

[image: Oracle Corporation]

Oracle® Fusion Middleware

Mobile Developer's Guide for Oracle Application Development Framework

11g Release 2 (11.1.2.4.0)

E24475-03

October 2013

Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to use Oracle JDeveloper to create mobile applications that run natively on devices.

Oracle Fusion Middleware Mobile Developer's Guide for Oracle Application Development Framework 11g Release 2 (11.1.2.4.0)

E24475-03

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Liza Rekadze, John Bassett

Contributing Author: Cindy Hall

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide in Release 11.1.2.4.0

Part I Understanding ADF Mobile

1 Introduction to ADF Mobile

	1.1 Introduction to ADF Mobile
	1.2 ADF Mobile Runtime Architecture

2 Introduction to ADF Mobile Application Development

	2.1 Introduction to ADF Mobile Application Development
	2.2 Infrastructure Requirements
	2.3 Supported Platforms, Devices, and Databases
	2.4 ADF Mobile Application Architecture
	2.5 Typical Development Stages
	2.6 The Application Lifecycle
	2.7 Sample Applications
	2.8 ADF Mobile AMX Application Feature
	2.9 Comparison of ADF Mobile and Server-Based Oracle ADF

Part II Getting Started

3 Setting Up the ADF Mobile Environment

	3.1 Introduction to the ADF Mobile Environment
	3.2 Prerequisites for Developing ADF Mobile Applications
	3.2.1 What You Need to Create an Application
	3.2.2 What You Need to Deploy an Application to a Development Environment

	3.3 Setting Up JDeveloper
	3.3.1 How to Configure the Development Environment for Platforms and Form Factors
	3.3.1.1 Configuring the Environment for Form Factors
	3.3.1.2 Configuring the Environment for Target Platforms

	3.4 Setting Up Development Tools for iOS Platform
	3.4.1 How to Install Xcode
	3.4.2 How to Install iOS SDK
	3.4.3 How to Set Up an iPhone or iPad
	3.4.4 How to Set Up an iPhone or iPad Simulator

	3.5 Setting Up Development Tools for Android Platform
	3.5.1 How to Install the Android SDK
	3.5.2 How to Set Up an Android-Powered Device
	3.5.3 How to Set Up an Android Emulator
	3.5.3.1 Saving the Emulator State
	3.5.3.2 Creating, Saving, and Reusing the SD Card
	3.5.3.3 Configuring the Network
	3.5.3.4 Configuring the Network Proxy

	3.6 Testing the Environment Setup

4 Getting Started with ADF Mobile Application Development

	4.1 Introduction to Declarative Development for ADF Mobile Applications
	4.2 Creating an Application Workspace
	4.2.1 How to Create a Workspace for an ADF Mobile Application
	4.2.2 What Happens When You Create an ADF Mobile Application
	4.2.2.1 About the Application Controller Project-Level Resources
	4.2.2.2 About the View Controller Project Resources
	4.2.2.3 About Automatically Generated Deployment Profiles

	4.2.3 What You May Need to Know About Editing ADF Mobile Applications and Application Features
	4.2.4 Creating an Application Workspace for an ADF Mobile AMX Application
	4.2.4.1 How to Create an ADF Mobile AMX Page
	4.2.4.2 How to Create ADF Mobile Task Flows
	4.2.4.3 What Happens When You Create ADF Mobile AMX Pages and Task Flows

Part III Developing ADF Mobile Applications

5 Defining an ADF Mobile Application

	5.1 Introduction to Defining ADF Mobile Applications
	5.1.1 Using the Overview Editor for adfmf-applications.xml

	5.2 About the Mobile Application Configuration File
	5.3 Setting the Basic Information for an ADF Mobile Application
	5.3.1 How to Set the ID and Display Behavior for a Mobile Application

	5.4 Invoking an ADF Mobile Application Using a Custom URL Scheme
	5.5 Configuring the Springboard and Navigation Bar Behavior
	5.5.1 How to Configure Application Navigation
	5.5.2 What Happens When You Configure the Navigation Options
	5.5.3 What Happens When You Set the Animation for the Springboard
	5.5.4 What You May Need to Know About Custom Springboard Application Features with HTML Content
	5.5.5 What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content

	5.6 Configuring the Application Features within a Mobile Application
	5.6.1 How to Designate the Content for a Mobile Application
	5.6.2 What You May Need to Know About Feature Reference IDs and Feature IDs

	5.7 About Lifecycle Event Listeners
	5.7.1 Events in ADF Mobile Applications
	5.7.2 Timing for Mobile Application Events
	5.7.3 Using the activate and deactivate Methods to Save Application State
	5.7.4 About Application Feature Lifecycle Listener Classes
	5.7.5 Timing for Activate and Deactivate Events in the Application Feature Application Lifecycle

	5.8 About the Mobile Feature Application Configuration File
	5.9 Setting the Basic Configuration for the Application Feature
	5.9.1 How to Define the Basic Information for the Application Feature

	5.10 Defining the Content Types for an Application Feature
	5.10.1 How to Define the Application Content
	5.10.2 What You May Need to Know About Selecting External Resources

	5.11 Working with Resource Bundles
	5.11.1 How to Create Project-Level Resource Bundles
	5.11.2 What Happens When You Add a Resource Bundle
	5.11.2.1 What Happens When You Create Project-Level Resource Bundles for ADF Mobile AMX Components

	5.11.3 What You May Need to Know About Localizing Image Files
	5.11.4 What You May Need to Know About XLIFF Files for iOS Applications
	5.11.5 Internationalization for iOS Applications

	5.12 Skinning ADF Mobile Applications
	5.12.1 About the adfmf-config.xml File
	5.12.2 What You May Need to Know About ADF Mobile Styles
	5.12.3 About the adfmf-skins.xml File
	5.12.3.1 About the ADF Mobile Skin Identifiers

	5.12.4 How to Change the Default Skin Family
	5.12.5 How to Version ADF Mobile Skins
	5.12.6 What Happens When You Version an ADF Mobile Skin
	5.12.7 Overriding the Default Skin Styles
	5.12.7.1 How to Apply New Style Classes to an Application Feature
	5.12.7.2 What Happens When You Apply a Skin to a Feature Application

	5.12.8 What You May Need to Know About Skinning

	5.13 Working with Feature Archive Files
	5.13.1 How to Use FAR Content in an ADF Mobile Application
	5.13.2 What Happens When You Add a Feature Archive JAR to a Classpath
	5.13.3 What You May Need to Know About Enabling the Reuse of Feature Archive Resources

Part IV Creating the ADF Mobile AMX Application Feature

6 Creating ADF Mobile AMX Pages

	6.1 Introduction to the ADF Mobile AMX Application Feature
	6.2 Creating Task Flows
	6.2.1 How to Create a Task Flow
	6.2.2 What You May Need to Know About Supported Activities and Control Flows
	6.2.3 What You May Need to Know About the ViewController-task-flow.xml File
	6.2.4 What You May Need to Know About the ADF Mobile Task Flow Diagrammer
	6.2.5 How to Add ADF Mobile Activities
	6.2.6 How to Add View Activities
	6.2.7 How to Add a Wildcard Control Flow Rule
	6.2.8 How to Enable Page Navigation Using Control Flow Case
	6.2.9 How to Specify Action Outcomes Using UI Components
	6.2.10 How to Create and Reference Managed Beans
	6.2.11 How to Specify the Page Transition Style

	6.3 Creating Views
	6.3.1 How to Work with ADF Mobile AMX Pages
	6.3.1.1 Interpreting the ADF Mobile AMX Page Structure
	6.3.1.2 Creating ADF Mobile AMX Pages
	6.3.1.3 What Happens When You Create an ADF Mobile AMX Page
	6.3.1.4 Using UI Editors
	6.3.1.5 Accessing the Page Definition

	6.3.2 How to Add UI Components and Data Controls to an ADF Mobile AMX Page
	6.3.2.1 Adding UI Components
	6.3.2.2 Using the Preview
	6.3.2.3 Configuring UI Components
	6.3.2.4 Adding Data Controls to the View
	6.3.2.5 What You May Need to Know About Element Identifiers and Their Audit

7 Creating the ADF Mobile AMX User Interface

	7.1 Introduction to Creating the User Interface for ADF Mobile AMX Pages
	7.2 Designing the Page Layout
	7.2.1 How to Use a View Component
	7.2.2 How to Use a Panel Page Component
	7.2.3 How to Use a Panel Group Layout Component
	7.2.4 How to Use a Panel Form Layout Component
	7.2.5 How to Use a Panel Label And Message Component
	7.2.6 How to Use a Facet Component
	7.2.7 How to Use List View and List Item Components
	7.2.7.1 Configuring List View Paging
	7.2.7.2 Rearranging List View Items
	7.2.7.3 Configuring Layout Using Styles
	7.2.7.4 What You May Need to Know About Using a Static List View

	7.2.8 How to Use a Popup Component
	7.2.9 How to Use a Panel Splitter Component
	7.2.10 How to Use a Table Layout Component

	7.3 Creating and Using UI Components
	7.3.1 How to Use the Input Text Component
	7.3.2 How to Use the Input Number Slider Component
	7.3.3 How to Use the Input Date Component
	7.3.4 How to Use the Output Text Component
	7.3.5 How to Use Buttons
	7.3.5.1 Displaying Default Style Buttons
	7.3.5.2 Displaying Back Style Buttons
	7.3.5.3 Displaying Highlight Style Buttons
	7.3.5.4 Displaying Alert Style Buttons
	7.3.5.5 Using Buttons Within the Application
	7.3.5.6 Enabling the Back Button Navigation
	7.3.5.7 What You May Need to Know About the Order of Processing Operations and Attributes

	7.3.6 How to Use Links
	7.3.7 How to Display Images
	7.3.8 How to Use the Checkbox Component
	7.3.8.1 Support for Checkbox Components on iOS Platform
	7.3.8.2 Support for Checkbox Components on Android Platform

	7.3.9 How to Use the Select Many Checkbox Component
	7.3.9.1 What You May Need to Know About the User Interaction with Select Many Checkbox Component

	7.3.10 How to Use the Choice Component
	7.3.10.1 What You May Need to Know About the User Interaction with Choice Component on iOS Platform
	7.3.10.2 What You May Need to Know About the User Interaction with Choice Component on Android Platform
	7.3.10.3 What You May Need to Know About Differences Between Select Items and Select Item Components

	7.3.11 How to Use the Select Many Choice Component
	7.3.12 How to Use the Boolean Switch Component
	7.3.12.1 Support for Boolean Switch Components on iOS Platform
	7.3.12.2 Support for Boolean Switch Components on Android Platform

	7.3.13 How to Use the Select Button Component
	7.3.14 How to Use the Radio Button Component
	7.3.15 How to Use Carousel Component
	7.3.16 How to Use Verbatim Component
	7.3.16.1 What You May Need to Know About Using JavaScript and AJAX with Verbatim Component

	7.3.17 How to Enable Iteration
	7.3.18 How to Load a Resource Bundle
	7.3.19 How to Use the Action Listener
	7.3.20 How to Use the Set Property Listener
	7.3.21 How to Convert Date and Time Values
	7.3.21.1 What You May Need to Know About Date and Time Patterns

	7.3.22 How to Convert Numerical Values

	7.4 Enabling Gestures
	7.5 Providing Data Visualization
	7.5.1 How to Create an Area Chart
	7.5.2 How to Create a Bar Chart
	7.5.3 How to Create a Horizontal Bar Chart
	7.5.4 How to Create a Bubble Chart
	7.5.5 How to Create a Combo Chart
	7.5.6 How to Create a Line Chart
	7.5.7 How to Create a Pie Chart
	7.5.8 How to Create a Scatter Chart
	7.5.9 How to Create a Spark Chart
	7.5.10 How to Create a LED Gauge
	7.5.11 How to Create a Status Meter Gauge
	7.5.12 How to Create a Dial Gauge
	7.5.13 How to Create a Rating Gauge
	7.5.13.1 Applying Custom Styling to the Rating Gauge Component

	7.5.14 How to Define Child Elements for Chart and Gauge Components
	7.5.14.1 Defining Chart Data Item
	7.5.14.2 Defining Legend
	7.5.14.3 Defining X Axis, YAxis, and Y2Axis
	7.5.14.4 Defining Pie Data Item
	7.5.14.5 Defining Spark Data Item
	7.5.14.6 Defining Reference Object
	7.5.14.7 Defining Threshold

	7.5.15 How to Create a Geographic Map Component
	7.5.15.1 Configuring Geographic Map Components With the Map Provider Information

	7.5.16 How to Create a Thematic Map Component
	7.5.16.1 Defining Custom Markers
	7.5.16.2 Defining Isolated Areas
	7.5.16.3 Enabling Initial Zooming
	7.5.16.4 Defining a Custom Base Map
	7.5.16.5 Applying Custom Styling to the Thematic Map Component

	7.5.17 How to Create Databound Data Visualization Components

	7.6 Styling UI Components
	7.6.1 How to Use Component Attributes to Define Style
	7.6.2 What You May Need to Know About Skinning
	7.6.3 How to Style Data Visualization Components

	7.7 Localizing UI Components
	7.8 Understanding ADF Mobile Support for Accessibility
	7.8.1 How to Configure UI and DVT Components for Accessibility
	7.8.2 What You May Need to Know About the Basic WAI-ARIA Terms
	7.8.3 What You May Need to Know About the Oracle Global HTML Accessibility Guidelines

	7.9 Validating Input
	7.10 Using Event Listeners
	7.10.1 What You May Need to Know About Constrained Type Attributes for Event Listeners

8 Using Bindings and Creating Data Controls

	8.1 Introduction to Binding Layer Components and Data Controls
	8.2 Understanding EL Support
	8.2.1 ADF Mobile AMX EL Implementation
	8.2.1.1 Immediate and Deferred Evaluation
	8.2.1.2 Enumerated Types

	8.2.2 How to Reference Binding Containers
	8.2.3 EL Events
	8.2.3.1 Configuration Properties

	8.2.4 EL Expression Builder
	8.2.4.1 ADF Bindings
	8.2.4.2 ADF Managed Beans
	8.2.4.3 ADF Mobile Objects
	8.2.4.4 Method Expression Builder
	8.2.4.5 Non EL-Properties

	8.3 Understanding Binding Layer Components
	8.3.1 Sequencing
	8.3.2 Validation of EL Bindings for ADF Mobile AMX Pages

	8.4 Creating and Using the Bean Data Control
	8.4.1 What You May Need to Know About Serialization of Bean Class Variables

	8.5 Using the DeviceFeatures Data Control
	8.5.1 How to Use the getPicture Method
	8.5.2 How to Use the SendSMS Method
	8.5.3 How to Use the sendEmail Method
	8.5.4 How to Use the createContact Method
	8.5.5 How to Use the findContacts Method
	8.5.6 How to Use the updateContact Method
	8.5.7 How to Use the removeContact Method
	8.5.8 How to Use the startLocationMonitor Method
	8.5.9 How to Use the displayFile Method
	8.5.10 Device Properties

	8.6 Performing Validation
	8.6.1 How to Add Validation Rules
	8.6.2 What You May Need to Know About the Validator Metadata

	8.7 Data Change Events

9 Using Web Services

	9.1 Introduction to Using Web Services
	9.2 Creating a Web Service Data Control
	9.2.1 How to Create a Web Service Data Control Using SOAP
	9.2.2 How to Customize SOAP Headers in Web Service Data Controls
	9.2.3 How to Create a Web Service Data Control Using REST

	9.3 Creating a New Web Service Connection
	9.4 Adjusting the Endpoint for a Web Service Data Control
	9.5 Accessing Secure Web Services
	9.5.1 How to Enable Access to SOAP-Based Web Services
	9.5.2 How to Enable Access to REST-Based Web Services
	9.5.3 What You May Need to Know About Credential Injection
	9.5.4 Limitations of Secure WSDL File Usage

	9.6 Invoking Web Services From Java
	9.6.1 How to Add and Delete Rows on Web Services Objects
	9.6.2 How to Use REST Web Services Adapter
	9.6.2.1 Support for Non-Text Responses

	9.6.3 How to Enable Strict Validation of REST Responses
	9.6.4 What You May Need to Know About Invoking Data Control Operations

10 Administering Web Services

	10.1 Introduction to Administering Web Services
	10.2 Using the Configuration Service
	10.2.1 How to Set Up the Configuration Service on the Server
	10.2.2 What You May Need to Know About the URL Construction

11 Using the Local Database

	11.1 Introduction to the Local SQLite Database Usage
	11.1.1 Differences Between SQLite and Other Relational Databases
	11.1.1.1 Concurrency
	11.1.1.2 SQL Support and Interpretation
	11.1.1.3 Data Types
	11.1.1.4 Foreign Keys
	11.1.1.5 Database Transactions
	11.1.1.6 Authentication

	11.2 Using the Local SQLite Database
	11.2.1 How to Connect to the Database
	11.2.2 How to Use SQL Script to Initialize the Database
	11.2.3 How to Initialize the Database on a Desktop
	11.2.4 What You May Need to Know About Commit Handling
	11.2.5 Limitations of the ADF Mobile's SQLite JDBC Driver
	11.2.6 How to Use the VACUUM Command
	11.2.7 How to Encrypt and Decrypt the Database

Part V Advanced Topics

12 Implementing Application Features as Remote URLs

	12.1 Overview of Remote URL Applications
	12.2 Overview of Enabling Remote URL Implementations to Access Apache Cordova
	12.3 Enabling Remote Application to Access Device Services through Whitelists
	12.3.1 How to Control Access to Device Capabilities
	12.3.2 How to Create a Whitelist
	12.3.3 What Happens When You Add Domains to a Whitelist
	12.3.4 What You May Need to Know About Remote URLs

	12.4 Creating Whitelists for Application Components
	12.5 Enabling the Browser Navigation Bar on Remote URL Pages
	12.5.1 How to Add the Navigation Bar to a Remote URL Application Feature
	12.5.2 What Happens When You Enable the Browser Navigation Buttons for a Remote URL Application Feature

13 Enabling User Preferences

	13.1 Creating User Preference Pages for an ADF Mobile Application
	13.1.1 How to Create Mobile Application-Level Preferences Pages
	13.1.1.1 How to Create a New User Preference Page
	13.1.1.2 What Happens When You Add a Preference Page
	13.1.1.3 How to Create User Preference Lists
	13.1.1.4 What Happens When You Create a Preference List
	13.1.1.5 How to Create a Boolean Preference List
	13.1.1.6 What Happens When You Add a Boolean Preference
	13.1.1.7 How to Add a Text Preference
	13.1.1.8 What Happens When You Define a Text Preference

	13.1.2 What Happens When You Create an Application-Level Preference Page

	13.2 Creating User Preference Pages for Application Features
	13.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages
	13.3.1 What You May Need to Know About preferenceScope
	13.3.2 Reading Preference Values in iOS Native Views

	13.4 Platform-Dependent Display Differences
	13.5 Creating a Preference for the Configuration Service URL
	13.5.1 How to Seed the Default Configuration URL
	13.5.2 What Happens When You Seed a URL Using a Text Preference

14 Setting Constraints on Application Features

	14.1 Introduction to Constraints
	14.1.1 Using Constraints to Show or Hide an Application Feature
	14.1.2 Using Constraints to Deliver Specific Content Types

	14.2 Defining Constraints for Application Features
	14.2.1 How to Define the Constraints for an Application Feature
	14.2.2 What Happens When You Define a Constraint
	14.2.3 About the property Attribute
	14.2.4 About User Constraints and Access Control
	14.2.5 About Hardware-Related Constraints

15 Accessing Data on Oracle Cloud

	15.1 Enabling ADF Mobile Applications to Access Data Hosted on Oracle Cloud
	15.1.1 How to Authenticate Against Oracle Cloud
	15.1.2 How to Create a Web Service Data Control to Access Oracle Java Cloud
	15.1.2.1 Configuring the Policy for SOAP-Based Web Services

	15.1.3 What Happens When You Deploy an ADF Mobile Application that Accesses Oracle Java Cloud Service

16 Push Notifications

	16.1 Introduction to Push Notifications
	16.1.1 How Push Notifications Work
	16.1.2 How ADF Mobile Applications Display Notifications Depending on Application State

	16.2 Enabling Push Notifications for an ADF Mobile Application
	16.3 About the Push Notification Payload

Part VI Completing Your Application

17 Deploying ADF Mobile Applications

	17.1 Introduction to Deployment of Mobile Applications
	17.1.1 How ADF Mobile Deploys Applications
	17.1.1.1 Deployment of Project Libraries
	17.1.1.2 Deployment of the JVM 1.4 Libraries

	17.2 Working with Deployment Profiles
	17.2.1 How to Create a Deployment Profile
	17.2.2 What Happens When You Create a Deployment Profile
	17.2.3 How to Create an Android Deployment Profile
	17.2.3.1 Setting the Options for the Application Details
	17.2.3.2 Setting Deployment Options
	17.2.3.3 Defining the Android Signing Options
	17.2.3.4 How to Add a Custom Image to an Android Application
	17.2.3.5 What Happens When JDeveloper Deploys Images for Android Applications
	17.2.3.6 What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device

	17.2.4 How to Create an iOS Deployment Profile
	17.2.4.1 Defining the iOS Build Options
	17.2.4.2 Setting the Device Signing Options
	17.2.4.3 Adding a Custom Image to an iOS Application
	17.2.4.4 What You May Need to Know About iTunes Artwork
	17.2.4.5 How to Restrict the Display to a Specific Device Orientation
	17.2.4.6 What Happens When You Deselect Device Orientations

	17.3 Deploying an Android Application
	17.3.1 How to Deploy an Android Application to an Android Emulator
	17.3.2 How to Deploy an Application to an Android-Powered Device
	17.3.3 How to Publish an Android Application
	17.3.4 What Happens in JDeveloper When You Create an .apk File
	17.3.5 Selecting the Most Recently Used Deployment Profiles
	17.3.6 What You May Need to Know About Using the Android Debug Bridge

	17.4 Deploying an iOS Application
	17.4.1 How to Deploy an iOS Application to an iOS Simulator
	17.4.2 How to Deploy an Application to an iOS-Powered Device
	17.4.3 What Happens When You Deploy an Application to an iOS Device
	17.4.4 What You May Need to Know About Deploying an Application to an iOS-Powered Device
	17.4.4.1 Creating iOS Development Certificates
	17.4.4.2 Registering an Apple Device for Testing and Debugging
	17.4.4.3 Registering an Application ID

	17.4.5 How to Distribute an iOS Application to the App Store
	17.4.5.1 What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device

	17.5 Deploying Feature Archive Files (FARs)
	17.5.1 How to Create a Deployment Profile for a Feature Archive
	17.5.2 How to Deploy the Feature Archive Deployment Profile
	17.5.3 What Happens When You Deploy a Feature Archive File Deployment Profile

	17.6 Creating a Mobile Application Archive File
	17.6.1 How to Create a Mobile Application Archive File

	17.7 Creating Unsigned Deployment Packages
	17.7.1 How to Create an Unsigned Application
	17.7.2 What Happens When You Import an ADF Mobile Application Archive File

	17.8 Deploying ADF Mobile Applications from the Command Line
	17.8.1 Using OJDeploy to Deploy ADF Mobile Applications

18 ADF Mobile Application Security

	18.1 Introduction to Security for an ADF Mobile Application
	18.2 Introduction to the User Login Process
	18.3 Introduction to Authentication
	18.3.1 About Constraint-Dictated Access Control

	18.4 Configuring Security for ADF Mobile Applications
	18.4.1 How to Enable Application Features to Require Authentication
	18.4.2 How to Designate the Login Page
	18.4.3 Enabling Login without the Access Control Service
	18.4.4 What Happens When You Create an ADF Mobile Connection
	18.4.5 What You May Need to Know About Configuring ADF Mobile to Respond to Unsuccessful Login Attempts
	18.4.6 What Happens in JDeveloper When You Configure Security
	18.4.7 What You May Need to Know About the Access Control Service
	18.4.8 What Happens When You Enable Cookie Injection into REST Web Service Calls
	18.4.9 What You May Need to Know About Injecting Cookies into REST Web Service Calls
	18.4.10 What You May Need to Know About Injecting Basic Authentication Headers
	18.4.11 What You May Need to Know about Web Service Security
	18.4.12 What You May Need to Know About Login Pages
	18.4.12.1 The Default Login Page
	18.4.12.2 The Custom Login Page
	18.4.12.3 Creating a Custom Login HTML Page

	18.5 Adding Private Certificates

19 Testing and Debugging ADF Mobile Applications

	19.1 Introduction to Testing and Debugging ADF Mobile Applications
	19.2 Testing ADF Mobile Applications
	19.2.1 How to Perform Accessibility Testing on iOS-Powered Devices

	19.3 Debugging ADF Mobile Applications
	19.3.1 How to Debug on iOS Platform
	19.3.2 How to Debug on Android Platform
	19.3.3 How to Debug the ADF Mobile AMX Content
	19.3.4 How to Enable Debugging of Java Code and JavaScript
	19.3.4.1 What You May Need to Know About Debugging of JavaScript Using an iOS-Powered Device Simulator on iOS 6 Platform

	19.3.5 How to Configure the Debug Mode

	19.4 Using and Configuring Logging
	19.4.1 How to Configure Logging Using the Properties File
	19.4.2 How to Use JavaScript Logging
	19.4.3 How to Use Embedded Logging
	19.4.4 How to Use Xcode for Debugging and Logging on iOS Platform

Part VII Appendixes

A Troubleshooting

	A.1 Problems with Input Components on iOS Simulators
	A.2 Code Signing Issues Prevent Deployment
	A.3 Missing Android SDK Tools File Prevents Deployment

B Application Container APIs

	B.1 Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature
	B.1.1 About Executing Code in Custom HTML Pages

	B.2 The ADF Mobile Container Utilities API
	B.2.1 Using the JavaScript Callbacks
	B.2.2 Using the Container Utilities API
	B.2.3 checkforNewConfiguration
	B.2.4 getApplicationInformation
	B.2.5 gotoDefaultFeature
	B.2.6 getFeatures
	B.2.7 gotoFeature
	B.2.8 getFeatureByName
	B.2.9 getFeatureById
	B.2.10 resetFeature
	B.2.11 gotoSpringboard
	B.2.12 hideNavigationBar
	B.2.13 showNavigationBar
	B.2.14 invokeMethod
	B.2.15 invokeContainerJavaScriptFunction
	B.2.16 Application Icon Badging

	B.3 Accessing Files Using the getDirectoryPathRoot Method
	B.3.1 Accessing Platform-Independent Download Locations

C Converting Preferences for Deployment

	C.1 Naming Patterns for Preferences
	C.2 Converting Preferences for Android
	C.2.1 Preferences.xml
	C.2.1.1 Preferences Element Mapping
	C.2.1.2 Preference Attribute Mapping
	C.2.1.3 Attribute Default Values
	C.2.1.4 Preferences Screen Root Element

	C.2.2 arrays.xml
	C.2.3 Strings.xml

	C.3 Converting Preferences for iOS

D ADF Mobile Application Usage

	D.1 Introduction to ADF Mobile Application Usage
	D.2 Installing the ADF Mobile Application on a Mobile Device
	D.2.1 How to Install ADF Mobile Applications on iOS-Powered Devices
	D.2.2 How to Install ADF Mobile Applications on Android-Powered Devices
	D.2.3 How to Uninstall an ADF Mobile Application

	D.3 Navigating Between Application Features
	D.3.1 How to Navigate Between Application Features on iOS-Powered Devices
	D.3.1.1 Navigating Using the Springboard
	D.3.1.2 Using Single-Featured Applications

	D.3.2 How to Navigate on Android-Powered Devices

	D.4 Setting Preferences
	D.4.1 How to Set Preferences on iOS-Powered Devices
	D.4.2 How to Set Preferences on Android-Powered Devices

	D.5 Viewing Log Files
	D.6 Limitations to the Application Usage
	D.6.1 List View Component Limitations
	D.6.2 Data Visualization Components Limitations
	D.6.3 Device Back Button Limitations on Android Platform
	D.6.4 Accessibility Support Limitations

E Parsing XML

	E.1 Parsing XML Using kXML Library

F ADF Mobile Sample Applications

	F.1 Overview of the ADF Mobile Sample Applications

Preface

Welcome to the Mobile Developer's Guide for Oracle Application Development Framework.

Audience

This document is intended for Oracle ADF developers tasked with developing applications that run on-device and are intended for users working almost exclusively in mobile environments.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Oracle Fusion Middleware Installation Guide for Oracle JDeveloper

	
Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework

	
Oracle JDeveloper 11g Online Help

	
Oracle JDeveloper 11g Release Notes, link included with your Oracle JDeveloper 11g installation, and on Oracle Technology Network

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide in Release 11.1.2.4.0

For Release 11.1.2.4.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.

For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html.

	Sections	Changes Made
	
Chapter 1, "Introduction to ADF Mobile"

	

	
Section 1.1, "Introduction to ADF Mobile"

	
Section restructured to address clarity issues.

	
Section 1.2, "ADF Mobile Runtime Architecture"

	
Section adjusted to reflect absorption of PhoneGap by Apache Cordova.

	
Chapter 3, "Setting Up the ADF Mobile Environment"

	

	
Section 3.2, "Prerequisites for Developing ADF Mobile Applications"

	
Section revised to clarify the supported software versions.

	
Section 3.3, "Setting Up JDeveloper"

	
Section revised to clarify the supported versions of JDeveloper.

Link to the Certification and Support Matrix for Oracle JDeveloper and ADF provided.

	
Section 3.3.1.1, "Configuring the Environment for Form Factors"

	
Section modified to reflect the introduction of new form factors.

	
Section 3.4, "Setting Up Development Tools for iOS Platform"

	
Section revised to clarify iOS software and tools versions.

Information about Apple licensing added.

	
Section 3.6, "Testing the Environment Setup"

	
Section added.

	
Chapter 4, "Getting Started with ADF Mobile Application Development"

	

	
Section 4.2.2.1, "About the Application Controller Project-Level Resources"

	
Section revised to clarify the concept that an application controller project contains application-wide artifacts.

	
Section 4.2.2.3, "About Automatically Generated Deployment Profiles"

	
Section added.

	
Chapter 5, "Defining an ADF Mobile Application"

	

	
Section 5.4, "Invoking an ADF Mobile Application Using a Custom URL Scheme."

	
Section added.

	
Section 5.7.3, "Using the activate and deactivate Methods to Save Application State"

	
Section added.

	
Section 5.12.5, "How to Version ADF Mobile Skins"

	
Section added.

	
Chapter 6, "Creating ADF Mobile AMX Pages"

	

	
Section 6.2.2, "What You May Need to Know About Supported Activities and Control Flows"

	
Section adjusted to include description of the task flow return.

	
Section 6.2.11, "How to Specify the Page Transition Style"

	
Section modified to add information on new BiDi values for page transitions.

	
Chapter 7, "Creating ADF Mobile AMX User Interface"

	

	
Section 7.2, "Designing the Page Layout"

	
Section modified to add information on new BiDi values for page transitions and animation.

	
Section 7.2.7.4, "What You May Need to Know About Using a Static List View"

	
Section modified to clarify the usage of the editable List View component.

	
Section 7.4, "Enabling Gestures"

	
Section modified to add information on new BiDi values for page transitions and animation.

	
Section 7.5.7, "How to Create a Pie Chart"

	
Section modified to include information on pie chart sorting.

	
Section 7.5.11, "How to Create a Status Meter Gauge"

	
Section modified to include the description of new status meter gauge indicator configuration.

Section modified to include information on the reference line support for status meter gauge.

	
Section 7.5.12, "How to Create a Dial Gauge"

	
Section modified to include information on the dial gauge scale labeling.

	
Section 7.5.13, "How to Create a Rating Gauge"

	
Section added.

	
Section 7.5.16.4, "Defining a Custom Base Map"

	
Section modified to clarify BiDi support.

	
Section 7.5.16.5, "Applying Custom Styling to the Thematic Map Component"

	
Section and examples modified to include information on the default Thematic Map colors configuration.

	
Chapter 8, "Using Bindings and Creating Data Controls"

	

	
Section 8.2.2, "How to Reference Binding Containers"

	
Updated Table 8–1, "Runtime Properties."

	
Section 8.2.4.2, "ADF Managed Beans"

	
Added managed bean code examples.

	
Section 8.4.1, "What You May Need to Know About Serialization of Bean Class Variables"

	
Added information about using the JSONBeanSerializationHelper class.

	
Section 8.5.4, "How to Use the createContact Method"

	
Section and examples updated to include Java bean code. Also added note that the ims property is not supported in this release.

	
Section 8.5.6, "How to Use the updateContact Method"

	
Section and examples updated to include Java bean code. Also added note that the ims property is not supported in this release.

	
Section 8.5.5, "How to Use the findContacts Method"

	
Added note that the ims property is not supported in this release.

	
Section 8.5.9, "How to Use the displayFile Method"

	
Section added.

	
Section 8.7, "Data Change Events"

	
Updated information about PropertyChangeSupport and ProviderChangeSupport.

	
Chapter 9, "Using Web Services"

	

	
Section 9.2.3, "How to Create a Web Service Data Control Using REST"

	
Section modified to reflect the new Create Web Service Data Control wizard.

	
Section 9.5.3, "What You May Need to Know About Credential Injection"

	
Section and examples adjusted to reflect substitution of credentialStoreKey with adfCredentialStoreKey.

	
Section 9.6.1, "How to Add and Delete Rows on Web Services Objects"

	
Section added to describe new functionality of inserting and deleting rows on web service objects.

	
Section 9.2.2, "How to Customize SOAP Headers in Web Service Data Controls"

	
Section added.

	
Chapter 10, "Administering Web Services"

	

	
Section 10.1, "Introduction to Administering Web Services"

	
Section added as part of the new chapter.

	
Section 10.2, "Using the Configuration Service"

	
Section moved from Chapter 9, "Using Web Services" to the new Chapter 10, "Administering Web Services." Section also revised to clarify the timing of starting up the Configuration Service.

	
Section 10.2.1, "How to Set Up the Configuration Service on the Server"

	
Section added.

	
Chapter 13, "Enabling User Preferences"

	

	
Section 13.5, "Creating a Preference for the Configuration Service URL"

	
Section added.

	
Chapter 14, "Setting Constraints on Application Features"

	

	
Section 14.1, "Introduction to Constraints"

	
Section revised to clarify the difference between setting constraints on an application feature and setting constraints on the application content.

	
Chapter 16, "Enabling Push Notifications"

	

	
Section 16.1, "Introduction to Push Notifications"

	
Chapter added to document push notifications for ADF Mobile applications.

	
Chapter 17, "Deploying ADF Mobile Applications"

	

	
Section 17.2.3, "How to Create an Android Deployment Profile"

	
Text revised to note that Google Cloud Messaging Library is required for the deployment of applications that use push notifications.

	
Section 17.7, "Creating Unsigned Deployment Packages"

	
Section added.

	
Section 17.8, "Deploying ADF Mobile Applications from the Command Line"

	
Section revised to include command line options for ADF Mobile Application Archive (.maa) file deployment.

	
Chapter 18, "ADF Mobile Application Security"

	

	
Section 18.4.3, "Enabling Login without the Access Control Service"

	
Section added.

	
Section 18.4.10, "What You May Need to Know About Injecting Basic Authentication Headers"

	
Section added.

	
Section 18.4.12.3, "Creating a Custom Login HTML Page"

	
Section revised to describe login pages for Android-powered devices.

	
Chapter 19, "Testing and Debugging ADF Mobile Applications"

	

	
Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript"

	
Section modified to reflect changes in locations of properties files.

	
Section 19.3.4.1, "What You May Need to Know About Debugging of JavaScript Using an iOS-Powered Device Simulator on iOS 6 Platform"

	
Section added.

	
Section 19.3.5, "How to Configure the Debug Mode"

	
Added information on deployment in debug mode log message.

	
Section 19.4.4, "How to Use Xcode for Debugging and Logging on iOS Platform"

	
Section added.

	
Appendix B, "Application Container APIs"

	
	
Section B.1, "Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature"

	
Section revised to illustrate how to enable access to the Apache Cordova API by defining a <script> tag that references www/js/base.js.

This appendix replaces Chapter 6, "Controlling the Display of Application Features" in 11g Release 2 (11.1.2.3.0).

	
Section B.3, "Accessing Files Using the getDirectoryPathRoot Method"

	
Section revised to document using the DownloadDirectory enum type.

Part I

Understanding ADF Mobile

Describes ADF Mobile concepts, technology, and development approach.

Part I contains the following chapters:

	
Chapter 1, "Introduction to ADF Mobile"

	
Chapter 2, "Introduction to ADF Mobile Application Development"

1 Introduction to ADF Mobile

This chapter introduces Oracle ADF Mobile—a metadata-based application development framework within Oracle JDeveloper that enables you to create multi-featured applications for Apple iOS and Google Android-powered devices from a single source using the declarative development approach. The applications run natively on the mobile devices.

This chapter includes the following sections:

	
Section 1.1, "Introduction to ADF Mobile"

	
Section 1.2, "ADF Mobile Runtime Architecture"

1.1 Introduction to ADF Mobile

From a single code base, using the standard HTML5, CSS, and Java technology, ADF Mobile enables you to create and extend an application that can house different types of content packaged for either iOS or Android platform.

Within the application, the contained functional areas are referred to as application features and represent one or more specific pieces of the application's functionality.

The following types of application features can coexist within the same ADF Mobile application:

	
ADF Mobile AMX—although you do not necessarily have to develop the application features that reside within the ADF Mobile application, this implementation approach allows you to define an application feature which utilizes much of the device's functionality through embedded components, with the metadata represented by an XML file. This application feature implementation, which is generated into HTML or JavaScript on a mobile device and which uses ADF data bindings, is developed declaratively in JDeveloper using a set of ADF Mobile-specific components.

The workflows of ADF Mobile AMX pages are portable across platforms.

Figure 1-1 shows the user interface rendered for an application feature implemented using ADF Mobile AMX.

Figure 1-1 UI Rendered for ADF Mobile AMX Application Feature

[image: UI Rendered for ADF Mobile AMX]

For more information, see the following:

	
ADF Mobile AMX Views

	
Part IV, "Creating the ADF Mobile AMX Application Feature"

	
"Data Binding with ADF Model Layer" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Local HTML—this implementation approach allows you to employ an HTML file that might embed existing technologies, such as JavaScript and Java. You can use JDeveloper to implement an ADF Mobile application feature as a local HTML. For more information, see Section 5.10.1, "How to Define the Application Content."

	
Remote URL (also known as server HTML)—this implementation approach allows you to point to a resource on the web by specifying a URL endpoint. You can use JDeveloper to implement an ADF Mobile application feature as a remote URL.

The URL endpoints are portable across platforms.

Figure 1-2 shows the user interface rendered for an application feature implemented using remote URL.

Figure 1-2 UI Rendered for Remote URL Application Feature

[image: UI Rendered for Remote URL]

For more information, see the following:.

	
Server HTML

	
Chapter 12, "Implementing Application Features as Remote URLs"

An ADF Mobile application enables the integration of its embedded application features with such native device services as phone, camera, GPS, contacts, and so on. In addition, ADF Mobile enables support for offline application use. The device services can be accessed from the local HTML, ADF Mobile AMX, Java, and remote web applications. This allows the end user to perform such tasks as place a call from the mobile device by clicking a name listed in the contacts for an application feature for a mobile field service report form or scan a receipt to update a mobile expense report. For more information on ADF Mobile user experience, see Appendix D, "ADF Mobile Application Usage."

Although each ADF Mobile application feature may have its own set of preferences defined by the end user, ADF Mobile enables you to apply a uniform style of preferences to each of the application features embedded into the ADF Mobile application. Further, you can improve the end-user experience by grouping these mobile application features by functionality. For example, you can group a mobile application feature that provides customer contacts together with one for product inventory into the same ADF Mobile application. You can also control the display of the application features by such criteria as user role or device version.

From the end-user perspective, an application built with ADF Mobile is launched by activating its application icon on the mobile device, as Figure 1-3 shows. For more information, see Appendix D, "ADF Mobile Application Usage."

Figure 1-3 Launching ADF Mobile Application

[image: Launching ADF Mobile Application]

After the ADF Mobile application opens, the end user activates an icon for an application feature. The application features can display as icons on a navigation bar (see the bottom portion of Figure 1-4) or in a page format with larger icons in a homescreen page, commonly referred to as a springboard (see Figure 1-5).

Figure 1-4 Application Features Displayed on Navigation Bar

[image: Application Features Displayed on Navigation Bar]

Figure 1-5 Application Features Displayed on Springboard

[image: Application Features Displayed on Springboard]

1.2 ADF Mobile Runtime Architecture

Based on a hybrid mobile architecture and being an extension of Apache Cordova (see http://cordova.apache.org), ADF Mobile enables HTML5, as well as ADF-defined pages and task flows to be rendered in the same downloadable application.

ADF Mobile consists of the following parts:

	
Model provided by Oracle ADF.

	
Note:

The model layer provides the facility to connect to a local database.

	
View expressed as HTML or XML.

	
Controller defined with XML.

	
Java runtime powered by an embedded Java VM bundled with each application.

	
Note:

ADF Mobile's model-view-controller stack resides on a mobile device and represents reimplementation of ADF's model-view-controller layers. UI metadata is rendered to native components on device and is bound to the model through the ADF Model.

For additional information, see Section 2.9, "Comparison of ADF Mobile and Server-Based Oracle ADF."

Figure 1-6 shows the overall runtime architecture of ADF Mobile.

Figure 1-6 ADF Mobile Runtime Architecture

[image: Run-Time Architecture of ADF Mobile]

As shown in Figure 1-6, the following elements comprise the ADF Mobile runtime architecture:

	
Device-Native Container represents an application container, or template, compiled as a device-native application binary. This container provides the runtime environment for an ADF Mobile application to run as an on-device, native application in the mobile device's operating system (for example, iOS). Besides hosting the client-side components for an ADF Mobile application, it provides navigation utilities, such as a springboard and navigation bar, which enable access to particular application features.

	
Web View is a part of the device native container that uses a mobile device's web engine to display and process web-based content. In an ADF Mobile application, the web view is the primary mechanism to render and deliver the application user interface.

	
Server HTML represents a web-based user interface that is generated on the server and delivered as a web page to the ADF Mobile application. The application HTML code, business logic, and page flow logic are generated on a remote server. Server HTML can access device native services, such as the camera, through the JavaScript API supported by Cordova, as long as it is running inside an ADF Mobile application. Common options for server HTML-based pages are ADF Mobile browser and Oracle ADF Faces rich client-based pages. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."

	
Local HTML represents web pages developed using JDeveloper or third-party tools that are directly embedded within an ADF Mobile application. These pages are delivered as a part of the ADF Mobile application. Local HTML files can access device native features through the JavaScript APIs supported by Cordova.

	
ADF Controller is represented by a mobile version of the Oracle ADF controller that supports a subset of Oracle ADF task flow components available to a server-based Oracle ADF application. Both bounded and unbounded Oracle ADF task flows are supported, as well as a subset of events and scopes that are supported by the server-based ADF. For more information, see Section 6.2, "Creating Task Flows."

	
ADF Mobile AMX Views are based on the ADF Mobile AMX technology that delivers a JSF-like development experience to working with an HTML5-based user interface. ADF Mobile AMX views are defined using UI and code editors provided by JDeveloper. These views are embedded into an ADF Mobile application and deployed to a mobile device. At run time, the JavaScript engine in the web view renders ADF Mobile AMX view definitions into HTML5 components. Of the implementation approaches provided by ADF Mobile, application features developed using the ADF Mobile AMX components provide the most authentic device-native user experience through their extensive support of animation and gestures. For more information, see Part IV, "Creating the ADF Mobile AMX Application Feature".

	
Java provides a Java runtime environment for an ADF Mobile application. This Java Virtual Machine (JVM) is implemented in device-native code, and is embedded (or compiled) into each instance of the ADF Mobile application as part of the native application binary. The JVM is based on the JavaME Connected Device Configuration (CDC) specification.

	
Managed Beans are Java classes that can be created to extend the capabilities of ADF Mobile, such as providing additional business logic for processing data returned from the server. Managed beans are executed by the embedded Java support, and therefore must conform to the JavaME CDC specifications. For more information, see Chapter 8, "Using Bindings and Creating Data Controls."

	
ADF Model in an ADF Mobile application supports a subset of business logic components available to a server-based Oracle ADF application. ADF model contains the binding layer that connects the business logic components with the user interface. In addition, the binding layer provides the execution logic to invoke REST or SOAP-based web services. For more information, see Chapter 8, "Using Bindings and Creating Data Controls."

	
Application Configuration refers to services that allow key application configurations to be downloaded and refreshed. For example, URL endpoints for a web service or remote URL connection. Application configuration services download the configuration information from a WebDav-based server-side service. For more information, see Chapter 10, "Administering Web Services."

	
Credential Management and Access Control refers to client-side services that provide security-related services for an ADF Mobile application. For example, a local credential store that securely caches user credentials to support an offline authentication or access control services that display or hide application features based on user access privileges. For more information, see Chapter 18, "ADF Mobile Application Security."

	
Apache Cordova (formerly known as PhoneGap) is an open-source code library that provides a common JavaScript API to access various mobile device services, such as the camera. Cordova provides a majority of the device services integration for an ADF Mobile application. Cordova JavaScript APIs are further abstracted as device data controls in the JDeveloper design time for ADF Mobile AMX-based views, allowing for integration of device services by dragging and dropping data controls to their ADF Mobile AMX views.

	
Local Data refers to data stores that reside on the device. In ADF Mobile, these are implemented as encrypted SQLite databases. Create Retrieve Update Delete (CRUD) operations are supported to this local data store through the Java layer, using JDBC-based APIs. For more information, see Chapter 11, "Using the Local Database."

	
On the server side, the ADF Mobile Browser refers to a framework for developing server-side applications that can be used for implementation of the remote URL ADF Mobile application feature. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."

	
On the server side, the Configuration Server refers to a WebDav-based server that hosts configuration files used by the application configuration services. The configuration server is delivered as a reference implementation. Any common WebDav services hosted on a common JEE server can be used for this purpose. For more information, see Chapter 10, "Administering Web Services."

2 Introduction to ADF Mobile Application Development

This chapter describes the development approach for ADF Mobile applications.

This chapter includes the following sections:

	
Section 2.1, "Introduction to ADF Mobile Application Development"

	
Section 2.2, "Infrastructure Requirements"

	
Section 2.3, "Supported Platforms, Devices, and Databases"

	
Section 2.4, "ADF Mobile Application Architecture"

	
Section 2.5, "Typical Development Stages"

	
Section 2.6, "The Application Lifecycle"

	
Section 2.7, "Sample Applications"

	
Section 2.8, "ADF Mobile AMX Application Feature"

	
Section 2.9, "Comparison of ADF Mobile and Server-Based Oracle ADF"

2.1 Introduction to ADF Mobile Application Development

To ensure the best design for your ADF Mobile application, Oracle recommends that you follow an iterative, step-by-step development process.

Although you can develop the application features in addition to the ADF Mobile application itself, this workflow is not necessarily the standard case; application development involves creating the ADF Mobile application and embedding the application features that can be created by other developers. In other words, you create an ADF Mobile application by combining content that you create yourself with the content that was developed separately by someone else and then integrated into the ADF Mobile application. Knowing Xcode or Android application development is not a prerequisite for creating either the ADF Mobile application itself or the specific content for an application feature.

For more information, see Chapter 4, "Getting Started with ADF Mobile Application Development."

2.2 Infrastructure Requirements

Although development needs vary depending on the target platform, the minimum requirements for creating, building, and testing an ADF Mobile application are as follows:

	
Oracle JDeveloper

	
Oracle JDeveloper extension for ADF Mobile

	
Platform-specific tools (such as Xcode, Android SDK, and so on)

	
A mobile device or its simulator

For more information on prerequisites, see Section 3.2, "Prerequisites for Developing ADF Mobile Applications."

2.3 Supported Platforms, Devices, and Databases

ADF Mobile supports the following platforms:

	
iOS 5 or later

	
Android 2.3 or later

The following mobile devices are supported:

	
Apple iPhone

	
Apple iPad

	
Apple iPod

	
Android-powered devices

For detailed information on certified and supported mobile devices and platforms, see the "Mobile Devices and Operating Systems" section in the Certification and Support Matrix for Oracle JDeveloper and ADF.

The supported database is SQLite (see Chapter 11, "Using the Local Database").

2.4 ADF Mobile Application Architecture

The following are potential architectures for your ADF Mobile application:

	
A basic connected application: this type of application includes a user interface that is backed directly by a web service data control that, in turn, invokes a web service hosted on a server. Note that only REST-XML and SOAP-based data services can be accessed exclusively through data controls.

	
A connected application that uses moderate or complex data services: this type of application includes a user interface backed by Java bean data controls. In addition, Java classes (POJOs) are used to perform the following:

	
To retrieve and persist data from more complex data sources.

	
To work with data retrieved from a server before the data is passed to the user interface: if the data source is based on REST-XML or SOAP formats, then the application is backed by Java bean data controls, which, in turn, are backed by POJOs that persist data and retrieve data from a web services data control. A typical implementation case would include a Java class that backs the user interface, and another class that hosts the data retrieval logic.

If the application is to consume JavaScript Object Notation (JSON) data, then neither web service data controls nor SOAP and REST-XML web services are involved. Instead, JSON services must be invoked directly, and then JSON data parsed in the application code.

	
A disconnected application: this type of application requires a local database populated with data. Typically, two modules of code are needed:

	
The first code module allows the user interface to retrieve data from the local database. This module is responsible for creating Java beans and Java bean data controls to serve data to the user interface; CRUD operations on the local database are performed using the JDBC code.

	
The second code module contains implementation of the Java classes that retrieve data from the server and populates the local database through JDBC code. This module can even run a background thread if you choose to implement a background data synchronization. These Java classes are responsible for data retrieval either through data controls (if REST-XML or SOAP data is consumed), or directly from JSON data sources.

For more information, see the following:

	
Chapter 9, "Using Web Services"

	
Chapter 11, "Using the Local Database"

2.5 Typical Development Stages

Typically, you perform the following activities when building an ADF Mobile application:

	
Gather requirements

	
Design

	
Develop

	
Deploy

	
Test

	
Debug

	
Secure

	
Enable access to the server-side data (optional)

	
Redeploy

	
Retest and debug

	
Publish

The steps you take to build your ADF Mobile application will generally occur as follows:

	
During the design stage, consider the tasks a mobile user will be performing, keeping in mind that hand-held usage is different from that of a laptop or desktop computer. How will your ADF Mobile application help users get their jobs done? How will the users interact with the device? The more streamlined the application, the more they will use it.

The next steps are to determine whether the application is required to work in a connected or disconnected mode; understand the device services integration requirements; determine the server-side data source and protocol.

When designing server-side services, it is critical to provide for optimization for the mobile access: if server-side web services are very complex, it would be difficult for the mobile application to consume them. This is not only due to the amount of data that needs to be passed, but also the amount of the client-side logic that must be written to process the results. It is preferable to expose a set of server-side interfaces provided specifically for mobile. You also need to understand the client business services that must be developed, such as all Java modules and data controls that need to be created. In addition, you should create wireframes for the views and task flow in the application, which can help you to visualize the application functionality and assist in the development process.

As a final design step, you should consider how to partition the application functionality into separate application features that represent a group of functionality and associated views. Then you can start designing the client user interface and task flows by creating wireframes.

For more information, see For more information, see Fusion Applications: The New Standard for the Complete User Experience at http://www.oracle.com/webfolder/ux/applications/Fusion/index.html

	
When setting up your work environment, download and install the ADF Mobile extension, and then install the necessary components and complete the required setup for development and deployment. For more information, see Chapter 3, "Setting Up the ADF Mobile Environment."

	
When creating your ADF Mobile application using JDeveloper, you use the ADF Mobile application creation wizard. The artifacts that result from creating the application include descriptor files for the ADF Mobile application and for the application features, default images for icons and tabs for all supported platforms, and a set of data controls used for accessing the services of a mobile device (such as camera, GPS, or email).

For more information, see the following:

	
Chapter 4, "Getting Started with ADF Mobile Application Development"

	
Chapter 5, "Defining an ADF Mobile Application"

	
When implementing the application features, you perform a thorough evaluation of the business need to determine which application features should be included within the ADF Mobile application. Using the overview editors provided by ADF Mobile, your tasks for implementing an application feature include identifying its type (HTML, remote URL, or ADF Mobile AMX), its display properties (display name, navigation bar and springboard icon), and its display behavior as dictated by both the mobile device capabilities and the user role.

For more information, see the following:

	
Chapter 5, "Defining an ADF Mobile Application"

	
Part IV, "Creating the ADF Mobile AMX Application Feature"

	
Chapter 12, "Implementing Application Features as Remote URLs"

	
During the application deployment stage, you start with creating a deployment profile that will support devices and simulators for its respective platform. Creating a deployment profile may include selecting the display icon used for the ADF Mobile application itself in various orientations (such as landscape or portrait) and setting the application's signing options (such as debug or release).

You then proceed to deploying your application to the mobile device or simulator.

	
Note:

With ADF Mobile applications, it is required that you deploy to the device or simulator before attempting any testing and debugging (see Chapter 19, "Testing and Debugging ADF Mobile Applications"). The application cannot be run until you deploy it.

For more information, see Chapter 17, "Deploying ADF Mobile Applications."

	
During the testing and debugging stage, you test, debug, and optimize your application. For more information, see Chapter 19, "Testing and Debugging ADF Mobile Applications."

	
Enabling and configuring security for the application typically requires configuring the login server, such as the Oracle Identity Connect server, or it can be any web page protected by the basic HTTP authentication mechanism. In addition, you may have to configure the access control server.

For more information, see Chapter 18, "ADF Mobile Application Security."

	
After ensuring that your application functions as expected at a basic level, you can implement the Java code to access the server-side data:

	
For connected applications, these Java classes should invoke web services directly. If your application uses SOAP or REST XML-based data sources, you invoke web services through data controls, with the assistance of a set of helper classes that you can invoke from your code to invoke the data controls and return data. If your application uses JSON-based data sources, your code should directly invoke the JSON service and return data, after which you need to parse the JSON data from the server and populate the objects holding data collections accordingly.

	
For disconnected applications, your code should populate the local SQLite database. Then, the code that backs the user interface can retrieve data from the SQLite database instead of directly invoking web services.

For more information, see the following:

	
Section 2.4, "ADF Mobile Application Architecture"

	
Chapter 9, "Using Web Services"

	
Chapter 11, "Using the Local Database"

	
During the second round of deployment, you ensure that after adding security to your application and enabling access to the server-side data the application deployment runs as expected and the application is ready for the final testing and debugging.

	
During the final round of testing and debugging, you focus on the security and the server-side data access functionality ensuring that their integration into the application did not result in errors and unexpected behavior.

	
Deploying the application to the production environment typically involves publishing to an enterprise server, the Apple App Store, or an application marketplace, such as Google Play. After you publish the ADF Mobile application, end users can download it to their mobile devices and access it by touching the designated icon (see Appendix D, "ADF Mobile Application Usage"). The application features bear the designated display icons and display as appropriate to the end user and the user's device.

2.6 The Application Lifecycle

The lifecycle of an ADF Mobile application is driven by events that occur at the levels of the mobile device operating system, the JVM, and ADF Mobile. The application's reaction to these events is enabled through the use of the oracle.adfmf.application.LifeCycleListener's methods. For more information, see Section 5.7, "About Lifecycle Event Listeners."

2.7 Sample Applications

After setting up your development environment (see Chapter 3, "Setting Up the ADF Mobile Environment"), you can examine ADF Mobile sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

The sample applications demonstrate the following:

	
How to create a basic HelloWorld ADF Mobile application.

	
How to enable the application to react to life cycle events.

	
How to use skinning.

	
How to develop the ADF Mobile AMX application feature, including the user interface, navigation from page to page, managed beans, data change events, and so on.

For more information, see Appendix F, "ADF Mobile Sample Applications."

2.8 ADF Mobile AMX Application Feature

ADF Mobile AMX is a subframework within ADF Mobile and provides a set of layout, field, and data components that enable you to create an application feature that behaves appropriately for both the iOS and Android user experience. ADF Mobile AMX supports some of Oracle ADF components, data controls, bindings, and the Expression Language that belong to the following layers:

	
Model layer. See Chapter 8, "Using Bindings and Creating Data Controls."

	
User interface (UI) layer. See the following:

	
Chapter 6, "Creating ADF Mobile AMX Pages"

	
Chapter 7, "Creating the ADF Mobile AMX User Interface"

	
Expression Language. See Section 8.2, "Understanding EL Support."

Differences in every layer exist due to the inherent differences between a mobile application and a web application. For more information, see Section 2.9, "Comparison of ADF Mobile and Server-Based Oracle ADF."

2.9 Comparison of ADF Mobile and Server-Based Oracle ADF

Table 2-1 summarizes the functionality, components, and technologies supported by ADF Mobile and compares them to those supported by a server-based Oracle ADF application.

Table 2-1 Differences Between ADF Mobile and Server-Based Oracle ADF Application

	Layer	Supported by ADF Mobile	Supported by Server-Based Oracle ADF
	
ADF Model

	
	
SOAP, REST XML, and REST JSON-based data sources and data controls

	
Subset of the model layer Java (for example, there is no support for Java web service proxy)

	
JDBC

	
Full range of data sources and data controls

	
View

	
	
Locally rendered ADF Mobile AMX or custom HTML5 pages.

	
HTML pages rendered on the server.

	
	
Server-rendered only

	
ADF Faces rich client and Trinidad JSF components

	
Controller

	
For ADF Mobile AMX application feature (see Section 2.8, "ADF Mobile AMX Application Feature"):

	
Subset of Oracle ADF task flow components

	
Logic resides on the mobile device

	
Full ADF task flow

	
Java Support

	
JavaME CDC and Java 1.4

	
Java EE with the latest Java

As described in Table 2-1, in the view layer, ADF Mobile provides you with an option of using locally rendered or server-rendered views to present the user interface. ADF Mobile AMX enables the most seamless user experience. For the server-based Oracle ADF, the user interface is rendered on the server and is primarily provided through ADF Faces rich client components or Trinidad components, both of which are based on the JSF technology.

In the controller layer, an abbreviated version of the ADF task flow that supports a subset of components is provided when ADF Mobile AMX contents are used in a mobile application. ADF Mobile task flow supports views, control flow case, wild card control flow case, method calls, and routers, but does not support regions. In ADF Mobile, the page flow logic resides entirely on a mobile device, enabling the page navigation without a round trip to the server.

In the ADF Model layer, ADF Mobile supports SOAP, REST XML, and REST JSON as the server-side data sources. In addition, ADF Mobile supports JDBC connection and APIs to the local database, but it does not support ADF Business Components. Furthermore, ADF Mobile does not implement all of the Java methods supported by the server-based ADF. For example, you cannot use the programmatic access binding context. Instead, you can access the binding data by invoking the Expression Language (EL) expressions. In addition, since ADF Mobile does not support the Java proxy for web services, to access web services programmatically, you must use data controls in conjunction with the web services invocation helper classes.

For Java support, ADF Mobile's embedded Java virtual machine follows the JavaME CDC specification, which is based on Java 1.4, meaning that you cannot use any Java 1.5 or later features in your Java code.

Part II

Getting Started

Describes how to set up the development environment for ADF Mobile application development and provides instructions on creating an ADF Mobile application.

Part II contains the following chapters:

	
Chapter 3, "Setting Up the ADF Mobile Environment"

	
Chapter 4, "Getting Started with ADF Mobile Application Development"

3 Setting Up the ADF Mobile Environment

This chapter provides information on setting up the ADF Mobile environment for application development and deployment.

This chapter includes the following sections:

	
Section 3.1, "Introduction to the ADF Mobile Environment"

	
Section 3.2, "Prerequisites for Developing ADF Mobile Applications"

	
Section 3.3, "Setting Up JDeveloper"

	
Section 3.4, "Setting Up Development Tools for iOS Platform"

	
Section 3.5, "Setting Up Development Tools for Android Platform"

	
Section 3.6, "Testing the Environment Setup"

3.1 Introduction to the ADF Mobile Environment

Before developing an ADF Mobile application, you must set up your development environment by downloading, installing, and configuring various software components.

To set up your development environment, follow steps described in Section 3.2, "Prerequisites for Developing ADF Mobile Applications", and then prepare a mobile device or its simulator.

3.2 Prerequisites for Developing ADF Mobile Applications

Prerequisites for developing an ADF Mobile application vary depending on the type of work you are planning to do, as well as your target platform:

	
What You Need to Create an Application

	
What You Need to Deploy an Application to a Development Environment

3.2.1 What You Need to Create an Application

Before you start creating an ADF Mobile application for iOS, ensure that you have the following available:

	
A computer running Mac OS X

	
Oracle JDeveloper (see Section 3.3, "Setting Up JDeveloper").

	
Oracle JDeveloper extension for ADF Mobile (see Section 3.3, "Setting Up JDeveloper")

	
Xcode (see Section 3.4.1, "How to Install Xcode")

	
iOS SDK (see Section 3.4.2, "How to Install iOS SDK")

For more information, see Section 3.4, "Setting Up Development Tools for iOS Platform."

If Android is your target platform, the following is required:

	
A computer running one of the following operating systems:

	
Microsoft Windows XP

	
Microsoft Windows Vista

	
Microsoft Windows 7

	
Mac OS X

	
The most recent version of JDK1.6

	
Android SDK with Platform 2.3 or later and its tools (see Section 3.5.1, "How to Install the Android SDK")

	
Oracle JDeveloper (see Section 3.3, "Setting Up JDeveloper")

	
Oracle JDeveloper extension for ADF Mobile (see Section 3.3, "Setting Up JDeveloper")

For more information, see Section 3.5, "Setting Up Development Tools for Android Platform."

You do not need to install any additional tools for creating specific types of ADF Mobile application content (HTML, remote URL,or ADF Mobile AMX). For more information, see Section 5.10, "Defining the Content Types for an Application Feature."

	
Note:

Since PhoneGap was absorbed by Apache Cordova, if you have any PhoneGap plug-ins installed, you need to perform the migration to Cordova 2.2 versions of those plug-ins.

3.2.2 What You Need to Deploy an Application to a Development Environment

Before you deploy your ADF Mobile application (see Chapter 4, "Getting Started with ADF Mobile Application Development"), ensure that you have the following available:

	
All components listed in Section 3.2.1, "What You Need to Create an Application."

	
The ADF Mobile application.

	
Various login credentials. For more information, see Chapter 17, "Deploying ADF Mobile Applications."

	
Optionally, an iOS-powered or Android-powered device.

3.3 Setting Up JDeveloper

Oracle JDeveloper and its ADF Mobile extension are essential tools used in developing ADF Mobile applications.

Before you begin:

Consult the Certification and Support Matrix for Oracle JDeveloper and ADF to find out which release of Oracle JDeveloper is compatible with software listed in Section 3.2.1, "What You Need to Create an Application" for your target platform.

Download and install the appropriate release of Oracle JDeveloper. Select the Studio Developer (All Features) role when prompted.

For more information, see the following:

	
If your target platform is iOS, see the section about using Oracle JDeveloper on the Mac OS X platform in Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

	
If your target platform is Android, see Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

To download and install the ADF Mobile extension:

	
In JDeveloper, choose Help, then Check for Updates, and then click Next.

	
Note:

You might need to configure proxy settings by selecting Tools > Preferences from the main menu, and then Web Browser and Proxy from the tree on the left of the Preferences dialog.

	
In the Source page that Figure 3-1 shows, select Official Oracle Extensions and Updates under the Search Update Centers, and then click Next.

Figure 3-1 Checking for Updates in JDeveloper

[image: Check for updates dialog]

Alternatively, if the network access is not available, you can select the Install From Local File option. In this case, you need to point to the ADF Mobile extension file that you already downloaded to a directory on your development computer.

	
In the Updates dialog, select the ADF Mobile update.

	
In the License Agreements page, shown in Figure 3-2, review The Oracle Technology Network License Terms for Oracle Mobile.

	
Note:

You must comply with all of the license terms and conditions with respect to the Oracle ADF Mobile Program available at http://www.oracle.com/technetwork/indexes/downloads/index.html.

	
Click I Agree.

Figure 3-2 Licensing Agreements for the Oracle ADF Mobile Program

[image: Agree and comply with the Mobile Program licensing.]

	
Click Next, and then click Finish.

	
Restart JDeveloper.

	
Check whether or not ADF Mobile was successfully added to JDeveloper:

	
Select File > New from the main menu to open the New Gallery.

	
Select the All Features tab.

	
In the Categories pane, expand the Client Tier node and make sure it contains ADF Mobile (see Figure 3-3).

Figure 3-3 Verifying ADF Mobile Installation

[image: Verifying ADF Mobile Installation]

In addition, verify that you installed the correct version of ADF Mobile. To do so, select Help > About from the main menu, then select the Extensions tab on the About Oracle JDeveloper dialog, and then examine the extension list entries by scrolling down to ADF Mobile, as Figure 3-4 shows.

Figure 3-4 Verifying ADF Mobile Version

[image: Check extension]

In addition to the preceding steps, your development environment must be configured for target platforms and form factors. For more information, see Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors"

3.3.1 How to Configure the Development Environment for Platforms and Form Factors

Before you start developing an ADF Mobile application, you must configure JDeveloper Preferences for appropriate platforms (see Section 3.3.1.2, "Configuring the Environment for Target Platforms") and form factors (see Section 3.3.1.1, "Configuring the Environment for Form Factors").

3.3.1.1 Configuring the Environment for Form Factors

A form factor is a specific device configuration. Each form factor is identified by a name that you specify for it and contains information on the specified resolution denoted by pixel width and pixel height.

Form factors defined in preferences are used in the ADF Mobile AMX page Preview tab (see Section 6.3.2.2, "Using the Preview"). You can select or switch between various form factors to see how an ADF Mobile AMX page is rendered in various form factors. You can also see multiple form factors applied to the same page using the split screen view.

For more information, see Section 5.12.1, "About the adfmf-config.xml File."

Before you begin:

Download and install JDeveloper and the ADF Mobile extension, as described in Section 3.3, "Setting Up JDeveloper."

To configure the form factors:

	
Open Preferences by selecting Tools > Preferences from the main menu in JDeveloper.

	
In the Preferences dialog that Figure 3-5 shows, select ADF Mobile from the tree on the left.

Figure 3-5 Defining Form Factors

[image: Setting JDeveloper preferences]

The ADF Mobile page is populated with default settings.

This preference page allows you to create and manage a set of named form factors that combine a screen resolution size and platform.

	
To create a new form factor, click New, and then set the following:

	
Name: a meaningful string that is used to identify the form factor.

	
Platform: the platform of the mobile device.

	
Model: the type of the mobile device.

	
Default Orientation: the default device orientation used in the ADF Mobile AMX page Preview tab. It might be Portrait or Landscape. Select this setting from the drop-down list of values. The default value is Portrait and it is prepopulated during creation of the new form factor.

	
Resolution Width: width, in pixels. This value must be a positive integer, and its input is validated.

	
Resolution Height: height, in pixels. This value must be a positive integer, and its input is validated.

	
Scale Factor: the display scale factor. This value must be either one of 1.0, 2.0, or 3.0.

	
Note:

If you do not set the name and resolution for your form, ADF Mobile will display an error message.

	
If you need to revert to default settings, click More Actions > Restore Defaults.

	
Click OK to finalize your settings.

3.3.1.2 Configuring the Environment for Target Platforms

To start developing for one of the platforms supported by ADF Mobile, you need to provide JDeveloper with such information as the name of the platform and directories on your development computer that are to house the platform-specific tools and data.

Before you begin:

Download and install JDeveloper and the ADF Mobile extension, as described in Section 3.3, "Setting Up JDeveloper."

To configure your development environment for the target platforms:

	
Select Tools > Preferences from JDeveloper's main menu to open Preferences.

	
In the Preferences dialog that Figure 3-5 shows, select ADF Mobile from the tree. The ADF Mobile page that opens is populated with default form factor settings.

	
Select Platforms from the tree to open the ADF Mobile: Platforms page that contains the path and configuration parameters for the supported platforms, as Figure 3-6 and Figure 3-7 show.

Each platform-specific page hosts the preferences for the platform SDK (Android or iOS), collecting any necessary information such as the path that ADF Mobile needs to compile and deploy either Android or iOS projects:

	
If you select Android from the list of supported platforms, specify the Android SDK location on your computer, the local directory of your target Android platform, and provide information on the signing credentials (see Figure 3-6).

Figure 3-6 Configuring Platform Preferences for Android

[image: Configuring Platform Preferences for Android]

	
If you select iOS from the list of supported platforms (see Figure 3-7), specify the following:

	
iOS Simulator SDK location on your Mac OS-powered computer

	
Location of the Xcodebuild utility (see Section 17.4.1, "How to Deploy an iOS Application to an iOS Simulator")

	
Location of the iTunes media files, including the mobile applications that are synchronized to the iOS-powered device

	
The iOS-powered device signing information (see Section 17.2.4.2, "Setting the Device Signing Options")

Figure 3-7 Configuring Platform Preferences for iOS

[image: Configuring Platform Preferences for iOS]

3.4 Setting Up Development Tools for iOS Platform

In addition to general-purpose tools listed in Section 3.2, "Prerequisites for Developing ADF Mobile Applications," you might want to set up an iPhone or iPad when getting ready for development of an ADF Mobile application for the iOS platform (see Section 3.4.3, "How to Set Up an iPhone or iPad").

Since iPhone and iPad simulators are included in the iOS SDK installation, you do not need to separately install them. For more information, see Section 3.4.4, "How to Set Up an iPhone or iPad Simulator."

3.4.1 How to Install Xcode

You download Xcode from http://developer.apple.com/xcode/.

After installing Xcode, you have to run it at least once and complete the Apple licensing and setup dialogs. If these steps are not performed, any build and deploy cycle from JDeveloper to Xcode or device simulator will fail with a "Return code 69" error.

	
Note:

Since older versions of Xcode are not available from the Mac App Store, in order to download them you must obtain an Apple ID from http://appleid.apple.com, and then register this Apple ID with the Apple Developer Program to gain access to the Apple developer site at http://developer.apple.com.

3.4.2 How to Install iOS SDK

You download iOS SDK from the iOS Dev Center at http://developer.apple.com/devcenter/ios/.

	
Note:

Since older versions of iOS SDK are not available from the Mac App Store, in order to download them you must obtain an Apple ID from http://appleid.apple.com, and then register this Apple ID with the Apple Developer Program to gain access to the Apple developer site at http://developer.apple.com.

3.4.3 How to Set Up an iPhone or iPad

In your ADF Mobile application development and deployment, you can use either the iPhone, iPad, or their simulators (see Section 3.4.4, "How to Set Up an iPhone or iPad Simulator"). If you are planning to use an actual iPhone or iPad, which is preferable for testing (see Section 19.2, "Testing ADF Mobile Applications"), you need to connect it to your computer to establish a link between the two devices.

To deploy to an iOS-powered device, you need to have an iOS-powered device with a valid license, certificates, and distribution profiles. For more information, see Chapter 17, "Deploying ADF Mobile Applications."

	
Note:

Since Apple's licensing terms and conditions may change, ensure that you understand them, comply with them, and stay up to date with any changes.

3.4.4 How to Set Up an iPhone or iPad Simulator

In your ADF Mobile application development and deployment, you can use either the iOS-powered device itself (see Section 3.4.3, "How to Set Up an iPhone or iPad") or its simulator. Deploying to a simulator is usually much faster than deploying to a device, and it also means that you do not have to sign the application first.

A simulator can be invoked automatically, without any additional setup.

	
Note:

Before attempting to deploy your application from JDeveloper to a device simulator, you must first run the simulator.

If you are planning to use web services in your application and you are behind a corporate firewall, you might need to configure the external network access. You do so by modifying the network settings in the System Preferences on your development computer. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

3.5 Setting Up Development Tools for Android Platform

In addition to the general-purpose tools listed in Section 3.2, "Prerequisites for Developing ADF Mobile Applications," you might want to set up an Android-powered device when getting ready for development of an ADF Mobile application for the Android platform (see Section 3.5.2, "How to Set Up an Android-Powered Device").

Since emulators are included in the Android SDK installation, you do not need to separately install them. However, you cannot use an emulator until you create its configuration. For more information, see Section 3.5.3, "How to Set Up an Android Emulator."

To develop for the Android platform, you can use any operating system that is supported by both JDeveloper and Android.

For more information, see the "Developer Tools" section of the Android Developers website at http://developer.android.com/tools/index.html.

3.5.1 How to Install the Android SDK

Android SDK includes development tools that you need to build applications for Android-powered devices. Since the Android SDK is modular, it allows you to download components separately depending on your target Android platform and your application requirements.

When choosing the platform, keep in mind that ADF Mobile supports Android 2.3 or later.

Before you begin:

Ensure that your environment meets the operating system, JDK version, and hardware requirements listed in the "Get the Android SDK" section of the Android Developers website at http://developer.android.com/sdk/index.html.

	
Note:

Ant, Eclipse, and Linux requirements are not applicable to the ADF Mobile development environment.

To install the Android SDK:

	
Download the Android SDK starter package from http://developer.android.com/sdk/index.html.

	
Complete the installation by following the instructions provided in the "Setting Up an Existing IDE" section of the Android Developers website at http://developer.android.com/sdk/installing.html. Skip step 3 in the Android SDK installation instructions, as configuring Eclipse is not required for the ADF Mobile application development.

3.5.2 How to Set Up an Android-Powered Device

In your ADF Mobile application development and deployment, you can use either the Android device itself, which is preferable for testing (see Section 19.2, "Testing ADF Mobile Applications"), or an emulator (see Section 3.5.3, "How to Set Up an Android Emulator").

For information on how to set up the Android-powered device, follow the instructions from the "Using Hardware Devices" section of the Android Developers website at http://developer.android.com/tools/device.html.

	
Note:

You might experience issues when using USB connectivity for the device-based debugging. For more information, see Section 19, "Testing and Debugging ADF Mobile Applications."

Your target Android-powered device might not be listed in the USB device driver's.inf file, resulting in the failure to install the Android Debug Bridge (ADB). You can eliminate this issue as follows:

	
Find the correct values for your device.

	
Update the [Google.NXx86] and [Google.NTamd64] sections of the android_winusb.inf file.

For more information, see the "Google USB Driver" section of the Android Developers website at http://developer.android.com/sdk/win-usb.html.

3.5.3 How to Set Up an Android Emulator

In your ADF Mobile application development and deployment, you can use either the Android device itself (see Section 3.5.2, "How to Set Up an Android-Powered Device") or its emulator. Deploying to an emulator is usually much faster than deploying to a device, and it also means that you do not have to sign the application first.

For information on how to create an emulator configuration called Android Virtual Device (AVD), follow the instructions from the "Managing Virtual Devices" section of the Android Developers website at http://developer.android.com/tools/devices/index.html.

You need to create an AVD for each Android platform on which you are planning to test your application.

For information on how to use the emulator, see the "Using the Android Emulator" section in the Android Developers website at http://developer.android.com/tools/devices/emulator.html.

You might want to do the following when using the emulator:

	
Save the emulator state (see Section 3.5.3.1, "Saving the Emulator State")

	
Create, save, and reuse the SD card (see Section 3.5.3.2, "Creating, Saving, and Reusing the SD Card")

	
Configure the network (see Section 3.5.3.3, "Configuring the Network")

	
Configure the network proxy (see Section 3.5.3.4, "Configuring the Network Proxy")

3.5.3.1 Saving the Emulator State

You may find it useful to be able to save the emulator state or reuse the saved state. To do so, you manipulate the avd files or folders that are located in the C:\Users\username\.android\avd directory (on a Windows computer). Each avd folder contains several files, such as userdata.img, userdata.qemu.img, and cache.img. You can copy the cache.img file to another emulator's avd folder to use that state with another emulator. Alternatively, you can run commands listed in Table 3-1 from the command line.

Table 3-1 Commands for Saving the Android Emulator State

	Command	Description
	
-snapstorage <file>

	
File that contains all the emulator state snapshots.

Default value: datadir/snapshots.img

	
-no-snapstorage

	
Disables all of the emulator state snapshot functionality by preventing a snapshot storage file from being mounted.

	
-snapshot <name>

	
Name of the emulator state snapshot within the storage file for the autostart and autosave.

Default value: default-boot

	
-no-snapshot

	
Performs a full boot without performing autosave; vmload and vmsave operate on snapstorage.

	
-no-snapshot-save

	
Does not autosave to snapshot on exit; abandons the changed state.

	
-snapshot-list

	
Shows a list of available snapshots.

	
-no-snapshot-update-time

	
Does not try to correct the snapshot time on restore.

	
-wipe-data

	
Resets the use data image by copying it from initdata.

For example, to use the saved state from the testsnap snapshot and auto-save back to it on exit, the following command should be executed from C:\Android\android sdk directory\tools>:

emulator -avd Android_2.2_1 -snapshot testsnap

	
Caution:

When using this utility, keep in mind that in the process of loading, all contents of the system, including the user data and SD card images, will be overwritten with the contents they held when the snapshot was made. Unless saved in a different snapshot, any changes will be lost.

3.5.3.2 Creating, Saving, and Reusing the SD Card

Execute the following commands to create, save, and reuse the SD card:

	
To create an SD card:

C:\android sdk directory\tools>mksdcard -l SD500M 500M C:\Android\sd500m.img

	
To list existing AVDs:

C:\android sdk directory\tools>android list avd

This produces a listing similar to the following:

Name: Android_2.2_1
Path: C:\Users\username\.android\avd\Android_2.2_1.avd
Target: Android 2.2 (API level 8)
Skin: WVGA800
Sdcard: 200M

Name: Android_2.3.1
Path: C:\Users\username\.android\avd\Android_2.3.1.avd
Target: Android 2.3.1 (API level 9)
Skin: WVGA800

Name: Android_2.3.3
Path: C:\Users\username\.android\avd\Android_2.3.3.avd
Target: Android 2.3.3 (API level 10)
Skin: WVGA800

Name: Android_3.0
Path: C:\Users\username\.android\avd\Android_3.0.avd
Target: Android 3.0 (API level 11)
Skin: WXGA

	
To start the Android_2.2_1 with the SD card that has just been created:

C:\Android\android sdk directory\tools>emulator -avd Android_2.2_1 -sdcard C:\Android\sd500m.img

	
To list the running Android emulator instances:

C:\Android\android sdk directory\platform-tools>adb devices

	
To copy a test image to the SD card (this requires the emulator to restart):

C:\Android\sdk\platform-tools>adb push test.png sdcard/Pictures
85 KB/s (1494 bytes in 0.017s)

3.5.3.3 Configuring the Network

From the Android emulator, you can access your host computer through the 10.0.2.2 IP. To connect to the emulator from the host computer, you have to execute the adb command from a command line on your development computer or from a script to set up the port forwarding.

To forward socket connections, execute

adb forward local remote

using the following forward specifications:

	
tcp:port

	
localabstract:unix domain socket name

	
localreserved:unix domain socket name

	
localfilesystem:unix domain socket name

	
dev:character device name

	
jdwp:process pid (remote only)

For example, an arbitrary client can request connection to a server running on the emulator at port 55000 as follows:

adb -e forward tcp:8555 tcp:55000

In this example, from the host computer, the client would connect to localhost:8555 and communicate through that socket.

For more information, see the "Android Debug Bridge" section in the Android Developers website at http://developer.android.com/tools/help/adb.html.

3.5.3.4 Configuring the Network Proxy

If your development computer is behind a corporate firewall, you might need to execute the following command to start the emulator and initiate its connection with the browser:

emulator -avd myavd -http-proxy myproxy

3.6 Testing the Environment Setup

You can test your environment setup as follows:

	
In JDeveloper, open the HelloWorld sample application. For more information, see Section 2.7, "Sample Applications" and Appendix F, "ADF Mobile Sample Applications."

	
Select Application > Deploy from the main menu.

	
From the drop-down menu, select the deployment profile for the platform to which you wish to deploy the application.

	
Since for the environment setup testing purposes testing on an iOS-powered device simulator or Android-powered device emulator is preferable because it does not require signing of the application, you should select one of the following deployment actions using the Deploy dialog:

	
For iOS, select Deploy application to simulator, as Figure 3-8 shows.

Figure 3-8 Selecting Deployment Action for iOS

[image: Selecting Deployment Action for iOS]

	
For Android, select Deploy application to emulator, as Figure 3-9 shows. Ensure that the emulator is running before you start the deployment.

Figure 3-9 Selecting Deployment Action for Android

[image: Selecting Deployment Action for Android]

	
Click Next on the Deploy dialog to verify the Summary page, and then click Finish.

For more information on deployment, see Chapter 17, "Deploying ADF Mobile Applications."

4 Getting Started with ADF Mobile Application Development

This chapter describes how to use the Oracle JDeveloper wizards and tools to create a basic ADF Mobile application and also describes the artifacts that are automatically generated when you create an application.

This chapter includes the following sections:

	
Section 4.1, "Introduction to Declarative Development for ADF Mobile Applications"

	
Section 4.2, "Creating an Application Workspace"

4.1 Introduction to Declarative Development for ADF Mobile Applications

Because ADF Mobile is integrated within the JDeveloper design time, you can create, deploy, and test simple ADF Mobile applications (and most parts of more complex mobile applications) without writing a single line of code.

4.2 Creating an Application Workspace

The ADF Mobile extension provides JDeveloper with the application templates that seed the completed project with basic files. The first steps in building an ADF Mobile application are to assign it a name and to specify a directory where its source files will be saved. By creating an application with the application templates provided by JDeveloper, the workspace is automatically organized into projects, along with the required configuration files.

4.2.1 How to Create a Workspace for an ADF Mobile Application

You create an application using the application creation wizard.

Before you begin:

You must download the ADF Mobile application extension. For more information, see Section 3.3, "Setting Up JDeveloper." You may need to download and configure the ADF Mobile application extension for all target platforms.

To create an ADF Mobile application:

	
Choose File, then New, and then Mobile Application (ADF), as shown in Figure 4-1.

Figure 4-1 Selecting the ADF Mobile Application Template

[image: The new gallery.]

	
In the Application Name field, enter a name for the application, such as MobileApplication in Figure 4-2. If needed, enter a new location for the project in the Directory field. Ensure that the application package is unique by entering a prefix for it in the Application Package Prefix field. Click Next.

The application is the top-level structure of the ADF Mobile application. It organizes the different tiers of projects that you define in the subsequent pages of this wizard.

Figure 4-2 Naming the ADF Mobile Application

[image: Naming the application.]

	
In the Project 1 Name page, change the name and location of the application controller project (if needed), as shown in Figure 4-3. Otherwise, accept the default name of the project, ApplicationController. This Project Feature window of the page lists the technologies available to the application controller project.

This project stores all of the application-wide resources. For more information, see Table 4-1.

Figure 4-3 The Application Controller Project and Its Project Features

[image: Application Controller project technologies.]

	
Click Next to the Java Settings page for the application controller project (Project 1 Java Settings, shown in Figure 4-4). Accept, or change, the default package name for the application controller project (application) and the location for the Java SOURCEPATH directory (src) and the Java output directory (classes).

Figure 4-4 Configuring the Java Settings for the Application Controller Project

[image: Select the Java package name.]

	
Click Next to traverse to the Project 2 Name page, where you can, if needed, rename the view controller project. The page's Project Features window, shown Figure 4-5, lists the technologies available to the ADF Mobile view controller project. For information on the artifacts created within view controller project, see Table 4-2.

Figure 4-5 The ADF Mobile View Controller Project

[image: The technologies included in the View Controller project.]

	
Click Next. In the Java settings page for the view controller project, shown in Figure 4-6, accept (or change) the default package name for the application controller project (mobile), the location for the project's Java SOURCEPATH directory (src) and the Java output directory (classes).

Figure 4-6 The Java Settings for the View Controller Project

[image: Enter the Java settings.]

	
Click Finish to complete the creation of the ADF Mobile application and its projects.

	
Tip:

In addition to creating an ADF Mobile application following the above-mentioned steps, you can open the HelloWorld sample application (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer) and view the artifacts that JDeveloper generates after you complete the application creation wizard.

4.2.2 What Happens When You Create an ADF Mobile Application

After you create an ADF Mobile application project, JDeveloper adds application-level and project-level artifacts, which you access from the Application Navigator shown in Figure 4-7. These artifacts include two stub descriptor files: one used for configuring the ADF Mobile application itself, such as its name, the application lifecycle listener (LifeCycleListenerImpl.java), the login server connections for the embedded application features, and another that describes which application features comprise the ADF Mobile application. These files, which are called adfmf-application.xml and adfmf-feature.xml, are described in Section 4.2.2.1, "About the Application Controller Project-Level Resources" and Section 4.2.2.2, "About the View Controller Project Resources," respectively.

JDeveloper also creates the DeviceFeatures data control. The Apache Cordova Java API is abstracted through this data control, thus enabling the application features implemented as ADF Mobile AMX to access various services embedded on the device. JDeveloper also creates the ApplicationFeatures data control, which enables you to build a springboard page. By dragging and dropping the operations provided by the DeviceFeatures data control into an ADF Mobile AMX page (which is described in Section 8.5, "Using the DeviceFeatures Data Control"), you add functions to manage the user contacts stored on the device, create and send both e-mail and SMS text messages, ascertain the location of the device, use the device's camera, and retrieve images stored in the device's file system.

Figure 4-7 JDeveloper-Generated ADF Mobile Application Artifacts

[image: The Application Navigator.]

4.2.2.1 About the Application Controller Project-Level Resources

JDeveloper generates the files for ADF Mobile application in the application controller project. These files, described in Table 4-1, contain configuration files for describing the metadata of the ADF Mobile application. You access these files from the Application Resources pane of the Application Navigator, shown in Figure 4-8.

Figure 4-8 Mobile Application Artifacts Accessed from the Application Resources Pane

[image: The application resources.]

The application controller project, which contains the application-wide resources, provides the presentation layer of the ADF Mobile application in that it includes metadata files for configuring how the application will display on a mobile device. This project dictates the security for the ADF Mobile application and can include the application's login page, an application-wide resource. The application controller project is essentially a consumer of the view controller project, which defines the application features and their content. For more information, see Section 4.2.2.2, "About the View Controller Project Resources."

	
Tip:

Place code that supports application-wide functionality, such as an application-level lifecycle listener, in the application controller project.

Table 4-1 Mobile Application-Level Artifacts Accessed Through Application Resources

	Artifact(s)	File Location	Description
	
adfmf-application.xml

	
application workspace directory\.adf\Meta-INF

For example:

JDevloper\mywork\application name\.adf\META-INF

	
A stub XML application descriptor file that enables you to define the ADF Mobile application. Similar to the application descriptors for ADF Fusion Web applications, this file enables you to define the content for an application, its navigation behavior, and its user authentication requirements. For more information, see Section 5.2, "About the Mobile Application Configuration File."

	
adfmf-config.xml

	
application workspace directory\.adf\Meta-INF

For example:

JDeveloper\mywork\application name\.adf\META-INF

	
Use to configure the default skin used for ADF Mobile applications. For more information, see Section 5.12, "Skinning ADF Mobile Applications."

	
Application images

	
application workspace directory\Application Resources\resources\ios

For example:

JDeveloper\mywork\application name\resources\ios

	
A set of images required for the deployment of iOS and Android applications. These include PNG images for application icons and splash screens. Deployment to an iOS-powered device, such as an iPhone, requires a set of images in varying sizes.

The default iOS images provided with the project include:

	
images used when the device is in both landscape and portrait orientations

	
images used for retina displays (that is, icon.png and icon@2x.png)

	
an iPad image (icon-72.png)

To override these images, see Section 17.2.4.3, "Adding a Custom Image to an iOS Application."

	
cacerts

	
application workspace directory\Application Resources\resources\Security\cacerts

For example:

JDeveloper\mywork\application name\resources\Security\cacerts

	
The cacerts certificate file, a system-wide keystore that identifies the CA certificates to JVM 1.4. You can update this file using the Java keytool utility. You can create a custom certificate file using keytool as described in Section 18.5, "Adding Private Certificates." Any certificate file must reside within the Security directory.

	
logging.properties

	
application workspace directory\ src\.META-INF\logging.properties

For example:

JDeveloper\mywork\application name\src\META-INF\logging.properties

	
Enables you to set the application error logging, such as the logging level and logging console. For more information, see Section 19.4, "Using and Configuring Logging."

	
cvm.properties

	
application workspace directory\src\.META-INF\cvm.properties

For example:

JDeveloper\mywork\application name\src\META-INF\cvm.properties

	
The configuration file for the Java virtual machine, JVM 1.4. Use this file to configure the application startup and heap space allotment, as well as Java and JavaScript debugging options. For more information, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."

	
adf-config.xml

	
application workspace directory\.adf\META-INF

For example:

JDeveloper\mywork\application\.adf\META-INF

	
Used to configure application-level settings, including the Configuration Service parameters. For more information, see the "adf-config.xml" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. See also Chapter 10, "Administering Web Services."

	
connections.xml

	
application workspace directory\.adf\META-INF

For example:

JDeveloper\mywork\application name\.adf\META-INF

	
The repository for all of the connections defined in the ADF Mobile application. See also the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Within the application controller project itself, shown in Figure 4-9, JDeveloper creates the following artifacts, listed in Table 4-2.

Figure 4-9 The Application Controller Project

[image: The Application Controller artifacts.]

Table 4-2 Application Controller Artifacts

	Artifact(s)	File Location	Description
	
LifeCycleListenerImpl.java

	
application workspace directory\ApplicationController\src\application

For example:

JDeveloper\mywork\application name\ApplicationController\src\application

	
The default application lifecycle listener (ALCL) for the ADF Mobile application. For more information, see Section 5.7, "About Lifecycle Event Listeners."

	
adfmf-skins.xml

	
application workspace directory\ApplicationController\src\META-INF

For example:

JDeveloper\mywork\application name\ApplicationController\src\META-INF

	
Defines the available skins and also enables you to define new skins.

For more information, see Section 5.12, "Skinning ADF Mobile Applications."

	
adfm.xml

	
application workspace directory \ApplicationController\adfmsrc\META-INF

For example:

JDeveloper\mywork\application name\ApplicationController\adfmsrc\META-INF

	
Maintains the paths (and relative paths) for the .cpx, .dcx, .jpx, and .xcfg files (registries of metadata). For more information, see the "adfm.xml" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
DataControls.dcx

	
application workspace directory\ApplicationController\adfmsrc\

For example:

JDeveloper\mywork\application name\ApplicationController\adfmsrc\

	
The data controls registry. For information on using the DeviceFeature data control, which leverages the services of the device, see Section 8, "Using Bindings and Creating Data Controls." For information on the ApplicationFeatures data control, which enables you to create a springboard page that calls the embedded application features, see Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content." For more information see the "Configuring the ADF Binding Filter" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

4.2.2.2 About the View Controller Project Resources

The view controller project (which is generated with the default name, ViewController, as illustrated in Figure 4-10) houses the resources for the application features. Unlike the application controller project described in Section 4.2.2.1, "About the Application Controller Project-Level Resources," the view controller project's metadata files describe the resources at the application feature-level, in particular the various application features that can be aggregated into an ADF Mobile application so that they can display on a mobile device within the springboard of the ADF Mobile application itself or its navigation bar at runtime. Further, the application feature metadata files describe whether the application feature is comprised of HTML or ADF Mobile AMX pages. In addition, the view controller project can include these application pages as well as application feature-level resources, such as icon images to represent the application feature on the springboard and navigation bar defined for the ADF Mobile application.

	
Tip:

Store code specific to an application feature within the view controller project. Use the application controller project as the location for code shared across application features, particularly those defined in separate view controller projects.

The view controller project can be decoupled from the application controller project and deployed as an archive file for reuse in other mobile applications as described in Section 5.13, "Working with Feature Archive Files." In rare cases, an application controller project can consume more than one view controller project.

	
Note:

Adding an ADF Mobile view controller project as a dependency of another ADF Mobile view controller project, or as a dependency of an ADF Mobile application controller project, prevents the deployment of an ADF Mobile application. For more information, see Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."

Figure 4-10 The View Controller Project

[image: The view controller project.]

As shown in Table 4-3, these resources include the configuration file for application features called adfmf-feature.xml.

Table 4-3 View Controller Artifacts

	Artifact(s)	File Location	Description
	
adfmf-feature.xml

	
application workspace directory\src\META_INF\adfmf-feature.xml

For example:

JDeveloper\mywork\application name\ViewController\src\META-INF

	
A stub XML descriptor file that enables you to define application features. For more information, see Section 5.8, "About the Mobile Feature Application Configuration File." After you have configured the Mobile Preferences as described in Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors," you can deploy this application using the default deployment profile settings. For more information, see Chapter 17, "Deploying ADF Mobile Applications."

	
Application-Specific Content

	
application workspace directory\ViewController\public_html

For example:

JDeveloper\mywork\application name\ViewController\public_html

	
The application features defined in adfmf-feature.xml display in the public_html directory. Mobile contents can include ADF Mobile AMX pages, CSS files, and task flows. Any custom images that you add to an application feature must be located within this directory. For more information, see Section 5.10.2, "What You May Need to Know About Selecting External Resources."

4.2.2.3 About Automatically Generated Deployment Profiles

After you create an application, ADF Mobile generates deployment profiles that are seeded with default settings and image files. Provided that you have configured the environment correctly, you can use these profiles to deploy an ADF Mobile application immediately after creating it by choosing Applications and then Deploy, as shown in Figure 4-11.

Figure 4-11 Default Deployment Profiles

[image: A a set of default deployment profiles.]

Using the Deployment Action page, shown in Figure 4-12, you then select the appropriate deployment target.

Figure 4-12 Selecting a Deployment Target

[image: Select a deployment target.]

	
Note:

iOS and Android application deployments to simulators and devices have distinct environment set up and configuration requirements. For more information, refer to the "Before You Begin" sections throughout Section 17.3, "Deploying an Android Application," and Section 17.4, "Deploying an iOS Application."

As illustrated in Figure 4-11, ADF Mobile creates application-level profiles for both supported platforms (iOS and Android) and names them iOS1 and Android1.

	
Note:

ADF Mobile increments the name of each new deployment profile by 1. For example, iOS2, iOS3.

You can accept the default values used for these profiles, or edit them by selecting the profile from the Deployment page of the Application Properties dialog and then clicking Edit. Figure 4-13 illustrates the Options page for a default Android application profile. For information on the values configured for ADF Mobile application profiles, see Section 17.2.3, "How to Create an Android Deployment Profile" and Section 17.2.4, "How to Create an iOS Deployment Profile."

Figure 4-13 Editing a Default Deployment Profile

[image: Edit a deployment profile’s default values.]

ADF Mobile packages the application and view controller projects as separate Feature Archive (FAR) files. These JAR files of ADF Mobile files are used as resources for other applications and are described in Section 17.5, "Deploying Feature Archive Files (FARs)." Because ADF Mobile creates these FAR files as dependencies to the ADF Mobile application profile, you can include or exclude them using the Profile Dependencies page of the Application Properties dialog, as illustrated in Figure 4-14.

	
Note:

The application controller project must contain a single FAR profile dependency; otherwise, the deployment will fail.

Figure 4-14 Editing FAR Contents from ADF Mobile Projects

[image: Including (or excluding) FAR contents.]

Using the File Groups-related pages of the Project Properties dialog, you can customize the contents of the view controller FAR file, as shown in Figure 4-15. For more information on the Project Properties dialog, see the Oracle JDeveloper online help and also the "Configuring Deployment Profiles" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 4-15 Editing the View Controller Project's FAR

[image: Edit the view controller’s FAR.]

In addition to the platform-specific deployment profiles, ADF Mobile also creates a deployment profile that enables you to package the ADF Mobile application as a Mobile Application Archive (.maa) file. Using this file, you can create a new ADF Mobile application using a pre-existing application that has been packaged as an .maa file. For more information, see Section 17.6, "Creating a Mobile Application Archive File" and Section 17.7, "Creating Unsigned Deployment Packages."

By default, this deployment file bears the name of the ADF Mobile application followed by _archive. As illustrated in Figure 4-11, this profile is called Employees_archive and, if needed, can be edited using the Application Properties dialog.

Figure 4-16 Editing the Default Deployment Profiles Using the Application Properties Dialog

[image: Edit the default deployment profiles.]

For more information on editing deployment profiles using the Application Properties dialog pages, see the "Viewing and Changing Deployment Profile Properties" section in described in Oracle Fusion Middleware User's Guide for Oracle JDeveloper and the Oracle JDeveloper online help for the Application Properties and Project Properties dialogs.

4.2.3 What You May Need to Know About Editing ADF Mobile Applications and Application Features

Creating an application results in the generation of the adfmf-application.xml file, which enables you to configure the mobile application and also the adfmf-features.xml file, which you use to add, remove, or edit the application features embedded within the mobile application. The ADF Mobile extension provides you with overview editors for both of these files, enabling you to declaratively change them. Figure 4-17 shows an example of the overview editor of the adfmf-application.xml file.

Figure 4-17 The Overview Editor of the Mobile Application

[image: The overview editor.]

As shown in Figure 4-17, the adfmf-application.xml file is located in the Application Navigator in the Application Resources panel, under the Descriptors and ADF META-INF nodes. You can open this file by double-clicking it from this location. When you access this file, JDeveloper not only opens the associated overview editor, but also displays the pertinent page components in the component palette, which you can drag and drop into either the Source page of the editor or the Structure window, as shown in Figure 4-18. Section 5.2, "About the Mobile Application Configuration File" describes the components of the adfmf-application.xml page.

Figure 4-18 Using the Source Editor, Structure Window, and Properties Editor for the ADF Mobile Application

[image: The source editor for adfmf-application.xml]

As illustrated in Figure 4-19, the adfmf-feature.xml configuration file is located in the Application Navigator in the Project panel under the view controller and META-INF nodes. You use this file to compose the content for the ADF Mobile application.

Figure 4-19 The Overview Editor for Application Features

[image: The overview editor for application features.]

Like the overview editor for the adfmf-application.xml file, JDeveloper presents the ADF Mobile components used for building the elements of the adfmf-features.xml configuration file, which are described in Section 5.8, "About the Mobile Feature Application Configuration File." You can use the Overview page or you can drag and drop components from the Component Palette into the Structure window or into the Source editor itself. When you select the adfmf-feature.xml file, JDeveloper populates the Component palette with ADF Mobile Feature components.

Figure 4-20 Using the Source Editor, Structure Window, and Component Palette for Application Features

[image: Using the Source editor.]

4.2.4 Creating an Application Workspace for an ADF Mobile AMX Application

As described in Chapter 6, "Creating ADF Mobile AMX Pages," the ADF Mobile AMX components enable you to build pages that run identically to those authored in a platform-specific language. These pages may be created by the application assembler, who creates the ADF Mobile application and embeds application features within it, or they can be developed by another developer and then incorporated into the ADF Mobile application either as an application feature or as a resource to an ADF Mobile application.

The project in which you create the ADF Mobile AMX page determines if the page is used to deliver the content for a single application feature or be used as a resource to the entire ADF Mobile application. For example, a page created within the application controller project, as shown in Figure 4-23, would be used as an application-wide resource. An ADF Mobile AMX page created within a view controller project, on the other hand, would be used only to deliver content to an application feature.

An ADF Mobile task flow can likewise be used to deliver the content to an application feature. As shown in Figure 4-21, ADF Mobile provides wizards for adding ADF Mobile AMX pages, task flows, and application features.

To access these wizards, you first select a project within the Application Navigator and then choose File and then New. You select one of the wizards after selecting ADF Mobile within the Client Tier.

Figure 4-21 Wizards for Creating Resources for Application Features

[image: Select to create an AMX page or taskflow.]

4.2.4.1 How to Create an ADF Mobile AMX Page

You can use the ADF Mobile AMX Page wizard to create AMX pages used as application feature content and separately as a resource to the ADF Mobile application. For more information on application feature content, see Section 5.10.1, "How to Define the Application Content."

To create an ADF Mobile AMX page as content for an application feature:

	
In the Application Navigator, right-click the view controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery, choose ADF Mobile AMX Page and then click OK.

	
Complete the Create ADF Mobile AMX Page dialog, shown in Figure 4-22, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the view controller project.

Figure 4-22 Creating an ADF Mobile AMX Page in a View Controller Project

[image: The ADF Mobile XML page is in View Controller.]

	
Select (or deselect) the Facets within the Panel Page that are used to create a header and footer. Click OK.

For more information, see Section 7.2.2, "How to Use a Panel Page Component."

	
Build the ADF Mobile AMX page. For more information using the ADF Mobile AMX components, see Section 6.3.1.2, "Creating ADF Mobile AMX Pages." See also Section 5.10.1, "How to Define the Application Content."

To create an ADF Mobile AMX page as a resource to an ADF Mobile application:

	
In the Application Navigator, select the application controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery, select ADF Mobile AMX Page, and then click OK.

	
Complete the Create ADF Mobile AMX Page dialog, shown in Figure 4-23, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the application controller project. Click OK.

Figure 4-23 Creating an ADF Mobile AMX Page in an Application Controller Project

[image: The ADF Mobile XML page is located in public_html.]

	
Build the ADF Mobile AMX page. For more information, see Section 6.3.1.2, "Creating ADF Mobile AMX Pages."

4.2.4.2 How to Create ADF Mobile Task Flows

You can deliver the content for an application feature as an ADF Mobile task flow.

To create an ADF Mobile Task Flow as content for an application feature:

	
In the Application Navigator, select the view controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery select ADF Mobile Task Flow and then click OK.

	
Complete the Create ADF Mobile AMX Page dialog, shown in Figure 4-24, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the view controller project. Click OK.

Figure 4-24 Creating an ADF Mobile Task Flow in a View Controller Project

[image: Task flow is in view ontroller project.]

	
Build the task flow. See also Section 6.2, "Creating Task Flows."

4.2.4.3 What Happens When You Create ADF Mobile AMX Pages and Task Flows

JDeveloper places the ADF Mobile AMX pages and task flows in the Web Content node of the view controller project, as shown by custom_springboard.amx and ViewController-task-flow.xml (the default name for a task flow created within this project) in Figure 4-25. These artifacts are referenced in the adfmf-feature.xml file as described in Section 5.6, "Configuring the Application Features within a Mobile Application." Figure 4-25 also illustrates that other resources, such as customized application splash screen (or launch) images and navigation bar images, are also housed in the Web Content node. For more information, refer to Table 4-3.

Figure 4-25 ADF Mobile AMX Pages and Task Flows within Application Controller and View Controller Projects

[image: The mobile-specific artifacts.]

JDeveloper places the ADF Mobile AMX page and task flow as application resources to the ADF Mobile application in the Web Content node of the application controller project. As illustrated in Figure 4-25, the file for the ADF Mobile AMX page is called application_resource.amx and the task flow file is called ApplicationController-task-flow.xml (the default name).

Part III

Developing ADF Mobile Applications

Describes how to declaratively develop an ADF Mobile application using the overview editors.

Part III contains the following:

	
Chapter 5, "Defining an ADF Mobile Application"

5 Defining an ADF Mobile Application

This chapter describes using the overview editors to define the display behavior of the ADF Mobile application's springboard and navigation bar and how to designate content by embedding application features.

This chapter includes the following sections:

	
Section 5.1, "Introduction to Defining ADF Mobile Applications"

	
Section 5.2, "About the Mobile Application Configuration File"

	
Section 5.3, "Setting the Basic Information for an ADF Mobile Application"

	
Section 5.4, "Invoking an ADF Mobile Application Using a Custom URL Scheme."

	
Section 5.5, "Configuring the Springboard and Navigation Bar Behavior"

	
Section 5.6, "Configuring the Application Features within a Mobile Application"

	
Section 5.7, "About Lifecycle Event Listeners"

	
Section 5.8, "About the Mobile Feature Application Configuration File"

	
Section 5.9, "Setting the Basic Configuration for the Application Feature"

	
Section 5.10, "Defining the Content Types for an Application Feature"

	
Section 5.11, "Working with Resource Bundles"

	
Section 5.12, "Skinning ADF Mobile Applications"

	
Section 5.13, "Working with Feature Archive Files"

5.1 Introduction to Defining ADF Mobile Applications

An ADF Mobile application can have one or more view controller-type projects, each of which describes a set of features in an adfmf-feature.xml file. As described in Chapter 4, "Getting Started with ADF Mobile Application Development," ADF Mobile provides you with the adfmf-application.xml configuration file for the mobile application itself, and the adfmf-feature.xml file, which you use to define the content of the application. While you can manually change these files, ADF Mobile provides two overview editors that enable you to build these files declaratively.

5.1.1 Using the Overview Editor for adfmf-applications.xml

The overview editor enables you to configure the adfmf-application.xml file to describe a mobile application and its resources. Each page of the editor enables you to add or update the elements of the configuration file.

5.2 About the Mobile Application Configuration File

The adfmf-application.xml configuration file enables you to set the basic configuration of the ADF Mobile application by designating its display name, a unique application ID (to prevent naming collisions) and also by selecting the application features that will display on the application springboard (the equivalent of a home page on a smartphone). Further, this file enables you to create the user preferences pages for the mobile application. This file, which is generated by JDeveloper after you complete the application creation wizard as described in Section 4.2, "Creating an Application Workspace," is comprised of the elements listed in Table 5-1.

Table 5-1 Elements of the Application Descriptor File

	Element	Description
	
<adfmf:application>

	
The root element of adfmf-application.xml.

	
<adfmf:description>

	
A description of the application.

	
<adfmf:featureReference>

	
A feature reference denotes which of the application features packaged in the FAR (Feature archive file) or defined in the adfmf-feature.xml file is relevant to the content of the mobile application. You define the character and content of ADF Mobile applications by selecting feature references. For more information about FARs, see Section 5.13, "Working with Feature Archive Files."

	
<adfmf:preferences>

	
Enables you to set the user preference options and behavior at the application level. You can also set how user preferences display and behave for the application features in the adfmf-feature.xml file. For more information, see Chapter 13, "Enabling User Preferences."

	
<adfmf:login>

	
Enables you to set the login page for an application feature. For more information, see Chapter 18, "ADF Mobile Application Security."

	
<adfmf:navigation>

	
Enables you to define the behavior of the navigation bar and the springboard. A springboard is a home page in which all of the application icons and labels for the embedded application features are organized in a List View. A springboard provides a top-level view of all of the applications available to a user, who can page through and select applications. For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."

Example 5-1 illustrates the adfmf-application.xml file for an application called Acme Sales, a mobile application whose content includes a customer contacts application (<adfmf:featureReference id="customers" showOnNavigationBar="true"/>) which displays on the springboard, as shown in Figure 5-1.

Example 5-1 The adfmf-application.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 name="Acme Sales"
 id="com.company.AcmeSales"
 appControllerFolder="ApplicationController"
 version="1.0"
 vendor="Oracle"
 listener-class="application.LifeCycleListenerImpl">
 <adfmf:description>Sample Application</adfmf:description>
<adfmf:featureReference id="Customers"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>
<adfmf:featureReference id="HCM"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>
<adfmf:featureReference id="PROD"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>
 <adfmf:preferences>
 <adfmf:preferenceGroup id="Root.Security" label="Security">
 <adfmf:preferenceText id="OracleSecurityProvider_serviceURL"
 label="Security URL"
 default="http://somecomputer.example.com:someaddress/
 idaas_rest/rest/tokenservice1/tokens/getprofile"/>

 <adfmf:preferenceText id="OracleADFMobile_UserName" label="User Name" default="sean"/>
 <adfmf:preferenceText id="OracleADFMobile_Password" label="Password" default="welcome1"
 secret="true"/>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 <adfmf:navigation>
 <adfmf:springboard enabled="false"/>
 <adfmf:navigationBar enabled="true"/>
 </adfmf:navigation>
</adfmf:application>

Figure 5-1 Application Features Displaying in the Mobile Application's Springboard

[image: Applications display in a springboard.]

You can modify these elements declaratively using the overview editor, shown in Figure 5-2, or manually using the Source editor. You can use either of these approaches interchangeably.

Figure 5-2 The Overview Editor for the adfmf-application.xml File

[image: The overview editor.]

5.3 Setting the Basic Information for an ADF Mobile Application

The Application page enables you to set the name, application ID, and how the mobile application displays.

5.3.1 How to Set the ID and Display Behavior for a Mobile Application

The Application page of the overview editor, shown in Figure 5-2, enables you to name the mobile application and control the display of the mobile application within the springboard and navigation bar.

Before you begin:

Open the overview editor for the adfmf-application.xml file by double-clicking the adfmf-application.xml file (located in the ADF META-INF node of the Application Resources panel, as shown in Figure 5-3).

Figure 5-3 Selecting the adfmf-application.xml File in the Application Navigator.

[image: Double-click the adfmf-application file.]

To set the basic information for a mobile application:

	
Choose the Application page and if needed, choose the Overview tab.

	
Note:

By default, the editor opens the Application page.

Figure 5-4 shows the portion of the application page where you define the basic information.

Figure 5-4 Setting the Basic Information for the ADF Mobile Application

[image: Enter a name for the application.]

	
Enter a display name for the application in the Name field. This attribute can be localized. For more information, see Section 5.11, "Working with Resource Bundles."

	
Note:

ADF Mobile uses the value entered in this field as the name for the iOS archive (.ipa or .app) file that it creates when you deploy the application to an iOS-powered device or simulator. For more information, see Section 17.2.4, "How to Create an iOS Deployment Profile."

	
Enter a unique ID in the Id field.

To avoid naming collisions, Android and iOS use reverse package names, such as com.company.application. JDeveloper prefixes com.company as a reverse package to the application name, but you can overwrite this value with another as long as it is unique and adheres to the ID guidelines for both iOS- and Android-powered devices. For iOS application, see the "Creating and Configuring App IDs" section in iOS Team Administration Guide (available from the iOS Developer Library at http://developer.apple.com/library/ios). For Android, refer to the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html). You can overwrite this ID in the deployment profiles described in Section 17.2.3, "How to Create an Android Deployment Profile" and Section 17.2.4, "How to Create an iOS Deployment Profile."

	
Note:

To ensure that an application deploys successfully to an Android-powered device or emulator, the ID must begin with a letter, not with a number or a period. For example, an ID comprised of a wholly numeric value, such as 925090 (com.company.925090) will prevent the application from deploying. An ID that begins with letters, such as hello925090 (com.company.hello925090) will enable the deployment to succeed.

	
Enter a short, but detailed summary of the application that describes the application's purpose in the Description field.

	
Enter the version in the Version field.

	
Enter the name of the vendor who originated this application in the Vendor field.

	
Click Browse in the Lifecycle Event Listener field to invoke the Edit Property dialog, shown in Figure 5-5, to register the event listener that enables runtime calls for start, stop, activate, and deactivate events. You must enter the fully qualified class name of the event listener. This is an optional field.

Figure 5-5 Retrieving the Application Event Listener

[image: Retrieving application.LifeCycleListenerImpl.]

The default application listener class is application.LifeCycleListenerImpl. ADF Mobile does not register this class by default, because it starts the JVM and therefore may not be preferable for each ADF Mobile application. You must instead register this class manually using the Edit Property dialog, shown in Figure 5-5. After you close this dialog, JDeveloper updates <adfmf:application> element with a listener-class attribute, as illustrated in Example 5-2.

	
Note:

The application lifecycle listener must remain within the application controller project (its default location).

Example 5-2 Adding the listener-class Attribute

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 name="OracleMobileApplication"
 id="com.company.OracleMobileApplication"
 appControllerFolder="ApplicationController"
 listener-class="application.LifeCycleListenerImpl"
 version="1.1"
 vendor="Oracle">
 <adfmf:description>This is an ADF Mobile application</adfmf:description>
 <adfmf:featureReference id="feature1"/>
</adfmf:application>

For more information, see Section 5.7, "About Lifecycle Event Listeners."

5.4 Invoking an ADF Mobile Application Using a Custom URL Scheme

A custom URL scheme can be used to invoke a native application from other applications.

To invoke an ADF Mobile application from another application, perform the following:

	
Register a custom URL scheme. You configure this URL scheme in the overview editor of the adfmf-application.xml file using the URL Scheme field, as shown in Figure 5-4. The URL with this scheme can then be used to invoke the ADF Mobile application and pass data to it.

	
In the application controller project, create a custom URL event listener class (for example, CustomURLEventListener) that is notified of the URL. This class must implement the oracle.adfmf.framework.event.EventListener interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener interface, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Override and implement the onMessage method that gets called with the URL that is used to invoke this ADF Mobile application.

	
Register an application lifecycle event listener (ALCL) class. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application" and Section 5.7, "About Lifecycle Event Listeners."

Get an EventSource object in the start method of the ALCL class that represents the source of the custom URL event:

EventSource openURLEventSource = EventSourceFactory.getEventSource(EventSourceFactory.OPEN_URL_EVENT_SOURCE_NAME);

Create and add an object of the custom URL event listener class to the event source:

openURLEventSource.addListener(new CustomURLEventListener());

An ADF Mobile application can invoke another native application in two ways:

	
Using an amx:goLink on an ADF Mobile AMX page whose URL begins with the custom URL scheme registered by the native application. For example:

<amx:goLink text="Open App" id="gl1" url="mycustomurlscheme://somedata"/>

	
Using an HTML link element on an HTML page whose href attribute value begins with the custom URL scheme registered by the native application. For example:

Open App

5.5 Configuring the Springboard and Navigation Bar Behavior

You can configure the ADF Mobile application to control the display behavior of the springboard and the navigation bar in the following ways:

	
Hide or show the springboard and navigation bar to enable the optimal usage of the mobile device's real estate. These options override the default display behavior for the navigation bar, which is shown by default unless otherwise specified by the application feature.

	
Enable the springboard to slide from the right. By default, the springboard does not occupy the entire display, but instead slides from the left, pushing the active content (which includes the navigation bar's Home button and application features) to the right.

5.5.1 How to Configure Application Navigation

The Navigation options of the Applications page, shown in Figure 5-6, enable you to hide or show the navigation bar, select the type of springboard used by the application, and define how the springboard reacts when users page through applications.

Figure 5-6 The Navigation Options of the Application Page

[image: The navigation options.]

Before you begin:

You must select the Application page of the adfmf-application.xml overview editor.

To set the display behavior for the navigation bar:

	
Select Show Navigation Bar on Application Launch to enable the mobile application to display its navigation bar, rather than the springboard, by default after it is launched, as shown in Figure 5-7.

Figure 5-7 The Navigation Bar, Shown By Default (on iPhone)

[image: The default navigation bar.]

If you clear this option, then you hide the navigation bar when the application starts, presenting the user with the springboard as the only means of navigation. Because the navigation bar serves the same purpose as the springboard, hiding it can, in some cases, remove redundant functionality.

	
Select Show Navigation Bar Toggle Button to hide the navigation bar when the content of a selected application feature is visible. Figure 5-8 illustrates this option, showing how the navigation bar illustrated in Figure 5-7 becomes hidden by the application feature content.

Figure 5-8 Hiding the Navigation Bar (on iPhone)

[image: Navigation bar is obscured by application content.]

This option is selected by default; the navigation bar is shown by default if the show or hide state is not specified by the application feature.

To set the display behavior for the springboard:

	
Select the type of springboard (if any):

	
None—Select this option if the springboard should not be displayed in the application.

	
Default—Select to display the default springboard provided by ADF Mobile, which uses styles illustrated in Figure 5-1. The default springboard is implemented as an ADF Mobile AMX page. For more information, see Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content."

	
Custom—Select to use a customized springboard. You may, for example, create a custom springboard that arranges the embedded application features in a grid layout pattern, or includes a search function, or data, such as a list of common tasks (My Reports, or My Leads, for example). This application, which can be implemented either as an HTML page or as an ADF Mobile AMX page, is declared as an application feature in the adfmf-feature.xml file (which is located within a view controller project). For more information, see Section 5.9.1, "How to Define the Basic Information for the Application Feature." For information on enabling navigation within a customized springboard written in HTML, see Chapter B, "Application Container APIs."

	
Feature—Select the application feature used as a springboard, as shown in Figure 5-10.

	
Note:

ADF Mobile's design time prompts you to set the Show on Navigation Bar and Show on Springboard options to false when you designate an application feature as a custom springboard. This ensures that the page behaves as a springboard rather than as an application feature that users launch from a navigation bar or from a springboard. For more information, see Section 5.6.1, "How to Designate the Content for a Mobile Application."

Figure 5-9 Selecting an Application Feature as a Custom Springboard

[image: Select the application feature.]

	
Select Show Springboard on Application Launch to enable the mobile application to display the springboard to the end user after the mobile application has been launched. (This option is only available for the Default or Custom options.)

	
Select Show Springboard Toggle Button to enable the display of the springboard button, shown in Figure 5-10, that displays within an application feature. Figure 5-7, "The Navigation Bar, Shown By Default (on iPhone)" shows this button within the context of an application feature. This option is only available for the Default or Custom options.

Figure 5-10 The Springboard Toggle Button (Used on iPhones)

[image: The springboard toggle button.]

To set the slide out behavior for the springboard:

	
Select Springboard Animation and then choose Slide Right. The springboard occupies an area determined by the number of pixels (or the percent) entered for the Slideout Width option. If you select None, then the springboard cannot slide from the right (that is, ADF Mobile does not provide the animation to enable this action). The springboard takes the entire display area.

	
Note:

The slide out option is only applicable when you select either the Custom or Default springboard options.

	
Set the width (in pixels). The default width of a springboard on an iOS-powered device is 320 pixels. On Android-powered devices, the springboard occupies the entire screen by default, thereby taking up all of the available width.

	
Note:

If the springboard does not occupy the entire area of the display, then an active application feature occupies the remainder of the display. For more information, see Section 5.5.3, "What Happens When You Set the Animation for the Springboard."

5.5.2 What Happens When You Configure the Navigation Options

Setting the springboard and navigation bar options updates or adds elements to the adfmf:application.xml file's <adfmf:navigation> element. For example, selecting None results in the code updated with <springboard enabled="false"> as illustrated in Example 5-3.

Example 5-3 Preventing the Displaying the Springboard

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="false"/>
 </adfmf:navigation>
</adfmf:application>

	
Tip:

By default, the navigation bar is enabled, but the springboard is not. If you update the XML manually, you can enable the springboard as follows:

<adfmf:application>
 ...
<adfmf:navigation>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
 ...
</adfmf:application>

Example 5-4 illustrates how the enabled attribute is set to true when you select Default.

	
Note:

Because the springboard fills the entire screen of the device, the navigation bar and the springboard do not appear simultaneously.

Example 5-4 Enabling the Display of the Default Springboard

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
</adfmf:application>

If you select Custom and then select the application feature used as the springboard, the editor populates the <adfmf:navigation> element as illustrated in Example 5-5. The id attribute refers to an application feature defined in the adfmf-feature.xml file that is used as a custom springboard.

Example 5-5 Configuring a Custom Springboard

<adfmf:navigation>
 <adfmf:springboard enabled="true">
 <adfmf:springboardFeatureReference id="springboard"/>
 </adfmf:springboard>
 </adfmf:navigation>

5.5.3 What Happens When You Set the Animation for the Springboard

Example 5-6 shows the navigation block of the adfmf-application.xml file, where the springboard is set to slide out and occupy a specified area of the display (213 pixels).

Example 5-6 Configuring Springboard Animation

<adfmf:navigation>
 <adfmf:navigationBar enabled="true"
 displayHideShowNavigationBarControl="true"/>
 <!-- default interpretation of width is pixels -->
 <adfmf:springboard enabled="true"
 animation="slideright"
 width="213"
 showSpringbaordAtStartup="true"/>
</adfmf:navigation>

The following line disables the animation:

<adfmf:springboard enabled="true" animation="none"/>

The following line sets the springboard to occupy 100 pixels from the left of the display area and also enables the active application feature to occupy the remaining portion of the display:

<adfmf:springboard enabled="true" animation="slideright" width="100px"/>

In addition to the animation, Example 5-6 demonstrates the following:

	
The use of the showSpringboardAtStartup attribute, which defines whether the springboard displays when the application starts. (By default, the springboard is displayed.)

	
The use of the navigationBar's displayHideShowNavigationBarControl attribute.

To prevent the springboard from displaying, set the enabled attribute to false.

5.5.4 What You May Need to Know About Custom Springboard Application Features with HTML Content

The default HTML springboard page provided by ADF Mobile uses the following technologies, which you may also want to include in a customized login page:

	
Cascading Style Sheets (CSS)—Defines the colors and layout.

	
JavaScript—The <script> tag embedded within the springboard page contains references to the methods described in Chapter B, "Application Container APIs" that call the Apache Cordova APIs. In addition, the HTML page uses JavaScript to respond to the callbacks and to detect page swipes. When swipe events are detected, JavaScript enables the dynamic modification of the style sheets to animate the page motions.

A springboard authored in HTML (or any custom HTML page) can leverage the Apache Cordova APIs by including a <script> tag that references the base.js library. You can determine the location of this library (or other JavaScript libraries) by first deploying an ADF Mobile application and then locating the www/js directory within platform-specific artifacts in the deploy directory. For an Android application, the www/js directory is located within the Android application package (.apk) file at:

application workspace directory/deploy/deployment profile name/deployment profile name.apk/assets/www/js

For iOS, this library is located at:

application workspace directory/deploy/deployment profile name/temporary_xcode_project/www/js

For more information, see Section B.1, "Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature."

	
WebKit—Provides smooth animation of the icons during transitions between layouts as well as between different springboard pages. For more information on the WebKit rendering engine, see http://www.webkit.org/.

Springboards written in HTML are application features declared in the adfmf-feature.xml file and referenced in the adfmf-application.xml file.

5.5.5 What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content

Like their HTML counterparts, springboards written using ADF Mobile AMX are application features that are referenced by the ADF Mobile application, as described in Section 5.6.1, "How to Designate the Content for a Mobile Application." Because a springboard is typically written as a single ADF Mobile AMX page rather than as a task flow, it uses the gotoFeature method, illustrated by the method expression in Example 5-7, to launch the embedded application features.

	
Note:

A custom springboard page (authored in either HTML or ADF Mobile AMX) must reside within a view controller project which also contains the adfmf-feature.xml file. For more information, see Section 5.6.1, "How to Designate the Content for a Mobile Application."

The default springboard (adfmf.default.springboard.jar, located in jdev_install\jdeveloper\jdev\extensions\oracle.adf.mobile\lib) is an ADF Mobile AMX page that is bundled in a Feature Archive (FAR) JAR file and deployed with other FARs that are included in the ADF Mobile application. This JAR file includes all of the artifacts associated with a springboard, such as the DataBindings.cpx and PageDef.xml files. This file is only available after you select Default as the springboard option in the adfmf-application.xml file. Selecting this option also adds this FAR to the application classpath. For more information, see Section 17.5, "Deploying Feature Archive Files (FARs)."

The default springboard (springboard.amx, illustrated in Example 5-7) is implemented as an ADF Mobile AMX application feature.

Example 5-7 The Default Springboard page, springboard.amx

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="#{bindings.name.inputValue}" id="ot3"/>
 </amx:facet>
 <amx:listView var="row"
 value="#{bindings.features.collectionModel}"
 fetchSize="#{bindings.features.rangeSize}"
 id="lv1"
 styleClass="amx-springboard">
 <amx:listItem showLinkIcon="false"
 id="li1"
 actionListener="#{bindings.gotoFeature.execute}">
 <amx:tableLayout id="tl1"
 width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11"
 width="46px"
 halign="center">
 <amx:image source="#{row.image}"
 id="i1"
 inlineStyle="width:36px;height:36px"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12"
 width="100%"
 height="43px">
 <amx:outputText value="#{row.name}"
 id="ot2"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 <amx:setPropertyListener from="#{row.id}"
 to="#{pageFlowScope.FeatureId}"/>
 </amx:listItem>
 </amx:listView>
 </amx:panelPage>
</amx:view>

As shown in Figure 5-11, an ADF Mobile AMX file defines the springboard using a List View whose List Items are the ADF Mobile application's embedded application features. These application features, once deployed, are displayed by their names and associated icons. The gotoFeature method of the AdfmfContainerUtilities API provides the page's navigation functions. For a description of using this method to display a specific application feature, see Section B.2.7, "gotoFeature." See also Section 7.2.7, "How to Use List View and List Item Components."

Figure 5-11 The Default Springboard

[image: Application features in a List View.]

ADF Mobile provides the basic tools to create a custom springboard (or augment the default one) in the ApplicationFeatures data control. This data control, illustrated in Figure 5-12, enables you to declaratively build a springboard page using its data collections of attributes that describe both the ADF Mobile application and its application features.

Figure 5-12 The ApplicationFeatures Data Control

[image: The ApplicationFeatures data control.]

The methods of the ApplicationFeatures data control enable you to add navigation functions. These adfmf.containerUtilities methods are described in Table 5-2. For more information, see Section B.2, "The ADF Mobile Container Utilities API." See also Chapter 8, "Using Bindings and Creating Data Controls."

Table 5-2 ApplicationFeature Methods

	Method	Description
	
gotoDefaultFeature

	
Navigates to default application feature.

	
gotoFeature

	
Navigates to a specific application as designated by the parameter that is passed to this method.

	
gotoSpringboard

	
Navigates to the springboard.

	
hideNavigationbar

	
Hides the navigation bar.

	
showNavigationbar

	
Displays the navigation bar (if it is hidden).

	
resetFeature

	
Resets the application feature that is designated by the parameter passed to this method.

5.6 Configuring the Application Features within a Mobile Application

Each ADF Mobile application must have at least one application feature.

5.6.1 How to Designate the Content for a Mobile Application

Figure 5-13 shows the Feature References page, which enables you to build the content for the mobile application. As noted in Section 5.2, "About the Mobile Application Configuration File," the mobile application descriptor file's <adfmf:featureReference> element designates these application features.

Example 5-8 Designating Feature References the in the adfmf-application.xml File

<adfmf:featureReference id="Customers"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>
<adfmf:featureReference id="HCM"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>
<adfmf:featureReference id="PROD"
 allowDeviceAccess="true"
 showOnSpringboard="true"
 showOnNavigationBar="true"/>

Example 5-8 shows some of the defined feature references and their associated attributes. The overview editor displays these feature references in the Feature References table. Figure 5-13 shows the defined feature references for HCM and PROD that represent the Customers and Products application features, respectively. Using this page, you enter the references to the application feature and set its display within the mobile application's springboard, as shown in Figure 5-1.

In addition, the page enables you to set the order in which the application features display on the navigation bar and springboard.

	
Note:

Because building a mobile application is an iterative process, you can add, delete or update feature references as new FARs become available (and new application features are added to the adfmf-feature.xml file).

Figure 5-13 Designating Application Features Using the Feature References Page

[image: Adding feature references.]

Before you begin:

You must have application features configured in the adfmf-feature.xml file, as described in Section 5.9, "Setting the Basic Configuration for the Application Feature." In addition, you must open the adfmf-application.xml overview editor.

To designate feature references:

	
Click the Feature References page of the adfmf-application.xml overview editor.

	
Click Add.

	
In the Insert Feature Reference dialog, select the ID of the application feature from the dropdown list, as shown in Figure 5-14.

This dialog lists all of the application features described in the <adfmf:feature> elements of the adfmf-feature.xml file Using this dialog ensures that the id attributes of both the <adfmf:featureReference> and <adfmf:feature> elements match. See also Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."

Figure 5-14 Selecting the Content for the Mobile Application

[image: Adding a feature reference.]

	
If needed, use the up- and down-arrows shown in Figure 5-14 to arrange the display order of the feature references, or use the dropdown list in rows of the Id column, shown in Figure 5-15, to reorder the feature references.

	
Note:

The top-most ID in the Feature References table is the first application feature to display within the ADF Mobile application. See, for example, the Employees application feature illustrated in Figure 5-7.

Figure 5-15 Reordering Feature References

[image: Resort the display order of the application features.]

	
Set the springboard and navigation bar display behavior for the application feature by selecting true or false from the dropdown lists in the rows of the Show on Navigation Bar and Show on Springboard columns. Figure 5-16 shows selecting these options to prevent an application feature from displaying in the navigation bar.

	
Tip:

Set these options to false if the application uses a custom springboard.

Figure 5-16 Changing the Navigation Options

[image: Preventing the application feature from displaying.]

The springboard and the navigation bar display default (that is, the attributes are set to true). If both the navigation bar and springboard attributes are set to false, then the application feature only displays if it is in the first position. See also Section B.2.12, "hideNavigationBar" and Section B.2.13, "showNavigationBar."

	
Note:

Because springboard applications do not display on the navigation bar or within the springboard of an ADF Mobile application, Show on Navigation Bar and Show on Springboard must both be set to false for feature references for custom springboard application features. See also Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content."

	
To enable a domain configured within the connections.xml file to access the device services enabled by ADF Mobile's extension to the Apache Cordova API, select true in the Allow Device Access column. By default, all application features allow such access. To prevent domains from accessing device services, select false. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."

5.6.2 What You May Need to Know About Feature Reference IDs and Feature IDs

An ADF Mobile application can contain many projects and can therefore also include multiple adfmf-feature.xml files. In the application configuration file, a feature reference relates to a feature described by an adfmf-feature.xml file. The ID of an <adfmf:featureReference> identifies where the corresponding application feature is defined. In other words, the id attributes for <adfmf:featureReference> elements in the adfmf-application.xml file must be the same as the id attribute defined for <adfmf:feature> element in adfmf-feature.xml. For example, <adfmf:featureReference id="customers"> in adfmf-application.xml is defined by <adfmf:feature id="customers"> in adfmf-feature.xml. JDeveloper audits the references between the application and feature descriptor files in the same mobile application, and warns you when it finds discrepancies. As shown in Figure 5-17, JDeveloper highlights the mismatch within the code between a feature reference and the features declared in the features application descriptor file with a wavy underline and a Reference not Found warning, which in this case is a feature reference ID defined as PRiD rather than the correct PROD. For more information on JDeveloper's syntax auditing, see the "Auditing and Profiling Applications" chapter in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 5-17 Auditing id Attributes

[image: Auditing ids.]

If the ID for an <adfmf:featureReference> is defined in the adfmf-feature.xml file, you can use Go To Declaration in the context menu, as shown in Figure 5-18, to traverse from the id of a <adfmf:featureReference> in the adfmf-application.xml file to the corresponding id of the <adfmf:feature> in the adfmf-feature.xml file.

Figure 5-18 Finding Application Feature Declarations in the adfmf-feature.xml File

[image: Find feature declarations.]

The feature IDs must be unique across an application. Because application features can be reused, use proper naming conventions to ensure that their feature IDs are unique.

	
Note:

Do not add an ADF Mobile view controller project as a dependency of another ADF Mobile view controller project or as a dependency of an ADF Mobile application controller project. Doing so adds an <adfmf:feature> element in the added view controller project with the same id attribute as the <admf:feature> element in the adfmf-feature.xml file of the original ADF Mobile view controller project. As a result, the ADF Mobile deployment framework terminates the deployment, because it detects that the id attributes for the <adfmf:feature> element are not unique across the ADF Mobile application.

5.7 About Lifecycle Event Listeners

Within the ADF Mobile runtime, classes implement various LifeCycleListener methods to communicate with event notifications sent from the native operating system frameworks to the JVM. These event notifications describe various states (starting, stopping, or hibernating) for both the ADF Mobile application and its embedded application features. ADF Mobile invokes the class functions to the JVM using a generic invoke message.

The overview editors for both the adfmf-application.xml and adfmf-feature.xml files enable you to declaratively add a lifecycle listener class that ADF Mobile calls when events occur. After you enter a fully qualified class name (including the package) using the Class and Package Browser in the overview editor's LifeCycle Event Listener Class field, JDeveloper populates the XML page with the listener-class attribute. For ADF Mobile applications, this attribute is included in the <adfmf:application> element, as shown in Example 5-9.

Example 5-9 The listener-class Attribute in the adfmf-application.xml File

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf"
 id="app-20110308"
 name="#{strings.Title}"
 vendor="Oracle" version="1.0"
 listener-class="oracle.adfmf.application.AppListener">

...

</adfmf:application>

Within the adfmf-feature.xml file, the listener-class attribute is contained within the <adfmf:feature> attribute, as shown in Example 5-10.

Example 5-10 The listener-class Attribute in the adfmf-feature.xml File

...

 <adfmf:feature id="mycompany.phonelist"
 name="Phone List"
 icon="mycompany.phonelist/phoneicon.png"
 listener-class="oracle.adfmf.feature.LifeCycleListener">
 image="mycompany.phonelist/phoneimage.png"
 <adfmf:content id="general">

 <adfmf:amx file="mycompany.phonelist/phone.amx"/>
 </adfmf:content>

 </adfmf:feature>

...

After you create an ADF Mobile application, JDeveloper creates a lifecycle listener class for executing the application called LifeCycleListenerImpl.java. You can implement specific methods using this file, as illustrated in Chapter 16, "Push Notifications." The Lifecycle Events sample application provides an example of declaring the event listener class in both the adfmf-application.xml and adfmf-feature.xml files. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

5.7.1 Events in ADF Mobile Applications

Lifecycle listener classes for ADF Mobile applications must implement the start, stop, activate, and deactive methods of the LifeCycleListener interface, illustrated in Example 5-11 to execute the application lifecycle events.

Example 5-11 The LifeCycleListener Interface for ADF Mobile Applications

package oracle.adfmf.application;

public interface LifeCycleListener
{
 void start();
 void stop();
 void activate();
 void deactivate();
}

	
Note:

The application lifecycle listener is executed with an anonymous user (that is, there is no user associated with any of its methods and no secure web service is called).

The AppListener class, shown in Example 5-12, uses the LifeCycleListener method calls for starting or stopping events as well as those used when the application is about to hibernate (deactivate) or return from hibernating (activate). For more information, see Section 5.7.2, "Timing for Mobile Application Events." See also the LifeCycleListener interface in Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Example 5-12 Implementation of the LifeCycleListener Interface

package some.package;
import oracle.adfmf.application.LifeCycleListener;

public class AppListener implements LifeCycleListener
{
 public AppListener()
 {
 super();
 }
 public void start()
 {
 // Perform application startup tasks...
 }
 public void stop()
 {
 // Perform tasks to stop the application...
 }
 public void activate()
 {
 // Perform appplication activation tasks...
 }
 public void deactivate()
 {
 // Perform application deactivation tasks...
 }
}

For an example of implementing the LifeCycleListenerImpl.java interface at the application level, see the AppHandler.java file in the LifeCycleEvents sample application. This file is located in the application node within the application controller project's Application Sources folder.

	
Note:

Managed beans and data bindings must be initialized before the startup lifecycle code executes.

5.7.2 Timing for Mobile Application Events

ADF Mobile calls application lifecycle methods at specific times during the ADF Mobile application's startup, shutdown, and hibernation. Table 5-3 describes when these methods are called and also notes their Objective-C counterparts.

Table 5-3 ADF Mobile LIfecycle Methods

	Method	Timing	When Called	Usage	Relation to iOS Application Delegate Methods
	
start

	
Called after the ADF Mobile application has completely loaded the application features and immediately before presenting the user with the initial application feature or the springboard.

	
When the application process starts.

	
Uses include:

	
Determining if there are updates to the ADF Mobile application.

	
Requesting a remote server to download data to the local database.

	
This event does not correspond to a specific application delegate method. It is called after the adfmf-application.xml and adfmf-feature.xml files have loaded, just prior to hiding the splash screen.

	
stop

	
Called as the ADF Mobile application begins its shutdown.

	
When the application process terminates.

	
Uses include:

	
Logging off from any remote services.

	
Uploading any data change to the server before the application is closed.

	
This is called in the applicationWillTerminate: method on the application delegate.

	
activate

	
Called as the ADF Mobile application activates from being situated in the background (hibernating).

	
After the start method is called.

	
Uses include:

	
Reading and re-populating cache stores.

	
Processing web service requests.

	
Obtaining required resources.

	
Checkpointing. For more information, see Section 5.7.3, "Using the activate and deactivate Methods to Save Application State."

	
This is called in the applicationDidBecomeActive: method on the application delegate.

	
deactivate

	
Called as the ADF Mobile application deactivates and moves into the background (hibernating).

	
Before the stop method is called.

	
Uses include:

	
Writing the restorable state.

	
Checkpointing. For more information, see Section 5.7.3, "Using the activate and deactivate Methods to Save Application State."

	
Closing the database cursor and the database connection.

	
This is called in the applicationWillResignActive: method on the application delegate.

5.7.3 Using the activate and deactivate Methods to Save Application State

Because checkpointing saves the application state, you can enable users to continue using the last page of an ADF Mobile application that was active before it began to hibernate by adding checkpoint entries to the activate and deactivate methods. The lifecycle listener reads the checkpoint entries added to the activate class and allows the processes to resume after the application has returned from hibernating; users can continue with application uninterrupted by not having to log in a second time. If the application is terminated during hibernation, you can enable the application to resume by specifying that checkpoint information be written to a database or to a device's cache directory as part of the deactivate method. The application resumes at the same page by reading this checkpoint information during activation.

5.7.4 About Application Feature Lifecycle Listener Classes

An ADF Mobile application feature lifecycle listener class, such as FeatureListenerPhoneList, illustrated in Example 5-14, must implement the activate and deactivate methods of the LifeCycleListener interface, as shown in Example 5-13.

Example 5-13 Application Feature LifeCycleListener Interface

package oracle.adfmf.feature;
public interface LifeCycleListner
{
 void activate();
 void deactivate();
}

Example 5-14 illustrates a class called FeatureListenerPhoneList that uses the activate and deactive methods by implementing the LifeCycleListener to show and hide the application feature as described in Table 5-4. These methods hide the application feature when it hibernates, or display it when it returns from hibernating.

Example 5-14 Implementing the Application Feature Lifecycle

package some.package;

import oracle.adfmf.feature.LifeCycleListener;

public class FeatureListenerPhoneList implements LifeCycleListener
{
 public FeatureListenerPhoneList()
 {
 super();
 }
 public void activate()
 {
 // Perform application activation tasks...
 }
 public void deactivate()
 {
 // Perform application deactivation tasks...
 }

}

	
Tip:

The LifeCycle Events sample application provides an example of using the LifeCycleListener interface at the feature application level through the Feature1Handler.java and Feature2Handler.java files. These files are located within the view controller project's Application Sources folder.

5.7.5 Timing for Activate and Deactivate Events in the Application Feature Application Lifecycle

By implementing an application feature lifecycle listener class, you enable an application feature to automatically obtain any data changes to the applicationScope variable or to application feature-specific variables that changed when the application feature was deactivated. Table 5-4 describes when the activate and deactivate events are fired for an application feature. For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Table 5-4 The activate and deactivate Methods for Application Features

	Method	Timing	When Called	Usage
	
activate

	
Called before the current application feature is activated.

	
Called when a user selects the application feature for the first time after launching an ADF Mobile application, or when the application has been re-selected (that is, brought back to the foreground).

	
Uses include:

	
Reading the applicationScope variable.

	
Setting the current row on the first ADF Mobile AMX view.

	
deactivate

	
Called before the next application feature is activated, or before the application feature exits.

	
Called when the user selects another application feature.

	
You can, for example, use the deactivate event to write the applicationScope variable, or any other state information, for the next application feature to consume.

5.8 About the Mobile Feature Application Configuration File

The adfmf-feature.xml file, an example of which is illustrated in Example 5-15, enables you to configure the actual mobile application features that are referenced by the <adfmf:featureReference> element in the corresponding adfmf-application.xml file.

Example 5-15 The adfmf-feature.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="PROD"
 name="Products"
 icon="images/logo.png">
 <adfmf:constraints>
 </adfmf:constraints>
 <adfmf:description>ADF Products</adfmf:description>
 <adfmf:content id="PROD.1">
 <adfmf:amx file="PROD/products_page.amx"/>
 </adfmf:content>
 </adfmf:feature>
 <adfmf:feature id="HCM"
 name="Contents"
 icon="images/directory.png">
 <adfmf:description>People Finder</adfmf:description>
 <adfmf:content id="HCM.1">
 <adfmf:remoteURL connection="Connections1"/>
 </adfmf:content>
 </adfmf:feature>
 <adfmf:feature id="Customers.1"
 name="Customers"
 icon="images/people.png">
 <adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="equal"
 value="field sales"/>
 <adfmf:constraint property="user.roles"
 operator="not"
 value="consultant"/>
 </adfmf:constraints>
 <adfmf:description>Customers</adfmf:description>
 <adfmf:content id="Customers.2">
 <adfmf:localHTML url="Customers/customers_page.html"/>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

By defining the elements of the adfmf-feature.xml file, you set the behavior for the application features by, in turn, defining the child elements of the <Feature> element, the top-most element in the XML file under the root element, <adfmf:features>. The <Feature> element itself describes the basic information of the application feature, including its name, version, and whether or not it participates in security. For the latter, see Chapter 18, "ADF Mobile Application Security." The child elements of the <Feature> elements are listed in Table 5-5. Like the overview editor for the adfmf-application.xml descriptor file, you can update this file with these elements (or edit them) declaratively using the overview editor for the adfmf-feature.xml file, described in Section 5.9, "Setting the Basic Configuration for the Application Feature."

Table 5-5 Child Elements of <Feature> Element

	Element	Description
	
<adfmf:content>

	
Describes the format that the application feature uses for a particular device or user. The content (generally, the user interface) of an application feature can be written as ADF Mobile AMX pages, HTML5 pages, or be delivered from web pages hosted on a remote web server. For more information on designating content as a web application, see Chapter 12, "Implementing Application Features as Remote URLs."

	
<adfmf:constraint>

	
Determines whether a given application feature can be displayed in the application at runtime. Constraints can be used to allow or prevent the use of an application feature based on such criteria as user roles or device properties. For more information, see Chapter 14, "Setting Constraints on Application Features."

5.9 Setting the Basic Configuration for the Application Feature

Each mobile application must have at least one application feature. Because each application feature can be developed independently from one another (and also from the mobile application itself), the overview editor for the adfmf-feature.xml file enables you to define the child elements of <adfmf:features> to differentiate the application features by assigning each a name, an ID, and setting how their content can be implemented. Using the overview editor for application features, you can also control the runtime display of the application feature within mobile application and designate when an application feature requires user authentication.

5.9.1 How to Define the Basic Information for the Application Feature

The General tab of the overview editor, shown in Figure 5-19, enables you to add an application feature, designate its basic information, and its display icons.

Figure 5-19 The General Tab of the Feature Application

[image: Set the unique feature ID in the general tab.]

Before you begin:

If an application feature uses custom images for the navigation bar and springboard rather than the default ones provided by ADF Mobile, you must create these images to the specifications described the Android Developers website (http://developer.android.com/design/style/iconography.html) and in the "Custom Icon and Image Creation Guidelines" chapter in iOS Human Interface Guidelines, which is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

You place these images in the view controller project's public_html directory. See also Section 5.10.2, "What You May Need to Know About Selecting External Resources."

In addition, you must open the adfmf-feature.xml file and select the General tab.

To set the basic information for the application feature:

	
Choose the General tab.

	
Click Add in the Features table.

	
Complete the Create ADF Mobile Feature dialog, shown in Figure 5-17, and then click OK. To complete this dialog:

	
Enter a display name for the application feature in the Feature Name field.

	
Enter a unique identifier for the application feature in the Feature ID field.

	
If needed, change the location for the application feature to any directory within the public_html directory (the default parent directory). Enter this location in the Directory field.

	
To include the newly defined application feature in the mobile application, add a new <adfmf:featureReference> element to the adfmf-application.xml file with the id attribute that matches the value that you entered in the Feature ID. Choose Add a corresponding feature reference to adfmf-application.xml. The table in the Feature References page, shown in Figure 5-13, includes the feature reference after you complete the dialog. See also Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."

Figure 5-20 Adding an Application Feature

[image: Adds a feature application.]

	
In the General tab of the overview editor, enter the originator of the application feature in the Vendor field. This is an optional value.

	
Enter the version number of the application feature in the Version field. This is an optional value.

	
Enter a brief description of the application's purpose in the Description field. This is an optional value.

	
Enter the fully qualified class name (including the package, such as oracle.adfmf.feature) using the Class and Package Browser in the Lifecycle Event Listener field to enable runtime calls for start, stop, hibernate, and return to hibernate events. For more information, see Section 5.7, "About Lifecycle Event Listeners." This is an optional value.

	
In the Navigation Bar Icon and Springboard Image fields, browse to, and select, images from the project to use as the icon in the navigation bar and also an image used for the display icon in the springboard. You can also drag and drop the image files from the Application navigator into the file location field. This is an optional value.

5.10 Defining the Content Types for an Application Feature

The content type for an application feature describes the format of the user interface, which can be constructed using ADF Mobile AMX components or HTML(5) tags. An application feature can also derive its content from remotely hosted pages that contain content appropriate to a mobile context. These web pages might be a JavaServer page authored in Apache Trinidad for smartphones, or be comprised of ADF Faces components for applications that run on tablet devices. The application features embedded in an ADF Mobile application can each have different content types.

	
Tip:

Design an ADF Mobile application with more than one content type.

While an ADF Mobile application include application features with different content types, applications features themselves may have different content types to respond to user- and device-specific requirements. For information on how the application feature delivers different content types, see Chapter 14, "Setting Constraints on Application Features." Adding a child element to the <adfmf:content> element, shown in Example 5-16, enables you to define how the application feature implements its user interface.

Example 5-16 The <adfmf:content> Element

<adfmf:content id="Feature1">
 <adfmf:amx file="FeatureContent.amx">
</adfmf:content>

5.10.1 How to Define the Application Content

The Content tab of the overview editor, shown in Figure 5-21, provides you with dropdown lists and fields for defining the target content-related elements and attributes shown in Example 5-16. The fields within this tab enable you to set constraints that can control the type of content delivered for an application feature as well as the navigation and springboard icon images that it uses.

Each content type has its own set of parameters. As shown in Figure 5-21, for example, you must specify the location of the ADF Mobile AMX page or task flow for the application features that you implement as ADF Mobile AMX content. In addition, you can optionally select a CSS file to give the application feature a look and feel that is distinct from other application features (or the ADF Mobile application itself), or select a JavaScript file that controls the actions of the ADF Mobile AMX components.

Figure 5-21 Defining the Implementation of the Application Feature

[image: Select the content implementation.]

Before you begin:

Each content type has its own prerequisites, as follows:

	
ADF Mobile AMX—The default content type for application features. You can build the ADF Mobile AMX content declaratively using a set of mobile-specific user interface components, ADF data bindings, and data controls that integrate device services, such as a camera, and such data visualization tools, such as charts, graphs, and thematic maps. For information on building an ADF Mobile AMX page, see Chapter 6, "Creating ADF Mobile AMX Pages."

An application feature implemented as ADF Mobile AMX requires an existing view (that is, a single ADF Mobile AMX page) or a bounded or unbounded task flow. Including a JavaScript file provides rendering logic to the ADF Mobile AMX components or overrides the existing rendering logic. Including a style sheet (CSS) with selectors that specify a custom look and feel for the application feature, one that overrides the styles defined at the Mobile application level that are used by default for application features. In other words, you ensure that the entire application feature has its own look and feel.

If you create the ADF Mobile AMX pages as well as the mobile application that contains them, you can create both using the wizards in the New Gallery. You access these wizards by first highlighting the view controller project in the Application Navigator and then by choosing New. Alternatively, you can create an ADF Mobile AMX page using the context menu shown in Figure 5-22 that appears when you right-click the view controller project in the Application Navigator and then choose New.

	
Note:

When manually editing references to task flows, ADF Mobile AMX pages, CSS and JavaScript files in the adfmf-feature.xml file, keep in mind that file systems used on devices may enforce case-sensitivity and may not allow special characters. To ensure that these files can be referenced, check the mobile device specification.

Figure 5-22 Context Menu for Creating an ADF Mobile Page

[image: Select ADF Mobile AMX Page.]

	
Remote URL—A reference to a web application. You can enhance an existing web application for mobile usage and extend device services. Remote content can complement both ADF Mobile AMX and local HTML content by providing a local data cache and a full set of server-side data and functionality. The remote URL implementation requires a valid web address as well as a hosted mobile application. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."

	
Local HTML—An application feature implemented as local HTML can embed Java to access business logic. It can also reference JavaScript to access device services (including geolocation) or the navigation functions described in Appendix B, "Application Container APIs" by referencing the Apache Cordova library that is located in the www/js directory. The deployment of an ADF Mobile application results in the creation this directory. It is located within the deploy directory. For information on creating a <script> tag that defines this reference, see Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content."

To define the application content as Remote URL or Local HTML:

	
Select an application feature listed in the Features table in the adfmf-feature.xml file.

	
Click Content.

	
Click Add to create a new row in the Content table (see, for example, products.1 in Figure 5-21).

	
Select one of the following content types to correspond with the generated ID:

	
Remote URL

	
Local HTML

	
Define the content-specific parameters:

	
For remote URL content, select the connection, as shown in Figure 5-23, that represents address of the web pages on the server (and the location of the launch page).

Figure 5-23 Selecting the Connection for the Hosted Application

[image: Select the server connection.]

You can create this connection by first clicking Add and then completing the Create URL Connection dialog, shown in Figure 5-24. For more information on this dialog, see the online help for Oracle JDeveloper. This connection is stored in the connections.xml file.

	
Note:

This connection can only be created as an application resource.

Figure 5-24 Creating a URL Connection

[image: Enter the remote server URL.]

	
For local HTML content, enter the location of the local bundle or create the HTML page by clicking Add in the URL field, completing the dialog as shown in Figure 5-25, and then building the page using JDeveloper's HTML editor. Because this is an application feature, this page is stored within the Web Content folder of the view controller project.

Figure 5-25 Creating the Local HTML Page as the Content for an Application Feature

[image: Click Add in the URL field.]

	
If needed, do the following:

	
Enter constraints that describe the conditions under which this content is available to users. For more information, see Chapter 14, "Setting Constraints on Application Features."

	
Select navigation bar and springboard images.

To designate the application feature content as ADF Mobile AMX:

	
Select the application feature.

	
Click Content.

	
If needed, click Add to create a row in the Content table and the choose ADF Mobile AMX from the dropdown list in the Type column as shown in Figure 5-26.

Figure 5-26 Selecting ADF Mobile AMX as the Content Type

[image: Select ADF Mobile AMX as the content type.]

	
In the File field, click Browse, and choose either ADF Mobile AMX Page or Task Flow, as shown in Figure 5-27, to navigate to, and retrieve, the location of the ADF Mobile AMX page or the bounded task flow. Alternatively, you can drag and drop an ADF Mobile AMX page from the Application Navigator into the file location field.

Figure 5-27 Browsing for the File Location in the File Field

[image: Select ADF Mobile XML Page or Task Flow.]

	
Alternatively, create the page or task flow. To do this:

	
Click Add in the File field and then choose either ADF Mobile AMX or Task Flow as shown in Figure 5-28.

Figure 5-28 Adding an ADF Mobile AMX Page or Task Flow from the File Field

[image: Select a task flow or page.]

	
Complete the create dialogs, such as the Create ADF Mobile AMX Page dialog shown in Figure 5-29.

Figure 5-29 The Create ADF Mobile AMX Page Dialog

[image: Create ADF Mobile AMX content.]

	
Build the ADF Mobile AMX page or Task flow using an editor.

	
If needed, do the following:

	
Enter the JavaScript files by clicking Add in the Includes table, choose JavaScript, and then browse to the location of the file. For more information, see Section 5.12.7, "Overriding the Default Skin Styles."

	
Override the default style sheet designated as adfmf-config.xml by first clicking Add and then by choosing Stylesheet. Browse to the location of the file. For more information, see Section 5.12, "Skinning ADF Mobile Applications."

	
Enter the constraints, as described in Chapter 14, "Setting Constraints on Application Features."

	
Select navigation bar and springboard images.

	
Note:

The images, style sheet, and JavaScript files must reside within the public_html folder to enable deployment. See Section 5.10.2, "What You May Need to Know About Selecting External Resources."

5.10.2 What You May Need to Know About Selecting External Resources

To enable deployment, all resources referenced by the following attributes must be located within the public_html directory of either the view controller or application controller projects.

	
The icon and image attributes for <adfmf:feature> (for example, <adfmf:feature id="PROD" name="Products" icon="feature_icon.png" image="springboard.png">). See also Section 5.9.1, "How to Define the Basic Information for the Application Feature."

	
The icon and image attributes for <adfmf:content> (for example, <adfmf:content id="PROD" icon="feature_icon.png" image="springboard_image.png">). See also Section 5.10, "Defining the Content Types for an Application Feature."

	
The file attribute for <adfmf:amx> (for example, <adfmf:amx file="PRODUCT/home.amx" />). See also Section 5.10, "Defining the Content Types for an Application Feature."

	
The url attribute for <adfmf: localHTML> (for example, <adfmf:localHTML url="oracle.hello/index.html"/>). See also Section 5.10, "Defining the Content Types for an Application Feature" and Section 18.4.12.2, "The Custom Login Page."

	
The file attribute defined for type=stylesheet and type=JavaScript in <adfmf:includes> (for example, <adfmf:include type="JavaScript" file="myotherfile.js"/>). See also Section 5.12, "Skinning ADF Mobile Applications."

ADF Mobile does not support resources referenced from another location, meaning that you cannot, for example, enter a value outside of the public_html directory using ../ as a prefix. To safeguard against referencing resources outside of public_html, ADF Mobile includes an audit rule called File not in public_html directory. You can access the ADF Mobile audit profiles, shown in Figure 5-30, from the Audit Profiles node in Preferences by choosing Tools > Preferences > Audit > Profiles.

Figure 5-30 ADF Mobile Audit Profiles

[image: The File Not Found in Directory rule.]

When this profile is selected, JDeveloper issues a warning if you change the location of a resource. As shown in Figure 5-31, JDeveloper displays such a warning when the default values are overridden. For information on auditing, see the "Auditing and Profiling Applications" chapter in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 5-31 The External Resource Warning

[image: Warning for external resources.]

5.11 Working with Resource Bundles

ADF Mobile uses the standard localization structures of ADF to specify English language text resources (although you can use any tool to generate resource bundle files in other languages). You can configure an ADF Mobile application to store translatable UI strings at both the application and project level, as described in the "Working with Resource Bundles" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. ADF Mobile uses only XLIFF (XML Localization Interchange File Format) files for localization, meaning that JDeveloper produces an .xlf file to store the strings. (Also, xliff Resource Bundle is the only available resource bundle type in the Resource Bundle Settings page for projects, shown in Figure 5-32. For more information on this page, see the online help for Oracle JDeveloper.)

Figure 5-32 The Project Properties Resource Bundle Page

[image: Only XLIFF is availble.]

At the application level, you can localize strings for such attributes as application names or preference page labels, which are listed in Table 5-6.

Table 5-6 Localizable ADF Mobile Application Attributes

	Element	Attribute(s)
	
<adfmf:Application>

	
name

	
<adfmf:PreferenceGroup>

	
label

	
<adfmf:PreferencePage>

	
label

	
<adfmf:PreferenceBoolean>

	
label

	
<adfmf:PreferenceText>

	
label

	
<adfmf:PreferenceNumber>

	
label

	
<adfmf:PreferenceList>

	
label

	
<adfmf:PreferenceValue>

	
name

At the project (view controller) level, you can localize application feature-related attributes listed in Table 5-7.

Table 5-7 Localizable Application Feature Attributes

	Element	Attribute
	
<adfmf:Feature>

	
name

	
<adfmf:Constraint>

	
value

	
<adfmf:Parameter>

	
value

	
<adfmf:PreferencePage>

	
label

	
<adfmf:PrefrenceGroup>

	
label

	
<adfmf:PreferenceBoolean>

	
label

	
<adfmf:PreferenceText>

	
label

	
<adfmf:PreferenceNumber>

	
label

	
<adfmf:PreferenceList>

	
label

	
<adfmf:PreferenceValue>

	
name

You can create resource bundles for attributes of such ADF Mobile AMX components as the text attribute of <amx:commandButton>. Table 5-8 lists these ADF Mobile AMX (amx) components. For more information see Section 7.7, "Localizing UI Components."

Table 5-8 Localizable Attributes of ADF Mobile AMX Components

	Component	Attribute
	
<amx:inputDate>

	
label

	
<amx:inputNumberSlider>

	
label

	
<amx:panelLabelAndMessage>

	
label

	
<amx:selectBooleanCheckBox>

	
label

	
<amx:selectBooleanSwitch>

	
label

	
<amx:selectItem>

	
label

	
<amx:selectManyCheckBox>

	
label

	
<amx:selectManyChoice>

	
label

	
<amx:selectOneButton>

	
label

	
<amx:selectOneChoice>

	
label

	
<amx:selectOneRadio>

	
label

	
<amx:commandButton>

	
text

	
<amx:commandLink>

	
text

	
<amx:goLink>

	
text

	
<amx:inputText>

	
label, value, hintText

	
<amx:outputText>

	
value

5.11.1 How to Create Project-Level Resource Bundles

At the project-level, you create resource bundle files when you use the resource bundle dialog, accessed by clicking Select Text Resource in the Property Inspector, shown in Figure 5-33. This dialog enables you to automatically create text resources in the base resource bundle for the adfmf-feature.xml attributes listed in Table 5-7.

Figure 5-33 Localizing Feature Application Attributes

[image: Selecting a Text Resource.]

Before you begin:

You may need to configure the resource bundle properties as described in the "How to Set Message Bundle Options" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

To use strings in a resource bundle:

	
Select an attribute in the Property Inspector, such as Name in Figure 5-34.

	
Choose Select Text Resource. Figure 5-34 shows the application name attribute selected in the Property Inspector.

Figure 5-34 Selecting the Text Resource Dialog

[image: Select a text resource for an application.]

	
In the Select Text Resource dialog, shown in Figure 5-35, create a new string resource by entering a display name, key, and then click Save and Select.

Figure 5-35 Select Text Resource Dialog

[image: Selecting the text resource.]

5.11.2 What Happens When You Add a Resource Bundle

After you add a resource in the Select Text Resource dialog, JDeveloper creates a new application-level resource bundle containing the specified display name string and key file in the ADF Meta-INF file, as shown by Application15Bundle.xlf in Figure 5-36.

Figure 5-36 The Application Resource Bundle

[image: The resource bundle and its contents.]

If an attribute has been localized for the first time, JDeveloper adds an <adfmf:loadbundle> element whose basename attribute refers to the newly created resource bundle.

JDeveloper also changes the localized attribute string to an EL expression that refers to the key of the string defined in the resource bundle. For example, JDeveloper changes an application name attribute called Acme Sales to name="#{application15Bundle.ACME_SALES}" based on the ACME_SALES value entered for the Key in the Select Resource Dialog.

JDeveloper adds each additional string that you localize to the same resource bundle file because there is only one resource bundle file at the application level.

Each adfmf-application.xml and adfmf-feature.xml file contains only one adfmf:loadBundle element. When you deploy an application, the resource bundles are converted into the language format expected by the runtime.

5.11.2.1 What Happens When You Create Project-Level Resource Bundles for ADF Mobile AMX Components

You can use the project- level resource bundles to localize strings for the attributes of ADF Mobile AMX components as described in Section 7.7, "Localizing UI Components." When you localize a component, such as the text attribute for a <amx:commandButton> in Example 5-17, JDeveloper transforms the string into an EL expression (such as #{viewcontrollerBundle.MYBUTTON in Example 5-17).

Example 5-17 Localizing an ADF Mobile XML Component

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:amx="http://xmlns.oracle.com/jdev/amx"
 xmlns:dvtm="http://xmlns.oracle.com/jdev/dvtm">
 <amx:panelPage id="pp1">
 <amx:commandButton id="commandButton1" text="#{viewcontrollerBundle.MYBUTTON}"
 </amx:panelPage>
 <amx:loadBundle basename="mobile.ViewControllerBundle" var="viewcontrollerBundle"/>
</amx:view>

In addition, JDeveloper creates the resource bundle under the project default package, similar to ViewControllerBundle.xlf in Figure 5-37. In the generated <amx:loadBundle> element, the basename represents this package as, for example, mobile.ViewControllerBundle.

Figure 5-37 The Project-Level Resource Bundle

[image: The project-level resource bundle.]

5.11.3 What You May Need to Know About Localizing Image Files

If an image contains text or reflects a specific country or region (for example, a picture of a flag), you can specify an alternate image as part of the localization process. You cannot hard-code the image, such as <amx:image="image2" source="feature1/test.jpg">. Instead, you must edit the ViewControllerBundle.xlf file manually by adding a <trans-unit> element for the image path, as illustrated in Example 5-18.

Example 5-18 Defining the Resource for an <amx:image> Component

<trans-unit id="IMAGEPATH">
 <source>/feature1/test.jpg</source>
 <target/>
</trans-unit>

	
Note:

The image location defined in the <source> element in Example 5-18 is relative to the location of the application feature file in ViewController\public_html. Alternatively, you can enter the name of the image file, such as <source>test.jpg</source>. See also Section 5.10.2, "What You May Need to Know About Selecting External Resources."

After you update ViewControllerBundle.xlf, use the Expression Builder to define an EL expression for the source attribute for the <amx:image> component, as shown in Figure 5-38.

Figure 5-38 Creating the EL Expression for a Localized <amx:image> Component

[image: Select the image resource defined in the XLIFF file.]

5.11.4 What You May Need to Know About XLIFF Files for iOS Applications

A family of one or more XLIFF files must exist at the location described by the <adfmf:loadBundle> element. A family of XLIFF files includes the following:

	
Base XLIFF File—The name of the base XLIFF file must match the last token in the path specified by the basename attribute. This file bears the .xlf extension, such as ViewControllerBundle.xlf. In the following definition, the file is called ViewControllerBundle:

<adfmf:loadBundle var="stringBundle" basename="view.ViewControllerBundle"/>

	
Zero, or more, localized XLIFF Files—There can be zero (or many) localized XLIFF files for each base XLIFF file. For each file:

	
The file extension must be .xlf.

	
Must be co-located in the same directory as the corresponding base XLIFF file.

	
The file name is in the following format:

<BASE_XLIFF_FILE_NAME>_<LANGUAGE_TOKEN>.xlf

Where:

	
<BASE_XLIFF_FILE_NAME> is the base XLIFF file name, without the .xlf extension.

	
<LANGUAGE_TOKEN> is in the following format:

<ISO-639-lowercase-language-code>

	
Note:

ADF Mobile does not support countries or regions.

For example, for Spain, the language token is es. For more information, see the "Manually Defining Resource Bundles and Locales" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

For example, localized file names for XLIFF files referencing a base XLIFF named stringBundle.xlf for language codes en, es, and fr would be:

	
stringBundle_en.xlf

	
stringBundle_es.xlf

	
stringBundle_fr.xlf

5.11.5 Internationalization for iOS Applications

The localizable elements of the adfmf-application.xml and adfmf-feature.xml files reference internationalized strings through the use of EL-like strings in the attributes listed in Table 5-7 and Table 5-6. Because these configuration files are read early in the application lifecycle, these strings are not evaluated as EL statements at runtime. Instead, these strings are taken as the full key for the translated string in the native device translation infrastructure.

Although the Expression Language syntax is "${BUNDLE_NAME.STRING_KEY}", ADF Mobile uses the entire string enclosed by "#{}" as the key to look up the translated string. These strings are in the form of #{bundleName.['My.String.ID']}, where the XLIFF string is separated by periods and #{bundleName.['MyStringID']}, which is used only for string identifiers that are not separated by periods. Example 5-19 illustrates the latter, such as #{strings.CONTACTS}, that modify the name attribute. For the iOS native framework, the deployment ensures that the content of that statement matches the proper key in the *.string file used for translation.

Only the attributes that are displayed to the end user, or control the location of content displayed to the end user, support the use of internationalized strings. These include the following attributes:

	
The <adfmf:application> element's name attribute

	
The <adfmf:feature> element's name attribute

	
The <adfmf:feature> element's icon attribute

	
The <adfmf:feature> element's image attribute

	
The <adfmf:content> element's icon attribute

	
The <adfmf:content> element's image attribute

Example 5-19 shows an application feature with name, icon, and image attributes use internationalization strings.

Example 5-19 Internationalization Using Strings

<adfmf:feature id="CTCS" name="#{strings.CONTACTS}"
 icon="#{strings.CONTACTS_ICON}"
 image="#{strings.CONTACTS_IMAGE}">
 <adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="employee" />
 </adfmf:constraints>
 <adfmf:description>The HTML Device Contacts</adfmf:description>
 <adfmf:loadBundle basename="mobile.adfmf-stringsBundle"
 var="strings"/>
 <adfmf:content id="CTCS.Generic">
 <adfmf:constraints />
 <adfmf:localHTML url="contacts.html" />
 </adfmf:content>
 </adfmf:feature>

When you define the <adfmf:loadBundle> elements, as shown in Example 5-20, you create the mapping of bundle names to actual bundles. The bundle name is used when the expression is evaluated.

Example 5-20 Mapping Bundle Names Using <adfmf:loadBundle>

 <adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="employee" />
 </adfmf:constraints>
 <adfmf:description>The HTML Device Contacts</adfmf:description>
 <adfmf:loadBundle basename="mobile.adfmf-featureBundle"
 var="mobileBundle"/>
 <adfmf:loadBundle basename="mobile.adfmf-stringsBundle"
 var="strings"/>

ADF Mobile's runtime holds the <adfmf:loadBundle> elements until the first access of the JVM. It sends a message to the JVM to initialize the mapping of the base names of the packages to EL names of the bundles. Example 5-21 illustrates the structure of the message sent to the JVM.

Example 5-21 The Message Initializing Mapping of Base Names to EL Names

{classname:"oracle.adfmf.framework.api.Model",method:"setBundles",
 params:[[{basename:"mobile.adfmf-featureBundle",elname:"mobileBundle"},
 {basename:"mobile.adfmf-stringsBundle",elname:"strings"}]]}

5.12 Skinning ADF Mobile Applications

ADF Mobile's use of CSS (Cascading Style Sheet) language-based skins ensures that all application components within an ADF Mobile application (including those used in its constituent application features) share a consistent look and feel. Rather than altering how an ADF Mobile application looks by re-configuring ADF Mobile AMX or HTML components, you can instead create, or extend, a skin that changes how components display. Any changes made to a skin take effect when an application starts, because ADF Mobile applies skins at runtime.

As noted in Section 4.2.2, "What Happens When You Create an ADF Mobile Application," the artifacts resulting from the creation of an application controller project include two skinning-related files, adfmf-config.xml and adfmf-skins.xml. You use these files to control the skinning for the ADF Mobile application. The adfmf-config.xml file designates the default skin family used to render application components and the adfmf-skins.xml file enables you to customize the default skin family or define a new one.

5.12.1 About the adfmf-config.xml File

After you create an ADF Mobile application, JDeveloper populates the adfmf-config.xml file to the ADF Mobile application's META-INF node. The file itself is populated with the base ADF Mobile skin family, MobileFusionfx, illustrated in Example 5-22.

Example 5-22 The Default Skin, mobileFusionFX, in the adfmf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>mobileFusionFx</skin-family>
<skin-version>1</skin-version>
</adfmf-config>

	
Note:

The <skin-family> element does not support EL expressions.

ADF Mobile applies skins as a hierarchy, with device-specific skins occupying the top tier, followed by platform-specific skins, and then the base skin, mobileFusionFx. In terms of ADF Mobile's mobileFusionFx skin family, this hierarchy is expressed as follows:

	
mobileFusionfx.iPhone or mobileFusionFx.iPad

	
mobileFusionFx.iOS or mobileFusion.Android

	
mobileFusionFx

ADF Mobile gives precedence to selectors defined at the device-specific level of this hierarchy. In other words, ADF Mobile overwrites a selector defined in mobileFusionFX.iOS with the mobileFusionFx.iPhone definition for the same selector. The <extends> clause, defined in Section 5.12.3, "About the adfmf-skins.xml File," defines this hierarchy for the ADF Mobile runtime. Figure 5-39 shows the list of seeded form factors in ADF Mobile preference page, which illustrates this hierarchy in terms of platform and model. For more information on how skins are applied at various levels, see Section 5.12.8, "What You May Need to Know About Skinning."

Figure 5-39 The Skinning Hierarchy

[image: mobileFusionFX skinning families.]

5.12.2 What You May Need to Know About ADF Mobile Styles

The underlying skinning styles for the base skin family, mobileFusionFx, are defined in the amx.css and amx-v1.1.css files. These files, which define the selectors for ADF Mobile AMX pages, reside in the www\css directory. To access this directory, you must first deploy an ADF Mobile application to a simulator or device and then traverse to the deploy directory (for example, C:\JDeveloper\mywork\application name\deploy). The www\css directory resides within the platform-specific artifacts generated by the deployment. For iOS deployments, the directory is located within the temporary_xcode_project directory. For Android deployments, this directory is located in the assets directory of the Android application package (.apk) file.

	
Caution:

Do not write styles that rely on the ADF Mobile DOM structures. Further, some of the selectors defined in these files may not be supported.

5.12.3 About the adfmf-skins.xml File

The adfmf-skins.xml file, located in the META-INF node of the application controller project, uses the <skin> and the <skin-addition> elements. Use the <skin> element to extend a skin family. The <skin-addition> element adds a style sheet to an existing skin.

By default, this file is empty, but the elements listed in Table 5-9 describe the child elements that you can use to populate this file to extend mobileFusionFx or to define the CSS files that are available to the application. You use the <skin> element to create new skins or to extend an existing skin.

	
Note:

Do not use the <extends> element when defining a new skin.

Table 5-9 Child Elements of the <skin> Element

	Elements	Description
	
<id>

	
Because ADF Mobile skinning customizes the default mobileFusionFx skin, the identifier syntax reflects the version of the operating system. This is a required element. In terms of mobileFusionFx, mobileFusionFx.iOS identifies a style sheet that renders components on the Apple iPad and the iPhone.

mobileFusionFx.iPad and mobileFusionFx.iPhone render exclusively to the iPad or iPhone, respectively.

	
<family>

	
Identifies the skin family. This is a required element.

	
<extends>

	
Use this element to customize the default skin, mobileFusionFx, to a specific device.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin>
 <id>mobileFusionFx.iPhone</id>
 <family>mobileFusionFx</family>
 <extends>mobileFusionFx.iOS</extends>
 <style-sheet-name>styles/myiphone.css</style-sheet-name>
 </skin>
</adfmf-skins>

A <skins> element with no <extends> clause means that a new skin has been defined.

	
<style-sheet-name>

	
The file location of the CSS file (a relative URL). This is an optional element.

	
<version>

	
An optional element that can be used if you change the CSS to fix bugs. For more information, see Section 5.12.5, "How to Version ADF Mobile Skins."

Table 5-10 lists elements that you can use to define the <skin-addition> element in an ADF Mobile CSS when you integrate a style sheet into an existing skin.

Table 5-10 The <skin-addition> Child Elements

	Element	Description
	
<skin-id>

	
The name of the existing skin that you are injecting into the style sheet. This identifier must match the value for the child <id> element of the <skin> element.

	
<style-sheet-name>

	
The relative URL of the style sheet for the skin.

Example 5-23 illustrates designating the location of the CSS file in the <style-sheet-name> element and the target skin family in <skin-id>.

Example 5-23 Using the <skin-addition> Element

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-addition>
 <skin-id>mobileFusionFx.iPhone</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

5.12.3.1 About the ADF Mobile Skin Identifiers

The skin identifier (<skin-id>) is identical to the <skin-family> element and can be appended with modifiers for the operating system and the device, such as iOS, iPhone, or iPad. ADF Mobile first searches for the skin identifier in the format of <skin-family>.<OS>, such as mobileFusionFx.iPad. If it cannot find the skin, it searches instead for the skin identifier of <skin-family> which falls back to the default skin family, mobileFusionFx. (This top-level skin is referenced by the <skin-id>, which equals the <skin-family>). The <skin-family> must always be identified in the adfmf-config.xml file.

5.12.4 How to Change the Default Skin Family

By editing the adfmf-config.xml and adfmf-skins.xml files, which respectively designate the current skin used by the ADF Mobile application and then describing the skin families available to it, you can customize, add, and test skins.

You can edit the source file directly, or use the Structure window, shown in Figure 5-40, to update the adfmf-skins.xml and adfmf-config.xml files. You maintain all of the skins and skin additions within the adfmf-skins.xml file and then designate the default skin for rendering the application components in the adfmf-config.xml file. You create new CSS files within the application controller project using the Create Cascading Style Sheet dialog. Because the CSS files are associated with the <skin-id>, you then update the <skin-id> elements in adfmf-skins.xml with the new CSS references. If a skin family is not specified in adfmf-config.xml, then it cannot be used for skinning.

Figure 5-40 Configuring the Skinning Files

[image: The adfmf_config.xml file.]

To customize the default skin:

	
If needed, create a new CSS file:

	
Right-click the application controller project and then choose New, or click File > New.

	
In the New Gallery, select HTML (located within Web Tier) and then CSS File. Click OK.

	
Complete the Create Cascading Style Sheet dialog by entering a name for the CSS file and also a directory location.

	
Note:

The CSS file must reside somewhere within the public_html folder of the application controller project (such as /Users/user name/jdeveloper/mywork/Mobile Application/ApplicationController/public_html/resources/css). The adfmf-skins.xml, where you reference this CSS, is also located within the application controller project (application workspace directory/ApplicationController/src/META-INF).

Figure 5-41 The Create Cascading Style Sheet Dialog

[image: CSS file located in Application Controller.]

	
Open the adfmf-skins.xml file.

	
Drag and drop a <skin> component from the ADF Mobile Skins Component Palette to the Structure window.

	
Populate the <skin> element with the elements described in Table 5-9 by completing the Insert skin dialog, shown in Figure 5-42, as follows:

	
family—Enter the base skin family. The base skin family must be the same as the one defined by the <skin-family> element in the adfmf-config.xml file to enable ADF Mobile to apply styles.

	
id—Enter the identifier for the skin.

	
extends—Enter the name of the parent style. For the mobilefusionFX family, enter the base family, appended with the operating system (mobileFusionFx.iOS).

	
style-sheet-name—Retrieve the style sheet.

Figure 5-42 The Insert Skin Dialog

[image: Use to customize the default skin.]

	
Click OK.

	
Define the CSS within the adfmf-config.xml file. The context of the CSS definition within this file depends on whether this style sheet is used to extend the mobilefusionfx skin family or be added to it.

To add a new style sheet to a skin

	
Drag and drop a <skin-addition> element from the Component Palette to the Structure window.

	
Populate the <skin-addition> element with the elements described in Table 5-10 by completing the Insert skin-addition dialog, shown in Figure 5-43.

	
Enter the identifier of the skin to which you want to add a new style.

	
Retrieve the location of the CSS file.

Figure 5-43 The Insert skin-addition Dialog

[image: Enter skin family ID and file location.]

	
Click OK.

	
Caution:

Creating custom styles that use DOM-altering structures can cause ADF Mobile applications to hang. Specifically, the display property causes rendering problems in the HTML that is converted from ADF Mobile AMX. This property, which uses such values as table, table-row, and table-cell to convert components into a table, may result in table-related structures that are not contained within the appropriate parent table objects. Although this problem may not be visible within the application user interface itself, the logging console reports it through a Signal 10 exception.

5.12.5 How to Version ADF Mobile Skins

Skin versioning, which is provided by the <skin-version> and <version> elements, enables an ADF Mobile application to support multiple versions of a skin. Because you apply bug fixes to a new version of a skin rather than to an existing one, you can use these versioning-related elements for testing and debugging. Rather than define a new skin family to test and then apply updated skins, you can instead use versioning to create new skins within an existing skin family. As illustrated by the skins defined for the customFamily family in Example 5-24, you version a skin by using the descendents of the <version> element: you define the <name> element by providing a version number (such as v1) and a boolean value (true or false) for the <default> child element.

Example 5-24 Versioning in the adfmf-skins.xml File

<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skin">
 <skin id="s1">
 <family>customFamily</family>
 <id>customFamily-v1.iPhone</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone.css</style-sheet-name>
 <version>
 <name>v1</name>
 <default>true</default>
 </version>
 </skin>
 <skin id="s2">
 <family>customFamily</family>
 <id>customFamily-v1.iOS</id>
 <extends>customFamily</extends>
 <style-sheet-name>ios.css</style-sheet-name>
 <version>
 <name>v1</name>
 <default>true</default>
 </version>
 </skin>
 <skin id="s3">
 <family>customFamily</family>
 <id>customFamily</id>
 <extends>mobileFusionFx</extends>
 <style-sheet-name>base.css</style-sheet-name>
 <version>
 <name>v1</name>
 <default>true</default>
 </version>
 </skin>
 </adfmf-skins>

You can configure the adfmf-config.xml file to request a default version of a skin, or a specific version. If the adfmf-config file does not specify a skin version (that is, there is no <skin-version> element defined, as in Example 5-25), then the <version> element modified by <default>true</default> is used instead.

Example 5-25 Requesting a Default Skin Version in the adfmf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>customSkin</skin-family>
</adfmf-config>

In this case, the skin identified in Example 5-26 as customFamily-v1.iphone is used instead of customFamily-v2.iphone, which is not identified as a default skin.

Example 5-26 Multiple Skin Versions Defined in the adfmf-skins.xml File

<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skin">
<skin id="s1">
 <family>customFamily</family>
 <id>customFamily-v1.iphone</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone.css</style-sheet-name>
 <version>
 <name>v1</name>
 <default>true</default>
 </version>
 </skin>
 <skin id="s2">
 <family>customFamily</family>
 <id>customFamily-v2.iPhone</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 ...

Define the <skin-version> element in the admf-config.xml file, as shown in Example 5-27, to allow the ADF Mobile runtime to apply a specific skin. At runtime, ADF Mobile ignores the default skin in favor of skin referenced by a version (such as <name>v1<name> in Example 5-26) that matches the <skin-version> definition in the adfmf-skins.xml file. The ADF Mobile runtime locates the version of the skin for the particular skin family and applies it with the base skins, meaning that it evaluates the <extends> clause recursively.

	
Note:

The ADF Mobile runtime ignores <default>true</default> when the values configured for <name> and <skin-version> match.

Example 5-27 Specifying a Specific Skin in the adfmf-config.xml

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>customSkinFamily</skin-family>
 <skin-version>v1</skin-version>
</adfmf-config>

To version an ADF Mobile skin:

	
If needed, create new CSS files as described in Section 5.12.4, "How to Change the Default Skin Family."

	
Open the adfmf-skins.xml file.

	
Drag and drop a <version> component from the ADF Mobile Skins Component Palette to a <skin> element in the Structure window or the source editor.

	
Populate the <version> element by entering the version number in the Insert version dialog, illustrated in Figure 5-44.

Figure 5-44 The Insert version Dialog

[image: Define the skin version number.]

	
Enter a version name and select true to enable ADF Mobile to apply this version of the skin.

	
Open the adfmf-config.xml file.

	
Drag and drop a <skin-version> element from the ADF Mobile Skins Component Palette to the <skin-family> element in the Structure window or the source editor.

	
Enter the version number defined for the name attribute of the <version> element in the adfmf-skins.xml file.

5.12.6 What Happens When You Version an ADF Mobile Skin

As mentioned in Section 5.12.1, "About the adfmf-config.xml File," the ADF Mobile runtime first applies specific skins before it applies general skins, beginning with device-specific skins. For a specific skin version, such as v2 in Example 5-27, ADF Mobile first searches for selectors designed for version v2 starting with customSkinFamily.iPhone (or customSkinFamily.iPad). When it finds a skin definition that includes both this device-specific skin and a v2 designator, it applies this skin and also resolves—and includes—all of the base skins. If ADF Mobile cannot locate selectors defined for v2 in the device-specific skins, it searches for v2-defined selectors in the platform-specific skin, customSkinFamily.iOS. If ADF Mobile cannot find any v2 selectors at this level, it searches for the v2 selectors in the base skin, customSkinFamily.

5.12.7 Overriding the Default Skin Styles

For an ADF Mobile AMX application, you can designate a specific style for the application feature implemented as ADF Mobile AMX, thereby overriding the default skin styles set at the application-level within the adfmf-config.xml and adf-skins.xml files. You add individual styles to the application feature using a CSS file as the Includes file.

5.12.7.1 How to Apply New Style Classes to an Application Feature

The Includes table in the overview editor for the adfmf-feature.xml files enables you to add a cascading style sheet (CSS) to an ADF Mobile AMX application feature.

Figure 5-45 The Includes Table

[image: The Includes table.]

Before you begin:

Create an ADF Mobile task flow as described in Section 6.2, "Creating Task Flows." Create or add a Cascading Style Sheet as described in the "Importing ADF Skins from an ADF Library JAR" and "About Creating an ADF Skin" sections in Oracle Fusion Middleware Creating ADF Skins with Oracle ADF Skin Editor.

How to add a style to an application feature:

	
Click Add to create a new row in the Includes table.

	
Choose Stylesheet from the dropdown menu in the Type column, as shown in Figure 5-46.

Figure 5-46 Selecting the StyleSheet Option

[image: Select Stylesheet then edit.]

	
In the File column, click Edit, as shown in Figure 5-46.

	
Select the CSS from the Edit Property dialog, shown in Figure 5-47, and then click OK.

Figure 5-47 Selecting the CSS for the Application Feature

[image: Select the CSS using the Edit Property dialog.]

5.12.7.2 What Happens When You Apply a Skin to a Feature Application

After you add a CSS (or JavaScript file) to the Includes table, the CSS pages added to the application feature can be applied to an ADF Mobile AMX page by selecting the application feature from the Feature Content dropdown menu in the preview pane of the ADF Mobile AMX editor, as shown in Figure 5-48.

Figure 5-48 The Feature Content Dropdown Menu

[image: The Feature Content dropdown menu.]

5.12.8 What You May Need to Know About Skinning

The CSS files defined in the adfmf-skins.xml file, illustrated in Example 5-28, show how to extend a skin to accommodate the different display requirements of the Apple iPhone and iPad. These styles are applied in a descending fashion, as illustrated in Figure 5-39. The SkinningDemo sample application provides a demonstration of how customized styles can be applied when the application is deployed to different devices. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

For example, at the iOS level, the stylesheet (mobileFusionFx in Example 5-28) is applied to both an iPhone or an iPad. For device-specific styling, you would define the <skin-id> elements for the iPhone and iPad skins. The skinning demo application illustrates the use of custom skins defined through this element. Figure 5-49 shows how a custom style is applied to an iPhone.

Figure 5-49 iPhone-Specific Rendering

[image: CSS rendering on the iPhone.]

Example 5-28 Skinning Levels Defined in the adfmf-skins.xml File

adfmf-skins.xml
<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skins">
 <skin>
 <id>mobileFusionFx.iPhone</id>
 <family>mobileFusionFx</family>
 <extends>mobileFusionFx.iOS</extends>
 <style-sheet-name>skins/mobilefusionfx.iphone.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobileFusionFx.iPad</id>
 <family>mobileFusionFx</family>
 <extends>mobileFusionFx.iOS</extends>
 <style-sheet-name>skins/mobilefusionfx.ipad.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobileFusionFx.iPod</id>
 <family>mobileFusionFx</family>
 <extends>mobileFusionFx.iOS</extends>
 <style-sheet-name>skins/mobilefusionfx.ipod.css</style-sheet-name>
 </skin>
 <!-- Skin Additions -->
 <skin-addition>
 <skin-id>mobileFusionFx.iPhone</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileFusionFx.iPhone</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition2.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileFusionFx.iOS</skin-id>
 <style-sheet-name>skins/mystyles.ios.addition2.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

5.13 Working with Feature Archive Files

The adfmf-application.xml file references at least one application feature. These application features, when packaged into a JAR file known as a Feature Archive file (FAR), provide the reusable content that can be consumed by other ADF Mobile applications. A FAR is essentially a self-contained collection of everything that an application feature requires, such as icon images, resource bundles, HTML, JavaScript, or other implementation-specific files. As described in Section 17.5, "Deploying Feature Archive Files (FARs)," the contents of a FAR includes a single adfmf-feature.xml file, which identifies each of the packaged application features by a unique ID. You can edit this file, as described in Section 5.8, "About the Mobile Feature Application Configuration File," to update such feature properties as content implementation (local or remote HTML files or ADF Mobile AMX pages) and display based on such factors as user roles and privileges or device properties. A mobile application can reference one FAR, several of them, or none at all.

5.13.1 How to Use FAR Content in an ADF Mobile Application

You make an application feature available to an ADF Mobile application by adding it to the consuming application's class path.

Before you begin:

Deploy the application feature as a Feature Archive file, as described in Section 17.5.2, "How to Deploy the Feature Archive Deployment Profile."

How to add application feature content to an ADF Mobile application:

	
Open the Resource Palette and then choose New File Systems Connection.

	
Complete the File Systems Connection dialog to create a file connection to the directory that contains the Feature Archive JAR file. For more information, refer to the Oracle JDeveloper Online help.

	
Right-click the Feature Archive file (which is noted as a JAR file) in the Resource Palette.

	
Choose Add to Application to add the consuming application's classpath, as shown in Figure 5-50.

Figure 5-50 Adding a FAR to an ADF Mobile Application

[image: Add Feature Archive JAR to an ADF Mobile application.]

	
Note:

Choose Remove from Application to remove the feature archive JAR from the consuming application's classpath.

5.13.2 What Happens When You Add a Feature Archive JAR to a Classpath

After a FAR is added to the application's classpath:

	
The contents of the FAR display in the Application Resources under the Libraries node, as shown in Figure 5-51.

Figure 5-51 The Feature Archive File in the Application Resources of the Consuming Application

[image: The feature archive JAR in the Application Resources.]

	
Every application feature declared in the adfmf-feature.xml files included in the JARs becomes available to the consuming application, as illustrated by Figure 5-52 where the dropdown lists IDs of the available application features belonging to AcmeSales.jar (HCM, PROD, and Customers) as well as one called Portfolio that is defined in another Feature Archive that has been added to the application, StockTracker.jar. See also Section 5.6.1, "How to Designate the Content for a Mobile Application."

Figure 5-52 Referencing the Application Features Defined in Various adfmf-feature.xml Files

[image: Any defined application feature is available.]

	
Tip:

Manually adding the Feature Archive JAR to the application classpath also results in the application features displaying in the Insert Feature Reference dialog.

	
The information in the connections.xml file located in the Feature Archive JAR is merged into the consuming application's connections.xml file. The Log window, shown in Figure 5-53, displays naming conflicts.

	
Note:

You must verify that the connections are valid in the consuming application.

Figure 5-53 The Messages Log Window Showing Name Conflicts for Connections

[image: The message warning log for connections.]

5.13.3 What You May Need to Know About Enabling the Reuse of Feature Archive Resources

To ensure that the resources of a FAR can be used by an application, both the name of the FAR and its feature reference ID must be globally unique. Within the FAR itself, the DataControl.dcx file must be in a unique package directory. Rather than accepting the default names for these package directories, you should instead create a unique package hierarchy for the project. You should likewise use a similar package naming system for the feature reference IDs.

Part IV

Creating the ADF Mobile AMX Application Feature

Describes how to create ADF Mobile AMX content for an ADF Mobile application, including creating task flows, application pages, as well as using data controls, web services, and the local database.

Part IV contains the following chapters:

	
Chapter 6, "Creating ADF Mobile AMX Pages"

	
Chapter 7, "Creating the ADF Mobile AMX User Interface"

	
Chapter 8, "Using Bindings and Creating Data Controls"

	
Chapter 9, "Using Web Services"

	
Chapter 10, "Administering Web Services"

	
Chapter 11, "Using the Local Database"

6 Creating ADF Mobile AMX Pages

This chapter describes how to create the ADF Mobile AMX application feature.

This chapter includes the following sections:

	
Section 6.1, "Introduction to the ADF Mobile AMX Application Feature"

	
Section 6.2, "Creating Task Flows"

	
Section 6.3, "Creating Views"

6.1 Introduction to the ADF Mobile AMX Application Feature

ADF Mobile AMX is a subframework within ADF Mobile that provides a set of UI components that enable you to create an application feature whose behavior is identical on all supported platforms. While ADF Mobile AMX maintains the same development experience as ADF Faces by allowing you to drag these components into an editor from the Component palette or from the Data Control palette, these components are not equivalents to their ADF Faces counterparts: ADF Mobile AMX components do not support every property and behavior of ADF Faces components.

	
Note:

When developing interfaces for mobile devices, always be aware of the fact that the screen space is very limited. In addition, touchscreen support is not available on some mobile devices.

For more information, see the following:

	
Section 2.8, "ADF Mobile AMX Application Feature"

	
Section 4.2.4, "Creating an Application Workspace for an ADF Mobile AMX Application"

	
Chapter 4, "Getting Started with ADF Mobile Application Development"

	
Chapter 7, "Creating the ADF Mobile AMX User Interface"

	
Chapter 8, "Using Bindings and Creating Data Controls"

6.2 Creating Task Flows

Task flows allow you to define the navigation between ADF Mobile AMX pages. Using your application workspace in JDeveloper (see Section 4.2, "Creating an Application Workspace"), you can start creating the user interface for your ADF Mobile AMX application feature by designing task flows. As with any standard JSF application, ADF Mobile AMX uses navigation cases and rules to define the task flow. These definitions are stored in a file with the default name of ViewController-task-flow.xml (see Section 6.2.3, "What You May Need to Know About the ViewController-task-flow.xml File").

An ADF Mobile sample application called Navigation (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer) demonstrates how to use various navigation techniques, such as circular navigation, routers, and so on.

ADF Mobile enables you to create ADF Mobile AMX application features that have both bounded and unbounded task flows. As described in the "Getting Started with ADF Task Flows" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, a bounded task flow is also known as a task flow definition and represents the reusable portion of an application. In ADF Mobile, bounded task flows have a single entry point and no exit points. They have their own collections of activities and control-flow rules, as well as their own memory scope and managed-bean life span.

You use the ADF Mobile AMX Task Flow Designer to create bounded task flows for your feature. When designing an ADF Mobile AMX task flow, JDeveloper maintains the same experience as designing an ADF task flow, as described in the "Creating a Task Flow" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Like the overview editor for task flows, this tool includes a diagrammer (see Section 6.2.4, "What You May Need to Know About the ADF Mobile Task Flow Diagrammer") in which you build the task flow by dragging and dropping activities and control flows from the Components editor. You then define these activities and the transitions between them using the Property Inspector.

Unless a task flow has already been created, ADF Mobile automatically generates a default unbounded task flow (adfc-mobile-config.xml file) when a new ADF Mobile AMX page is created. For an example of the unbounded task flow, see the adfc-mobile-config.xml file from a sample application called Navigation located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

For more information, see the "Creating ADF Task Flows" part of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

6.2.1 How to Create a Task Flow

You use the navigation diagrammer to declaratively create a task flow for your ADF Mobile AMX application feature. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your feature in the ViewController-task-flow.xml file (default).

Before you begin:

To design a task flow, the ADF Mobile application must include a View Controller project file (see Chapter 4, "Getting Started with ADF Mobile Application Development").

There are two ways to create a task flow in ADF Mobile:

	
You can create a bounded task flow from the adfmf-feature.xml file. For more information, see Section 5.10.1, "How to Define the Application Content."

	
You can use the New Gallery in JDeveloper. For more information, see "To create a task flow from the New Gallery:"

To create a task flow from the New Gallery:

	
From the top-level menu in JDeveloper, click File, and then select New > From Gallery.

	
In the New Gallery, expand the Client Tier node, select ADF Mobile, and then ADF Mobile Task Flow (see Figure 6-1). Click OK.

Figure 6-1 Creating New ADF Mobile Task Flow

[image: New ADF Mobile Task Flow]

	
In the Create ADF Mobile Task Flow dialog (see Figure 6-2), specify the file name and location for your new task flow, and then click OK to open the new <Name>-flow.xml file in the navigation diagrammer that Figure 6-3 shows.

	
Note:

Task flows should be created within the View Controller project of your ADF Mobile application.

	
Note:

JDeveloper increments the number of the task flow according to the number of task flows that already exist in the same pattern.

Figure 6-2 Create ADF Mobile Task Flow Dialog

[image: Create ADF Mobile Task Flow Dialog]

	
In the Component Palette, select ADF Mobile Task Flow (see Figure 6-3), and then select the component you wish to use and drag it onto the diagram.

	
Tip:

If the Component Palette is not displayed, choose View > Component Palette from the main menu. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper.

Figure 6-3 New Blank Task Flow

[image: New Blank Task Flow]

JDeveloper creates a bounded task flow and redraws the diagram with the newly added component.

You can also open the Overview tab and use the overview editor to create navigation rules and navigation cases. Press F1 for details on using the overview editor to create navigation.

[image: Using Overview editor]

Additionally, you can manually add elements to the task flow file by directly editing the page in the Source editor. To open the file in the Source editor, click the Source tab.

	
Note:

When manually editing the task flow file, keep in mind that all the document file names referring to ADF Mobile AMX pages, JavaScript files, and CSS files are case-sensitive.

If special characters (such as an underscore, for example) are used in a file name, you should consult the mobile device specification to verify whether or not the usage of this character is supported.

Once the navigation for your ADF Mobile AMX feature is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Section 6.2.8, "How to Enable Page Navigation Using Control Flow Case."

After you define the task flow for the ADF Mobile AMX application feature, you can double-click a view file to access the ADF Mobile AMX view. For more information, see Section 6.3, "Creating Views."

6.2.2 What You May Need to Know About Supported Activities and Control Flows

The ADF Mobile Task Flow designer supports a subset of ADF activities and control flows that are listed in Table 6-1.

Table 6-1 Supported Activities

	Activity	Description
	
Method Call

	
Invokes a method (typically a method on a managed bean). You can place a method call activity anywhere in the control flow of an ADF Mobile AMX application feature to invoke logic based on control flow rules. For additional information, see the "Using Method Call Activities" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

You can also specify parameters that you pass into a method call that is included in a task flow. These include standard ADF parameters for a method call action in an ADF Mobile AMX task flow. When you use the designer to generate a method, it adds the required arguments and type. For more information, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework:

	
"Using Method Call Activities"

	
"How to Specify Method Parameters and Return Values"

At run time, you can define parameters for a method call in a task flow and pass parameters into the method call itself for its usage. For more information on passing method call parameters, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework:

	
"Creating Complex Task Flows"

	
"Setting Parameter Values Using a Command Component"

	
"Working with Task Flow Activities"

	
"How to Specify Method Parameters and Return Values"

	
Router

	
Evaluates an Expression Language (EL) expression and returns an outcome based on the value of the expression. These outcomes can then be used to route control to other activities in the task flow. For more information, see the "Using Router Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
View

	
Displays an ADF Mobile AMX page. For more information, see the "Using View Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Task Flow Call

	
Calls a bounded task flow from either an unbounded or bounded task flow. While a task flow call activity allows you to call a bounded task flow located within the same ADF Mobile AMX application feature, you can also call a bounded task flow from a different ADF Mobile AMX application feature or from a Feature Archive file (FAR) that has been added to an Oracle ADF library (see Section 5.13, "Working with Feature Archive Files").

The task flow call activity supports task flow input parameters and return values.

For more information, see the "Using Task Flow Call Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Task Flow Return

	
Identifies the point in an application's control flow where a bounded task flow completes and sends control flow back to the caller. You can use a task flow return only within a bounded task flow. For more information, see "Using Task Flow Return Activities" the section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

6.2.3 What You May Need to Know About the ViewController-task-flow.xml File

The ViewController-task-flow.xml file is the ADF Mobile AMX counterpart to ADF's task-flow-definition.xml and enables you to design the interactions between views (ADF Mobile AMX pages) by dragging and dropping the ADF Mobile AMX task flow components from the Component Palette into the diagrammer.

Figure 6-4 shows a sample task flow file called Products-flow.xml. In this file, the control flow is directed from the products page to the productdetails page. To return to the products page from the productdetails page, the built-in __back navigation is used.

Figure 6-4 Task Flow File

[image: ViewController-task-flow.xml File]

6.2.4 What You May Need to Know About the ADF Mobile Task Flow Diagrammer

As illustrated in Figure 6-4, the task flow diagram and Component Palette display automatically after you create a task flow using the ADF Mobile Task Flow Creation utility. The task flow diagram is a visual editor onto which you can drag and drop activities and task flows from the Component Palette or from the Application navigator. For more information, see Section 6.2.5, "How to Add ADF Mobile Activities."

6.2.5 How to Add ADF Mobile Activities

As in ADF application development, you use the task flow diagrammer to drag and drop activities, views, and control flows.

Before you begin:

You must select ADF Mobile Task Flow from the Component Palette, as Figure 6-5 shows.

To add an activity to an ADF Mobile task flow:

	
In the Application Navigator, double-click a task flow source file (such as ViewController-task-flow.xml) to display the task flow diagram and the Component Palette, as Figure 6-5 shows. The diagrammer displays the task flow editor. The Component Palette automatically displays the components available for an ADF Mobile task flow.

	
Drag an activity from the Component Palette onto the diagram. If you drag a view activity onto the diagram, you can invoke the Create ADF Mobile AMX File wizard (see Section 6.2.6, "How to Add View Activities").

Figure 6-5 The Diagrammer for the Task Flow Editor

[image: The Diagrammer for the Task Flow Editor]

	
Note:

There is a default activity that is associated with each task flow.

6.2.6 How to Add View Activities

The view activity is associated in metadata with an actual ADF Mobile AMX page. You add a view activity by dragging and dropping it from the Component Palette. A view activity displays an ADF Mobile AMX page. You can create an actual ADF Mobile AMX page by double-clicking the view activity in the Diagram window. You can also create a view activity by dragging and dropping an ADF Mobile AMX file in the Application navigator into the overview editor's Diagram tab.

6.2.7 How to Add a Wildcard Control Flow Rule

ADF Mobile task flows support the wildcard control flow rule, which represents a control flow from-activity-id that contains a trailing wildcard (foo*) or a single wildcard character. You can add a wildcard control flow rule by dragging and dropping it from the Component Palette. To configure your wildcard control flow rule, use the Property Inspector.

6.2.8 How to Enable Page Navigation Using Control Flow Case

You can create navigation using the Control Flow Case component, which identifies how control passes from one activity to the next. To create a control flow, select Control Flow Case from the Component Palette. Next, connect the control flow case to the source activity, and then to the destination activity. JDeveloper creates the following after you connect a source and target activity:

	
control-flow-rule: Identifies the source activity using a from-activity-id.

	
control-flow-case: Identifies the destination activity using a to-activity-id.

To define a control flow case directly in the ADF Mobile task flow diagram:

	
In the Application navigator, double-click a task flow source file to display the task flow diagram.

	
Select Control Flow Case from the Component Palette.

	
On the diagram, click a source activity and then a destination activity. JDeveloper adds the control flow case to the diagram. Each line that JDeveloper adds between an activity represents a control flow case. The from-outcome contains a value that can be matched against values specified in the action attribute of the UI components.

	
To change the from-outcome, select the text next to the control flow in the diagram. By default, this is a wildcard character.

	
To change the from-activity-id (the identifier of the source activity), or the to-activity-id (the identifier for the destination activity), drag either end of the arrow in the diagram to a new activity.

For more information, see the "What Happens When You Create a Control Flow Rule" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

6.2.9 How to Specify Action Outcomes Using UI Components

Using the Property Inspector, you can specify an action outcome by setting the action attribute of one of the following UI components to the corresponding control flow case from-outcome leading to the next task flow activity:

	
Command Button (see Section 7.3.5, "How to Use Buttons")

	
Command Link (see Section 7.3.6, "How to Use Links")

	
List Item

You use the UI component's Action field (see Figure 6-6) to make a selection from a list of possible action outcomes defined in one or more task flow for a specific ADF Mobile AMX page.

Figure 6-6 Setting Actions

[image: Setting Actions]

A Back action (__back) is automatically added to every list to enable navigation to the previously visited page.

	
Note:

An ADF Mobile AMX page can be referenced in both bounded and unbounded task flows, in which case actions outcomes from both task flows are included in the Action selection list.

6.2.10 How to Create and Reference Managed Beans

You can create and use managed beans in your ADF Mobile application to store additional data or execute custom code. You can use JDeveloper's usual editing mechanism to reference managed beans and create references to them for applicable fields. For more information, see the "Using a Managed Bean in a Fusion Web Application" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Figure 6-7 shows the Edit option for an action property in the Property Inspector. You click this option to invoke the Edit Property dialog that Figure 6-8 shows.

Figure 6-7 Edit Dialog

[image: Managed bean edit dialog]

Figure 6-8 Edit Property Dialog for Action

[image: Edit Property Dialog for Action]

Table 6-5 lists ADF Mobile AMX attributes for which the Edit option in the Property Inspector is available.

Table 6-2 Editable Attributes

	Property	Element
	
binding

	
actionListener

	
action

	
commandButton

	
actionListener

	
commandButton

	
action

	
commandLink

	
actionListener

	
commandLink

	
action

	
listItem

	
actionListener

	
listItem

	
valueChangeListener

	
inputDate

	
valueChangeListener

	
inputNumberSlider

	
valueChangeListener

	
inputText

	
valueChangeListener

	
selectBooleanCheckbox

	
valueChangeListener

	
selectBooleanSwitch

	
valueChangeListener

	
selectManyCheckbox

	
valueChangeListener

	
selectOneButton

	
valueChangeListener

	
selectOneChoice

	
valueChangeListener

	
selectOneRadio

	
rangeChangeListener

	
listView

	
selectionListener

	
listView

Clicking Edit for all other properties invokes a similar dialog, but without the Action Outcome option, as Figure 6-9 shows.

Figure 6-9 Edit Property Dialog for Action Listener

[image: Edit Property Dialog for Action Listener]

The preceding dialogs demonstrate that you can either create a managed bean, or select an available action outcome for the action property.

The Action Outcome list shown in Figure 6-8 contains the action outcomes from all task flows to which a specific ADF Mobile AMX page belongs. In addition, this list contains a __back navigation outcome to go back to the previously visited page (see Section 6.2.9, "How to Specify Action Outcomes Using UI Components" for more information). If a page is not part of any task flow, the only available outcome in the Action Outcome list is __back. When you select one of the available action outcomes and click OK, the action property value is updated with the appropriate EL expression, such as the following for a commandButton:

<amx:commandButton action="goHome"/>

The Method Binding option (see Figure 6-8) allows you to either create a new managed bean class, or select an existing one.

To create a new managed bean class:

	
Click New next to the Managed Bean field to open the Create Managed Bean dialog that Figure 6-10 shows.

Figure 6-10 Create Managed Bean Dialog

[image: Create Managed Bean Dialog]

ADF Mobile supports the following scopes:

	
application

	
view

	
pageFlow

When you declare a managed bean to an ADF Mobile application or the ADF Mobile AMX application feature, the managed bean is instantiated and identified in the proper scope, and the bean's properties are resolved and its methods are called through EL. For more information, see Section 8.2, "Understanding EL Support."

	
Provide the managed bean and class names, and then click OK.

Example 6-1 shows the newly created managed bean class. The task flow that this ADF Mobile AMX page is part of is updated to reference the bean.

Example 6-1 New Managed Bean Class

<managed-bean id="__3">
 <managed-bean-name>MyBean</managed-bean-name>
 <managed-bean-class>mobile.MyBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

	
Note:

If a given ADF Mobile AMX page is part of bounded as well as unbounded task flows, both of these task flows are updated with the managed bean entry.

	
Click New next to the Method field (see Figure 6-8 and Figure 6-9) to open the Create Method dialog that Figure 6-11 shows. Use this dialog to provide the managed bean method name.

Figure 6-11 Create Method Dialog

[image: Create Method Dialog]

Upon completion, the selected property value is updated with the appropriate EL expression, such as the following for a commandButton.:

<amx:commandButton action="#{MyBean.getMeHome}"/>

The managed bean class is also updated to contain the newly created method, as Example 6-2 shows.

Example 6-2 New Method in Managed Bean Class

package mobile;

public class MyBean {
 public MyBean() {
 }

 public String getMeHome() {
 // Add event code here...
 return null;
 }
}

To select an existing managed bean:

	
Make a selection from the Managed Bean list that Figure 6-12 shows.

Figure 6-12 Selecting Managed Bean

[image: Selecting Managed Bean]

Similar to the action outcomes, the Managed Bean list is populated with managed beans from all task flows that this ADF Mobile AMX page is part of.

	
Note:

If the ADF Mobile AMX page is not part of any task flow, you can still create a managed bean.

For more information, see the following:

	
Section 8.2.4.2, "ADF Managed Beans"

	
JavaDemo, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

6.2.11 How to Specify the Page Transition Style

By defining the page transition style on the task flow, you can specify how ADF Mobile AMX pages transition from one view to another. The behavior of your ADF Mobile AMX page at transition can be as follows:

	
fading in

	
sliding in from left

	
sliding in from right

	
sliding up from bottom

	
sliding down from top

	
sliding in from start

	
sliding in from end

	
flipping up from bottom

	
flipping down from top

	
flipping from left

	
flipping from right

	
flipping from start

	
flipping from end

	
none

Sliding in from start and end, as well as flipping from start and end are used on the iOS platform to accommodate the right-to-left text direction. It is generally recommended to use the start and end transition style as opposed to left and right.

	
Note:

You cannot enable flipping on the Android platform.

You set the transition style by modifying the transition attribute of the control-flow-case (Control Flow Case component), as Example 6-3 shows.

Example 6-3 Setting Transition Style

<control-flow-rule id="__1">
 <from-activity-id>products</from-activity-id>
 <control-flow-case id="__2">
 <from-outcome>details</from-outcome>
 <to-activity-id>productdetails</to-activity-id>
 <transition>fade</transition>
 </control-flow-case>
</control-flow-rule>

In the Property Inspector, the transition attribute is located under Behavior, as Figure 6-13 shows. The default transition style is slideLeft.

Figure 6-13 Setting Transition Style in Property Inspector

[image: Transition style]

6.3 Creating Views

You can start creating the ADF Mobile AMX view by doing the following:

	
Getting familiar with the ADF Mobile AMX page structure

	
Using the preview

	
Dragging and dropping components into the ADF Mobile AMX page

	
Adding data controls to a view

6.3.1 How to Work with ADF Mobile AMX Pages

An ADF Mobile AMX page is represented by an XML file similar to a JSPX file in Oracle ADF Faces.

6.3.1.1 Interpreting the ADF Mobile AMX Page Structure

The following is a basic structure of the ADF Mobile AMX file:

<amx:view>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 …
 </amx:facet>
 </amx:panelPage>
</amx:view>

With the exception of data visualization components (see Section 7.5, "Providing Data Visualization"), UI elements are declared under the <amx> namespace.

For more information, see Section 6.3.1.3, "What Happens When You Create an ADF Mobile AMX Page."

6.3.1.2 Creating ADF Mobile AMX Pages

ADF Mobile AMX files are contained in the View Controller project of the ADF Mobile application. You create these files using the Create ADF Mobile AMX Page dialog.

ADF Mobile offers two alternative ways of creating an ADF Mobile AMX page:

	
From the New Gallery

	
From an existing task flow

Before you begin:

To create an ADF Mobile AMX page, the ADF Mobile application must include a View Controller project file (see Chapter 4, "Getting Started with ADF Mobile Application Development").

To create an ADF Mobile AMX page from the New Gallery:

	
From the top-level menu in JDeveloper, click File, and then select New > From Gallery.

	
In the New Gallery, expand the Client Tier node, select ADF Mobile, and then ADF Mobile AMX Page (see Figure 6-14). Click OK.

Figure 6-14 Creating ADF Mobile AMX Page

[image: Creating a Local ADF Mobile XML Page]

	
In the Create ADF Mobile AMX Page dialog, enter a name and, if needed, a location for your new file, as Figure 6-15 shows.

	
Optionally, you may select which facets your new ADF Mobile AMX page will include as a part of the page layout:

	
Header

	
Primary

	
Secondary

	
Footer

For more information, see Section 6.3.1.3, "What Happens When You Create an ADF Mobile AMX Page" and Section 7.2.6, "How to Use a Facet Component."

Note that when you select or deselect a facet, the image representing the page changes dynamically to reflect the changing appearance of the page.

Figure 6-15 Create ADF Mobile AMX Page Dialog

[image: Create Local ADF Mobile XML Page Dialog]

	
Note:

ADF Mobile persists your facet selection and applies it to each subsequent invocation of the Create ADF Mobile AMX Page dialog.

	
Click OK on the Create ADF Mobile AMX Page dialog.

To create an ADF Mobile AMX page from a View Component of the Task Flow:

	
Open a task flow file in the diagrammer (see Figure 6-5, "The Diagrammer for the Task Flow Editor", Section 6.2.1, "How to Create a Task Flow" and Section 6.2.4, "What You May Need to Know About the ADF Mobile Task Flow Diagrammer")

	
Double-click a View component of the task flow to open the Create ADF Mobile AMX Page dialog that Figure 6-15 shows, and then enter a name and, if needed, a location for your new file. Click OK.

6.3.1.3 What Happens When You Create an ADF Mobile AMX Page

When you use the Create ADF Mobile AMX Page dialog to create an ADF Mobile AMX page, JDeveloper creates the physical file and adds it to the Web Content directory of the View Controller project.

In the Application navigator that Figure 6-16 shows, the Web Content node contains a newly created ADF Mobile AMX file called order.amx.

Figure 6-16 ADF Mobile AMX File in Application Navigator

[image: The Local ADF Mobile XML File in Application Navigator]

JDeveloper also adds the code necessary to import the component libraries and display a page. This code is illustrated in the Source editor shown in Figure 6-16.

Figure 6-17 shows how the Preview pane and the generated ADF Mobile AMX code would look like if you selected all facet types listed in the Page Facet section of the Create ADF Mobile AMX Page dialog when creating the page.

Figure 6-17 ADF Mobile AMX Page With All Facets

[image: ADF Mobile AMX Page With All Facets]

In the page created with all the facets selected (see Figure 6-17), note the following:

	
The header is created with an Output Text component because this component is typically used for the page title.

	
The primary and secondary actions are created with Button components because it is a typical pattern.

	
Since there is no single dominant pattern for the footer, it is created with an Output Text component by default because that component is used in some patterns and it prevents JDeveloper from generating the initial code with audit violation.

	
Adding either the primary or secondary action without adding the header facet still causes the header section to appear in the Page Facets section of Create ADF Mobile AMX Page dialog.

Figure 6-18 shows the Page Facet section of the Create ADF Mobile AMX Page dialog without any facets selected, the Preview pane, and the generated ADF Mobile AMX code (which is also shown in Figure 6-16).

Figure 6-18 ADF Mobile AMX Page Without Facets

[image: ADF Mobile AMX Page Without Facets]

6.3.1.4 Using UI Editors

When the page is first displayed in JDeveloper, it is displayed in the Source editor. To view the page in a WYSIWYG environment, use the Preview pane (accessed by clicking the Preview tab). Figure 6-19 shows the Preview tab selected for a newly created ADF Mobile AMX page called order.amx. This page is blank because it has not yet been populated with ADF Mobile AMX UI components or data controls.

Figure 6-19 The Preview Pane for Newly Created Page

[image: The Preview Pane for Newly Created Page]

Using the Preview pane's toolbar that Figure 6-19 shows, you can do the following:

	
Refresh the display of the ADF Mobile AMX page by clicking Refresh Page.

	
Stop loading of the page by clicking Stop Loading Page.

	
Modify the form factor for the page by selecting a different form factor from the dropdown list. For more information on form factors, see Section 3.3.1.1, "Configuring the Environment for Form Factors."

	
Modify the scaling of the display by selecting a different percentage value from the dropdown list. Since mobile device displays can be of various sizes and densities, the Preview pane allows you to see the effect of scaling on your ADF Mobile AMX pages.

	
Note:

Scaling is available for both Portrait and Landscape mode.

	
Change orientation for the display to portrait and landscape by selecting Show Portrait Orientation or Show Landscape Orientation respectively.

	
Select the feature content for your ADF Mobile AMX page form the dropdown list of available application features. By default, <No Feature Content Selected> is displayed.

To view the source for the page in the Source editor, click the Source tab that Figure 6-16, "ADF Mobile AMX File in Application Navigator" shows. The Structure window, located in the lower left-hand corner of JDeveloper (shown in Figure 6-16 and Figure 6-19), provides a hierarchical view of the page. For more information, see Section 6.3.2.2, "Using the Preview."

6.3.1.5 Accessing the Page Definition

ADF Mobile AMX supports JDeveloper's Go to Page Definition functionality that enables you to navigate to the page definition of an ADF Mobile AMX page by using a context menu that allows you to locate and edit the binding information quickly.

You can invoke the context menu that contains the Go to Page Definition option from the following:

	
Source editor, as Figure 6-20 shows.

Figure 6-20 Go to Page Definition from Source Editor

[image: Go to Page Definition from Source Editor]

	
Application navigator, as Figure 6-21 shows.

Figure 6-21 Go to Page Definition from Application Navigator

[image: Go to Page Definition from Application Navigator]

	
Structure pane, as Figure 6-22 shows.

Figure 6-22 Go to Page Definition from Structure Pane

[image: Go to Page Definition from Structure Pane]

In addition, you can open the Page Definition file using the Go to Page Definition shortcut key defined under Tools > Preferences on the main menu, as Figure 6-23 shows.

Figure 6-23 Opening Page Definition from Preferences

[image: Opening Page Deninition from Preferences]

6.3.2 How to Add UI Components and Data Controls to an ADF Mobile AMX Page

After you create an ADF Mobile AMX page, you can start adding ADF Mobile AMX UI components and data controls to your page.

6.3.2.1 Adding UI Components

You can use the Component Palette to drag and drop ADF Mobile AMX components onto the page. JDeveloper then adds the necessary declarative page code and sets certain values for component attributes.

The Component Palette displays ADF Mobile AMX components by categories (see Figure 6-24):

	
General Controls

	
Text and Selection

	
Data Views

	
Layout, with the following subcategories:

	
Interactive Containers and Headers

	
Secondary Windows

	
Core Structure

	
Operations, with the following subcategories:

	
Behavior

	
Listeners

	
Validators and Converters

For information on adding and using specific components, see Section 7.3, "Creating and Using UI Components."

Before you begin:

The ADF Mobile application must include a View Controller project, which may or may not contain an ADF Mobile AMX page or ADF Mobile AMX page task flow from which to create a page.

As described in Section 6.3.1.2, "Creating ADF Mobile AMX Pages," you can invoke the Create ADF Mobile AMX Page dialog by double-clicking a view icon in a task flow diagram or by selecting Client Tier > ADF Mobile > ADF Mobile AMX Page from the New Gallery.

To add UI components to a page:

	
Open an ADF Mobile AMX page in the Source editor (default).

	
In the Component Palette, use the menu to choose ADF Mobile AMX, as Figure 6-24 shows.

	
Tip:

If the Component Palette is not displayed, choose View > Component Palette from the main JDeveloper menu. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper.

Figure 6-24 ADF Mobile AMX Component Palette

[image: Local ADF Mobile XML Component Palette]

	
Select the component you wish to use, and then drag and drop it onto the Source editor or Structure window. You cannot drop components onto the Preview pane.

	
Note:

When building an ADF Mobile AMX page, you can only drop UI components into UI containers such as, for example, a Panel Group Layout.

JDeveloper redraws the page in the Preview pane with the newly added component.

6.3.2.2 Using the Preview

JDeveloper's preview provides WYSIWYG support for both the iOS and Android platforms when you build the user interface using ADF Mobile AMX files. As illustrated in Figure 6-25, splitting a view while adding the ADF Mobile AMX components to the ADF Mobile AMX file enables you to see both the code view through the Source editor and a UI view through the Preview pane. As a result, you can modify the source and get instant feedback in terms of the look and feel of that application on both the iOS and Android platforms.

Figure 6-25 Splitting Design and Source Views

[image: Splitting Design and Source Views]

In addition to being able to see the design and source views simultaneously, you can also open and work with multiple design views at the same time, as well as set each one to a different platform and screen size. By opening a combination of design views for different devices, you can develop applications simultaneously for different platforms and form factors using different orientation. Figure 6-26 shows a split screen with iPhone on the top and iPad with 50% scaling on the bottom. You can split the Preview pane using the default split functionality of JDeveloper.

Figure 6-26 Multiple Design Views

[image: Split screen]

	
Note:

An ADF Mobile AMX page is rendered even for an invalid ADF Mobile AMX file. Errors are indicated by the error icon on a component. By moving the mouse over the error icon, you can view the error details.

6.3.2.3 Configuring UI Components

Once you drop UI components onto a page, you can use the Property Inspector (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.

	
Tip:

If the Property Inspector is not displayed, choose Window > Reset to Default Factory Settings from JDeveloper's main menu.

Figure 6-27 shows the Property Inspector displaying the attributes for an Output Text component.

Figure 6-27 The Property Inspector

[image: The Property Inspector]

To set component attributes:

	
Select the component for which you want to set attributes. You can select the component in the Structure window or you can select its tag directly in the Source editor.

	
In the Property Inspector, expand the section that contains the attribute you wish to set.

	
Tip:

Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the Property Inspector.

	
In the Property Inspector, either enter values directly into the fields, or if the field contains a list, use that list to select a value. You can also use the list to the right of the field, which launches a popup containing tools you can use to set the value. These tools are either specific property editors (opened by choosing Edit) or the Expression Builder, which you can use to create EL expressions for the value (opened by choosing Expression Builder). For more information about using the Expression Builder, see the "Creating EL Expressions" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

When you use the Property Inspector to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.

	
Tip:

You can always change attribute values by directly editing the page in the Source editor. To view the page in the Source editor, click the Source tab at the bottom of the page.

6.3.2.4 Adding Data Controls to the View

You can create databound UI components in an ADF Mobile AMX view by dragging data control elements from the Data Controls panel and dropping them into either the Structure window or the Source editor. When you drag an item from the Data Controls panel to either of these places, JDeveloper invokes a context menu of default UI components available for the item that you dropped. When you select the desired UI component, JDeveloper inserts it into an ADF Mobile AMX page. In addition, JDeveloper creates the binding information in the associated page definition file. If such file does not exist, then JDeveloper creates one. ADF Mobile provides a visual indicator for dropping data controls to inform you of the location of the new data control

	
Note:

A data control can only be dropped at a location allowed by the underlying XML schema.

Depending on the approach you take, you can insert different types of data controls into the Structure window of an ADF Mobile AMX page.

Dropping an attribute of a collection lets you create various input and output components. You can also create Button and Link components by dropping a data control operation on a page.

The respective action listener is added in the ADF Mobile AMX Button for each of these operations. The EL expression in the actionListener is the same as the one created on the drop of an operation into an Oracle ADF Faces application.

The data control attributes and operations can be dropped as one or more of the following ADF Mobile AMX UI components (see Section 7.3, "Creating and Using UI Components"):

	
Button

	
Link

	
Input Date

	
Input Date with Label

	
Input Text

	
Input Text with Label

	
Output Text

	
Output Text with Label

	
Iterator

	
List Item

	
List View

	
Select Boolean Checkbox

	
Select Boolean Switch

	
Select One Button

	
Select One Choice

	
Select One Radio

	
Select Many Checkbox

	
Select Many Choice

	
Convert Date Time

	
Convert Number

	
Form

	
Read Only Form

	
Parameter Form

The following Date and Number types are supported:

	
java.util.Date

	
java.sql.Timestamp

	
java.sql.Date

	
java.lang.Number

	
java.lang.Integer

	
java.lang.Long

	
java.lang.Float

	
java.lang.Double

For information on how to use the Data Controls panel in JDeveloper, see "Using the Data Controls Panel" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

6.3.2.4.1 Dragging and Dropping Attributes

If your ADF Mobile AMX page already contains a Panel Form Layout component or does not require to have all the fields added, you can drop individual attributes from a data control. Depending on the attributes types, different data binding menu options are provided, as follows:

	
Date: this category provides options for creating ADF Mobile Input Date and ADF Mobile Input Date with Label controls. Figure 6-28 shows the context menu for adding date controls that appears when you drag an attribute from the Data Controls panel into the Structure window of an ADF Mobile AMX page.

Figure 6-28 Context Menu for Date Controls

[image: Context Menu for Date Controls]

	
Single Selection: this category provides options for creating the following controls:.

	
ADF Mobile Select One Button

	
ADF Mobile Select One Choice

	
ADF Mobile Select One Radio

	
ADF Mobile Select Boolean Checkbox

	
ADF Mobile Select Boolean Switch

Figure 6-29 shows the context menu for adding selection controls that appears when you drag an attribute from the Data Controls panel into the Structure window of an ADF Mobile AMX page.

Figure 6-29 Context Menu for Selection Controls

[image: Context Menu for Selection Controls]

If you are working with an existing ADF Mobile AMX page and you select ADF Mobile Select One Button or ADF Mobile Select One Choice option, an appropriate version of the Edit List Binding dialog is displayed (see Figure 6-30). If you drop a control onto a completely new ADF Mobile AMX page, the Edit Action Binding dialog opens instead. After you click OK, the Edit List Binding dialog opens.

	
Note:

The Edit List Binding or Edit Boolean Binding dialog appears every time you drop any data control attributes as any of the single selection or boolean selection components, respectively.

Figure 6-30 Edit List Binding Dialog for Select One Button and Choice Controls

[image: Edit List Binidng Dialog]

If you select ADF Mobile Select One Radio option, another version of the Edit List Binding dialog is displayed, as shown in Figure 6-31.

Figure 6-31 Edit List Binding Dialog for Select One Radio Control

[image: Edit List Binidng Dialog for Select One Radio Control]

If you select ADF Mobile Select Boolean Checkbox or ADF Mobile Select Boolean Switch option, another version of the Edit List Binding dialog is displayed, as shown in Figure 6-32.

Figure 6-32 Edit List Binding Dialog for Select Boolean Checkbox and Switch Controls

[image: Edit list binding dialog]

	
Text: this category provides options for creating the following controls:

	
ADF Mobile Input Text

	
ADF Mobile Input Text with Label

	
ADF Mobile Output Text

	
ADF Mobile Output Text with Label

Figure 6-29 shows the context menu for adding selection controls that appears when you drag an attribute from the Data Controls panel into the Structure window of a ADF Mobile AMX page.

Figure 6-33 Context Menu for Text Controls

[image: Context Menu for Text Controls]

6.3.2.4.2 Dragging and Dropping Operations

In addition to attributes, you can drag and drop operations or custom methods. Depending on the type of operation or method, different data binding menu options are provided, as follows:

	
Operation: this category is for data control operations. It provides the following options (see Figure 6-34):

	
ADF Mobile Button

	
ADF Mobile Link

	
ADF Mobile Parameter Form

Figure 6-34 Context Menu for Operations

[image: Context Menu for Operations]

	
Note:

If you drop an operation or a method as a child of the List View control, the context menu does not appear and the List Item is created automatically because no other valid control can be dropped as a direct child of the List View control. JDeveloper creates a binding similar to the following for the generated List Item:

<amx:listItem actionListener="#{bindings.getLocation.execute}"/>

	
Method: this category is for custom methods. It provides the following options (see Figure 6-34):

	
ADF Mobile Button

	
ADF Mobile Link

	
ADF Mobile Parameter Form

Figure 6-35 Context Menu for Methods

[image: Context Menu for Method]

The ADF Mobile Parameter Form option allows you to choose the method or operation arguments to be inserted in the form, as well as the respective controls for each of the arguments (see Figure 6-36).

Figure 6-36 Edit Form Fields Dialog

[image: Edit Form Fields Dialog]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:inputText id="it1"
 value="#{bindings.actionEvent.inputValue}"
 label="#{bindings.actionEvent.hints.label}"
 required="#{bindings.actionEvent.hints.mandatory}"
 maximumLength="#{bindings.actionEvent.hints.precision}"/>
</amx:panelFormLayout>
<amx:commandButton id="cb1"
 actionListener="#{bindings.cleanInputParameter.execute}"
 text="cleanInputParameter"
 disabled="#{!bindings.cleanInputParameter.enabled}"/>

For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported control types for the ADF Mobile Parameter Form:

	
ADF Mobile Input Date

	
ADF Mobile Input Date with Label

	
ADF Mobile Input Text

	
ADF Mobile Input Text with Label

	
ADF Mobile Output Text with Label

6.3.2.4.3 Dragging and Dropping Collections

You can drag and drop collections. Depending on the type of collection, different data binding menu options are provided, as follows:

	
Multiple Selection: this category provides options for creating multiple selection controls. The following controls can be created under this category (see Figure 6-37):

	
ADF Mobile Select Many Checkbox

	
ADF Mobile Select Many Choice

Figure 6-37 Context Menu for Multiple Selection Controls

[image: Context Menu for Multiple Selection Controls]

	
Form: this category is used to create the ADF Mobile AMX Panel Form controls. The following controls can be created under this category (see Figure 6-38):

	
ADF Mobile Form

	
ADF Mobile Read-only Form

Figure 6-38 Context Menu for Form Controls

[image: Context Menu for Form Controls]

If you select ADF Mobile Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 6-39).

Figure 6-39 Edit Form Fields Dialog for ADF Mobile Form

[image: Edit Form Fields Dialog]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:inputDate id="id1"
 value="#{bindings.timeStamp.inputValue}"
 required="#{bindings.timeStamp.hints.mandatory}">
 <amx:convertDateTime pattern="#{bindings.timeStamp.format}"/>
 </amx:inputDate>
 <amx:inputText id="it1"
 value="#{bindings.speed.inputValue}"
 simple="true"
 required="#{bindings.speed.hints.mandatory}"
 maximumLength="#{bindings.speed.hints.precision}"/>
 <amx:inputText id="it2"
 value="#{bindings.heading.inputValue}"
 label="#{bindings.heading.hints.label}"
 required="#{bindings.heading.hints.mandatory}"
 maximumLength="#{bindings.heading.hints.precision}"/>
 <amx:panelLabelAndMessage id="plm1"
 label="#{bindings.latitude.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.latitude.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:inputDate id="it3"
 value="#{bindings.timeStamp.inputValue}"
 label="#{bindings.timeStamp.hints.label}"
 required="#{bindings.timeStamp.hints.mandatory}">
 <amx:convertDateTime pattern="#{bindings.timeStamp.format}"/>
 </amx:inputDate>
</amx:panelFormLayout>

For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for ADF Mobile Form:

	
ADF Mobile Input Date

	
ADF Mobile Input Date with Label

	
ADF Mobile Input Text

	
ADF Mobile Input Text with Label

	
ADF Mobile Output Text with Label

	
Note:

Since ADF Mobile Output Text is not a valid Panel Form Layout child element as defined by the ADF Mobile schema, it is not supported.

If you select ADF Mobile Read-only Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 6-40).

Figure 6-40 Edit Form Fields Dialog for ADF Mobile Read-only Form

[image: Edit Form Fields Dialog for ADF Mobile Read-only Form]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:panelLabelAndMessage id="plm1" label="#{bindings.AssetNo.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.AssetNo.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plm2" label="#{bindings.Item.hints.label}">
 <amx:outputText id="ot2" value="#{bindings.Item.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plm3"
 label="#{bindings.Description.hints.label}">
 <amx:outputText id="ot3" value="#{bindings.Description.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plm4"
 label="#{bindings.Assignee.hints.label}">
 <amx:outputText id="ot4" value="#{bindings.Assignee.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plm5"
 label="#{bindings.AssignedOn.hints.label}">
 <amx:outputText id="ot5" value="#{bindings.AssignedOn.inputValue}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plm6"
 label="#{bindings.SupplierId.hints.label}">
 <amx:outputText id="ot6" value="#{bindings.SupplierId.inputValue}"/>
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."

The ADF Mobile Read-only Form only supports the ADF Mobile Output Text with Label control.

	
Iterator: this provides an option for creating the ADF Mobile AMX Iterator with child components (see Figure 6-41).

Figure 6-41 Context Menu for Iterator Control

[image: Context Menu for Iterator Control]

If you select ADF Mobile Iterator as the type of the control to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the iterator, as well as the respective controls for each of the fields, with ADF Mobile Output Text w/Label being a default selection (see Figure 6-42).

Figure 6-42 Edit Dialog for ADF Mobile Iterator

[image: Edit Iterator Fields Dialog for ADF Mobile Iterator]

The following data bindings are generated after you select the appropriate options in the Edit Iterator dialog:

<amx:iterator var="row"
 value="#{bindings.addresses.collectionModel}"
 id="iterator1">
 <amx:panelLabelAndMessage label="#{bindings.addresses.hints.type.label}"
 id="panelLabelAndMessage6">
 <amx:outputText value="#{row.type}" id="outputText6"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label=
 "#{bindings.addresses.hints.formatted.label}"
 id="panelLabelAndMessage2">
 <amx:outputText value="#{row.formatted}"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label=
 "#{bindings.addresses.hints.streetAddress.label}"
 id="panelLabelAndMessage5">
 <amx:outputText value="#{row.streetAddress}" id="outputText5"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="#{bindings.addresses.hints.locality.label}"
 id="panelLabelAndMessage4">
 <amx:outputText value="#{row.locality}" id="outputText4"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="#{bindings.addresses.hints.region.label}"
 id="panelLabelAndMessage7">
 <amx:outputText value="#{row.region}" id="outputText7"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label=
 "#{bindings.addresses.hints.postalCode.label}"
 id="panelLabelAndMessage1">
 <amx:outputText value="#{row.postalCode}" id="outputText1"/>
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="#{bindings.addresses.hints.country.label}"
 id="panelLabelAndMessage3">
 <amx:outputText value="#{row.country}" id="outputText3"/>
 </amx:panelLabelAndMessage>
</amx:iterator>

For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for ADF Mobile Iterator:

	
ADF Mobile Input Text

	
ADF Mobile Input Text with Label

	
ADF Mobile Output Text

	
ADF Mobile Output Text with Label

	
List View: this provides an option for creating the ADF Mobile AMX List View with child components (see Figure 6-43).

Figure 6-43 Context Menu for List View Control

[image: Context Menu for List View Control]

If you select ADF Mobile List View as the type of the control to create, the ListView Gallery opens that allows you to choose a specific layout for the List View, as Figure 6-44 shows.

Figure 6-44 ListView Gallery

[image: ListView Gallery]

Table 6-3 lists the supported List Formats that are displayed in the ListView Gallery.

Table 6-3 List Formats

	Format	Element Row Values
	
Simple

	
	
Text

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
Start-End

	
	
Start Text

	
End Text

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

The Variations presented in the ListView Gallery (see Figure 6-44) for a selected list format consist of options to add either dividers, a leading image, or both:

	
Selecting a variation with a leading image adds an Image row to the List Item Content table (see Figure 6-45).

	
Selecting a variation with a divider defaults the Divider Attribute field to the first attribute in its list rather than the default No Divider value, and populates the Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 6-44) allow you to suppress chevrons, use an inset style list, or both:

	
The selections do not modify any state in the Edit List View dialog (see Figure 6-45). They only affect the generated ADF Mobile AMX markup.

	
Selecting a style with the inset list sets the adfmf-listView-insetList style class on the listView element in the generated ADF Mobile AMX markup.

	
Selecting a style without chevrons sets the showLinkIcon attribute on the listItem element to false in the generated ADF Mobile AMX markup.

The following is an example of the Simple format with the inset list and chevrons:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 id="listView2">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected Variation. The format will include a brief description of the main style, followed by the details of the selected variation. Four main styles with four variations on each provide sixteen unique descriptions detailed in Table 6-4.

Table 6-4 List View Variations and Styles

	List Format	Variation	Description
	
Simple

	
Basic

	
A text field appears at the start side of the list item."

	
Simple

	
Dividers

	
A text field appears at the start side of the list item, with items grouped by dividers."

	
Simple

	
Images

	
A text field appears at the start side of the list item, following a leading image.

	
Simple

	
Dividers and Images

	
A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers.

	
Main-Sub Text

	
Basic

	
A prominent main text field appears at the start side of the list item with subordinate text below.

	
Main-Sub Text

	
Dividers

	
A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers.

	
Main-Sub Text

	
Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image.

	
Main-Sub Text

	
Dividers and Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers.

	
Start-End

	
Basic

	
Text fields appear on each side of the list item

	
Start-End

	
Dividers

	
Text fields appear on each side of the list item, with the items grouped by dividers.

	
Start-End

	
Images

	
Text fields appear on each side of the list item, following a leading image.

	
Start-End

	
Dividers and Images

	
Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers.

	
Quadrant

	
Basic

	
Text fields appear in the four corners of the list item.

	
Quadrant

	
Dividers

	
Text fields appear in the four corners of the list item, with items grouped by dividers.

	
Quadrant

	
Images

	
Text fields appear in the four corners of the list item, following a leading image.

	
Quadrant

	
Dividers and Images

	
Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create the contents of a List Item by mapping binding attributes to the elements of the selected List View format, as Figure 6-45 shows.

Figure 6-45 Edit Dialog for ADF Mobile List View

[image: Edit Dialog for ADF Mobile List View]

When completing the dialog that Figure 6-45 shows, consider the following:

	
The image at the start reflects the main content elements from the selected List View format and provides a mapping from the schematic representation to the named elements in the underlying table.

	
The read-only cells in the Element column derive from the selected List View format.

	
The editable cells in the Value Binding column are based on the data control node that was dropped.

	
The List Item is generated as either an Output Text or Image component, depending on whichever is appropriate for the particular element.

	
Since the number of elements (rows) is predetermined by the selected List View format, rows cannot be added or removed.

	
The order of elements cannot be modified.

	
The default value of the Divider Attribute field is No Divider, in which case the Divider Mode field is disabled. If you select value other than the default, then you need to specify Divider Mode parameters, as Figure 6-46 and Figure 6-47 show.

Figure 6-46 Specifying Divider Attribute

[image: Specifying Divider Property]

Figure 6-47 Specifying Divider Mode

[image: Specifying Divider Mode]

For more information on List View dividers, see Section 7.2.7, "How to Use List View and List Item Components."

The following ADF Mobile AMX markup and data bindings are generated after you select the appropriate options in the Edit List View dialog:

<amx:listView var="row"
 value="#{bindings.contacts.collectionModel}"
 fetchSize="#{bindings.contacts.rangeSize}"
 dividerAttribute="key"
 dividerMode="all"
 id="listView1">
 <amx:listItem showLinkIcon="false" id="listItem1" >
 <amx:panelGroupLayout layout="horizontal"
 id="panelGroupLayout1">
 <amx:image source="#{row.key}" id="image1"/>
 <amx:panelGroupLayout id="panelGroupLayout2">
 <amx:outputText value="#{row.id}"
 styleClass="adfmf-listItem-maintext"
 id="outputText2"/>
 <amx:outputText value="#{row.key}"
 styleClass="adfmf-listItem-subtext"
 id="outputText1"/>
 </amx:panelGroupLayout>
 </amx:panelGroupLayout>
 </amx:listItem>
</amx:listView>

For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for ADF Mobile List View:

	
ADF Mobile Output Text

	
ADF Mobile Image

6.3.2.4.4 What You May Need to Know About Generated Bindings

Table 6-5 shows sample bindings that are added to an ADF Mobile AMX page when components are dropped.

Table 6-5 Sample Data Bindings

	Component	Data Bindings
	
Button

	

actionListener="#{bindings.FindContacts.execute}"
text="FindContacts" disabled="#{!bindings.FindContacts.enabled}"

	
Link

	

actionListener="#{bindings.FindContacts.execute}"
text="FindContacts" disabled="#{!bindings.FindContacts.enabled}"

	
Input Date with Label

	

<amx:inputDate id="inputDate1"
 value="#{bindings.timeStamp.inputValue}"
 label="#{bindings.timeStamp.hints.label}"
 required="#{bindings.timeStamp.hints.mandatory}">
</amx:inputDate>

	
Input Date

	

<amx:inputDate id="inputDate1"
 value="#{bindings.timeStamp.inputValue}"
 required="#{bindings.timeStamp.hints.mandatory}">
</amx:inputDate>

	
Input Text with Label

	

value="#{bindings.contactData.inputValue}"
label="#{bindings.contactData.hints.label}"
required="#{bindings.contactData.hints.mandatory}"
maximumLength="#{bindings.contactData.hints.precision}"

	
Input Text

	

value="#{bindings.contactData.inputValue}"
simple="true"
required="#{bindings.contactData.hints.mandatory}"
maximumLength="#{bindings.contactData.hints.precision}"

	
Output Text

	

value="#{bindings.contactData.inputValue}"

	
Output Text with Label

	

<amx:panelLabelAndMessage id="panelLabelAndMessage1"
 label="#{bindings.contactData.hints.label}">
 <amx:outputText value="#{bindings.contactData.inputValue}"/>
</amx:panelLabelAndMessage>

	
Select Boolean Checkbox

	

value="#{bindings.contactData.inputValue}"
label="#{bindings.contactData.label}"

	
Select Boolean Switch

	

value="#{bindings.contactData.inputValue}"
label="#{bindings.contactData.label}"

	
Select One Button

	

<amx:selectOneButton id="selectOneButton1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 required="#{bindings.contactData.hints.mandatory}">
 <amx:selectItems value="#{bindings.contactData.items}"/>
</amx:selectOneButton>

	
Select One Choice

	

<amx:selectOneChoice id="selectOneChoice1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 required="#{bindings.contactData.hints.mandatory}">
 <amx:selectItems value="#{bindings.contactData.items}"/>
</amx:selectOneChoice>

	
Select Many Checkbox

	

<amx:selectManyCheckbox id="selectManyCheckbox1"
 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems value="#{bindings.AssetView.items}"/>
</amx:selectManyCheckbox>

	
Select One Radio

	

<amx:selectOneRadio id="selectOneRadio1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 required="#{bindings.contactData.hints.mandatory}">
 <amx:selectItems value="#{bindings.contactData.items}"/>
</amx:selectOneRadio>

	
Select Many Choice

	

<amx:selectManyChoice id="selectManyChoice1"
 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems value="#{bindings.AssetView.items}"/>
</amx:selectManyChoice>

6.3.2.4.5 What You May Need to Know About Generated Drag and Drop Artifacts

The first drag and drop event generates the following directories and files:

[image: Drag and Drop directories]

Figure 6-48 shows a sample DataBindings.cpx file generated upon drag and drop.

Figure 6-48 DataBindings.cpx File

[image: DataBindings.cpx]

For more information, see the "Working with the DataBindings.cpx File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Figure 6-49 shows a sample PageDef file generated upon drag and drop.

Figure 6-49 PageDef File

[image: PageDef file]

For more information, see the "Working with Page Definition Files" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

6.3.2.4.6 Using the ADF Mobile AMX Editor Bindings Tab

JDeveloper's Bindings tab (see Figure 6-50) is available in the ADF Mobile AMX Editor. It displays the data bindings defined for a specific ADF Mobile AMX page. If you select a binding, its relationship to the underlying Data Control are shown and the link to the PageDef file is provided.

Figure 6-50 Bindings Tab

[image: Bindings Tab]

6.3.2.4.7 What You May Need to Know About Removal of Unused Bindings

When you delete or cut an ADF Mobile AMX component from the Structure pane, unused bindings are automatically removed from your page.

	
Note:

Deleting a component from the Source editor does not trigger the removal of bindings.

Figure 6-51 demonstrates the deletion of a List View component that references bindings. Upon deletion, the related binding entry is automatically removed from the corresponding PageDef.xml file.

Figure 6-51 Deleting Bound Components from Page

[image: Deleting Bound Components]

Figure 6-52 demonstrates the removal of the List View component by cutting it from the page.

Figure 6-52 Cutting Bound Components from Page

[image: Cutting Bound Components]

After clicking Cut, you are presented with the Confirm Removal of Bindings dialog that prompts you to choose whether or not to delete the corresponding bindings, as shown in Figure 6-53.

Figure 6-53 Confirm Removal of Bindings Dialog

[image: Confirm Removal of Bindings Dialog]

6.3.2.5 What You May Need to Know About Element Identifiers and Their Audit

ADF Mobile generates a unique element identifier (id) and automatically inserts it into the ADF Mobile AMX page when an element is added by dropping a component from the Component palette, or by dragging and dropping a data control. This results in a valid identifier in the ADF Mobile AMX page that differentiates each component from others, possibly similar components within the same page.

ADF Mobile provides an identifier audit utility that does the following:

	
Checks the presence and uniqueness of identifiers in an ADF Mobile AMX page.

	
If the identifier is not present or not unique:

	
for a required id attribute of an element, an error is reported;

	
for an optional id attribute of an element, a warning is reported.

	
Provides an automatic fix to generate a unique id for the element when a problem with the identifier is reported.

Figure 6-54 and Figure 6-55 show the identifier error reporting in the Source editor and Structure pane respectively.

Figure 6-54 Element Identifier Audit in Source Editor

[image: Element Identifier Audit in Source Editor]

Figure 6-55 Element Identifier Audit in Structure Pane

[image: Element Identifier Audit in Structure Pane]

In addition to the id, the audit utility checks the popupId and alignId attributes of the Show Popup Behavior operation (see Section 7.2.8, "How to Use a Popup Component").

Figure 6-56 and Figure 6-57 show the Show Popup Behavior's Popup Id and Align Id attributes error reporting in the Source Editor respectively.

Figure 6-56 Popup Id Attribute Audit in Source Editor

[image: Popup Id Audit in Source Editor]

Figure 6-57 Align Id Attribute Audit in Source Editor

[image: Align Id Attribute Audit in Source Editor]

For more information, see "Auditing and Profiling Applications" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

7 Creating the ADF Mobile AMX User Interface

This chapter describes how to create the user interface for ADF Mobile AMX pages.

This chapter includes the following sections:

	
Section 7.1, "Introduction to Creating the User Interface for ADF Mobile AMX Pages"

	
Section 7.2, "Designing the Page Layout"

	
Section 7.3, "Creating and Using UI Components"

	
Section 7.4, "Enabling Gestures"

	
Section 7.5, "Providing Data Visualization"

	
Section 7.6, "Styling UI Components"

	
Section 7.7, "Localizing UI Components"

	
Section 7.8, "Understanding ADF Mobile Support for Accessibility"

	
Section 7.9, "Validating Input"

	
Section 7.10, "Using Event Listeners"

7.1 Introduction to Creating the User Interface for ADF Mobile AMX Pages

ADF Mobile provides a set of layout and field components that enable you to create ADF Mobile AMX pages that behave appropriately for both the iOS and Android user experience. While ADF Mobile AMX maintains the same development experience as ADF Faces by allowing you to drag these components into an editor from the Component palette or from the Data Control palette, these components are not identical to their ADF Faces counterparts: ADF Mobile AMX components do not support every property and behavior of ADF Faces components. In essence, ADF Mobile AMX UI components render HTML equivalents of the native components on the iOS and Android platforms, with their design-time behavior being very similar to the ADF Faces components. In addition, the UI components are integrated with ADF Mobile's controller and model for declarative navigation and data binding.

	
Note:

When developing interfaces for mobile devices, always be aware of the fact that screen space is very limited. In addition, touchscreen support is not available on some mobile devices.

For more information, see the following:

	
Chapter 6, "Creating ADF Mobile AMX Pages"

	
Chapter 8, "Using Bindings and Creating Data Controls"

7.2 Designing the Page Layout

ADF Mobile AMX provides layout components (listed in Table 7-1) that let you arrange UI components in a page. Usually, you begin building pages with these components, and then add other components that provide other functionality either inside these containers, or as child components to the layout components. Some of these components provide geometry management functionality, such as the capability to stretch when placed inside a component that stretches.

Table 7-1 ADF Mobile AMX Page Management, Layout, and Spacing Components

	Component	Type	Description
	
View

	
Core Page Structure Component

	
Creates a view element in an ADF Mobile AMX file. Automatically inserted into the file when the file is created. For more information, see Section 7.2.1, "How to Use a View Component."

	
Panel Page

	
Core Page Structure Component

	
Creates a panelPage element in an ADF Mobile AMX file. Defines the central area in a page that scrolls vertically between the header and footer areas. For more information, see Section 7.2.2, "How to Use a Panel Page Component."

For more information about ADF Mobile AMX files, see Section 6.3.1.2, "Creating ADF Mobile AMX Pages."

	
Facet

	
Core Page Structure Component

	
Creates a facet element in an ADF Mobile AMX file. Defines an arbitrarily named facet on the parent component. For more information, see Section 7.2.6, "How to Use a Facet Component."

	
Panel Group Layout

	
Page Layout Container

	
Creates a panelGroupLayout element in an ADF Mobile AMX file. Groups child components either vertically or horizontally. For more information, see Section 7.2.3, "How to Use a Panel Group Layout Component."

	
Panel Form Layout

	
Page Layout Container

	
Creates a panelFormLayout element in an ADF Mobile AMX file. Positions components, such as Input Text, so that their labels and fields line up horizontally or above each component. For more information, see Section 7.2.4, "How to Use a Panel Form Layout Component."

	
Panel Label And Message

	
Page Layout Container

	
Creates a panelLabelAndMessage element in an ADF Mobile AMX file. Lays out a label and its children. For more information, see Section 7.2.5, "How to Use a Panel Label And Message Component."

	
List View

	
Page Layout Container

	
Creates a listView element in an ADF Mobile AMX file. Represents an iteration component that provides the look and feel of a list of rows with selection capabilities. For more information, see Section 7.2.7, "How to Use List View and List Item Components."

	
List Item

	
Page Layout Component

	
Creates a listItem element in an ADF Mobile AMX file. For more information, see Section 7.2.7, "How to Use List View and List Item Components."

	
Popup

	
Secondary Window

	
Creates a popup element in an ADF Mobile AMX file. For more information, see Section 7.2.8, "How to Use a Popup Component."

	
Panel Splitter

	
Interactive Page Layout Container

	
Creates a panelSplitter element in an ADF Mobile AMX file. For more information, see Section 7.2.9, "How to Use a Panel Splitter Component."

	
Panel Item

	
Interactive Page Layout Component

	
Creates a panelItem element in an ADF Mobile AMX file. For more information, see Section 7.2.9, "How to Use a Panel Splitter Component."

	
Spacer

	
Spacing Component

	
Creates an area of blank space represented by a spacer element in an ADF Mobile AMX file.

For more information, see the "Separating Content Using Blank Space or Lines" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

	
Table Layout

	
Page Layout Container

	
Creates a tableLayout element in an ADF Mobile AMX file. Represents a table consisting of rows. For more information, see Section 7.2.10, "How to Use a Table Layout Component."

	
Row Layout

	
Page Layout Container

	
Creates a rowLayout element in an ADF Mobile AMX file. Represents a row consisting of cells in a Table Layout component. For more information, see Section 7.2.10, "How to Use a Table Layout Component."

	
Cell Format

	
Page Layout Component

	
Creates a cellFormat element in an ADF Mobile AMX file. Represents a cell in a Row Layout component. For more information, see Section 7.2.10, "How to Use a Table Layout Component."

You add a layout component by dragging and dropping it onto an ADF Mobile AMX page from the Component palette (see Section 6.3.2.1, "Adding UI Components"). Then you use the Property Inspector to set the component's attributes (see Section 6.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

Example 7-1 demonstrates several page layout elements defined in an ADF Mobile AMX file.

	
Note:

You declare the page layout elements under the <amx> namespace.

Example 7-1 Page Layout Components Definition

<amx:panelPage id="pp1">
 <amx:outputText id="outputText1"
 value="Sub-Section Title 1"
 styleClass="adfmf-text-sectiontitle"/>
 <amx:panelFormLayout id="panelFormLayout1" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="Name">
 <amx:commandLink id="commandLink1" text="Jane Don" action="editname" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage2" label="Street Address">
 <amx:commandLink id="commandLink2"
 text="123 Main Street"
 action="editaddr" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage3" label="Phone">
 <amx:outputText id="outputText2" value="212-555-0123" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:outputText id="outputText3"
 value="Sub-Section Title 2"
 styleClass="adfmf-text-sectiontitle" />
 <amx:panelFormLayout id="panelFormLayout2" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage4" label="Type">
 <amx:commandLink id="commandLink3" text="Personal" action="edittype" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="Anniversary">
 <amx:outputText id="outputText4" value="November 22, 2005" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:panelFormLayout id="panelFormLayout3" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage5" label="Date Created">
 <amx:outputText id="outputText5" value="June 20, 2011" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
</amx:panelPage>

Figure 7-1 Page Layout Components at Design Time

[image: Page Layout Components at Design Time]

You use the standard Cascading Style Sheets (CSS) to manage visual presentation of your layout components. CSS are located in the Web Content/css directory of your ViewController project, with default CSS provided by the framework. For more information, see Section 7.6.1, "How to Use Component Attributes to Define Style."

The user interface created for iOS platform using ADF Mobile AMX displays correctly in both the left-to-right and right-to-left language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side. Some of the ADF Mobile AMX layout components, such as the Popup (see Section 7.2.8, "How to Use a Popup Component"), Panel Item, and Panel Splitter (see Section 7.2.9, "How to Use a Panel Splitter Component") can be configured to enable specific right-to-left behavior. For more information about right-to-left configuration of ADF Mobile AMX pages, see Section 7.4, "Enabling Gestures" and Section 6.2.11, "How to Specify the Page Transition Style."

	
Note:

The right-to-left text direction is not supported on Android platform.

An ADF Mobile sample application called LayoutDemo demonstrates how to use layout components in conjunction with such ADF Mobile AMX UI components as a Button, to achieve some of the typical layouts that follow common patterns. In addition, this sample application shows how to work with styles to adjust the page layout to a specific pattern. The LayoutDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

7.2.1 How to Use a View Component

A View (view element in an ADF Mobile AMX file) is a core page structure component that is automatically inserted into an ADF Mobile AMX file when the file is created. This component provides a hierarchical representation of the page and its structure and represents a single ADF Mobile AMX page.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.2.2 How to Use a Panel Page Component

A Panel Page (panelPage element in an ADF Mobile AMX file) is a component that allows you to define a scrollable area of the screen for laying out other components.

By default, when you create an ADF Mobile AMX page, JDeveloper automatically creates and inserts a Panel Page component into the page. When you add components to the page, they will be inserted inside the Panel Page component.

To prevent scrolling of certain areas (such as a header and footer of the page) and enable stretching when orientation changes, you can specify a Facet component for your Panel Page. The Panel Page's header Facet includes the title placed in the Navigation Bar of each page. For information about other types of Facet components that the Panel Page can contain, see Section 7.2.6, "How to Use a Facet Component."

Example 7-2 shows the panelPage element defined in an ADF Mobile AMX file. This Panel Page contains a header Facet.

Example 7-2 Panel Page Definition

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 </amx:facet>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.2.3 How to Use a Panel Group Layout Component

The Panel Group Layout component is a basic layout component that lays out its children horizontally or vertically. To create the Panel Group Layout component, use the Component palette.

To add the Panel Group Layout component:

	
In the Component Palette, drag and drop a Panel Group Layout to the ADF Mobile AMX page.

	
Insert the desired child components into the Panel Group Layout component.

	
To add spacing between adjacent child components, insert the Spacer (spacer) component.

	
Use the Property Inspector to set the component attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

Example 7-3 shows the panelGroupLayout element defined in an ADF Mobile AMX file.

Example 7-3 Panel Group Layout Definition

<amx:panelGroupLayout styleClass="prod" id="pgl1">
 <amx:outputText styleClass="prod-label" value="Screen Size:" id="ot1"/>
</amx:panelGroupLayout>

7.2.4 How to Use a Panel Form Layout Component

The Panel Form Layout (panelFormLayout) component positions components so that their labels and fields align horizontally. In general, the main content of the Panel Form Layout component is comprised of input components (such as Input Text) and selection components (such as Choice). If a child component with a label attribute defined is placed inside the Panel Form Layout component, the child component's label and field are aligned and sized based on the Panel Form Layout definitions. Within the Panel Form Layout, the label area can either be displayed on the start side of the field area or on a separate line above the field area. Separate lines are used if the labelPosition attribute of the Panel Form Layout is set to topStart, topCenter, or topEnd. Otherwise the label area appears on the start side of the field area. Within the label area, the labelPosition attribute controls where the label text can be aligned:

	
to the start side (labelPosition="start" or labelPosition="topStart")

	
to the center (labelPosition="center" or labelPosition="topCenter")

	
to the end side (labelPosition="end" or labelPosition="topEnd")

Within the field area, the fieldHalign attribute controls where the field content can be aligned:

	
to the start side (fieldHalign="start")

	
to the center (fieldHalign="center")

	
to the end side (fieldHalign="end")

To add the Panel Form Layout component:

	
In the Components palette, drag and drop a Panel Form Layout component to the ADF Mobile AMX page.

	
In the Property Inspector, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

Example 7-4 shows the panelFormLayout element defined in an ADF Mobile AMX file.

Example 7-4 Panel Form Layout Definition

<amx:panelFormLayout styleClass="prod" id="pfl1">
 <amx:panelLabelAndMessage label="Type" id="plm1">
 <amx:commandLink text="Personal" action="edittype" id="cl1"/>
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

7.2.5 How to Use a Panel Label And Message Component

Use the Panel Label And Message (panelLabelAndMessage) component to place a component, which does not have a label attribute, inside a Panel Form Layout. These components usually include an Output Text, Button, or Link.

To add the Panel Label And Message component:

	
In the Components palette, drag and drop a Panel Label And Message component into a Panel Group Layout component.

	
In the Property editor, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

Example 7-4 shows the panelLabelAndMessage element defined in an ADF Mobile AMX file. The label attribute is used for the child component.

Example 7-5 Panel Label and Message Definition

<amx:panelLabelAndMessage label="Phone" id="plm1">
 <amx:outputText value="212-555-0123" id="ot1"/>
</amx:panelLabelAndMessage>

7.2.6 How to Use a Facet Component

You use the Facet (facet) component to define an arbitrarily named facet, such as a header or footer, on the parent layout component. The position and rendering of the Facet are determined by the parent component.

The ADF Mobile AMX page header is typically represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the Header, Primary, and Secondary facets:

	
Header facet: contains the page title.

	
Primary Action facet: represents an area that appears in the left corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Secondary Action facet: represents an area that appears in the right corner of the header bar and typically hosts Button or Link components, but can contain any component type.

The ADF Mobile AMX page footer is represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the footer facet:

	
Footer facet: represents an area that appears below the content area and typically hosts Button or Link components, but can contain any component type.

Example 7-6 shows the facet element declared inside the Panel Page container. The type of the facet is always defined by its name attribute (see Table 7-2).

Example 7-6 Facet Definition

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2" icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action"move"/>
 </amx:facet>
</amx:panelPage>

Table 7-2 lists Facet types that you can use with specific parent components.

Table 7-2 Facet Types and Parent Components

	Parent Component	Facet Type (name)
	
Panel Page (panelPage)

	
header, footer, primary, secondary

	
List View (listView)

	
header, footer

	
Data Visualization Components.

For more information, see Section 7.5, "Providing Data Visualization."

	
dataStamp, seriesStamp

To add the Facet component:

You can use the context menu displayed on the Structure pane or Source view to add a Facet component as a child of another component. The context menu displays only facets that are valid for your selected parent component. To add a Facet, first select and then right-click the parent component in the Structure pane or Source view, and then select one of the following:

	
If the parent component is a Panel Page, select Facets > Panel Page, and then choose the type of Facet from the list, as Figure 7-2 shows.

Figure 7-2 Using Context Menu to Add Facet to Panel Page

[image: Using Context Menu to Add Facet]

	
If the parent component is a List View, select Facets > List View, and then choose the type of Facet from the list, as Figure 7-3 shows.

Figure 7-3 Using Context Menu to Add Facet to List View

[image: Using Context Menu to Add Facet to List View]

	
If the parent component is one of the data visualization components, select Facets > <DVTM Component Name>, and then choose the type of Facet from the list, as Figure 7-4 shows.

Figure 7-4 Using Context Menu to Add Facet to Data Visualization Component

[image: Adding Facet to DVT Component]

For more information about data visualization components and their attributes, see Section 7.5, "Providing Data Visualization."

Alternatively:

	
In the Components Palette, drag and drop a Facet component into another component listed in Table 7-2.

	
In the Property Inspector, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.2.7 How to Use List View and List Item Components

Use the List View (listView) component to display data as a list of choices where the end user can select one or more options.

The List Item (listItem) component represents a single row in the List View. Typically, you place a List Item component inside the List View to lay out and style a list of data items. At run time, List Item components respond to swipe gestures (see Section 7.4, "Enabling Gestures").

The List View allows you to define one of the following:

	
A row that is replicated based on the number of items in the list (collection).

	
A static row that is produced by adding a child List Item component without specifying the List View's var and value attributes. You can add as many of these static items as necessary, which is useful when you know the contents of the list at design time. In this case, the list is not editable and behaves like a set of menu items.

You can create the following types of List View components:

	
Basic List

Example 7-7 shows the listView element defined in an ADF Mobile AMX file. This definition corresponds to the basic component.

Example 7-7 Basic List View Definition

<amx:listView id="listView1">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 7-5 demonstrates a basic List View component at design time.

Figure 7-5 Basic List View at Design Time

[image: Basic List View at Design Time]

Example 7-8 shows another definition of the listView element in an ADF Mobile AMX file. This definition also corresponds to the basic component; however, the value of this List View is provided by a collection.

Example 7-8 Basic List View Definition

<amx:listView id="list1" value="#{myBean.listCollection}" var="row">
 <amx:listItem actionListener="#{myBean.selectRow}"
 showLinkIcon="false"
 id="listItem1">
 <amx:outputText value="#{row.name}" id="outputText1"/>
 </amx:listItem>
</amx:listView>

	
Note:

Currently, when a text string in an Output Text inside a List Item is too long to fit on one line, the text does not wrap at the end of the line. You can prevent this by adding "white-space: normal;" to the inlineStyle attribute of the subject Output Text child component.

	
List with icons

Example 7-9 shows the listView element defined in an ADF Mobile AMX file. This definition corresponds to the component with icons.

Example 7-9 List View with Icons Definition

<amx:listView id="list1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11" width="40px" halign="center">
 <amx:image id="image1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12" width="100%" height="43px">
 <amx:outputText id="outputText1" value="#{row.desc}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-6 demonstrates a List View component with icons and text at design time.

Figure 7-6 List View with Icons at Design Time

[image: List View with Icons at Design Time]

	
List with search

	
List with dividers. This type of list allows you to group data and show order. Attributes of the List View component define characteristics of each divider. For information about attributes, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

ADF Mobile AMX provides a list divider that can do the following:

	
Collapse its contents independently.

	
Show a count of items in each divider.

	
Collapse at the same time.

Example 7-10 shows the listView element defined in an ADF Mobile AMX file. This definition corresponds to the component with collapsible dividers and item counts.

Example 7-10 List View with Dividers Definition

<amx:listView id="list1"
 value="#{bindings.data.collectionModel}"
 var="row"
 collapsibleDividers="true"
 collapsedDividers="#{pageFlowScope.mylistDisclosedDividers}"
 dividerMode="all"
 dividerAttribute="type"
 showDividerCount="true">
 <amx:listItem>
 <amx:outputText id="ot1" value="#{row.name}">
 </amx:listItem>
</amx:listView>

	
Note:

Dividers are not displayed when a List View component is in edit mode (that is, its editMode attribute is specified).

	
Inset List

Example 7-11 shows the listView element defined in an ADF Mobile AMX file. This definition corresponds to the inset component.

Example 7-11 Inset List View Definition

<amx:listView id="listView1" styleClass="adfmf-listView-insetList">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 7-7 demonstrates an inset List View component at design time.

Figure 7-7 Inset List View at Design Time

[image: Inset List View at Design Time]

Example 7-12 shows another definition of the listView element in an ADF Mobile AMX file. This definition also corresponds to the inset component, however, the value of this List View is provided by a collection.

Example 7-12 Inset List Definition

<amx:listView id="list1"
 value="#{CarBean.carCollection}"
 var="row"
 styleClass="adfmf-listView-insetList">
 <amx:listItem id="li1" action="go">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:listItem>
</amx:listView>

There is a particular order in which ADF Mobile AMX processes the List Item component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."

Unlike other ADF Mobile AMX components, when you drag and drop a List View onto an ADF Mobile AMX page, a dialog called ListView Gallery appears (see Figure 7-8). This dialog allows you to choose a specific layout for the List View.

Figure 7-8 ListView Gallery Dialog

[image: ListView Gallery]

Table 7-3 lists the supported List Formats that are displayed in the ListView Gallery.

Table 7-3 List Formats

	Format	Element Row Values
	
Simple

	
	
Text

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
Start-End

	
	
Start Text

	
End Text

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

The Variations presented in the ListView Gallery (see Figure 7-8) for a selected list format consist of options to add either dividers, a leading image, or both:

	
Selecting a variation with a leading image adds an Image row to the List Item Content table (see Figure 7-9).

	
Selecting a variation with a divider defaults the Divider Attribute field to the first attribute in its list rather than the default No Divider value, and populates the Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 7-8) allow you to suppress chevrons, use an inset style list, or both:

	
The selections do not modify any state in the Edit List View dialog (see Figure 7-9). They only affect the generated ADF Mobile AMX markup.

	
Selecting a style with the inset list sets the adfmf-listView-insetList style class on the listView element in the generated ADF Mobile AMX markup.

	
Selecting a style without chevrons sets the showLinkIcon attribute on the listItem element to false in the generated ADF Mobile AMX markup.

The following is an example of the Simple format with the inset list and chevrons:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 id="listView2">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected Variation. The format includes a brief description of the main style, followed by the details of the selected variation. Four main styles with four variations on each provide sixteen unique descriptions detailed in Table 7-4.

Table 7-4 List View Variations and Styles

	List Format	Variation	Description
	
Simple

	
Basic

	
A text field appears at the start side of the list item.

	
Simple

	
Dividers

	
A text field appears at the start side of the list item, with items grouped by dividers.

	
Simple

	
Images

	
A text field appears at the start side of the list item, following a leading image.

	
Simple

	
Dividers and Images

	
A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers.

	
Main-Sub Text

	
Basic

	
A prominent main text field appears at the start side of the list item with subordinate text below.

	
Main-Sub Text

	
Dividers

	
A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers.

	
Main-Sub Text

	
Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image.

	
Main-Sub Text

	
Dividers and Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers.

	
Start-End

	
Basic

	
Text fields appear on each side of the list item.

	
Start-End

	
Dividers

	
Text fields appear on each side of the list item, with the items grouped by dividers.

	
Start-End

	
Images

	
Text fields appear on each side of the list item, following a leading image.

	
Start-End

	
Dividers and Images

	
Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers.

	
Quadrant

	
Basic

	
Text fields appear in the four corners of the list item.

	
Quadrant

	
Dividers

	
Text fields appear in the four corners of the list item, with items grouped by dividers.

	
Quadrant

	
Images

	
Text fields appear in the four corners of the list item, following a leading image.

	
Quadrant

	
Dividers and Images

	
Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create either an unbound List View component that displays static text in the List Item child components (see Figure 7-9), or choose a data source for the dynamic binding (see Figure 7-10).

Figure 7-9 Creating Unbound List View

[image: Creating Unbound List View]

When completing the dialog that Figure 7-9 shows, consider the following:

	
The List Data Collection and Element Type fields are disabled when the Bind Data checkbox is in the deselected state.

	
The image on the left reflects the main content elements from the selected List View format

	
The editable cells of the Value column are populated with static text strings (see Table 7-5).

	
If the List Item Content cell contains an Image, the Value cell is defaulted to the <add path to your image> string. If this is the case, you have to replace it with the path to the image.

	
Since you cannot set the divider attribute when the List View contains List Item child components, rather than being data bound, both the Divider Attribute and the Divider Mode fields are disabled.

Table 7-5 Static Text Strings for List View

	List Format	Element Row Values	Values for the Output Text
	
Simple

	
	
Text

	
	
'ListItem Text'

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
	
'Main Text'

	
'This is the subordinate text.'

	
Start-End

	
	
Start Text

	
End Text

	
	
'Start Text'

	
'End Text'

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

	
	
'Start Text'

	
'End Text'

	
'Lower Start Text'

	
'Lower End Text'

Figure 7-10 shows the Edit List View dialog when you choose to bind the List View component to data.

Figure 7-10 Creating Bound List View

[image: Creating Bound List View]

When completing the dialog that Figure 7-10 shows, consider the following:

	
When you select the Bind Data Now checkbox, the List Data Collection and Element Type fields become enabled.

	
To select a data source, click Browse. This opens the Select List View Data Collection dialog that enables you to either choose a data control definition (see Figure 7-11) or to use the EL Builder to select an appropriate EL expression (see Figure 7-12).

Figure 7-11 Selecting Data Control Definition

[image: Selecting Data Control Definition]

Figure 7-12 Selecting EL Expression

[image: Selecting EL Expression]

	
You may declare the type of the data collection using the Element Type field (see Figure 7-10).

	
After you have selected a valid data collection, the Value column in the List Item Content table changes to Value Bindings whose editable cells are populated with lists of attributes from the data collection. For a description of a special case setting, refer to Figure 7-13.

	
The image on the left reflects the main content elements from the selected List View format and provides a mapping from the schematic representation to the named elements in the underlying table.

	
The List Item is generated as either an Output Text or Image component, depending on whichever is appropriate for the particular element.

	
Since the number of elements (rows) is predetermined by the selected List View format, rows cannot be added or removed.

	
The order of elements cannot be modified.

	
The default value of the Divider Attribute field is No Divider, in which case the Divider Mode field is disabled. If you select value other than the default, then you need to specify Divider Mode parameters. In addition, if you chose a Variation in the ListView Gallery that includes dividers, the default value will be set to the first attribute in the list.

The following are special cases to consider when creating a bound List View:

	
If a Java bean method returns a list without generics, you should use the Element Type field to create the List Item content, as Figure 7-10 shows.

	
If the list data collection value provided is not collection-based, a Value column replaces the Value Bindings column with blank values, as Figure 7-13 shows.

Figure 7-13 Providing Non-Collection-Based Values

[image: Providing Non-Collection-Based Values]

For more information, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
Section 7.2.7.3, "Configuring Layout Using Styles"

	
Section 6.3.2.4.3, "Dragging and Dropping Collections"

	
LayoutDemo, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer. This sample demonstrates how to use various types of the List View component and how to apply styles to adjust the page layout to a specific pattern.

	
Appendix D, "Limitations to the Application Usage"

7.2.7.1 Configuring List View Paging

You can configure the List View component to display data in a list that is arbitrarily long. This is done by appending data to the bottom of the list.

The fetchSize attribute determines how many rows the List View component should initially load. If there are more rows available than defined by the fetchSize, a clickable area is displayed after the last fetched row. Clicking within this area loads another batch of rows that equals the fetchSize. Once there are no more rows to display, the clickable area disappears.

The fetchSize attribute does not represent the number of loaded rows. Instead, it represents the value by which the number of rows is incremented. When the List View component is created, the fetchSize attribute is by default set to use an EL expression that points to the rangeSize of the PageDef iterator. For information on the PageDef file, see Section 6.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts" and Figure 6-49, "PageDef File". Setting the fetchSize to the same value as the rangeSize improves the application performance.

Example 7-13 shows the listView element that was created from a collection called testResults of a data control (see Section 6.3.2.4, "Adding Data Controls to the View").

Example 7-13 Setting fetchSize Attribute

<amx:listView var="row"
 value="#{bindings.testResults.collectionModel}"
 fetchSize="#{bindings.testResults.rangeSize}">

In the preceding example, the fetchSize attribute points to the rangeSize on bindings.testResults. Example 7-14 shows a line from the PageDef file for this ADF Mobile AMX page. This PageDef file contains an accessorIterator element called testResultsIterator to which the testResults is bound.

Example 7-14 accessorIterator in PageDef File

<accessorIterator MasterBinding="Class1Iterator"
 Binds="testResults"
 RangeSize="25"
 DataControl="Class1"
 BeanClass="mobile.Test"
 id="testResultsIterator"/>

For more information, see the "Working with Page Definition Files" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

If the fetchSize attribute is set to -1, all records are retrieved.

7.2.7.2 Rearranging List View Items

Items in a List View can be rearranged. This functionality is similar on iOS and Android platforms: both show a Rearrange icon aligned along the right margin for each list item. The Rearrange operation is initiated when the end user touches and drags a list item using the Rearrange affordance as a handle. The operation is completed when the end user lifts their finger from the display screen.

	
Note:

If the end user touches and drags anywhere else on the list item, the list scrolls up or down.

The Rearrange Drag operation "undocks" the list item and allows the end user to move the list item up or down in the list.

For its items to be rearrangeable, the List View must not be static, must be in an edit mode, and must be able to listen to moves.

Example 7-15 shows the listView element defined in an ADF Mobile AMX file. This definition presents a list with an Edit and Stop Editing buttons at the top that allow switching between editable and read-only list mode.

Example 7-15 Rearrangeable List View Definition

<amx:panelPage id="pp1">
 <amx:commandButton id="edit" text="Edit"
 rendered="#{!bindings.inEditMode.inputValue}">
 <amx:setPropertyListener from="true"
 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:commandButton id="stop"
 text="Stop Editing"
 rendered="#{bindings.inEditMode.inputValue}">
 <amx:setPropertyListener from="false"
 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row"
 editMode="#{bindings.inEditMode.inputValue}"
 moveListener="#{MyBean.Reorder}">
 <amx:listItem>
 <amx:outputText id= "ot1" value="#{row.description}">
 </amx:listItem>
 </amx:listView>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.2.7.3 Configuring Layout Using Styles

To adjust the ADF Mobile AMX page layout to a specific pattern, you can combine the use of the various types of List View components and styles that are defined through the styleClass attribute (see Section 7.6, "Styling UI Components") that uses a set of predefined styles.

Figure 7-14 shows a List View component with differently styled text added to the start (left side) and end (right side) of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.

Figure 7-14 List View with Start and End Text at Design Time

[image: Left right list view layout]

Example 7-16 shows the listView element and its child elements defined in an ADF Mobile AMX file. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-startText places the Output Text component to the start (left side) of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText places the Output Text component to the end (right side) of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon attribute of the listItem element. Since the default value of this attribute is true, the example does not contain this setting.

Example 7-16 Definition of List View with Start and End Text

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12" value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-15 shows a List View component with differently styled text added to the start and end of each row. The rows do not contain right-pointing arrows representing links.

Figure 7-15 List View with Start and End Text Without Expansion Links at Design Time

[image: Left right list view without chevron]

Example 7-17 shows the listView element and its child elements defined in an ADF Mobile AMX file. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-startText places the Output Text component to the start of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText places the Output Text component to the end of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon attribute of the listItem element. Since in this example this attribute is set to false for every listItem element, arrows pointing to the right are not displayed.

Example 7-17 Definition of List View with Start and End Text Without Expansion Links

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema" showLinkIcon="false">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12" value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-16 shows a List View component with differently styled text added to the start and end of each row, and with a subtext added below the end text on the left.

Figure 7-16 List View with Start and End Text and Subtext at Design Time

[image: Left right list view with sublist]

Example 7-18 shows the listView element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains subtext placed under the end text. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component to the left side of the row and applies a black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component to the right side of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-upperStartText and applies a smaller grey font to its text.

Example 7-18 Defining List View with Start and End Text and Subtext

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl11">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf11" width="60%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputTexta2" value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl12">
 <amx:cellFormat id="cf13" columnSpan="3" width="100%" height="12px">
 <amx:outputText id="outputTexta3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-17 shows a List View component with differently styled text added as a main text and subtext to each row.

Figure 7-17 List View with Main Text and Subtext at Design Time

[image: List view with sublist]

Example 7-19 shows the listView element and its child elements defined in an ADF Mobile AMX file. This List View is populated with rows containing a main text and subtext. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-mainText places the Output Text component to the start of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-mainText and applies a smaller grey font to its text.

Example 7-19 Defining List View with Main Text and Subtext

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema">
 <amx:tableLayout id="tla1" width="100%">
 <amx:rowLayout id="rla1">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa1" width="100%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cfa2" width="100%" height="12px" >
 <amx:outputText id="outputTexta2" value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-18 shows a List View component with icons and differently styled text added as a main text and subtext to each row.

Figure 7-18 List View with Icons, Main Text and Subtext at Design Time

[image: List view with icons and with sublist]

Example 7-20 shows the listView element and its child elements defined in an ADF Mobile AMX file. This List View is populated with cells containing an icon, main text, and subtext. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-mainText places the Output Text component to the left side of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-mainText and applies a smaller grey font to its text. The position of the image element is defined by its enclosing cellFormat.

Example 7-20 Defining List View with Icons, Main Text and Subtext

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItemd">
 <amx:tableLayout id="tld1" width="100%">
 <amx:rowLayout id="rld1">
 <amx:cellFormat id="cfdi" rowSpan="2" width="40px" halign="center">
 <amx:image id="imaged1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cfd1" width="100%" height="28px">
 <amx:outputText id="outputTextd1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rld2">
 <amx:cellFormat id="cfd2" width="100%" height="12px">
 <amx:outputText id="outputTextd2" value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-19 shows a List View component with two types of differently styled text added to the start and end of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.

Figure 7-19 List View with Four Types of Text at Design Time

[image: Quadrant list view]

Example 7-21 shows the listView element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartText places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndText places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon attribute of the listItem element. Since the default value of this attribute is true, the example does not contain this setting.

Example 7-21 Defining List View with Four Types of Text

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema">
 <amx:tableLayout id="tla1" width="100%">
 <amx:rowLayout id="rla1">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa1" width="60%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa2" width="40%" halign="end">
 <amx:outputText id="outputTexta2" value=#{row.status}
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cfa3" width="60%" height="12px">
 <amx:outputText id="outputTexta3" value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cfa4" width="40%" halign="end">
 <amx:outputText id="outputTexta4" value="#{row.priority}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 7-20 shows a List View component with two types of differently styled text added to the start and end of each row.

Figure 7-20 List View with Four Types of Text and Without Expansion Links at Design Time

[image: Quadrant list view without chevron]

Example 7-22 shows the listView element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartTextNoChevron places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndTextNoChevron places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon attribute of the listItem element. Since in this example this attribute is set to false for every listItem element, arrows pointing to the right are not displayed.

Example 7-22 Defining List View with Four Types of Text and Without Expansion Links

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItema" showLinkIcon="false">
 <amx:tableLayout id="tla1" width="100%">
 <amx:rowLayout id="rla1">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa1" width="60%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa2" width="40%" halign="end">
 <amx:outputText id="outputTexta2" value=#{row.status}
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cfa3" width="60%" height="12px">
 <amx:outputText id="outputTexta3" value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cfa4" width="40%" halign="end">
 <amx:outputText id="outputTexta4" value="#{row.priority}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

7.2.7.4 What You May Need to Know About Using a Static List View

If you create a List View component that is not populated from the model but by hardcoded values, this List View becomes static resulting in some of its properties that you set at design time (for example, dividerAttribute, dividerMode, fetchSize, moveListener) ignored at run time.

ADF Mobile AMX treats a List View component as static if its value attribute is not set. Such lists cannot be editable (that is, you cannot specify its editMode attribute).

7.2.8 How to Use a Popup Component

Use the Popup (popup) component to display a popup window. You can declare this component as a child of the View component.

You can use the following operations in conjunction with the Popup component:

	
Show Popup Behavior (showPopupBehavior) operation represents a declarative way to show the Popup in response to a client-triggered event specified using the type attribute of the Show Popup Behavior.

	
Close Popup Behavior (closePopupBehavior) operation represents a declarative way to close the Popup in response to a client-triggered event.

The Popup Id attribute of the Show Popup Behavior specifies the unique identifier of the Popup component relative to its parent component. The Align Id attribute of the Show Popup Behavior specifies the unique identifier of the component relative to which the Popup is to be aligned. Since setting identifiers manually is tedious and can lead to invalid references, you set values for these two attributes using an editor that is integrated with the standard Property Inspector (see Figure 7-21). There is an Audit rule that is specifically defined to validate these identifiers (see Section 6.3.2.5, "What You May Need to Know About Element Identifiers and Their Audit").

Example 7-23 shows popup and showPopupBehavior elements defined in an ADF Mobile AMX file.

Example 7-23 Popup and Show Popup Behavior Definition

<amx:view>
 <amx:panelPage id="panelPage1">
 <amx:commandButton id="commandButton1">
 <amx:showPopupBehavior popupId="popup1" type="action"
 align="before" alignId="panelPage1" />
 </amx:commandButton>
 </amx:panelPage>
 <amx:popup id="popup1"/>
</amx:view>

Popup components can display validation messages when the user input errors occur. For more information, see Section 7.9, "Validating Input."

To set a Popup Id attribute:

	
Select the showPopupBehavior element in the Source editor or Structure pane.

	
Click the down arrow to the right of the Popup Id field to open the Popup Id dialog, as Figure 7-21 shows.

Figure 7-21 Setting Popup Id Attribute

[image: Setting Popup Id Attribute]

	
Select Edit on the Popup Id dialog to open the Edit Property: Popup Id dialog that Figure 7-22 shows.

Figure 7-22 Edit Property for Popup Id Dialog

[image: Edit Property for Popup Id Dialog]

	
Select the Popup component.

To set an Align Id attribute:

	
Select the showPopupBehavior element in the Source editor or Structure pane.

	
Click the down arrow to the right of the Align Id field to open the Align Id dialog, as Figure 7-23 shows.

Figure 7-23 Setting Align Id Attribute

[image: Setting Align Id Attribute]

	
Select Edit on the Popup Id dialog to open the Edit Property: Popup Id dialog that Figure 7-24 shows.

Figure 7-24 Edit Property for Align Id Dialog

[image: Edit Property for Align Id Dialog]

	
Select the parent component of the Show Popup Behavior operation.

When developing for iOS platform, you can configure the Popup to accommodate the right-to-left language environment by setting its animation attribute to either slideStart or slideEnd.

An ADF Mobile sample application called LayoutDemo demonstrates how to use the Popup component and how to apply styles to adjust the page layout to a specific pattern. The LayoutDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

7.2.9 How to Use a Panel Splitter Component

Use the Panel Splitter (panelSplitter) component to display multiple content areas that may be controlled by a left-side navigation pane. Panel Splitter components are commonly used on tablet devices that have larger display size. These components are typically used with a list on the left and the content on the right side of the display area. Any of the following components can contain a Panel Splitter component:

	
Panel Group Layout

	
Panel Page

	
Popup

	
Iterator

	
Facet

	
Panel Item

A Panel Splitter can contain a Facet (see Section 7.2.6, "How to Use a Facet Component") and Panel Item components. The Panel Item (panelItem) component represents the content area of a Panel Splitter. Since each Panel Splitter component must have a least one Panel Item, the Panel Item is automatically added to the Panel Splitter when the Panel Splitter is created. Each Panel Item component can contain any component that a Panel Group Layout can contain (see Section 7.2.3, "How to Use a Panel Group Layout Component").

The left side of the Panel Splitter is represented by a navigator facet (navigator), which is optional in cases where only multiple content with animations is desired (for example, drawing a multicontent area with a Select Button that requires animation when selecting different buttons to switch content). When in landscape mode, this facet is rendered; in portrait mode, a button is placed above the content area and when clicked, the content of the facet is launched in a popup.

When developing for iOS platform, you can configure the Panel Splitter and Panel Item to accommodate the right-to-left language environment by setting their animation attribute to either slideStart, slideEnd, flipStart, or flipEnd.

	
Note:

You cannot use the flipStart and flipEnd settings on the Android platform. Instead, set the animation attribute to none.

Example 7-24 shows the panelSplitter element defined in an ADF Mobile AMX file, with the navigator facet used as a child component.

Example 7-24 Panel Splitter with Navigator Definition

<panelSplitter id="ps1"
 selectedItem="#{bindings.display.inputValue}"
 animation="flipover">
 <facet name="navigator">
 <listView value="#{bindings.data.collectionModel}" var="row">
 <listItem>
 <outputText value="#{row.description}">
 <setPropertyListener from="#{row.type}"
 to="#{bindings.display.inputValue}"
 type="action"/>
 </listItem>
 </listView>
 </facet>
 <panelItem id="x">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
 <panelItem id="y">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
</panelSplitter>

Example 7-25 shows the panelSplitter element defined in an ADF Mobile AMX file. The navigator facet is not defined for this panelSplitter. Instead, selection of the layout is enabled through the use of a selectOneButton.

Example 7-25 Panel Splitter with Select Button Definition

<selectOneButton id="sob1" value="#{bindings.listtype.inputValue}">
 <selectItem label="Contacts" value="contacts"/>
 <selectItem label="Accounts" value="accounts"/>
</selectOneButton>

<panelSplitter id="ps1"
 selectedItem="#{bindings.listtype.inputValue}"
 position="0"
 animation="flipover">
 <panelItem id="contacts" animation="fade">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
 <panelItem id="accounts">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
</panelSplitter>

Example 7-26 shows the panelSplitter element defined in an ADF Mobile AMX file, with a navigator facet that is itself a panelSplitter with selectOneButton to enable selection of the layout.

Example 7-26 Panel Splitter with Navigator and Select Button Definition

<panelSplitter id="ps1"
 selectedItem="#{bindings.display.inputValue}"
 animation="flipover">
 <facet name="navigator">
 <selectOneButton id="sob1" value="#{bindings.listtype.inputValue}">
 <selectItem label="Contacts" value="contacts"/>
 <selectItem label="Accounts" value="accounts"/>
 </selectOneButton>

 <panelSplitter id="sv2"
 selectedItem="#{bindings.listtype.inputValue}"
 navigatorWidth="0"
 animation="flipup">
 <panelItem id="contacts">
 <panelGroupLayout>
 ...
 <commandButton ...>
 <setPropertyListener from="x"
 to="#{bindings.display.inputValue}"
 type="action"/>
 </commandButton>
 </panelGroupLayout>
 </panelItem>
 <panelItem id="accounts">
 <panelGroupLayout>
 ...
 <commandLink ...>
 <setPropertyListener from="y"
 to="#{bindings.display.inputValue}"
 type="action"/>
 </commandLink>
 </panelGroupLayout>
 </panelItem>
 </panelSplitter>
 </facet>
 <panelItem id="x">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
 <panelItem id="y">
 <panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
</panelSplitter>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.2.10 How to Use a Table Layout Component

Use the Table Layout (tableLayout) component to display data in a typical table format that consists of rows containing cells.

The Row Layout (rowLayout) component represents a single row in the Table Layout. The Table Layout component must contain either one or more Row Layout components or Iterator components that can produce Row Layout components.

The CellFormat (cellFormat) component represents a cell in the Row Layout. The Row Layout component must contain either one or more CellFormat components or Iterator components that can produce CellFormat components.

The Table Layout structure does not allow cell contents to use percentage heights nor can a height be assigned to the overall table structure as a whole. For details, see the description of layout, width, and height attributes of the Table Layout, Row Layout, and Cell Format components in the Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

To add the Table Layout component:

	
In the Component Palette, drag and drop a Table Layout to the ADF Mobile AMX page.

	
Insert the desired number of Row Layout or Iterator child components into the Table Layout component.

	
Insert Cell Format or Iterator child components into each Row Layout component.

	
Use the Property Inspector to set the attributes of all added components. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

Example 7-27 shows the tableLayout element and its children defined in an ADF Mobile AMX file.

Example 7-27 Defining Table Layout

<amx:tableLayout id="tableLayout1"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="#{pageFlowScope.pInlineStyle}"
 borderWidth="#{pageFlowScope.pBorderWidth}"
 cellPadding="#{pageFlowScope.pCellPadding}"
 cellSpacing="#{pageFlowScope.pCellSpacing}"
 halign="#{pageFlowScope.pHalign}"
 layout="#{pageFlowScope.pLayoutTL}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 summary="#{pageFlowScope.pSummary}"
 width="#{pageFlowScope.pWidth}">
 <amx:rowLayout id="rowLayout1">
 <amx:cellFormat id="cellFormatA" rowSpan="2" halign="center">
 <amx:outputText id="otA" value="Cell A"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatB" rowSpan="2" halign="center">
 <amx:outputText id="otB" value="Cell B (wide content)"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatC" rowSpan="2" halign="center">
 <amx:outputText id="otC" value="Cell C"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rowLayout2">
 <amx:cellFormat id="cellFormatD" halign="end">
 <amx:outputText id="otD" value="Cell D"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatE">
 <amx:outputText id="otE" value="Cell E"/>
 </amx:cellFormat>
 </amx:rowLayout>
</amx:tableLayout>

7.3 Creating and Using UI Components

You can use the following UI components when developing your ADF Mobile AMX application feature:

	
Input Text (see Section 7.3.1, "How to Use the Input Text Component")

	
Input Number Slider (see Section 7.3.2, "How to Use the Input Number Slider Component")

	
Input Date (see Section 7.3.3, "How to Use the Input Date Component")

	
Output Text (see Section 7.3.4, "How to Use the Output Text Component")

	
Button (see Section 7.3.5, "How to Use Buttons")

	
Link (see Section 7.3.6, "How to Use Links")

	
Image (see Section 7.3.7, "How to Display Images")

	
Checkbox (see Section 7.3.8, "How to Use the Checkbox Component")

	
Select Many Checkbox (see Section 7.3.9, "How to Use the Select Many Checkbox Component")

	
Select Many Choice (see Section 7.3.11, "How to Use the Select Many Choice Component")

	
Boolean Switch (see Section 7.3.12, "How to Use the Boolean Switch Component")

	
Choice (see Section 7.3.10, "How to Use the Choice Component")

	
Select Button (see Section 7.3.13, "How to Use the Select Button Component")

	
Radio Button (see Section 7.3.14, "How to Use the Radio Button Component")

	
Carousel (see Section 7.3.15, "How to Use Carousel Component")

	
Verbatim (see Section 7.3.16, "How to Use Verbatim Component")

You can also use the following miscellaneous components that include operations, listener-type components, and converters as children of the UI components when developing your ADF Mobile AMX application feature:

	
Iterator (see Section 7.3.17, "How to Enable Iteration")

	
Load Bundle (see Section 7.3.18, "How to Load a Resource Bundle")

	
Action Listener (see Section 7.3.19, "How to Use the Action Listener")

	
Set Property Listener (see Section 7.3.20, "How to Use the Set Property Listener")

	
Convert Date Time (see Section 7.3.21, "How to Convert Date and Time Values")

	
Convert Number (see Section 7.3.22, "How to Convert Numerical Values")

You add a UI component by dragging and dropping it onto the ADF Mobile AMX page from the Component palette (see Section 6.3.2.1, "Adding UI Components"). Then you use the Property Inspector to set the component's attributes (see Section 6.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

	
Note:

On an ADF Mobile AMX page, you place UI components within layout components (see Section 7.2, "Designing the Page Layout"). UI elements are declared under the <amx> namespace.

You can add event listeners to some UI components. For more information, see Section 7.10, "Using Event Listeners." Event listeners are applicable to components for the ADF Mobile AMX run-time description on both iOS and Android-powered devices, but the listeners do not have any effect at design time.

For information on the UI components' support for accessibility, see Section 7.8, "Understanding ADF Mobile Support for Accessibility."

The user interface created for iOS platform using ADF Mobile AMX displays correctly in both the left-to-right and right-to-left language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side.

An ADF Mobile sample application called CompGallery demonstrates how to create and configure ADF Mobile AMX UI components. Another sample application called LayoutDemo shows how to lay out components on an ADF Mobile AMX page. The sample applications are located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

7.3.1 How to Use the Input Text Component

The Input Text (inputText) component represents an editable text field. The following types of Input Text components are available:

	
Standard single-line Input Text, which is declared as an inputText element in an ADF Mobile AMX file:

<amx:inputText id="text1"
 label="Text Input:"
 value="#{myBean.text}" />

	
Password Input Text:

<amx:inputText id="text1"
 label="Password Input:"
 value="#{myBean.text}"
 secret="true" />

	
Multiline Input Text (also known as text area):

<amx:inputText id="text1"
 label="Textarea:"
 value="#{myBean.text}"
 simple="true"
 rows="4" />

Figure 7-25 shows the Input Text component displayed in the Preview pane. This component has its parameters set as follows:

<amx:inputText id="inputText1"
 label="Input Text"
 value="text"/>

Figure 7-25 Input Text at Design Time

[image: Input Text at Design Time]

The inputType attribute lets you define how the component interprets the user input: as a text (default), email address, number, telephone number, or URL. These input types are based on the values allowed by HTML5.

To enable conversion of numbers, as well as date and time values that are entered in the Input Text component, you use the Convert Number (see Section 7.3.22, "How to Convert Numerical Values") and Convert Date Time (see Section 7.3.21, "How to Convert Date and Time Values") components.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

On some mobile devices, when the end user taps an Input Text field, the keyboard is displayed (slides up). If an Input Text is the only component on an ADF Mobile AMX page, the input focus is on this field and the keyboard is displayed by default when the page loads.

A multiline Input Text may be displayed on a secondary page where it is the only component, in which case the multiline Input Text receives focus when the page loads and the keyboard becomes visible.

Input Text components render and behave differently on iOS and Android-powered devices: on iPhone and iPad, Input Text components may be displayed with or without a border.

When creating an Input Text component, consider the following:

	
If a field represented by an Input Text component is displayed with a border, the field has a fixed height and rounded corners.

	
To input or edit content, the end user has to tap in the field, which triggers a blinking insertion cursor to be displayed at the point of the tap, allowing the end user to edit the content. If the field does not contain content, the insertion cursor is positioned at the start of the field.

	
Fields represented by Input Text components may contain default text, typically used as a prompt. When the end user taps a key on the keyboard in such a field, the default text clears when Edit mode is entered.

	
Fields represented by Input Text components do not have a selected appearance. Selection is indicated by the blinking insertion cursor within the field.

	
If the end user enters more text than fits in the field, the text content shifts left one character at a time as the typing continues.

A multiline Input Text component is rendered as a rectangle of any height with rounded corners. This component supports scrolling when the content is too large to fit within the boundaries of the field: rows of text scroll up as the text area fills and new rows of text are added. The end user may flick up or down to scroll rows of text if there are more rows than can be displayed in the given display space. A scroll bar is displayed within the component to indicate the area is being scrolled.

Password field briefly echoes each typed character, and then reverts the character to a dot to protect the password.

7.3.2 How to Use the Input Number Slider Component

The Input Number Slider (inputNumberSlider) component enables selection of numeric values from a range of values by using a slider instead of entering the value by using keys. The filled portion of the trough or track of the slider visually represents the current value.

The Input Number Slider may be used in conjunction with the Output or Input Text component to numerically show the value of the slider. The Input Text component also allows direct entry of a slider value: when the end user taps the Input Text field, the keyboard in numeric mode slides up; the keyboard can be dismissed by either using the slide-down button or by tapping away from the slider component.

The Input Number Slider component always shows the minimum and maximum values within the defined range of the component.

	
Note:

The Input Number Slider component should not be used in cases where a precise numeric entry is required or where there is a wide range of values (for example, 0 to 1000).

Example 7-28 demonstrates the inputNumberSlider element defined in an ADF Mobile AMX file.

Example 7-28 Input Number Slider Definition

<amx:inputNumberSlider id="slider1" value="#{myBean.count}"/>

Figure 7-26 shows the Input Number Slider component displayed in the Preview pane. This component has its parameters set as follows:

<amx:inputNumberSlider id="inputNumberSlider1"
 label="Input Number"
 minimum="0"
 maximum="20"
 stepSize="1"
 value="10"/>

Figure 7-26 Input Number Slider at Design Time

[image: Input Number Slider at Design Time]

To enable conversion of numbers that are entered in the Input Number Slider component, you use the Convert Number component (see Section 7.3.22, "How to Convert Numerical Values").

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

Similar to other ADF Mobile AMX UI components, the Input Number Slider component has a normal and selected state. The component is in its selected state at any time it is touched. To change the slider value, the end user touches, and then interacts with the slider button.

7.3.3 How to Use the Input Date Component

The Input Date (inputDate) component presents a popup input field for entering dates. The default date format is the short date format appropriate for the current locale. For example, the default format in American English (ENU) is mm/dd/yy. The inputType attribute defines if the component accepts date, time, or date and time as an input. The time zone depends on the time zone configured for the mobile device, and, therefore, it is relative to the device. At run time, the Input Date component has the device's native look and feel.

Example 7-29 demonstrates the inputDate element defined in an ADF Mobile AMX file. The inputType attribute of this component is set to the default value of date.

Example 7-29 Input Date Definition

<amx:inputDate id="inputDate1" label="Input Date" value="#{myBean.date}"/>

	
Note:

The value attribute can only be specified as an EL expression.

Figure 7-27 shows the Input Date component displayed in the Preview pane.

Figure 7-27 Input Date at Design Time

[image: Input Date at Design Time]

For more information, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
HTML5 global dates and times defined by W3C

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.4 How to Use the Output Text Component

ADF Mobile AMX provides the Output Text (outputText) component for you to use as a label to display text.

Example 7-30 demonstrates the outputText element defined in an ADF Mobile AMX file.

Example 7-30 Output Text Definition

<amx:outputText id="ot1"
 value="output"
 styleClass="#{pageFlowScope.pStyleClass}"/>

Figure 7-28 shows the Output Text component displayed in the Preview pane.

Figure 7-28 Output Text at Design Time

[image: Output Text at Design Time]

You use the Convert Number (see Section 7.3.22, "How to Convert Numerical Values") and Convert Date Time (see Section 7.3.21, "How to Convert Date and Time Values") converters to facilitate the conversion of numerical and date-and-time-related data for the Output Text components.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery and LayoutDemo, ADF Mobile sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5 How to Use Buttons

The Button (commandButton) component is used to trigger actions (for example, Save, Cancel, Send) and to enable navigation to other pages within the application (for example, Back: see Section 7.3.5.6, "Enabling the Back Button Navigation" for more information).

You may use the Button in one of the following ways:

	
Button with a text label.

	
Button with a text label and an image icon.

	
Note:

You may define the icon image and placement as left or right of the text label.

	
Button with an image icon only (for example, the " + " and " - " buttons for adding or deleting records).

ADF Mobile supports one default Button type for the following three display areas:

	
Buttons that appear in the top header bar: in ADF Mobile AMX pages, the header is represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the header, primary, and secondary facets, which is typical on iPhones:

	
Header Facet contains the page title.

	
Primary Action Facet represents an area that appears in the left corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Secondary Action Facet represents an area that appears in the right corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Buttons that appear in the content area of a page.

	
Buttons that appear in the footer bar of a page. In ADF Mobile AMX pages, the footer is represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the footer facet:

	
Footer Facet represents an area that appears below the content area and typically hosts Button or Link components, but can contain any component type.

All Button components of any type have three states:

	
Normal.

	
Selected: represents appearance when the Button is tapped or touched by the end user. When a button is tapped (touch and release), the button action is performed. Upon touch, the selected appearance is displayed; upon release, the action is performed. If the end user touches the button, then drags their finger away from the button, the action is not performed. However, for the period of time the button is touched, the selected appearance is displayed.

	
Disabled.

The appearance of a Button component is defined by its styleClass attribute that you set to an adfmf-commandButton-<style>. You can apply any of the styles detailed in Table 7-6 to a Button placed in any valid location within the ADF Mobile AMX page.

Table 7-6 Button Styles

	Button Style Name	Description
	
Default

	
The default style of a Button placed:

	
In any of the Panel Page facets (Primary, Secondary, Header, Footer). For more information, see Section 7.3.5.1, "Displaying Default Style Buttons."

	
Anywhere in the content area of an ADF Mobile AMX page. This style is used for buttons that are to perform specific actions within a page, typically based on their location or context within the page.

	
Back

	
The back style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer). This style may be applied to the default Button to give the "back to page" appearance. This button style is typical for "Back to Springboard" or any "Back to Page" buttons.

For more information, see Section 7.3.5.2, "Displaying Back Style Buttons."

	
Highlight

	
The highlight style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer) or the content area of an ADF Mobile AMX page. This style may be added to a Button to provide the iPhone button appearance typical of Save (or Done) buttons.

For more information, see Section 7.3.5.3, "Displaying Highlight Style Buttons."

	
Alert

	
The Alert style adds the delete appearance to a button. For more information, see Section 7.3.5.4, "Displaying Alert Style Buttons."

There is an additional Rounded style (adfmf-commandButton-rounded) that you can apply to a Button to decorate it with a thick rounded border. You can define this style in combination with any other style.

There is a particular order in which ADF Mobile AMX processes the Button component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."

7.3.5.1 Displaying Default Style Buttons

Various types of default style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:

	
Normal Button with a text label only:

[image: Normal button]

	
Selected Button with a text label only:

[image: Selected button]

	
Disabled Button with a text label only:

[image: Disabled button]

	
Normal Button with an image icon only:

[image: Normal button with image]

	
Selected Button with an image icon only:

[image: Selected button with image]

	
Disabled Button with an image icon only:

[image: Disabled button with image]

Example 7-31 and Example 7-32 demonstrate the commandButton element declared in an ADF Mobile AMX file.

Example 7-31 Default Button with Text Label Definition

<amx:panelPage id="pp1">
 .<amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Cancel"
 action="cancel"
 actionListener="#{myBean.rollback}"/>
 </amx:facet>
</amx:panelPage>

Example 7-32 Default Button with Image Icon Definition

<amx:panelPage id="pp1">
 .<amx:facet name="primary">
 <amx:commandButton id="cb1"
 icon="plus.png"
 action="add"
 actionListener="#{myBean.AddItem}"/>
 </amx:facet>
</amx:panelPage>

Example 7-33 shows the commandButton element declared inside the Panel Page's footer facet.

Example 7-33 Default Button with Text Label and Image in Footer Facet Definition

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2"
 icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action="move"/>
 </amx:facet>
</amx:panelPage>

Example 7-34 demonstrates the commandButton element declared as a part of the Panel Page content area.

Example 7-34 Default Button with Text Label Definition in the Page Content Area

<amx:panelPage id="pp1">
 <amx:commandButton id="cb1"
 text="Reply"
 actionListener="#{myBean.share}"/>
</amx:panelPage>

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5.2 Displaying Back Style Buttons

Various types of back style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:

	
Normal Button with a text label only:

[image: Back button]

	
Selected Button with a text label only:

[image: Back button]

	
Disabled Button with a text label only:

[image: Back button]

	
Normal Button with an image icon only:

[image: Back button]

	
Selected Button with an image icon only:

[image: Back button]

	
Disabled Button with an image icon only:

[image: Back button]

Example 7-35 demonstrates the commandButton element declared in an ADF Mobile AMX file.

Example 7-35 Back Button with Text Label Definition

<amx:panelPage id="pp1">
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Back"
 action"__back"/>
 </amx:facet>
</amx:panelPage>

Every time you place a Button component within the primary facet and set its action attribute to __back, ADF Mobile AMX automatically applies the back arrow styling to it.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5.3 Displaying Highlight Style Buttons

Various types of highlight style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:

	
Normal Button

[image: Normal highlight button]

	
Selected Button

[image: Selected highlight button]

	
Disabled Button

[image: Disabled highlight button]

Example 7-36 demonstrates the commandButton element declared in an ADF Mobile AMX file.

Example 7-36 Highlight Button with Text Label Definition

<amx:panelPage id="pp1">
 <amx:facet name="secondary">
 <amx:commandButton id="cb2"
 text="Save"
 action"save"
 styleClass="adfmf-commandButton-highlight"/>
 </amx:facet>
</amx:panelPage>

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5.4 Displaying Alert Style Buttons

Various types of alert style buttons that are placed within Panel Page content are displayed on the mobile device as follows:

	
Normal Button with a text label only:

[image: Normal alert button]

	
Selected Button with a text label only:

[image: Selected alert button]

	
Disabled Button with a text label only:

[image: Disabled alert button]

Example 7-37 demonstrates the commandButton element declared in an ADF Mobile AMX file.

Example 7-37 Alert Button with Text Label Definition

<amx:commandButton id="cb1"
 text="Delete"
 actionListener="#{myBean.delete}"
 styleClass="adfmf-commandButton-alert" />

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5.5 Using Buttons Within the Application

In your ADF Mobile application, you can use the Button component within the following contexts:

	
Navigation Bar

	
The Content Area to perform specific actions

	
Action Sheets

	
Popup-style Alert Messages

Navigation Bar

[image: Navigation bar buttons]

ADF Mobile lets you create standard buttons for use on a navigation bar:

	
Edit button allows the end user to enter an editing or content-manipulation mode:

[image: button]

	
Cancel button allows the end user to exit the editing or content-manipulation mode without saving changes.

	
Save button allows the end user to exit the editing or content-manipulation mode by saving changes.

[image: save button]

	
Done button allows the end user to exit the current mode and save changes, if any.

	
Undo button allows the end user to undo the most recent action.

	
Redo button allows the end user to redo the most recent undone action.

	
Back button allows the end user to navigate back to the springboard.

[image: back button]

	
Back to Page button allows the end user to navigate back to the page identified by the button text label.

[image: back to page button]

	
Add button allows the end user to add or create a new object.

[image: add button]

Content Area

Buttons that are positioned within the content area of a page perform a specific action given the location and context of the button within the page. These buttons may have a different visual appearance than buttons positioned with the navigation bar:

[image: Content button]

Action Sheets

The following is an example of buttons placed within an action sheet:

[image: action sheet buttons]

Alert Messages

The following is an example of a button placed within a validation message:

[image: alert message button]

7.3.5.6 Enabling the Back Button Navigation

ADF Mobile AMX supports navigation using the back button, with the default behavior of going back to the previously visited page. For more information, see Section 6.2.9, "How to Specify Action Outcomes Using UI Components."

If any Button component is added to the primary facet of a Panel Page that is equipped with the __back navigation, this Button is automatically given the back arrow visual styling (see Section 7.3.5.2, "Displaying Back Style Buttons"). To disable this, set the styleClass attribute to amx-commandButton-normal.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.5.7 What You May Need to Know About the Order of Processing Operations and Attributes

The following is the order in which ADF Mobile AMX processes operations and attributes when such components as a Button, Link, and List Item are activated:

	
The following child operations are processed in the order they appear in the XML file:

	
Set Property Listener

	
Action Listener

	
Show Popup Behavior

	
Close Popup Behavior

	
The Action Listener (actionListener) attribute is processed and the associated Java method is invoked.

	
The Action (action) attribute is processed and any navigation case is followed.

7.3.6 How to Use Links

You use the Link (commandLink) component to trigger actions and enable navigation to other views.

Similar to the Panel Group Layout, the Link component can have any type of component defined as its child. By using such components as Set Property Listener (see Section 7.3.20, "How to Use the Set Property Listener"), Action Listener (see Section 7.3.19, "How to Use the Action Listener"), Show Popup Behavior, and Close Popup Behavior see Section 7.2.8, "How to Use a Popup Component") as children of the Link component, you can create an actionable area within which clicks and gestures can be performed.

By placing an Image component (see Section 7.3.7, "How to Display Images") inside a Link you can create a clickable image.

Example 7-38 demonstrates the commandLink element declared in an ADF Mobile AMX file.

Example 7-38 Link Definition

<amx:commandLink id="cl1"
 text="linked"
 action="gotolink"
 actionListener="#{myBean.doSomething}"/>

Figure 7-29 shows the Link component displayed in the Preview pane. This component has its parameters set as follows:

<amx:commandLink id="commandLink1"
 text="Link"
 action="__back"/>

Figure 7-29 Link at Design Time

[image: Link at Design Time]

There is a particular order in which ADF Mobile AMX processes the Link component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."

ADF Mobile AMX provides another component that is similar to the Link, but does not allow for navigation between pages: Link Go (goLink) component. You use this component to enable linking to external pages. Figure 7-30 shows the Link Go component displayed in the Preview pane. This component has its parameters set as follows:

<amx:goLink id="goLink1"
 text="Go Link"
 url="http://example.com"/>

Figure 7-30 Link Go at Design Time

[image: Link Go at Design Time]

Image is the only component that you can specify as a child of the Link Go component.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.7 How to Display Images

ADF Mobile AMX enables the display of images on iOS and Android-powered devices using the Image (image) component represented by a bitmap.

In addition to placing an Image in a Button and List View, you can place it inside a Link component (see Section 7.3.6, "How to Use Links") to create a clickable image.

Example 7-39 demonstrates the image element definition in an ADF Mobile AMX file.

Example 7-39 Image Definition

<amx:image id="i1"
 styleClass="prod-thumb"
 source="images/img-big-#{pageFlowScope.product.uid}.png" />

The following are supported formats on Android platform:

	
GIF

	
JPEG

	
PNG

	
BMP

The following are supported formats on iOS platform:

	
PNG

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery and LayoutDemo, ADF Mobile sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.8 How to Use the Checkbox Component

The Checkbox (selectBooleanCheckbox) component represents a check box that you create to enable single selection of true or false values, which allows toggling between selected and deselected states.

You can use the label attribute of the Checkbox component to place text to the left of the checkbox, and the text attribute places text on the right.

Example 7-40 demonstrates the selectBooleanCheckbox element declared in an ADF Mobile AMX file.

Example 7-40 Checkbox Definition

<amx:selectBooleanCheckbox id="check1"
 label="Agree to the terms:"
 value="#{myBean.bool1}"/>

Figure 7-31 shows the Checkbox component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 label="Checkbox"
 value="false"/>

Figure 7-31 Checkbox at Design Time

[image: Checkbox at Design Time]

Figure 7-32 shows the visual representation of the Checkbox component in its various states.

Figure 7-32 States of Checkbox

[image: States of Select Boolean Checkbox]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.8.1 Support for Checkbox Components on iOS Platform

iOS does not support a native Checkbox component. The Boolean Switch is usually used in Properties pages to enable a boolean selection (see Section 7.3.12, "How to Use the Boolean Switch Component").

7.3.8.2 Support for Checkbox Components on Android Platform

Android provides support for a native Checkbox component. This component is used extensively on Settings pages to turn on or off individual setting values.

7.3.9 How to Use the Select Many Checkbox Component

The Select Many Checkbox (selectManyCheckbox) component represents a group of check boxes that you use to enable multiple selection of true or false values, which allows toggling between selected and deselected states of each check box in the group. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.

	
Note:

The Select Many Checkbox component can contain one Select Items component or one or more Select Item components.

Example 7-41 demonstrates the selectManyCheckbox element declared in an ADF Mobile AMX file.

Example 7-41 Select Many Checkbox Definition

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select shipping options"
 value="#{myBean.shipping}"
 <amx:selectItem label="Air" value="#{myBean.shipping.air}"/>
 <amx:selectItem label="Rail" value="#{myBean.shipping.rail}"/>
 <amx:selectItem label="Water" value="#{myBean.shipping.water}"/>
</amx:selectManyCheckbox>

Figure 7-33 shows the Select Many Checkbox component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select Many Checkbox"
 value="value2">
 <amx:selectItem label="Selection 1" value="value1"/>
 <amx:selectItem label="Selection 2" value="value2"/>
 <amx:selectItem label="Selection 3" value="value3"/>
</amx:selectManyCheckbox>

Figure 7-33 Select Many Checkbox at Design Time

[image: Select Many Checkbox at Design Time]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.9.1 What You May Need to Know About the User Interaction with Select Many Checkbox Component

ADF Mobile AMX provides two alternative ways for displaying the Select Many Checkbox component: pop-up style (default) and list style that is used when the number of available choices exceeds the device screen size.

The end user interaction with a pop-up style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed in a popup. To make a choice, the end user taps one or more choices. To save the selections, the end user either taps outside the popup or closes the popup using the close (" x ") button.

Upon closing of the popup, the value displayed in the component is updated with the selected value.

When the number of choices exceed the dimensions of the device, a full-page popup containing a scrollable List View (see Section 7.2.7, "How to Use List View and List Item Components") is generated.

The end user interaction with a list-style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed. To make a choice, the end user scrolls up or down to browse available choices, and then taps one or more choices. To save the selections, the end user taps the close (" x ") button.

Upon closing of the list, the value displayed in the component is updated with the selected value.

	
Note:

In both cases, there is no mechanism provided to cancel the selection.

7.3.10 How to Use the Choice Component

The Choice (selectOneChoice) component represents a combo box that is used to enable selection of a single value from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Choice component.

	
Note:

The Choice component can contain one Select Items component or one or more Select Item components.

Example 7-42 demonstrates the selectOneChoice element definition with the selectItems subelement in an ADF Mobile AMX file.

Example 7-42 Choice Definition Using Select Item Component

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}">
 <amx:selectItem label="Alaska" value="AK"/>
 <amx:selectItem label="Alabama" value="AL"/>
 <amx:selectItem label="California" value="CA"/>
 <amx:selectItem label="Connecticut" value="CT"/>
</amx:selectOneChoice>

Example 7-43 Choice Definition Using Select Items Component

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}">
 <amx:selectItems value="myBean.allStates"/>
</amx:selectOneChoice>

Figure 7-34 shows the Choice component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneChoice id="selectOneChoice1"
 label="Choice"
 value="value1">
 <amx:selectItem label="Value 1" value="value1"/>
 <amx:selectItem label="Value 2" value="value2"/>
 <amx:selectItem label="Value 3" value="value3"/>
</amx:selectOneChoice>

Figure 7-34 Choice at Design Time

[image: Choice at Design Time]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.10.1 What You May Need to Know About the User Interaction with Choice Component on iOS Platform

ADF Mobile AMX provides two alternative ways for displaying the Choice component: pop-up style and drop-down style.

On an iPhone, the end user interaction with a native Choice component occurs as follows: when the end user taps the component, the list of choices is displayed, with the first option selected by default. To make a choice, the end user scrolls up or down to browse available choices. To save the selection, the end user taps Done in the tool bar.

On an iPad, the user interaction is similar to the interaction on an iPhone, except the following:

	
The list of choices is displayed in a popup dialog.

	
iPad styling is implemented around the list of choices, with a notch used to indicate the source of the list.

To close the list of choices without selecting an item, the end user must tap outside the popup dialog.

	
Note:

The UI to display the list of choices and the tool bar are native to the browser and cannot be styled using CSS.

List values within the Choice component may be displayed as disabled.

When the number of choices exceeds the dimensions of the device display, a list page is generated that may be scrolled in a native way.

7.3.10.2 What You May Need to Know About the User Interaction with Choice Component on Android Platform

The end user interaction with a native Choice component on an Android-powered device occurs as follows: when the end user taps the component, the list of choices in the form of a popup dialog is displayed. A simple popup is displayed if the number of choices fits within the dimensions of the device, in which case:

	
A single tap on an item from the selection list selects that item and closes the popup; the selection is reflected in the Choice component label.

	
A single tap outside the popup or a click on the Back key closes the popup with no changes applied.

If the number of choices to be displayed does not fit within the device dimensions, the popup contains a scrollable list, in which case:

	
A single tap on an item from the selection list selects that item and closes the popup; the selection is reflected in the Choice component label.

	
A click on the Back key closes the popup with no changes applied.

7.3.10.3 What You May Need to Know About Differences Between Select Items and Select Item Components

The Select Items (selectItems) component is patterned after the JSF selectItems element and provides a list of objects that can be selected in multiple-selection components. For more information, see JSF Toolbox website at http://www.jsftoolbox.com.

The Select Item (selectItem) component is patterned after ADF's selectItem element and represents a single selectable item of selection components. For more information, see <af:selectItem> page in Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.

7.3.11 How to Use the Select Many Choice Component

The Select Many Choice (selectManyChoice) component allows selection of multiple values from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.

	
Note:

The Select Many Checkbox component can contain one Select Items component or one or more Select Item components.

Example 7-44 demonstrates the selectManyChoice element declared in an ADF Mobile AMX file.

Example 7-44 Select Many Choice Definition Using Select Item Component

<amx:selectManyChoice id="check1"
 label="Select Shipping Options:"
 value="#{myBean.shipping}">
 <amx:selectItem label="Signature Required" value="signature" />
 <amx:selectItem label="Insurance" value="insurance" />
 <amx:selectItem label="Delivery Confirmation" value="deliveryconfirm"/>
</amx:selectManyChoice>

Example 7-45 Select Many Choice Definition Using Select Items Component

<amx:selectManyChoice id="check1"
 label="Select Shipping Options:"
 value="#{myBean.shipping}">
 <amx:selectItems value="#{myBean.shippingOptions}"/>
</amx:selectManyChoice>

At design time, the Select Many Choice component looks identical to the Choice component. For more information, see Figure 7-34 and Section 7.3.10, "How to Use the Choice Component."

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

The look and behavior of the Select Many Choice component on all supported devices is almost identical to the Select Many Checkbox component (see Section 7.3.9, "How to Use the Select Many Checkbox Component" for more information).

7.3.12 How to Use the Boolean Switch Component

The Boolean Switch (selectBooleanSwitch) component allows editing of boolean values as a switch metaphor instead of a checkbox.

Similar to other ADF Mobile AMX UI components, this component has a normal and selected state. To toggle the value, the end user taps (touches and releases) the switch once. Each tap toggles the switch.

Example 7-46 demonstrates the selectBooleanSwitch element defined in an ADF Mobile AMX file.

Example 7-46 Boolean Switch Definition

<amx:selectBooleanSwitch id="switch1"
 label="Flip switch:"
 onLabel="On"
 offLabel="Off"
 value="#{myBean.bool1}"/>

Figure 7-35 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectBooleanSwitch id="selectBooleanSwitch1"
 label="Switch"
 value="value1">

Figure 7-35 Boolean Switch at Design Time

[image: Boolean Switch at Design Time]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.12.1 Support for Boolean Switch Components on iOS Platform

On iOS, Boolean Switch components are often used on Settings pages to enable or disable an attribute value.

7.3.12.2 Support for Boolean Switch Components on Android Platform

Android platform does not directly support a Boolean Switch component. Instead, Android provides a toggle button that allows tapping to switch between selected and deselected states.

7.3.13 How to Use the Select Button Component

The Select Button (selectOneButton) component represents a button group that lists actions, with a single button active at any given time. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Button component.

	
Note:

The Select Button component can contain one Select Items component or one or more Select Item components.

Example 7-47 demonstrates the selectOneButton element defined in an ADF Mobile AMX file.

Example 7-47 Select Button Definition

<amx:selectOneButton id="bg1" value="#{myBean.myState}">
 <amx:selectItem label="Yes" value="yes"/>
 <amx:selectItem label="No" value="no"/>
 <amx:selectItem label="Maybe" value="maybe"/>
</amx:selectOneButton>

Figure 7-36 shows the Select Button component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneButton id="selectOneButton1"
 label="Select Button"
 value="value1">
 <amx:selectItem label="Value 1" value="value1"/>
 <amx:selectItem label="Value 2" value="value2"/>
 <amx:selectItem label="Value 3" value="value3"/>
</amx:selectOneButton>

Figure 7-36 Select Button at Design Time

[image: Select Button at Design Time]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.14 How to Use the Radio Button Component

The Radio Button (selectOneRadio) component represents a group of radio buttons that lists available choices. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Radio Button component.

	
Note:

The Radio Button component can contain one Select Items component or one or more Select Item components.

Example 7-48 and Example 7-49 demonstrate the selectOneRadio element definition in an ADF Mobile AMX file.

Example 7-48 Radio Button Definition Using Select Item Component

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}">
 <amx:selectItem label="Cat" value="cat"/>
 <amx:selectItem label="Dog" value="dog"/>
 <amx:selectItem label="Hamster" value="hamster"/>
 <amx:selectItem label="Lizard" value="lizard"/>
</amx:selectOneRadio>

Example 7-49 Radio Button Definition Using Select Items Component

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}">
 <amx:selectItems value="myBean.allPets"/>
</amx:selectOneRadio>

Figure 7-37 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneRadio id="selectOneRadio1"
 label="Radio Button"
 value="value1">
 <amx:selectItem label="Value 1" value="value1"/>
 <amx:selectItem label="Value 2" value="value2"/>
 <amx:selectItem label="Value 3" value="value3"/>
</amx:selectOneRadio>

Figure 7-37 Radio Button at Design Time

[image: Radio Button at Design Time]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.15 How to Use Carousel Component

You use the Carousel (carousel) component to display other components, such as images, in a revolving carousel. The end user can change the active item by using either the slider or by dragging another image to the front. For more information, see the "Using the ADF Faces Carousel Component" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The Carousel component contains a Carousel Item (carouselItem) component, whose text represented by the text attribute is displayed when it is the active item of the carousel. Although typically the Carousel Item contains an Image component, other components may be used. For example, you can use a Link as a child that surrounds an image.

	
Tip:

To minimize any negative effect on performance of your application, you should avoid using heavy-weight components as children: a complex structure creates a multiplied effect because several Carousel Items stamps are displayed simultaneously.

In JDeveloper, the Carousel is located under Data Views in the Component Palette (see Figure 7-38).

Figure 7-38 Carousel in Component Palette

[image: Carousel in Components Palette]

Example 7-50 demonstrates the carousel element definition in an ADF Mobile AMX file. When defining the carousel element, you must place the carouselItem component inside of a carousel component's nodeStamp facet.

Example 7-50 Carousel Definition

<amx:carousel id="carousel1"
 value="#{bindings.products.collectionModel}"
 var="item"
 auxiliaryOffset="0.9"
 auxiliaryPopOut="hover"
 auxiliaryScale="0.8"
 controlArea="full"
 displayItems="circular"
 halign="center"
 valign="middle"
 disabled="false"
 shortDesc="spin"
 orientation="horizontal"
 styleClass="AMXStretchWidth"
 inlineStyle="height:250px;background-color:#EFEFEF;">
 <amx:facet name="nodeStamp">
 <amx:carouselItem id="item1" text="#{item.name}"
 shortDesc="Product: #{item.name}">
 <amx:commandLink id="link1" action="goto-productDetails"
 actionListener="#{someMethod()}">
 <amx:image id="image1" styleClass="prod-thumb"
 source="images/img-big-#{item.uid}.png"/>
 <amx:setPropertyListener from="#{item}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:commandLink>
 </amx:carouselItem>
 </amx:facet>
</amx:carousel>

Figure 7-39 shows a Carousel component displayed on an iPhone.

Figure 7-39 Carousel Component on iPhone

[image: Carousel Component on iPhone]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.16 How to Use Verbatim Component

You use the Verbatim (verbatim) operation to insert your own HTML into a page in cases where such a component does not exist or you prefer laying it out yourself using HTML.

In JDeveloper, Verbatim is located under General Controls in the Component Palette (see Figure 7-41).

Figure 7-40 Verbatim in Component Palette

[image: Verbatim in Component Palette]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

	
CompGallery, an ADF Mobile sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

7.3.16.1 What You May Need to Know About Using JavaScript and AJAX with Verbatim Component

Inserting JavaScript directly into the verbatim content (within the amx:verbatim element) is not a recommended practice as it may not execute properly on future versions of the currently supported platforms or on other platforms that ADF Mobile might support in the future. Instead, JavaScript and CSS inclusions should be done through the existing adfmf:include elements in the adfmf-feature.xml file, which ensures injection of the script into the page at the startup of the ADF Mobile AMX application feature.

In addition, the use of JavaScript with the Verbatim component is affected by the fact that AJAX calls from an AMX page to a server are not supported. This is due to the security architecture that guarantees that the browser hosting the ADF Mobile AMX page does not have access to the security information needed to make connections to a secure server to obtain its resources. Instead, communication with the server must occur from the embedded Java code layer.

7.3.17 How to Enable Iteration

You use the Iterator (iterator) operation to stamp an arbitrary number of items with the same kind of data, which allows you to iterate through the data and produce UI for each element.

In JDeveloper, the Iterator is located under Operations in the Component Palette (see Figure 7-41).

Figure 7-41 Iterator in Component Palette

[image: Iterator in Component Palette]

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.3.18 How to Load a Resource Bundle

The Load Bundle (loadBundle) operation allows you to specify the resource bundle that provides localized text for the ADF Mobile AMX UI components on a page. For more information, see Section 7.7, "Localizing UI Components."

In JDeveloper, the Load Bundle is located under Operations in the Component Palette (see Figure 7-42).

Figure 7-42 Load Bundle in Component Palette

[image: Load Bundle in Component Palette]

In your ADF Mobile AMX file, you declare the loadBundle element as a child of the view element.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.3.19 How to Use the Action Listener

The Action Listener (actionListener) component allows you to declaratively invoke commands through EL based on the type of the parent component's usage.

In JDeveloper, the Action Listener component is located under Listeners in the Component Palette (see Figure 7-43).

Figure 7-43 Action Listener in Component Palette

[image: Action Listener in Component Palette]

You can add zero or more Action Listener or Set Property Listener components as children of any command component (Button, Link, List Item). Listener attributes, such as actionListener, valueChangeListener, and moveListener, are defined for various components. The type attribute of the Action Listener or Set Property Listener component can denote which event this listener component is to handle and is represented by the first portion of the parent's listener attribute name: action, valueChange, move. Alternatively, the type attribute can also represent a gesture, such as swipeLeft, swipeRight, tapHold, and so on.

For more information, see the following:

	
Section 7.10, "Using Event Listeners"

	
Section 7.3.20, "How to Use the Set Property Listener"

	
Section 7.4, "Enabling Gestures"

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

7.3.20 How to Use the Set Property Listener

The Set Property Listener (setPropertyListener) component allows you to declaratively move variable values from one location (defined by the component's from attribute) to another (defined by the component's to attribute) without having to write code.

In JDeveloper, the Set Property Listener component is located under Listeners in the Component Palette (see Figure 7-44).

Figure 7-44 Set Property Listener in Component Palette

[image: Set Property Listener in Component Palette]

Example 7-51 demonstrates the setPropertyListener element definition in an ADF Mobile AMX file.

Example 7-51 Set Property Listener Definition

<amx:listView value="#{bindings.products.collectionModel}" var="row" id="lv1">
 <amx:listItem action="details">
 <amx:outputText value="#{row.name}" id="ot1" />
 <amx:setPropertyListener from="#{row}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:listItem>
</amx:listView>

You can add zero or more Set Property Listener or Action Listener components as children of any command component (Button, Link, List Item). Listener attributes, such as actionListener, valueChangeListener, and moveListener, are defined for various components. The type attribute of the Set Property Listener or Action Listener component can denote which event this listener component is to handle and is represented by the first portion of the parent's listener attribute name: action, valueChange, move. Alternatively, the type attribute can also represent a gesture, such as swipeLeft, swipeRight, tapHold, and so on.

For more information, see the following:

	
Section 7.10, "Using Event Listeners"

	
Section 7.3.19, "How to Use the Action Listener"

	
Section 7.4, "Enabling Gestures"

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

7.3.21 How to Convert Date and Time Values

The Convert Date Time (convertDateTime) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text and Input Text component to display converted date, time, or a combination of date and time in a variety of formats following the specified pattern.

In JDeveloper, the Convert Date Time is located under Validators and Converters in the Component Palette (see Figure 7-45).

Figure 7-45 Convert Date Time in Component Palette

[image: Convert Date Time in Component Palette]

Example 7-52 demonstrates the convertDateTime element declared in an ADF Mobile AMX file.

Example 7-52 Using Convert Date Time

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Order Date" id="it1" >
 <amx:convertDateTime type="both"/>
 </amx:inputText>
</amx:panelPage>

To convert date and time values:

	
From the Components palette, drag a Convert Date Time component and insert it within an Output Text or Input Text component, making it a child element of that component.

	
Open the Property editor for the Convert Date Time component and define its attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

	
Note:

The Convert Date Time component does not produce any effect at design time.

The Convert Date Time component allows a level of leniency while converting an input value string to date:

	
A converter with associated pattern MMM for month, when attached to any value holder, accepts values with month specified in the form MM or M as valid.

	
Allows use of such separators as dash (-) or period (.) or slash (/), irrespective of the separator specified in the associated pattern.

	
Leniency in pattern definition set by the pattern attribute.

For example, when a pattern on the converter is set to "MMM/d/yyyy", the following inputs are accepted as valid by the converter:

Jan/4/2004
Jan-4-2004
Jan.4.2004
01/4/2004
01-4-2004
01.4.2004
1/4/2004
1-4-2004
1.4.2004

The converter supports the same parsing and formatting conventions as the java.text.SimpleDateFormat (specified using the dateStyle, timeStyle, and pattern attributes), except the case when the time zone is specified to have a long display, such as timeStyle=full or a pattern set with zzzz. Instead of a long descriptive string, such as "Pacific Standard Time", the time zone is displayed in the General Timezone format (GMT +/- offset) or RFC-822 time zones.

The exact result of the conversion depends on the locale, but typically the following rules apply:

	
SHORT is completely numeric, such as 12.13.52 or 3:30pm

	
MEDIUM is longer, such as Jan 12, 1952

	
LONG is longer, such as January 12, 1952 or 3:30:32pm

	
FULL is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST

7.3.21.1 What You May Need to Know About Date and Time Patterns

As per java.text.SimpleDateFormat definition, date and time formats are specified by date and time pattern strings. Within date and time pattern strings, unquoted letters from A to Z and from a to z are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. " ' ' " represents a single quote. All other characters are not interpreted; instead, they are simply copied into the output string during formatting, or matched against the input string during parsing.

Table 7-7 lists the defined pattern letters (all other characters from A to Z and from a to z are reserved).

Table 7-7 Date and Time Pattern Letters

	Letter	Date or Time Component	Presentation	Examples
	
G

	
Era designator

	
Text

	
	
AD

	
y

	
Year

	
Year

	
	
1996

	
96

	
M

	
Month in year

	
Month

	
	
July

	
Jul

	
07

	
w

	
Week in year

	
Number

	
	
27

	
W

	
Week in month

	
Number

	
	
2

	
D

	
Day in year

	
Number

	
	
189

	
d

	
Day in month

	
Number

	
	
10

	
F

	
Day of week in month

	
Number

	
	
2

	
E

	
Day in week

	
Text

	
	
Tuesday

	
Tue

	
a

	
Am/pm marker

	
Text

	
	
PM

	
H

	
Hour in day (0-23)

	
Number

	
	
0

	
k

	
Hour in day (1-24)

	
Number

	
	
24

	
K

	
Hour in am/pm (0-11)

	
Number

	
	
0

	
h

	
Hour in am/pm (1-12)

	
Number

	
	
12

	
m

	
Minute in hour

	
Number

	
	
30

	
s

	
Second in minute

	
Number

	
	
55

	
S

	
Millisecond

	
Number

	
	
978

	
z

	
Time zone

	
General time zone

	
	
Pacific Standard Time

	
PST

	
GMT-08:00

	
Z

	
Time zone

	
RFC 822 time zone

	
	
-0800

Pattern letters are usually repeated, as their number determines the exact presentation.

7.3.22 How to Convert Numerical Values

The Convert Number (convertNumber) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text or Input Text component to display converted number or currency figures in a variety of formats following a specified pattern.

The Convert Number component provides the following types of conversion:

	
From value to string, for display purposes.

	
From formatted string to value, when formatted input value is parsed into its underlying value.

When the Convert Number is specified as a child of an Input Text component, the numeric keyboard is displayed on a mobile device by default.

In JDeveloper, the Convert Number is located under Validators and Converters in the Component Palette (see Figure 7-46).

Figure 7-46 Convert Number in Component Palette

[image: Convert Number in Component Palette]

Example 7-53 demonstrates the convertNumber element defined in an ADF Mobile AMX file.

Example 7-53 Using Convert Number

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Product Price" id="it1" >
 <amx:convertNumber type="percent" groupingUsed="false" integerOnly="true"/>
 </amx:inputText>
</amx:panelPage>

To convert numerical values:

	
From the Components palette, drag a Convert Number component and insert it within an Output Text or Input Text component, making it a child element of that component.

	
Open the Property editor for the Convert Number component and define its attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

	
Note:

The Convert Number component does not produce any effect at design time.

7.4 Enabling Gestures

You can configure Button, Link, and List Item components to react to the following gestures:

	
Swipe to the right

	
Swipe to the left

	
Swipe up

	
Swipe down

	
Tap-and-hold

	
Swipe to the start: this gesture is used on the iOS platform to accommodate the right-to-left text direction. This gesture resolves as follows:

	
Swipe to the left for the left-to-right text direction.

	
Swipe to the right for the right-to-left text direction.

	
Swipe to the end: this gesture is used on the iOS platform to accommodate the right-to-left text direction. This gesture resolves as follows:

	
Swipe to the right for the left-to-right text direction.

	
Swipe to the left for the right-to-left text direction.

You can define swipeRight, swipeLeft, swipeUp, swipeDown, swipeStart, swipeEnd, and tapHold values for the type attribute of the following operations:

	
Set Property Listener (see Section 7.3.20, "How to Use the Set Property Listener")

	
Action Listener (see Section 7.3.19, "How to Use the Action Listener")

	
Show Popup Behavior (see Section 7.2.8, "How to Use a Popup Component")

	
Close Popup Behavior (see Section 7.2.8, "How to Use a Popup Component")

The values of the type attribute are restricted based on the parent component and are supported only for Button, Link, and List Item components.

Swiping from start and end is used on the iOS platform to accommodate the right-to-left text direction. It is generally recommended to set the start and end swipe style as opposed to left and right.

Example 7-54 demonstrates use of the tapHold value of the type attribute in an ADF Mobile AMX file. In this example, the tap-and-hold gesture triggers the display of a Popup component.

Example 7-54 Using Tap-and-Hold Gesture

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="tapHold"/>
 <amx:showPopupBehavior type="tapHold"
 alignid="pp1"
 popupid="pop1"
 align="startAfter"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>
<amx:popup id="pop1">
 <amx:panelGroupLayout id="pgl1" layout="horizontal">
 <amx:commandLink id="cm1" actionListener="#{mybean.doX}">
 <amx:image id="i1" source="images/x.png"/>
 <amx:closePopupBehavior type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm2" actionListener="#{mybean.doY}">
 <amx:image id="i2" source="images/y.png"/>
 <amx:closePopupBehavior type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm3" actionListener="#{mybean.doZ}">
 <amx:image id="i3" source="images/y.png"/>
 <amx:closePopupBehavior type="action" popupid="pop1"/>
 </amx:commandLink>
 </amx:panelGroupLayout>
</amx:popup>

Example 7-55 demonstrates use of the swipeRight gesture in an ADF Mobile AMX file.

Example 7-55 Using Swipe Right Gesture

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="swipeRight"/>
 <actionListener binding="#{mybean.DoX}" type="swipeRight"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

An ADF Mobile sample application called GestureDemo demonstrates how to use gestures with a variety of ADF Mobile AMX UI components. This sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

7.5 Providing Data Visualization

ADF Mobile employs a set of Data Visualization Tools that you can use to create various charts, gauges, and maps to represent data in your ADF Mobile AMX application feature. You can declare the following elements under the <dvtm> namespace in an ADF Mobile AMX file:

	
areaChart (see Section 7.5.1, "How to Create an Area Chart")

	
barChart (see Section 7.5.2, "How to Create a Bar Chart")

	
horizontalBarChart (see Section 7.5.3, "How to Create a Horizontal Bar Chart")

	
bubbleChart (see Section 7.5.4, "How to Create a Bubble Chart")

	
comboChart (see Section 7.5.5, "How to Create a Combo Chart")

	
lineChart (see Section 7.5.6, "How to Create a Line Chart")

	
pieChart (see Section 7.5.7, "How to Create a Pie Chart")

	
scatterChart (see Section 7.5.8, "How to Create a Scatter Chart")

	
sparkChart (see Section 7.5.9, "How to Create a Spark Chart")

	
ledGauge (see Section 7.5.10, "How to Create a LED Gauge")

	
statusMeterGauge (see Section 7.5.11, "How to Create a Status Meter Gauge")

	
dialGauge (see Section 7.5.12, "How to Create a Dial Gauge")

	
ratingGauge (see Section 7.5.13, "How to Create a Rating Gauge")

	
geographicMap (see Section 7.5.15, "How to Create a Geographic Map Component")

	
thematicMap (see Section 7.5.16, "How to Create a Thematic Map Component")

Chart, gauge, and map elements have a number of attributes that are common to all or most of them. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

In JDeveloper, the chart components are located under DVT Mobile AMX > Chart in the Component Palette (see Figure 7-47), gauge components are located under DVT Mobile AMX > Gauge (see Figure 7-48), and map components are located under DVT Mobile AMX > Map (see Figure 7-49).

Figure 7-47 Chart Components in the Component Palette

[image: Charts in the Component Palette]

Figure 7-48 Gauge Components in the Component Palette

[image: Gauge Components in the Component Palette]

Figure 7-49 Map Components in the Component Palette

[image: Map Components in the Component Palette]

When you drag and drop a chart, gauge, or map, one of the following dialogs opens to display the information about the type of component you are creating:

	
Create Mobile Chart (see Figure 7-50)

Figure 7-50 Creating Chart Components

[image: Creating Chart Components]

	
Create Mobile Gauge (see Figure 7-51)

Figure 7-51 Creating Gauge Components

[image: Creating Gauge Components]

	
Component Gallery (see Figure 7-52)

Figure 7-52 Creating Map Components

[image: Creating mobile map]

	
Note:

After you created the component, you can relaunch the creation dialog by selecting the component in the Source editor or Structure view, and then clicking Edit Component Definition in the Property Inspector.

You can use the same editing functionality available from the Property Inspector to edit child components (for example, the Data Point Layer) of some data visualization components.

An ADF Mobile sample application called CompGallery demonstrates how to use various data visualization components in your ADF Mobile AMX application feature. This sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer.

For more information on ADF Mobile AMX data visualization components, see the following:

	
For information on how to add event listeners to data visualization components, see Section 7.10, "Using Event Listeners." Event listeners are applicable to components for the ADF Mobile AMX run-time description on both iOS and Android-powered devices, but the listeners do not have any effect at design time.

	
For information on databound data visualization components that are created from the Data Controls panel, see Section 7.5.17, "How to Create Databound Data Visualization Components."

	
For information on data visualization components' support for accessibility, see Section 7.8, "Understanding ADF Mobile Support for Accessibility."

	
For information on limitations to the usage of ADF Mobile AMX data visualization components, see Section D.6.2, "Data Visualization Components Limitations."

	
For information on Oracle ADF data visualization components, see the "Using ADF Data Visualization Components" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

7.5.1 How to Create an Area Chart

You use the Area Chart (areaChart) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, an area color or pattern). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles. For information about defining custom series styles, see Section 7.5.6, "How to Create a Line Chart."

Example 7-56 shows the areaChart element defined in an ADF Mobile AMX file. To create a basic area chart with default series style, you pass it a collection and specify the dataStamp facet with a nested chartDataItem element.

Example 7-56 Area Chart Definition with Default Series Styles

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Chart Title"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis axisMaxValue="80.0" majorIncrement="20.0" title="yAxis Title" />
 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

Figure 7-53 Area Chart at Design Time

[image: Area Chart at Design Time]

Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row must include the following properties:

	
series: name of the series to which this data item belongs;

	
group: name of the group to which this data item belongs;

	
value: the data item value.

The collection row might also include other properties, such as color or shape, applicable to individual data items.

You can use attribute groups (attributeGroups element) to set style properties for a group of data items based on some grouping criteria, as Figure 7-53 shows. In this case, the data item color and shape attributes are set based on the additional grouping expression.

Example 7-57 Area Chart Definition with Default Series Styles and Grouping

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Chart Title"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color shape"
 value="#{row.brand}" />
 </amx:facet>
 <dvtm:yAxis axisMaxValue="80.0" majorIncrement="20.0" title="yAxis Title" />
 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

	
Note:

In Example 7-56 and Figure 7-53, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp.

For information on attributes of the areaChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the areaChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the areaChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.2 How to Create a Bar Chart

You use a bar chart (barChart) to visually display data as vertical bars, where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties that you have to apply at the series level instead of per each individual data item.

Example 7-58 shows the barChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested chartDataItem element.

Example 7-58 Bar Chart Definition

<dvtm:barChart id="barChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Bar Chart"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis axisMaxValue="80.0" majorIncrement="20.0" title="yAxis Title" />
 <dvtm:legend id="l1" position="start" />
</dvtm:barChart>

Figure 7-54 Bar Chart at Design Time

[image: Bar Chart at Design Time]

The data model for a bar chart is represented by a collection of items (rows) that describe individual bars. Typically, properties of each bar include the following:

	
series: name of the series to which this bar belongs;

	
group: name of the group to which this bar belongs;

	
value: the data item value (required).

Data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null.

For information on attributes of the barChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the barChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the barChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.3 How to Create a Horizontal Bar Chart

You use a horizontal bar chart (horizontalBarChart) to visually display data as horizontal bars, where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties that you have to apply at the series level instead of per each individual data item.

Example 7-58 shows the horizontalBarChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested chartDataItem element.

Example 7-59 Horizontal Bar Chart Definition

<dvtm:horizontalBarChart id="horizBarChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Horizontal Bar Chart"
 dataSelection="#{pageFlowScope.dataSelection}"
 hideAndShowBehavior="#{pageFlowScope.hideAndShowBehavior}"
 rolloverBehavior="#{pageFlowScope.rolloverBehavior}"
 stack="#{pageFlowScope.stack}" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis axisMaxValue="80.0" majorIncrement="20.0" title="yAxis Title" />
 <dvtm:legend id="l1" position="start" />
</dvtm:horizontalBarChart>

Figure 7-55 Horizontal Bar Chart at Design Time

[image: Horizontal Bar Chart at Design Time]

The data model for a horizontal bar chart is represented by a collection of items (rows) that describe individual bars. Typically, properties of each bar include the following:

	
series: name of the series to which this bar belongs;

	
group: name of the group to which this bar belongs;

	
value: the data item value (required).

Data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null.

For information on attributes of the horizontalBarChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the horizontalBarChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the horizontalBarChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.4 How to Create a Bubble Chart

A bubble chart (bubbleChart) displays a set of data items where each data item has x, y coordinates and size (bubble). In addition, each data item can have various style attributes, such as color and markerShape. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the relationships of the data items. However, unlike line charts (see Section 7.5.6, "How to Create a Line Chart") or area charts (see Section 7.5.1, "How to Create an Area Chart"), bubble charts do not have a strict notion of the series and groups.

Example 7-60 shows the bubbleChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested chartDataItem element. The color and markerShape attributes of each data item are set individually based on the values supplied in the data model. In addition, the underlying data control must support the respective variable references of row.label, row.size, and row.shape.

Example 7-60 Bubble Chart Definition with Custom Data Item Properties

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 inlineStyle="width: 400px; height: 300px;"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Bubble Chart"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.label}"
 x="#{row.x}"
 y="#{row.y}"
 markerSize="#{row.size}"
 color="#{row.color}"
 markerShape="#{row.shape}" />
 </amx:facet>
</dvtm:bubbleChart>

Figure 7-56 Bubble Chart at Design Time

[image: Bubble Chart at Design Time]

In Example 7-61, the attributeGroups element is used to set common style attributes for a related group of data items.

Example 7-61 Bubble Chart Definition with Attribute Groups

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Bubble Chart"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.label}" x="#{row.x}" y="#{row.y}" >
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.category}" />
 <dvtm:attributeGroups id="ag2" type="shape" value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:bubbleChart>

Example 7-62 shows a Bubble Chart with all the possible child elements (chartDataItem, xAxis, yAxis, and legend) defined.

Example 7-62 Bubble Chart Definition with All Attributes

<dvtm:bubbleChart id="bubbleChart1"
 inlineStyle="width: 400px; height: 300px;"
 value="#{bindings.bubbleData.collectionModel}"
 var="row"
 title="Chart Title"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.group}"
 x="#{row.x}"
 y="#{row.y}"
 z="#{row.z}" >
 <dvtm:attributeGroups type="color" value="#{row.series}" id="ag1" />
 <dvtm:attributeGroups type="shape" value="#{row.group}" id="ag2" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:bubbleChart>

The data model for a bubble chart is represented by a collection of items (rows) that describe individual data items. Typically, properties of each bar include the following:

	
label: data item label (optional);

	
x, y: value coordinates (required);

	
z: the size of data item (required).

The data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null.

For information on attributes of the bubbleChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the bubbleChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the bubbleChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.5 How to Create a Combo Chart

A combo chart (comboChart) represents an overlay of two or more different charts, such as a line and bar chart.

Example 7-63 shows the comboChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested chartDataItem element. The seriesStamp facet overrides the default style properties for the series and sets custom series styles using the seriesStyle elements.

Example 7-63 Combo Chart Definition

<dvtm:comboChart id="comboChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Combo Chart"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}" type="bar"
 rendered="#{(row.series eq 'Series 1') or
 (row.series eq 'Series 2') or
 (row.series eq 'Series 3')}" />
 <dvtm:seriesStyle series="#{row.series}" type="line" lineWidth="5"
 rendered="#{(row.series eq 'Series 4') or
 (row.series eq 'Series 5')}" />
 </amx:facet>
 <dvtm:yAxis axisMaxValue="80.0" majorIncrement="20.0" title="yAxis Title" />
 <dvtm:legend position="start" id="l1" />
</dvtm:comboChart>

Figure 7-57 Combo Chart at Design Time

[image: Combo Chart at Design Time]

For information on attributes of the comboChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the comboChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the comboChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.6 How to Create a Line Chart

You use the line chart (lineChart) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, a line color, width, or style). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles.

Example 7-64 shows the lineChart element defined in an ADF Mobile AMX file. To create a basic line chart with default series style, you pass it a collection and specify the dataStamp facet with a nested chartDataItem element.

Example 7-64 Line Chart Definition with Default Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
</dvtm:lineChart>

Figure 7-58 Line Chart at Design Time

[image: Line Chart at Design Time]

Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row must include the following properties:

	
series: name of the series to which this line belongs;

	
group: name of the group to which this line belongs;

	
value: the data item value.

The collection row might also include other properties, such as color or shape, applicable to individual data items.

You can use attribute groups (attributeGroups element) to set style properties for a group of data items based on some grouping criteria, as Example 7-65 shows. In this case, the data item color and shape attributes are set based on the additional grouping expression.

Example 7-65 Line Chart Definition with Default Series Styles and Grouping

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color shape"
 value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:lineChart>

	
Note:

In Example 7-64 and Example 7-65, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp.

To override the default style properties for the series, you can define an optional seriesStamp facet and set custom series styles using the seriesStyle elements, as Example 7-66 shows.

Example 7-66 Line Chart Definition with Custom Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 lineStyle="#{row.lineStyle}"
 lineWidth="#{row.lineWidth}" />
 </amx:facet>
</dvtm:lineChart>

In the preceding example, the seriesStyle elements are grouped based on the value of the series attribute. Series with the same name are supposed to share the same set of properties defined by other attributes of the seriesStyle, such as color, lineStyle, lineWidth, and so on. When ADF Mobile AMX encounters different attribute values for the same series name, it applies the value which was processed last.

Alternatively, you can control the series styles in a ADF Mobile AMX charts using the rendered attribute of the seriesStyle element, as Example 7-67 shows.

Example 7-67 Line Chart Definition with Filtered Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 color="red"
 lineWidth="3"
 lineStyle="solid"
 rendered="#{row.series == 'Coke'}" />
 <dvtm:seriesStyle series="#{row.series}"
 color="blue"
 lineWidth="2"
 lineStyle="dotted"
 rendered="#{row.series == 'Pepsi'}" />
 </amx:facet>
</dvtm:lineChart>

For information on attributes of the lineChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the lineChart:

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the lineChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.7 How to Create a Pie Chart

You use a pie chart (pieChart) to illustrate proportional division of data, with each data item represented by a pie segment (slice). Slices can be sorted by size (from largest to smallest), and small slices can be aggregated into a single "other" slice.

Example 7-68 shows the pieChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested pieDataItem element.

Example 7-68 Pie Chart Definition

<dvtm:pieChart id="pieChart1"
 inlineStyle="width: 400px; height: 300px;"
 value="#{bindings.pieData.collectionModel}"
 var="row"
 title="Pie Chart"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:pieDataItem label="#{row.name}" value="#{row.data}" />
 </amx:facet>
 <dvtm:legend position="bottom" id="l1" />
</dvtm:pieChart>

Figure 7-59 Pie Chart at Design Time

[image: Pie Chart at Design Time]

The data model for a pie chart is represented by a collection of items that define individual pie data items. Typically, properties of each data item include the following:

	
label: slice label;

	
value: slice value.

The model might also define other properties of the data item, such as the following:

	
borderColor: slice border color;

	
color: slice color;

	
explode: slice explosion offset.

For information on attributes of the pieChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the pieChart:

	
legend (see Section 7.5.14.2, "Defining Legend")

	
sliceLabel

	
pieValueFormat

In addition, you can define a facet child element from the amx namespace. The facet can have a pieDataItem as its child (see Section 7.5.14.4, "Defining Pie Data Item").

For more information on child elements of the pieChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.8 How to Create a Scatter Chart

A scatter chart (scatterChart) displays data as unconnected dots that represent data items, where each item has x, y coordinates and size. In addition, each data item can have various style attributes, such as color and shape. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the data items relationships. However, unlike line charts (see Section 7.5.6, "How to Create a Line Chart") or area charts (see Section 7.5.1, "How to Create an Area Chart"), scatter charts do not have a strict notion of the series and groups.

Example 7-69 shows the scatterChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested chartDataItem element. The color and shape attributes of each data item are set individually based on the values supplied in the data model.

Example 7-69 Scatter Chart Definition

<dvtm:scatterChart id="scatterChart1"
 inlineStyle="width: 400px; height: 300px;"
 title="Scatter Chart"
 animationOnDisplay="zoom"
 animationDuration="3000"
 value="#{bindings.scatterData.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.group}"
 x="#{row.data.x}"
 y="#{row.data.y}">
 <dvtm:attributeGroups type="color shape"
 value="#{row.series}"
 id="ag1" />
 </dvtm:chartDataItem>
 </amx:facet>
 <dvtm:xAxis title="X Axis Title" />
 <dvtm:yAxis title="Y Axis Title" />
 <dvtm:legend position="bottom" id="l1" />
</dvtm:scatterChart>

Figure 7-60 Scatter Chart at Design Time

[image: Scatter Chart at Design Time]

The data model for a scatter chart is represented by a collection of items (rows) that describe individual data items. Attributes of each data item are defined by stamping (dataStamp) and usually include the following:

	
x, y: value coordinates (required);

	
size: the size of the marker (optional).

The model might also define other properties of the data item, such as the following:

	
borderColor: data item border color;

	
color: data item color;

	
tooltip: custom tooltip.

For information on attributes of the scatterChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the scatterChart:

	
xAxis and yAxis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
yFormat and y2Format

In addition, you can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 7.5.14.1, "Defining Chart Data Item").

For more information on child elements of the scatterChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.9 How to Create a Spark Chart

A spark chart (sparkChart) is a simple, condensed chart that displays trends or variations, often in the column of a table. The charts are often used in a dashboard to provide additional context to a data-dense display.

Example 7-70 shows the sparkChart element defined in an ADF Mobile AMX file. The dataStamp facet is specified with a nested sparkDataItem element.

Example 7-70 Spark Chart Definition

<dvtm:sparkChart id="sparkChart1"
 value="#{bindings.sparkData.collectionModel}"
 var="row"
 type="line"
 inlineStyle="width:400px; height:300px; float:left;">
 <amx:facet name="dataStamp">
 <dvtm:sparkDataItem value="#{row.value}" />
 </amx:facet>
</dvtm:sparkChart>

Figure 7-61 Spark Chart at Design Time

[image: Spark Chart at Design Time]

The data model for a spark chart is represented by a collection of items (rows) that describe individual spark data items. Typically, properties of each data item include the following:

	
value: spark value.

For information on attributes of the sparkChart element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child element for the sparkChart:

	
referenceObject (see Section 7.5.14.6, "Defining Reference Object")

In addition, you can define a facet child element from the amx namespace. The facet can have a sparkDataItem as its child (see Section 7.5.14.5, "Defining Spark Data Item").

For more information on child elements of the sparkChart, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.10 How to Create a LED Gauge

Unlike charts, gauges focus on a single data point and examine that point relative to minimum, maximum, and threshold indicators to identify problem areas. A LED (lighted electronic display) gauge (ledGauge) graphically depicts a measurement, such as key performance indicator (KPI). There are several styles of LED gauges. The ones with arrows are used to indicate good (up arrow), fair (left- or right-pointing arrow), or poor (down arrow). You can specify any number of thresholds for a gauge. However, some LED gauges (such as those with arrow or triangle indicators) support a limited number of thresholds because there is a limited number of meaningful directions for them to point. For arrow or triangle indicators, the threshold limit is three.

Example 7-71 shows the ledGauge element defined in an ADF Mobile AMX file.

Example 7-71 LED Gauge Definition

<dvtm:ledGauge id="ledGauge1"
 value="65"
 type="circle"
 labelDisplay="on"
 inlineStyle="width: 100px; height: 80px; float: left;
 border-color: navy; background-color: lightyellow;">
 <dvtm:threshold text="Low" maxValue="40" />
 <dvtm:threshold text="Medium" maxValue="60" />
 <dvtm:threshold text="High" maxValue="80" />
</dvtm:ledGauge>

Figure 7-62 LED Gauge at Design Time

[image: Led Gauge at Design Time]

The data model for a LED gauge is represented by a single metric value which is specified by the value attribute.

For information on attributes of the ledGauge element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the ledGauge:

	
threshold (see Section 7.5.14.7, "Defining Threshold")

	
gaugeLabelFormat

In addition, you can define the following amx child elements:

	
showPopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 7.9, "Validating Input")

For more information on child elements of the ledGauge, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.11 How to Create a Status Meter Gauge

A Status Meter Gauge (statusMeterGauge) indicates the progress of a task or the level of some measurement along a horizontal rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle. In addition, thresholds can be displayed behind the indicator whose size can be changed.

ADF Mobile DVT provides support for the reference line (referenceLine) on its status meter gauge component. You can use this line to produce a bullet graph.

Example 7-72 shows the statusMeterGauge element defined in an ADF Mobile AMX file.

Example 7-72 Status Meter Gauge Definition

<dvtm:statusMeterGauge id="meterGauge1"
 value="65"
 animationOnDisplay="auto"
 animationDuration="1000"
 inlineStyle="width: 300px; height: 30px; float: left;
 border-color: black;
 background-color: lightyellow;"
 labelDisplay="on"
 minValue="0"
 maxValue="100">
 <dvtm:threshold text="Low" maxValue="40" />
 <dvtm:threshold text="Medium" maxValue="60" />
 <dvtm:threshold text="High" maxValue="80" />
</dvtm:statusMeterGauge>

Figure 7-63 Status Meter Gauge at Design Time

[image: Status Meter Gauge at Design Time]

The data model for a status meter gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can also be specified by the minValue and maxValue attributes.

For information on attributes of the statusMeterGauge element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the statusMeterGauge:

	
threshold (see Section 7.5.14.7, "Defining Threshold")

	
gaugeLabelFormat

	
referenceLine

In addition, you can define the following amx child elements:

	
showPopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 7.9, "Validating Input")

For more information on child elements of the statusMeterGauge, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.12 How to Create a Dial Gauge

A Dial Gauge (dialGauge) specifies ranges of values (thresholds) that vary from poor to excellent. The gauge indicator specifies the current value of the metric while the graphic allows for evaluation of the status of that value.

Example 7-72 shows the dialGauge element defined in an ADF Mobile AMX file.

Example 7-73 Dial Gauge Definition

<dvtm:dialGauge id="dialGauge1"
 background="#{pageFlowScope.background}"
 indicator="#{pageFlowScope.indicator}"
 value="#{pageFlowScope.value}"
 minValue="#{pageFlowScope.minValue}"
 maxValue="#{pageFlowScope.maxValue}"
 animationDuration="1000"
 animationOnDataChange="auto"
 animationOnDisplay="auto"
 shortDesc="#{pageFlowScope.shortDesc}"
 labelDisplay="on"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 styleClass="#{pageFlowScope.styleClass}"
 readOnly="true"
</dvtm:dialGauge>

Figure 7-64 Dial Gauge at Design Time

[image: Dial Gauge at Design Time]

The data model for a dial gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can be specified by the minValue and maxValue attributes.

For information on attributes of the dialGauge element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following dvtm child elements for the dialGauge:

	
metricLabel

	
tickLabel

Example 7-74 shows the definition of dialGauge element with the dark background theme and custom tick labels setting a range from -5000 to 5000.

Example 7-74 Defining Metric and Tick Labels

<dvtm:dialGauge id="dialGauge1"
 background="circleDark"
 indicator="needleDark"
 value="#{pageFlowScope.value}"
 minValue="-5000"
 maxValue="5000"
 labelDisplay="on"
 readOnly="false">
 <dvtm:metricLabel scaling="thousand"
 labelStyle="font-family: Arial, Helvetica;
 font-size: 20; color: white;"/>
 <dvtm:tickLabel scaling="thousand"
 labelStyle="font-family: Arial, Helvetica;
 font-size: 18; color: white;"/>
</dvtm:dialGauge>

In addition, you can define the following amx child elements for the dialGauge:

	
showPopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 7.9, "Validating Input")

For more information on child elements of the dialGauge, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.13 How to Create a Rating Gauge

A Rating Gauge (ratingGauge) provides means to view and modify ratings on a predefined visual scale. By default, a rating unit is represented by a star. You can configure it as a circle, rectangle, or diamond by setting the shape attribute of the ratingGauge.

Example 7-75 shows the ratingGauge element defined in an ADF Mobile AMX file.

Example 7-75 Rating Gauge Definition

<dvtm:ratingGauge id="ratingGauge1"
 value="#{pageFlowScope.value}"
 minValue="0"
 maxValue="5"
 inputIncrement="full"
 shortDesc="#{pageFlowScope.shortDesc}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 readOnly="true"
 shape="circle"
 unselectedShape="circle">
</dvtm:ratingGauge>

Figure 7-65 Rating Gauge at Design Time

[image: Rating Gauge at Design Time]

The data model for a rating gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can be specified by the minValue and maxValue attributes.

For information on attributes of the ratingGauge element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

You can define the following amx child elements for the ratingGauge:

	
showPopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 7.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 7.9, "Validating Input")

7.5.13.1 Applying Custom Styling to the Rating Gauge Component

Depending on the action performed by the user on a rating gauge component, its units (images) can acquire one of the following states:

	
selected: the unit is selected.

	
unselected: the unit is not selected.

	
hover: the unit is being hovered over.

	
Note:

On mobile devices with touch interface, the hover state is invoked through the tap-and-hold gesture.

	
changed: the unit has been changed.

Each state can be represented by two attributes: color and borderColor. By default, the shape attribute of the ratingGauge determines the selection of the hover and changed states. The unselected state can be set separately using the unselectedShape attribute of the ratingGauge.

You can style the Rating Gauge component by overwriting the default CSS settings. For more information on how to extend CSS files, see Section 7.6.3, "How to Style Data Visualization Components."

Example 7-76 shows the default CSS style definitions for the color and borderColor of each state of the rating gauge unit.

Example 7-76 CSS Styling

.dvtm-ratingGauge {
}

.dvtm-ratingGauge .dvtm-ratingGaugeSelected {
 border-width: 1px;
 border-style: solid;
 border-color: #FFC61A;
 color: #FFBB00;
}

.dvtm-ratingGauge .dvtm-ratingGaugeUnselected {
 border-width: 1px;
 border-style: solid;
 border-color: #D3D3D3;
 color: #F4F4F4;
}

.dvtm-ratingGauge .dvtm-ratingGaugeHover {
 border-width: 1px;
 border-style: solid;
 border-color: #6F97CF;
 color: #7097CF;
}

.dvtm-ratingGauge .dvtm-ratingGaugeChanged {
 border-width: 1px;
 border-style: solid;
 border-color: #A8A8A8;
 color: #FFBB00;
}

7.5.14 How to Define Child Elements for Chart and Gauge Components

You can define a variety of child elements for charts and gauges. The following are some of these child elements:

	
chartDataItem (see Section 7.5.14.1, "Defining Chart Data Item")

	
xAxis, yAxis, and y2Axis (see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis")

	
legend (see Section 7.5.14.2, "Defining Legend")

	
pieDataItem (see Section 7.5.14.4, "Defining Pie Data Item")

	
sparkDataItem (see Section 7.5.14.5, "Defining Spark Data Item")

	
referenceObject (see Section 7.5.14.6, "Defining Reference Object")

	
threshold (see Section 7.5.14.7, "Defining Threshold")

For more information on these and other child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

In JDeveloper, the chart and gauge child components are located under DVT Mobile AMX > Chart and Gauge Child Tags in the Component Palette (see Figure 7-47).

Figure 7-66 Creating Chart and Gauge Child Components

[image: Creating Chart and Gauge Child Components]

7.5.14.1 Defining Chart Data Item

The Chart Data Item (chartDataItem) element specifies the parameters that chart data items use in all supported charts, except the pie chart.

For information on attributes of the chartDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.2 Defining Legend

The Legend (legend) element specifies the legend parameters.

For information on attributes of the legend element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.3 Defining X Axis, YAxis, and Y2Axis

X Axis (xAxis) and Y Axis (yAxis) elements define the X and Y axis for a chart. Y2Axis (y2Axis) defines an optional Y2 axis. These elements are declared as follows in an ADF Mobile AMX file:

<dvtm:xAxis scrolling="on" axisMinValue="0.0" axisMaxValue="50.0" />

For information on attributes and child elements of xAxis, yAxis, and y2Axis elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.4 Defining Pie Data Item

The Pie Data Item (pieDataItem) element specifies the parameters of the pie chart slices (see Section 7.5.7, "How to Create a Pie Chart").

For information on attributes of the pieDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.5 Defining Spark Data Item

The Spark Data Item (sparkDataItem) element specifies the parameters of the spark chart items (see Section 7.5.9, "How to Create a Spark Chart").

For information on attributes of the sparkDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.6 Defining Reference Object

The Reference Object (referenceObject) element specifies the reference objects for the axis of the spark chart (see Section 7.5.9, "How to Create a Spark Chart").

For information on attributes of the referenceObjects element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.14.7 Defining Threshold

The Threshold (threshold) element specifies the threshold ranges of a gauge (see Section 7.5.10, "How to Create a LED Gauge" and Section 7.5.11, "How to Create a Status Meter Gauge").

For information on attributes of the threshold element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.15 How to Create a Geographic Map Component

A Geographic Map (geographicMap) represents business data in one or more interactive layers of information superimposed on a single map. You can configure this component to use either Google or Oracle maps as the underlying map provider (see Section 7.5.15.1, "Configuring Geographic Map Components With the Map Provider Information").

Example 7-77 shows the geographicMap element defined in an ADF Mobile AMX file.

Example 7-77 Geographic Map Definition

<dvtm:geographicMap id="g1" mapType="ROADMAP"
 centerX="-98.57" centerY="39.82"
 zoomLevel="2" initialZooming="auto">
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="#{bindings.locationData.collectionModel}"
 dataSelection="multiple"
 selectionListener="#{myBean.doSomeGood}">
 <dvtm:pointLocation id="pl1" type="address" address="#{row.address}">
 <dvtm:marker shortDesc="#{row.shortDesc}" id="m1" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:geographicMap>

You can define a pointDataLayer child element for the geographicMap. The pointDataLayer allows you to display data associated with a point on the map.The pointDataLayer can have a pointLocation as a child element. The pointLocation specifies the columns in the data layer's model that determine the location of the data points. These locations can be represented either by address or by X and Y coordinates.

The pointLocation can have a marker as a child element. The marker is used to stamp out predefined or custom shapes associated with data points on the map. The marker supports a set of properties for specifying a URI to an image that is to be rendered as a marker. The marker can have a convertNumber as its child element (see Section 7.3.22, "How to Convert Numerical Values").

For information on attributes of the geographicMap element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.15.1 Configuring Geographic Map Components With the Map Provider Information

To configure a Geographic Map component to use a specific provider for the underlying map (Google or Oracle), you can set the following properties as name-value pairs in the application's adf-config.xml file:

	
mapProvider: specify either oraclemaps or googlemaps.

	
geoMapKey: specify the license key if the mapProvider is set to googlemaps.

	
geoMapClientId: if the mapProvider is set to googlemaps, specify the client ID for Google maps business license.

	
mapViewerUrl: if the mapProvider is set to oraclemaps, specify the map viewer URL for Oracle maps.

	
baseMap: if the mapProvider is set to oraclemaps, specify the base map to use with Oracle maps.

	
Note:

To configure the Geographic Map component to use Google maps, you must obtain an appropriate license from Google.

Example 7-78 shows the configuration for Google maps.

Example 7-78 Google Maps Configuration

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="googlemaps"/>
 <adf-property name="geoMapKey" value="your key"/>
</adf-properties-child>

Example 7-79 shows the configuration for Oracle maps.

Example 7-79 Oracle Maps Configuration

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="oraclemaps"/>
 <adf-property name="mapViewerUrl"
 value="http://elocation.oracle.com/mapviewer"/>
 <adf-property name="baseMap" value="ELOCATION_MERCATOR.WORLD_MAP"/>
</adf-properties-child>

If you do not specify the map provider information, the ADF Mobile AMX Geographic Map component uses Google maps for its map, but without the license key.

For information on the adf-config.xml file, see the following:

	
Section 4.2.2.1, "About the Application Controller Project-Level Resources"

	
Table 4-1, "Mobile Application-Level Artifacts Accessed Through Application Resources"

7.5.16 How to Create a Thematic Map Component

A Thematic Map (thematicMap) represents business data as patterns in stylized areas or associated markers. Thematic maps focus on data without the geographic details.

ADF Mobile AMX supports most of the functionality, child elements, and properties of the Oracle ADF Thematic Map component. For more information, see the chapter on using map components in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. The following is not supported:

	
Drag and drop functionality.

	
Control panel.

	
Context menu.

	
Custom regions (customAreaLayer).

	
Drilling.

	
Collapsible groups of legend sections.

	
Collapsible legend.

	
Patterns (pattern) on areas and markers.

	
Images (ADF Mobile AMX Image (image) component). Instead, you can use images with the Marker (marker) child component. For more information, see Section 7.5.16.1, "Defining Custom Markers."

	
The actionListener attribute of the marker. Instead, the same functionality can be achieved by using the selectionListener or a combination of the action and setPropertyListener (see Section 7.10, "Using Event Listeners").

ADF Mobile AMX Thematic Map has the following functionality that is not available in Oracle ADF:

	
Custom markers (see Section 7.5.16.1, "Defining Custom Markers")

	
Area isolation (see Section 7.5.16.2, "Defining Isolated Areas")

	
Initial zooming (see Section 7.5.16.3, "Enabling Initial Zooming"

	
Custom base maps (see Section 7.5.16.4, "Defining a Custom Base Map"

Example 7-80 shows the thematicMap element and its children defined in an ADF Mobile AMX file.

Example 7-80 Defining Thematic Map

<dvtm:thematicMap id="tm1"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 animationOnMapChange="#{pageFlowScope.animationOnMapChange}"
 animationDuration="#{pageFlowScope.animationDuration}"
 basemap="#{pageFlowScope.basemap}"
 tooltipDisplay="#{pageFlowScope.tooltipDisplay}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 zooming="#{pageFlowScope.zooming}"
 panning="#{pageFlowScope.panning}"
 initialZooming="#{pageFlowScope.initialZooming}">
 <dvtm:areaLayer id="areaLayer1"
 layer="#{pageFlowScope.layer}"
 animationOnLayerChange=
 "#{pageFlowScope.animationOnLayerChange}"
 areaLabelDisplay="#{pageFlowScope.areaLabelDisplay}"
 labelType="#{pageFlowScope.labelType}"
 rendered="#{pageFlowScope.rendered}">
 <dvtm:areaDataLayer id="areaDataLayer1"
 animationOnDataChange=
 "#{pageFlowScope.dataAnimationOnDataChange}"
 animationDuration=
 "#{pageFlowScope.dataAnimationDuration}"
 dataSelection="#{pageFlowScope.dataSelection}"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}">
 <dvtm:areaLocation id="areaLoc1" name="#{row.name}">
 <dvtm:area action="sales" id="area1" shortDesc="#{row.name}">
 <amx:setPropertyListener to=
 "#{DvtProperties.areaChartProperties.dataSelection}"
 from="#{row.name}"
 type="action"/>
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.cat1}" />
 </dvtm:area>
 </dvtm:areaLocation>
 </dvtm:areaDataLayer>
 </dvtm:areaLayer>
 <dvtm:legend id="l1" position="end">
 <dvtm:legendSection id="ls1" source="ag1"/>
 </dvtm:legend>
</dvtm:thematicMap>

Figure 7-67 Thematic Map at Design Time

[image: Thematic Map at Design Time]

For information on attributes of the thematicMap element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.5.16.1 Defining Custom Markers

ADF Mobile AMX Thematic Map does not support ADF Mobile AMX Image component. To use an image in the map's pointLocation, you can specify an image within the pointLocation's marker child element by using its source attribute. If the source attribute is set on the Marker, its shape attribute is ignored by ADF Mobile AMX.

The sourceHover, sourceSelected, and sourceHoverSelected attributes allow you to specify images for hover and selection effects. If one of these is not specified, the image specified by the source attribute is used for that particular marker state. If sourceSelected is specified, then its value is used if sourceHoverSelected is not specified. The image can be of any format supported by the mobile device's browser, including PNG, JPG, SVG, and so on.

7.5.16.2 Defining Isolated Areas

You can configure the ADF Mobile AMX Thematic Map component to render and zoom to fit on a single isolated area of the map by using the isolatedRowKey attribute of the areaDataLayer, in which case the rest of the areas in the area or area data layers is not rendered.

	
Note:

You can isolate only one area on a map.

7.5.16.3 Enabling Initial Zooming

The initial zooming allows the map component to be rendered as usual, and then zoom to fit on the data objects which includes both markers and areas. To enable this functionality, you use the initialZooming attribute of the Thematic Map.

7.5.16.4 Defining a Custom Base Map

As part of the custom base map support, ADF Mobile AMX allows you to specify the following for the Thematic Map component:

	
Layers with images for different resolutions.

	
Point layers with named points that can be referenced from the Point Location (pointLocation).

	
The Thematic Map's source attribute that points to the custom base map metadata XML file.

	
Note:

ADF Mobile AMX does not support resource bundles for custom base maps. If you want to add locale-specific tool tips, you can use EL in the shortDesc attribute of the Marker (marker).

To create a custom base map, you specify an area layer which points to a definition in the metadata file (see Example 7-81). To define a basic custom base map, you specify a background layer and a pointer data layer. In the metadata file, you can specify different images for different screen resolutions and display directions, similar to ADF Mobile AMX gauge components. Just like a gauge-type component, the Thematic Map chooses the correct image for the layer based on the screen resolution and direction. The display direction can be either left-to-right or right-to-left. The default direction for the image is left-to-right, which you can change to right-to-left by setting the dir attribute of the image element to rtl.

Example 7-81 Metadata File With List of Images

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-800x800-rtl.png"
 width="2560"
 height="1920"
 dir="rtl" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 <image source="/maps/car-200x200-rtl.png"
 width="640"
 height="480"
 dir="rtl" />
 </layer>
</basemap>

Example 7-82 shows an ADF Mobile AMX file that declares a custom area layer with points. The ADF Mobile AMX file points to the metadata file shown in Example 7-81 containing a list of possible images.

Example 7-82 Declaring Custom Area Layer With Points

<dvtm:thematicMap id="tm1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" >
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
 </dvtm:areaLayer>
</dvtm:thematicMap>

In the preceding example, the base map ID is matched with the basemap attribute of the thematicMap, and the layer ID is matched with the layer attribute of the areaLayer. The points are defined through the X and Y coordinates (just like for a predefined base map) to accommodate dynamic points that can change at the time the data are updated.

Example 7-83 shows an alternative way to declare a custom area layer with points. In this example, the pointDataLayer is a direct child of the thematicMap. Despite this variation, Example 7-83 renders the same result as the declaration demonstrated in Example 7-82.

Example 7-83 Declaring Custom Area Layer With Points Using Direct Child Element

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

To create a custom base map with static points, you specify the points by name in the metadata file shown in Example 7-84. This process is similar to adding city markers for a predefined base map.

Example 7-84 Metadata File With List of Named Points

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-800x800-rtl.png"
 width="2560"
 height="1920"
 dir="rtl" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 <image source="/maps/car-200x200-rtl.png"
 width="640"
 height="480"
 dir="rtl" />
 </layer>
 <points >
 <point name="hood" x="219.911" y="329.663" />
 <point name="frontLeftTire" x="32.975" y="32.456" />
 <point name="frontRightTire" x="10.334" y="97.982" />
 </points>
</basemap>

Example 7-85 shows an ADF Mobile AMX file that declares a custom area layer with named points. The ADF Mobile AMX file points to the metadata file shown in Example 7-81 containing a list of points and their names.

Example 7-85 Declaring Custom Area Layer With Named Points

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1" type="pointName" pointName="#{row.name}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

7.5.16.5 Applying Custom Styling to the Thematic Map Component

You can style the Thematic Map component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 7.6.3, "How to Style Data Visualization Components."

Example 7-86 shows the default CSS styles for the Thematic Map component.

Example 7-86 CSS Styling

.dvtm-thematicMap {
 background-color: #FFFFFF;
 -webkit-user-select: none;
 -webkit-touch-callout: none;
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

.dvtm-areaLayer {
 background-color: #B8CDEC;
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;
 color: #000000;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
}

.dvtm-area {
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;
}

.dvtm-marker {
 background-color: #61719F;
 opacity: 0.7;
 color: #FFFFFF;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
}

Some of the style settings cannot be specified using CSS. Instead, you must define them using a custom JavaScript file. Example 7-87 shows how to apply custom styling to the Thematic Map component without using CSS.

Example 7-87 Non-CSS Custom Styling

my-custom.js:

 CustomThematicMapStyle = {
 // selected area properties
 'areaSelected': {
 // selected area border color
 'borderColor': "#000000",
 // selected area border width
 'borderWidth': '1.5px'
 },

 // area properties on mouse hover
 'areaHover': {
 // area border color on hover
 'borderColor': "#FFFFFF",
 // area border width on hover
 'borderWidth': '2.0px'
 },

 // marker properties
 'marker': {
 // separator upper color
 'scaleX': 1.0,
 // separator lower color
 'scaleY': 1.0,
 // should display title separator
 'type': 'circle'
 },

 // thematic map legend properties
 'legend': {
 // legend position, such as none, auto, start, end, top, bottom
 'position': "auto"
 }
 };

})();

Note that you cannot change the name and the property names of the CustomThematicMapStyle object. Instead, you can modify specific property values to suit the needs of your application. For information on how to add custom CSS and JavaScript files to your application, see Section 5.10, "Defining the Content Types for an Application Feature."

When the attributeGroups attribute is defined for the Thematic Map component, you can use the CustomThematicMapStyle to define a default set of shapes and colors for that component. In this case, the CustomThematicMapStyle object must have the structure that Example 7-88 shows, where styleDefaults is a nested object containing the following fields:

	
colors: represents a set of colors to be used for areas and markers.

	
shapes: represents a set of shapes to be used for markers.

Example 7-88 Defining Default Custom Shapes and Colors for Thematic Map

window['CustomThematicMapStyle'] =
{
 // custom style values
 'styleDefaults': {
 // custom color palette
 'colors': ["#000000", "#ffffff"],
 // custom marker shapes
 'shapes' : ['circle', 'square']
 }
};

7.5.17 How to Create Databound Data Visualization Components

You can declaratively create a databound chart, gauge, or map using a data collection inserted from the Data Controls panel (see Chapter 6, "Creating ADF Mobile AMX Pages"). The Component Gallery dialog that Figure 7-71 shows allows you to choose from a number of data visualization component categories, types, and layout options.

Figure 7-68 Component Gallery

[image: Component Gallery]

	
Note:

Some data visualization component types require very specific kinds of data. If you bind a component to a data collection that does not contain sufficient data to display the component type requested, then the component is not displayed and a message about insufficient data appears.

To trigger the display of the Component Gallery, you drag and drop a collection from the Data Controls panel onto the ADF Mobile AMX page, and then select either ADF Mobile Chart, ADF Mobile Gauge, ADF Mobile Geographic Map, or ADF Mobile Thematic Map from the context menu that appears (see Figure 7-69).

Figure 7-69 Creating Databound DVT Components

[image: Creating Databound DVT Components]

After you select the category, type, and layout for your new databound component from the Component Gallery and click OK, you can start binding the data collection attributes in the DVT component using data binding dialogs. The name of the dialog and the input field labels depend on the category and type of the DVT component that you selected. For example, if you select Horizontal Bar as the category and Bar as the type, then the name of the dialog that appears is Create Mobile Horizontal Bar Chart, and the input field is labeled Bars, as Figure 7-70 shows.

Figure 7-70 Specifying Data Values for Databound Chart

[image: Specifying Data Values for Databound Chart]

The attributes in a data collection can be data values or categories of data values. Data values are numbers represented by markers, like bar height, or points in a scatter chart. Categories of data values are members represented as axis labels. The role that an attribute plays in the bindings (either data values or identifiers) is determined by both its data type (chart requires numeric data values) and where it is mapped (for example, Bars or X Axis).

After completing the data binding dialog, you can use the Property Inspector to specify settings for the component attributes. You can also use the child elements associated with the component to further customize it (see Section 7.5.14, "How to Define Child Elements for Chart and Gauge Components").

For more information, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework:

	
"Creating Databound Graphs"

	
"Creating Databound Gauges"

	
"Creating Databound Thematic Maps"

7.6 Styling UI Components

ADF Mobile enables you to employ CSS to apply style to UI components.

7.6.1 How to Use Component Attributes to Define Style

You style your UI components by setting the following attributes:

	
styleClass attribute defines a CSS style class to use for your layout component:

<amx:panelPage styleClass="#{pageFlowScope.pStyleClass}">

You can define the style class for layout, command, and input components in an ADF Mobile AMX page or in a skinning CSS file, in which case a certain style is applied to all components within the ADF Mobile AMX application feature (see Section 7.6.2, "What You May Need to Know About Skinning"). Alternatively, you can use the public style classes provided by ADF Mobile.

	
Note:

The CSS file is not accessible from JDeveloper. Instead, ADF Mobile injects this file into the package at build or deploy time, upon which the CSS file appears in the css directory under the Web Content root directory.

	
inlineStyle attribute defines a CSS style to use for any UI component and represents a set of CSS styles that are applied to the root DOM element of the component:

<amx:outputText inlineStyle="color:red;">

You should use this attribute when basic style changes are required.

	
Note:

Some UI components are rendered with such subelements as HTML div elements and more complex markup. As a result, setting the inlineStyle attribute on the parent component may not produce the desired effect. In such cases, you should examine the generated markup and, instead of defining the inlineStyle attribute, apply a CSS class that would propagate the style to the subelement.

For information on how to configure JavaScript debugging, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."

These attributes are displayed in the Style section in the Property Inspector, as Figure 7-71 shows.

Figure 7-71 Style Section of the Property Inspector

[image: Style section]

ADF Mobile AMX provides a drop-down editor that you can use to set various properties of the inlineStyle attribute (see Figure 7-72).

Figure 7-72 Inline Style Editor

[image: Inline Style Editor]

For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

7.6.2 What You May Need to Know About Skinning

Skinning allows you to define and apply a uniform style to all UI components within an ADF Mobile AMX application feature to create a theme for the entire feature.

For more information, see Section 5.12, "Skinning ADF Mobile Applications."

7.6.3 How to Style Data Visualization Components

Most of the style properties of ADF Mobile AMX data visualization components are defined in the dvtm.css file located in the css directory. You can override the default values by adding a custom CSS file with custom style definitions at the application feature level (see Section 5.12.7, "Overriding the Default Skin Styles").

Some of the style properties cannot be mapped to CSS and have to be defined in custom JavaScript files. These properties include the following:

	
Background and needle images for the Dial Gauge component (see Section 7.5.12, "How to Create a Dial Gauge").

	
Base maps for the Thematic Map component (see Section 7.5.16.4, "Defining a Custom Base Map").

	
Style properties of the Geographic Map component (see Section 7.5.15, "How to Create a Geographic Map Component").

	
Style properties of the Thematic Map component (see Section 7.5.16.5, "Applying Custom Styling to the Thematic Map Component").

	
Selected and unselected states of the Rating Gauge component (see Section 7.5.13.1, "Applying Custom Styling to the Rating Gauge Component").

You should specify these custom JavaScript files in the Includes section at the application feature level (see Section 5.10.1, "How to Define the Application Content"). By doing so, you override the default style values defined in the XML style template. Example 7-89 shows a JavaScript file similar to the one you would add to your ADF Mobile project that includes the ADF Mobile AMX application feature with data visualization components which require custom styling of properties that cannot be styled using CSS.

Example 7-89 Defining Custom Style Properties

my-custom.js:

 CustomChartStyle = {

 // common chart properties
 'chart': {
 // text to be displayed, if no data is provided
 'emptyText': null,
 // animation effect when the data changes
 'animationOnDataChange': "none",
 // animation effect when the chart is displayed
 'animationOnDisplay': "none",
 // time axis type - disabled / enabled / mixedFrequency
 'timeAxisType': "disabled"
 },

 // chart title separator properties
 'titleSeparator': {
 // separator upper color
 'upperColor': "#74779A",
 // separator lower color
 'lowerColor': "#FFFFFF",
 // should display title separator
 'rendered': false
 },

 // chart legend properties
 'legend': {
 // legend position none / auto / start / end / top / bottom
 'position': "auto"
 },

 // default style values
 'styleDefaults': {
 // default color palette
 'colors': ["#003366", "#CC3300", "#666699", "#006666", "#FF9900",
 "#993366", "#99CC33", "#624390", "#669933", "#FFCC33",
 "#006699", "#EBEA79"],
 // default shapes palette
 'shapes': ["circle", "square", "plus", "diamond",
 "triangleUp", "triangleDown", "human"],
 // series effect
 'seriesEffect': "gradient",
 // animation duration in ms
 'animationDuration': 1000,
 // animation indicators - all / none
 'animationIndicators': "all",
 // animation up color
 'animationUpColor': "#0099FF",
 // animation down color
 'animationDownColor': "#FF3300",
 // default line width (appllicable to line chart)
 'lineWidth': 3,
 // default line style (appllicable to line chart)
 // solid / dotted / dashed
 'lineStyle': "solid",
 // should markers be displayed (appllicable to line and area charts)
 'markerDisplayed': false,
 // default marker color
 'markerColor': null,
 // default marker shape
 'markerShape': "auto",
 // default marker size
 'markerSize': 8,
 // pie feeler color (appllicable to pie chart only)
 'pieFeelerColor': "#BAC5D6",
 // slice label position and text type (appllicable to pie chart only)
 'sliceLabel': {
 'position': "outside",
 'textType': "percent" }
 }
 };

 CustomGaugeStyle = {
 // default animation duration in milliseconds
 'animationDuration': 1000,
 // default animation effect on data change
 'animationOnDataChange': "none",
 // default animation effect on gauge display
 'animationOnDisplay': "none",
 // default visual effect
 'visualEffects': "auto"
 };
...
}

After the JavaScript file has been defined, you can uncomment and modify any values. You add this file as an included feature in the adfmf-feature.xml file, as Example 7-90 shows.

Example 7-90 Including Custom Style File in the Application Feature

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="feature1" name="feature1">
 <adfmf:content id="feature1.1">
 <adfmf:amx file="feature1/untitled1.amx">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/custom.css"/>
 <adfmf:include type="JavaScript" file="feature1/js/my-custom.js"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

7.7 Localizing UI Components

In your ADF Mobile AMX page, you can localize the text that UI components display by using the standard resource bundle provided by JDeveloper. You do so by selecting a component and one of its text-presenting properties whose value you intend to localize, and then choosing Select Text Resource in the Value box in the Property Inspector (see Figure 7-73).

Figure 7-73 Selecting Text Resource

[image: Selecting Text Resource]

This will display the standard ADF Select Text Resource dialog that Figure 7-74 shows. You use this dialog to enter or find a string reference for the property you are modifying.

Figure 7-74 Select Text Resource Dialog

[image: Select Text Resource Dialog]

After you have defined a localized string resource, the EL for that reference is automatically placed in the property from which the Select Text Resource dialog was launched.

Figure 7-75 shows the changes in the ADF Mobile AMX file.

Figure 7-75 Localized String in ADF Mobile AMX File

[image: Localized String in ADF Mobile AMX File]

For more information, see Section 5.11, "Working with Resource Bundles."

7.8 Understanding ADF Mobile Support for Accessibility

When developing ADF Mobile applications, you may need to accommodate visually and physically impaired users by addressing accessibility issues. User agents, such as web browsers rendering to nonvisual media (for example, a screen reader) can read text descriptions of UI components to provide useful information to impaired users. ADF Mobile AMX UI and DVT components are designed to be compliant with the following accessibility standards:

	
The Accessible Rich Internet Applications (WAI-ARIA) 1.0 specification.

For more information, see the following:

	
"Introduction" to WAI-ARIA 1.0 specification at http://www.w3.org/TR/wai-aria/introduction

	
"Using WAI-ARIA" at http://www.w3.org/TR/wai-aria/usage

	
Section 7.8.2, "What You May Need to Know About the Basic WAI-ARIA Terms"

	
The Oracle Global HTML Accessibility Guidelines (OGHAG).

For more information, see Section 7.8.3, "What You May Need to Know About the Oracle Global HTML Accessibility Guidelines."

	
iOS Accessibility guidelines.

For more information, see the Accessibility Programming Guide for iOS.

Accessible components do not change their appearance nor is the application logic affected by the introduction of such components.

To enable the proper functioning of the accessibility in your ADF Mobile AMX application feature, follow these guidelines:

	
The navigation must not be more than three levels deep and it must be easy for the user to traverse back to the home screen.

	
Keep scripting to a minimum.

	
Do not provide direct interaction with the DOM.

	
Do not use JavaScript time-outs.

	
Avoid unnecessary focus changes

	
Provide explicit popup triggers

	
If needed, utilize the WAI-ARIA live region (see Section 7.8.2, "What You May Need to Know About the Basic WAI-ARIA Terms").

	
Keep CSS use to a minimum.

	
Try not to override the default component appearance.

	
Choose scalable size units.

	
Do not use CSS positioning.

For more information, see the following:

	
"Mobile Accessibility" at http://www.w3.org/WAI/mobile

	
"Web Content Accessibility and Mobile Web: Making a Web Site Accessible Both for People with Disabilities and for Mobile Devices" at http://www.w3.org/WAI/mobile/overlap.html

7.8.1 How to Configure UI and DVT Components for Accessibility

ADF Mobile AMX UI and DVT components have a built-in accessibility support, with most components being subject to the accessibility audit (see Figure 7-77).

Table 7-8 lists components and their attributes that you can set through the Accessibility section of the Property Inspector.

Table 7-8 UI Components with Configurable Accessibility Attributes

	Component	Accessibility Attribute	Accessibility Audit Message
	
Button (commandButton)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Select Button (selectOneButton)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Link (commandLink)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Link Go (goLink)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Carousel (carousel)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
CarouselItem (carouselItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
List Item (listItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Popup (popup)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Image (image)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be specified. If the image is used for decorative purposes, it can be empty.

	
Input Text (inputText)

	
Hint Text (hintText)

	
The hintText attribute should be present and describe what the field should contain.

	
Panel Group Layout (panelGroupLayout)

	
Landmark (landmark)

	
NA Foot 1

	
Area Chart (areaChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Bar Chart (barChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Horizontal Bar Chart (horizontalBarChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Bubble Chart (bubbleChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Combo Chart (comboChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Line Chart (lineChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Scatter Chart (scatterChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Spark Chart (sparkChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Led Gauge (ledGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Status Meter Gauge (statusMeterGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Dial Gauge (dialGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Rating Gauge (ratingGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Geographic Map (geographicMap)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

	
Thematic Map (thematicMap)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the displayed data.

Footnote 1 The landmark attribute has a default value (none) and is not subject to the accessibility audit.

You use the shortDesc attribute for different purposes for different components. For example, if you set the shortDesc attribute for the Image component, in the ADF Mobile AMX file it will appear as a value of the alt attribute of the image element.

The value of the shortDesc attribute can be localized.

For the Panel Group Layout component, you define the landmark role type (see Table 7-13, "Landmark Roles") that is applicable as per the context of the page. You can set one of the following values for the landmark attribute:

	
default (none)

	
application

	
banner

	
complementary

	
contentinfo

	
form

	
main

	
navigation

	
search

Table 7-9 lists UI components whose accessible attributes defined by WAI-ARIA specification are automatically applied at run time and that you cannot modify.

Table 7-9 UI Components with Static Accessibility Attributes

	Component	Accessibility Attribute	Accessibility Audit Message
	
Input Date (inputDate)

	
Label (label)

	
inputDate is not labeled. The label attribute of inputDate should be specified.

	
Input Number Slider (inputNumberSlider)

	
Label (label)

	
inputNumberSlider is not labeled. The label attribute of inputNumberSlider should be specified.

	
Panel Label and Message (panelLabelAndMessage)

	
Label (label)

	
panelLabelAndMessage is not labeled. The label attribute of panelLabelAndMessage should be specified.

	
Select Item (selectItem)

	
Label (label)

	
selectItem is not labeled. The label attribute of selectItem should be specified.

	
Checkbox (selectBooleanCheckbox)

	
Label (label)

	
selectBooleanCheckbox is not labeled. The label attribute of selectBooleanCheckbox should be specified.

	
Boolean Switch (selectBooleanSwitch)

	
Label (label)

	
selectBooleanSwitch is not labeled. The label attribute of selectBooleanSwitch should be specified.

	
Radio Button (selectOneRadio)

	
Label (label)

	
selectOneRadio is not labeled. The label attribute of selectOneRadio should be specified.

	
Select Many Checkbox (selectManyCheckbox)

	
Label (label)

	
selectManyCheckbox is not labeled. The label attribute of selectManyCheckbox should be specified.

	
Choice (selectOneChoice)

	
Label (label)

	
selectOneChoice is not labeled. The label attribute of selectOneChoice should be specified.

	
Output Text (outputText)

	
Value (value)

	
NA Foot 1

Footnote 1 The value attribute is not subject to the accessibility audit.

You can configure the accessibility audit rules using JDeveloper's Preferences dialog as follows:

	
In JDeveloper, select Tools > Preferences from the main menu.

	
From the list of preferences, select Audit > Profiles.

	
On the Audit: Profiles pane, expand the Application Development Framework (ADF) node from the tree of rules, and then select ADF Mobile Framework > Accessibility.

	
Select the accessibility audit rules to apply to your application, as Figure 7-76 shows.

Figure 7-76 Setting Accessibility Audit Rules

[image: Setting Accessibility Audit Rules]

Figure 7-77 shows the accessibility audit warning displayed in JDeveloper.

Figure 7-77 Accessibility Audit Warning

[image: Accessibility Audit Warning]

For information on how to test your accessible ADF Mobile AMX application feature, see Section 19.2.1, "How to Perform Accessibility Testing on iOS-Powered Devices."

	
Note:

WAI-ARIA accessibility functionality is not supported on Android for DVT components.

Other ADF Mobile AMX UI components might not perform as expected when the application is run in the Android screen reader mode.

7.8.2 What You May Need to Know About the Basic WAI-ARIA Terms

As stated in the WAI-ARIA 1.0 specification, complex web applications become inaccessible when assistive technologies cannot determine the semantics behind portions of a document or when the user is unable to effectively navigate to all parts of it in a usable way. WAI-ARIA divides the semantics into roles (the type defining a user interface element), and states and properties supported by the roles. The following semantic associations form the base for the WAI-ARIA terms:

	
Role

	
Landmark

	
Live region

For more information, see "Important Terms" at http://www.w3.org/TR/wai-aria/terms.

The following tables list role categories (as defined in the WAI-ARIA 1.0 specification) that are applicable to ADF Mobile.

Table 7-10 lists abstract roles that are used to support the WAI-ARIA role taxonomy for the purpose of defining general role concepts.

Table 7-10 Abstract Roles

	Abstract Role	Description
	
input

	
A generic type of widget that allows the user input.

	
landmark

	
A region of the page intended as a navigational landmark.

	
select

	
A form widget that allows the user to make selections from a set of choices.

	
widget

	
An interactive component of a graphical user interface.

Table 7-11 lists widget roles that act as standalone user interface widgets or as part of larger, composite widgets.

Table 7-11 Widget Roles

	Widget Role	Description	Widget Required States
	
alertdialog

	
A type of dialog that contains an alert message, where initial focus moves to an element within the dialog.

	
aria-labelledby, aria-describedby

	
button

	
An input that allows for user-triggered actions when clicked or pressed.

	
aria-expanded (state), aria-pressed (state)

	
checkbox

	
A checkable input that has three possible values: true, false, or mixed.

	
aria-checked (state)

	
dialog

	
A dialog represented by an application window that is designed to interrupt the current processing of an application in order to prompt the user to enter information or require a response.

	
aria-labelledby, aria-describedby

	
link

	
An interactive reference to an internal or external resource that, when activated, causes the user agent to navigate to that resource.

	
aria-disabled (state), aria-describedby

	
option

	
A selectable item in a select list.

	
aria-labelledby, aria-checked (state), aria-selected (state)

	
radio

	
A checkable input in a group of radio roles, only one of which can be checked at a time.

	
aria-checked (state), aria-disabled (state)

	
slider

	
A user input where the user selects a value from within a given range.

	
aria-valuemax, aria-valuemin, aria-valuenow, aria-disabled (state)

	
listbox

	
A widget that allows the user to select one or more items from a list of choices.

	
aria-live

	
radiogroup

	
A group of radio buttons.

	
aria-disabled (state)

	
listitem

	
A single item in a list or directory.

	
aria-describedby

	
textbox

	
Input that allows free-form text as its value.

	
aria-labelledby, aria-readonly, aria-required, aria-multiline, aria-disabled (state)

Table 7-12 lists document structure roles that describe structures that organize content in a page. Typically, document structures are not interactive.

Table 7-12 Document Structure Roles

	Document Structure Role	Description
	
img

	
A container for a collection of elements that form an image.

	
list

	
A group of non-interactive list items.

	
listitem

	
A single item in a list or directory.

Table 7-13 lists landmark roles that represent regions of the page intended as navigational landmarks.

Table 7-13 Landmark Roles

	Landmark Role	Description
	
application

	
A region declared as a web application (as opposed to a web document).

	
banner

	
A region that contains mostly site-oriented content (rather than page-specific content).

	
complementary

	
A supporting section of a document designed to be complementary to the main content at a similar level in the DOM hierarchy, but that remains meaningful when separated from the main content.

	
contentinfo

	
A large perceivable region that contains information about the parent document.

	
form

	
A region that contains a collection of items and objects that, as a whole, combine to create a form.

	
main

	
The main content of a document.

	
navigation

	
A collection of navigational elements (usually links) for navigating the document or related documents.

	
search

	
A region that contains a collection of items and objects that, as a whole, combine to create a search facility.

For the majority of ADF Mobile UI components, you cannot modify accessible WAI-ARIA attributes. For some components, you can set special accessible attributes at design time, and for the Panel Group Layout, you can use the WAI-ARIA landmark role type. For more information, see Section 7.8.1, "How to Configure UI and DVT Components for Accessibility."

7.8.3 What You May Need to Know About the Oracle Global HTML Accessibility Guidelines

The Oracle Global HTML Accessibility Guidelines (OGHAG) is a set of scripting standards for HTML that Oracle follows. These standards represent a combination of Section 508 (see http://www.section508.gov) and Web Content Accessibility Guidelines (WCAG) 1.0 level AA (see http://www.w3.org/TR/WCAG10), with improved wording and checkpoint measurements.

For more information, see Oracle's Accessibility Philosophy and Policies at http://www.oracle.com/us/corporate/accessibility/policies/index.html.

7.9 Validating Input

ADF Mobile allows you to inform the end user about data input errors and other conditions that occur during data input. Depending on their type (error or warning), validation messages have a different look and feel.

The user input validation is triggered when an input is submitted: Input Text components are automatically validated when the end user leaves the field; for selection components, such as a Checkbox or Choice, the validation occurs when the end user makes a selection. For validation purposes, UI components on an ADF Mobile AMX page are grouped together within a Validation Group operation (validationGroup) to define components whose input is to be validated when the submit operation takes place. A Validation Behavior (validationBehavior) component defines which Validation Group is to be validated before a command component's action is taken. A command component can have multiple child Validation Behavior components. Validation does not occur if a component does not have a Validation Behavior defined for it.

	
Note:

You cannot define nested Validation Group operations.

The following is an invalid definition of a Validation Group:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 <amx:panelGroupLayout>
 <amx:validationGroup/>
 <amx:panelGroupLayout/>
 </amx:validationGroup>
 </amx:panelPage>
</amx:view>

The following is a valid definition:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 </amx:panelPage>
 <amx:popup>
 <amx:validationGroup>
 </amx:popup>
</amx:view>

If an ADF Mobile AMX page contains any validation error messages, the end user is prevented from navigating off the page using command components, such as List Item, Link, and Button, unless those components have their immediate attribute set to true. Messages containing warnings do not halt the navigation.

Example 7-91 shows how to define validation elements, including multiple Validation Group and Validation Behavior operations, in an ADF Mobile AMX file.

Example 7-91 Defining Input Validation

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Validate"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="commandButton2" action="go" text="Save">
 <amx:validationBehavior disabled="#{pageFlowScope.myPanel ne 'panel1'}"
 group="group1"/>
 <amx:validationBehavior disabled="#{pageFlowScope.myPanel ne 'panel2'}"
 group="group2"/>
 <!-- invalid, should be caught by audit rule but for any reason
 if group not found at run time, this validate is ignored -->
 <amx:validationBehavior disabled="false" group="groupxxx"/>
 <!-- group is not found at run time, this validate is ignored -->
 <amx:validationBehavior disabled="false" group="group3"/>
 </amx:commandButton>
 </amx:facet>
 <amx:panelSplitter selectedItem="#{pageFlowScope.myPanel}">
 <amx:panel id="panel1">
 <amx:validationGroup id="group1">
 <amx:panelFormLayout id="pfl1">
 <amx:inputText value="#{bindings.first.inputValue}"
 required="true"
 label="#{bindings.first.hints.label}"
 id="inputText1"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText2"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panel>
 <amx:panel id="panel2">
 <amx:validationGroup id="group2">
 <amx:panelFormLayout id="pfl2">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText3"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText4"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panel>
 </amx:panelSplitter>
 <amx:panelGroupLayout id="pgl1" rendered="false">
 <amx:validationGroup id="group3">
 <amx:panelFormLayout id="pfl4">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText5"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText6"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelGroupLayout>
</amx:panelPage>

Example 7-92 shows how to define a validation message displayed in a popup in an ADF Mobile AMX file.

Example 7-92 Defining Input Validation with Popup Message

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Login Demo"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="btnBack" action="__back" text="Back"/>
 </amx:facet>
 <amx:panelGroupLayout id="panelGroupLayout1">
 <amx:validationGroup id="group1">
 <amx:panelGroupLayout id="panelGroupLayout2">
 <amx:inputText value="#{bindings.userName.inputValue}"
 label="#{bindings.userName.hints.label}"
 id="inputText1"
 showRequired="true"
 required="true"/>
 <amx:inputText value="#{bindings.password.inputValue}"
 label="#{bindings.password.hints.label}"
 id="inputText2"
 required="true"
 showRequired="true"
 secret="true"/>
 <amx:outputText id="outputText2"
 value="#{bindings.timeToStayLoggedIn.hints.label}:
 #{bindings.timeToStayLoggedIn.inputValue} minutes"/>
 </amx:panelGroupLayout>
 </amx:validationGroup>
 <amx:commandButton id="commandButton2"
 text="Login"
 action="navigationSuccess">
 <amx:validationBehavior group="group1"/>
 </amx:commandButton>
 </amx:panelGroupLayout>
</amx:panelPage>

Validation messages are displayed in a Popup component (see Section 7.2.8, "How to Use a Popup Component"). You cannot configure the title of a validation popup, which is automatically determined by the relative message severity: the most severe of all of the current messages becomes the title of the validation popup. That is, if all validation messages are of type WARNING, then the title is "Warning"; if some of the messages are of type WARNING and others are of type ERROR, then the title is set to "Error".

Figure 7-78 shows a popup validation message produced at run time.

Figure 7-78 Validation Message on iPhone

[image: Validation Message on iPhone]

7.10 Using Event Listeners

To invoke Java code from your ADF Mobile AMX pages and perform the application logic, you define listeners as attributes of UI components in one of the following ways:

	
Manually in the source of your ADF Mobile AMX file.

	
From the Property editor of the selected component. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

You may use the following listeners to add awareness of the UI-triggered events to your ADF Mobile AMX page:

	
valueChangeListener: listens to ValueChangeEvent that is constructed with the following parameters:

	
java.lang.Object representing an old value

	
java.lang.Object representing a new changed value

	
actionListener: listens to ActionEvent that is constructed without parameters;

	
selectionListener: listens to SelectionEvent that is constructed with the following parameters:

	
java.lang.Object representing an old row key

	
java.lang.String[] representing selected row keys

	
moveListener: listens to MoveEvent that is constructed with the following parameters: of the RowKey type representing an old row key;

	
java.lang.Object representing the moved row key

	
java.lang.String[] representing the row key before which the moved row key was inserted

	
rangeChangeListener: listens to RangeChangeEvent that is constructed with the following parameters:

	
int representing an old start range

	
int representing an old end range

	
int representing a new start range

	
int representing a new end range

The value for your listener must match the pattern #{*} and conform to the following requirements:

	
Type name: EL Expression

	
Base type: string

	
Primitive type: string

For information on EL events, see Section 8.2.3, "EL Events."

Most ADF Mobile AMX event classes extend the oracle.adfmf.amx.event.AMXEvent class. When defining event listeners in your Java code, you need to pass the oracle.adfmf.amx.event.AMXEvent class.

For more information, see the following:

	
Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile

ADF Mobile allows you to create managed bean methods for listeners so that your managed bean methods use ADF Mobile AMX-specific event classes. Example 7-93, Example 7-94, and Example 7-95 demonstrate a Button and a Link component calling the same managed bean method. The source value of the AMXEvent determines which object invoked the event by showing a message box with the component's ID.

Example 7-93 Calling a Bean Method from ADF Mobile AMX File

<amx:commandButton text="commandButton1" id="commandButton1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandButton>
<amx:commandLink text="commandLink1" id="commandLink1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandLink>

Example 7-94 Using AMXEvent

private void actionListenerMethod(AMXEvent amxEvent) {
 Component source = (Component) amxEvent.getSource();
 MessageBox.show("actionListener called for " + source.getId());
}

Example 7-95 Invoking the Event Method

public Object invokeMethod(String methodName, Object[] params) {
 if (methodName.equals("actionListenerMethod")) {
 actionListenerMethod((AMXEvent) params[0]);
 }
 return null;
}

For additional examples, see an ADF Mobile sample application called JavaDemo located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer. This sample demonstrates how to call listeners from Java beans.

7.10.1 What You May Need to Know About Constrained Type Attributes for Event Listeners

You can define event listeners as children of some ADF Mobile AMX UI components. The listeners' type attribute identifies which event they are to be registered to handle. Since each parent UI component supports only a subset of the events (suitable for that particular component), these supported events are presented in a constrained list of types that you can select for a listener.

Table 7-14 lists parent UI components, event listeners they can have as children, and event types they support.

Table 7-14 Supported Event Listeners and Event Types

	UI Component (parent)	Action Listener (child)	Set Property Listener (child)	Show Popup Behavior (child)	Close Popup Behavior (child)	actionListener attribute	valueChangeListener attribute	moveListener attribute	selectionListener attribute
	
Button

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Link

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
List Item

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Input Date

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Input Number Slider

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Input Text

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
List View

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Checkbox

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Switch

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Checkbox (Select Many)

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Choice (Select Many)

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Choice

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Select Button

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Radio Button

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Link (Go)

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Carousel

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Carousel Item

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Image

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Area Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Bar Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Bubble Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Combo Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Horizontal Bar Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Led Gauge

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Dial Gauge

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Rating Gauge

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Line Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Pie Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Scatter Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Spark Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Status Meter Gauge

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Geographic Map

	
Not supported

	
SupportedFoot 1

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
SupportedFoot 2

	
Thematic Map

	
Not supported

	
SupportedFoot 3

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
SupportedFoot 4

Footnote 1 The Set Property Listener can be specified as a child of the Geographic Map's Marker of Area.

Footnote 2 The selectionListener attribute can be set on the Geographic Map's Area Data Layer or Point Data Layer.

Footnote 3 The Set Property Listener can be specified as a child of the Thematic Map's Marker of Area.

Footnote 4 The selectionListener attribute can be set on the Thematic Map's Area Data Layer or Point Data Layer.

The type attribute (see Figure 7-79) of each of the child event listeners has a base set of values that match the listener events. These values are filtered based on the information presented in Table 7-14 such that when the child event listener is within the context of the identified parent UI component, only the events that the parent supports are shown. For example, under a Button component, the Action Listener or Set Property Listener child would show only the action Type value, as well as gestures.

Figure 7-79 shows values available in the constrained Type list of the Set Property Listener for a parent List Item component.

Figure 7-79 Selecting Event Type

[image: Selecting Event Type]

8 Using Bindings and Creating Data Controls

This chapter describes how to use data bindings, data controls, and the ADF data binding expression language (EL) in ADF Mobile applications, as well as validation and data change events.

This chapter includes the following sections:

	
Section 8.1, "Introduction to Binding Layer Components and Data Controls"

	
Section 8.2, "Understanding EL Support"

	
Section 8.3, "Understanding Binding Layer Components"

	
Section 8.4, "Creating and Using the Bean Data Control"

	
Section 8.5, "Using the DeviceFeatures Data Control"

	
Section 8.6, "Performing Validation"

	
Section 8.7, "Data Change Events"

8.1 Introduction to Binding Layer Components and Data Controls

ADF Model implements two concepts that enable the decoupling of the user interface (UI) technology from the business service implementation: data controls and declarative bindings. Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. Using JDeveloper, you can view that information as icons that you can drag and drop onto a page. Declarative bindings abstract the details of accessing data from data collections in a data control and invoking its operations. At runtime, the ADF Model layer reads the information describing the data controls and bindings from the appropriate XML files and then implements the two-way connection between the user interface and the business service.

The group of bindings supporting the user interface components on a page are described in a page-specific XML file called the page definition file. The ADF Model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container, accessible during each page request using the EL expression #{bindings}. This expression always evaluates to the binding container for the current page. You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the code and objects needed to bind the component to the data control you selected.

In ADF Mobile, data controls behave similarly to the way they work in Oracle ADF. The DeviceFeatures data control appears within the Data Controls panel in JDeveloper, enabling you to drag and drop the primary data attributes of data controls to your application as (text) fields, and the operations of data controls as command objects (buttons). These drag and drop actions will generate EL bindings in your application and the appropriate properties for the controls that are created. The normal ADF bindings for those actions will be present, allowing the runtime to process the bindings when your application executes. The bindings are represented by a general DataControls.dcx file, to point at the data control source, and the page bindings link the specific page's reference to the data control.

For more information on data binding and data controls, see the following:

	
"Using ADF Model in a Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
"Data Binding with ADF Model Layer" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
"Data Controls in Fusion Web Applications" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
"Exposing Business Services with ADF Data Controls" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework

8.2 Understanding EL Support

ADF Mobile provides support for the use of the Expression Language (EL) in its ADF Mobile AMX application feature. You use the EL to enable data binding. For an overview of the use of EL with Oracle ADF, see the following:

	
"Using ADF Model in a Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
"Creating ADF Data Binding EL Expressions" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

ADF variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. In order of decreasing visibility, they are application scope, page flow scope, and view scope. For information about object scope lifecycles, see "About Object Scope Lifecycles" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. ADF Mobile supports the following scopes:

	
Application scope—The object is available for the duration of the application (across features).

	
Page flow scope—The object is available for the duration of a feature (single feature boundary).

	
View scope—The object is available for the duration of the view (single page of a feature).

EL expressions defined in the application scope namespace are available for the life of the application, across feature boundaries. With ADF Mobile, you can define an application scope in one view of an application, and then reference it in another. EL expressions defined in the page flow scope namespace are available for the duration of a feature, within the bounds of a single feature. EL expressions defined in the view scope namespace are available for the duration of the view, within the bounds of a single page of a feature. In addition to these variable-containing scopes, ADF Mobile defines scopes that can expose information about device properties and application preferences. These scopes have application-level lifetime and visibility. For more information, see Section 8.2.4.2, "ADF Managed Beans" and Section 8.2.4.3, "ADF Mobile Objects."

8.2.1 ADF Mobile AMX EL Implementation

The ADF Mobile AMX EL implementation is based on the Java Unified Expression Language (JUEL) project and follows Expression Language Specification Version 2.1 (available from the JUEL project page at http://juel.sourceforge.net/, and referred to hereinafter as “the specification”), with the following exceptions:

	
Immediate and Deferred Evaluation

	
Enumerated Types

8.2.1.1 Immediate and Deferred Evaluation

As described in "1.2.1: Eval-expression" in the specification, expressions may be evaluated immediately or deferred. In the ADF Mobile AMX EL implementation, expressions are parsed when the page metadata is loaded, at which point the owning component holds on to a reference to the parsed object. The expression is not actually evaluated until the component needs it for rendering a value. Because ADF Mobile AMX supports only the deferred semantics, an expression using the immediate construction expression ("${}") still parses, but behaves the same as a deferred expression ("#{}").

8.2.1.2 Enumerated Types

As described in "1.17: Enums" in the specification, using a literal string to coerce to the value of an enum type is not supported, because the required underlying enum operations are not supported on J2ME.

8.2.2 How to Reference Binding Containers

The active screen's binding container can be referenced by the root EL expression "#{bindings}". Another screen's binding container can be referenced through the expression "#{data.PageDefName}". The ADF Mobile AMX binding objects are referenced by name from the binding container "#{bindings.Name}".

Table 8-1 lists the properties that you can use in EL expressions to access values of the ADF Mobile AMX binding objects at runtime. The table lists these properties in alphabetical order.

Table 8-1 Runtime Properties

	Runtime Property	Description	Iterator	Action	Attribute	Tree
	
class

	
Returns the Java class object for the runtime binding.

	
Yes

	
Yes

	
Yes

	
Yes

	
collectionModel

	
Exposes a collection of data. EL expressions used within a component that is bound to a collectionModel can be referenced with a row variable Foot 1 , which will resolve the expression for each element in the collection.

	
No

	
No

	
No

	
Yes

	
collectionModel.makeCurrent

	
Causes the selected row to become the current row in the iterator for this binding.

	
No

	
No

	
No

	
Yes

	
collectionModel.selectedRow

	
Returns a reference to the selected row.

	
No

	
No

	
No

	
Yes

	
currentRow

	
Returns a reference to the current row or data object pointed to by the iterator.

	
Yes

	
No

	
No

	
No

	
currentRow.dataprovider

	
Returns a reference to the current row or data object pointed to by the iterator. (This is the same object returned by currentRow, just with a different syntax).

	
Yes

	
No

	
No

	
No

	
enabled

	
Returns true or false, depending on the state of the action binding. For example, the action binding may be enabled (true) or disabled (false) based on the currency (as determined, for example, when the user clicks the First, Next, Previous, or Last navigation buttons).

	
No

	
Yes

	
No

	
No

	
execute

	
Invokes the named action or methodAction binding when resolved.

	
No

	
Yes

	
No

	
No

	
format

	
This is a shortcut for hints.format.

	
No

	
No

	
Yes

	
Yes

	
hints

	
Returns a list of name-value pairs for UI hints for all display attributes to which the binding is associated. The following named values are supported:

	
format: The format to be used for the current attribute.

	
label: The label to display for the current attribute.

	
mandatory: Whether the attribute is required to have a value set.

	
precision: The precision to use for displaying numeric attributes.

	
updateable: Returns true if the current attribute can be written to.

	
No

	
No

	
Yes

	
Yes

	
inputValue

	
Returns or sets the value of the current attribute.

	
No

	
No

	
Yes

	
No

	
items

	
Returns the list of values associated with the current list-enabled attribute.

	
No

	
No

	
Yes

	
No

	
label

	
Available as a child of hints or direct child of an attribute. Returns the label (if supplied by control hints) for the first attribute of the binding.

	
No

	
No

	
Yes

	
No

	
name

	
Returns the id of the binding as declared in the PageDef.xml file.

	
Yes

	
Yes

	
Yes

	
Yes

	
rangeSize

	
Returns the range size of the iterator binding's row set.

	
Yes

	
No

	
No

	
Yes

	
result

	
Returns the result of a method that is bound and invoked by a method action binding.

	
No

	
Yes

	
No

	
No

	
updateable

	
Available as a child of hints or direct child of an attribute. Returns true if the current attribute is updateable.

	
No

	
No

	
Yes

	
No

	
viewable

	
Available as a child of Tree. Resolves at runtime whether this binding and the associated component should be rendered or not.

	
No

	
No

	
No

	
Yes

Footnote 1 The EL term row is used within the context of a collection component; row simply acts as an iteration variable over each element in the collection whose attributes can be accessed by an ADF Mobile AMX binding object when the collection is rendered. Attribute and list bindings can be accessed through the row variable. The syntax for such expressions will be the same as those used for accessing binding objects outside of a collection, with the row variable prepended as the first term: #{row.bindings.Name.property}.

8.2.3 EL Events

EL events play a significant role in the functioning of the ADF Mobile AMX UI, as it enables expressions with common terms to update in sync with each other.

EL expressions can refer to values in various contexts. Example 8-1 shows the creation of two Input Number Slider components, with each component tied to an applicationScope value. The output text then uses EL to display a simple addition equation along with the calculated results. When the framework parses the EL expression in the output text labels, it determines that the expression contains references to two values and creates event listeners (see Section 7.10, "Using Event Listeners") for the output text on those two values. When the value of the underlying expression changes, an event is generated to all listeners for that value.

	
Note:

If you are referencing properties on a managed bean (as opposed to scope objects) you have to add the listeners. For more information, see Section 8.2.4.2, "ADF Managed Beans."

Example 8-1 Generating EL Events with Two Components

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>

In Example 8-1 two components are updating one value each, and one component is consuming both values. Example 8-2 shows that the behavior would be identical if a third Input Number Slider component is added that references one of the existing values.

Example 8-2 Generating EL Events with Three Components

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>
<amx:inputNumberSlider id="slider3" label="X" value="#{applicationScope.X}"/>

In Example 8-2, when either Input Number Slider component updates #{applicationScope.X}, the other is automatically updated along with the Output Text.

8.2.3.1 Configuration Properties

Any <adf-property> elements in the application's adf-config.xml file will be exposed through EL as children of the #{applicationScope.configuration} node. So, for example, if adf-config.xml looks like the following example, evaluating #{applicationScope.configuration.key1} will yield value1, and evaluating #{applicationScope.configuration.key2} will yield vaue2.

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:config="http://xmlns.oracle.com/bc4j/configuration"
 xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="key1" value="value1"/>
 <adf-property name="key2" value="value2"/>
 </adf-properties-child>
</adf-config>

In addition, #{applicationScope.configuration.accessibilityEnabled} evaluates to true if accessibility mode is enabled on the device. On iOS devices, this means that VoiceOver is activated. On Android devices, this means TalkBack is activated.

8.2.4 EL Expression Builder

You can use the JDeveloper Expression Builder to create EL expressions by selecting values from variables and operators. The Expression Builder can be invoked from the Property Inspector for any EL-enabled property. For more information about using the Expression Builder, see "How to Create an ADF Data Binding EL Expression" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

There are two EL types in Oracle ADF:

	
Dynamic EL: ${EL expression}

	
Deferred EL: #{EL expression}

Since ADF Mobile does not support dynamic EL type and treats ${EL expression} as #{EL expression}, you should use the hash sign (#) prefix when defining expressions. For more information, see Section 8.2.1.1, "Immediate and Deferred Evaluation."

The following categories are available in the Expression Builder for the ADF Mobile AMX pages:

	
ADF Bindings

	
ADF Managed Beans

	
ADF Mobile Objects

8.2.4.1 ADF Bindings

This section lists the options available under the ADF Bindings category. The bindings and data nodes display the same set of supported bindings and properties. Table 8-2 lists available binding types along with the properties that are supported for each binding type.

	
bindings

Table 8-2 lists the available binding types along with the properties that are supported for each binding type.

	
data

Table 8-2 lists the available binding types along with the properties that are supported for each binding type.

	
securityContext

Supported properties:

	
authenticated

	
userGrantedPrivilege

	
userInRole

	
userName

Table 8-2 Supported Binding Types

	Binding Type	Properties
	
accessorIterator

	
class

currentRow: dataProvider

name

rangeSize

	
action

	
classenabled

execute

name

	
attributeValues

	
class

format

hints: format, label, updateable

inputValue

items

iteratorBinding

label

name

updateable

	
button

	
class

format

hints: format, label, updateable

inputValue

items

label

name

updateable

	
invokeAction

	
always

deferred

	
iterator

	
class

currentRow: dataProvider

name

rangeSize

	
list

	
class

format

hints: format, label, updateable

inputValue

items

label

name

updateable

	
methodAction

	
class

enabled

execute

name

operationInfo

paramsMap

result

	
methodIterator

	
class

currentRow: dataProvider

name

rangeSize

	
tree

	
class

collectionModel: <AttrName>

hints: format, label, updateable, <AttrName>

iteratorBinding

name

rangeSize

viewable

	
variableIterator

	
class

currentRow: dataProvider

name

8.2.4.2 ADF Managed Beans

You can create and use managed beans in an ADF Mobile application to store data or to execute custom code. Adding a managed bean to an ADF Mobile application is done the same way as adding one to a Fusion Web Application.

For more information, see the following:

	
"Using a Managed Bean in a Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
JavaDemo, an ADF Mobile sample application located in the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory. This sample application shows how to use Java beans and invoke container utility methods. For more information, see Appendix F, "ADF Mobile Sample Applications."

	
Note:

Carefully consider the binding styles you use when configuring components. More specifically, combining standard bindings with managed bean bindings will frequently result in misunderstood behaviors because the class instances are unlikely to be the same between the binding infrastructure and the managed bean infrastructure. If you mix bindings, you may end up calling behavior on an instance that isn't directly linked to the UI.

Supported ADF Mobile managed bean scopes are as follows:

	
applicationScope: ADF Managed Beans > applicationScope node contains everything that is defined at the application level (for example, application-scoped managed beans).

	
pageFlowScope: ADF Managed Beans > pageFlowScope node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans).

	
viewScope: ADF Managed Beans > viewScope node contains everything that is defined at the view level (for example, view-scoped managed beans).

	
Note:

Every object you put in a memory scope is serialized to JSON DataChangeEvent, and objects returned by any getter method inside this object are also serialized. This can lead to deeply nested object trees that are serialized, which will decrease performance. To avoid serialization of a chain of nested objects, you should define them as transient. See Section 8.4.1, "What You May Need to Know About Serialization of Bean Class Variables" for more information.

When the ADF Managed Beans category is selected in the Expression Builder, the Create Managed Bean button appears. Click this button to create Managed Beans directly from the Expression Builder.

Figure 8-1 shows an example of the ADF Mobile Managed Beans contents and the Create Managed Bean button.

Figure 8-1 ADF Managed Bean Contents

[image: ADF Mobile Managed Bean contents]

The ADF Mobile runtime will register itself as a listener on managed bean property change notifications so that EL expressions bound to UI components that reference bean properties will update automatically if the value of the property changes. Sourcing these notifications requires some additional code in the beans' property accessors. To automatically generate the necessary code to source notifications from your beans' property accessors, select the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Figure 8-2).

Figure 8-2 Notify Listeners When Property Changes

[image: Generate Accessors dialog]

It is not necessary to add this code to simply reference bean methods or properties through EL, but it is necessary to keep the rendering of any EL expressions in the active form that depend on values stored in the bean current if those values change, especially if the change is indirect, such as a side effect of executing a bean method that changes one or more property values. For information about property changes and the PropertyChangeSupport class, see Section 8.7, "Data Change Events."

	
Note:

If you declare a managed bean within the applicationScope of a feature but then try to reference that bean through EL in another feature at design time, you will see a warning in the design time about invalid EL. This warning is due to the fact that the design time cannot find a reference in the current project for that bean. You can reference that bean at runtime only if you first visit the initial feature where you declared the bean and the bean is instantiated before you access it through EL in another feature. This is not the case for the PreferenceValue element as it uses the Name attribute value as the node label.

Example 8-3 shows an example of how to retrieve a value bound to another managed bean attribute programmatically.

Example 8-3 Object Value Retrieved Programmatically from a Managed Bean

public void someMethod()
{
 Object value = AdfmfJavaUtilities.evaluateELExpression("#{applicationScope.MyManagedBean.someProperty}");

Example 8-4 shows an example of how to execute bindings programmatically from a managed bean.

Example 8-4 Bindings Executed Programmatically from a Managed Bean

public void someMethod()
{
 Object value = AdfmfJavaUtilities.evaluateELExpression("#{bindings.someDataControlMethod.execute}");

8.2.4.3 ADF Mobile Objects

The ADF Mobile Objects category lists various objects defined in the ADF Mobile framework that can be referenced using EL, such as object scopes.

ADF variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. In order of decreasing visibility, they are application scope, page flow scope, and view scope. For information about object scope lifecycles, see "About Object Scope Lifecycles" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

In addition to these variable containing scopes, ADF Mobile defines scopes that can expose information about device properties and application preferences. These scopes have application level lifetime and visibility.

The following are available under the ADF Mobile Objects category:

	
applicationScope: The applicationScope node contains everything that is defined at the application level (for example, application-scoped managed beans).

	
deviceScope: The deviceScope node contains everything that is defined at the device level (for example, device-scoped managed beans). ADF Mobile supports the following deviceScope properties:

	
device

	
model

	
name

	
os

	
phonegap

	
platform

	
version

	
hardware

	
hasAccelerometer

	
hasCamera

	
hasCompass

	
hasContacts

	
hasFileAccess

	
hasGeolocation

	
hasLocalStorage

	
hasMediaPlayer

	
hasMediaRecorder

	
hasTouchScreen

	
networkStatus

	
screen (availableHeight, availableWidth, height, width)

	
pageFlowScope: The pageFlowScope node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans).

	
preferenceScope: The preferenceScope node contains all the application and feature preferences.

	
Application preferences are available under ADF Mobile Objects > preferenceScope > application.

	
Feature preferences are available under ADF Mobile Objects > preferenceScope > feature > featureId

Figure 8-3 shows an example of preference elements under the preferenceScope node.

Figure 8-3 Preference Elements Under the preferenceScope Node

[image: Preference elements under the preferenceScope node]

Preference elements use the Id attribute value as the node label in the Expression Builder, except for the PreferenceValue element. The PreferenceValue element uses the Name attribute value as the node label in the Expression Builder.

	
Note:

Where string tokens in EL expressions contain a dot (".") or any special character, or a reserved word like default, the Expression Builder surrounds such string tokens with a single quote and bracket. When the feature ID or preference component ID contains a dot, the Expression Builder displays each part of the ID that is separated by a dot as a separate property in the preferenceScope hierarchy. The expression generated also takes each part of the ID separated by a dot as a separate property.

Following are some sample preferenceScope EL expressions:

Example 8-5 Feature ID Containing "."

"#{preferenceScope.feature.oracle.hello.SampleGroup1.label}"

Example 8-6 Attribute Name Is a Reserved Word

"#{preferenceScope.application.OracleMobileApp.Edition['default']}"

	
viewScope: This node contains everything that is defined at the view level (for example, view-scoped managed beans).

	
row: The row object is an intermediate variable that is a shortcut to a single provider in the collectionModel. Its name is the value of the var attribute of the parent Iterator, List View, or Carousel component. This node supports the following directory structure:

	
bindings

	
AttrName

	
class

	
format

	
hints

	
inputValue

	
items

	
iteratorBinding

	
label

	
name

	
updateable

	
AttrName

	
class

	
format

	
hints

	
inputValue

	
items

	
iteratorBinding

	
label

	
name

	
updateable

	
rowKey

Figure 8-4 shows an example of the row variable node contents.

Figure 8-4 Row Variable Contents

[image: Example of the row variable contents]

	
viewControllerBundle

This is the name of the resource bundle variable that points to a resource bundle defined at the project level. This node is shown only after the amx:loadBundle element has been dropped and a resource bundle has been created. The name of this node will vary as it depends on the variable name of amx:loadBundle. This node will display all strings declared in the bundle.

Figure 8-5 shows an example of the contents of the viewControllerBundle node. Example 8-7 shows an example of AMX code for viewControllerBundle.

Figure 8-5 Contents of the viewControllerBundle Node

[image: Contents of the viewControllerBundle Node]

Example 8-7 AMX Code Sample of the loadBundle Element

<amx:loadBundle basename="mobile.ViewControllerBundle" var="viewcontrollerBundle"/>

8.2.4.4 Method Expression Builder

Table 8-3 shows properties that have the Method Expression Builder option available in the Property Inspector instead of the Expression Builder option. The only difference between them is that the Method Expression Builder filters out the managed beans depending on the selected property.

Table 8-3 Editable Attributes

	Property	Element
	
binding

	
actionListener

	
action

	
commandButton

	
actionListener

	
commandButton

	
action

	
commandLink

	
actionListener

	
commandLink

	
action

	
listItem

	
actionListener

	
listItem

	
valueChangeListener

	
inputDate

	
valueChangeListener

	
inputNumberSlider

	
valueChangeListener

	
inputText

	
valueChangeListener

	
selectBooleanCheckbox

	
valueChangeListener

	
selectBooleanSwitch

	
valueChangeListener

	
selectManyCheckbox

	
valueChangeListener

	
selectManyChoice

	
valueChangeListener

	
selectOneButton

	
valueChangeListener

	
selectOneChoice

	
valueChangeListener

	
selectOneRadio

	
moveListener

	
listView

8.2.4.5 Non EL-Properties

Table 8-4 shows the properties that do not have the EL Expression Builder option available in the Property Inspector, because they are not EL-enabled.

Table 8-4 Non EL-Properties

	Property	Element
	
name

	
facet

	
var

	
iterator

	
var

	
listView

	
var

	
loadBundle

	
group

	
validationBehavior

8.3 Understanding Binding Layer Components

The ADF Mobile runtime uses the default behavior (illustrated in Example 8-8) to invoke the action for a particular operation, because it must be called on repeat showings of the page after it has been loaded (not only for the initial load).

Example 8-8 invokeAction in ADF Mobile AMX

<invokeAction id="callSetCurrentRowWithKeyValue"
 Binds="setCurrentRowWithKeyValue"
 Refresh="default"
 RefreshCondition="#{requestScope.partyId != null}"/>

For information on the recognized values of the Refresh attribute and their meaning, see Section 8.3, "Refresh Values and the Corresponding Conditions to Invoke."

The ADF Mobile runtime can detect the following conditions for issuing notifications to invoke executables:

	
A: Each time a page is shown.

	
B: On any action that changes the state of the model (like setting an attribute value or navigating to a new row).

The runtime executes an invokeAction on the above conditions according to values of its Refresh and RefreshCondition attributes, as listed in Section 8.3, "Refresh Values and the Corresponding Conditions to Invoke." For more information, see "What You May Need to Know About Using the Refresh Property Correctly" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Table 8-5 Refresh Values and the Corresponding Conditions to Invoke

	Refresh Value	Condition to Invoke
	
always - Fire the invokeAction every time a page is navigated to regardless of the state of the binding container. In terms of the runtime lifecycle, this will be on every setContext message.

	
A and B

	
deferred - Fire the invokeAction when a page is navigated to and its bindings are loaded and initialized. In terms of the runtime lifecycle, this will be on every setContext message that initializes a binding container. If subsequent navigations to the page do not reload the bindings, then the action will not fire. This is the default behavior.

	
A

	
default - Always set to deferred by default.

	
A

If a RefreshCondition expression is supplied, it will be evaluated at each potential execution of the invokeAction. If it evaluates to false, execution is skipped on that occurrence.

	
Note:

For iterator executables, deferred is the standard behavior: the iterator does not perform its initial Refresh until an EL expression that is dependent on it is evaluated. Any invokeAction executable in a page definition file must have a value other than the default (deferred) for its refresh attribute, or it will not be refreshed and invoked.

For more information on the use of bindings in ADF Mobile, see the following:

	
Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings"

	
Section 6.3.2.4.6, "Using the ADF Mobile AMX Editor Bindings Tab"

	
Section 6.3.2.4.7, "What You May Need to Know About Removal of Unused Bindings"

8.3.1 Sequencing

By default, invokeActions declared with the same Refresh value execute in the order they are declared in the pagedef.

	
Note:

The predecessor still executes or not based on its own Refresh and RefreshCondition values.

8.3.2 Validation of EL Bindings for ADF Mobile AMX Pages

In ADF Mobile, validation of EL bindings for the ADF Mobile AMX pages is done using the same mechanism for validating EL for JSF pages, behaving similarly to Oracle ADF. The EL constructs are validated against the page bindings and method references are validated against the managed beans.

For more information on validation, see Section 8.6, "Performing Validation."

8.4 Creating and Using the Bean Data Control

Java bean data controls obtain their data structure from POJOs (plain old Java objects). To create a Java bean data control, right-click a Java class file (in the Applications window), and choose Create Data Control. Creating bean data controls is very similar to creating EJB data controls.

	
Note:

If the Java bean is using a background thread to update data in the UI, you need to manually call oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEvent. For information about the flushDataChangeEvent method, see Section 8.7, "Data Change Events."

For more information, see the "Data Controls in Fusion Web Applications" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework and the "Exposing Business Services with ADF Data Controls" section in the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

8.4.1 What You May Need to Know About Serialization of Bean Class Variables

ADF Mobile does not serialize to JavaScript Object Notation (JSON) data bean class variables that are declared as transient. To avoid serialization of a chain of nested objects, you should define them as transient. This strategy also helps to prevent the creation of cyclic objects due to object nesting.

Consider the following scenario: you have an Employee object that has a child Employee object representing the employee's manager. If you do not declare the child object transient, a chain of serialized nested objects will be created when you attempt to calculate the child Employee object at runtime.

To serialize and deserialize Java objects into JSON objects, use the JSONBeanSerializationHelper class. The JSONBeanSerializationHelper class enables you to implement your own custom JSON serialization and deserialization, and it provides a hook to alter the JSON object after the JSON serialization (and deserialization) process. The JSONBeanSerializationHelper class is similar to the GenericTypeSerializationHelper class, which you can use to serialize and deserialize GenericType objects in REST and SOAP-based web services. For details, see the oracle.adfmf.framework.api.JSONBeanSerializationHelper class in the ADF Mobile Javadoc.

ADF Mobile does not support serializing objects of the GregorianCalendar class. The JSONBeanSerializationHelper class cannot serialize objects of the GregorianCalendar class because the GregorianCalendar class has cyclical references in it. Instead, use java.util.Date or java.sql.Date for date manipulation. The following example shows how to convert a GregorianCalendar object using java.util.Date:

Calendar calDate = new GregorianCalendar();
calDate.set(1985, 12, 1); // "January 1, 1986"
Date date = calDate.getTime();

8.5 Using the DeviceFeatures Data Control

ADF Mobile exposes device-specific features that you can use in your application through the DeviceFeaturers data control, a component that appears in the Data Controls panel when you create a new ADF Mobile application. The Cordova Java API is abstracted through this data control, enabling the application features implemented as ADF Mobile AMX to access various services embedded on the device. By dragging and dropping the operations provided by the DeviceFeatures data control into an ADF Mobile AMX page, you can add functions to manage the user contacts stored on the device, create and send both email and SMS text messages, ascertain the location of the device, use the device's camera, and retrieve images stored in the device's file system. The following sections describe each of these operations in detail, including how to use them declaratively and how to implement them with Java code and JavaScript.

Figure 8-6 ADF Mobile DeviceFeatures Data Control in the Overview Editor

[image: ADF Mobile DeviceFeatures Data Control in JDeveloper]

The DeviceFeatures data control appears in the Data Controls panel automatically when you create an application using the ADF Mobile application template. Figure 8-6 shows the DeviceFeatures data control in the overview editor. The following methods are available:

	
createContact

	
findContacts

	
getPicture

	
removeContact

	
sendEmail

	
sendSMS

	
startLocationMonitor

	
updateContact

	
displayFile

After you create a page, you can drag DeviceFeatures data control methods (or other objects nested within those methods) from the Data Controls panel to an ADF Mobile AMX view to create command buttons and other components that are bound to the associated functionality. You can accept the default bindings or modify the bindings using EL. You can also use JavaScript or Java to implement or configure functionality.

The DeviceManager is the object that enables you to access device functionality. You can get a handle on this object by calling DeviceManagerFactory.getDeviceManager. The following sections describe how you can invoke methods like getPicture or createContact using the DeviceManager object.

For information on how to include data controls in your ADF Mobile application, see Section 6.3.2.4, "Adding Data Controls to the View."

8.5.1 How to Use the getPicture Method

The DeviceFeatures data control includes the getPicture method, which enables ADF Mobile applications to leverage the device's camera and photo library so end users can take a photo or retrieve an existing image. Example 8-9 shows JavaScript code that enables an end user to take a picture with the device's camera. Example 8-10 and Example 8-11 show Java code that will enable an end user to take a picture or retrieve a saved image. For information about the getPicture method, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

The following parameters control where the image is taken from and how it is returned:

	
Note:

If you do not specify a targetWidth, targetHeight, and quality for the picture being taken, the default values used are maximum values, which can cause memory failures.

	
quality: Set the quality of the saved image. Range is 0 to 100, inclusive. A higher number indicates higher quality, but also increases the file size. Only applicable to JPEG images (specified by encodingType).

	
destinationType: Choose the format of the return value:

	
DeviceManager.CAMERA_DESTINATIONTYPE_DATA_URL (0)—Returns the image as a Base64-encoded string. This value is also specified as an enum using DeviceManager.CAMERA_DESTINATION_DATA_URL when used programmatically. You need to prefix the value returned with "data:image/gif;base64," in order to see the image in an image component.

	
DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI (1)—Returns the image file path. This value is also specified as an enum using DeviceManager.CAMERA_DESTINATION_FILE_URI when used programmatically.

	
sourceType: Set the source of the picture:

	
DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY (0)—Enables the user to choose from a previously saved image. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY when used programmatically.

	
DeviceManager.CAMERA_SOURCETYPE_CAMERA (1)—Enables the user to take a picture with device's camera. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_CAMERA when used programmatically.

	
DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM (2)—Allows the user to choose from an existing photo album. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM when used programmatically.

	
allowEdit: Choose whether to allow simple editing of the image before selection (boolean).

	
encodingType: Choose the encoding of the returned image file:

	
DeviceManager.CAMERA_ENCODINGTYPE_JPEG (0)—Encodes the returned image as a JPEG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_JPEG when used programmatically.

	
DeviceManager.CAMERA_ENCODINGTYPE_PNG (1)—Encodes the returned image as a PNG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_PNG when used programmatically.

	
targetWidth: Set the width in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used.

	
targetHeight: Set the height in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used.

To customize a getPicture operation using the DeviceFeatures data control:

	
Drag the getPicture operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page as an ADF Mobile Button.

If you want to provide more control to the user, drop the getPicture operation as an ADF Mobile Parameter Form. This allows the end user to specify settings before taking a picture or choosing an existing image.

	
In the Edit Action dialog, set the values for all parameters described above. Be sure to specify destinationType = 1 so that the image is returned as a filename.

	
Drag the return value of getPicture and drop it on the page as an Output Text.

	
From the Common Components panel, drag an Image from the Component Palette and drop it on the page.

	
Set the source attribute of the Image to the return value of the getPicture operation. The bindings expression should be: #{bindings.Return.inputValue}.

Figure 8-7 shows the bindings for displaying an image from the end user's photo library:

Figure 8-7 Bindings for Displaying an Image from the Photo Library at Design Time

[image: Bindings for the getPicture method]

When this application is run, the image chooser will automatically be displayed and the end user can select an image to display. The image chooser is displayed automatically because the Image control is bound to the return value of the getPicture operation, which in turn causes the getPicture operation to be invoked.

	
Note:

The timeout value for the getPicture method is set to 5 minutes. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

Keep in mind the following platform-specific issues:

	
iOS

	
Set quality below 50 to avoid memory error on some devices.

	
When destinationType FILE_URI is used, photos are saved in the application's temporary directory.

	
The contents of the application's temporary directory are deleted when the application ends. You may also delete the contents of this directory using the navigator.fileMgr APIs if storage space is a concern.

	
targetWidth and targetHeight must both be specified to be used. If one or both parameters have a negative or zero value, the original dimensions of the image will be used.

	
Android

	
Ignores the allowEdit parameter.

	
Camera.PictureSourceType.PHOTOLIBRARY and Camera.PictureSourceType.SAVEDPHOTOALBUM both display the same photo album.

	
Camera.EncodingType is not supported. The parameter is ignored, and will always produce JPEG images.

	
targetWidth and targetHeight can be specified independently. If one parameter has a positive value and the other uses a negative or zero value to represent the original size, the positive value will be used for that dimension, and the other dimension will be scaled to maintain the original aspect ratio.

	
When destinationType DATA_URL is used, large images can exhaust available memory, producing an out-of-memory error, and will typically do so if the default image size is used. Set the targetWidth and targetHeight to constrain the image size.

Example 8-9 shows JavaScript code that allows the user to take a picture with the device's camera. The result will be the full path to the saved image.

Example 8-9 JavaScript Code Example for getPicture

// The camera, like many other device-specific features, is accessed
// from the global 'navigator' object in JavaScript.
// Note that in the Cordova JavaScript APIs, the parameters are passed
// in as a dictionary, so it is only necessary to provide key-value pairs
// for the parameters you want to specify.

navigator.camera.getPicture(onSuccess, onFail, { quality: 50 });

function onSuccess(imageURI) {
 var image = document.getElementById('myImage');
 image.src = imageURI;
}
function onFail(message) {
 alert('Failed because: ' + message);
}

Example 8-10 shows Java code that allows the user to take a picture with the device's camera. The result will be the full path to the saved image.

Example 8-10 Java Code Example for Taking a Picture with getPicture

import oracle.adf.model.datacontrols.device;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Take a picture with the device's camera.
// The result will be the full path to the saved PNG image.
String imageFilename = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI,
 DeviceManager.CAMERA_SOURCETYPE_CAMERA, false,
 DeviceManager.CAMERA_ENCODINGTYPE_PNG, 0, 0);

Example 8-11 shows Java code that allows the user to retrieve a previously-saved image. The result will be a base64-encoded JPEG.

Example 8-11 Java Code Example for Retrieving an Image with getPicture

import oracle.adf.model.datacontrols.device;

// Retrieve a previously-saved image. The result will be a base64-encoded JPEG.
String imageData = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URL,
 DeviceManager.CAMERA_SOURCETYPE__PHOTOLIBRARY, false,
 DeviceManager.CAMERA_ENCODINGTYPE_JPEG, 0, 0);

8.5.2 How to Use the SendSMS Method

The DeviceFeatures data control includes the sendSMS method, which enables ADF Mobile applications to leverage the device's Short Message Service (SMS) text messaging interface so end users can send and receive SMS messages. ADF Mobile enables you to display the device's SMS interface and optionally pre-populate the following fields:

	
to: List recipients (comma-separated).

	
body: Add message body.

After the SMS text messaging interface is displayed, the end user can choose to either send the SMS or discard it. It is not possible to automatically send the SMS due to device and carrier restrictions; only the end user can actually send the SMS.

	
Note:

The timeout value for the sendSMS method is set to 5 minutes. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

In Android, if an end user switches away from their application while editing an SMS message and then subsequently returns to it, they will no longer be in the SMS editing screen. Instead, that message will have been saved as a draft that can then manually be selected for continued editing.

To customize a sendSMS operation using the DeviceFeatures data control:

To display an interactive form on the page for sending SMS, drag the sendSMS operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's SMS interface, which will display an SMS that is ready to send with all of the specified fields pre-populated.

Figure 8-8 shows the bindings for sending an SMS using an editable form on the page.

Figure 8-8 Bindings for Sending an SMS Using an Editable Form at Design Time

[image: Bindings for the sendSMS method]

Example 8-12 and Example 8-13 show code examples that allow the end user to send an SMS message with the device's text messaging interface.

For information about the sendSMS method, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

Example 8-12 JavaScript Code Example for sendSMS

adf.mf.api.sendSMS({to: "5551234567", body: "This is a test message"});

Example 8-13 Java Code Example for sendSMS

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Send an SMS to the phone number "5551234567"
DeviceManagerFactory.getDeviceManager().sendSMS("5551234567", "This is a test message");

8.5.3 How to Use the sendEmail Method

The DeviceFeatures data control includes the sendEmail method, which enables ADF Mobile applications to leverage the device's email messaging interface so end users can send and receive email messages. ADF Mobile enables you to display the device's email interface and optionally pre-populate the following fields:

	
to: List recipients (comma-separated).

	
cc: List CC recipients (comma-separated).

	
subject: Add message subject.

	
body: Add message body.

	
bcc: List BCC recipients (comma-separated).

	
attachments: List file names to attach to the email (comma-separated).

	
mimeTypes: List MIME types to use for the attachments (comma-separated). Specify null to let ADF Mobile automatically determine the MIME types. It is also possible to specify only the MIME types for selected attachments as shown in Example 8-14 and Example 8-15.

After the device's email interface is displayed, the user can choose to either send the email or discard it. It is not possible to automatically send the email due to device and carrier restrictions; only the end user can actually send the email. The device must also have at least one email account configured to send email; otherwise, an error will be displayed indicating that no email accounts could be found.

	
Note:

The timeout value for the sendEmail method is set to 5 minutes. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

In Android, if an end user switches away from their application while editing an email and then subsequently returns to it, they will no longer be in the email editing screen. Instead, that message will be saved as a draft that can then be manually selected for continued editing.

To customize a sendEmail operation using the DeviceFeatures data control:

In JDeveloper, drag the sendEmail operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's email interface, which will display an email ready to send with all of the specified fields pre-populated.

Figure 8-9 shows the bindings for sending an email using an editable form on the page.

Figure 8-9 Bindings for Sending an Email Using an Editable Form at Design Time

[image: Bindings for the sendEmail method]

Example 8-14 and Example 8-15 show code examples that allow the end user to send an email message with the device's email interface.

For information about the sendEmail method, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

Example 8-14 JavaScript Code Example for sendEmail

// Populate an email to 'ann.li@example.com',
// copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'
// No BCC recipients or attachments
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By not specifying a value for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});

// For iOS only: Same as previous email, but this time, explicitly specify
// all the MIME types.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "text/plain,image/png"});

// For iOS only: Same as previous email, but this time, only specify
// the MIME type for the second attachment and let the system determine
// the MIME type for the first one.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: ",image/png"});

// For Android only: Same as previous e-mail, but this time, explicitly specify
// the MIME type.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "image/*"});
// You can also use "plain/text" as the MIME type as it just determines the type
// of applications to be filtered in the application chooser dialog.

Example 8-15 Java Code Example for sendEmail

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Populate an email to 'ann.li@example.com', copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'.
// No BCC recipients or attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 null,
 null,
 null);

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By specifying null for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 null);

// Same as previous email, but this time, explicitly specify all the MIME types.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 "text/plain,image/png");

// Same as previous email, but this time, only specify the MIME type for the
// second attachment and let the system determine the MIME type for the first one.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 ",image/png");

8.5.4 How to Use the createContact Method

The DeviceFeatures data control includes the createContact method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can create new contacts to save in the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the Contact fields. The createContact method takes in a Contact object as a parameter and returns the created Contact object, as shown in Example 8-17.

For more information about the createContact method and the Contact object, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html). Also see Section 8.5.5, "How to Use the findContacts Method" for a description of Contact properties.

	
Note:

The timeout value for the createContact method is set to 1 minute. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

If a null Contact object is passed in to the method, an AdfException is thrown.

To customize a createContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the createContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link or Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact object parameter to the createContact operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact from a Java bean class. Assuming a managed bean already exists with a getter for a Contact object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a createContact operation when pressed. Example 8-16 shows an example of managed bean code for creating a Contact object.

	
You can also drag a Contact return object from under the createContact operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the createContact operation is performed, the results will be displayed in this form.

Example 8-16 Managed Bean Code for Creating a Contact Object

private Contact contactToBeCreated;

public void setContactToBeCreated(Contact contactToBeCreated)
{
 this.contactToBeCreated = contactToBeCreated;
}

public Contact getContactToBeCreated()
{
 String givenName = "Mary";
 String familyName = "Jones";
 String note = "Just a Note";
 String phoneNumberType = "mobile";
 String phoneNumberValue = "650-555-0111";
 String phoneNumberNewValue = "650-555-0199";
 String emailType = "home";
 String emailTypeNew = "work";
 String emailValue = "Mary.Jones@example.com";
 String addressType = "home";
 String addressStreet = "500 Barnacle Pkwy";
 String addressLocality = "Redwood Shores";
 String addressCountry = "USA";
 String addressPostalCode = "94065";
 ContactField[] phoneNumbers = null;
 ContactField[] emails = null;
 ContactAddresses[] addresses = null;

 /*
 * Create contact
 */
 this.contactToBeCreated = new Contact();

 ContactName name = new ContactName();
 name.setFamilyName(familyName);
 name.setGivenName(givenName);
 this.contactToBeCreated.setName(name);

 ContactField phoneNumber = new ContactField();
 phoneNumber.setType(phoneNumberType);
 phoneNumber.setValue(phoneNumberValue);

 phoneNumbers = new ContactField[] { phoneNumber };

 ContactField email = new ContactField();
 email.setType(emailType);
 email.setValue(emailValue);

 emails = new ContactField[] { email };

 ContactAddresses address = new ContactAddresses();
 address.setType(addressType);
 address.setStreetAddress(addressStreet);
 address.setLocality(addressLocality);
 address.setCountry(addressCountry);

 addresses = new ContactAddresses[] { address };

 this.contactToBeCreated.setNote(note);
 this.contactToBeCreated.setPhoneNumbers(phoneNumbers);
 this.contactToBeCreated.setEmails(emails);
 this.contactToBeCreated.setAddresses(addresses);

 return this.contactToBeCreated;
}

Example 8-17 and Example 8-18 show code examples that allow the end user to create contacts on devices.

Example 8-17 JavaScript Code Example for createContact

// Contacts, like many other device-specific features, are accessed from the global 'navigator' object in JavaScript.
var contact = navigator.contacts.create();

var name = new ContactName();
name.givenName = "Mary";
name.familyName = "Jones";

contact.name = name;

// Store contact phone numbers in ContactField[]
var phoneNumbers = [1];
phoneNumbers[0] = new ContactField('home', '650-555-0123', true);

contact.phoneNumbers = phoneNumbers;

// Store contact email addresses in ContactField[]
var emails = [1];
emails[0] = new ContactField('work', 'Mary.Jones@example.com');

contact.emails = emails;

// Save
contact.save(onSuccess, onFailure);

function onSuccess()
{
 alert("Create Contact successful.");
}

function onFailure(Error)
{
 alert("Create Contact failed: " + Error.code);
}

Example 8-18 Java Code Example for createContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

import oracle.adf.model.datacontrols.device.ContactAddresses;
import oracle.adf.model.datacontrols.device.ContactField;
import oracle.adf.model.datacontrols.device.ContactName;

String givenName = "Mary";
String familyName = "Jones";
String note = "Just a Note";
String phoneNumberType = "mobile";
String phoneNumberValue = "650-555-0111";
String phoneNumberNewValue = "650-555-0199";
String emailType = "home";
String emailTypeNew = "work";
String emailValue = "Mary.Jones@example.com";
String addressType = "home";
String addressStreet = "500 Barnacle Pkwy";
String addressLocality = "Redwood Shores";
String addressCountry = "USA";
String addressPostalCode = "91234";
ContactField[] phoneNumbers = null;
ContactField[] emails = null;
ContactAddresses[] addresses = null;
ContactField[] emails = null;

/*
* Create contact
*/
Contact aContact = new Contact();

ContactName name = new ContactName();
name.setFamilyName(familyName);
name.setGivenName(givenName);
aContact.setName(name);

ContactField phoneNumber = new ContactField();
phoneNumber.setType(phoneNumberType);
phoneNumber.setValue(phoneNumberValue);

phoneNumbers = new ContactField[] { phoneNumber };

ContactField email = new ContactField();
email.setType(emailType);
email.setValue(emailValue);

emails = new ContactField[] { email };

ContactAddresses address = new ContactAddresses();
address.setType(addressType);
address.setStreetAddress(addressStreet);
address.setLocality(addressLocality);
address.setCountry(addressCountry);

addresses = new ContactAddresses[] { address };

aContact.setNote(note);
aContact.setPhoneNumbers(phoneNumbers);
aContact.setEmails(emails);
aContact.setAddresses(addresses);

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Invoking the createContact method, using the DeviceDataControl object.
Contact createdContact = DeviceManagerFactory.getDeviceManager()
 .findContacts.createContact(aContact);

8.5.5 How to Use the findContacts Method

The DeviceFeatures data control includes the findContacts method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can find one or more contacts from the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the findContacts fields. The findContacts method takes in a filter string and a list of field names to look through (and return as part of the found contacts). The filter string can be anything to look for in the contacts. For more information about the findContacts method, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

The findContacts operation takes the following arguments:

	
contactFields: Required parameter. Use this parameter to specify which fields should be included in the Contact objects resulting from a findContacts operation. Separate fields with a comma (spacing does not matter).

	
filter: The search string used to filter contacts. (String) (Default: "")

	
multiple: Determines if the findContacts operation should return multiple contacts. (Boolean) (Default: false)

	
Note:

Passing in a field name that is not in the following list may result in a null return value for the findContacts operation. Also, only the fields specified in the Contact fields argument will be returned as part of the Contact object.

The following list shows the possible Contact properties that can be passed in to look through and be returned as part of the found contacts:

	
id: A globally unique identifier

	
displayName: The name of this contact, suitable for display to end-users

	
name: An object containing all components of a person's name

	
nickname: A casual name for the contact. If you set this field to null, it will be stored as an empty string.

	
phoneNumbers: An array of all the contact's phone numbers

	
emails: An array of all the contact's email addresses

	
addresses: An array of all the contact's addresses

	
ims: An array of all the contact's Instant messaging (IM) addresses (The ims property is not supported in this release.)

	
Note:

ADF Mobile does not support the Contact property ims in this release. If you create a contact with the ims property, ADF Mobile will save the contact without the ims property. As a result, if a user tries to perform a search based on ims, the user will not be able to find the contact. Also, if a user tries to enter ims in a search field, the ims will be returned as null.

	
organizations: An array of all the contact's organizations

	
revision: The last date the contact was revised

	
birthday: The birthday of the contact. Although you cannot programmatically set a contact's birthday field and persist it to the address book, you can still use the operating system's address book application to manually set this field.

	
gender: The gender of the contact

	
note: A note about the contact. If you set this field to null, it will be stored as an empty string.

	
photos: An array of the contact's photos

	
urls: An array of web pages associated to the contact

	
Note:

The timeout value for the findContacts method is set to 1 minute. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

To customize a findContacts operation using the DeviceFeatures data control:

	
In JDeveloper, drag the findContacts operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the findContacts operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a findContacts operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields described above. Below this form will be a button, which will use the entered values to perform a findContacts operation when pressed.

	
You can also drag a Contact return object from under the findContacts operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the findContacts operation is performed, the results will be displayed in this form.

Example 8-19 shows possible argument values for the findContacts method. Example 8-20 and Example 8-21 show how to find a contact by family name and get the contact's name, phone numbers, email, addresses, and note.

Example 8-19 Possible Argument Values for findContacts

// This will return just one contact with only the ID field:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("", "", false);

// This will return all contacts with only ID fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("", "", true);

// This will return just one contact with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*", "", false);

// This will return all contacts with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*", "", true);

// These will throw an exception as contactFields is a required argument and cannot be null:
DeviceManagerFactory.getDeviceManager().findContacts(null, "", false);
DeviceManagerFactory.getDeviceManager().findContacts(null, "", true);

// These will throw an exception as the filter argument cannot be null:
DeviceManagerFactory.getDeviceManager().findContacts("", null, false);
DeviceManagerFactory.getDeviceManager().findContacts("", null, true);

	
Note:

The Contact fields passed are strings (containing the comma-delimited fields). If any arguments are passed as null to the method, an ADF exception is thrown.

Example 8-20 JavaScript Code Example for findContacts

var filter = ["name", "phoneNumbers", "emails", "addresses", "note"];

var options = new ContactFindOptions();
options.filter="FamilyName";

// Contacts, like many other device-specific features, are accessed from
// the global 'navigator' object in JavaScript.
navigator.contacts.find(filter, onSuccess, onFail, options);

function onSuccess(contacts)
{
 alert ("Find Contact call succeeded! Number of contacts found = " + contacts.length);
}

function onFail(Error)
{
 alert("Find Contact failed: " + Error.code);
}

Example 8-21 Java Code Example for findContacts

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Find Contact - Find contact by family name.
 *
 * See if we can find the contact that we just created.
 */

String familyName = "FamilyName"

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

8.5.6 How to Use the updateContact Method

The DeviceFeatures data control includes the updateContact method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can update contacts in the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the updateContact fields. The updateContact method takes in a Contact object as a parameter and returns the updated Contact object, as shown in Example 8-22.

For more information about the updateContact method and the Contact object, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html). Also see Section 8.5.5, "How to Use the findContacts Method" for a description of Contact properties.

	
Note:

The Contact object that is needed as the input parameter can be found using the findContacts method as described in Section 8.5.5, "How to Use the findContacts Method." If a null Contact object is passed in to the method, an ADF exception is thrown.

To customize an updateContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the updateContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link or Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact object parameter to the updateContact operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact from a Java bean class. Assuming a managed bean already exists with a getter for a Contact object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a updateContact operation when pressed. Example 8-16 shows an example of managed bean code for creating a Contact object.

	
You can also drag a Contact return object from under the updateContact operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the updateContact operation is performed, the results will be displayed in this form.

Example 8-22 and Example 8-24 show how to update a contact's phone number. Example 8-23 and Example 8-25 show how to add another phone number to a contact.

Example 8-22 JavaScript Code Example for updateContact

function updateContact(contact)
{
 try
 {
 if (null != contact.phoneNumbers)
 {
 alert("Number of phone numbers = " + contact.phoneNumbers.length);
 var numPhoneNumbers = contact.phoneNumbers.length;
 for (var j = 0; j < numPhoneNumbers; j++)
 {
 alert("Type: " + contact.phoneNumbers[j].type + "\n" +
 "Value: " + contact.phoneNumbers[j].value + "\n" +
 "Preferred: " + contact.phoneNumbers[j].pref);

 contact.phoneNumbers[j].type = "mobile";
 contact.phoneNumbers[j].value = "408-555-0100";
 }

 // save
 contact.save(onSuccess, onFailure);
 }
 else
 {
 //alert ("No phone numbers found in the contact.");
 }
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);

Example 8-23 shows you how to add another phone number to the already existing phone numbers.

Example 8-23 JavaScript Code Example for Adding a Phone Number with updateContact

function updateContact(contact)
{
 try
 {
 var phoneNumbers = [1];
 phoneNumbers[0] = new ContactField('home', '650-555-0123', true);
 contact.phoneNumbers = phoneNumbers;

 // save
 contact.save(onSuccess, onFailure);
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);
}

Example 8-24 shows how to update a contact's phone number, email type, and postal code.

Example 8-24 Java Code Example for updateContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Update Contact - Updating phone number, email type, and adding address postal code
 */
String familyName = "FamilyName";
String phoneNumberNewValue = "650-555-0123";
String emailTypeNew = "work";
String addressPostalCode = "91234";

Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

// Assuming there was only one contact returned, we can use the first contact in the array.
// If more than one contact is returned then we have to filter more to find the exact contact
// we need to update.

foundContacts[0].getPhoneNumbers()[0].setValue(phoneNumberNewValue);
foundContacts[0].getEmails()[0].setType(emailTypeNew);
foundContacts[0].getAddresses()[0].setPostalCode(addressPostalCode);

Contact updatedContact = DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

Example 8-25 shows you how to add another phone number to the already existing phone numbers.

Example 8-25 Java Code Example for Adding a Phone Number with updateContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

String additionalPhoneNumberValue = "408-555-0123";
String additionalPhoneNumberType = "mobile";
// Create a new phoneNumber that will be appended to the previous one.
ContactField additionalPhoneNumber = new ContactField();
additionalPhoneNumber.setType(additionalPhoneNumberType);
additionalPhoneNumber.setValue(additionalPhoneNumberValue);

foundContacts[0].setPhoneNumbers(new ContactField[] { additionalPhoneNumber });

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
Contact updatedContact = DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

8.5.7 How to Use the removeContact Method

The DeviceFeatures data control includes the removeContact method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can remove contacts from the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the removeContact fields. The removeContact method takes in a Contact object as a parameter, as shown in Example 8-26.

	
Note:

The Contact object that is needed as the input parameter can be found using the findContacts method as described in Section 8.5.5, "How to Use the findContacts Method."

	
Note:

In Android, the removeContact operation does not remove the contact fully. After a contact is removed by calling the removeContact method, a contact with the "Unknown" display name appears in the contacts list in the application.

	
Note:

The timeout value for the removeContact method is set to 1 minute. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

To customize a removeContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the removeContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the removeContact operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a removeContact operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields. Below this form will be a button, which will use the entered values to perform a removeContact operation when pressed.

	
You can also drag a Contact return object from under the removeContact operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the removeContact operation is performed, the results will be displayed in this form.

Example 8-26 and Example 8-27 show you how to delete a contact that you found using findContacts. For information about the removeContact method and the Contact object, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

Example 8-26 JavaScript Code Example for removeContact

// Remove the contact from the device
contact.remove(onSuccess,onError);

function onSuccess()
{
 alert("Removal Success");
}

function onError(contactError)'
{
 alert("Error = " + contactError.code);
}

Example 8-27 Java Code Example for removeContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Remove the contact from the device
 */
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses", familyName, true);

// Assuming there is only one contact returned, we can use the first contact in the array.
// If more than one contact is returned we will have to filter more to find the
// exact contact we want to remove.

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
DeviceManagerFactory.getDeviceManager().removeContact(foundContacts[0]);

8.5.8 How to Use the startLocationMonitor Method

The DeviceFeatures data control includes the startLocationMonitor method, which enables ADF Mobile applications to provide a geolocation feature so end users can obtain a device's location. ADF Mobile enables you to display a device's interface and optionally pre-populate the startLocationMonitor fields.

ADF Mobile exposes APIs that enable you to acquire a device's current position, allowing you to retrieve the device's current location for one instant in time or to subscribe to it on a periodic basis. Example 8-28 and Example 8-29 show code examples that will allow your application to obtain a device's location. For information about the startLocationMonitor method, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

	
Note:

The Android 2.n simulators will not return a geolocation result unless the enableHighAccuracy option is set to true.

The altitudeAccuracy property is not supported by Android devices.

Updates do not occur as frequently on the Android platform as on iOS.

To listen for changes in a device's location using the DeviceFeatures data control:

In JDeveloper, drag the startLocationMonitor operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Link or Button. When prompted by the Edit Action Dialog, populate the fields as follows:

	
enableHighAccuracy: If true, use the most accurate possible method of obtaining a location fix. This is just a hint; the operating system may not respect it. Devices often have several different mechanisms for obtaining a location fix, including cell tower triangulation, Wi-Fi hotspot lookup, and true GPS. Specifying false indicates that you are willing to accept a less accurate location, which may result in a faster response or consume less power.

	
updateInterval: Defines how often, in milliseconds, to receive updates. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update.

	
locationListener: EL expression that resolves to a bean method with the following signature:

void methodName(Location newLocation)

This EL expression will be evaluated every time a location update is received. For example, enter viewScope.LocationListenerBean.locationUpdated (without the surrounding#{}), then define a bean named LocationListenerBean in viewScope and implement a method with the following signature:

public void locationUpdated(Location currentLocation)
{
 System.out.println(currentLocation);
 // To stop subscribing to location updates, invoke the following:
 // DeviceManagerFactory.getDeviceManager().clearWatchPosition(
 // currentLocation.getWatchId());
}

	
Note:

Do not use the EL syntax #{LocationListenerBean.locationUpdate} to specify the locationListener, unless you truly want the result of evaluating that expression to be the name of the locationListener.

Example 8-28 shows how to subscribe to changes in the device's location periodically. The example uses the DeviceManager.startUpdatingPosition method, which takes the following parameters:

	
int updateInterval: Defines how often to deliver location updates, in milliseconds. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update. Conversely, location updates may also be delivered at the specified frequency, but may be identical until the device's position has changed significantly.

	
boolean enableHighAccuracy: If set to true, use the most accurate possible method of obtaining a location fix.

	
String watchID: Defines a unique ID that can be subsequently used to stop subscribing to location updates

	
GeolocationCallback: An implementation of the GeolocationCallback interface. This implementation's locationUpdated method is invoked each time the location is updated, as shown in Example 8-28.

For an example of how to subscribe to changes in the device's position using JavaScript, refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

Parameters returned in the callback function specified by the locationListener are as follows:

	
double getAccuracy—Accuracy level of the latitude and longitude coordinates in meters

	
double getAltitude—Height of the position in meters above the ellipsoid

	
double getLatitude—Latitude in decimal degrees

	
double getLongitude—Longitude in decimal degrees

	
double getAltitudeAccuracy—Accuracy level of the altitude coordinate in meters

	
double getHeading—Direction of travel, specified in degrees counting clockwise relative to the true north

	
double getSpeed—Current ground speed of the device, specified in meters per second

	
long getTimestamp—Creation of a timestamp in milliseconds since the Unix epoch

	
String getWatchId—Only used when subscribing to periodic location updates. A unique ID that can be subsequently used to stop subscribing to location updates

For more information about the startLocationMonitor and startHeadingMonitor methods, see the DeviceDataControl class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html).

Example 8-28 Using Geolocation to Subscribe to Changes in the Device's Location

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.GeolocationCallback;
import oracle.adf.model.datacontrols.device.Location;

// Subscribe to location updates that will be delivered every 20 seconds, with high accuracy.
// As we can have multiple subscribers, let's identify this one as 'MyGPSSubscriptionID'.
// Notice that this call returns the watchID, which is usually the same as the watchID passed in.
// However, it may be different if the specified watchID conflicts with an existing watchID,
// so be sure to always use the returned watchID.
String watchID = DeviceManagerFactory.getDeviceManager().startUpdatingPosition(20000, true, "
 "MyGPSSubscriptionID", new GeolocationCallback() {
 public void locationUpdated(Location position) {
 System.out.println("Location updated to: " + position);
 }
});

// The previous call returns immediately so that you can continue processing.
// When the device's location changes, the locationUpdated() method specified in
// the previous call will be invoked in the context of the current feature.

// When you wish to stop being notified of location changes, call the following method:
DeviceManagerFactory().getDeviceManager().clearWatchPosition(watchID);

To obtain the device's location using the DeviceFeatures data control:

In JDeveloper, drag the startLocationMonitor operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Link or Button. Follow Example 8-28, but stop listening after the first location update is received.

Example 8-29 shows how to get a device's location one time. The example uses DeviceManager.getCurrentPosition, which takes the following parameters:

	
int maximumAge: Accept a cached value no older than this value, in milliseconds. If a location fix has been obtained within this window of time, then it will be returned immediately; otherwise, the call will block until a new location fix can be determined. The value of the maximumAge parameter must be at least 1000 ms; values less than this will be set to 1000 ms automatically.

	
boolean: enableHighAccuracy If set to true, use the most accurate possible method of obtaining a location fix.

Example 8-29 Using Geolocation to Get the Device's Current Location (One Time)

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.Location;

// Get the device's current position, with highest accuracy, and accept a cached location that is
// no older than 60 seconds.
Location currentPosition = DeviceManagerFactory.getDeviceManager().getCurrentPosition(60000, true);
System.out.println("The device's current location is: latitude=" + currentPosition.getLatitude() +
 ", longitude=" + currentPosition.getLongitude());

8.5.9 How to Use the displayFile Method

The DeviceFeatures data control includes the displayFile method, which enables you to display files that are local to the device. Depending on the platform, application users can view PDFs, image files, Microsoft Office documents, and various other file types. On iOS, the application user has the option to preview supported files within the ADF Mobile application. Users can also open those files with third-party applications, email them, or send them to a printer. On Android, all files are opened in third-party applications. In other words, the application user leaves the ADF Mobile application while viewing the file. The user may return to the ADF Mobile application by pressing the Android Back button. If the device does not have an application capable of opening the given file, an error is displayed. For an example of how the displayFile method opens files on both iOS- and Android-powered devices, see the Attachments sample application. This application is available in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

The displayFile method is only able to display files that are local to the device. This means that remote files first have to be downloaded. Use the call AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory) to return the directory root where downloaded files should be stored. Note that on iOS, this location is specific to the application, but on Android this location refers to the external storage directory. The external storage directory is publicly accessible and allows third-party applications to read files stored there.

Table 8-6 Supported File Types

	iOS	Android
	
For more information about supported file types, see the Quick Look preview controller documentation at the Apple iOS development site (http://developer.apple.com/library/ios/navigation/).

	
The framework will start the viewer associated with the given MIME type if it is installed on the device. There is no built-in framework for viewing specific file types. If the device does not have an application installed that handles the file type, the ADF Mobile application displays an error.

	
iWork documents

	

	
Microsoft Office documents (Office '97 and newer)

	

	
Rich Text Format (RTF) documents

	

	
PDF files

	

	
Images

	

	
Text files whose uniform type identifier (UTI) conforms to the public.text type

	

	
Comma-separated value (csv) files

	

To customize a displayFile operation using the DeviceFeatures data control:

	
In JDeveloper, drag the displayFile operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the displayFile operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a displayFile operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields. Below this form will be a button, which will use the entered values to perform a displayFile operation when pressed.

Example 8-30 shows you how to view files using the displayFile method. For information about the displayFile method, see the DeviceDataControl class in the ADF Mobile Javadoc).

Example 8-30 Java Code Example for displayFile

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

 URL remoteFileUrl;
 InputStream is;
 BufferedOutputStream fos;
 try {

 // Open connection to remote file; fileUrl here is a String containing the URL to the remote file.
 remoteFileUrl = new URL(fileUrl);
 URLConnection connection = remoteFileUrl.openConnection();
 is = new BufferedInputStream(connection.getInputStream());
 // Saving the file locally as 'previewTempFile.<extension>'
 String fileExt = fileUrl.substring(fileUrl.lastIndexOf('.'), fileUrl.length());
 String tempFile = "/previewTempFile" + fileExt;
 File localFile = null;
 // Save the file in the DownloadDirectory location
 localFile = new File(AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory) + tempFile);
 if (localFile.exists()) {
 localFile.delete();
 }
 // Use buffered streams to download the file.
 fos = new BufferedOutputStream(new FileOutputStream(localFile));
 byte[] data = new byte[1024];
 int read = 0;
 while ((read = is.read(data)) != -1) {
 fos.write(data, 0, read);
 }
 is.close();
 fos.close();

 // displayFile takes a URL string which has to be encoded on iOS.
 // iOS does not handle "+" as an encoding for space (" ") but
 // expects "%20" instead. Also, the leading slash MUST NOT be
 // encoded to "%2F". We will revert it to a slash after the
 // URLEncoder converts it to "%2F".
 StringBuffer buffer = new StringBuffer();
 String path = URLEncoder.encode(localFile.getPath(), "UTF-8");
 // replace "+" with "%20"
 String replacedString = "+";
 String replacement = "%20";
 int index = 0, previousIndex = 0;
 index = path.indexOf(replacedString, index);
 while (index != -1) {
 buffer.append(path.substring(previousIndex, index)).append(replacement);
 previousIndex = index + 1;
 index = path.indexOf(replacedString, index + replacedString.length());
 }
 buffer.append(path.substring(previousIndex, path.length()));
 // Revert the leading encoded slash ("%2F") to a literal slash ("/").
 if (buffer.indexOf("%2F") == 0) {
 buffer.replace(0, 3, "/");
 }

 // Create URL and invoke displayFile with its String representation.
 URL localURL = null;
 if (Utility.getOSFamily() == Utility.OSFAMILY_ANDROID) {
 localURL = new URL("file", "localhost", localFile.getAbsolutePath());
 }
 else if (Utility.getOSFamily() == Utility.OSFAMILY_IOS)
 {
 localURL = new URL("file", "localhost", buffer.toString());
 }
 DeviceManagerFactory.getDeviceManager().displayFile(localURL.toString(), "remote file");
 } catch (Throwable t) {
 System.out.println("Exception caught: " + t.toString());
 }

8.5.10 Device Properties

There may be features of your application that rely on specific device characteristics or capabilities. For example, you may want to present a different user interface depending on the device's screen orientation, or there may be a mapping feature that you want to enable only if the device supports geolocation. ADF Mobile provides a number of properties that you can access from Java and EL in order to support this type of dynamic behavior. Table 8-7 lists these properties, along with information about how to query them, what values to expect in return, and whether the property can change during the application's lifecycle.

Table 8-7 Device Properties and Corresponding EL Expressions

	Property	Static/

Dynamic	EL Expression	Sample Value	Java API
	
device.name

	
Static

	
#{deviceScope.device.name}

	
"iPhone Simulator", "Joe Smith's iPhone"

	
DeviceManager.getName()

	
device.platform

	
Static

	
#{deviceScope.device.platform}

	
"iPhone Simulator", "iPhone"

	
DeviceManager.getPlatform()

	
device.version

	
Static

	
#{deviceScope.device.version}

	
"4.3.2", "5.0.1"

	
DeviceManager.getVersion()

	
device.os

	
Static

	
#{deviceScope.device.os}

	
"iOS"

	
DeviceManager.getOs()

	
device.model

	
Static

	
#{deviceScope.device.model}

	
"x86_64", "i386", "iPhone3,1"

	
DeviceManager.getModel()

	
device.phonegap

	
Static

	
#{deviceScope.device.phonegap}

	
"1.0.0"

	
DeviceManager.getPhonegap()

	
hardware.hasCamera

	
Static

	
#{deviceScope.hardware.hasCamera}

	
"true", "false"

	
DeviceManager.hasCamera()

	
hardware.hasContacts

	
Static

	
#{deviceScope.hardware.hasContacts}

	
"true", "false"

	
DeviceManager.hasContacts()

	
hardware.hasTouchScreen

	
Static

	
#{deviceScope.hardware.hasTouchScreen}

	
"true", "false"

	
DeviceManager.hasTouchScreen()

	
hardware.hasGeolocation

	
Static

	
#{deviceScope.hardware.hasGeolocation}

	
"true", "false"

	
DeviceManager.hasGeolocation()

	
hardware.hasAccelerometer

	
Static

	
#{deviceScope.hardware.hasAccelerometer}

	
"true", "false"

	
DeviceManager.hasAccelerometer()

	
hardware.hasCompass

	
Static

	
#{deviceScope.hardware.hasCompass}

	
"true", "false"

	
DeviceManager.hasCompass()

	
hardware.hasFileAccess

	
Static

	
#{deviceScope.hardware.hasFileAccess}

	
"true", "false"

	
DeviceManager.hasFileAccess()

	
hardware.hasLocalStorage

	
Static

	
#{deviceScope.hardware.hasLocalStorage}

	
"true", "false"

	
DeviceManager.hasLocalStorage()

	
hardware.hasMediaPlayer

	
Static

	
#{deviceScope.hardware.hasMediaPlayer}

	
"true", "false"

	
DeviceManager.hasMediaPlayer()

	
hardware.hasMediaRecorder

	
Static

	
#{deviceScope.hardware.hasMediaRecorder}

	
"true", "false"

	
DeviceManager.hasMediaRecorder()

	
hardware.networkStatus

	
Dynamic

	
#{deviceScope.hardware.networkStatus}

	
"wifi", "2g", "unknown", "none"Foot 1

	
DeviceManager.getNetworkStatus()

	
hardware.screen.width

	
Dynamic

	
#{deviceScope.hardware.screen.width}

	
320, 480

	
DeviceManager.getScreenWidth()

	
hardware.screen.height

	
Dynamic

	
#{deviceScope.hardware.screen.height}

	
480, 320

	
DeviceManager.getScreenHeight()

	
hardware.availableWidth

	
Dynamic

	
#{deviceScope.hardware.screen.availableWidth}

	
<= 320, <= 480

	
DeviceManager.getAvailableScreenWidth()

	
hardware.availableHeight

	
Dynamic

	
#{deviceScope.hardware.screen.availableHeight}

	
<= 480, <= 320

	
DeviceManager.getAvailableScreenHeight()

	
hardware.screen.dpi

	
Static

	
#{deviceScope.hardware.screen.dpi}

	
160, 326

	
DeviceManager.getScreenDpi()

	
hardware.screen.diagonalSize

	
Static

	
#{deviceScope.hardware.screen.diagonalSize}

	
9.7, 6.78

	
DeviceManager.getScreenDiagonalSize()

	
hardware.screen.scaleFactor

	
Static

	
#{deviceScope.hardware.screen.scaleFactor}

	
1.0, 2.0

	
DeviceManager.getScreenScaleFactor()

Footnote 1 If both wifi and 2G are turned on, network status will be wifi, as wifi takes precedence over 2G.

8.6 Performing Validation

In ADF Mobile, validation occurs in the data control layer, with validation rules set on binding attributes behaving similarly to those in Oracle ADF. The attribute validation takes place at a single point in the system, during the setValue operation on the bindings.

You can define the following validators for attributes exposed by the data controls:

	
Compare validator

	
Length validator

	
List validator

	
Range validator

All validators for a given attribute are executed, and nested exceptions are thrown for every validator that does not pass. You can define a validation message for attributes, which is displayed when a validation rule is fired at runtime. For more information, see Section 7.9, "Validating Input" and Section 8.6.1, "How to Add Validation Rules."

	
Note:

Due to a JSON limitation, the value that a BigDecimal can hold is within the range of a Double, and the value that a BigInteger can hold is within the range of a Long. If you want to use numbers greater than those allowed, you can call toString on BigDecimal or BigInteger to (de)serialize values as String.

Table 8-8 lists supported validation combinations for the length validator.

Table 8-8 Length Validation

	Compare type	Byte	Character
	
Equals

	
Supported

	
Supported

	
Not Equals

	
Supported

	
Supported

	
Less Than

	
Supported

	
Supported

	
Greater Than

	
Supported

	
Supported

	
Less Than Equal To

	
Supported

	
Supported

	
Greater Than Equal To

	
Supported

	
Supported

	
Between

	
Supported

	
Supported

Table 8-9 and Table 8-10 list supported validation combinations for the range validator.

Table 8-9 Range Validation

	Compare type	Byte	Char	Double	Float	Integer	Long	Short
	
Between

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not Between

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

Table 8-10 Range Validation - math, sql, and util Packages

	Compare type	java.math.BigDecimal	java.math.BigInteger	java.sql.Date	java.sql.Time	java.sql.Timestamp	java.util.Date
	
Between

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not Between

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

Table 8-11 lists supported validation combinations for the list validator.

Table 8-11 List Validation

	Compare type	String
	
In

	
Supported

	
Not In

	
Supported

Table 8-12 and Table 8-13 lists supported validation combinations for the compare validator.

Table 8-12 Compare Validation

	Compare type	Byte	Char	Double	Float	Integer	Long	Short	String
	
Equals

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not Equals

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Less Than

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Greater Than

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Less Than Equal To

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Greater Than Equal To

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

Table 8-13 Compare Validation - java.math, java.sql, and java.util Packages

	Compare type	java.math.BigDecimal	java.math.BigInteger	java.sql.Date	java.sql.Time	java.sql.Timestamp	java.util.Date
	
Equals

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not Equals

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Less Than

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Greater Than

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Less Than Equal To

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Greater Than Equal To

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

8.6.1 How to Add Validation Rules

You can define validation rules for a variety of use cases. To add a declarative validation rule to an entity object, use the Overview Editor for Data Control Structure Files - Attributes Page.

For more information about adding validation rules, see the "Adding Validation Rules to Entity Objects and Attributes" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

To add a validation rule:

	
From the Data Controls panel, right-click on a data controls object and choose Edit Definition.

	
In the Overview Editor for Data Control Structure Files, select the Attributes page.

[image: Overview Editor - Attributes page]

	
Select the Validation Rules tab in the lower part of the page and then click Add. In the resulting Add Validation Rule dialog, define the validation rule and the failure handling.

[image: Add Validation Rule dialog]

For more information, see the following:

	
Section 6.3.2.4, "Adding Data Controls to the View"

	
"Using the Built-in Declarative Validation Rules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

8.6.2 What You May Need to Know About the Validator Metadata

The validator metadata is placed into the data control structure metadata XML files at design time. Example 8-31 shows a sample length validator.

Example 8-31 Length Validator Declared in Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<!DOCTYPE PDefViewObject SYSTEM "jbo_03_01.dtd">
<PDefViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Product"
 Version="12.1.1.61.36"
 xmlns:validation="http://xmlns.oracle.com/adfm/validation">
 <DesignTime>
 <Attr Name="_DCName" Value="DataControls.ProductListBean"/>
 <Attr Name="_SDName" Value="mobile.Product"/>
 </DesignTime>
 <PDefAttribute
 Name="name">
 <validation:LengthValidationBean
 Name="nameRule0"
 OnAttribute="name"
 CompareType="GREATERTHAN"
 DataType="BYTE"
 CompareLength="5"
 Inverse="false"/>
 </PDefAttribute>
</PDefViewObject>

8.7 Data Change Events

To simplify data change events, JDeveloper uses the property change listener pattern. In most cases you can use JDeveloper to generate the necessary code to source notifications from your beans' property accessors by selecting the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Section 8.2.4.2, "ADF Managed Beans" for details). The PropertyChangeSupport object is generated automatically, with the calls to firePropertyChange in the newly-generated setter method. Additionally, the addPropertyChangeListener and removePropertyChangeListener methods are added so property change listeners can register and unregister themselves with this object. This is what the framework uses to capture changes to be pushed to the client cache and to notify the user interface layer that data has been changed.

	
Note:

If you are manually adding a PropertyChangeSupport object to a class, you must also include the addPropertyChangeListener and removePropertyChangeListener methods (using these explicit method names).

Property changes alone will not solve all the data change notifications, as in the case where you have a bean wrapped by a data control and you want to expose a collection of items. While a property change is sufficient when individual items of the list change, it is not sufficient for cardinality changes. In this case, rather than fire a property change for the entire collection, which would cause a degradation of performance, you can instead refresh just the collection delta. To do this you need to expose more data than is required for a simple property change, which you can do using the ProviderChangeSupport class.

	
Note:

The ProviderChangeSupport object is not generated automatically—you must manually add it to your class—along with the addProviderChangeListener and removeProviderChangeListener methods (using these explicit method names).

Since the provider change is required only when you have a dynamic collection exposed by a data control wrapped bean, there are only a few types of provider change events to fire:

	
fireProviderCreate—when a new element is added to the collection

	
fireProviderDelete—when an element is removed from the collection

	
fireProviderRefresh—when multiple changes are done to the collection at one time and you decide it is better to simply ask for the client to refresh the entire collection (this should only be used in bulk operations)

The ProviderChangeSupport class is used for sending notifications relating to collection elements, so that components update properly when a change occurs in a Java bean data control. It follows a similar pattern to the automatically-generated PropertyChangeSupport class, but the event objects used with ProviderChangeSupport send more information, including the type of operation as well as the key and position of the element that changed. ProviderChangeSupport captures structural changes to a collection, such as adding or removing an element (or provider) from a collection. PropertyChangeSupport captures changes to the individual items in the collection.

Example 8-32 shows how to use ProviderChangeSupport for sending notifications relating to structural changes to collection elements (such as when adding or removing a child). For more information on the ProviderChangeListener interface and the ProviderChangeEvent class, see the ADF Mobile Javadoc.

Example 8-32 ProviderChangeSupport Code Example

public class NotePad {
 private static List
 s_notes = null;

/* manually adding property change listener as well as provider change listener. */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);
 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 …
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this)
 {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])
 s_notes.toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this)
 {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderCreate("notes", n.getUid(), n);
 }

 public void removeNote() {
 System.out.println("Removng a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this)
 {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderDelete("notes", n.getUid());
 }
 }

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 providerChangeSupport.fireProviderRefresh("notes");
 }

 public void addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }
}

Data changes are passed back to the client (to be cached) with any response message or return value from the JVM layer. This allows JDeveloper to compress and reduce the number of events and updates to refresh to the user interface, allowing the framework to be as efficient as possible.

However, there are times where you may need to have a background thread handle a long-running process (such as web-service interactions, database interactions, or expensive computations) and notify the user interface independent of a user action. To update data on an AMX page to reflect the current values of data fields whose values have changed, you can avoid the performance hit associated with reloading the whole AMX page by calling AdfmfJavaUtilities.flushDataChangeEvent to force the currently queued data changes to the client.

	
Note:

The flushDataChangeEvent method can only be executed from a background thread.

Example 8-33 shows how the flushDataChangeEvent method can be used to force pending data changes to the client. For more information about oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEvent, see the Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Example 8-33 Data Change Event Example

/* Note – Simple POJO used by the NotePad managed bean or data control wrapped bean */

package mobile;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

/**
 * Simple note object
 * uid - unique id - generated and not mutable
 * title - title for the note - mutable
 * note - note comment - mutable
 */
public class Note {
 /* standard JDeveloper generated property change support */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);

 private static boolean s_backgroundFlushTestRunning = false;

 public Note() {
 this("" + (System.currentTimeMillis() % 10000));
 }

 public Note(String id) {
 this("UID-"+id, "Title-"+id, "");
 }

 public Note(String uid, String title, String note) {
 this.uid = uid;
 this.title = title;
 this.note = note;
 }

 /* update the current note with the values passed in */
 public void updateNote(Note n) {
 if (this.getUid().compareTo(n.getUid()) == 0) {
 this.setTitle(n.getTitle());
 this.setNote(n.getNote());
 } else {
 throw new IllegalArgumentException("note");
 }
 }

 /* background thread to simulate some background process that make changes */
 public void startNodeBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 System.out.println("startBackgroundThread enter - " +
 s_backgroundFlushTestRunning);

 s_backgroundFlushTestRunning = true;
 for(int i = 0; i <= iterations; ++i) {
 try
 {
 System.out.println("executing " + i + " of " + iterations + "
 " iterations.");

 /* update a property value */
 if(i == 0) {
 setNote("thread starting");
 }
 else if(i == iterations) {
 setNote("thread complete");
 s_backgroundFlushTestRunning = false;
 }
 else {
 setNote("executing " + i + " of " + iterations + " iterations.");
 }
 setVersion(getVersion() + 1);
 setTitle("Thread Test v" + getVersion());
 AdfmfJavaUtilities.flushDataChangeEvent(); /* key line */
 }
 catch(Throwable t)
 {
 System.err.println("Error in the background thread: " + t);
 }

 try {
 Thread.sleep(delay); /* sleep for 6 seconds */
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

 protected String uid;
 protected String title;
 protected String note;
 protected int version;

 protected int iterations = 10;
 protected int delay = 500;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public String getUid() {
 return uid;
 }

 public void setTitle(String title) {
 String oldTitle = this.title;
 this.title = title;
 propertyChangeSupport.firePropertyChange("title", oldTitle, title);
 }

 public String getTitle() {
 return title;
 }

 public void setNote(String note) {
 String oldNote = this.note;
 this.note = note;
 propertyChangeSupport.firePropertyChange("note", oldNote, note);
 }

 public String getNote() {
 return note;
 }

 public void setVersion(int version) {
 int oldVersion = this.version;
 this.version = version;
 propertyChangeSupport.firePropertyChange("version", oldVersion, version);
 }

 public int getVersion() {
 return version;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.
 firePropertyChange("iterations", oldIterations, iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.
 firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

/* NotePad – Can be used as a managed bean or wrapped as a data control */

package mobile;

import java.util.ArrayList;
import java.util.List;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;
import oracle.adfmf.java.beans.ProviderChangeListener;
import oracle.adfmf.java.beans.ProviderChangeSupport;

public class NotePad {
 private static List s_notes = null;
 private static boolean s_backgroundFlushTestRunning = false;

 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);

 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 if (s_notes == null) {
 s_notes = new ArrayList();

 for(int i = 1000; i < 1003; ++i) {
 s_notes.add(new Note(""+i));
 }
 }
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this)
 {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])s_notes.
 toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this)
 {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");

 /* update the note count property on the screen */
 propertyChangeSupport.
 firePropertyChange("noteCount", s-1, s);

 /* update the notes collection model with the new note */
 providerChangeSupport.
 fireProviderCreate("notes", n.getUid(), n);

 /* to update the client side model layer */
 AdfmfJavaUtilities.flushDataChangeEvent();
 }

 public void removeNote() {
 System.out.println("Removing a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this)
 {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");

 /* update the client side model layer */
 providerChangeSupport.
 fireProviderDelete("notes", n.getUid());

 /* update the note count property on the screen */
 propertyChangeSupport.
 firePropertyChange("noteCount", -1, end);
 }
 }

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 /* update the entire notes collection on the client */
 providerChangeSupport.fireProviderRefresh("notes");
 }

 public int getNoteCount() {
 int size = 0;

 synchronized (this)
 {
 size = s_notes.size();
 }
 return size;
 }

 public void
 addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void
 removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 public void
 startListBackgroundThread(ActionEvent actionEvent) {
 for(int i = 0; i < 10; ++i) {
 _startListBackgroundThread(actionEvent);
 try {
 Thread.currentThread().sleep(i * 1234);
 } catch (InterruptedException e) {
 }
 }
 }

 public void
 _startListBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 s_backgroundFlushTestRunning = true;

 for(int i = 0; i <= iterations; ++i) {
 System.out.println("executing " + i +
 " of " + iterations + " iterations.");

 try
 {
 /* update a property value */
 if(i == 0) {
 setStatus("thread starting");
 addNote(); // add a note
 }
 else if(i == iterations) {
 setStatus("thread complete");
 removeNote(); // remove a note
 s_backgroundFlushTestRunning = false;
 }
 else {
 setStatus("executing " + i + " of " +
 iterations + " iterations.");

 synchronized (this)
 {
 if(s_notes.size() > 0) {
 Note n =(Note)s_notes.get(0);

 n.setTitle("Updated-" +
 n.getUid() + " v" + i);
 }
 }
 }
 AdfmfJavaUtilities.
 flushDataChangeEvent();
 }
 catch(Throwable t)
 {
 System.err.
 println("Error in bg thread - " + t);
 }

 try {
 Thread.sleep(delay);
 } catch (InterruptedException ex) {
 setStatus("inturrpted " + ex);
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

 protected int iterations = 100;
 protected int delay = 750;

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void
 addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void
 removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.
 firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.
 firePropertyChange("iterations",
 oldIterations, iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.
 firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

The StockTracker sample application provides an example of how data change events use Java to enable data changes to be reflected in the user interface. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

For more information about sample applications, see Appendix F, "ADF Mobile Sample Applications."

9 Using Web Services

This chapter describes how to integrate a third-party web service into the ADF Mobile AMX application feature implementation.

This chapter includes the following sections:

	
Section 9.1, "Introduction to Using Web Services"

	
Section 9.2, "Creating a Web Service Data Control"

	
Section 9.3, "Creating a New Web Service Connection"

	
Section 9.4, "Adjusting the Endpoint for a Web Service Data Control"

	
Section 9.5, "Accessing Secure Web Services"

	
Section 9.6, "Invoking Web Services From Java"

9.1 Introduction to Using Web Services

Web services allow applications and their features to exchange data and information through defined application programming interfaces. Using web services you can expose business functionality irrespective of the platform or language of the originating application. For more information, see the "About Web Services in Fusion Web Applications" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

In case of both an Oracle ADF web application and ADF Mobile application, some of the most typical reasons for using web services are:

	
To add functionality that is readily available as a web service, but which would be time-consuming to develop within the application.

	
To provide access to an application that runs on a different architecture.

ADF Mobile supports both SOAP and REST web services and allows you to integrate a third-party web service into your ADF Mobile AMX application feature.

Using web services in your ADF Mobile application enables you to do the following:

	
From a larger (enterprise) data store, provide either whole or a subset of data in which the end user of the mobile application is interested.

	
Provide functionality that is too computationally intensive for the mobile device's resources. This could be due to either the actual amount of work the device would need to perform, or the fact that the functionality is based on a much larger data set than the one that is locally available on the device.

The following scenarios of the web service usage demonstrate the data access (scenario 1) as well as computational and data-driven functionality (scenario 2 and 3):

	
Fetch a set of Opportunity data from the enterprise data store to enable the end user to manipulate it on the device, and then post changes back to the enterprise data store through the web service.

	
Request a report be generated on some enterprise data, and then fetch the report.

	
Obtain a map image of a route to a customer site.

9.2 Creating a Web Service Data Control

The most common way of using web services in an application feature developed with ADF Mobile is to create a data control for a web service.

For more information about web service data controls and their usage, see the following:

	
"What You May Need to Know About Web Service Data Controls" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
"Data Controls in Fusion Web Applications" appendix in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Section 6.3.2.4, "Adding Data Controls to the View"

	
"Using the Data Controls Panel" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

9.2.1 How to Create a Web Service Data Control Using SOAP

JDeveloper lets you create a data control for an existing SOAP web service using only the Web Services Description Language (WSDL) file for the service. You can either browse to a WSDL file on the local file system, locate one in a Universal Description, Discovery and Integration (UDDI) registry, or enter the WSDL URL directly.

	
Note:

If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

To create a SOAP web service data control:

	
In the Application navigator, right-click the application name, and then select File > New from the main JDeveloper menu.

	
In the New Gallery dialog, expand the Business Tier node on the left and select Web Services. From the Items list on the right select Web Service Data Control (SOAP/REST) (see Figure 9-1), and then click OK.

Figure 9-1 Creating a New SOAP Web Service Data Control

[image: Creating a New Web Service Data Control]

	
On the Data Source page of the Create Web Service Data Control wizard, select SOAP.

	
Follow the wizard instructions to complete creation of the data control.

	
Note:

ADF Mobile supports the following encoding styles for both SOAP 1.1 and 1.2 versions:

	
Document/literal

	
Document/wrapped

	
RPC

After the web service data control has been created, the web service operations and return values of the operations are displayed in the Data Control palette allowing you to drag and drop the objects returned by the web service operations as appropriate ADF Mobile AMX UI components in the page. For more information, see Section 6.3.2.4, "Adding Data Controls to the View." When data returned from a web service operation is displayed, the following object types are handled:

	
Collections.

	
Complex objects returned by a web service operation.

	
Nested complex objects returned by a web service operation.

Using a web service operation, both standard and complex data types can be updated and deleted.

9.2.2 How to Customize SOAP Headers in Web Service Data Controls

ADF Mobile allows you to specify a custom provider class in your DataControls.dcx file. This custom class extends oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider. You can use it to specify an implementation of the SoapHeader[] getAdditionalSoapHeaders() method

Example 9-1 shows how to extend the SOAPProvider and create a custom header demonstrated in Example 9-2

Example 9-1 Defining Custom SOAP Headers

package provider.ebs.soap;

import oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider;
import oracle.adfinternal.model.adapter.webservice.provider.soap.SoapHeader;

public class EBSSOAPProvider extends SOAPProvider {

public SoapHeader[] getAdditionalSoapHeaders() {
 SoapHeader header[] = new SoapHeader[2];
 SoapHeader token = null;
 SoapHeader user = null;
 SoapHeader pass = null;

 header[0] = new SoapHeader("http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "SOAHeader");
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "Responsibility",
 "SYSTEM_ADMINISTRATOR"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "RespApplication",
 "SYSADMIN"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "SecurityGroup",
 "STANDARD"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "NLSLanguage",
 "AMERICAN"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "Org_Id",
 "0"));

 header[1] = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Security");
 token = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "UsernameToken");
 user = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Username",
 "sysadmin");
 pass = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Password",
 "sysadmin");

 header[1].addChild(token);
 token.addChild(user);
 token.addChild(pass);

 return header;
 }
}

Example 9-2 shows the new custom header.

Example 9-2 SOAP Header

<soap:Header xmlns:ns1="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/">
 <ns1:SOAHeader>
 <ns1:Responsibility>SYSTEM_ADMINISTRATOR</ns1:Responsibility>
 <ns1:RespApplication>SYSADMIN</ns1:RespApplication>
 <ns1:SecurityGroup>STANDARD</ns1:SecurityGroup>
 <ns1:NLSLanguage>AMERICAN</ns1:NLSLanguage>
 <ns1:Org_Id>0</ns1:Org_Id>
 </ns1:SOAHeader>
 <wsse:Security xmlns:wsse=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 soap:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsse=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password Type=
 http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-username-token-profile-1.0#PasswordText">sysadmin</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</soap:Header>

@return

	
Note:

You cannot specify dynamic SOAP headers using ADF Mobile.

9.2.3 How to Create a Web Service Data Control Using REST

JDeveloper lets you create a data control for an existing REST web service.

	
Note:

If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

You can associate a REST web service data control with one or more HTTP methods using the same connection. You should be able to access custom operations exposed by a REST service. These custom operations map to one of the HTTP methods and allow you to create a data control to expose these custom operations on the client.

To use security and notifications functionality on mobile devices, you can add custom headers and custom values to standard HTTP headers for use with specific operations exposed by the REST data control.

Before you begin:

Ensure that you have access to the REST web service that the data control is to access.

To create a REST web service data control:

	
In the Application navigator, right-click the application name, and then select File > New from the main JDeveloper menu.

	
In the New Gallery dialog, expand the Business Tier node on the left and select Web Services. From the Items list on the right select Web Service Data Control (SOAP/REST) (see Figure 9-1), and then click OK.

	
On the Data Source page of the Create Web Service Data Control wizard, select REST, as Figure 9-2 shows.

Figure 9-2 Defining Data Source for REST Web Service Data Control

[image: Defining Data Source for REST Web Service Data Control]

	
Follow the Create Web Service Data Control wizard instructions to complete creation of the data control, keeping in mind the following:

	
ADF Mobile supports only basic authentication for web services (see Section 9.5, "Accessing Secure Web Services"). When creating a new connection, select Basic in the Authentication Type field on the Create URL Connection dialog.

	
ADF Mobile supports all HTTP method types: GET, POST, PUT, and DELETE. You can select any of these method types when completing the Method Display Name fields on the Resources page, as Figure 9-3 shows.

	
Note:

You can include all four methods using the same connection and the same REST web service data control.

Figure 9-3 Defining Resources for REST Web Service Data Control

[image: Defining Resources for REST Web Service Data Control]

	
ADF Mobile does not support the delimiter separated values in the spread sheet data and the XSL for the XML data formats.

	
By specifying a local XSD file for the REST web service data control definition, you create a file URI reference for the fields that identify schema on the Method Details page, as Figure 9-4 shows.

Figure 9-4 Defining Method Details for REST Web Service Data Control

[image: Defining Resources for REST Web Service Data Control]

	
Note:

Since ADF Mobile creates internal definitions for the XSD structures at compile time, the XSD should not change after the application has been compiled. Therefore, it is recommended to reference the XSD file locally. Using the remote XSD negatively affects performance because ADF Mobile retrieves the XSD with each run of the application.

After the REST web services data control has been created by following the preceding steps, it behaves identically to its Oracle ADF counterpart.

An ADF Mobile sample application called RESTDemo (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer) demonstrates how to use REST web services in an ADF Mobile application.

For information on how to use REST web services through Java bypassing data controls, see Section 9.6.2, "How to Use REST Web Services Adapter."

9.3 Creating a New Web Service Connection

The connection information for the web service is stored in the connections.xml file along with the other connections in your application. You do not need to explicitly create this file, as it is generated in the.adf/META-INF directory by the New Web Service Data Control wizard at the time when the web service data control is created (see Section 9.2, "Creating a Web Service Data Control").

You modify the connection settings by editing the connections.xml file.

9.4 Adjusting the Endpoint for a Web Service Data Control

After creating a web service data control, you can modify the endpoint of the URI. This is useful in such cases as when you migrate the feature from a test to production environment.

You modify the endpoint by editing the connections.xml file.

9.5 Accessing Secure Web Services

ADF Mobile supports both secured and unsecured web services, as well as basic authentication (BASIC_AUTH) over HTTP and HTTPS.

For more information, see the following:

	
Section 18.3, "Introduction to Authentication"

	
Chapter 18, "ADF Mobile Application Security"

	
Section about configuring policies in Oracle Fusion Middleware Administering Web Services

To access secured web services from your ADF Mobile application, you may need to configure web service data controls included in the application.

9.5.1 How to Enable Access to SOAP-Based Web Services

The following security policies are supported for SOAP-based web services:

	
oracle/wss_http_token_client_policy

	
oracle/wss_http_token_over_ssl_client_policy

	
oracle/http_basic_auth_over_ssl_client_policy

	
oracle/wss_username_token_client_policy

	
oracle/wss_username_token_over_ssl_client_policy

If a SOAP web service is secured, you can access it by configuring the web service data control with either oracle/wss_http_token_over_ssl_client_policy or oracle/wss_http_token_client_policy. To do so, use the Edit Data Control Policies dialog that Figure 9-5 shows. You can open this dialog as follows:

	
In the Navigator, select the .dcx file located in the application's View Controller project.

	
In the Structure pane, right-click the web service data control that you would like to configure, and then select Define Web Service Security from the context menu.

Figure 9-5 Editing Web Service Data Control Policies

[image: Editing Web Service Data Control Policies]

9.5.2 How to Enable Access to REST-Based Web Services

Since only one security policy is supported for REST-based web services, ADF Mobile automatically adds oracle/wss_http_token_over_ssl_client_policy for REST web service over HTTPS, or oracle/wss_http_token_client_policy for REST web service over HTTP protocol to enable Oracle Web Services Manager (OWSM) Lite Mobile ADF Application Agent to inject a proper security header.

9.5.3 What You May Need to Know About Credential Injection

For secured web services, the user credentials are dynamically injected into a web service request at the time when the request is invoked. This process is similar for SOAP and REST web services.

ADF Mobile uses Oracle Web Services Manager (OWSM) Lite Mobile ADF Application Agent to create and configure proxies, as well as to request services through the proxies. The user credentials are injected into the OWSM enforcement context when proxies are configured. The credential injection is handled by OWSM proxies. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Web Services Manager.

Before web services are invoked, the user must respond to an authentication prompt triggered by the user trying to invoke a secured ADF Mobile application feature or to start the application controlled by the access control service (ACS). In the latter case, the application must define a default login server with ACS URL, as well as to have at least one feature with a constraint that depends on the user.roles setting. The user credentials are stored in a credential store—a device-native and local repository used for storing credentials associated with the authentication provider's server URL and the user. At run time, ADF Mobile assumes that all credentials have already been stored in the IDM Mobile credential store before the time of their usage.

ADF Mobile supports authentication against the web service endpoint URL only. In the connections.xml file, you have to specify the login server connection's adfCredentialStoreKey attribute value in the adfCredentialStoreKey attribute of the web service connection reference in order to associate the login server to the web service security (see Example 9-3 and Example 9-4).

	
Note:

Since JDeveloper does not provide an Overview editor for the connections.xml file, you can use the Property editor to update the <Reference> element's adfcredentialStoreKey attribute with the name configured for the adfCredentialStoreKey attribute of the login server connection. Alternatively, you can add or update the attribute using the Source editor.

Example 9-3 shows the definition of the web service connection referenced as adfCredentialStoreKey="MyAuth", where MyAuth is the name of the login connection reference.

Example 9-3 Defining the Web Service Connection

<Reference name="URLConnection1"
 className="oracle.adf.model.connection.url.HttpURLConnection"
 adfCredentialStoreKey="MyAuth"
 xmlns="">
 <Factory className="oracle.adf.model.connection.url.URLConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="URLConnection1">
 <Contents>
 <urlconnection name="URLConnection1"
 url="http://myhost.us.example.com:7777/
 SecureRESTWebService1/Echo">
 <authentication style="challange">
 <type>basic</type>
 <realm>myrealm</realm>
 </authentication>
 </urlconnection>
 </Contents>
 </XmlRefAddr>
 <SecureRefAddr addrType="username"/>
 <SecureRefAddr addrType="password"/>
 </RefAddresses>
</Reference>

Example 9-4 shows the definition of the login connection, where MyAuth is used as the credential store key value in the login server connection.

Example 9-4 Defining the Login Connection

<Reference name="MyAuthName"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="MyAuth"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://172.31.255.255:7777/
 SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <logout url="http://172.31.255.255:7777/
 /SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <accessControl url="http://myhost.us.example.com:7777/
 UserObjects/jersey/getUserObjects" />
 <idleTimeout value="10"/>
 <sessionTimeout value="36000"/>
 <cookieNames>
 <cookie name="JSESSIONID"/>
 </cookieNames>
 <userObjectFilter>
 <role name="testuser1_role1"/>
 <role name="testuser2_role1"/>
 <privilege name="testuser1_priv1"/>
 <privilege name="testuser2_priv1"/>
 <privilege name="testuser2_priv2"/>
 </userObjectFilter>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

If a web service request is rejected due to the authentication failure, ADF Mobile returns an appropriate exception and invokes an appropriate action (see Section 19.4, "Using and Configuring Logging"). If none of the existing exceptions correctly represent the condition, a new exception is added.

The connections.xml file is deployed and managed under the Configuration Service. For more information, see Chapter 10, "Administering Web Services."

connections.xml files in FARs are aggregated when the ADF Mobile application is deployed. The credentials represent deployment-specific data and are not expected to be stored in FARs.

9.5.4 Limitations of Secure WSDL File Usage

Since an ADF Mobile application must make a WSDL file accessible at run time without authentication, you cannot use a secure WSDL file with a SOAP web service secured by the basic authentication.

If your intention is to secure the WSDL, consider the following: since the WSDL file is fetched by the GET method of the web service, if you secure each web service method, except the GET method, you can use a secure WSDL. If you secure the GET method, you should not secure the WSDL.

9.6 Invoking Web Services From Java

In your ADF Mobile application, you can invoke the web services layer (both REST and SOAP) from the Java code and use the results in Java methods.

ADF Mobile provides the GenericTypeBeanSerializationHandler utility class that you can use to perform conversions between POJOs (JavaBeans objects) and ADF Mobile's GenericType objects based on the following set of conversion rules:

	
When converting from POJO to GenericType objects:

	
Standard JavaBeans reflection rules are used for determining properties.

	
Transient properties are ignored in the conversion process.

	
Readable properties are converted into a GenericType attribute.

	
Array properties are represented as repeated attributes in the GenericType.

	
Map properties are represented as individual attributes in the GenericType.

	
Non-primitive properties are represented as nested GenericType objects.

	
When converting from GenericType objects to POJO:

	
Standard JavaBeans reflection rules are used for determining properties.

	
Transient properties are ignored in the conversion process.

	
Writable properties are converted from GenericType attributes.

	
Repeated attributes in the GenericType are converted into an array object.

	
If the POJO implements the Map interface, then any properties that cannot be set through standard accessors are set in the POJO through the set method of the Map.

	
Non-primitive attributes are represented as nested POJO objects.

The advantage of using this helper API is that it allows you to take the response received from a web service and convert it to a JavaBean in a single call.

For example, a web service passes back and forth an Employee object that needs to be reused throughout the business logic. This object has the following set of properties:

	
name of type String

	
address: a complex object with street, city, state, and zipcode attributes

	
id of type long

	
salary of type float

	
phone of type String, and there could be more than one phone

	
password of type String, and the password should never be transmitted to the back-end web service

Example 9-5 shows a potential code for the Employee object.

Example 9-5 Employee Object

public class Employee {

 protected String name;
 protected Address address;
 protected long id;
 protected float salary;
 protected String[] phone;
 protected transient String password;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

 public float getSalary() {
 return salary;
 }

 public void setSalary(float salary) {
 this.salary = salary;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String[] getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

Example 9-6 shows the potential code for the Address object of the Employee class.

Example 9-6 Address Object

public class Address {

 protected String street;
 protected String city;
 protected String state;
 protected String zipcode;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getZipcode() {
 return zipcode;
 }

 public void setZipcode(String zipcode) {
 this.zipcode = zipcode;
 }

Keeping in mind the conversion rules, note the following:

	
Since the password is defined as transient, it is ignored with respect to the conversion algorithm.

	
Since name, address, id, and salary all have get and set methods, they will all be converted to and from the GenericType.

	
Based on the property type, properties can be coerced between types, as defined in the coerceToType(Object, Class) method of the oracle.adfmf.misc.Converter class.

	
Complex objects, such as address, are recursed by the conversion algorithm to either build the child GenericType or to create and populate the POJO complex object depending on the direction of the conversion.

	
Since phone is an array of String objects each representing a unique phone number and since the cardinality of this element is greater than one, the conversion algorithm will find all matches of the phone attribute in the GenericType object, present them as an array, and invoke the setPhone method on the bean. The toGenericType method of the GenericTypeBeanSerializationHandler will take each array element and append it to the toGenericType as an individual phone attribute.

With the following defined:

final String EMPLOYEE_VIRTUAL_BEAN_NAME = "EmployeeDC.Types.Employee";
Employee emp = getEmployee();
GenericType gt = null;

	
The Employee object is converted to the GenericType as:

gt = GenericTypeBeanSerializationHelper.toGenericType
 (EMPLOYEE_VIRTUAL_BEAN_NAME, emp);

	
The GenericType is converted to the Employee object as:

emp = GenericTypeBeanSerializationHelper.fromGenericType
 (Employee.class, gt, null);

For successful conversion, consider the following:

	
Typically, POJOs closely follow their associated GenericType structure.

	
When deviating from the GenericType structure, one of the following strategies should be followed:

	
Additional bean properties should be declared transient.

	
Optional properties can be excluded from the POJO, provided that the backing service can handle the missing data if used as an operation parameter.

	
The GenericType is only exposed in SOAP data controls. The virtual types have an associated virtual bean name that is passed into the toGenericType method. You can access the virtual bean name by hovering over the virtual type in the Data Controls window of JDeveloper. The typical name format is <DCName>.Types.<methodName>.<argName>.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

9.6.1 How to Add and Delete Rows on Web Services Objects

ADF Mobile allows you to insert and delete rows from a web services object programmatically by accessing the iterator on that object. To do so, you use the createRow and deleteRow methods of the oracle.adfmf.bindings.iterator.BasicIterator class.

Example 9-7 shows how to add a row to a web services object.

Example 9-7 Inserting a Row

String keyFieldNames[] = {"EMPLID","ACAD_CAREER","INSTITUTION"};
String keyFieldValues[] = {"SR12030","UGRD","PSUNV"};
AmxAccessorIteratorBinding acIter =
 (AmxAccessorIteratorBinding)((AdfmfJavaUtilities.getValueExpression
 ("#{bindings.KEYIterator}", Object.class))
 .getValue(AdfmfJavaUtilities.getAdfELContext()));

BasicIterator iter = acIter.getIterator();
GenericType key = (GenericType)iter.getDataProvider();
key.setAttribute("FIELDNAME", keyFieldNames[0]);
key.setAttribute("FIELDVALUE", keyFieldValues[0]);

int totalRowCount = 0;
int currIndex = 0;

for (int i = 1; i < keyFieldNames.length; i++) {
 totalRowCount = iter.getTotalRowCount();
 currIndex = iter.getCurrentIndex();

 System.out.println("Starting to add rows.. \n\t Total Row Count: " +
 totalRowCount + "\n\t Current Row Index: " + currIndex);

 // Create rows for key iterator
 iter.createRow();

 totalRowCount = iter.getTotalRowCount();
 System.out.println("\t Total Row Count after creating row: " + totalRowCount);

 if (iter.hasNext()) {
 iter.next();
 }

 currIndex = iter.getCurrentIndex();
 System.out.println("\t Current Row Index after setting current
 index to newly added row: " + currIndex);

 GenericType key1 = (GenericType)iter.getDataProvider();
 key1.setAttribute("FIELDNAME", keyFieldNames[i]);
 key1.setAttribute("FIELDVALUE", keyFieldValues[i]);
}

// Execute method

// Add call to execute the action binding to execute the action.
// If this is a web service call, the modified GenericType object
// will be sent to the server and the server will respond appropriately

	
Note:

The createRow method signatures are available with and without a boolean input parameter. When this method is used without parameters, it produces the result identical to using the createRow with its boolean parameter value set to true: both createRow() and createRow(true) create a new row and insert it in the iterator.

9.6.2 How to Use REST Web Services Adapter

You can use the RestServiceAdapter interface to access data (that could be presented as JavaScript Object Notation, for example) sent across a REST call. The RestServiceAdapter interface lets you trigger execution of web service operations without the need to create a web service data control or interact with it directly.

To use the RestServiceAdapter interface in your ADF Mobile application, ensure that the connection exists in the connections.xml file (see Section 9.3, "Creating a New Web Service Connection"), and then add your code to the bean class, as the following examples show.

Example 9-8 demonstrates the use of the RestServiceAdapter for the GET request.

Example 9-8 Using RestServiceAdapter for GET Request

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

// Clear any previously set request properties, if any
restServiceAdapter.clearRequestProperties();

// Set the connection name
restServiceAdapter.setConnectionName("RestServerEndpoint");

// Specify the type of request
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET);

// Specify the number of retries
restServiceAdapter.setRetryLimit(0);

// Set the URI which is defined after the endpoint in the connections.xml.
// The request is the endpoint + the URI being set
restServiceAdapter.setRequestURI("/WebService/Departments/100");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For GET request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

Example 9-9 demonstrates the use of the RestServiceAdapter for the POST request.

Example 9-9 Using RestServiceAdapter for POST Request

String id = "111";
String name = "TestName111";
String location = "TestLocation111";
RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_POST);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String postData = makeDepartmentPost("DEPT", id, name, location);
 response = restServiceAdapter.send(postData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPost(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";
 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

Example 9-10 demonstrates the use of the RestServiceAdapter for the PUT request.

Example 9-10 Using RestServiceAdapter for PUT Request

String id = "111";
String name = "TestName111";
String location = "TestLocation111";
RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_PUT);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String putData = makeDepartmentPut("DEPT", id, name, location);
 response = restServiceAdapter.send(putData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPut(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";
 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

Example 9-11 demonstrates the use of the RestServiceAdapter for the DELETE request.

Example 9-11 Using RestServiceAdapter for DELETE Request

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_DELETE);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments/44");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For DELETE request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

System.out.println("The response is: " + response);

When you use the RestServiceAdapter, you should set the Accept and Content-Type headers to ensure that your request and response payloads are not deemed invalid due to mismatched MIME type.

	
Note:

The REST web service adapter only supports UTF-8 character set on mobile applications. UTF-8 is embedded in the adapter program.

9.6.2.1 Support for Non-Text Responses

You can use the RestServiceAdapter to handle binary (non-text) responses received from web service calls. These responses can include any type of binary data, such as PDF or video files. The RestServiceAdapter method to use is sendReceive.

Example 9-12 shows how to send a request for a file to a REST server, and then save the file to a disk (see Example 9-13).

Example 9-12 Sending Request for File

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("JagRestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/ftaServer/v1/kpis/123/related/1");

// Set credentials needed to access the REST server
String theUsername = "hr_spec_all";
String thePassword = "Welcome1";
String userPassword = theUsername + ":" + thePassword;
String encoding = new sun.misc.BASE64Encoder().encode(userPassword.getBytes());

restServiceAdapter.addRequestProperty("Authorization", "Basic " + encoding);

// Execute the SEND / RECEIVE operation.
// Since it is a GET request, there is no payload.
try {
 this.responseRaw = restServiceAdapter.sendReceive("");
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + this.responseRaw);

// Write the response to a file
writeByteArrayToFile(this.responseRaw);

Example 9-13 demonstrates a method that is called by the code from Example 9-12. This method saves a byte[] response to a file on disk:

Example 9-13 Saving File to Disk

public void writeByteArrayToFile(byte[] fileContent) {
 BufferedOutputStream bos = null;
try {
 FileOutputStream fos = new FileOutputStream(new File(fileToSavePath));
 bos = new BufferedOutputStream(fos);

 // Write the byte [] to a file
 System.out.println("Writing byte array to file");
 bos.write(fileContent);
 System.out.println("File written");
}
catch(FileNotFoundException fnfe) {
 System.out.println("Specified file not found" + fnfe);
}
catch (IOException ioe) {
 System.out.println("Error while writing file" + ioe);
}
finally {
 if(bos != null) {
 try {
 // Flush the BufferedOutputStream
 bos.flush();

 // Close the BufferedOutputStream
 bos.close();
 }
 catch (Exception e) {
 }
 }
}

9.6.3 How to Enable Strict Validation of REST Responses

Using the adfmf-config.xml file, you can specify how ADF Mobile is to behave when a REST response contains a child or attribute that is not expected or defined in the XSD:

	
If the strict validation is enabled, ADF Mobile throws an exception.

	
If the strict validation is disabled, the condition is logged and the execution continues without exceptions thrown.

Example 9-14 shows how to set the validated parameter. If you define the value of this parameter as true, the validation proceeds as strict. The value of false (default) means that the validation is not strict.

Example 9-14 Enabling Strict Validation of REST Response

<generic-type>
 <conversion>
 <validated>true</validated>
 </conversion>
</generic-type>

9.6.4 What You May Need to Know About Invoking Data Control Operations

You can use the invokeDataControlMethod method of the AdfmfJavaUtilities to invoke a data control operation which does not have to be explicitly added as a methodAction in a PageDef file.

For more information and examples, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

10 Administering Web Services

This chapter describes how to use the Configuration Service to administer web services within an ADF Mobile application.

This chapter includes the following sections:

	
Section 10.1, "Introduction to Administering Web Services"

	
Section 10.2, "Using the Configuration Service"

10.1 Introduction to Administering Web Services

Web services are administered through the use of the ADF Mobile Configuration Service—a tool that enables applications already deployed to mobile devices to have their endpoints updated.

10.2 Using the Configuration Service

Using the Configuration Service provided by ADF Mobile, administrators can update web service connection endpoints for different ADF Mobile applications from a server, resulting in users obtaining a new connection. This is done by hosting and updating one or more connections.xml files for the application. The Configuration Service can be initiated every time the application starts by setting a parameter in the adf-config.xml file or by using the container utilities API to check for a new connection (see Section B.2.3, "checkforNewConfiguration").

Administrators should designate connections.xml files as resources protected by basic authentication (see Chapter 18, "ADF Mobile Application Security").

A client application can use the Configuration Service to check for updates.

The Configuration Service dialog allows you to do the following:

	
Update the Configuration Service URL and save the update for this application.

You can seed the Configuration Service URL with a URL value that assists in completing the Configuration Service dialog (see Example 10-1).

The following files must be present at the Configuration Service URL:

	
connections.xml

	
adf-config.xml

	
adfmf-config.xml

The files are retrieved from the Configuration Service in that order. These files should be accessed through the Configuration Service as opposed to directly through the application bundle. For more information, see Section 10.2.2, "What You May Need to Know About the URL Construction."

	
Enter the user name and password, which are saved in the keystore.

Administrators can use a setting in the adf-config.xml file for the application to define whether or not to call the Configuration Service at the application startup time (see Example 10-1). If the application starts for the first time, the dialog is displayed and the credentials are cached in the keystore. On subsequent starts (not including resume), you need to instruct your application to check for modifications against the server and to trigger the display of the Configuration Service dialog. ADF Mobile provides an API whereby you can specify a place in the application where the check for updates should be performed and against which the client API should be called to invoke the Configuration Service dialog. After the update, the application should run correctly (and be restarted if necessary).

Example 10-1 shows the use of the use-configuration-service-at-startup property, whose default value is false. Two additional properties can be defined in the adf-config.xml file to control behavior related to the Configuration Service: the adfmf-configuration-service-seed-url property can be specified to provide a static URL address with which to seed the URL presented in the Configuration Service dialog. Alternatively, the adfmf-configuration-service-seed-url-preference property can be specified to reference an application Preference (defined in the adfmf-application.xml file), in which case the Configuration Service dialog will use the value of the specified Preference as the seed value (see Section 13.5, "Creating a Preference for the Configuration Service URL").

Example 10-1 Configuration Service Settings in adf-config.xml File

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="use-configuration-service-at-startup" value="true" />
 <adf-property name="adfmf-configuration-service-seed-url"
 value="http://myhost.us.example.com:7777/
 ConfigServerWebDavFolder/" />
</adf:adf-properties-child>

The Configuration Service performs the following steps when the application starts:

	
It starts at the application startup time.

	
It checks the Documents directory for a copy of the managed files. If they are found, the Configuration Service finishes its process.

If the Configuration Service does not locate configuration files in the Documents directory, the following takes place:

	
If the adf-config.xml file indicates that the Configuration Service is not in use, then the Configuration Service copies the managed files from the application bundle to the Documents directory managed folder, and then the Configuration Service finishes its process.

	
If the adf-config.xml file indicates that the Configuration Service is in use, then the Configuration Service tries to download the managed files in the order they are listed.

	
It checks for stored credentials from the secure store. If the credentials are found and they provide access to the Configuration Server, then the connections.xml file is downloaded and placed in the Documents directory managed folder, and at this point the Configuration Service finishes its process.

If the credentials are not found or the stored credentials fail to provide access to the Configuration Server, the user is prompted for the connection information (user name, password, and endpoint URL).

	
The Configuration Service reattempts the prompt or download five times before failing and dropping out of the application.

	
After a successful connection has been made to the Configuration Server, the connections.xml file is downloaded and the connection information is stored for later use.

Figure 10-1 shows the Configuration Service prompt dialog on an iPhone.

Figure 10-1 Configuration Service Dialog on iPhone

[image: Configuration Service Dialog on iPhone]

10.2.1 How to Set Up the Configuration Service on the Server

The Configuration Service can be implemented as a Web Distributed Authoring and Versioning service (WebDAV) or as a service that accepts HTTP GET request and returns the connections.xml file.

The URL used by the Configuration Service client is of the following format:

url configured in adf-config.xml/application bundle id/connections.xml

The Configuration Service endpoint may be secured using basic authentication (BASIC_AUTH) over HTTP and HTTPS.

10.2.2 What You May Need to Know About the URL Construction

The URL to each of the Configuration Service-managed resources is constructed. It contains the application ID and the file name as follows:

If the user provides the URL of http://my.server.com:port/SomeLocation and the application ID of com.mycompany.appname, the following three URLs will be used to download the configuration files:

http://my.server.com:port/SomeLocation/com.mycompany.appname/connections.xml
http://my.server.com:port/SomeLocation/com.mycompany.appname/adf-config.xml
http://my.server.com:port/SomeLocation/com.mycompany.appname/adfmf-config.xml

11 Using the Local Database

This chapter describes how to use the local SQLite database with an ADF Mobile application.

This chapter includes the following sections:

	
Section 11.1, "Introduction to the Local SQLite Database Usage"

	
Section 11.2, "Using the Local SQLite Database"

11.1 Introduction to the Local SQLite Database Usage

SQLite is a relational database management system (RDBMS) specifically designed for embedded applications.

SQLite has the following characteristics:

	
It is ACID-compliant: like other traditional database systems, it has the properties of atomicity, consistency, isolation, and durability.

	
It is lightweight: the entire database consists of a small C library designed to be embedded directly within an application.

	
It is portable: the database is self-contained in a single file that is binary-compatible across a diverse range of computer architectures and operating systems.

For more information, see the SQLite website at http://www.sqlite.org.

For a sample usage of the local SQLite database, see an ADF Mobile sample application called HR whose data is based on the default HR schema that is provided with all Oracle databases. The data is stored in a local SQLite database and persisted between each startup. The HR application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples directory on your development computer

11.1.1 Differences Between SQLite and Other Relational Databases

SQLite is designed for use as an embedded database system, one typically used by a single user and often linked directly into the application. Enterprise databases, on the other hand, are designed for high concurrency in a distributed client-server environment. Because of these differences, there is a number of limitations compared to Oracle databases. Some of the most important differences are:

	
Concurrency

	
SQL Support and Interpretation

	
Data Types

	
Foreign Keys

	
Database Transactions

	
Authentication

For more information, see the following:

	
Documentation section of the SQLite website at http://www.sqlite.org/docs.html

	
"Limits In SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/limits.html

11.1.1.1 Concurrency

At any given time, a single instance of the SQLite database may have either a single read-write connection or multiple read-only connections.

Due to its coarse-grained locking mechanism, SQLite does not support multiple read-write connections to the same database instance. For more information, see "File Locking And Concurrency In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/lockingv3.html.

11.1.1.2 SQL Support and Interpretation

Although SQLite complies with the SQL92 standard, there are a few unsupported constructs, including the following:

	
RIGHT OUTER JOIN

	
FULL OUTER JOIN

	
GRANT

	
REVOKE

For more information, see "SQL Features That SQLite Does Not Implement" available from the Documentation section of the SQLite website at http://www.sqlite.org/omitted.html.

For information on how SQLite interprets SQL, see 'SQL As Understood by SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/lang_createtable.html.

11.1.1.3 Data Types

While most database systems are strongly typed, SQLite is dynamically typed and therefore any value can be stored in any column, regardless of its declared type. SQLite does not return an error if, for instance, a string value is mistakenly stored in a numeric column. For more information, see "Datatypes In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/datatype3.html.

11.1.1.4 Foreign Keys

SQLite supports foreign keys. It parses and enforces foreign key constraints. For more information, see the SQLite Foreign Key Support available from the Documentation section of the SQLite site at http://www.sqlite.org/foreignkeys.html.

11.1.1.5 Database Transactions

Although SQLite is ACID-compliant and hence supports transactions, there are some fundamental differences between its transaction support and Oracle's:

	
Nested transactions: SQLite does not support nested transactions. Only a single transaction may be active at any given time.

	
Commit: SQLite permits either multiple read-only connections or a single read-write connection to any given database. Therefore, if you have multiple connections to the same database, only the first connection that attempts to modify the database can succeed.

	
Rollback: SQLite does not permit a transaction to be rolled back until all open ResultSets have been closed first.

For more information, see "Distinctive Features of SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/different.html.

11.1.1.6 Authentication

SQLite does not support any form of role-based or user-based authentication. By default, anyone can access all of the data in the file. However, ADF Mobile provides encryption routines that you can use to secure the data and prevent access by users without the valid set of credentials.

11.2 Using the Local SQLite Database

ADF Mobile contains an encrypted SQLite 3.7.9 database.

A typical SQLite usage requires you to know the following:

	
How to Connect to the Database

	
How to Use SQL Script to Initialize the Database or How to Initialize the Database on a Desktop

	
How to Encrypt and Decrypt the Database

11.2.1 How to Connect to the Database

Connecting to the SQLite database is somewhat different from opening a connection to an Oracle database. That said, once you have acquired the initial connection, you can use most of the same JDBC APIs and SQL syntax to query and modify the database.

You use the java.sql.Connection object associated with your application to connect to the SQLite database. When creating the connection, ensure that every SQLite JDBC URL begins with the text jdbc:sqlite:.

Example 11-1 shows how to open a connection to an unencrypted database.

Example 11-1 Connecting to Unencrypted Database

java.sql.Connection connection = new SQLite.JDBCDataSource
 ("jdbc:sqlite:/path/to/database").getConnection();

Example 11-2 shows how to open a connection to an encrypted database.

Example 11-2 Connecting to Encrypted Database

java.sql.Connection connection = new SQLite.JDBCDataSource
 ("jdbc:sqlite:/path/to/database").getConnection(null,"password");

In the preceding example, the first parameter of the getConnection method is the user name, but since SQLite does not support user-based security, this value is ignored.

	
Note:

SQLite does not display any error messages if you open an encrypted database with an incorrect password. Likewise, you are not alerted if you mistakenly open an unencrypted database with a password. Instead, when you attempt to read or modify the data, an SQLException is thrown with the message "Error: file is encrypted or is not a database".

11.2.2 How to Use SQL Script to Initialize the Database

Typically, you can use an SQL script to initialize the database when the application starts. Example 11-3 shows the SQL initialization script that demonstrates some of the supported SQL syntax (described in Section 11.1.1.2, "SQL Support and Interpretation") through its use of the DROP TABLE, CREATE TABLE, and INSERT commands and the NUMBER and VARCHAR2 data types.

Example 11-3 SQL Initialization Script

DROP TABLE IF EXISTS PERSONS;

CREATE TABLE PERSONS
(
PERSON_ID NUMBER(15) NOT NULL,
FIRST_NAME VARCHAR2(30),
LAST_NAME VARCHAR2(30),
EMAIL VARCHAR2(25) NOT NULL
);

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (100, 'David', 'King', 'steven@king.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (101, 'Neena', 'Kochhar', 'neena@kochhar.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (102, 'Lex', 'De Haan', 'lex@dehaan.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (103, 'Alexander', 'Hunold', 'alexander@hunold.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (104, 'Bruce', 'Ernst', 'bruce@ernst.net');

To use the SQL script, add it to the ApplicationController project of your ADF Mobile application as a resource. Suppose a sample script has been saved as initialize.sql in the META-INF directory. Example 11-4 shows the code that you should add to parse the SQL script and execute the statements.

Example 11-4 Initializing Database from SQL Script

private static void initializeDatabaseFromScript() throws Exception {
 InputStream scriptStream = null;
 Connection conn = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.
 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // If the database does not exist, a new database is automatically
 // created when the SQLite JDBC connection is created
 conn = new SQLite.JDBCDataSource("jdbc:sqlite:" + docRoot +
 "/sample.db").getConnection();

 // To improve performance, the statements are executed
 // one at a time in the context of a single transaction
 conn.setAutoCommit(false);

 // Since the SQL script has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 scriptStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/initialize.sql");
 BufferedReader scriptReader = new BufferedReader
 (new InputStreamReader(scriptStream));
 String nextLine;
 StringBuffer nextStatement = new StringBuffer();

 // The while loop iterates over all the lines in the SQL script,
 // assembling them into valid SQL statements and executing them as
 // a terminating semicolon is encountered
 Statement stmt = conn.createStatement();
 while ((nextLine = scriptReader.readLine()) != null) {
 // Skipping blank lines, comments, and COMMIT statements
 if (nextLine.startsWith("REM") ||
 nextLine.startsWith("COMMIT") ||
 nextLine.length() < 1)
 continue;
 nextStatement.append(nextLine);
 if (nextLine.endsWith(";")) {
 stmt.execute(nextStatement.toString());
 nextStatement = new StringBuffer();
 }
 }
 conn.commit();
 }
 finally {
 if (conn != null)
 conn.close();
 }
}

	
Note:

In Example 11-4, the error handling was omitted for simplicity.

You invoke the database initialization code (see Example 11-4) from the start method of the LifeCycleListenerImpl, as Example 11-5 shows.

Example 11-5 Invoking Database Initialization Code

public void start() {
 try {
 initializeDatabaseFromScript();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

11.2.3 How to Initialize the Database on a Desktop

Because SQLite databases are self-contained and binary-compatible across platforms, you can use the same database file on iOS, Android, Windows, Linux, and Mac OS platforms. In complex cases, you can initialize the database on a desktop using third-party tools (such as MesaSQLite, SQLiteManager, and SQLite Database Browser), and then package the resulting file as a resource in your application.

To use the database, add it to the ApplicationController project of your ADF Mobile application as a resource. Suppose a database has been saved as sample.db in the META-INF directory. Example 11-6 shows the code that you should add to copy the database from your application to the mobile device's file system to enable access to the database.

Example 11-6 Initializing Database on Desktop

private static void initializeDatabase() throws Exception {
 InputStream sourceStream = null;
 FileOutputStream destinationStream = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.
 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // Since the database has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 sourceStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/sample.db");
 destinationStream = new FileOutputStream(dbName);
 byte[] buffer = new byte[1000];
 int bytesRead;
 while ((bytesRead = sourceStream.read(buffer)) != -1) {
 destinationStream.write(buffer, 0, bytesRead);
 }
 }
 finally {
 if (sourceStream != null)
 sourceStream.close();
 if (destinationStream != null)
 destinationStream.close();
 }
}

	
Note:

In Example 11-6, the error handling was omitted for simplicity.

You invoke the database initialization code (see Example 11-6) from the start method of the LifeCycleListenerImpl, as Example 11-7 shows.

Example 11-7 Invoking Database Initialization Code

public void start() {
 try {
 initializeDatabase();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

11.2.4 What You May Need to Know About Commit Handling

Commit statements are ignored when encountered. Each statement is committed as it is read from the SQL script. This auto-commit functionality is provided by the SQLite database by default. To improve your application's performance, you can disable the auto-commit to allow a regular execution of commit statements by using the Connection's setAutoCommit(false) method.

11.2.5 Limitations of the ADF Mobile's SQLite JDBC Driver

The following methods from the java.sql package have limited or no support in ADF Mobile:

	
The getByte method of the ResultSet is not supported. If used, this method will throw an SQLException when executed.

	
The execute method of the Statement always returns true (as opposed to returning true only for statements that return a ResultSet).

11.2.6 How to Use the VACUUM Command

When records are deleted from an SQLite database, its size does not change. This leads to fragmentation and, ultimately, results in degraded performance. You can avoid this by periodically running the VACUUM command.

	
Note:

The VACUUM can take a significant amount of time when run on large databases (approximately 0.5 seconds per megabyte on the Linux computer on which SQLite is developed). In addition, it can use up to twice as much temporary disk space as the original file while it is running.

Typically, the VACUUM command should be run from a properly registered LifeCycleListener implementation (see Section 5.7, "About Lifecycle Event Listeners.").

11.2.7 How to Encrypt and Decrypt the Database

ADF Mobile allows you to provide the SQLite database with an initial or subsequent encryption. To do so, you have to establish the database connection (see Section 11.2.1, "How to Connect to the Database"), and then use the following utility method to encrypt the database with a new key:

AdfmfJavaUtilities.encryptDatabase(connection, "newPassword");

	
Caution:

If you open a database incorrectly (for example, use an invalid password to open an encrypted database), and then encrypt it again, neither the old correct password, the invalid password, nor the new password can unlock the database resulting in the irretrievable loss of data.

In addition to encrypting, you can permanently decrypt the database. To do so, open the encrypted database with the correct password, and then use the following method:

AdfmfJavaUtilities.decryptDatabase(connection);

Part V

Advanced Topics

Describes how to enable the content derived from remote URLs to access native device controls, how to augment ADF Mobile applications with user preference pages, and how setting constraints can determine how ADF Mobile applications show or hide content. This part also describes how to enable push notifications.

Part V contains the following chapters:

	
Chapter 12, "Implementing Application Features as Remote URLs"

	
Chapter 13, "Enabling User Preferences"

	
Chapter 14, "Setting Constraints on Application Features"

	
Chapter 15, "Accessing Data on Oracle Cloud"

	
Chapter 16, "Push Notifications"

12 Implementing Application Features as Remote URLs

This chapter describes how application features with content from remote URLs can access (or be restricted from) device services.

This chapter includes the following sections:

	
Section 12.1, "Overview of Remote URL Applications"

	
Section 12.2, "Overview of Enabling Remote URL Implementations to Access Apache Cordova"

	
Section 12.3, "Enabling Remote Application to Access Device Services through Whitelists."

	
Section 12.4, "Creating Whitelists for Application Components."

	
Section 12.5, "Enabling the Browser Navigation Bar on Remote URL Pages"

12.1 Overview of Remote URL Applications

By configuring the content type for an application feature in the overview editor for the adfmf-feature.xml file as Remote URL as described in Section 5.10.1, "How to Define the Application Content," you create a browser-based application that is served from the configured URL. Such server-hosted applications differ from applications written in ADF Mobile AMX or a platform-specific language such as Objective-C in two ways: they are intended for occasional use and cannot access the device memory or services directly, as these interactions are contingent upon the capabilities of the device browser.

Browser-based applications targeted for smartphones may be authored using Apache Trinidad components (described at http://myfaces.apache.org/trinidad/) to enable proper rendering of display components on a variety of feature phones and smartphones. An application that runs on a tablet can be created in the same manner as an ADF desktop web application.

	
Note:

Oracle recommends using ADF Mobile browser for application features that derive their content from remote URLs. ADF Mobile browser applications are comprised of JSF pages populated with Apache Trinidad components. For more information, see Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework.

12.2 Overview of Enabling Remote URL Implementations to Access Apache Cordova

By default, access to such device capabilities as contacts or GPS (Global Positioning Services) are restricted to ADF Mobile applications implemented as a bundle of locally stored HTML pages or as ADF Mobile AMX. In the case of the latter, you can enable the application feature to access device capabilities by adding device data controls to an ADF Mobile AMX UI component. For more information, see in Section 8.5, "Using the DeviceFeatures Data Control." Remote URL implementations, however, can only access device-native controls through the Apache Cordova JavaScript APIs. As described in Appendix B, "Application Container APIs," a <script> tag that references the www/js/base.js libraries enables this access. These libraries are platform-specific, meaning that you must ensure that the content used for a remote URL application references the Apache Cordova library appropriate to the target platform.

12.3 Enabling Remote Application to Access Device Services through Whitelists

ADF Mobile supports the concept of whitelists, a registry of URLs that open within the application web view and can access various device services, such as GPS, a camera, or a file system. If a web page is not included on a whitelist (that is, it is not whitelisted), then ADF Mobile's Apache Cordova implementation opens a web page in the device browser (such as Safari) instead. Without whitelisting, a remote web page cannot open within a web view.

By default, the domains defined in the connections.xml file, the repository for all of the connections defined in the ADF Mobile application, are whitelisted automatically. These connections are defined using the Create URL Connection dialog, shown in Figure 12-4. ADF Mobile parses the domain from each of the connection strings and adds these domains to the whitelist.

Figure 12-1 Creating the Connection to Retrieve the Content of the Remote URL Application Feature

[image: Point to the application server URL.]

JDeveloper then populates the connections.xml file, located in the Application Resources panel, with the connections information and also creates the connection resources, such as oracle and connection 1 in Figure 12-2.

	
Note:

Only whitelisted domains open in the web view; all other (non-whitelisted) domains open in the device browser.

12.3.1 How to Control Access to Device Capabilities

By editing the adfmf-application.xml file, shown in Figure 12-2, you can restrict access to the Apache Cordova-enabled device services on a per-application feature basis. By default, all application features have such access, meaning that any whitelisted domain configured for the ADF Mobile application can also access the device. In addition to the domains that ADF Mobile includes from the connections.xml file, you can also whitelist domains using the Security page of the adfmf-application.xml file, as described in Section 12.3.2, "How to Create a Whitelist."

Figure 12-2 Editing <adfmf-FeatureReference> to Limit Domain Access

[image: Edit allowDeviceAccess attribute.]

The Source editor illustrated in Figure 12-2 shows the <adfmf-feature-reference> element populated with the allowDeviceAccess attribute. JDeveloper populates all application features with remote URL content with this attribute, which by default, is set to true. This default setting signifies that all URLs can access the Apache Cordova APIs.

Before you begin:

Using the overview editor for the adfmf-feature.xml file (located in the Application Navigator in the Project panel under the View Controller and META-INF nodes), you must designate the content for an application as Remote URL and then create the connection as described in Section 5.6.1, "How to Designate the Content for a Mobile Application."

Open the overview editor for the adfmf-application.xml file by double-clicking the adfmf-application.xml file (located Application Resources panel under the Resources and ADF META-INF nodes, as shown in Figure 12-2).

You can use the Source editor, Structure Window, and the Properties editor to configure this attribute.

To restrict access to device services:

	
Open the adfmf-application.xml file and then open the Feature References page.

	
Using the dropdown menu from the Allow Device Access column of the Feature References table, change the default value (<default> true) to false, as shown in Figure 12-3.

Figure 12-3 Preventing Domains from Accessing Device Services Using the Feature References Page

[image: Setting access to PhoneGap services.]

12.3.2 How to Create a Whitelist

You configure the whitelist in the Security page of adfmf-application.xml, shown in Figure 12-4.

Figure 12-4 Configuring a Whitelist

[image: Add whitelisted domains to the mobile application.]

Before you begin:

Be aware that some URLs configured in the ADF Mobile application may open to other domains.

To create whitelists:

	
Open the adfmf-application.xml file and then select the Security page.

	
Click Add and then enter the domains that can be called from within the web view of the application feature. These domains can include a wildcard (*). For example, *.example.com is a valid domain entry as is *.example.*. You cannot enter a fully qualified path.

	
Caution:

Entering only the wildcard allows the web view to request all domains and can pose a security risk; adding all domains to the whitelist not only enables all of them to open within the web view, but also enables all of them to access the device (whether or not it is intended for them to do so).

12.3.3 What Happens When You Add Domains to a Whitelist

When you add a domain, JDeveloper updates <adfmf:remoteURLWhiteList> element as illustrated in Example 12-1.

Example 12-1 Configuring the Whitelist

...
<adfmf:remoteURLWhiteList>
 <adfmf:domain>*.oracle.*</adfmf:domain>
 <adfmf:domain>www.oracle.*</adfmf:domain>
 </adfmf:remoteURLWhiteList>
...

12.3.4 What You May Need to Know About Remote URLs

Some URLs are redirected to a URL that may not be part of the whitelist domain. These URLs may open in the device browser rather than the application web view. For example, if you whitelist www.oracle.com (<adfmf:domain>www.oracle.com<adfmf:domain>) and open that site on the device, ADF Mobile redirects to the mobile version of this site (www.oracle.mobi), because it does not pass the whitelist. Figure 12-5 shows a web page that has not been whitelisted and has opened within the device browser.

Figure 12-5 A Web Page Opening in the Device Browser, Not the ADF Mobile Web View

[image: Content outside the web view.]

To enable www.oracle.com to open within the application web view, you must specify *.oracle.* or www.oracle.* as shown in Example 12-1.

Because ADF Mobile whitelist is at the domain-level, you cannot restrict an individual page within a whitelisted domain from opening with an application feature web view; all pages are allowed.

12.4 Creating Whitelists for Application Components

Use a whitelist for pages that contain links to URLs that point to another domain. Such pages would otherwise open in the device browser instead of the ADF Mobile web view. In such a case, you can create an anchor tag or an <amx:goLink> component with a url attribute for the <amx:goLink> component that points outside of the application, such as the url attribute in <goLink2> in Example 12-2.

Example 12-2 <amx:goLink> with a url Parameter

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:panelGroupLayout id="panelGroupLayout1">
 <amx:goLink text="This opens in the device browser"
 id="golink1"
 url="http://www.example.com"
 shortDesc="Opens in device browser"/>
 <amx:goLink text="This opens in the web view"
 id="golink2"
 url="http://www.example2.com"
 shortDesc="Accesses device services"/>
 </amx:panelGroupLayout>
 </amx:panelPage>
</amx:view>

See also Section 7.3, "Creating and Using UI Components."

12.5 Enabling the Browser Navigation Bar on Remote URL Pages

ADF Mobile enables you to add a navigation bar with buttons for back, forward, and refresh actions for application features implemented as remotely served web content that open within the ADF Mobile web view, as shown in Figure 12-6. The forward and back buttons are disabled when either navigation forward or back is not possible.

	
Note:

The back button is disabled on Android-powered devices.

Figure 12-6 A Remote Web Page Displaying the Navigation and Refresh Buttons

[image: Remote URL displays in the web view.]

12.5.1 How to Add the Navigation Bar to a Remote URL Application Feature

You enable users to navigate through, or refresh remote content through the Content tab of the overview editor for the adfmf-feature.xml file.

Before you begin:

Designate an application feature's content be delivered from a remotely hosted application by first selecting Remote URL and then by creating the connection to the host server, as described in Section 5.10, "Defining the Content Types for an Application Feature."

Ensure that the domain is whitelisted.

To enable a navigation bar:

	
Select the Remote URL application feature listed in the Features table in the adfmf-feature.xml file.

	
Click Content.

	
Select Show Browser Navigation Buttons, as shown in Figure 12-7.

Figure 12-7 Selecting Navigation Options

[image: Select for navigation icons.]

12.5.2 What Happens When You Enable the Browser Navigation Buttons for a Remote URL Application Feature

JDeveloper updates the adfmf:remoteURL element with an attribute called showNavButtons, which is set to true, as shown in Example 12-3.

Example 12-3 The showNavButtons Attribute

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="oraclemobile" name="oraclemobile">
 <adfmf:content id="oraclemobile.1">
 <adfmf:remoteURL connection="connection1"
 showNavButtons="true"/>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

After you deploy the application, ADF Mobile applies the forward, back, and refresh buttons to the web pages that are traversed from the home page of the Remote URL application feature, as shown in Figure 12-8.

Figure 12-8 Traversing Through a Remote URL Application Feature

[image: Back, Forward, and Refresh button in deployed application.]

13 Enabling User Preferences

This chapter describes how to create both ADF Mobile application-level and application feature-level user preference pages.

This chapter includes the following sections:

	
Section 13.1, "Creating User Preference Pages for an ADF Mobile Application"

	
Section 13.2, "Creating User Preference Pages for Application Features"

	
Section 13.3, "Using EL Expressions to Retrieve Stored Values for User Preference Pages"

	
Section 13.4, "Platform-Dependent Display Differences"

	
Section 13.5, "Creating a Preference for the Configuration Service URL"

13.1 Creating User Preference Pages for an ADF Mobile Application

Preferences enable you to add settings that can be configured by end users. Within both the adfmf-application.xml and adfmf-feature.xml files, the user preference pages are defined with the <adfmf:preferences> element. As shown in Example 13-1, the child element of <adfmf:preferences> called <adfmf:preferenceGroup> and its child elements define the user preferences by creating pages that present options in various forms, such as strings, dropdown menus, or in the case of Example 13-1, as a child page that can present the user with additional options for application settings.

You also use the <adfmf:preferences> element to create the preferences that users manage within each application feature.

Example 13-1 Defining Application-Level Preferences with the <adfmf:preferences> Element

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 name="MobileApplication"
 id="com.company.MobileApplication"
 appControllerFolder="ApplicationController"
 version="1"
 vendor="oracle"
 listener-class="application.LifeCycleListenerImpl">
 <adfmf:description>This is an ADF Mobile application</adfmf:description>
 <adfmf:featureReference id="PROD"/>
 <adfmf:featureReference id="HCM"/>
 <adfmf:featureReference id="Customers"/>
 <adfmf:preferences>
<adfmf:preferenceGroup id="a" label="Prefs Group A">
 <adfmf:preferenceBoolean id="a1_sound" label="Sound Effects"/>
 <adfmf:preferenceNumber id="a2_retries" label="Retries" default="3"/>
 <adfmf:preferenceList id="a3_background" label="Background" default="3">
 <adfmf:preferenceValue name="None" value="0" id="pv4"/>
 <adfmf:preferenceValue name="Field" value="1" id="pv1"/>
 <adfmf:preferenceValue name="Galaxy" value="2" id="pv5"/>
 <adfmf:preferenceValue name="Mountain" value="3" id="pv6"/>
 </adfmf:preferenceList>
 <adfmf:preferenceText id="a4_name" label="Default Name"/>
 <adfmf:preferencePage id="aa" label="Prefs SubGroup AA">
 <adfmf:preferenceGroup id="aa_sec" label="Security">
 <adfmf:preferenceBoolean id="aa_sec_useSec" label="Use Security"/>
 <adfmf:preferenceNumber id="aa_sec_timeout" label="Timeout (secs)" default="120"/>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
 </adfmf:preferenceGroup>
 <adfmf:preferenceGroup id="b" label="Prefs Group B">
 <adfmf:preferenceBoolean id="b_cloudSync" label="Cloud Sync"/>
 <adfmf:preferenceList id="b_dispUsage" label="Display Usage As" default="1">
 <adfmf:preferenceValue name="Percent" value="1" id="pv2"/>
 <adfmf:preferenceValue name="Minutes" value="2" id="pv3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:application>

Figure 13-1 shows an example of how opening child user preferences page can offer subsequent options.

Figure 13-1 User Preferences Pages

[image: Sample user preferences pages as invoked on iOS devices.]

Preference pages are defined within the <adfmf:preferenceGroup> element and have the following child elements:

	
<adfmf:preferencePage>—Specifies a new page in the user interface.

	
<adfmf:preferenceList>—Provides users with a specific set of options.

	
<adfmf:preferenceValue>—A child element that defines a list element.

	
<adfmf:preferenceBoolean>—A boolean setting.

	
<adfmf:preferenceText>—A text preference setting.

See Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile Tag Documentation for more information on these elements and their attributes.

For an example of creating preference pages at both the ADF Mobile application and application-feature levels, refer to the PrefDemo sample application. This sample application is located in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

The PrefDemo application is comprised of an application-level settings page as well as three application feature preference pages, which are implemented as ADF Mobile AMX. Figure 13-2 shows the PrefDemo application settings page, which you invoke from the general settings page. In this illustration, the preference settings page is invoked from the iOS Settings application.

Figure 13-2 The PrefDemo Application Settings Page

[image: PrefDemo settings page is available in Settings.]

The application feature preference pages, illustrated by App, Feature1 (which is selected), and Feature 2 in Figure 13-3, provide examples of preferences pages constructed from the ADF Mobile Boolean Switch, Input Text, and Output Text components that use EL (Expression Language) to access the application feature and the various <adfmf:preferences> components configured within it. For more information, see Section 13.3, "Using EL Expressions to Retrieve Stored Values for User Preference Pages."

Figure 13-3 An Application Feature Preference Page from the PrefDemo Application

[image: A settings page for an application feature.]

In the PrefDemo application, each ADF Mobile AMX preference page is referenced by a single bounded task flow comprised of a view activity and a control flow case that enables the page refresh.

13.1.1 How to Create Mobile Application-Level Preferences Pages

The Preferences page of the adfmf-application.xml overview editor, shown in Figure 13-4, enables you to build sets of application-level preference pages by nesting the child preference page elements within <adfmf:preferenceGroup>. The page presents the <adfmf:preferencesGroup> and its child elements as similarly named options (that is, Preference Group, Preference Page, Preference List, and so on), which you assemble into a hierarchy (or tree), similar to the Structure window in JDeveloper.

Figure 13-4 Adding Mobile Application-Level Preferences Using the Preference Page

[image: The Preferences page of the overview editor.]

To ensure that the adfmf-application.xml file is well-formed, use the Preferences page's Add dropdown list, shown in Figure 13-4 to construct the user preferences pages. While you can also drag components from the Preferences palette, shown in Figure 13-5, into either the editor, the Source window, or the Structure window, the page's dropdown list presents only the elements that can have the appropriate parent, child, or sibling relationship to a selected preferences element. For example, Figure 13-4 shows only the components that can be inserted within the Preference Group element, Oracle Mobile App. The editor also enables you to enter the values for the attributes specific to each preference element.

Figure 13-5 Preferences in the Component Palette

[image: Select elements from component pallete.]

To create preferences pages:

	
Click Preferences.

	
Click Add to create the parent <adfmf:preferenceGroup> element.

	
Enter the following information in to the Insert Preference Group dialog, shown in Figure 13-6.

Figure 13-6 Defining the Parent Preference Group Element

[image: Definge the parent Preference Group element.]

	
Enter a unique identifier for the Preference Group element.

	
Enter the descriptive text that displays in the user interface. For an example of how this text displays in the user interface, see Sample in Figure 13-1.

	
Click Add to further define the preference pages using the Insert Before, Insert Inside, Insert After options to ensure that the XML document is well formed.

13.1.1.1 How to Create a New User Preference Page

The Preference Page component enables you to create a new user interface page. You create a Preference Page using the Insert Before, Insert Inside, Insert After options.

Before you begin:

You must create a Preferences Group element.

To create a new user preference page:

	
Select the Preference Group element.

	
Click Add, choose Insert Inside (Preference Group), then select Preference Page. As shown in Figure 13-7, the Preference Group is called MobileApp.

Figure 13-7 Selecting the Preference Page Component

[image: Select Preference Page.]

	
Define the following Preference Page attributes in the Insert Preference Page dialog, shown in Figure 13-8:

	
Enter a unique identifier for the Preference Page element.

	
Enter the descriptive text that displays in the user interface.

Figure 13-8 The Insert Preference Page Dialog

[image: Enter a unique identifier and display name.]

	
Create the body of the preference page by inserting a child Preference Group element by selecting the Preference Page, and then first choosing Insert Inside (Preference Page) and then Preference Group, as shown in Figure 13-9. After you define a unique identifier and display name for the child Preference Group, you can populate it with other elements, such as a Preference List element, as shown in Example 13-2.

Figure 13-9 Adding a Preference Group to a Preference Page

[image: Insert a child group into a page group.]

13.1.1.2 What Happens When You Add a Preference Page

After you define the Preference Page and its child Preference Group components in the overview editor, JDeveloper generates an <adfmf:preferencePage> with attributes similar to Example 13-2. The <adfmf:preferencePage> is nested within a parent <adfmf:preferenceGroup> element.

Example 13-2 Adding an <adfmf:PreferencePage element>

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="Oracle Mobile App">
 <adfmf:preferencePage id="application_version"
 label="Version">
 <adfmf:preferenceGroup id="version_select"
 label="Select Your Version">
 <adfmf:preferenceList id="edition"
 label="Edition"
 default="PERSONAL">
 adfmf:preferenceValue name="Enterprise"
 id="pv2"/>
 <adfmf:preferenceValue name="Personal"
 value="PERSONAL"
 id="pv1"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
</adfmf:preferences>

13.1.1.3 How to Create User Preference Lists

Add a Preference List component to create a list of options.

Before you begin:

You must create Preference Group as the parent to the Preference List or any other list-related component.

To create a user preference list:

	
Select a Preference Group or Preference Page and then click Add, then Insert Inside, and then Preference List. Example 13-2 shows adding a Preference List as a child of a Preference Group component called Select Your Version.

Figure 13-10 Adding a Preference List Component to a Preference Group

[image: Adding a Preference List component.]

	
Define the following attributes using the Insert Preference List dialog, shown in Example 13-2, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 13-11 The Insert Preference List Dialog

[image: Enter a unique identifier and display text.]

	
Define a list of items by clicking Add in the Preference Value table, shown in Figure 13-12. You can also remove a preference value by selecting it and then clicking Delete. You can change the order in which the preference values display by selecting the preference value and then using the up- and down-arrows.

You can present the user with a default setting by choosing Default. As illustrated in Example 13-2, the default status is defined within the <adfmf:preferenceList> element as default="ENTERPIRSE".

	
Tip:

In addition to clicking Add, you can add Preference Value components by dragging them either into the Structure window or the Source window.

Figure 13-12 Adding Preference Values

[image: Add a preference value.]

13.1.1.4 What Happens When You Create a Preference List

After you add Preference List component to a Preference Group and then define a series of Preference Values, JDeveloper updates the <adfmf:preferences> section with an <adfmf:preferenceList> element, as shown in Example 13-2.

13.1.1.5 How to Create a Boolean Preference List

See, for example, Example 13-1.

Before you begin:

Because an <adfmf:preferenceBoolean> element must be nested within an <adfmf:preferenceGroup> element, you must first insert a Preference Group component to the hierarchy.

To create a boolean preference list:

	
Select a Preference Group element, such as GPS Settings in Figure 13-13.

Figure 13-13 Adding a Boolean Preference to a Preference Group

[image: Select a boolean preference group.]

	
Define the following attributes using the Insert Boolean Preference dialog, shown in Figure 13-14, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 13-14 The Insert Boolean Preference Dialog

[image: Add a unique ID and display text.]

	
Accept the default value of false, or select true.

13.1.1.6 What Happens When You Add a Boolean Preference

When you add a Boolean Preference and designate its default value, JDeveloper updates the <adfmf:preferences> section of the adfmf-application.xml file with a <adfmf:preferenceBoolean> element, as illustrated in Example 13-3.

Example 13-3 Adding an <adfmf:preferenceBoolean> Element

<adfmf:preferencePage id="gps_tracking"
 label="Your_GPS_Locations">
 <adfmf:preferenceGroup id="gps"
 label="GPS Settings">
 <adfmf:preferenceBoolean id="trackGPS"
 label="Auto Track Location"
 default="true"/>
</adfmf:preferencePage>

13.1.1.7 How to Add a Text Preference

Use the insert options, shown in Figure 13-15, to create a Text Preference, a dialog that enables users to store information or view default text. Figure 13-15 shows creating a text preference within a Preference Group called Security.

Figure 13-15 Inserting a Text Preference

[image: Select Insert Text Preference.]

Before you begin:

Create a Preference Group element.

To create a text preference:

	
Select a Preference Group element.

	
Select Insert Inside and then Text Preference.

	
Enter the following information into the Insert Text Preference dialog, shown in Figure 13-16, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 13-16 The Insert Text Preference Dialog

[image: Insert text preference.]

	
Define the following for the preference text dialog:

	
Enter the default text value.

	
Select Secret to hide the text preference.

Figure 13-17 Defining the Text Preference

[image: Create a text preference.]

13.1.1.8 What Happens When You Define a Text Preference

When you add a Text Preference and designate its default value, JDeveloper updates the <adfmf:preferences> section of the adfmf-application.xml file with a <adfmf:preferenceText> element, as illustrated in Example 13-4.

Example 13-4 Adding the <adfmf:preferenceText> Element

 <adfmf:preferenceGroup id="security" label="Security">
 <adfmf:preferenceText id="serviceURL"
 label="Security URL"
 default="http://security.example.com/provider"/>
 <adfmf:preferenceText id="username"
 label="User Name"/>
 <adfmf:preferenceText id="password"
 label="Password"
 secret="true"/>
 </adfmf:preferenceGroup>

The Preference Group elements that define a security URL, user name, and password preference setting display similarly to Figure 13-18.

Figure 13-18 Text Preferences

[image: Text preferences on an iOS simulator.]

Figure 13-18 illustrates <adfmf:preferenceText> elements with a seeded value for the Security URL and an input value for the User Name. Because the ADF Mobile preferences are integrated with the iOS Settings application, the secret="true" attribute for the Password input text results in the application following the iOS convention of obscuring the user input with bullet points. For more information, see the description for the isSecure text field element in Settings Application Schema Reference, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/) and Section 13.4, "Platform-Dependent Display Differences."

13.1.2 What Happens When You Create an Application-Level Preference Page

After you deploy the ADF Mobile application, the application-wide preference settings page is propagated to the device's global settings application, such as the Settings application on iOS-powered devices. For more information, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device," Section 17.4.5.1, "What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device," and Appendix C, "Converting Preferences for Deployment."

13.2 Creating User Preference Pages for Application Features

As described in Section 5.13, "Working with Feature Archive Files," you can distribute an application feature independently of its ADF Mobile application by adding a Feature Application Archive (FAR) .jar file containing the application feature to the library of another ADF Mobile application. You then reference the application feature in the application's adfmf-application.xml file. If an application feature requires a specific set of user preferences in addition to the general preferences defined for the consuming application, you can define them using the Preferences tab of the adfmf-feature.xml overview editor, shown in Figure 13-19. You build application feature preferences in the same manner as the application-level preferences, which are described in Section 13.1, "Creating User Preference Pages for an ADF Mobile Application." After you define the preferences in the adfmf-feature.xml file, you then create the actual preference page by creating an application feature that references an ADF Mobile AMX page that is embedded with the Boolean Switch, Input, and Output components described in Section 7.3, "Creating and Using UI Components."

Figure 13-19 Setting Application Feature-Level Preferences

[image: The Preferences tab.]

13.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages

When creating an application feature-level preference page, you add EL expressions to the ADF Mobile AMX components, such as the Input Text component in Example 13-5.

Example 13-5 Referencing Preference Values Using EL in ADF Mobile AMX Components

<amx:inputText label="Number" id="it1" inputType="number"
 value="#{preferenceScope.feature.Feature1.f1top.f1Number}"/>

As illustrated in Example 13-5, EL expressions use the preferenceScope object to enable applications to access an application feature-level preference. These EL expressions are in the following format:

preferenceScope.feature.feature-id.group-id.property-id

Figure 13-20 illustrates using the Expression Builder to create the EL expression.The preference itself is designated by the IDs configured for various components in adfmf-feature.xml, such as the ID of the application feature <adfmf:feature id="Feature1">), the ID of a Preference Group (<adfmf:preferenceGroup id="f1top">), and the ID of a preference property (<adfmf:preferenceNumber id="f1Number">).

The EL expression may include zero or more group-id and property-id elements.

Figure 13-20 Building an EL Expression for a Preference

[image: Using the preferenceScope object in EL expressions.]

13.3.1 What You May Need to Know About preferenceScope

An EL expression has the following resolution pattern:

	
From the JavaScript layer, EL value expressions are resolved using the following JavaScript function:

adf.mf.el.getValue(expression, success, failed)

The resolution of adf.mf.el.getValue begins with an attempt to resolve the expression locally using the JS-EL parser and JavaScript Context Cache. If the expression cannot be resolved locally, the expression is passed to the embedded Java layer for evaluation where it is resolved by the Java EL parser. This is done through the GenericInvokeRequest to the Model's getValue method.

	
At the Java layer, an EL value expression is resolved using the following approach:

String val = AdfmfJavaUtilities.evaluateELExpression("#{preferenceScope.feature.f0.vendor}");

For a setValue method, the expression is resolved as follows:

ValueExpression ve = AdfmfJavaUtilities.getValueExpression("#{preferenceScope.feature.f0.vendor}");
ve.setValue(AdfmfJavaUtilities.getADFELContext(), value);

Evaluation of the EL expression involves looking up the preferenceScope object. The evaluation is from left to right, where each token is resolved independently. After a token is resolved, it is used to resolve the next token (which is on its right).

Preferences cannot be exposed without the preferenceScope object.

13.3.2 Reading Preference Values in iOS Native Views

ADF Mobile integrates APIs provided for a native UI (such as UIView or UIViewController) to allow certain configurations on iOS platform.

When the native UI is initialized, an instance of the ADFSession object becomes available. You can use its getPreferences method to instruct ADF Mobile to provide a listing of the available preferences for the application as defined in the adfmf-application.xml file. As shown in Example 13-6, this method returns a NSArray* of preference property objects that can include the id, value, and label for the preference. This API call ensures that either the end user provided the value for a particular preference, or that the default value of the preference is returned.

Example 13-6 Getting Preferences

//...
-(id) initWithADFSession:(id<ADFSession>) providedSession
{
 id me = [self init];
 session = providedSession;
 //...
 // Dump the preferences to the data display
 NSArray* prefsArray = [session getPreferences];
 NSString* prefs = [prefsArray JSONRepresentation];
 self.theData.text = [[NSString alloc] initWithFormat:
 :@"%@\nUser Preferences = --> %@ <--", self.theData.text, prefs];
 //...
 return me;
}

13.4 Platform-Dependent Display Differences

The ADF Mobile preference pages maintain the native look-and-feel for both the iOS and Android platforms. Consequently, the ADF Mobile preference pages display differently on the two platforms. As shown in Table 13-1, preferences display inline on the iOS platform, meaning that the system does not invoke dialog pages. With a few exceptions, the Android platform presents these components as dialogs.

Table 13-1 Preference Component Comparison by Platform

	Component	iOS	iOS Display Examples	Android	Android Display Examples
	
Boolean Preference List

	
The Boolean preference is represented as value pair, such as on and off.

	[image: An iOS boolean value.]
	
Android presents the Boolean preference as a check box.

	[image: A sample Android boolean preference list.]

	
Text Preference (as default text)

	
iOS displays the text inline.

	[image: A sample iOS output text preference.]
	
Android displays the text inline.

	[image: A sample Android output text preference.]

	
Text Preference (as input text)

	
On iOS platforms, users enter text inline.

	[image: A sample iOS input text preference.]
	
Android launches an input text dialog.

	[image: A sample Android input text preference.]

	
Text Preference (as secret input text)

	
On iOS platforms, users enter text inline, with each character obscured by a bullet point after it has been entered. For more information, see Section 13.1.1.8, "What Happens When You Define a Text Preference."

	[image: A sample iOS hiddent text preference.]
	
Android launches an input text dialog and obscures each character with a bullet point after it has been entered.

	[image: A sample Android hidden preference.]

	
Single Item Selection List (from a Preference List)

	
iOS platforms display the single item selection list in a separate preferences page.

	[image: A sample iOS single item list.]
	
Android displays the single item selection list in a dialog.

	[image: A sample Android single item list.]

	
Preference Groups (Category Selection)

	
The iOS platform displays the preference elements within their parent preference group.

	[image: Sample of an iOS category selection.]
	
The Android platform displays the preference elements within their parent preference group.

	[image: A sample Android category selection component.]

	
Preference Page

	
iOS launches a child preference page from a preference group.

	[image: A sample nested page in iOS.]
	
Android launches a child preference page from a preference group.

	[image: A sample nested page on Android.]

Although iOS and Android platforms have a Settings application, only the iOS platform supports integrating application-level preferences into the Settings application, as shown by the preferences in Figure 13-21.

Figure 13-21 Oracle Mobile Preferences in the iOS Settings Application

[image: Oracle preferences in iOS Settings.]

On Android-powered devices, users access application-specific preferences pages similar to the one shown in Figure 13-22 only when the application is running.

Figure 13-22 The Preferences Menu on an Android-Powered Device

[image: An Android preferences menu.]

13.5 Creating a Preference for the Configuration Service URL

To minimize user error when entering the Configuration Service URL endpoint in the Configuration Service prompt dialog, you can create a preference for the Configuration Service URL that retrieves a default URL, as shown in Figure 13-23. Because the URL populated to the dialog is based on the preference value, ADF Mobile can populate the dialog with a new URL whenever a user updates the preference.

Figure 13-23 The Configuration URL Preference (on an iPhone)

[image: A text preference with a string URL value.]

Including a default value for the configuration URL, which can be a company-specific URL, is optional. It replaces the value defined for the adfmf-configuration-service-seed-url property in the adf-config.xml file described in Section 10.2, "Using the Configuration Service."

13.5.1 How to Seed the Default Configuration URL

Create a Text Preference that includes a default value for the Configuration Service URL and then update the adf-config.xml file to reference this Text Preference.

	
Tip:

Because the Configuration Service is not associated with individual application features, create an application-level Text Preference.

Before you begin:

Refer to Section 10.2, "Using the Configuration Service."

To create an application-wide preference:

	
Create a Text Preference within a Preference Group as described in Section 13.1.1.7, "How to Add a Text Preference."

	
Enter the Configuration Service URL as the default value, as illustrated in Example 13-7.

Example 13-7 Creating the Text Preference for the Configuration Service URL

</adfmf:preferenceGroup>
 <adfmf:preferenceGroup id="Configuration_Service"
 label="Configuration
 Service Seed URL">
 <adfmf:preferenceText id="seed_URL"
 label="Seed URL"
 default="http://www.example.com"/>
 </adfmf:preferenceGroup>

To reference the preference value:

	
In the source editor for the adf-config.xml file (located in ADF META-INF directory in the Application Navigator), add the adfmf-configuration-service-seed-url-preference property.

	
Reference the id values for the Preference Group and the Text Preference that are configured in the adfmf-application.xml file, as illustrated in Example 13-7. Example 13-8 illustrates using the format of application.Configuration_Service.seed_URL to create this reference.

Example 13-8 Configuring the adfmf-configuration-service-seed-url-preference Property

 <adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID"
 value="Employees-2494"/>
 <adf-property name="adfmf-configuration-service-seed-url-preference"
 value="application.Configuration_Service.seed_URL"/>
 <adf-property name="adfmf-configuration-service-seed-url"
 value="http://myhost.us.example.com:7777/
 </adf:adf-properties-child>

	
Note:

Including the use-configuration-service-at-startup property may cause problems on Android-powered devices, because users cannot access application-level settings before starting an ADF Mobile application. If you use this property, define a default URL in the Text Preference.

13.5.2 What Happens When You Seed a URL Using a Text Preference

The checkForNewConfiguration method prompts ADF Mobile to check the adf-config.xml file for the referenced Text Preference defined in the adfmf-configuration-service-seed-url-preference property. If the preference includes the default value defined for Configuration Server URL, then ADF Mobile populates the Configuration Service prompt dialog with this string, as shown in Figure 13-24.

Figure 13-24 Populating the Configuration Service Dialog with the Preference Value

[image: The preference value displays in the dialog.]

If the preference does not include the string (which may be the case for ADF Mobile applications deployed to, but not yet started on, Android-powered devices), ADF Mobile instead populates the field with the hard-coded value defined for the adfmf-configuration-service-seed-url property. For subsequent checks (that is, when the user credentials are cached in the local store), ADF Mobile populates the dialog with the Text Preference's default value as the Configuration Service URL. For more information, see Section B.2.3, "checkforNewConfiguration."

Although the runtime fetches the default value for the Text Preference if a URL is not present in the dialog, this behavior varies by platform. The first time a user runs an ADF Mobile application on an Android-powered device, ADF Mobile cannot populate the Configuration Services prompt dialog using the preference value. Instead, it uses the string defined for adfmf-configuration-service-seed-url property, because the runtime has not yet populated the preference with the value defined in adfmf-application.xml. Further, users cannot update the application-specific settings with this URL if an application is not running. Only after the application has been started can a user update the preference with the Configuration Service URL, which will be used the next time the ADF Mobile application starts. For more information, see Section 13.4, "Platform-Dependent Display Differences."

	
Tip:

Because of these device- and state-related considerations, define a default URL value for the Text Preference, or include both the adfmf-configuration-service-seed-url and adfmf-configuration-service-seed-url-preferences properties in the adf-config.xml file.

14 Setting Constraints on Application Features

This chapter describes how to set constraints that can restrict an application feature based on user access privileges or device requirements.

This chapter includes the following sections:

	
Section 14.1, "Introduction to Constraints"

	
Section 14.2, "Defining Constraints for Application Features"

14.1 Introduction to Constraints

A constraint describes when an application feature or application content should be used. Constraints can restrict access based on users and user roles, the characteristics of the device on which the mobile application is targeted to run, and the hardware available on the device. You can set constraints at two levels: at the application feature level, where you control the visibility of an application feature on a user's device, and at the content level, where you can specify which type of ADF Mobile content can be delivered for an application feature. The overview editor for the adfmf-feature.xml file enables you to set both of these types of constraints. Constraints are evaluated by the ADF Mobile runtime and must evaluate to true to enable the end user to view or use specific content, or even access the application feature itself.

14.1.1 Using Constraints to Show or Hide an Application Feature

The Constraints tab, shown in Figure 14-1, enables you to set the application feature-level constraints. For example, an application feature that uses the device's camera displays within the ADF Mobile application's navigation bar or springboard only if the ADF Mobile runtime determines that the device actually has a camera function. You can also use feature level constraints to secure an application based on user roles and privileges. Figure 14-1 illustrates creating constraints that would allow only a user with administrator privileges to access the application, should the

ADF Mobile runtime evaluate the constraint to true. If the runtime evaluates the constraint to false, then it prevents an end user from accessing the application feature, because it does not appear on the navigation bar or within the springboard.

Figure 14-1 Setting Application Feature-Level Constraints

[image: Constraining feature applications.]

14.1.2 Using Constraints to Deliver Specific Content Types

To accommodate such factors as device hardware properties or user privileges, a single application feature can have more than one type of content to deliver different versions of the user interface. By setting constraints on the content of an application feature, you designate the conditions for determining what end users can see or how application pages can be used.

Using the Content tab, shown in Figure 14-2, you can, for example, specify content that delivers one type of user interface for users who have been granted administrative privileges and a separate user interface for those who have basic user privileges. In addition, content-level constraints can accommodate the layout considerations of a device. Figure 14-2 illustrates how the HR sample application performs this using a constraint based on the screen width of a device to deliver AMX Mobile task flows that call pages tailored to the layout of the iPhone and the iPad. When an end user launches the HR sample application, the ADF Mobile runtime evaluates the constraint that is set for the Employees application feature. If the runtime ascertains that the device's screen width is greater than 500 pixels, it selects the Employees_pad_taskflow.xml file, which calls the ADF Mobile AMX pages designed for the iPad. If this constraint evaluates to false (that is, the screen width is less than 500 pixels), then the runtime selects the ADF Mobile taskflow that calls iPhone-specific pages, Employees_phone_taskflow.xml. In addition, the Content tab enables you to select navigation bar and springboard images that display when the runtime selects specific content. If you do not select content-specific images, then ADF Mobile instead uses the application feature-level images that are designated in the General tab.

	
Note:

Images must adhere to the platform-specific guidelines, as described in Section 5.9.1, "How to Define the Basic Information for the Application Feature."

Figure 14-2 Setting Content-Level Constraints

[image: Setting content-specific constraints.]

For more information on the HR sample application, see Appendix F, "ADF Mobile Sample Applications." The HR sample application is included in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

14.2 Defining Constraints for Application Features

When setting application feature-level constraints, the property, operator, and value attributes of the <adfmf:constraint> element (a child element of <adfmf:constraints>) enable you to restrict application usage based on a user, a device, or hardware. An example of defining these attributes, shown in Example 14-1, illustrates defining these attributes to restrict access to an application feature to a Field Rep and to also restrict the application to run only on an iOS-powered device.

Example 14-1 The <adfmf:constraint> Element

<adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="Field Rep"/>
 <adfmf:constraint property="device.model"
 operator="contains"
 value="ios"/>
</adfmf:constraints>

14.2.1 How to Define the Constraints for an Application Feature

You declaratively configure the constraints for a selected application feature using the Constraints tab in the Features page, shown in Figure 14-2.

Figure 14-3 Defining Constraints

[image: Define the constraints for a feature.]

Defining the constraints for an application feature:

	
Click the Constraints tab.

	
Click Add.

	
Select a property and an appropriate operator and then enter a value. For more information on using properties, see Section 14.2.3, "About the property Attribute."

14.2.2 What Happens When You Define a Constraint

Entering the values in the Constraints tab updates the descriptor file's <adfmf:constraints> element with defined <adfmf:constraint> elements, similar to Example 14-1.

14.2.3 About the property Attribute

ADF Mobile provides a set of property attributes that reflect users, devices, and hardware properties. Using these properties in conjunction with the following operators and an appropriate value determines how an application feature can be used.

	
contains

	
equal

	
less

	
more

	
not

14.2.4 About User Constraints and Access Control

After a user logs into an ADF Mobile application, the ADF Mobile runtime reconciles the user role-based constraints configured for each application feature against the user roles and privileges retrieved by the Access Control Service (ACS). ADF Mobile then presents only the application feature (or application feature content) to end users whose privileges satisfy the constraints. In addition to setting these user privilege and role constraints, you create access control for the ADF Mobile application by entering the following in the Create ADF Mobile Login Connection dialog, shown in Figure 14-4 (and described in Section 18.4.2, "How to Designate the Login Page"):

	
The URL of the REST Web service that transmits a list of user roles and privileges.

	
A list the user roles checked by the application feature.

	
A list of privileges.

See also Section 18.4.7, "What You May Need to Know About the Access Control Service."

Figure 14-4 Configuring Retrieval of User Roles and Privileges

[image: Access control roles, privileges, URL.]

You control access to application features using constraints based on user.roles and user.privileges. For example, to allow only a user with manager_role role to access an application feature, you must add a constraint of user.roles contains manager_role to the definition of the application feature.

The user.roles and user.privileges use the contains and not operators as follows:

	
contains—If the collection of roles or privileges contains the named role or privilege, then the runtime evaluates the constraint to true. Example 14-2 shows an example of using the user.roles property with the contains operator. The application feature will appear in the mobile application if the user's roles include the role of employee.

Example 14-2 Using the contains Operator for a User Role Collection

<feature ...>
 ...
 <constraints>
 <constraint property="user.roles"
 operator="contains"
 value="employee" />
 </constraints>
 ...
</feature>

	
not—If the collection of roles or privileges does not contain the named role or privilege, then the runtime evaluates the constraint to true. In Example 14-3, the application feature is not included if the user's privileges contain the manager privilege.

Example 14-3 Using the not Operator with the user.privileges Property to Restrict Access to an Application Feature

<feature ...>
 ...
 <constraints>
 <constraint property="user.privileges"
 operator="not"
 value="manager" />
 </constraints>
 ...
</feature>

14.2.5 About Hardware-Related Constraints

The hardware object references the hardware available on the device, such as the presence of a camera, the ability to provide compass heading information, or to store files. These properties use the equal operator.

	
hardware.networkStatus—Indicates the state of the network at the startup of the application. This property can be modified with three attribute values: NotReachable, CarrierDataConnection, and WiFiConnection. Example 14-4 illustrates the latter value. As illustrated in this example, setting this value means that this mobile application feature only displays in the mobile application if the device hardware indicates that there is a Wi-Fi connection. In other words, if the device does not have a Wi-Fi connection when the ADF Mobile application loads, then this application feature will not display.

Example 14-4 Defining the hardware.networkStatus Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.networkStatus"
 operator="equal"
 value="WiFiConnection" />
 </constraints>
...
</feature>

	
Note:

This constraint is evaluated at startup on iOS-powered devices. If a device does not have a Wi-Fi connection at startup but subsequently attains one (for example, when a user enters a Wi-Fi hotspot), then the application feature remains unaffected and does not become available until the user stops and then restarts the mobile application.

	
hardware.hasAccelerometer—Indicates whether or not the device has an accelerometer. This property is defined by a true or false value. Example 14-5 shows a true value, indicating that this application feature is only available if the hardware has an accelerometer.

Example 14-5 Using the hardware.hasAccelerometer Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasAccelerometer"
 operator="equal"
 value="true" />
</constraints>
...
</feature>

	
Note:

Because all iOS-based hardware have accelerometers, this property must always have a value of true for the application feature to be available on iOS-powered devices.

	
hardware.hasCamera—Indicates whether or not the device has a camera. This constraint is defined using a value attribute of true or false. In Example 14-6, the value is set to true, indicating that the application feature is only available if the device includes a camera.

Example 14-6 Using the hardware.hasCamera Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasCamera"
 operator="equal"
 value="true" />
</constraints>
...
</feature>

	
Note:

Not all iOS-based hardware have cameras. This value is dynamically evaluated at the startup of ADF Mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to true.

	
hardware.hasCompass—Indicates whether the device has a compass. You define this constraint with the attribute value of true or false, as shown in Example 14-7.

Example 14-7 Using the hardware.hasCompass Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasCompass"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Not every iOS-powered device has a compass. This value is dynamically evaluated at the startup of ADF Mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to true.

	
hardware.hasContacts—Indicates whether the device has an address book or contacts. You define this constraint with the attribute value of true or false, as shown in Example 14-8.

Example 14-8 Using the hardware.hasContacts Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasContacts"
 operator="equal"
 value"=true" />
 </constraints>
 ...
</feature>

	
Note:

Because contacts on iOS-based hardware are accessed through Apache Cordova, the value attribute is always set to true for iOS-powered devices.

	
hardware.hasFileAccess—Indicates whether the device provides file access. You define this constraint with the attribute value of true or false, as shown in Example 14-9. The application feature is only available if the runtime evaluates this constraint to true.

Example 14-9 Using the hardware.hasFileAccess Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasFileAccess"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Because file access on iOS-based hardware is accessed through Apache Cordova, the value attribute is always true for iOS-powered devices.

	
hardware.hasGeoLocation—Indicates whether or not the device provides geolocation services. You define this constraint with the attribute value of true or false, as shown in Example 14-10. The application feature is only available if the device supports geolocation.

Example 14-10 Using the hardware.hasGeoLocation Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasGeoLocation"
 operator="equal"
 value="true"/>
 </constraints>
 ...
</feature>

	
Note:

Apache Cordova does not provide access to the gelocation service for all iOS-powered devices. Depending on the device, the application feature may not be available when the constraint is evaluated by the runtime.

	
hardware.hasLocalStorage—Indicates whether the device provides local storage of files. You define this constraint with the value attribute of true or false, as shown in Example 14-11. The application feature only displays if the device supports storing files locally.

Example 14-11 Using the hasLocalStorage Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasLocalStorage"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Because Apache Cordova provides access to local file storage on all iOS hardware, the value attribute is always true for iOS-powered devices.

	
hardware.hasMediaPlayer—Indicates whether or not the device has a media player. You define this constraint with the value attribute of true or false, as shown in Example 14-12. The application feature only displays if the device has a media player.

Example 14-12 Using the hardware.hasMediaPlayer Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaPlayer"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

For iOS-powered devices, the value attribute is always true, because Apache Cordova provides access to media players on iOS-based hardware.

	
hardware.hasMediaRecorder—Indicates whether or not the device has a media recorder. You define this constraint with the value of true or false, as shown in Example 14-13. The application feature is only included if the device hardware supports a media recorder.

Example 14-13 Using the hardware.hasMediaRecorder Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaRecorder"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Set this value to true for all iOS-powered devices because all iOS-based hardware have media recorders which can be accessed through Apache Cordova. Some devices, such as the Apple iTouch, do not have a microphone but can allow end users to make recordings by attaching an external microphone.

	
hardware.hasTouchScreen—Indicates whether or not the hardware provides a touch screen. You define this constraint with the value attribute of true or false, as shown in Example 14-14. The application feature is only included if the device hardware supports a touch screen.

Example 14-14 Using the hardware.hasTouchScreen Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasTouchScreen"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Set the value attribute to true for iOS-powered devices, because all iOS-based hardware provides touch screens.

	
hardware.screen.width—Indicates the width of the screen for the device in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical device pixels (such as such as 320 in Example 14-15), not physical device pixels, which represent the actual pixels that appear on a device. The value depends on the orientation of the device.

Example 14-15 Using the hardware.screen.width Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.width"
 operator="equal"
 value="320" />
 </constraints>
 ...
</feature>

	
Note:

This value is evaluated at the startup of the mobile application when the runtime evaluates constraints and dismisses application features with constraints that do not evaluate to true. If a user rotates the device after the ADF Mobile application starts, ADF Mobile's runtime does not re-evaluate this constraint because the set of application features is fixed after the mobile application starts.

	
hardware.screen.height—Indicates the height of screen for the device in its current position. Enter a numerical value that reflects the screen's height in terms of logical pixels, such as 320 or 480, as shown in Example 14-16. The value depends on the orientation of the device.

Example 14-16 Using the hardware screen.height Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.height"
 operator="equal"
 value="480" />
 </constraints>
 ...
</feature>

	
Note:

When the mobile application starts, the ADF Mobile runtime evaluates the screen height value for this constraint as part of the process of dismissing application features with constraints that do not evaluate to true. If a user changes the orientation of the device after the ADF Mobile application starts, the runtime does not re-evaluate this constraint, because the set of application features is fixed after the mobile application starts.

	
hardware.screen.availableWidth—Indicates the available width of the device's screen in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 14-17. The value depends on the orientation of the device.

Example 14-17 Using the hardware.screen.availableWidth Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableWidth"
 operator="equal"
 value"320" />
 </constraints>
 ...
</feature>

	
hardware.screen.availableHeight—Indicates the available height of the screen for the device in its current position. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 14-18. The value depends on the orientation of the device.

Example 14-18 Using the hardware.screen.availableHeight Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableHeight"
 operator="equal"
 value"480" />
 </constraints>
 ...
</feature>

15 Accessing Data on Oracle Cloud

This chapter describes how an ADF Mobile application can access data hosted on Oracle Java Cloud Service.

This chapter includes the following section:

	
Section 15.1, "Enabling ADF Mobile Applications to Access Data Hosted on Oracle Cloud"

15.1 Enabling ADF Mobile Applications to Access Data Hosted on Oracle Cloud

ADF Mobile applications can access both SOAP and REST web services hosted on Oracle Cloud. To enable access to the hosted SOAP web services, create a web service data control as described in Section 9.2, "Creating a Web Service Data Control." You can enable access to RESTful web services by creating a URL Service data control as described in the "Exposing URL Services with ADF Data Controls" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Depending on the content type, ADF Mobile applications can access cloud data by dragging and dropping a data control into an ADF Mobile AMX UI component, as described in Section 6.3.2, "How to Add UI Components and Data Controls to an ADF Mobile AMX Page," or programmatically, for applications whose content is delivered from a either a remote web server, or from locally stored HTML files.

15.1.1 How to Authenticate Against Oracle Cloud

You use the ADF Mobile Login Server Connection dialog to create a login server connection to authenticate against Oracle Cloud.

Before you begin:

Obtain the Oracle Cloud URL that is used for the login server connection.

To create a login URL with an Oracle Cloud endpoint:

	
Select Application, then New, and then Connections.

	
Select ADF Mobile Server Login Connection.

	
Complete the Connect ADF Mobile Login Connection dialog, shown in Figure 15-1, by entering the following:

	
A name for the connection in the Name field.

	
The URL for Oracle Cloud in the Login URL field.

For more information, refer to the Oracle JDeveloper online help and Section 18.4.2, "How to Designate the Login Page."

Figure 15-1 Creating the Login to Oracle Cloud

[image: Enter the Oracle Cloud login URL.]

15.1.2 How to Create a Web Service Data Control to Access Oracle Java Cloud

The Create Data Service Control Wizard enables you to create the data control that accesses the hosted data. You use the WSDL URL of the SOAP web service deployed to Oracle Java Cloud to create this data control. If you do not know this URL, then you must create the URL to the WSDL document by appending the web service port name and ?wsdl to the application context root.

Before you begin:

You must have access to a SOAP web service application that has been deployed to Oracle Java Cloud Service. This application must be available through the Applications pane of the Oracle Java Cloud Service Control home page. In addition, its Status and State must be noted as both Up and Active, respectively, as illustrated by the HCMMobileService application shown in Figure 15-2.

Figure 15-2 The Java Cloud Services Control Home Page

[image: SOAP web service must be up and active.]

To create a web service data control:

	
Obtain the application context root of the web service hosted on Oracle Cloud as follows:

	
Traverse to the application home page, shown in Figure 15-3, by clicking the application in the Applications pane (shown in Figure 15-2).

	
Copy the URL, as shown in Figure 15-3. This URL is the application context root of the WSDL document.

Figure 15-3 Copying the Web Service Application Context Root

[image: Copy the application context root.]

	
In JDeveloper, right-click the view controller project in the Application Navigator and then open the Create Web Service Data Control Wizard, as described in Section 9.2, "Creating a Web Service Data Control."

	
In the Data Source page, shown in Figure 15-4, enter the name of the data control.

Figure 15-4 Entering the URL for the WSDL Document

[image: Enter the WSDL URL.]

	
In the URL field, paste the URL of the SOAP-based web service that is deployed to (and currently running on) Oracle Cloud Java Service.

	
Enable the data control to access the WSDL by appending a web service port name and ?wsdl to the application context root, such as HCMServicePort?wsdl in Figure 15-4.

	
In the Data Controls Operations page, shown in Figure 15-5, select from among the web service operations that can be used by the application feature to retrieve data. Click Finish.

Figure 15-5 Selecting the Web Service Operations

[image: Select the returned web service operations.]

Figure 15-5 shows the web service operations returned by the ADF Mobile design time that can be made available to the ADF Mobile application. In this example, the design time has queried a web service that hosts human resources data and has returned operations to retrieve employee data, including expense approvals.

15.1.2.1 Configuring the Policy for SOAP-Based Web Services

You must configure a policy for a SOAP-based web service that is secured on Oracle Cloud. Using the Edit Data Service Control Policies dialog, described at Section 9.5, "Accessing Secure Web Services," you can select the oracle/wss_http_token_over_ssl_client_policy. See also the "How to Define Web Service Data Control Security" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

Only the oracle/wss_http_token_over_ssl_client_policy is supported for SOAP-based web services. For RESTful web services, basic authentication or SSL policies are supported.

15.1.3 What Happens When You Deploy an ADF Mobile Application that Accesses Oracle Java Cloud Service

After you deploy the application, the operations of the web service data control retrieve the data from a web service running on the Oracle Java Cloud Service instance.

16 Push Notifications

This chapter describes how to enable ADF Mobile applications to register for, and handle, push notification messages.

This chapter includes the following sections:

	
Section 16.1, "Introduction to Push Notifications"

	
Section 16.2, "Enabling Push Notifications for an ADF Mobile Application"

	
Section 16.3, "About the Push Notification Payload"

16.1 Introduction to Push Notifications

Push notifications are notifications sent from an external source, such as a server, to an application on a mobile device. These may appear as messages in the form of an alert, or as a banner, depending on the state of the application and user settings. Figure 16-1 shows a push notification alert on an iOS-powered device.

Figure 16-1 A Push Notification

[image: An alert message.]

When users are notified, they can launch the application, or they can choose to ignore the notification. In this case, the application is not activated. Notifications may also accompany an alert message with a brief, distinctive sound.

16.1.1 How Push Notifications Work

Applications must register with a notification service to receive push notifications. If the registration succeeds, then the notification service issues a token to the application. The application shares this token with its provider (located on a remote server), and in doing so, enables the provider to send notifications to the application through the notification service. ADF Mobile registers on behalf of the application using application-provided registration configuration, described in Section 16.2, "Enabling Push Notifications for an ADF Mobile Application." Registration occurs upon every start of the ADF Mobile application to ensure a valid token. After a successful registration, ADF Mobile shares the token obtained from the platform-specific notification service with the provider. On iOS, the notification service is Apple Push Notification Service (APNs). Google Cloud Messaging (GCM) for Android provides the notification service for applications installed on Android-powered devices.

16.1.2 How ADF Mobile Applications Display Notifications Depending on Application State

An ADF Mobile application can receive push notifications regardless of its state; the display of these messages, which can appear even when the application is not in the foreground, depends on the state of the ADF Mobile application and the user settings. Table 16-1 describes how the iOS operating system handles push notifications depending on the state of the ADF Mobile application.

Table 16-1 Handling Push Notifications on an iOS-Powered Device

	State	Action
	
The ADF Mobile application is installed, but not running.

	
The notification message displays with the registered notification style (none, banner, or alert). When the user taps the message (if its a banner-style notification) or touches the action button (if the message appears as an alert), the ADF Mobile application launches, invoking the application notification handlers.

	
The ADF Mobile application is running in the background.

	
The notification message displays with the registered notification style (none, banner, alert). When the user taps the message (if it is a banner-style notification), or touches the action button (if the message appears as an alert), the ADF Mobile application launches, invoking the application notification handlers.

	
The ADF Mobile application is running in the foreground.

	
No notification message displays. The application notification handlers are invoked.

On the iOS and Android platforms, if the application is not running in the foreground, then any push notification messages associated with it are queued in a specific location, such as the iOS Notification Center or the notification drawer on Android-powered devices.

16.2 Enabling Push Notifications for an ADF Mobile Application

You can enable push notifications by performing the following tasks:

	
In the application controller project, register an application lifecycle event listener (ALCL) class. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application" and Section 5.7, "About Lifecycle Event Listeners."

	
Implement the oracle.adfmf.application.PushNotificationConfig interface in the ALCL. This interface provides the registration configuration for push notifications.

Override and implement the getNotificationStyle and getSourceAuthorizationID methods of the PushNotificationConfig interface. The getNotificationStyle method enables you to style the notification per the iOS Settings application. The getSourceAuthorizationID method enables you to enter the Google Project Number of the accounts authorized to send messages to the ADF Mobile application. For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

	
In the application controller project, create a push notification listener class (for example, NativePushNotificationListener) that handles push notification events. This class must implement the oracle.adfmf.framework.event.EventListener interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener interface, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Override and implement the onOpen and onMessage methods to handle notifications. After a successful registration with the push notification service, ADF Mobile calls onOpen with the registration token that must be shared with the provider by the application developer. If there was an error registering with the notification service, the registration token would be a null object.

ADF Mobile calls the onMessage method with the notification payload whenever the application receives a notification.

	
Get an EventSource object in the start method of the ALCL class that represents the source of a native push notification event:

EventSource evtSource
=EventSourceFactory.getEventSource(EventSourceFactory.NATIVE_PUSH_NOTIFICATION
 _REMOTE_EVENT_SOURCE_
 NAME);

	
Create and add an object of the push notification listener class to the event source:

evtSource.addListener(new NativePushNotificationListener());

16.3 About the Push Notification Payload

ADF Mobile respects the following keys for a JSON-formatted payload:

	
alert: the text message shown in the notification prompt.

	
sound: a sound that is played when the notification is received.

	
badge: the number to badge the application icon on iOS.

Part VI

Completing Your Application

Describes how to enable security for an ADF Mobile application as well as how to deploy and debug an application

Part VI contains the following chapters:

	
Chapter 17, "Deploying ADF Mobile Applications"

	
Chapter 18, "ADF Mobile Application Security"

	
Chapter 19, "Testing and Debugging ADF Mobile Applications"

17 Deploying ADF Mobile Applications

This chapter describes how to deploy ADF Mobile applications for testing and for publishing.

This chapter includes the following sections:

	
Section 17.1, "Introduction to Deployment of Mobile Applications"

	
Section 17.2, "Working with Deployment Profiles"

	
Section 17.3, "Deploying an Android Application"

	
Section 17.4, "Deploying an iOS Application"

	
Section 17.5, "Deploying Feature Archive Files (FARs)"

	
Section 17.6, "Creating a Mobile Application Archive File"

	
Section 17.7, "Creating Unsigned Deployment Packages"

	
Section 17.8, "Deploying ADF Mobile Applications from the Command Line"

17.1 Introduction to Deployment of Mobile Applications

Before you can publish an application for distribution to end users, you must test it on a simulator or on an actual device to assess its behavior and ease of use. By deploying an iOS application bundle (.ipa and .app files) or Android application package (.apk) file to the platform-appropriate device or simulator, ADF Mobile enables you to test applications before publishing them to the App Store (Apple iTunes), or to an application marketplace, such as Google Play.

17.1.1 How ADF Mobile Deploys Applications

ADF Mobile executes the deployment a project by copying a platform-specific template application to a temporary location, updating that application with the code, resources, and configuration defined in the ADF Mobile project. ADF Mobile then builds and deploys the application using the tools of the target platform. The tasks that comprise deployment are as follows:

	
Validate that the platform-specific build tools are available from the specified platform SDK.

	
Validate the application's content, including the XML files.

	
If necessary, unzip the platform-dependent template file to a temporary location.

	
Note:

The template file may not be present if you selected Build > Clean All.

	
Copy default images to the proper location in the template.

	
Copy custom images to the proper location in the template.

	
Copy the web content (including any images related to feature application) to the template location.

	
Copy the libraries of the Java Virtual Machine 1.4 (JVM 1.4) and any support libraries to the proper location in the template. For more information, see Section 17.1.1.2, "Deployment of the JVM 1.4 Libraries."

	
Copy custom content into the proper location in the template (this includes libraries and JAR files that have been included in the project properties).

	
Copy, or update, the metadata files in the template with preferences defined in the deployment profiles and the adfmf-application.xml and adfmf-feature.xml files.

	
Run the platform-specific build tools on the template project.

	
Run the platform-specific tools on the template project to sign the project (if necessary) and package the project for the chosen deployment.

For a detailed description of the deployment flow for Android applications, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device." For iOS applications, see Section 17.4.5.1, "What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device."

17.1.1.1 Deployment of Project Libraries

The libraries that you declare for the project using the Customize Libraries and Classpaths Dialog, shown in Figure 17-1, are included in the deployment artifacts for the project. This dialog enables the application features to access these libraries at runtime.

Figure 17-1 Adding Libraries to the Project

[image: Selected project libraries are deployed.]

17.1.1.2 Deployment of the JVM 1.4 Libraries

For both Android and iOS applications, each ADF Mobile deployment includes a set of a different libraries that are specific to the type of deployment (release or debug) in combination with the deployment target (simulators or actual devices). In addition, each set of these libraries includes a JAR file of JVM 1.4. The application binding layer resides within this virtual machine, which is a collection of Objective-C libraries. For example, ADF Mobile deploys a JVM 1.4 JAR file and a set of libraries for a debug deployment targeted at an iOS simulator, but deploys a different JVM 1.4 JAR file and set of libraries to a debug deployment targeted to an actual iOS-powered device.

17.2 Working with Deployment Profiles

Preparing ADF Mobile applications for deployment begins with the creation of platform-specific deployment profiles. A deployment profile defines how an application is packaged into the archive that will be deployed to iOS- or Android-powered devices, iOS simulators, or Android emulators. The deployment profile does the following:

	
Specifies the format and contents of the archive. For iOS, the archive format is an .ipa file, known as an application bundle. For Android, the format is an Android application package (.apk) file.

	
Note:

The .apk file is archive-compatible, meaning that you can view its contents using an archiving tool such as WinZip or 7-Zip.

	
Lists the source files, deployment descriptors, and other auxiliary files that will be packaged into the archive file.

	
Describes the type and name of the archive file to be created.

	
Highlights dependency information, platform-specific instructions, and other information.

17.2.1 How to Create a Deployment Profile

As described in Section 4.2.2.3, "About Automatically Generated Deployment Profiles," ADF Mobile creates a set of deployment profiles when you create an ADF Mobile application. You can deploy an application using these profiles, edit them, or construct new ones using the ADF Mobile-specific deployment profile pages. The Create Deployment Profile wizard, shown in Figure 17-2, enables you to create a default deployment profile from these pages. You can create as many deployment profiles as needed. For more information on these standard ADF deployment profile pages, click Help to see the JDeveloper online help.

	
Note:

ADF Mobile application deployment only requires the creation of an application-level deployment profile; you do not have to create a view controller-level deployment profile.

Before you begin:

To enable JDeveloper to deploy ADF Mobile applications, you must designate the SDKs for the target platforms using the ADF Mobile Preferences page as described in Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors." See also the Certification and Support Matrix on Oracle Technology Network (http://www.oracle.com/technetwork/developer-tools/jdev/jdev11gr2-cert-405181.html).

	
Tip:

For iOS deployments, run iTunes and the iOS Simulator at least once before you configure their directory locations in the ADF Mobile Platforms preferences page.

To create a deployment profile:

	
Choose Application and then Deploy.

	
Choose New Deployment Profile.

	
Depending on the target platform, select either ADF Mobile for Android, ADF Mobile for iOS, or ADF Mobile Application Archive, as shown in Figure 17-2.

	
Accept the default name for the profile or enter a new one. Click OK.

	
If needed, use the Options and Application Images pages as required for the applications and then click OK.

Figure 17-2 The Create Deployment Profile Wizard

[image: Select the type of deployment profile.]

17.2.2 What Happens When You Create a Deployment Profile

After you complete the wizard, JDeveloper creates a deployment profile and opens the Deployment Profile Properties editor.

Table 17-1 lists the ADF Mobile-specific pages in the Deployment Profile Properties editor, shown in Figure 17-7.

Table 17-1 ADF Mobile-Specific Deployment Profile Pages

	Page	Function
	
iOS Options

	
Enables you to modify the settings for an application to be deployed on an iOS-powered device or iOS simulator.

	
Android Options

	
Enables you to modify the settings for an application deployed to an Android-powered device or Android emulator.

	
Application Images

	
Enables you to assign custom icons to an application by adding the appropriate graphics file.

	
Device Orientations

	
Enables you to restrict the display of an application to certain device orientations. This page is used only for iOS deployment profiles.

	
Note:

Deployment depends on the needs of your application. You can deploy an application using the default values seeded in the pages listed in Table 17-1.

When you deploy an application, JDeveloper creates a deployment directory and related subdirectory. It also creates Feature Archive files (FARs) for the view controller projects (which must have different names) and application controller project. In addition to these two FARs, JDeveloper creates copies of any FARs that were imported into the project. Changes to the compilation profiles require the removal of the deployment directory. You can remove this directory, as well as the deployment directory within the view controller project that contains the FAR, by selecting Build and then Clean All.

Using the Filters panel, shown in Figure 17-3, you can exclude any selected artifact from being deployed. In particular, you can use the Filters panel to exclude any artifact that does not match the target deployment platform. For more information, refer to the online help for Oracle JDeveloper.

Figure 17-3 Removing Files from Deployment Using the Filters Panels

[image: The Filters panel.]

17.2.3 How to Create an Android Deployment Profile

The deployment profile creates the template for the application deployment to an Android device or emulator, or for creating an application as an Android application package (.apk) file.

To create the deployment profile for Android, you must define the signing options for the application, the behavior of the javac compiler, and if needed, override the default Oracle images used for application icons with custom ones.

Before you begin:

Install and download the Android SDK as described in Section 3.5, "Setting Up Development Tools for Android Platform."

To enable ADF Mobile deployment framework to compile files required for push notifications, install the package for the Google Cloud Messaging Library (Revision 3 and later) in the Android SDK Manager, as shown in Figure 17-4.

Figure 17-4 The Google Cloud Messaging For Android Library Package

[image: Install Google Cloud Messaging Android Library.]

If you deploy to an Android emulator, you must create a virtual device for each emulator instance using the Android Virtual Device Manager, as described in the "Managing Virtual Devices" document, available from the Android Developers website (http://developer.android.com/tools/devices/index.html). In creating an Android Virtual Device (AVD), ensure that the CPU/ABI value reflects an ARM system image, such as ARM (armeabi-v7a) in Figure 17-5. In addition, set the size of the AVD's SD card image file to a large RAM size, such as the value of 1024 MB (1 GB) set for the Device ram size property in Figure 17-5. You can, however, opt for a smaller size.

	
Note:

ADF Mobile only supports the ARM EABI v7a System Image. Although ADF Mobile supports Android-powered devices that run on the Android 2.3.n platform (API Level 9), it does not support deployment to emulators running on this platform because they are based on the ARM926EJ-S rev 5 (v51) processor. Further, JVM 1.4 cannot run properly when deployed to Android emulators for the 2.n platform.

Figure 17-5 Creating an Android Virtual Device

[image: Ensure that ARM is the CPU.]

You must also set the ADF Mobile preferences for the Android platform SDKs (accessed by choosing Tools, then Preferences, then ADF Mobile, then Platforms, and then Android) to point to the locations for the Android SDK itself and its tool components.

The SDK and platform locations for Android 4.2 (API 17) differ from previous versions, which are illustrated by the directory structures in Figure 17-6.

	
For Android SDK Location, the path is:

SDK Installation\adt-bundle-windows-x86\sdk

For example, enter:

C:\adt-bundle-windows-x86\sdk

	
For Android Platform Location, the path is:

SDK Installation\adt-bundle-windows-x86\sdk\platforms\android-17

For example, enter:

C:\adt-bundle-windows-x86\sdk\platforms\android-17

	
Note:

The structure of the SDK tools is changed in the release of Revision 22, with the build tools components relocated from the platform-tools directory to the build-tools directory. To enable deployment, the Android Build Tools Location field must reference the location of one of these build tools, the aapt file (aapt.exe on Windows systems). The location of this file differs depending on the SDK revision. For Revision 22, this file is located within the build-tools directory (such as SDK Installation\adt-bundle-windows-x86\sdk\build-tools\Android-4.n). For earlier revisions, it is located within the platform-tools directory (such as SDK Installation\adt-bundle-windows-x86\platfrom-tools).

ADF Mobile queries the Android SDK for the location of the appt file and populates the Android Build Tools Location field accordingly. For Revision 22 of the SDK, ADF Mobile populates the field with the latest version of the build-tools directory that is installed on the development computer. For revisions prior to 22, ADF Mobile populates the field with the location of the platform-tools directory. In this case, the field is read-only.

	
Note:

Push notifications require devices and emulators running Android 2.2 platform (or later). The Google Play store must be installed on these devices. The Google API must be installed in the SDK to enable push notifications on emulators. Users must create a Google account (and be logged in) on devices running platforms earlier than 4.0.4 (API 15).

See also "GCM Architecture Overview" chapter in Google Cloud Messaging for Android, available from the Android Developers website (http://developer.android.com/index.html) and Section 17.2.3, "How to Create an Android Deployment Profile."

Figure 17-6 Setting the Android SDK, Platform, and Signing Properties

[image: Setting the Android SDK and platform information.]

Using the Platforms page, you also define the debug and release properties for a key that is used to sign the Android applications. Within the deployment profile, you subsequently designate an ADF Mobile application's release as either debug or release. You only need to define the signing key properties once. For more information, see Section 17.2.3.3, "Defining the Android Signing Options." See also the application publishing information in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html).

	
Note:

To deploy an application to an Android emulator, you must install API 14 or later (that is, Platform 4.0.n)

17.2.3.1 Setting the Options for the Application Details

The Android Options page, shown in Figure 17-7, enables you to do the following:

	
Denote the version of the application. For more information, refer to the "Versioning Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/versioning.html).

	
Configure the Android zipalign tool, an archive alignment tool that optimizes the packaging of .apk files. Data files stored in each application package, such as data manifests, are continually accessed by multiple processes within the Android operating environment. For more information, see the "zipalign" document, available from the Android Developers website (http://developer.android.com/tools/help/zipalign.html).

	
Set the logging level output as either non-verbose or debug (verbose).

	
Set the signing options appropriate to the deployment target (emulator or device). For more information, see Section 17.2.3.3, "Defining the Android Signing Options."

Figure 17-7 The Deployment Profile Properties Editor (Android Options Page)

[image: Enter basic Android deployment options.]

To set the application options:

	
Choose Android Options, as shown in Figure 17-7.

	
Accept the default values, or define the following options:

	
Application Bundle ID—A unique ID for the application, as set in the id attribute of the adfmf-application.xml file. Each application deployed to an Android device has a unique ID, one that cannot start with a numeric value. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application."

If needed, you can override this value in the deployment file. However, for the application to deploy, this name must follow the <manifest> element's package attribute of the Android manifest file. This element is described in the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html). Specifically, the ID uses a reverse package format of an internet domain (com.company.application). To avoid naming collisions, the package name reflects domain ownership, such as com.oracle.application.

	
Note:

The application bundle ID cannot contain spaces.

	
Application Archive Name—If needed, enter the name for the .apk file created by ADF Mobile. Otherwise, accept the default name.

By default, ADF Mobile bases the name of the .apk file on the application id attribute configured in the adfmf-application.xml file. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application."

	
Version Name—The release version of the application code that displays for the user. See also Section 5.3, "Setting the Basic Information for an ADF Mobile Application."

	
Version Code—An integer value that represents the version of the application code, which is checked programmatically by other applications for upgrades or downgrades. The minimum and default value is 1. You can select any value and increment it by 1 for each successive release.

17.2.3.2 Setting Deployment Options

The Options page enables you to set values that are passed in by the javac compiler tool options, set the zipalign options, and also the Android API revisions.

To set the JDK-Compatibility level for the R.java and .class files:

	
Select the JDK-compatibility level from the Source Files dropdown list. The default value is 1.5. The value is specified when the deployment runs the javac tool to compile R.java, the Android-generated file for referencing application resources, using the javac -source option. Available values include:

	
1.5

	
1.6

For information on R.java, see the "Accessing Resources" document, available from the Android Developers website (http://developer.android.com/guide/topics/resources/accessing-resources.html).

	
Select the JDK version compatibility for the compiled .class files from the Class Files dropdown list. The value is specified when the deployment runs the javac tool to compile the R.java file using the javac -target option. The default value is 1.5. Available values include:

	
1.5

	
1.6

	
Select the intended API Level on which the application is designed to run from the Target SDK API Level dropdown list. The minimum (and default) value is API Level 9, which corresponds to the Android 2.3.n platform. For more information, refer to the description of the <uses-sdk> attribute in the document entitled "The AndroidManifest.xml File," available through the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html).

	
Select the minimum API Level on which the application is able to run from the Minimum SDK API Level dropdown list. The minimum and default value is 9, which corresponds to Android 2.3.n platform.

	
Select the native-encoding name that controls how the compiler interprets characters beyond the ASCII character set from the Character Encoding dropdown list. The default is UTF-8.

To set the ZIP alignment options:

Select the byte alignment (32-bit or 64-bit). Selecting 32-bit (the default) provides 4-byte boundary alignment.

To set the logging level:

Select Verbose Output for the Android deployment to log the full output provided by each of the command-line tools invoked by the deployment while building the .apk. If you do not select this option, then the deployment does not log the full output.

17.2.3.3 Defining the Android Signing Options

An application must be signed before it can be deployed to an Android device or emulator. Android does not require a certificate authority; an application can instead be self-signed.

Defining how the deployment signs an ADF Mobile application is a two-step process: within the ADF Mobile Platforms preference page, you first define debug and release properties for a key that is used to sign Android applications. You only need to configure the debug and release signing properties once. After you define these options, you configure the deployment profile to designate if the application should be deployed in the debug or release mode.

Before you begin:

If no keystore file exists, you can create one using the keytool utility, as illustrated in Example 17-1.

Example 17-1 Generating a Keystore

keytool -genkey
 -v
 -keystore c:\jdeveloper\mywork\releasesigning.keystore
 -alias releaseKeyAlias
 -keyalg RSA
 -keysize 2048
 -validity 10000

As described in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html), the keytool prompts you to provide passwords for the keystore and key, and to provide the Distinguished Name fields for your key before it generates the keystore. In Example 17-1, the keystore contains a single key, valid for 10,000 days. Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html) for information on how to use the keytool utility.

	
Tip:

Use the -genkeypair instead of the -genkey command for Java Platform Standard Edition (Java SE) 7.

To configure the key options for the debug mode:

	
Choose Tools, then Preferences, and then ADF Mobile.

	
Choose Platforms.

	
Select the Debug tab, shown in Figure 17-8.

Figure 17-8 Configuring a Debug Deployment

[image: Select, or accept the default password (Android).]

	
Enter a password used by the deployment to create a keystore file and key needed for a debug deployment in the Key and Keystore Password field. This password, which generates a keystore and keyfile for deployment to an Android-powered device or emulator, can be any value, but must be at least six characters long. The default password is Android.

To configure the key options for a release mode:

	
Choose Tools, then Preferences, and then ADF Mobile.

	
Choose Platforms.

	
Select the Release tab, shown in Figure 17-6, and then define the following:

	
Keystore Location—Enter, or browse to and retrieve, the directory of the keystore containing the private key used for signing the application for distribution.

	
Keystore Password—Enter the password for the keystore. This password allows access to the physical file.

	
Key Alias—Enter an alias for the key. This is the value set for the keytool's -alias argument. Only the first eight characters of the alias are used.

	
Key Password—Enter the password for the key. This password allows access to the key (identified by the alias) within the keystore.

	
Tip:

Enter the password and key password requested by the keytool utility before it generates the keystore.

In addition to designating how the application will be signed, these parameters designate how the R.Java classes are compiled. For more information, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device."

	
Click OK.

To Set the Android build mode:

	
In the Options page, select either Debug or Release as the build mode:

	
Select Debug for developing and testing an application (such as Java and JavaScript debugging). This option enables you to deploy an application on the Android platform without having to provide a private key. Use this option when deploying an application to an Android emulator or to an Android-powered device for testing. See also Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."

	
Note:

You cannot publish an application signed with the debug keystore and key; this keystore and key are used for testing purposes only and cannot be used to publish an application to end users.

	
When the application is ready to be published, select Release. Use this option when the application is ready to be published to an application marketplace, such as Google Play.

	
Tip:

Use the release mode, not the debug mode, to test application performance.

	
Click OK.

After the .apk file is signed in either the debug or release modes, you can deploy it to a device or to an emulator.

17.2.3.4 How to Add a Custom Image to an Android Application

Enabling ADF Mobile application icons to display properly on Android-powered devices of different sizes and resolutions requires low-, medium-, and high-density versions of the same images. ADF Mobile provides default Oracle images that fulfill these display requirements. However, if the application requires custom icons, you can use the Application Images page, shown in Figure 17-9, to override default images by selecting PNG-formatted images for the application icon and for the splash screen. For the latter, you can add portrait and landscape images. If you do not add a custom image file, then the default Oracle icon is used instead. To create custom images, refer to the "Iconography" document, available from the Android Developers website (http://developer.android.com/design/style/iconography.html).

Figure 17-9 Setting Custom Images for an Android Application

[image: Use to override the default image.]

Before you begin:

Obtain the images in the PNG, JPEG, or GIF file format that use the dimensions, density, and components that are appropriate to Android theme and that can also support multiple screen types. For more information, see "Supporting Multiple Screens" document, available from the Android Developers website (http://developer.android.com/guide/practices/screens_support.html).

To add custom images:

	
Click Application Images.

	
Use the Browse function to select the splash screen and icon image files from the project file. Figure 17-9 shows selecting images for application icons and portrait orientation splash screen images that applications use for displaying on devices with low-, medium-, high- and extra-high density displays. Figure 17-10 shows the Landscape tab selected for splash screen images, which enables you to add the landscape-orientation splash screen images that applications use for devices with low-, medium-, high- and extra-high density displays. These files can be located anywhere within the ADF Mobile application.

	
Click OK.

Figure 17-10 Setting Landscape Splash Screen Images

[image: Landscape splash-screen images.]

17.2.3.5 What Happens When JDeveloper Deploys Images for Android Applications

During deployment, ADF Mobile enables JDeveloper to copy the images from their source location to a temporary deployment folder. For the default images that ship with the ADF Mobile extension (located at application workspace directory\Application Resources\Resources\images), JDeveloper copies them from their seeded location to a deployment subdirectory of the view controller project (application workspace\ViewController\deploy). As shown in Table 17-2, each image file is copied to a subdirectory called drawable, named for the drawable object, described on the Android Developers website (http://developer.android.com/reference/android/graphics/drawable/Drawable.html). Each drawable directory matches the image density (ldpi, mdpi, hdpi, and xhdpi) and orientation (port, land). Within these directories, JDeveloper renames each icon image file as adfmf_icon.png and each splash screen image as adfmf_loading.png.

Table 17-2 Deployment File Locations for Seeded Application Images

	Source File (...\resource\Android)	Temporary Deployment File (...ViewController\deploy)
	
display-ldpi-icon.png

	
drawable-ldpi\adfmf_icon.png

	
display-mdpi-icon.png

	
drawable-mdpi\adfmf_icon.png

	
display-hdpi-icon.png

	
drawable-hdpi\adfmf_icon.png

	
display-xhdpi-icon.png

	
drawable-xhdpi\adfmf_icon.png

	
display-port-ldpi-splashscreen.png

	
drawable-port-ldpi\adfmf_loading.png

	
display-port-mdpi-splashscreen.png

	
drawable-port-mdpi\adfmf_loading.png

	
display-port-hdpi-splashscreen.png

	
drawable-port-hdpi\adfmf_loading.png

	
display-port-xhdpi-splashscreen.png

	
drawable-port-xhdpi\adfmf_loading.png

	
display-land-ldpi-splashscreen.png

	
drawable-land-ldpi\adfmf_loading.png

	
display-land-mdpi-splashscreen.png

	
drawable-land-mdpi\adfmf_loading.png

	
display-land-hdpi-splashscreen.png

	
drawable-land-hdpi\adfmf_loading.png

	
display-land-xhdpi-splashscreen.png

	
drawable-land-xhdpi\adfmf_loading.png

For custom images, JDeveloper copies the set of application icons from their specified location to the corresponding density and orientation subdirectory of the temporary deployment location.

17.2.3.6 What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device

For the runtime deployment to an Android-powered device, the deployment framework performs the following:

	
Validates all selected deployment options.

	
Deletes any pre-existing template for this deployment profile.

	
Unzips Android template from Oracle_ADFmf_Framework.zip.

	
Creates an AndroidManifest.xml file from an AndroidManifest.template.xml file that is provided in the template.

	
Generates the Android preferences.xml, strings.xml, and arrays.xml files from the content in the adfmf-application.xml and adfmf-feature.xml files. For more information, see Section C.2, "Converting Preferences for Android."

	
Invokes the Android Asset Packaging Tool (aapt.exe on Windows, appt on Mac) to generate an R.java file and initial .apk file.

	
Compiles the R.java file by invoking javac externally from the JDeveloper project compilation process. This file must be compiled with a JDK version compatibility of 1.5 (or later) because the file runs within the Android JVM.

	
Analyzes and evaluates dependencies. Compiles user-added .java code using the JVM 1.4 JDK. These files must be compiled with the JDK and are executed in the JVM 1.4.

	
Invokes the Android tool that generates Dalvik byte code (dex.bat) from .class files or archive compatible files containing .class files. The content in the Android template JAR files is included as well (cordova-2.2.0.jar, container.jar, and ksoap.jar).

	
Invokes the Android Asset Packaging Tool (aapt.exe) tool to update the application file created in Step 6 with the Dalvik byte code file.

	
Creates a keystore and key for debug-mode deployment.

	
Signs the Android application file.

	
Aligns application (for a release-mode deployment).

	
Invokes the Android Debug Bridge (adb.exe on Windows, adb on Mac) tool to deploy the application to an Android-powered device.

17.2.4 How to Create an iOS Deployment Profile

For iOS, use the Deployment Profiles Properties Editor to define the iOS application build configuration as well as the locations for the splash screen images and application icons.

Before you begin:

Download Xcode 4.6 (the minimum supported version required to compile applications), which includes the Xcode IDE, performance analysis tools, the iOS simulator, the Mac OS X and iOS SDKs, to the Apple computer that also runs JDeveloper.

Because Xcode is used during deployment, you must install it on the Apple computer before you deploy the ADF Mobile application from JDeveloper.

	
Tip:

While the current version of Xcode is available through the App Store, you can download prior versions through the following site:

https://developer.apple.com/xcode/

Access to this site requires an Apple ID and registration as an Apple developer.

After you download Xcode, you must enter the location of its xcodebuild tool and, for deployment to iOS simulators, the location of the iOS simulator's SDK, in the ADF Mobile Platforms preference page. For more information, see Chapter 3, "How to Configure the Development Environment for Platforms and Form Factors."

	
Note:

Run both iTunes and the iOS simulator at least once before entering their locations in the ADF Mobile Platforms preference page.

To deploy an ADF Mobile application to an iOS-powered device (as opposed to deployment to an iOS simulator), you must obtain both a provisioning profile and a certification from the iOS Provisioning Profile as described in Section 17.2.4.2, "Setting the Device Signing Options."

To create a deployment profile:

	
Choose iOS Options, as shown in Figure 17-11.

	
Accept the default values, or define the following:

	
Application Bundle Id—If needed, enter a bundle ID to use for this application that identifies the domain name of the company. The application bundle Id must be unique for each application installed on an iOS device and must adhere to the reverse-package style naming conventions described in the "Application ID Errors" section in iOS Development Workflow Guide (that is, com.<organization name>.<company name>). For information on obtaining the Bundle Seed Id using the iOS Provisioning Portal, see Section 17.4.4.3, "Registering an Application ID." See also Section 5.3, "Setting the Basic Information for an ADF Mobile Application."

	
Note:

The application bundle ID cannot contain spaces.

Because each application bundle ID is unique, you can deploy multiple ADF Mobile applications to the same device. Two applications can even have the same name as long as their application bundle IDs are different. Mobile applications deployed to the same device are in their own respective sandboxes. They are unaware of each other and do not share data (they have only the Device scope in common).

	
Application Archive Name—If needed, enter the name for the .ipa file or the .app file. ADF Mobile creates an .ipa file when you select either the Deploy to distribution package or Deploy to iTunes for synchronization to device options in the Deployment Action dialog, shown in Figure 17-22. It creates an .app file when you select the Deploy application to simulator option. Otherwise, accept the default name. For more information, see Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device" and Section 17.4.5, "How to Distribute an iOS Application to the App Store."

By default, ADF Mobile bases the name of the .ipa file (or .app file) on the application id attribute configured in the adfmf-application.xml file. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application."

	
Minimum iOS Version—Indicates the earliest version of iOS to which you can deploy the application. The default value is the current version. The version depends on the version of the installed SDK.

	
Note:

You can deploy an application to an iOS-powered device that runs SDK 5.0.

	
Simulator Target Version—Select the version of the emulator to which you are deploying the application. To find the available target versions, select Hardware and then Version on an iPhone simulator. The minimum version is 6.0. The default setting is <Highest Available>. See also the "Using iOS Simulator" chapter in Tools Workflow Guide for iOS, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
Note:

Older versions of the iOS target version are usually available in the simulator for testing.

	
Target Family—Select the family of iOS products on which the application is intended to run. The default option is for both iPad and iPhone.

Figure 17-11 Setting the iOS Options

[image: Entering iOS options.]

17.2.4.1 Defining the iOS Build Options

The iOS build options enable you to deploy an application with debug or release bits and libraries. The Options page presents the configuration options for the iOS signing modes, debug and release modes.

Before you begin:

Deployment of an iOS application (that is, an .ipa file) to an iOS-powered device requires a provisioning profile, which is a required component for installation, and also a signed certificate that identifies the developer and an application on a device. You must obtain these from the iOS Provisioning portal as described in Section 17.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device." In addition, you must enter the location for a provisioning profile and the name of the certificate in the ADF Mobile Platforms preference page, as described in Section 17.2.4.2, "Setting the Device Signing Options."

How to set the build options:

	
Chose iOS Options, as shown in Figure 17-11.

	
Select one of the following build options.

	
Debug—Select this option for development builds. Designating a debug build results in the inclusion of debugging symbols. See also Section 19.3.1, "How to Debug on iOS Platform" and Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."

	
Release—Select to compile the build with release bits and libraries.

	
Tip:

Use the release mode, not the debug mode, to test application performance.

17.2.4.2 Setting the Device Signing Options

The ADF Mobile Platforms preference page for iOS includes fields for the location of the provisioning profile on the development computer and the name of the certificate. You must define these parameters if you deploy an application to an iOS device or as an ADF Mobile Application Archive.

	
Note:

Neither a certificate nor a provisioning profile are required if you deploy an ADF Mobile application to an iOS simulator.

To set the signing options:

	
Choose Tools, then Preferences, and then ADF Mobile.

	
Choose Platforms and then choose iOS.

	
In the Device Signing section of the page, shown in Figure 17-12, enter the location of the provisioning profile in the Provisioning Profile field.

	
In the Certificate field, enter the name of the developer or distribution certificate that identifies the originator of the code (such as a developer or a company). You can view the name of the certificate using the Keychain Access utility (accessed from the Applications folder). Copy the entire name from the Keychain Access utility. The name entered into Certificate field must be in the following format:

iPhone Developer: John Smith (PN3ENLQ3DU)

Figure 17-12 The Device Signing Section of the ADF Mobile Platforms Preference Page

[image: Enter provisioning profile location and certificate name.]

	
Note:

There are provisioning profiles used for both development and release versions of an application. While a provisioning profile used for the release version of an application can be installed on any device, a provisioning profile for a development version can only be installed on the devices whose IDs are embedded into the profile. For more information, see the "Configuring Development and Distribution Assets" chapter in Tools Workflow Guide for iOS, which is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

17.2.4.3 Adding a Custom Image to an iOS Application

The Application images page enables you to override the default Oracle image used for application icons with custom images. The options in this page, shown in Figure 17-14, enable you to enter the locations of custom images used for different situations, device orientation, and device resolutions. For more information on iOS application icon images, see the "Custom Icon and Image Creation Guidelines" section in iOS Human Interface Guidelines. These documents are available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
Note:

All images must be in the PNG format.

To add custom images:

	
Click Application Images.

	
Select Do Not Add Gloss Effect to Icons if the default iOS-style icon, which has a shine effect over the top of the icon is not used. Figure 17-13 illustrates the gloss effect.

Figure 17-13 An Icon with the Default Gloss Effect

[image: Example of glossy, iOS-style Oracle icon.]

	
Select the device type:

	
iPad

	
iPhone

	
iPad Mini

	
iPhone 5

	
iPad Retina

	
iPhone Retina

ADF Mobile displays the location within the Resources directory for the image files that are appropriate to each selected device type.

	
Choose Browse to select images for the following:

	
iTunes Artwork—Browse to, and select, an icon image to override the default Apple image that iTunes assigns to .ipa files. This image is required for all applications and must be 512 x 512 pixels for both iPhone and iPad applications. For more information, see Section 17.2.4.4, "What You May Need to Know About iTunes Artwork."

	
Application Icons—Enter the location of the icon images for iPhones and iPads, or for the versions of these images used for devices equipped with Retina displays. The file names must be the same for both the Retina and non-Retina version of the icon. For iPhone icons, the ADF Mobile deployment framework differentiates between the two by adding the @2x modifier to the file name of the Retina image. For iPad Retina displays, the deployment framework adds -144 to the file name to reflect the dimensions of its associated image (144 x 144, in pixels). For non-Retina iPad displays, the deployment framework likewise denotes the image dimensions (72 x 72, in pixels) by adding the -72 modifier to the iPad icon file name. For more information on iOS application icon images, see the "App Icons" section in iOS App Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/). Table 17-3 lists the required dimensions, in pixels, for the device-specific application images.

Table 17-3 Dimensions for Application Icons

	Device	Dimension (in Pixels)
	
iPad

	
72 x 72

	
iPhone

	
57 x 57

	
iPad Mini

	
72 x 72

	
iPhone 5

	
114 x 114

	
iPhone Retina

	
114 x 114

	
iPad Retina

	
144 x 144

	
Splash Screen Images—Enter the location of the image used when the application launches. For the iPhone, this image must be named Default.png. Depending on the device type and orientation, this image can be overridden by the images selected for its portrait or landscape versions. The ADF Mobile deployment framework attaches the Portrait and Landscape modifiers to the file names, as well as @2x to denote the high-resolution images used on iPhone 5 and Retina displays. For more information, see the "App Launch (Default) Images" and "Providing Device-Specific Launch Images" sections in iOS App Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/). Table 17-4 lists the required dimensions, in pixels, for the splash screen images.

Table 17-4 Dimensions for Splash Screen Images

	Device	Portrait	Landscape
	
iPad

	
768 x 1024

	
1024 x 768

	
iPhone

	
320 x 480

	
N/A

	
iPad Mini

	
768 x 1024

	
1024 x 768

	
iPhone 5

	
640 x 1136

	
N/A

	
iPad Retina

	
1536 x 2008

	
2048 x 1496

	
iPhone Retina

	
640 x 960

	
N/A

	
Note:

JDeveloper notes errors to safeguard against selecting an incorrect (or nonexistent) image file, such as the erroneously entered resources/android/icon@2x.png for the iPad application icon shown in Figure 17-16. See also Section 5.10.2, "What You May Need to Know About Selecting External Resources."

	
Click OK.

Figure 17-14 Adding Custom Images

[image: Enter the custom image file locations.]

17.2.4.4 What You May Need to Know About iTunes Artwork

By default, ADF Mobile applications deployed to an iOS device through iTunes, or deployed as an archive (.ipa file) for download, use the default Oracle image, shown in Figure 17-13 unless otherwise specified.

By selecting an iTunes artwork image as the icon for the deployed application, you override the default image. You can use an image to differentiate between versions of the application. Figure 17-15 illustrates the difference between the default image and a user-selected image, where Application4 is displayed with the default image and Application6 is displayed with a user-selected image (the Oracle icon, scaled to 512 x 512 pixels).

Figure 17-15 Custom and Default Application Icons

[image: Custom and default icons in iTunes.]

During deployment, ADF Mobile ensures that the icon displays in iTunes by adding the iTunes artwork image to the top-level of the .ipa file in a file called iTunesArtwork.

17.2.4.5 How to Restrict the Display to a Specific Device Orientation

By default, ADF Mobile supports all orientations for both iPhone and iPad. If, for example, an application must display only in portrait and in upside-down orientations on iPads, you can limit the application to rotate only to these orientations using the Device Orientation page, shown in Figure 17-16

Figure 17-16 Select a Device Orientation

[image: Select the type of device orientation.]

To limit the display of an application to a specific device orientation:

	
Choose Device Orientations, as shown in Figure 17-16.

	
Clear all unneeded orientations from among those listed in Table 17-5. By default, ADF Mobile deploys to all of these device orientations. By default, all of these orientations are selected.

Table 17-5 iPhone Device Orientations

	Icon	Description
	
[image: Icon for iPod (Portrait).]

	
iPad, portrait—The home button is at the bottom of the screen.

	
[image: iPad icon (upside-down).]

	
iPad, upside-down—The home button is at the top of the screen.

	
[image: iPad icon (landscape, left)]

	
iPad, landscape left—The home button is at the left side of the screen.

	
[image: iPad icon (landscape right)]

	
iPad, landscape right—The home button is at the right side of the screen.

	
[image: iPhone icon (portrait)]

	
iPhone, portrait—The home button is at the bottom of the screen.

	
[image: iPhone icon (landscape, left)]

	
iPhone, upside-down—The home button is at the top of the screen.

	
[image: iPhone icon (landscape, left).]

	
iPhone, landscape left—The home button is at the left side of the screen.

	
[image: iPhone icon (landscape, right)]

	
iPhone, landscape right—The home button is at the right side of the screen.

	
Click OK.

17.2.4.6 What Happens When You Deselect Device Orientations

Deselecting a device orientation updates the source .plist file.

17.3 Deploying an Android Application

After you define the deployment profile, you can deploy an ADF Mobile application to the Android platform using the Deployment Action dialog, shown in Figure 17-17. Using this dialog, you can deploy the completed application to an Android emulator or to an Android-powered device for testing. After you have tested and debugged the application, this dialog enables you to bundle the ADF Mobile application as an Android application package (.apk) file so that it can be published to end users through an application marketplace, such as Google Play.

	
Tip:

As an alternative to the Deployment Action dialog, you can deploy an ADF Mobile application to the Android platform manually using the OJDeploy command line tool as described in Section 17.8, "Deploying ADF Mobile Applications from the Command Line."

Figure 17-17 Deployment Action Dialog for Android Applications

[image: The Deployment Action dialog.]

17.3.1 How to Deploy an Android Application to an Android Emulator

You can deploy the ADF Mobile application directly to an Android emulator.

Before you begin:

Deployment to an Android emulator requires the following:

	
Configure the debug password in the ADF Mobile Platforms preference page (accessed by choosing Tools > Preferences > ADF Mobile).

	
Note:

You must install the Android 4.0.n platform (API 14 or later).

	
Ensure that the Android Virtual Device instance configuration reflects the ARM system image.

	
In the Android Options page of the deployment profile:

	
Ensure that Debug is selected.

	
Click OK.

	
Note:

The ADF Mobile Platforms preferences page must be configured with the password that is used to generate the keystore and key for debug-mode deployment. See Section 17.2.3.3, "Defining the Android Signing Options."

	
Start the Android emulator before you deploy an application.

You can start the emulator using the Android Virtual Device Manager, as illustrated in Figure 17-18, or from the command line by first navigating to the tools directory (located in Android\android-sdk) and then starting the emulator by first entering emulator -avd followed by the emulator name (such as -avd AndroidEmulator1).

	
Note:

You can run only one Android emulator during a deployment.

Figure 17-18 Starting an Emulator Using Android Virtual Device Manager

[image: Using Android SDK tools to start emulator.]

To deploy an application to an Android emulator:

	
Choose Applications, then Deploy, and then select an Android deployment profile.

	
Choose Deploy application to emulator and then choose Next.

	
Review the Summary page, shown in Figure 17-2, choose Back to select another deployment activity or choose Finish. The Summary page displays the following parameters from the deployment profile:

	
Application Bundle Id—The unique, Java language-like package name identifying the application.

	
Note:

The Summary page shown in Figure 17-19 shows that the application bundle ID is in the reverse package format required for a successful deployment to an emulator. Deploying an application that does not follow the reverse-package format causes the emulator to shut down, which prevents the deployment from completing.

	
File—The name of the .apk that is deployed to an Android target.

	
Deploy Mode—The build mode. This value is either Release or Debug, depending on the value set in the deployment profile.

Figure 17-19 Summary for Android Emulator Deployment

[image: The Deployment Summary dialog.]

	
Review the deployment log, as shown in Figure 17-20. The deployment log notes that the deployment framework starts the Android Debug Bridge server when it detects a running instance of an Android emulator. See also Section 17.3.6, "What You May Need to Know About Using the Android Debug Bridge."

Figure 17-20 The Deployment Log

[image: The deployment log window.]

17.3.2 How to Deploy an Application to an Android-Powered Device

You can deploy an ADF Mobile application directly to an Android-powered device that runs on a platform of 2.n (API Level 9) or later.

Before you begin:

Connect the device to the development computer that hosts JDeveloper, as described in Section 3.5.2, "How to Set Up an Android-Powered Device."

In the Deployment Options page, shown in Figure 17-7, select Debug as the build mode. Ensure that the debug signing credentials are configured in the ADF Mobile Platforms Preferences page, shown in Figure 17-8.

To deploy an application to an Android device:

	
Choose Applications, then Deploy, then select an Android deployment profile.

	
Choose Deploy application to device and then choose Next.

	
Review the Summary page. Click Back or Next.

	
Click Finish.

17.3.3 How to Publish an Android Application

After you have tested and debugged the application, as described in Chapter 19, "Testing and Debugging ADF Mobile Applications," you can publish it to an application marketplace (such as Google Play) by following the instructions provided on the Android Developers website (http://developer.android.com/tools/publishing/publishing_overview.html).

Before you begin:

In the Android Options page of the deployment profile, select Release as the build mode.

	
Note:

You must configure the signing options in the ADF Mobile Platforms preferences page (accessed by choosing Tools > Preferences > ADF Mobile) as described in Section 17.2.3.3, "Defining the Android Signing Options."

To deploy an application as an .apk file:

	
Choose Applications, then Deploy, then select an Android deployment profile.

	
Choose Deploy application to package and then choose Next.

	
Review the Summary page, shown in Figure 17-19. Click Back or Next.

	
Click Finish.

	
Publish the application to an application marketplace.

17.3.4 What Happens in JDeveloper When You Create an .apk File

Deploying an application results in the following being deployed in an .apk file.

	
The content in the adfmsrc

	
The content in the .adf folder

	
adfmf-application.xml and adfmf-feature.xml files

	
logging.properties file

	
The JVM 1.4 files

Table 17-6 Contents of the .apk File

	Content	Location Within the .apk File
	
The content in the .adf folder

	
The root folder of the Android application file ([apkRoot]\.adf)

	
The content in the adfmsrc folder

	
The deployment packages the content in the adfmsrc folder into the default JAR file, which is located in a folder called user ([apkRoot]\user). This JAR file is added to the .apk using the Android Asset Packaging Tool (AAPT) and has a default name of the form ANDROID_MOBILE_NATIVE_archiveN where N is the nth Android created profile (you can override this name when creating the profile).

This JAR file contains the following:

	
Any .class files generated from .java files that are added to the view controller project, as well as the adfmsrc content. The .java files are compiled using the JVM 1.4 JDK javac tool.

	
Contains data binding and pagedef metadata files.

This JAR file is not processed by the Dalvik virtual machine. Because the .class files run in the JDK, they do not need to be converted into the Dalvik bytecode format (.dex).

	
adfmf_application.xml and adfmf_feature.xml files

	
Located in a file called Configuration ([apkRoot]\Configuration).

	
logging.properties file

	
Located in the root of the application file.

	
JVM 1.4 files

	
The JVM files are packaged into two separate folders:

	
The library file (\framework\build\java_res\libs\) in the template will be packaged into a lib folder in the APK - [apkRoot]\lib.

	
The \framework\build\java_res\assets\storage file is packaged in the assets\storage directory in the APK - [apkRoot]\assets\storage.

17.3.5 Selecting the Most Recently Used Deployment Profiles

After you select a deployment action, JDeveloper creates a shortcut on the Deploy menu that enables you to easily redeploy the application using that same deployment action.

17.3.6 What You May Need to Know About Using the Android Debug Bridge

The deployment restarts the Android Debug Bridge server five times until it detects a device (if deploying to a device) or emulator (if deploying to an Android emulator). If it detects neither, then it ends the deployment process, as shown in Figure 17-21.

Figure 17-21 Deployment Terminated

[image: Android Bridge Server stopped, deployment canceled.]

If you are using the Android Debug Bridge command line tool prior to deployment, then you must enter the same command again after the deployment has completed. For example, if you entered adb logcat to view logging information for an emulator or device prior to deployment, you would have to enter adb logcat again after the application has been deployed to resume the retrieval of the logging output. For more information about the Android Debug Bridge command line tool, which is located within (and executed from) the platform-tools directory of the Android SDK installation, refer to the Android Developers website (http://developer.android.com/tools/help/adb.html).

17.4 Deploying an iOS Application

The Deployment Action dialog, shown in Figure 17-22, enables you to deploy an iOS application directly to an iOS simulator or to a device through iTunes. You can only deploy an iOS application from an Apple computer. Deployment to the iOS simulator does not require membership to either the iOS Developer Program or the iOS Developer Enterprise Program; registration as an Apple developer, which provides access to versions of Xcode that are not available through the App Store, will suffice. For more information on iOS developer programs, which are required for deployment to iOS-powered devices (and are described at Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device," and Section 17.4.5, "How to Distribute an iOS Application to the App Store"), see https://developer.apple.com/programs/.

Figure 17-22 The Deployment Action Dialog (for iOS Applications)

[image: The Deployment Action dialog for iOS applications.]

	
Tip:

As an alternative to the Deployment Action dialog, you can deploy an ADF Mobile application to the iOS platform manually using the OJDeploy command line tool as described in Section 17.8, "Deploying ADF Mobile Applications from the Command Line."

17.4.1 How to Deploy an iOS Application to an iOS Simulator

The Deployment Actions dialog enables you to deploy an iOS application directly to an iOS simulator.

Before you begin:

To enable deployment to an iOS simulator, you must perform the following tasks:

	
Run Xcode after installing it, agree to the licensing agreements, and perform other post-installation tasks, as prompted.

	
Note:

You must run Xcode at least once before you deploy the application to the iOS simulator. Otherwise, the deployment will not succeed.

	
Run the iOS simulator at least once after installing Xcode.

	
Set the location of the SDK of the iOS simulator in the ADF Mobile Platforms preference page, shown in Figure 17-24.

	
In the iOS Options page of the deployment profile, select Debug, and then click OK.

	
Note:

You must enter the location of the provisioning profile and the name of the certificate in the ADF Mobile Platforms page (accessed by choosing Tools > Preferences > Platforms). For more information, refer to Section 17.2.4.2, "Setting the Device Signing Options."

	
Before you deploy an application, shut down the iOS simulator if it is running. If you do not shut down the simulator, the deployment will do it for you.

	
Refer to the "Using iOS Simulator" section in iOS Development Workflow Guide. The iOS simulator is installed with Xcode.

To deploy an application to an iOS simulator:

	
Choose Applications, then Deploy, then select an iOS deployment profile.

	
Choose Deploy application to simulator and then choose Next.

	
Review the Summary page, shown in Figure 17-23, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Certificate—The developer or company that authored the application. If this value has not been configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Note:

Deployment to an iOS simulator does not require that the values for Certificate and Provisioning profile be defined. In this deployment scenario, the Summary page displays <Not Specified> for these values.

Figure 17-23 The Deployment Actions Summary Dialog

[image: Deployment actions for iOS applications.]

17.4.2 How to Deploy an Application to an iOS-Powered Device

The Deploy to iTunes for Synchronization to device option enables you to deploy an ADF Mobile application to an iOS-powered device for debugging and testing. Deployment to an iOS-powered device or to a distribution site requires membership to either the iOS Developer Program or the iOS Developer Enterprise Program. For more information, see https://developer.apple.com/programs/.

Before you begin:

You cannot deploy an application directly from JDeveloper to a iOS device; an application must instead be deployed from the Applications folder in Apple iTunes. To accomplish this, you must perform the following tasks:

	
Download Apple iTunes to your development computer and run it at least once to create the needed folders and directories.

	
Set the location of the Automatically Add to iTunes folder (the location used for application deployment) in the ADF Mobile Platforms preference page, shown in Figure 17-24.

	
Tip:

Although your user home directory (/User/<username>/Music/iTunes/iTunes Media/Automatically Add to iTunes.localized) is the default directory for the iTunes Media folder, you can change the location of this folder as follows:

	
In iTunes, select Edit, Preferences, then Advanced.

	
Click Change and then browse to the new location.

	
Consolidate the library.

	
Delete the original iTunes Media folder.

For instructions, refer to Apple Support (http://support.apple.com).

You must also update the location in the ADF Mobile Platforms preference page.

	
Set the location of the Xcode folder where the xcodebuild tool is invoked, such as /Developer/usr/bin in Figure 17-24.

Figure 17-24 Setting the Locations for the iTunes Media Folder and the xcodebuild System

[image: Enter the Media folder and XCode locations.]

	
Enter the name of the certificate and the location of the provisioning profile in the ADF Mobile Platforms preference page. The OS Provisioning Portal generates the certificate and provisioning profile needed for deployment to iOS devices, or for publishing .ipa files to the App Store or to an internal download site.

	
Note:

The deployment will fail unless you set the iOS provisioning profile and certificate to deploy to a device or to an archive. ADF Mobile logs applications that fail to deploy under such circumstances. For more information, see Section 17.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device."

	
In the iOS Options page of the deployment profile, select Debug as the build mode and then OK.

	
Refer to the "Managing Devices and Digital Identities" section in iOS Development Workflow Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

To deploy an application to an iOS-powered device:

	
Choose Applications, then Deploy, and then select an iOS deployment profile.

	
Choose Deploy to iTunes for Synchronization to device and then choose Next.

	
Review the Summary page, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Certificate—The developer (or company) who authored the application. If this value has not been configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Note:

The Certificate and Provisioning Profile values cannot be noted as <Not Specified>; you must specify these values in the Options page to enable deployment to iTunes.

	
Connect the iOS-powered device to the development computer.

	
Open iTunes and then synchronize the device.

17.4.3 What Happens When You Deploy an Application to an iOS Device

The application appears in the iTunes Apps Folder, similar to the one illustrated in Figure 17-15 after a successful deployment.

17.4.4 What You May Need to Know About Deploying an Application to an iOS-Powered Device

You cannot deploy an iOS application (that is, an .ipa file) to an iOS-powered device or publish it to either the App Store or to an internal hosted download site without first creating a provisioning profile using the iOS Provisioning Portal, which is accessible only to members of the iOS Developer Program. You enter the location of the provisioning profile and the name of the certificate in the Options page as described in Section 17.2.4.2, "Setting the Device Signing Options."

As noted in the "Distributing Apps" chapter in Tools Workflow Guide for iOS (which is available through the iOS Developer Library at http://developer.apple.com/library/ios/navigation/), a provisioning profile associates development certificates, devices, and an application ID. The iOS Provisioning Portal enables you to create these entities as well as the provisioning profile.

	
Tip:

After you download the provisioning profile, double-click this file to add it to your Library/MobileDevice/Provisioning Profile directory.

Figure 17-25 The iOS Provisioning Portal

[image: The memebers-only iOS Provisioning Profile.]

17.4.4.1 Creating iOS Development Certificates

A certificate is an electronic document that combines information about a developer's identity with a public key and private key. After you download a certificate, you essentially install your identity into the development computer, as the iOS Development Certificate identifies you as an iOS developer and enables the signing of the application for deployment. In the iOS operating environment, all certificates are managed by the Keychain.

Using the Certificates page in the iOS Provisioning Portal, you log a CSR (Certificate Signing Request). The iOS Provisioning Portal issues the iOS Development Certificate after you complete the CSR.

17.4.4.2 Registering an Apple Device for Testing and Debugging

After you install a certificate on your development computer, review the Current Available Devices tab (located in the iOS Provisioning Portal's Devices page) to identify the Apple devices used by you (or your company) for testing or debugging. The application cannot deploy unless the device is included in this list, which identifies each device by its serial number-like Unique Device Identifier (UDID).

17.4.4.3 Registering an Application ID

An application ID is a unique identifier for an application on a device. An application ID is comprised of the administrator-created reverse domain name called a Bundle Identifier in the format described in Section 5.3.1, "How to Set the ID and Display Behavior for a Mobile Application" prefixed by a ten-character alpha-numeric string called a bundle seed, which is generated by Apple. Figure 17-26 illustrates an application ID that is unique, one that does not share files or the Keychain with any other applications.

Figure 17-26 An Explicit Application ID

[image: An explicit application ID.]

Using a wildcard character (*) for the application name, such as 8E549T7128.com.oracle.*, enables a suite of applications to share an application ID. For example, if the administrator names com.oracle.ADF.* on the iOS Provisioning Portal, it enables you to specify different applications (com.oracle.ADF.application1 and com.oracle.ADF.application2).

	
Note:

For applications that receive push notifications, the application ID must be a full, unique ID, not a wildcard character; applications identified using wildcards cannot receive push notifications. For more information, see the "Provisioning and Development" section of Local and Push Notification Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/)

When applications share the same prefix, such as 8E549T7128, they can share files or Keychains.

	
Note:

The Bundle ID must match the application ID set in the Options page of the deployment profile.

17.4.5 How to Distribute an iOS Application to the App Store

After you test and debug an application on an iOS device, you can distribute the application to a wider audience through the App Store or an internal download site. To publish an application to the App Store, you must submit the .ipa file to iTunes Connect, which enables you to add .ipa files to iTunes, as well as update applications and create test users.

Before you begin:

Before you distribute the application, you must perform the following tasks:

	
In the ADF Mobile Platforms Preferences page, shown in Figure 17-24, enter the location of the Automatically Add to iTunes directory.

	
Tip:

Run iTunes at least once before entering this location. See also Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device."

	
Test the application on an actual iOS device. See Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device."

	
Obtain a distribution certificate through the iOS Provisioning Portal.

	
Note:

Only the Team Agent can create a distribution certificate.

	
Obtain an iTunes Connect account for distributing the .ipa file to iTunes. For information, see "Prepare App Submission" in the iOS Development Center's App Store Resource Center. Specifically, review the App Store Review Guidelines to ensure acceptance by the App Review Team.

	
You may want to review both the "Distributing Apps" section in Tools Workflow Guide for iOS and iTunes Connect Developer Guide. These guides are both available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
In the iOS Options page of the deployment profile, select Release as the build mode and then click OK.

To distribute an iOS application to the App Store:

	
Choose Applications, then Deploy, and then select an iOS deployment profile.

	
Choose Deploy to Distribution Package.

	
Review the Summary page, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Certificate—The application's author. If this value has not been configured in the ADF Mobile Platforms preference page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the ADF Mobile Platforms preference of the deployment profile, then the Summary page displays <Not Specified>.

	
Note:

The Certificate and Provisioning Profile values cannot be noted as <Not Specified>; you must specify these values in the Options page to enable the .ipa file to be accepted by iTunes.

	
Log in to iTunes Connect.

	
Submit the .ipa file to iTunes Connect for consideration using the Manage Your Applications module and the Application Loader described in the "Adding New Apps" and "Using Application Loader" sections in iTunes Connect Developer Guide.

	
After the application has been approved, refer to the "Creating Test Users" section in iTunes Connect Developer Guide for information on using the Manage Users module. For testing multi-language applications, create a test user account for the regions for which the application is localized.

	
Refer to the "Editing and Updating App Information" section in iTunes Connect Developer Guide for information on updating the binary using the Managing Your Application module.

17.4.5.1 What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device

JDeveloper performs the following tasks after you complete the deployment wizard:

	
Validates that the necessary software prerequisites are installed. For example, such tasks include:

	
Validating that the path to the iOS SDK that was set in Preferences is valid and accessible.

	
Validating that the path to the xcodebuild tool (which is set in the ADF Mobile Platforms page) that was set in Preferences is valid and accessible. The xcodebuild tools is an Apple utility that compiles iOS projects.

	
Performing other validation as needed.

	
Deletes any pre-existing template for this deployment profile to ensure that any new deployment does not use configuration set for previous deployments.

	
Validates the applications and all of the XML content of both the applications and the projects.

	
For a first-time deployment (or after you select Build > Clean), JDeveloper unzips the Oracle_ADFmc_Container_Template file for iOS to a temporary location. That is, modules\adf-mobile\dist\jdev\extensions\oracle.adf.mobile\Oracle_ADFmc_Container_Template.zip is unpacked to a profile sub-directory in the deploy directory.

	
Tip:

Selecting Build > Clean enables you to modify the Xcode project settings, which provide additional options to those available in JDeveloper.

JDeveloper also unzips the necessary ADF Mobile libraries from modules\adf-mobile\dist\jdev\extensions\oracle.adf.mobile\Oracle_ADFmc_Framework_Libraries.zip to the Framework directory in the previously unzipped template.

	
Note:

Any libraries dependent the type of deployment (that is, debug, release, or deployment to a simulator, device, or as an archive) are added to the template at a later stage.

	
If custom images have been selected in the deployment profile, JDeveloper copies those images to a template location and renames them to the appropriate name. The iOS template internally uses the names icon.png, icon-2x.png, icon-72.png, Default.png, Default-Landscape.png, and Default-Portrait.png for the application icon names and splash screen names. For any image that has not been customized, JDeveloper copies the default image to the template.

	
Copies the web content (including any images related to features) to the template location. As a result, the public_html folder and its subdirectories within the ADF Mobile project are copied to the www folder in the template.

	
Copies the metadata files to the template location:

	
Copies the adfmf-application.xml file.

	
Combines all of the adfmf-feature.xml files into one file and places it in the template.

	
Creates and updates the .plist files. See Property List Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/) and also Section C.3, "Converting Preferences for iOS."

	
Creates the preferences .plist files from the metadata files. These files create the preferences that are available from the iOS Settings application.

	
Updates the root.plist file with the application name, the bundle identifier, the version, and the flag that determines the use of pre-rendered icons. The application name, bundle identifier, and version are retrieved from the adfmf-application.xml file and the iOS Options page, shown in Figure 17-11, "Setting the iOS Options".

	
Runs the xcodebuild utility with the correct flags for the chosen deployment. For example, a debug build deployed to an iOS simulator (Version 5.0) is as follows:

xcodebuild clean install -configuration Debug -sdk iphonesimulator5.0

	
Deploys the newly built application to the proper location.

	
Copies the iOS application bundle to a unique application directory, as required for deployment to the iOS simulator.

	
Runs the xcrun command to package the application into the .ipa file. This command creates an .ipa file that has a folder entitled Payload, which contains the application. It also adds the provisioning profile and signs the application with the developer's name. An example of the xcrun command is as follows:

/usr/bin/xcrun -sdk iphoneos PackageApplication -v "%PROJECT_BUILDDIR%/SampleApp.app" -o "SampleApp.ipa" --sign "iPhone Developer: John Doe (A1BC2DEFGH)" --embed "/Users/jdoe/Desktop/my_profile.mobileprovision"

	
If this is a deployment to a device, JDeveloper moves the .ipa file to the iTunes Media/Automatically Add to iTunes directory.

17.5 Deploying Feature Archive Files (FARs)

To enable re-use by ADF Mobile view controller projects, application features— typically, those implemented as ADF Mobile AMX or Local HTML— are bundled into an archive known as a Feature Archive (FAR). A FAR is essentially a self-contained collection of application feature elements that can be consumed by ADF Mobile applications, such as icon images, resource bundles, HTML, JavaScript, or other implementation-specific files. (A FAR can also contain Java classes, though these classes must be compiled.) Example 17-2 illustrates the contents of a FAR, which includes a single adfmf-feature.xml file and a connections.xml file. For more information on connections.xml, see the "Lookup Defined in the connections.xml File" section and "Reusing Application Components" chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Example 17-2 Contents of a Feature Archive File

connections.xml (or some form of connection metadata)

 META-INF
 adfm.xml
 adfmf-feature.xml
 MANIFEST.MF
 task-flow-registry.xml

 oracle
 application1
 mobile
 Class1.class
 DataBindings.cpx
 pageDefs
 view1PageDefs

 model
 adfc-mobile-config.adfc.diagram
 ViewController-task-flow.adfc.diagram

 public_html
 adfc-mobile-config.xml
 index.html
 navbar-icon.html
 springboard-icon.html
 view1.amx
 ViewController-task-flow.xml

Working with Feature Archive files involves the following tasks:

	
Creating a Feature Archive file—You create a Feature Archive by deploying a feature application as a library JAR file.

	
Using the Feature Archive file when creating an ADF Mobile application—This includes importing FARs and re-mapping the imported connection.

	
Deploying an ADF Mobile application that includes features from FARs—This includes unpacking the FAR to a uniquely named folder within the deployment template.

	
Note:

ADF Mobile generates FARs during the deployment process. You only need to deploy a view controller project if you use the FAR in another application.

17.5.1 How to Create a Deployment Profile for a Feature Archive

Use the Create Deployment Profile dialog, shown in Figure 17-10.

Figure 17-27 Create ADF Mobile Feature Dialog

[image: Select ADF Mobile Feature Archive.]

Before you begin:

Create the appropriate connections for the application. See the "Naming Considerations for Connections" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

How to create a deployment profile for a Feature Archive:

	
Right-click a view controller project, choose New, then Deploy, and then New Deployment Profile.

	
Note:

You do not need to create a separate, application-level deployment profile.

	
Select ADF Mobile Feature Archive in the Create Deployment Profile dialog.

	
Enter a profile name, or accept the default, and then click OK.

	
Note:

Name the profile appropriately. Otherwise, you may encounter problems if you upload more than one application feature with the same archive name. For more information, see Section 5.13.3, "What You May Need to Know About Enabling the Reuse of Feature Archive Resources."

	
Select the connections that you want to include in the Feature Archive JAR file, as shown in Figure 17-28.

Figure 17-28 Selecting a Connection for the FAR

[image: Select a connection.]

	
Click Next, review the options, and then click Finish.

17.5.2 How to Deploy the Feature Archive Deployment Profile

The Deployment Actions dialog enables you to deploy the FAR as a JAR file. This dialog, shown in Figure 17-29, includes only one deployment option, Deploy to feature archive JAR file.

Figure 17-29 Deployment Actions

[image: Deployment actions.]

How to deploy the Feature Archive deployment profile:

	
Right-click the view controller project and then select the Feature Archive deployment profile.

	
Click Finish. The Summary page, shown in Figure 17-30, displays the full path of where the Feature Archive file's JAR path is deployed.

Figure 17-30 Deployment Summary Page

[image: Shows the full path of the FAR JAR.]

17.5.3 What Happens When You Deploy a Feature Archive File Deployment Profile

After you complete the deployment action dialog, ADF Mobile creates a library JAR in the path shown in the Summary page. To make this JAR available for consumption by other applications, you must first make it available through the Resource Palette, shown in Figure 17-31 (and described in Section 5.13.1, "How to Use FAR Content in an ADF Mobile Application") by creating a connection to the location of the Feature Archive JAR. Figure 17-31 shows Feature Archives that can be made available to an ADF Mobile application through a file system connection. For more information, see "Working with the Resource Palette" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 17-31 Deployed Feature Archive JARs in the Resource Palette

[image: Deployed Featurer Archive JARs in Resource Palette.]

17.6 Creating a Mobile Application Archive File

You can create a new ADF Mobile application from an existing ADF Mobile application by first packaging the original ADF Mobile application as a Mobile Application Archive (.maa) file and then by deriving a new ADF Mobile application from this file. An .maa file can be used by third parties, as described in Section 17.7, "Creating Unsigned Deployment Packages."

An .maa file preserves the structure of the ADF Mobile application. Table 17-7 describes the contents of this file.

Table 17-7 Contents of a Mobile Application Archive File

	Directory	Description
	
adf

	
Contains the META-INF directory, which contains the metadata files, including:

	
The adf-config.xml file

	
The adfmf-application.xml file

	
The adfmf-config.xml file

	
Other applicable application-level files, such as the connections.xmlfile

	
Projects

	
Contains a JAR file for each project in the workspace. For example, a ViewController.jar file and a ApplicationController.jar file are located in this directory when you deploy a default ADF Mobile application to an .maa file. The Projects directory of the .maa file does not include the .java files from the original project. Instead, the .java files are compiled and the resulting .class files are placed in a separate JAR file that is contained in the project JAR file (such as ApplicationController.JAR/classlib/mobileApplicationArchive.jar).

	
ExternalLibs

	
Contains the application-level libraries (including FARs) that are external to the original ADF Mobile application.

	
META-INF

	
Includes the cvm.properties and logging.properties files.

	
resources

	
Includes the following directories:

	
android—Contains Android-specific image files for application icons and splash screens.

	
ios—Contains iOS-specific image files for application icons and splash screens.

	
security—Includes the cacerts file (the keystore file).

In addition to the artifacts listed in Table 17-7, the .maa file includes any folder containing FARs or JAR files that are internal to the original ADF Mobile application, as well as its control (.jws)file. See also Section 17.7.2, "What Happens When You Import an ADF Mobile Application Archive File."

17.6.1 How to Create a Mobile Application Archive File

JDeveloper creates a default ADF Mobile Application Archive deployment profile after you create an ADF Mobile application. Using the Mobile Application Archive wizard, you can create MAA file.

	
Tip:

You can also create an .maa file using OJDeploy, as described in Section 17.8, "Deploying ADF Mobile Applications from the Command Line."

To create a Mobile Application Archive file:

	
Click Application, then Deploy, then New Deployment Profile.

	
In the Create Deployment Profile dialog, choose ADF Mobile Application Archive and then click OK, as shown in Figure 17-32.

Figure 17-32 Creating an MAA Deployment Profile

[image: ADF Mobile Application Archive option.]

	
If needed, enter a name for the Mobile Application Archive in the Application Archives Options page, shown in Figure 17-33, or accept the default name (and path). Click OK.

Figure 17-33 Entering a Name and Path for the Mobile Application Archive File

[image: Enter a name or path for the .maa file.]

	
If needed, perform the following:

	
In the Application Descriptors page, shown in Figure 17-34, enter the file group name (or accept the default name) used for the contents of the META-INF folder (application_workspace\src\META-INF).

Figure 17-34 Entering a File Group Name for the META-INF Contents

[image: Enter a name for the META-INF contents.]

	
Select the Contributors sub-page of this Application Descriptors page to edit the list of directories and JAR files that provide the contents for the file group.

Figure 17-35 Editing Contributors to the Mobile Application Archive File

[image: Choose the directories and files for the .maa file.]

	
Use the Filters page, shown in Figure 17-36 to edit the files that will be included in the .maa file or set the content inclusion or exclusion rules.

Figure 17-36 Including (or Excluding) Files and Directories

[image: Edit content filters.]

	
Use the Profile Dependencies page, shown in Figure 17-37, to specify dependent profiles within the project.

Figure 17-37 Selecting Deployment Profiles

[image: Select other deployment profiles.]

To package an ADF Mobile Application as a Mobile Application Archive file:

	
Choose Application, then Deploy and then choose the ADF Mobile Application Archive deployment profile.

	
In the Deployment Action wizard, select Deploy application to MAA, as shown in Figure 17-38.

Figure 17-38 Deployment to an ADF Mobile Application Archive File

[image: Deployment to an .maa file.]

	
Click Next to review the deployment summary, as shown in Figure 17-39.

Figure 17-39 ADF Mobile Application Archive Deployment Summary

[image: Deployment summary for an .maa file.]

	
Click Finish.

17.7 Creating Unsigned Deployment Packages

The ADF Mobile Application Archive (.maa) file format enables you to provide third-parties with an unsigned ADF Mobile application. By deriving an ADF Mobile application from an imported .maa file, you enable various customizations, which include:

	
Giving an application a unique application ID (to enable push notifications, for example).

	
Signing an application with a company-specific credential or certificate.

	
Replacing the resources with customized splash screens and application icons.

	
Note:

Importing an .maa file into an existing application overwrites the workspace and project container files (the.jws and .jpr files, respectively). As a result, all prior changes to ADF Mobile AMX pages and configuration files, such as adfmf-application.xml, adfmf-config.xml, connections.xml, and adf-config.xml, will not be retained.

17.7.1 How to Create an Unsigned Application

You create an unsigned application by importing an .maa file into a new ADF Mobile application.

To create an unsigned application:

	
Choose File and then New.

	
In the New Gallery, choose Applications and then Mobile Application from Archive File (ADF).

	
Note:

Alternatively, you can choose File, then Import, and then Mobile Application from Archive File (ADF).

	
In the Location page, choose Browse in the MAA File field.

	
In the Select MAA File to Import page, highlight the .maa file, as shown in Figure 17-40, and then click Open.

Figure 17-40 Selecting the .maa File

[image: Select the .maa file.]

	
If needed, perform the following, or accept the default values:

	
Enter a name for the ADF Mobile application derived from the .maa file in the Application File field, as shown in Figure 17-41.

	
Click Browse to retrieve the directory of the ADF Mobile application.

Figure 17-41 Entering the Directory Location

[image: Locations for the .maa file, new application.]

	
Click Next.

	
Review the import summary information and then click Finish.

Figure 17-42 Summary of ADF Mobile Application Archive Contents

[image: The contents of imported .maa file.]

17.7.2 What Happens When You Import an ADF Mobile Application Archive File

ADF Mobile performs the following after you import an .maa file:

	
Creates an application folder.

	
Unpacks the workspace container (.jws) file from the .maa file to the application file and renames it per the user-specified value.

	
Unpacks the adf directory and its contents to the application folder. This directory is renamed .adf.

	
Unpacks the META-INF directory and its contents and places them in a src directory in the application folder.

	
Unpacks the ExternalLibs directory and its contents to the application folder.

	
Note:

While any of the external resources contained in this directory are available in the ADF Mobile application that has been packaged as an .maa file (and imported into the application), the references to these resources will be invalid for ADF Mobile application derived from the .maa file.

	
Unpacks the resources directory to the application folder.

	
Unpacks all folders that contain FARs (or other libraries) that are internal to the original ADF Mobile application. ADF Mobile preserves the original locations of these artifacts.

	
For each JAR file within the original ADF Mobile application's Projects directory, ADF Mobile performs the following:

	
Creates a project folder under the application directory that corresponds to the name of the JAR file (but without the .jar extension).

	
Unpacks the contents of the JAR files into the appropriate project folder. ADF Mobile includes the following in these project folders:

	
The original .jpr file.

	
The standard directories, such as META-INF, public_html, src, and adfmsrc.

	
The contents of the ExternalLibs directory.

	
Note:

While any of the external resources contained in this directory are available in the ADF Mobile project that has been packaged with the imported .maa file, the references to these resources will be invalid for an existing project, or a project created by importing the .maa file.

	
The classlib directory, which contains any Java classes packaged in a JAR file.

	
Note:

If the .maa file includes a classlib directory, then ADF Mobile adds all of the JAR files from this directory as library dependencies in the newly created ADF Mobile application.

17.8 Deploying ADF Mobile Applications from the Command Line

You can deploy iOS or Android applications from JDeveloper without starting the JDeveloper IDE using the OJDeploy command line tool. Command line deployment can serve as a tool for testing, as well as a means of deploying applications using a script.

After you have created iOS or Android deployment files using Deployment Profile Properties editor, you can use OJDeploy to deploy applications to iOS simulators and iOS-powered devices (through iTunes), or as iOS bundles (.ipa and .app files), or Feature Archive JAR files. Likewise, OJDeploy enables you to deploy applications to both Android emulators and Android-powered devices, or deploy them as an Android application package (.apk) file or as Feature Archive JAR files. For information on OJDeploy, see "Deploying from the Command Line" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

	
Note:

To use OJDeploy on a Mac, add the following line to the ojdeploy.conf file:

SetSkipJ2SDKCheck true

This file is located at: jdev_install/jdeveloper/jdev/bin

17.8.1 Using OJDeploy to Deploy ADF Mobile Applications

The following commands enable you to deploy ADF Mobile deployment profiles:

	
deployToDevice—Deploys an application to iOS- or Android-powered devices. For iOS applications, this command is used in debugging scenarios where the application is deployed to a device using iTunes. For more information, see Section 17.4.5, "How to Distribute an iOS Application to the App Store."

	
deployToSimulator—Deploys an application to an iOS simulator (as an .app file) or Android emulator. You can only deploy an ADF Mobile application to an iOS simulator on an Apple computer.

	
deployToPackage—Deploys an iOS application as an .ipa file or an Android application as an .apk file. You can only package an application as an .ipa file on an Apple computer.

	
deployToFeatureArchive—Deploys a Feature Archive to a JAR file.

	
deployToApplicationArchive—Packages an ADF Mobile application as an ADF Mobile Application Archive (.maa) file.

You use these commands in conjunction with the ojdeploy command line tool, OJDeploy's arguments, and its options as follows:

ojdeploy deployToSimulator -profile <profile name> -workspace <jws file location>

	
Note:

OJDeploy commands and arguments are case-sensitive.

Table 17-8 lists the OJDeploy arguments that you use to modify the ADF Mobile deployment commands.

	
Tip:

Using the -help option with any command (such as ojdeploy deployToSimulator -help) retrieves usage and syntax information.

Table 17-8 OJDeploy Arguments for ADF Mobile Deployments

	Argument	Description
	
-profile

	
The name of the Android or iOS deployment profile. For example:

ojdeploy deployToSimulator -profile iosDeployProfile ...

	
-workspace

	
The full path to the ADF Mobile application workspace container (.jws) file. For example:

... -workspace /usr/jsmith/mywork/Application1/Application1.jws

To package an ADF Mobile application as an ADF Mobile Application Archive:

ojdeploy deployToApplicationArchive
 -profile applicationArchiveProfile
 -workspace /usr/jdoe/Application1/application1.jws

	
-project

	
For the deployToFeatureArchive command, you must provide the name of the project (that is, a view controller project) that contains the Feature Archive deployment profile. For example:

ojdeploy deployToFeatureArchive
 -profile farProfileName
 -project ViewController
 ...

	
-buildfile

	
The full path to a build file for batch deploy.

	
-buildfileschema

	
Print XML Schema for the build file.

In addition to the arguments listed in Table 17-8, you can also use OJDeploy options described in the "Command Usage" section of Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

	
Note:

The following options are not supported:

	
-forcerewrite

	
-nocompile

	
-nodatasources

	
-nodepdendents

	
-outputfile

	
-updatewebxmlejbrefs

Table 17-9 provides examples of how to use the OJDeploy options with the ADF Mobile deployment commands.

Table 17-9 OJDeploy Options for ADF Mobile Deployments

	Option	Description
	
-clean

	
Deletes all files from the project output directory before compiling. For example:

ojdeploy deployToSimulator
 -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean

	
-stdout, -stderr

	
Redirects the standard output and error logging streams to a file for each profile and project. For example:

ojdeploy deployToSimulator -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean
 -stdout /usr/jsmith/stdout/stdout.log
 -stderr /usr/jsmith/stderr/stderr.log

Table 17-10 lists the macros used with the deployToApplicationArchive command:

Table 17-10 Macros Used with ADF Mobile Application Archive Packaging

	Macros	Description
	
workspace.name

	
The name of the application workspace container file (without the .jws extension).

	
workspace.dir

	
The directory of the application workspace container (.jws) file.

	
profile.name

	
The name of the profile being deployed.

	
profile.dir

	
The default deployment directory for the profile.

	
base.dir

	
Override the current OJDeploy directory using this parameter. You can also override the current OJDeploy directory using the basedir attribute in the build script.

18 ADF Mobile Application Security

This chapter provides an overview of the security framework within ADF Mobile and also describes how to configure ADF Mobile applications to participate in security.

This chapter includes the following sections:

	
Section 18.1, "Introduction to Security for an ADF Mobile Application."

	
Section 18.2, "Introduction to the User Login Process"

	
Section 18.3, "Introduction to Authentication"

	
Section 18.4, "Configuring Security for ADF Mobile Applications"

	
Section 18.5, "Adding Private Certificates"

18.1 Introduction to Security for an ADF Mobile Application

ADF Mobile presents users with a login page when a secured application feature has been activated, such as when it is about to be displayed within the web view or when the operating system returns the application feature to the foreground. In these instances, ADF Mobile determines whether access to the application feature requires user authentication and then challenges the user with a login page. Only when the user successfully enters valid credentials does ADF Mobile render the intended web view, UI component, or application page. By default, ADF Mobile only presents a login page when it is required, either when an application feature requires security or when it includes constraints based on user roles or user privileges. If either of these conditions exist, then ADF Mobile presents users with the login page at the startup of the ADF Mobile application and displays application features on the navigation bar accordingly. For more information, see Section 18.4.1, "How to Enable Application Features to Require Authentication," and Section 14.2.4, "About User Constraints and Access Control."

ADF Mobile uses JavaScript, an Apache Cordova plugin, and native Cordova command handlers that collectively handle the interaction with the login page, the navigation between application features, and interactions with the Oracle Access Management Mobile and Social (OAMMS) IDM Mobile SDK, whose classes and protocols verifies user credentials. The native Cordova command handler methods are executed through the Cordova plugins. The methods' results are sent back to corresponding JavaScript callback functions that navigate to either the requested application feature or to the web view that initiated the authentication process.

	
Note:

The entire login process is executed within ADF Mobile. Embedded Java is not required.

An ADF Mobile application uses either the default page or a customized login page that is written in HTML.

18.2 Introduction to the User Login Process

Login is required when a credential attribute for the application feature definition (in the adfmf-feature.xml file) is designated as either remote or local and the user has not been authenticated. From the end-user perspective, the login process is as follows:

	
ADF Mobile presents a web view of a login page, shown in Figure 18-1. The login page illustrates the name of the application feature that requires authentication, feature1.

Figure 18-1 The Login Page

[image: The login page in a web view.]

	
Note:

As described in Section 18.4.12.2, "The Custom Login Page," ADF Mobile provides not only a non-platform specific login page, but also supports the use of a custom login page.

	
The user enters a user name and password and then clicks OK.

	
Note:

ADF Mobile does not allow multiple users for the same application. If a user attempts to login to an application after a previous user was logged out because of a timeout, ADF Mobile prompts the end user to enter the initial user's name and password or to restart the application. A user can restart an application by logging off, because logging off terminates an application automatically. You must enable end users to terminate the application by logging off from the login screen.

For information on calling methods of the AdfmfJavaUtilities class to enable users to log off of an application without it terminating, see Section 18.4.12, "What You May Need to Know About Login Pages."

	
If the user name and password are verified, ADF Mobile displays the intended web view, page, or UI component.

	
ADF Mobile presents challenges to the user name and password until the user logs in successfully. When users cannot login, they can only navigate to another application feature.

	
Note:

Authentication times out when a predefined time period has passed since the last activation of an application feature. ADF Mobile only renews the timer for the idle timeout when one of the application features that uses the connection to the authentication server has been activated.

18.3 Introduction to Authentication

ADF Mobile authenticates against an authentication server, such as Oracle Access Management (OAM) Identity Server.

	
Note:

ADF Mobile can authenticate against any basic authentication server.

When ADF Mobile handles the authentication against a remote server, the flow of security is as follows:

	
ADF Mobile presents the user with the default login page, similar to the one shown in Figure 18-1, or with a custom login page.

	
The APIs of the Oracle Access Management Mobile and Social (OAMMS) IDM Mobile SDK handle the authentication for both remote authentication servers and for authentication against the credential store on the device (which may or may not store a saved user object). Depending on the success or failure of the authentication, the APIs return either a failure or a valid user object to ADF Mobile.

	
Note:

Logging into OAMMS populates the roles and privilege collections to the user object.

	
If the login succeeds, ADF Mobile receives an OAM token used in the cookie. ADF Mobile sets the cookie into each login connection.

	
The IDM Mobile SDK APIs save the credentials in the device's credential store.

	
If the login fails, the login page remains, thereby preventing users from continuing.

18.3.1 About Constraint-Dictated Access Control

When at least one secured application feature includes the user.roles or user.privileges constraints, an end user must complete a login page to authenticate against an application login server when the application starts. Otherwise, the default application feature displays. If a default application feature participates in security, then ADF Mobile uses a login page to prompt the end user to authenticate against the login connection associated with the application feature. Instead of authenticating, an end user can also navigate to another application feature. For more information, see Section 14.2.4, "About User Constraints and Access Control."

18.4 Configuring Security for ADF Mobile Applications

Security is configured using both the overview editors for the adfmf-feature.xml and adfmf-application.xml files. The adfmf-application.xml file's overview editor enables you to designate the type of login page (default or custom) that ADF Mobile presents to users when they select application features that require authentication or to include user role- or user privilege-based constraints. For application features whose content is served from a remote URL, the overview editor enables you to whitelist the domains so that remote URL content can display within the ADF Mobile web view. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."

Using the overview editor for the adfmf-feature.xml file enables you to designate whether an application feature requires authentication against a remote login server, or against a credential store on the device that houses the user's login credentials for a remote login server. In the former case, a mobile application may require user authentication against Oracle Access Manager used by Oracle ADF Fusion web applications. After the user is authenticated against the login server within the same application session (that is, within the lifecycle of the application execution), the authentication context is stored locally and subsequent authentication is executed against this local authentication context. A subsequent authentication does not attempt to contact the login server if the local authentication context is sufficient to authenticate the user. Although a connection to the remote login server is required for the initial authentication, continual access to the server is not required for local authentication. In addition, authentication against a local credential store can be faster than authentication against a remote login server.

Designating security for an application feature results in JDeveloper populating a credential attribute to the application feature's <adfmf:feature> element. When you embed such an application feature in a mobile application, you then configure login and logout server connection information and designate whether users are presented with the default login page provided by ADF Mobile or with a customized page. These requirements are noted by the attributes for the <adfmf:login> element.

Login is required when the credential attribute for the application feature definition (in the adfmf-feature.xml file) is either designated as remote or local (as described in Section 18.4.1, "How to Enable Application Features to Require Authentication") and when the user has not been authenticated within a timeout period set in the Create ADF Mobile Login Connection dialog, shown in Figure 18-7. See also Section 18.1, "Introduction to Security for an ADF Mobile Application."

	
Note:

You must define at least one connection to the application login server for an application feature that participates in security using a remote login server, or using a locally stored set of credentials. The absence of a defined connection to an application login server results in an invalid configuration. As a result, the application will not function properly.

18.4.1 How to Enable Application Features to Require Authentication

Configuring security for an ADF Mobile application begins at the application feature level, where you designate which application features require users to authenticate against a remote login server or to a local credential store. You can define each application feature to participate in security. You perform the remainder of the security configuration using the Security page of the adfmf-application.xml overview editor.

The Credentials tab of the adfmf-feature.xml overview editor, shown in Figure 18-2, enables you to designate which application features participate in security and the type of authentication they require.

Figure 18-2 Designating User Credentials Options for an Application Feature

[image: Designating user credentials requirement.]

To designate user access for an application feature:

	
Select an application feature or click Add to add an application feature.

	
Click Enable Feature Security for any application feature that requires login and then select one of the following authentication options:

	
local—Select if the application will allow users to authenticate against locally stored credentials on the device. After the user's first successful authentication to a remote server, ADF Mobile persists the credentials locally within a credential store in the device. These credentials are used for subsequent access to the application feature. See also Section 18.4.11, "What You May Need to Know about Web Service Security."

	
remote—Select if the application requires authentication with a remote login server, such as Oracle Access Manager (OAM) Identity Server or a secured web application. Authentication against the remote server is required each time a user logs in. If the device cannot contact the server, then a user cannot login to the application despite a previously successful authentication.

In addition to the overview editor shown in Figure 18-2, you can configure the security options in the Property Inspector, shown in Figure 18-3.

Figure 18-3 Designating User Credential Options in the Property Inspector

[image: Security options in the Property Inspector.]

In addition to the local and remote options available in the overview editor, the Property Inspector also provides the none and <default> (none) options for application features that do not participate in security. Selecting none clears the Enable Feature Security option in the overview editor and updates <adfmf:feature> with credentials="none". Selecting <default> (none) also clears Enable Feature Security and removes the credentials attribute from <admf:feature>, which has no credentials attribute by default.

18.4.2 How to Designate the Login Page

After you designate security for the application features, you use the Security page of the adfmf-application.xml overview editor, shown in Figure 18-4, to configure the login page as well as create and assign a connection to the login server for each of the application features that participate in security. All of the application features listed in this page have been designated in the adfmf-feature.xml file as requiring security. Typically, a group of application features are secured with the same login server connection, enabling users to open any of these applications without ADF Mobile prompting them for subsequent logins. In some cases, however, the credentials required for the application features can vary, with one set of application features secured by one login server and another set secured by a second login server. To accommodate such situations, you can define any number of connections to a login server for an ADF Mobile application. In terms of the adfmf-application.xml file, the authentication server connections associated with the feature references are designated using the loginConnRefId attribute as follows:

<adfmf:featureReference id="feature1" loginConnRefId="Connection_1"/>
<adfmf:featureReference id="feature2" loginConnRefId="Connection2"/>

ADF Mobile applications can be authenticated against any standard login server that supports basic authentication over HTTP or HTTPS. ADF Mobile also supports authentication against Oracle Identity Management. You can also opt for a custom login page for a specific application feature. For more information, see Section 18.4.12, "What You May Need to Know About Login Pages."

Figure 18-4 The Security Page of the adfmf-application.xml Overview Editor

[image: Designate the login page for features.]

Before you begin:

If the ADF Mobile application uses a custom login page, add the file to the public_html directory of the application controller project (JDeveloper\mywork\Application\ApplicationController\public_html) to make it available from the Web Content node in the Application Navigator, as shown in Figure 18-5. See also Section 18.4.12.3, "Creating a Custom Login HTML Page" and Section 5.10.2, "What You May Need to Know About Selecting External Resources."

Add constraints for user privileges and roles, as described in Section 14.2.4, "About User Constraints and Access Control."

Provision an Access Control Service (ACS) server. For more information, Section 18.4.7, "What You May Need to Know About the Access Control Service."

Figure 18-5 Adding a Custom Login Page

[image: Add the location of the custom login page.]

To designate the login page:

	
Click Security in the adfmf-application.xml overview editor.

	
Select the login page type:

	
Default—The default, non-platform specific login page used for all of the selected embedded application features. For more information, see Section 18.4.12.1, "The Default Login Page." The default login page is provided by ADF Mobile.

	
Custom—Select the format (HTML) and then click Browse to retrieve the path location of the file within the application controller project. Alternatively, click New to create an HTML page within the application controller project. For more information, see Section 18.4.12.2, "The Custom Login Page" and Section 18.4.12.3, "Creating a Custom Login HTML Page."

	
Tip:

Rather than retrieve the location of the login page using the Browse function, you can drag the login page from the Application Navigator into the field.

To set the connection to the remote server:

You must first create the authentication-related connections as follows:

	
In the Features with Security Enabled table, select the application feature's Server Connection field and then click Add, as shown in Figure 18-6.

Figure 18-6 Adding a Server Connection

[image: Click Add to create a login server connection.]

	
Note:

You must define the application login server connection and assign it to the default application feature (if the default application feature is secured). Also, the credentials used for the application login server are also used to retrieve user and roles and services through the Access Control Service (ACS). See also Section 18.4.7, "What You May Need to Know About the Access Control Service."

	
Complete the Authentication tab of the Create ADF Mobile Login Server Connection dialog as follows:

	
Name—Enter a name for the connection.

	
Login URL—Enter the login URL for the authentication server.

	
Logout URL—Enter the logout URL for the authentication server.

	
Idle Timeout—Enter the time for an application feature to remain idle after ADF Mobile no longer detects the activation of an application feature. After this period expires, the user is timed-out of all the application features that are secured by the login connection. In this situation, ADF Mobile prompts users with the login page when they access the feature again. By default, ADF Mobile presents the login page when an application remains idle for 300 seconds (five minutes).

	
Note:

ADF Mobile authenticates against the local credential store after an idle timeout, but does not perform this authentication after a session timeout.

	
Session Timeout—Enter the time, in seconds, that a user can remain logged in to an application feature. After the session expires, ADF Mobile prompts the user with a login page if the idle timeout period has not expired. By default, a user session lasts for 28,800 seconds (eight hours).

	
Note:

You must edit the connections.xml file to set the number of failed login attempts allowed to a user. For more information, see Section 18.4.5, "What You May Need to Know About Configuring ADF Mobile to Respond to Unsuccessful Login Attempts."

	
Cookies—Use for a remote login for a secured application feature. Enter a list of cookie names that enable basic authentication after they are stored. Because ADF Mobile stores the cookies in a browser, users need only log in once. These cookies and the credentials stored within them are provided by a system administrator. The cookie names are case-sensitive. See also Section 18.4.10, "What You May Need to Know About Injecting Basic Authentication Headers."

	
Include login server cookie in REST calls—For application features using remote authentication (that is, the <adfmf:feature> element includes credentials="remote" as described in Section 18.4.1, "How to Enable Application Features to Require Authentication"), select to enable a REST web service to retrieve authorized user data stored on a login server by using the login server-generated user session cookie. For more information, see Section 18.4.9, "What You May Need to Know About Injecting Cookies into REST Web Service Calls."

	
Note:

To enable cookies to be injected in the REST web service call:

	
The application feature must use remote authentication; ADF Mobile does not support injecting cookies for application features that store user credentials locally.

	
The domain entered for Login URL must be identical to the domain of the REST web service end point.

	
The cookies expected by the REST web service, which are entered into Cookies field, must be identical to the ones returned by the login server when the user logs in to an application feature.

Figure 18-7 The Create ADF Mobile Login Connection Dialog

[image: The Create ADF Mobile Login Connection dialog.]

	
Note:

Figure 18-7 shows a cookie for JSESSIONID, which is used for HTTP basic authentication against Oracle WebLogic Server. Because other authentication mechanisms require different cookies, you can obtain the cookie name through network tracing or through the HTTP Analyzer, described in the "Monitoring HTTP Using the HTTP Analyzer" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

	
Tip:

To authenticate against a resource other than OAM, configure both Login URL and Logout URL as the URL of the authentication resource, and enter JSESSIONID as the cookie.

	
Complete the Authorization tab, shown in Figure 18-8, of the Create ADF Mobile Login Server Connection dialog if the application feature contains any component that is secured, such as an expense report application that includes a submit button configured with an EL expression that only renders to true if it is clicked by a user who is granted a role of manager. Completing the fields in this tab enables the retrieval of the specific user roles that are checked by an application feature.

The access control granted by the application login server is based on the evaluation of the user.roles and user.privileges constraints configured for an application feature, as described in Section 14.2.4, "About User Constraints and Access Control." For example, to allow only a user with manager_role role to access an application feature, you must define the <adfmf:constraints> element in the adfmf-feature.xml file with the following:

<adfmf:constraint property="user.roles"
 operator="contains"
 value="manager_role"/>
</adfmf:constraints>

At the start of application, the RESTful web service known as the Access Control Service (ACS) is invoked for the application login server connection and the roles and privileges assigned to the user are then fetched. ADF Mobile then challenges the user to login against the application login server connection.

ADF Mobile evaluates the constraints configured for each application against the retrieved user roles and privileges and makes only the application features available to the user that satisfy all of the associated constraints.

Complete the authorization requirements as follows:

	
Access Control URL—Enter the URL that is the endpoint for the Access Control Service, as shown in Figure 18-8.

	
Note:

ADF Mobile injects all cookies issued by the authentication server (that is, the login server) into the HTTP request header when it invokes the ACS. Cookie injection occurs when you select Include login server cookie in REST calls and enter identical addresses for Access Control URL and the Login URL parameters. See also Section 18.4.9, "What You May Need to Know About Injecting Cookies into REST Web Service Calls."

	
Filter List of User Roles—Enter the user roles checked by the application feature. Because there may be thousands of user roles and privileges defined in a security system, use the manifest provided by the application feature developer that lists the roles specific to the application feature to create this list.

	
Filter List of Privileges—Enter the privileges checked by the application feature.

Figure 18-8 Configuring Access Control

[image: Add user roles and privileges.]

	
Click OK.

	
Note:

By default, all secured application features share the same connection, which, as shown in Figure 18-4, is denoted as <application login server>. The Property Inspector for a Feature Reference notes this default option in its Login Server Connection dropdown menu as <default> application login server. You can select other connections that are defined for the ADF Mobile application using the Create ADF Mobile Login Connection dialog.

18.4.3 Enabling Login without the Access Control Service

You can enable users to login without having to provision Access Control Service (ACS) server by adding name=show-application-login-at-startup value=true to the adf-config.xml file (located in ADF META-INF directory in the Application Navigator) as illustrated in Example 18-1. This flag triggers the login page when the ADF Mobile application starts.

Example 18-1 Configuring the Login Page in adf-config.xml

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID" value="MobileApplication-3268"/>
 <adf-property name="show-application-login-at-startup" value="true"/>
 </adf:adf-properties-child>

For more information, see the "adf-config.xml" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

18.4.4 What Happens When You Create an ADF Mobile Connection

ADF Mobile aggregates all of the connection information in the connections.xml file (located in the Application Navigator's Application Resources panel under the Descriptors and ADF META-INF nodes). This file, shown in Example 18-2, can be bundled with the application or can be hosted for the Configuration Service. In the latter case, ADF Mobile checks for the updated configuration information each time an application starts.

Example 18-2 ADF Mobile Connections Defined in the connections.xml File

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="Connection_1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="Connection_1"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://10.0.0.0/SecuredWebServicelogin/login.jsf"/>
 <logout url="http://10.0.0.0/SecuredWebServicelogout/logout.jsf"/>
 <accessControl url="http://10.0.0.0/Identity/Authorize"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <cookieNames>
 <cookie name="JSESSIONID"/>
 </cookieNames>
 <injectCookiesToRESTHttpHeader value="true"/>
 <userObjectFilter>
 <role name="manager"/>
 <privilege name="account manager"/>
 <privilege name="supervisor"/>
 <privilege name=""/>
 </userObjectFilter>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

For more information, see the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

18.4.5 What You May Need to Know About Configuring ADF Mobile to Respond to Unsuccessful Login Attempts

You can set the maximum number of failed login attempts allowed for a user by adding the max_retries attribute to the connections.xml file, as shown in Example 18-3. If you do not configure this attribute, then ADF Mobile allows ten retries. The application closes automatically after a user exceeds the set number of login attempts.

By default, ADF Mobile grants a user three unsuccessful login attempts before it clears the user's locally stored credentials and contacts the remote login server for subsequent login attempts. By adding the maxFailuresBeforeCredentialCleared element to the connections.xml file, as shown in Example 18-3, you can change the number of login attempts that ADF Mobile allows a user before it purges the locally stored credentials.

	
Note:

ADF Mobile clears locally stored user credentials even when the application feature is configured to use local authentication in the adfmf-feature.xml file.

Example 18-3 Configuring the Maximum Retries in connections.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="MyAuth"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="MyAuth"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://10.0.0.0:7777/SecuredWeb1-ViewController-context-root/
 faces/view1.jsf"/>
 <logout url="http://10.0.0.0:7777/SecuredWeb1-ViewController-context-root/
 faces/view1.jsf"/>
 <accessControl url="http://myhost.us.example.com:7777/
 UserObjects/jersey/getUserObjects" />
 <idleTimeout value="10"/>
 <sessionTimeout value="36000"/>
 <cookieNames>
 <cookie name="JSESSIONID"/>
 </cookieNames>
 <max_retries value="6"/>
 <maxFailuresBeforeCredentialCleared value="3"/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

18.4.6 What Happens in JDeveloper When You Configure Security

Selecting the Enable Feature Security option in the adfmf-feature.xml overview editor and then selecting the subsequent type of authentication updates the <adfmf:feature> element with a defined credentials attribute. For example:

<adfmf:feature id="feature1" name="feature1" credentials="remote">
<adfmf:feature id="feature2" name="feature2" credentials="local">

	
Note:

Application features that do not require security (that is, those for which these security options have not been selected) are available to all users of the ADF Mobile application. These applications either have no credentials attribute defined (the default setting, which is present prior to selecting Enable Feature Security in the adfmf-feature.xml overview editor, shown in Figure 18-2) or include credentials="none" (an attribute that is populated automatically when you clear Enable Feature Security).

After an application feature has been designated to participate in security, JDeveloper updates the Features With Security Enabled table with a corresponding feature reference, shown in Figure 18-4. If each of the referenced application features authenticate against the same login server connection defined in the connections.xml file, JDeveloper updates the adfmf-application.xml file with a single <adfmf:login> element defined with a defaultConnRefId attribute (such as <adfmf:login defaultConnRefId="Connection_1">). For application features configured to use different login server connections defined in the connections.xml file JDeveloper updates each referenced application feature with a loginConnReference attribute (<adfmf:featureReference id="feature2" loginConnRefId="Connection2"/>). For more information, see Section 18.4.1, "How to Enable Application Features to Require Authentication." See also Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.

18.4.7 What You May Need to Know About the Access Control Service

The Access Control Service (ACS) is a RESTful web service with JSON that enables users to download their user roles and privileges through a single HTTP POST message. This is a request message, one which returns the roles or privileges (or both) for a given user. It can also return specific roles and privileges by providing lists of required roles and privileges. The request message is comprised of the following:

	
Request header fields: If-Match, Accept-Language, User-Agent, Authorization, Content-Type, Content Length.

	
A request message body: A request for user information.

	
The requested JSON object that contains:

	
userId—The user ID.

	
filterMask—A combination of "role" and "privilege" elements are used to determine if either the filters for user roles, or for privileges, should be used.

	
roleFilter—A list of roles used to filter the user information.

	
privilegeFilter—A list of privileges used to filter the user information.

	
Note:

If all of the roles should be returned, then do not include the "role" element in the filterMask array.

If all of the privileges should be returned, then do not include the "privilege" element in the filterMask array.

Example 18-4 illustrates an HTTP POST message and identifies a JSON object as the payload, one that requests all of the filters and roles assigned to a user, John Smith.

Example 18-4 The ACS Request for User Roles and Privileges

Protocol: POST
Authoization: Basic xxxxxxxxxxxx
Content-Type: application/json

{
 "userId": "johnsmith",
 "filterMask": ["role", "privilege"],
 "roleFilter": ["role1", "role2"],
 "privilegeFilter": ["priv1", "priv2", "priv3"]
}

The response is comprised of the following:

	
A response header with the following fields: Last-Modified, Content-Type, and Content-Length.

	
A response message body that includes the user information details.

	
The returned JSON object, which includes the following:

	
userId—the ID of the user.

	
roles—A list of user roles, which can be filtered by defining the roleFilter array in the request. Otherwise, the response returns an entire list of roles assigned to the user.

	
privileges—A list of the user's privileges, which can be filtered by defining the privilegeFilter array in the request. Otherwise, the response returns an entire list of privileges assigned to the user.

Example 18-5 illustrates the returned JSON object that contains the user name and the roles and privileges assigned to the user, John Smith.

Example 18-5 The Returned JSON Object

Content-Type: application/json

{
 "userId": "johnsmith",
 "roles": ["role1"],
 "privileges": ["priv1", "priv3"]
}

	
Note:

There are no login screens for web services; user access is instead enabled by ADF Mobile, which automatically adds credentials to the header of the web service. For more information, see Section 9.5.3, "What You May Need to Know About Credential Injection."

	
Note:

You must implement and host the ACS service; ADF Mobile does not provide this service.

18.4.8 What Happens When You Enable Cookie Injection into REST Web Service Calls

Each time an ADF Mobile application requests a REST web service, ADF Mobile's security framework enables the transport layer of the REST web service to check if cookie injection is enabled for the login connection associated with the URL endpoint of the REST web service. (That is, the connections.xml file must include <injectCookiesToRESTHttpHeader value="true"/>, shown in Example 18-2.) If the connection allows cookie injection, and if the domains for the login server and the REST web service endpoint are identical, then the security framework retrieves the cookies stored when a user has logged in to an application feature. It then returns a string in the form of "<cookie name1>=<cookie value1>;<cookie name2>=<cookie value2>;...<cookie nameN>=<cookie valueN>". The security framework creates a cookie header and injects this string into it only if the domain configured for the login server is identical URL endpoint of the REST web service. Further, the string of stored cookies, which are expected by the REST web service, must match those returned from the login server.

	
Note:

ADF Mobile constructs the cookie string by calling the IDM Mobile SDK APIs, which return cookies by name from a platform-specific cookie store. The IDM Mobile SDK APIs manage the cookies returned by authentication servers, the names of which are defined in the connections.xml file.

18.4.9 What You May Need to Know About Injecting Cookies into REST Web Service Calls

After a user has been successfully authenticated by an ADF Mobile application, the login server creates the security context for the user and generates a cookie that tracks the user session. If you selected the Include login server cookie in REST call option in the Create ADF Mobile Login Connection dialog, shown in Figure 18-2, you instruct ADF Mobile to retrieve this user session cookie sent by the login server and then inject it into the HTTP header of the REST web service call that originated from the ADF Mobile application. Propagating the cookie to the web service call enables the retrieval of the user's security context, which is stored on the login server, and enables the ADF Mobile application to use the REST web service to access the application data that is authorized for the user. After the user session cookie expires, ADF Mobile challenges the user for credentials and then re-authenticates the user. A user that has been re-authenticated can continue to access the authorized application data through the REST web service call.

18.4.10 What You May Need to Know About Injecting Basic Authentication Headers

By default, ADF Mobile enables application features to access secure resources from servers that do not honor cookies by injecting a basic authentication header in the HTTP requests made from the web views. Although ADF Mobile injects the basic authentication header when the connections.xml file includes a definition for an authentication realm (the <realm> element) followed by <injectBasicAuthHeader value="true">, as illustrated in Example 18-6, ADF Mobile injects the header regardless of whether the connections.xml file includes these definitions or not. To prevent ADF Mobile from injecting the basic authentication header, set the value attribute to false for the <injectBasicAuthHeader> element.

	
Note:

You must enter the <realm> and <injectBasicAuthHeader> elements in the Source editor for the connections.xml file.

Example 18-6 Injecting the Basic Authentication Header

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="connection1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="connection1"
 partial="false" manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://www.us.example.com/userInfo"/>
 <logout url="http://www.us.example.com/userInfo"/>
 <accessControl url=""/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <cookieNames/>
 <realm value="Secure Area"/>
 <injectBasicAuthHeader value="true"/>
 <userObjectFilter/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

18.4.11 What You May Need to Know about Web Service Security

There are no login screens for web services; user access is instead enabled by ADF Mobile injecting credentials into the header of the web service call. Web services gain access to application data using the locally stored credentials persisted by ADF Mobile after the user's first successful login to the authentication server. The name of the local credential store is reflected by the adfCredentialStoreKey attribute of the login server connection (such as adfCredentialStoreKey="Connection_1" in Example 18-2). To enable a web service to use this credential store, the name defined for the adfCredentialStoreKey attribute of a SOAP or REST web service connection must match the name defined for the login server's adfCredentialStoreKey attribute.

	
Note:

Because there is no overview editor for the connections.xml file, you can use the Property Editor to update the <Reference> element's adfcredentialStoreKey attribute with the name configured for adfCredentialStoreKey attribute of the login server connection. Alternatively, you can add or update the attribute using the Source editor.

For more information, see Section 9.5.3, "What You May Need to Know About Credential Injection."

18.4.12 What You May Need to Know About Login Pages

The entry point for the authentication process to an application feature is the activate lifecycle event, described at Section 5.7.2, "Timing for Mobile Application Events." Every time an application feature is activated (that is, the activate event handler for the application feature is called), the application feature login process is executed. This process navigates to the login page (which is either the default or a custom login page) where it determines if user authentication is needed. Before the process navigates to the login page, however, the originally intended application feature must be registered with ADF Mobile. When authentication succeeds, the login page retrieves the originally intended destination from ADF Mobile and navigates to it.

18.4.12.1 The Default Login Page

The default login page provided by ADF Mobile (illustrated in Figure 18-1, "The Login Page") is comprised of a login button and input text fields for the user name and password. This is a cross-platform page, one written in HTML.

18.4.12.2 The Custom Login Page

When you add a custom login page for a selected application feature using the overview editor for the adfmf-application.xml file, JDeveloper adds the <adfmf:login> element and populates its child <adfmf:LocalHTML> element, as shown in Example 18-7. As with all <adfmf:LocalHTML> elements, its url attribute references a location within the public_html directory. The user authentication mechanism and navigation control are identical to the default login page.

Example 18-7 The Login Element

<adfmf:login defaultConnRefId="Connection_1">
 <adfmf:localHTML url="newlogin.html"/>
 </adfmf:login>

ADF Mobile provides JavaScript APIs for accessing relevant security features. Because you implement a custom login page as an HTML page, you can enable ADF Mobile to process user commands by adding a call to the adf.mf.api.invokeSecurity method, which is described in Table 18-1.

Table 18-1 The adf.mf.api.invokeSecurityMethod

	Security Method	Return Value	Parameters Passed	Function
	
adf.mf.api.invokeSecurityMethod("login", username, password)

	
None

	
username, password

	
Authenticates the user and provides the appropriate program flow execution (according to the authentication result).

To enable logging out, call the logout method of the AdfmfJavaUtilities class as follows. For example:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.logout();

You can invalidate the credentials (either remote or stored locally) that are specific to an application using the clearPasswordCredential method of the adfmfJavaUtilities class as illustrated in Example 18-8.

Example 18-8 Clearing User Credentials

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.clearPasswordCredential(adfCrendentialStorykey, username);

The adfCredentialStorykey parameter is returned as a String object from the value defined for the adfCredentialStoreKey parameter in the connections.xml file. The method's username parameter is returned as a String object and represents the user whose credentials will be removed from the credential store.

By clearing this set of credentials, users can maintain their sessions in other secured application features or open a non-secured application feature without exiting the ADF Mobile application.

For more information on the AdfmfJavaUtilties class and the usage of the key parameter, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

18.4.12.3 Creating a Custom Login HTML Page

You can create the custom login page using the default login page (adf.login.iphone.html or adf.login.android.html), an artifact generated by the ADF Mobile deployment in the www directory.

Before you begin:

To access the login page within the www directory, deploy an ADF Mobile application and then traverse to the deploy directory. For iOS deployments, the adf.login.iphone.html page is located at:

application workspace directory/deploy/deployment profile name/temporary_xcode_project/www/adf.login.iphone.html

For Android deployments, the adf.login.android.html page is located within the Android application package (.apk) file at

application workspace directory/application name/deploy/deployment profile name/deployment profiile name.apk/assets/www/adf.login.android.html

To create a custom login page:

	
Copy the default login page (adf.login.iphone.html or adf.login.android.html) to a location within the application controller project's public_html directory, such as JDeveloper\mywork\application name\ApplicationController\public_html.

	
Rename the login page.

	
Update the page as described in Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content" and Section B, "Application Container APIs."

	
In the Security page for the overview editor of the adfmf-application.xml file, select Custom and then click Browse to retrieve the location of the login page. For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."

18.5 Adding Private Certificates

As described in Section 4.2.2.1, "About the Application Controller Project-Level Resources," JDeveloper creates the cacerts certificate file within the Application Resources Security folder (located at JDeveloper\mywork\application name\resources\Security\cacerts). This file identifies a set of certificates from well-known and trusted sources to JVM 1.4 and enables deployment. For an application that requires custom certificates (such as in cases where RSA cryptography is not used), you must add private certificates before deploying the application.

Before you begin:

Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html) for information on the cacerts file and how to use the keytool utility.

To add private certificates:

	
Create a private certificate. For example, create a certificate file called new_cert.

	
Add the private certificate to the application as follows:

	
Create a copy of the seeded cacerts file (cp cacerts cacerts.org).

	
Use the Java SE keytool utility to add certificates to a cacerts file. Example 18-9 illustrates adding certificates to a cacerts file called new_cert.

Example 18-9 Adding a Certificate Using the keytool Utility

keytool -importcert
 -keystore cacerts
 -file new_cert
 -storepass changeit
 -noprompt

Example 18-9 illustrates how to add a single certificate. Repeat this procedure for each certificate. Table 18-2 lists the keytool options

Table 18-2 Options For Adding Certificates

	Option	Description
	
-importcert

	
Imports a certificate.

	
-keystore cacerts file

	
Identifies the file location of the imported certificate.

	
-file certificate file

	
Identifies the file containing the new certificate.

	
-storepass changeit

	
Provides a password for the cacerts file. By default, the password is changeit.

	
-noprompt

	
Instructs the keytool not to ask the user (through stdin) whether to trust the certificate or not.

	
Visually inspect the contents of the new cacerts file to ensure that all of the fields are correct. Use the following command:

keytool -list -v -keystore cacerts | more

	
Verify that the certificate is for the given hostname.

	
Note:

The certificate's common name (CN) must match the hostname exactly.

	
Ensure that the customized certificate file is located within the Security directory (JDeveloper\mywork\application name\resources\Security) so that it can be read by JVM 1.4.

	
Deploy the application.

	
Note:

During deployment, if a certificate file exists within the Security directory, ADF Mobile copies it into the Android or Xcode template project, replacing any default copies of the cacerts file.

	
Validate that you can access the protected resources over SSL.

19 Testing and Debugging ADF Mobile Applications

This chapter provides information on testing and debugging ADF Mobile applications developed for both iOS and Android platforms.

This chapter includes the following sections:

	
Section 19.1, "Introduction to Testing and Debugging ADF Mobile Applications"

	
Section 19.2, "Testing ADF Mobile Applications"

	
Section 19.3, "Debugging ADF Mobile Applications"

	
Section 19.4, "Using and Configuring Logging"

19.1 Introduction to Testing and Debugging ADF Mobile Applications

Before you start any testing and debugging of your ADF Mobile application, you have to deploy it to one of the following:

	
iOS-powered device

	
iOS-powered device simulator

	
Android-powered device

	
Android-powered device emulator

You cannot run the ADF Mobile application until it is deployed. For more information, see Chapter 17, "Deploying ADF Mobile Applications."

To test and debug an ADF Mobile application, you generally take the following steps:

	
Test the application's infrastructure, such as a splash screen, application feature navigation, authentication, and preferences, ensuring that all declared application features are available.

	
If the application includes ADF Mobile AMX content, test this application feature's logic, page flows, data controls, and UI components.

	
Make changes to the application as necessary.

	
Reconnect the mobile device or restart the simulator, and then deploy and run the application for further testing and debugging.

For more information, see the following:

	
Section 19.3, "Debugging ADF Mobile Applications"

	
Section 19.2, "Testing ADF Mobile Applications"

19.2 Testing ADF Mobile Applications

There are two approaches to testing an ADF Mobile application:

	
Testing on a mobile device: this method always provides the most accurate behavior, and is also necessary to gauge the performance of your application. However, you may not have access to all the devices on which you wish to test, making device testing inconclusive.

	
Testing on a mobile device emulator or simulator: this method usually offers better performance and faster deployment, as well as convenience. However, even though a device emulator or simulator closely approximates the corresponding physical device, there might be differences in behavior and limitations on the capabilities that can be emulated.

Typically, a combination of both approaches yields the best results.

19.2.1 How to Perform Accessibility Testing on iOS-Powered Devices

You should use a combination of the following methods to test the accessibility of your ADF Mobile application developed for iOS-powered devices:

	
Testing with the Accessibility Inspector on an iOS-powered device simulator.

For detailed information, see the "Testing the Accessibility of Your iPhone Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.

	
Testing with the VoiceOver on an iOS-powered device.

For more information, see the "Using VoiceOver to Test Your Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.

19.3 Debugging ADF Mobile Applications

JDeveloper is equipped with debugging mechanisms that allow you to execute a Java program in debug mode and use standard breakpoints to monitor and control execution of an Oracle ADF application. For more information, see the section on debugging applications in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Since an ADF Mobile application cannot be run inside JDeveloper, the debugging approach is different: you can use the JDeveloper debugger to connect to a Java Virtual Machine (JVM) 1.4 instance on a mobile device or simulator and control the Java portions of your deployed ADF Mobile application.

The following are the steps you need to take to use JDeveloper to debug the Java code in your ADF Mobile application:

	
Configure the project properties for remote debugging. This step involves creating an ADF Model debugging configuration as follows:

	
From the JDeveloper's main menu, click Application > Project Properties to open the Project Properties dialog.

	
In the Project Properties dialog, select the Run/Debug/Profile node.

	
Using the Run Configurations pane of the Run/Debug/Profile dialog, create a new configuration, or click Edit to modify an existing one.

	
In the Edit Run Configuration > Launch Settings dialog, select Remote Debugging.

	
Expand the Tools Settings node of the Edit Run Configuration dialog, then expand Debugger, and then select Remote.

	
In the Edit Run Configuration > Remote dialog that Figure 19-1 shows, perform the following configurations:

- Set the protocol to Attach to JPDA.

- Set the host to one of the following: 1) For simulator or emulator debugging, set to localhost; 2) For the device debugging, ensure that your development computer can access that device over the network (you may use the ping command to test network access), and then enter the device's IP address.

- Set the port to the appropriate port number.

- Set the timeout to 2.

Figure 19-1 Configuring Remote Debugging

[image: Select Attach to JPDA.]

	
Deploy the application to a mobile device or simulator (see Section 19.3.1, "How to Debug on iOS Platform" or Section 19.3.2, "How to Debug on Android Platform").

	
Specify the following debugging parameters in the cvm.properties file:

java.debug.enabled=true
java.debug.port=4000

The port number must match the one you set in JDeveloper.

For more information, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."

	
Redeploy the application to the mobile device or simulator.

	
Launch the application in a mobile device or simulator by clicking the application icon.

	
Start the debugger from JDeveloper as follows:

	
Use the debug icon on JDeveloper's main menu to select the run configuration (the one that you defined for your project in step 3).

	
Confirm the debugger Attach to JPDA Debugger dialog.

	
Note:

To avoid timeout (20 seconds), start the debugger immediately after launching the application on the mobile device or simulator.

If you use the mobile device for debugging, you have to connect through WiFi.

For additional information, see the following:

	
Section 17.1.1.2, "Deployment of the JVM 1.4 Libraries"

	
"Testing and Debugging ADF Components" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

19.3.1 How to Debug on iOS Platform

To debug an ADF Mobile application on the iOS platform using JDeveloper, follow the generic debugging procedure described in Section 19.3, "Debugging ADF Mobile Applications."

For information on how to configure an iOS-powered device or simulator and how to deploy an ADF Mobile application for debugging, see the following:

	
Section 17.4.1, "How to Deploy an iOS Application to an iOS Simulator"

	
Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device"

	
Section 17.4.4.2, "Registering an Apple Device for Testing and Debugging"

19.3.2 How to Debug on Android Platform

To debug an ADF Mobile application on the Android platform using JDeveloper, follow the generic debugging procedure described in Section 19.3, "Debugging ADF Mobile Applications."

For information on how to configure an Android-powered device or emulator and how to deploy an ADF Mobile application for debugging, see Section 17.3.1, "How to Deploy an Android Application to an Android Emulator."

When you debug Java code, either on an Android-powered device connected through USB or on an Android-powered device emulator, you need to forward the TCP port by executing the following command on a terminal:

	
For the device debugging:

adb -d forward tcp:<host port> tcp:<target port>

	
For the emulator debugging:

adb -e forward tcp:<host port> tcp:<target port>

For example, executing adb -d forward tcp:4510 tcp:4510 forwards the device TCP port 4510 to the host TCP port 4510. Upon execution, the debugging settings in the cvm.properties file (see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript") should be defined as follows:

java.debug.enabled=true

java.debug.port=4510

	
Note:

If the connection is made through Wi-Fi, ensure that this connection is correct. It is recommended to place both the debugger and target on the same network without the use of the virtual private network (VPN).

19.3.3 How to Debug the ADF Mobile AMX Content

If your ADF Mobile application includes the ADF Mobile AMX content, after you configure the device or emulator, you can set breakpoints, view the contents of variables, and inspect the method call stack just as you would when debugging a web-based ADF Faces application. For more information, see the "Testing and Debugging ADF Components" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

You can only debug your Java code and JavaScript (see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript"). Debugging of EL expressions or other declarative elements is not supported.

19.3.4 How to Enable Debugging of Java Code and JavaScript

A cvm.properties file allows you to specify startup parameters for the JVM and web views of ADF Mobile to enable debugging of the Java code and JavaScript. The cvm.properties file is automatically created and placed in the Descriptors/META-INF directory under the Application Resources (see Section 19.4, "Using and Configuring Logging"), which corresponds to the <application_name>/src/META-INF location in your application file system.

You can use the following debugging properties in the cvm.properties file:

	
java.debug.enabled: Enables or disables Java debugging for ADF Mobile. Valid values are true and false.

	
Caution:

When java.debug.enabled is set to true, the JVM waits for a debugger to establish a connection to it. Failure of the debugger to connect will result in the failure of the ADF Mobile AMX application feature to load.

	
java.debug.port: Specifies the port to be used during debugging. The valid value is an integer.

	
javascript.debug.enabled: Enables or disables JavaScript debugging when the application is running in the device simulator. Valid values are true and false.

	
javascript.debug.feature: Specifies the application feature that is to trigger the activation of JavaScript debugging in ADF Mobile. The format of the value is featureId:port . The port must be specified (it is initially set to a placeholder value).

The contents of the cvm.properties file may be similar to the following:

java.debug.enabled=true
java.debug.port=8000
javascript.debug.enabled=true
javascript.debug.feature=products:8888

After the cvm.properties file has been configured to debug JavaScript, you can navigate to the following URL to see a listing of all the loaded pages that can be debugged in ADF Mobile:

http://localhost:9999

	
Caution:

Problems may arise if you debug JavaScript on a computer shared by multiple instances of an iOS-powered device simulator: if multiple instances of an iOS-powered device simulator are running, you might not be able to connect to your specific instance, which will prevent the debugging page from displaying.

For information on how to use JDeveloper to debug the Java code, see Section 19.3, "Debugging ADF Mobile Applications."

19.3.4.1 What You May Need to Know About Debugging of JavaScript Using an iOS-Powered Device Simulator on iOS 6 Platform

If you are working with the iOS 6 platform, you can use the Safari 6 browser to debug JavaScript. To do so, open the Safari preferences, select Advanced, and then enable the Develop menu in the browser by selecting Show Develop menu in menu bar, as shown in Figure 19-2.

Figure 19-2 Enabling Safari Browser Options

[image: Enabling Safari Browser Options]

When the Develop menu is enabled, select either iPhone Simulator or iPad Simulator, as Figure 19-3 and Figure 19-4 show, and then select a UIWebView that you are planning to debug. Whether the Develop menu displays an iPhone Simulator or iPad Simulator option depends on which device simulator is launched.

Figure 19-3 Using Develop Menu on Safari Browser for Debugging on iPhone Simulator

[image: Using Develop Menu on Safari Brower]

Figure 19-4 Using Develop Menu on Safari Browser for Debugging on iPad Simulator

[image: Using Develop Menu on Safari Brower]

19.3.5 How to Configure the Debug Mode

You use the application's deployment profile to specify either the release or debug execution mode for your ADF Mobile application. The debug mode allows for inclusion of special debugging libraries and symbols at compile time.

Figure 19-5 shows how to set the debug mode option on Android.

Figure 19-5 Setting Debug Mode for Android

[image: Setting Debug Mode for Android]

Figure 19-6 shows how to set the debug mode option on iOS.

Figure 19-6 Setting Debug Mode for iOS

[image: Setting Debug Mode for iOS]

When you deploy your application in debug mode, just before the end of the deployment process the following log message is printed out in JDeveloper:

This ADF Mobile app was deployed in Debug mode and should not be used for performance evaluation purposes. Set the deployment profile Build Mode option to Release for performance testing.

Figure 19-7 Deployment Log Message

[image: Deployment Log Message]

For more information, see the following:

	
Section 17.2.3, "How to Create an Android Deployment Profile"

	
Section 17.2.4.1, "Defining the iOS Build Options"

	
Section 17.4.4.1, "Creating iOS Development Certificates"

19.4 Using and Configuring Logging

For your ADF Mobile application, you can enable logging on all supported platforms through JavaScript (see Section 19.4.2, "How to Use JavaScript Logging") and embedded code (see Section 19.4.3, "How to Use Embedded Logging") using a single configuration with the log output directed to a single file. This log output includes the output produced by System.out.println and System.err.println statements.

The default ADF Mobile's logging process is as follows:

	
The logging begins at application startup.

	
The existing log file from the previous application run is deleted, so only the contents of the current run are available.

	
When you are running your application on an iOS-powered device simulator, all logging output is typically sent to the console which you can access through the Application/Utilities directory on your development computer. However, if your development computer is running on Mac OS 10.8.n, you can only access the Java logging output through a file of whose name and location you are notified as soon as the output redirection occurs and the file is generated. One of the possible locations for this file is /Users/<userid>/Library/Application Support/iPhone Simulator/6.0/Applications/<AppID>/Documents/logs/application.log

When you are running your application on an iOS-powered device, the console output is redirected to an application.log file that is placed in the Documents/logs directory of your application.

On Android, the output is forwarded to a text file with the same name as the application. The output file location is /sdcard. If this location is not present or is configured as read-only, the log output is rerouted to the application's writable data directory.

	
The logging.properties file is automatically created and placed in the Descriptors/META-INF directory under the Application Resources (see Section 19.4, "Using and Configuring Logging"), which corresponds to the <application_name>/src/META-INF location in your application file system. In this file, it is defined that all loggers use the com.sun.util.logging.ConsoleHandler and SimpleFormatter, and the log level is set to SEVERE. You can edit this file to specify different logging behavior (see Section 19.4.1, "How to Configure Logging Using the Properties File").

	
Note:

In your ADF Mobile application, you cannot use loggers from the java.util.logging package.

ADF Mobile loggers are declared in the oracle.adfmf.util.Utility class as follows:

public static final String APP_LOGNAME = "oracle.adfmf.application";
public static final Logger ApplicationLogger = Logger.getLogger(APP_LOGNAME);

public static final String FRAMEWORK_LOGNAME = "oracle.adfmf.framework";
public static final Logger FrameworkLogger = Logger.getLogger(FRAMEWORK_LOGNAME);

The logger that you are to use in your ADF Mobile application is the ApplicationLogger.

You can also use methods of the oracle.adfmf.util.logging.Trace class.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

19.4.1 How to Configure Logging Using the Properties File

Example 19-1 shows the logging.properties file that you use to configure logging.

Example 19-1 logging.properties File

default - all loggers to use the ConsoleHandler
.handlers=com.sun.util.logging.ConsoleHandler
default - all loggers to use the SimpleFormatter
.formatter=com.sun.util.logging.SimpleFormatter

oracle.adfmf.util.logging.ConsoleHandler.formatter=
 oracle.adfmf.util.logging.PatternFormatter
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

#configure the framework logger to only use the adfmf ConsoleHandler
oracle.adfmf.framework.useParentHandlers=false
oracle.adfmf.framework.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.framework.level=SEVERE

#configure the application logger to only use the adfmf ConsoleHandler
oracle.adfmf.application.useParentHandlers=false
oracle.adfmf.application.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.application.level=SEVERE

The oracle.adfmf.util.logging.ConsoleHandler plays the role of the receiver of the custom formatter.

The oracle.adfmf.util.logging.PatternFormatter allows the following advanced formatting tokens that enable log messages to be printed:

	
%LEVEL%—the logging level.

	
%LOGGER%—the name of the logger to which the output is being written.

	
%CLASS%—the class that is being logged.

	
%METHOD%—the method that is being logged.

	
%TIME%—the time the logging message was sent.

	
%MESSAGE%—the actual message.

The following logging levels are available:

	
SEVERE: this is a message level indicating a serious failure.

	
WARNING: this is a message level indicating a potential problem.

	
INFO: this is a message level for informational messages.

	
FINE: this is a message level providing tracing information.

	
FINER: this level indicates a fairly detailed tracing message.

	
FINEST: this level indicates a highly detailed tracing message.

	
Caution:

When selecting the amount of verbosity for a logging level, keep in mind that by increasing the verbosity of the output at the SEVERE, WARNING, and INFO level negatively affects performance of your application.

The logger defined in the logging.properties file matches the logger obtained from the oracle.adfmf.util.Utility class (see Section 19.4, "Using and Configuring Logging"). The logging levels also match. If you decide to use the logging level that is more fine-grained than INFO, you have to change the ConsoleHandler's logging level to the same level, as Example 19-2 shows.

Example 19-2 Setting Very Fine-Grained Logging Level

oracle.adfmf.util.logging.ConsoleHandler.formatter=
 oracle.adfmf.util.logging.PatternFormatter
oracle.adfmf.util.logging.ConsoleHandler.level=FINEST
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

19.4.2 How to Use JavaScript Logging

JavaScript writes the output to the console.log or.error/.warn/.info. This output is redirected into the file through the System.out utility.

You customize the log output by supplying a message. The following JavaScript code produces "Message from JavaScript" output:

<script type="text/javascript" charset="utf-8">
 function test_function() { console.log("Message from JavaScript"); }
</script>

To make use of the properties defined in the logging file, you need to use the adf.mf.log package and the Application logger that it provides.

The following logging levels are available:

	
adf.mf.log.level.SEVERE

	
adf.mf.log.level.WARNING

	
adf.mf.log.level.INFO

	
adf.mf.log.level.CONFIG

	
adf.mf.log.level.FINE

	
adf.mf.log.level.FINER

	
adf.mf.log.level.FINEST

To trigger logging, use the adf.mf.log.Application logger's logp method and specify the following through the method's parameters:

	
the logging level

	
the current class name as a String

	
the current method as a String

	
the message string as a String

Example 19-3 shows how to use the logp method in an ADF Mobile application.

Example 19-3 Using Logging Method

adf.mf.log.Application.logp(adf.mf.log.level.WARNING,
 "myClass",
 "myMethod",
 "My Message");

Upon execution of the logp method, the following output is produced:

[WARNING - oracle.adfmf.application - myClass - myMethod] My Message

19.4.3 How to Use Embedded Logging

Embedded logging uses the com.sun.util.logging.Logger, as illustrated in Example 19-4. Note that the EmbeddedClass represents a Java class defined in the project.

Example 19-4 Using Embedded Logging

import com.sun.util.logging.Level;
import com.sun.util.logging.Logger;
import oracle.adfmf.util.logging.*;
...
 Utility.ApplicationLogger.logp(Level.WARNING,
 EmbeddedClass.class.getName(),
 "onTestMessage",
 "embedded warning message 1");
 Logger.getLogger(Utility.APP_LOGNAME).logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 2");
 Logger.getLogger("oracle.adfmf.application").logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 3");

The preceding code produces the following output:

[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 1
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 2
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 3

19.4.4 How to Use Xcode for Debugging and Logging on iOS Platform

Even though it is not recommended to manipulate your ADF Mobile projects with Xcode because you can lose some or all of your changes during the next deployment with JDeveloper, you may choose to do so in exceptional circumstances.

Before you begin:

Deploy the application to the iOS simulator from JDeveloper.

To open the generated project directly in Xcode:

	
Navigate to the workspace_directory\deploy\deployment profile name\temporary_xcode_project\.

	
Open the Xcode project called Oracle_ADFmc_Container_Template.xcodeproj.

If your development computer is running on Mac OS 10.8.n and you are debugging your ADF Mobile application using Xcode, you cannot see the Java output in the IDE (on either JDeveloper console or Xcode console). Instead, the output is redirected to a file (see Section 19.4, "Using and Configuring Logging"). By adding the following argument to your application's schema, you can disable this behavior and enable access to the Java, JavaScript, and Objective-C log output in Xcode in real time when debugging on either an iOS-powered device or its simulator:

-consoleRedirect=FALSE

Part VII

Appendixes

Part VII contains the following appendixes:

	
Appendix A, "Troubleshooting"

	
Appendix B, "Application Container APIs"

	
Appendix C, "Converting Preferences for Deployment"

	
Appendix D, "ADF Mobile Application Usage"

	
Appendix E, "Parsing XML"

	
Appendix F, "ADF Mobile Sample Applications"

A Troubleshooting

This appendix describes problems with various aspects of ADF Mobile applications, as well as how to diagnose and resolve them.

This appendix includes the following sections:

	
Section A.1, "Problems with Input Components on iOS Simulators"

	
Section A.2, "Code Signing Issues Prevent Deployment"

	
Section A.3, "Missing Android SDK Tools File Prevents Deployment"

A.1 Problems with Input Components on iOS Simulators

Issue:

On ADF Mobile applications deployed to iOS simulators, text entered into one <amx:inputText> component field becomes attached to the beginning of the text entered in subsequent field when navigating from one field to another using a mouse. For example, on a page with First Name, Middle Name, and Last Name input text fields, if you enter John in the First Name field, then click the Middle Name field, and enter P, the text displays as JohnP. Likewise, when you click the Last Name field, and enter Smith, the text in that field displays as JohnPSmith, as shown in Figure A-1.

Figure A-1 Text Values Concatenate in Subsequent <amx:inputText> fields

[image: Text problems on iOS simulator.]

	
Note:

This behavior only occurs on iOS simulators and in web pages, not on actual devices.

Solution:

Use the keyboard on the simulator to traverse the input text fields rather than the mouse.

A.2 Code Signing Issues Prevent Deployment

Issue:

In some iOS development environments, ADF Mobile application deployment fails because of code signing errors.

Solution:

To ensure that the ADF Mobile application is signed, add code signing data to the Mach-O (Mach object) file by configuring the environment with CODESIGN_ALLOCATE. For example, enter the following from the Terminal:

export CODESIGN_ALLOCATE="/Applications/Xcode.app/Contents/Developer/usr/bin/codesign_allocate"

For more information, see codesign_allocate(1) OS X Manual Page and OS X ABI Mach-O File Format Reference, both available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

A.3 Missing Android SDK Tools File Prevents Deployment

Issue:

Deployment of an Android application fails because ADF Mobile cannot locate the aapt file. ADF Mobile writes an error similar to the following in the Deployment-Log window:

[07:54:28 PM] Shutting down Android Debug Bridge server...
[07:54:28 PM] Deployment cancelled.
[07:54:28 PM] ---- Deployment incomplete ----.
[07:54:28 PM] Cannot run program ""C:\Program Files(x86)\AndroidSDK\sdk\platform-tools\aapt"":
 CreateProcess error=2, The system cannot find the file specified
[07:54:28 PM] CreateProcess error=2, The system cannot find the file specified

Solution:

Verify that the location defined in the Android Build Tools Location field of the ADF Mobile Platforms page references the directory that contains the aapt file (aapt.exe on Windows systems). For Revision 22 of the Android SDK, this file, along with all of the other build tools components, is located within the build-tools directory. For earlier revisions, the build tools components are located in the platform-tools directory. For more information, see Section 17.2.3, "How to Create an Android Deployment Profile." See also Exploring the SDK, available from the Android Developers website (http://developer.android.com/sdk/exploring.html).

B Application Container APIs

This chapter describes the ADF Mobile JavaScript API extensions, the ADF Mobile Container Utilities API, and how to use the AdfmfJavaUtilities API for HTML application features, including custom HTML springboard applications.

This chapter includes the following sections:

	
Section B.1, "Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature"

	
Section B.2, "The ADF Mobile Container Utilities API"

	
Section B.3, "Accessing Files Using the getDirectoryPathRoot Method"

B.1 Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature

Using JavaScript to call the JavaScript API extensions enables you to add the navigation functions to a custom springboard page authored in HTML. As stated in Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content," you can enable callbacks and leverage Apache Cordova by including methods in the JavaScript <script> tag. Example B-1 illustrates using this tag to call Cordova.

Example B-1 Embedding the <script> Tag in an HTML Springboard Page

...
<script type="text/javascript">if (!window.adf) window.adf = {};
 adf.wwwPath = "../../../www/";</script>
<script type="text/javascript" src="../../../www/js/base.js"></script>
...

The relative path to the location of the www/js directory always reflects the location of the HTML springboard page (or any custom HTML page), which can be located at the root of the view controller's public_html directory, or within a subdirectory of it. In Example B-1, the paths defined by the src attribute (../../../www/js/base.js) and the adf.wwwPath variable are relative to the location of the HTML springboard file when it is located at the root of the public_html directory, as follows:

JDeveloper\mywork\application name\ViewController\public_html\customspringboard.html

In other words, the adf.wwwPath variable must have the same number of ../ entries as base.js.

To enable the springboard files and custom HTML files located within the subdirectories of public_html to access the hosted JavaScript files, you must adjust the relative path definition accordingly by adding ../ entries for each subdirectory location. The number of ../ entries varies. It depends on the location of the HTML page within the ADF Mobile application relative to the location of the deployed www directory; if the HTML file is moved to a deeper level of folders, then you must add the appropriate number of ../ entries to the <script> tags.

	
Tip:

To access (and determine the location of) the www/js directory, you must first deploy an ADF Mobile application and traverse to the deploy directory. The www/js directory resides within the platform-specific artifacts generated by the deployment. For iOS deployments, the directory is located within the temporary_xcode_project directory. For Android deployments, this directory is located in the assets directory of the Android application package (.apk) file. See also Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content."

	
Note:

Because the path does not exist during design time, JDeveloper notes the JavaScript Includes in the source editor as an error by highlighting it with a red, wavy underline. This path is resolved at runtime.

The ADF Mobile extension to the Cordova API enables the mobile device's API to access the configuration metadata in the adfmf-feature.xml and adfmf-application.xml files, which in turn results in communication between the mobile device and ADF Mobile's infrastructure. These extensions also direct the display behavior of the application features.

	
Note:

Because ADF Mobile requires Cordova 2.2.0, you must migrate any installed PhoneGap plugins to the Cordova 2.2.0 versions of those plugins. For more information, see the upgrading guides, available in the Apache Cordova Documentation (http://docs.phonegap.com/en/2.2.0/index.html).

For information on the default ADF Mobile springboard page, springboard.amx, and about the ApplicationFeatures data control that you can use to build a customized springboard, see Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content."

B.1.1 About Executing Code in Custom HTML Pages

Example B-2 illustrates a script defining the showpagecomplete event on the handlePageShown callback function. By listening to this event using standard DOM (Document Object Model) event listening, custom HTML pages (such as login pages) can invoke their own code after ADF Mobile has loaded and displayed the page for the first time.

Example B-2 Using the showpagecomplete Event

<script>
 function handlePageShown()
 {
 console.log("Page is shown!");
 }
 document.addEventListener("showpagecomplete", handlePageShown, false);
</script>

	
Note:

The showpagecomplete event guarantees the appropriate ADF Mobile state; other browser and third-party events, such as load and Cordova's deviceready, may not. Do not use them.

B.2 The ADF Mobile Container Utilities API

The methods of the ADF Mobile Container Utilities API provide ADF Mobile applications with such functionality as navigating to the navigation bar, displaying a springboard, or displaying application features. You can use these methods at the Java and JavaScript layers of ADF Mobile.

In Java, the Container Utilities API is implemented as static methods on the AdfmfContainerUtilities class, which is located in the oracle.adfmf.framework.api package. Example B-3 illustrates calling the gotoSpringboard method. For more information on oracle.adfmf.framework.api.AdfmfContainerUtilities, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Example B-3 Calling the Container Utilities API in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilities;
...
AdfmfContainerUtilities.gotoSpringboard();
...

B.2.1 Using the JavaScript Callbacks

The signatures of Java and JavaScript both match. In Java, they are synchronous and return results directly. Because JavaScript is asynchronous, there are two callback functions added for every function: a success callback that returns the results and a failed callback that returns any exception that is thrown. Within a Java method, the success value is returned from the function, or method, and the exception is thrown directly from the method. The pseudocode in Example B-4 illustrates how a call with no arguments, public static functionName() throws, is executed within Java using try and catch blocks.

Example B-4 Executing a Call with No Arguments in Java

...
 try {
 result = AdfmfContainerUtilities.functionName();
 }
 catch() {
 ...
 }

...

Because JavaScript calls are asynchronous, the return is required through the callback mechanism when the execution of the function is complete. The pseudocode in Example B-5 illustrates the signature of the JavaScript call.

Example B-5 The JavaScript Call Signature

adf.mf.api.functionName(
 function(req, res) { alert("functionName complete"); },
 function(req, res) { alert("functionName failed with " +
 adf.mf.util.stringify(res); }
);

As illustrated by Example B-5, this call is defined as function(request, response). The value of the request argument is the actual request. The response is defined as function(request, response)and its value is the actual request. The response is thrown during the execution of the function.

The pseudocode in illustrates how a call with one or more arguments, such as public static <return value> <function name>(<arg0>, <arg1>, ...) throws <exceptions>, is executed within Java using a try-catch block.

Example B-6 Executing a Call with Multiple Arguments in Java

try {
 result = AdfmfContainerUtilities.<function_name>(<arg0>, <arg1>, ...);
 }
 catch(<exception>) {
 ...
 }

JavaScript calls cannot return a result because they are asynchronous. They instead require a callback mechanism when the execution of the function has completed. The signature for both the success and failed callbacks is function(request, response), where the request argument is a JSON representation for the actual request and the response is the JSON representation of what was returned by the method (in the case of success callback functions) or, for failed callback functions, a JSON representation of the thrown exception.

	
Note:

The callback functions must be invoked before subsequent JavaScript calls can be made to avoid problems related to stack depth or race conditions.

B.2.2 Using the Container Utilities API

The Container Utilities API provides the following methods:

	
checkforNewConfiguration—Checks for the changes in a hosted connections.xml file.

	
getApplicationInformation—Retrieves the metadata for the ADF Mobile application.

	
gotoDefaultFeature—Displays the default application feature.

	
getFeatures—Retrieves the application features.

	
gotoFeature—Displays a specific application feature.

	
getFeatureByName—Retrieves information about the application feature using the application feature's name.

	
getFeatureById—Retrieves an application feature using its ID.

	
resetFeature—Resets the application feature to the same state as when it was loaded.

	
gotoSpringboard—Displays the springboard.

	
hideNavigationBar—Hides the navigation bar.

	
showNavigationBar—Displays the navigation bar.

	
invokeMethod—Invokes a Java method.

	
invokeContainerJavaScriptFunction—Invokes a JavaScript method.

The Container Utilities API also include methods for placing badges and badge numbers on applications. For more information, see Section B.2.16, "Application Icon Badging."

B.2.3 checkforNewConfiguration

When the Configuration Service is used, this method requests that ADF Mobile check a server that hosts the connections.xml file for any changes to the configured endpoints. To check for changes, ADF Mobile compares the connection-related content hosted on the server to the configuration on the device. (This comparison happens asynchronously in the background.) If ADF Mobile finds that the device configuration is outdated, then the checkforNewConfiguration method issues a non-blocking call that notifies the user that a new configuration has been detected and then closes the application. ADF Mobile reminds the user to restart the application.

In Java, the method is as follows:

public static void checkForNewConfiguration()
 throws oracle.adfmf.framework.exception.AdfException

Example B-7 illustrates using this method.

Example B-7 Retrieving Configuration Information Using Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.checkForNewConfiguration();
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void checkForNewConfiguration(success, failed)

The success callback must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value (void). The failed callback must be in the form of function(request, response) where the request argument contains the original request and the response argument contains the error (AdfException).

Example B-8 illustrates using these callback functions to retrieve the configuration information.

Example B-8 Using Callback Functions in JavaScript to Return Configuration Information

adf.mf.api.checkForNewConfiguration(
 function(req, res) { alert("checkForNewConfiguration complete"); },
 function(req, res) { alert("checkForNewConfiguration failed with " +
 adf.mf.util.stringify(res); }
);

B.2.4 getApplicationInformation

This method returns an ApplicationInformation object that contains information about the application. This method returns such metadata as the application ID, application name, version, and the vendor of an application.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.ApplicationInformation
 getApplicationInformation()
 throws oracle.adfmf.framework.exception.AdfException

Example B-9 illustrates calling this method.

Example B-9 Retrieving Application Information Using Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 ApplicationInformation[] ai = AdfmfContainerUtilities.getApplicationInformation();
 String applicationId = ai.getid();
 String applicationName = ai.getName();
 String vendor = ai.getVendor();
 String version = ai.getVersion();
 ...
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getApplicationInformation(success, failed)

The success callback must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value, which is the ApplicatiaonInformation object containing application-level metadata. This includes the application name, vendor, version, and application ID.

The failed callback must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-10 illustrates using these callback functions to retrieve the application information.

Example B-10 Using Callback Functions in JavaScript to Application Information

adf.mf.api.getApplicationInformation(
 function(req, res) { alert("getApplicationInformation complete"); },
 function(req, res) { alert("getApplicationInformation failed with " +
 adf.mf.util.stringify(res); }
);

B.2.5 gotoDefaultFeature

This method requests that ADF Mobile display the default application feature. The default application feature is the one that is displayed when the ADF Mobile application is started.

	
Note:

This method may not be able to display an application feature if it has authentication- or authorization-related problems.

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoDefaultFeature(success, failed)

The success callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the error.

Example B-11 illustrates using these callbacks to call the default application feature.

Example B-11 Using JavaScript Callback Functions to Call the Default Application Feature

adf.mf.api.gotoDefaultFeature(
 function(req, res) { alert("gotoDefaultFeature complete"); },
 function(req, res) { alert("gotoDefaultFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.6 getFeatures

This method returns an array of FeatureInformation objects that represent the available application features. The returned metadata includes the feature ID, the application feature name, and the file locations for the image files used for the application icons. This call enables a custom springboard implementation to access the list of application features that are available after constraints have been applied. (These application features would also display within the default springboard.)

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation[] getFeatures()
 throws oracle.adfmf.framework.exception.AdfException

Example B-12 illustrates using this method.

Example B-12 Retrieving the Application Feature Information Using Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 FeatureInformation[] fia = null;
 fia = AdfmfContainerUtilities.getFeatures();

 for(int f = 0; f < fia.length; ++f) {
 FeatureInformation fi = fia[i];
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 ...
 }
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned values and the exceptions to be passed back to the JavaScript calling code as follows:

public void getFeatures(success, failed)

The success callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value (the array of FeatureInformation objects).

The failed callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the error (AdfException).

Example B-13 Using JavaScript Callback Functions to Retrieve Application Feature Information

adf.mf.api.getFeatures(
 function(req, res) { alert("getFeatures complete"); },
 function(req, res) { alert("getFeatures failed with " + adf.mf.util.stringify(res); }
);

B.2.7 gotoFeature

This method requests that ADF Mobile display the application feature identified by its ID.

	
Note:

This method may not be able to display an application feature if it has authentication- or authorization-related problems.

Within Java, this method is called as follows:

public static void gotoFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in Example B-14, is the ID of the application feature.

Example B-14 Activating an Application Feature

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.gotoFeature("feature.id");
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoFeature(featureId, success, failed)

The featureId parameter is the application feature ID. This parameter activates the success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-15 illustrates using these callback functions to call an application feature.

Example B-15 Activating an Application Feature Using JavaScript Callback Functions

adf.mf.api.gotoFeature("feature0",
 function(req, res) { alert("gotoFeature complete"); },
function(req, res) { alert("gotoFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.8 getFeatureByName

This method returns information about the application feature using the passed-in name of the application feature.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation getFeatureByName(java.lang.String
 featureName)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in Example B-16, is the name of the application feature.

Example B-16 Retrieving the Application Feature Information Using the Application Feature Name

 ...
 try {
 FeatureInformation fi = AdfmfContainerUtilities.getFeatureByName("feature.name");
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureByName(featureName, success, failed)

The featureName parameter is the name of the application feature. The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-17 illustrates using these callback functions.

Example B-17 Using JavaScript Callback Functions to Retrieve the Application Feature Information Using the Application Feature Name

adf.mf.api.getFeatureByName("feature.name",
 function(req, res) { alert("getFeatureByName complete"); },
 function(req, res) { alert("getFeatureByName failed with " +
 adf.mf.util.stringify(res); }
);

B.2.9 getFeatureById

This method retrieves an application feature using its application ID.

Within Java, this method is called as follows:

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

This method's parameter, as shown in Example B-18, is the ID of the application feature.

Example B-18 Retrieving an Application Feature Using its ID in Java

 try {
 FeatureInformation fi =AdfmfContainerUtilities.getFeatureById("feature.id");
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureById(featureId, success, failed)

The featureId parameter is the ID of the application feature. The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-19 illustrates using these callback functions to retrieve an application feature.

Example B-19 Using JavaScript Callback Functions to Retrieve an Application Feature by its ID

adf.mf.api.getFeatureById("feature.id",
 function(req, res) { alert("getFeatureById complete"); },
 function(req, res) { alert("getFeatureById failed with " + adf.mf.util.stringify(res); }
);

B.2.10 resetFeature

This method resets the state of the application feature. It resets the Java-side model for the application feature and then restarts the user interface presentation as if the ADF Mobile application had just been loaded and displayed the application feature for the first time.

Within Java, this method is called as follows:

public static void resetFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

The method's parameter, as shown in Example B-20, is the ID of the application feature that is to be reset.

Example B-20 Resetting an Application Feature in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.resetFeature("feature.id");
 }catch(AdfException e) {
 // handle the exception

In JavaScript, the success and failed callback functions enable the returned value and exception to be passed back to the JavaScript calling code as follows:

public void resetFeature(featureId, success, failed)

The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (The ID of the application feature).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-21 illustrates using these callback functions to call an application feature.

Example B-21 Using JavaScript Callback Functions to Reset an Application Feature

adf.mf.api.resetFeature("feature0",
 function(req, res) { alert("resetFeature complete"); },
 function(req, res) { alert("resetFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.11 gotoSpringboard

This method requests that ADF Mobile activate the springboard.

	
Note:

This method may not be able to display the springboard if it has not been designated as a feature reference in the adfmf-application.xml file, or if it has authentication or authorization-related problems. See also Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."

Within Java, this method is called as follows:

public static void gotoSpringboard()

Example B-22 illustrates using this method

Example B-22 Activating the Springboard in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

...
 try {
 AdfmfContainerUtilities.gotoSpringboard();
 }catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoSpringboard(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-23 illustrates using these callback functions.

Example B-23 Using JavaScript Callback Functions to Activate the Springboard

adf.mf.api.gotoSpringboard(
 function(req, res) { alert("gotoSpringboard complete"); },
 function(req, res) { alert("gotoSpringboard failed with " +
 adf.mf.util.stringify(res); }
);

B.2.12 hideNavigationBar

This method requests that ADF Mobile hide the navigation bar.

Within Java, this method is called as follows:

public static void hideNavigationBar()

Example B-24 illustrates using this method.

Example B-24 Hiding the Navigation Bar in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.hideNavigationBar();
 }catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void hideNavigationBar(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-25 illustrates using these callback functions.

Example B-25 Using JavaScript Callback Functions to Hide the Navigation Bar

adf.mf.api.hideNavigationBar(
 function(req, res) { alert("hideNavigationBar complete"); },
 function(req, res) { alert("hideNavigationBar failed with " +
 adf.mf.util.stringify(res); }
);

B.2.13 showNavigationBar

This method requests that ADF Mobile display the navigation bar.

Within Java, this method is called as follows:

public static void showNavigationBar()

Example B-26 illustrates using this method.

Example B-26 Showing the Navigation Bar in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

...
 try {
 AdfmfContainerUtilities.showNavigationBar();
 }catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void showNavigationBar(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-27 illustrates using these callback functions.

Example B-27 Using JavaScript Callback Functions to Show the Navigation Bar

adf.mf.api.showNavigationBar(
 function(req, res) { alert("showNavigationBar complete"); },
 function(req, res) { alert("showNavigationBar failed with " +
 adf.mf.util.stringify(res); }
);

B.2.14 invokeMethod

This method is not available in Java. Example B-28 illustrates using the JavaScript callback methods to invoke a Java method from any class in a classpath.

Example B-28 Using JavaScript Callback Function to Call a Java Method

adf.mf.api.invokeMethod(classname,
 methodname,
 param1,
 param2,
 ...
 paramN,
 successCallback,
 failedCallback);

Table B-1 lists the parameters taken by this method.

Table B-1 Parameters Passed to invokeJavaMethod

	Parameter	Description
	
classname

	
The class name (including the package information) that ADF Mobile uses to create an instance when calling the Java method.

	
methodname

	
The name of the method that should be invoked on the instance of the class specified by the classname parameter.

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value.

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Examples of using this method with multiple parameters are as follows:

	

adf.mf.api.invokeMethod("TestBean", "setStringProp", "foo", success, failed);

	

adf.mf.api.invokeMethod("TestBean", "getStringProp", success, failed);

An example of using an integer parameter is as follows:

adf.mf.api.invokeMethod("TestBean", "testSimpleIntMethod", "101", success, failed);

The following illustrates using complex parameters:

adf.mf.api.invokeMethod("TestBean", "testComplexMethod",
 {"foo":"newfoo","baz":"newbaz",".type":"TestBeanComplexSubType"}, success, failed);

The following illustrates using no parameters:

adf.mf.api.invokeMethod("TestBean", "getComplexColl", success, failed);

The following illustrates using String parameters:

adf.mf.api.invokeMethod("TestBean", "testMethodStringStringString", "Hello ", "World", success, failed);

B.2.15 invokeContainerJavaScriptFunction

The invokeContainerJavaScriptFunction invokes a JavaScript method. Table B-2 lists the parameters passed by this method.

Table B-2 Parameters Passed to invokeContainerJavaScriptFunction

	Parameter	Description
	
featureId

	
The ID of the application feature used by ADF Mobile to determine the context for the JavaScript invocation. The ID determines the web view in which this method is called.

	
method

	
The name of the method that should be invoked.

	
args

	
An array of arguments that are passed to the method. Within this array, these arguments should be arranged in the order expected by the method.

This method returns a JSON object.

	
Note:

The invokeContainerJavaScriptFunction API expects the JavaScript function to finish within 15 seconds for applications running on an Android-powered device or emulator, or it will return a timeout error.

Example B-29 The invokeContainerJavaScriptFunction Method

public static java.lang.Object invokeContainerJavaScriptFunction(java.lang.String featureId,
 java.lang.Object[] args)
 throws oracle.adfmf.framework.exception.AdfException

The pseudocode in Example B-30 illustrates a JavaScript file called appFunctions.js that is included in the application feature, called feature1. The JavaScript method, application.testFunction, which is described within this file, is called by the invokeContainerJavaScriptFunction method, shown in Example B-31. Because the application includes a command button that is configured with an action listener that calls this function, a user sees the following alerts after clicking this button:

	
APP ALERT 0

	
APP ALERT 1

	
APP ALERT 2

Example B-30 appFunctions.js

(function()
 {
 if (!window.application) window.application = {};

 application.testFunction = function()
 {
 var args = arguments;

 alert("APP ALERT " + args.length + " ");
 return "application.testFunction - passed";
 };
 })();

The pseudocode in Example B-31 illustrates how the invokeApplicationJavaScriptFunction method calls the JavaScript method (application.testFunction) that is described in Example B-30.

Example B-31 Calling the JavaScript Function from Java

invokeApplicationJavaScriptFuntions
 public void invokeApplicationJavaScriptFuntions(ActionEvent actionEvent) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {"P1"});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {"P1", "P2"});
 }

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile and the JSExtend sample application. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

B.2.16 Application Icon Badging

The AdfmfContainerUtilities class includes methods to place or retrieve a badge number on an ADF Mobile application icon. Table B-3 describes these methods.

Table B-3 Icon Badging Methods

	Method	Description	Parameters
	
getApplicationIconBadgeNumber

	
Gets the current badge value on the ADF Mobile application icon. Returns zero (0) if the application icon is not badged.

	
None

	
setApplicationIconBadgeNumber

	
Sets the badge number on an ADF Mobile application icon.

	
The value of the badge (int badge).

	
Note:

Application icon badging is not supported on Android.

B.3 Accessing Files Using the getDirectoryPathRoot Method

The adfmfJavaUtilties API includes the getDirectoryPathRoot method. This method, which can only be called from the Java layer, enables access to files on both iOS and Android systems. As shown in Example B-32, this method enables access to the location of the temporary files, application files (on iOS systems), and the cache directory on the device using the TemporaryDirectory, ApplicationDirectory, and DeviceOnlyDirectory constants, respectively. Files stored in the DeviceOnlyDirectory location are not synchronized when the device is connected.

	
Note:

Verify that any directories or files accessed by an application exist before the application attempts to access them.

For more information on oracle.adfmf.framework.api.AdfmfJavaUtilities, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.

Example B-32 Accessing Files

import oracle.adfmf.framework.api.AdfmfJavaUtilities;

...

public void getDirectoryPathRoot()
 {
 // returns the directory for storing temporary files

 String tempDir =
AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.TemporaryDirectory);

 // returns the directory for storing application files

 String appDir =
AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.ApplicationDirectory);

 // returns the directory for storing cache files

 String deviceDir =
AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DeviceOnlyDirectory);

 // returns the directory for storing downloaded files

AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory);
 }

B.3.1 Accessing Platform-Independent Download Locations

File storage requirements differ by platform. The Android platform does not prescribe a central location from which applications can access files; instead, an application can write a file to any location to which it has write permission. iOS platforms, on the other hand, generally store files within an application directory. Because of these differences, passing ApplicationDirectory to the getDirectoryPathRoot method can return the file location needed to display attachments for applications running on iOS-powered devices, but not on Android-powered devices. Rather than writing platform-specific code to retrieve these locations for applications intended to run on both iOS- and Android-powered devices, you can enable the getDirectoryPathRoot method to return the paths to both the external storage location and the default attachments directory by passing it DownloadDirectory. This constant (an enum type) reflects the locations used by the displayFile method of the DeviceManager API, which displays attachments by using platform-specific functionality to locate these locations.

On Android, DownloadDirectory refers to the path returned by the Environment.getExternalStorageDirectory method (which retrieves the external Android storage directory, such as an SD card). For ADF Mobile applications running on iOS-powered devices, it returns the same location as ApplicationDirectory. For more information on the getExternalStorageDirectory, see the package reference documentation, available from the Android Developers website (http://developer.android.com/reference/packages.html). See also Files System Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

C Converting Preferences for Deployment

This appendix describes how ADF Mobile converts user preferences during deployment.

This document includes the following sections:

	
Section C.1, "Naming Patterns for Preferences"

	
Section C.2, "Converting Preferences for Android"

	
Section C.3, "Converting Preferences for iOS"

C.1 Naming Patterns for Preferences

Conversion of ADF Mobile application preferences to a mobile-platform representation occurs when a deployment target is invoked. Following conversion, the naming pattern described in Table C-1 ensures that each preference can be uniquely identified on the mobile platform. Each preference element in the adfmf-application.xml and adfmf-feature.xml files must be uniquely identified within the scope of its sibling elements prior to deployment.

The following are examples of identifier values:

	
application.gen.gps.trackGPS

	
feature.f0.gen.gps.trackGPS

Table C-1 describes how to generate fully qualified preference identifiers.

Table C-1 ADF Mobile Naming Patterns for Preferences

	Expression	Description	Syntax
	
PreferenceIdentifier

	
Represents an identifier value of a preference element that has been converted to a mobile platform representation.

	
ApplicationPreferences | FeaturePreferences

	
ApplicationPreferences

	
Use this expression to build a preference identifier value that is generated from the adfmf-application.xml file.

	
application.ApplicationElementPath

ApplicationElementPath represents a dot-separated list of id attribute values beginning with the top-most parent element, <adfmf:preferences>, and ending with the element that is to be identified. In the following segment from the adfmf-application.xml file, this generated identifier is shown in the comment as application.gen.gps.trackGPS.

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be "application.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
</adfmf:preferences>

	
FeaturePreferences

	
Use this expression to build a preference identifier value that is generated from the adfmf-feature.xml file.

	
feature.FeatureElementPath

FeatureElementPath represents a dot-separated list of id attribute values beginning with <adfmf:feature>, the top-most parent element, and ending with the element that is to be identified. In the following segment from the adfmf-feature.xml file, this generated identifier is displayed in the comment as feature.f0.gen.gps.trackGPS.

<adfmf:feature id="f0">
 <adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be "feature.f0.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>

The <adfmf:preferences> element cited in the code examples in Table C-1 does not have an id attribute and is therefore not represented in any preference identifiers.

C.2 Converting Preferences for Android

The ADF Mobile deployment uses XML and XLS to transform the user preference pages defined at both the application feature and ADF Mobile application-level into the following three XML documents:

	
preferences.xml

	
arrays.xml

	
strings.xml

C.2.1 Preferences.xml

This file contains the transformed preferences from both of the adfmf-feature.xml and adfmf-application.xml files.

C.2.1.1 Preferences Element Mapping

Table C-2 shows the mapping of ADF Mobile's preference definitions to Android template preferences, and Android native preferences:

Table C-2 Mapping ADF Mobile Preferences to Android Preferences

	ADF Mobile Preference Definition	Template Custom or Android Native Preference Definition (Used by Deployment)	Android Native Preference Definition (Not used by Deployment)
	
<adfmf:preferenceBoolean>

	
oracle.adfmf.preferences.AdfMFPreferenceBoolean

	
CheckBoxPreference

	
<adfmf:preferenceNumber>

	
oracle.adfmf.preferences.AdfMFPreferenceText

	
EditPreferenceText

	
<adfmf:preferenceText>

	
oracle.adfmf.preferences.AdfMFPreferenceText

	
EditTextPreference

	
<adfdmf:preferenceList>

	
oracle.adfmf.preferences.AdfMFPreferenceList

	
ListPreference

	
<adfmf:PreferenceGroup>

	
PreferenceCategory

	
PreferenceCategory

	
<adfmf:PreferencePage>

	
PreferenceScreen

	
PreferenceScreen

C.2.1.2 Preference Attribute Mapping

The Preferences.xml file contains references to string resources contained in both the strings.xml and arrays.xml files. The Android SDK defines the syntax for resources in XML files as @[<package_name>:]<resource_type>/<resource_name>. This file contains references to string values as well as the name and value pairs of list preferences. The XSL constructs the following for the strings and list preferences:

	
<package_name> is the name of the package in which the resource is located (not required when referencing resources from the same package). This component of the reference will not be used.

	
<resource_type> is the R subclass for the resource type. This component will have a value of string if constructing a string reference or array if constructing a list preference.

	
<resource_name> is the android:name attribute value in the XML element. The value for this component will be the value of the <PreferenceIdentifier>_title when specifying the android:title attribute (see Section C.1, "Naming Patterns for Preferences." for the definition of <PreferenceIdentifier>.

Table C-3 and Table C-4 show the mapping of ADF Mobile attributes for a given ADF Mobile preference to the Android preference.

In this table:

	
Entries of the form {X} (such as {default} in Table C-3) indicate the value of an ADF Mobile attribute named X.

	
Entries having <PreferenceIdentifier> indicate the value of the preference identifier, as defined in Section C.1, "Naming Patterns for Preferences."

	
Attributes with an asterisk (*) are custom template attributes defined in an ADF Mobile namespace and must appear in the preferences.xml in the form adfmf:<attributeName>. Otherwise, the attributes are part of the Android namespace and must appear in the preferences.xml as android:<attributeName>.

Table C-3 Mapping of ADF Mobile Preference Attributes to Android Preferences

	ADF Mobile Attribute Definition	Template Custom or Android Native Preference Attribute	Android Attribute Value	Applies to
	
id

	
key

	
<PreferenceIdentifier>

	
AdfMFPreferenceBoolean, AdfMFPreferenceText, AdfMFPreferenceList, PreferenceScreen, PreferenceCategory

	
default

	
defaultValue

	
{default}

	
AdfMFPreferenceBoolean, AdfMFPreferenceText, AdfMFPreferenceList

	
label

	
title

	
@string/<PreferenceIdentifier>___title if the given {label} value is not a reference to a string resource bundle. References a string in strings.xml having the given {label}.

	
AdfMFPreferenceBooleanAdfM, FPreferenceNumber, AdfMFPreferenceText, AdfMFPreferenceList, PreferenceScreen, PreferenceCategory

	
secret

	
password

	
{secret}

	
AdfMFPreferenceText

	
min

	
min*

	
{min}

	
AdfMFPreferenceText

	
max

	
max*

	
{max}

	
AdfMFPreferenceText

	
name

	
entryValues

	
@array/<PreferenceIdentifier>___entryValues

	
AdfMFPreferenceList

	
value

	
entries

	
@array/<PreferenceIdentifier>___entries

	
AdfMFPreferenceList

C.2.1.3 Attribute Default Values

The overview editors for the adfmf-application.xml and adfmf-feature.xml files exclude an attribute name and value from the XML if:

	
The attribute type is xsd:boolean.

	
The attribute value has a <default> value option.

	
The user specifies <default> as the value.

The XSL must know the ADF Mobile attributes that are boolean typed and their corresponding default values. The XSL, then, specifies the appropriate Android or template custom attribute value where has been selected by the user.

Table C-4 indicates what the deployment will specify for the android:defaultValue attribute if the ADF Mobile preference being transformed does not contain a default attribute:

Table C-4 Transforming Attributes with Non-Default Values

	ADF Mobile Preference Element	Android Preference Equivalent	Default Attribute Value
	
preferenceBoolean

	
AdfMFPreferenceBoolean

	
false

	
preferenceText

	
AdfMFPreferenceText

	
Empty string

	
preferenceList

	
AdfMFPreferenceList

	
Empty string

C.2.1.4 Preferences Screen Root Element

The preferences.xml file has a root element called <PreferenceScreen>. The Android template requires that this element have the following XML namespace definition:

xmlns:adfmf="http://schemas.android.com/apk/res/<Application Package Name>

The <Application Package Name> element is defined as the same application package name in the AndroidManifest.xml file. <Android Package Name> defines the definition for the Android package name specified in the AndroidManifest.xml file. For more information, see Section 5.3.1, "How to Set the ID and Display Behavior for a Mobile Application."

The deployment uses the Application Bundle Id value from the Android deployment profile if it exists. If it does not exist in the profile, the deployment obtains this value from the application display name and Application Id contained in the adfmf-application.xml file. The deployment Java code will pass the value to the XSL document as a parameter.

Example C-1 shows ADF Mobile preferences contained in the adfmf-feature.xml file.

Example C-1 Preferences Defined in the adfmf-feature.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"
 image="oracle.hello/springboard-icon.png">
 <adfmf:content id="Hello.Generic">
 <adfmf:localHTML url="oracle.hello/index.html"/>
 </adfmf:content>
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup"
 label="preference group">
 <adfmf:preferenceBoolean id="boolPref"
 label="boolPref perference"
 default="true"/>
 <adfmf:preferenceNumber id="numPref"
 label="numPref preference"
 default="1"
 min="1"
 max="10"/>
 <adfmf:preferenceText id="textPref"
 label="textPref preferences"
 default="Foo"/>
 <adfmf:preferenceList id="listPref"
 label="listPref preference"
 default="value2">
 <adfmf:preferenceValue name="name1"
 value="value1"/>
 <adfmf:preferenceValue name="name2"
 value="value2"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>
</adfmf:features>

C.2.2 arrays.xml

The arrays.xml file consists of string-array elements that enumerate the names and values of list preferences that are referenced from the preferences.xml file. Each <preferenceList> element contained in the adfmf-application.xml and adfmf-feature.xml files is transformed into two string-array elements, one element for the name and one element for the values. For example, the ADF Mobile preferenceList definition described in Example C-2 results in <string-array name="feature.oracle.hello.prefGroup.MyList___entry_values"> and <string-array name="feature.oracle.hello.prefGroup.MyList___entries"> in the arrays.xml file shown in Example C-3.

Example C-2 PreferenceList Definition in the adfmf-feature.xml File

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">

<adfmf:feature id="oracle.hello" name="Hello" icon="oracle.hello/navbar-icon.png" image="oracle.hello/springboard-icon.png">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceList id="MyList" label="My List">
 <adfmf:preferenceValue name="name1" value="value1"/>
 <adfmf:preferenceValue name="name2" value="value2"/>
 <adfmf:preferenceValue name="name3" value="value3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>
...

Example C-3 illustrates the pair of string array elements in the arrays.xml file that are transformed from a <preferenceList> element.

Example C-3 Preference Lists Converted to <string-array> Elements in arrays.xml

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">

 <string-array name="feature_oracle_hello_prefGroup.MyList___entry_values">
 <item>name1</item>
 <item>name2</item>
 <item>name3</item>
 </string-array>

 <string-array name="feature_oracle_hello_prefGroup.MyList___entries">
 <item>value1</item>
 <item>value2</item>
 <item>value3</item>
 </string-array>
</resources>

Example C-4 shows the <string-arrays> referenced in preferences.xml.

Example C-4 PreferenceList Reference from the preferences.xml File

<oracle.adfmf.preferences.AdfMFPreferenceList android:key="feature.oracle.hello.MyList"
android:title="@string/feature_oracle_hello_prefGroup.MyList___title"
android:entries="@array/feature_oracle_hello_prefGroup.MyList___entries"
android:entryValues="@array/feature_oracle_hello_prefGroup.MyList___entry_values" />

C.2.3 Strings.xml

The strings.xml file, shown in Example C-5, consists of string elements that are referenced by the preferences.xml file, as well as any resource bundle references defined in the adfmf-application.xml and adfmf-feature.xml files. Each string element has a name attribute that uniquely identifies the string and the string value.

Example C-5 The strings.xml File

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">
...
 <string name="feature.PROD.bundle.FeatureName">Products</string>
 <string name="feature.oracle.hello.prefGroup.MyBooleanPreference___title">My feature boolean pref</string>
...
</resources>

If the source of the string is not a reference to a resource bundle string, the naming convention for the name attribute is <PreferenceIdentifier>___<androidAttributeName>.

Example C-6 Resource Bundle References Defined in the adfmf-feature.xml File

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:loadBundle basename="mobile.ViewControllerBundle"
 var="bundle"/>
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"
 image="oracle.hello/springboard-icon.png">
 <adfmf:feature id="PROD"
 name="#{bundle.FeatureName}"
 icon="openMore.png"
 image="G.png"
 credentials="none">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceBoolean default="true"
 id="MyBooleanPreference"
 label="My feature boolean pref"/>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>

C.3 Converting Preferences for iOS

The iOS deployer transforms the ADF Mobile preferences listed in Table C-4 to the preference list (.plist) file representation required by an iOS Settings application.

Table C-5 ADF Mobile Preferences and Their iOS Counterparts

	ADF Mobile Preferences Component	iOS Representation
	
<adfmf:preferencePage>

	
PSChildPaneSpecifier

	
<adfmf:preferenceGroup>

	
PSGroupSpecifier

	
<adfmf:preferenceBoolean>

	
PSToggleSwitchSpecifier

	
<adfmf:preferenceList>

	
PSMultiValueSpecifier

	
<adfmf:preferenceText>

	
PSTextFieldSpecifier

	
<adfmf:preferenceNumber>

	
PSTextFieldSpecifier

For information on the iOS requirement for preference list (.plist) files, see Preferences and Settings Programming Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

Example C-7 shows an ADF Mobile preferences stanza.

Example C-7 XML Based on the adfmf-application.xml File

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="Oracle Way Cool Mobile App">
 <adfmf:preferenceGroup id="SubPage01"
 label="Child Page">
 </adfmf:preferenceGroup>
</adfmf:preferences>

D ADF Mobile Application Usage

This appendix provides an introductory information on the ADF Mobile user experience.

This appendix includes the following sections:

	
Section D.1, "Introduction to ADF Mobile Application Usage"

	
Section D.2, "Installing the ADF Mobile Application on a Mobile Device"

	
Section D.3, "Navigating Between Application Features"

	
Section D.4, "Setting Preferences"

	
Section D.5, "Viewing Log Files"

	
Section D.6, "Limitations to the Application Usage"

D.1 Introduction to ADF Mobile Application Usage

After installing an ADF Mobile application (see Section D.2, "Installing the ADF Mobile Application on a Mobile Device"), the end user can start using it by selecting the application icon on their mobile device's home screen (see Figure D-1), which displays the splash screen while the application launches. After the completion of the launch, the end user can navigate between application features (see Section D.3, "Navigating Between Application Features"), set preferences (see Section D.4, "Setting Preferences"), and perform all other tasks.

Figure D-1 Application Icon on iPhone

[image: Application Icon on iPhone]

D.2 Installing the ADF Mobile Application on a Mobile Device

The end user can download and install an ADF Mobile application through their regular application provisioning mechanism.

During installation, the application's Preferences are populated with default settings. For information on how to modify the defaults, see Section D.4, "Setting Preferences" and Section D.2.2, "How to Install ADF Mobile Applications on Android-Powered Devices".

Removing the ADF Mobile application from a mobile device is not different from uninstalling any other application (see Section D.2.3, "How to Uninstall an ADF Mobile Application").

D.2.1 How to Install ADF Mobile Applications on iOS-Powered Devices

Users of iOS-powered devices download and install ADF Mobile applications in one of the following ways:

	
From an enterprise-specific distribution mechanism:

	
using iTunes;

	
deploying through iPhone Configuration Utility;

	
wirelessly, hosted on a web server.

	
From Apple's App Store.

D.2.2 How to Install ADF Mobile Applications on Android-Powered Devices

In addition to installing ADF Mobile applications available through the application marketplace, the end user can download applications available outside of the application marketplace. It is recommended to search the web for information on how to do this.

D.2.3 How to Uninstall an ADF Mobile Application

An ADF Mobile application is removed from the mobile device just like any other application. During the uninstall process, all application data and all external preferences are removed along with the application.

D.3 Navigating Between Application Features

To provide access to each application feature, ADF Mobile applications allow for navigation between enabled application features using either a navigation bar or a springboard.

For information on configuring navigation during the application development, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."

D.3.1 How to Navigate Between Application Features on iOS-Powered Devices

Figure D-2 shows elements of the ADF Mobile UI displayed on an iPhone.

Figure D-2 UI Elements on iPhone

[image: User Experience on iPhone]

The UI consists of a navigation bar populated with navigation items (icons). The first navigation item is highlighted to indicate that it is selected.

	
Note:

If the springboard is defined for the application, a Home navigation button represented by an overlay is rendered above the navigation bar, but is not a part of it. This button allows the end user to return to the springboard from the application content:

[image: Home icon]
If the springboard is not specified for the application, the Home icon is not displayed.

For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."

The navigation bar in the example that Figure D-2 shows contains six navigation items, and since not all of them can be displayed at the same time due to the space limitations on an iPhone, the fifth icon is represented by the More feature. When activated, the More feature expands the navigation bar into the mode that lists the remaining navigation items. On an iPad, all navigation items are displayed. The content area above the navigation bar provides the content specific to this particular solution, which is an approval tool for purchase orders and is bundled with the application.

	
Note:

If at least one icon for an application feature is shown on the navigation bar, the end user is presented with Hide and Show buttons that allow to display the navigation bar when it is hidden, and hide when it is shown:

[image: Hide and show navigation bar]
If the application XML file (adfmf-application.xml) only defines a single application feature, or if the constraints (or conditions) allow for only a single application feature to be displayed, then the navigation bar is hidden.

The Hide and Show buttons may not be presented to the end user and the navigation bar could be initially hidden if the adfmf-application.xml file does not reference any application features to be displayed on the navigation bar. In this case, if the springboard is defined, it will be the only navigation tool for the application.

For more information, see Section D.3.1.2, "Using Single-Featured Applications."

Figure D-3 shows the iPhone UI after the activation of the More icon and display of the remaining navigation items as a list.

Figure D-3 Display of All Navigation Items on iPhone

[image: Edit mode on iPhone]

To change which navigation items appear on the navigation bar at the application startup, the end user can select Edit to enter the Configure mode, as Figure D-4 shows.

Figure D-4 "Configure" Mode on iPhone

[image: Configure mode on iPhone]

The Configure mode allows for dragging icons from the content area and dropping them onto the navigation bar. In this example, Submit navigation item was replaced with Gle navigation item on the navigation bar, and Submit is listed under More items, as Figure D-5 shows. To exit the configuration mode, the user selects Done to return to the More screen.

Figure D-5 Changing Navigation Bar Display on iPhone

[image: Changing iPhone Navigation Bar]

If the end user selects the newly repositioned Gle navigation item in the navigation bar, Gle page is displayed in the content area, as Figure D-6 shows.

Figure D-6 Activation of Repositioned Navigation Item on iPhone

[image: Web Page Display on iPhone]

D.3.1.1 Navigating Using the Springboard

By default, the springboard navigation is disabled in ADF Mobile. It is enabled during development by configuring the adfmf-application.xml file (see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior").

If an ADF Mobile application is enabled for navigation using the springboard, the end user is presented a display similar to the one shown in Figure D-7 when the application starts.

Figure D-7 Springboard Display

[image: Default Springboard Display]

In the preceding illustration, the default springboard supplied by ADF Mobile is displayed on an iPhone in the default portrait layout (for information on how to create a custom springboard during development, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior"). There are three pages of the application content features that are available to the end user, which is indicated by the three dots at the bottom of the screen. The end user is on page one of the three pages, which is denoted by the bright dot in the first position.

To open the second page of features (see Figure D-8), the end user swipes the iPhone screen from right to left, pushing the first page to the left and bringing the second page from the right. As the first page moves left, it fades out, and as the second page moves in, it fades in.

Figure D-8 Springboard - Second Page

[image: Springboard - Second Page]

In the preceding illustration, the end user is on page two of the three pages, which is denoted by the bright dot in the second position.

When the end user rotates the mobile device to landscape orientation, the springboard icons animate into positions that will better accommodate such change (see Figure D-9).

Figure D-9 Springboard Display in Landscape

[image: Springboard Display in Landscape]

Note that the page did not change when the display orientation changed, and the end user is still on page two.

To return to the first page of features while the display is in landscape orientation (see Figure D-10), the end user swipes the iPhone screen from left to right, pushing the second page to the right and bringing the first page from the left.

Figure D-10 Springboard in Landscape - First Page

[image: Springboard in Landscape - First Page]

To view a particular feature (such as Contacts) from page one, the end user touches the Contacts icon or its corresponding text.

On iOS-powered devices, the end user can return to the springboard from any application feature by performing a device shake gesture.

On Android-powered devices, the end user can use a menu item that lets them return to the springboard at any time.

D.3.1.2 Using Single-Featured Applications

Some applications may have only a single feature, and this feature is not configured to be displayed on a Springboard or navigation bar. In this case, only this single feature is presented to the end user; the special buttons that control the display of the navigation bar or return to the Springboard are not visible.

D.3.2 How to Navigate on Android-Powered Devices

The application feature navigation on Android-powered devices is almost identical to the navigation on iOS-powered devices (see Section D.3.1, "How to Navigate Between Application Features on iOS-Powered Devices"), with the exception of the More feature: on Android-powered devices, the More feature, when activated, triggers the display of a list of the remaining navigation items. The navigation bar does not change its appearance.

D.4 Setting Preferences

The end user can configure the application preferences in the manner already prescribed by the mobile platform.

For information on configuring preferences during the application development, see Chapter 13, "Enabling User Preferences."

D.4.1 How to Set Preferences on iOS-Powered Devices

The end user can open the Settings application on their iOS-powered device and select ADF Mobile application's Settings icon to access all the settings available for that application. The modified settings take effect upon exiting the Settings application. This is a typical behavior of all applications on iOS-powered devices.

Preferences are populated with default values at startup. These values are defined in the adf-feature.xml file. In addition to the standard ways of setting Preferences values, they can be defined as follows:

	
By making selection from a list of values.

	
As non-readable values (for entering passwords and such).

	
As binary values.

Preferences are displayed on cascading pages. Modifiable preferences can be easily distinguished from the ones that cannot be modified.

Preferences can be used to globally set the user credentials (see Chapter 18, "ADF Mobile Application Security").

D.4.2 How to Set Preferences on Android-Powered Devices

Setting Preferences on Android-powered devices does not differ from the same operation on iOS-powered devices (see Section D.4.1, "How to Set Preferences on iOS-Powered Devices"): the Preferences are accessed through the Preferences menu item.

	
Note:

The Preferences menu item does not appear in the menu if there are no preferences defined for the application.

D.5 Viewing Log Files

For diagnostic and support purposes, the application log file for enabled application features is available for viewing on the device.

On an iOS-powered device, log files are located in ~/Library/Logs/CrashReporter/MobileDevice/<DEVICE_NAME>. Note that the device must be synchronized prior to accessing log files.

For information on locating and viewing log output on Android-powered devices, see http://developer.android.com/tools/help/logcat.html.

For more information on logging, see Section 19.4, "Using and Configuring Logging".

D.6 Limitations to the Application Usage

There is a number of limitations to the usage of various modules of a typical ADF Mobile application.

D.6.1 List View Component Limitations

When using an ADF Mobile AMX List View component (see Section 7.2.7, "How to Use List View and List Item Components"), the end user should be aware of the following limitation:

	
If a List View component is in edit mode, the end user is only allowed to reorder rows (represented by List Item components) and cannot select or highlight a row.

D.6.2 Data Visualization Components Limitations

The following are limitations of which the end user should be aware when using ADF Mobile AMX data visualization components (see Section 7.5, "Providing Data Visualization"):

	
With the exception of the geographic map (see Section 7.5.15, "How to Create a Geographic Map Component"), ADF Mobile AMX DVT components do not support interactivity on the Android 2.n platform.

	
WAI-ARIA accessibility functionality is not supported on Android for DVT components.

D.6.3 Device Back Button Limitations on Android Platform

On Android 4.0.3, the device back button is disabled when an ADF Mobile application is running.

For more information, see Section 7.3.5.6, "Enabling the Back Button Navigation."

D.6.4 Accessibility Support Limitations

The following are limitations of which the end user should be aware when accessibility is required (see Section 7.8, "Understanding ADF Mobile Support for Accessibility"):

	
ADF Mobile AMX UI components might not perform as expected when the application is run in the Android screen reader mode.

	
WAI-ARIA accessibility functionality is not supported on Android for DVT components.

E Parsing XML

This appendix contains information about libraries that can be used to parse XML.

This appendix includes the following section:

	
Section E.1, "Parsing XML Using kXML Library"

E.1 Parsing XML Using kXML Library

kXML, one of the core ADF Mobile libraries, provides API that you can use to parse XML. This library is exposed to the application through the JDK Profiler Interface (JVMPI).

For more information, consult kXML documentation at:

	
http://kxml.sourceforge.net/kxml2

	
http://kxml.sourceforge.net/kxml2/javadoc

F ADF Mobile Sample Applications

This appendix describes the ADF Mobile sample applications.

This appendix includes the following section:

	
Section F.1, "Overview of the ADF Mobile Sample Applications"

F.1 Overview of the ADF Mobile Sample Applications

ADF Mobile ships with a set of a sample applications that provide different development scenarios, such as creating the basic artifacts, accessing such device-native features as SMS and e-mail, or performing CRUD (Create, Read, Update, and Delete) operations on a local SQLite database. These applications are in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples

To view these applications, extract the PublicSamples.zip file to your JDeveloper working directory (typically, this is User Home Directory/jdeveloper/mywork).

	
Note:

The sample applications that include a default springboard must be extracted to, and opened from, the Samples directory. To enable these applications to function properly, you must ensure that the springboard is added to the classpath by updating the adfmf-application.xml file as described in Section 5.5.1, "How to Configure Application Navigation."

To add the springboard to the classpath:

	
Open the application from the Samples directory.

	
In the Applications page of the overview editor for the adfmf-application.xml file, change the springboard option from Default to None.

	
Choose Default as the springboard option.

	
Click Save All.

	
Deploy the application.

These applications, which are described in Table F-1, are complete. Except where noted otherwise, these applications can be deployed to a simulator after you configure the development environment as described in Chapter 3, "Setting Up the ADF Mobile Environment."

	
Tip:

To get an idea of how to create an ADF Mobile application, review these applications in the order set forth in Table F-1.

Table F-1 ADF Mobile Sample Applications

	Recommended Order of Use	Application Name	Description	Additional Resources Required to Run the Sample Application
	
1

	
HelloWorld

	
The "hello world" application for ADF Mobile, which demonstrates the basic structure of the framework. This basic application has a single application feature that is implemented with a local HTML file. Use this application to ascertain that the development environment is set up correctly to compile and deploy an application. See also Section 4.2.2, "What Happens When You Create an ADF Mobile Application."

	

	
2

	
CompGallery

	
This application serves as an introduction to the ADF Mobile AMX UI components by demonstrating all of these components. Using this application, you can change the attributes of these components and see the effects of those changes in real time without recompiling and redeploying the application after each change. See generally Chapter 7, "Creating the ADF Mobile AMX User Interface."

	

	
3

	
LayoutDemo

	
This application demonstrates the user interface layout and shows how to create the various list and button styles that are commonly used in mobile applications. It also demonstrates how to create the action sheet style of a popup component and how to use various chart and gauge components. See Section 7.3, "Creating and Using UI Components" and Section 7.5, "Providing Data Visualization."

	
This application must be opened from the Samples directory. The Default springboard option must be cleared in the Applications page of the adfmf-application.xml overview editor, then selected again.

	
4

	
JavaDemo

	
This application demonstrates how to bind the user interface to Java beans. It also demonstrates how to invoke EL bindings from the Java layer using the supplied utility classes. See also Section 7.10, "Using Event Listeners" and Section 8.2, "Understanding EL Support."

	

	
5

	
Navigation

	
This application demonstrates the various navigation techniques in ADF Mobile, including bounded task flows and routers. It also demonstrates the various page transitions. See also Section 6.2, "Creating Task Flows."

	
This application must be opened from the Samples directory. The Default springboard option must be cleared in the Applications page of the adfmf-application.xml overview editor, then selected again.

	
6

	
LifecycleEvents

	
This application implements lifecycle event handlers on the ADF Mobile application itself and its embedded application features. This application shows you where to insert code to enable the applications to perform their own logic at certain points in the lifecycle. See also Section 5.7, "About Lifecycle Event Listeners."

	
For iOS, the LifecycleEvents sample application logs data to the Console application, located at Applications-Utilities-Console application.

	
7

	
DeviceDemo

	
This application shows you how to use the DeviceFeatures data control to expose such device features as geolocation, e-mail, SMS, and contacts, as well as how to query the device for its properties. See also Section 8.5, "Using the DeviceFeatures Data Control."

	
You must also run this application on an actual device, because SMS and some of the device properties do not function on an iOS simulator or Android emulator.

	
8

	
GestureDemo

	
This application demonstrates how gestures can be implemented and used in ADF Mobile applications. See also Section 7.4, "Enabling Gestures."

	

	
9

	
StockTracker

	
This application demonstrates how data change events use Java to enable data changes to be reflected in the user interface. It also has a variety of layout use cases, gestures and basic mobile patterns. See also Section 8.7, "Data Change Events."

	

	
10

	
HR

	
This human resources application is a CRUD application that demonstrates a variety of real-world application techniques. It uses a local SQLite database to store its data. The application persists the data between each startup and is based on the default HR schema that ships with all Oracle databases. See generally Chapter 11, "Using the Local Database."

By providing layouts for both iPad and iPhone, this application demonstrates how different types of user interfaces can share the same data model. There are a variety of other patterns demonstrated in the application as well. This application uses a constraint to deliver the content to both an iPhone and iPad device. For more information, see Section 14.2.5, "About Hardware-Related Constraints."

	

	
11

	
Skinning

	
This application demonstrates how to skin applications and add a unique look and feel by either overriding the supplied style sheets or extending them with their own style sheets. This application also shows how skins control the styling of ADF Mobile AMX UI components based on the type of device. See also Section 5.12, "Skinning ADF Mobile Applications."

	

	
12

	
PrefDemo

	
This application demonstrates application-wide and application feature-specific user setting pages. See generally Chapter 13, "Enabling User Preferences"

	

	
13

	
Weather1

	
This application, which does not use Java code, demonstrates using declarative web services. The web services used by this application are SOAP web services, specifically a public web service provided by CDYNE Corporation (http://www.cdyne.com/), that provides weather forecasts by Zip code. Ensure that this service is available before running this application. See, generally, Chapter 9, "Using Web Services."

	

	
14

	
Weather2

	
This application demonstrates using a programmatic invocation of web services and parsing the GenericType object returned into real Java objects. The user interface is then bound to the Java Beans instead of directly to the web service. For more information, see Section 9.6, "Invoking Web Services From Java."

	

	
15

	
Weather3

	
Although this application is identical to the Weather2 sample application, it demonstrates the use of a non-blocking background thread to invoke the web service and how the user interface is updated when the service returns. This application demonstrates how it updates the user interface by flushing the data change events from the thread.

	

	
16

	
RESTDemo

	
This application demonstrates using REST web services. Its two application features, REST-XML and REST-JSON use the same publicly available web service to retrieve the geo-coordinates of a given IP address or domain. The service can return either XML or JSON formats. The REST-XML application feature uses an XSD and creates a URL data control to access the structured data. The user interface binds to that data control. In the REST-JSON version, the URL connection is used directly by the RESTServiceAdapter helper class to invoke the web service and then the response is parsed using the JSONSerializationHelper class and populates a bean data control. The user interface is bound to this bean. For both of the application features, the web service call results in a form and a map. The latter is centered with a marker with the returned geo-coordinate. For more information, see Section 9.2.3, "How to Create a Web Service Data Control Using REST."

	

	
17

	
JSExtend

	
This application demonstrates how to invoke custom JavaScript methods from within an ADF Mobile AMX page. Use this approach to invoke the Apache Cordova APIs that are not included in the DeviceFeatures data control. You can also use this approach to add custom JavaScript methods to an application and invoke them as well. This application also demonstrates calling back to Java from the JavaScript methods. See also Section 5.10.1, "How to Define the Application Content" and Section B.2, "The ADF Mobile Container Utilities API."

	

	
18

	
Attachments

	
This application demonstrates how to use the displayFile method of the DeviceFeatures data control. The application copies several embedded attachments from the application bundle to a location that is accessible on different device platforms and then presents a user interface from which those attachments can be launched. On iOS-powered devices, these attachments are launched within the context of the ADF Mobile application. On Android, the application launches these attachments externally using a third-party application (if the device runs an application that can handle the device type). If the application finds multiple applications that are capable of launching the attachment type, then it displays them within a list. Users then select the application from the list to launch the attachment. For more information, see Section 8.5.9, "How to Use the displayFile Method."

	

	
19

	
DVTDemo

	
This application provides a basic demonstration using different chart types. It also demonstrates how to change the chart layout and formatting. For more information, see Section 7.5, "Providing Data Visualization."

	

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/button4.png

OEBPS/img/edit_form_fields3.png
& Edit Form Fields

Configure the corponents that you wank to display in your form. Note that you can remove or edit the resuling
camponents after you click OK. You can ko add more camponents drectly tathe layout later

il
Disply Label Ve g Conponent Tose

&8 <default> = Item 43) ADF Mobile Output Text v/ Label
o <deat> = Descrption I3 ADF Mobie Output Tt wf Label
o <deat> = assgnee I3 ADF Mobie Output Tt wf Label
o <deat> = fssignedon I3 ADF Mobie Output Tt wf Label
o <defat> = Supplertd I3 ADF vobie Output et wf Label

e e =0l

Help o Cancel

OEBPS/img/edit_iter_fields.png
& Edit lterator

Iterator Content:

Disply Label Ve g Conponent Tose
(&8 <default> = formatted 43) ADF Mobile Output Text v/ Label
o <deat> = sretadiress I3 ADF bl Output Tt wf Label
o <deat> = locslty I3 ADF bl Output Tt wf Label
o <deat> = region I3 ADF bl Output Tt wf Label
o <deat> = postlcode I3 ADF bl Output Tt wf Label
o <defat> = country I3 ADF Mobie Output et wf Label

e o

Help o Cancel

OEBPS/img/button14.png

OEBPS/img/bundleresource.png
@ Oracle JDeveloper

Ele Edt Uew dpplcstin Refator Search Navigate Buld Run

Versioring Tools Window Help

BoHe 90 XEEQO-O- & didd n- > -%- A4

@ appication Navigator * (=]
Applcationts ~|&E -]
IProjects BRV-E-

AopctionCantler
WenContoler
=2 Appcaion sources
@ e
=@ mobie
DataContros.dix
o P werame
- o Resn
it

& Ca T
& ips-config.xn
=[] ADF META-INF
[3] ApplicationtSBundie.x
[0l ad-config xnl
[l adhrt-spplcation xid
21 Data Controls QY
I Recertly Opened Fies

= Applicationt SBundle. - tructure. %
)
ER R

=4 file

£ body
€D trans-unit - ACVESALES

4 source
D target

Q-

»

sr-sppicaton i % |6 pplcatiniseunde xf %

Find

<zxml version="1.0" encoding
B/ LiEE version="L.1" xuln:
Bl <file source-language="en" original="this" datatype="x-oracle-adf">

ocument: 1. 17>

B <oy

& <trans-unit id="ACHESALES™>
<source>Acne Sales</source>
<target />

<note>The Acue Sales Tean app</note>
</trans-unit>
</boay>
</file>
</mite>

Source | History

OEBPS/img/button30.png

OEBPS/img/clouddcops.png
& Create Web Service Data Control - Step 2 of 5

Data Control Operations

Select the operstions that you want the iata cortrol o support.
o D souce

(& Data Control Operati [] Include Hetp Header Parameter

Response Format Avalable: Selected

Endpoit Authertcatin| (B HCMBBrves
& HeMsenvceport & HeMsenvceport
R getEmpioyees D aetapprovals

- T getaciviies

O Finish

OEBPS/img/transition.png
€€ control-flow-case - Properties - Property Inspector * | (-]

12 arn ®

EGeneral

Control Flow Rule

Control Flow Case:

From Actian

o To Activiy 10 *; [procuctdetals -

|

EBehavior

OEBPS/img/safari1.png
Ii i'i'ﬁ'a Search Google or enter an address.

Open Page With >
User Agent >
iPhone Simulator N
Show Web Inspector sl
Show Error Console %C
Show Page Source %
Show Page Resources A
Show Snippet Editor

Show Extension Builder

Start Profiling JavaScript X 03P
Start Timeline Recording X 03T

Empty Caches e
Disable Caches

Disable Images
Disable Styles

Disable Javascript
Disable Site-s;
Disable Local

 Enable WebGL

Hacks
Restrictions

OEBPS/img/check_ext.png
& About Oracle JDeveloper 11g Release 2

Oracle TDeveloper 11g Release 2 (11.1.2.3.0)

about | Version | Properties | Extensions

Q

Export »

Name Idertier

/ADF Library Jar Connection Integration oradle.adf share.dtlib.ca
JADF Library Resource Servie oradle.acf.ide.utis

/ADF Lifscycle Design Time. oradle.adf Ifecycle.dt

/ADF Management Pages oradle.adf.management
IADF M Model Design-Tine: oracle.adfmenudt

/ADF Mobie Client Pag Flow Design Time oracle. acf pageflow.me.

ADF Mabile Help oracle.adf.mobie.doc
/ADF Mobil Page Flow Design Time oracle.adf pageflow.moble.dt

Version
112339623
1112339623
1112339623
1112339623
1112339623
11123396232

11123396232
1112339623

Status
Triggers Loaded
Fully Loaded
Fully Loaded
Triggers Loaded
Triggers Loaded
Triggers Loaded
Fully Loaded
Fuly Loaded
Fully Loaded

OEBPS/img/alert_button.png
Login Validation

& Your password must be

greater than 8
characters

OK

OEBPS/img/preview_tab1.png
Bindine

OEBPS/img/button29.png

OEBPS/img/nav_bar_buttons.png
Groups.

All Contacts

OEBPS/img/select_bean.png
(@ Wethod Bindng

Managed Bean:

Hethad:

O etion Outzome.

OEBPS/img/browseamx.png
ADF Mobile AN Page.

OEBPS/img/getstartsource.png
& Oracle JDeveloper 11g Release 3 - MobileApplication.jws : ViewController, jpr;

Ele Edt Vew dpplcation Refactor

Search Wavigate

Buld Run Versioning Tooks

window telp

BoHa 90 XEE QO -O & didd n > %A

gplcstion avigator % o
MobieApplication ~&
i projects ARV =-
spplcationCortroler
 Appleation Resources
23 comectons
503 Descrptors
& CameTa
cumgropertes
— Dsta Contrls Qv
fryser——
& Devicspestures

IRecently Opened Fes

1= adfmf-application.sml - Structure *
ne

54 Applcation
€ Description

Q-

Dstartpage % | 6] acit-spplcaton i %

Find QMR

<ol version="1.0" encoding="UTF-8" 7>
Bl <aatnt: application xulns:xs
nane="lobiledpplication” id="con.company.Mobilehpplication”
appControllerFolder="ApplicationController” version="l" vendor="oracle"
Listener-class="application. LifeCyclelistenerTupl™>
P TE Y RSB 11115 1> an ADF Hobile appl: B /adtns: description>
</adfme:application>

Btep: /i, w3, 0rg/2001 MULSchena-instance” xulns: adfuf="hrep:

Qe (Search
© |Efcomponent patze %
"a

(5]

< ADF Mobile AMX
< Application

2 Description

< Domain

< ror

< Feature Reference
- Preferences

G rhis . ADF bl o
B/ QFnd
(@lResource ktze

B9~ Qr/ Name

My Catalogs
D€ Comnections
28 Appcaion Server
& Fie systam

00 .

OEBPS/img/left_right_list.png
B Start/End

Start Text
Start Text >
Start Text >

OEBPS/img/edit1.png

OEBPS/img/prefrerencespage.png
Appication
Feature References

Preferences

Security

Preferences

@3] Version
5151 How Are ou Geting There?

(5] Your_GPS Lacations

Security

1) stt-pphcason

F x|

Components

Q

I Common
~IPreferences

@]

Insert Before Preference Group - Orack Mobile App

Insert After Preference Group - Orack Mobile App

5 oot R
& e | W&
& Poference Lt peteronce
PECEEE| o
& Toxt Prference N
Browse. List
o &
e e
= e
& !
g

Freference Graup - Orace Hote
/ QFm @

oxd* [gn

@ Label: [oracle Hobie App v

OEBPS/img/popup_id3.png
& show Popup Behavior - Froperty Inspector % (=]

&1/ QrFnd @

Type: [default> (action) =)
Algn:

Algn 1d

Reset to Default

ElProperty Help

[Specifies the ID o the component

felative to which the popup il be
flaned.

OEBPS/img/create_taskflow2.png
Greate ADF Mobile Task Flow

Enter the file name and directory for your new ADF Mobie Task Fiow,

e e
ewromomi

Directory:
[c:UeveloperimyworkiproductsiviewControlleripublic_himl | Browse,

Help o Cancel

OEBPS/img/drag_and_drop_dir2.png
o \application\ViewControlleriadfmsrc\
o \mobile
= \pageDers
* viewtPageDefoml

= view2PageDefxml

= DataBindings.cpx

Applcationt

projects aav-
ApplcationController
jenCortroler
=3 Applcaton Sources
B
Dstabindings.cpx
=1 mobile.pageDefs
viewiPagebe
5 META-TINF
6] adfmi
e a—
£ Resources
=3 Web Content
3 orschelo
R r————
[view. e

2 vwcontoler-taskiowoxnl

=

OEBPS/img/back1.png

OEBPS/img/convert_number.png
B8 Component Palette * [a]
Q

formbeam]

=/ General Controls
I Text and selection
I Daka Views
lLayout

=l Operations

S werstor

Load Bunde

~peavor
5 Close Popup ehavir

5 how Popup ehavir

& validation Behavior

~ltarers
5 Acton Listener

5 SetPropety Listener

~ Valdstors and Converters

& Convert Dae Tine

] Convert Nober

[Valdstion Group

T Converttumber - roperty Inspector % =)
&1/ QrFnd (€]
Type

rouping Used:

Integer orly:

Mntegerogts | |v
Weximegertigts: [|v
MnFctonDigts: [|v
WexFractontigts: [|v

OEBPS/img/add_facet.png
products.amx - Structure:

e

warrings (3)

= ven
E

Insertgefre anel Page ,

Insert Inside Panel Page »

nsert e panelPage ,

Surround With

v Esoter
Refactor b | v Header
Expand All elow Brimary
Collspse Al Below Secondary
Shaw A Top

Show Root

e cux
Copy e

OEBPS/img/carousel_comp_palette.png
[component Palette *
Y

[oble A
<l Gonera Contrs

I Text and selection
=i Data Views

@ Carousel

@ Carouseltem

OEBPS/img/button_action.png
Button Action
Acton:
ActonListener:

Usetiindon:

WindowEmbedstyle

[<defautt> <
|_back
feae @

[Productoetais

WindowModaltyType: | <default> (model... ¥| v

WindowHeight:
WindowWidth

—

OEBPS/img/appwidesettings1.png
PrefSettingProfs.

App Boolean ax

App Number 123

App List fom 1 >
AppText defaulttext

App Secret Text

App Page >

Ppgroupt

booleant oFF

OEBPS/img/maa_contribs.png
& ADF Mobile Application Archive Profile Properties

Q Search Contributors

Appication Archive Options
S Fle Groups spplation saurcePath
& Applcaion Descrpors e
Fiters 4dd
rofle Dependencies

Remove

Wave L

Move Down

OEBPS/img/delete_binding.png
Confirm Removal of ADF Bindings

The components you cut contain references to ADF bindings,
D0 you wish to remove these as well

i ThisHossge et e

OEBPS/img/sample2.png
ol version-r1.0% encoding-"UTR-G" 2>
S <Application xalns="hetp: //xalns. oracLe. con/adtn/applicasion”
versione"i2.1.1.60.73" hacrDacaBindings”
SeparateRILFiles-"false Fackage-"nobile” ClientType-"Generic">
5 paear
o —
< pageian>
8 <agedetinttionlsages>
“page 1d-"aobile. vievlPageDet” path-"aobile.pageDets. vievlPageDat”/>
<Mpagebetinitiontsages>
5 caatacontrolUsages
<o 14-"DeviceDataControl” path"aodel.DeviceDasatonsrol/>
</datacontrottisages
</mpiication

‘wobile_viewlPageDee"/>

OEBPS/img/maa_depsum.png
& Deploy Employees_archive

Summary

eployment Action
. Deployment Ac

O Summary

Deployment Summary:

= Applicatin Archive Summary
-Fle: Employees_archive.maa
Include Manifest: o
- Compressed: No

OEBPS/img/changedisplay.png
Appication
Feature References
Preferences

Security

[c]adimt-applicationsmi

Feature References:

0+ Show on Navigation Bar

Custamers

PROD

[<default> (true)

Show on Springboard

Allow Device Access
true

T

<defule> (true)

<dfaule> (true)

&
£

OEBPS/img/deployment_log.png
Deploymert - Log

5t
o5t
o5t
ot
ot
ot
o5t
o5t
et

23
23
23
23
23
23
23
23
23

s
s
s
s
s
s
s
a0
a0

am
am
am
am
am
am
am
am
am

[]

D Mobile Framework spplication suscsssfully deployed to Android sumlator
Shutting down Android Debug Bridge server
This ADF Hobile app vas deployed in Debug mode and should not
be used for performance svalustion purposes
Set the deployment profile Build Mode option to Release for performance testing.
Blapsed time for deployment: 9 minuces, 21 seconds
Deploynent finished

OEBPS/img/gauge.png
B Component Palette X
Q

(o oble e
Gage

&) Dial Gauge:
@

5 statusmeter

I Chart

I Chart and Gauge Chid Tags
iMep,

4/ Other Type-Specfic Chid Tags

OEBPS/img/add_security.png
5 Authentication and Access Control

Features with Securty Enabled:

Feature ID Login Server Connection

N -.vciio v | & 7

OEBPS/img/gotopage1.png
- Find Ak B

<ol version="1.0" encoding="UTF-8" 2>
) <amx: view xulns:xsi="http://uuw.u3. 0r/2001 /XL Schena- instance”
¥mlns: dven="Hetp: / /xulns. oracle. con/ jdev/dvea>
E <amx:panelPage 1d="ppl">
B <amc:facet name="header”
<amc:outputText styleClass="ams-header-title” value="(view
</am: facet>

St g
El <amx: facet nane @ Cods Assist CtilvAI Enter

</am: facet> Refactor »
</amx:pane1Page> o

<amxiloadBundle basename-"] 8 Ck curx

oy cne
I paste ctiy

& ke [

83 Rebuid AlteshittFs
Compare it »
Replace wih >

Select inNavigstor AltHome

Preferences.

OEBPS/img/preference_scope_node.png
Expression 0 Q@

#{preferencescope feature.oracke hello SampleGraup SampleBackeant -

st Conmen e

DF Mianaged Beans
ADF Mobile Objects
53 appicationscope
devicescope
53 pageFlowscope

(23 Edtion
& Enerprise

L rersonal r

feature -

'
o
9 SamplLitt
& Sampletunber
3] samplePaget
& sampleTextt
@ viwscope
escrpton
Help o cancel

OEBPS/img/delete_comp.png
(Zlapplication Navigator *

= Projects QW 7-E-

ViewCantroler

1 17) Annlicatinn Sourees
4 Applcaton Resources @

2IDaka Controls
IRecently Opened Fes

= products.an -structure. *

e

PanelPage

= Facet - hesder

A Output et - Product st
+# bindngs produc

[List Ttem

et - footer

5i="http: //ww. u3. 0r/200L/XL5chena- instance”
¥mlns: dven="Hetp: / /xulns. oracle. con/ jdev/dvea>

#(xow)" to="# (pageFLousc
</amx: ListTten>
</ame:Listview
B <amc:facet name="footer”
<amx:outputText styleClas:
</am: facet>

‘wi-title” value="Acue Inc"/>

Insert Before List iew - #{bindings.products. collectiontlodel) »
Insert Inside Lt View - #{bindings.products. callectontadel) »
Insert after List iew - #{bindings.products. collctiontlodel} »
Surround ith,

Refactor »

Expand All elow
Collspse Al Below

Show A Iop

Show oot
B ot
Copy ctc
I pste cui

Gotosource

Goto Properties
Go to Declaration

OEBPS/img/convert_date.png
B Component Palette x (5]
Q

DF Mobile AMY

=/ General Controls
I Text and selection
I Daka Views
lLayout

=l Operations

S werstor

5] Load Bundle

— behavior
5 Close Popup ehavir
5 how Popup ehavir
& validation Behavior
Sr—

5 Acton Listener

5 SetPropety Listener

~ Valdtors and Convetters
[convert Date Time.

(1] Convert Number

[Valdstion Group

T Convert Date Time - Property Inspec... | ()|

12 arn ®

[—
e [v
e —

OEBPS/img/createhtmldialog.png
Content +

w Trpe
featuret.t AOF Hobil 1L
URL Create HTML File x +Q
Constrants: nter the name, nddiectoryfor the HTVL i
ropety)
Fie N
T Navigation r con
e ‘
fpecried e
Drecory
] seeabasndmage: [} [cspevelperimymworppplcaionzSttencortolerpuic fenl | G
mage
fpecried [creste as L e (et

Help [o | e

OEBPS/img/selectbooleanpref.png
Preferences

Oracle Mabie App

B versin

51 How ave You Getting There?
5] Your_GPS Locatons

Secunty

Bl | e

Insert Before Preference Group - GPS Settings

Ingert After Preference Group - GPS Settings

»

&9 unber Preference g

& preference List
1) Breference Page
& Tetpreference

[Sp—
€ #processing-instruction

Browse,

I Pref

OEBPS/img/audit_profiles.png
& Preferences.

Q Search

Enviranment
ADF Business Companerts
ADF Mabile

ant

At

Code Editor
Compare

Compier
Credentials

s Edtor
Database

Data Cantrols Panel
Debugger
Deployment
Diagrams

External Edtor

File Types

lobal Ignore List
Hitp Analyzer
JavaSerpt Editor
Java visual Edtor
35P and HTML Visual Edtor
Maven

Merge

Mouseaver Popups
Run

Shartcut Keys
Tasks

Toplink.

Audit: Profiles

o[s

Save s

Profie Repart.

Rules Code Assists | Metrics

Restore Defauks Import Export

‘Applcation Developrent Framework (ADF)
ADF Business Companerts
ADF Comman
ADF Controller
ADF Faces
ADF Mabil Framewark

ADF Model
Datahase Development

Javake
Javase

Metadeta Services (MDS)
eh Develapment

ieh Services

L

Severity

style

warng

warng

Identity
Label
Message

Extension

oracle.adfn. Feature-urhreferences-nat-within-public_htm
File ot in public_htrl directory

The file i not located in the project’s pubic_ht drectory. 1t wil
ot be deployed to the ADF Hobile Framework Runtime. Please
move the file to a location inthe project’s publc_html dirctory.

orade.acf.mabile

Explanation;

The file i not located in the project’s pubic_ht drectory.

OEBPS/img/button13.png

OEBPS/img/androidsdknewpreferences.png
B

TEE T

€

Code Edtor
Compare
Compier
Credentials
CssEditor
Database
Data Controls Panel
Debugger

Deployment

Diagrams

‘External Edtor

FieTypes

‘Global Ignore List:

Hittp Analyzer

JavaSaipt Editor

Java Visual Edtor

35P and HTML Visual Editor
Maven

Merge

Mouseover Popups.

Hep

:\androidladt-bundle-windows-x35_64\sck

Example: C:\Program Files\Andraid\adt bundee-windows x86_64
‘Android Platform Locaton:

[p\ancroidiadt bundie-nindons 85_64 sdkplatforms android-17

Exampl: C:\Program Fies\Androidladt-bunde-windowsx86_64\piatorms \android-14

Exampl: C:\Program Fies\android at-bunde-windows-<86_64\platform-tooks\

Signing Credentils
Debug | Release.
‘Specify the propertis of the key used o sign the appicaton when deploying in release mode.

Keystore Locaton: ~[CF\IDeveloper mynork releasesigning keystore

OEBPS/img/edit_defaultfar.png
& ADF Mobile Feature Archive Deployment Profile Properties

Library Dependencies
- Connectons
FAR Options
- Fle Groups
- Project Output
- Contributars
Fi
& Features
Contributars
Fiters
- Lbraries
- Contributars
Fiters

Filters

Fies Patterns

This il group includes the project outp directory s a contributor. You may
need to comple the project o see ll Fles coming From the cutput diectory.

g0
(1) ApplcatonControler.cd javac
& V103 vETAIE
) adimsml
) adnf-skin. sl
€3 mycomp
=[] application
) DataContols.dex
[B) LeCyclListenerimp.class

Expand All Nodes Collspse Al Nodes

OEBPS/img/projectbundle.png
Applcations

) dppicationss
S Projecs

sl
(5] ViewController

&£ Applcaton Sources

& @ noble
Datatindingscpx

“http: / /vy u3. 0rg/2001 /XL chena- instance” xnlns: ame="hetp: //xuln
¥mlns: dven="Hetp: / /xulns. oracle. con/ jdev/dvea>
E <amx:panelPage 1d="ppl">
B <amx:commandButton id="comnandButtonl” text="f(vieucontrollerBundle.NYBUTTON}"
5/amx:panelPage>
<amx:1loadBundle basenaus
</amc: view

‘wobile. ViewControllerBundle” var="viewcontrollerBundle/>

& @ mobile pageDefs

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Mobile Developer's
Guide for Oracle ADF, 11g Release 2
(11.1.2.4.0)

OEBPS/img/edit_form_fields.png
& E

Configure the corponents that you wank to display in your form. Note that you can remove or edit the resuling
camponents after you click OK. You can ko add more camponents drectly tathe layout later

Fields: +X

Display Label valu Binding Component To Use

[ADF Miobile npu Text w] Label

Form Fields

(SRR]

Help o Cancel

OEBPS/img/error_message2.png
Carrier

Error k

i © Your password must be
greater than 8

characters

Sta

Login

OEBPS/img/viewconflw.png
Greate ADF Mobile Task Flow

Enter the file name and directory for your new ADF Mobie Task Fiow,

e e
owControtertasciomoxnt

Directory:
[citevelsperimyworkivibie AppicationtvienControlerlpublic e | - Browse

Help o Cancel

OEBPS/img/androiddebugprefsnew.png
C
£

Code Edtor
Compare
Compier
- Credentils
CssEditor
Database
Data Controls Panel
Debugger
Deployment
Diagrams
‘External Edtor
il Types.
‘Global Ignore List:
- Hitp Analyzer
JavaSaipt Editor
- Java Visual Edtor
- J5P and HTML Visual Edtor
- Maven
Merge
-+ Mouseover Popups:
€ >

TEE T

Hep

ADF Mobile: Platforms
Supported Platforms:

Android

‘Android SDK Location:

[p:1ndroidiadt-bundi-windows-+86_64isdk

Example: C:\Program Files\Andraid\adt bundee-windows x86_64
‘Android Platform Locaton:

[p:18ndroidiadt-bunde-windows +86_64\sdklatforms\endroig-17

Exampl: C:\Program Fies\Androidladt-bunde-windowsx86_64\piatorms \android-14

Exampl: C:\Program Fies\android at-bunde-windows-<86_64\platform-tooks\

Signing Credentils

Debug Release.
‘Specify a password forthe debug key used to sign the application when deploying n debug mode.

ey andKeystore Password: |

OEBPS/img/maa_deploy.png
& Deploy Employees_archive

Deployment Action

2, Deployment Action
i

© summary

Select a deployment action from the st below.

Deplay the applcation to an ADF Moble Application Archive i,

OEBPS/img/imageresource.png
& Expression Builder

Select valuesfrom variables and operators o create an expresson o decty ype the expresson here;
Expression 0 @

#{viencantrolerfunde INAGEPATH:

Yt commen

Q
-] ADF Managed Beans
applicationScope.
pageFlowscope.
viewscope
ADF Makile Objects
& applicationscope
deviceScope
=5 pageFlowstope.
[preferencescope
o viewstope
viewcontrollerBundle

o I

= MYBUTTON

OEBPS/img/mobilepreferencepalette.png
Components =
Qal

IPreferences

& & n

Boolean Humber
Preference Preference
&
Preference Preference
Grop st
2 &
Preference Preference U
Page value

&

OEBPS/img/config_url_pref.png
Carrier 57 PM =

Configuration Service Seed URL

‘seedURL hitp://www.oracle.com \

OEBPS/img/android_nestedpage.png
Sample Dropdown 2

®

mple Boolean 2

OEBPS/img/viewcontrollerjava.png
& Create Mobile Application (ADF) - Step 5 of 5

Configure Java settings

Application Name.

Profect 1 Java Settings

Protect 2 Name

TP t 1 he
!
i

Project 2 Java Setti

Your new project starts with a default package, 2 source rook dectory, and an output

drectary.

Default Package:

=D

Java Source Path:

[c:1eveloperimyworkiMobieAppicationtiewControlerisrc

Qutput Directory:

[citevelsperimymorkivibileAppicationtyiencartrolericlasses

Browse,

Browse,

OEBPS/img/prefs3.png
& Preferences.

Q Search ADF Mobile: Platforms

Enviranment Supported Platforms:
ADF Business Compo.
ADF Mobile

ant
Audit i05 Simuletor SOK Directory:

Code Editor

Compare [I
Compler
Credertials
€55 Edor
Database [
Data Controls Pane! Example: [Applicatons code. app|Contents/Developerustjbin

Exampl:
JApplications|<code. spp|Contents{DeveloperPltformsjPhonesimulator platformDeveloper/SDKs/Phonesimuat

105 xcodebuld Directory:

Debugger “Autometically Add to Tunes" Directory:
Deployment [

Diagrams
External Edtor
File Types Device Sianing

lobal Ignore List These filds are required F deploying to or packaging for, an actual 05 device.
Hitp Analyzer
JavaSeript Edtor Erovisoning Profe: |
Java visual Edtor

Example: Users{iy_Liser_NamefMusic/TunesTunes MediefAutomaticaly Add to Tunes.

Corticate [

Help

OEBPS/img/button28.png

OEBPS/img/horiz_bar_chart.png

OEBPS/img/featureconstraint.png
(2)start Page * |&fi adfmi-featurexml %

Features

Constrants:

Festures + X
@ e Vendor Verson
Genersl | Constraits Content | preferences | Securty

* X

Property*

Operator™

kontain:

Vale*

OEBPS/img/patch4overview.png
e —
veers C—
1
[Y
1

‘Show Navigation Bar on Applicaton Launch
‘Show Navigation Bar Toggle Button

® None
O pefault
O custom

Show Springboard on Applcation Launch
Show Springboard Toggle Button

Springboard Animation: O None @ Side Right

e —

Overview Source Hstory <€

OEBPS/img/enablefeaturesecurity.png
) adimf-featurexml * |

Features: %X

General | Constraints | Contert | Preferences

Enable Feature Securty

Credential Authenticatian:

Security

OEBPS/img/appfeaturedcpanel.png
- Data Controls wYv

picatoninformaion
Cam i
—
@ verdor
{22 Operations
= festures
"~ amicon
e
- image
@ name
23 Operstions
=] gotoDefaultFeature()
=] gotoFeature(String)
{E] gotospringboard()
{E] hideNavigationbar()
{E] resstFeature(tring)
{E] showNavigationbar()
& DevicsFestures

OEBPS/img/amx_appcont.png
Create ADF Mobile AMX Page
Enter the file name and directory for your new ADF Mobile AV Page.

e Name: [ppkaton_resorce e]

Oirectory: - [CrDeveloparimymrkiobieAppicsiontppic stonCortraler puble_ferl | G,

Page Facets

[Footer

Help o Cancel

OEBPS/img/insertskin.png
o family *

oid:
© extends

style-sheet-name:

Help

[mobileFusionFx

mobileFusianFx.Pad

[mobileFusionFx.0S

ess/myiPad.css.

Cancel

OEBPS/img/farapprefs.png
Appication

Feature References: X T
&

Feature References

Show on Navigation... | Show on springboard | Allow Device Access

Preferences

Securty Insert Feature Reference

[Custamers

artfoli

OEBPS/img/adblogwindow.png
[Elpeployment - Log * =
Q = actons +

[10:55:13 M) Updaving Android profile dependencies with FAR profiles creaced from

applicacion projects
[10:55:14 am Deploynent starced
[10:55:14 M) Target plavforn is (inaroid)

[10:55:14 M) Beginning deploynent of ADF Nobile applicavion "Human Resources” to
Bndroid using profile "ANDROTD_MOBTLE_NATIVE archives"

[10:55:15 M) Checking stave of kndroid Debug Bridge server

[10:55:21 M) ndroid Debug Bridge server already running.

[10:55:21 M) Verifying a single Android emulator is online and connected to the ADB

[10:55:21 M) Deployment cancelled.

[10:55:21 am Deployment incouplete -
[10:55:21 M) Failed to detect a connected Android emulavor. Nake sure the emulacor
is rumning. Othervise, manually restarc the ADB server. The folloving results vere
providea by ADB

List of devices attached

(aracle.sdfut. franework.dt. deploy. android. deployers. CheckivtachedDevicesDeployer)

OEBPS/img/test_deploy_android.png
& Deploy ANDROID_MOBILE_NATIVE_archive1

Deployment Action

/21 Deployment Action | Select s deployment acton from the ls below.
i

© Summary IDeploy applcation ta device

IDeploy appication to package:

Deploy the mobie appiiction to an Android emuator

OEBPS/img/iospreferences.png
8006

Preferences

Q search

ADF Mobile

Environment “|| Avaiable Form Factors b 3¢ tore Actions
“(‘""““"" Default |~ Name® Platform* | Model | Default Orientation | Width* | Height' | Scale Factor' v
e Android Extra Large.Android Landscape 2o so0 20
it Android High Android Portra 40 800 15
Code editor Android Low Android Portra 20 400 10
Compare Android Medium Android Portra 520 aso 10
- Compiler rad ios Pad Landscape 820 61 0s
Credentials. iPad Mini ios iPad Landscape 1024 768 1.0
- €55 Editar iPad Retina. ios iPad Landscape 1640 1230 16
Database iPhone ios iPhone Portrait 320 480 1.0
Data Controls Panel
iPhone Retina (35 ... 05 iPhone Portrat G0 9% 20
Debugger
Delopment iPhone Retina (4 inch) 05 iPhone Portrat G0 w3 20
Diagrams Y
" ExternalEditor
File Types
- Global lgnore List
Hitp Analyzer
- JavascriptEditor
Java Visual Editor
5P and HTML Visual Edit
waven
c >
Help oK Cancel

OEBPS/img/prefscopeel.png
& Expression Builder

Select values from variables and operators ta create an expression ar directl type the expression

Expression

XY

#{preferencescope feature.Featuret.f1top. iHumber)

Yt commen

Q

ADF Managed Boans
=) ADF Mobile Objects
=8 applicationscape.
deviceScope
=3 pageFlowscope
& [0 preferencescape.

futop
& Fisockean
TN

& et

@ em2

& 1em3

T e
3] Fipage

OEBPS/img/popup_id4.png
Align Id

Choose a component. 1f & item cannot be selected, it requites an 1. Note that vald Ids use a combination of restive:
and sbsolute path references depending on thei relstionship to the current comporent

Avalable:

-5 popup - popupt

*indicates & naming container

Id{pancipaget

Help

OEBPS/img/androidoptionspanel.png
& ADF Mobile for Android Deployment Profile Properties

Q seach Android Options

- e Groups

& ot gt
Contrtsors Applcstion unde d: [omzonpany MobleAppicston

Applcation Detals

Fiters
Lbrary Dependencies
- Profls Dependencies Verson Name: i

Verson Code; (e}

Deployment

SourceFls ook] Isgmsokarien: (1613

Sopiction rcive e Pobiepppication

‘Applcation Inages

o i ook ~] mommsokeetieve: (913

G oot
Zip Alignment Optimization:

[[] derbose Output
Buld Moce:
Debug

Release

OEBPS/img/loginpagefeature.png
Carrier AL

feature1

(T

?

fosturet

OEBPS/img/filled_taskflow2.png
Products-
Q& o

Bounded Task Flaw

DRI FFIOEI

details

products. productdetails

Diagram | Sourcs) Ovarview] Fistory ¢ [

OEBPS/img/skinningdemo2.png
SKINNINgG

i0S: Header text will be red
Android: Header text will be blue

iPhone: Button text will be blue

iPad: Button text will be yellow

Android: You need to modify or create a new entry
in the adfmf-skins xml file for your Android model.
Change the 'Model' portion of

‘mobileFusionFx Model' to match the model of the
Android device you are using and the button text
will be Magenta. Install the DeviceDemo if you
need to know the exact model name.

The link below has a custom style on it that wil

Skinning

OEBPS/img/iosimagepanel2.png
ADF Mobile for iOS Deployment Profile Properties

Q search

E

Library Dependencies
Profile Dependencies
105 Options

[& Acpiication Im:

Device Orientations

Help

Application Images.

Use these settings to override the platform default images.

[7]0 notadd gloss effect to icons,

MunesArtwork Image

MunesArtwork: [resources /ios/ MunesArtwork.png

Application Images
Platform Display Types.

1 Phone
1 ipad ini
iPhone 5

el
8] Pad Retina
el

iPhone Retina

Application Icon:
Splash Screen (Portrait)

Splash Screen (Landscape)

resources/android/icon@2x.png

resources/ios/Default-Portrait.png

resources/ios/Default-Landscape png

ok

Cancel

L PP

OEBPS/img/edit_listview3.png
List Item Content:

EHement value Binding
1 MainText =0
2 Subordinate Text ey

In:

Divider Attribute;] List tems are optionally grauped by this atribute.

Oivider Mode: A ~] Groupsby firsltte o ente atrbute value,

telp [Firs: Letter

OEBPS/img/iphone_landscpl.png

OEBPS/img/create_maa.png
© Create Deployment Profile

Clck OF to create your new deployment profl and immediately open I o see s configuration

Profils Type:

[R0F Mobie Applcatin rchive

Deployment Profe Nate:

Enplyees et

Description

Creates a profie for deploying an ADF Mobile application to a mobils spplicaton archive (HAA) e

Help

OEBPS/img/iosoptions40.png
8no ADF Mobile for iOS Deployment Profile Properties

Q search i0s Options

Library Dependencies

Application Details
- profile Dependencies o

o Application Bundle Id: [com.company MyMobileApp

Application Images Application Archive Name: [MyMobileApp

Device Orientations

Deployment

Minimum 0S Version: (6.0

Simulator Target Version: |<Highest Available> ¥
Target Eamily: iPhone/iPad ¥

uid Mode
® ebug
O Release

Help oK Cancel

OEBPS/img/publichtmlwarn.png
DR GAMRE
RV =- <ouml versione"1.0" encoding="UTF-8" >
= <adfnmf: features xmlns:xsi="http://www.w3.org/2001/XMLSchena-instance” xmlns:adfmf="http://xulns.or
= <adfmf:feature id="oracle.hello” name="Hello” icon="oracle.hello/navbar-icon.png”

¢ (& The file is not located in the project’s public_html directory. It will not be deployed to the ADF Mobile Framework Runtime. Please
move the file to a location in the project’s public_html directory.

more

<adfmf: features xulns:xsi="http://wwm.u3.org/2001/XULSchena-instance” xulns:adfme="he
<adfnf: feature id="oracle.hello” name="Hello" icon="oracle.hello/navbar-icon.png"
) image=". . /springboard-icon.png">
<adfnf:content id="Hello.Generic">
<adfmf:localHTML url="oracle.hello/index.htul"/>

/xulns. oracle.con/jdev/e

ol

OEBPS/img/patch4getstartapp.png
File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help
BoHd 90 XERQ - O & hild =u- > -&- 14 Q- search
@lappication Navigator X (&) | Component Palette x (=]
& OradeMobieAppication @ ~||a
iprjects a@v- Crr— -
AppicationControler | Festure References = [radeNobieloplcaton Y| Scommen
03 Appication sources Preferences. e © ADF Moble AKX
ViewController m
&£ Appicaton Sources | seanty This s an ADF Moble appicaton. <> Appication
< Desaption
- Appcation Resources .
Desaription: € Domain
@£ Connections. @ Error
(3 pescrptors
= pesloni verson: @ rearerefuence
= ADF META-INF € Load Bundle v
T[] adf<onfig.xnl Vender © LocaltmiL
[o] scnfaopkatin.i e ventLsines A o
(6] adfmf-config.xml €9 Navigation
6] comectons.ami LR scheme: B2 .
@ tbrares = Wavigation et
=0 pove | Show Navigation Bar on Application Launch -
-] Resources. o Appication - Inspector X
Show Navigaton Br ToggeButon (R eekatenqpresty 8]
-1 Data Controls av Sprngboard: &1/ Qrnd @
o Applcatonrestures ®hene 3
@8 DeviceFeatures O petmit oName = v
o
2 Recenty Opened Fes o adinf: o v race comadtint
2 S e e 2
= 2
e e e 2
It 2
=t 2
o Verson: v
s
Overview Source fistory € >

OEBPS/img/sample3.png
E

oo

<7xml versio

1.0 encoding="UTF-8" 7>
<pageDefinition xulns="Http: //xulns. oracle. con/adfn/uinodel” version="12.1.1.60.73" i
Package="nobile.pageDefs">

“vieulPageDer”

<parameters/>
<executahles>

<variablelterator id="varisbles”/>

<methodIterator Binds="GetContacts.result” DataControl="DeviceDataControl” Rangedize="2s"

BeanClass="oracle. adfuf.nodel. datacontrols. device. Contact” id="GetContactsTterator” />
</executables>
<bindings>

<methodfiction id="GetContacts” RequiresUpdateliodel="true" Action="invokeethod” Methodiane="GetContacts”

IsViewdbjectlietho
Instancellane="data. DeviceDataControl. dataProvider”

"Ealse” DataContro

"DeviceDataControl”

Returnliane="data. DeviceDataControl . nethodResults.
GetContacts_DeviceDataControl_dataProvider_GetContacts_result’/>

<attributeValues IterBinding="GetContactsIterator” id="contactData™

<RttrNames>
<Item Value="contactdata’/>
</RttrHames>
</attributevalues>
</bindings>

</pageDefinition>

OEBPS/img/split_screen3.png
Primary Default ! Secondary
This example sHows the bitions i the
varlous facets. To go back, click on the Back
button below.

Back

Footer1 | Footer2

= Detault =

Bind

OEBPS/img/amxincludes.png
<No Feature Cortent Selected> ~

[<Ho Feature Cortent selected>
[HumanCaptingportraittpt

pproval approval

OEBPS/img/inputtextprob.png
First Name: John

Middle Name JohnP

Last Name JohnPSmith

OEBPS/img/fardepsumm.png
Deploy mobileFeatureArchivel

Summary

eployment Action
. Deployment Ac

O Summary Deployment Summery:

= Feature Archive Detais
--Fie: C:1DeveloperimyworkiMobie Applcation|ViewCantroler|deployimobieFeaturearchivel. ar

OEBPS/img/valid_attributes_tab.png
General
Attributes
Accessors
Named Criteria
Operations

Attributes

Create o delete transient attributes, personalize attributes by adding defautt values, U hints,
validation rules and custom properties.

Q Name +X
Name Type. Alias Name Tnfo -
id Integer »

displayName. String DISPLAYNAME

nickname. String NICKNAME

orthday _______ate R0y |]
note String NoTE

Details | UIHints | Validation Rules Custom Properties | Dependencies

+7/%
Validation Rule Type

OEBPS/img/create_graph.png
Create Mobile Bar Chart

Chart Types:

Description

Each bar shows a value. Use ta show trends
or o compare values.

Quick start Layauts:

B| il

Help

o Cancel

OEBPS/img/fardeployaction.png
& Deploy mobileFeatureArchive

Deployment Action

2, Deployment Action
i

© summary

Select a deployment action from the st below.

Deploy the mobie application project to a feature archive JAR fe.

OEBPS/img/maa_location.png
& Mobile Application from Archive (ADF) - Step 1 of 2

Location

Provide the location of the ADF Mobil Application Archive (MAR) il a5 well
© Location s the locaton of the new application.

i
© Enish 1A il

[operimyworkiEmpioyessideployEmployees_archivelEmployees_erchive.maa)] | rowse,

Application File:
rensppicaton

Directory:
[c:Ueveloperimyworkinewhppication Bromse.

OEBPS/img/dc_policy1.png
o0 it | Polici
Canfigure OWSM policies for the web service client, f required.

Policy Store (def location): YT

MTOM [I~/
Reabity [I
Addressing [[¥)

Security Management

Polcies Q search] Show Selected Policies Show Descriptions

[] oracle/no_authentication_client_policy
This policy facilates the disabling o a globally attached authentication policy. This il View
include disabling that whole global policy containing any other assertions in additon to the
authentication assertion.

[oracle/no_messageprotection_client_policy
This policy facilates the disabling of a globall attached message protection policy. This will View
include disabling that whole global policy containing any other assertions in additon to the
messageprotection assertion

[] oracle/sts_trust_config_client_policy
his policy provides STS Configuration information on the clientside. Tis informaton’s View

Override Properties.

Help oK Cancel

OEBPS/img/select_amx_type.png
General

Content

Constraints

Content

Preferences

Securty

D Mobile A

[ADF b 4
Lacal HTHL
lRemote LURL

SRS

OEBPS/img/iphone_portrait.png

OEBPS/img/featurepreferences.png
Jadimf-feature.xml *

Features

Features:

+X

General | Constraints | Contert | Preferences

Preferences

Preference Group - Prefs Group A

&9 Number Preference - Rties
42 Preference List - Background
&9 Text Prefarence - Defauk Name
(3] Preference Page - Prefs SubGroup Ad
refarence Group - securty
49 Boclean Preference - Use Securky
&9 Narber refernce - Timeout (secs)
Preference Group - refs Grow B
&9 boclean Preference - oud Sync
49 Preference Ust - Diply Ussge s

Security

*-X

Label
1+
PreferenceType:

Default

Version

[Sound Effects “

fatsound

[Boclean

<default> (fabs)

OEBPS/img/preferencegroups.png
Mountain >

OEBPS/img/start_app.png
Carrier % 10:18 AM =

MyMobileApp

OEBPS/img/element_id.png
<ol version="1.0" encoding="UTF-8" 7>
“http: / /. v3. 0rg/2001 /XL chena-instance” xmlns: amx
“http: //sulns. oxacle. con/3dev/dvea”>
B <amx:panelPage id="ppl™>
<amx: comandButton text="Comnand Buttonl” id="commendButtonl”/>
<amx: comandButton text="Comnand Buttonl” id="commendButtonl”/>
? <amx; comandButton text="Comnand Buttonl”/>

) <am: view xulns:xsi

smlns: dvta:

A Geermeawie X
T

OEBPS/img/create_listview_ui.png
Create List

Decide whether you wank to bind your st view to a data source now, or create I with unbound lst tems,

Bind Dat

Lt Data olecton; | =

Element Type:

I [Browse.

Divider Attrbute:

Divider Mod:

Help

List Item Content:

Eement
2 EndTedt End Text
3 Image <add path to your image>

it re ol croupe bt sttt
o by Fst st o e bt v

[o | e

OEBPS/img/scatter_chart.png
bLSIY A

X Axis Title

OEBPS/img/inlinestyle_editor.png
Eistyle

Style Class: [v
@ Inine Style; [vertiakalign text-bottom; v
& a0 &

= Font/Text

ElLine Box

OEBPS/img/deploymentlog.png
ne
et
et
et
et
et
et
et
et
et
et
et
et
et
et
et
et
et
et
11

(5]

Actons +

Updating Android profile dependencies with FAR profiles crested from spplication projects
Deploynent started. -

Targer placforn is (indroid)

Beginning deploynent of ADF Mobile applicacion

Checking state of indroid Debug Bridge server

Scarced Android Debug Bridge server

Verifying a single hndroid emulator is online and commected to the ADB server

Beginning deployment of ADF Mobile spplication "HslloWorld® to Android weing profils "ANDROID_MOBILE NATIVE archivel

Running dependency analysis

Builading.

Deploying 3 profiles

rove hrchive Module to C:\JDeveloperimywork\HellolorldihpplicationController\deploy\hpplicationtontroller jar

Wrote Archive Module to C:\JDeveloper\wywork\Hellolorld\VieuController\deploy\Vieutontroller jar

Scarcing to prepare the packaging.

Verifying dpplication Controller project swists

Verifying applicacion dependencies

Validaving applicacion XML files

Validaving XL files in project hpplicacionConcroller

Validaving XL files in project ViewController

Copying FARs to the ADF Mobile Framework application.

elloWorld” to kndroid using profile "ANDROTD_MOBTLE_NATIVE_archive

OEBPS/img/ipad_landscprt.png

OEBPS/img/operation_menu.png
@ ADF Mobile Button
& HoFMoble Lk

[ADF Mabie perameter Fom.

Cancel

OEBPS/img/verbatim_palette.png
B8 Component Palette * [a]
Q

[FoF Hobie Ax

~ Genersl Cotros
@ Button

& mage

e

@ Link (Go)

A vt

OEBPS/img/new_appgallery.png
& New Gallery.

Al Features | Current Project Features

This lst s fierect accoring o the current projects selected features

Q Search

Cotegores: [how Al pescrptions
3ava Desktop Applation

Comections (5] Appication from A Fie
eyt Descrtors
3ava Custom ppcaton
proats
.
Business Tier Fusion Web Application (ADF)
Data Controls

Dtabass Appication

- Web Services Java Desktop Appication (ADF)

Clent Ter Java EE Web Application

- ADF Moble
SwinglawT &l Maven Applcation

Database Tier

ieh Tier

- Applet

Mobile Application (ADF)

Crestes an ADF Moble applcatian. The application consists of twa projects

One for ADF Moble Features cortent (&NX Fies, TaskFlows an DataControls)
HIML e the other fo application-wide content (pplcatian Lifecycle Listeners,

- lTtems Device DataCortrol, Springboard efc).

Help

OEBPS/img/createadfpage.png
Create ADF Mobile AMX Page
Enter the file name and directory for your new ADF Mobil AV Page.

e Nt [ustom_sprngbosrd.amx]

Directory: [CrDeveloperimymrkiobieAppicstioniyiwCortaleripubie el | Q)

Page Facets

[Footer

Help o Cancel

OEBPS/img/prefs2.png
C
£

Code Edtor
Compare
Compier
- Credentils
CssEditor
Database
Data Controls Panel
Debugger
Deployment
Diagrams
‘External Edtor
il Types.
‘Global Ignore List:
- Hitp Analyzer
JavaSaipt Editor
- Java Visual Edtor
- J5P and HTML Visual Edtor
- Maven
Merge
-+ Mouseover Popups:
€ >

TEE T

Hep

ADF Mobile: Platforms
Supported Platforms:

Android

‘Android SDK Location:

[p:1ndroidiadt-bundi-windows-+86_64isdk

Example: C:\Program Files\Andraid\adt bundee-windows x86_64
‘Android Platform Locaton:

[p:18ndroidiadt-bunde-windows +86_64\sdklatforms\endroig-17

Exampl: C:\Program Fies\Androidladt-bunde-windowsx86_64\piatorms \android-14

Exampl: C:\Program Fies\android at-bunde-windows-<86_64\platform-tooks\

Signing Credentils

Debug Release.
‘Specify a password forthe debug key used to sign the application when deploying n debug mode.

ey andKeystore Password: |

OEBPS/img/line_chart.png

OEBPS/img/createamxpagecontext.png
afnf-feature.xml * | [products.amx x

AL

Applcationds E

=l Projects @ Y- <zml version="1.0" encoding="UTF-8" 7>
odel : 5 <am: view xmlns:xsi="hrtp: / /. v3. org/200L/ALSch
e (3 From Galery |
= 0 Appleaton " et surce P e
EOIVE o boteproet 8 cosrie
@l (9] HTM.Pace.
5[0 Resources| @8 Find Broect Fils 2 350 Fie
LJando| show Classpeth] sava lass.
Dies Show Overview Java Interface,
El E ?;:Q: oerlor 3| B savaseroe e
8l ity make viewcontroler.for ctirg | 8PF Moble A1 Page.
{5l v 83 Reuld ViswControler.jor AiFD
= E

& [resaur B> Bun

= pplcation Resaurcy M Debug

23 Connections Compare With »
{2 Descriptors Replace With »
{23 Libraries

50 Maven s | Refresh ADF Lbrary Dependenciesn ViewCortroler o

i Resouces | @] proest Propertes.

OEBPS/img/android_prefmenu2.png
& 242
App Prefeences

App Boolean v
App Number

App List

AppText

App Secret Text

App Page

F1 Preferences

F1 Boolean v

OEBPS/img/valid_add_rule.png
Define the Validation you want to perform with this rule and configure the Validation
Failure response.

e [

Rule Definition Failure Handling

Attribute: [pirthday

Hint: Enter valid values for the selected attribute's type.

i [o |

OEBPS/img/android_boolean.png
Sample Boolean

OEBPS/img/retrievelistener.png
E

Property - listener-class. x

To search, enter the simple class name, or the package prefix o search by
package. L question mark (7) to matzh any single character, or an asterisk (*)
0 matzh any number of characters.

Search | Herarchy

@ Con
@ SQUite
=@ applation
=8
- @ com
@ de
@ java
@ javax
- @ orade
@ org
@ s

Help o Cancel

OEBPS/img/appjavasettings.png
& Create Mobile Application (ADF) - Step 3 of 5

Configure Java settings

Your new project starts with a default package, 2 source rook dectory, and an output

Application Name.
drectary.

Proiect 1 Name

Default Package:
feplcation

) Project 1 Java Settings

Protect 2 Name
Java Source Path:

P2 | G DaveoperimyworkobleAppicatn AppicatCortrolersre rouse

Output Drectory:
[c:DeveloperimyworkiobieApplicationAppicationControler|casses Browge.

OEBPS/img/set_prop_listener.png
Component Palette [s]
Q

(5o oble e -
=1 Genera Contrls

1 Text snd Slction

i Datavews

SiLayae

= Operstions

S werstor

Load Bunde

~peavor
5 Close Popup ehavir

5 how Popup ehavir

& validation Behavior

~ltarers
6 Acton Litener

2 SetPropety Listner

— Valdstors and Conveters ———————————
& Convert Date Tine

(1] Convert Number

[Valdstion Group

@@t Proerty Listener - Property Inspector *
Ei/ arnd

©To: [#{pageFlowScope.product} v

o Type [oction

OEBPS/img/default_springboard10.png
Carrier 3:52 PM

Employees Approvals Undates.

OEBPS/img/addamxortask.png
Tl i

OEBPS/img/startandroidemulator.png
 Android Virtual Device Manager
Tools

Listof existing Android Virtual Devices located at C:\Documents and Settings|jbassett. ST-USERS), androidiavd

AVD Name Target Neme Pltform APILevel cPuagt
 AndvoidEmulator] Android 4.1 41 16 ARM (armeabi-v73)

Repar.

< A vad Aot Vsl Device, - A repatableAnchod Vsl D,
X A Archid Wl Device that et o, Clck Dt to s th et

OEBPS/img/bar_chart.png
yAxis Title

w0

OEBPS/img/default_springboard8.png
ADF Regression

Native

Settings2 Settings3.

OEBPS/img/custom_springboard.png
Springboard:
O Mone
O Default
@ Custom

Featurer®

OEBPS/img/navbar_default.png
A A

Employees

Bob Billings >
John Smith >
Jane Smith N
Bruce Johnson >
Dan Dublin >
Ted Tooling >
Kent Kindiing N

Travis Trails N

OEBPS/img/feature_spring3.png
A L
Acme S:

1 Customers
™ Contacts

- Products

OEBPS/img/mobileapplication.png
& Create Mobile Application (ADF) - Step 1 of 5

Narme your application

© Application Name

Protect 1 Name
Project 1 Java Settings
A Project 2 eme

O Project 2 Java settings

‘applcation Name:

oblesppicaton

Drectory;

[c:VeveloperlmyworkiMobieppication

‘Applcation Package Prefix:

Browse,

OEBPS/img/ipad_upsddwn.png

OEBPS/img/listview_gallery.png
& ListView Gallery.

st Formats:

Main-5ub Text

StartEnd

Quadkant

Variatons:

Description

Atext feld appears ot the start sde of the st
tem

OEBPS/img/create_mb.png
Create Managed Bean

e —
Scope: 4}
Regstration: () Configuraton Fle) 410201

Generate Class IF It Doss Nok Exist

Help o Cancel

OEBPS/img/quad_list_nochev.png
Start Text

Lower start text

Start Text
Lower start tex Lower end tex
Start Text
Lower start e

OEBPS/img/input_number1.png
Input Number e———

OEBPS/img/create_prefgroupdialog.png
Insert Preference Group

o footsamples]

e

Help o Cancel

OEBPS/img/ios_inputtext.png

OEBPS/img/list_with_icons.png
E ith Icons

{1 Listitem Text >
=D Listitem Text >
@ Listitem Text >

OEBPS/img/bindings_dialog.png
[viewt.amx | [0] afuf-patterns sl x | [5]amiodelroviderFactory java x |[o]urTextbunde sats x | 5] accessorpefintion jav
Q Frnd
Page Data Binding Definition

This shows the Oracle ADF dats bindings defined for your page. Select a binding to see is relationship to the underlying Dats Control,

Page Definton Fll: oblejpaqeDefs/view1PageDef il

Bindings and Executables Contextual Events | Parameters

Bidings *+/ R Erecutabes /% Dsta Control

) FindCortacts &[] varables
() First O GetHeading oo
(&) previous @ GetHeading_p1 {E Suplerview
% Next 0 getlocation_p0
Last O getLocation_p1
GE’E“Z:‘:S 7@ getlocation p2
& contactbata O getlocation 53
covesins O getlocation pi
an B rekonsscstartor
tocation [GetContactsiterator
(] Getreadingierator
[ettocatontterator
(2] Assetvrentterator

& JnitextrasbataControl

contactDataz

Preview Source | Bindings | History

OEBPS/img/email_bindings_dt.png
806

Edit Form Fields

Canfigure the components that you want to display in your form. Note that you can remove or edit the
resulting components after you click OK. You can also add more components directly ta the layout later.

Fields:
Display Label

Value Binding

Component To Use

<default>

<default>
<default>
<default>
<default>

EEEEEE

<default>

Help

S
= subject

= body
=hbec

= artachments
= mimeTypes

2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.

ok Cancel

e ¢ 2ol

OEBPS/img/go_link1.png

OEBPS/img/connectionsdialog.png
Greate URL Connection,

Configure a new URL connicton, Choase Application Resources to add
this connection to the current application. Choose Resorce Palette f you
don'twank 3 singl application to own .

Create Connectionin: (3) Applcation Resources () Resource Palette

ame:

comnectont]

WAL Endpant
Fetoifm.crade com]

Authentication Type:

[

Username:

passuord:

Test Connection
Status:

The cannection successfull establihed.

Help o Cancel

OEBPS/img/android_secret.png
@ Password

OEBPS/img/inserttextprefdialog.png
Insert Text Preference

o fusermame]

Help o Cancel

OEBPS/img/facet_dvt.png
valdate 1L

oot s
1 foformat Aeshing seres st

@ cosehesit CuatEntr

OEBPS/img/select_text_res2.png
@ Select Text Resource.

Resource Bundle: [viewCantrollrBundie ~|

Enter the Disply Value For your text resource and the selected bundle willbe searched
automatically for matches. IF you do not select a matching resource a new ane il be
created,

Display Yalue:

Les produts

Key
LEs_PrODUITS

Description

Frenchsting forProduct Lt

Hetcing Text Resources: # [Ceazeeann

No matching text resources exist

Save and Select

OEBPS/img/android_catselect.png
samples

Sample Read Only

esaonyz
smezoson @
Sample Boolean /]
« Pane

Opens cascang prefernces pae

OEBPS/img/radio_button2.png
Radio Button

OEBPS/img/select_many_check1.png
Item 1

4 Item2

Item 3

OEBPS/dcommon/oracle.gif

OEBPS/img/form_menu.png
[Create
AOF Hobil chrt
AOF Hobile Gauge.
@ A0F Hobie Gesarsshic e,
£ ADF Hobie Lerator
AOF Hobils Lt View,
W ADF Mobile Thematic Map.

Muliple Selection
Single selection

Cancel

] Ao Hobie Eorm.
5] A0F Hobie Reschorly Form,

OEBPS/img/addcustomlogin.png
| Application Resources.

Iapplication Navigator * [=]

toblefpplication -

IProjects ARV 5

ApplcationController
= Appcaion surces
5@ appication
DataContros.dix

8] fecydetstanering ova
= Everane

6] adfmi

6] acn-skns.
=23 web Content

8] custom_phone.herl
)

ViewCantroler

{23 Application Sources.
{23 web Content.

Appication

Feature References
Preferences

Security

(@start Poge x | [6] adhnt-apphcation il

ElLogin Page

) Defat
) Custom

oot [V page =] [reviog e

5 Authentication and Access Control

‘Applcation Login Server:

(Connestionz

Features with Securty Enabled:
Feature 1D

R 4

|+

featurel
featurez
features

Logi Server Connection
Connection_t

Connestion2

‘<epplcation login server>

1@

OEBPS/img/maa_sum.png
& Mobile Application from Archive (ADF) - Step 2 of 2

You have completed the ADF Mobile Application from Archive wizard,

‘ihen you clck Finich, the wizard il create an ADF Hoble appication containing selcted resources
from the MAA file as well as any referenced FiRs,
MAR Files CilJDeveloperimywarkEmployzestdeploy Employees_archivelEnployess_srchive.mmas
|2 Applcation: C:\ Developerlmyworkinewapplcatoninewppiication jws
[1) Project: C:1Developerimymerkinewipplcation|AppicationCantrallr| ApplcationCartroler.Jor
3 Project: C:\2DeveloperimyworkinewApplcationiewControler|rewcantroler jor

OEBPS/img/combo_chart.png
yAxis Title

OEBPS/img/iterator.png
‘Component Paletts X (=]
Q

[ADF Mbile M

=/ General Controls
I Text and selection
I Daka Views
lLayout

=l Operations

] werstor

(5] oad Bundle

~peavor
5 Close Popup ehavir

5 how Popup ehavir

& validation Behavior

~ltarers
5 Acton Listener

5 SetPropety Listener

~ Valdstors and Converters

& Convert Date Tine

(1] Convert Number

[Valdstion Group

iterator - Property Inspector *

HiZ a

& Common

R T T
e [
L I

astyle
syecms [v
weeses v

OEBPS/img/maps.png
[Component Palette x
al

[ovT ot A

4 Gauge

i Chart

4 Chartand Gauge Chid Tags
T

@ ceomrshic v
W Thematic Map

21 Other Type-Specic Chid Tags

OEBPS/img/inserttextpref.png
[Cpa——

Appication
Feature References
Preferences

Security

Preferences

Oracle Mok App
@] Version
53] How Are You Getting There?
&3] Your_GPS_Locatons

Insert Before Preference Group -Securty >
>

Insert After Preference Group -Secury >

e

& boolean Preference
2 b reference
& preference List

3] Preference Pags

Browse,

[ADF ok

"

OEBPS/img/property_inspector.png
ECommon

L —
v y

EAppearance

Estyle

e s v
a 20

EIFont Text

o Colr
Fonk Faniy.
Font Sze
Fank sty
Fank weight:

Text Algn

Text Decoration: hane. v

ElLine Box

Vertical Algn: baseine [¥]"

OEBPS/img/whitelistineditor.png
(start Page * [[o] adim-application.xml | < adin-feature.xml x

Appication

Login Page
Feature References | = -09n P20
Preferences @ Defaut

Security

5 Authentication and Access Control

— —

Features with Securty Enabled:

Feature ID Logi Server Connection

EIRemote URL Whitelist

Alowsd Do +X

OEBPS/img/element_id2.png
= [Warnings (2)
- Tis 1 vl s abeady nuse Provid a unique o the element: commandBution
8 The 1 propery has ot been st Provide e I or th clement; cormandsutton
o vew
& panlpoge
@ utton - Commandutront

@ Buttan - Command Button!

OEBPS/img/contentconstraint.png
Features

Festures + X

Version

General | Constraints | Content Preferences | Security

Contert: X7

1 Type @
¢
Enmployess.Phone ADF Vbl At Ja
File; [Employees_padjEmployees_pad_taskflow.xmi#Employees_pad_taskow |+
Incudes: X
Trpe Fie

Constrants: +X

Propety” Operatar™ Vet
ercuerescreen.wekh ore 00)
T Wavigstion e con: | KN
insge
fpecried
T singbosrd nage: | Ja
insge
fpecried

OEBPS/img/button15.png

OEBPS/img/android_debug2.png
& ADF Mobile for Android Deployment Profile Properties

Q seach Android Options

- e Groups

& ot gt
Contrtsors Applcstion unde d: [omzonpany MobleAppicston

Applcation Detals

Fiters
Lbrary Dependencies
- Profls Dependencies Verson Name: i

Verson Code; (e}

Deployment

SourceFls ook] Isgmsokarien: (1613

Sopiction rcive e Pobiepppication

‘Applcation Inages

o i ook ~] mommsokeetieve: (913

G oot
Zip Alignment Optimization:

[[] derbose Output
Buld Moce:

Release

OEBPS/img/resortfeatures.png
start page * [[o] adfmf-application.smi |

Feature References "oorUre Reforences: +X

true true true
<defaule> (true) <defaul> (true) <defaul> (true)

1 o ol

OEBPS/img/comp_gallery.png
& Component Gallery

s Bar

e Horizontal Bar
I combo

ox e

I, sparkchart
@ e

2 Bubble

| Scatter/Polar

Chart Types:

Description

Overlapping aress show values. Use to
show spikes n data,

Quick start Layauts:

2 ElEe]

OEBPS/img/shownavoption.png
(@)start page x W3 adfmf—featurexmi %

(6] adfmf-application xmi x

Features:

 General | Constr

T————

Version

Content:

o
loraclen

Type
Remote URL

Y3

how Browser Navigation Buttons.

OEBPS/img/button9.png

OEBPS/img/connections1.png
Greate ADF Mobile Login Connection

Configure a connection to provids remote authentication services foran (==
ADF Mobie Appication. EN)

Authentiation Authorzstion
s
[comnecton_t]

Login LRL
[Fe710.0.0.0f5ecurewebServiceflogin st]

Logout LRL
[Fet710.0.0.0f5ecurewebServiceflogout i]

Id Timeout: Session Tineout;

o seconds fess00 seconds

Include login server cooki n REST calls

Test Connect
Status:

Successfully established connections to login URL and logout URL. No access
control LRLis given for Authorization.

Help o Cancel

OEBPS/img/getstartamx.png
iapplication Navigator * [s]
L Projects Y=
-5 ApplicationController

5 £ Applcaion Sources
@ sppication
[METAINE
&£ Web Content

[adc-mobie-corfg xml
[spplcstr

(] custom_phane.html
8] rewogn. i
ewCortroler
= £ Applcaton Sources
1@ featuret
@ mobie
£ veTa
£ Web Content
£ fesuret
Epr——
8 custom_nsvbar g
) custom_sprigboerd amc
5 custom._springboard.fra
I —————
3 vewControler-tsskflon il

OEBPS/img/applicationcontroller.png
& Create Mobile Application (ADF) - Step 2 of 5

Name your project

pplcation Name
, azial

Js. Project 1 Name
i

Proiect 1 Java Settings
7

Project 2 Name

Project 2 Javs Settings

Broject Name: [ApplicationContrallr

Diectory: [Ci\IDeveloperimyworkiMabieApplication|ApplicationCantroler| Browse:

Project Features:

ADF Mobile Framework

HTML and Cs5

HyperText Markup Language (HTML) s the standard syrtx fo publishing hypertexd on
the Workd Wide Vieh.

Java

The Java programming langusge i & sinple ofject-orfnted language designed to mest
the chllenges of appicationdevelopmet inthe cortext of heterogeneous,
network-wide dstributed enviranmerts.

Javascript

JavaSCrpt s a clnt-side scripting language implemertedt as part of web browsers.
Combiing elemerts of proceciral and objectorierted languages, JavaSeri supports
enhanced user nerfaces and dynamic webstes.

REST Web Services

REST services are cistrbuted hypertext documents upon which a setof operations:
can be performed

S0AP Web Services

Wl services are application services used i a cistrbuted environmert to receive and
process reuests, andto return responses based on those recests

wspL

This festure provides tosls o view and ect WSDL descriptins of what ere generally
SORP base services.

WS-Policy
This festure provides tosls o view and ect WS-Palicy Descrigions.
™ML

Extensible Markup Language (XL) provides a syrtx fo describing and structuring
ta inciependent from appication ogic andis used exensively n wek-hasect

<ok | me> e concel

OEBPS/img/springboard_toggle.png

OEBPS/img/selectcss.png
Edit Property

Location;

B proc

CH\Develaperimyworkiapp1\ViewCantroleripublic_tmivesour...~| @ © (3 (9 B &

e nae: produtbtss

File type:.[1avaSctnt, €35 Fle ("5, *.c53)

o

Cancel

OEBPS/img/configservdialog.png
Configuration
Jser

Username

.
Password | ©accn

Server http://www.example.com

Connect

OEBPS/img/listview_eb.png
Expression Bulder DataControl Definitions
elect values from variables and operators to create an expression ar drectly type the expressian here:

Expression:

#{EmpRecords.emplnfolisth

Yt commen

Q

& (21 ADF Managed Beans
£-® EmpRecords
3 empinfo
= [T
3 empllnfos
53 employeefiame.
- number
® HyBean
applicationscope.
pageFlowscope
[viewscope
ADF Mobile Objects

Create Property

OEBPS/img/jarappresources.png
Applcation Navigator [=]
Appications EEE
4l Projects Q@ 7-E-

 Applcaton Resources
23 comectons
503 Descrptors
& CameTa
cumgropertes
8% jps-config sl
logging properties
=[] ADF META-INF
6] ad-config s
] adfnt-applcation. el
(6] adint-confgoxnl
6] connections sl
53 Ubrares
&gl Acmesales.jar
= Ca TR
&8 adfmf-feature,sml
MAIFEST.MF
orscle.adf comion services.ResourceService sva
&g StockTracker.jar
@ mobie
@ persce.portolo
@ Ponoio
@ puble_pem
@ publc_hemportolo
@ publc._ b ortolo.msges
= META-INF
& adimocnl
&8 adfmf-Featuresml
MAIFEST.MF
- [orade.ef.conmon senvices Resourceservice.sva
[——
(2 Maven o
& 3 Resources
fiSp——
Bos

OEBPS/img/access_audit.png
) <amx: view xulns

E
=

0o

L E

"1.0" encoding="UTF-6" 2>

51="http: / /v, u3. 0G/2001/XHLSchena-instance”
Xmlns: amx="http: //xmlns. oracle. con/ade /t /amx"

mlns: dvem="http: //xmlns. oracle. con/adf /nf /aws/dve">

<amx:panelPage id="ppl™>

<amx: facet name="header”™
<amx:outputText id="header” value="Job Details" /|

</ams: facet>

<am: facet name="prinary™>

<amx: commandButton id="back” text: "_back"/>
</ams

~ aponThe ShortDesc”strbute should be present: and descrbe the sction that wiltake place). .

e nane T ahel Andiescane 1abel o é (hindines tirle hinrs lahell® 1

"Back” action

OEBPS/img/launch_app.png
Carrier & 10:18 AM

=y

MyMobileApp

OEBPS/img/select_button1.png
G _

OEBPS/img/newcssdialog.png
B

Enter the detais of your new file. E

Eile Name:
myiPad.css

Directory:
[/Users jsmith/jdeveloper /mywork/ Application2 /ApplicationController public_htmi resources/ css Browse...

OEBPS/img/action_sheet_buttons.png
Delete Note

Cancel

OEBPS/img/feature_refs_navigation.png
(2)startpage * [[o]adimf-applicationsml

+X

Appication
Feature References | FEStUrE References

Preferences. 0+ Show on Navigation Bar Show on Springboard Allow Device Access
Securky Custamers true true true

= true true true

e

OEBPS/img/method_menu.png
@ ADF Mobile Button
& HoFMoble Lk

[ADF Wabie perameter Fom

Cancel

OEBPS/img/edit_listview.png
List Item Content:
EHement value Binding

1 MainText
2 Subordinate Text

e

Divider Attrbute: <N Divider>] it erms are optionaly grouped by this strbute.

Divider Mod: Groups by frst letter or entire attrbute vale.

I

Help

OEBPS/img/application_navigator.png
appli Navigator *

toblefpplication

IProjects

=-{E] ApplcationController
{23 Application Sources.
(B viewController
5 £ pplcation Sources
& EameTane
P Yecine-festure s
{3 web Content.

=l Applcaion Resources
&1 Descriptors

& CameTa
cumgropertes
logging properties

=2 AoF METATN

[adf-config sl
(6] adint-spplcaton i
6] adint-confgol
3 Ubrares
3 Maven pos
= (3 Resources
fiSp——
Ses

=1 Data Controls QY

=8

| applcationinformation
& festres

=] qotoDefaultFeature()

=] gotoFeature(String)

{E] gotospringboard()

{E] hideNavigationbar()

{E] resstFeature(tring)

{E] showNavigationbar()

=8 DevicsPestures

{E] createContact(Contact)

{E] FindContacts(String, String, boolean)

] getcure, it i, bockean, i, i, i)

{E] removeContact(Contact)

] sendmai(sing,Sting, Sting, Strng, Strig, trin, trng)
{E) sendst(string, String)

[E] startLocationMonitor(boolean, int, String)

OEBPS/img/link1.png

OEBPS/img/constraints_general.png
jadfmf-feature.sml *

Features

Festures + X
@ e Vendor Verson
Genersl | Consraints Content | Preferences | Securty
Constrants: + X
Froperty Operar Ve

OEBPS/img/android_inputtext.png
@ UserName

OEBPS/img/farconnect.png
& ADF Mobile Feature Archive Deployment Profile Properties

Library Dependencies Connections

Select the application connections you wank to ncluds i your lbrary and decide whether to

AR Options inciude connecion detas, or ust connection names.

Include: () Connection Detais (excluding secure content)
() Connection Name Only

‘Applcation Connections:

E Database

@ Comecton:

AKu

OEBPS/img/ios_outputtext.png
WiFi Address 001610509700

OEBPS/img/ios_secret.png
Password

OEBPS/img/android_outputtext.png
Android version

OEBPS/img/googlecloupkg.png
& Android SDK Manager,

Packages Tools
SDK Path;

Packages

G Name APL | Rev. | status
101 Tooks

162 Android 4.2 (AP1 17)
[andvoid .12 (401 16)
[Andvoid 4.0.3 (01 15)
162 Android 4.0 (APL 14)
165 Android 3.2 (AP1 13)
165 Android 3.1 (AP1 12)
162 Android 3.0 (AP1 11)
[Andvoid 2.3:3 (01 10)
[Android 2.2 (AP1 8)
[Android 2.1 (AL 7)
162 Android 1.6 (A1 4)
62 Android 1.5 (A1 3)

& 0] extras

(188 Ancioid support Lbrary 1 Eistaled
168 Google Adviob Ade S 5§ Motinstaled
168 Googie Anaiytics 5D 2§ not instatiedt
3 Bnstaled
[J@ Googie Play services 4§ otinstated
168 Google Pisy APK Expansion tibrary 2§ not instatiedt
168 Googie Py illng Library 3§ otinstated
168 Google sy ticansing tibrary 2§ not instatiedt
(168 Google Ust Driver 7 Smataled
188 Googe web e 2§ totistaled
(168 el 65 Emtator Accetrator (1403} 2§ notinstaled

OEBPS/img/createfardialog.png
 Create Deployment Profile

Clck OF to create your new deployment profl and immediately open I o see s configuration

Profils Type:

RoF Mobi Fosture Arcve

Deployment Profe Nate:

robieFeaturenriimel

Description

Creates a profie for deplaying ADF Mabie Feature companents as JAR il The resuling JAR
can then be impartedinta cther ADF Mobile applcations.

Help

OEBPS/img/iosprovportal.png
& Developer Technologies Resources Programs Support Member Center

Qsearch Developer

OS Provisioning Portal Weicome.
Provisioning Portal : Oracle Corporation Go 10 10S Dev Center
(E— . por e
Certifcates Welcome to the iOS Provisioning Portal 5 108 Team Administration Guide
The i0S Provisioning Portal is designed to take you through the necessary steps to test
pences your applications on i0S devices and prepare them for distribution.
AppiDs How-To's
[OPtining your Certicate
Provisioning W Viewvideo

Distribution Configure A Downlosd LN ¢ Assigning Devices
gl rofie iﬁ &install B Viewvideo
rov

G
B Viewvideo

Creating Provisioning Profiles

OEBPS/img/listview_bound4.png
Create List

Decide whether yu wank t bind your s view to data souce now,or create i th unbound st e,
“eindpata
List Data Collection: [#{bindings. Contact.name} | Browse,
BementTper | ===
List tem Content:
Hement value
! 000000000000]
2 EndText
Ovider e (<NoDivders =] sk s rocptioaly rouped by s attrte
Ovierttods: [] Groups by fislettrorentreatriute vokie
el oK Concel

OEBPS/img/amx_page.png
Appcations

[rociucts
dpropts @ @ E-
- [E] ApplicationController
(2] ViewCantrcler

&[22 Applcation Sources

@03 Resources

&-E3 Wb Content

& B

[images
adfc-mobile-confi.xml

[amce-configso
Helo
[orderame
) roductetas.ome
[products e
rocctsflom il

Find

<zxml version:

o

OEBPS/img/viewcontroller_bundle_node.png
Select values from variables and operators to create an expression or directly type the expression here:

Expression

D Q@

#{viencantrolerfundie, HELLO_WORLD}

yaaios: common

Q

ADF Bindngs
ADF Managed Beans
=) ADF Mobile Objects
applicationscope
devicescope
pageFlowscope
preferencescape.
viewscape

B[] viewcontrolerBundle

7 HELLO_WORLD

Description

Help o

Cancel

OEBPS/img/gotodeclarationforid.png
statpage [adim-applcationsxal | st ezl x
Q- Find G Ak B

<zl version="1.0" UTE-E" 2>
El<aatnt:application xulns:xsi="http://vuw.u3. 0rg/2001/ALSchena-in
Oracleobi LeApplication” id="con.company
appControllerFolder="ApplicationController">
Custoners"/>
HO />

alfmf : featureReference 1d="Pri

</aatat:spplication> CTEET—

——

I3 Reformet Atshits

@ Code assist Ctisattentsr
souce >

e ctnx

copy cune

I paste ctiy

& ke cunsinra

88 Rebuid Aeshitra
Compare Wit »
Replace wih >
Select i Navigator_ AttHome
Preferences,

OEBPS/img/save1.png
Save

OEBPS/img/multiselection_menu.png
[Create
AOF Hobil chrt
AOF Hobile Gauge.
@ A0F Hobie Gesarsshic e,
£ ADF Hobie Leraor
AOF Hobile Lt View,

@ AOF Hobile Thematic Map.

ADF Mabie Select Many Choce
Single Selecton (] AF tobile Select Many Checkbox

Cancel

OEBPS/img/edit_list_bind2.png
& Edit List Binding

Configure st dats and map it return values o the page’s base data source. You can creste a fixedlist of values for the
lst, or populte values dynanicaly of runtime,

oseDat souce (] Contct DevieeDotaControl GetContats o
The dotasurcetobe updated e the ot vl

@ Dynemiclist () Exedlist () ModelDriven List

st Data Surce: [Contocts DevceDataCortrokFndContacs

Data Mapping:

+ | X

Data value List Atribute

contactoata < contactoata

Map ane or more ls attribute values to the deta values yu wank to update.
List Ttems

Select the data source atribute that provides the lst em display value.

Oiply Atrbute: |

Mo Selctor tem: [solotln Requred

OEBPS/img/inset_list.png
E Inset List '

Listitem Text
Listitem Text
Listitem Text

This is really long text to testh >

OEBPS/img/cloud_connection.png
Greate ADF Mobile Login Connection

Configure a connection to provids remote authentication services for an
ADF Mobie Appication.

Create Connection -
(@ pplcstion Resources

Authentication Authorization

Neme:

Resource Paltte.

foud

Login URL:

rtpsilimyhost.us.example.com

Lo iR
Idle Timeout: ‘Session Timeout:

o s J—

Cookies: X

[nchse logn server cooki n REST calls

Test Connection

Status:

Help o

Cancel

OEBPS/img/navigationcomponents.png
EINavigation

Shaw Navigatian Bar on Applcation Launch

Show Navigation Bar Toggle Button

Springboard;
Nore

et

Custom

how Springboard on Application Launch

how Springboard Togle Button

Springboard Animatian: () Nore (&) Side Right

sideowtwias [|eicels

OEBPS/img/edit_prop_action.png
& Edit Property: Action

(@ Wethod Bindng

Managed Bean: [MyBeant =

testiction =

OEBPS/img/insertchildprefgroup.png
Preferences

Insert after Version

OEBPS/img/comp_palette1.png
B8 Component Palette *

Q

[FoF Hobie Ax

2 General Cortros

- Text and lcton
Checkbox

Checkbox (Select Many)
cheice

Choice (Select Many)
& oput 0ate

Ik Nurber Sder
oot et

g Messages

A ouput Text

Rado Button

€ Select Button

() select Ttem

() select Items

€ Switch (Boolean)

I Daka Views
lLayout
I Operations

OEBPS/img/hide_show_navbar.png

OEBPS/img/quad_list.png
Start Text

Lower start tex Lower end tex
Start Text >
Lower start tex Lower end tex
Start Text >
Lower start tex Lower end tex

OEBPS/img/spark_chart.png

OEBPS/img/popup_id6.png
<amx: commandButton id="commandButtonl> &@show Popup Behavior - Property Inspector * [
‘<am: showPopupBehavior popupTd="popupl” alignld= urongl/> Vi 2 @

/om comandButton> Referenced id wrong? does not et
@ Popup 1d; [popupt v

Type: <default> (action) hhd
S I S —

OEBPS/img/button8.png

OEBPS/img/cloudappdetail2.png
cLoup

Java Cloud Services Control

3ava Cloud Services > Java Cloud Service: java >
Application: HCMMobileService

@ appcaion +

I Performance Summary

B ey
06 p1a () 12 " (3 () 1z6m "
September 03 1

Up Since. 5ep3, 2012 11:35:11 PH
State Active
Java Cloud Service java

Application URLs

URL

hitps://myhost.us.example.com/HCMService
Openlinkin new tab

Open inkin new windon

e Openinkin incogrito windon

Active Sessions 0 Save Ik as.

Reques rocessingTie () 0.00 e — |

equests (per i) 0.00
Requests (per minute) Inspect slemert

OEBPS/img/left_right_sublist.png
B Start/End

Start Text
Start Text

Start Text

OEBPS/img/intro_remoteui.png
Carrier =

S
Back Portrait Edlt

Name Leslie Hann
Title Director

| Dept Products

Location >
Mobile
Work
Manager
>

T

OEBPS/img/features_iphone44.png

OEBPS/img/withnavbar2.png
Corrler =

OEBPS/img/vcappnav.png
=-{5] ViewController
5 £ Applcation Sources
& 3 MeTane
) adin-festure sl
&£ Wb Content
20 Feature1

OEBPS/img/iosdevicesigning.png
Device Signing
These fields are required if deploying to, or packaging for, an actual 105 device.

Provisioning Profile:

Certficate:

OEBPS/img/connections2.png
Greate ADF Mobile Login Connection

Configure a connection to provids remote authentication services foran (==
ADF Mobie Appication.

Authentication | Authorzation

Access Control LRL

http://10.0.0.0/identity/authorize]
FierLst of Lier Roles: %X

Fiter st ofPrivages: %+ X

Test Connect
Status:

Successfully establshed connections to login URL, gout URL and access control
URL,

Help o Cancel

OEBPS/img/prefs1.png
& Preferences.

Q Search
Enviranment
ADF Business Companerts

Code Editor
Compare

Compier

Credentials

s Edtor

Database

Data Cantrols Panel
Debugger

Deployment

Diagrams

External Edtor

File Types

lobal Ignore List

Hitp Analyzer

JavaSerpt Editor

Java visual Edtor

35P and HTML Visual Edtor

Help

ADF Mobile

Avalable Form Factors

b X tore acions -

Platform*

ancoid Hoh
anchid Low

Anchid Medim

Pad

pad Mini

PadRetina

Phone

Phone Retina (3.5 inch) 05
Phone Retina (4inch) 05

Model

Default Orientation | Widkh™

Partrait
Partrait
Partrait
Landscape
Landscape
Landscape
Partrait
Partrait
Partrait

Height*

Scale Factor* v

OEBPS/img/layout_comps.png
Sub-Section Title 1

Name Jane Don >

Street Address 123 Main Street >

Phone. 212-555-0123

Sub-Section Title 2

Personal >

November 22, 2005

June 20, 2011

OEBPS/img/selection_control.png
Create.
€ ADF Mobile Select One Button

Text » | ET ADF Mobile Select One Choice.

©) ADF Hobie Selct One Radi

[ADF Hobie Selct Bclean Checlbor
= ADF Mobie Selct Bolean Switch

Cancel

OEBPS/img/selectdeviceaccess.png
(2start Page * ([o] adfmF-application.xml * | &jadfnf-feature i X

+X 5
e E T T
— Custamers <defaul> (true) <defaul> (true) <defaul> (true) 2
<default> (tvue) <default> (tvue) true
T — 2

<defaut> ())
[<default> (true)

OEBPS/img/intro6.png
Carrier

% James Logan @

James Logan
Development Manager
Tools

Doug Jones

650-555-0555

OEBPS/img/status_meter.png

OEBPS/img/cutting_comp.png
(Slapplication Navigator * jproducts.amx X

"

1 17) Annlicatinn Sourees
4 Applcaton Resources @

1 Data Controls @y
I Recently Opened Fies

AL N

51="http: //ouw. 3. 07/2001 /AL Schena- instance
+//xulns. oracle. con/ jdev/dvea>

B <amx:facet nane="header">

<amx:outputText styleClas:
</am: facet>

anx-header-title” value="Pro

s E D o P AV G
E detailes
= A S
8 CamisetPropertyListencr Tron-"#(£ov)" to<"# (pageFlovs
Panclpage
S amw:facet nane="footer”™>

= Facet - hesder
A Output et - Product st
e~ #-ind

<amx:outputText styleClas:
</am: facet>

‘wi-title” value="Acue Inc"/>

produc

Hf Facet - footer Insert Before List iew - #{bindings products. collectiontlodel) »
Insert Inside Lt View - #{bindings.products. callectontadel) »
Insert after List iew - #{bindings.products. collctiontlodel} »
Surround ith,
Refactor »

Expand All elow
Collspse Al Below
Shaw A Top
Show Root

oy
I aste
X pekete

Gotosource

Goto Properties
o to Declaration

OEBPS/img/new_taskflow.png
& New Gallery.

Al Features | Current Project Features

This st fitered according to the current projects selected festures.

Q Search

(Categories Irems:

(] show Al Descrptions
General

Business Tier
= Client Tier &3 ADF Mobile Feature.

;

) ADF Mobile Task Flow
ShinalAWT =
- Database Tier

ADF Mobile AMX Page

Creates a task flow saurce fle whose cantent defines a bounded ADF Hoble Task

Fiow. To enable this ption, you must seect a project or a il within a project in
Web Tier e e e

the Appication Navigator.
- lTtems

OEBPS/img/connectionslog.png
[Elvessages -Log *

Jul 27, 2012 1:13:57 PN oracle.adfut. comon.util.NehppUtilss6 perforuTask
THFO: Feature reference "feature" has been added to application’s adfmf-application.xml
These connections vere affected by the Add to Project operation
¢
waRING:

Comnectionl - existing application LoginComnection comnection of the same name will be used for the dependency. Verify its configuration.
wARNING:

connectionl - existing application LoginComnection comnection of the same name will be used for the dependency. Verify its configuration,

OEBPS/img/cloudconsole.png
Java Cloud Services Control

oo

Seo 0201233230 POt €,

i .
B o
[E R

OEBPS/img/button11.png

OEBPS/img/facets_notselected.png
Page Facets

[]Header
] Primary Action
] Secondary cton
[] Footer

OEBPS/img/viewcontroller.png
& Create Mobile Application (ADF) - Step 4 of 5

Name your project

Application Name.
Protect 1 Name

roject 1 Java Settings
p Proiect 1 Java sety

12 project 2 ame

& Proiect 2 Java Settngs

roject Name: FiewContraler

Diectory: [Ci\IDeveloperimyworkiMobieApplication|ViewController | Browse,

Project Features;
ADF Mobile Framework

ADF Mobie s support forthe development of an ADF Mol applcation.
HTML and C55

HyperText Markup Language (HTML) s the standard syrtx fo publishing hypertexd on
the Workd Wide Vieh.

Java

The Java programming langusge i & sinple ofject-orfnted language designed to mest
the chllenges of appicationdevelopmet inthe cortext of heterogeneous,
network-wide dstributed enviranmerts.

Javascript

JavaSCrpt s a clnt-side scripting language implemertedt as part of web browsers.
Combiing elemerts of proceciral and objectorierted languages, JavaSeri supports
enhanced user nerfaces and dynamic webstes.

REST Web Services

REST services are cistrbuted hypertext documents upon which a setof operations:
can be performed

S0AP Web Services

Wl services are application services used i a cistrbuted environmert to receive and
process reuests, andto return responses based on those recests

wspL

This festure provides tosls o view and ect WSDL descriptins of what ere generally
SORP base services.

WS-Policy
This festure provides tosls o view and ect WS-Palicy Descrigions.
™ML

Extensible Markup Language (XL) provides a syrtx fo describing and structuring
ta incizpendent from appication ogic andis used exensively n web-hasect

<ok | me> e concel

OEBPS/img/iospreferncespage.png
Preferences

Q search ADF Mobile: Platforms
Environment Supported Plarfarms:
ADF Business Componer | | [Androd
ADF Mobile
Ant
Audic {05 Simulator SDK Directory:
Code Editor /Developer Platforms PhoneSimulator platform) Developer/SDKs /PhoneSimulator6.0.sdk
- Compare T
Compler JDeveloper Platforms PhoneSimulator platform) Developer/SDKs PhoneSimulator6.0.sdk
- Credentials
Crecemat ool oy
Database [Developer ust/bin
Data Controls Panel Example: /Develaper/usr/bin
Debugger “Automaticaly Add to fTunes” Directory:
Deployment || [rUsers/3snithsusic/unes /iTunes Media/Automatically Add to Tunes Jocalized
Diagrams Example: (Users/jsmith /Music/Tunes Tunes Media/ Automatically Add to Tunes
External Editor e S
- FileTypes
Gloatopore st These fields are required if deploying to,or packaging for, an actual 05 device.
- Hitp Analyzer
provisioning Profile
Javascript Editor * °
- Java Visual Editor Certfcate
J5P and HTML Visual Edit
€ >

Help oK Cancel

OEBPS/img/gloss_oracle.png

OEBPS/img/main_sub_icons.png
T Main Text >

This is a subtext

T Main Text >

This is a subtext

T Main Text >

This is a subtext

OEBPS/img/simple_list.png
Listitem Text
Listitem Text >
Listitem Text >

This is really long text to test hov >

OEBPS/img/texprefonios.png
tings | Hello Applic: n

Secul

Security URL. htto/lwww.security.ex..

User Name sean

Password eeesesed

OEBPS/img/urlconnectdialog.png
Greate URL Connection,

Configure a new URL connicton, Choase Application Resources to add
this connection to the current application. Choose Resorce Palette f you
don'twank 3 singl application to own .

Create Connection n

appication Resources

Resource Paltte.

ame:

Conmection o erver for Remots Applcation]

LRL Endpont
[nte: /7w, example, com |

Authentication Type:

[

Username:

passuord:

Test Connection
Status:

The cannection successfull establihed.

Help o Cancel

OEBPS/img/createnewpagedialog.png
Insert Preference Page

14 ppiation_yerson]

Help o Cancel

OEBPS/img/iosdeviceorientation.png
Q search

& File Groups
- Project Output
Cantributors
Filters
Library Dependencies
- profile Dependencies
=105 Options.
- Application Images

New Delete

Help

Device Orientations.

Select the device orientations to support. All orientations are supported by
default.

iPhane

ok Cancel

OEBPS/img/listview_bound.png
Create List

Decide whether you wank to bind your st view to a data source now, or create I with unbound lst tems,

L ata Colecon[Flbdings EmpRcords.coleciatiodel: ==

fonercypes | ==

List Item Content:

EHement Ve
1 StartText == enployeetiame.
End Text =

Listkems are optionally arouped by this attribte

roups by firt letter or entire attrbute vale.

Help [o | e

OEBPS/img/resourcebundledialog.png
& Project Properties - C:\Developer\mywork\Application34WiewController\WiewController, jpr,

Q Search Resource Bundle

Projct Source Paths Use Clstom Settings
ADF Business Companents

ADF Hoce!

ADF View Basic ConfiguationBundle Search
ant
Compier] astomaticaly Synchvonize Bunds
Dependencies [[] Warn About Herd-coded Transitable Strings
Deployment

E28 Mode
Extension

Use Project Settings

(1] Aways Promp For Descrption

One Bundle Per Project

Facelets Tag Lbraries
Festures Default Project Bunds ame: [oble ViewControlerBundle

Javadoc One Bunde Per Elle
Java EE Applcation
35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Maven

Resource s Type: 4 Resource ande =]

RunjoebugiProfie

OEBPS/img/android1edit.png
& ADF Mobile for Android Deployment Profile Properties

Q seach Android Options

Library Dependencies

- Profile Dependencies i

Aopicatongunde o company Erps

‘Applcation Inages

Aopcation rciveane: Enps

Version Name:

Version Code;

Desloyment
SourceFls etk TagetsOK AP Lol

o i oot iun 50K 91 Level

Character Encading: efaut
2 Algrment Optinizaton: [32:bit Algnment ~

] verbose Output
uld ode
©pebug
O Rslease

OEBPS/img/pushmessage.png
Fod oLl

Black Friday

Black Friday is the name given to
the day following Thanksgiving
Day in he United Sttes, often

‘Send You Push Notiica
R o e o
SR o bae Treecan
b configuad n Settings.

OEBPS/img/ios_deployaction.png
MU0 Doy 05 M ORILENATIVE sacchive L ——

Summary

Deplovment Action
é Summary Deployment summary:

= Application Detai
+ Application Bundle Id: com.company.OracleMobile
File: OracleMobile.app
- Signature: <Not Specified>
Provisioning Profile: <Not Specified>

Help <mck | e Cance

OEBPS/img/edit_autoprofile.png
& ADF Mobile for Android Deployment Profile Properties

Q Search

Library Dependencies

= Andrald Options
‘Applcation Inages

Profile Dependencies

Specify dependencies on ather JAR deployment profies.

Java EE Modles:

SoplcationContoler

Proect1_Moblepeatursfchivet
jenCortrole.pr

Proect]_MobleFeatursfchivet

OEBPS/img/android_prtimage.png
& ADF Mobile for Android Deployment Profile Properties

Q Search Application Images

Library Dependencies Use thess settings o overrd the platform defaut mages.

- Profile Dependencies Platform Diplay Types
= Andraid Options B Mecum Densi

(1 igh Densty
1] Low Densty
1 Extraioh Densty

Applcation fon esarcesfanonidapiy ican g

spsh Sreon (Portrat); [Esmucesfandiod iy portmipsphahecreen ong

Spsh Sreo (Laope) [Esmurcesfandiod sy i sphahscreen ong

OEBPS/img/addpreflist.png
Preferences

Orade Moble App
-3 verson

[ADF Wb Fran

F x|

Insert gefore Preference Group - Select Your Version

IPreferences

& Bodlemn reference
&9 b preerence

5 prefrence page_
& Texepreference

[Sp—
€ #processing-instruction

Browse,

—

OEBPS/img/config_service.png
Carrier

Username
Password

Endpoint | htp://dadvmio288.us.o...

Provida cradantisls and connecton information fr the
downlaad o the connctions xm e

A[S o e[l []
© gnooenD s

OEBPS/img/amxdialog.png
Create ADF Mobile AMX Page

Enter the fil name and drectory for your new ADF Mobie AN Page. E‘Q

il Name:

rome.ame]

Directory:

[c:1eveloperimyworkiApplicationtSiviewControllelpublic_himiiHCM | Browse
Help oK Cancel

OEBPS/img/edit_list_bind1.png
& Edit List Binding

Configure st dats and map it return values o the page's base data source.
lst, or populte values dynanicaly of runtime,

oseDat souce (] Contct DevieeDotaControl GetContats
The dotasurcetobe updated e the ot vl

@ amiclist O Fxedlist () Model Driven List

st Data Surce: [Contocts DevceDataCortrokFndContacs

Data Mapping:

+ | X

Data value List Atribute

contactoata < contactoata

Map ane or more ls attribute values to the deta values yu wank to update.
List Ttems

Select the data source atribute that provides the lst em display value.

Oiply Atrbute: |

Rem: [sobauonRequred

[JRY MRU Court: 3

OEBPS/img/newsecuritypage.png
adt-featurenl % [[0] adfmi-applicationxml *

Appication
Feature References
Preferences

Security

ElLogin Page

@ Default
O Custom

5 Authentication and Access Control
‘Applcation Login Server:

Features with Securty Enabled:

E———F

Feature 1D
feature3
featurez

Logi Server Connection

‘<epplcation login server>
<epplcation login server>

OEBPS/img/insertbooleandialog.png
Insert Boolean Preference.

o frades]

Label: [Auta Track Location ©

Help o Cancel

OEBPS/img/appsinitunes.png
o000 iTunes

<« (> 4@«‘ 6 ‘\ Mulu\ Qv search

LIBRARY. D Genres

1 music iPhone, iPod touch, and iPad Apps 2Apps
H Movies

17V Shows. f

= Y

=

STORE Applicationd Applications

1 Tunes store Unknown Genre Unknown Genre

< Ping . ;

© bt iPhone and iPod touch Apps 1App
SHARED K

G Home Sharing

GENIUS.

8 Genlus =
I Y | 3apps

Check for Updates © Get More Apps ©

OEBPS/img/create_gauge.png
& Create Mobile Gauge

Gouge Types:

Description

@+ ASKX E

gauge,

Rectanguler LED Arrow LED Triangle LEp Diamend LED StarLED

OEBPS/img/application_res2.png
(Zlapplication Navigator * | =]
|] Moblleappication ~& -
L Projects 0=
AgplcationControler

ViewController

=l Applcation Resources

3 maven oms
=-{ Resources.
=0 arcrod
" dsplay-hdiicon g
] depley-anchcpspleshscreen, png
- B diplay-lnd i spleshscreen, png
) depley-ancndrisplashscreen.png
(B ey s plshacresn.ong
B dspiy-iiconpng
B diplay-mdpi-con.png
] dspley-port-hpspleshscreen, g
RS P ——
] depley-port i splashscreen.png
(B Pt ——————
0 dilaysticon g
o @
@ oetakti3shazsmg
(RSP
@ osfau-Londorg
@ Defeut Landscapa-ipscprg
B oefai-Lancscape.pog
(RS e —
B osfaporat-padsng
Bl s porra ong
3 oefauk ponrasaecpadng
 Boetaukong
S ——
Bl ostaukzeng
S ——
Bk iston
oy
Brongmg
oz
= security
B cacerts

OEBPS/img/default_springboard6.png
Carrier

Settings7 Settingss Settings9

Settings10 Settings11

OEBPS/img/cred_pi.png
{&lFeature - Property Inspector * 8]
@I Qrnd €]

a1d* Departments
© Hame: [Departments v

© Credentiaks:

Descrpton
= 5

Utecye vent Lsteners [onn o

Navigaton Bar lcons ootz .

OEBPS/img/popup_id5.png
<amx: commandButton id="commandButtonl> @@show Popup Behavior... * [0)

<amx: showPopupBehavior hopupld="comnandBurtonl alimld="counandButtonl”/>

‘amx: comandBut to; Ei/ arnd @
< "~ 1d commandButton! referenced by popupld does not point to an AMX popup

onponent o popup 16; Formandeutiont |

Typer [<cfou> oo <]
|
o lgn 1

OEBPS/img/button7.png

OEBPS/img/facet_listview.png
products.amx - Structure: E]

e
Warnings (2)
EREI

& (B Paneirage

H Facet - header Inset Before List View - #{ProcctListBean products} »
= Insert Inide st View - #{ProdctistBean products} >
List tem Insert after List iew - # ProductLstBean. products) >
H Facet - footer
Surround Wi

Load Bunde

Refator

Eooter
Header

Expand All elow
Collspse Al Below
Shaw A Top

OEBPS/img/device_dc_appnav.png
File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help
G0 90 XER Q-0 /& hildd u->-&- 4

pplication Navigator *
Application2
=l Projects m® V- E-
pplicationController
-3 Application Sources
@ application
2 patacontrols.dox
& LifeCycleListenerimpl.java
&£ META-INE
@] adfm.xml
@] adfmf-skins.xmi
rewController

= Application Resources
= Data Controls

B ApplicationFeatures

®Y

] createContact(Contact)
] findContacts(String, String, boolean)
(] getPicture(int, int, int, boolean, int, in)
(=] removeContact(Contact)
{E] sendemail(String, String, String, Strir
{5 sendsM(string, String)
{E startLocationMonitor(boolean, int, Str}

[Ipatacontrois.dex * |

Data Control Registry

“This lists the Oracle ADF data conrols published by this project, including a metadata summary. To editthe ata control definiion or enable customization selecta
Data controls node and click Edit

Data Controls

7

{8 ApplicationFeatures

&-[8 DeviceFeatures

E createContact(Contact)

(= findContacts(String, String, boolean)

] getPicture(int, in, int, boolean, nt,in, int)
{E removeContact(Contact)

] sendEmail(String, Sring, String, String, String, String, String
] sendSMs(String, String)

E startLocationMarnitor(boolean, int, String)

] updateContact(Contact)

{E] updateContact(Contact)

Attributes Accessors | Operations

Type

OEBPS/img/row_contents.png
Select values from variables and operators to create an expression o directly typs the expression here:

Expression

D Q@

yaaios: common

Operands:

=
=

applicationsicope
devicescope
pageFlowscope

E

=8 bindings
=3 birthday
=3 dsplayMlame
=i
= rickflame
= ot
8 class
- format
3 hirts
- inputialue
= ems
@@ teratorBinding
= label
- name
=3 updateable
=3 birthday
=3 dsplayMlame
=i
= rickflame
= ot
8 class
- format
3 hirts
- inputialue
= ems
@@ teratorBinding
= label
- name
3 updateable
= rowkey

=

ewsEane

Description

Help

Cancel

OEBPS/img/button1.png

OEBPS/img/cloud_dsc.png
& Create Web Service Data Control - Step 1 of 5

Data Source

Data Source
Data Control Operations
Respanse Format
Endpoint Authentiation
Fiih

Name:.icitervs

@50 OREST

Specify 3 WSDL LRL or a Java source fle with JA¥-WS annotations that describes the servic, Clck the Services
button to display the services described.

R Prpsiimyhos.us xanple comfHCHerv e R Berveaprtowed

Browse, upor Services

Copy WSDL Locally

It s recommended to copy the WSDL local tothe project. I you choose not to copy, then the Web Service has to
be running in order for Developer to display tis data control n the Data Control panel

Select the service to create the data contral

Service: - [{tepffhem demo. s oracefHCMServics

OEBPS/img/charts.png
[Efcomponent palette x| [

Q

DT Mobile AN

i Gauge
i Chart

& e

i 5er

|22 Bubble

K combo

e Horizontal Bar
ox e

D rie

. scater

Sparkchart

2/ Chart and Gauge Chid Tags

OEBPS/img/listview_dc_ui.png
& Select List View Data Collection

Expression Guider | Datacontrol efntions
=15 company

18 peveceDataconro

[p—
5 B EmpRecorcs

OEBPS/img/choice1.png

OEBPS/img/resourcepalette.png
(jResource Palette *

B9~ Qr/ Name

1My Catslogs
=J1DE Connections

586 Fie System
(8 FAR_Fies
&gl Acressles.jor
5 ADF Moble Features
) Customers
e
& rroD
&gl Helowiord jor
=S ADF Mobile Features
@ oracle.hello
&gl StockTracker or
5 £ ADF Moble Features
&3 Portfolo

OEBPS/img/addtoapplication.png
(@iResource Palette *

B9~ Qr/ Name

My Catalogs
D€ Comnections

28 Appcaion Server
5 e Syseem
=@ e

Fiter
adyanced Search,
@) efresh

Remave from nvphcamna

x

&3 Portflio

OEBPS/img/action_listener.png
[component Palette * |
al
0 bl Amx

=/ General Controls
I Text and selection
I Daka Views
lLayout

=l Operations

S werstor

(5] Load Bundle

-~ pehavor |
5 Close Popup ehavir

5 how Popup ehavior

'« validation Behavior

- lters |
5 Acton Listener

25 SetPropety Listener

- Valdtors and Converters

& Convert Date Tine

(1] Convert Number

[valdstion Group

@ action stene - ropety Inpectar % &)

&1/ QrFnd (€]
wnvg [~

oo [

OEBPS/img/gotopage5.png
& Preferences.

Q Search shortcut Keys

Deployment Q vew O

Diagrams
avaieble Conmnds: @ X vore actions «
External Edtor g X

File Types
lobal Ignore List Search GoToNext Hhight Altshift-Down

Category Command Shartzut -

g Anlyzer Navigate GoTotextienber Akown
JavaSeript Editor MNavigate @ Go to Next Message Alt-Fa

Java Visual Edtor MNavigate Go To Next Method

259 and HTM Vsl Edtor

Maven ¢ forshir |
o Navigate 6 GotoPreviousBooknark Cirshit-Q

Woussover Popups Navigate Go To revious Clss

fun Compre @ Goto Previus Diference

Navigake Go To reviousFekd

Search G To revious Highlght Ak-Shift-Up

Navigake Go To reviouserber AU

Tasks

Toplink

L

Usage Reporting

Versioning

Web Browser and Proxy

WS PolcyStore Confits; |

ML Schemas Conficting shortcuts wil be removed the key combinetion i
reassigned.

Navigate & GotoPrevious Message AlLF7

Jp—

Help o

OEBPS/img/includestylesheet.png
Features

Features:

O |gfcon

@ a

* X

General

Content

Constraints

Content

Preferences

Security

Version

10+

Type

T =Y T
£

[a0F o

=l Comn
€ ADF
€9 Con
€9 Con
€9 Con

€ Des:
i Prefe

ek
& .

ey oot o flwt sbporodut tadcont

|+

Inchues:

* X

Type

Fie

resourcesicssiproducist.css

aFie

o Type

OEBPS/img/dial_gauge.png

OEBPS/img/skinadddlog.png
LTerer TEonE

o skin-id * [mobileFusionfx

style-sheet-name: [css/myaddedess.css v

Help ok | cancel

OEBPS/img/default_springboard7.png
Settings6

Settings10 Settings11 Settings12
cee

OEBPS/img/textresourcepage.png
@ Select Text Resource.

Resource Bundle: [applicationt Eunde v

Enter the Disply Value For your text resource and the selected bundle willbe searched
automatically for matches. IF you do not select a matching resource a new ane il be
created,

Display Yalue:

cme sales

Key
[ACHESALES

Description

The Acme Sales Team app

Hetcing Text Resources: # [Ceazeeann

No matching text resources exist

Save and Select

OEBPS/img/access_pref.png
& Preferences.

Q Ssearch

Audit: Profiles

Enviranment
ADF Business Companerts
ADF Mabile
- Form Factors

Platform 5DKs
Advanced (Non-Shipping Fe
ant
Audt

Code Editor
Compare

Compier
Credentials

s Edtor
Database

Data Cantrols Panel
Debugger
Deployment
Diagrams

External Edtor

File Templates

File Types

iobal Ianore List

Profile; Code Assist Rules

Profie Repart. Restore Defauks

Rues | Code assists | Metrics

Save s Delete

Import Export

[seal

‘ppication Development Framework (30F) entty
ADF Business Companents
ADF Commen
ADF Controler
ADF Faces
ADF Mobie Framenork

Label

erfy that the component has short descrption.
erfy that the component islabeled.
erfy thet the inputText has hintText

ppication Features

oracle.adfnf accessibilty @8
Accessibilty

Extension oracle.adf.moblle

Explanation:

Checks usage of ADF Mobils components to verfy that they mest basi accesshilty requirements.

Help

OEBPS/img/defaultandroiddep.png
& Deploy Android1

Deployment Action

2, Deployment Action
i

© summary

Select a deployment action from the st below.

IDeploy applcation to emulator
IDeploy appication to package:

Deplay the moble application to an Android device connected to the develapment machine

OEBPS/img/includecss.png
G adimfeatureml |

Features

Features:

* X

 General | Constraints | Content Preferences | Securty

10+ Name Vendor

Version

Content

*-X

10+ Type

(R

File: [Productsproducts-task-flowt xml#products-task-flowt

J#Q

Inchues:

+
%

Type

Fie

OEBPS/img/edit_prop_other.png
& Edit Property: Action Listener

Help o

OEBPS/img/createprefpage.png
Bolean Preference
Number preference
Preference List

&
&
&

E

-t Preference

&

Browse,

OEBPS/img/output_text1.png
output

OEBPS/img/facets_selected.png
Page Facets
[E==5| [V]Header

] Primary Action
] Secondary cton

—— ElFrooter

<zl version= encoding B

5 <am: view xulns:xsic

amx: commandButton id="cha",

amx: facet

</ame: view

OEBPS/img/button6.png

OEBPS/img/remote_debug.png
& Edit Run Configuration "Default”

Q Search

Remote

5 Launch settings
[t
PLSQL
- Tool Settings
& Debugger

- Profier
e

Memary

Remote.

rotocel trch to oA

Fost Locariost

port o0

Tineout

Tolaunch a remote debuggee running on 0K 1.4 or earer

ava -clent -#debug -runjduptransport=dk_socket, server=y, address=<part> <other Java
Joptions > YourMainClass <program arguments>

Tolaunch a remote debuggze runring on 10K 1.5 orlater:

[Java -clent -agentlbidwp—transport—ct_socket serv port> <other Java
Joptions > YourMainClass <program argurments>>

Show Dilog Box Before Connecting Debugger

OEBPS/img/add1.png

OEBPS/img/listview_dc.png
Geste
AOF Hobil chrt
AOF Hobile Gauge.
@ A0F Hobie Gesarsshic e,
(£ ADF Hobie Leraor

@ ADF Hobile Thematic Map.

Eom »
Muliple Selection »
Single selection »

Cancel

OEBPS/img/led_gauge.png

OEBPS/img/main_sub_list.png
B Main/Sub

Main Text

This is a subtext

Main Text >

This is a subtext

Main Text >

This is a subtext

OEBPS/img/maa_depends.png
& ADF Mobile Application Archive Profile Properties

Q Search

Applcation Archive Options
- e Groups
- Applcaton Descriptors
- Contributars
Fiters

Profile Dependencies

Specify dependencies on ather JAR deployment profies.

Java EE Modles:

android!
- [AppleationCortroler.Jor
] [Project1_MobieFeaturesuchivel
1 (5 Enployees rchive
15 ost

= 5] viewControlerjor
[E] Project MobleFesturesrchivet

OEBPS/img/pie_chart.png
Group A

OEBPS/img/switch4.png
Switch | oFF

OEBPS/img/button12.png

OEBPS/img/select_text_res.png
€@ output Text -Property Inspector * (s

&1/ QrFnd (€]

= Common

ot v
Rendere [[

value:

Vale
Appearance | expression Buider,
[Select Text Resaurce

| Reset to Defaul
i Class:
ElPraperty Help

Inine Sty [the vaue of the campanert

OEBPS/img/listener_type.png
#(ProductlistBean. products)” @2 Q Fnd

var-rzous

<ame:ListTten 10-"1istIeenl” actions"details> oFom [Flo v
< outpUEText 1d-"outpuCTextL” |

oTo: [#lpagerlonseope produ..| v
walue="{#row.name}+"> oz i

<amoutputtext>
<ame:setPropertyListener from

“#row)”
(pageFLovscope. product)”
"action™>

</amx:setPropertyListener>
</amc: ListTten>
</ame:Listviews

OEBPS/img/load_bundle.png
B Component Palette x (5]
Q

[ADF Mbile M

=/ General Controls
I Text and selection
I Daka Views
lLayout

=l Operations

] werstor

Load Bunde

~ behavior
5 Close Popup ehavir
5 how Popup ehavir
& validation Behavior
Sr—

5 Acton Listener

5 SetPropety Listener

~ Valdstors and Converters
& Convert Date Tine

(1] Convert Number

[Valdstion Group

@L0ad Bundle - Fropety Inspector
&1/ QrFnd

@ Basename: fable ViewCantrolertunde v
avar iewcontrolerBundle v

OEBPS/img/methoddet_restdc.png
Resource Methods:
Re rces =-jpath1
) Method Detais
=
Ead <Back Next> Erish Cancel
(bt > A

OEBPS/img/selecttextresource.png
‘application - Acme Sales - Praperties

]
/ QFm)

© Hame * lacme sales
a1d*

Octii} ElProperty Help

© Descripton: [The name of the appication

Ufecycle Event Liste

o Yendor:

© Yersian

o [#3-0ra/2001 iML5chema-instance

OEBPS/img/appid.png
Reverse Domain Format
(Set by Administrator)
|

8E549T7128.com.oracle.applicationName

| |
Bundle Seed Bundle ID
(Generated by Apple)

OEBPS/img/default_deploy.png
(G Refoctor sesrch Wavigate Buld Run Versioning Tooks

& ew G ihid i m- D

&3 open.

% oopen ftrsse = | Gadntfestue.ml x
Close.
[Delete lication
Rename. o References FestureReferen
ersion ferences 1
@ Find application Files: Uity mycomp Enps

Show Overvien
7 Fiter Appiication.

"
4
3
y{ 1 Manage Templates.

)| securs »
S Edt Resource Bundes,

051,
Employees_archive.

application Propertis.
Default roject Propertis
: tew Deployment Profie.

OEBPS/img/ios_catselection.png
‘Samples
Sample Read Only Read Only 2
Sample Dropdown Sample le... >

Sample Boolean [on |

Child Pane >

OEBPS/img/android_lndimage.png
& ADF Mobile for Android Deployment Profile Properties

Search Application Images

File Groups
- Project Output
Contributars

Use thess seflings o averrde the platform defaul images.
Applcation lcons

Fiters Low Densty: [resourcesfancroidisplay-dpricon.png
Librery Dependencies
Proie Dependencies Medim Densty: [sowcesfandroidsplay dprionprg
android Options

MohDersty: pesarcesfaniordapiey hdpricon

s Hioh Doty [ssoucefard o dapay ShpHicn v

Splash Screen Images
Portrait | Landscape.

Specity custom splash screen inages for landscaps oriertation

Lo Donstys [Emocesfandroidsply e spashscrnong

MedumDensty; [Esourcosfandroddsplay andnprplshecroen oma

Hghoensty: [oucosfandroddsplay andhiprsphsheroensng

Eatratigh Densky: [Esourcesfandrotdsply et spshsroenng

OEBPS/img/amxpagewizards.png
& New Gallery.

Al Features | Current Project Features

This lst s fierect accoring o the current projects selected features

Q search

Cotegores: tems [how Al pescrptons

Applcations ADF Mobile AMX Page.

Connections Launches the Create ADF Mokile AMX Page cilog, n which you creste a new
Degloyment Descriptors Skeleton ADF Mabile AMX Page (am) fle. To enable tis option, you mst select a
Jova project o a fle witin a project i the Appication Navigator

Projects) ADF Mobil Feature
L

Business Tier [ADF Mobile Task Flow

Data Cantrols

- veb Services

Clent: Tier

ShinalAWT
Database Tier
ieh Tier

- Applet
HIML
- lTtems

Help

OEBPS/img/taskflow2.png
& Application Navigator *) [Emew-flowml * (=) g8 Component Palette * =}
son- (A7 BT Q

Bounded Task Flaw [ADF Mobile Task Fiow

I Source Elements
=l Companerts

SProjets @ @ V- &
pplcationCantroler a
fenContraler

{23 Application Sources.

B Resources actites ————————
£ anoid = vethod cal
s D Router

=23 web Content View

ol ~ Control Flow ————————————————

[images

b Control Flow Case.

amcui-config o Drop content onto this blank
[Rop diagram from the 2 Disgram Annatations :
- P Component Palette, T —————
B productdetals.omx | Resource Palette, or &1L Qrnd ®
- [productsamx Application Navigator. ==

=l Applcaion Resources

I Data Controls @y © Task Flow ID *
I Recety Opened Fies N
e
L

Description

Enars (1)
- [ADF Mobile Task Flow
3 it

Managed Beans

Customization

Diagram Overview Source History.

OEBPS/img/test_deploy_ios.png
& Deploy I05_MOBILE_NATIVE_archive1,

Deployment Action

2, Deployment Action
i

© summary

Select a deployment action from the st below.

Deploy to dtrbution package.
IDeploy to Tunes for synchvonization to device

Deploy the mobil appitcation to an 105 simulator.

OEBPS/img/skin_version.png
o default

Help

OEBPS/img/create_featuredialog.png
Greate ADF Mobile Feature

Festuretame: [Customer Sevie]

Festure i [moddesenice]

Directory: eloperimywork AppicsbionsS\ienCortrclerpuble_nfermodueservie]

dd a corresponding feature reference to adfnf-applcation sl

Help o Cancel

OEBPS/img/resourcebundlepi.png
Greatre - roperty nspector %

B/ Qe

Crodertits; [cderotly 7]~
ovssapton | |v
—

Listener Class:

@ Hame: (¢ {viencontrolerBunds PROD.

Vendar:
Version: | Reset ta Default

ElProperty Help
fame description,

OEBPS/img/remoteurltrav2.png
ORACLE

"GetThe Oracle |
Mobile Application

Oracle Headlines.

Recisarnow>
Oetoparpemer

Read he Java Magasinscove tory >

Experunce Oracte Openwors 2012

[———

OEBPS/img/featureprefs2.png
Carrler 4:22PM =
F2Prefs

Top Group

123

item1

default text

secret text

Sub Group

OEBPS/img/button2.png

OEBPS/img/avd_create.png
Create new Android Virtual Device (AVD)

one: | ot
Tt [t .1 -aptiove 15 =
CPUJABL:
oo
@ ize: MB v
OFile
swpa
[Enabled
s
@ Buit-in: Default (WYGABD) v
O Resolution: x
e
oty e
oo gty 240
T o op 50 56
P oo
T

OEBPS/img/android_deployaction.png
& Deploy ANDROID_MOBILE_NATIVE_archive1

Deployment Action

21 Deployment Action | Select s deployment acton from the ls below.
i

O summary
IDeploy applcation to emulator
IDeploy appication to package:

Deplay the moble application to an Android device connected to the develapment machine

OEBPS/img/defaultspringbd.png
Y
[r—

2 Empioyees
2 ooparmens
2 Louncher
2 Envioyeesz
7 Transiions

2 Aot

OEBPS/img/carousel_iphone.png
Carrier

iPhone 36

30t s

OEBPS/img/create_amx_page.png
Create ADF Mobile AMX Page
Enter the file name and directory for your new ADF Mobile AMY

e N forder e]

Directory: - [CrDeveloperimymarkiProcetsiewContoleripubie el |

Page Facets
[Header

] Primery Action
] Secondary Acton
[] Footer

Help o Cancel

OEBPS/img/applicationcontrol.png
|Applcation Navigator *

Mobil Appication
IProjects

=-{E] ApplcationController
& £ Applcation Sources
5@ applcstion
DataControl.dix
(& ecydelistenerimpljava
& Ea METne
[l adimoanl
1] adfmf-skins il

OEBPS/img/create_deployprofile.png
© Create Deployment Profile

Clck OF to create your new deployment profl and immediately open I o see s configuration
Profils Type:

ADF Mobile Appication Archive

[RDF Miobie Appication Avchive

[ADF Hibil For Anchoid

[ADF Mabi For 05

[EAR Fie

e Fie

restes & profle Tor deploying an ADF TIoble Spication o bl spplcatin srchive (FAR) e

Help

OEBPS/img/back3.png
: Gontacts

OEBPS/img/default_springboard5.png
Carrier

Products

Native2

Settings

Contacts

ADF Regres...

Native

Settings3.

OEBPS/img/input_date3.png
Cancel Done

OEBPS/img/filters_panel.png
& ADF Mobile for i0S Deployment Profile Properties
Q Search

- e Groups
- Project Output
Contributars

Filters

Fies Patterns

This il group includes the project outp directory s a contributor. You may
need to comple the project o see ll Fles coming From the cutput diectory.

Library Dependencies
- Profile Dependencies &0
5105 Options
- applcation Images
Device Orentations

(1) ApplcatonControler.cd javac
& [¥1E3 applestion
) DataContols.dex
[B) LeCyclListenerimp.class
3 METRINE

) adimsml
) adnf-skin.snl
) taskflow-egistry i

Expand All Nodes Collspse Al Nodes

OEBPS/img/style_attr.png
€@ output Text -Property Inspector *
&1/ QrFnd @

Common

Appearance

Estyle

OEBPS/img/localized_string.png
almi HIAMEE

UTF-8" 2>
/. 3. 07/2001 /LS chena-instance”
xmlns: amx="heep: / /xulns. oracle. con/ jdev/amx”
xmlns: dven="hetp: / /xulns. oracle. con/ jdev/dvea>
<amx:panelPage id="ppl™>
<amx: facet name="header™
<amx:outputText styleClass="amx-header-title”
value="#{(viewcontrollerBundle. LES_PRODUITS)"
1d="outputTexcl” />

<amx:listview value="#(ProductlistBean. products)”
14="1istVienl™>
<amx:1istItem action="details” id="listItenl™
<amx:outputText value="#{rov.nane}+"
1d="outputText2" />
<am:setPropertyListener from="f(rou)"
to="# (pageFlovscope. product}”
type="action”/>

footer”>
<amx:outputText styleClass="ui-ticle”
value="cue Inc”
1d="outputText3"/>
</am: facet>
</amx:pane1Page>
<amx:1loadBundle basenane="uobile.ViewControllerBundle”
var="vieucontrollerBundle” />
</ame: view

OEBPS/img/selectappeditor.png
| @appication Navigator * | =)
] orackMobleappication

=l Projects m® V- E-

(5] applcationControler
{23 Application Sources.
(5] Viewcontroller

{23 Application Sources.

=l Applcaion Resources

{23 Connections
503 escrptars
£ vETaTE
(] ADF META-INE
[l ad-config xnl
(6] adint-spplcaton i

6] acf-config xnl
3 tbranes

[Maven PoMs.
= Resources.
{23 android
ios

OEBPS/img/iterator_dc.png
@ ADF Mobile Gengraphic Map
W ADF Mabile Thematic Map.

Form »
Muliple Selection »
Single selection »

Cancel

OEBPS/img/features_iphone100.png
Mows mua v

Gle

Sann getings Hslo

Carrier 10:07 AM]

OEBPS/img/boolean_checkbox1.png
Checkbox Unchecked

Checkbox Selected D
Checkbox Checked

Checkbox Readonly.

Checkmark Readonly J

OEBPS/img/popup_id1.png
€@ show Popup Behavior - Property Inspector X

/ Qfnd

Popup Id:
Type: [<defaule

Algn:

Algn 1d

Expression Bulder.
Reset to Defaul

ElProperty Help

[Specifies the ID o the popup that
il be shawn,

OEBPS/img/sms_bindings_dt.png
800 Edit Form Fields

Configure the components that you want to display in your form. Note that you can remove or edit the resulting
companents after you click OK. You can also add more components directly ta the layout later.

Fields: #X

Display Label Value Binding Component To Use

3 <default> = body g5 ADF Mobile Input Text w/ Label

e ¢ 2ol

Help oK Cancel

OEBPS/img/featureappsource.png
& Oracle JDeveloper 11g Release 3 - MobileApplication.jws : ViewController, jpr,

Bl Edt Uiew Applcatin Refoctor Search Navigate Buld Run Versoning Tooks Window Help
BoEg 90 XEE Q-0 & Hld a- > %A

@ appicstion Navigator % O @startpage |[oladins-spplestion sl * | QQadint-festurs % 3 Component palette 7 |
Qcl Fnd LY a

= Projects Eav-E- ¥l version="1.0" encoding="UTF-5" 2> [oF mcbie Feature

toblefpplication

sopicationControler Silint: features xlnsixsi="http: /v, 53, 07g/2001 /XMl chena-instance” wulnsiadfat="ney || e
232 tppiction Sources S-adnt: feature 1d-"teatural” nane-"fsatmral” Listener-elass-"application. sppHandler” n
encotroler inage="custon_springhoard.png”> REEAEEDEE

O o Aokt Sources <adfmt:description>This is an application feature</adfmf:description> < Constrant
o e B <adfnf:content id-"featurel.l”> < Constraints
) adin-festure sl Coamtiam < Cortent
S </adfnt: content> o
&[0 Web Cortent L oAtmE: footure Descrtion
gfsatuvel adnt: features> < Featire
B custom_navbar.png @ Fetures
custom_springboard.pr
@ _springboard.png 2 Hint
<> Incude

<) Application Resources. €2 Includes.

4 Data Controls By < Load Bundie

2 Recently Opened Fes <5 Local T

= < ative iew

S adfn-feature.xml - Structure. X a] < Parameter

@ < Preferences

&€ Featues <5 Remote URL

€D Feature

s preferences
5 Descrtion -

AR =
23 &Aamem & This is an application feature - Property Inspe... *)
€9 ADF Mobile AMX &1/ QrFnd [©)

atext: [Thisis an application feature v

OEBPS/img/resources_restdc.png
Data Source
(© Resources

p

Omer]
e
s

OEBPS/img/create_map.png
& Component Gallery.

Base Map area Layer

USi counties

Custom Layer

OEBPS/img/create_spec_chart.png
‘Selectthe cta values you wart to display for the bars and the 2xis of your chart, and then confioure ther labels.

‘See Configuring Bar Graphs for examples

Avalable:

T
& ud

& name

& conpany

(28] stock.

& ot

& sreereschion
& sreensis

&

& memary

s [Fre et e o e Aratae et

2 Axis; [Drag atributes here from the Available list

Attribute Labels:

Changs Data shape,

Attribute

Label

Help

o

Cancel

OEBPS/img/maa_filters.png
& ADF Mobile Application Archive Profile Properties

Q Search Filters

Applcation Archive Options Fies Patterns

= File Groups
e epandrcns

3 METAINE
) cvm properties
5] ogging properies

Collspse Al Nodes

Expand All Nodes

OEBPS/img/safari2.png
Open Page With >
Q Search Google or enter an address. User Agent >
iPad Simulator >

Show Web Inspector i
Show Error Console x#C
Show Page Source x%U
Show Page Resources %A
Show Snippet Editor

Show Extension Builder

Start Profiling JavaScript X 03P
Start Timeline Recording X 03T

Empty Caches e
Disable Caches

Disable Images
Disable Styles

Disable Javascript

Disable Site-specific Hacks
Disable Local File Restrictions

 Enable WebGL

OEBPS/img/featurerefid_error.png
Dstartpsge x
Q- s

[adio-applicationaaml | <scfnt-festure i *

L E

1.0 encoding="UTF-8" 7>

5l <adfnf: application xulns:xsi="http://wm.u3. 0rg/2
nane="raclellobiledpplication”
appControllerfolder="Applicati

“Customers”/>

HOH />

rip”

</adfme: application>

OEBPS/img/ios_singleitem.png
opco

Sanole Dopdown Sange o>

OEBPS/img/button5.png

OEBPS/img/gotopage2.png
Applcations

[producs
Projecs
‘ApplcationController
=15 viewcortroler
23 Appcation Sources
3 Resources
=23 web Content
Des
3 mges
adcmobie-confg
] amcurconfia o
18] helo
[productdetais e

[products| open
Procucts| Exchude Project Cotert

% pokte

valdate 4

Depoy

s take

8 rebuid

13 mefomat

Compare With
Replace With

Je—
Ashifra

AshinF

OEBPS/img/text_control.png
Create.
Date

>

ingle Selection
[& AOF Mobile Input Text w Label

g5 ADF Mobile Input Text:

) ADF Mobile Output Text w Label

£ #OF vobile Output Text

Cancel

OEBPS/img/maa_descriptors.png
& ADF Mobile Application Archive Profile Properties

Q seach Application Descriptors

Applcation Archive Options

& i Groupe Target Directory i Archive:

Elle Group Narre: [Applcation Deseriptars
Contributars

Fiters File Group Type: [ackagng Trpe
Profile Dependencies

OEBPS/img/edit_listview2.png
Divider Attrbute:

Divider Mod:

Help

List Item Content:

EHement

1 MainText

2 Subordinate Text
In;

Value Binding
=0
ey

ey =] Listems arecptonsly roupe by ths st

roups by firt letter or entire attrbute vale.

I

OEBPS/img/input_text1.png

OEBPS/img/create_method.png
Method Nare:

]

Help o Cancel

OEBPS/img/rest_ws_datasource.png
© Data Source =]

Data Control Operations

OEBPS/img/create_managed_bean_button.png
‘Select values from variables and operators to create an expression or directly type the expression here:

0 Q@

OEBPS/img/mb_edit.png
‘Method Expression Bulder...
Reset to Default

Property Hep

[pefines a reference to an action
Imethod sent by the command

lcomponent, or the static outcome
lof an action.

OEBPS/img/bubble_chart.png

OEBPS/img/tmap.png

OEBPS/img/button3.png

OEBPS/img/android_deploysum.png
Deploy ANDROID_MOBILE_NATIVE_archive1

Summary

eployment Action
. Deployment Ac

O Summary

Deployment Summary:

= Applcation Detai
- Applcation Bundie 1: com.company.Application
File: applcations.apk.
--Deploy Mode: Debug

OEBPS/img/generate_accessors_dialog.png
& Generate Accessors

redprt]

O mygean Select all
Kiercperty Sirng

setMyProperty(Siing) : veid Selct Geters

getypragenty() : Sting

Select Setters

eloct Al

scope wosters; Cltnal - Clsmivonzsd

In setter methods:

oty lsteners when property changss:

OEBPS/img/new_ws_datacontrol.png
AllFeatires | Current Project Features

This st s fitered according o the current projects selected features.

Q seach

[categories: ttems:] Show Al Descrptons
& General @, Java Web Service

& Busiess Ter

Data Controls

- Database Tier
- Web Tier
- AlTtems

@, 3ava Vb Servce from WSDL
@, PL/SQL Web Service

@ Toplink D3 Vieb Service Provder
@, veb Service Cent and Proxy
@, 38%-RPC Mopping Fie:

&) oD Regisry Connection

@ URL Service Data Contral

(5} Web Service Data Control (SOAP/REST)
Latnches the Create Web Service Data Controlwizard, which you can se to
reate a new Data Controlfrom SOAP or REST based web service. Same wizard
can be used to update an existng Web Service Data Contral.

8] WD Document

& st Comecton

OEBPS/img/iosboolean.png
Sample Boolean 2

OEBPS/img/projectlibs.png
& Project Properties - C:\JDeveloper\myworkiMobile ApplicationWiewControllerWiewController. jpr

Q Search Libraries and Classpath

Project Source Paths O Use Custom Settings Custormize Settings.

ADF Busiess Components || () s project Settings
ADF Model
ADF View Java 5E Version

ot ames Change.
Conpler

Dependencies
Deploymen

ETB Mode 2dd 8 [Drectory.
Extension

Facelets Tag Lbraries
Features

Classpath Entries:
Export Description add Ubrary.

Remave
Javadac it

Java EE Applcation Share s
35 Tag Lbraries
35P isua Edtor Mave Ug

Mave Dawn

Resource Bunde
RunjoebugiProfie

OEBPS/img/iphone_landscprt.png

OEBPS/img/license_agreement.png
© Check for Updates - Step 3 of 4

License Agreements

. Saurce

Js, License Agreements|
t

Before nstaling these Updates, you must read and agree ta the terms of therlcenses. For
ach agreement, review the icense text and clik the I Agree button to indcate that you
accept the terms

License for ADF Moble 11.1.2.4.0;

listed on the United States Department of Commerce Table of Denial
Orders

- You will not download o otherwise export or re-export the Programs,
directly or indirectly, to persons on the above mentioned lists.

- You will not use the Progtam for, and will not allow the Program to be
used for, any purposes profibited by applicable law, inchuding, without
timitation, for the developrment, design, manufacture or production of
tuclear, chenical or biological weapons of mass destruction.

Oracle Mobile Program License Terms

Subject to the Terms of Use for Oracle Distributed Mobile Applications
(the “Terrms of Use”), you shall have the tight (2) to reconfigure and
tebrand the Mobile Program (the “Mobile Program”) as provided in the
program documentation for that program (sach a “Distributed Mobile
Applicationt”) and () to distribute the Distributed Mobile Application to
your end users

You may use the Mobile Prograr as specified in the above paragraph so
Tong as you have a vald license for the related Oracle program with which
the Distributed Mobile Application operates. Any other distribution or
licensing of the Mobile Program is expressly prohibited.

The Terms of Use is subject to change. You must comply with the Terms
of Use, which are incorpotated in these Oracle Mobile Program License
Terms, and which may be accessed at hitp /o oracle
comjus/corporate/contractsiterms-for-mobile-applications- 1733354 pdf

OEBPS/img/intro_amxui.png
Carrier 10:52 AM

Approvals

v

Salary Approval for James
Salary Approval for Kevin
Travel Expense Approval

v

Conference Expense

v This

Requisition Approval 3|

Expense Report Approval

OEBPS/img/ipad_portrait.png

OEBPS/img/addprefvalues.png
refarences + X

Orade Moble App
-3 verson

Select Your Versian

©. @ eaion

Prefarence Ve +X

kN
Default Neme value N
© enterprie enterprie
¢
ersonal ersonal
o P P 4

OEBPS/img/features_iphone55.png
Carrier % 10:07 AM =

Wy submit >

W Biog >

OEBPS/img/maa_options.png
& ADF Mobile Application Archive Profile Properties

Qs Application Archive Options

288 Fie
= File Groups
5 appcation Descrtors fEmployeesideploy Enployess rchive \Enployees_archvel.msa] rowse

- Contributars

Filters. [Compress Archive.

Frofie Dependencies Conpresson Level

[Include Manifest File (META-INF/MANIFEST,MF)

Addtional ManiFest Eles to Merge into MANIFEST. HF

OEBPS/img/camera_bindings_dt.png
Edit Action Binding e — e

Select a data collection and the action you want your cantrol to iniiate. The control intiates the action on the data objects of the
selected colection,
Data Collection:

New

Selectanerator: |

[] Aply to al ierators in page definition

Parameters
Option

Name Type Value
aualty int 100 | ——
destinatonType int 1 e
sourcerype int o e
alowdic boolean false [—
encodingType int 1 e
argecwdin it 0]

Help oK Cancel

OEBPS/img/checkbox1.png
Checkbox ()

OEBPS/img/preflistdialog.png
Insert Preference List

o fedtion]

Help o Cancel

OEBPS/img/adfmfconfig_skins.png
Fle Edt Uew fpplcaton Refator Search Navigate fuld Run Versoning Toos window Help
ReHa 90 YER QO -O & hidd = D> -& A Q- { Search
0 @strepge * [0 adtut-configaml % () B8 componert paette. x o

Q-(Find ARk B

<ol version="1.0" encoding="UTF-8" 7>
El<adfnf-config xulns="http: //xulns. oracle.con/adt /ut/config™>
<skin-family>nobileFusionFx</skin-family>
</adfns-config>

[l newapplcation

IProjects

ApplcationCortroler s
= £ Applcaton saurces
@ mycomp.cpplcaton
& CamEra e J
@] sdtma
(6] adinf-sins
 Applcation Resources
5 £ Descrptors
L vera
=03 Ao METATNE
[adf-config sl J
(6] adint-applcation xrl
(6] sdtn-corfigand
£ Ubrares
2 Data Contrls
4 Recently Opened Fies

@Y

54D skin-family
A moblerusonex

‘adfinf-config +.
Source Hstory

Q

[ADF Mobile Corfig

€ adff-config
€9 conversion
€ generic-type
€9 skin-family
€ skin-version
€ validated

@ acinf-<onfi - Property Inspctor *

(S]
&1/ QrFnd @

[ins. oracle. com{adffmffconfig)

OEBPS/img/edit_form_fields2.png
& Edit Form Fields

Configure the corponents that you wank to display in your form. Note that you can remove or edit the resuling
camponents after you click OK. You can ko add more camponents drectly tathe layout later

il +X

Oiply Label alue Binding Component To Use
nput:

= <defaul> = speed T ADF Mable Input Text

- <defaut> = headng 5 AOF Hoble Input Text] Label

- <defaut> = laiude 5 ADF Mable Output Text] Label

5 <default> S timestanp [E1 40F obile Inpust Date wj Label

e e ol

Help o Cancel

OEBPS/img/remotenavbar.png
Carrier 12:29 PM =
Oracle OpenWorld 2012 Registration

oracle.comloper

Oracts OpanWerld 2012 Regisaton E

[——

OEBPS/img/check_updates1.png
& Check for Updates - Step 2 of 5.

Source

¢ Welcome

), Source

Updates

Dovirioad

O summary

Choose whether to search for updates on the internet or to nstall an update from bundle you

have dready dorioaded,

(@) ssarch Update Certers:

[] oracle Fusion Middleware Products.

et juwwwm.oracle.comjocomgroups{public/@otnfdocumentswe

fficial Oracle Extensions and Updates

et jhtmid. oracle.comfplsfatn/f?p=updatecerter:uc
[] open Source and Partners Extensions.

it . oracle.comjocomgroups{public/@otnfdacumentsfwe
[Internal Automatic Updates

it fice. s oracle. comjcenter xml

O Install From Local File

File Name: ~ [CDonrlbads|Softwareladf-mobie_bundie 2

<ok | omes | oo

add,
Remove

Edt

Browse,

Cancel

OEBPS/img/edit_list_bind3.png
Edit Boolean

ing x

Select a data collction and attrbute yau wank your control t operate an, The valus to
eturm ko the bound attrbute i determined when the User changes the contrals selecton
state, You must know what values the bound atrbute takes i order to supply meaningful
Selecton state values

35e Data Source: ([Postion: Devicebatacontrol.getiocation v A
e —

e E——

Help [o | o

OEBPS/img/taskflow_overview_editor.png
General

Descrtion [General

activies TaskFow 0% ev-flon

Control Flows

o | Detok iy, (<ot

Initislizer: [

Finalizer: [

Disgram | Overview | Source History

OEBPS/img/android_singlelist.png
@ sample Dropdown

Sample liem 0

Sample liem 1

Sample liem 2

Sample ltem 3

Sample liem 4

OEBPS/img/left_right_listsub1.png
T8k staryEnd/Sub

Start Text

This is the subtex

Start Text >

This is the subtex

Start Text
This is the subte >

OEBPS/img/ui_iphone.png
10:01 AM_

Approve

| Carrier =

Purchase Order 1234

Purchase Order 3456

Purchase Order 2345

Purchase Order 6789

{——— Hide Nav. Bar Button

|—— Navigation Bar
| Navigation tem

OEBPS/img/select_feature_ref.png
()start page * [[o] adimt-applicationsaml *

@

Appication

Festure References: X

0+ Show on Navigation Bar Show on Springboard Allow Device Access

Feature References

Preferences

— Custamers true true true

e

Insert Feature Reference X

[Custamers
=

OEBPS/img/chart_children.png
B8 Component Palette x
Q

VT Moble AMK

I Gauge
I Chart
= Chart and Gauge Chid Tags

~ Chart
< Attrbute Groups
€ Chart Data tem
< Legend

€ Legend Section
€ Reference Object
< series style

— Chart ixis

< ais Line

€9 Major Tik

€ pinor Tick

< Tik Label

@ ks

< %Fomat

@ v

< ¥ Format

< vz

< v2Formet

< zFomat

~ Chart Type Specfic
< Pre Data Ttem
< P Valus Format
< sice Label

€ Spark Data tem

~ Gauge
< Threshold

OEBPS/img/popup_id2.png
Choose a component. 1f & item cannot be selected, it requites an 1. Note that vald Ids use a combination of restive:
and sbsolute path references depending on thei relstionship to the current comporent

Aysiatle
- [E] panelPage - paneiPage!
=&

*indicates & naming container

1d{popupt

Help

OEBPS/img/mobile_node.png
& New Gallery.

Al Features Current Project Features

Q search

Cotegores: tems [how Al pescrptons

Gererdl ADF Mobile AMX Page

Business Tier Launches the Create ADF Mobile AMY Page dislog, in which you creste a new
(5 Clet Tier seleton ADF Habie AV Page (amx) file. To enabl this option you must selct a
ADF Deskiop Inaration projct or a le wihin 2 project i the Applcation Navigator

- Swingl AWT
e
piri

& A0F Moble Feature

OEBPS/img/editdeviceaccess1.png
& Oracle JDeveloper 11g Release 2 - Application33.jws : ApplicationController, jpr,

Ble Edt ew Applcation

Refactor

Search Wavigate

Buld Run Versoning Tooks

BoHa 90 XEE QO -O & didd n- > -%- 4

|application Navigator *

S sossaenss

IProjects

ApplcationController

{23 Application Sources.
ViewControler

=l Applcaion Resources
&£ Connections

S
8 connectiont

Borsce
=3 Dssarptrs

[META-INE

=[] ADF META-INF
6] ac-confg

5] acn-configoxnt

I Daka Controls
IRecently Opened Fes

®Y

1= adfm-applcation.xm - Structure. X
n e
-4 Applcation

&) Feature Reference.

Q-

Find

<ol version="1.0" encoding=
El<aatnt: application xulns:xs

smlns: adens

</adfme:application>

window tielp

O @starpage x |[6lsckut-sppication i % | K6 adir-festurexnl %

[e R
TTF-6" 2>

Btep: /o w3, oxg/2001 MULSchena-instan
‘htep: //xlns. oracle. con/Jdev/adfne” n

appControllerFolder="ApplicationController">

eaturel”/>
cature2” allowbevicehccess="true"/>

OEBPS/img/safari_debug.png
Advanced

EZNS =P S © |

General_Bookmarks Tabs AUtoFill Passwords Security Privacy Notifications Extensions.

00 #'

Advanced

() Never use font sizes smaller than
[Press Tab to highlight each item on a webpage
‘Option-Tab highiights each it

Accessibilty:

Style sheet: | None Selected

Default encoding: [Western (ISO Latin 1)

Proxi Change Settings....

menu bar

(¥ Show Develop menu

OEBPS/img/date_control.png
[E1 4DF Mobie Input Date wj Label
Single Selection | [E] ADF Hoble Input Dot
Text >

Cancel

OEBPS/img/ios_debug2.png
& ADF Mobile for i0S Deployment Profile Properties

Q Search

- e Groups

- Project Output
Contributars
Fiters

Library Dependencies

Profie Dependencies

~ Applcation Images
Device Orentations

i0s Options

Applcation Detals

Applcation Bunde 1d: |com.company MabieApplication
‘Appication Avchive Name: [MobieApplication

Deployment

Miimum (05 Version
Simltor Target yersion:
Target Eaniy:

Buld Mad:

Release

OEBPS/img/create_databound.png
Greate
AOF Hobil Chrt
AOF Hobile Gauge.
@ A0F Hobie Gzsarsshic e,
£ ADF Hobie Ieraor
AOF Hobile Lt View,
W ADF Mobile Thematic Map.
Eorm
Multiple Selection
Singe selecton

Cancel

OEBPS/img/patch4genappset.png
Feature References.

Security

[oradeMobieAppication v
[com.company OradelobieAppication

[This is an ADF Mobie appication.

0

I
:
g
‘ﬂ‘

OEBPS/img/maa_import.png
& Select MAA File to Import.

Location: | 21 C:\1DeveloperlmyworkiEmployeesideployiEmpoyees_archive ~| @ © 3 (9 I B

wark

@

Documents

il name: [Emplyees arcivemaa

Filetype: [MaA Fils (*.maa)

OEBPS/img/button10.png

OEBPS/img/rating_gauge.png

OEBPS/img/arch_final.png
ADF Mobile
| > Browser
(Trinidad)

ADF Faces.
Rich Client

| | hird party
Web Sites

Configuration
Server

Web Services
— 1| soars
REST)

10400 $5300Y B ‘0SS WSLUSBRUB EBSPEID

ol

OEBPS/img/split_screen1.png
([Default.amx * |

W m

Phone ~|[100% v| T8) | <hoFeaturs Content Selected> ~

Primary Default ! Secondary

button

Back

Q- Fin

Source Bindngs History |Preview,

d G Rk E

e

e
=

<7l version="1.0" encoding="UTF-8" 7>
<am:view xmlns:xsi="Hetp: / /v, u3. ory/2001 MHLSchena-instance”
smlns: awx="heep: //xulns. oracle. con/ade /uf /am”
xmlns: dven="Hetp: / /xulns. oracle. con/adf /uf /am:/dve">
<amx:panelPage id="ppl™>
<amx: facet name="header™
header” value="Default’/>

< facet name-prinary™>
<ams:comandButton 14-"comandButtonz” text="Prinary’/>
<amk: gacets
<am: tacet. name="secondsry">
<amx:comandButton 1d-"comnandButcon3” tex
<amk: gacets
<t outputText 14-“otpuCTeRtL”
valne-"Tuis exsuple shovs the buttons i the
various facets. To go back, click on
e Back buccon belor. />
<ams:comandButton. 1d="comandButtonS” texta"Back” action:
<am: facet, nene-"tooter™
< CommanBuLton. 10-"CoumaRBNTLoL” Text- ToterL />
S———————— e

Secondary”/>

_back"/>

< ampanelpage#ap ~ amcoutputtextFoutputtextl I

Source, Bindings History Preview |

OEBPS/img/createtextpref.png
rem——
@

sppcaton
FestureReforences | | Pefrences B2 Wi
Preferences Orace Moble App 1
seaty) Versin refrenceType
53] How Are You Getting There? pe: (Text
= [2 Select four Means of Transport | Default: http:/jsecurity.foo.comjpravider

& Hode of Transportaion
&3] Your_GPS Locatons
s settings

& ST

49 ser e
& pssword

[searet

OEBPS/img/amxcontentdefine.png
adff-sppliction i [&) adfmf-featurexml *

Festures + X

0+ Name Vendar Version

featurel Featurel

General | Constraints | Content Preferences | Security

Contert: X7

1 Type @
3
<

File; [productsjproducts-task-fow sml#products-task flow |+

Inchudes + X

Type Fie

Stylesheet productsjcssfproducts.css

OEBPS/img/remoteurlconfig.png
General | Constraints | Content Preferences | Security

Cortent: *-X T

10+

e e

OEBPS/img/features_iphone33.png
Garrier %

OEBPS/img/iosdeployaction.png
Deployment Action

S Derloyment Acion Select a deployment action from the lst below.

© summary

Deploy to distribution package
Deploy to iTunes for synchronization to device

Deploy the mobile application to an 105 simulator..

e B Eish Cancel
el e 5)

OEBPS/img/ios_prefmenu.png
App Preferences.

App Boolean [@

App Number 123

App List fom 1 >
AppText defaulttoxt

App Secret Text

App Page >

F1 Proferences.

1 Boolean o @

OEBPS/img/connections_constraint.png
Greate ADF Mobile Login Connection

Configure a connection to provids remote authentication services for an

=
ADF Mobie Appication.

Authentication | Authorization
Access Control URL;

http://10.0.0.0/identity/authorize

Fiker List of User Roles:

+ X

Fier List of Privleges:

+ X

Test Connect
Status:

Successfully establshed connections to login URL, gout URL and access control
URL,

Help

o Cancel

OEBPS/img/taskflow_file2.png
[mew-flowxml *

@ Qon o T RATHE

g

omponent Palette x (=]

Q

Bounded Task Flaw

view!

Diagram Overview Source History. (e

[ADF Wbl Task Fiow

I Source Elements
=l Companerts

— ctivies
=] wethod call
| © Router

vew

~ ConrolFow
b Contol lw Case
42 Widkard CotrolFlow Rule

I Diagram Annotations

@tack Fow-cefintion - Newflow .. X

1 Qrnd

General

o TeskFow o
oot acty: (Bl <]
e
L

Description

.

Managed Beans

Customization

OEBPS/img/new_amx_page.png
& New Gallery.

Al Features | Current Project Features

This st fitered according to the current projects selected festures.

Q Search

(Categories Irems:

(] show Al Descrptions
General

& A0F Moble Feature
Susiness Ter

= it Tir. (53 Ao e Taskfom
o
AOF Mablle XML Page
Sning /AT o
" oasererer Lounchesth Create A0F obie 1L Page e, inwhih you reate anew

skeleton ADF Hobile 3L Page (.amx) fie. To enable tis option, you must select @
web Tier projector a il within 2 project i the Appication Navigator,
Ll Ttems

OEBPS/img/gotopage3.png
| productdetails amx - Structure
e
Warnings (34)
EREI
&

Facet| Insert Before Panel Page
Panel| Insert Inside Panel Page »
Sy Panel Insert after Panel Page »

Hrocet

Surround With,
Eacets - Panel Page »
Refactor »

Expand All elow
Collspse Al Below
Shaw A Top
Show Root

e ctnx
Copy cue
I aste v
X pekete Delete

Gotosource

Goto Properties
Go to Declaration

OEBPS/img/edtidefualtprofiles.png
& Application Properties - C:\JDeveloper\mywork\Employees\Employees. jws

Q search

‘Applcation Content
Customization Liraries

IDE Perfarmance Cache
Libraries and Classpath
Maven

Resource Bundies

Run

W Polcy Store

Deployment

(O Use Custom Settings
(@) Use Applcation setings

Custormize Settings.

Deployment Profes:

Bncradi (AOF Hoble for Ancrad)

1051 (ADF Mobie for 05)

OEBPS/img/ios_nestedpage.png
i Pane

:

——
SampieOropdomn2 S >

PR . |

OEBPS/img/listview_gallery_ui.png
& ListView Gallery.

Cotegories [yariatons:

Description

Atext feld appears ot the It sc of the s tem.

OEBPS/img/features_general.png
(D)startpage x| adnf-feature.nl

Features

Festures + X

General Constraints | Contert | Preferences | Security

Descripton
This i a Feature applcation.

Ufecycl Event Lisener:
epplcation apprander kN

oo or con: easoitom rber g JQ

x30

S e feeifston spogbaadng Y

72572

OEBPS/img/area_chart.png
Vs Title

Growp A

GroupB.

GroupC

Group D

OEBPS/img/ipad_landscpl.png

OEBPS/img/hiddennavbar.png
Carries = 102 PN]

[

Jack Smith N
Bruce Smith s
Dan Johnson N
Ted Dublin N
Kent Tooling >
Owen Kindling >
Josh Trails N
Travis Jiles s
Kevin Leering N

