get -O RESOURCE_DEPENDENCIES -R gds-rs
ptrancos-3-rs
ptrancos1(/root)$ scha_resource_get -O RESOURCE_DEPENDENCIES_NODE -R gds-rs ptrancos1 trancos-3-rs
ptrancos1(/root)$ scha_resource_get -O RESOURCE_DEPENDENCIES_NODE -R gds-rs ptrancos2 trancos-4-rs
```
How to Modify a Logical Hostname Resource or a Shared Address Resource

By default, logical hostname resources and shared address resources use name services for name resolution. You might configure a cluster to use a name service that is running on the same cluster. During the failover of a logical hostname resource or a shared address resource, a name service that is running on the cluster might also be failing over. If the logical hostname resource or the shared address resource uses the name service that is failing over, the resource fails to fail over.

**Note** – Configuring a cluster to use a name server that is running on the same cluster might impair the availability of other services on the cluster.

To prevent such a failure to fail over, modify the logical hostname resource or the shared address resource to bypass name services. To modify the resource to bypass name services, set the `CheckNameService` extension property of the resource to `false`. You can modify the `CheckNameService` property at any time.

**Note** – If your version of the resource type is earlier than 2, you must upgrade the resource type before you attempt to modify the resource. For more information, see “Upgrading a Preregistered Resource Type” on page 97.

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.
Clearing the STOP_FAILED Error Flag on Resources

2 Change the resource property.

```
clresource set -p CheckNameService=false resource
```

- `-p CheckNameService=false` Sets the CheckNameService extension property of the resource to false.
- `resource` Specifies the name of the logical hostname resource or shared address resource that you are modifying.

**Clearing the STOP_FAILED Error Flag on Resources**

When the `Failover_mode` resource property is set to NONE or SOFT, a failure of the resource's `STOP` method causes the following effects:

- The individual resource goes into the STOP_FAILED state.
- The resource group that contains the resource goes into the ERROR_STOPFAILED state.

In this situation, you cannot perform the following operations:

- Bringing online the resource group on any node
- Adding resources to the resource group
- Removing resources from the resource group
- Changing the properties of the resource group
- Changing the properties of resources in the resource group

**How to Clear the STOP_FAILED Error Flag on Resources**

**Note** – Perform this procedure from any cluster node.

**Before You Begin**

Ensure that you have the following information.

- The name of the node where the resource is STOP_FAILED
- The name of the resource and resource group that are in STOP_FAILED state

1 On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2 Identify which resources have gone into the STOP_FAILED state and on which nodes.

```
clresource status
```
3 Manually stop the resources and their monitors on the nodes on which they are in STOP_FAILED state.

   This step might require that you kill processes or run commands that are specific to resource types or other commands.

4 Clear the STOP_FAILED error flag on the resources.

   ```
 # clresource clear -f STOP_FAILED -n nodelist resource
   ```

   - `-f STOP_FAILED` Specifies the flag name.
   - `-n nodelist` Specifies a comma-separated list of the names of the nodes where the resource is in the STOP_FAILED state. The list may contain one node name or more than one node name.
   - `resource` Specifies the name of the resource.

5 Check the resource group state on the nodes where you cleared the STOP_FAILED flag in Step 4.

   ```
 # clresourcegroup status
   ```

   The resource group state should now be OFFLINE or ONLINE.

   The resource group remains in the ERROR_STOP_FAILED state in the following combination of circumstances:

   - The resource group was being switched offline when the STOP method failure occurred.
   - The resource that failed to stop had a dependency on other resources in the resource group.

6 If the resource group remains in the ERROR_STOP_FAILED state, correct the error as follows.

   a. Switch the resource group offline on the appropriate nodes.

      ```
 # clresourcegroup offline resource-group
      ```

      - `resource-group` Specifies the name of the resource group to switch offline.

   b. Switch the resource group to the ONLINE state.

See Also The following man pages:

   - `clresource(1CL)`
   - `clresourcegroup(1CL)`
Clearing the Start\_failed Resource State

The Start\_failed resource state indicates that a Start or Prenet\_start method failed or timed out on a resource, but its resource group came online anyway. The resource group comes online even though the resource has been placed in a faulted state and might not be providing service. This state can occur if the resource's Failover\_mode property is set to None or to another value that prevents the failover of the resource group.

Unlike the Stop\_failed resource state, the Start\_failed resource state does not prevent you or the Oracle Solaris Cluster software from performing actions on the resource group. You need only to execute a command that restarts the resource.

Use any one of the following procedures to clear this condition.

▼ How to Clear a Start\_failed Resource State by Switching Over a Resource Group

Note – Perform this procedure from any cluster node.

Before You Begin

Ensure that the following conditions are met:

- You have the following information:
  - The name of the resource group that you are switching over
  - The name of the node on which to switch over the resource group
  - The nodes where the resource group is to be brought online or to remain online are in the cluster.

1. On a cluster member, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2. Switch the resource group to the new node.

```
clresourcegroup switch [-n node-zone-list] resource-group
```

- `-n node-zone-list` Specifies a comma-separated, ordered list of nodes that can master this resource group. This resource group is switched offline on all of the other nodes. The format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global cluster-voting node, or to specify a node without global-cluster non-voting nodes, specify only node.
This list is optional. If you omit this list, the resource group is switched on all nodes in the resource group’s node list.

resource-group Specifies the name of the resource group to switch.

**Note** – If any resource group that you are switching declares a strong affinity for other resource groups, the attempt to switch might fail or be delegated. For more information, see “Distributing Online Resource Groups Among Cluster Nodes” on page 151.

3 Verify that the resource group has been switched to the new node and that the Start_failed resource state is cleared.

# clresourcegroup status

The output from this command indicates the state of the resource and the resource group that has been switched over.

**Example 2–25** Clearing a Start_failed Resource State by Switching Over a Resource Group

This example shows how to clear a Start_failed resource state that has occurred on the rscon resource in the resource-group-1 resource group. The command clears this condition by switching the resource group to the global cluster voting node phys-schost-2.

1. To verify that the resource is in the Start_failed resource state on phys-schost-1, the following command is run:

   # clresource status

   ```
 === Cluster Resources ===
 Resource Name Node Name Status Message
 --------------- ---------- ------- -------
 rscon phys-schost-1 Faulted Faulted
 phys-schost-2 Offline Offline
 hastor phys-schost-1 Online Online
 phys-schost-2 Offline Offline
   ```

2. To perform the switch, the following command is run:

   # clresourcegroup switch -n phys-schost-2 resource-group-1

3. To verify that the resource group is switched to be online on phys-schost-2 and that the Start_failed resource status is cleared, the following command is run:

   # clresource status

   ```
 === Cluster Resources ===
 Resource Name Node Name Status Message
 --------------- ---------- ------- -------
 rscon phys-schost-1 Offline Offline
   ```
Clearing the Start_failed Resource State

Ensure that the following conditions are met:

- You have the following information:
  - The name of the resource group that you are restarting
  - The name of the node on which to restart the resource group
  - The nodes where the resource group is to be brought online or to remain online are cluster nodes.

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Restart the resource group.
   ```
 # clresourcegroup restart -n node resource-group

 -n node Specifies the name of the node on which the resource group is to be restarted. This resource group is switched offline on all of the other nodes.
 resource-group Specifies the name of the resource group to restart.
   ```

3. Verify that the resource group has been restarted on the new node and that the Start_failed resource state is cleared.
   ```
 # clresourcegroup status

 The output from this command indicates the state of the resource and the resource group that has been restarted.
   ```
Clearing a Start_failed Resource State by Restarting a Resource Group

This example shows how to clear a Start_failed resource state that has occurred on the rscon resource in the resource-group-1 resource group. The command clears this condition by restarting the resource group on the global-cluster voting node phys-schost-1.

1. To verify that the resource is in the Start_failed resource state on phys-schost-1, the following command is run:

```
clresource status
=== Cluster Resources ===
Resource Name Node Name Status Message
---------- ---------- ------- -------
rscon phys-schost-1 Faulted Faulted
rscon phys-schost-2 Offline Offline
hastor phys-schost-1 Online Online
hastor phys-schost-2 Offline Offline
```

2. To restart the resource, the following command is run:

```
clresourcegroup restart -n phys-schost-1 –g resource-group-1
```

3. To verify that the resource group is restarted on phys-schost-1 and that the Start_failed resource status is cleared, the following command is run:

```
clresource status
=== Cluster Resources ===
Resource Name Node Name Status Message
---------- ---------- ------- -------
rscon phys-schost-1 Offline Offline
rscon phys-schost-2 Online Online
hastor phys-schost-1 Online Online
hastor phys-schost-2 Offline Offline
```

See Also The clresourcegroup(1CL) man page.

How to Clear a Start_failed Resource State by Disabling and Enabling a Resource

Note – Perform this procedure from any cluster node.

Before You Begin Ensure that you have the name of the resource that you are disabling and enabling.
1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Disable and then enable the resource.
   ```sh
 # clresource disable resource
 # clresource enable resource
 resource Specifies the name of the resource.
   ```

3. Verify that the resource has been disabled and enabled and that the `Start_failed` resource state is cleared.
   ```sh
 # clresource status
   ```
   The output from this command indicates the state of the resource that has been disabled and re-enabled.

**Example 2-27**  Clearing a `Start_failed` Resource State by Disabling and Enabling a Resource

This example shows how to clear a `Start_failed` resource state that has occurred on the rscon resource by disabling and enabling the resource.

1. To verify that the resource is in the `Start_failed` resource state, the following command is run:
   ```sh
 # clresource status
   ```

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>rscon</td>
<td>phys-schost-1</td>
<td>Faulted</td>
<td>Faulted</td>
</tr>
<tr>
<td></td>
<td>phys-schost-2</td>
<td>Offline</td>
<td>Offline</td>
</tr>
<tr>
<td>hastor</td>
<td>phys-schost-1</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td></td>
<td>phys-schost-2</td>
<td>Offline</td>
<td>Offline</td>
</tr>
</tbody>
</table>

2. To disable and re-enable the resource, the following commands are run:
   ```sh
 # clresource disable rscon
 # clresource enable rscon
   ```

3. To verify that the resource is re-enabled and that the `Start_failed` resource status is cleared, the following command is run:
   ```sh
 # clresource status
   ```

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>rscon</td>
<td>phys-schost-1</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td></td>
<td>phys-schost-2</td>
<td>Offline</td>
<td>Offline</td>
</tr>
</tbody>
</table>
The purpose of these enhancements is to enable you to modify logical hostname resources and shared address resources to bypass name services for name resolution.

Upgrade these resource types if all conditions in the following list apply:

- You are upgrading from an earlier version of Oracle Solaris Cluster.
- You need to use the new features of the resource types.

For general instructions that explain how to upgrade a resource type, see “Upgrading a Resource Type” on page 35. The information that you need to complete the upgrade of the preregistered resource types is provided in the subsections that follow.

### Information for Registering the New Resource Type Version

To determine the version of the resource type that is registered, use one command from the following list:

- `clresourcetype list`
- `clresourcetype list -v`

**EXAMPLE 2-28 Registering a New Version of the SUNW.LogicalHostname Resource Type**

This example shows the command for registering version 4 of the SUNW.LogicalHostname resource type during an upgrade.

```
clresourcetype register SUNW.LogicalHostname:4
```
Information for Migrating Existing Instances of the Resource Type

The information that you need to migrate an instance of a preregistered resource type is as follows:

- You can perform the migration at any time.
- If you need to use the new features of the preregistered resource type, the required value of the `Type_version` property is 2.
- If you are modifying the resource to bypass name services, set the `CheckNameService` extension property of the resource to false.

**EXAMPLE 2-29**  Migrating a Logical Hostname Resource

This example shows the command for migrating the logical hostname resource `lhostrs`. As a result of the migration, the resource is modified to bypass name services for name resolution.

```
c resource set -p CheckNameService=false -p Type_version=2 lhostrs
```

Reregistering Preregistered Resource Types After Inadvertent Deletion

The resource types `SUNW.LogicalHostname` and `SUNW.SharedAddress` are preregistered. All of the logical hostname and shared address resources use these resource types. You never need to register these two resource types, but you might inadvertently delete them. If you have deleted resource types inadvertently, use the following procedure to reregister them.

**Note** – If you are upgrading a preregistered resource type, follow the instructions in "Upgrading a Preregistered Resource Type" on page 97 to register the new resource type version.

**Note** – Perform this procedure from any cluster node.
How to Reregister Preregistered Resource Types After Inadvertent Deletion

- Reregister the resource type.
  
  ```
 # clresource type register SUNW.resource-type
 resource-type Specifies the resource type to add (reregister). The resource type can be either SUNW.LogicalHostname or SUNW.SharedAddress.
  ```

**Example 2–30** Reregistering a Preregistered Resource Type After Inadvertent Deletion

This example shows how to reregister the SUNW.LogicalHostname resource type.

```
clresource type register SUNW.LogicalHostname
```

**See Also** The [clresource type(1CL)](man) man page.

Adding or Removing a Node to or From a Resource Group

The procedures in this section enable you to perform the following tasks.

- Configuring a cluster node to be an additional master of a resource group
- Removing a node from a resource group

The procedures are slightly different, depending on whether you plan to add or remove the node to or from a failover or scalable resource group.

Failover resource groups contain network resources that both failover and scalable services use. Each IP subnetwork connected to the cluster has its own network resource that is specified and included in a failover resource group. The network resource is either a logical hostname or a shared address resource. Each network resource includes a list of IPMP groups that it uses. For failover resource groups, you must update the complete list of IPMP groups for each network resource that the resource group includes (the `netiflist` resource property).

The procedure for scalable resource groups involves the following steps:

1. Repeating the procedure for failover groups that contain the network resources that the scalable resource uses
2. Changing the scalable group to be mastered on the new set of hosts

For more information, see the [clresource group(1CL)](man) man page.
Adding or Removing a Node to or From a Resource Group

Note – Run either procedure from any cluster node.

Adding a Node to a Resource Group

The procedure to follow to add a node to a resource group depends on whether the resource group is a scalable resource group or a failover resource group. For detailed instructions, see the following sections:

- “How to Add a Node to a Scalable Resource Group” on page 100
- “How to Add a Node to a Failover Resource Group” on page 101

You must supply the following information to complete the procedure.

- The names and node IDs of all of the cluster nodes and names of zones
- The names of the resource groups to which you are adding the node
- The name of the IPMP group that is to host the network resources that are used by the resource group on all of the nodes

Also, be sure to verify that the new node is already a cluster member.

▼ How to Add a Node to a Scalable Resource Group

1 For each network resource that a scalable resource in the resource group uses, make the resource group where the network resource is located run on the new node.

See Step 1 through Step 5 in the following procedure for details.

2 Add the new node to the list of nodes that can master the scalable resource group (the node\list resource group property).

This step overwrites the previous value of node\list, and therefore you must include all of the nodes that can master the resource group here.

```
clresourcegroup set [-n node-zone-list] resource-group
```

```
-n node-zone-list Specifies a comma-separated, ordered list of nodes that can master this resource group. This resource group is switched offline on all of the other nodes. The format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node or to specify a node without global-cluster non-voting nodes, specify only node.
```

This list is optional. If you omit this list, the Node\list property is set to all nodes in the cluster.
resource-group  Specifies the name of the resource group to which the node is being added.

3  (Optional) Update the scalable resource's Load_balancing_weights property to assign a weight to the node that you are adding to the resource group. Otherwise, the weight defaults to 1. See the clresourcegroup(1CL) man page for more information.

▼ How to Add a Node to a Failover Resource Group

1  Display the current node list and the current list of IPMP groups that are configured for each resource in the resource group.

```
clresourcegroup show -v resource-group | grep -i nodelist
clresourcegroup show -v resource-group | grep -i netiflist
```

**Note** - The output of the command line for nodelist and netiflist identifies the nodes by node name. To identify node IDs, run the command clnode show -v | grep -i node-id.

2  Update netiflist for the network resources that the node addition affects.
This step overwrites the previous value of netiflist, and therefore you must include all the IPMP groups here.

```
clresource set -p netiflist=netiflist network-resource
```

- `-p netiflist=netiflist` Specifies a comma-separated list that identifies the IPMP groups that are on each node. Each element in netiflist must be in the form of `netif@node`. netif can be given as an IPMP group name, such as `sc_ipmp0`. The node can be identified by the node name or node ID, such as `sc_ipmp0@1` or `sc_ipmp@phys-schost-1`.

- `network-resource` Specifies the name of the network resource (logical hostname or shared address) that is being hosted on the netiflist entries.

3  If the HAStoragePlus AffinityOn extension property equals True, add the node to the appropriate disk set or device group.

- If you are using Solaris Volume Manager, use the metaset command.

```
metaset -s disk-set-name -a -h node-name
```

- `-s disk-set-name` Specifies the name of the disk set on which the metaset command is to work
- `-a` Adds a drive or host to the specified disk set
- `-h node-name` Specifies the node to be added to the disk set
4 Update the node list to include all of the nodes that can now master this resource group.

This step overwrites the previous value of node list, and therefore you must include all of the nodes that can master the resource group here.

```
clresourcegroup set [-n node-zone-list] resource-group
```

- `n node-zone-list` Specifies a comma-separated, ordered list of global-cluster non-voting nodes that can master this resource group. This resource group is switched offline on all the other nodes. The format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `node`.

This list is optional. If you omit this list, the Node list property is set to all nodes in the cluster.

- `resource-group` Specifies the name of the resource group to which the node is being added.

5 Verify the updated information.

```
clresourcegroup show -v resource-group | grep -i nodelist
clresourcegroup show -v resource-group | grep -i netiflist
```

Example 2-31 Adding a Node to a Resource Group

This example shows how to add a global-cluster voting node (`phys-schost-2`) to a resource group (`resource-group-1`) that contains a logical host name resource (`schost-2`).

```
clresourcegroup show -v resource-group-1 | grep -i nodelist
(NodeList: phys-schost-1 phys-schost-3)
clresourcegroup show -v resource-group-1 | grep -i netiflist
(Res property name: NetIfList
 Res property class: extension
 List of IPMP interfaces on each node
 Res property type: stringarray
 Res property value: sc_ipmp0@1 sc_ipmp0@3)

(Only nodes 1 and 3 have been assigned IPMP groups. You must add an IPMP group for node 2.)
```

```
clresource set -p netiflist=sc_ipmp0@1,sc_ipmp0@2,sc_ipmp0@3 schost-2
metaset -s red -a -h phys-schost-2
clresourcegroup set -n phys-schost-1,phys-schost-2,phys-schost-3 resource-group-1
clresourcegroup show -v resource-group-1 | grep -i nodelist
(NodeList: phys-schost-1 phys-schost-2 phys-schost-3)
clresourcegroup show -v resource-group-1 | grep -i netiflist
(Res property value: sc_ipmp0@1 sc_ipmp0@2 sc_ipmp0@3)
```
Removing a Node From a Resource Group

The procedure to follow to remove a node from a resource group depends on whether the resource group is a scalable resource group or a failover resource group. For detailed instructions, see the following sections:

- “How to Remove a Node From a Scalable Resource Group” on page 104
- “How to Remove a Node From a Failover Resource Group” on page 105
- “How to Remove a Node From a Failover Resource Group That Contains Shared Address Resources” on page 106

**Note** – If the node that you want to remove appears in a per-node resource dependency, you must remove that node from the per-node dependency before you can remove it from the resource group. For more information, see “How to Change Resource Dependency Properties” on page 86.

To complete the procedure, you must supply the following information.

- Node names and node IDs of all of the cluster nodes
  
  ```
 # clnode show -v | grep -i "Node ID"
  ```

- The name of the resource group or the names of the resource groups from which you plan to remove the node
  
  ```
 # clresourcegroup show | grep "Nodelist"
  ```

- Names of the IPMP groups that are to host the network resources that are used by the resource groups on all of the nodes
  
  ```
 # clresourcegroup show -v | grep "NetIfList.*value"
  ```

Additionally, be sure to verify that the resource group is **not mastered** on the node that you are removing. If the resource group is **mastered** on the node that you are removing, run the `clresourcegroup` command to switch the resource group offline from that node. The following `clresourcegroup` command brings the resource group offline from a given node, provided that `new-masters` does not contain that node.

```
clresourcegroup switch -n new-masters resource-group
```

- `-n new-masters` Specifies the nodes that is now to master the resource group.

- `resource-group` Specifies the name of the resource group that you are switching. This resource group is mastered on the node that you are removing.

For more information, see the `clresourcegroup(1CL)` man page.
Caution – If you plan to remove a node from all the resource groups, and you use a scalable services configuration, first remove the node from the scalable resource groups. Then remove the node from the failover groups.

How to Remove a Node From a Scalable Resource Group

A scalable service is configured as two resource groups, as follows.

- One resource group is a scalable group that contains the scalable service resource.
- One resource group is a failover group that contains the shared address resources that the scalable service resource uses.

Additionally, the RG_dependencies property of the scalable resource group is set to configure the scalable group with a dependency on the failover resource group. For information about this property, see the rg_properties(5) man page.

For details about scalable service configuration, see Oracle Solaris Cluster Concepts Guide.

Removing a node from the scalable resource group causes the scalable service to no longer be brought online on that node. To remove a node from the scalable resource group, perform the following steps.

1. Remove the node from the list of nodes that can master the scalable resource group (the nodeList resource group property).

   ```
 # clresourcegroup set [-n node-zone-list] scalable-resource-group
 -n node-zone-list Specifies a comma-separated, ordered list of nodes that can master this resource group. This resource group is switched offline on all the other nodes. The format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only node.

 This list is optional. If you omit this list, the NodeList property is set to all nodes in the cluster.

 scalable-resource-group Specifies the name of the resource group from which the node is being removed.
   ```

2. (Optional) Remove the node from the failover resource group that contains the shared address resource.

   For details, see “How to Remove a Node From a Failover Resource Group That Contains Shared Address Resources” on page 106.
3  (Optional) Update the Load_balancing_weights property of the scalable resource to remove the weight of the node that you are removing from the resource group.

See Also  The clresourcegroup(1CL) man page.

▼ How to Remove a Node From a Failover Resource Group

Perform the following steps to remove a node from a failover resource group.

Caution – If you plan to remove a node from all of the resource groups, and you use a scalable services configuration, first remove the node from the scalable resource groups. Then use this procedure to remove the node from the failover groups.

Note – If the failover resource group contains shared address resources that scalable services use, see "How to Remove a Node From a Failover Resource Group That Contains Shared Address Resources" on page 106.

1  Update the node list to include all of the nodes that can now master this resource group.

This step removes the node and overwrites the previous value of the node list. Be sure to include all of the nodes that can master the resource group here.

# clresourcegroup set [-n node-zone-list] failover-resource-group

- n node-zone-list  Specifies a comma-separated, ordered list of nodes that can master this resource group. This resource group is switched offline on all the other nodes. The format of each entry in the list is node:zone. In this format, node specifies the node name and zone specifies the name of a global-cluster non-voting node. To specify the global cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only node.

This list is optional. If you omit this list, the NodeList property is set to all nodes in the cluster.

failover-resource-group  Specifies the name of the resource group from which the node is being removed.

2  Display the current list of IPMP groups that are configured for each resource in the resource group.

# clresourcegroup show -v failover-resource-group | grep -i netiflist
3 **Update netiflist for network resources that the removal of the node affects.**

This step overwrites the previous value of netiflist. Be sure to include all of the IPMP groups here.

```
clresource set -p netiflist=netiflist network-resource
```

**Note** – The output of the preceding command line identifies the nodes by node name. Run the command line `clnode show -v | grep -i "Node ID"` to find the node ID.

- `p netiflist=netiflist` Specifies a comma-separated list that identifies the IPMP groups that are on each node. Each element in netiflist must be in the form of netif@node. netif can be given as an IPMP group name, such as sc_ipmp0. The node can be identified by the node name or node ID, such as sc_ipmp0@1 or sc_ipmp@phys-schost-1.

- `network-resource` Specifies the name of the network resource that is hosted on the netiflist entries.

**Note** – Oracle Solaris Cluster does not support the use of the adapter name for netif.

4 **Verify the updated information.**

```
clresourcegroup show -v failover-resource-group | grep -i nodelist
clresourcegroup show -v failover-resource-group | grep -i netiflist
```

**How to Remove a Node From a Failover Resource Group That Contains Shared Address Resources**

In a failover resource group that contains shared address resources that scalable services use, a node can appear in the following locations.

- The node list of the failover resource group
- The auxnode list of the shared address resource

To remove the node from the node list of the failover resource group, follow the procedure "How to Remove a Node From a Failover Resource Group" on page 105.

To modify the auxnode list of the shared address resource, you must remove and recreate the shared address resource.

If you remove the node from the failover group’s node list, you can continue to use the shared address resource on that node to provide scalable services. To continue to use the shared address resource, you must add the node to the auxnode list of the shared address resource. To add the node to the auxnode list, perform the following steps.
Note – You can also use the following procedure to remove the node from the auxnodelist of the shared address resource. To remove the node from the auxnodelist, you must delete and recreate the shared address resource.

1 Switch the scalable service resource offline.

2 Remove the shared address resource from the failover resource group.

3 Create the shared address resource.

   Add the node ID or node name of the node that you removed from the failover resource group to the auxnodelist.

   ```
 # clressharedaddress create -g failover-resource-group -X new-auxnodelist shared-address
   ```

   *failover-resource-group* The name of the failover resource group that used to contain the shared address resource.

   *new-auxnodelist* The new, modified auxnodelist with the desired node added or removed.

   *shared-address* The name of the shared address.

Example – Removing a Node From a Resource Group

This example shows how to remove a node (phys-schost-3) from a resource group (resource-group-1) that contains a logical hostname resource (schost-1).

````
clresourcegroup show -v resource-group-1 | grep -i nodelist
Nodelist: phys-schost-1 phys-schost-2 phys-schost-3

clresourcegroup set -n phys-schost-1,phys-schost-2 resource-group-1

clresourcegroup show -v resource-group-1 | grep -i netiflist
(Res property name: NetIfList
 Res property class: extension
 (List of IPMP interfaces on each node
 (Res property type: stringarray
 Res property value: sc_ipmp0@1 sc_ipmp0@2 sc_ipmp0@3
 (sc_ipmp0@3 is the IPMP group to be removed.)

clresource set -p netiflist=sc_ipmp0@1,sc_ipmp0@2 schost-1

clresourcegroup show -v resource-group-1 | grep -i nodelist
Nodelist: phys-schost-1 phys-schost-2

clresourcegroup show -v resource-group-1 | grep -i netiflist
Res property value: sc_ipmp0@1 sc_ipmp0@2
```

Adding or Removing a Node to or From a Resource Group
Migrating the Application From a Global-Cluster Voting Node to a Global-Cluster Non-Voting Node

You can migrate the application resources from a global-cluster voting node to a global-cluster non-voting node.

**Note** - The data services you want to migrate should be scalable and also be supported in global-cluster non-voting nodes.

▼ How to Migrate the Application From a Global-Cluster Voting Node to a Global-Cluster Non-Voting Node

The procedure assumes a three node cluster with a global-cluster non-voting node created on each of the three nodes. The configuration directory that is made highly available using the HAStoragePlus resource should also be accessible from the global-cluster non-voting nodes.

1. **Create the failover resource group with the global-cluster voting node that holds the shared address that the scalable resource group is to use.**

   ```bash
 # clresourcegroup create -n node1, node2, node3 sa-resource-group
 sa-resource-group
   ```

   Specifies your choice of the name of the failover resource group to add. This name must begin with an ASCII character.

2. **Add the shared address resource to the failover resource group.**

   ```bash
 # clessaddress create -g sa-resource-group -h hostnamelist, ...
 [-X auxnodelist] -N netiflist network-resource
   ```

   - **-g sa-resource-group** Specifies the resource group name. In the node list of a shared address resource, do not specify more than one global-cluster non-voting node on the same global-cluster voting node. Specify the same list of `nodename:zonename` pairs as the node list of the scalable resource group.

   - **-h hostnamelist, ...** Specifies a comma-separated list of shared address hostnames.

   - **-X auxnodelist** Specifies a comma-separated list of node names or IDs or zones that identify the cluster nodes that can host the shared address but never serve as primary if failover occurs. These nodes are mutually exclusive, with the nodes identified as potential masters in the resource group’s node list. If no auxiliary node list is explicitly specified, the list defaults to the list of all cluster node names that are not included in the node list of the resource group that contains the shared address resource.
To ensure that a scalable service runs in all global-cluster non-voting nodes that were created to master the service, the complete list of nodes must be included in the node list of the shared address resource group or the auxnodelist of the shared address resource. If all the global-cluster non-voting nodes are listed in the node list, the auxnodelist can be omitted.

- **netiflist**
  Specifies an optional, comma-separated list that identifies the IPMP groups that are on each node. Each element in `netiflist` must be in the form of `netif@node`. `netif` can be given as an IPMP group name, such as `sc_ipmp0`. The node can be identified by the node name or node ID, such as `sc_ipmp0@1` or `sc_ipmp@phys-schost-1`.

Note – Oracle Solaris Cluster does not support the use of the adapter name for `netif`.

- **network-resource**
  Specifies an optional resource name of your choice.

3 Create the scalable resource group.

```
clrscruage gr create -S [-p Maximum_primaries=m] [-p Desired_primaries=n] \
 -n node1,node2,node3 resource-group-1
```

- `-S`
  Specifies that the resource group is to be multi-mastered. If the `-p Maximum_primaries` and `-p Desired_primaries` options are omitted, both properties are set to the number of nodes in the resource group’s node list.

- `-p Maximum_primaries=m`
  Specifies the maximum number of active primaries for this resource group.

- `-p Desired_primaries=n`
  Specifies the number of active primaries on which the resource group should attempt to start.

- `resource-group-1`
  Specifies your choice of the name of the scalable resource group to add. This name must begin with an ASCII character.

4 Create the HASstoragePlus resource `hasstorageplus-1`, and define the filesystem mount points.

```
clresource create -g resource-group-1 -t SUNW.HASstoragePlus \
 -p FilesystemMountPoints=/global/resource-group-1 hasstorageplus-1
```

The resource is created in the enabled state.
5 Register the resource type for the application.

```
clresourcetype register resource-type
```

*resource-type* Specifies name of the resource type to add. See the release notes for your release of Oracle Solaris Cluster to determine the predefined name to supply.

6 Add the application resource to *resource-group-1*, and set the dependency to *hastorageplus-1*.

```
clresource create -g resource-group-1 -t SUNW.application
[p "extension-property\(\text{(node-specifier)}\)\{value, . . .\} -p Scalable=True \(\text{-p Resource_dependencies=network-resource -p Port_list=port-number/protocol -p Resource_dependencies_offline_restart=hastorageplus-1 resource}\)
```

7 Bring the failover resource group online in a managed state.

```
clresourcegroup online -M sa-resource-group
```

8 Bring the scalable resource group online in a managed state on all the nodes.

```
clresourcegroup online -M resource-group-1
```

9 Install and boot *zone1* on each of the nodes, *node1, node2, node3*.

10 Bring the application resource group offline on two nodes (*node1, node2*).

**Note** – Ensure the shared address is online on *node3*.

```
clresourcegroup switch -n node3 resource-group-1
```

*resource-group-1* Specifies the name of the resource group to switch.

11 Update the *nodelist* property of the failover resource group to include the global-cluster non-voting node of the corresponding nodes removed from the node list.

```
clresourcegroup set -n node1:zone1,node2:zone1,node3 sa-resource-group
```

12 Update the *nodelist* property of the application resource group to include the global-cluster non-voting node of the corresponding nodes removed from node list.

```
clresourcegroup set node1:zone1,node2:zone1,node3 resource-group-1
```

13 Bring the failover resource group and application resource group online only on the newly added zones.

**Note** – The failover resource group will be online only on *node1:zone1* and application resource group will be online only on *node1:zone1 and node2:zone1*.
Synchronizing the Startups Between Resource Groups and Device Groups

After a cluster boots or services fail over to another node, global devices and local and cluster file systems might require time to become available. However, a data service can run its START method before global devices and local and cluster file systems come online. If the data service depends on global devices or local and cluster file systems that are not yet online, the START method times out. In this situation, you must reset the state of the resource groups that the data service uses and restart the data service manually.

To avoid these additional administrative tasks, use the HAStoragePlus resource type. Add an instance of HAStoragePlus to all resource groups whose data service resources depend on global devices or local and cluster file systems. Instances of these resource types perform the following operations:

- Forcing the START method of the other resources in the same resource group to wait until global devices and local and cluster file systems become available.

If an application resource is configured on top of an HAStoragePlus resource, the application resource must define the offline restart dependency on the underlying HAStoragePlus resource. This ensures that the application resource comes online after the dependent HAStoragePlus resource comes online, and goes offline before the HAStoragePlus resource goes offline.

The following command creates an offline restart dependency from an application resource to a HASP resource:

```
clrs set -p Resource_dependencies_offline_restart=hasp_rs application_rs
```
To create an HAStoragePlus resource, see “How to Set Up the HAStoragePlus Resource Type for New Resources” on page 115.

**Managed Entity Monitoring by HAStoragePlus**

All entities that are managed by the HAStoragePlus resource type are monitored. The SUNW.HAStoragePlus resource type provides a fault monitor to monitor the health of the entities managed by the HASP resource, including global devices, file systems, and ZFS storage pools. The fault monitor runs fault probes on a regular basis. If one of the entities becomes unavailable, the resource is restarted or a failover to another node is performed. If more than one entity is monitored, the fault monitor probes them all at the same time. Ensure that all configuration changes to the managed entities are completed before you enable monitoring.

**Note** – Version 9 of the HAStoragePlus resource fault monitor probes the devices and file systems it manages by reading and writing to the file systems. If a read operation is blocked by any software on the I/O stack and the HAStoragePlus resource is required to be online, the user must disable the fault monitor. For example, you must unmonitor the HAStoragePlus resource managing the Sun StorageTek Availability Suite Remote Replication volumes because Sun StorageTek Availability Suite blocks reading from any bitmap volume or any data volume in the NEED SYNC state. The HAStoragePlus resource managing the Sun StorageTek Availability Suite volumes must be online at all times.

For more information on the properties that enable monitoring for managed entities, see the SUNW.HAStoragePlus(5) man page.

For instructions on enabling and disabling monitoring for managed entities, see “How to Enable a Resource Fault Monitor” on page 73.

Depending on the type of managed entity, the fault monitor probes the target by reading or writing to it. If more than one entity is monitored, the fault monitor probes them all at the same time.

**TABLE 2-2** What the Fault Monitor Verifies

<table>
<thead>
<tr>
<th>Monitored Entity</th>
<th>What the Fault Monitor Verifies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global device</td>
<td>• The device group is online or degraded.</td>
</tr>
<tr>
<td></td>
<td>• The device is readable.</td>
</tr>
</tbody>
</table>

Synchronizing the Startups Between Resource Groups and Device Groups
### TABLE 2–2  What the Fault Monitor Verifies  
*(Continued)*

<table>
<thead>
<tr>
<th>Monitored Entity</th>
<th>What the Fault Monitor Verifies</th>
</tr>
</thead>
</table>
| Raw device group                                      | • The device group is online or degraded.  
• For each device of the device group, its path (/dev/global/rdsk/device) is available.  
• Partitions of every device are readable.                                                                                                               |
| Solaris Volume Manager device group                   | • The device group is online or degraded.  
• The path of the metaset (/dev/md/metaset) is valid.  
• The Solaris Volume Manager reported status from the primary of the device group:  
  • The unmirrored metadevice is not in any of the following error states: Needs Maintenance, Last Erred, or Unavailable.  
  • At least one submirror of a mirror is not in an error state. An error with some, but not all submirrors, is treated as partial error.  
  • The unmirrored metadevice is readable from the primary.  
  • Some submirrors of a mirror are readable. An error with some, but not all, submirrors is treated as partial error.                                                                 |
| File systems (including UFS, QFS and PxFS)           | • The file system is mounted.  
• Every device under the file system is readable.  
• The file system is readable, if the IOOption property is set to ReadOnly.  
• The file system is writable, if the IOOption property is set to ReadWrite.  
• If the file system is mounted read-only but the IOOption property is set to ReadWrite, the fault monitor issues a warning and then tried to read it (rather than write to it).  
• To avoid having the HAStoragePlus resource go offline when a file system hits its quota, set the IOOption to ReadOnly. The ReadOnly option ensures that the fault monitor will not attempt to write to the file system. |
### TABLE 2-2: What the Fault Monitor Verifies (Continued)

<table>
<thead>
<tr>
<th>Monitored Entity</th>
<th>What the Fault Monitor Verifies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFS storage pool</td>
<td>■ The pool status is OK or Degraded.</td>
</tr>
<tr>
<td></td>
<td>■ Each non-legacy file system is mounted.</td>
</tr>
<tr>
<td></td>
<td>■ Each non-legacy file system is readable, if the IOOption property is set to ReadOnly.</td>
</tr>
<tr>
<td></td>
<td>■ Each non-legacy file system is writable, if the IOOption property is set to ReadWrite.</td>
</tr>
<tr>
<td></td>
<td>■ If a non-legacy file system is mounted read-only but the IOOption property is set to ReadWrite, the fault monitor issues a warning and then tries to read it (rather than write to it).</td>
</tr>
<tr>
<td></td>
<td>■ To avoid having the HAStoragePlus resource go offline when a file system hits its quota, set the IOOption to ReadOnly. The ReadOnly option ensures that the fault monitor will not attempt to write to the file system.</td>
</tr>
</tbody>
</table>

**Note**: When all connections to a top-level ZFS storage device are lost, queries about the ZFS storage pool or associated file system will hang. To prevent the fault monitor from hanging, you must set the fail_mode property of the ZFS storage pool to panic.

For instructions on enabling a resource fault monitor, see "How to Enable a Resource Fault Monitor" on page 73.

**Troubleshooting Monitoring for Managed Entities**

If monitoring is not enabled on the managed entities, perform the following troubleshooting steps:

1. Ensure that the hastorageplus_probe process is running.
2. Look for error messages on the console.
3. Enable debug messages to the syslog file.

```bash
mkdir -p /var/cluster/rgm/rt/SUNW.HAStoragePlus:9
echo 9 > /var/cluster/rgm/rt/SUNW.HAStoragePlus:9/loglevel
```

You should also check the `/etc/syslog.conf` file to ensure that messages with the daemon.debug facility level are logged to the `/var/adm/messages` file. Add the daemon.debug entry to the `/var/adm/messages` action if it is not already present.
Additional Administrative Tasks to Configure HAStragePlus Resources for a Zone Cluster

When you configure HAStragePlus resources for a zone cluster, you need to perform the following additional tasks before performing the steps for global cluster:

- While configuring file systems like UFS or standalone QFS in file system mount points, the file systems need to be configured to the zone cluster. For more information about configuring a file system to a zone cluster, see “How to Add a Highly Available Local File System to a Zone Cluster” in Oracle Solaris Cluster Software Installation Guide.
- While configuring global devices in global device paths, the devices need to be configured to the zone cluster. For more information about configuring global devices to a zone cluster, see “Adding Storage Devices to a Zone Cluster” in Oracle Solaris Cluster Software Installation Guide.
- While configuring the ZFS file systems using Zpools, the ZFS pool needs to be configured to the zone cluster. For more information about configuring a ZFS file system to a zone cluster, see “How to Add a ZFS Storage Pool to a Zone Cluster” in Oracle Solaris Cluster Software Installation Guide.

Note – The cluster file system is not supported for a zone cluster.

▼ How to Set Up the HAStragePlus Resource Type for New Resources

In the following example, the resource group resource-group-1 contains the following data services.

- HA for Oracle iPlanet Web Server (formerly Sun Java System Web Server), which depends on /global/resource-group-1
- Oracle, which depends on /dev/global/dsk/d5s2
- NFS, which depends on dsk/d6

Note – To create an HAStragePlus resource with Solaris ZFS (Zettabyte File System) as a highly available local file system see “How to Set Up the HAStragePlus Resource Type to Make a Local Solaris ZFS Highly Available” on page 128 section.

To create an HAStragePlus resource hasstorageplus-1 for new resources in resource-group-1, read “Synchronizing the Startups Between Resource Groups and Device Groups” on page 111 and then perform the following steps.
To create an HAStoragePlus resource, see "Enabling Highly Available Local File Systems" on page 121.

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` and `solaris.cluster.admin` RBAC authorizations.

2. Create the resource group `resource-group-1`.
   ```
 # cresourcegroup create resource-group-1
   ```

3. Determine whether the resource type is registered.
   The following command prints a list of registered resource types.
   ```
 # cresourcecype show | egrep Type
   ```

4. If you need to, register the resource type.
   ```
 # cresourcecype register SUNW.HAStoragePlus
   ```

5. Create the HAStoragePlus resource `hastorageplus-1`, and define the filesystem mount points and global device paths.
   ```
 # cresource create -g resource-group-1 -t SUNW.HAStoragePlus \
 -p GlobalDevicePaths=/dev/global/dsk/d5s2,dsk/d6 \
 -p FilesystemMountPoints=/global/resource-group-1 hastorageplus-1
   ```
   GlobalDevicePaths can contain the following values.
   - Global device group names, such as `nfs-dg`, `dsk/d5`
   - Paths to global devices, such as `/dev/global/dsk/d1s2`, `/dev/md/nfsdg/dsk/d10`
   FilesystemMountPoints can contain the following values.
   - Mount points of local or cluster file systems, such as `/local-fs/nfs`, `/global/nfs`

---

**Note** – HAStoragePlus has a `Zpools` extension property that is used to configure ZFS file system storage pools and a `ZpoolsSearchDir` extension property that is used to specify the location to search for the devices of ZFS file system storage pools. The default value for the `ZpoolsSearchDir` extension property is `/dev/dsk`. The `ZpoolsSearchDir` extension property is similar to the `-d` option of the `zpool(1M)` command.

The resource is created in the enabled state.

6. Add the resources (Oracle iPlanet Web Server, Oracle, and NFS) to `resource-group-1`, and set their dependency to `hastorageplus-1`.
   For example, for Oracle iPlanet Web Server, run the following command.
   ```
 # clresource create -g resource-group-1 -t SUNW.iws \
 -p Confdir_list=/global/iws/schost-1 -p Scalable=False \
 -p Resource_dependencies=schost-1 -p Port_list=80/tcp \
 -p Resource_dependencies_offline_restart=hastorageplus-1 resource
   ```
The resource is created in the enabled state.

7 Verify that you have correctly configured the resource dependencies.

```
clresource show -v resource | egrep Resource_dependencies_offline_restart
```

8 Set resource-group-1 to the MANAGED state, and bring resource-group-1 online.

```
clresourcegroup online -eM resource-group-1
```

### More Information

**Affinity Switchovers**

The HAStoragePlus resource type contains another extension property, AffinityOn, which is a Boolean that specifies whether HAStoragePlus must perform an affinity switchover for the global devices that are defined in GlobalDevicePaths and FileSystemMountPoints extension properties. For details, see the `SUNW.HAStoragePlus` man page.

**Note** – The setting of the AffinityOn flag is ignored for scalable services. Affinity switchovers are not possible with scalable resource groups.

▼ **How to Set Up the HAStoragePlus Resource Type for Existing Resources**

**Before You Begin**

Read “Synchronizing the Startups Between Resource Groups and Device Groups” on page 111.

1 Determine whether the resource type is registered.

   The following command prints a list of registered resource types.

   ```
 # clresourcetype show | egrep Type
   ```

2 If you need to, register the resource type.

   ```
 # clresourcetype register SUNW.HAStoragePlus
   ```

3 Create the HAStoragePlus resource hastorageplus-1.

   ```
 # clresource create -g resource-group \
 -t SUNW.HAStoragePlus -p GlobalDevicePaths= ... \
 -p FileSystemMountPoints=... -p AffinityOn=True hastorageplus-1
   ```

   The resource is created in the enabled state.

4 Set up the dependency for each of the existing resources, as required.

   ```
 # clresource set -p Resource_Dependencies_offline_restart=hastorageplus-1 resource
   ```

5 Verify that you have correctly configured the resource dependencies.

   ```
 # clresource show -v resource | egrep Resource_dependencies_offline_restart
   ```
Configuring an HAStoragePlus Resource for Cluster File Systems

When an HAStoragePlus resource is configured for cluster file systems and brought online, it ensures that these file systems are available. The cluster file system is supported on the UNIX File System (UFS). The instructions in this section apply to HAStoragePlus resources with UFS. Use HAStoragePlus with local file systems if the data service is I/O intensive. See "How to Change the Cluster File System to Local File System in an HAStoragePlus Resource" on page 149 for information about how to change the file system of an HAStoragePlus resource.

The cluster file systems can be configured for zone clusters in the HAStoragePlus resources using the loopback mount mechanism. The SUNW.HAStoragePlus resource type makes the cluster file system available to a zone cluster by mounting the file system in the global cluster. The resource type then performs a loopback mount on the zone cluster nodes where the resource group is online.

**Note** – If you have a failover resource group, the resource group will be online on only one node. If you use a scalable resource group, the *Desired_primitives* property defines the number of nodes the resource group will have online.

The cluster file systems configured in the HAStoragePlus resource type for zone clusters should be authorized for use in zone clusters using the `clzonestatus(1C)` command. For more information, see "How to Add a Cluster File System to a Zone Cluster" in Oracle Solaris Cluster Software Installation Guide.

Sample Entries in `/etc/vfstab` for Cluster File Systems

The following examples show entries in the `/etc/vfstab` file for global devices that are to be used for cluster file systems.

**Note** – The entries in the `/etc/vfstab` file for cluster file systems should contain the `global` keyword in the mount options.

**EXAMPLE 2–32**  Entries in `/etc/vfstab` for a Global Device With Solaris Volume Manager

This example shows entries in the `/etc/vfstab` file for a global device that uses Solaris Volume Manager.

```
/dev/md/kappa-1/dsk/d0 /dev/md/kappa-1/rdsk/d0
/global/local-fs/nfs ufs 5 yes logging,global
```
This example shows entries in the /etc/vfstab file for a global device that uses VxVM.

```
/dev/vx/dsk/kappa-1/appvol /dev/vx/rdsk/kappa-1/appvol
/global/local-fs/nfs vxfs 5 yes log,global
```

### How to Set Up the HASToragePlus Resource for Cluster File Systems

1. **On any node in the cluster, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2. **Create a failover or scalable resource group as desired.**
   
   Perform the following step to create a failover group.

   ```
 # clresourcegroup create resource-group
   ```

   Perform the following step to create a scalable group.

   ```
 # clresourcegroup create -S [-p Maximum_primaries=m] [-p Desired_primaries=n] [-n node-zone-list] resource-group
   ```

3. **Register the HASToragePlus resource type.**

   ```
 # clresourcetype register SUNW.HASToragePlus
   ```

4. **Create the HASToragePlus resource and define the filesystem mount points.**

   ```
 # clresource create -g resource-group -t SUNW.HASToragePlus \ -p FileSystemMountPoints="mount-point-list" hasp-resource
   ```

   The resource is created in the enabled state.

5. **Add the data service resources to resource-group, and set their dependency to hasp-resource.**

   ```
 # clresource set -p Resource_dependencies_offline_restart= \ hasp-resource application-resource
   ```

6. **Bring online and in a managed state the resource group that contains the HASToragePlus resource.**

   ```
 # clresourcegroup online -M resource-group
   ```

### Example 2–34 Setting up the HASToragePlus Resource Type with a Cluster File System in a Global Cluster

This example shows how to configure the HASToragePlus resource with a cluster file system `/global/ufs` in a global cluster for a failover resource group.
Configuring an HASToragePlus Resource for Cluster File Systems

```
phys-schost-l# vi /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#/dev/md/apachedg/dsk/d0 /dev/md/apachedg/rdsk/d0 /global/ufs ufs 2 yes global, logging
clresourcegroup create hasp-rg
clresourcetype register SUNW.HASToragePlus
clresource create -g hasp-rg -t SUNW.HASToragePlus -p \
 FileSystemMountPoints=/global/ufs hasp-rs
clresourcegroup online -M hasp-rg
```

**Example 2–35** Setting up the HASToragePlus Resource Type with a Cluster File System in a Zone Cluster

This example shows how to configure the HASToragePlus resource with a cluster file system /global/ufs in a zone cluster for a scalable resource group. The cluster file system is available for the zone cluster nodes on the mount point /zone/ufs. This example configuration makes the global file system /global/ufs mounted in a global cluster and later loopback mounted on two zone-cluster nodes where the resource group is online.

```
phys-schost-l# vi /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#/dev/md/apachedg/dsk/d0 /dev/md/apachedg/rdsk/d0 /global/ufs ufs 2 yes global, logging
clzonecluster configure zzone
clz:zzone> add fs
clz:zzone:fs> set dir=/zone/ufs
clz:zzone:fs> set special=/global/ufs
clz:zzone:fs> set type=lofs
clz:zzone:fs> end
clz:zzone:fs> exit
clresourcegroup create -Z zzone -p desired_primaries=2 -p maximum_primaries=2 hasp-rg
clresourcetype register -Z zzone SUNW.HASToragePlus
clresource create -Z zzone -g hasp-rg -t SUNW.HASToragePlus -p \
 FileSystemMountPoints=/zone/ufs hasp-rs
clresourcegroup online -Z zzone -M hasp-rg
```

▼ How to Delete an HASToragePlus Resource Type for Cluster File Systems

- Disable and delete the HASToragePlus resource configured for cluster file systems.
  
  ```
 # clresource delete -F -g resource-group -t SUNW.HASToragePlus resource
  ```
Enabling Highly Available Local File Systems

Using a highly available local file system improves the performance of I/O intensive data services. To make a local file system highly available in an Oracle Solaris Cluster environment, use the HAStoragePlus resource type.

You can specify global or local file systems. Global file systems are accessible from all nodes in a cluster. Local file systems are accessible from a single cluster node. Local file systems that are managed by a SUNW.HAStoragePlus resource are mounted on a single cluster node. These local file systems require the underlying devices to be Oracle Solaris Cluster global devices.

These file system mount points are defined in the format paths[,...]. You can specify both the path in a global-cluster non-voting node and the path in a global-cluster voting node, in this format:

Non-GlobalZonePath:GlobalZonePath

The global-cluster voting node path is optional. If you do not specify a global-cluster voting node path, Oracle Solaris Cluster assumes that the path in the global-cluster non-voting node and in the global-cluster voting node are the same. If you specify the path as Non-GlobalZonePath:GlobalZonePath, you must specify GlobalZonePath in the global-cluster voting node's /etc/vfstab.

The default setting for this property is an empty list.

The SUNW.HAStoragePlus resource performs a loopback mount to make the file system available in the local zone from the global zone when the SUNW.HAStoragePlus resource is in a local zone. Do not configure the zone to do a loopback mount when the file system is managed by an SUNW.HAStoragePlus resource. Implementing both types of configurations can cause odd behavior, such as being unable to stop the SUNW.HAStoragePlus resource.

You can use the SUNW.HAStoragePlus resource type to make a file system available to a global-cluster non-voting node. To enable the SUNW.HAStoragePlus resource type to do this, you must create a mount point in the global-cluster voting node and in the global-cluster non-voting node. The SUNW.HAStoragePlus resource type makes the file system available to the global-cluster non-voting node by mounting the file system in the global cluster. The resource type then performs a loopback mount in the global-cluster non-voting node. Each file system mount point should have an equivalent entry in /etc/vfstab on all cluster nodes and in the global-cluster voting node. The SUNW.HAStoragePlus resource type does not check /etc/vfstab in global-cluster non-voting nodes.

You can use the SUNW.HAStoragePlus resource type to make a file system available to zone cluster nodes. The file systems configured in the SUNW.HAStoragePlus resource type for zone clusters should be authorized for use in zone clusters using the clzonecluster command. For more information, see the clzonecluster(1CL) man page and "Adding File Systems to a Zone Cluster" in Oracle Solaris Cluster Software Installation Guide.
Note – Local file systems include the UNIX File System (UFS), Quick File System (QFS), and Solaris ZFS (Zettabyte File System). Systems with Solaris ZFS are only mounted directly into the non-global zone.

The instructions for each Oracle Solaris Cluster data service that is I/O intensive explain how to configure the data service to operate with the \texttt{HAStoragePlus} resource type. For more information, see the individual Oracle Solaris Cluster data service guides.

Note – Do not use the \texttt{HAStoragePlus} resource type to make a root file system highly available.

Oracle Solaris Cluster provides the following tools for setting up the \texttt{HAStoragePlus} resource type to make local file systems highly available:

- \textbf{Oracle Solaris Cluster Manager}. For more information, see the Oracle Solaris Cluster Manager online help.
- \texttt{The \texttt{clsetup(1CL)}} utility.
- \textbf{Oracle Solaris Cluster maintenance commands}.

Oracle Solaris Cluster Manager and the \texttt{clsetup} utility enable you to add resources to the resource group interactively. Configuring these resources interactively reduces the possibility for configuration errors that might result from command syntax errors or omissions. Oracle Solaris Cluster Manager and the \texttt{clsetup} utility ensure that all required resources are created and that all required dependencies between resources are set.

### Configuration Requirements for Highly Available Local File Systems

Any file system on multihost disks must be accessible from any host that is directly connected to those multihost disks. To meet this requirement, configure the highly available local file system as follows:

- Ensure that the disk partitions of the local file system reside on global devices.
- Set the \texttt{AffinityOn} extension property of the \texttt{HAStoragePlus} resource that specifies these global devices to \texttt{True}.
  
  The \texttt{Zpools} extension property of the \texttt{HAStoragePlus} resource ignores the \texttt{AffinityOn} extension property.
- Create the \texttt{HAStoragePlus} resource in a failover resource group.
- Ensure that the failback settings for the device groups and the resource group that contains the \texttt{HAStoragePlus} resource are identical.
Note – The use of a volume manager with the global devices for a highly available local file system is optional.

Format of Device Names for Devices Without a Volume Manager

If you are not using a volume manager, use the appropriate format for the name of the underlying storage device. The format to use depends on the type of storage device as follows:

- For block devices: `/dev/global/dsk/dDsS`
- For raw devices: `/dev/global/rdsk/dDsS`

The replaceable elements in these device names are as follows:

- `D` is an integer that specifies the device ID (DID) instance number.
- `S` is an integer that specifies the slice number.

Sample Entries in `/etc/vfstab` for Highly Available Local File Systems

The following examples show entries in the `/etc/vfstab` file for global devices that are to be used for highly available local file systems.

Note – Solaris ZFS (Zettabyte File System) does not use the `/etc/vfstab` file.

EXAMPLE 2–36 Entries in `/etc/vfstab` for a Global Device Without a Volume Manager

This example shows entries in the `/etc/vfstab` file for a global device on a physical disk without a volume manager.

```
/dev/global/dsk/d1s0 /dev/global/rdsk/d1s0
/global/local-fs/nfs ufs 5 no logging
```

EXAMPLE 2–37 Entries in `/etc/vfstab` for a Global Device With Solaris Volume Manager

This example shows entries in the `/etc/vfstab` file for a global device that uses Solaris Volume Manager.

```
/dev/md/kappa-1/dsk/d0 /dev/md/kappa-1/rdsk/d0
/global/local-fs/nfs ufs 5 no logging
```
Note – The same file system entries must be added to the zone cluster configuration when you configure the file system for a zone cluster using the SUNW.HAStoragePlus resource type.

How to Set Up the HAStoragePlus Resource Type by Using the clsetup Utility

The following instructions explain how to set up the HAStoragePlus resource type by using the clsetup utility. Perform this procedure from any global-cluster voting node.

This procedure provides the long forms of the Oracle Solaris Cluster maintenance commands. Most commands also have short forms. Except for the forms of the command names, the commands are identical.

Before You Begin

Ensure that the following prerequisites are met:

■ Ensure that the required volumes, disk groups and file systems are created.

1 Become superuser on any cluster voting node.

2 Start the clsetup utility.
   
   # clsetup
   
   The clsetup main menu is displayed.

3 Type the number that corresponds to the option for data services and press Return.
   
   The Data Services menu is displayed.

4 Type the number that corresponds to the option for configuring highly available storage and press Return.
   
   The clsetup utility displays the list of prerequisites for performing this task.

5 Verify that the prerequisites are met, and press Return to continue.
   
   The clsetup utility displays a list of the cluster nodes that can master the highly available HAStoragePlus resource.

6 Select the nodes that can master the highly available HAStoragePlus resource.

   ■ To accept the default selection of all listed nodes in an arbitrary order, type a and press Return.
■ To select a subset of the listed nodes, type a comma-separated or space-separated list of the numbers that correspond to the nodes. Then press Return.

Ensure that the nodes are listed in the order in which the nodes are to appear in the HASrganizationPlus resource group’s node list. The first node in the list is the primary node of this resource group.

■ To select all nodes in a particular order, type a comma-separated or space-separated ordered list of the numbers that correspond to the nodes and press Return.

7 To confirm your selection of nodes, type d and press Return.
The clsetup utility displays a list of types of shared storage type where data is to be stored.

8 Type the numbers that correspond to type of shared storage that you are using for storing the data and press Return.
The clsetup utility displays the file system mount points that are configured in the cluster. If there are no existing mount points, the clsetup utility allows you to define a new mount point.

9 Specify the default mount directory, the raw device path, the Global Mount option and the Check File System Periodically option and press Return.
The clsetup utility returns you the properties of the mount point that the utility will create.

10 To create the mount point, type d and press Return.
The clsetup utility displays the available file system mount points.

Note – You can use the c option to define another new mount point.

11 Select the file system mount points.

■ To accept the default selection of all listed file system mount points in an arbitrary order, type a and press Return.

■ To select a subset of the listed file system mount points, type a comma-separated or space-separated list of the numbers that correspond to the file system mount points and press Return.

12 To confirm your selection of nodes, type d and press Return.
The clsetup utility displays the global disk sets and device groups that are configured in the cluster.
13 Select the global device groups.
   - To accept the default selection of all listed device groups in an arbitrary order, type a and press Return.
   - To select a subset of the listed device groups, type a comma-separated or space-separated list of the numbers that correspond to the device groups and press Return.

14 To confirm your selection of nodes, type d and press Return.
   The clsetup utility displays the names of the Oracle Solaris Cluster objects that the utility will create.

15 If you require a different name for any Oracle Solaris Cluster object, change the name as follows.
   a. Type the number that corresponds to the name that you are changing and press Return.
      The clsetup utility displays a screen where you can specify the new name.
   b. At the New Value prompt, type the new name and press Return.
      The clsetup utility returns you to the list of the names of the Oracle Solaris Cluster objects that the utility will create.

16 To confirm your selection of Oracle Solaris Cluster object names, type d and press Return.
   The clsetup utility displays information about the Oracle Solaris Cluster configuration that the utility will create.

17 To create the configuration, type c and Press Return.
   The clsetup utility displays a progress message to indicate that the utility is running commands to create the configuration. When configuration is complete, the clsetup utility displays the commands that the utility ran to create the configuration.

18 (Optional) Type q and press Return repeatedly until you quit the clsetup utility.
   If you prefer, you can leave the clsetup utility running while you perform other required tasks before using the utility again. If you choose to quit clsetup, the utility recognizes your existing resource group when you restart the utility.

19 Verify that the HASToragePlus resource has been created.
   Use the clresource(1CL) utility for this purpose.
   # clresource show name_of_rg
How to Set Up the HASToragePlus Resource Type to Make File Systems Highly Available Other Than Solaris ZFS

The following procedure explains how to set up the HASToragePlus resource type to make file systems other than Solaris ZFS highly available.

1. On any node in the global cluster, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2. Create a failover resource group.
   ```
 # clresourcegroup create resource-group
   ```

3. Register the HASToragePlus resource type.
   ```
 # clresourcetype register SUNW.HAStoragePlus
   ```

4. Create the HASToragePlus resource and define the file system mount points.
   ```
 # clresource create -g resource-group -t SUNW.HAStoragePlus -p FileSystemMountPoints=mount-point-list hasp-resource
   ```

5. Bring online and in a managed state the resource group that contains the HASToragePlus resource.
   ```
 # clresourcegroup online -M resource-group
   ```

Example 2–38 Setting Up the HASToragePlus Resource Type to Make a UFS File System Highly Available for the Global Cluster

This example assumes that the file system /web-1 is configured to the HASToragePlus resource to make the file system highly available for the global cluster.

```
phys-schost-1# vi /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/dev/md/apachedg/dsk/d0 /dev/md/apachedg/rdsk/d0 /web-1 ufs 2 no logging
clresourcegroup create hasp-rg
clresourcetype register SUNW.HAStoragePlus
clresource create -g hasp-rg -t SUNW.HAStoragePlus -p FileSystemMountPoints=/global/ufs-1 hasp-rs
clresourcegroup online -M hasp-rg
```

Example 2–39 Setting Up the HASToragePlus Resource Type to Make a UFS File System Highly Available for a Zone Cluster

This example assumes that the file system /web-1 is configured to the HASToragePlus resource to make the file system highly available for a zone cluster sczone. When a local file system is
configured as a highly available file system for a zone cluster using the SUNW.HAStoragePlus resource type, the HAStoragePlus resource reads the file system information in the zone cluster configuration.

```bash
clzonecluster configure sczone
cicz:sczone> add fs
clzz:sczone:fs> set dir=/web-1
clzz:sczone:fs> set special=/dev/md/apachedg/dsk/d0
clzz:sczone:fs> set raw=/dev/md/apachedg/rdsk/d0
clzz:sczone:fs> set type=ufs
clzz:sczone:fs> add options [logging]
clzz:sczone:fs> end
clzz:sczone:fs> exit
clresourcetype create -Z sczone hasp-rg
clresourcetype register -Z sczone SUNW.HAStoragePlus
clresource create -Z sczone -g hasp-rg
-t SUNW.HAStoragePlus -p FileSystemMountPoints=/web-1 hasp-rs
clresourcegroup online -Z sczone -M hasp-rg
```

### How to Set Up the HAStoragePlus Resource Type to Make a Local Solaris ZFS Highly Available

You perform the following primary tasks to make a local Solaris ZFS (Zettabyte File System) highly available:

- Create a ZFS storage pool.
- Create a ZFS file system in that ZFS storage pool.
- Set up the HAStoragePlus resource that manages the ZFS storage pool.

This section describes how to complete these tasks.

If you are planning to manually import a ZFS pool that is already managed by the cluster, ensure that the pool is not imported on multiple nodes. Importing a pool on multiple nodes can lead to problems. For more information, see “Changing a ZFS Pool Configuration That is Managed by an HAStoragePlus Resource” on page 145.

This section describes how to complete both tasks.

1. **Create a ZFS storage pool.**

   **Caution** – Do not add a configured quorum device to a ZFS storage pool. When a configured quorum device is added to a storage pool, the disk is relabeled as an EFI disk, the quorum configuration information is lost, and the disk no longer provides a quorum vote to the cluster. After a disk is in a storage pool, you can configure that disk as a quorum device. Alternatively, you can unconfigure the disk, add it to the storage pool, then reconfigure the disk as a quorum device.
Observe the following requirements when you create a ZFS storage pool in an Oracle Solaris Cluster configuration:

- Ensure that all of the devices from which you create a ZFS storage pool are accessible from all nodes in the cluster. These nodes must be configured in the node list of the resource group to which the HAStoragePlus resource belongs.
- Ensure that the Oracle Solaris device identifier that you specify to the `zpool(1M)` command, for example `/dev/dsk/c0t0d0`, is visible to the `cldevice list -v` command.

**Note** — The ZFS storage pool can be created using a full disk or a disk slice. It is preferred to create a ZFS storage pool using a full disk by specifying an Oracle Solaris logical device as ZFS file system performs better by enabling the disk write cache. ZFS file system labels the disk with EFI when a full disk is provided.

See "Creating a Basic ZFS Storage Pool" in *Oracle Solaris ZFS Administration Guide* for information about how to create a ZFS storage pool.

2 **In the ZFS storage pool that you just created, create a ZFS file system.**
   You can create more than one ZFS file system in the same ZFS storage pool.

**Note** — HAStoragePlus does not support file systems created on ZFS file system volumes.

Do not place a ZFS file system in the *FilesystemMountPoints* extension property.

See "Creating a ZFS File System Hierarchy" in *Oracle Solaris ZFS Administration Guide* for information about how to create a ZFS file system in a ZFS storage pool.

3 **On any node in the cluster, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

4 **Create a failover resource group.**
   
   ```
 # clresourcegroup create resource-group
   ```

5 **Register the HAStoragePlus resource type.**
   
   ```
 # clresourcetype register SUNW.HAStoragePlus
   ```

6 **Create an HAStoragePlus resource for the local ZFS file system.**
   
   ```
 # clresource create -g resource-group -t SUNW.HAStoragePlus \
 -p Zpools=zpool -p ZpoolsSearchDir=/dev/disk \
 resource
   ```

   The default location to search for devices of ZFS storage pools is `/dev/dsk`. It can be overridden by using the `ZpoolsSearchDir` extension property.

   The resource is created in the enabled state.
7 Bring online and in a managed state the resource group that contains the HAStoragePlus resource.

```
cresourcegroup online -M resource-group
```

**Example 2–40** Setting Up the HAStoragePlus Resource Type to Make a Local ZFS Highly Available for the Global Cluster

The following example shows the commands to make a local ZFS file system highly available.

```
phys-schost-1% su
Password:
cdevice list -v

<table>
<thead>
<tr>
<th>DID</th>
<th>Device Full Device Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>phys-schost-1:/dev/rdsk/c0t0d0</td>
</tr>
<tr>
<td>d2</td>
<td>phys-schost-1:/dev/rdsk/c0t1d0</td>
</tr>
<tr>
<td>d3</td>
<td>phys-schost-1:/dev/rdsk/c1t8d0</td>
</tr>
<tr>
<td>d4</td>
<td>phys-schost-2:/dev/rdsk/c1t8d0</td>
</tr>
<tr>
<td>d5</td>
<td>phys-schost-1:/dev/rdsk/c1t9d0</td>
</tr>
<tr>
<td>d6</td>
<td>phys-schost-2:/dev/rdsk/c1t9d0</td>
</tr>
<tr>
<td>d7</td>
<td>phys-schost-1:/dev/rdsk/c1t10d0</td>
</tr>
<tr>
<td>d8</td>
<td>phys-schost-2:/dev/rdsk/c1t10d0</td>
</tr>
<tr>
<td>d9</td>
<td>phys-schost-2:/dev/rdsk/c0t0d0</td>
</tr>
</tbody>
</table>

you can create a ZFS storage pool using a disk slice by specifying a Solaris device identifier:

```
# zpool create HAzpool c1t8d0s2
```

or you can create a ZFS storage pool using disk slice by specifying a logical device identifier

```
# zpool create HAzpool /dev/did/dsk/d3s2
```

```
# zfs create HAzpool/export
# zfs create HAzpool/export/home
# cresourcegroup create hasp-rg
# cresourcetype register SUNW.HAStoragePlus
# cresource create -g hasp-rg -t SUNW.HAStoragePlus -p Zpools=HAzpool hasp-rs
# cresourcegroup online -M hasp-rg
```

Example 2–41 Setting Up the HAStoragePlus Resource Type to Make a Local ZFS Highly Available for a Zone Cluster

The following example shows the steps to make a local ZFS file system highly available in a zone cluster sczone.

```
phys-schost-1% cdevice list -v
# zpool create HAzpool c1t8d0
# zfs create HAzpool/export
# zfs create HAzpool/export/home
# czonecluster configure sczone
clzc:sczone> add dataset
```
How to Delete an HASToragePlus Resource That Makes a Local Solaris ZFS Highly Available

• Disable and delete the HASToragePlus resource that makes a local Solaris ZFS highly available.

 # clresource delete -F -g resource-group -t SUNW.HASToragePlus resource

Sharing a Highly Available Local File System Across Zone Clusters

You can use the SUNW.HASToragePlus resource type to share a highly available file system directory managed by a global cluster resource to a zone cluster. This method consolidates the storage and shares a highly available local file system with different applications running on different zone clusters. For information on adding a file system to a zone cluster, see “Adding File Systems to a Zone Cluster” in Oracle Solaris Cluster Software Installation Guide.

This section explains the requirements and procedures for sharing a highly available local file system directory across zone clusters.

Configuration Requirements for Sharing a Highly Available Local File System Directory to a Zone Cluster

The directory of a highly available local file system managed by a global cluster resource can be shared to a zone cluster. To share a highly available local file system directory, the configuration must meet the following requirements:

■ Create an HASToragePlus resource in a failover resource group in a global cluster with the file system where the directory to be shared belongs.
■ The directory of the highly available local file system that you want to share must be configured to a zone cluster as an lofs file system.
■ Create an HASToragePlus resource in a failover resource group in a zone cluster with the lofs file system.
■ The zone cluster resource must have an offline restart dependency on the global cluster resource.
The zone cluster resource’s resource group must have a strong positive affinity or strong positive affinity with failover delegation on the global cluster resource’s resource group.

Note – The applications sharing a highly available local file system will experience an availability impact due to collocation of the applications. An application failure on a node and its intent to fail over might have a cascading effect on other applications and the applications would be forced to fail over to another node. Mitigate the problem by reducing the number of applications that are sharing the file system. If the file system that is being shared is UFS, you can choose to configure the cluster file system to a zone cluster. See “How to Set Up the HAStoragePlus Resource for Cluster File Systems” on page 119.

How to Set Up the HAStorage Plus Resource Type to Share a Failover File System Directory to a Zone Cluster

The following procedure explains how to set up the HAStoragePlus resource type to share a failover file system (for example, UFS, QFS, or a ZFS pool directory to a zone cluster called zone_cluster_name).

1 On any node in the global cluster, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization. Perform the steps from a node in the global cluster, because the dependencies and affinities from a zone cluster to a global cluster can only be set by an authorized global cluster node administrator.

2 Create a failover resource group in the global cluster.
 # clresourcegroup create gc-hasp-resource-group

3 Register the HAStoragePlus resource type in the global cluster.
 # clresourcetype register SUNW.HAStoragePlus

4 Create an HAStoragePlus resource in a failover resource group of the global cluster with the failover file system that contains the directory that you want to share to a zone cluster.
 # clresource create -g gc-hasp-resource-group -t HAStoragePlus \
 -p FilesystemMountPoints=mount-point \
 -p Zpools=pool gc-hasp-resource

5 Bring the global cluster failover resource group online in a managed state.
 # clresourcegroup online -M gc-hasp-resource-group
6 Configure the directory of the failover file system that is being shared to the zone cluster as an lofs file system.

```bash
# clzonecluster configure zoneclustername
clzc:zoneclustername> add fs
clzc:zoneclustername:fs> set dir = shared-dir-mount-point-in-zc
clzc:zoneclustername:fs> set special = shared-directory
clzc:zoneclustername:fs> set type = lofs
clzc:zoneclustername:fs> end
clzc:zoneclustername> exit
```

7 Create a failover resource group in the zone cluster that has a strong positive affinity or strong positive affinity with failover delegation on the failover resource group of the global cluster.

```bash
# clresourcegroup create -Z zoneclustername
-p RG_affinities=++global:gc-hasp-resource-group \zc-hasp-resource-group
OR
# clresourcegroup create -Z zoneclustername
-p RG_affinities=+++global:gc-hasp-resource-group \zc-hasp-resource-group
```

8 Register the HAStoragePlus resource type in the zone cluster.

```bash
# clresourcetype register -Z zoneclustername SUNW.HAStoragePlus
```

9 Create an HAStoragePlus resource in a failover resource group of the zone cluster. Configure the zone cluster with the lofs file system for a shared directory with a dependency on the global cluster resource that you want to share to the zone cluster.

```bash
# clresource create -Z zoneclustername -t SUNW.HAStoragePlus \-p FilesystemMountPoints=shared-dir-mount-point-in-zc \-p Resource_dependencies_offline_restart=global:gc-hasp-resource \zc-hasp-resource
```

10 Bring the zone cluster failover resource group online.

```bash
# clresourcegroup online -Z zoneclustername -M \zc-hasp-resource-group
```

Example 2–42 Setting Up the HAStoragePlus Resource Type to Share a UFS Failover File System Directory to a Zone Cluster

The following example shows how to share the /local/fs/home directory of a UFS failover file system (/local/fs) to a zone cluster called sczone.

```bash
# clresourcegroup create gc-hasp-rg
# clresourcetype register -Z sczone SUNW.HAStoragePlus
# vi /etc/vfstab /dev/md/dg1/dsk/d0 /dev/md/dg1/rdsk/d0 /local/fs ufs 2 no logging
# clresource create -g gc-hasp-rg -t SUNW.HAStoragePlus \-p FilesystemMountPoints=/local/fs gc-hasp-rs
# clresourcegroup online -M gc-hasp-rg
```

The steps above ensure that the gc-hasp-rs resource running in the global cluster manages the failover file system /local/fs.
Sharing a Highly Available Local File System Across Zone Clusters

The configuration above makes the failover file system's directory /local/fs/home available in the zone cluster sczone at mount point /share/local/fs/home.

Example 2-43 Setting Up the HAStoragePlus Resource Type to Share a ZFS Pool Directory to a Zone Cluster

The following example shows how to share the ZFS pool "tank" directory /tank/home to a zone cluster called sczone.

The steps above ensure that the ZFS failover file system is managed by gc-hasp-rs running in the global cluster.

The configuration above makes the ZFS pool "tank" directory /tank/home available in the zone cluster sczone at mount point /share/tank/home.
The steps above create a zone cluster resource that manages the shared directory as an `lofs` file system.

Upgrading From HAStorage to HAStoragePlus

HAStorage is not supported in the current release of Oracle Solaris Cluster software. Equivalent functionality is supported by HAStoragePlus. For instructions for upgrading from HAStorage to HAStorage, see the subsections that follow.

Note – The resource groups that have the HAStorage resource configured will be in `STOP_FAILED` state since HAStorage is no longer supported. Clear the `ERROR_STOP_FAILED` flag for the resource and follow the instructions to upgrade HAStorage to HAStoragePlus.

How to Upgrade From HAStorage to HAStoragePlus When Using Device Groups or CFS

The following example uses a simple HA-NFS resource that is active with HAStorage. The `ServicePaths` are the disk group `nfsdg` and the `AffinityOn` property is `True`. Furthermore, the HA-NFS resource has `Resource_Dependencies` set to the HAStorage resource.

1. **Bring offline the resource group `nfs1-rg`**.

   ```
   # clresourcegroup offline nfs1-rg
   ```

2. **Remove the dependencies the application resources has on HAStorage**.

   ```
   # clresource set -p Resource_Dependencies=none nfsserver-rs
   ```

3. **Disable the HAStorage resource**.

   ```
   # clresource disable nfs1storage-rs
   ```

4. **Remove the HAStorage resource from the application resource group**.

   ```
   # clresource delete nfs1storage-rs
   ```

5. **Unregister the HAStorage resource type**.

   ```
   # clresourcetype unregister SUNW.HAStorage
   ```

6. **Register the HAStoragePlus resource type**.

   ```
   # clresourcetype register SUNW.HAStoragePlus
   ```


7 Create the HAStoragePlus resource.

Note – Instead of using the ServicePaths property of HAStorage, you must use the FilesystemMountPoints property or GlobalDevicePaths property of HAStoragePlus.

■ To specify the mount point of a file system, type the following command.
 The FilesystemMountPoints extension property must match the sequence that is specified in /etc/vfstab.

 # clresource create -g nfs1-rg -t
 SUNW.HAStoragePlus -p FilesystemMountPoints=/global/nfsdata -p
 AffinityOn=True nfs1-hastp-rs

■ To specify global device paths, type the following command.

 # clresource create -g nfs1-rg -t
 SUNW.HAStoragePlus -p GlobalDevicePaths=nfsdg -p AffinityOn=True nfs1-hastp-rs

 The resource is created in the enabled state.

8 Disable the application server resource.
 # clresource disable nfsserver-rs

9 Bring online the nfs1-rg group on a cluster node.
 # clresourcegroup online nfs1-rg

10 Set up the dependencies between the application server and HAStoragePlus.
 # clresource set -p Resource_dependencies_offline_restart=nfs1-hastp-rs nfsserver-rs

11 Bring online the nfs1-rg group on a cluster node.
 # clresourcegroup online -eM nfs1-rg

▼ How to Upgrade From HAStorage With CFS to HAStoragePlus With Highly Available Local File System

The following example uses a simple HA-NFS resource that is active with HAStorage. The ServicePaths are the disk group nfsdg and the AffinityOn property is True. Furthermore, the HA-NFS resource has Resource_Dependencies set to HAStorage resource.

1 Remove the dependencies the application resource has on HAStorage resource.
 # clresource set -p Resource_Dependencies="" nfsserver-rs

2 Disable the HAStorage resource.
 # clresource disable nfs1storage-rs
3 Remove the HASTorage resource from the application resource group.
 # clresource delete nfs1storage-rs

4 Unregister the HASTorage resource type.
 # clresourcetype unregister SUNW.HASTorage

5 Modify /etc/vfstab to remove the global flag and change “mount at boot” to “no”.

6 Create the HASToragePlus resource.

 Note – Instead of using the ServicePaths property of HASTorage, you must use the FilesystemMountPoints property or GlobalDevicePaths property of HASToragePlus.

 - To specify the mount point of a file system, type the following command.
 The FilesystemMountPoints extension property must match the sequence that is specified in /etc/vfstab.

 # clresource create -g nfs1-rg -t SUNW.HASToragePlus -p FilesystemMountPoints=/global/nfsdata -p AffinityOn=True nfs1-hastp-rs

 - To specify global device paths, type the following command.

 # clresource create -g nfs1-rg -t SUNW.HASToragePlus -p GlobalDevicePaths=nfsdg -p AffinityOn=True nfs1-hastp-rs

 The resource is created in the enabled state.

7 Disable the application server resource.
 # clresource disable nfsserver-rs

8 Bring online the nfs1-rg group on a cluster node.
 # clresourcegroup online nfs1-rg

9 Set up the dependencies between the application server and HASToragePlus.
 # clresource set -p Resource_dependencies_offline_restart=nfs1-hastp-rs nfsserver-rs

10 Bring online the nfs1-rg group on a cluster node.
 # clresourcegroup online -eM nfs1-rg
Modifying Online the Resource for a Highly Available File System

You might need a highly available file system to remain available while you are modifying the resource that represents the file system. For example, you might need the file system to remain available because storage is being provisioned dynamically. In this situation, modify the resource that represents the highly available file system while the resource is online.

In the Oracle Solaris Cluster environment, a highly available file system is represented by an HAStoragePlus resource. Oracle Solaris Cluster enables you to modify an online HAStoragePlus resource as follows:

- Adding file systems to the HAStoragePlus resource
- Removing file systems from the HAStoragePlus resource

Note – Oracle Solaris Cluster software does not enable you to rename a file system while the file system is online.

Note – When you remove the file systems configured in the HAStoragePlus resources for a zone cluster, you also need to remove the file system configuration from the zone cluster. For information about removing a file system from a zone cluster, see "How to Remove a File System From a Zone Cluster" in Oracle Solaris Cluster System Administration Guide.

▼ How to Add File Systems Other Than Solaris ZFS to an Online HAStoragePlus Resource

When you add a local or cluster file system to an HAStoragePlus resource, the HAStoragePlus resource automatically mounts the file system.

1 On one node of the cluster, become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2 In the /etc/vfstab file on each node of the cluster, add an entry for the mount point of each file system that you are adding.
 For each entry, set the mount at boot field and the mount options field as follows:
 - For local file systems
 - Set the mount at boot field to no.
 - Remove the global flag.
 - For cluster file systems
If the file system is a cluster file system, set the mount options field to contain the global option.

3 Retrieve the list of mount points for the file systems that the HAS\textit{toragePlus} resource already manages.

```bash
# scha_resource_get -O extension -R hasp-resource -G hasp-rg FileSystemMountPoints
```

- \texttt{-R hasp-resource} Specifies the HAS\textit{toragePlus} resource to which you are adding file systems.
- \texttt{-G hasp-rg} Specifies the resource group that contains the HAS\textit{toragePlus} resource.

4 Modify the \texttt{FileSystemMountPoints} extension property of the HAS\textit{toragePlus} resource to contain the following mount points:

- The mount points of the file systems that the HAS\textit{toragePlus} resource already manages
- The mount points of the file systems that you are adding to the HAS\textit{toragePlus} resource

```bash
# clresource set -p FileSystemMountPoints="mount-point-list" hasp-resource
```

- \texttt{-p FileSystemMountPoints="mount-point-list"} Specifies a comma-separated list of mount points of the file systems that the HAS\textit{toragePlus} resource already manages and the mount points of the file systems that you are adding. The format of each entry in the list is LocalZonePath:GlobalZonePath. In this format, the global path is optional. If the global path is not specified, the global path is the same as the local path.

- \texttt{hasp-resource} Specifies the HAS\textit{toragePlus} resource to which you are adding file systems.

5 Confirm that you have a match between the mount point list of the HAS\textit{toragePlus} resource and the list that you specified in \textit{Step 4}.

```bash
# scha_resource_get -O extension -R hasp-resource -G hasp-rg \ FileSystemMountPoints
```

- \texttt{-R hasp-resource} Specifies the HAS\textit{toragePlus} resource to which you are adding file systems.
- \texttt{-G hasp-rg} Specifies the resource group that contains the HAS\textit{toragePlus} resource.

6 Confirm that the HAS\textit{toragePlus} resource is online and not faulted.

If the HAS\textit{toragePlus} resource is online and faulted, validation of the resource succeeded, but an attempt by HAS\textit{toragePlus} to mount a file system failed.

```bash
# clresource status hasp-resource
```
Adding a FileSystem to an Online HAStoragePlus Resource

This example shows how to add a file system to an online HAStoragePlus resource.

- The HAStoragePlus resource is named rshasp and is contained in the resource group rghasp.
- The HAStoragePlus resource named rshasp already manages the file system whose mount point is /global/global-fs/fs.
- The mount point of the file system that is to be added is /global/local-fs/fs.

The example assumes that the /etc/vfstab file on each cluster node already contains an entry for the file system that is to be added.

```
# scha_resource_get -O extension -R rshasp -G rghasp FileSystemMountPoints
STRINGARRAY
/global/global-fs/fs
# cresource set
-p FileSystemMountPoints="/global/global-fs/fs,/global/local-fs/fs"
# scha_resource_get -O extension -R rshasp -G rghasp FileSystemMountPoints rshasp
STRINGARRAY
/global/global-fs/fs
/global/local-fs/fs
# cresource status rshasp

=== Cluster Resources ===
<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>rshasp</td>
<td>node46</td>
<td>Offline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>node47</td>
<td>Online</td>
<td>Offline</td>
</tr>
</tbody>
</table>
```

How to Remove File Systems Other Than Solaris ZFS From an Online HAStoragePlus Resource

When you remove a file system from an HAStoragePlus resource, the HAStoragePlus resource treats a local file system differently from a cluster file system.

- The HAStoragePlus resource automatically unmounts a local file system.
- The HAStoragePlus resource does not unmount the cluster file system.

Caution – Before removing a file system from an online HAStoragePlus resource, ensure that no applications are using the file system. When you remove a file system from an online HAStoragePlus resource, the file system might be forcibly unmounted. If a file system that an application is using is forcibly unmounted, the application might fail or hang.
On one node of the cluster, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

Retrieve the list of mount points for the file systems that the HAS\storagePlus resource already manages.

```bash
# scha_resource_get -O extension -R hasp-resource -G hasp-rg FileSystemMountPoints
```

- `-R hasp-resource` Specifies the HAS\storagePlus resource from which you are removing file systems.
- `-G hasp-rg` Specifies the resource group that contains the HAS\storagePlus resource.

Modify the `FileSystemMountPoints` extension property of the HAS\storagePlus resource to contain only the mount points of the file systems that are to remain in the HAS\storagePlus resource.

```bash
# clresource set -p FileSystemMountPoints="mount-point-list" hasp-resource
```

- `-p FileSystemMountPoints="mount-point-list"` Specifies a comma-separated list of mount points of the file systems that are to remain in the HAS\storagePlus resource. This list must not include the mount points of the file systems that you are removing.
- `hasp-resource` Specifies the HAS\storagePlus resource from which you are removing file systems.

Confirm that you have a match between the mount point list of the HAS\storagePlus resource and the list that you specified in Step 3.

```bash
# scha_resource_get -O extension -R hasp-resource -G hasp-rg \
FileSystemMountPoints
```

- `-R hasp-resource` Specifies the HAS\storagePlus resource from which you are removing file systems.
- `-G hasp-rg` Specifies the resource group that contains the HAS\storagePlus resource.

Confirm that the HAS\storagePlus resource is online and not faulted.

If the HAS\storagePlus resource is online and faulted, validation of the resource succeeded, but an attempt by HAS\storagePlus to unmount a file system failed.

```bash
# clresource status hasp-resource
```

(Optional) From the `/etc/vfstab` file on each node of the cluster, remove the entry for the mount point of each file system that you are removing.

Example 2–45 Removing a File System From an Online HAS\storagePlus Resource

This example shows how to remove a file system from an online HAS\storagePlus resource.
The HAStoragePlus resource is named rshasp and is contained in the resource group rghasp.

The HAStoragePlus resource named rshasp already manages the file systems whose mount points are as follows:
- /global/global-fs/fs
- /global/local-fs/fs

The mount point of the file system that is to be removed is /global/local-fs/fs.

```bash
# scha_resource_get -O extension -R rshasp -G rghasp FileSystemMountPoints
STRINGARRAY
/gLOBAL/global-fs/fs
/gLOBAL/local-fs/fs
# cresource set -p FileSystemMountPoints="/global/global-fs/fs"
# scha_resource_get -O extension -R rshasp -G rghasp FileSystemMountPoints rshasp
STRINGARRAY
/gLOBAL/global-fs/fs
# cresource status rshasp
```

--- Cluster Resources ---

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>rshasp</td>
<td>node46</td>
<td>Offline</td>
<td>Offline</td>
</tr>
<tr>
<td></td>
<td>node47</td>
<td>Online</td>
<td>Online</td>
</tr>
</tbody>
</table>

▼ How to Add a Solaris ZFS Storage Pool to an Online HAStoragePlus Resource

When you add a Solaris ZFS (Zettabyte File System) storage pool to an online HAStoragePlus resource, the HAStoragePlus resource does the following:
- Imports the ZFS storage pool.
- Mounts all file systems in the ZFS storage pool.

Caution – If you are planning to manually import a pool that is already managed by the cluster, ensure that the pool is not imported on multiple nodes. Importing a pool on multiple nodes can lead to problems.

If you want to make configuration changes to a ZFS pool that is managed by cluster with an HAStoragePlus resource, see "Changing a ZFS Pool Configuration That is Managed by an HAStoragePlus Resource" on page 145.
1 On any node in the cluster, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2 Determine the ZFS storage pools that the HASToragePlus resource already manages.

 # cresource show -g hasp-resource-group -p Zpools hasp-resource

 `-g hasp-resource-group` Specifies the resource group that contains the HASToragePlus resource.

 `hasp-resource` Specifies the HASToragePlus resource to which you are adding the ZFS storage pool.

3 Add the new ZFS storage pool to the existing list of ZFS storage pools that the HASToragePlus resource already manages.

 # cresource set -p Zpools="zpools-list" hasp-resource

 `-p Zpools="zpools-list"` Specifies a comma-separated list of existing ZFS storage pool names that the HASToragePlus resource already manages and the new ZFS storage pool name that you want to add.

 `hasp-resource` Specifies the HASToragePlus resource to which you are adding the ZFS storage pool.

4 Compare the new list of ZFS storage pools that the HASToragePlus resource manages with the list that you generated in Step 2.

 # cresource show -g hasp-resource-group -p Zpools hasp-resource

 `-g hasp-resource-group` Specifies the resource group that contains the HASToragePlus resource.

 `hasp-resource` Specifies the HASToragePlus resource to which you added the ZFS storage pool.

5 Confirm that the HASToragePlus resource is online and not faulted.

 If the HASToragePlus resource is online but faulted, validation of the resource succeeded. However, an attempt by the HASToragePlus resource to import and mount the ZFS file system failed. In this case, you need to repeat the preceding set of steps.

 # cresourcegroup status hasp-resource

▼ How to Remove a Solaris ZFS Storage Pool From an Online HASToragePlus Resource

When you remove a Solaris ZFS (Zettabyte File System) storage pool from an online HASToragePlus resource, the HASToragePlus resource does the following:
Modifying Online the Resource for a Highly Available File System

- Unmounts the file systems in the ZFS storage pool.
- Exports the ZFS storage pool from the node.

1 On any node in the cluster, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2 Determine the ZFS storage pools that the `HAStragePlus` resource already manages.

   ```bash
   # clresource show -g hasp-resource-group -p Zpools hasp-resource
   
   -g hasp-resource-group
   Specifies the resource group that contains the `HAStragePlus` resource.

   hasp-resource
   Specifies the `HAStragePlus` resource from which you are removing the ZFS storage pool.

   # clresource set -p Zpools="zpools-list" hasp-resource
   
   -p Zpools="zpools-list"
   Specifies a comma-separated list of ZFS storage pool names that the `HAStragePlus` resource currently manages, minus the ZFS storage pool name that you want to remove.

   hasp-resource
   Specifies the `HAStragePlus` resource from which you are removing the ZFS storage pool.

3 Remove the ZFS storage pool from the list of ZFS storage pools that the `HAStragePlus` resource currently manages.

4 Compare the new list of ZFS storage pools that the `HAStragePlus` resource now manages with the list that you generated in Step 2.

5 Confirm that the `HAStragePlus` resource is online and not faulted.
If the `HAStragePlus` resource is online but faulted, validation of the resource succeeded. However, an attempt by the `HAStragePlus` resource to unmount and export the ZFS file system failed. In this case, you need to repeat the preceding set of steps.

   ```bash
 # clresource status -t SUNW.HAStragePlus +
   ```
Changing a ZFS Pool Configuration That is Managed by an HASToragePlus Resource

To change the ZFS pool configuration that is managed by HASToragePlus resource, you must ensure that the pool is never imported on multiple nodes. Performing imports on multiple nodes can have severe consequences and could cause ZFS pool corruption.

The following procedures help you avoid multiple imports when performing pool configuration changes.

- “How to Change a ZFS Pool Configuration That is Managed by an HASToragePlus Resource in an Offline State” on page 145
- “How to Change a ZFS Pool Configuration That is Managed by an Online HASToragePlus Resource” on page 146

▼ How to Change a ZFS Pool Configuration That is Managed by an HASToragePlus Resource in an Offline State

1  Ensure that the ZFS pool that requires configuration changes is not imported on any node.
   # zpool list zfs-pool-name
   Run this command on all cluster nodes that have a physical connection to the ZFS pool.

2  Import the pool on the alternate root without using the force option on a cluster node that has a physical connection to the ZFS pool.
   # zpool import -R zfs-pool-name
   If the import succeeds, proceed to Step 3. If the import fails, the cluster node that previously accessed the pool might have shut down without exporting the pool. Follow the substeps below to ensure that the cluster node is not using the ZFS pool and then import the pool forcefully:

   a. Check if the import failed due to an error message similar to the one below. If it did, proceed to Step b and Step c:
      
      Cannot import ‘zfs-pool-name’: pool may be in use from other system, it was last accessed by
      hostname (hostid: hostid) on accessed-date.

   b. Verify that the pool is not in use on the machine that last accessed it.
      
      hostname# zpool list zfs-pool-name
c. If the ZFS pool is not in use on that node, import the pool forcefully.
   
   ```
 # zpool import -f zfs-pool-name
   ```

3 Perform the ZFS pool configuration changes.

4 Export the ZFS pool and check that the pool is not in use.
   
   ```
 # zpool export zfs-pool-name

 # zpool list
   ```

▼ How to Change a ZFS Pool Configuration That is Managed by an Online HAStoragePlus Resource

1 Find the cluster node where the ZFS pool is imported.
   It will be the node where the HAStoragePlus resource is online.
   
   ```
 # clresource show hasp-rs-managing-pool
   ```

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasp-rs-managing-pool</td>
<td>phys-node-1</td>
<td>Offline</td>
<td>Offline</td>
</tr>
<tr>
<td></td>
<td>phys-node-2</td>
<td>Online</td>
<td>Online</td>
</tr>
</tbody>
</table>

   phys-node-2# zpool list zfs-pool-name

2 Perform the ZFS pool configuration changes.

▼ How to Recover From a Fault After Modifying the FileSystemMountPoints Property of an HAStoragePlus Resource

If a fault occurs during a modification of the FileSystemMountPoints extension property, the status of the HAStoragePlus resource is online and faulted. After the fault is corrected, the status of the HAStoragePlus resource is online.

1 Determine the fault that caused the attempted modification to fail.
   
   ```
 # clresource status hasp-resource
   ```

   The status message of the faulty HAStoragePlus resource indicates the fault. Possible faults are as follows:
   
   - The device on which the file system should reside does not exist.
   - An attempt by the fsck command to repair a file system failed.
- The mount point of a file system that you attempted to add does not exist.
- A file system that you attempted to add cannot be mounted.
- A file system that you attempted to remove cannot be unmounted.

2 Correct the fault that caused the attempted modification to fail.

3 Repeat the step to modify the FileSystemMountPoints extension property of the HAStoragePlus resource.

   ```
 # clresource set -p FileSystemMountPoints="mount-point-list" hasp-resource
 -p FileSystemMountPoints="mount-point-list"

 Specifies a comma-separated list of mount points that you specified in the unsuccessful attempt to modify the highly available file system

 hasp-resource
 Specifies the HAStoragePlus resource that you are modifying
   ```

4 Confirm that the HAStoragePlus resource is online and not faulted.

   ```
 # clresource status
   ```

Example 2–46 Status of a Faulty HAStoragePlus Resource

This example shows the status of a faulty HAStoragePlus resource. This resource is faulty because an attempt by the fsck command to repair a file system failed.

   ```
 # clresource status

 === Cluster Resources ===

 Resource Name Node Name Status Status Message
 ------ --------- ------- ---------------
 rshasp node46 Offline Offline
 node47 Online Online Faulted - Failed to fsck: /mnt.
   ```

How to Recover From a Fault After Modifying the Zpools Property of an HAStoragePlus Resource

If a fault occurs during a modification of the Zpools extension property, the status of the HAStoragePlus resource is online and faulted. After the fault is corrected, the status of the HAStoragePlus resource is online.

1 Determine the fault that caused the attempted modification to fail.

   ```
 # clresource status hasp-resource
   ```

The status message of the faulty HAStoragePlus resource indicates the fault. Possible faults are as follows:
The ZFS pool `zpool` failed to import.

The ZFS pool `zpool` failed to export.

Note – If you import a corrupt ZFS pool, the best option is to choose Continue to display an error message. Other choices are Wait (which hangs until success occurs or the node panics) or Panic (which panics the node).

2 Correct the fault that caused the attempted modification to fail.

3 Repeat the step to modify the `zpools` extension property of the `HAStoragePlus` resource.
   
   ```
 # clresource set -p Zpools="zpool-list" hasp-resource
 -p Zpools="zpool-list" Specifies a comma-separated list of ZFS storage pool names that the HAStoragePlus currently manages, minus the ZFS storage pool name that you want to remove.
 hasp-resource Specifies the HAStoragePlus resource that you are modifying.
   ```

4 Confirm that the HAStoragePlus resource is online and not faulted.
   
   # clresource status

   Note – If you import a corrupt ZFS pool, the best option is to choose Continue to display an error message. Other choices are Wait (which hangs until success occurs or the node panics) or Panic (which panics the node). Choosing Continue can help increase the cluster’s availability.

Example 2–47 Status of a Faulty HAStoragePlus Resource

This example shows the status of a faulty HAStoragePlus resource. This resource is faulty because the ZFS pool `zpool` failed to import.

```
clresource status hasp-resource

=== Cluster Resources ===

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Node Name</th>
<th>Status</th>
<th>Status Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasp-resource</td>
<td>node46</td>
<td>Online</td>
<td>Faulted - Failed to import: hazpool</td>
</tr>
<tr>
<td></td>
<td>node47</td>
<td>Offline</td>
<td>Offline</td>
</tr>
</tbody>
</table>
```
Changing the Cluster File System to a Local File System in an HAStoragePlus Resource

You can change the file system of an HAStoragePlus resource from a cluster file system to a local file system.

▼ How to Change the Cluster File System to Local File System in an HAStoragePlus Resource

1 Bring the failover resource group offline.
   
   ```
 # clresourcegroup offline resource-group
   ```

2 Display the HAStoragePlus resource.
   
   ```
 # clresource show -g resource-group -t SUNW.HAStoragePlus
   ```

3 Retrieve the list of mount points for each resource.
   
   ```
 # clresource show -p FilesystemMountPoints hastorageplus-resource
   ```

4 Unmount the cluster file system.
   
   ```
 # umount mount-points
   ```

5 Modify the /etc/vfstab entry of the mount points on all the nodes configured in the node list of the resource group.
   
   - Remove the global keyword from the mount options.
   - Modify the mount at boot option from yes to no.

Repeat the steps for all the cluster file systems of all the HAStoragePlus resources configured in the resource group.

6 Bring the resource group online.
   
   ```
 # clresourcegroup online resource-group
   ```

Upgrading the HAStoragePlus Resource Type

The HAStoragePlus resource type enables you to modify highly available local file systems online. Upgrade the HAStoragePlus resource type if all conditions in the following list apply:

- You are upgrading from an earlier version of Oracle Solaris Cluster.
You need to use the new features of the HAStoragePlus resource type.

For general instructions that explain how to upgrade a resource type, see "Upgrading a Resource Type" on page 35. The information that you need to complete the upgrade of the HAStoragePlus resource type is provided in the subsections that follow.

Information for Registering the New Resource Type

Version

To determine the version of the resource type that is registered, use a command from the following list:

- The `cluster show` command displays the name and version of the cluster's resource types.
- The `clresource type list -v` command displays the node list of each resource type.

The RTR file for this resource type is `/usr/cluster/lib/rgm/rtreg/SUNW.HAStoragePlus`.

Information for Migrating Existing Instances of the Resource Type

Use the following information to migrate instances of the HAStoragePlus resource type:

- You can perform the migration to version 9 when the resource fault monitor is disabled. Enable the fault monitor after the migration is complete.
- You can perform the migration to any version other than 9 at any time.
- Set the `Type_version` property to the version of the features you intend to use.
- Ensure that the application has the `resource_dependencies_offline_restart` property set to the HAStoragePlus resource that it depends on. This is required for version 9 of the HAStoragePlus resource type, but it is optional for other versions of the resource type. The application must have either the `resource_dependencies` property or the `resource_dependencies_offline_restart` property set to the HAStoragePlus resource that it depends on if the HAStoragePlus version is older than 9.
Distributing Online Resource Groups Among Cluster Nodes

For maximum availability or optimum performance, some combinations of services require a specific distribution of online resource groups among cluster nodes. Distributing online resource groups involves creating affinities between resource groups for the following purposes:

- Enforcing the required distribution when the resource groups are first brought online
- Preserving the required distribution after an attempt to fail over or switch over a resource group

This section provides the following examples of how to use resource group affinities to distribute online resource groups among cluster nodes:

- Enforcing collocation of a resource group with another resource group
- Specifying a preferred collocation of a resource group with another resource group
- Balancing the load of a set of resource groups
- Specifying that a critical service has precedence
- Delegating the failover or switchover of a resource group
- Combining affinities between resource groups to specify more complex behavior

Resource Group Affinities

An affinity between resource groups restricts on which nodes the resource groups may be brought online simultaneously. In each affinity, a source resource group declares an affinity for a target resource group or several target resource groups. To create an affinity between resource groups, set the RG_affinities resource group property of the source as follows:

```
-p RG_affinities=affinity-list
```

affinity-list Specifies a comma-separated list of affinities between the source resource group and a target resource group or several target resource groups. You may specify a single affinity or more than one affinity in the list.

Specify each affinity in the list as follows:

```
operator target-rg
```

**Note** – Do not include a space between `operator` and `target-rg`.

`operator` Specifies the type of affinity that you are creating. For more information, see Table 2–3.
target-rg

Specifies the resource group that is the target of the affinity that you are creating.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Affinity Type</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Weak positive</td>
<td>If possible, the source is brought online on a node or on nodes where the target is online or starting. However, the source and the target are allowed to be online on different nodes.</td>
</tr>
<tr>
<td>++</td>
<td>Strong positive</td>
<td>The source is brought online only on a node or on nodes where the target is online or starting. The source and the target are not allowed to be online on different nodes.</td>
</tr>
<tr>
<td>-</td>
<td>Weak negative</td>
<td>If possible, the source is brought online on a node or on nodes where the target is not online or starting. However, the source and the target are allowed to be online on the same node.</td>
</tr>
<tr>
<td>--</td>
<td>Strong negative</td>
<td>The source is brought online only on a node or on nodes where the target is not online. The source and the target are not allowed to be online on the same node.</td>
</tr>
<tr>
<td>+++</td>
<td>Strong positive with failover delegation</td>
<td>Same as strong positive, except that an attempt by the source to fail over is delegated to the target. For more information, see &quot;Delegating the Failover or Switchover of a Resource Group&quot; on page 157.</td>
</tr>
</tbody>
</table>

Weak affinities take precedence over NodeList preference ordering.

The current state of other resource groups might prevent a strong affinity from being satisfied on any node. In this situation, the resource group that is the source of the affinity remains offline. If other resource groups’ states change to enable the strong affinities to be satisfied, the resource group that is the source of the affinity comes back online.

**Note** – Use caution when declaring a strong affinity on a source resource group for more than one target resource group. If all declared strong affinities cannot be satisfied, the source resource group remains offline.

**Enforcing Collocation of a Resource Group With Another Resource Group**

A service that is represented by one resource group might depend so strongly on a service in a second resource group that both services must run on the same node. For example, an application that is comprised of multiple interdependent service daemons might require that all daemons run on the same node.
In this situation, force the resource group of the dependent service to be collocated with the resource group of the other service. To enforce collocation of a resource group with another resource group, declare on the resource group a strong positive affinity for the other resource group.

```
clresourcegroup set|create -p RG_affinities=++target-rg source-rg
```

- `source-rg` specifies the resource group that is the source of the strong positive affinity. This resource group is the resource group on which you are declaring a strong positive affinity for another resource group.
- `-p RG_affinities=++target-rg` specifies the resource group that is the target of the strong positive affinity. This resource group is the resource group for which you are declaring a strong positive affinity.

A resource group follows the resource group for which it has a strong positive affinity. If the target resource group is relocated to a different node, the source resource group automatically switches to the same node as the target. However, a resource group that declares a strong positive affinity is prevented from failing over to a node on which the target of the affinity is not already running.

**Note** – Only failovers that are initiated by a resource monitor are prevented. If a node on which the source resource group and target resource group are running fails, both resource groups fail over to the same surviving node.

For example, a resource group `rg1` declares a strong positive affinity for resource group `rg2`. If `rg2` fails over to another node, `rg1` also fails over to that node. This failover occurs even if all the resources in `rg1` are operational. However, if a resource in `rg1` attempts to fail over `rg1` to a node where `rg2` is not running, this attempt is blocked.

The source of a strong positive affinity might be offline on all nodes when you bring online the target of the strong positive affinity. In this situation, the source of the strong positive affinity is automatically brought online on the same node as the target.

For example, a resource group `rg1` declares a strong positive affinity for resource group `rg2`. Both resource groups are initially offline on all nodes. If an administrator brings online `rg2` on a node, `rg1` is automatically brought online on the same node.

You can use the `clresourcegroup suspend` command to prevent a resource group from being brought online automatically due to strong affinities or cluster reconfiguration.

If you require a resource group that declares a strong positive affinity to be allowed to fail over, you must delegate the failover. For more information, see “Delegating the Failover or Switchover of a Resource Group” on page 157.
Enforcing Collocation of a Resource Group With Another Resource Group

This example shows the command for modifying resource group `rg1` to declare a strong positive affinity for resource group `rg2`. As a result of this affinity relationship, `rg1` is brought online only on nodes where `rg2` is running. This example assumes that both resource groups exist.

```bash
clresourcegroup set -p RG_affinities=++rg2 rg1
```

Specifying a Preferred Collocation of a Resource Group With Another Resource Group

A service that is represented by one resource group might use a service in a second resource group. As a result, these services run most efficiently if they run on the same node. For example, an application that uses a database runs most efficiently if the application and the database run on the same node. However, the services can run on different nodes because the reduction in efficiency is less disruptive than additional failovers of resource groups.

In this situation, specify that both resource groups should be collocated if possible. To specify preferred collocation of a resource group with another resource group, declare on the resource group a weak positive affinity for the other resource group.

```bash
clresourcegroup set|create -p RG_affinities=+target-rg source-rg
```

- `source-rg`: Specifies the resource group that is the source of the weak positive affinity. This resource group is the resource group on which you are declaring a weak positive affinity for another resource group.

- `target-rg`: Specifies the resource group that is the target of the weak positive affinity. This resource group is the resource group for which you are declaring a weak positive affinity.

By declaring a weak positive affinity on one resource group for another resource group, you increase the probability of both resource groups running on the same node. The source of a weak positive affinity is first brought online on a node where the target of the weak positive affinity is already running. However, the source of a weak positive affinity does not fail over if a resource monitor causes the target of the affinity to fail over. Similarly, the source of a weak positive affinity does not fail over if the target of the affinity is switched over. In both situations, the source remains online on the node where the source is already running.

**Note** – If a node on which the source resource group and target resource group are running fails, both resource groups are restarted on the same surviving node.
Specifying a Preferred Collocation of a Resource Group With Another Resource Group

This example shows the command for modifying resource group `rg1` to declare a weak positive affinity for resource group `rg2`. As a result of this affinity relationship, `rg1` and `rg2` are first brought online on the same node. But if a resource in `rg2` causes `rg2` to fail over, `rg1` remains online on the node where the resource groups were first brought online. This example assumes that both resource groups exist.

```
clresourcegroup set -p RG_affinities=+rg2 rg1
```

Distributing a Set of Resource Groups Evenly Among Cluster Nodes

Each resource group in a set of resource groups might impose the same load on the cluster. In this situation, by distributing the resource groups evenly among cluster nodes, you can balance the load on the cluster.

To distribute a set of resource groups evenly among cluster nodes, declare on each resource group a weak negative affinity for the other resource groups in the set.

```
clresourcegroup set|create -p RG_affinities=neg-affinity-list source-rg
```

- `source-rg` Specifies the resource group that is the source of the weak negative affinity. This resource group is the resource group on which you are declaring a weak negative affinity for other resource groups.

- `-p RG_affinities=neg-affinity-list` Specifies a comma-separated list of weak negative affinities between the source resource group and the resource groups that are the target of the weak negative affinity. The target resource groups are the resource groups for which you are declaring a weak negative affinity.

By declaring a weak negative affinity on one resource group for other resource groups, you ensure that a resource group is always brought online on the most lightly loaded node in the cluster. The fewest other resource groups are running on that node. Therefore, the smallest number of weak negative affinities are violated.

EXAMPLE 2–50  Distributing a Set of Resource Groups Evenly Among Cluster Nodes

This example shows the commands for modifying resource groups `rg1`, `rg2`, `rg3`, and `rg4` to ensure that these resource groups are evenly distributed among the available nodes in the cluster. This example assumes that resource groups `rg1`, `rg2`, `rg3`, and `rg4` exist.

```
clresourcegroup set -p RG_affinities=-rg2,-rg3,-rg4 rg1
clresourcegroup set -p RG_affinities=-rg1,-rg3,-rg4 rg2
clresourcegroup set -p RG_affinities=-rg1,-rg2,-rg4 rg3
```
Specifying That a Critical Service Has Precedence

A cluster might be configured to run a combination of mission-critical services and noncritical services. For example, a database that supports a critical customer service might run in the same cluster as noncritical research tasks.

To ensure that the noncritical services do not affect the performance of the critical service, specify that the critical service has precedence. By specifying that the critical service has precedence, you prevent noncritical services from running on the same node as the critical service.

When all nodes are operational, the critical service runs on a different node from the noncritical services. However, a failure of the critical service might cause the service to fail over to a node where the noncritical services are running. In this situation, the noncritical services are taken offline immediately to ensure that the computing resources of the node are fully dedicated to the mission-critical service.

To specify that a critical service has precedence, declare on the resource group of each noncritical service a strong negative affinity for the resource group that contains the critical service.

```
clresourcegroup set -p RG_affinities=-rg1,-rg2,-rg3 rg4
```

### noncritical-rg
Specifies the resource group that contains a noncritical service. This resource group is the resource group on which you are declaring a strong negative affinity for another resource group.

### -p RG_affinities=-critical-rg
Specifies the resource group that contains the critical service. This resource group is the resource group for which you are declaring a strong negative affinity.

A resource group moves away from a resource group for which it has a strong negative affinity.

The source of a strong negative affinity might be offline on all nodes when you take offline the target of the strong negative affinity. In this situation, the source of the strong negative affinity is automatically brought online. In general, the resource group is brought online on the most preferred node, based on the order of the nodes in the node list and the declared affinities.

For example, a resource group `rg1` declares a strong negative affinity for resource group `rg2`. Resource group `rg1` is initially offline on all nodes, while resource group `rg2` is online on a node. If an administrator takes offline `rg2`, `rg1` is automatically brought online.
You can use the `clresourcegroup suspend` command to prevent the source of a strong negative affinity from being brought online automatically due to strong affinities or cluster reconfiguration.

**EXAMPLE 2–51** Specifying That a Critical Service Has Precedence
This example shows the commands for modifying the noncritical resource groups `ncrg1` and `ncrg2` to ensure that the critical resource group `mcdbrg` has precedence over these resource groups. This example assumes that resource groups `mcdbrg`, `ncrg1`, and `ncrg2` exist.

```
clresourcegroup set -p RG_affinities=--mcdbrg ncrg1 ncrg2
```

**Delegating the Failover or Switchover of a Resource Group**

The source resource group of a strong positive affinity cannot fail over or be switched over to a node where the target of the affinity is not running. If you require the source resource group of a strong positive affinity to be allowed to fail over or be switched over, you must delegate the failover to the target resource group. When the target of the affinity fails over, the source of the affinity is forced to fail over with the target.

**Note** – You might need to switch over the source resource group of a strong positive affinity that is specified by the `++` operator. In this situation, switch over the target of the affinity and the source of the affinity at the same time.

To delegate failover or switchover of a resource group to another resource group, declare on the resource group a strong positive affinity with failover delegation for another resource group.

```
clresourcegroup set|create source-rg -p RG_affinities=+++target-rg
```

- `source-rg` Specifies the resource group that is delegating failover or switchover. This resource group is the resource group on which you are declaring a strong positive affinity with failover delegation for another resource group.
- `target-rg` Specifies the resource group to which `source-rg` delegates failover or switchover. This resource group is the resource group for which you are declaring a strong positive affinity with failover delegation.

A resource group may declare a strong positive affinity with failover delegation for at most one resource group. However, a given resource group may be the target of strong positive affinities with failover delegation that are declared by any number of other resource groups.
A strong positive affinity with failover delegation is not fully symmetric. The target can come online while the source remains offline. However, if the target is offline, the source cannot come online.

If the target declares a strong positive affinity with failover delegation for a third resource group, failover or switchover is further delegated to the third resource group. The third resource group performs the failover or switchover, forcing the other resource groups to fail over or be switched over also.

**EXAMPLE 2–52** Delegating the Failover or Switchover of a Resource Group

This example shows the command for modifying resource group rg1 to declare a strong positive affinity with failover delegation for resource group rg2. As a result of this affinity relationship, rg1 delegates failover or switchover to rg2. This example assumes that both resource groups exist.

```
clresourcegroup set -p RG_affinities=+++rg2 rg1
```

### Combining Affinities Between Resource Groups

You can create more complex behaviors by combining multiple affinities. For example, the state of an application might be recorded by a related replica server. The node selection requirements for this example are as follows:

- The replica server must run on a different node from the application.
- If the application fails over from its current node, the application should fail over to the node where the replica server is running.
- If the application fails over to the node where the replica server is running, the replica server must fail over to a different node. If no other node is available, the replica server must go offline.

You can satisfy these requirements by configuring resource groups for the application and the replica server as follows:

- The resource group that contains the application declares a weak positive affinity for the resource group that contains the replica server.
- The resource group that contains the replica server declares a strong negative affinity for the resource group that contains the application.

**EXAMPLE 2–53** Combining Affinities Between Resource Groups

This example shows the commands for combining affinities between the following resource groups.

- Resource group app - rg represents an application whose state is tracked by a replica server.
- Resource group rep - rg represents the replica server.
EXAMPLE 2–53  Combining Affinities Between Resource Groups  (Continued)

In this example, the resource groups declare affinities as follows:

- Resource group app-rg declares a weak positive affinity for resource group rep-rg.
- Resource group rep-rg declares a strong negative affinity for resource group app-rg.

This example assumes that both resource groups exist.

```
clresourcegroup set -p RG_affinities=+rep-rg app-rg
clresourcegroup set -p RG_affinities=-app-rg rep-rg
```

### Zone Cluster Resource Group Affinities

The cluster administrator can specify affinities between a resource group in a zone cluster and another resource group in a zone cluster or a resource group on the global cluster.

You can use the following command to specify the affinity between resource groups in zone clusters.

```
clresourcegroup set -p RG_affinities=affinity-typetarget-zc:target-rg source-zc:source-rg
```

The resource group affinity types in a zone cluster can be one of the following:

- + (weak positive)
- ++ (strong positive)
- +++ (strong positive with failover delegation)
- - (weak negative)
- -- (strong negative)

EXAMPLE 2–54  Specifying a Strong Positive Affinity Between Resource Groups in Zone Clusters

This example shows the command for specifying a strong positive affinity between resource groups in zone clusters.

The resource group RG1 in a zone cluster ZC1 declares a strong positive affinity for a resource group RG2 in a zone cluster ZC2.

If you need to specify a strong positive affinity between a resource group RG1 in a zone cluster ZC1 and a resource group RG2 in another zone cluster ZC2, use the following command:

```
clresourcegroup set -p RG_affinities=++ZC2:RG2 ZC1:RG1
```
EXAMPLE 2–55 Specifying a Strong Negative Affinity Between a Resource Group in a Zone Cluster and a Resource Group in the Global Cluster

This example shows the command for specifying a strong negative affinity between resource groups in zone clusters. If you need to specify a strong negative affinity between a resource group RG1 in a zone cluster ZC1 and a resource group RG2 in the global cluster, use the following command:

```bash
cresourcegroup set -p RG_affinities=---global:RG2 ZC1:RG1
```

Replicating and Upgrading Configuration Data for Resource Groups, Resource Types, and Resources

If you require identical resource configuration data on two clusters, you can replicate the data to the second cluster to save the laborious task of setting it up again. Use scsnapshot to propagate the resource configuration information from one cluster to another cluster. To save effort, ensure that your resource-related configuration is stable and you do not need to make any major changes to the resource configuration, before copying the information to a second cluster.

Configuration data for resource groups, resource types, and resources can be retrieved from the Cluster Configuration Repository (CCR) and formatted as a shell script. The script can be used to perform the following tasks:

- Replicate configuration data on a cluster that does not have configured resource groups, resource types, or resources
- Upgrade configuration data on a cluster that has configured resource groups, resource types, and resources

The scsnapshot tool retrieves configuration data that is stored in the CCR. Other configuration data are ignored. The scsnapshot tool ignores the dynamic state of different resource groups, resource types, and resources.

How to Replicate Configuration Data on a Cluster Without Configured Resource Groups, Resource Types, and Resources

This procedure replicates configuration data on a cluster that does not have configured resource groups, resource types, and resources. In this procedure, a copy of the configuration data is taken from one cluster and used to generate the configuration data on another cluster.
Using the system administrator role, log in to any node in the cluster from which you want to copy the configuration data.

For example, node1.

The system administrator role gives you the following role-based access control (RBAC) rights:

- `solaris.cluster.resource.read`
- `solaris.cluster.resource.modify`

Retrieve the configuration data from the cluster.

```
node1 % scsnapshot -s scriptfile
```

The scsnapshot tool generates a script called `scriptfile`. For more information about using the `scsnapshot` tool, see the `scsnapshot(1M)` man page.

Edit the script to adapt it to the specific features of the cluster where you want to replicate the configuration data.

For example, you might have to change the IP addresses and host names that are listed in the script.

Launch the script from any node in the cluster where you want to replicate the configuration data.

The script compares the characteristics of the local cluster to the cluster where the script was generated. If the characteristics are not the same, the script writes an error and ends. A message asks whether you want to rerun the script, using the `-f` option. The `-f` option forces the script to run, despite any difference in characteristics. If you use the `-f` option, ensure that you do not create inconsistencies in your cluster.

The script verifies that the Oracle Solaris Cluster resource type exists on the local cluster. If the resource type does not exist on the local cluster, the script writes an error and ends. A message asks whether you want to install the missing resource type before running the script again.

How to Upgrade Configuration Data on a Cluster With Configured Resource Groups, Resource Types, and Resources

This procedure upgrades configuration data on a cluster that already has configured resource groups, resource types, and resources. This procedure can also be used to generate a configuration template for resource groups, resource types, and resources.

In this procedure, the configuration data on `cluster1` is upgraded to match the configuration data on `cluster2`. 
1 Using the system administrator role, log on to any node in cluster1.
   For example, node1.
   The system administrator role gives you the following RBAC rights:
   ■ solaris.cluster.resource.read
   ■ solaris.cluster.resource.modify

2 Retrieve the configuration data from the cluster by using the image file option of the scsnapshot tool:
   node1% scsnapshot -s scriptfile1 -o imagefile1
   When run on node1, the scsnapshot tool generates a script that is called scriptfile1. The script stores configuration data for the resource groups, resource types, and resources in an image file that is called imagefile1. For more information about using the scsnapshot tool, see the scsnapshot(1M) man page.

3 Repeat Step 1 through Step 2 on a node in cluster2:
   node2 % scsnapshot -s scriptfile2 -o imagefile2

4 On node1, generate a script to upgrade the configuration data on cluster1 with configuration data from cluster2:
   node1% scsnapshot -s scriptfile3 imagefile1 imagefile2
   This step uses the image files that you generated in Step 2 and Step 3, and generates a new script that is called scriptfile3.

5 Edit the script that you generated in Step 4 to adapt it to the specific features of the cluster1, and to remove data specific to cluster2.

6 From node1, launch the script to upgrade the configuration data.
   The script compares the characteristics of the local cluster to the cluster where the script was generated. If the characteristics are not the same, the script writes an error and ends. A message asks whether you want to rerun the script, using the -f option. The -f option forces the script to run, despite any difference in characteristics. If you use the -f option, ensure that you do not create inconsistencies in your cluster.

   The script verifies that the Oracle Solaris Cluster resource type exists on the local cluster. If the resource type does not exist on the local cluster, the script writes an error and ends. A message asks whether you want to install the missing resource type before running the script again.
Enabling Oracle Solaris SMF Services to Run With Oracle Solaris Cluster

The Service Management Facility (SMF) enables you to automatically start and restart SMF services, during a node boot or service failure. SMF facilitates some degree of high availability to the SMF services on a single host. This feature is similar to the Oracle Solaris Cluster Resource Group Manager (RGM), which facilitates high availability and scalability for cluster applications. SMF services and RGM features are complementary to each other.

Oracle Solaris Cluster includes three SMF proxy resource types that can be used to enable SMF services to run with Oracle Solaris Cluster in a failover, multi-master, or scalable configuration. The following are the proxy resource types:

- SUNW.Proxy_SMF_failover
- SUNW.Proxy_SMF_multimaster
- SUNW.Proxy_SMF_scalable

The SMF proxy resource types enable you to encapsulate a set of interrelated SMF services into a single resource, SMF proxy resource, to be managed by Oracle Solaris Cluster. In this feature, SMF manages the availability of SMF services on a single node. Oracle Solaris Cluster provides cluster-wide high availability and scalability of the SMF services.

You can use the SMF proxy resource types to integrate your own SMF controlled services into Oracle Solaris Cluster so that these services have cluster-wide service availability without you rewriting callback methods or service manifest. After you integrate the SMF service into the SMF proxy resource, the SMF service is no longer managed by the default restarter. The restarter that is delegated by Oracle Solaris Cluster manages the SMF service.

SMF proxy resources are identical to other resources, with no restriction on their usage. For example, an SMF proxy resource can be grouped with other resources into a resource group. SMF proxy resources can be created and managed the same way as other resources. An SMF proxy resource differs from other resources in one way. When you create a resource of any of the SMF proxy resource types, you need to specify the extension property Proxied_service_instances. You must include information about the SMF services to be proxied by the SMF resource. The extension property's value is the path to a file that contains all the proxied SMF services. Each line in the file is dedicated to one SMF service and specifies svc fmri, path of the corresponding service manifest file.

For example, if the resource has to manage two services, restarter_svc_test_1:default and restarter_svc_test_2:default, the file should include the following two lines:

```
<svc:/system/cluster/restarter_svc_test_1:default>,</var/svc/manifest/system/cluster/restarter_svc_test_1.xml>
<svc:/system/cluster/restarter_svc_test_2:default>,</var/svc/manifest/system/cluster/restarter_svc_test_2.xml>
```
The services that are encapsulated under an SMF proxy resource can reside in the global cluster or global-cluster non-voting node. However, all the services under the same proxy resource must be in the same zone.

**Caution** – Do not use SMF `svcadm` for disabling or enabling SMF services that are encapsulated in a proxy resource. Do not change the properties of the SMF services (in the SMF repository) that are encapsulated in a proxy resource.

- “Encapsulating an SMF Service Into a Failover Proxy Resource Configuration” on page 164
- “Encapsulating an SMF Service Into a Multi-Master Proxy Resource Configuration” on page 166
- “Encapsulating an SMF Service Into a Scalable Proxy Resource Configuration” on page 169

### Encapsulating an SMF Service Into a Failover Proxy Resource Configuration

For information about failover configuration, see ”Creating a Resource Group” on page 42

**Note** – Perform this procedure from any cluster node.

1. **On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.**

2. **Register the proxy SMF failover resource type.**
   ```sh
 # cresourcec typeregister -f /opt/SUNWscsmf/etc/SUNW.Proxy_SMF_failover SUNW.Proxy_SMF_failover
   ```

3. **Verify that the proxy resource type has been registered.**
   ```sh
 # cresourcec typeshow
   ```

4. **Create the SMF failover resource group.**
   ```sh
 # cresourcec groupcreate [-n node-zone-list] resource-group

 -n node-zone-list
 Specifies a comma-separated, ordered list of nodes that can master this resource group. The format of each entry in the list is `node:zone`. In this format, `node` specifies the node name and `zone` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `node`.

 This list is optional. If you omit this list, the resource group is configured on all the global-cluster voting nodes.
Note – To achieve highest availability, specify global-cluster non-voting nodes on different nodes in the node list of an SMF failover resource group instead of different global-cluster non-voting nodes on the same node.

`resource-group` Specifies your choice of the name of the resource group to add. This name must begin with an ASCII character.

5 **Verify that the SMF resource group has been created.**

 # clresourcegroup status resource-group

6 **Add an SMF failover application resource to the resource group.**

 # clresource create -g resource-group -t SUNW.Proxy_SMF_failover \
 -p Port_list=portnumber/protocol \
 -x Proxied_service_instances=/tmp/dns_svcs.txt

 -g resource-group Specifies the name of the SMF failover resource group that you previously created.

 -p Port_list=portnumber/protocol Specifies the port number the instance will use to listen for activity. The protocol can be either tcp or udp.

 -p Proxied_service_instances Specifies the path to the file you created that specifies the mapping of SMF services and their corresponding manifests for the SMF services to be proxied. In the example above, `/tmp/dns_svcs.txt` is the path to the text file.

The resource is created in the enabled state.

7 **Verify that the SMF failover application resource has been added and validated.**

 # clresource show resource

8 **Bring the failover resource group online in a managed state.**

 # clresourcegroup online -M resource-group

Note – If you use the clresource status command to view the state of the SMF proxy resource type, the status is displayed as online but not monitored. This is not an error message. The SMF proxy resource is enabled and running and this status message is displayed because there is no monitoring support provided for the resources of SMF proxy resource type.
Registering an SMF Proxy Failover Resource Type

The following example registers the SUNW.Proxy_SMF_failover resource type.

```
# clresourcetype register SUNW.Proxy_SMF_failover
# clresourcetype show SUNW.Proxy_SMF_failover
```

<table>
<thead>
<tr>
<th>Resource Type:</th>
<th>SUNW.Proxy_SMF_failover</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT_description:</td>
<td>Resource type for proxying failover SMF services</td>
</tr>
<tr>
<td>RT_version:</td>
<td>3.2</td>
</tr>
<tr>
<td>API_version:</td>
<td>6</td>
</tr>
<tr>
<td>RT_basedir:</td>
<td>/opt/SUNWscsmf/bin</td>
</tr>
<tr>
<td>Single_instance:</td>
<td>False</td>
</tr>
<tr>
<td>Proxy:</td>
<td>False</td>
</tr>
<tr>
<td>Init_nodes:</td>
<td>All potential masters</td>
</tr>
<tr>
<td>Installed_nodes:</td>
<td><All></td>
</tr>
<tr>
<td>Failover:</td>
<td>True</td>
</tr>
<tr>
<td>Pkglist:</td>
<td>SUNWscsmf</td>
</tr>
<tr>
<td>RT_system:</td>
<td>False</td>
</tr>
<tr>
<td>Global_zone:</td>
<td>False</td>
</tr>
</tbody>
</table>

Adding an SMF Proxy Failover Application Resource to a Resource Group

This example shows the addition of a proxy resource type, SUN.Proxy_SMF_failover to a resource group resource-group-1.

```
# clresource create -g resource-group-1 -t SUNW.Proxy_SMF_failover \ 
-x proxied_service_instances=/var/tmp/svslist.txt resource-1
# clresource show resource-1
```

| Resource: | resource-1 |
| Type: | SUNW.Proxy_SMF_failover |
| Type_version: | 3.2 |
| Group: | resource-group-1 |
| R_description: | |
| Resource_project_name: | default |
| Enabled{phats1}: | True |
| Monitored{phats1}: | True |

Encapsulating an SMF Service Into a Multi-Master Proxy Resource Configuration

1. On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.
2 Register the SMF proxy multi-master resource type.
 # clresourcetype register -f \
 /opt/SUNWscsmf/etc>SUNW.Proxy_SMF_multimaster SUNW.Proxy_SMF_multimaster

3 Create the SMF multi-master resource group.
 # clresourcegroup create -S [-p Maximum_primaries=n] [-p Desired_primaries=n] \
 [-n node-zone-list] resource-group

 -S Specifies that the resource group is to be multi-mastered. If the
 -p Maximum_primaries and -p Desired_primaries options are
 omitted, both properties are set to the number of nodes in the
 resource group’s node list.

 -p Maximum_primaries=n Specifies the maximum number of active primaries for this
 resource group.

 -p Desired_primaries=n Specifies the number of active primaries on which the resource
 group should attempt to start.

 -n node-zone-list Specifies a comma-separated, ordered list of nodes in which this
 resource group is to be available. The format of each entry in the
 list is node:zone. In this format, node specifies the node name
 and zone specifies the name of a global-cluster non-voting node.
 To specify the global-cluster voting node, or to specify a node
 without global-cluster non-voting nodes, specify only node.
 This list is optional. If you omit this list, the resource group is
 configured on the global-cluster voting nodes.

 resource-group Specifies your choice of the name of the scalable resource group
 to add. This name must begin with an ASCII character.

4 Verify that the SMF proxy multi-master resource group has been created.
 # clresourcegroup show resource-group

5 Add an SMF proxy multi-master resource to the resource group.
 # clresource create -g resource-group -t SUNW.Proxy_SMF_multimaster \
 [-p Port_list=portnumber/protocol] \
 [-x Proxied_service_instances=/tmp/dns_svcstxt

 -g resource-group Specifies the name of the SMF multi-master resource
 group that you previously created.

 -p Port_list=portnumber/protocol Specifies the port number the instance will use to listen
 for activity. The protocol can be either tcp or udp.

 -p Proxied_service_instances Specifies the path to the file you created that specifies
 the mapping of SMF services and their corresponding manifests
 for the SMF services to be proxied. In the
example above, /tmp/dns_svcs.txt is the path to the text file.

The resource is created in the enabled state.

6 Verify that the SMF proxy multi-master application resource has been added and validated.
 # clresource show resource

7 Bring the multi-master resource group online in a managed state.
 # clresourcegroup online -M resource-group

Note – If you use the clresource status command to view the state of the SMF proxy resource type, the status is displayed as online but not monitored. This is not an error message. The SMF proxy resource is enabled and running and this status message is displayed because there is no monitoring support provided for the resources of SMF proxy resource type.

Example 2-58 Registering an SMF Proxy Multi-Master Resource Type

The following example registers the SUNW.Proxy_SMF_multimaster resource type.

clresourcetype register SUNW.Proxy_SMF_multimaster
clresourcetype show SUNW.Proxy_SMF_multimaster

<table>
<thead>
<tr>
<th>Resource Type:</th>
<th>SUNW.Proxy_SMF_multimaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT description:</td>
<td>Resource type for proxying multimastered SMF services</td>
</tr>
<tr>
<td>RT_version:</td>
<td>3.2</td>
</tr>
<tr>
<td>API_version:</td>
<td>6</td>
</tr>
<tr>
<td>RT_basedir:</td>
<td>/opt/SUNWscsmf/bin</td>
</tr>
<tr>
<td>Single_instance:</td>
<td>False</td>
</tr>
<tr>
<td>Proxy:</td>
<td>False</td>
</tr>
<tr>
<td>Init_nodes:</td>
<td>All potential masters</td>
</tr>
<tr>
<td>Installed_nodes:</td>
<td><All></td>
</tr>
<tr>
<td>Failover:</td>
<td>True</td>
</tr>
<tr>
<td>Pkglist:</td>
<td>SUNWscsmf</td>
</tr>
<tr>
<td>RT_system:</td>
<td>False</td>
</tr>
<tr>
<td>Global_zone:</td>
<td>False</td>
</tr>
</tbody>
</table>

Example 2-59 Creating and Adding an SMF Proxy Multi-Master Application Resource to a Resource Group

This example shows the creation and addition of a multi-master proxy resource type SUN.Proxy_SMF_multimaster to a resource group resource-group-1.

clresourcegroup create -S
 -p Maximum_primaries=2
 -p Desired_primaries=2
 -n phys-schost-1, phys-schost-2 resource-group-1
clresourcegroup show resource-group-1
Encapsulating an SMF Service Into a Scalable Proxy Resource Configuration

For information about scalable configuration, see “How to Create a Scalable Resource Group” on page 45.

Note - Perform this procedure from any cluster node.

1 On a cluster member, become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.
2 Register the SMF proxy scalable resource type.

```
# cresourceertype register -f \
/opt/SUNWscsmf/etc/SUNW.Proxy_SMF_scalable SUNW.Proxy_SMF_scalable
```

3 Create the SMF failover resource group that holds the shared address that the scalable resource group is to use. See “How to Create a Failover Resource Group” on page 43 to create the failover resource group.

4 Add the shared address resource to the failover resource group.

See “How to Add a Shared Address Resource to a Resource Group Using the Command-Line Interface” on page 57. The example below uses a resource called `network-resource`.

5 Create the SMF proxy scalable resource group.

```
# clresourcegroup create -S [-p Maximum_primitives=m] [-p Desired_primitives=n] \ 
[-n node-zone-list] resource-group
```

- `-S` Specifies that the resource group is to be multi-mastered. If the `-p Maximum_primitives` and `-p Desired_primitives` options are omitted, both properties are set to the number of nodes in the resource group's node list.

- `-p Maximum_primitives=m` Specifies the maximum number of active primaries for this resource group.

- `-p Desired_primitives=n` Specifies the number of active primaries on which the resource group should attempt to start.

- `-n node-zone-list` Specifies a comma-separated, ordered list of nodes in which this resource group is to be available. The format of each entry in the list is `node:zone`. In this format, `node` specifies the global-cluster voting node and `zone` specifies the name of a global-cluster non-voting node. To specify the global-cluster voting node, or to specify a node without global-cluster non-voting nodes, specify only `node`.

 This list is optional. If you omit this list, the resource group is created on all nodes in the cluster.

 The node list of the scalable resource can contain the same list or a subset of `nodename:zonename` pairs as the node list of the shared address resource.

- `resource-group` Specifies your choice of the name of the scalable resource group to add. This name must begin with an ASCII character.

6 Verify that the scalable resource group has been created.

```
# clresourcegroup show resource-group
```
Add an SMF proxy scalable resource to the scalable resource group you created in Step 5.

```bash
# clresource create-g resource-group -t SUNW.Proxy_SMF_scalable \
-p Resource_dependencies=network-resource[,network-resource...] \
-p Scalable=True \
-p Port_list=portnumber/protocol \
-x Proxied_service_instances=/tmp/dns_svcs.txt
```

- Specifies the name of the scalable network resource you created in Step 3 on which this resource depends.

- Specifies the name of the SMF proxy scalable resource group that you previously created.

- Specifies that this resource uses the network load balancing features of Oracle Solaris Cluster software. For more information, see “How to Add a Scalable Application Resource to a Resource Group” on page 62.

The resource is created in the enabled state.

Verify that the SMF proxy scalable application resource has been added and validated.

```bash
# clresource show resource
```

Bring the SMF proxy scalable resource group online in a managed state.

```bash
# clresourcegroup online -M resource-group
```

Note – If you use the `clresource status` command to view the state of the SMF proxy resource type, the status is displayed as online but not monitored. This is not an error message. The SMF proxy resource is enabled and running and this status message is displayed because there is no monitoring support provided for the resources of SMF proxy resource type.

Example 2–60 Registering an SMF Proxy Scalable Resource Type

The following example registers the SUNW.Proxy_SMF_scalable resource type.

```bash
# clresourcetype register SUNW.Proxy_SMF_scalable
# clresourcetype show SUNW.Proxy_SMF_scalable
```

<table>
<thead>
<tr>
<th>Resource Type:</th>
<th>SUNW.Proxy_SMF_scalable</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT description:</td>
<td>Resource type for proxying scalable SMF services</td>
</tr>
<tr>
<td>RT version:</td>
<td>3.2</td>
</tr>
<tr>
<td>API version:</td>
<td>6</td>
</tr>
<tr>
<td>RT_basedir:</td>
<td>/opt/SUNWscsmf/bin</td>
</tr>
<tr>
<td>Single_instance:</td>
<td>False</td>
</tr>
<tr>
<td>Proxy:</td>
<td>False</td>
</tr>
<tr>
<td>Init_nodes:</td>
<td>All potential masters</td>
</tr>
<tr>
<td>Installed_nodes:</td>
<td><All></td>
</tr>
<tr>
<td>Failover:</td>
<td>True</td>
</tr>
</tbody>
</table>
Creating and Adding an SMF Proxy Scalable Application Resource to a Resource Group

This example shows the creation and addition of a scalable proxy resource type SUNW.Proxy_SMF_scalable to a resource group resource-group-1.

```
# clresourcegroup create -S \
-p Maximum_primaries=2 \
-p Desired_primaries=2 \
-p RG_dependencies=resource-group-2 \
-n phys-schost-1, phys-schost-2 resource-group-1
```

```
# clresource create -g resource-group-1 -t SUNW.Proxy_SMF_scalable \
-p resource_dependencies=net-res -p port_list=1080/tcp \
-x proxied_service_instances=/var/tmp/svslist.txt resource-1
```

You can choose the resource_dependencies and port number to use.
Tuning Fault Monitors for Oracle Solaris Cluster Data Services

Each data service that is supplied with the Oracle Solaris Cluster product has a built-in fault monitor. The fault monitor performs the following functions:

- Detecting the unexpected termination of processes for the data service server
- Checking the health of the data service

The fault monitor is contained in the resource that represents the application for which the data service was written. You create this resource when you register and configure the data service. For more information, see the documentation for the data service.

System properties and extension properties of this resource control the behavior of the fault monitor. The default values of these properties determine the preset behavior of the fault monitor. The preset behavior should be suitable for most Oracle Solaris Cluster installations. Therefore, you should tune a fault monitor only if you need to modify this preset behavior.

Tuning a fault monitor involves the following tasks:

- Setting the interval between fault monitor probes
- Setting the timeout for fault monitor probes
- Defining the criteria for persistent faults
- Specifying the failover behavior of a resource

Perform these tasks when you register and configure the data service. For more information, see the documentation for the data service.

Note – A resource's fault monitor is started when you bring online the resource group that contains the resource. You do not need to start the fault monitor explicitly.

Setting the Interval Between Fault Monitor Probes

To determine whether a resource is operating correctly, the fault monitor probes this resource periodically. The interval between fault monitor probes affects the availability of the resource and the performance of your system as follows:

- The interval between fault monitor probes affects the length of time that is required to detect a fault and respond to the fault. Therefore, if you decrease the interval between fault monitor probes, the time that is required to detect a fault and respond to the fault is also decreased. This decrease enhances the availability of the resource.
- Each fault monitor probe consumes system resources such as processor cycles and memory. Therefore, if you decrease the interval between fault monitor probes, the performance of the system is degraded.
The optimum interval between fault monitor probes also depends on the time that is required to respond to a fault in the resource. This time depends on how the complexity of the resource affects the time that is required for operations such as restarting the resource.

To set the interval between fault monitor probes, set the `Thorough_probe_interval` system property of the resource to the interval in seconds that you require.

Setting the Timeout for Fault Monitor Probes

The timeout for fault monitor probes specifies the length of time that a fault monitor waits for a response from a resource to a probe. If the fault monitor does not receive a response within this timeout, the fault monitor treats the resource as faulty. The time that a resource requires to respond to a fault monitor probe depends on the operations that the fault monitor performs to probe the resource. For information about operations that a data service’s fault monitor performs to probe a resource, see the documentation for the data service.

The time that is required for a resource to respond also depends on factors that are unrelated to the fault monitor or the application, for example:

- System configuration
- Cluster configuration
- System load
- Amount of network traffic

To set the timeout for fault monitor probes, set the `Probe_timeout` extension property of the resource to the timeout in seconds that you require.

Defining the Criteria for Persistent Faults

To minimize the disruption that transient faults in a resource cause, a fault monitor restarts the resource in response to such faults. For persistent faults, more disruptive action than restarting the resource is required:

- For a failover resource, the fault monitor fails over the resource to another node.
- For a scalable resource, the fault monitor takes the resource offline.

A fault monitor treats a fault as persistent if the number of complete failures of a resource exceeds a specified threshold within a specified retry interval. Defining the criteria for persistent faults enables you to set the threshold and the retry interval to accommodate the performance characteristics of your cluster and your availability requirements.

Complete Failures and Partial Failures of a Resource

A fault monitor treats some faults as a complete failure of a resource. A complete failure typically causes a complete loss of service. The following failures are examples of a complete failure:
- Unexpected termination of the process for a data service server
- Inability of a fault monitor to connect to a data service server

A complete failure causes the fault monitor to increase by 1 the count of complete failures in the retry interval.

A fault monitor treats other faults as a partial failure of a resource. A partial failure is less serious than a complete failure, and typically causes a degradation of service, but not a complete loss of service. An example of a partial failure is an incomplete response from a data service server before a fault monitor probe is timed out.

A partial failure causes the fault monitor to increase by a fractional amount the count of complete failures in the retry interval. Partial failures are still accumulated over the retry interval.

The following characteristics of partial failures depend on the data service:
- The types of faults that the fault monitor treats as partial failure
- The fractional amount that each partial failure adds to the count of complete failures

For information about faults that a data service's fault monitor detects, see the documentation for the data service.

Dependencies of the Threshold and the Retry Interval on Other Properties

The maximum length of time that is required for a single restart of a faulty resource is the sum of the values of the following properties:
- Thorough_probe_interval system property
- Probe_timeout extension property

To ensure that you allow enough time for the threshold to be reached within the retry interval, use the following expression to calculate values for the retry interval and the threshold:

\[
retry_interval \geq 2 \times threshold \times (thorough_probe_interval + probe_timeout)
\]

The factor of 2 accounts for partial probe failures that do not immediately cause the resource to be failed over or taken offline.

System Properties for Setting the Threshold and the Retry Interval

To set the threshold and the retry interval, set the following system properties of the resource:
- To set the threshold, set the Retry_count system property to the maximum allowed number of complete failures.
- To set the retry interval, set the Retry_interval system property to the interval in seconds that you require.
Specifying the Failover Behavior of a Resource

The failover behavior of a resource determines how the RGM responds to the following faults:

- Failure of the resource to start
- Failure of the resource to stop
- Failure of the resource's fault monitor to stop

To specify the failover behavior of a resource, set the Failover_mode system property of the resource. For information about the possible values of this property, see the description of the Failover_mode system property in the $r_properties(5)$ man page.

Denying Cluster Services For a Selected Non-Global Zone

You can choose to set up non-global zones that do not participate in the cluster. A root user logged into one of these zones will not be able to discover or disrupt operation of the cluster. To implement this feature, create a file in the global zone of each node and add the names of the non-global zones on that node that should not be part of the cluster. If the zone name appears in the file, all cluster commands and daemons are disabled in that zone. Ensure that the zone is not running when you add or remove a zone name from this file.

Note – The zones listed in the cluster.zone.deny file might be managed by the HA Container agents (the data services documented in the Oracle Solaris Cluster Data Service for Solaris Containers Guide). This feature allows you to manage the zone as a "black box", without any cluster software running inside the zone.

Perform these procedures while logged into the global zone of the node on which you want to deny or allow cluster services to non-global zones.

▼ How to Deny Cluster Services For a Non-Global Zone

1. Become superuser or assume a role that provides solaris.cluster.modify RBAC authorization.

2. From the global zone, halt the non-global zone which will be denied cluster services.

 # zoneadm halt zonename

3. Open the /etc/cluster/clustezone.deny file in a text editor, and add the name of the non-global zone that will be denied cluster services and save the file.

 Each zone name you type in the file must end with a new line.

4. Reboot the non-global zone.
Verify that the selected non-global zone has been denied.

a. Log into the selected non-global zone.

b. Run a cluster command. The command fails if the zone has been denied. For example:

   ```
   # clnode status
   ```

 The command returns a *This node is not in cluster mode* message if the zone has been denied.

How to Allow Cluster Services For a Non-Global Zone

1. Become superuser or assume a role that provides `solaris.cluster.modify` RBAC authorization.

2. Halt the non-global zone which will rejoin the cluster.

3. Open the `/etc/cluster/cluster.zone.deny` file in a text editor, remove the name of the non-global zone that is rejoining the cluster, and save the file.

4. Reboot the non-global zone.

5. Verify that the non-global zone has rejoined the cluster.

 a. Log into the selected non-global zone.

 b. Run a cluster command. For example, `clnode status`.

      ```
      # clnode status
      ```
Index

A
adding
 file systems to HASToragePlus resource, 138–140
nodes to resource groups
 overview, 100
 failover, 101–102
 scalable, 100–101
resources to a resource group
 overview, 49–64
 failover application, 59–61
 logical hostname, 50–52, 53–55
 scalable application, 62–64
 shared address, 55–57, 57–59
affinities, resource groups, 151–152
allowing cluster services, non-global zone, 177
application binaries, determining location, 14–15
attributes, resource property, 25
automatic recovery actions, 69–72

B
balancing, load on cluster nodes, 155–156
bringing online, resource groups, 65–66
bypassing, name services, 89–90

C
cautions notice, removal of file systems, 140
changing
 resource group properties, 84–85
changing (Continued)
 resource properties, 85–86
 resource type properties, 83–84
CheckNameService extension property, 89
clearing
 Start_failed resource state, 92–94, 94–95, 95–97
 STOP_FAILED error flag, 90–91
clsetup utility, 23
clsetup utility
 logical hostname
 adding to a resource group, 50–52
 shared address
 adding to a resource group, 55–57
cluster properties, 24
Concentrate_load, 24
colocation
 enforcing for online resource groups, 152–154
 preferring for online resource groups, 154–155
combining, resource group affinities, 158–159
Command-Line Interface
 logical hostname
 adding to a resource group, 53–55
 shared address
 adding to a resource group, 57–59
complete failures, 174–175
Concentrate_load, resource property, 24
configuration
 guidelines, 14–16
 overview, 19–21
 planning cluster file system, 15
configuring and administering, Oracle Solaris Cluster
 data services, 33–34
considerations, 19

creating
failover application resources, 59–61
logical hostname resources, 50–52, 53–55
resource groups
failover, 43–45
scalable, 45–47
scalable application resources, 62–64
shared address resources, 55–57
using CLI, 57–59

D

data services
considerations, 19
planning, 13–28
special requirements, 14
defining, persistent faults, 174–175
delegating, resource group failover or
switchover, 157–158
denying cluster services, non-global zone, 176–177
description values, rules, 28
device groups
relationship with resource groups, 17
synchronizing startups with resource
groups, 111–117
directive, #$upgrade, 26
disabled resources, unexpected behavior, 80
disabling
resource fault monitors, 72–73
resources, 80–81, 95–97
SMF instances, 16
displaying, resource type, resource group, and resource
configuration, 82
distributing, online resource groups, 151–160
downgrading, resource types, 41–42

enabling
Oracle Solaris SMF services, 163–172
resource fault monitors, 73
resources, 67–68, 95–97
enumeration literal names, rules, 26
derror flags, STOP_FAILED, 90–91
derror messages
failure to modify file system, 146, 147
/etc/vfstab file
adding entries to, 138
removing entries from, 141
extension properties
Probe_timeout
effect on restart time, 175
tuning, 174

failover, delegating for resource groups, 157–158
failover application resources, adding to resource
group, 59–61
Failover_mode system property, 176
failovers, preserving distribution of online resource
groups, 151–160
fault monitors
disabling, 72–73
enabling, 73
faults detected by, 176
probe interval, 173–174
probe timeout, 174
resource, 72–73
response to faults, 176
tuning, 173–176
faults
modification of file systems, 146–147, 147–148
persistent, 174–175
responses to, 176
file systems
adding to HASstoragePlus resource, 138–140
cautions notice, 140
failure to modify, 146–147, 147–148
highly available
enabling, 121
modifying, 138–148
file systems (Continued)
 removing from HAStoragePlus resource, 140–142
 unmounting, 140
files
 /etc/vfstab
 adding entries to, 138
 removing entries from, 141
 RTR, 150
format, resource type names, 26
freeing node resources, affinities, 156–157

H
HAStoragePlus, 131–135
 managed entity monitoring, 112
 upgrading from HAStorage, 135–137
HAStoragePlus resource
 cluster file systems
 change from local file system, 149
 configuring, 118–120
HAStoragePlus resource type
 caution notice, 140
 criteria for using, 18–19
 failure to modify instances of, 146–147, 147–148
 modifying instances of, 138–148
 overview, 17–19
 resource type versions, 150
 upgrading, 149–150
help, 11–12
highly available file systems
 adding file systems to, 138–140
 caution notice, 140
 enabling, 121
 failure to modify, 146–147, 147–148
 modifying, 138–148
 removing file systems from, 140–142
highly available local file system across zone clusters, sharing, 131–135
intervals, fault monitor probes, 173–174
IOOption property, 113

L
legal names
 Resource Group Manager (RGM), 26–27
load balancing, 155–156
local file systems, list of supported, 122
logical hostname resources
 adding to resource group
 using CLI, 53–55
 using clsetup utility, 50–52
 modifying, 89–90
loopback mount
 using HAStoragePlus, 118–120, 121

M
maximum values, restarts, 174
migrating
 HAStoragePlus resources, 150
 logical hostname resources, 98
 shared address resources, 98
migrating to a new resource type version, 37–41
mission-critical services, 156–157
modifying resources, 89–90

N
name services, bypassing, 89–90
networks, restrictions, 19
NodeList resource group property, and affinities, 152
nodes
 adding to resource groups
 overview, 100
 failover, 101–102
 scalable, 100–101
distributing resource groups on, 151–160
load balancing, 155–156
off-loading noncritical services, 156–157
nodes (Continued)

removing from resource groups
overview, 103
failover, 105–106
failover with shared addresses, 106–107
scalable, 104–105

non-global zone
allowing cluster services, 177
denying cluster services, 176–177
noncritical services, off-loading, 156–157

nsswitch.conf, verifying file contents, 15

O

off-loading noncritical resource groups, affinities, 156–157
Oracle Service Management Facility (SMF)
enabling, 163–172
encapsulating into a failover proxy resource, 164–166
encapsulating into a multi-master resource type, 166–169
encapsulating into a scalable proxy resource, 169
Oracle Service Management Facility (SMF) services, enabling, 16
Oracle Solaris Cluster Administrative commands, 23
Oracle Solaris Cluster Manager GUI, 22–23

P

partial failures, 174–175
performance
effect of probe interval on, 173
optimizing for mission-critical services, 156–157
persistent faults, defining, 174–175
ping command, responses from disabled resources, 80
planning
cluster file system, 15
data services, 13–28
preregistered resource types
reregistering after inadvertent deletion, 98–99
upgrading, 97–98

Probe_timeout extension property
effect on restart time, 175
tuning, 174
properties
See also extension properties
cluster, 24
resource, 25
resource group, 25
Type_version, 98, 150
property attributes, resource, 25
property names, rules, 26
property values, rules, 28

Q

quiescing resource groups, 68–69

R

recovering
from failure to modify file system, 146–147, 147–148
recovery actions
resuming automatic, 69–72
suspending automatic, 69–72
registering
HAStoragePlus resource type
during upgrade, 150
preregistered resource types, 98–99
resource types, 34–35
SUNW.LogicalHostname resource type
after inadvertent deletion, 98–99
during upgrade, 97
SUNW.SharedAddress resource type
after inadvertent deletion, 98–99
during upgrade, 97
removing
file systems from HAStoragePlus resource, 140–142
nodes from resource groups
overview, 103
failover, 105–106
failover with shared addresses, 106–107
scalable, 104–105
resource groups (Continued)
 removing, 75–76
 removing nodes, 103
 restarting, 94–95
 resuming automatic recovery actions, 69–72
 retrieving, replicating or upgrading configuration
data about, 160
 scalable
 adding nodes, 100–101
 removing nodes from, 104–105
 suspending automatic recovery actions, 69–72
 switching over, 92–94
 switching the current primary, 77–79
 switching to preferred primaries, 66–67
 synchronizing startups with device groups, 111–117
resource names, rules, 26
resource properties, 25
resource type, ScalMountPoint, 47
resource type names, rules, 26
resource type registration (RTR) file, 150
resource types
 changing properties, 83–84
 displaying configuration information, 82
downgrading, 41–42
HAStoragePlus
 existing resources, 117
 new resources, 115–117
LogicalHostname
 migrating instances of, 98
migrating to a new resource type version, 37–41
preregistered
 reregistering after inadvertent deletion, 98–99
 upgrading, 97–98
registering, 34–35
removing, 74–75
retrieving, replicating or upgrading configuration
data about, 160
SharedAddress
 migrating instances of, 98
unregistering, 74–75
upgrading, 36–37

removing (Continued)
 resource group, 75–76
 resource types, 74–75
 resources, 76–77
replicating, configuration data, 160
requirements, data services, 14
reregistering preregistered resource types, 98–99
resource dependency, setting, 86–89
resource fault monitors, 72–73
resource group affinities, zone cluster, 159–160
Resource Group Manager (RGM)
 legal names, 26–27
 values, 28
resource group names, rules, 26
resource group properties, 25
resource groups
 adding nodes to, 100
 adding resources, 49–64
 failover application, 59–61
 logical hostname, 50–52, 53–55
 scalable application, 62–64
 shared address, 55–57, 57–59
 affinities, 151–152
 bringing online, 65–66
 changing properties, 84–85
 creating
 failover, 43–45
 scalable, 45–47
deleagating failover or switchover, 157–158
displaying configuration information, 82
distributing among nodes, 151–160
enforced collocation, 152–154
enforced separation, 156–157
even distribution, 155–156
failover
 adding nodes, 101–102
 removing nodes from, 105–106
 failover with shared addresses
 removing nodes from, 106–107
 moving to UNMANAGED state, 80–81
preferred collocation, 154–155
preferred separation, 155–156
quiescing, 68–69
relationship with device groups, 17
resource type, ScalMountPoint, 47
resourcetypes, 74–75
resources, 76–77
Index
resources
- adding to a resource group, 49–64
- changing properties, 85–86
- clearing STOP FAILED error flag, 90–91
- disabling, 80–81, 95–97
- disabling fault monitors, 72–73
- displaying configuration information, 82
- enabling, 67–68, 95–97
- enabling fault monitors, 73
- failover application
 - adding to a resource group, 59–61
 - logical hostname
 - adding to a resource group, 50–52, 53–55
 - modifying, 89–90
- removing, 76–77
- removing resource types, 74–75
- retrieving, replicating or upgrading configuration data about, 160
- scalable application
 - adding to a resource group, 62–64
 - shared address
 - adding to a resource group, 55–57, 57–59
 - isolating from hosts when disabled, 80
 - modifying, 89–90
- responses to faults, 176
- restarting, resource groups, 94–95
- restarts, maximum allowed, 174
- restrictions, 19
- Retry_count system property, 175
- retry interval, 174
- Retry_interval system property, 175
- RG_affinities resource group property, 151–152
- rules
 - description values, 28
 - enumeration literal names, 26
 - property names, 26
 - property values, 28
 - resource group names, 26
 - resource names, 26

scalable application resources, adding to resource group, 62–64

ScalMountPoint resource type, creating, 47
- retrieving, configuration data about resource groups, resource types, and resources, 161
- scsnapshot utility, 160
- setting, resource dependency, 86–89
- setting up
 - HAStoragePlus resource type, 121
 - existing resources, 117
 - new resources, 115–117
- shared address resources
 - adding to resource group, 57–59
 - using clsetup utility, 55–57
 - isolating from hosts when disabled, 80
 - modifying, 89–90
- sharing a highly available local file system, zone clusters, 131–135

SMF
- See also Oracle Service Management Facility (SMF)
 - enabling, 163–172
 - encapsulating into a failover proxy resource, 164–166
 - encapsulating into a multi-master proxy resource, 166–169
 - encapsulating into a scalable proxy resource, 169
- Oracle Service Management Facility (SMF), 16
- special requirements, identifying, 14
- Start_failed resource state
 - clearing, 92–94, 94–95, 95–97
- STOP FAILED error flag, 90–91
- strong negative affinity
 - definition, 152
 - usage example, 156–157
- strong positive affinity
 - definition, 152
 - usage example, 152–154
- strong positive affinity with failover delegation
 - definition, 152
 - usage example, 157–158

Sun StorageTek Availability Suite, managed entity monitoring, 112

SUNW.LogicalHostname resource type
- reregistering after inadvertent deletion, 98–99
- resource type versions, 97
- upgrading, 97–98
SUNW.SharedAddress resource type
 rereregistering after inadvertent deletion, 98–99
 resource type versions, 97
 upgrading, 97–98
switching, resource groups, 92–94
switching the current primary, resource groups, 77–79
switching to preferred primaries, resource groups, 66–67
switchover, delegating for resource groups, 157–158
synchronizing startups, resource groups and device groups, 111–117
syntax
 description values, 28
 enumeration literal names, 26
 property names, 26
 property values, 28
 resource group names, 26
 resource names, 26
 resource type names, 26
system properties
 See also extension properties
 See also properties
 effect on fault monitors, 173
 Failover_mode, 176
 Retry_count, 175
 Retry_interval, 175
 Thorough_probe_interval
 effect on restart time, 175
tuning, 174
 Thorough_probe_interval system property
 effect on restart time, 175
 tuning, 174
timeouts
 fault monitor
guidelines for setting, 174
tools
 clsetup utility, 23
 Oracle Solaris Cluster Administrative commands, 23
 Oracle Solaris Cluster Manager GUI, 22–23
troubleshooting
 modification of file systems, 146–147, 147–148
tuning, fault monitors, 173–176
 Type_version property, 98, 150

U
unmounting, file systems, 140
unregistering, resource types, 74–75
upgrade directive, 26
upgrading
 configuration data, 161
 HAStoragePlus resource type, 149–150
 preregistered resource types, 97–98
 resource types, 36–37
values, Resource Group Manager (RGM), 28
verifying
 addition of file systems to HAStoragePlus resource, 139
 nsswitch.conf file contents, 15
 removal of file systems from HAStoragePlus resource, 141
versions
 HAStoragePlus resource type, 150
 SUNW.LogicalHostname resource type, 97
 SUNW.SharedAddress resource type, 97
vfstab file
 adding entries to, 138
 adding removing entries from, 141
volume managers, highly available file systems, 123

W
weak negative affinity
 definition, 152
 usage example, 155–156
weak positive affinity
 definition, 152
 usage example, 154–155
Index

Z
zone cluster, resource group affinities, 159–160
Zpools property, recovering from a fault, 147–148