Mobile Developer's Guide for Oracle Application Development Framework
11g Release 2 (11.1.2.4.0)
E24475-03
October 2013
Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to use Oracle JDeveloper to create mobile applications that run natively on devices.
Oracle Fusion Middleware Mobile Developer's Guide for Oracle Application Development Framework 11g Release 2 (11.1.2.4.0)
E24475-03
Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Liza Rekadze, John Bassett
Contributing Author: Cindy Hall
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to the Mobile Developer's Guide for Oracle Application Development Framework.
This document is intended for Oracle ADF developers tasked with developing applications that run on-device and are intended for users working almost exclusively in mobile environments.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.2.4.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
.	
Sections	Changes Made
---	---
Chapter 1, "Introduction to ADF Mobile"	
Section 1.1, "Introduction to ADF Mobile"	Section restructured to address clarity issues.
Section 1.2, "ADF Mobile Runtime Architecture"	Section adjusted to reflect absorption of PhoneGap by Apache Cordova.
Chapter 3, "Setting Up the ADF Mobile Environment"	
Section 3.2, "Prerequisites for Developing ADF Mobile Applications"	Section revised to clarify the supported software versions.
Section 3.3, "Setting Up JDeveloper"	Section revised to clarify the supported versions of JDeveloper. Link to the Certification and Support Matrix for Oracle JDeveloper and ADF provided.
Section 3.3.1.1, "Configuring the Environment for Form Factors"	Section modified to reflect the introduction of new form factors.
Section 3.4, "Setting Up Development Tools for iOS Platform"	Section revised to clarify iOS software and tools versions. Information about Apple licensing added.
Section 3.6, "Testing the Environment Setup"	Section added.
Chapter 4, "Getting Started with ADF Mobile Application Development"	
Section 4.2.2.1, "About the Application Controller Project-Level Resources"	Section revised to clarify the concept that an application controller project contains application-wide artifacts.
Section 4.2.2.3, "About Automatically Generated Deployment Profiles"	Section added.
Chapter 5, "Defining an ADF Mobile Application"	
Section 5.4, "Invoking an ADF Mobile Application Using a Custom URL Scheme."	Section added.
Section 5.7.3, "Using the activate and deactivate Methods to Save Application State"	Section added.
Section 5.12.5, "How to Version ADF Mobile Skins"	Section added.
Chapter 6, "Creating ADF Mobile AMX Pages"	
Section 6.2.2, "What You May Need to Know About Supported Activities and Control Flows"	Section adjusted to include description of the task flow return.
Section 6.2.11, "How to Specify the Page Transition Style"	Section modified to add information on new BiDi values for page transitions.
Chapter 7, "Creating ADF Mobile AMX User Interface"	
Section 7.2, "Designing the Page Layout"	Section modified to add information on new BiDi values for page transitions and animation.
Section 7.2.7.4, "What You May Need to Know About Using a Static List View"	Section modified to clarify the usage of the editable List View component.
Section 7.4, "Enabling Gestures"	Section modified to add information on new BiDi values for page transitions and animation.
Section 7.5.7, "How to Create a Pie Chart"	Section modified to include information on pie chart sorting.
Section 7.5.11, "How to Create a Status Meter Gauge"	Section modified to include the description of new status meter gauge indicator configuration. Section modified to include information on the reference line support for status meter gauge.
Section 7.5.12, "How to Create a Dial Gauge"	Section modified to include information on the dial gauge scale labeling.
Section 7.5.13, "How to Create a Rating Gauge"	Section added.
Section 7.5.16.4, "Defining a Custom Base Map"	Section modified to clarify BiDi support.
Section 7.5.16.5, "Applying Custom Styling to the Thematic Map Component"	Section and examples modified to include information on the default Thematic Map colors configuration.
Chapter 8, "Using Bindings and Creating Data Controls"	
Section 8.2.2, "How to Reference Binding Containers"	Updated Table 8–1, "Runtime Properties."
Section 8.2.4.2, "ADF Managed Beans"	Added managed bean code examples.
Section 8.4.1, "What You May Need to Know About Serialization of Bean Class Variables"	Added information about using the
Section 8.5.4, "How to Use the createContact Method"	Section and examples updated to include Java bean code. Also added note that the
Section 8.5.6, "How to Use the updateContact Method"	Section and examples updated to include Java bean code. Also added note that the
Section 8.5.5, "How to Use the findContacts Method"	Added note that the
Section 8.5.9, "How to Use the displayFile Method"	Section added.
Section 8.7, "Data Change Events"	Updated information about
Chapter 9, "Using Web Services"	
Section 9.2.3, "How to Create a Web Service Data Control Using REST"	Section modified to reflect the new Create Web Service Data Control wizard.
Section 9.5.3, "What You May Need to Know About Credential Injection"	Section and examples adjusted to reflect substitution of
Section 9.6.1, "How to Add and Delete Rows on Web Services Objects"	Section added to describe new functionality of inserting and deleting rows on web service objects.
Section 9.2.2, "How to Customize SOAP Headers in Web Service Data Controls"	Section added.
Chapter 10, "Administering Web Services"	
Section 10.1, "Introduction to Administering Web Services"	Section added as part of the new chapter.
Section 10.2, "Using the Configuration Service"	Section moved from Chapter 9, "Using Web Services" to the new Chapter 10, "Administering Web Services." Section also revised to clarify the timing of starting up the Configuration Service.
Section 10.2.1, "How to Set Up the Configuration Service on the Server"	Section added.
Chapter 13, "Enabling User Preferences"	
Section 13.5, "Creating a Preference for the Configuration Service URL"	Section added.
Chapter 14, "Setting Constraints on Application Features"	
Section 14.1, "Introduction to Constraints"	Section revised to clarify the difference between setting constraints on an application feature and setting constraints on the application content.
Chapter 16, "Enabling Push Notifications"	
Section 16.1, "Introduction to Push Notifications"	Chapter added to document push notifications for ADF Mobile applications.
Chapter 17, "Deploying ADF Mobile Applications"	
Section 17.2.3, "How to Create an Android Deployment Profile"	Text revised to note that Google Cloud Messaging Library is required for the deployment of applications that use push notifications.
Section 17.7, "Creating Unsigned Deployment Packages"	Section added.
Section 17.8, "Deploying ADF Mobile Applications from the Command Line"	Section revised to include command line options for ADF Mobile Application Archive (
Chapter 18, "ADF Mobile Application Security"	
Section 18.4.3, "Enabling Login without the Access Control Service"	Section added.
Section 18.4.10, "What You May Need to Know About Injecting Basic Authentication Headers"	Section added.
Section 18.4.12.3, "Creating a Custom Login HTML Page"	Section revised to describe login pages for Android-powered devices.
Chapter 19, "Testing and Debugging ADF Mobile Applications"	
Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript"	Section modified to reflect changes in locations of properties files.
Section added.	
Section 19.3.5, "How to Configure the Debug Mode"	Added information on deployment in debug mode log message.
Section 19.4.4, "How to Use Xcode for Debugging and Logging on iOS Platform"	Section added.
Appendix B, "Application Container APIs"	
Section B.1, "Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature"	Section revised to illustrate how to enable access to the Apache Cordova API by defining a This appendix replaces Chapter 6, "Controlling the Display of Application Features" in 11g Release 2 (11.1.2.3.0).
Section B.3, "Accessing Files Using the getDirectoryPathRoot Method"	Section revised to document using the
Describes ADF Mobile concepts, technology, and development approach.	
Part I contains the following chapters:	
This chapter introduces Oracle ADF Mobile—a metadata-based application development framework within Oracle JDeveloper that enables you to create multi-featured applications for Apple iOS and Google Android-powered devices from a single source using the declarative development approach. The applications run natively on the mobile devices.	
This chapter includes the following sections:	
From a single code base, using the standard HTML5, CSS, and Java technology, ADF Mobile enables you to create and extend an application that can house different types of content packaged for either iOS or Android platform.	
Within the application, the contained functional areas are referred to as application features and represent one or more specific pieces of the application's functionality.	
The following types of application features can coexist within the same ADF Mobile application:	
The workflows of ADF Mobile AMX pages are portable across platforms.	
Figure 1-1 shows the user interface rendered for an application feature implemented using ADF Mobile AMX.	
For more information, see the following:	
The URL endpoints are portable across platforms.	
Figure 1-2 shows the user interface rendered for an application feature implemented using remote URL.	
For more information, see the following:.	
An ADF Mobile application enables the integration of its embedded application features with such native device services as phone, camera, GPS, contacts, and so on. In addition, ADF Mobile enables support for offline application use. The device services can be accessed from the local HTML, ADF Mobile AMX, Java, and remote web applications. This allows the end user to perform such tasks as place a call from the mobile device by clicking a name listed in the contacts for an application feature for a mobile field service report form or scan a receipt to update a mobile expense report. For more information on ADF Mobile user experience, see Appendix D, "ADF Mobile Application Usage."	
Although each ADF Mobile application feature may have its own set of preferences defined by the end user, ADF Mobile enables you to apply a uniform style of preferences to each of the application features embedded into the ADF Mobile application. Further, you can improve the end-user experience by grouping these mobile application features by functionality. For example, you can group a mobile application feature that provides customer contacts together with one for product inventory into the same ADF Mobile application. You can also control the display of the application features by such criteria as user role or device version.	
From the end-user perspective, an application built with ADF Mobile is launched by activating its application icon on the mobile device, as Figure 1-3 shows. For more information, see Appendix D, "ADF Mobile Application Usage."	
After the ADF Mobile application opens, the end user activates an icon for an application feature. The application features can display as icons on a navigation bar (see the bottom portion of Figure 1-4) or in a page format with larger icons in a homescreen page, commonly referred to as a springboard (see Figure 1-5).	
Based on a hybrid mobile architecture and being an extension of Apache Cordova (see http://cordova.apache.org	
), ADF Mobile enables HTML5, as well as ADF-defined pages and task flows to be rendered in the same downloadable application.	
ADF Mobile consists of the following parts:	
Note: The model layer provides the facility to connect to a local database.	
Note: ADF Mobile's model-view-controller stack resides on a mobile device and represents reimplementation of ADF's model-view-controller layers. UI metadata is rendered to native components on device and is bound to the model through the ADF Model.	
For additional information, see Section 2.9, "Comparison of ADF Mobile and Server-Based Oracle ADF."	
Figure 1-6 shows the overall runtime architecture of ADF Mobile.	
As shown in Figure 1-6, the following elements comprise the ADF Mobile runtime architecture:	
This chapter describes the development approach for ADF Mobile applications.	
This chapter includes the following sections:	
To ensure the best design for your ADF Mobile application, Oracle recommends that you follow an iterative, step-by-step development process.	
Although you can develop the application features in addition to the ADF Mobile application itself, this workflow is not necessarily the standard case; application development involves creating the ADF Mobile application and embedding the application features that can be created by other developers. In other words, you create an ADF Mobile application by combining content that you create yourself with the content that was developed separately by someone else and then integrated into the ADF Mobile application. Knowing Xcode or Android application development is not a prerequisite for creating either the ADF Mobile application itself or the specific content for an application feature.	
For more information, see Chapter 4, "Getting Started with ADF Mobile Application Development."	
Although development needs vary depending on the target platform, the minimum requirements for creating, building, and testing an ADF Mobile application are as follows:	
For more information on prerequisites, see Section 3.2, "Prerequisites for Developing ADF Mobile Applications."	
ADF Mobile supports the following platforms:	
The following mobile devices are supported:	
For detailed information on certified and supported mobile devices and platforms, see the "Mobile Devices and Operating Systems" section in the Certification and Support Matrix for Oracle JDeveloper and ADF.	
The supported database is SQLite (see Chapter 11, "Using the Local Database").	
The following are potential architectures for your ADF Mobile application:	
If the application is to consume JavaScript Object Notation (JSON) data, then neither web service data controls nor SOAP and REST-XML web services are involved. Instead, JSON services must be invoked directly, and then JSON data parsed in the application code.	
For more information, see the following:	
Typically, you perform the following activities when building an ADF Mobile application:	
The steps you take to build your ADF Mobile application will generally occur as follows:	
The next steps are to determine whether the application is required to work in a connected or disconnected mode; understand the device services integration requirements; determine the server-side data source and protocol.	
When designing server-side services, it is critical to provide for optimization for the mobile access: if server-side web services are very complex, it would be difficult for the mobile application to consume them. This is not only due to the amount of data that needs to be passed, but also the amount of the client-side logic that must be written to process the results. It is preferable to expose a set of server-side interfaces provided specifically for mobile. You also need to understand the client business services that must be developed, such as all Java modules and data controls that need to be created. In addition, you should create wireframes for the views and task flow in the application, which can help you to visualize the application functionality and assist in the development process.	
As a final design step, you should consider how to partition the application functionality into separate application features that represent a group of functionality and associated views. Then you can start designing the client user interface and task flows by creating wireframes.	
For more information, see For more information, see Fusion Applications: The New Standard for the Complete User Experience at http://www.oracle.com/webfolder/ux/applications/Fusion/index.html	
For more information, see the following:	
For more information, see the following:	
You then proceed to deploying your application to the mobile device or simulator.	
Note: With ADF Mobile applications, it is required that you deploy to the device or simulator before attempting any testing and debugging (see Chapter 19, "Testing and Debugging ADF Mobile Applications"). The application cannot be run until you deploy it.	
For more information, see Chapter 17, "Deploying ADF Mobile Applications."	
For more information, see Chapter 18, "ADF Mobile Application Security."	
For more information, see the following:	
The lifecycle of an ADF Mobile application is driven by events that occur at the levels of the mobile device operating system, the JVM, and ADF Mobile. The application's reaction to these events is enabled through the use of the oracle.adfmf.application.LifeCycleListener	
's methods. For more information, see Section 5.7, "About Lifecycle Event Listeners."	
After setting up your development environment (see Chapter 3, "Setting Up the ADF Mobile Environment"), you can examine ADF Mobile sample applications located in the PublicSamples.zip	
file within the jdev_install	
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples	
directory on your development computer.	
The sample applications demonstrate the following:	
For more information, see Appendix F, "ADF Mobile Sample Applications."	
ADF Mobile AMX is a subframework within ADF Mobile and provides a set of layout, field, and data components that enable you to create an application feature that behaves appropriately for both the iOS and Android user experience. ADF Mobile AMX supports some of Oracle ADF components, data controls, bindings, and the Expression Language that belong to the following layers:	
Differences in every layer exist due to the inherent differences between a mobile application and a web application. For more information, see Section 2.9, "Comparison of ADF Mobile and Server-Based Oracle ADF."	
Table 2-1 summarizes the functionality, components, and technologies supported by ADF Mobile and compares them to those supported by a server-based Oracle ADF application.	
Table 2-1 Differences Between ADF Mobile and Server-Based Oracle ADF Application	
Layer	Supported by ADF Mobile
---	---
ADF Model	
Full range of data sources and data controls	
View	
Controller	For ADF Mobile AMX application feature (see Section 2.8, "ADF Mobile AMX Application Feature"):
Full ADF task flow	
Java Support	JavaME CDC and Java 1.4
As described in Table 2-1, in the view layer, ADF Mobile provides you with an option of using locally rendered or server-rendered views to present the user interface. ADF Mobile AMX enables the most seamless user experience. For the server-based Oracle ADF, the user interface is rendered on the server and is primarily provided through ADF Faces rich client components or Trinidad components, both of which are based on the JSF technology.	
In the controller layer, an abbreviated version of the ADF task flow that supports a subset of components is provided when ADF Mobile AMX contents are used in a mobile application. ADF Mobile task flow supports views, control flow case, wild card control flow case, method calls, and routers, but does not support regions. In ADF Mobile, the page flow logic resides entirely on a mobile device, enabling the page navigation without a round trip to the server.	
In the ADF Model layer, ADF Mobile supports SOAP, REST XML, and REST JSON as the server-side data sources. In addition, ADF Mobile supports JDBC connection and APIs to the local database, but it does not support ADF Business Components. Furthermore, ADF Mobile does not implement all of the Java methods supported by the server-based ADF. For example, you cannot use the programmatic access binding context. Instead, you can access the binding data by invoking the Expression Language (EL) expressions. In addition, since ADF Mobile does not support the Java proxy for web services, to access web services programmatically, you must use data controls in conjunction with the web services invocation helper classes.	
For Java support, ADF Mobile's embedded Java virtual machine follows the JavaME CDC specification, which is based on Java 1.4, meaning that you cannot use any Java 1.5 or later features in your Java code.	
Describes how to set up the development environment for ADF Mobile application development and provides instructions on creating an ADF Mobile application.	
Part II contains the following chapters:	
This chapter provides information on setting up the ADF Mobile environment for application development and deployment.	
This chapter includes the following sections:	
Before developing an ADF Mobile application, you must set up your development environment by downloading, installing, and configuring various software components.	
To set up your development environment, follow steps described in Section 3.2, "Prerequisites for Developing ADF Mobile Applications", and then prepare a mobile device or its simulator.	
Prerequisites for developing an ADF Mobile application vary depending on the type of work you are planning to do, as well as your target platform:	
Before you start creating an ADF Mobile application for iOS, ensure that you have the following available:	
For more information, see Section 3.4, "Setting Up Development Tools for iOS Platform."	
If Android is your target platform, the following is required:	
For more information, see Section 3.5, "Setting Up Development Tools for Android Platform."	
You do not need to install any additional tools for creating specific types of ADF Mobile application content (HTML, remote URL,or ADF Mobile AMX). For more information, see Section 5.10, "Defining the Content Types for an Application Feature."	
Note: Since PhoneGap was absorbed by Apache Cordova, if you have any PhoneGap plug-ins installed, you need to perform the migration to Cordova 2.2 versions of those plug-ins.	
Before you deploy your ADF Mobile application (see Chapter 4, "Getting Started with ADF Mobile Application Development"), ensure that you have the following available:	
Oracle JDeveloper and its ADF Mobile extension are essential tools used in developing ADF Mobile applications.	
Before you begin:	
Consult the Certification and Support Matrix for Oracle JDeveloper and ADF to find out which release of Oracle JDeveloper is compatible with software listed in Section 3.2.1, "What You Need to Create an Application" for your target platform.	
Download and install the appropriate release of Oracle JDeveloper. Select the Studio Developer (All Features) role when prompted.	
For more information, see the following:	
To download and install the ADF Mobile extension:	
Note: You might need to configure proxy settings by selecting Tools > Preferences from the main menu, and then Web Browser and Proxy from the tree on the left of the Preferences dialog.	
Alternatively, if the network access is not available, you can select the Install From Local File option. In this case, you need to point to the ADF Mobile extension file that you already downloaded to a directory on your development computer.	
Note: You must comply with all of the license terms and conditions with respect to the Oracle ADF Mobile Program available at	
In addition, verify that you installed the correct version of ADF Mobile. To do so, select Help > About from the main menu, then select the Extensions tab on the About Oracle JDeveloper dialog, and then examine the extension list entries by scrolling down to ADF Mobile, as Figure 3-4 shows.	
In addition to the preceding steps, your development environment must be configured for target platforms and form factors. For more information, see Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors"	
Before you start developing an ADF Mobile application, you must configure JDeveloper Preferences for appropriate platforms (see Section 3.3.1.2, "Configuring the Environment for Target Platforms") and form factors (see Section 3.3.1.1, "Configuring the Environment for Form Factors").	
A form factor is a specific device configuration. Each form factor is identified by a name that you specify for it and contains information on the specified resolution denoted by pixel width and pixel height.	
Form factors defined in preferences are used in the ADF Mobile AMX page Preview tab (see Section 6.3.2.2, "Using the Preview"). You can select or switch between various form factors to see how an ADF Mobile AMX page is rendered in various form factors. You can also see multiple form factors applied to the same page using the split screen view.	
For more information, see Section 5.12.1, "About the adfmf-config.xml File."	
Before you begin:	
Download and install JDeveloper and the ADF Mobile extension, as described in Section 3.3, "Setting Up JDeveloper."	
To configure the form factors:	
The ADF Mobile page is populated with default settings.	
This preference page allows you to create and manage a set of named form factors that combine a screen resolution size and platform.	
Note: If you do not set the name and resolution for your form, ADF Mobile will display an error message.	
To start developing for one of the platforms supported by ADF Mobile, you need to provide JDeveloper with such information as the name of the platform and directories on your development computer that are to house the platform-specific tools and data.	
Before you begin:	
Download and install JDeveloper and the ADF Mobile extension, as described in Section 3.3, "Setting Up JDeveloper."	
To configure your development environment for the target platforms:	
Each platform-specific page hosts the preferences for the platform SDK (Android or iOS), collecting any necessary information such as the path that ADF Mobile needs to compile and deploy either Android or iOS projects:	
In addition to general-purpose tools listed in Section 3.2, "Prerequisites for Developing ADF Mobile Applications," you might want to set up an iPhone or iPad when getting ready for development of an ADF Mobile application for the iOS platform (see Section 3.4.3, "How to Set Up an iPhone or iPad").	
Since iPhone and iPad simulators are included in the iOS SDK installation, you do not need to separately install them. For more information, see Section 3.4.4, "How to Set Up an iPhone or iPad Simulator."	
You download Xcode from http://developer.apple.com/xcode/	
.	
After installing Xcode, you have to run it at least once and complete the Apple licensing and setup dialogs. If these steps are not performed, any build and deploy cycle from JDeveloper to Xcode or device simulator will fail with a "Return code 69" error.	
Note: Since older versions of Xcode are not available from the Mac App Store, in order to download them you must obtain an Apple ID from	
You download iOS SDK from the iOS Dev Center at http://developer.apple.com/devcenter/ios/	
.	
Note: Since older versions of iOS SDK are not available from the Mac App Store, in order to download them you must obtain an Apple ID from	
In your ADF Mobile application development and deployment, you can use either the iPhone, iPad, or their simulators (see Section 3.4.4, "How to Set Up an iPhone or iPad Simulator"). If you are planning to use an actual iPhone or iPad, which is preferable for testing (see Section 19.2, "Testing ADF Mobile Applications"), you need to connect it to your computer to establish a link between the two devices.	
To deploy to an iOS-powered device, you need to have an iOS-powered device with a valid license, certificates, and distribution profiles. For more information, see Chapter 17, "Deploying ADF Mobile Applications."	
Note: Since Apple's licensing terms and conditions may change, ensure that you understand them, comply with them, and stay up to date with any changes.	
In your ADF Mobile application development and deployment, you can use either the iOS-powered device itself (see Section 3.4.3, "How to Set Up an iPhone or iPad") or its simulator. Deploying to a simulator is usually much faster than deploying to a device, and it also means that you do not have to sign the application first.	
A simulator can be invoked automatically, without any additional setup.	
Note: Before attempting to deploy your application from JDeveloper to a device simulator, you must first run the simulator.	
If you are planning to use web services in your application and you are behind a corporate firewall, you might need to configure the external network access. You do so by modifying the network settings in the System Preferences on your development computer. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
In addition to the general-purpose tools listed in Section 3.2, "Prerequisites for Developing ADF Mobile Applications," you might want to set up an Android-powered device when getting ready for development of an ADF Mobile application for the Android platform (see Section 3.5.2, "How to Set Up an Android-Powered Device").	
Since emulators are included in the Android SDK installation, you do not need to separately install them. However, you cannot use an emulator until you create its configuration. For more information, see Section 3.5.3, "How to Set Up an Android Emulator."	
To develop for the Android platform, you can use any operating system that is supported by both JDeveloper and Android.	
For more information, see the "Developer Tools" section of the Android Developers website at http://developer.android.com/tools/index.html	
.	
Android SDK includes development tools that you need to build applications for Android-powered devices. Since the Android SDK is modular, it allows you to download components separately depending on your target Android platform and your application requirements.	
When choosing the platform, keep in mind that ADF Mobile supports Android 2.3 or later.	
Before you begin:	
Ensure that your environment meets the operating system, JDK version, and hardware requirements listed in the "Get the Android SDK" section of the Android Developers website at http://developer.android.com/sdk/index.html	
.	
Note: Ant, Eclipse, and Linux requirements are not applicable to the ADF Mobile development environment.	
To install the Android SDK:	
http://developer.android.com/sdk/index.html	
. http://developer.android.com/sdk/installing.html	
. Skip step 3 in the Android SDK installation instructions, as configuring Eclipse is not required for the ADF Mobile application development. In your ADF Mobile application development and deployment, you can use either the Android device itself, which is preferable for testing (see Section 19.2, "Testing ADF Mobile Applications"), or an emulator (see Section 3.5.3, "How to Set Up an Android Emulator").	
For information on how to set up the Android-powered device, follow the instructions from the "Using Hardware Devices" section of the Android Developers website at http://developer.android.com/tools/device.html	
.	
Note: You might experience issues when using USB connectivity for the device-based debugging. For more information, see Section 19, "Testing and Debugging ADF Mobile Applications."	
Your target Android-powered device might not be listed in the USB device driver's.inf	
file, resulting in the failure to install the Android Debug Bridge (ADB). You can eliminate this issue as follows:	
[Google.NXx86]	
and [Google.NTamd64]	
sections of the android_winusb.inf	
file. For more information, see the "Google USB Driver" section of the Android Developers website at http://developer.android.com/sdk/win-usb.html	
.	
In your ADF Mobile application development and deployment, you can use either the Android device itself (see Section 3.5.2, "How to Set Up an Android-Powered Device") or its emulator. Deploying to an emulator is usually much faster than deploying to a device, and it also means that you do not have to sign the application first.	
For information on how to create an emulator configuration called Android Virtual Device (AVD), follow the instructions from the "Managing Virtual Devices" section of the Android Developers website at http://developer.android.com/tools/devices/index.html	
.	
You need to create an AVD for each Android platform on which you are planning to test your application.	
For information on how to use the emulator, see the "Using the Android Emulator" section in the Android Developers website at http://developer.android.com/tools/devices/emulator.html	
.	
You might want to do the following when using the emulator:	
You may find it useful to be able to save the emulator state or reuse the saved state. To do so, you manipulate the avd	
files or folders that are located in the C:\Users\	
username	
\.android\avd	
directory (on a Windows computer). Each avd	
folder contains several files, such as userdata.img	
, userdata.qemu.img	
, and cache.img	
. You can copy the cache.img	
file to another emulator's avd	
folder to use that state with another emulator. Alternatively, you can run commands listed in Table 3-1 from the command line.	
Table 3-1 Commands for Saving the Android Emulator State	
Command	Description
---	---
File that contains all the emulator state snapshots. Default value:	
Disables all of the emulator state snapshot functionality by preventing a snapshot storage file from being mounted.	
Name of the emulator state snapshot within the storage file for the autostart and autosave. Default value:	
Performs a full boot without performing autosave;	
Does not autosave to snapshot on exit; abandons the changed state.	
Shows a list of available snapshots.	
Does not try to correct the snapshot time on restore.	
Resets the use data image by copying it from	
For example, to use the saved state from the testsnap	
snapshot and auto-save back to it on exit, the following command should be executed from C:\Android\	
android sdk directory	
\tools>	
:	
Caution: When using this utility, keep in mind that in the process of loading, all contents of the system, including the user data and SD card images, will be overwritten with the contents they held when the snapshot was made. Unless saved in a different snapshot, any changes will be lost.	
Execute the following commands to create, save, and reuse the SD card:	
This produces a listing similar to the following:	
From the Android emulator, you can access your host computer through the 10.0.2.2 IP. To connect to the emulator from the host computer, you have to execute the adb	
command from a command line on your development computer or from a script to set up the port forwarding.	
To forward socket connections, execute	
adb forward	
local	
remote	
using the following forward specifications:	
tcp:	
port	
localabstract:	
unix domain socket name	
localreserved:	
unix domain socket name	
localfilesystem:	
unix domain socket name	
dev:	
character device name	
jdwp:	
process pid	
(remote only) For example, an arbitrary client can request connection to a server running on the emulator at port 55000 as follows:	
In this example, from the host computer, the client would connect to localhost:8555	
and communicate through that socket.	
For more information, see the "Android Debug Bridge" section in the Android Developers website at http://developer.android.com/tools/help/adb.html	
.	
If your development computer is behind a corporate firewall, you might need to execute the following command to start the emulator and initiate its connection with the browser:	
You can test your environment setup as follows:	
For more information on deployment, see Chapter 17, "Deploying ADF Mobile Applications."	
This chapter describes how to use the Oracle JDeveloper wizards and tools to create a basic ADF Mobile application and also describes the artifacts that are automatically generated when you create an application.	
This chapter includes the following sections:	
Because ADF Mobile is integrated within the JDeveloper design time, you can create, deploy, and test simple ADF Mobile applications (and most parts of more complex mobile applications) without writing a single line of code.	
The ADF Mobile extension provides JDeveloper with the application templates that seed the completed project with basic files. The first steps in building an ADF Mobile application are to assign it a name and to specify a directory where its source files will be saved. By creating an application with the application templates provided by JDeveloper, the workspace is automatically organized into projects, along with the required configuration files.	
You create an application using the application creation wizard.	
Before you begin:	
You must download the ADF Mobile application extension. For more information, see Section 3.3, "Setting Up JDeveloper." You may need to download and configure the ADF Mobile application extension for all target platforms.	
To create an ADF Mobile application:	
The application is the top-level structure of the ADF Mobile application. It organizes the different tiers of projects that you define in the subsequent pages of this wizard.	
This project stores all of the application-wide resources. For more information, see Table 4-1.	
application	
) and the location for the Java SOURCEPATH	
directory (src	
) and the Java output directory (classes	
). mobile	
), the location for the project's Java SOURCEPATH	
directory (src	
) and the Java output directory (classes	
). Tip: In addition to creating an ADF Mobile application following the above-mentioned steps, you can open the HelloWorld sample application (located in the	
After you create an ADF Mobile application project, JDeveloper adds application-level and project-level artifacts, which you access from the Application Navigator shown in Figure 4-7. These artifacts include two stub descriptor files: one used for configuring the ADF Mobile application itself, such as its name, the application lifecycle listener (LifeCycleListenerImpl.java	
), the login server connections for the embedded application features, and another that describes which application features comprise the ADF Mobile application. These files, which are called adfmf-application.xml	
and adfmf-feature.xml	
, are described in Section 4.2.2.1, "About the Application Controller Project-Level Resources" and Section 4.2.2.2, "About the View Controller Project Resources," respectively.	
JDeveloper also creates the DeviceFeatures data control. The Apache Cordova Java API is abstracted through this data control, thus enabling the application features implemented as ADF Mobile AMX to access various services embedded on the device. JDeveloper also creates the ApplicationFeatures data control, which enables you to build a springboard page. By dragging and dropping the operations provided by the DeviceFeatures data control into an ADF Mobile AMX page (which is described in Section 8.5, "Using the DeviceFeatures Data Control"), you add functions to manage the user contacts stored on the device, create and send both e-mail and SMS text messages, ascertain the location of the device, use the device's camera, and retrieve images stored in the device's file system.	
JDeveloper generates the files for ADF Mobile application in the application controller project. These files, described in Table 4-1, contain configuration files for describing the metadata of the ADF Mobile application. You access these files from the Application Resources pane of the Application Navigator, shown in Figure 4-8.	
The application controller project, which contains the application-wide resources, provides the presentation layer of the ADF Mobile application in that it includes metadata files for configuring how the application will display on a mobile device. This project dictates the security for the ADF Mobile application and can include the application's login page, an application-wide resource. The application controller project is essentially a consumer of the view controller project, which defines the application features and their content. For more information, see Section 4.2.2.2, "About the View Controller Project Resources."	
Tip: Place code that supports application-wide functionality, such as an application-level lifecycle listener, in the application controller project.	
Table 4-1 Mobile Application-Level Artifacts Accessed Through Application Resources	
Artifact(s)	File Location
---	---
For example:	
A stub XML application descriptor file that enables you to define the ADF Mobile application. Similar to the application descriptors for ADF Fusion Web applications, this file enables you to define the content for an application, its navigation behavior, and its user authentication requirements. For more information, see Section 5.2, "About the Mobile Application Configuration File."	
For example:	
Use to configure the default skin used for ADF Mobile applications. For more information, see Section 5.12, "Skinning ADF Mobile Applications."	
Application images	
For example:	
A set of images required for the deployment of iOS and Android applications. These include PNG images for application icons and splash screens. Deployment to an iOS-powered device, such as an iPhone, requires a set of images in varying sizes. The default iOS images provided with the project include:	
To override these images, see Section 17.2.4.3, "Adding a Custom Image to an iOS Application."	
For example:	
The	
For example:	
Enables you to set the application error logging, such as the logging level and logging console. For more information, see Section 19.4, "Using and Configuring Logging."	
For example:	
The configuration file for the Java virtual machine, JVM 1.4. Use this file to configure the application startup and heap space allotment, as well as Java and JavaScript debugging options. For more information, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."	
For example:	
Used to configure application-level settings, including the Configuration Service parameters. For more information, see the "adf-config.xml" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. See also Chapter 10, "Administering Web Services."	
For example:	
The repository for all of the connections defined in the ADF Mobile application. See also the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Within the application controller project itself, shown in Figure 4-9, JDeveloper creates the following artifacts, listed in Table 4-2.	
Table 4-2 Application Controller Artifacts	
Artifact(s)	File Location
---	---
For example:	
The default application lifecycle listener (ALCL) for the ADF Mobile application. For more information, see Section 5.7, "About Lifecycle Event Listeners."	
For example:	
Defines the available skins and also enables you to define new skins. For more information, see Section 5.12, "Skinning ADF Mobile Applications."	
For example:	
Maintains the paths (and relative paths) for the	
For example:	
The data controls registry. For information on using the DeviceFeature data control, which leverages the services of the device, see Section 8, "Using Bindings and Creating Data Controls." For information on the ApplicationFeatures data control, which enables you to create a springboard page that calls the embedded application features, see Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content." For more information see the "Configuring the ADF Binding Filter" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The view controller project (which is generated with the default name, ViewController	
, as illustrated in Figure 4-10) houses the resources for the application features. Unlike the application controller project described in Section 4.2.2.1, "About the Application Controller Project-Level Resources," the view controller project's metadata files describe the resources at the application feature-level, in particular the various application features that can be aggregated into an ADF Mobile application so that they can display on a mobile device within the springboard of the ADF Mobile application itself or its navigation bar at runtime. Further, the application feature metadata files describe whether the application feature is comprised of HTML or ADF Mobile AMX pages. In addition, the view controller project can include these application pages as well as application feature-level resources, such as icon images to represent the application feature on the springboard and navigation bar defined for the ADF Mobile application.	
Tip: Store code specific to an application feature within the view controller project. Use the application controller project as the location for code shared across application features, particularly those defined in separate view controller projects.	
The view controller project can be decoupled from the application controller project and deployed as an archive file for reuse in other mobile applications as described in Section 5.13, "Working with Feature Archive Files." In rare cases, an application controller project can consume more than one view controller project.	
Note: Adding an ADF Mobile view controller project as a dependency of another ADF Mobile view controller project, or as a dependency of an ADF Mobile application controller project, prevents the deployment of an ADF Mobile application. For more information, see Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."	
As shown in Table 4-3, these resources include the configuration file for application features called adfmf-feature.xml	
.	
Table 4-3 View Controller Artifacts	
Artifact(s)	File Location
---	---
For example:	
A stub XML descriptor file that enables you to define application features. For more information, see Section 5.8, "About the Mobile Feature Application Configuration File." After you have configured the Mobile Preferences as described in Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors," you can deploy this application using the default deployment profile settings. For more information, see Chapter 17, "Deploying ADF Mobile Applications."	
Application-Specific Content	
For example:	
The application features defined in	
After you create an application, ADF Mobile generates deployment profiles that are seeded with default settings and image files. Provided that you have configured the environment correctly, you can use these profiles to deploy an ADF Mobile application immediately after creating it by choosing Applications and then Deploy, as shown in Figure 4-11.	
Using the Deployment Action page, shown in Figure 4-12, you then select the appropriate deployment target.	
Note: iOS and Android application deployments to simulators and devices have distinct environment set up and configuration requirements. For more information, refer to the "Before You Begin" sections throughout Section 17.3, "Deploying an Android Application," and Section 17.4, "Deploying an iOS Application."	
As illustrated in Figure 4-11, ADF Mobile creates application-level profiles for both supported platforms (iOS and Android) and names them iOS1 and Android1.	
Note: ADF Mobile increments the name of each new deployment profile by 1. For example, iOS2, iOS3.	
You can accept the default values used for these profiles, or edit them by selecting the profile from the Deployment page of the Application Properties dialog and then clicking Edit. Figure 4-13 illustrates the Options page for a default Android application profile. For information on the values configured for ADF Mobile application profiles, see Section 17.2.3, "How to Create an Android Deployment Profile" and Section 17.2.4, "How to Create an iOS Deployment Profile."	
ADF Mobile packages the application and view controller projects as separate Feature Archive (FAR) files. These JAR files of ADF Mobile files are used as resources for other applications and are described in Section 17.5, "Deploying Feature Archive Files (FARs)." Because ADF Mobile creates these FAR files as dependencies to the ADF Mobile application profile, you can include or exclude them using the Profile Dependencies page of the Application Properties dialog, as illustrated in Figure 4-14.	
Note: The application controller project must contain a single FAR profile dependency; otherwise, the deployment will fail.	
Using the File Groups-related pages of the Project Properties dialog, you can customize the contents of the view controller FAR file, as shown in Figure 4-15. For more information on the Project Properties dialog, see the Oracle JDeveloper online help and also the "Configuring Deployment Profiles" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.	
In addition to the platform-specific deployment profiles, ADF Mobile also creates a deployment profile that enables you to package the ADF Mobile application as a Mobile Application Archive (.maa	
) file. Using this file, you can create a new ADF Mobile application using a pre-existing application that has been packaged as an .maa	
file. For more information, see Section 17.6, "Creating a Mobile Application Archive File" and Section 17.7, "Creating Unsigned Deployment Packages."	
By default, this deployment file bears the name of the ADF Mobile application followed by _archive. As illustrated in Figure 4-11, this profile is called Employees_archive and, if needed, can be edited using the Application Properties dialog.	
Figure 4-16 Editing the Default Deployment Profiles Using the Application Properties Dialog	
For more information on editing deployment profiles using the Application Properties dialog pages, see the "Viewing and Changing Deployment Profile Properties" section in described in Oracle Fusion Middleware User's Guide for Oracle JDeveloper and the Oracle JDeveloper online help for the Application Properties and Project Properties dialogs.	
Creating an application results in the generation of the adfmf-application.xml	
file, which enables you to configure the mobile application and also the adfmf-features.xml	
file, which you use to add, remove, or edit the application features embedded within the mobile application. The ADF Mobile extension provides you with overview editors for both of these files, enabling you to declaratively change them. Figure 4-17 shows an example of the overview editor of the adfmf-application.xml	
file.	
As shown in Figure 4-17, the adfmf-application.xml	
file is located in the Application Navigator in the Application Resources panel, under the Descriptors and ADF META-INF nodes. You can open this file by double-clicking it from this location. When you access this file, JDeveloper not only opens the associated overview editor, but also displays the pertinent page components in the component palette, which you can drag and drop into either the Source page of the editor or the Structure window, as shown in Figure 4-18. Section 5.2, "About the Mobile Application Configuration File" describes the components of the adfmf-application.xml	
page.	
Figure 4-18 Using the Source Editor, Structure Window, and Properties Editor for the ADF Mobile Application	
As illustrated in Figure 4-19, the adfmf-feature.xml	
configuration file is located in the Application Navigator in the Project panel under the view controller and META-INF nodes. You use this file to compose the content for the ADF Mobile application.	
Like the overview editor for the adfmf-application.xml	
file, JDeveloper presents the ADF Mobile components used for building the elements of the adfmf-features.xml	
configuration file, which are described in Section 5.8, "About the Mobile Feature Application Configuration File." You can use the Overview page or you can drag and drop components from the Component Palette into the Structure window or into the Source editor itself. When you select the adfmf-feature.xml	
file, JDeveloper populates the Component palette with ADF Mobile Feature components.	
Figure 4-20 Using the Source Editor, Structure Window, and Component Palette for Application Features	
As described in Chapter 6, "Creating ADF Mobile AMX Pages," the ADF Mobile AMX components enable you to build pages that run identically to those authored in a platform-specific language. These pages may be created by the application assembler, who creates the ADF Mobile application and embeds application features within it, or they can be developed by another developer and then incorporated into the ADF Mobile application either as an application feature or as a resource to an ADF Mobile application.	
The project in which you create the ADF Mobile AMX page determines if the page is used to deliver the content for a single application feature or be used as a resource to the entire ADF Mobile application. For example, a page created within the application controller project, as shown in Figure 4-23, would be used as an application-wide resource. An ADF Mobile AMX page created within a view controller project, on the other hand, would be used only to deliver content to an application feature.	
An ADF Mobile task flow can likewise be used to deliver the content to an application feature. As shown in Figure 4-21, ADF Mobile provides wizards for adding ADF Mobile AMX pages, task flows, and application features.	
To access these wizards, you first select a project within the Application Navigator and then choose File and then New. You select one of the wizards after selecting ADF Mobile within the Client Tier.	
You can use the ADF Mobile AMX Page wizard to create AMX pages used as application feature content and separately as a resource to the ADF Mobile application. For more information on application feature content, see Section 5.10.1, "How to Define the Application Content."	
To create an ADF Mobile AMX page as content for an application feature:	
public_html	
folder of the view controller project. For more information, see Section 7.2.2, "How to Use a Panel Page Component."	
To create an ADF Mobile AMX page as a resource to an ADF Mobile application:	
public_html	
folder of the application controller project. Click OK. You can deliver the content for an application feature as an ADF Mobile task flow.	
To create an ADF Mobile Task Flow as content for an application feature:	
public_html	
folder of the view controller project. Click OK. JDeveloper places the ADF Mobile AMX pages and task flows in the Web Content node of the view controller project, as shown by custom_springboard.amx	
and ViewController-task-flow.xml	
(the default name for a task flow created within this project) in Figure 4-25. These artifacts are referenced in the adfmf-feature.xml	
file as described in Section 5.6, "Configuring the Application Features within a Mobile Application." Figure 4-25 also illustrates that other resources, such as customized application splash screen (or launch) images and navigation bar images, are also housed in the Web Content node. For more information, refer to Table 4-3.	
Figure 4-25 ADF Mobile AMX Pages and Task Flows within Application Controller and View Controller Projects	
JDeveloper places the ADF Mobile AMX page and task flow as application resources to the ADF Mobile application in the Web Content node of the application controller project. As illustrated in Figure 4-25, the file for the ADF Mobile AMX page is called application_resource.amx	
and the task flow file is called ApplicationController-task-flow.xml	
(the default name).	
Describes how to declaratively develop an ADF Mobile application using the overview editors.	
Part III contains the following:	
This chapter describes using the overview editors to define the display behavior of the ADF Mobile application's springboard and navigation bar and how to designate content by embedding application features.	
This chapter includes the following sections:	
An ADF Mobile application can have one or more view controller-type projects, each of which describes a set of features in an adfmf-feature.xml	
file. As described in Chapter 4, "Getting Started with ADF Mobile Application Development," ADF Mobile provides you with the adfmf-application.xml	
configuration file for the mobile application itself, and the adfmf-feature.xml	
file, which you use to define the content of the application. While you can manually change these files, ADF Mobile provides two overview editors that enable you to build these files declaratively.	
The overview editor enables you to configure the adfmf-application.xml	
file to describe a mobile application and its resources. Each page of the editor enables you to add or update the elements of the configuration file.	
The adfmf-application.xml	
configuration file enables you to set the basic configuration of the ADF Mobile application by designating its display name, a unique application ID (to prevent naming collisions) and also by selecting the application features that will display on the application springboard (the equivalent of a home page on a smartphone). Further, this file enables you to create the user preferences pages for the mobile application. This file, which is generated by JDeveloper after you complete the application creation wizard as described in Section 4.2, "Creating an Application Workspace," is comprised of the elements listed in Table 5-1.	
Table 5-1 Elements of the Application Descriptor File	
Element	Description
---	---
The root element of	
A description of the application.	
A feature reference denotes which of the application features packaged in the FAR (Feature archive file) or defined in the	
Enables you to set the user preference options and behavior at the application level. You can also set how user preferences display and behave for the application features in the	
Enables you to set the login page for an application feature. For more information, see Chapter 18, "ADF Mobile Application Security."	
Enables you to define the behavior of the navigation bar and the springboard. A springboard is a home page in which all of the application icons and labels for the embedded application features are organized in a List View. A springboard provides a top-level view of all of the applications available to a user, who can page through and select applications. For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."	
Example 5-1 illustrates the adfmf-application.xml
file for an application called Acme Sales, a mobile application whose content includes a customer contacts application (<adfmf:featureReference id="customers" showOnNavigationBar="true"/>
) which displays on the springboard, as shown in Figure 5-1.
Example 5-1 The adfmf-application.xml File
You can modify these elements declaratively using the overview editor, shown in Figure 5-2, or manually using the Source editor. You can use either of these approaches interchangeably.
The Application page enables you to set the name, application ID, and how the mobile application displays.
The Application page of the overview editor, shown in Figure 5-2, enables you to name the mobile application and control the display of the mobile application within the springboard and navigation bar.
Before you begin:
Open the overview editor for the adfmf-application.xml
file by double-clicking the adfmf-application.xml
file (located in the ADF META-INF node of the Application Resources panel, as shown in Figure 5-3).
To set the basic information for a mobile application:
Note: By default, the editor opens the Application page. |
Figure 5-4 shows the portion of the application page where you define the basic information.
Note: ADF Mobile uses the value entered in this field as the name for the iOS archive (|
To avoid naming collisions, Android and iOS use reverse package names, such as com.company.application. JDeveloper prefixes com.company as a reverse package to the application name, but you can overwrite this value with another as long as it is unique and adheres to the ID guidelines for both iOS- and Android-powered devices. For iOS application, see the "Creating and Configuring App IDs" section in iOS Team Administration Guide (available from the iOS Developer Library at http://developer.apple.com/library/ios
). For Android, refer to the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html
). You can overwrite this ID in the deployment profiles described in Section 17.2.3, "How to Create an Android Deployment Profile" and Section 17.2.4, "How to Create an iOS Deployment Profile."
Note: To ensure that an application deploys successfully to an Android-powered device or emulator, the ID must begin with a letter, not with a number or a period. For example, an ID comprised of a wholly numeric value, such as 925090 (com.company.925090) will prevent the application from deploying. An ID that begins with letters, such as hello925090 (com.company.hello925090) will enable the deployment to succeed. |
The default application listener class is application.LifeCycleListenerImpl
. ADF Mobile does not register this class by default, because it starts the JVM and therefore may not be preferable for each ADF Mobile application. You must instead register this class manually using the Edit Property dialog, shown in Figure 5-5. After you close this dialog, JDeveloper updates <adfmf:application>
element with a listener-class
attribute, as illustrated in Example 5-2.
Note: The application lifecycle listener must remain within the application controller project (its default location). |
Example 5-2 Adding the listener-class Attribute
For more information, see Section 5.7, "About Lifecycle Event Listeners."
A custom URL scheme can be used to invoke a native application from other applications.
To invoke an ADF Mobile application from another application, perform the following:
adfmf-application.xml
file using the URL Scheme field, as shown in Figure 5-4. The URL with this scheme can then be used to invoke the ADF Mobile application and pass data to it. CustomURLEventListener
) that is notified of the URL. This class must implement the oracle.adfmf.framework.event.EventListener
interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener
interface, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile. Override and implement the onMessage
method that gets called with the URL that is used to invoke this ADF Mobile application.
Get an EventSource
object in the start
method of the ALCL class that represents the source of the custom URL event:
Create and add an object of the custom URL event listener class to the event source:
An ADF Mobile application can invoke another native application in two ways:
amx:goLink
on an ADF Mobile AMX page whose URL begins with the custom URL scheme registered by the native application. For example: href
attribute value begins with the custom URL scheme registered by the native application. For example: You can configure the ADF Mobile application to control the display behavior of the springboard and the navigation bar in the following ways:
The Navigation options of the Applications page, shown in Figure 5-6, enable you to hide or show the navigation bar, select the type of springboard used by the application, and define how the springboard reacts when users page through applications.
Before you begin:
You must select the Application page of the adfmf-application.xml
overview editor.
To set the display behavior for the navigation bar:
If you clear this option, then you hide the navigation bar when the application starts, presenting the user with the springboard as the only means of navigation. Because the navigation bar serves the same purpose as the springboard, hiding it can, in some cases, remove redundant functionality.
This option is selected by default; the navigation bar is shown by default if the show or hide state is not specified by the application feature.
To set the display behavior for the springboard:
adfmf-feature.xml
file (which is located within a view controller project). For more information, see Section 5.9.1, "How to Define the Basic Information for the Application Feature." For information on enabling navigation within a customized springboard written in HTML, see Chapter B, "Application Container APIs." Note: ADF Mobile's design time prompts you to set the Show on Navigation Bar and Show on Springboard options to |
Figure 5-9 Selecting an Application Feature as a Custom Springboard
To set the slide out behavior for the springboard:
Note: The slide out option is only applicable when you select either the Custom or Default springboard options. |
Note: If the springboard does not occupy the entire area of the display, then an active application feature occupies the remainder of the display. For more information, see Section 5.5.3, "What Happens When You Set the Animation for the Springboard." |
Setting the springboard and navigation bar options updates or adds elements to the adfmf:application.xml
file's <adfmf:navigation>
element. For example, selecting None results in the code updated with <springboard enabled="false">
as illustrated in Example 5-3.
Example 5-3 Preventing the Displaying the Springboard
Tip: By default, the navigation bar is enabled, but the springboard is not. If you update the XML manually, you can enable the springboard as follows: <adfmf:application> ... <adfmf:navigation> <adfmf:springboard enabled="true"/> </adfmf:navigation> ... </adfmf:application> |
Example 5-4 illustrates how the enabled
attribute is set to true
when you select Default.
Note: Because the springboard fills the entire screen of the device, the navigation bar and the springboard do not appear simultaneously. |
Example 5-4 Enabling the Display of the Default Springboard
If you select Custom and then select the application feature used as the springboard, the editor populates the <adfmf:navigation>
element as illustrated in Example 5-5. The id
attribute refers to an application feature defined in the adfmf-feature.xml
file that is used as a custom springboard.
Example 5-6 shows the navigation block of the adfmf-application.xml
file, where the springboard is set to slide out and occupy a specified area of the display (213 pixels).
Example 5-6 Configuring Springboard Animation
The following line disables the animation:
The following line sets the springboard to occupy 100 pixels from the left of the display area and also enables the active application feature to occupy the remaining portion of the display:
In addition to the animation, Example 5-6 demonstrates the following:
showSpringboardAtStartup
attribute, which defines whether the springboard displays when the application starts. (By default, the springboard is displayed.) navigationBar
's displayHideShowNavigationBarControl
attribute. To prevent the springboard from displaying, set the enabled
attribute to false
.
The default HTML springboard page provided by ADF Mobile uses the following technologies, which you may also want to include in a customized login page:
<script>
tag embedded within the springboard page contains references to the methods described in Chapter B, "Application Container APIs" that call the Apache Cordova APIs. In addition, the HTML page uses JavaScript to respond to the callbacks and to detect page swipes. When swipe events are detected, JavaScript enables the dynamic modification of the style sheets to animate the page motions. A springboard authored in HTML (or any custom HTML page) can leverage the Apache Cordova APIs by including a <script>
tag that references the base.js
library. You can determine the location of this library (or other JavaScript libraries) by first deploying an ADF Mobile application and then locating the www/js
directory within platform-specific artifacts in the deploy
directory. For an Android application, the www/js
directory is located within the Android application package (.apk
) file at:
For iOS, this library is located at:
For more information, see Section B.1, "Using ADF Mobile APIs to Create a Custom HTML Springboard Application Feature."
http://www.webkit.org/
. Springboards written in HTML are application features declared in the adfmf-feature.xml
file and referenced in the adfmf-application.xml
file.
Like their HTML counterparts, springboards written using ADF Mobile AMX are application features that are referenced by the ADF Mobile application, as described in Section 5.6.1, "How to Designate the Content for a Mobile Application." Because a springboard is typically written as a single ADF Mobile AMX page rather than as a task flow, it uses the gotoFeature
method, illustrated by the method expression in Example 5-7, to launch the embedded application features.
Note: A custom springboard page (authored in either HTML or ADF Mobile AMX) must reside within a view controller project which also contains the |
The default springboard (adfmf.default.springboard.jar
, located in jdev_install
\jdeveloper\jdev\extensions\oracle.adf.mobile\lib
) is an ADF Mobile AMX page that is bundled in a Feature Archive (FAR) JAR file and deployed with other FARs that are included in the ADF Mobile application. This JAR file includes all of the artifacts associated with a springboard, such as the DataBindings.cpx
and PageDef.xml
files. This file is only available after you select Default as the springboard option in the adfmf-application.xml
file. Selecting this option also adds this FAR to the application classpath. For more information, see Section 17.5, "Deploying Feature Archive Files (FARs)."
The default springboard (springboard.amx
, illustrated in Example 5-7) is implemented as an ADF Mobile AMX application feature.
Example 5-7 The Default Springboard page, springboard.amx
As shown in Figure 5-11, an ADF Mobile AMX file defines the springboard using a List View whose List Items are the ADF Mobile application's embedded application features. These application features, once deployed, are displayed by their names and associated icons. The gotoFeature
method of the AdfmfContainerUtilities
API provides the page's navigation functions. For a description of using this method to display a specific application feature, see Section B.2.7, "gotoFeature." See also Section 7.2.7, "How to Use List View and List Item Components."
ADF Mobile provides the basic tools to create a custom springboard (or augment the default one) in the ApplicationFeatures data control. This data control, illustrated in Figure 5-12, enables you to declaratively build a springboard page using its data collections of attributes that describe both the ADF Mobile application and its application features.
The methods of the ApplicationFeatures data control enable you to add navigation functions. These adfmf.containerUtilities
methods are described in Table 5-2. For more information, see Section B.2, "The ADF Mobile Container Utilities API." See also Chapter 8, "Using Bindings and Creating Data Controls."
Table 5-2 ApplicationFeature Methods
Method | Description |
---|---|
| Navigates to default application feature. |
| Navigates to a specific application as designated by the parameter that is passed to this method. |
| Navigates to the springboard. |
| Hides the navigation bar. |
| Displays the navigation bar (if it is hidden). |
| Resets the application feature that is designated by the parameter passed to this method. |
Each ADF Mobile application must have at least one application feature.
Figure 5-13 shows the Feature References page, which enables you to build the content for the mobile application. As noted in Section 5.2, "About the Mobile Application Configuration File," the mobile application descriptor file's <adfmf:featureReference>
element designates these application features.
Example 5-8 Designating Feature References the in the adfmf-application.xml File
Example 5-8 shows some of the defined feature references and their associated attributes. The overview editor displays these feature references in the Feature References table. Figure 5-13 shows the defined feature references for HCM and PROD that represent the Customers and Products application features, respectively. Using this page, you enter the references to the application feature and set its display within the mobile application's springboard, as shown in Figure 5-1.
In addition, the page enables you to set the order in which the application features display on the navigation bar and springboard.
Note: Because building a mobile application is an iterative process, you can add, delete or update feature references as new FARs become available (and new application features are added to the |
Before you begin:
You must have application features configured in the adfmf-feature.xml
file, as described in Section 5.9, "Setting the Basic Configuration for the Application Feature." In addition, you must open the adfmf-application.xml
overview editor.
To designate feature references:
adfmf-application.xml
overview editor. This dialog lists all of the application features described in the <adfmf:feature>
elements of the adfmf-feature.xml
file Using this dialog ensures that the id
attributes of both the <adfmf:featureReference>
and <adfmf:feature>
elements match. See also Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."
Note: The top-most ID in the Feature References table is the first application feature to display within the ADF Mobile application. See, for example, the Employees application feature illustrated in Figure 5-7. |
true
or false
from the dropdown lists in the rows of the Show on Navigation Bar and Show on Springboard columns. Figure 5-16 shows selecting these options to prevent an application feature from displaying in the navigation bar. Tip: Set these options to |
The springboard and the navigation bar display default (that is, the attributes are set to true
). If both the navigation bar and springboard attributes are set to false
, then the application feature only displays if it is in the first position. See also Section B.2.12, "hideNavigationBar" and Section B.2.13, "showNavigationBar."
Note: Because springboard applications do not display on the navigation bar or within the springboard of an ADF Mobile application, Show on Navigation Bar and Show on Springboard must both be set to |
connections.xml
file to access the device services enabled by ADF Mobile's extension to the Apache Cordova API, select true
in the Allow Device Access column. By default, all application features allow such access. To prevent domains from accessing device services, select false
. For more information, see Chapter 12, "Implementing Application Features as Remote URLs." An ADF Mobile application can contain many projects and can therefore also include multiple adfmf-feature.xml
files. In the application configuration file, a feature reference relates to a feature described by an adfmf-feature.xml
file. The ID of an <adfmf:featureReference>
identifies where the corresponding application feature is defined. In other words, the id
attributes for <adfmf:featureReference>
elements in the adfmf-application.xml
file must be the same as the id
attribute defined for <adfmf:feature>
element in adfmf-feature.xml
. For example, <adfmf:featureReference id="customers">
in adfmf-application.xml
is defined by <adfmf:feature id="customers">
in adfmf-feature.xml
. JDeveloper audits the references between the application and feature descriptor files in the same mobile application, and warns you when it finds discrepancies. As shown in Figure 5-17, JDeveloper highlights the mismatch within the code between a feature reference and the features declared in the features application descriptor file with a wavy underline and a Reference not Found warning, which in this case is a feature reference ID defined as PRiD
rather than the correct PROD.
For more information on JDeveloper's syntax auditing, see the "Auditing and Profiling Applications" chapter in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
If the ID for an <adfmf:featureReference>
is defined in the adfmf-feature.xml
file, you can use Go To Declaration in the context menu, as shown in Figure 5-18, to traverse from the id
of a <adfmf:featureReference>
in the adfmf-application.xml
file to the corresponding id
of the <adfmf:feature>
in the adfmf-feature.xml
file.
The feature IDs must be unique across an application. Because application features can be reused, use proper naming conventions to ensure that their feature IDs are unique.
Note: Do not add an ADF Mobile view controller project as a dependency of another ADF Mobile view controller project or as a dependency of an ADF Mobile application controller project. Doing so adds an |
Within the ADF Mobile runtime, classes implement various LifeCycleListener
methods to communicate with event notifications sent from the native operating system frameworks to the JVM. These event notifications describe various states (starting, stopping, or hibernating) for both the ADF Mobile application and its embedded application features. ADF Mobile invokes the class functions to the JVM using a generic invoke message.
The overview editors for both the adfmf-application.xml
and adfmf-feature.xml
files enable you to declaratively add a lifecycle listener class that ADF Mobile calls when events occur. After you enter a fully qualified class name (including the package) using the Class and Package Browser in the overview editor's LifeCycle Event Listener Class field, JDeveloper populates the XML page with the listener-class
attribute. For ADF Mobile applications, this attribute is included in the <adfmf:application>
element, as shown in Example 5-9.
Example 5-9 The listener-class Attribute in the adfmf-application.xml File
Within the adfmf-feature.xml
file, the listener-class
attribute is contained within the <adfmf:feature>
attribute, as shown in Example 5-10.
Example 5-10 The listener-class Attribute in the adfmf-feature.xml File
After you create an ADF Mobile application, JDeveloper creates a lifecycle listener class for executing the application called LifeCycleListenerImpl.java
. You can implement specific methods using this file, as illustrated in Chapter 16, "Push Notifications." The Lifecycle Events sample application provides an example of declaring the event listener class in both the adfmf-application.xml
and adfmf-feature.xml
files. This sample application is in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
Lifecycle listener classes for ADF Mobile applications must implement the start
, stop
, activate
, and deactive
methods of the LifeCycleListener
interface, illustrated in Example 5-11 to execute the application lifecycle events.
Example 5-11 The LifeCycleListener Interface for ADF Mobile Applications
Note: The application lifecycle listener is executed with an anonymous user (that is, there is no user associated with any of its methods and no secure web service is called). |
The AppListener
class, shown in Example 5-12, uses the LifeCycleListener
method calls for starting or stopping events as well as those used when the application is about to hibernate (deactivate
) or return from hibernating (activate
). For more information, see Section 5.7.2, "Timing for Mobile Application Events." See also the LifeCycleListener interface in Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Example 5-12 Implementation of the LifeCycleListener Interface
For an example of implementing the LifeCycleListenerImpl.java
interface at the application level, see the AppHandler.java
file in the LifeCycleEvents sample application. This file is located in the application node within the application controller project's Application Sources folder.
Note: Managed beans and data bindings must be initialized before the startup lifecycle code executes. |
ADF Mobile calls application lifecycle methods at specific times during the ADF Mobile application's startup, shutdown, and hibernation. Table 5-3 describes when these methods are called and also notes their Objective-C counterparts.
Table 5-3 ADF Mobile LIfecycle Methods
Method | Timing | When Called | Usage | Relation to iOS Application Delegate Methods |
---|---|---|---|---|
| Called after the ADF Mobile application has completely loaded the application features and immediately before presenting the user with the initial application feature or the springboard. | When the application process starts. | Uses include:
| This event does not correspond to a specific application delegate method. It is called after the |
| Called as the ADF Mobile application begins its shutdown. | When the application process terminates. | Uses include:
| This is called in the |
| Called as the ADF Mobile application activates from being situated in the background (hibernating). | After the | Uses include:
| This is called in the |
| Called as the ADF Mobile application deactivates and moves into the background (hibernating). | Before the | Uses include:
| This is called in the |
Because checkpointing saves the application state, you can enable users to continue using the last page of an ADF Mobile application that was active before it began to hibernate by adding checkpoint entries to the activate
and deactivate
methods. The lifecycle listener reads the checkpoint entries added to the activate
class and allows the processes to resume after the application has returned from hibernating; users can continue with application uninterrupted by not having to log in a second time. If the application is terminated during hibernation, you can enable the application to resume by specifying that checkpoint information be written to a database or to a device's cache directory as part of the deactivate
method. The application resumes at the same page by reading this checkpoint information during activation.
An ADF Mobile application feature lifecycle listener class, such as FeatureListenerPhoneList
, illustrated in Example 5-14, must implement the activate
and deactivate
methods of the LifeCycleListener
interface, as shown in Example 5-13.
Example 5-13 Application Feature LifeCycleListener Interface
Example 5-14 illustrates a class called FeatureListenerPhoneList
that uses the activate
and deactive
methods by implementing the LifeCycleListener
to show and hide the application feature as described in Table 5-4. These methods hide the application feature when it hibernates, or display it when it returns from hibernating.
Example 5-14 Implementing the Application Feature Lifecycle
Tip: The LifeCycle Events sample application provides an example of using the |
By implementing an application feature lifecycle listener class, you enable an application feature to automatically obtain any data changes to the applicationScope
variable or to application feature-specific variables that changed when the application feature was deactivated. Table 5-4 describes when the activate and deactivate events are fired for an application feature. For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Table 5-4 The activate and deactivate Methods for Application Features
Method | Timing | When Called | Usage |
---|---|---|---|
| Called before the current application feature is activated. | Called when a user selects the application feature for the first time after launching an ADF Mobile application, or when the application has been re-selected (that is, brought back to the foreground). | Uses include:
|
| Called before the next application feature is activated, or before the application feature exits. | Called when the user selects another application feature. | You can, for example, use the |
The adfmf-feature.xml
file, an example of which is illustrated in Example 5-15, enables you to configure the actual mobile application features that are referenced by the <adfmf:featureReference>
element in the corresponding adfmf-application.xml
file.
Example 5-15 The adfmf-feature.xml File
By defining the elements of the adfmf-feature.xml
file, you set the behavior for the application features by, in turn, defining the child elements of the <Feature>
element, the top-most element in the XML file under the root element, <adfmf:features>
. The <Feature>
element itself describes the basic information of the application feature, including its name, version, and whether or not it participates in security. For the latter, see Chapter 18, "ADF Mobile Application Security." The child elements of the <Feature>
elements are listed in Table 5-5. Like the overview editor for the adfmf-application.xml
descriptor file, you can update this file with these elements (or edit them) declaratively using the overview editor for the adfmf-feature.xml
file, described in Section 5.9, "Setting the Basic Configuration for the Application Feature."
Table 5-5 Child Elements of <Feature> Element
Element | Description |
---|---|
| Describes the format that the application feature uses for a particular device or user. The content (generally, the user interface) of an application feature can be written as ADF Mobile AMX pages, HTML5 pages, or be delivered from web pages hosted on a remote web server. For more information on designating content as a web application, see Chapter 12, "Implementing Application Features as Remote URLs." |
| Determines whether a given application feature can be displayed in the application at runtime. Constraints can be used to allow or prevent the use of an application feature based on such criteria as user roles or device properties. For more information, see Chapter 14, "Setting Constraints on Application Features." |
Each mobile application must have at least one application feature. Because each application feature can be developed independently from one another (and also from the mobile application itself), the overview editor for the adfmf-feature.xml
file enables you to define the child elements of <adfmf:features>
to differentiate the application features by assigning each a name, an ID, and setting how their content can be implemented. Using the overview editor for application features, you can also control the runtime display of the application feature within mobile application and designate when an application feature requires user authentication.
The General tab of the overview editor, shown in Figure 5-19, enables you to add an application feature, designate its basic information, and its display icons.
Before you begin:
If an application feature uses custom images for the navigation bar and springboard rather than the default ones provided by ADF Mobile, you must create these images to the specifications described the Android Developers website (http://developer.android.com/design/style/iconography.html
) and in the "Custom Icon and Image Creation Guidelines" chapter in iOS Human Interface Guidelines, which is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
You place these images in the view controller project's public_html
directory. See also Section 5.10.2, "What You May Need to Know About Selecting External Resources."
In addition, you must open the adfmf-feature.xml
file and select the General tab.
To set the basic information for the application feature:
public_html
directory (the default parent directory). Enter this location in the Directory field. <adfmf:featureReference>
element to the adfmf-application.xml
file with the id
attribute that matches the value that you entered in the Feature ID. Choose Add a corresponding feature reference to adfmf-application.xml. The table in the Feature References page, shown in Figure 5-13, includes the feature reference after you complete the dialog. See also Section 5.6.2, "What You May Need to Know About Feature Reference IDs and Feature IDs." Figure 5-20 Adding an Application Feature
oracle.adfmf.feature
) using the Class and Package Browser in the Lifecycle Event Listener field to enable runtime calls for start, stop, hibernate, and return to hibernate events. For more information, see Section 5.7, "About Lifecycle Event Listeners." This is an optional value. The content type for an application feature describes the format of the user interface, which can be constructed using ADF Mobile AMX components or HTML(5) tags. An application feature can also derive its content from remotely hosted pages that contain content appropriate to a mobile context. These web pages might be a JavaServer page authored in Apache Trinidad for smartphones, or be comprised of ADF Faces components for applications that run on tablet devices. The application features embedded in an ADF Mobile application can each have different content types.
Tip: Design an ADF Mobile application with more than one content type. |
While an ADF Mobile application include application features with different content types, applications features themselves may have different content types to respond to user- and device-specific requirements. For information on how the application feature delivers different content types, see Chapter 14, "Setting Constraints on Application Features." Adding a child element to the <adfmf:content>
element, shown in Example 5-16, enables you to define how the application feature implements its user interface.
Example 5-16 The <adfmf:content> Element
The Content tab of the overview editor, shown in Figure 5-21, provides you with dropdown lists and fields for defining the target content-related elements and attributes shown in Example 5-16. The fields within this tab enable you to set constraints that can control the type of content delivered for an application feature as well as the navigation and springboard icon images that it uses.
Each content type has its own set of parameters. As shown in Figure 5-21, for example, you must specify the location of the ADF Mobile AMX page or task flow for the application features that you implement as ADF Mobile AMX content. In addition, you can optionally select a CSS file to give the application feature a look and feel that is distinct from other application features (or the ADF Mobile application itself), or select a JavaScript file that controls the actions of the ADF Mobile AMX components.
Before you begin:
Each content type has its own prerequisites, as follows:
An application feature implemented as ADF Mobile AMX requires an existing view (that is, a single ADF Mobile AMX page) or a bounded or unbounded task flow. Including a JavaScript file provides rendering logic to the ADF Mobile AMX components or overrides the existing rendering logic. Including a style sheet (CSS) with selectors that specify a custom look and feel for the application feature, one that overrides the styles defined at the Mobile application level that are used by default for application features. In other words, you ensure that the entire application feature has its own look and feel.
If you create the ADF Mobile AMX pages as well as the mobile application that contains them, you can create both using the wizards in the New Gallery. You access these wizards by first highlighting the view controller project in the Application Navigator and then by choosing New. Alternatively, you can create an ADF Mobile AMX page using the context menu shown in Figure 5-22 that appears when you right-click the view controller project in the Application Navigator and then choose New.
Note: When manually editing references to task flows, ADF Mobile AMX pages, CSS and JavaScript files in the |
www/js
directory. The deployment of an ADF Mobile application results in the creation this directory. It is located within the deploy
directory. For information on creating a <script>
tag that defines this reference, see Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content." To define the application content as Remote URL or Local HTML:
adfmf-feature.xml
file. You can create this connection by first clicking Add and then completing the Create URL Connection dialog, shown in Figure 5-24. For more information on this dialog, see the online help for Oracle JDeveloper. This connection is stored in the connections.xml
file.
Note: This connection can only be created as an application resource. |
To designate the application feature content as ADF Mobile AMX:
adfmf-config.xml
by first clicking Add and then by choosing Stylesheet. Browse to the location of the file. For more information, see Section 5.12, "Skinning ADF Mobile Applications." Note: The images, style sheet, and JavaScript files must reside within the |
To enable deployment, all resources referenced by the following attributes must be located within the public_html
directory of either the view controller or application controller projects.
icon
and image
attributes for <adfmf:feature>
(for example, <adfmf:feature id="PROD" name="Products" icon="feature_icon.png" image="springboard.png">
). See also Section 5.9.1, "How to Define the Basic Information for the Application Feature." icon
and image
attributes for <adfmf:content>
(for example, <adfmf:content id="PROD" icon="feature_icon.png" image="springboard_image.png">
). See also Section 5.10, "Defining the Content Types for an Application Feature." file
attribute for <adfmf:amx>
(for example, <adfmf:amx file="PRODUCT/home.amx" />
). See also Section 5.10, "Defining the Content Types for an Application Feature." url
attribute for <adfmf: localHTML
> (for example, <adfmf:localHTML url="oracle.hello/index.html"/>
). See also Section 5.10, "Defining the Content Types for an Application Feature" and Section 18.4.12.2, "The Custom Login Page." type=stylesheet
and type=JavaScript
in <adfmf:includes>
(for example, <adfmf:include type="JavaScript" file="myotherfile.js"/>
). See also Section 5.12, "Skinning ADF Mobile Applications." ADF Mobile does not support resources referenced from another location, meaning that you cannot, for example, enter a value outside of the public_html
directory using ../
as a prefix. To safeguard against referencing resources outside of public_html
, ADF Mobile includes an audit rule called File not in public_html directory. You can access the ADF Mobile audit profiles, shown in Figure 5-30, from the Audit Profiles node in Preferences by choosing Tools > Preferences > Audit > Profiles.
When this profile is selected, JDeveloper issues a warning if you change the location of a resource. As shown in Figure 5-31, JDeveloper displays such a warning when the default values are overridden. For information on auditing, see the "Auditing and Profiling Applications" chapter in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
ADF Mobile uses the standard localization structures of ADF to specify English language text resources (although you can use any tool to generate resource bundle files in other languages). You can configure an ADF Mobile application to store translatable UI strings at both the application and project level, as described in the "Working with Resource Bundles" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. ADF Mobile uses only XLIFF (XML Localization Interchange File Format) files for localization, meaning that JDeveloper produces an .xlf
file to store the strings. (Also, xliff Resource Bundle is the only available resource bundle type in the Resource Bundle Settings page for projects, shown in Figure 5-32. For more information on this page, see the online help for Oracle JDeveloper.)
At the application level, you can localize strings for such attributes as application names or preference page labels, which are listed in Table 5-6.
Table 5-6 Localizable ADF Mobile Application Attributes
Element | Attribute(s) |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
At the project (view controller) level, you can localize application feature-related attributes listed in Table 5-7.
Table 5-7 Localizable Application Feature Attributes
Element | Attribute |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
You can create resource bundles for attributes of such ADF Mobile AMX components as the text
attribute of <amx:commandButton>
. Table 5-8 lists these ADF Mobile AMX (amx
) components. For more information see Section 7.7, "Localizing UI Components."
Table 5-8 Localizable Attributes of ADF Mobile AMX Components
Component | Attribute |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
At the project-level, you create resource bundle files when you use the resource bundle dialog, accessed by clicking Select Text Resource in the Property Inspector, shown in Figure 5-33. This dialog enables you to automatically create text resources in the base resource bundle for the adfmf-feature.xml
attributes listed in Table 5-7.
Before you begin:
You may need to configure the resource bundle properties as described in the "How to Set Message Bundle Options" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To use strings in a resource bundle:
Name
in Figure 5-34. After you add a resource in the Select Text Resource dialog, JDeveloper creates a new application-level resource bundle containing the specified display name string and key file in the ADF Meta-INF file, as shown by Application15Bundle.xlf
in Figure 5-36.
If an attribute has been localized for the first time, JDeveloper adds an <adfmf:loadbundle>
element whose basename
attribute refers to the newly created resource bundle.
JDeveloper also changes the localized attribute string to an EL expression that refers to the key of the string defined in the resource bundle. For example, JDeveloper changes an application name attribute called Acme Sales to name="#{application15Bundle.ACME_SALES}"
based on the ACME_SALES value entered for the Key in the Select Resource Dialog.
JDeveloper adds each additional string that you localize to the same resource bundle file because there is only one resource bundle file at the application level.
Each adfmf-application.xml
and adfmf-feature.xml
file contains only one adfmf:loadBundle
element. When you deploy an application, the resource bundles are converted into the language format expected by the runtime.
You can use the project- level resource bundles to localize strings for the attributes of ADF Mobile AMX components as described in Section 7.7, "Localizing UI Components." When you localize a component, such as the text
attribute for a <amx:commandButton>
in Example 5-17, JDeveloper transforms the string into an EL expression (such as #{viewcontrollerBundle.MYBUTTON
in Example 5-17).
Example 5-17 Localizing an ADF Mobile XML Component
In addition, JDeveloper creates the resource bundle under the project default package, similar to ViewControllerBundle.xlf
in Figure 5-37. In the generated <amx:loadBundle>
element, the basename
represents this package as, for example, mobile.ViewControllerBundle
.
If an image contains text or reflects a specific country or region (for example, a picture of a flag), you can specify an alternate image as part of the localization process. You cannot hard-code the image, such as <amx:image="image2" source="feature1/test.jpg">
. Instead, you must edit the ViewControllerBundle.xlf
file manually by adding a <trans-unit>
element for the image path, as illustrated in Example 5-18.
Example 5-18 Defining the Resource for an <amx:image> Component
Note: The image location defined in the |
After you update ViewControllerBundle.xlf
, use the Expression Builder to define an EL expression for the source
attribute for the <amx:image>
component, as shown in Figure 5-38.
A family of one or more XLIFF files must exist at the location described by the <adfmf:loadBundle>
element. A family of XLIFF files includes the following:
basename
attribute. This file bears the .xlf
extension, such as ViewControllerBundle.xlf
. In the following definition, the file is called ViewControllerBundle
: .xlf
. Where:
<BASE_XLIFF_FILE_NAME>
is the base XLIFF file name, without the .xlf
extension. <LANGUAGE_TOKEN>
is in the following format: Note: ADF Mobile does not support countries or regions. |
For example, for Spain, the language token is es
. For more information, see the "Manually Defining Resource Bundles and Locales" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
For example, localized file names for XLIFF files referencing a base XLIFF named stringBundle.xlf
for language codes en
, es
, and fr
would be:
stringBundle_en.xlf
stringBundle_es.xlf
stringBundle_fr.xlf
The localizable elements of the adfmf-application.xml
and adfmf-feature.xml
files reference internationalized strings through the use of EL-like strings in the attributes listed in Table 5-7 and Table 5-6. Because these configuration files are read early in the application lifecycle, these strings are not evaluated as EL statements at runtime. Instead, these strings are taken as the full key for the translated string in the native device translation infrastructure.
Although the Expression Language syntax is "${BUNDLE_NAME.STRING_KEY}"
, ADF Mobile uses the entire string enclosed by "#{}"
as the key to look up the translated string. These strings are in the form of #{bundleName.['My.String.ID']}
, where the XLIFF string is separated by periods and #{bundleName.['MyStringID']}
, which is used only for string identifiers that are not separated by periods. Example 5-19 illustrates the latter, such as #{strings.CONTACTS}
, that modify the name
attribute. For the iOS native framework, the deployment ensures that the content of that statement matches the proper key in the *.string
file used for translation.
Only the attributes that are displayed to the end user, or control the location of content displayed to the end user, support the use of internationalized strings. These include the following attributes:
<adfmf:application>
element's name
attribute <adfmf:feature>
element's name
attribute <adfmf:feature>
element's icon
attribute <adfmf:feature>
element's image
attribute <adfmf:content>
element's icon
attribute <adfmf:content>
element's image
attribute Example 5-19 shows an application feature with name
, icon
, and image
attributes use internationalization strings.
Example 5-19 Internationalization Using Strings
When you define the <adfmf:loadBundle>
elements, as shown in Example 5-20, you create the mapping of bundle names to actual bundles. The bundle name is used when the expression is evaluated.
Example 5-20 Mapping Bundle Names Using <adfmf:loadBundle>
ADF Mobile's runtime holds the <adfmf:loadBundle>
elements until the first access of the JVM. It sends a message to the JVM to initialize the mapping of the base names of the packages to EL names of the bundles. Example 5-21 illustrates the structure of the message sent to the JVM.
ADF Mobile's use of CSS (Cascading Style Sheet) language-based skins ensures that all application components within an ADF Mobile application (including those used in its constituent application features) share a consistent look and feel. Rather than altering how an ADF Mobile application looks by re-configuring ADF Mobile AMX or HTML components, you can instead create, or extend, a skin that changes how components display. Any changes made to a skin take effect when an application starts, because ADF Mobile applies skins at runtime.
As noted in Section 4.2.2, "What Happens When You Create an ADF Mobile Application," the artifacts resulting from the creation of an application controller project include two skinning-related files, adfmf-config.xml
and adfmf-skins.xml
. You use these files to control the skinning for the ADF Mobile application. The adfmf-config.xml
file designates the default skin family used to render application components and the adfmf-skins.xml
file enables you to customize the default skin family or define a new one.
After you create an ADF Mobile application, JDeveloper populates the adfmf-config.xml
file to the ADF Mobile application's META-INF node. The file itself is populated with the base ADF Mobile skin family, MobileFusionfx
, illustrated in Example 5-22.
Example 5-22 The Default Skin, mobileFusionFX, in the adfmf-config.xml File
Note: The |
ADF Mobile applies skins as a hierarchy, with device-specific skins occupying the top tier, followed by platform-specific skins, and then the base skin, mobileFusionFx
. In terms of ADF Mobile's mobileFusionFx
skin family, this hierarchy is expressed as follows:
mobileFusionfx.iPhone
or mobileFusionFx.iPad
mobileFusionFx.iOS
or mobileFusion.Android
mobileFusionFx
ADF Mobile gives precedence to selectors defined at the device-specific level of this hierarchy. In other words, ADF Mobile overwrites a selector defined in mobileFusionFX.iOS
with the mobileFusionFx.iPhone
definition for the same selector. The <extends>
clause, defined in Section 5.12.3, "About the adfmf-skins.xml File," defines this hierarchy for the ADF Mobile runtime. Figure 5-39 shows the list of seeded form factors in ADF Mobile preference page, which illustrates this hierarchy in terms of platform and model. For more information on how skins are applied at various levels, see Section 5.12.8, "What You May Need to Know About Skinning."
The underlying skinning styles for the base skin family, mobileFusionFx
, are defined in the amx.css
and amx-v1.1.css
files. These files, which define the selectors for ADF Mobile AMX pages, reside in the www\css
directory. To access this directory, you must first deploy an ADF Mobile application to a simulator or device and then traverse to the deploy
directory (for example, C:\JDeveloper\mywork\
application name
\deploy
). The www\css
directory resides within the platform-specific artifacts generated by the deployment. For iOS deployments, the directory is located within the temporary_xcode_project
directory. For Android deployments, this directory is located in the assets
directory of the Android application package (.apk
) file.
Caution: Do not write styles that rely on the ADF Mobile DOM structures. Further, some of the selectors defined in these files may not be supported. |
The adfmf-skins.xml
file, located in the META-INF node of the application controller project, uses the <skin>
and the <skin-addition>
elements. Use the <skin>
element to extend a skin family. The <skin-addition>
element adds a style sheet to an existing skin.
By default, this file is empty, but the elements listed in Table 5-9 describe the child elements that you can use to populate this file to extend mobileFusionFx
or to define the CSS files that are available to the application. You use the <skin>
element to create new skins or to extend an existing skin.
Note: Do not use the |
Table 5-9 Child Elements of the <skin> Element
Elements | Description |
---|---|
| Because ADF Mobile skinning customizes the default
|
| Identifies the skin family. This is a required element. |
| Use this element to customize the default skin, <?xml version="1.0" encoding="UTF-8" ?> <adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/config"> <skin> <id>mobileFusionFx.iPhone</id> <family>mobileFusionFx</family> <extends>mobileFusionFx.iOS</extends> <style-sheet-name>styles/myiphone.css</style-sheet-name> </skin> </adfmf-skins> A |
| The file location of the CSS file (a relative URL). This is an optional element. |
| An optional element that can be used if you change the CSS to fix bugs. For more information, see Section 5.12.5, "How to Version ADF Mobile Skins." |
Table 5-10 lists elements that you can use to define the <skin-addition>
element in an ADF Mobile CSS when you integrate a style sheet into an existing skin.
Table 5-10 The <skin-addition> Child Elements
Element | Description |
---|---|
| The name of the existing skin that you are injecting into the style sheet. This identifier must match the value for the child |
| The relative URL of the style sheet for the skin. |
Example 5-23 illustrates designating the location of the CSS file in the <style-sheet-name>
element and the target skin family in <skin-id>
.
Example 5-23 Using the <skin-addition> Element
The skin identifier (<skin-id>
) is identical to the <skin-family>
element and can be appended with modifiers for the operating system and the device, such as iOS, iPhone, or iPad. ADF Mobile first searches for the skin identifier in the format of <skin-family>.<OS>
, such as mobileFusionFx.iPad
. If it cannot find the skin, it searches instead for the skin identifier of <skin-family>
which falls back to the default skin family, mobileFusionFx
. (This top-level skin is referenced by the <skin-id>
, which equals the <skin-family>
). The <skin-family>
must always be identified in the adfmf-config.xml
file.
By editing the adfmf-config.xml
and adfmf-skins.xml
files, which respectively designate the current skin used by the ADF Mobile application and then describing the skin families available to it, you can customize, add, and test skins.
You can edit the source file directly, or use the Structure window, shown in Figure 5-40, to update the adfmf-skins.xml
and adfmf-config.xml
files. You maintain all of the skins and skin additions within the adfmf-skins.xml
file and then designate the default skin for rendering the application components in the adfmf-config.xml
file. You create new CSS files within the application controller project using the Create Cascading Style Sheet dialog. Because the CSS files are associated with the <skin-id>
, you then update the <skin-id>
elements in adfmf-skins.xml
with the new CSS references. If a skin family is not specified in adfmf-config.xml
, then it cannot be used for skinning.
To customize the default skin:
Note: The CSS file must reside somewhere within the |
Figure 5-41 The Create Cascading Style Sheet Dialog
adfmf-skins.xml
file. <skin>
component from the ADF Mobile Skins Component Palette to the Structure window. <skin>
element with the elements described in Table 5-9 by completing the Insert skin dialog, shown in Figure 5-42, as follows: <skin-family>
element in the adfmf-config.xml
file to enable ADF Mobile to apply styles. mobilefusionFX
family, enter the base family, appended with the operating system (mobileFusionFx.iOS
). adfmf-config.xml
file. The context of the CSS definition within this file depends on whether this style sheet is used to extend the mobilefusionfx
skin family or be added to it. To add a new style sheet to a skin
<skin-addition>
element from the Component Palette to the Structure window. <skin-addition>
element with the elements described in Table 5-10 by completing the Insert skin-addition dialog, shown in Figure 5-43. Caution: Creating custom styles that use DOM-altering structures can cause ADF Mobile applications to hang. Specifically, the |
Skin versioning, which is provided by the <skin-version>
and <version>
elements, enables an ADF Mobile application to support multiple versions of a skin. Because you apply bug fixes to a new version of a skin rather than to an existing one, you can use these versioning-related elements for testing and debugging. Rather than define a new skin family to test and then apply updated skins, you can instead use versioning to create new skins within an existing skin family. As illustrated by the skins defined for the customFamily
family in Example 5-24, you version a skin by using the descendents of the <version>
element: you define the <name>
element by providing a version number (such as v1
) and a boolean value (true
or false
) for the <default>
child element.
Example 5-24 Versioning in the adfmf-skins.xml File
You can configure the adfmf-config.xml
file to request a default version of a skin, or a specific version. If the adfmf-config file
does not specify a skin version (that is, there is no <skin-version>
element defined, as in Example 5-25), then the <version>
element modified by <default>true</default>
is used instead.
Example 5-25 Requesting a Default Skin Version in the adfmf-config.xml File
In this case, the skin identified in Example 5-26 as customFamily-v1.iphone
is used instead of customFamily-v2.iphone
, which is not identified as a default skin.
Example 5-26 Multiple Skin Versions Defined in the adfmf-skins.xml File
Define the <skin-version>
element in the admf-config.xml
file, as shown in Example 5-27, to allow the ADF Mobile runtime to apply a specific skin. At runtime, ADF Mobile ignores the default skin in favor of skin referenced by a version (such as <name>v1<name>
in Example 5-26) that matches the <skin-version>
definition in the adfmf-skins.xml
file. The ADF Mobile runtime locates the version of the skin for the particular skin family and applies it with the base skins, meaning that it evaluates the <extends>
clause recursively.
Note: The ADF Mobile runtime ignores |
Example 5-27 Specifying a Specific Skin in the adfmf-config.xml
To version an ADF Mobile skin:
adfmf-skins.xml
file. <version>
component from the ADF Mobile Skins Component Palette to a <skin>
element in the Structure window or the source editor. <version>
element by entering the version number in the Insert version dialog, illustrated in Figure 5-44. true
to enable ADF Mobile to apply this version of the skin. adfmf-config.xml
file. <skin-version>
element from the ADF Mobile Skins Component Palette to the <skin-family>
element in the Structure window or the source editor. <version>
element in the adfmf-skins.xml
file. As mentioned in Section 5.12.1, "About the adfmf-config.xml File," the ADF Mobile runtime first applies specific skins before it applies general skins, beginning with device-specific skins. For a specific skin version, such as v2
in Example 5-27, ADF Mobile first searches for selectors designed for version v2
starting with customSkinFamily.iPhone
(or customSkinFamily.iPad
). When it finds a skin definition that includes both this device-specific skin and a v2
designator, it applies this skin and also resolves—and includes—all of the base skins. If ADF Mobile cannot locate selectors defined for v2
in the device-specific skins, it searches for v2
-defined selectors in the platform-specific skin, customSkinFamily.iOS
. If ADF Mobile cannot find any v2
selectors at this level, it searches for the v2
selectors in the base skin, customSkinFamily
.
For an ADF Mobile AMX application, you can designate a specific style for the application feature implemented as ADF Mobile AMX, thereby overriding the default skin styles set at the application-level within the adfmf-config.xml
and adf-skins.xml
files. You add individual styles to the application feature using a CSS file as the Includes file.
The Includes table in the overview editor for the adfmf-feature.xml
files enables you to add a cascading style sheet (CSS) to an ADF Mobile AMX application feature.
Figure 5-45 The Includes Table
Before you begin:
Create an ADF Mobile task flow as described in Section 6.2, "Creating Task Flows." Create or add a Cascading Style Sheet as described in the "Importing ADF Skins from an ADF Library JAR" and "About Creating an ADF Skin" sections in Oracle Fusion Middleware Creating ADF Skins with Oracle ADF Skin Editor.
How to add a style to an application feature:
After you add a CSS (or JavaScript file) to the Includes table, the CSS pages added to the application feature can be applied to an ADF Mobile AMX page by selecting the application feature from the Feature Content dropdown menu in the preview pane of the ADF Mobile AMX editor, as shown in Figure 5-48.
The CSS files defined in the adfmf-skins.xml
file, illustrated in Example 5-28, show how to extend a skin to accommodate the different display requirements of the Apple iPhone and iPad. These styles are applied in a descending fashion, as illustrated in Figure 5-39. The SkinningDemo sample application provides a demonstration of how customized styles can be applied when the application is deployed to different devices. This sample application is in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
For example, at the iOS level, the stylesheet (mobileFusionFx
in Example 5-28) is applied to both an iPhone or an iPad. For device-specific styling, you would define the <skin-id>
elements for the iPhone and iPad skins. The skinning demo application illustrates the use of custom skins defined through this element. Figure 5-49 shows how a custom style is applied to an iPhone.
Example 5-28 Skinning Levels Defined in the adfmf-skins.xml File
The adfmf-application.xml
file references at least one application feature. These application features, when packaged into a JAR file known as a Feature Archive file (FAR), provide the reusable content that can be consumed by other ADF Mobile applications. A FAR is essentially a self-contained collection of everything that an application feature requires, such as icon images, resource bundles, HTML, JavaScript, or other implementation-specific files. As described in Section 17.5, "Deploying Feature Archive Files (FARs)," the contents of a FAR includes a single adfmf-feature.xml
file, which identifies each of the packaged application features by a unique ID. You can edit this file, as described in Section 5.8, "About the Mobile Feature Application Configuration File," to update such feature properties as content implementation (local or remote HTML files or ADF Mobile AMX pages) and display based on such factors as user roles and privileges or device properties. A mobile application can reference one FAR, several of them, or none at all.
You make an application feature available to an ADF Mobile application by adding it to the consuming application's class path.
Before you begin:
Deploy the application feature as a Feature Archive file, as described in Section 17.5.2, "How to Deploy the Feature Archive Deployment Profile."
How to add application feature content to an ADF Mobile application:
Note: Choose Remove from Application to remove the feature archive JAR from the consuming application's classpath. |
After a FAR is added to the application's classpath:
adfmf-feature.xml
files included in the JARs becomes available to the consuming application, as illustrated by Figure 5-52 where the dropdown lists IDs of the available application features belonging to AcmeSales.jar
(HCM, PROD, and Customers) as well as one called Portfolio that is defined in another Feature Archive that has been added to the application, StockTracker.jar
. See also Section 5.6.1, "How to Designate the Content for a Mobile Application." Tip: Manually adding the Feature Archive JAR to the application classpath also results in the application features displaying in the Insert Feature Reference dialog. |
connections.xml
file located in the Feature Archive JAR is merged into the consuming application's connections.xml
file. The Log window, shown in Figure 5-53, displays naming conflicts. Note: You must verify that the connections are valid in the consuming application. |
To ensure that the resources of a FAR can be used by an application, both the name of the FAR and its feature reference ID must be globally unique. Within the FAR itself, the DataControl.dcx
file must be in a unique package directory. Rather than accepting the default names for these package directories, you should instead create a unique package hierarchy for the project. You should likewise use a similar package naming system for the feature reference IDs.
Describes how to create ADF Mobile AMX content for an ADF Mobile application, including creating task flows, application pages, as well as using data controls, web services, and the local database.
Part IV contains the following chapters:
This chapter describes how to create the ADF Mobile AMX application feature.
This chapter includes the following sections:
ADF Mobile AMX is a subframework within ADF Mobile that provides a set of UI components that enable you to create an application feature whose behavior is identical on all supported platforms. While ADF Mobile AMX maintains the same development experience as ADF Faces by allowing you to drag these components into an editor from the Component palette or from the Data Control palette, these components are not equivalents to their ADF Faces counterparts: ADF Mobile AMX components do not support every property and behavior of ADF Faces components.
Note: When developing interfaces for mobile devices, always be aware of the fact that the screen space is very limited. In addition, touchscreen support is not available on some mobile devices. |
For more information, see the following:
Task flows allow you to define the navigation between ADF Mobile AMX pages. Using your application workspace in JDeveloper (see Section 4.2, "Creating an Application Workspace"), you can start creating the user interface for your ADF Mobile AMX application feature by designing task flows. As with any standard JSF application, ADF Mobile AMX uses navigation cases and rules to define the task flow. These definitions are stored in a file with the default name of ViewController-task-flow.xml
(see Section 6.2.3, "What You May Need to Know About the ViewController-task-flow.xml File").
An ADF Mobile sample application called Navigation (located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer) demonstrates how to use various navigation techniques, such as circular navigation, routers, and so on.
ADF Mobile enables you to create ADF Mobile AMX application features that have both bounded and unbounded task flows. As described in the "Getting Started with ADF Task Flows" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework, a bounded task flow is also known as a task flow definition and represents the reusable portion of an application. In ADF Mobile, bounded task flows have a single entry point and no exit points. They have their own collections of activities and control-flow rules, as well as their own memory scope and managed-bean life span.
You use the ADF Mobile AMX Task Flow Designer to create bounded task flows for your feature. When designing an ADF Mobile AMX task flow, JDeveloper maintains the same experience as designing an ADF task flow, as described in the "Creating a Task Flow" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Like the overview editor for task flows, this tool includes a diagrammer (see Section 6.2.4, "What You May Need to Know About the ADF Mobile Task Flow Diagrammer") in which you build the task flow by dragging and dropping activities and control flows from the Components editor. You then define these activities and the transitions between them using the Property Inspector.
Unless a task flow has already been created, ADF Mobile automatically generates a default unbounded task flow (adfc-mobile-config.xml
file) when a new ADF Mobile AMX page is created. For an example of the unbounded task flow, see the adfc-mobile-config.xml
file from a sample application called Navigation located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
For more information, see the "Creating ADF Task Flows" part of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You use the navigation diagrammer to declaratively create a task flow for your ADF Mobile AMX application feature. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your feature in the ViewController-task-flow.xml
file (default).
Before you begin:
To design a task flow, the ADF Mobile application must include a View Controller project file (see Chapter 4, "Getting Started with ADF Mobile Application Development").
There are two ways to create a task flow in ADF Mobile:
adfmf-feature.xml
file. For more information, see Section 5.10.1, "How to Define the Application Content." To create a task flow from the New Gallery:
<Name>
-flow.xml
file in the navigation diagrammer that Figure 6-3 shows. Note: Task flows should be created within the View Controller project of your ADF Mobile application. |
Note: JDeveloper increments the number of the task flow according to the number of task flows that already exist in the same pattern. |
Tip: If the Component Palette is not displayed, choose View > Component Palette from the main menu. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper. |
JDeveloper creates a bounded task flow and redraws the diagram with the newly added component.
You can also open the Overview tab and use the overview editor to create navigation rules and navigation cases. Press F1 for details on using the overview editor to create navigation.
Additionally, you can manually add elements to the task flow file by directly editing the page in the Source editor. To open the file in the Source editor, click the Source tab.
Note: When manually editing the task flow file, keep in mind that all the document file names referring to ADF Mobile AMX pages, JavaScript files, and CSS files are case-sensitive. If special characters (such as an underscore, for example) are used in a file name, you should consult the mobile device specification to verify whether or not the usage of this character is supported. |
Once the navigation for your ADF Mobile AMX feature is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Section 6.2.8, "How to Enable Page Navigation Using Control Flow Case."
After you define the task flow for the ADF Mobile AMX application feature, you can double-click a view file to access the ADF Mobile AMX view. For more information, see Section 6.3, "Creating Views."
The ADF Mobile Task Flow designer supports a subset of ADF activities and control flows that are listed in Table 6-1.
Table 6-1 Supported Activities
Activity | Description |
---|---|
Method Call | Invokes a method (typically a method on a managed bean). You can place a method call activity anywhere in the control flow of an ADF Mobile AMX application feature to invoke logic based on control flow rules. For additional information, see the "Using Method Call Activities" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. You can also specify parameters that you pass into a method call that is included in a task flow. These include standard ADF parameters for a method call action in an ADF Mobile AMX task flow. When you use the designer to generate a method, it adds the required arguments and type. For more information, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework: At run time, you can define parameters for a method call in a task flow and pass parameters into the method call itself for its usage. For more information on passing method call parameters, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework: |
Router | Evaluates an Expression Language (EL) expression and returns an outcome based on the value of the expression. These outcomes can then be used to route control to other activities in the task flow. For more information, see the "Using Router Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
View | Displays an ADF Mobile AMX page. For more information, see the "Using View Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Task Flow Call | Calls a bounded task flow from either an unbounded or bounded task flow. While a task flow call activity allows you to call a bounded task flow located within the same ADF Mobile AMX application feature, you can also call a bounded task flow from a different ADF Mobile AMX application feature or from a Feature Archive file (FAR) that has been added to an Oracle ADF library (see Section 5.13, "Working with Feature Archive Files"). The task flow call activity supports task flow input parameters and return values. For more information, see the "Using Task Flow Call Activities" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Task Flow Return | Identifies the point in an application's control flow where a bounded task flow completes and sends control flow back to the caller. You can use a task flow return only within a bounded task flow. For more information, see "Using Task Flow Return Activities" the section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The ViewController-task-flow.xml
file is the ADF Mobile AMX counterpart to ADF's task-flow-definition.xml
and enables you to design the interactions between views (ADF Mobile AMX pages) by dragging and dropping the ADF Mobile AMX task flow components from the Component Palette into the diagrammer.
Figure 6-4 shows a sample task flow file called Products-flow.xml
. In this file, the control flow is directed from the products
page to the productdetails
page. To return to the products
page from the productdetails
page, the built-in __back
navigation is used.
As illustrated in Figure 6-4, the task flow diagram and Component Palette display automatically after you create a task flow using the ADF Mobile Task Flow Creation utility. The task flow diagram is a visual editor onto which you can drag and drop activities and task flows from the Component Palette or from the Application navigator. For more information, see Section 6.2.5, "How to Add ADF Mobile Activities."
As in ADF application development, you use the task flow diagrammer to drag and drop activities, views, and control flows.
Before you begin:
You must select ADF Mobile Task Flow from the Component Palette, as Figure 6-5 shows.
To add an activity to an ADF Mobile task flow:
ViewController-task-flow.xml
) to display the task flow diagram and the Component Palette, as Figure 6-5 shows. The diagrammer displays the task flow editor. The Component Palette automatically displays the components available for an ADF Mobile task flow. Note: There is a default activity that is associated with each task flow. |
The view activity is associated in metadata with an actual ADF Mobile AMX page. You add a view activity by dragging and dropping it from the Component Palette. A view activity displays an ADF Mobile AMX page. You can create an actual ADF Mobile AMX page by double-clicking the view activity in the Diagram window. You can also create a view activity by dragging and dropping an ADF Mobile AMX file in the Application navigator into the overview editor's Diagram tab.
ADF Mobile task flows support the wildcard control flow rule, which represents a control flow from-activity-id
that contains a trailing wildcard (foo*
) or a single wildcard character. You can add a wildcard control flow rule by dragging and dropping it from the Component Palette. To configure your wildcard control flow rule, use the Property Inspector.
You can create navigation using the Control Flow Case component, which identifies how control passes from one activity to the next. To create a control flow, select Control Flow Case from the Component Palette. Next, connect the control flow case to the source activity, and then to the destination activity. JDeveloper creates the following after you connect a source and target activity:
control-flow-rule
: Identifies the source activity using a from-activity-id
. control-flow-case
: Identifies the destination activity using a to-activity-id
. To define a control flow case directly in the ADF Mobile task flow diagram:
from-outcome
contains a value that can be matched against values specified in the action attribute of the UI components. from-outcome
, select the text next to the control flow in the diagram. By default, this is a wildcard character. from-activity-id
(the identifier of the source activity), or the to-activity-id
(the identifier for the destination activity), drag either end of the arrow in the diagram to a new activity. For more information, see the "What Happens When You Create a Control Flow Rule" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Using the Property Inspector, you can specify an action outcome by setting the action
attribute of one of the following UI components to the corresponding control flow case from-outcome
leading to the next task flow activity:
You use the UI component's Action field (see Figure 6-6) to make a selection from a list of possible action outcomes defined in one or more task flow for a specific ADF Mobile AMX page.
A Back action (__back
) is automatically added to every list to enable navigation to the previously visited page.
Note: An ADF Mobile AMX page can be referenced in both bounded and unbounded task flows, in which case actions outcomes from both task flows are included in the Action selection list. |
You can create and use managed beans in your ADF Mobile application to store additional data or execute custom code. You can use JDeveloper's usual editing mechanism to reference managed beans and create references to them for applicable fields. For more information, see the "Using a Managed Bean in a Fusion Web Application" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Figure 6-7 shows the Edit option for an action
property in the Property Inspector. You click this option to invoke the Edit Property dialog that Figure 6-8 shows.
Table 6-5 lists ADF Mobile AMX attributes for which the Edit option in the Property Inspector is available.
Table 6-2 Editable Attributes
Property | Element |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Clicking Edit for all other properties invokes a similar dialog, but without the Action Outcome option, as Figure 6-9 shows.
The preceding dialogs demonstrate that you can either create a managed bean, or select an available action outcome for the action property.
The Action Outcome list shown in Figure 6-8 contains the action outcomes from all task flows to which a specific ADF Mobile AMX page belongs. In addition, this list contains a __back
navigation outcome to go back to the previously visited page (see Section 6.2.9, "How to Specify Action Outcomes Using UI Components" for more information). If a page is not part of any task flow, the only available outcome in the Action Outcome list is __back
. When you select one of the available action outcomes and click OK, the action property value is updated with the appropriate EL expression, such as the following for a commandButton
:
The Method Binding option (see Figure 6-8) allows you to either create a new managed bean class, or select an existing one.
To create a new managed bean class:
ADF Mobile supports the following scopes:
application
view
pageFlow
When you declare a managed bean to an ADF Mobile application or the ADF Mobile AMX application feature, the managed bean is instantiated and identified in the proper scope, and the bean's properties are resolved and its methods are called through EL. For more information, see Section 8.2, "Understanding EL Support."
Example 6-1 shows the newly created managed bean class. The task flow that this ADF Mobile AMX page is part of is updated to reference the bean.
Example 6-1 New Managed Bean Class
Note: If a given ADF Mobile AMX page is part of bounded as well as unbounded task flows, both of these task flows are updated with the managed bean entry. |
Upon completion, the selected property value is updated with the appropriate EL expression, such as the following for a commandButton
.:
The managed bean class is also updated to contain the newly created method, as Example 6-2 shows.
To select an existing managed bean:
Similar to the action outcomes, the Managed Bean list is populated with managed beans from all task flows that this ADF Mobile AMX page is part of.
Note: If the ADF Mobile AMX page is not part of any task flow, you can still create a managed bean. |
For more information, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer. By defining the page transition style on the task flow, you can specify how ADF Mobile AMX pages transition from one view to another. The behavior of your ADF Mobile AMX page at transition can be as follows:
Sliding in from start and end, as well as flipping from start and end are used on the iOS platform to accommodate the right-to-left text direction. It is generally recommended to use the start and end transition style as opposed to left and right.
Note: You cannot enable flipping on the Android platform. |
You set the transition style by modifying the transition
attribute of the control-flow-case
(Control Flow Case component), as Example 6-3 shows.
Example 6-3 Setting Transition Style
In the Property Inspector, the transition
attribute is located under Behavior, as Figure 6-13 shows. The default transition style is slideLeft
.
You can start creating the ADF Mobile AMX view by doing the following:
An ADF Mobile AMX page is represented by an XML file similar to a JSPX file in Oracle ADF Faces.
The following is a basic structure of the ADF Mobile AMX file:
With the exception of data visualization components (see Section 7.5, "Providing Data Visualization"), UI elements are declared under the <amx>
namespace.
For more information, see Section 6.3.1.3, "What Happens When You Create an ADF Mobile AMX Page."
ADF Mobile AMX files are contained in the View Controller project of the ADF Mobile application. You create these files using the Create ADF Mobile AMX Page dialog.
ADF Mobile offers two alternative ways of creating an ADF Mobile AMX page:
Before you begin:
To create an ADF Mobile AMX page, the ADF Mobile application must include a View Controller project file (see Chapter 4, "Getting Started with ADF Mobile Application Development").
To create an ADF Mobile AMX page from the New Gallery:
For more information, see Section 6.3.1.3, "What Happens When You Create an ADF Mobile AMX Page" and Section 7.2.6, "How to Use a Facet Component."
Note that when you select or deselect a facet, the image representing the page changes dynamically to reflect the changing appearance of the page.
Note: ADF Mobile persists your facet selection and applies it to each subsequent invocation of the Create ADF Mobile AMX Page dialog. |
To create an ADF Mobile AMX page from a View Component of the Task Flow:
When you use the Create ADF Mobile AMX Page dialog to create an ADF Mobile AMX page, JDeveloper creates the physical file and adds it to the Web Content
directory of the View Controller project.
In the Application navigator that Figure 6-16 shows, the Web Content
node contains a newly created ADF Mobile AMX file called order.amx
.
JDeveloper also adds the code necessary to import the component libraries and display a page. This code is illustrated in the Source editor shown in Figure 6-16.
Figure 6-17 shows how the Preview pane and the generated ADF Mobile AMX code would look like if you selected all facet types listed in the Page Facet section of the Create ADF Mobile AMX Page dialog when creating the page.
In the page created with all the facets selected (see Figure 6-17), note the following:
Figure 6-18 shows the Page Facet section of the Create ADF Mobile AMX Page dialog without any facets selected, the Preview pane, and the generated ADF Mobile AMX code (which is also shown in Figure 6-16).
When the page is first displayed in JDeveloper, it is displayed in the Source editor. To view the page in a WYSIWYG environment, use the Preview pane (accessed by clicking the Preview tab). Figure 6-19 shows the Preview tab selected for a newly created ADF Mobile AMX page called order.amx
. This page is blank because it has not yet been populated with ADF Mobile AMX UI components or data controls.
Using the Preview pane's toolbar that Figure 6-19 shows, you can do the following:
Note: Scaling is available for both Portrait and Landscape mode. |
To view the source for the page in the Source editor, click the Source tab that Figure 6-16, "ADF Mobile AMX File in Application Navigator" shows. The Structure window, located in the lower left-hand corner of JDeveloper (shown in Figure 6-16 and Figure 6-19), provides a hierarchical view of the page. For more information, see Section 6.3.2.2, "Using the Preview."
ADF Mobile AMX supports JDeveloper's Go to Page Definition functionality that enables you to navigate to the page definition of an ADF Mobile AMX page by using a context menu that allows you to locate and edit the binding information quickly.
You can invoke the context menu that contains the Go to Page Definition option from the following:
In addition, you can open the Page Definition file using the Go to Page Definition shortcut key defined under Tools > Preferences on the main menu, as Figure 6-23 shows.
After you create an ADF Mobile AMX page, you can start adding ADF Mobile AMX UI components and data controls to your page.
You can use the Component Palette to drag and drop ADF Mobile AMX components onto the page. JDeveloper then adds the necessary declarative page code and sets certain values for component attributes.
The Component Palette displays ADF Mobile AMX components by categories (see Figure 6-24):
For information on adding and using specific components, see Section 7.3, "Creating and Using UI Components."
Before you begin:
The ADF Mobile application must include a View Controller project, which may or may not contain an ADF Mobile AMX page or ADF Mobile AMX page task flow from which to create a page.
As described in Section 6.3.1.2, "Creating ADF Mobile AMX Pages," you can invoke the Create ADF Mobile AMX Page dialog by double-clicking a view icon in a task flow diagram or by selecting Client Tier > ADF Mobile > ADF Mobile AMX Page from the New Gallery.
To add UI components to a page:
Tip: If the Component Palette is not displayed, choose View > Component Palette from the main JDeveloper menu. By default, the Component Palette is displayed in the upper right-hand corner of JDeveloper. |
Note: When building an ADF Mobile AMX page, you can only drop UI components into UI containers such as, for example, a Panel Group Layout. |
JDeveloper redraws the page in the Preview pane with the newly added component.
JDeveloper's preview provides WYSIWYG support for both the iOS and Android platforms when you build the user interface using ADF Mobile AMX files. As illustrated in Figure 6-25, splitting a view while adding the ADF Mobile AMX components to the ADF Mobile AMX file enables you to see both the code view through the Source editor and a UI view through the Preview pane. As a result, you can modify the source and get instant feedback in terms of the look and feel of that application on both the iOS and Android platforms.
In addition to being able to see the design and source views simultaneously, you can also open and work with multiple design views at the same time, as well as set each one to a different platform and screen size. By opening a combination of design views for different devices, you can develop applications simultaneously for different platforms and form factors using different orientation. Figure 6-26 shows a split screen with iPhone on the top and iPad with 50% scaling on the bottom. You can split the Preview pane using the default split functionality of JDeveloper.
Note: An ADF Mobile AMX page is rendered even for an invalid ADF Mobile AMX file. Errors are indicated by the error icon on a component. By moving the mouse over the error icon, you can view the error details. |
Once you drop UI components onto a page, you can use the Property Inspector (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.
Tip: If the Property Inspector is not displayed, choose Window > Reset to Default Factory Settings from JDeveloper's main menu. |
Figure 6-27 shows the Property Inspector displaying the attributes for an Output Text component.
To set component attributes:
Tip: Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the Property Inspector. |
When you use the Property Inspector to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.
Tip: You can always change attribute values by directly editing the page in the Source editor. To view the page in the Source editor, click the Source tab at the bottom of the page. |
You can create databound UI components in an ADF Mobile AMX view by dragging data control elements from the Data Controls panel and dropping them into either the Structure window or the Source editor. When you drag an item from the Data Controls panel to either of these places, JDeveloper invokes a context menu of default UI components available for the item that you dropped. When you select the desired UI component, JDeveloper inserts it into an ADF Mobile AMX page. In addition, JDeveloper creates the binding information in the associated page definition file. If such file does not exist, then JDeveloper creates one. ADF Mobile provides a visual indicator for dropping data controls to inform you of the location of the new data control
Note: A data control can only be dropped at a location allowed by the underlying XML schema. |
Depending on the approach you take, you can insert different types of data controls into the Structure window of an ADF Mobile AMX page.
Dropping an attribute of a collection lets you create various input and output components. You can also create Button and Link components by dropping a data control operation on a page.
The respective action listener is added in the ADF Mobile AMX Button for each of these operations. The EL expression in the actionListener
is the same as the one created on the drop of an operation into an Oracle ADF Faces application.
The data control attributes and operations can be dropped as one or more of the following ADF Mobile AMX UI components (see Section 7.3, "Creating and Using UI Components"):
The following Date and Number types are supported:
java.util.Date
java.sql.Timestamp
java.sql.Date
java.lang.Number
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
For information on how to use the Data Controls panel in JDeveloper, see "Using the Data Controls Panel" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If your ADF Mobile AMX page already contains a Panel Form Layout component or does not require to have all the fields added, you can drop individual attributes from a data control. Depending on the attributes types, different data binding menu options are provided, as follows:
Figure 6-29 shows the context menu for adding selection controls that appears when you drag an attribute from the Data Controls panel into the Structure window of an ADF Mobile AMX page.
If you are working with an existing ADF Mobile AMX page and you select ADF Mobile Select One Button or ADF Mobile Select One Choice option, an appropriate version of the Edit List Binding dialog is displayed (see Figure 6-30). If you drop a control onto a completely new ADF Mobile AMX page, the Edit Action Binding dialog opens instead. After you click OK, the Edit List Binding dialog opens.
Note: The Edit List Binding or Edit Boolean Binding dialog appears every time you drop any data control attributes as any of the single selection or boolean selection components, respectively. |
If you select ADF Mobile Select One Radio option, another version of the Edit List Binding dialog is displayed, as shown in Figure 6-31.
If you select ADF Mobile Select Boolean Checkbox or ADF Mobile Select Boolean Switch option, another version of the Edit List Binding dialog is displayed, as shown in Figure 6-32.
Figure 6-29 shows the context menu for adding selection controls that appears when you drag an attribute from the Data Controls panel into the Structure window of a ADF Mobile AMX page.
Figure 6-33 Context Menu for Text Controls
In addition to attributes, you can drag and drop operations or custom methods. Depending on the type of operation or method, different data binding menu options are provided, as follows:
Note: If you drop an operation or a method as a child of the List View control, the context menu does not appear and the List Item is created automatically because no other valid control can be dropped as a direct child of the List View control. JDeveloper creates a binding similar to the following for the generated List Item: <amx:listItem actionListener="#{bindings.getLocation.execute}"/> |
Figure 6-35 Context Menu for Methods
The ADF Mobile Parameter Form option allows you to choose the method or operation arguments to be inserted in the form, as well as the respective controls for each of the arguments (see Figure 6-36).
The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:
For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."
The following are supported control types for the ADF Mobile Parameter Form:
You can drag and drop collections. Depending on the type of collection, different data binding menu options are provided, as follows:
If you select ADF Mobile Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 6-39).
The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:
For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."
The following are supported controls for ADF Mobile Form:
Note: Since ADF Mobile Output Text is not a valid Panel Form Layout child element as defined by the ADF Mobile schema, it is not supported. |
If you select ADF Mobile Read-only Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 6-40).
The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:
For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."
The ADF Mobile Read-only Form only supports the ADF Mobile Output Text with Label control.
If you select ADF Mobile Iterator as the type of the control to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the iterator, as well as the respective controls for each of the fields, with ADF Mobile Output Text w/Label being a default selection (see Figure 6-42).
The following data bindings are generated after you select the appropriate options in the Edit Iterator dialog:
For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."
The following are supported controls for ADF Mobile Iterator:
If you select ADF Mobile List View as the type of the control to create, the ListView Gallery opens that allows you to choose a specific layout for the List View, as Figure 6-44 shows.
Table 6-3 lists the supported List Formats that are displayed in the ListView Gallery.
Table 6-3 List Formats
Format | Element Row Values |
---|---|
Simple |
|
Main-Sub Text |
|
Start-End |
|
Quadrant |
|
The Variations presented in the ListView Gallery (see Figure 6-44) for a selected list format consist of options to add either dividers, a leading image, or both:
The Styles options presented in the ListView Gallery (see Figure 6-44) allow you to suppress chevrons, use an inset style list, or both:
adfmf-listView-insetList
style class on the listView
element in the generated ADF Mobile AMX markup. showLinkIcon
attribute on the listItem
element to false
in the generated ADF Mobile AMX markup. The following is an example of the Simple format with the inset list and chevrons:
The ListView Gallery's Description pane is updated based on the currently selected Variation. The format will include a brief description of the main style, followed by the details of the selected variation. Four main styles with four variations on each provide sixteen unique descriptions detailed in Table 6-4.
Table 6-4 List View Variations and Styles
List Format | Variation | Description |
---|---|---|
Simple | Basic | A text field appears at the start side of the list item." |
Simple | Dividers | A text field appears at the start side of the list item, with items grouped by dividers." |
Simple | Images | A text field appears at the start side of the list item, following a leading image. |
Simple | Dividers and Images | A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers. |
Main-Sub Text | Basic | A prominent main text field appears at the start side of the list item with subordinate text below. |
Main-Sub Text | Dividers | A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers. |
Main-Sub Text | Images | A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. |
Main-Sub Text | Dividers and Images | A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers. |
Start-End | Basic | Text fields appear on each side of the list item |
Start-End | Dividers | Text fields appear on each side of the list item, with the items grouped by dividers. |
Start-End | Images | Text fields appear on each side of the list item, following a leading image. |
Start-End | Dividers and Images | Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers. |
Quadrant | Basic | Text fields appear in the four corners of the list item. |
Quadrant | Dividers | Text fields appear in the four corners of the list item, with items grouped by dividers. |
Quadrant | Images | Text fields appear in the four corners of the list item, following a leading image. |
Quadrant | Dividers and Images | Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers. |
After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create the contents of a List Item by mapping binding attributes to the elements of the selected List View format, as Figure 6-45 shows.
When completing the dialog that Figure 6-45 shows, consider the following:
For more information on List View dividers, see Section 7.2.7, "How to Use List View and List Item Components."
The following ADF Mobile AMX markup and data bindings are generated after you select the appropriate options in the Edit List View dialog:
For more information about generated bindings, see Section 6.3.2.4.4, "What You May Need to Know About Generated Bindings."
The following are supported controls for ADF Mobile List View:
Table 6-5 shows sample bindings that are added to an ADF Mobile AMX page when components are dropped.
Table 6-5 Sample Data Bindings
Component | Data Bindings |
---|---|
Button | actionListener="#{bindings.FindContacts.execute}" text="FindContacts" disabled="#{!bindings.FindContacts.enabled}" |
Link | actionListener="#{bindings.FindContacts.execute}" text="FindContacts" disabled="#{!bindings.FindContacts.enabled}" |
Input Date with Label | <amx:inputDate id="inputDate1" value="#{bindings.timeStamp.inputValue}" label="#{bindings.timeStamp.hints.label}" required="#{bindings.timeStamp.hints.mandatory}"> </amx:inputDate> |
Input Date | <amx:inputDate id="inputDate1" value="#{bindings.timeStamp.inputValue}" required="#{bindings.timeStamp.hints.mandatory}"> </amx:inputDate> |
Input Text with Label | value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.hints.label}" required="#{bindings.contactData.hints.mandatory}" maximumLength="#{bindings.contactData.hints.precision}" |
Input Text | value="#{bindings.contactData.inputValue}" simple="true" required="#{bindings.contactData.hints.mandatory}" maximumLength="#{bindings.contactData.hints.precision}" |
Output Text | value="#{bindings.contactData.inputValue}" |
Output Text with Label | <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="#{bindings.contactData.hints.label}"> <amx:outputText value="#{bindings.contactData.inputValue}"/> </amx:panelLabelAndMessage> |
Select Boolean Checkbox | value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.label}" |
Select Boolean Switch | value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.label}" |
Select One Button | <amx:selectOneButton id="selectOneButton1" value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.label}" required="#{bindings.contactData.hints.mandatory}"> <amx:selectItems value="#{bindings.contactData.items}"/> </amx:selectOneButton> |
Select One Choice | <amx:selectOneChoice id="selectOneChoice1" value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.label}" required="#{bindings.contactData.hints.mandatory}"> <amx:selectItems value="#{bindings.contactData.items}"/> </amx:selectOneChoice> |
Select Many Checkbox | <amx:selectManyCheckbox id="selectManyCheckbox1" value="#{bindings.AssetView.inputValue}" label="#{bindings.AssetView.label}"> <amx:selectItems value="#{bindings.AssetView.items}"/> </amx:selectManyCheckbox> |
Select One Radio | <amx:selectOneRadio id="selectOneRadio1" value="#{bindings.contactData.inputValue}" label="#{bindings.contactData.label}" required="#{bindings.contactData.hints.mandatory}"> <amx:selectItems value="#{bindings.contactData.items}"/> </amx:selectOneRadio> |
Select Many Choice | <amx:selectManyChoice id="selectManyChoice1" value="#{bindings.AssetView.inputValue}" label="#{bindings.AssetView.label}"> <amx:selectItems value="#{bindings.AssetView.items}"/> </amx:selectManyChoice> |
The first drag and drop event generates the following directories and files:
Figure 6-48 shows a sample DataBindings.cpx
file generated upon drag and drop.
For more information, see the "Working with the DataBindings.cpx File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Figure 6-49 shows a sample PageDef
file generated upon drag and drop.
For more information, see the "Working with Page Definition Files" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
JDeveloper's Bindings tab (see Figure 6-50) is available in the ADF Mobile AMX Editor. It displays the data bindings defined for a specific ADF Mobile AMX page. If you select a binding, its relationship to the underlying Data Control are shown and the link to the PageDef
file is provided.
When you delete or cut an ADF Mobile AMX component from the Structure pane, unused bindings are automatically removed from your page.
Note: Deleting a component from the Source editor does not trigger the removal of bindings. |
Figure 6-51 demonstrates the deletion of a List View component that references bindings. Upon deletion, the related binding entry is automatically removed from the corresponding PageDef.xml
file.
Figure 6-52 demonstrates the removal of the List View component by cutting it from the page.
After clicking Cut, you are presented with the Confirm Removal of Bindings dialog that prompts you to choose whether or not to delete the corresponding bindings, as shown in Figure 6-53.
ADF Mobile generates a unique element identifier (id
) and automatically inserts it into the ADF Mobile AMX page when an element is added by dropping a component from the Component palette, or by dragging and dropping a data control. This results in a valid identifier in the ADF Mobile AMX page that differentiates each component from others, possibly similar components within the same page.
ADF Mobile provides an identifier audit utility that does the following:
id
attribute of an element, an error is reported; id
attribute of an element, a warning is reported. id
for the element when a problem with the identifier is reported. Figure 6-54 and Figure 6-55 show the identifier error reporting in the Source editor and Structure pane respectively.
In addition to the id
, the audit utility checks the popupId
and alignId
attributes of the Show Popup Behavior operation (see Section 7.2.8, "How to Use a Popup Component").
Figure 6-56 and Figure 6-57 show the Show Popup Behavior's Popup Id and Align Id attributes error reporting in the Source Editor respectively.
For more information, see "Auditing and Profiling Applications" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
This chapter describes how to create the user interface for ADF Mobile AMX pages.
This chapter includes the following sections:
ADF Mobile provides a set of layout and field components that enable you to create ADF Mobile AMX pages that behave appropriately for both the iOS and Android user experience. While ADF Mobile AMX maintains the same development experience as ADF Faces by allowing you to drag these components into an editor from the Component palette or from the Data Control palette, these components are not identical to their ADF Faces counterparts: ADF Mobile AMX components do not support every property and behavior of ADF Faces components. In essence, ADF Mobile AMX UI components render HTML equivalents of the native components on the iOS and Android platforms, with their design-time behavior being very similar to the ADF Faces components. In addition, the UI components are integrated with ADF Mobile's controller and model for declarative navigation and data binding.
Note: When developing interfaces for mobile devices, always be aware of the fact that screen space is very limited. In addition, touchscreen support is not available on some mobile devices. |
For more information, see the following:
ADF Mobile AMX provides layout components (listed in Table 7-1) that let you arrange UI components in a page. Usually, you begin building pages with these components, and then add other components that provide other functionality either inside these containers, or as child components to the layout components. Some of these components provide geometry management functionality, such as the capability to stretch when placed inside a component that stretches.
Table 7-1 ADF Mobile AMX Page Management, Layout, and Spacing Components
Component | Type | Description |
---|---|---|
View | Core Page Structure Component | Creates a |
Panel Page | Core Page Structure Component | Creates a For more information about ADF Mobile AMX files, see Section 6.3.1.2, "Creating ADF Mobile AMX Pages." |
Facet | Core Page Structure Component | Creates a |
Panel Group Layout | Page Layout Container | Creates a |
Panel Form Layout | Page Layout Container | Creates a |
Panel Label And Message | Page Layout Container | Creates a |
List View | Page Layout Container | Creates a |
List Item | Page Layout Component | Creates a |
Popup | Secondary Window | Creates a |
Panel Splitter | Interactive Page Layout Container | Creates a |
Panel Item | Interactive Page Layout Component | Creates a |
Spacer | Spacing Component | Creates an area of blank space represented by a For more information, see the "Separating Content Using Blank Space or Lines" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
Table Layout | Page Layout Container | Creates a |
Row Layout | Page Layout Container | Creates a |
Cell Format | Page Layout Component | Creates a |
You add a layout component by dragging and dropping it onto an ADF Mobile AMX page from the Component palette (see Section 6.3.2.1, "Adding UI Components"). Then you use the Property Inspector to set the component's attributes (see Section 6.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
Example 7-1 demonstrates several page layout elements defined in an ADF Mobile AMX file.
Note: You declare the page layout elements under the |
Example 7-1 Page Layout Components Definition
Figure 7-1 Page Layout Components at Design Time
You use the standard Cascading Style Sheets (CSS) to manage visual presentation of your layout components. CSS are located in the Web Content/css
directory of your ViewController project, with default CSS provided by the framework. For more information, see Section 7.6.1, "How to Use Component Attributes to Define Style."
The user interface created for iOS platform using ADF Mobile AMX displays correctly in both the left-to-right and right-to-left language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side. Some of the ADF Mobile AMX layout components, such as the Popup (see Section 7.2.8, "How to Use a Popup Component"), Panel Item, and Panel Splitter (see Section 7.2.9, "How to Use a Panel Splitter Component") can be configured to enable specific right-to-left behavior. For more information about right-to-left configuration of ADF Mobile AMX pages, see Section 7.4, "Enabling Gestures" and Section 6.2.11, "How to Specify the Page Transition Style."
Note: The right-to-left text direction is not supported on Android platform. |
An ADF Mobile sample application called LayoutDemo demonstrates how to use layout components in conjunction with such ADF Mobile AMX UI components as a Button, to achieve some of the typical layouts that follow common patterns. In addition, this sample application shows how to work with styles to adjust the page layout to a specific pattern. The LayoutDemo application is located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
A View (view
element in an ADF Mobile AMX file) is a core page structure component that is automatically inserted into an ADF Mobile AMX file when the file is created. This component provides a hierarchical representation of the page and its structure and represents a single ADF Mobile AMX page.
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A Panel Page (panelPage
element in an ADF Mobile AMX file) is a component that allows you to define a scrollable area of the screen for laying out other components.
By default, when you create an ADF Mobile AMX page, JDeveloper automatically creates and inserts a Panel Page component into the page. When you add components to the page, they will be inserted inside the Panel Page component.
To prevent scrolling of certain areas (such as a header and footer of the page) and enable stretching when orientation changes, you can specify a Facet component for your Panel Page. The Panel Page's header Facet includes the title placed in the Navigation Bar of each page. For information about other types of Facet components that the Panel Page can contain, see Section 7.2.6, "How to Use a Facet Component."
Example 7-2 shows the panelPage
element defined in an ADF Mobile AMX file. This Panel Page contains a header Facet.
Example 7-2 Panel Page Definition
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Panel Group Layout component is a basic layout component that lays out its children horizontally or vertically. To create the Panel Group Layout component, use the Component palette.
To add the Panel Group Layout component:
spacer
) component. Example 7-3 shows the panelGroupLayout
element defined in an ADF Mobile AMX file.
The Panel Form Layout (panelFormLayout
) component positions components so that their labels and fields align horizontally. In general, the main content of the Panel Form Layout component is comprised of input components (such as Input Text) and selection components (such as Choice). If a child component with a label
attribute defined is placed inside the Panel Form Layout component, the child component's label and field are aligned and sized based on the Panel Form Layout definitions. Within the Panel Form Layout, the label area can either be displayed on the start side of the field area or on a separate line above the field area. Separate lines are used if the labelPosition
attribute of the Panel Form Layout is set to topStart
, topCenter
, or topEnd
. Otherwise the label area appears on the start side of the field area. Within the label area, the labelPosition
attribute controls where the label text can be aligned:
labelPosition="start"
or labelPosition="topStart"
) labelPosition="center"
or labelPosition="topCenter"
) labelPosition="end"
or labelPosition="topEnd"
) Within the field area, the fieldHalign
attribute controls where the field content can be aligned:
fieldHalign="start"
) fieldHalign="center"
) fieldHalign="end"
) To add the Panel Form Layout component:
Example 7-4 shows the panelFormLayout
element defined in an ADF Mobile AMX file.
Use the Panel Label And Message (panelLabelAndMessage
) component to place a component, which does not have a label
attribute, inside a Panel Form Layout. These components usually include an Output Text, Button, or Link.
To add the Panel Label And Message component:
Example 7-4 shows the panelLabelAndMessage
element defined in an ADF Mobile AMX file. The label
attribute is used for the child component.
Example 7-5 Panel Label and Message Definition
You use the Facet (facet
) component to define an arbitrarily named facet, such as a header or footer, on the parent layout component. The position and rendering of the Facet are determined by the parent component.
The ADF Mobile AMX page header is typically represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the Header, Primary, and Secondary facets:
The ADF Mobile AMX page footer is represented by the Panel Page component (see Section 7.2.2, "How to Use a Panel Page Component") in combination with the footer facet:
Example 7-6 shows the facet
element declared inside the Panel Page container. The type of the facet is always defined by its name
attribute (see Table 7-2).
Example 7-6 Facet Definition
Table 7-2 lists Facet types that you can use with specific parent components.
Table 7-2 Facet Types and Parent Components
Parent Component | Facet Type (name) |
---|---|
Panel Page (|
|
List View (|
|
Data Visualization Components. For more information, see Section 7.5, "Providing Data Visualization." |
|
To add the Facet component:
You can use the context menu displayed on the Structure pane or Source view to add a Facet component as a child of another component. The context menu displays only facets that are valid for your selected parent component. To add a Facet, first select and then right-click the parent component in the Structure pane or Source view, and then select one of the following:
For more information about data visualization components and their attributes, see Section 7.5, "Providing Data Visualization."
Alternatively:
Use the List View (listView
) component to display data as a list of choices where the end user can select one or more options.
The List Item (listItem
) component represents a single row in the List View. Typically, you place a List Item component inside the List View to lay out and style a list of data items. At run time, List Item components respond to swipe gestures (see Section 7.4, "Enabling Gestures").
The List View allows you to define one of the following:
var
and value
attributes. You can add as many of these static items as necessary, which is useful when you know the contents of the list at design time. In this case, the list is not editable and behaves like a set of menu items. You can create the following types of List View components:
Example 7-7 shows the listView
element defined in an ADF Mobile AMX file. This definition corresponds to the basic component.
Example 7-7 Basic List View Definition
Figure 7-5 demonstrates a basic List View component at design time.
Example 7-8 shows another definition of the listView
element in an ADF Mobile AMX file. This definition also corresponds to the basic component; however, the value of this List View is provided by a collection.
Example 7-8 Basic List View Definition
Note: Currently, when a text string in an Output Text inside a List Item is too long to fit on one line, the text does not wrap at the end of the line. You can prevent this by adding |
Example 7-9 shows the listView
element defined in an ADF Mobile AMX file. This definition corresponds to the component with icons.
Example 7-9 List View with Icons Definition
Figure 7-6 demonstrates a List View component with icons and text at design time.
ADF Mobile AMX provides a list divider that can do the following:
Example 7-10 shows the listView
element defined in an ADF Mobile AMX file. This definition corresponds to the component with collapsible dividers and item counts.
Example 7-10 List View with Dividers Definition
Note: Dividers are not displayed when a List View component is in edit mode (that is, its |
Example 7-11 shows the listView
element defined in an ADF Mobile AMX file. This definition corresponds to the inset component.
Example 7-11 Inset List View Definition
Figure 7-7 demonstrates an inset List View component at design time.
Example 7-12 shows another definition of the listView
element in an ADF Mobile AMX file. This definition also corresponds to the inset component, however, the value of this List View is provided by a collection.
There is a particular order in which ADF Mobile AMX processes the List Item component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."
Unlike other ADF Mobile AMX components, when you drag and drop a List View onto an ADF Mobile AMX page, a dialog called ListView Gallery appears (see Figure 7-8). This dialog allows you to choose a specific layout for the List View.
Table 7-3 lists the supported List Formats that are displayed in the ListView Gallery.
Table 7-3 List Formats
Format | Element Row Values |
---|---|
Simple |
|
Main-Sub Text |
|
Start-End |
|
Quadrant |
|
The Variations presented in the ListView Gallery (see Figure 7-8) for a selected list format consist of options to add either dividers, a leading image, or both:
The Styles options presented in the ListView Gallery (see Figure 7-8) allow you to suppress chevrons, use an inset style list, or both:
adfmf-listView-insetList
style class on the listView
element in the generated ADF Mobile AMX markup. showLinkIcon
attribute on the listItem
element to false
in the generated ADF Mobile AMX markup. The following is an example of the Simple format with the inset list and chevrons:
The ListView Gallery's Description pane is updated based on the currently selected Variation. The format includes a brief description of the main style, followed by the details of the selected variation. Four main styles with four variations on each provide sixteen unique descriptions detailed in Table 7-4.
Table 7-4 List View Variations and Styles
List Format | Variation | Description |
---|---|---|
Simple | Basic | A text field appears at the start side of the list item. |
Simple | Dividers | A text field appears at the start side of the list item, with items grouped by dividers. |
Simple | Images | A text field appears at the start side of the list item, following a leading image. |
Simple | Dividers and Images | A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers. |
Main-Sub Text | Basic | A prominent main text field appears at the start side of the list item with subordinate text below. |
Main-Sub Text | Dividers | A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers. |
Main-Sub Text | Images | A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. |
Main-Sub Text | Dividers and Images | A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers. |
Start-End | Basic | Text fields appear on each side of the list item. |
Start-End | Dividers | Text fields appear on each side of the list item, with the items grouped by dividers. |
Start-End | Images | Text fields appear on each side of the list item, following a leading image. |
Start-End | Dividers and Images | Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers. |
Quadrant | Basic | Text fields appear in the four corners of the list item. |
Quadrant | Dividers | Text fields appear in the four corners of the list item, with items grouped by dividers. |
Quadrant | Images | Text fields appear in the four corners of the list item, following a leading image. |
Quadrant | Dividers and Images | Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers. |
After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create either an unbound List View component that displays static text in the List Item child components (see Figure 7-9), or choose a data source for the dynamic binding (see Figure 7-10).
When completing the dialog that Figure 7-9 shows, consider the following:
<add path to your image>
string. If this is the case, you have to replace it with the path to the image. Table 7-5 Static Text Strings for List View
List Format | Element Row Values | Values for the Output Text |
---|---|---|
Simple |
|
|
Main-Sub Text |
|
|
Start-End |
|
|
Quadrant |
|
|
Figure 7-10 shows the Edit List View dialog when you choose to bind the List View component to data.
When completing the dialog that Figure 7-10 shows, consider the following:
The following are special cases to consider when creating a bound List View:
For more information, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer. This sample demonstrates how to use various types of the List View component and how to apply styles to adjust the page layout to a specific pattern. You can configure the List View component to display data in a list that is arbitrarily long. This is done by appending data to the bottom of the list.
The fetchSize
attribute determines how many rows the List View component should initially load. If there are more rows available than defined by the fetchSize
, a clickable area is displayed after the last fetched row. Clicking within this area loads another batch of rows that equals the fetchSize
. Once there are no more rows to display, the clickable area disappears.
The fetchSize
attribute does not represent the number of loaded rows. Instead, it represents the value by which the number of rows is incremented. When the List View component is created, the fetchSize
attribute is by default set to use an EL expression that points to the rangeSize
of the PageDef
iterator. For information on the PageDef
file, see Section 6.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts" and Figure 6-49, "PageDef File". Setting the fetchSize
to the same value as the rangeSize
improves the application performance.
Example 7-13 shows the listView
element that was created from a collection called testResults
of a data control (see Section 6.3.2.4, "Adding Data Controls to the View").
Example 7-13 Setting fetchSize Attribute
In the preceding example, the fetchSize
attribute points to the rangeSize
on bindings.testResults
. Example 7-14 shows a line from the PageDef
file for this ADF Mobile AMX page. This PageDef
file contains an accessorIterator
element called testResultsIterator
to which the testResults
is bound.
Example 7-14 accessorIterator in PageDef File
For more information, see the "Working with Page Definition Files" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If the fetchSize
attribute is set to -1, all records are retrieved.
Items in a List View can be rearranged. This functionality is similar on iOS and Android platforms: both show a Rearrange icon aligned along the right margin for each list item. The Rearrange operation is initiated when the end user touches and drags a list item using the Rearrange affordance as a handle. The operation is completed when the end user lifts their finger from the display screen.
Note: If the end user touches and drags anywhere else on the list item, the list scrolls up or down. |
The Rearrange Drag operation "undocks" the list item and allows the end user to move the list item up or down in the list.
For its items to be rearrangeable, the List View must not be static, must be in an edit mode, and must be able to listen to moves.
Example 7-15 shows the listView
element defined in an ADF Mobile AMX file. This definition presents a list with an Edit and Stop Editing buttons at the top that allow switching between editable and read-only list mode.
Example 7-15 Rearrangeable List View Definition
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
To adjust the ADF Mobile AMX page layout to a specific pattern, you can combine the use of the various types of List View components and styles that are defined through the styleClass
attribute (see Section 7.6, "Styling UI Components") that uses a set of predefined styles.
Figure 7-14 shows a List View component with differently styled text added to the start (left side) and end (right side) of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.
Example 7-16 shows the listView
element and its child elements defined in an ADF Mobile AMX file. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-startText
places the Output Text component to the start (left side) of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText
places the Output Text component to the end (right side) of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon
attribute of the listItem
element. Since the default value of this attribute is true
, the example does not contain this setting.
Example 7-16 Definition of List View with Start and End Text
Figure 7-15 shows a List View component with differently styled text added to the start and end of each row. The rows do not contain right-pointing arrows representing links.
Example 7-17 shows the listView
element and its child elements defined in an ADF Mobile AMX file. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-startText
places the Output Text component to the start of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText
places the Output Text component to the end of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon
attribute of the listItem
element. Since in this example this attribute is set to false
for every listItem
element, arrows pointing to the right are not displayed.
Example 7-17 Definition of List View with Start and End Text Without Expansion Links
Figure 7-16 shows a List View component with differently styled text added to the start and end of each row, and with a subtext added below the end text on the left.
Example 7-18 shows the listView
element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains subtext placed under the end text. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-upperStartText
places the Output Text component to the left side of the row and applies a black font to its text; setting this attribute to adfmf-listItem-upperEndText
places the Output Text component to the right side of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-captionText
places the Output Text component under the Output Text component whose styleClass
attribute is set to adfmf-listItem-upperStartText
and applies a smaller grey font to its text.
Example 7-18 Defining List View with Start and End Text and Subtext
Figure 7-17 shows a List View component with differently styled text added as a main text and subtext to each row.
Example 7-19 shows the listView
element and its child elements defined in an ADF Mobile AMX file. This List View is populated with rows containing a main text and subtext. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-mainText
places the Output Text component to the start of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText
places the Output Text component under the Output Text component whose styleClass
attribute is set to adfmf-listItem-mainText
and applies a smaller grey font to its text.
Example 7-19 Defining List View with Main Text and Subtext
Figure 7-18 shows a List View component with icons and differently styled text added as a main text and subtext to each row.
Example 7-20 shows the listView
element and its child elements defined in an ADF Mobile AMX file. This List View is populated with cells containing an icon, main text, and subtext. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-mainText
places the Output Text component to the left side of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText
places the Output Text component under the Output Text component whose styleClass
attribute is set to adfmf-listItem-mainText
and applies a smaller grey font to its text. The position of the image
element is defined by its enclosing cellFormat
.
Example 7-20 Defining List View with Icons, Main Text and Subtext
Figure 7-19 shows a List View component with two types of differently styled text added to the start and end of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.
Example 7-21 shows the listView
element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-upperStartText
places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText
places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartText
places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndText
places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon
attribute of the listItem
element. Since the default value of this attribute is true
, the example does not contain this setting.
Example 7-21 Defining List View with Four Types of Text
Figure 7-20 shows a List View component with two types of differently styled text added to the start and end of each row.
Example 7-22 shows the listView
element and its child elements defined in an ADF Mobile AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText
child element is laid out in the list is specified by the tableLayout
child element of the listItem
. Alternatively, you may use the styleClass
attribute to lay out and style outputText
elements: setting this attribute to adfmf-listItem-upperStartText
places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText
places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartTextNoChevron
places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndTextNoChevron
places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon
attribute of the listItem
element. Since in this example this attribute is set to false
for every listItem
element, arrows pointing to the right are not displayed.
Example 7-22 Defining List View with Four Types of Text and Without Expansion Links
If you create a List View component that is not populated from the model but by hardcoded values, this List View becomes static resulting in some of its properties that you set at design time (for example, dividerAttribute
, dividerMode
, fetchSize
, moveListener
) ignored at run time.
ADF Mobile AMX treats a List View component as static if its value
attribute is not set. Such lists cannot be editable (that is, you cannot specify its editMode
attribute).
Use the Popup (popup
) component to display a popup window. You can declare this component as a child of the View component.
You can use the following operations in conjunction with the Popup component:
showPopupBehavior
) operation represents a declarative way to show the Popup in response to a client-triggered event specified using the type
attribute of the Show Popup Behavior. closePopupBehavior
) operation represents a declarative way to close the Popup in response to a client-triggered event. The Popup Id
attribute of the Show Popup Behavior specifies the unique identifier of the Popup component relative to its parent component. The Align Id
attribute of the Show Popup Behavior specifies the unique identifier of the component relative to which the Popup is to be aligned. Since setting identifiers manually is tedious and can lead to invalid references, you set values for these two attributes using an editor that is integrated with the standard Property Inspector (see Figure 7-21). There is an Audit rule that is specifically defined to validate these identifiers (see Section 6.3.2.5, "What You May Need to Know About Element Identifiers and Their Audit").
Example 7-23 shows popup
and showPopupBehavior
elements defined in an ADF Mobile AMX file.
Example 7-23 Popup and Show Popup Behavior Definition
Popup components can display validation messages when the user input errors occur. For more information, see Section 7.9, "Validating Input."
To set a Popup Id attribute:
showPopupBehavior
element in the Source editor or Structure pane. To set an Align Id attribute:
showPopupBehavior
element in the Source editor or Structure pane. When developing for iOS platform, you can configure the Popup to accommodate the right-to-left language environment by setting its animation
attribute to either slideStart
or slideEnd
.
An ADF Mobile sample application called LayoutDemo demonstrates how to use the Popup component and how to apply styles to adjust the page layout to a specific pattern. The LayoutDemo application is located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
Use the Panel Splitter (panelSplitter
) component to display multiple content areas that may be controlled by a left-side navigation pane. Panel Splitter components are commonly used on tablet devices that have larger display size. These components are typically used with a list on the left and the content on the right side of the display area. Any of the following components can contain a Panel Splitter component:
A Panel Splitter can contain a Facet (see Section 7.2.6, "How to Use a Facet Component") and Panel Item components. The Panel Item (panelItem
) component represents the content area of a Panel Splitter. Since each Panel Splitter component must have a least one Panel Item, the Panel Item is automatically added to the Panel Splitter when the Panel Splitter is created. Each Panel Item component can contain any component that a Panel Group Layout can contain (see Section 7.2.3, "How to Use a Panel Group Layout Component").
The left side of the Panel Splitter is represented by a navigator facet (navigator
), which is optional in cases where only multiple content with animations is desired (for example, drawing a multicontent area with a Select Button that requires animation when selecting different buttons to switch content). When in landscape mode, this facet is rendered; in portrait mode, a button is placed above the content area and when clicked, the content of the facet is launched in a popup.
When developing for iOS platform, you can configure the Panel Splitter and Panel Item to accommodate the right-to-left language environment by setting their animation
attribute to either slideStart
, slideEnd
, flipStart
, or flipEnd
.
Note: You cannot use the |
Example 7-24 shows the panelSplitter
element defined in an ADF Mobile AMX file, with the navigator
facet used as a child component.
Example 7-24 Panel Splitter with Navigator Definition
Example 7-25 shows the panelSplitter
element defined in an ADF Mobile AMX file. The navigator
facet is not defined for this panelSplitter
. Instead, selection of the layout is enabled through the use of a selectOneButton
.
Example 7-25 Panel Splitter with Select Button Definition
Example 7-26 shows the panelSplitter
element defined in an ADF Mobile AMX file, with a navigator
facet that is itself a panelSplitter
with selectOneButton
to enable selection of the layout.
Example 7-26 Panel Splitter with Navigator and Select Button Definition
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
Use the Table Layout (tableLayout
) component to display data in a typical table format that consists of rows containing cells.
The Row Layout (rowLayout
) component represents a single row in the Table Layout. The Table Layout component must contain either one or more Row Layout components or Iterator components that can produce Row Layout components.
The CellFormat (cellFormat
) component represents a cell in the Row Layout. The Row Layout component must contain either one or more CellFormat components or Iterator components that can produce CellFormat components.
The Table Layout structure does not allow cell contents to use percentage heights nor can a height be assigned to the overall table structure as a whole. For details, see the description of layout
, width
, and height
attributes of the Table Layout, Row Layout, and Cell Format components in the Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
To add the Table Layout component:
Example 7-27 shows the tableLayout
element and its children defined in an ADF Mobile AMX file.
Example 7-27 Defining Table Layout
You can use the following UI components when developing your ADF Mobile AMX application feature:
You can also use the following miscellaneous components that include operations, listener-type components, and converters as children of the UI components when developing your ADF Mobile AMX application feature:
You add a UI component by dragging and dropping it onto the ADF Mobile AMX page from the Component palette (see Section 6.3.2.1, "Adding UI Components"). Then you use the Property Inspector to set the component's attributes (see Section 6.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
Note: On an ADF Mobile AMX page, you place UI components within layout components (see Section 7.2, "Designing the Page Layout"). UI elements are declared under the |
You can add event listeners to some UI components. For more information, see Section 7.10, "Using Event Listeners." Event listeners are applicable to components for the ADF Mobile AMX run-time description on both iOS and Android-powered devices, but the listeners do not have any effect at design time.
For information on the UI components' support for accessibility, see Section 7.8, "Understanding ADF Mobile Support for Accessibility."
The user interface created for iOS platform using ADF Mobile AMX displays correctly in both the left-to-right and right-to-left language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side.
An ADF Mobile sample application called CompGallery demonstrates how to create and configure ADF Mobile AMX UI components. Another sample application called LayoutDemo shows how to lay out components on an ADF Mobile AMX page. The sample applications are located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
The Input Text (inputText
) component represents an editable text field. The following types of Input Text components are available:
inputText
element in an ADF Mobile AMX file: Figure 7-25 shows the Input Text component displayed in the Preview pane. This component has its parameters set as follows:
The inputType
attribute lets you define how the component interprets the user input: as a text (default), email address, number, telephone number, or URL. These input types are based on the values allowed by HTML5.
To enable conversion of numbers, as well as date and time values that are entered in the Input Text component, you use the Convert Number (see Section 7.3.22, "How to Convert Numerical Values") and Convert Date Time (see Section 7.3.21, "How to Convert Date and Time Values") components.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer. On some mobile devices, when the end user taps an Input Text field, the keyboard is displayed (slides up). If an Input Text is the only component on an ADF Mobile AMX page, the input focus is on this field and the keyboard is displayed by default when the page loads.
A multiline Input Text may be displayed on a secondary page where it is the only component, in which case the multiline Input Text receives focus when the page loads and the keyboard becomes visible.
Input Text components render and behave differently on iOS and Android-powered devices: on iPhone and iPad, Input Text components may be displayed with or without a border.
When creating an Input Text component, consider the following:
A multiline Input Text component is rendered as a rectangle of any height with rounded corners. This component supports scrolling when the content is too large to fit within the boundaries of the field: rows of text scroll up as the text area fills and new rows of text are added. The end user may flick up or down to scroll rows of text if there are more rows than can be displayed in the given display space. A scroll bar is displayed within the component to indicate the area is being scrolled.
Password field briefly echoes each typed character, and then reverts the character to a dot to protect the password.
The Input Number Slider (inputNumberSlider
) component enables selection of numeric values from a range of values by using a slider instead of entering the value by using keys. The filled portion of the trough or track of the slider visually represents the current value.
The Input Number Slider may be used in conjunction with the Output or Input Text component to numerically show the value of the slider. The Input Text component also allows direct entry of a slider value: when the end user taps the Input Text field, the keyboard in numeric mode slides up; the keyboard can be dismissed by either using the slide-down button or by tapping away from the slider component.
The Input Number Slider component always shows the minimum and maximum values within the defined range of the component.
Note: The Input Number Slider component should not be used in cases where a precise numeric entry is required or where there is a wide range of values (for example, 0 to 1000). |
Example 7-28 demonstrates the inputNumberSlider
element defined in an ADF Mobile AMX file.
Example 7-28 Input Number Slider Definition
Figure 7-26 shows the Input Number Slider component displayed in the Preview pane. This component has its parameters set as follows:
To enable conversion of numbers that are entered in the Input Number Slider component, you use the Convert Number component (see Section 7.3.22, "How to Convert Numerical Values").
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer. Similar to other ADF Mobile AMX UI components, the Input Number Slider component has a normal and selected state. The component is in its selected state at any time it is touched. To change the slider value, the end user touches, and then interacts with the slider button.
The Input Date (inputDate
) component presents a popup input field for entering dates. The default date format is the short date format appropriate for the current locale. For example, the default format in American English (ENU) is mm/dd/yy
. The inputType
attribute defines if the component accepts date, time, or date and time as an input. The time zone depends on the time zone configured for the mobile device, and, therefore, it is relative to the device. At run time, the Input Date component has the device's native look and feel.
Example 7-29 demonstrates the inputDate
element defined in an ADF Mobile AMX file. The inputType
attribute of this component is set to the default value of date
.
Example 7-29 Input Date Definition
Note: The |
Figure 7-27 shows the Input Date component displayed in the Preview pane.
For more information, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer ADF Mobile AMX provides the Output Text (outputText
) component for you to use as a label to display text.
Example 7-30 demonstrates the outputText
element defined in an ADF Mobile AMX file.
Example 7-30 Output Text Definition
Figure 7-28 shows the Output Text component displayed in the Preview pane.
You use the Convert Number (see Section 7.3.22, "How to Convert Numerical Values") and Convert Date Time (see Section 7.3.21, "How to Convert Date and Time Values") converters to facilitate the conversion of numerical and date-and-time-related data for the Output Text components.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The Button (commandButton
) component is used to trigger actions (for example, Save, Cancel, Send) and to enable navigation to other pages within the application (for example, Back: see Section 7.3.5.6, "Enabling the Back Button Navigation" for more information).
You may use the Button in one of the following ways:
Note: You may define the icon image and placement as left or right of the text label. |
ADF Mobile supports one default Button type for the following three display areas:
All Button components of any type have three states:
The appearance of a Button component is defined by its styleClass
attribute that you set to an adfmf-commandButton-
<style>
. You can apply any of the styles detailed in Table 7-6 to a Button placed in any valid location within the ADF Mobile AMX page.
Table 7-6 Button Styles
Button Style Name | Description |
---|---|
Default | The default style of a Button placed:
|
Back | The back style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer). This style may be applied to the default Button to give the "back to page" appearance. This button style is typical for "Back to Springboard" or any "Back to Page" buttons. For more information, see Section 7.3.5.2, "Displaying Back Style Buttons." |
Highlight | The highlight style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer) or the content area of an ADF Mobile AMX page. This style may be added to a Button to provide the iPhone button appearance typical of Save (or Done) buttons. For more information, see Section 7.3.5.3, "Displaying Highlight Style Buttons." |
Alert | The Alert style adds the delete appearance to a button. For more information, see Section 7.3.5.4, "Displaying Alert Style Buttons." |
There is an additional Rounded style (adfmf-commandButton-rounded
) that you can apply to a Button to decorate it with a thick rounded border. You can define this style in combination with any other style.
There is a particular order in which ADF Mobile AMX processes the Button component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."
Various types of default style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:
Example 7-31 and Example 7-32 demonstrate the commandButton
element declared in an ADF Mobile AMX file.
Example 7-31 Default Button with Text Label Definition
Example 7-32 Default Button with Image Icon Definition
Example 7-33 shows the commandButton
element declared inside the Panel Page's footer facet.
Example 7-33 Default Button with Text Label and Image in Footer Facet Definition
Example 7-34 demonstrates the commandButton
element declared as a part of the Panel Page content area.
Example 7-34 Default Button with Text Label Definition in the Page Content Area
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer Various types of back style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:
Example 7-35 demonstrates the commandButton
element declared in an ADF Mobile AMX file.
Example 7-35 Back Button with Text Label Definition
Every time you place a Button component within the primary facet and set its action
attribute to __back
, ADF Mobile AMX automatically applies the back arrow styling to it.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer Various types of highlight style buttons that are placed within Panel Page facets or content area are displayed on the mobile device as follows:
Example 7-36 demonstrates the commandButton
element declared in an ADF Mobile AMX file.
Example 7-36 Highlight Button with Text Label Definition
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer Various types of alert style buttons that are placed within Panel Page content are displayed on the mobile device as follows:
Example 7-37 demonstrates the commandButton
element declared in an ADF Mobile AMX file.
Example 7-37 Alert Button with Text Label Definition
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer In your ADF Mobile application, you can use the Button component within the following contexts:
Navigation Bar
ADF Mobile lets you create standard buttons for use on a navigation bar:
Content Area
Buttons that are positioned within the content area of a page perform a specific action given the location and context of the button within the page. These buttons may have a different visual appearance than buttons positioned with the navigation bar:
Action Sheets
The following is an example of buttons placed within an action sheet:
Alert Messages
The following is an example of a button placed within a validation message:
ADF Mobile AMX supports navigation using the back button, with the default behavior of going back to the previously visited page. For more information, see Section 6.2.9, "How to Specify Action Outcomes Using UI Components."
If any Button component is added to the primary facet of a Panel Page that is equipped with the __back
navigation, this Button is automatically given the back arrow visual styling (see Section 7.3.5.2, "Displaying Back Style Buttons"). To disable this, set the styleClass
attribute to amx-commandButton-normal
.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The following is the order in which ADF Mobile AMX processes operations and attributes when such components as a Button, Link, and List Item are activated:
actionListener
) attribute is processed and the associated Java method is invoked. action
) attribute is processed and any navigation case is followed. You use the Link (commandLink
) component to trigger actions and enable navigation to other views.
Similar to the Panel Group Layout, the Link component can have any type of component defined as its child. By using such components as Set Property Listener (see Section 7.3.20, "How to Use the Set Property Listener"), Action Listener (see Section 7.3.19, "How to Use the Action Listener"), Show Popup Behavior, and Close Popup Behavior see Section 7.2.8, "How to Use a Popup Component") as children of the Link component, you can create an actionable area within which clicks and gestures can be performed.
By placing an Image component (see Section 7.3.7, "How to Display Images") inside a Link you can create a clickable image.
Example 7-38 demonstrates the commandLink
element declared in an ADF Mobile AMX file.
Example 7-38 Link Definition
Figure 7-29 shows the Link component displayed in the Preview pane. This component has its parameters set as follows:
There is a particular order in which ADF Mobile AMX processes the Link component's child operations and attributes. For more information, see Section 7.3.5.7, "What You May Need to Know About the Order of Processing Operations and Attributes."
ADF Mobile AMX provides another component that is similar to the Link, but does not allow for navigation between pages: Link Go (goLink
) component. You use this component to enable linking to external pages. Figure 7-30 shows the Link Go component displayed in the Preview pane. This component has its parameters set as follows:
Image is the only component that you can specify as a child of the Link Go component.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer ADF Mobile AMX enables the display of images on iOS and Android-powered devices using the Image (image
) component represented by a bitmap.
In addition to placing an Image in a Button and List View, you can place it inside a Link component (see Section 7.3.6, "How to Use Links") to create a clickable image.
Example 7-39 demonstrates the image
element definition in an ADF Mobile AMX file.
Example 7-39 Image Definition
The following are supported formats on Android platform:
The following are supported formats on iOS platform:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The Checkbox (selectBooleanCheckbox
) component represents a check box that you create to enable single selection of true
or false
values, which allows toggling between selected and deselected states.
You can use the label
attribute of the Checkbox component to place text to the left of the checkbox, and the text
attribute places text on the right.
Example 7-40 demonstrates the selectBooleanCheckbox
element declared in an ADF Mobile AMX file.
Example 7-40 Checkbox Definition
Figure 7-31 shows the Checkbox component displayed in the Preview pane. This component has its parameters set as follows:
Figure 7-32 shows the visual representation of the Checkbox component in its various states.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer iOS does not support a native Checkbox component. The Boolean Switch is usually used in Properties pages to enable a boolean selection (see Section 7.3.12, "How to Use the Boolean Switch Component").
The Select Many Checkbox (selectManyCheckbox
) component represents a group of check boxes that you use to enable multiple selection of true
or false
values, which allows toggling between selected and deselected states of each check box in the group. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.
Note: The Select Many Checkbox component can contain one Select Items component or one or more Select Item components. |
Example 7-41 demonstrates the selectManyCheckbox
element declared in an ADF Mobile AMX file.
Example 7-41 Select Many Checkbox Definition
Figure 7-33 shows the Select Many Checkbox component displayed in the Preview pane. This component has its parameters set as follows:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer ADF Mobile AMX provides two alternative ways for displaying the Select Many Checkbox component: pop-up style (default) and list style that is used when the number of available choices exceeds the device screen size.
The end user interaction with a pop-up style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed in a popup. To make a choice, the end user taps one or more choices. To save the selections, the end user either taps outside the popup or closes the popup using the close (" x ") button.
Upon closing of the popup, the value displayed in the component is updated with the selected value.
When the number of choices exceed the dimensions of the device, a full-page popup containing a scrollable List View (see Section 7.2.7, "How to Use List View and List Item Components") is generated.
The end user interaction with a list-style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed. To make a choice, the end user scrolls up or down to browse available choices, and then taps one or more choices. To save the selections, the end user taps the close (" x ") button.
Upon closing of the list, the value displayed in the component is updated with the selected value.
Note: In both cases, there is no mechanism provided to cancel the selection. |
The Choice (selectOneChoice
) component represents a combo box that is used to enable selection of a single value from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Choice component.
Note: The Choice component can contain one Select Items component or one or more Select Item components. |
Example 7-42 demonstrates the selectOneChoice
element definition with the selectItems
subelement in an ADF Mobile AMX file.
Example 7-42 Choice Definition Using Select Item Component
Example 7-43 Choice Definition Using Select Items Component
Figure 7-34 shows the Choice component displayed in the Preview pane. This component has its parameters set as follows:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer ADF Mobile AMX provides two alternative ways for displaying the Choice component: pop-up style and drop-down style.
On an iPhone, the end user interaction with a native Choice component occurs as follows: when the end user taps the component, the list of choices is displayed, with the first option selected by default. To make a choice, the end user scrolls up or down to browse available choices. To save the selection, the end user taps Done in the tool bar.
On an iPad, the user interaction is similar to the interaction on an iPhone, except the following:
To close the list of choices without selecting an item, the end user must tap outside the popup dialog.
Note: The UI to display the list of choices and the tool bar are native to the browser and cannot be styled using CSS. |
List values within the Choice component may be displayed as disabled.
When the number of choices exceeds the dimensions of the device display, a list page is generated that may be scrolled in a native way.
The end user interaction with a native Choice component on an Android-powered device occurs as follows: when the end user taps the component, the list of choices in the form of a popup dialog is displayed. A simple popup is displayed if the number of choices fits within the dimensions of the device, in which case:
If the number of choices to be displayed does not fit within the device dimensions, the popup contains a scrollable list, in which case:
The Select Items (selectItems
) component is patterned after the JSF selectItems
element and provides a list of objects that can be selected in multiple-selection components. For more information, see JSF Toolbox website at http://www.jsftoolbox.com
.
The Select Item (selectItem
) component is patterned after ADF's selectItem
element and represents a single selectable item of selection components. For more information, see <af:selectItem> page in Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.
The Select Many Choice (selectManyChoice
) component allows selection of multiple values from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.
Note: The Select Many Checkbox component can contain one Select Items component or one or more Select Item components. |
Example 7-44 demonstrates the selectManyChoice
element declared in an ADF Mobile AMX file.
Example 7-44 Select Many Choice Definition Using Select Item Component
Example 7-45 Select Many Choice Definition Using Select Items Component
At design time, the Select Many Choice component looks identical to the Choice component. For more information, see Figure 7-34 and Section 7.3.10, "How to Use the Choice Component."
For more information, illustrations, and examples, see the following:
jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The look and behavior of the Select Many Choice component on all supported devices is almost identical to the Select Many Checkbox component (see Section 7.3.9, "How to Use the Select Many Checkbox Component" for more information).
The Boolean Switch (selectBooleanSwitch
) component allows editing of boolean values as a switch metaphor instead of a checkbox.
Similar to other ADF Mobile AMX UI components, this component has a normal and selected state. To toggle the value, the end user taps (touches and releases) the switch once. Each tap toggles the switch.
Example 7-46 demonstrates the selectBooleanSwitch
element defined in an ADF Mobile AMX file.
Example 7-46 Boolean Switch Definition
Figure 7-35 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The Select Button (selectOneButton
) component represents a button group that lists actions, with a single button active at any given time. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Button component.
Note: The Select Button component can contain one Select Items component or one or more Select Item components. |
Example 7-47 demonstrates the selectOneButton
element defined in an ADF Mobile AMX file.
Example 7-47 Select Button Definition
Figure 7-36 shows the Select Button component displayed in the Preview pane. This component has its parameters set as follows:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer The Radio Button (selectOneRadio
) component represents a group of radio buttons that lists available choices. The selection mechanism is provided by the Select Items or Select Item component (see Section 7.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Radio Button component.
Note: The Radio Button component can contain one Select Items component or one or more Select Item components. |
Example 7-48 and Example 7-49 demonstrate the selectOneRadio
element definition in an ADF Mobile AMX file.
Example 7-48 Radio Button Definition Using Select Item Component
Example 7-49 Radio Button Definition Using Select Items Component
Figure 7-37 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer You use the Carousel (carousel
) component to display other components, such as images, in a revolving carousel. The end user can change the active item by using either the slider or by dragging another image to the front. For more information, see the "Using the ADF Faces Carousel Component" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The Carousel component contains a Carousel Item (carouselItem
) component, whose text represented by the text
attribute is displayed when it is the active item of the carousel. Although typically the Carousel Item contains an Image component, other components may be used. For example, you can use a Link as a child that surrounds an image.
Tip: To minimize any negative effect on performance of your application, you should avoid using heavy-weight components as children: a complex structure creates a multiplied effect because several Carousel Items stamps are displayed simultaneously. |
In JDeveloper, the Carousel is located under Data Views in the Component Palette (see Figure 7-38).
Example 7-50 demonstrates the carousel
element definition in an ADF Mobile AMX file. When defining the carousel
element, you must place the carouselItem
component inside of a carousel
component's nodeStamp
facet.
Example 7-50 Carousel Definition
Figure 7-39 shows a Carousel component displayed on an iPhone.
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer You use the Verbatim (verbatim
) operation to insert your own HTML into a page in cases where such a component does not exist or you prefer laying it out yourself using HTML.
In JDeveloper, Verbatim is located under General Controls in the Component Palette (see Figure 7-41).
Figure 7-40 Verbatim in Component Palette
For more information, illustrations, and examples, see the following:
PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer Inserting JavaScript directly into the verbatim content (within the amx:verbatim
element) is not a recommended practice as it may not execute properly on future versions of the currently supported platforms or on other platforms that ADF Mobile might support in the future. Instead, JavaScript and CSS inclusions should be done through the existing adfmf:include
elements in the adfmf-feature.xml
file, which ensures injection of the script into the page at the startup of the ADF Mobile AMX application feature.
In addition, the use of JavaScript with the Verbatim component is affected by the fact that AJAX calls from an AMX page to a server are not supported. This is due to the security architecture that guarantees that the browser hosting the ADF Mobile AMX page does not have access to the security information needed to make connections to a secure server to obtain its resources. Instead, communication with the server must occur from the embedded Java code layer.
You use the Iterator (iterator
) operation to stamp an arbitrary number of items with the same kind of data, which allows you to iterate through the data and produce UI for each element.
In JDeveloper, the Iterator is located under Operations in the Component Palette (see Figure 7-41).
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Load Bundle (loadBundle
) operation allows you to specify the resource bundle that provides localized text for the ADF Mobile AMX UI components on a page. For more information, see Section 7.7, "Localizing UI Components."
In JDeveloper, the Load Bundle is located under Operations in the Component Palette (see Figure 7-42).
In your ADF Mobile AMX file, you declare the loadBundle
element as a child of the view
element.
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Action Listener (actionListener
) component allows you to declaratively invoke commands through EL based on the type of the parent component's usage.
In JDeveloper, the Action Listener component is located under Listeners in the Component Palette (see Figure 7-43).
You can add zero or more Action Listener or Set Property Listener components as children of any command component (Button, Link, List Item). Listener attributes, such as actionListener
, valueChangeListener
, and moveListener
, are defined for various components. The type
attribute of the Action Listener or Set Property Listener component can denote which event this listener component is to handle and is represented by the first portion of the parent's listener attribute name: action
, valueChange
, move
. Alternatively, the type
attribute can also represent a gesture, such as swipeLeft
, swipeRight
, tapHold
, and so on.
For more information, see the following:
The Set Property Listener (setPropertyListener
) component allows you to declaratively move variable values from one location (defined by the component's from
attribute) to another (defined by the component's to
attribute) without having to write code.
In JDeveloper, the Set Property Listener component is located under Listeners in the Component Palette (see Figure 7-44).
Example 7-51 demonstrates the setPropertyListener
element definition in an ADF Mobile AMX file.
Example 7-51 Set Property Listener Definition
You can add zero or more Set Property Listener or Action Listener components as children of any command component (Button, Link, List Item). Listener attributes, such as actionListener
, valueChangeListener
, and moveListener
, are defined for various components. The type
attribute of the Set Property Listener or Action Listener component can denote which event this listener component is to handle and is represented by the first portion of the parent's listener attribute name: action
, valueChange
, move
. Alternatively, the type
attribute can also represent a gesture, such as swipeLeft
, swipeRight
, tapHold
, and so on.
For more information, see the following:
The Convert Date Time (convertDateTime
) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text and Input Text component to display converted date, time, or a combination of date and time in a variety of formats following the specified pattern.
In JDeveloper, the Convert Date Time is located under Validators and Converters in the Component Palette (see Figure 7-45).
Example 7-52 demonstrates the convertDateTime
element declared in an ADF Mobile AMX file.
Example 7-52 Using Convert Date Time
To convert date and time values:
Note: The Convert Date Time component does not produce any effect at design time. |
The Convert Date Time component allows a level of leniency while converting an input value string to date:
MMM
for month, when attached to any value holder, accepts values with month specified in the form MM
or M
as valid. pattern
attribute. For example, when a pattern on the converter is set to "MMM/d/yyyy"
, the following inputs are accepted as valid by the converter:
The converter supports the same parsing and formatting conventions as the java.text.SimpleDateFormat
(specified using the dateStyle
, timeStyle
, and pattern
attributes), except the case when the time zone is specified to have a long display, such as timeStyle=full
or a pattern set with zzzz
. Instead of a long descriptive string, such as "Pacific Standard Time", the time zone is displayed in the General Timezone format (GMT +/- offset) or RFC-822 time zones.
The exact result of the conversion depends on the locale, but typically the following rules apply:
SHORT
is completely numeric, such as 12.13.52 or 3:30pm MEDIUM
is longer, such as Jan 12, 1952 LONG
is longer, such as January 12, 1952 or 3:30:32pm FULL
is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST As per java.text.SimpleDateFormat
definition, date and time formats are specified by date and time pattern strings. Within date and time pattern strings, unquoted letters from A
to Z
and from a
to z
are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes ('
) to avoid interpretation. " ' ' "
represents a single quote. All other characters are not interpreted; instead, they are simply copied into the output string during formatting, or matched against the input string during parsing.
Table 7-7 lists the defined pattern letters (all other characters from A
to Z
and from a
to z
are reserved).
Table 7-7 Date and Time Pattern Letters
Letter | Date or Time Component | Presentation | Examples |
---|---|---|---|
G | Era designator | Text |
|
y | Year | Year |
|
M | Month in year | Month |
|
w | Week in year | Number |
|
W | Week in month | Number |
|
D | Day in year | Number |
|
d | Day in month | Number |
|
F | Day of week in month | Number |
|
E | Day in week | Text |
|
a | Am/pm marker | Text |
|
H | Hour in day (0-23) | Number |
|
k | Hour in day (1-24) | Number |
|
K | Hour in am/pm (0-11) | Number |
|
h | Hour in am/pm (1-12) | Number |
|
m | Minute in hour | Number |
|
s | Second in minute | Number |
|
S | Millisecond | Number |
|
z | Time zone | General time zone |
|
Z | Time zone | RFC 822 time zone |
|
Pattern letters are usually repeated, as their number determines the exact presentation.
The Convert Number (convertNumber
) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text or Input Text component to display converted number or currency figures in a variety of formats following a specified pattern.
The Convert Number component provides the following types of conversion:
When the Convert Number is specified as a child of an Input Text component, the numeric keyboard is displayed on a mobile device by default.
In JDeveloper, the Convert Number is located under Validators and Converters in the Component Palette (see Figure 7-46).
Example 7-53 demonstrates the convertNumber
element defined in an ADF Mobile AMX file.
Example 7-53 Using Convert Number
To convert numerical values:
Note: The Convert Number component does not produce any effect at design time. |
You can configure Button, Link, and List Item components to react to the following gestures:
You can define swipeRight
, swipeLeft
, swipeUp
, swipeDown
, swipeStart
, swipeEnd
, and tapHold
values for the type
attribute of the following operations:
The values of the type
attribute are restricted based on the parent component and are supported only for Button, Link, and List Item components.
Swiping from start and end is used on the iOS platform to accommodate the right-to-left text direction. It is generally recommended to set the start and end swipe style as opposed to left and right.
Example 7-54 demonstrates use of the tapHold
value of the type
attribute in an ADF Mobile AMX file. In this example, the tap-and-hold gesture triggers the display of a Popup component.
Example 7-54 Using Tap-and-Hold Gesture
Example 7-55 demonstrates use of the swipeRight
gesture in an ADF Mobile AMX file.
Example 7-55 Using Swipe Right Gesture
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
An ADF Mobile sample application called GestureDemo demonstrates how to use gestures with a variety of ADF Mobile AMX UI components. This sample application is located in the PublicSamples.zip file
within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
ADF Mobile employs a set of Data Visualization Tools that you can use to create various charts, gauges, and maps to represent data in your ADF Mobile AMX application feature. You can declare the following elements under the <dvtm>
namespace in an ADF Mobile AMX file:
areaChart
(see Section 7.5.1, "How to Create an Area Chart") barChart
(see Section 7.5.2, "How to Create a Bar Chart") horizontalBarChart
(see Section 7.5.3, "How to Create a Horizontal Bar Chart") bubbleChart
(see Section 7.5.4, "How to Create a Bubble Chart") comboChart
(see Section 7.5.5, "How to Create a Combo Chart") lineChart
(see Section 7.5.6, "How to Create a Line Chart") pieChart
(see Section 7.5.7, "How to Create a Pie Chart") scatterChart
(see Section 7.5.8, "How to Create a Scatter Chart") sparkChart
(see Section 7.5.9, "How to Create a Spark Chart") ledGauge
(see Section 7.5.10, "How to Create a LED Gauge") statusMeterGauge
(see Section 7.5.11, "How to Create a Status Meter Gauge") dialGauge
(see Section 7.5.12, "How to Create a Dial Gauge") ratingGauge
(see Section 7.5.13, "How to Create a Rating Gauge") geographicMap
(see Section 7.5.15, "How to Create a Geographic Map Component") thematicMap
(see Section 7.5.16, "How to Create a Thematic Map Component") Chart, gauge, and map elements have a number of attributes that are common to all or most of them. For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
In JDeveloper, the chart components are located under DVT Mobile AMX > Chart in the Component Palette (see Figure 7-47), gauge components are located under DVT Mobile AMX > Gauge (see Figure 7-48), and map components are located under DVT Mobile AMX > Map (see Figure 7-49).
When you drag and drop a chart, gauge, or map, one of the following dialogs opens to display the information about the type of component you are creating:
Note: After you created the component, you can relaunch the creation dialog by selecting the component in the Source editor or Structure view, and then clicking Edit Component Definition in the Property Inspector. You can use the same editing functionality available from the Property Inspector to edit child components (for example, the Data Point Layer) of some data visualization components. |
An ADF Mobile sample application called CompGallery demonstrates how to use various data visualization components in your ADF Mobile AMX application feature. This sample application is located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer.
For more information on ADF Mobile AMX data visualization components, see the following:
You use the Area Chart (areaChart
) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, an area color or pattern). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles. For information about defining custom series styles, see Section 7.5.6, "How to Create a Line Chart."
Example 7-56 shows the areaChart
element defined in an ADF Mobile AMX file. To create a basic area chart with default series style, you pass it a collection and specify the dataStamp
facet with a nested chartDataItem
element.
Example 7-56 Area Chart Definition with Default Series Styles
Figure 7-53 Area Chart at Design Time
Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row
must include the following properties:
series
: name of the series to which this data item belongs; group
: name of the group to which this data item belongs; value
: the data item value. The collection row
might also include other properties, such as color
or shape
, applicable to individual data items.
You can use attribute groups (attributeGroups
element) to set style properties for a group of data items based on some grouping criteria, as Figure 7-53 shows. In this case, the data item color
and shape
attributes are set based on the additional grouping expression.
Example 7-57 Area Chart Definition with Default Series Styles and Grouping
Note: In Example 7-56 and Figure 7-53, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp. |
For information on attributes of the areaChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm child elements for the areaChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the areaChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You use a bar chart (barChart
) to visually display data as vertical bars, where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties that you have to apply at the series level instead of per each individual data item.
Example 7-58 shows the barChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested chartDataItem
element.
Example 7-58 Bar Chart Definition
Figure 7-54 Bar Chart at Design Time
The data model for a bar chart is represented by a collection of items (rows) that describe individual bars. Typically, properties of each bar include the following:
series
: name of the series to which this bar belongs; group
: name of the group to which this bar belongs; value
: the data item value (required). Data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null
.
For information on attributes of the barChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm child elements for the barChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the barChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You use a horizontal bar chart (horizontalBarChart
) to visually display data as horizontal bars, where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties that you have to apply at the series level instead of per each individual data item.
Example 7-58 shows the horizontalBarChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested chartDataItem
element.
Example 7-59 Horizontal Bar Chart Definition
Figure 7-55 Horizontal Bar Chart at Design Time
The data model for a horizontal bar chart is represented by a collection of items (rows) that describe individual bars. Typically, properties of each bar include the following:
series
: name of the series to which this bar belongs; group
: name of the group to which this bar belongs; value
: the data item value (required). Data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null
.
For information on attributes of the horizontalBarChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm child elements for the horizontalBarChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the horizontalBarChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A bubble chart (bubbleChart
) displays a set of data items where each data item has x
, y
coordinates and size (bubble). In addition, each data item can have various style attributes, such as color
and markerShape
. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the relationships of the data items. However, unlike line charts (see Section 7.5.6, "How to Create a Line Chart") or area charts (see Section 7.5.1, "How to Create an Area Chart"), bubble charts do not have a strict notion of the series and groups.
Example 7-60 shows the bubbleChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested chartDataItem
element. The color
and markerShape
attributes of each data item are set individually based on the values supplied in the data model. In addition, the underlying data control must support the respective variable references of row.label
, row.size
, and row.shape
.
Example 7-60 Bubble Chart Definition with Custom Data Item Properties
Figure 7-56 Bubble Chart at Design Time
In Example 7-61, the attributeGroups
element is used to set common style attributes for a related group of data items.
Example 7-61 Bubble Chart Definition with Attribute Groups
Example 7-62 shows a Bubble Chart with all the possible child elements (chartDataItem
, xAxis
, yAxis
, and legend
) defined.
Example 7-62 Bubble Chart Definition with All Attributes
The data model for a bubble chart is represented by a collection of items (rows) that describe individual data items. Typically, properties of each bar include the following:
label
: data item label (optional); x
, y
: value coordinates (required); z
: the size of data item (required). The data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null
.
For information on attributes of the bubbleChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the bubbleChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the bubbleChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A combo chart (comboChart
) represents an overlay of two or more different charts, such as a line and bar chart.
Example 7-63 shows the comboChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested chartDataItem
element. The seriesStamp
facet overrides the default style properties for the series and sets custom series styles using the seriesStyle
elements.
Example 7-63 Combo Chart Definition
Figure 7-57 Combo Chart at Design Time
For information on attributes of the comboChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the comboChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the comboChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You use the line chart (lineChart
) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, a line color, width, or style). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles.
Example 7-64 shows the lineChart
element defined in an ADF Mobile AMX file. To create a basic line chart with default series style, you pass it a collection and specify the dataStamp
facet with a nested chartDataItem
element.
Example 7-64 Line Chart Definition with Default Series Styles
Figure 7-58 Line Chart at Design Time
Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row
must include the following properties:
series
: name of the series to which this line belongs; group
: name of the group to which this line belongs; value
: the data item value. The collection row
might also include other properties, such as color
or shape
, applicable to individual data items.
You can use attribute groups (attributeGroups
element) to set style properties for a group of data items based on some grouping criteria, as Example 7-65 shows. In this case, the data item color
and shape
attributes are set based on the additional grouping expression.
Example 7-65 Line Chart Definition with Default Series Styles and Grouping
Note: In Example 7-64 and Example 7-65, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp. |
To override the default style properties for the series, you can define an optional seriesStamp
facet and set custom series styles using the seriesStyle
elements, as Example 7-66 shows.
Example 7-66 Line Chart Definition with Custom Series Styles
In the preceding example, the seriesStyle
elements are grouped based on the value of the series
attribute. Series with the same name are supposed to share the same set of properties defined by other attributes of the seriesStyle
, such as color
, lineStyle
, lineWidth
, and so on. When ADF Mobile AMX encounters different attribute values for the same series name, it applies the value which was processed last.
Alternatively, you can control the series styles in a ADF Mobile AMX charts using the rendered
attribute of the seriesStyle
element, as Example 7-67 shows.
Example 7-67 Line Chart Definition with Filtered Series Styles
For information on attributes of the lineChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the lineChart
:
xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the lineChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You use a pie chart (pieChart
) to illustrate proportional division of data, with each data item represented by a pie segment (slice). Slices can be sorted by size (from largest to smallest), and small slices can be aggregated into a single "other" slice.
Example 7-68 shows the pieChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested pieDataItem
element.
Example 7-68 Pie Chart Definition
Figure 7-59 Pie Chart at Design Time
The data model for a pie chart is represented by a collection of items that define individual pie data items. Typically, properties of each data item include the following:
label
: slice label; value
: slice value. The model might also define other properties of the data item, such as the following:
borderColor
: slice border color; color
: slice color; explode
: slice explosion offset. For information on attributes of the pieChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the pieChart
:
legend
(see Section 7.5.14.2, "Defining Legend") sliceLabel
pieValueFormat
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a pieDataItem
as its child (see Section 7.5.14.4, "Defining Pie Data Item").
For more information on child elements of the pieChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A scatter chart (scatterChart
) displays data as unconnected dots that represent data items, where each item has x
, y
coordinates and size. In addition, each data item can have various style attributes, such as color
and shape
. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the data items relationships. However, unlike line charts (see Section 7.5.6, "How to Create a Line Chart") or area charts (see Section 7.5.1, "How to Create an Area Chart"), scatter charts do not have a strict notion of the series and groups.
Example 7-69 shows the scatterChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested chartDataItem
element. The color
and shape
attributes of each data item are set individually based on the values supplied in the data model.
Example 7-69 Scatter Chart Definition
Figure 7-60 Scatter Chart at Design Time
The data model for a scatter chart is represented by a collection of items (rows) that describe individual data items. Attributes of each data item are defined by stamping (dataStamp
) and usually include the following:
x
, y
: value coordinates (required); size
: the size of the marker (optional). The model might also define other properties of the data item, such as the following:
borderColor
: data item border color; color
: data item color; tooltip
: custom tooltip. For information on attributes of the scatterChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the scatterChart
:
xAxis
and yAxis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") yFormat
and y2Format
In addition, you can define a facet
child element from the amx
namespace. The facet
can have a chartDataItem
as its child (see Section 7.5.14.1, "Defining Chart Data Item").
For more information on child elements of the scatterChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A spark chart (sparkChart
) is a simple, condensed chart that displays trends or variations, often in the column of a table. The charts are often used in a dashboard to provide additional context to a data-dense display.
Example 7-70 shows the sparkChart
element defined in an ADF Mobile AMX file. The dataStamp
facet is specified with a nested sparkDataItem
element.
Example 7-70 Spark Chart Definition
Figure 7-61 Spark Chart at Design Time
The data model for a spark chart is represented by a collection of items (rows) that describe individual spark data items. Typically, properties of each data item include the following:
value
: spark value. For information on attributes of the sparkChart
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child element for the sparkChart
:
referenceObject
(see Section 7.5.14.6, "Defining Reference Object") In addition, you can define a facet
child element from the amx
namespace. The facet
can have a sparkDataItem
as its child (see Section 7.5.14.5, "Defining Spark Data Item").
For more information on child elements of the sparkChart
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
Unlike charts, gauges focus on a single data point and examine that point relative to minimum, maximum, and threshold indicators to identify problem areas. A LED (lighted electronic display) gauge (ledGauge
) graphically depicts a measurement, such as key performance indicator (KPI). There are several styles of LED gauges. The ones with arrows are used to indicate good (up arrow), fair (left- or right-pointing arrow), or poor (down arrow). You can specify any number of thresholds for a gauge. However, some LED gauges (such as those with arrow or triangle indicators) support a limited number of thresholds because there is a limited number of meaningful directions for them to point. For arrow or triangle indicators, the threshold limit is three.
Example 7-71 shows the ledGauge
element defined in an ADF Mobile AMX file.
Example 7-71 LED Gauge Definition
Figure 7-62 LED Gauge at Design Time
The data model for a LED gauge is represented by a single metric value which is specified by the value
attribute.
For information on attributes of the ledGauge
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the ledGauge
:
threshold
(see Section 7.5.14.7, "Defining Threshold") gaugeLabelFormat
In addition, you can define the following amx
child elements:
showPopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") closePopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") validationBehavior
(see Section 7.9, "Validating Input") For more information on child elements of the ledGauge
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A Status Meter Gauge (statusMeterGauge
) indicates the progress of a task or the level of some measurement along a horizontal rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle. In addition, thresholds can be displayed behind the indicator whose size can be changed.
ADF Mobile DVT provides support for the reference line (referenceLine
) on its status meter gauge component. You can use this line to produce a bullet graph.
Example 7-72 shows the statusMeterGauge
element defined in an ADF Mobile AMX file.
Example 7-72 Status Meter Gauge Definition
Figure 7-63 Status Meter Gauge at Design Time
The data model for a status meter gauge is a single metric value which is specified by the value
attribute. In addition, the minimum and maximum values can also be specified by the minValue
and maxValue
attributes.
For information on attributes of the statusMeterGauge
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the statusMeterGauge
:
threshold
(see Section 7.5.14.7, "Defining Threshold") gaugeLabelFormat
referenceLine
In addition, you can define the following amx
child elements:
showPopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") closePopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") validationBehavior
(see Section 7.9, "Validating Input") For more information on child elements of the statusMeterGauge
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A Dial Gauge (dialGauge
) specifies ranges of values (thresholds) that vary from poor to excellent. The gauge indicator specifies the current value of the metric while the graphic allows for evaluation of the status of that value.
Example 7-72 shows the dialGauge
element defined in an ADF Mobile AMX file.
Example 7-73 Dial Gauge Definition
Figure 7-64 Dial Gauge at Design Time
The data model for a dial gauge is a single metric value which is specified by the value
attribute. In addition, the minimum and maximum values can be specified by the minValue
and maxValue
attributes.
For information on attributes of the dialGauge
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following dvtm
child elements for the dialGauge
:
metricLabel
tickLabel
Example 7-74 shows the definition of dialGauge
element with the dark background theme and custom tick labels setting a range from -5000 to 5000.
Example 7-74 Defining Metric and Tick Labels
In addition, you can define the following amx
child elements for the dialGauge
:
showPopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") closePopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") validationBehavior
(see Section 7.9, "Validating Input") For more information on child elements of the dialGauge
, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A Rating Gauge (ratingGauge
) provides means to view and modify ratings on a predefined visual scale. By default, a rating unit is represented by a star. You can configure it as a circle, rectangle, or diamond by setting the shape
attribute of the ratingGauge.
Example 7-75 shows the ratingGauge
element defined in an ADF Mobile AMX file.
Example 7-75 Rating Gauge Definition
Figure 7-65 Rating Gauge at Design Time
The data model for a rating gauge is a single metric value which is specified by the value
attribute. In addition, the minimum and maximum values can be specified by the minValue
and maxValue
attributes.
For information on attributes of the ratingGauge
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
You can define the following amx
child elements for the ratingGauge
:
showPopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") closePopupBehavior
(see Section 7.2.8, "How to Use a Popup Component") validationBehavior
(see Section 7.9, "Validating Input") Depending on the action performed by the user on a rating gauge component, its units (images) can acquire one of the following states:
selected
: the unit is selected. unselected
: the unit is not selected. hover
: the unit is being hovered over. Note: On mobile devices with touch interface, the hover state is invoked through the tap-and-hold gesture. |
changed
: the unit has been changed. Each state can be represented by two attributes: color
and borderColor
. By default, the shape
attribute of the ratingGauge
determines the selection of the hover
and changed
states. The unselected
state can be set separately using the unselectedShape
attribute of the ratingGauge
.
You can style the Rating Gauge component by overwriting the default CSS settings. For more information on how to extend CSS files, see Section 7.6.3, "How to Style Data Visualization Components."
Example 7-76 shows the default CSS style definitions for the color
and borderColor
of each state of the rating gauge unit.
Example 7-76 CSS Styling
You can define a variety of child elements for charts and gauges. The following are some of these child elements:
chartDataItem
(see Section 7.5.14.1, "Defining Chart Data Item") xAxis
, yAxis
, and y2Axis
(see Section 7.5.14.3, "Defining X Axis, YAxis, and Y2Axis") legend
(see Section 7.5.14.2, "Defining Legend") pieDataItem
(see Section 7.5.14.4, "Defining Pie Data Item") sparkDataItem
(see Section 7.5.14.5, "Defining Spark Data Item") referenceObject
(see Section 7.5.14.6, "Defining Reference Object") threshold
(see Section 7.5.14.7, "Defining Threshold") For more information on these and other child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
In JDeveloper, the chart and gauge child components are located under DVT Mobile AMX > Chart and Gauge Child Tags in the Component Palette (see Figure 7-47).
Figure 7-66 Creating Chart and Gauge Child Components
The Chart Data Item (chartDataItem
) element specifies the parameters that chart data items use in all supported charts, except the pie chart.
For information on attributes of the chartDataItem
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Legend (legend
) element specifies the legend parameters.
For information on attributes of the legend
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
X Axis (xAxis
) and Y Axis (yAxis
) elements define the X and Y axis for a chart. Y2Axis (y2Axis
) defines an optional Y2 axis. These elements are declared as follows in an ADF Mobile AMX file:
For information on attributes and child elements of xAxis
, yAxis
, and y2Axis
elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Pie Data Item (pieDataItem
) element specifies the parameters of the pie chart slices (see Section 7.5.7, "How to Create a Pie Chart").
For information on attributes of the pieDataItem
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Spark Data Item (sparkDataItem
) element specifies the parameters of the spark chart items (see Section 7.5.9, "How to Create a Spark Chart").
For information on attributes of the sparkDataItem
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Reference Object (referenceObject
) element specifies the reference objects for the axis of the spark chart (see Section 7.5.9, "How to Create a Spark Chart").
For information on attributes of the referenceObjects
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Threshold (threshold
) element specifies the threshold ranges of a gauge (see Section 7.5.10, "How to Create a LED Gauge" and Section 7.5.11, "How to Create a Status Meter Gauge").
For information on attributes of the threshold
element, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
A Geographic Map (geographicMap
) represents business data in one or more interactive layers of information superimposed on a single map. You can configure this component to use either Google or Oracle maps as the underlying map provider (see Section 7.5.15.1, "Configuring Geographic Map Components With the Map Provider Information").
Example 7-77 shows the geographicMap
element defined in an ADF Mobile AMX file.
Example 7-77 Geographic Map Definition
You can define a pointDataLayer
child element for the geographicMap
. The pointDataLayer
allows you to display data associated with a point on the map.The pointDataLayer
can have a pointLocation
as a child element. The pointLocation
specifies the columns in the data layer's model that determine the location of the data points. These locations can be represented either by address or by X and Y coordinates.
The pointLocation
can have a marker
as a child element. The marker
is used to stamp out predefined or custom shapes associated with data points on the map. The marker
supports a set of properties for specifying a URI to an image that is to be rendered as a marker. The marker can have a convertNumber
as its child element (see Section 7.3.22, "How to Convert Numerical Values").
For information on attributes of the geographicMap
element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
To configure a Geographic Map component to use a specific provider for the underlying map (Google or Oracle), you can set the following properties as name-value pairs in the application's adf-config.xml
file:
mapProvider
: specify either oraclemaps
or googlemaps
. geoMapKey
: specify the license key if the mapProvider
is set to googlemaps
. geoMapClientId
: if the mapProvider
is set to googlemaps
, specify the client ID for Google maps business license. mapViewerUrl
: if the mapProvider
is set to oraclemaps
, specify the map viewer URL for Oracle maps. baseMap
: if the mapProvider
is set to oraclemaps
, specify the base map to use with Oracle maps. Note: To configure the Geographic Map component to use Google maps, you must obtain an appropriate license from Google. |
Example 7-78 shows the configuration for Google maps.
Example 7-78 Google Maps Configuration
Example 7-79 shows the configuration for Oracle maps.
Example 7-79 Oracle Maps Configuration
If you do not specify the map provider information, the ADF Mobile AMX Geographic Map component uses Google maps for its map, but without the license key.
For information on the adf-config.xml
file, see the following:
A Thematic Map (thematicMap
) represents business data as patterns in stylized areas or associated markers. Thematic maps focus on data without the geographic details.
ADF Mobile AMX supports most of the functionality, child elements, and properties of the Oracle ADF Thematic Map component. For more information, see the chapter on using map components in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. The following is not supported:
customAreaLayer
). pattern
) on areas and markers. image
) component). Instead, you can use images with the Marker (marker
) child component. For more information, see Section 7.5.16.1, "Defining Custom Markers." actionListener
attribute of the marker
. Instead, the same functionality can be achieved by using the selectionListener
or a combination of the action
and setPropertyListener
(see Section 7.10, "Using Event Listeners"). ADF Mobile AMX Thematic Map has the following functionality that is not available in Oracle ADF:
Example 7-80 shows the thematicMap
element and its children defined in an ADF Mobile AMX file.
Example 7-80 Defining Thematic Map
Figure 7-67 Thematic Map at Design Time
For information on attributes of the thematicMap
element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
ADF Mobile AMX Thematic Map does not support ADF Mobile AMX Image component. To use an image in the map's pointLocation
, you can specify an image within the pointLocation
's marker
child element by using its source
attribute. If the source
attribute is set on the Marker, its shape
attribute is ignored by ADF Mobile AMX.
The sourceHover
, sourceSelected
, and sourceHoverSelected
attributes allow you to specify images for hover and selection effects. If one of these is not specified, the image specified by the source
attribute is used for that particular marker state. If sourceSelected
is specified, then its value is used if sourceHoverSelected
is not specified. The image can be of any format supported by the mobile device's browser, including PNG, JPG, SVG, and so on.
You can configure the ADF Mobile AMX Thematic Map component to render and zoom to fit on a single isolated area of the map by using the isolatedRowKey
attribute of the areaDataLayer
, in which case the rest of the areas in the area or area data layers is not rendered.
Note: You can isolate only one area on a map. |
The initial zooming allows the map component to be rendered as usual, and then zoom to fit on the data objects which includes both markers and areas. To enable this functionality, you use the initialZooming
attribute of the Thematic Map.
As part of the custom base map support, ADF Mobile AMX allows you to specify the following for the Thematic Map component:
pointLocation
). source
attribute that points to the custom base map metadata XML file. Note: ADF Mobile AMX does not support resource bundles for custom base maps. If you want to add locale-specific tool tips, you can use EL in the |
To create a custom base map, you specify an area layer which points to a definition in the metadata file (see Example 7-81). To define a basic custom base map, you specify a background layer and a pointer data layer. In the metadata file, you can specify different images for different screen resolutions and display directions, similar to ADF Mobile AMX gauge components. Just like a gauge-type component, the Thematic Map chooses the correct image for the layer based on the screen resolution and direction. The display direction can be either left-to-right or right-to-left. The default direction for the image is left-to-right, which you can change to right-to-left by setting the dir
attribute of the image
element to rtl
.
Example 7-81 Metadata File With List of Images
Example 7-82 shows an ADF Mobile AMX file that declares a custom area layer with points. The ADF Mobile AMX file points to the metadata file shown in Example 7-81 containing a list of possible images.
Example 7-82 Declaring Custom Area Layer With Points
In the preceding example, the base map ID is matched with the basemap
attribute of the thematicMap
, and the layer ID is matched with the layer
attribute of the areaLayer
. The points are defined through the X and Y coordinates (just like for a predefined base map) to accommodate dynamic points that can change at the time the data are updated.
Example 7-83 shows an alternative way to declare a custom area layer with points. In this example, the pointDataLayer
is a direct child of the thematicMap
. Despite this variation, Example 7-83 renders the same result as the declaration demonstrated in Example 7-82.
Example 7-83 Declaring Custom Area Layer With Points Using Direct Child Element
To create a custom base map with static points, you specify the points by name in the metadata file shown in Example 7-84. This process is similar to adding city markers for a predefined base map.
Example 7-84 Metadata File With List of Named Points
Example 7-85 shows an ADF Mobile AMX file that declares a custom area layer with named points. The ADF Mobile AMX file points to the metadata file shown in Example 7-81 containing a list of points and their names.
Example 7-85 Declaring Custom Area Layer With Named Points
You can style the Thematic Map component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 7.6.3, "How to Style Data Visualization Components."
Example 7-86 shows the default CSS styles for the Thematic Map component.
Example 7-86 CSS Styling
Some of the style settings cannot be specified using CSS. Instead, you must define them using a custom JavaScript file. Example 7-87 shows how to apply custom styling to the Thematic Map component without using CSS.
Example 7-87 Non-CSS Custom Styling
Note that you cannot change the name and the property names of the CustomThematicMapStyle
object. Instead, you can modify specific property values to suit the needs of your application. For information on how to add custom CSS and JavaScript files to your application, see Section 5.10, "Defining the Content Types for an Application Feature."
When the attributeGroups
attribute is defined for the Thematic Map component, you can use the CustomThematicMapStyle
to define a default set of shapes and colors for that component. In this case, the CustomThematicMapStyle object must have the structure that Example 7-88 shows, where styleDefaults
is a nested object containing the following fields:
colors
: represents a set of colors to be used for areas and markers. shapes
: represents a set of shapes to be used for markers. You can declaratively create a databound chart, gauge, or map using a data collection inserted from the Data Controls panel (see Chapter 6, "Creating ADF Mobile AMX Pages"). The Component Gallery dialog that Figure 7-71 shows allows you to choose from a number of data visualization component categories, types, and layout options.
Figure 7-68 Component Gallery
Note: Some data visualization component types require very specific kinds of data. If you bind a component to a data collection that does not contain sufficient data to display the component type requested, then the component is not displayed and a message about insufficient data appears. |
To trigger the display of the Component Gallery, you drag and drop a collection from the Data Controls panel onto the ADF Mobile AMX page, and then select either ADF Mobile Chart, ADF Mobile Gauge, ADF Mobile Geographic Map, or ADF Mobile Thematic Map from the context menu that appears (see Figure 7-69).
After you select the category, type, and layout for your new databound component from the Component Gallery and click OK, you can start binding the data collection attributes in the DVT component using data binding dialogs. The name of the dialog and the input field labels depend on the category and type of the DVT component that you selected. For example, if you select Horizontal Bar as the category and Bar as the type, then the name of the dialog that appears is Create Mobile Horizontal Bar Chart, and the input field is labeled Bars, as Figure 7-70 shows.
The attributes in a data collection can be data values or categories of data values. Data values are numbers represented by markers, like bar height, or points in a scatter chart. Categories of data values are members represented as axis labels. The role that an attribute plays in the bindings (either data values or identifiers) is determined by both its data type (chart requires numeric data values) and where it is mapped (for example, Bars or X Axis).
After completing the data binding dialog, you can use the Property Inspector to specify settings for the component attributes. You can also use the child elements associated with the component to further customize it (see Section 7.5.14, "How to Define Child Elements for Chart and Gauge Components").
For more information, see the following sections of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework:
ADF Mobile enables you to employ CSS to apply style to UI components.
You style your UI components by setting the following attributes:
styleClass
attribute defines a CSS style class to use for your layout component: You can define the style class for layout, command, and input components in an ADF Mobile AMX page or in a skinning CSS file, in which case a certain style is applied to all components within the ADF Mobile AMX application feature (see Section 7.6.2, "What You May Need to Know About Skinning"). Alternatively, you can use the public style classes provided by ADF Mobile.
Note: The CSS file is not accessible from JDeveloper. Instead, ADF Mobile injects this file into the package at build or deploy time, upon which the CSS file appears in the |
inlineStyle
attribute defines a CSS style to use for any UI component and represents a set of CSS styles that are applied to the root DOM element of the component: You should use this attribute when basic style changes are required.
Note: Some UI components are rendered with such subelements as HTML For information on how to configure JavaScript debugging, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript." |
These attributes are displayed in the Style section in the Property Inspector, as Figure 7-71 shows.
ADF Mobile AMX provides a drop-down editor that you can use to set various properties of the inlineStyle
attribute (see Figure 7-72).
For more information, see Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
Skinning allows you to define and apply a uniform style to all UI components within an ADF Mobile AMX application feature to create a theme for the entire feature.
For more information, see Section 5.12, "Skinning ADF Mobile Applications."
Most of the style properties of ADF Mobile AMX data visualization components are defined in the dvtm.css
file located in the css
directory. You can override the default values by adding a custom CSS file with custom style definitions at the application feature level (see Section 5.12.7, "Overriding the Default Skin Styles").
Some of the style properties cannot be mapped to CSS and have to be defined in custom JavaScript files. These properties include the following:
You should specify these custom JavaScript files in the Includes section at the application feature level (see Section 5.10.1, "How to Define the Application Content"). By doing so, you override the default style values defined in the XML style template. Example 7-89 shows a JavaScript file similar to the one you would add to your ADF Mobile project that includes the ADF Mobile AMX application feature with data visualization components which require custom styling of properties that cannot be styled using CSS.
Example 7-89 Defining Custom Style Properties
After the JavaScript file has been defined, you can uncomment and modify any values. You add this file as an included feature in the adfmf-feature.xml
file, as Example 7-90 shows.
Example 7-90 Including Custom Style File in the Application Feature
In your ADF Mobile AMX page, you can localize the text that UI components display by using the standard resource bundle provided by JDeveloper. You do so by selecting a component and one of its text-presenting properties whose value you intend to localize, and then choosing Select Text Resource in the Value box in the Property Inspector (see Figure 7-73).
This will display the standard ADF Select Text Resource dialog that Figure 7-74 shows. You use this dialog to enter or find a string reference for the property you are modifying.
After you have defined a localized string resource, the EL for that reference is automatically placed in the property from which the Select Text Resource dialog was launched.
Figure 7-75 shows the changes in the ADF Mobile AMX file.
For more information, see Section 5.11, "Working with Resource Bundles."
When developing ADF Mobile applications, you may need to accommodate visually and physically impaired users by addressing accessibility issues. User agents, such as web browsers rendering to nonvisual media (for example, a screen reader) can read text descriptions of UI components to provide useful information to impaired users. ADF Mobile AMX UI and DVT components are designed to be compliant with the following accessibility standards:
For more information, see the following:
http://www.w3.org/TR/wai-aria/introduction
http://www.w3.org/TR/wai-aria/usage
For more information, see Section 7.8.3, "What You May Need to Know About the Oracle Global HTML Accessibility Guidelines."
For more information, see the Accessibility Programming Guide for iOS.
Accessible components do not change their appearance nor is the application logic affected by the introduction of such components.
To enable the proper functioning of the accessibility in your ADF Mobile AMX application feature, follow these guidelines:
For more information, see the following:
http://www.w3.org/WAI/mobile
http://www.w3.org/WAI/mobile/overlap.html
ADF Mobile AMX UI and DVT components have a built-in accessibility support, with most components being subject to the accessibility audit (see Figure 7-77).
Table 7-8 lists components and their attributes that you can set through the Accessibility section of the Property Inspector.
Table 7-8 UI Components with Configurable Accessibility Attributes
Component | Accessibility Attribute | Accessibility Audit Message |
---|---|---|
Button (| Short Desc (| The |
Select Button (| Short Desc (| The |
Link (| Short Desc (| The |
Link Go (| Short Desc (| The |
Carousel (| Short Desc (| The |
CarouselItem (| Short Desc (| The |
List Item (| Short Desc (| The |
Popup (| Short Desc (| The |
Image (| Short Desc (| The |
Input Text (| Hint Text (| The |
Panel Group Layout (| Landmark (| NA Foot 1 |
Area Chart (| Short Desc (| The |
Bar Chart (| Short Desc (| The |
Horizontal Bar Chart (| Short Desc (| The |
Bubble Chart (| Short Desc (| The |
Combo Chart (| Short Desc (| The |
Line Chart (| Short Desc (| The |
Scatter Chart (| Short Desc (| The |
Spark Chart (| Short Desc (| The |
Led Gauge (| Short Desc (| The |
Status Meter Gauge (| Short Desc (| The |
Dial Gauge (| Short Desc (| The |
Rating Gauge (| Short Desc (| The |
Geographic Map (| Short Desc (| The |
Thematic Map (| Short Desc (| The |
Footnote 1 The landmark attribute has a default value (none) and is not subject to the accessibility audit.
You use the shortDesc
attribute for different purposes for different components. For example, if you set the shortDesc
attribute for the Image component, in the ADF Mobile AMX file it will appear as a value of the alt
attribute of the image
element.
The value of the shortDesc
attribute can be localized.
For the Panel Group Layout component, you define the landmark role type (see Table 7-13, "Landmark Roles") that is applicable as per the context of the page. You can set one of the following values for the landmark
attribute:
Table 7-9 lists UI components whose accessible attributes defined by WAI-ARIA specification are automatically applied at run time and that you cannot modify.
Table 7-9 UI Components with Static Accessibility Attributes
Component | Accessibility Attribute | Accessibility Audit Message |
---|---|---|
Input Date (| Label (|
|
Input Number Slider (| Label (|
|
Panel Label and Message (| Label (|
|
Select Item (| Label (|
|
Checkbox (| Label (|
|
Boolean Switch (| Label (|
|
Radio Button (| Label (|
|
Select Many Checkbox (| Label (|
|
Choice (| Label (|
|
Output Text (| Value (| NA Foot 1 |
Footnote 1 The value attribute is not subject to the accessibility audit.
You can configure the accessibility audit rules using JDeveloper's Preferences dialog as follows:
Figure 7-77 shows the accessibility audit warning displayed in JDeveloper.
For information on how to test your accessible ADF Mobile AMX application feature, see Section 19.2.1, "How to Perform Accessibility Testing on iOS-Powered Devices."
Note: WAI-ARIA accessibility functionality is not supported on Android for DVT components. Other ADF Mobile AMX UI components might not perform as expected when the application is run in the Android screen reader mode. |
As stated in the WAI-ARIA 1.0 specification, complex web applications become inaccessible when assistive technologies cannot determine the semantics behind portions of a document or when the user is unable to effectively navigate to all parts of it in a usable way. WAI-ARIA divides the semantics into roles (the type defining a user interface element), and states and properties supported by the roles. The following semantic associations form the base for the WAI-ARIA terms:
For more information, see "Important Terms" at http://www.w3.org/TR/wai-aria/terms
.
The following tables list role categories (as defined in the WAI-ARIA 1.0 specification) that are applicable to ADF Mobile.
Table 7-10 lists abstract roles that are used to support the WAI-ARIA role taxonomy for the purpose of defining general role concepts.
Table 7-10 Abstract Roles
Abstract Role | Description |
---|---|
input | A generic type of widget that allows the user input. |
landmark | A region of the page intended as a navigational landmark. |
select | A form widget that allows the user to make selections from a set of choices. |
widget | An interactive component of a graphical user interface. |
Table 7-11 lists widget roles that act as standalone user interface widgets or as part of larger, composite widgets.
Table 7-11 Widget Roles
Widget Role | Description | Widget Required States |
---|---|---|
alertdialog | A type of dialog that contains an alert message, where initial focus moves to an element within the dialog. | aria-labelledby, aria-describedby |
button | An input that allows for user-triggered actions when clicked or pressed. | aria-expanded (state), aria-pressed (state) |
checkbox | A checkable input that has three possible values: | aria-checked (state) |
dialog | A dialog represented by an application window that is designed to interrupt the current processing of an application in order to prompt the user to enter information or require a response. | aria-labelledby, aria-describedby |
link | An interactive reference to an internal or external resource that, when activated, causes the user agent to navigate to that resource. | aria-disabled (state), aria-describedby |
option | A selectable item in a select list. | aria-labelledby, aria-checked (state), aria-selected (state) |
radio | A checkable input in a group of radio roles, only one of which can be checked at a time. | aria-checked (state), aria-disabled (state) |
slider | A user input where the user selects a value from within a given range. | aria-valuemax, aria-valuemin, aria-valuenow, aria-disabled (state) |
listbox | A widget that allows the user to select one or more items from a list of choices. | aria-live |
radiogroup | A group of radio buttons. | aria-disabled (state) |
listitem | A single item in a list or directory. | aria-describedby |
textbox | Input that allows free-form text as its value. | aria-labelledby, aria-readonly, aria-required, aria-multiline, aria-disabled (state) |
Table 7-12 lists document structure roles that describe structures that organize content in a page. Typically, document structures are not interactive.
Table 7-12 Document Structure Roles
Document Structure Role | Description |
---|---|
img | A container for a collection of elements that form an image. |
list | A group of non-interactive list items. |
listitem | A single item in a list or directory. |
Table 7-13 lists landmark roles that represent regions of the page intended as navigational landmarks.
Table 7-13 Landmark Roles
Landmark Role | Description |
---|---|
application | A region declared as a web application (as opposed to a web document). |
banner | A region that contains mostly site-oriented content (rather than page-specific content). |
complementary | A supporting section of a document designed to be complementary to the main content at a similar level in the DOM hierarchy, but that remains meaningful when separated from the main content. |
contentinfo | A large perceivable region that contains information about the parent document. |
form | A region that contains a collection of items and objects that, as a whole, combine to create a form. |
main | The main content of a document. |
navigation | A collection of navigational elements (usually links) for navigating the document or related documents. |
search | A region that contains a collection of items and objects that, as a whole, combine to create a search facility. |
For the majority of ADF Mobile UI components, you cannot modify accessible WAI-ARIA attributes. For some components, you can set special accessible attributes at design time, and for the Panel Group Layout, you can use the WAI-ARIA landmark role type. For more information, see Section 7.8.1, "How to Configure UI and DVT Components for Accessibility."
The Oracle Global HTML Accessibility Guidelines (OGHAG) is a set of scripting standards for HTML that Oracle follows. These standards represent a combination of Section 508 (see http://www.section508.gov
) and Web Content Accessibility Guidelines (WCAG) 1.0 level AA (see http://www.w3.org/TR/WCAG10
), with improved wording and checkpoint measurements.
For more information, see Oracle's Accessibility Philosophy and Policies at http://www.oracle.com/us/corporate/accessibility/policies/index.html
.
ADF Mobile allows you to inform the end user about data input errors and other conditions that occur during data input. Depending on their type (error or warning), validation messages have a different look and feel.
The user input validation is triggered when an input is submitted: Input Text components are automatically validated when the end user leaves the field; for selection components, such as a Checkbox or Choice, the validation occurs when the end user makes a selection. For validation purposes, UI components on an ADF Mobile AMX page are grouped together within a Validation Group operation (validationGroup
) to define components whose input is to be validated when the submit operation takes place. A Validation Behavior (validationBehavior
) component defines which Validation Group is to be validated before a command component's action is taken. A command component can have multiple child Validation Behavior components. Validation does not occur if a component does not have a Validation Behavior defined for it.
Note: You cannot define nested Validation Group operations. The following is an invalid definition of a Validation Group: <amx:view> <amx:panelPage> <amx:validationGroup> <amx:panelGroupLayout> <amx:validationGroup/> <amx:panelGroupLayout/> </amx:validationGroup> </amx:panelPage> </amx:view> The following is a valid definition: <amx:view> <amx:panelPage> <amx:validationGroup> </amx:panelPage> <amx:popup> <amx:validationGroup> </amx:popup> </amx:view> |
If an ADF Mobile AMX page contains any validation error messages, the end user is prevented from navigating off the page using command components, such as List Item, Link, and Button, unless those components have their immediate
attribute set to true
. Messages containing warnings do not halt the navigation.
Example 7-91 shows how to define validation elements, including multiple Validation Group and Validation Behavior operations, in an ADF Mobile AMX file.
Example 7-91 Defining Input Validation
Example 7-92 shows how to define a validation message displayed in a popup in an ADF Mobile AMX file.
Example 7-92 Defining Input Validation with Popup Message
Validation messages are displayed in a Popup component (see Section 7.2.8, "How to Use a Popup Component"). You cannot configure the title of a validation popup, which is automatically determined by the relative message severity: the most severe of all of the current messages becomes the title of the validation popup. That is, if all validation messages are of type WARNING
, then the title is "Warning"; if some of the messages are of type WARNING
and others are of type ERROR
, then the title is set to "Error".
Figure 7-78 shows a popup validation message produced at run time.
To invoke Java code from your ADF Mobile AMX pages and perform the application logic, you define listeners as attributes of UI components in one of the following ways:
You may use the following listeners to add awareness of the UI-triggered events to your ADF Mobile AMX page:
valueChangeListener
: listens to ValueChangeEvent
that is constructed with the following parameters: java.lang.Object
representing an old value java.lang.Object
representing a new changed value actionListener
: listens to ActionEvent
that is constructed without parameters; selectionListener
: listens to SelectionEvent
that is constructed with the following parameters: java.lang.Object
representing an old row key java.lang.String[]
representing selected row keys moveListener
: listens to MoveEvent
that is constructed with the following parameters: of the RowKey
type representing an old row key; java.lang.Object
representing the moved row key java.lang.String[]
representing the row key before which the moved row key was inserted rangeChangeListener
: listens to RangeChangeEvent
that is constructed with the following parameters: int
representing an old start range int
representing an old end range int
representing a new start range int
representing a new end range The value for your listener must match the pattern #{*}
and conform to the following requirements:
For information on EL events, see Section 8.2.3, "EL Events."
Most ADF Mobile AMX event classes extend the oracle.adfmf.amx.event.AMXEvent
class. When defining event listeners in your Java code, you need to pass the oracle.adfmf.amx.event.AMXEvent
class.
For more information, see the following:
ADF Mobile allows you to create managed bean methods for listeners so that your managed bean methods use ADF Mobile AMX-specific event classes. Example 7-93, Example 7-94, and Example 7-95 demonstrate a Button and a Link component calling the same managed bean method. The source value of the AMXEvent
determines which object invoked the event by showing a message box with the component's ID.
Example 7-93 Calling a Bean Method from ADF Mobile AMX File
Example 7-94 Using AMXEvent
Example 7-95 Invoking the Event Method
For additional examples, see an ADF Mobile sample application called JavaDemo located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer. This sample demonstrates how to call listeners from Java beans.
You can define event listeners as children of some ADF Mobile AMX UI components. The listeners' type
attribute identifies which event they are to be registered to handle. Since each parent UI component supports only a subset of the events (suitable for that particular component), these supported events are presented in a constrained list of types that you can select for a listener.
Table 7-14 lists parent UI components, event listeners they can have as children, and event types they support.
Table 7-14 Supported Event Listeners and Event Types
UI Component (parent) | Action Listener (child) | Set Property Listener (child) | Show Popup Behavior (child) | Close Popup Behavior (child) | actionListener attribute | valueChangeListener attribute | moveListener attribute | selectionListener attribute |
---|---|---|---|---|---|---|---|---|
Button | Supported | Supported | Supported | Supported | Supported | Not supported | Not supported | Not supported |
Link | Supported | Supported | Supported | Supported | Supported | Not supported | Not supported | Not supported |
List Item | Supported | Supported | Supported | Supported | Supported | Not supported | Not supported | Not supported |
Input Date | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Input Number Slider | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Input Text | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
List View | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported |
Checkbox | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Switch | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Checkbox (Select Many) | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Choice (Select Many) | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Choice | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Select Button | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Radio Button | Not supported | Not supported | Not supported | Not supported | Not supported | Supported | Not supported | Not supported |
Link (Go) | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported |
Carousel | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported |
Carousel Item | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported |
Image | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported |
Area Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Bar Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Bubble Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Combo Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Horizontal Bar Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Led Gauge | Not supported | Not supported | Supported | Supported | Not supported | Not supported | Not supported | Not supported |
Dial Gauge | Not supported | Not supported | Supported | Supported | Not supported | Supported | Not supported | Not supported |
Rating Gauge | Not supported | Not supported | Supported | Supported | Not supported | Supported | Not supported | Not supported |
Line Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Pie Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Scatter Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Supported |
Spark Chart | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported | Not supported |
Status Meter Gauge | Not supported | Not supported | Supported | Supported | Not supported | Supported | Not supported | Not supported |
Geographic Map | Not supported | SupportedFoot 1 | Not supported | Not supported | Not supported | Not supported | Not supported | SupportedFoot 2 |
Thematic Map | Not supported | SupportedFoot 3 | Not supported | Not supported | Not supported | Not supported | Not supported | SupportedFoot 4 |
Footnote 1 The Set Property Listener can be specified as a child of the Geographic Map's Marker of Area.
Footnote 2 The selectionListener attribute can be set on the Geographic Map's Area Data Layer or Point Data Layer.
Footnote 3 The Set Property Listener can be specified as a child of the Thematic Map's Marker of Area.
Footnote 4 The selectionListener attribute can be set on the Thematic Map's Area Data Layer or Point Data Layer.
The type
attribute (see Figure 7-79) of each of the child event listeners has a base set of values that match the listener events. These values are filtered based on the information presented in Table 7-14 such that when the child event listener is within the context of the identified parent UI component, only the events that the parent supports are shown. For example, under a Button component, the Action Listener or Set Property Listener child would show only the action
Type value, as well as gestures.
Figure 7-79 shows values available in the constrained Type list of the Set Property Listener for a parent List Item component.
This chapter describes how to use data bindings, data controls, and the ADF data binding expression language (EL) in ADF Mobile applications, as well as validation and data change events.
This chapter includes the following sections:
ADF Model implements two concepts that enable the decoupling of the user interface (UI) technology from the business service implementation: data controls and declarative bindings. Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. Using JDeveloper, you can view that information as icons that you can drag and drop onto a page. Declarative bindings abstract the details of accessing data from data collections in a data control and invoking its operations. At runtime, the ADF Model layer reads the information describing the data controls and bindings from the appropriate XML files and then implements the two-way connection between the user interface and the business service.
The group of bindings supporting the user interface components on a page are described in a page-specific XML file called the page definition file. The ADF Model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container, accessible during each page request using the EL expression #{bindings}
. This expression always evaluates to the binding container for the current page. You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the code and objects needed to bind the component to the data control you selected.
In ADF Mobile, data controls behave similarly to the way they work in Oracle ADF. The DeviceFeatures data control appears within the Data Controls panel in JDeveloper, enabling you to drag and drop the primary data attributes of data controls to your application as (text) fields, and the operations of data controls as command objects (buttons). These drag and drop actions will generate EL bindings in your application and the appropriate properties for the controls that are created. The normal ADF bindings for those actions will be present, allowing the runtime to process the bindings when your application executes. The bindings are represented by a general DataControls.dcx
file, to point at the data control source, and the page bindings link the specific page's reference to the data control.
For more information on data binding and data controls, see the following:
ADF Mobile provides support for the use of the Expression Language (EL) in its ADF Mobile AMX application feature. You use the EL to enable data binding. For an overview of the use of EL with Oracle ADF, see the following:
ADF variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. In order of decreasing visibility, they are application scope, page flow scope, and view scope. For information about object scope lifecycles, see "About Object Scope Lifecycles" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. ADF Mobile supports the following scopes:
EL expressions defined in the application scope namespace are available for the life of the application, across feature boundaries. With ADF Mobile, you can define an application scope in one view of an application, and then reference it in another. EL expressions defined in the page flow scope namespace are available for the duration of a feature, within the bounds of a single feature. EL expressions defined in the view scope namespace are available for the duration of the view, within the bounds of a single page of a feature. In addition to these variable-containing scopes, ADF Mobile defines scopes that can expose information about device properties and application preferences. These scopes have application-level lifetime and visibility. For more information, see Section 8.2.4.2, "ADF Managed Beans" and Section 8.2.4.3, "ADF Mobile Objects."
The ADF Mobile AMX EL implementation is based on the Java Unified Expression Language (JUEL) project and follows Expression Language Specification Version 2.1 (available from the JUEL project page at http://juel.sourceforge.net/
, and referred to hereinafter as “the specification”), with the following exceptions:
As described in "1.2.1: Eval-expression" in the specification, expressions may be evaluated immediately or deferred. In the ADF Mobile AMX EL implementation, expressions are parsed when the page metadata is loaded, at which point the owning component holds on to a reference to the parsed object. The expression is not actually evaluated until the component needs it for rendering a value. Because ADF Mobile AMX supports only the deferred semantics, an expression using the immediate construction expression ("${}"
) still parses, but behaves the same as a deferred expression ("#{}"
).
As described in "1.17: Enums" in the specification, using a literal string to coerce to the value of an enum type is not supported, because the required underlying enum operations are not supported on J2ME.
The active screen's binding container can be referenced by the root EL expression "#{bindings}"
. Another screen's binding container can be referenced through the expression "#{data.PageDefName}"
. The ADF Mobile AMX binding objects are referenced by name from the binding container "#{bindings.Name}"
.
Table 8-1 lists the properties that you can use in EL expressions to access values of the ADF Mobile AMX binding objects at runtime. The table lists these properties in alphabetical order.
Table 8-1 Runtime Properties
Runtime Property | Description | Iterator | Action | Attribute | Tree |
---|---|---|---|---|---|
| Returns the Java class object for the runtime binding. | Yes | Yes | Yes | Yes |
| Exposes a collection of data. EL expressions used within a component that is bound to a | No | No | No | Yes |
| Causes the selected row to become the current row in the iterator for this binding. | No | No | No | Yes |
| Returns a reference to the selected row. | No | No | No | Yes |
| Returns a reference to the current row or data object pointed to by the iterator. | Yes | No | No | No |
| Returns a reference to the current row or data object pointed to by the iterator. (This is the same object returned by | Yes | No | No | No |
| Returns | No | Yes | No | No |
| Invokes the named action or | No | Yes | No | No |
| This is a shortcut for | No | No | Yes | Yes |
| Returns a list of name-value pairs for UI hints for all display attributes to which the binding is associated. The following named values are supported:
| No | No | Yes | Yes | |
| Returns or sets the value of the current attribute. | No | No | Yes | No |
| Returns the list of values associated with the current list-enabled attribute. | No | No | Yes | No |
| Available as a child of | No | No | Yes | No |
| Returns the | Yes | Yes | Yes | Yes |
| Returns the range size of the iterator binding's row set. | Yes | No | No | Yes |
| Returns the result of a method that is bound and invoked by a method action binding. | No | Yes | No | No |
| Available as a child of | No | No | Yes | No |
| Available as a child of | No | No | No | Yes |
Footnote 1 The EL term row
is used within the context of a collection component; row
simply acts as an iteration variable over each element in the collection whose attributes can be accessed by an ADF Mobile AMX binding object when the collection is rendered. Attribute and list bindings can be accessed through the row
variable. The syntax for such expressions will be the same as those used for accessing binding objects outside of a collection, with the row
variable prepended as the first term: #{row.bindings.Name.property}
.
EL events play a significant role in the functioning of the ADF Mobile AMX UI, as it enables expressions with common terms to update in sync with each other.
EL expressions can refer to values in various contexts. Example 8-1 shows the creation of two Input Number Slider components, with each component tied to an applicationScope
value. The output text then uses EL to display a simple addition equation along with the calculated results. When the framework parses the EL expression in the output text labels, it determines that the expression contains references to two values and creates event listeners (see Section 7.10, "Using Event Listeners") for the output text on those two values. When the value of the underlying expression changes, an event is generated to all listeners for that value.
Note: If you are referencing properties on a managed bean (as opposed to scope objects) you have to add the listeners. For more information, see Section 8.2.4.2, "ADF Managed Beans." |
Example 8-1 Generating EL Events with Two Components
In Example 8-1 two components are updating one value each, and one component is consuming both values. Example 8-2 shows that the behavior would be identical if a third Input Number Slider component is added that references one of the existing values.
Example 8-2 Generating EL Events with Three Components
In Example 8-2, when either Input Number Slider component updates #{applicationScope.X}
, the other is automatically updated along with the Output Text.
Any <adf-property>
elements in the application's adf-config.xml
file will be exposed through EL as children of the #{applicationScope.configuration}
node. So, for example, if adf-config.xml
looks like the following example, evaluating #{applicationScope.configuration.key1}
will yield value1
, and evaluating #{applicationScope.configuration.key2}
will yield vaue2
.
In addition, #{applicationScope.configuration.accessibilityEnabled}
evaluates to true
if accessibility mode is enabled on the device. On iOS devices, this means that VoiceOver
is activated. On Android devices, this means TalkBack
is activated.
You can use the JDeveloper Expression Builder to create EL expressions by selecting values from variables and operators. The Expression Builder can be invoked from the Property Inspector for any EL-enabled property. For more information about using the Expression Builder, see "How to Create an ADF Data Binding EL Expression" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
There are two EL types in Oracle ADF:
${EL expression}
#{EL expression}
Since ADF Mobile does not support dynamic EL type and treats ${EL expression}
as #{EL expression}
, you should use the hash sign (#) prefix when defining expressions. For more information, see Section 8.2.1.1, "Immediate and Deferred Evaluation."
The following categories are available in the Expression Builder for the ADF Mobile AMX pages:
This section lists the options available under the ADF Bindings category. The bindings and data nodes display the same set of supported bindings and properties. Table 8-2 lists available binding types along with the properties that are supported for each binding type.
bindings
Table 8-2 lists the available binding types along with the properties that are supported for each binding type.
data
Table 8-2 lists the available binding types along with the properties that are supported for each binding type.
securityContext
Supported properties:
authenticated
userGrantedPrivilege
userInRole
userName
Table 8-2 Supported Binding Types
Binding Type | Properties |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
You can create and use managed beans in an ADF Mobile application to store data or to execute custom code. Adding a managed bean to an ADF Mobile application is done the same way as adding one to a Fusion Web Application.
For more information, see the following:
jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory. This sample application shows how to use Java beans and invoke container utility methods. For more information, see Appendix F, "ADF Mobile Sample Applications." Note: Carefully consider the binding styles you use when configuring components. More specifically, combining standard bindings with managed bean bindings will frequently result in misunderstood behaviors because the class instances are unlikely to be the same between the binding infrastructure and the managed bean infrastructure. If you mix bindings, you may end up calling behavior on an instance that isn't directly linked to the UI. |
Supported ADF Mobile managed bean scopes are as follows:
applicationScope
: ADF Managed Beans > applicationScope
node contains everything that is defined at the application level (for example, application-scoped managed beans). pageFlowScope
: ADF Managed Beans > pageFlowScope
node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans). viewScope
: ADF Managed Beans > viewScope
node contains everything that is defined at the view level (for example, view-scoped managed beans). Note: Every object you put in a memory scope is serialized to JSON |
When the ADF Managed Beans category is selected in the Expression Builder, the Create Managed Bean button appears. Click this button to create Managed Beans directly from the Expression Builder.
Figure 8-1 shows an example of the ADF Mobile Managed Beans contents and the Create Managed Bean button.
The ADF Mobile runtime will register itself as a listener on managed bean property change notifications so that EL expressions bound to UI components that reference bean properties will update automatically if the value of the property changes. Sourcing these notifications requires some additional code in the beans' property accessors. To automatically generate the necessary code to source notifications from your beans' property accessors, select the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Figure 8-2).
It is not necessary to add this code to simply reference bean methods or properties through EL, but it is necessary to keep the rendering of any EL expressions in the active form that depend on values stored in the bean current if those values change, especially if the change is indirect, such as a side effect of executing a bean method that changes one or more property values. For information about property changes and the PropertyChangeSupport
class, see Section 8.7, "Data Change Events."
Note: If you declare a managed bean within the |
Example 8-3 shows an example of how to retrieve a value bound to another managed bean attribute programmatically.
Example 8-3 Object Value Retrieved Programmatically from a Managed Bean
Example 8-4 shows an example of how to execute bindings programmatically from a managed bean.
The ADF Mobile Objects category lists various objects defined in the ADF Mobile framework that can be referenced using EL, such as object scopes.
ADF variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. In order of decreasing visibility, they are application scope, page flow scope, and view scope. For information about object scope lifecycles, see "About Object Scope Lifecycles" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In addition to these variable containing scopes, ADF Mobile defines scopes that can expose information about device properties and application preferences. These scopes have application level lifetime and visibility.
The following are available under the ADF Mobile Objects category:
applicationScope
: The applicationScope
node contains everything that is defined at the application level (for example, application-scoped managed beans). deviceScope
: The deviceScope
node contains everything that is defined at the device level (for example, device-scoped managed beans). ADF Mobile supports the following deviceScope
properties: device
model
name
os
phonegap
platform
version
hardware
hasAccelerometer
hasCamera
hasCompass
hasContacts
hasFileAccess
hasGeolocation
hasLocalStorage
hasMediaPlayer
hasMediaRecorder
hasTouchScreen
networkStatus
screen
(availableHeight
, availableWidth
, height
, width
) pageFlowScope
: The pageFlowScope
node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans). preferenceScope
: The preferenceScope
node contains all the application and feature preferences. ADF Mobile Objects > preferenceScope > application
. ADF Mobile Objects > preferenceScope > feature >
featureId
Figure 8-3 shows an example of preference elements under the preferenceScope
node.
Preference elements use the Id
attribute value as the node label in the Expression Builder, except for the PreferenceValue
element. The PreferenceValue
element uses the Name
attribute value as the node label in the Expression Builder.
Note: Where string tokens in EL expressions contain a dot (".") or any special character, or a reserved word like |
Following are some sample preferenceScope
EL expressions:
Example 8-5 Feature ID Containing "."
Example 8-6 Attribute Name Is a Reserved Word
viewScope
: This node contains everything that is defined at the view level (for example, view-scoped managed beans). row
: The row
object is an intermediate variable that is a shortcut to a single provider in the collectionModel
. Its name is the value of the var
attribute of the parent Iterator, List View, or Carousel component. This node supports the following directory structure: AttrName
class
format
hints
inputValue
items
iteratorBinding
label
name
updateable
AttrName
class
format
hints
inputValue
items
iteratorBinding
label
name
updateable
rowKey
Figure 8-4 shows an example of the row
variable node contents.
viewControllerBundle
This is the name of the resource bundle variable that points to a resource bundle defined at the project level. This node is shown only after the amx:loadBundle
element has been dropped and a resource bundle has been created. The name of this node will vary as it depends on the variable name of amx:loadBundle
. This node will display all strings declared in the bundle.
Figure 8-5 shows an example of the contents of the viewControllerBundle
node. Example 8-7 shows an example of AMX code for viewControllerBundle
.
Table 8-3 shows properties that have the Method Expression Builder option available in the Property Inspector instead of the Expression Builder option. The only difference between them is that the Method Expression Builder filters out the managed beans depending on the selected property.
Table 8-3 Editable Attributes
Property | Element |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 8-4 shows the properties that do not have the EL Expression Builder option available in the Property Inspector, because they are not EL-enabled.
The ADF Mobile runtime uses the default
behavior (illustrated in Example 8-8) to invoke the action for a particular operation, because it must be called on repeat showings of the page after it has been loaded (not only for the initial load).
Example 8-8 invokeAction in ADF Mobile AMX
For information on the recognized values of the Refresh
attribute and their meaning, see Section 8.3, "Refresh Values and the Corresponding Conditions to Invoke."
The ADF Mobile runtime can detect the following conditions for issuing notifications to invoke executables:
The runtime executes an invokeAction
on the above conditions according to values of its Refresh
and RefreshCondition
attributes, as listed in Section 8.3, "Refresh Values and the Corresponding Conditions to Invoke." For more information, see "What You May Need to Know About Using the Refresh Property Correctly" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Table 8-5 Refresh Values and the Corresponding Conditions to Invoke
Refresh Value | Condition to Invoke |
---|---|
| A and B |
| A |
| A |
If a RefreshCondition
expression is supplied, it will be evaluated at each potential execution of the invokeAction
. If it evaluates to false
, execution is skipped on that occurrence.
Note: For iterator executables, |
For more information on the use of bindings in ADF Mobile, see the following:
By default, invokeActions
declared with the same Refresh
value execute in the order they are declared in the pagedef
.
Note: The predecessor still executes or not based on its own |
In ADF Mobile, validation of EL bindings for the ADF Mobile AMX pages is done using the same mechanism for validating EL for JSF pages, behaving similarly to Oracle ADF. The EL constructs are validated against the page bindings and method references are validated against the managed beans.
For more information on validation, see Section 8.6, "Performing Validation."
Java bean data controls obtain their data structure from POJOs (plain old Java objects). To create a Java bean data control, right-click a Java class file (in the Applications window), and choose Create Data Control. Creating bean data controls is very similar to creating EJB data controls.
Note: If the Java bean is using a background thread to update data in the UI, you need to manually call |
For more information, see the "Data Controls in Fusion Web Applications" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework and the "Exposing Business Services with ADF Data Controls" section in the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.
ADF Mobile does not serialize to JavaScript Object Notation (JSON) data bean class variables that are declared as transient. To avoid serialization of a chain of nested objects, you should define them as transient. This strategy also helps to prevent the creation of cyclic objects due to object nesting.
Consider the following scenario: you have an Employee
object that has a child Employee
object representing the employee's manager. If you do not declare the child object transient, a chain of serialized nested objects will be created when you attempt to calculate the child Employee
object at runtime.
To serialize and deserialize Java objects into JSON objects, use the JSONBeanSerializationHelper
class. The JSONBeanSerializationHelper
class enables you to implement your own custom JSON serialization and deserialization, and it provides a hook to alter the JSON object after the JSON serialization (and deserialization) process. The JSONBeanSerializationHelper
class is similar to the GenericTypeSerializationHelper
class, which you can use to serialize and deserialize GenericType
objects in REST and SOAP-based web services. For details, see the oracle.adfmf.framework.api.JSONBeanSerializationHelper
class in the ADF Mobile Javadoc.
ADF Mobile does not support serializing objects of the GregorianCalendar
class. The JSONBeanSerializationHelper
class cannot serialize objects of the GregorianCalendar
class because the GregorianCalendar
class has cyclical references in it. Instead, use java.util.Date or java.sql.Date
for date manipulation. The following example shows how to convert a GregorianCalendar
object using java.util.Date
:
ADF Mobile exposes device-specific features that you can use in your application through the DeviceFeaturers data control, a component that appears in the Data Controls panel when you create a new ADF Mobile application. The Cordova Java API is abstracted through this data control, enabling the application features implemented as ADF Mobile AMX to access various services embedded on the device. By dragging and dropping the operations provided by the DeviceFeatures data control into an ADF Mobile AMX page, you can add functions to manage the user contacts stored on the device, create and send both email and SMS text messages, ascertain the location of the device, use the device's camera, and retrieve images stored in the device's file system. The following sections describe each of these operations in detail, including how to use them declaratively and how to implement them with Java code and JavaScript.
The DeviceFeatures data control appears in the Data Controls panel automatically when you create an application using the ADF Mobile application template. Figure 8-6 shows the DeviceFeatures data control in the overview editor. The following methods are available:
createContact
findContacts
getPicture
removeContact
sendEmail
sendSMS
startLocationMonitor
updateContact
displayFile
After you create a page, you can drag DeviceFeatures data control methods (or other objects nested within those methods) from the Data Controls panel to an ADF Mobile AMX view to create command buttons and other components that are bound to the associated functionality. You can accept the default bindings or modify the bindings using EL. You can also use JavaScript or Java to implement or configure functionality.
The DeviceManager
is the object that enables you to access device functionality. You can get a handle on this object by calling DeviceManagerFactory.getDeviceManager
. The following sections describe how you can invoke methods like getPicture
or createContact
using the DeviceManager
object.
For information on how to include data controls in your ADF Mobile application, see Section 6.3.2.4, "Adding Data Controls to the View."
The DeviceFeatures data control includes the getPicture
method, which enables ADF Mobile applications to leverage the device's camera and photo library so end users can take a photo or retrieve an existing image. Example 8-9 shows JavaScript code that enables an end user to take a picture with the device's camera. Example 8-10 and Example 8-11 show Java code that will enable an end user to take a picture or retrieve a saved image. For information about the getPicture
method, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
The following parameters control where the image is taken from and how it is returned:
Note: If you do not specify a |
quality:
Set the quality of the saved image. Range is 0 to 100, inclusive. A higher number indicates higher quality, but also increases the file size. Only applicable to JPEG images (specified by encodingType
). destinationType:
Choose the format of the return value: DeviceManager.CAMERA_DESTINATIONTYPE_DATA_URL (0)
—Returns the image as a Base64-encoded string. This value is also specified as an enum using DeviceManager
.CAMERA_DESTINATION_DATA_URL
when used programmatically. You need to prefix the value returned with "data:image/gif;base64,"
in order to see the image in an image component. DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI
(1)
—Returns the image file path. This value is also specified as an enum using DeviceManager.CAMERA_DESTINATION_FILE_URI
when used programmatically. sourceType:
Set the source of the picture: DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY (0)
—Enables the user to choose from a previously saved image. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY
when used programmatically. DeviceManager.CAMERA_SOURCETYPE_CAMERA (1)
—Enables the user to take a picture with device's camera. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_CAMERA
when used programmatically. DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM
(2)
—Allows the user to choose from an existing photo album. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM
when used programmatically. allowEdit:
Choose whether to allow simple editing of the image before selection (boolean). encodingType:
Choose the encoding of the returned image file: DeviceManager.CAMERA_ENCODINGTYPE_JPEG
(0)—Encodes the returned image as a JPEG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_JPEG
when used programmatically. DeviceManager.CAMERA_ENCODINGTYPE_PNG
(1)—Encodes the returned image as a PNG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_PNG
when used programmatically. targetWidth:
Set the width in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used. targetHeight:
Set the height in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used. To customize a getPicture operation using the DeviceFeatures data control:
getPicture
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page as an ADF Mobile Button. If you want to provide more control to the user, drop the getPicture
operation as an ADF Mobile Parameter Form. This allows the end user to specify settings before taking a picture or choosing an existing image.
destinationType
= 1
so that the image is returned as a filename. getPicture
and drop it on the page as an Output Text. source
attribute of the Image to the return value of the getPicture
operation. The bindings expression should be: #{bindings.Return.inputValue}
. Figure 8-7 shows the bindings for displaying an image from the end user's photo library:
When this application is run, the image chooser will automatically be displayed and the end user can select an image to display. The image chooser is displayed automatically because the Image control is bound to the return value of the getPicture
operation, which in turn causes the getPicture
operation to be invoked.
Note: The timeout value for the |
Keep in mind the following platform-specific issues:
destinationType
FILE_URI
is used, photos are saved in the application's temporary directory. navigator.fileMgr
APIs if storage space is a concern. targetWidth
and targetHeight
must both be specified to be used. If one or both parameters have a negative or zero value, the original dimensions of the image will be used. allowEdit
parameter. Camera.PictureSourceType.PHOTOLIBRARY
and Camera.PictureSourceType.SAVEDPHOTOALBUM
both display the same photo album. Camera.EncodingType
is not supported. The parameter is ignored, and will always produce JPEG images. targetWidth
and targetHeight
can be specified independently. If one parameter has a positive value and the other uses a negative or zero value to represent the original size, the positive value will be used for that dimension, and the other dimension will be scaled to maintain the original aspect ratio. destinationType
DATA_URL
is used, large images can exhaust available memory, producing an out-of-memory error, and will typically do so if the default image size is used. Set the targetWidth
and targetHeight
to constrain the image size. Example 8-9 shows JavaScript code that allows the user to take a picture with the device's camera. The result will be the full path to the saved image.
Example 8-9 JavaScript Code Example for getPicture
Example 8-10 shows Java code that allows the user to take a picture with the device's camera. The result will be the full path to the saved image.
Example 8-10 Java Code Example for Taking a Picture with getPicture
Example 8-11 shows Java code that allows the user to retrieve a previously-saved image. The result will be a base64-encoded JPEG.
Example 8-11 Java Code Example for Retrieving an Image with getPicture
The DeviceFeatures data control includes the sendSMS
method, which enables ADF Mobile applications to leverage the device's Short Message Service (SMS) text messaging interface so end users can send and receive SMS messages. ADF Mobile enables you to display the device's SMS interface and optionally pre-populate the following fields:
to:
List recipients (comma-separated). body:
Add message body. After the SMS text messaging interface is displayed, the end user can choose to either send the SMS or discard it. It is not possible to automatically send the SMS due to device and carrier restrictions; only the end user can actually send the SMS.
Note: The timeout value for the |
Note: In Android, if an end user switches away from their application while editing an SMS message and then subsequently returns to it, they will no longer be in the SMS editing screen. Instead, that message will have been saved as a draft that can then manually be selected for continued editing. |
To customize a sendSMS operation using the DeviceFeatures data control:
To display an interactive form on the page for sending SMS, drag the sendSMS
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's SMS interface, which will display an SMS that is ready to send with all of the specified fields pre-populated.
Figure 8-8 shows the bindings for sending an SMS using an editable form on the page.
Example 8-12 and Example 8-13 show code examples that allow the end user to send an SMS message with the device's text messaging interface.
For information about the sendSMS
method, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Example 8-12 JavaScript Code Example for sendSMS
Example 8-13 Java Code Example for sendSMS
The DeviceFeatures data control includes the sendEmail
method, which enables ADF Mobile applications to leverage the device's email messaging interface so end users can send and receive email messages. ADF Mobile enables you to display the device's email interface and optionally pre-populate the following fields:
to:
List recipients (comma-separated). cc:
List CC recipients (comma-separated). subject:
Add message subject. body:
Add message body. bcc:
List BCC recipients (comma-separated). attachments:
List file names to attach to the email (comma-separated). mimeTypes:
List MIME types to use for the attachments (comma-separated). Specify null to let ADF Mobile automatically determine the MIME types. It is also possible to specify only the MIME types for selected attachments as shown in Example 8-14 and Example 8-15. After the device's email interface is displayed, the user can choose to either send the email or discard it. It is not possible to automatically send the email due to device and carrier restrictions; only the end user can actually send the email. The device must also have at least one email account configured to send email; otherwise, an error will be displayed indicating that no email accounts could be found.
Note: The timeout value for the |
Note: In Android, if an end user switches away from their application while editing an email and then subsequently returns to it, they will no longer be in the email editing screen. Instead, that message will be saved as a draft that can then be manually selected for continued editing. |
To customize a sendEmail operation using the DeviceFeatures data control:
In JDeveloper, drag the sendEmail
operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's email interface, which will display an email ready to send with all of the specified fields pre-populated.
Figure 8-9 shows the bindings for sending an email using an editable form on the page.
Example 8-14 and Example 8-15 show code examples that allow the end user to send an email message with the device's email interface.
For information about the sendEmail
method, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Example 8-14 JavaScript Code Example for sendEmail
Example 8-15 Java Code Example for sendEmail
The DeviceFeatures data control includes the createContact
method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can create new contacts to save in the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the Contact
fields. The createContact
method takes in a Contact
object as a parameter and returns the created Contact
object, as shown in Example 8-17.
For more information about the createContact
method and the Contact
object, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
). Also see Section 8.5.5, "How to Use the findContacts Method" for a description of Contact
properties.
Note: The timeout value for the |
Note: If a null |
To customize a createContact operation using the DeviceFeatures data control:
createContact
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link or Button. Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact
object parameter to the createContact
operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact
from a Java bean class. Assuming a managed bean already exists with a getter for a Contact
object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a createContact
operation when pressed. Example 8-16 shows an example of managed bean code for creating a Contact
object.
Contact
return object from under the createContact
operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the createContact
operation is performed, the results will be displayed in this form. Example 8-16 Managed Bean Code for Creating a Contact Object
Example 8-17 and Example 8-18 show code examples that allow the end user to create contacts on devices.
Example 8-17 JavaScript Code Example for createContact
Example 8-18 Java Code Example for createContact
The DeviceFeatures data control includes the findContacts
method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can find one or more contacts from the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the findContacts
fields. The findContacts
method takes in a filter string and a list of field names to look through (and return as part of the found contacts). The filter string can be anything to look for in the contacts. For more information about the findContacts
method, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
The findContacts
operation takes the following arguments:
contactFields:
Required parameter. Use this parameter to specify which fields should be included in the Contact
objects resulting from a findContacts
operation. Separate fields with a comma (spacing does not matter). filter:
The search string used to filter contacts. (String) (Default: ""
) multiple:
Determines if the findContacts
operation should return multiple contacts. (Boolean) (Default: false
) Note: Passing in a field name that is not in the following list may result in a |
The following list shows the possible Contact
properties that can be passed in to look through and be returned as part of the found contacts:
id:
A globally unique identifier displayName:
The name of this contact, suitable for display to end-users name:
An object containing all components of a person's name nickname:
A casual name for the contact. If you set this field to null, it will be stored as an empty string. phoneNumbers:
An array of all the contact's phone numbers emails:
An array of all the contact's email addresses addresses:
An array of all the contact's addresses ims:
An array of all the contact's Instant messaging (IM) addresses (The ims
property is not supported in this release.) Note: ADF Mobile does not support the |
organizations:
An array of all the contact's organizations revision:
The last date the contact was revised birthday:
The birthday of the contact. Although you cannot programmatically set a contact's birthday field and persist it to the address book, you can still use the operating system's address book application to manually set this field. gender:
The gender of the contact note:
A note about the contact. If you set this field to null, it will be stored as an empty string. photos:
An array of the contact's photos urls:
An array of web pages associated to the contact Note: The timeout value for the |
To customize a findContacts operation using the DeviceFeatures data control:
findContacts
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form. Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the findContacts
operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a findContacts
operation when pressed.
Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields described above. Below this form will be a button, which will use the entered values to perform a findContacts
operation when pressed.
Contact
return object from under the findContacts
operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the findContacts
operation is performed, the results will be displayed in this form. Example 8-19 shows possible argument values for the findContacts
method. Example 8-20 and Example 8-21 show how to find a contact by family name and get the contact's name, phone numbers, email, addresses, and note.
Example 8-19 Possible Argument Values for findContacts
Note: The |
Example 8-20 JavaScript Code Example for findContacts
Example 8-21 Java Code Example for findContacts
The DeviceFeatures data control includes the updateContact
method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can update contacts in the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the updateContact
fields. The updateContact
method takes in a Contact
object as a parameter and returns the updated Contact
object, as shown in Example 8-22.
For more information about the updateContact
method and the Contact
object, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
). Also see Section 8.5.5, "How to Use the findContacts Method" for a description of Contact
properties.
Note: The |
To customize an updateContact operation using the DeviceFeatures data control:
updateContact
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link or Button. Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact
object parameter to the updateContact
operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact
from a Java bean class. Assuming a managed bean already exists with a getter for a Contact
object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a updateContact
operation when pressed. Example 8-16 shows an example of managed bean code for creating a Contact
object.
Contact
return object from under the updateContact
operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the updateContact
operation is performed, the results will be displayed in this form. Example 8-22 and Example 8-24 show how to update a contact's phone number. Example 8-23 and Example 8-25 show how to add another phone number to a contact.
Example 8-22 JavaScript Code Example for updateContact
Example 8-23 shows you how to add another phone number to the already existing phone numbers.
Example 8-23 JavaScript Code Example for Adding a Phone Number with updateContact
Example 8-24 shows how to update a contact's phone number, email type, and postal code.
Example 8-24 Java Code Example for updateContact
Example 8-25 shows you how to add another phone number to the already existing phone numbers.
Example 8-25 Java Code Example for Adding a Phone Number with updateContact
The DeviceFeatures data control includes the removeContact
method, which enables ADF Mobile applications to leverage the device's interface and file system for managing contacts so end users can remove contacts from the device's address book. ADF Mobile enables you to display the device's interface and optionally pre-populate the removeContact
fields. The removeContact
method takes in a Contact
object as a parameter, as shown in Example 8-26.
Note: The |
Note: In Android, the |
Note: The timeout value for the |
To customize a removeContact operation using the DeviceFeatures data control:
removeContact
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form. Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the removeContact
operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a removeContact
operation when pressed.
Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields. Below this form will be a button, which will use the entered values to perform a removeContact
operation when pressed.
Contact
return object from under the removeContact
operation in the Data Controls panel and drop it on to the page as an ADF Form. You can then customize the form in the Edit Form Fields dialog. When the removeContact
operation is performed, the results will be displayed in this form. Example 8-26 and Example 8-27 show you how to delete a contact that you found using findContacts
. For information about the removeContact
method and the Contact object, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Example 8-26 JavaScript Code Example for removeContact
Example 8-27 Java Code Example for removeContact
The DeviceFeatures data control includes the startLocationMonitor
method, which enables ADF Mobile applications to provide a geolocation feature so end users can obtain a device's location. ADF Mobile enables you to display a device's interface and optionally pre-populate the startLocationMonitor
fields.
ADF Mobile exposes APIs that enable you to acquire a device's current position, allowing you to retrieve the device's current location for one instant in time or to subscribe to it on a periodic basis. Example 8-28 and Example 8-29 show code examples that will allow your application to obtain a device's location. For information about the startLocationMonitor
method, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Note: The Android 2.n simulators will not return a geolocation result unless the The Updates do not occur as frequently on the Android platform as on iOS. |
To listen for changes in a device's location using the DeviceFeatures data control:
In JDeveloper, drag the startLocationMonitor
operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Link or Button. When prompted by the Edit Action Dialog, populate the fields as follows:
enableHighAccuracy:
If true
, use the most accurate possible method of obtaining a location fix. This is just a hint; the operating system may not respect it. Devices often have several different mechanisms for obtaining a location fix, including cell tower triangulation, Wi-Fi hotspot lookup, and true GPS. Specifying false
indicates that you are willing to accept a less accurate location, which may result in a faster response or consume less power. updateInterval:
Defines how often, in milliseconds, to receive updates. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update. locationListener:
EL expression that resolves to a bean method with the following signature: This EL expression will be evaluated every time a location update is received. For example, enter viewScope.LocationListenerBean.locationUpdated
(without the surrounding#{}
), then define a bean named LocationListenerBean
in viewScope
and implement a method with the following signature:
Note: Do not use the EL syntax |
Example 8-28 shows how to subscribe to changes in the device's location periodically. The example uses the DeviceManager.startUpdatingPosition
method, which takes the following parameters:
int updateInterval:
Defines how often to deliver location updates, in milliseconds. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update. Conversely, location updates may also be delivered at the specified frequency, but may be identical until the device's position has changed significantly. boolean enableHighAccuracy
: If set to true
, use the most accurate possible method of obtaining a location fix. String watchID:
Defines a unique ID that can be subsequently used to stop subscribing to location updates GeolocationCallback:
An implementation of the GeolocationCallback
interface. This implementation's locationUpdated
method is invoked each time the location is updated, as shown in Example 8-28. For an example of how to subscribe to changes in the device's position using JavaScript, refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Parameters returned in the callback function specified by the locationListener
are as follows:
double getAccuracy
—Accuracy level of the latitude and longitude coordinates in meters double getAltitude
—Height of the position in meters above the ellipsoid double getLatitude
—Latitude in decimal degrees double getLongitude
—Longitude in decimal degrees double getAltitudeAccuracy
—Accuracy level of the altitude coordinate in meters double getHeading
—Direction of travel, specified in degrees counting clockwise relative to the true north double getSpeed
—Current ground speed of the device, specified in meters per second long getTimestamp
—Creation of a timestamp in milliseconds since the Unix epoch String getWatchId
—Only used when subscribing to periodic location updates. A unique ID that can be subsequently used to stop subscribing to location updates For more information about the startLocationMonitor
and startHeadingMonitor
methods, see the DeviceDataControl
class in the ADF Mobile Javadoc and refer to the Cordova documentation (http://docs.phonegap.com/en/2.2.0/index.html
).
Example 8-28 Using Geolocation to Subscribe to Changes in the Device's Location
To obtain the device's location using the DeviceFeatures data control:
In JDeveloper, drag the startLocationMonitor
operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as an ADF Mobile Link or Button. Follow Example 8-28, but stop listening after the first location update is received.
Example 8-29 shows how to get a device's location one time. The example uses DeviceManager.getCurrentPosition
, which takes the following parameters:
int maximumAge:
Accept a cached value no older than this value, in milliseconds. If a location fix has been obtained within this window of time, then it will be returned immediately; otherwise, the call will block until a new location fix can be determined. The value of the maximumAge
parameter must be at least 1000 ms; values less than this will be set to 1000 ms automatically. boolean: enableHighAccuracy
If set to true, use the most accurate possible method of obtaining a location fix. Example 8-29 Using Geolocation to Get the Device's Current Location (One Time)
The DeviceFeatures data control includes the displayFile
method, which enables you to display files that are local to the device. Depending on the platform, application users can view PDFs, image files, Microsoft Office documents, and various other file types. On iOS, the application user has the option to preview supported files within the ADF Mobile application. Users can also open those files with third-party applications, email them, or send them to a printer. On Android, all files are opened in third-party applications. In other words, the application user leaves the ADF Mobile application while viewing the file. The user may return to the ADF Mobile application by pressing the Android Back button. If the device does not have an application capable of opening the given file, an error is displayed. For an example of how the displayFile
method opens files on both iOS- and Android-powered devices, see the Attachments sample application. This application is available in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
The displayFile
method is only able to display files that are local to the device. This means that remote files first have to be downloaded. Use the call AdfmfJavaUtilities.getDirectoryPathRoot
(AdfmfJavaUtilities.
DownloadDirectory
) to return the directory root where downloaded files should be stored. Note that on iOS, this location is specific to the application, but on Android this location refers to the external storage directory. The external storage directory is publicly accessible and allows third-party applications to read files stored there.
Table 8-6 Supported File Types
iOS | Android |
---|---|
For more information about supported file types, see the Quick Look preview controller documentation at the Apple iOS development site (| The framework will start the viewer associated with the given MIME type if it is installed on the device. There is no built-in framework for viewing specific file types. If the device does not have an application installed that handles the file type, the ADF Mobile application displays an error. |
iWork documents | |
Microsoft Office documents (Office '97 and newer) | |
Rich Text Format (RTF) documents | |
PDF files | |
Images | |
Text files whose uniform type identifier (UTI) conforms to the public.text type | |
Comma-separated value (csv) files |
To customize a displayFile operation using the DeviceFeatures data control:
displayFile
operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as an ADF Mobile Link, Button, or Parameter Form. Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the displayFile
operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a displayFile
operation when pressed.
Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields. Below this form will be a button, which will use the entered values to perform a displayFile
operation when pressed.
Example 8-30 shows you how to view files using the displayFile
method. For information about the displayFile
method, see the DeviceDataControl
class in the ADF Mobile Javadoc).
Example 8-30 Java Code Example for displayFile
There may be features of your application that rely on specific device characteristics or capabilities. For example, you may want to present a different user interface depending on the device's screen orientation, or there may be a mapping feature that you want to enable only if the device supports geolocation. ADF Mobile provides a number of properties that you can access from Java and EL in order to support this type of dynamic behavior. Table 8-7 lists these properties, along with information about how to query them, what values to expect in return, and whether the property can change during the application's lifecycle.
Table 8-7 Device Properties and Corresponding EL Expressions
Property | Static/ Dynamic | EL Expression | Sample Value | Java API |
---|---|---|---|---|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Dynamic |
|
|
|
| Dynamic |
|
|
|
| Dynamic |
|
|
|
| Dynamic |
|
|
|
| Dynamic |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
| Static |
|
|
|
Footnote 1 If both wifi
and 2G
are turned on, network status will be wifi
, as wifi
takes precedence over 2G
.
In ADF Mobile, validation occurs in the data control layer, with validation rules set on binding attributes behaving similarly to those in Oracle ADF. The attribute validation takes place at a single point in the system, during the setValue
operation on the bindings.
You can define the following validators for attributes exposed by the data controls:
All validators for a given attribute are executed, and nested exceptions are thrown for every validator that does not pass. You can define a validation message for attributes, which is displayed when a validation rule is fired at runtime. For more information, see Section 7.9, "Validating Input" and Section 8.6.1, "How to Add Validation Rules."
Note: Due to a JSON limitation, the value that a |
Table 8-8 lists supported validation combinations for the length validator.
Table 8-8 Length Validation
Compare type | Byte | Character |
---|---|---|
| Supported | Supported |
| Supported | Supported |
| Supported | Supported |
| Supported | Supported |
| Supported | Supported |
| Supported | Supported |
| Supported | Supported |
Table 8-9 and Table 8-10 list supported validation combinations for the range validator.
Table 8-9 Range Validation
Compare type | Byte | Char | Double | Float | Integer | Long | Short |
---|---|---|---|---|---|---|---|
| Supported | Supported | Supported | Supported | Supported | Supported | Supported |
| Supported | Supported | Supported | Supported | Supported | Supported | Supported |
Table 8-10 Range Validation - math, sql, and util Packages
Compare type | java.math.BigDecimal | java.math.BigInteger | java.sql.Date | java.sql.Time | java.sql.Timestamp | java.util.Date |
---|---|---|---|---|---|---|
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
Table 8-11 lists supported validation combinations for the list validator.
Table 8-12 and Table 8-13 lists supported validation combinations for the compare validator.
Table 8-12 Compare Validation
Compare type | Byte | Char | Double | Float | Integer | Long | Short | String |
---|---|---|---|---|---|---|---|---|
| Supported | Supported | Supported | Supported | Supported | Supported | Supported | Supported |
| Supported | Supported | Supported | Supported | Supported | Supported | Supported | Supported |
| Not supported | Supported | Supported | Supported | Supported | Supported | Supported | Not supported |
| Not supported | Supported | Supported | Supported | Supported | Supported | Supported | Not supported |
| Not supported | Supported | Supported | Supported | Supported | Supported | Supported | Not supported |
| Not supported | Supported | Supported | Supported | Supported | Supported | Supported | Not supported |
Table 8-13 Compare Validation - java.math, java.sql, and java.util Packages
Compare type | java.math.BigDecimal | java.math.BigInteger | java.sql.Date | java.sql.Time | java.sql.Timestamp | java.util.Date |
---|---|---|---|---|---|---|
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
| Supported | Supported | Not supported | Not supported | Not supported | Not supported |
You can define validation rules for a variety of use cases. To add a declarative validation rule to an entity object, use the Overview Editor for Data Control Structure Files - Attributes Page.
For more information about adding validation rules, see the "Adding Validation Rules to Entity Objects and Attributes" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To add a validation rule:
For more information, see the following:
The validator metadata is placed into the data control structure metadata XML files at design time. Example 8-31 shows a sample length validator.
Example 8-31 Length Validator Declared in Metadata File
To simplify data change events, JDeveloper uses the property change listener pattern. In most cases you can use JDeveloper to generate the necessary code to source notifications from your beans' property accessors by selecting the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Section 8.2.4.2, "ADF Managed Beans" for details). The PropertyChangeSupport
object is generated automatically, with the calls to firePropertyChange
in the newly-generated setter method. Additionally, the addPropertyChangeListener
and removePropertyChangeListener
methods are added so property change listeners can register and unregister themselves with this object. This is what the framework uses to capture changes to be pushed to the client cache and to notify the user interface layer that data has been changed.
Note: If you are manually adding a |
Property changes alone will not solve all the data change notifications, as in the case where you have a bean wrapped by a data control and you want to expose a collection of items. While a property change is sufficient when individual items of the list change, it is not sufficient for cardinality changes. In this case, rather than fire a property change for the entire collection, which would cause a degradation of performance, you can instead refresh just the collection delta. To do this you need to expose more data than is required for a simple property change, which you can do using the ProviderChangeSupport
class.
Note: The |
Since the provider change is required only when you have a dynamic collection exposed by a data control wrapped bean, there are only a few types of provider change events to fire:
fireProviderCreate
—when a new element is added to the collection fireProviderDelete
—when an element is removed from the collection fireProviderRefresh
—when multiple changes are done to the collection at one time and you decide it is better to simply ask for the client to refresh the entire collection (this should only be used in bulk operations) The ProviderChangeSupport
class is used for sending notifications relating to collection elements, so that components update properly when a change occurs in a Java bean data control. It follows a similar pattern to the automatically-generated PropertyChangeSupport
class, but the event objects used with ProviderChangeSupport
send more information, including the type of operation as well as the key and position of the element that changed. ProviderChangeSupport
captures structural changes to a collection, such as adding or removing an element (or provider) from a collection. PropertyChangeSupport
captures changes to the individual items in the collection.
Example 8-32 shows how to use ProviderChangeSupport
for sending notifications relating to structural changes to collection elements (such as when adding or removing a child). For more information on the ProviderChangeListener
interface and the ProviderChangeEvent
class, see the ADF Mobile Javadoc.
Example 8-32 ProviderChangeSupport Code Example
Data changes are passed back to the client (to be cached) with any response message or return value from the JVM layer. This allows JDeveloper to compress and reduce the number of events and updates to refresh to the user interface, allowing the framework to be as efficient as possible.
However, there are times where you may need to have a background thread handle a long-running process (such as web-service interactions, database interactions, or expensive computations) and notify the user interface independent of a user action. To update data on an AMX page to reflect the current values of data fields whose values have changed, you can avoid the performance hit associated with reloading the whole AMX page by calling AdfmfJavaUtilities.flushDataChangeEvent
to force the currently queued data changes to the client.
Note: The |
Example 8-33 shows how the flushDataChangeEvent
method can be used to force pending data changes to the client. For more information about oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEvent
, see the Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Example 8-33 Data Change Event Example
The StockTracker sample application provides an example of how data change events use Java to enable data changes to be reflected in the user interface. This sample application is in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
For more information about sample applications, see Appendix F, "ADF Mobile Sample Applications."
This chapter describes how to integrate a third-party web service into the ADF Mobile AMX application feature implementation.
This chapter includes the following sections:
Web services allow applications and their features to exchange data and information through defined application programming interfaces. Using web services you can expose business functionality irrespective of the platform or language of the originating application. For more information, see the "About Web Services in Fusion Web Applications" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In case of both an Oracle ADF web application and ADF Mobile application, some of the most typical reasons for using web services are:
ADF Mobile supports both SOAP and REST web services and allows you to integrate a third-party web service into your ADF Mobile AMX application feature.
Using web services in your ADF Mobile application enables you to do the following:
The following scenarios of the web service usage demonstrate the data access (scenario 1) as well as computational and data-driven functionality (scenario 2 and 3):
The most common way of using web services in an application feature developed with ADF Mobile is to create a data control for a web service.
For more information about web service data controls and their usage, see the following:
JDeveloper lets you create a data control for an existing SOAP web service using only the Web Services Description Language (WSDL) file for the service. You can either browse to a WSDL file on the local file system, locate one in a Universal Description, Discovery and Integration (UDDI) registry, or enter the WSDL URL directly.
Note: If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
To create a SOAP web service data control:
Note: ADF Mobile supports the following encoding styles for both SOAP 1.1 and 1.2 versions:
|
After the web service data control has been created, the web service operations and return values of the operations are displayed in the Data Control palette allowing you to drag and drop the objects returned by the web service operations as appropriate ADF Mobile AMX UI components in the page. For more information, see Section 6.3.2.4, "Adding Data Controls to the View." When data returned from a web service operation is displayed, the following object types are handled:
Using a web service operation, both standard and complex data types can be updated and deleted.
ADF Mobile allows you to specify a custom provider class in your DataControls.dcx
file. This custom class extends oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider
. You can use it to specify an implementation of the SoapHeader[] getAdditionalSoapHeaders()
method
Example 9-1 shows how to extend the SOAPProvider
and create a custom header demonstrated in Example 9-2
Example 9-1 Defining Custom SOAP Headers
Example 9-2 shows the new custom header.
Example 9-2 SOAP Header
Note: You cannot specify dynamic SOAP headers using ADF Mobile. |
JDeveloper lets you create a data control for an existing REST web service.
Note: If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see the "Setting Browser Proxy Information" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
You can associate a REST web service data control with one or more HTTP methods using the same connection. You should be able to access custom operations exposed by a REST service. These custom operations map to one of the HTTP methods and allow you to create a data control to expose these custom operations on the client.
To use security and notifications functionality on mobile devices, you can add custom headers and custom values to standard HTTP headers for use with specific operations exposed by the REST data control.
Before you begin:
Ensure that you have access to the REST web service that the data control is to access.
To create a REST web service data control:
GET
, POST
, PUT
, and DELETE
. You can select any of these method types when completing the Method Display Name fields on the Resources page, as Figure 9-3 shows. Note: You can include all four methods using the same connection and the same REST web service data control. |
Note: Since ADF Mobile creates internal definitions for the XSD structures at compile time, the XSD should not change after the application has been compiled. Therefore, it is recommended to reference the XSD file locally. Using the remote XSD negatively affects performance because ADF Mobile retrieves the XSD with each run of the application. |
After the REST web services data control has been created by following the preceding steps, it behaves identically to its Oracle ADF counterpart.
An ADF Mobile sample application called RESTDemo (located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer) demonstrates how to use REST web services in an ADF Mobile application.
For information on how to use REST web services through Java bypassing data controls, see Section 9.6.2, "How to Use REST Web Services Adapter."
The connection information for the web service is stored in the connections.xml
file along with the other connections in your application. You do not need to explicitly create this file, as it is generated in the.adf/META-INF
directory by the New Web Service Data Control wizard at the time when the web service data control is created (see Section 9.2, "Creating a Web Service Data Control").
You modify the connection settings by editing the connections.xml
file.
After creating a web service data control, you can modify the endpoint of the URI. This is useful in such cases as when you migrate the feature from a test to production environment.
You modify the endpoint by editing the connections.xml
file.
ADF Mobile supports both secured and unsecured web services, as well as basic authentication (BASIC_AUTH
) over HTTP and HTTPS.
For more information, see the following:
To access secured web services from your ADF Mobile application, you may need to configure web service data controls included in the application.
The following security policies are supported for SOAP-based web services:
oracle/wss_http_token_client_policy
oracle/wss_http_token_over_ssl_client_policy
oracle/http_basic_auth_over_ssl_client_policy
oracle/wss_username_token_client_policy
oracle/wss_username_token_over_ssl_client_policy
If a SOAP web service is secured, you can access it by configuring the web service data control with either oracle/wss_http_token_over_ssl_client_policy
or oracle/wss_http_token_client_policy
. To do so, use the Edit Data Control Policies dialog that Figure 9-5 shows. You can open this dialog as follows:
.dcx
file located in the application's View Controller project. Since only one security policy is supported for REST-based web services, ADF Mobile automatically adds oracle/wss_http_token_over_ssl_client_policy
for REST web service over HTTPS, or oracle/wss_http_token_client_policy
for REST web service over HTTP protocol to enable Oracle Web Services Manager (OWSM) Lite Mobile ADF Application Agent to inject a proper security header.
For secured web services, the user credentials are dynamically injected into a web service request at the time when the request is invoked. This process is similar for SOAP and REST web services.
ADF Mobile uses Oracle Web Services Manager (OWSM) Lite Mobile ADF Application Agent to create and configure proxies, as well as to request services through the proxies. The user credentials are injected into the OWSM enforcement context when proxies are configured. The credential injection is handled by OWSM proxies. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Web Services Manager.
Before web services are invoked, the user must respond to an authentication prompt triggered by the user trying to invoke a secured ADF Mobile application feature or to start the application controlled by the access control service (ACS). In the latter case, the application must define a default login server with ACS URL, as well as to have at least one feature with a constraint that depends on the user.roles
setting. The user credentials are stored in a credential store—a device-native and local repository used for storing credentials associated with the authentication provider's server URL and the user. At run time, ADF Mobile assumes that all credentials have already been stored in the IDM Mobile credential store before the time of their usage.
ADF Mobile supports authentication against the web service endpoint URL only. In the connections.xml
file, you have to specify the login server connection's adfCredentialStoreKey
attribute value in the adfCredentialStoreKey
attribute of the web service connection reference in order to associate the login server to the web service security (see Example 9-3 and Example 9-4).
Note: Since JDeveloper does not provide an Overview editor for the |
Example 9-3 shows the definition of the web service connection referenced as adfCredentialStoreKey="MyAuth"
, where MyAuth
is the name of the login connection reference.
Example 9-3 Defining the Web Service Connection
Example 9-4 shows the definition of the login connection, where MyAuth
is used as the credential store key value in the login server connection.
Example 9-4 Defining the Login Connection
If a web service request is rejected due to the authentication failure, ADF Mobile returns an appropriate exception and invokes an appropriate action (see Section 19.4, "Using and Configuring Logging"). If none of the existing exceptions correctly represent the condition, a new exception is added.
The connections.xml
file is deployed and managed under the Configuration Service. For more information, see Chapter 10, "Administering Web Services."
connections.xml
files in FARs are aggregated when the ADF Mobile application is deployed. The credentials represent deployment-specific data and are not expected to be stored in FARs.
Since an ADF Mobile application must make a WSDL file accessible at run time without authentication, you cannot use a secure WSDL file with a SOAP web service secured by the basic authentication.
If your intention is to secure the WSDL, consider the following: since the WSDL file is fetched by the GET
method of the web service, if you secure each web service method, except the GET
method, you can use a secure WSDL. If you secure the GET
method, you should not secure the WSDL.
In your ADF Mobile application, you can invoke the web services layer (both REST and SOAP) from the Java code and use the results in Java methods.
ADF Mobile provides the GenericTypeBeanSerializationHandler
utility class that you can use to perform conversions between POJOs (JavaBeans objects) and ADF Mobile's GenericType
objects based on the following set of conversion rules:
GenericType
objects: GenericType
attribute. GenericType
. GenericType
. GenericType
objects. GenericType
objects to POJO: GenericType
attributes. GenericType
are converted into an array object. Map
interface, then any properties that cannot be set through standard accessors are set in the POJO through the set
method of the Map
. The advantage of using this helper API is that it allows you to take the response received from a web service and convert it to a JavaBean in a single call.
For example, a web service passes back and forth an Employee
object that needs to be reused throughout the business logic. This object has the following set of properties:
name
of type String
address
: a complex object with street
, city
, state
, and zipcode
attributes id
of type long
salary
of type float
phone
of type String
, and there could be more than one phone password
of type String
, and the password should never be transmitted to the back-end web service Example 9-5 shows a potential code for the Employee
object.
Example 9-5 Employee Object
Example 9-6 shows the potential code for the Address
object of the Employee
class.
Example 9-6 Address Object
Keeping in mind the conversion rules, note the following:
password
is defined as transient, it is ignored with respect to the conversion algorithm. name
, address
, id
, and salary
all have get
and set
methods, they will all be converted to and from the GenericType
. coerceToType(Object, Class)
method of the oracle.adfmf.misc.Converter
class. address
, are recursed by the conversion algorithm to either build the child GenericType
or to create and populate the POJO complex object depending on the direction of the conversion. phone
is an array of String
objects each representing a unique phone number and since the cardinality of this element is greater than one, the conversion algorithm will find all matches of the phone
attribute in the GenericType
object, present them as an array, and invoke the setPhone
method on the bean. The toGenericType
method of the GenericTypeBeanSerializationHandler will take each array element and append it to the toGenericType
as an individual phone
attribute. With the following defined:
Employee
object is converted to the GenericType
as: Employee
object as: For successful conversion, consider the following:
GenericType
structure. GenericType
structure, one of the following strategies should be followed: GenericType
is only exposed in SOAP data controls. The virtual types have an associated virtual bean name that is passed into the toGenericType
method. You can access the virtual bean name by hovering over the virtual type in the Data Controls window of JDeveloper. The typical name format is <DCName>.Types.<methodName>.<argName>
. For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
ADF Mobile allows you to insert and delete rows from a web services object programmatically by accessing the iterator on that object. To do so, you use the createRow
and deleteRow
methods of the oracle.adfmf.bindings.iterator.BasicIterator
class.
Example 9-7 shows how to add a row to a web services object.
Example 9-7 Inserting a Row
Note: The |
You can use the RestServiceAdapter
interface to access data (that could be presented as JavaScript Object Notation, for example) sent across a REST call. The RestServiceAdapter
interface lets you trigger execution of web service operations without the need to create a web service data control or interact with it directly.
To use the RestServiceAdapter
interface in your ADF Mobile application, ensure that the connection exists in the connections.xml
file (see Section 9.3, "Creating a New Web Service Connection"), and then add your code to the bean class, as the following examples show.
Example 9-8 demonstrates the use of the RestServiceAdapter
for the GET
request.
Example 9-8 Using RestServiceAdapter for GET Request
Example 9-9 demonstrates the use of the RestServiceAdapter
for the POST
request.
Example 9-9 Using RestServiceAdapter for POST Request
Example 9-10 demonstrates the use of the RestServiceAdapter
for the PUT
request.
Example 9-10 Using RestServiceAdapter for PUT Request
Example 9-11 demonstrates the use of the RestServiceAdapter
for the DELETE
request.
Example 9-11 Using RestServiceAdapter for DELETE Request
When you use the RestServiceAdapter
, you should set the Accept
and Content-Type
headers to ensure that your request and response payloads are not deemed invalid due to mismatched MIME type.
Note: The REST web service adapter only supports UTF-8 character set on mobile applications. UTF-8 is embedded in the adapter program. |
You can use the RestServiceAdapter
to handle binary (non-text) responses received from web service calls. These responses can include any type of binary data, such as PDF or video files. The RestServiceAdapter
method to use is sendReceive
.
Example 9-12 shows how to send a request for a file to a REST server, and then save the file to a disk (see Example 9-13).
Example 9-12 Sending Request for File
Example 9-13 demonstrates a method that is called by the code from Example 9-12. This method saves a byte[]
response to a file on disk:
Example 9-13 Saving File to Disk
Using the adfmf-config.xml
file, you can specify how ADF Mobile is to behave when a REST response contains a child or attribute that is not expected or defined in the XSD:
Example 9-14 shows how to set the validated
parameter. If you define the value of this parameter as true
, the validation proceeds as strict. The value of false
(default) means that the validation is not strict.
You can use the invokeDataControlMethod
method of the AdfmfJavaUtilities
to invoke a data control operation which does not have to be explicitly added as a methodAction
in a PageDef
file.
For more information and examples, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
This chapter describes how to use the Configuration Service to administer web services within an ADF Mobile application.
This chapter includes the following sections:
Web services are administered through the use of the ADF Mobile Configuration Service—a tool that enables applications already deployed to mobile devices to have their endpoints updated.
Using the Configuration Service provided by ADF Mobile, administrators can update web service connection endpoints for different ADF Mobile applications from a server, resulting in users obtaining a new connection. This is done by hosting and updating one or more connections.xml
files for the application. The Configuration Service can be initiated every time the application starts by setting a parameter in the adf-config.xml
file or by using the container utilities API to check for a new connection (see Section B.2.3, "checkforNewConfiguration").
Administrators should designate connections.xml
files as resources protected by basic authentication (see Chapter 18, "ADF Mobile Application Security").
A client application can use the Configuration Service to check for updates.
The Configuration Service dialog allows you to do the following:
You can seed the Configuration Service URL with a URL value that assists in completing the Configuration Service dialog (see Example 10-1).
The following files must be present at the Configuration Service URL:
connections.xml
adf-config.xml
adfmf-config.xml
The files are retrieved from the Configuration Service in that order. These files should be accessed through the Configuration Service as opposed to directly through the application bundle. For more information, see Section 10.2.2, "What You May Need to Know About the URL Construction."
Administrators can use a setting in the adf-config.xml
file for the application to define whether or not to call the Configuration Service at the application startup time (see Example 10-1). If the application starts for the first time, the dialog is displayed and the credentials are cached in the keystore. On subsequent starts (not including resume), you need to instruct your application to check for modifications against the server and to trigger the display of the Configuration Service dialog. ADF Mobile provides an API whereby you can specify a place in the application where the check for updates should be performed and against which the client API should be called to invoke the Configuration Service dialog. After the update, the application should run correctly (and be restarted if necessary).
Example 10-1 shows the use of the use-configuration-service-at-startup
property, whose default value is false
. Two additional properties can be defined in the adf-config.xml
file to control behavior related to the Configuration Service: the adfmf-configuration-service-seed-url
property can be specified to provide a static URL address with which to seed the URL presented in the Configuration Service dialog. Alternatively, the adfmf-configuration-service-seed-url-preference
property can be specified to reference an application Preference (defined in the adfmf-application.xml
file), in which case the Configuration Service dialog will use the value of the specified Preference as the seed value (see Section 13.5, "Creating a Preference for the Configuration Service URL").
Example 10-1 Configuration Service Settings in adf-config.xml File
The Configuration Service performs the following steps when the application starts:
Documents
directory for a copy of the managed files. If they are found, the Configuration Service finishes its process. If the Configuration Service does not locate configuration files in the Documents
directory, the following takes place:
adf-config.xml
file indicates that the Configuration Service is not in use, then the Configuration Service copies the managed files from the application bundle to the Documents
directory managed folder, and then the Configuration Service finishes its process. adf-config.xml
file indicates that the Configuration Service is in use, then the Configuration Service tries to download the managed files in the order they are listed. connections.xml
file is downloaded and placed in the Documents
directory managed folder, and at this point the Configuration Service finishes its process. If the credentials are not found or the stored credentials fail to provide access to the Configuration Server, the user is prompted for the connection information (user name, password, and endpoint URL).
connections.xml
file is downloaded and the connection information is stored for later use. Figure 10-1 shows the Configuration Service prompt dialog on an iPhone.
The Configuration Service can be implemented as a Web Distributed Authoring and Versioning service (WebDAV) or as a service that accepts HTTP GET
request and returns the connections.xml
file.
The URL used by the Configuration Service client is of the following format:
url configured in adf-config.xml/application bundle id
/connections.xml
The Configuration Service endpoint may be secured using basic authentication (BASIC_AUTH
) over HTTP and HTTPS.
The URL to each of the Configuration Service-managed resources is constructed. It contains the application ID and the file name as follows:
If the user provides the URL of http://my.server.com:port/SomeLocation
and the application ID of com.mycompany.appname
, the following three URLs will be used to download the configuration files:
This chapter describes how to use the local SQLite database with an ADF Mobile application.
This chapter includes the following sections:
SQLite is a relational database management system (RDBMS) specifically designed for embedded applications.
SQLite has the following characteristics:
For more information, see the SQLite website at http://www.sqlite.org
.
For a sample usage of the local SQLite database, see an ADF Mobile sample application called HR whose data is based on the default HR schema that is provided with all Oracle databases. The data is stored in a local SQLite database and persisted between each startup. The HR application is located in the PublicSamples.zip
file within the jdev_install
/jdeveloper/jdev/extensions/oracle.adf.mobile/Samples
directory on your development computer
SQLite is designed for use as an embedded database system, one typically used by a single user and often linked directly into the application. Enterprise databases, on the other hand, are designed for high concurrency in a distributed client-server environment. Because of these differences, there is a number of limitations compared to Oracle databases. Some of the most important differences are:
For more information, see the following:
http://www.sqlite.org/docs.html
http://www.sqlite.org/limits.html
At any given time, a single instance of the SQLite database may have either a single read-write connection or multiple read-only connections.
Due to its coarse-grained locking mechanism, SQLite does not support multiple read-write connections to the same database instance. For more information, see "File Locking And Concurrency In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/lockingv3.html
.
Although SQLite complies with the SQL92 standard, there are a few unsupported constructs, including the following:
RIGHT OUTER JOIN
FULL OUTER JOIN
GRANT
REVOKE
For more information, see "SQL Features That SQLite Does Not Implement" available from the Documentation section of the SQLite website at http://www.sqlite.org/omitted.html
.
For information on how SQLite interprets SQL, see 'SQL As Understood by SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/lang_createtable.html
.
While most database systems are strongly typed, SQLite is dynamically typed and therefore any value can be stored in any column, regardless of its declared type. SQLite does not return an error if, for instance, a string value is mistakenly stored in a numeric column. For more information, see "Datatypes In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/datatype3.html
.
SQLite supports foreign keys. It parses and enforces foreign key constraints. For more information, see the SQLite Foreign Key Support available from the Documentation section of the SQLite site at http://www.sqlite.org/foreignkeys.html
.
Although SQLite is ACID-compliant and hence supports transactions, there are some fundamental differences between its transaction support and Oracle's:
ResultSets
have been closed first. For more information, see "Distinctive Features of SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/different.html
.
SQLite does not support any form of role-based or user-based authentication. By default, anyone can access all of the data in the file. However, ADF Mobile provides encryption routines that you can use to secure the data and prevent access by users without the valid set of credentials.
ADF Mobile contains an encrypted SQLite 3.7.9 database.
A typical SQLite usage requires you to know the following:
Connecting to the SQLite database is somewhat different from opening a connection to an Oracle database. That said, once you have acquired the initial connection, you can use most of the same JDBC APIs and SQL syntax to query and modify the database.
You use the java.sql.Connection
object associated with your application to connect to the SQLite database. When creating the connection, ensure that every SQLite JDBC URL begins with the text jdbc:sqlite:
.
Example 11-1 shows how to open a connection to an unencrypted database.
Example 11-1 Connecting to Unencrypted Database
Example 11-2 shows how to open a connection to an encrypted database.
Example 11-2 Connecting to Encrypted Database
In the preceding example, the first parameter of the getConnection
method is the user name, but since SQLite does not support user-based security, this value is ignored.
Note: SQLite does not display any error messages if you open an encrypted database with an incorrect password. Likewise, you are not alerted if you mistakenly open an unencrypted database with a password. Instead, when you attempt to read or modify the data, an |
Typically, you can use an SQL script to initialize the database when the application starts. Example 11-3 shows the SQL initialization script that demonstrates some of the supported SQL syntax (described in Section 11.1.1.2, "SQL Support and Interpretation") through its use of the DROP TABLE
, CREATE TABLE
, and INSERT
commands and the NUMBER
and VARCHAR2
data types.
Example 11-3 SQL Initialization Script
To use the SQL script, add it to the ApplicationController project of your ADF Mobile application as a resource. Suppose a sample script has been saved as initialize.sql
in the META-INF
directory. Example 11-4 shows the code that you should add to parse the SQL script and execute the statements.
Example 11-4 Initializing Database from SQL Script
You invoke the database initialization code (see Example 11-4) from the start
method of the LifeCycleListenerImpl
, as Example 11-5 shows.
Because SQLite databases are self-contained and binary-compatible across platforms, you can use the same database file on iOS, Android, Windows, Linux, and Mac OS platforms. In complex cases, you can initialize the database on a desktop using third-party tools (such as MesaSQLite, SQLiteManager, and SQLite Database Browser), and then package the resulting file as a resource in your application.
To use the database, add it to the ApplicationController project of your ADF Mobile application as a resource. Suppose a database has been saved as sample.db
in the META-INF
directory. Example 11-6 shows the code that you should add to copy the database from your application to the mobile device's file system to enable access to the database.
Example 11-6 Initializing Database on Desktop
You invoke the database initialization code (see Example 11-6) from the start
method of the LifeCycleListenerImpl
, as Example 11-7 shows.
Commit
statements are ignored when encountered. Each statement is committed as it is read from the SQL script. This auto-commit functionality is provided by the SQLite database by default. To improve your application's performance, you can disable the auto-commit to allow a regular execution of commit
statements by using the Connection
's setAutoCommit(false)
method.
The following methods from the java.sql
package have limited or no support in ADF Mobile:
getByte
method of the ResultSet
is not supported. If used, this method will throw an SQLException
when executed. execute
method of the Statement
always returns true
(as opposed to returning true
only for statements that return a ResultSet
). When records are deleted from an SQLite database, its size does not change. This leads to fragmentation and, ultimately, results in degraded performance. You can avoid this by periodically running the VACUUM
command.
Note: The |
Typically, the VACUUM
command should be run from a properly registered LifeCycleListener
implementation (see Section 5.7, "About Lifecycle Event Listeners.").
ADF Mobile allows you to provide the SQLite database with an initial or subsequent encryption. To do so, you have to establish the database connection (see Section 11.2.1, "How to Connect to the Database"), and then use the following utility method to encrypt the database with a new key:
Caution: If you open a database incorrectly (for example, use an invalid password to open an encrypted database), and then encrypt it again, neither the old correct password, the invalid password, nor the new password can unlock the database resulting in the irretrievable loss of data. |
In addition to encrypting, you can permanently decrypt the database. To do so, open the encrypted database with the correct password, and then use the following method:
Describes how to enable the content derived from remote URLs to access native device controls, how to augment ADF Mobile applications with user preference pages, and how setting constraints can determine how ADF Mobile applications show or hide content. This part also describes how to enable push notifications.
Part V contains the following chapters:
This chapter describes how application features with content from remote URLs can access (or be restricted from) device services.
This chapter includes the following sections:
By configuring the content type for an application feature in the overview editor for the adfmf-feature.xml
file as Remote URL as described in Section 5.10.1, "How to Define the Application Content," you create a browser-based application that is served from the configured URL. Such server-hosted applications differ from applications written in ADF Mobile AMX or a platform-specific language such as Objective-C in two ways: they are intended for occasional use and cannot access the device memory or services directly, as these interactions are contingent upon the capabilities of the device browser.
Browser-based applications targeted for smartphones may be authored using Apache Trinidad components (described at http://myfaces.apache.org/trinidad/
) to enable proper rendering of display components on a variety of feature phones and smartphones. An application that runs on a tablet can be created in the same manner as an ADF desktop web application.
Note: Oracle recommends using ADF Mobile browser for application features that derive their content from remote URLs. ADF Mobile browser applications are comprised of JSF pages populated with Apache Trinidad components. For more information, see Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework. |
By default, access to such device capabilities as contacts or GPS (Global Positioning Services) are restricted to ADF Mobile applications implemented as a bundle of locally stored HTML pages or as ADF Mobile AMX. In the case of the latter, you can enable the application feature to access device capabilities by adding device data controls to an ADF Mobile AMX UI component. For more information, see in Section 8.5, "Using the DeviceFeatures Data Control." Remote URL implementations, however, can only access device-native controls through the Apache Cordova JavaScript APIs. As described in Appendix B, "Application Container APIs," a <script>
tag that references the www/js/base.js
libraries enables this access. These libraries are platform-specific, meaning that you must ensure that the content used for a remote URL application references the Apache Cordova library appropriate to the target platform.
ADF Mobile supports the concept of whitelists, a registry of URLs that open within the application web view and can access various device services, such as GPS, a camera, or a file system. If a web page is not included on a whitelist (that is, it is not whitelisted), then ADF Mobile's Apache Cordova implementation opens a web page in the device browser (such as Safari) instead. Without whitelisting, a remote web page cannot open within a web view.
By default, the domains defined in the connections.xml
file, the repository for all of the connections defined in the ADF Mobile application, are whitelisted automatically. These connections are defined using the Create URL Connection dialog, shown in Figure 12-4. ADF Mobile parses the domain from each of the connection strings and adds these domains to the whitelist.
Figure 12-1 Creating the Connection to Retrieve the Content of the Remote URL Application Feature
JDeveloper then populates the connections.xml
file, located in the Application Resources panel, with the connections information and also creates the connection resources, such as oracle and connection 1 in Figure 12-2.
Note: Only whitelisted domains open in the web view; all other (non-whitelisted) domains open in the device browser. |
By editing the adfmf-application.xml
file, shown in Figure 12-2, you can restrict access to the Apache Cordova-enabled device services on a per-application feature basis. By default, all application features have such access, meaning that any whitelisted domain configured for the ADF Mobile application can also access the device. In addition to the domains that ADF Mobile includes from the connections.xml
file, you can also whitelist domains using the Security page of the adfmf-application.xml
file, as described in Section 12.3.2, "How to Create a Whitelist."
The Source editor illustrated in Figure 12-2 shows the <adfmf-feature-reference>
element populated with the allowDeviceAccess
attribute. JDeveloper populates all application features with remote URL content with this attribute, which by default, is set to true
. This default setting signifies that all URLs can access the Apache Cordova APIs.
Before you begin:
Using the overview editor for the adfmf-feature.xml
file (located in the Application Navigator in the Project panel under the View Controller and META-INF nodes), you must designate the content for an application as Remote URL and then create the connection as described in Section 5.6.1, "How to Designate the Content for a Mobile Application."
Open the overview editor for the adfmf-application.xml
file by double-clicking the adfmf-application.xml
file (located Application Resources panel under the Resources and ADF META-INF nodes, as shown in Figure 12-2).
You can use the Source editor, Structure Window, and the Properties editor to configure this attribute.
To restrict access to device services:
adfmf-application.xml
file and then open the Feature References page. <default> true
) to false
, as shown in Figure 12-3. You configure the whitelist in the Security page of adfmf-application.xml
, shown in Figure 12-4.
Before you begin:
Be aware that some URLs configured in the ADF Mobile application may open to other domains.
To create whitelists:
adfmf-application.xml
file and then select the Security page. *.example.com
is a valid domain entry as is *.example.*
. You cannot enter a fully qualified path. Caution: Entering only the wildcard allows the web view to request all domains and can pose a security risk; adding all domains to the whitelist not only enables all of them to open within the web view, but also enables all of them to access the device (whether or not it is intended for them to do so). |
When you add a domain, JDeveloper updates <adfmf:remoteURLWhiteList>
element as illustrated in Example 12-1.
Some URLs are redirected to a URL that may not be part of the whitelist domain. These URLs may open in the device browser rather than the application web view. For example, if you whitelist www.oracle.com
(<adfmf:domain>www.oracle.com<adfmf:domain>
) and open that site on the device, ADF Mobile redirects to the mobile version of this site (www.oracle.mobi
), because it does not pass the whitelist. Figure 12-5 shows a web page that has not been whitelisted and has opened within the device browser.
To enable www.oracle.com
to open within the application web view, you must specify *.oracle.*
or www.oracle.*
as shown in Example 12-1.
Because ADF Mobile whitelist is at the domain-level, you cannot restrict an individual page within a whitelisted domain from opening with an application feature web view; all pages are allowed.
Use a whitelist for pages that contain links to URLs that point to another domain. Such pages would otherwise open in the device browser instead of the ADF Mobile web view. In such a case, you can create an anchor tag or an <amx:goLink>
component with a url
attribute for the <amx:goLink>
component that points outside of the application, such as the url
attribute in <goLink2>
in Example 12-2.
Example 12-2 <amx:goLink> with a url Parameter
ADF Mobile enables you to add a navigation bar with buttons for back, forward, and refresh actions for application features implemented as remotely served web content that open within the ADF Mobile web view, as shown in Figure 12-6. The forward and back buttons are disabled when either navigation forward or back is not possible.
Note: The back button is disabled on Android-powered devices. |
You enable users to navigate through, or refresh remote content through the Content tab of the overview editor for the adfmf-feature.xml
file.
Before you begin:
Designate an application feature's content be delivered from a remotely hosted application by first selecting Remote URL and then by creating the connection to the host server, as described in Section 5.10, "Defining the Content Types for an Application Feature."
Ensure that the domain is whitelisted.
To enable a navigation bar:
adfmf-feature.xml
file. JDeveloper updates the adfmf:remoteURL
element with an attribute called showNavButtons
, which is set to true
, as shown in Example 12-3.
Example 12-3 The showNavButtons Attribute
After you deploy the application, ADF Mobile applies the forward, back, and refresh buttons to the web pages that are traversed from the home page of the Remote URL application feature, as shown in Figure 12-8.
This chapter describes how to create both ADF Mobile application-level and application feature-level user preference pages.
This chapter includes the following sections:
Preferences enable you to add settings that can be configured by end users. Within both the adfmf-application.xml
and adfmf-feature.xml
files, the user preference pages are defined with the <adfmf:preferences>
element. As shown in Example 13-1, the child element of <adfmf:preferences>
called <adfmf:preferenceGroup>
and its child elements define the user preferences by creating pages that present options in various forms, such as strings, dropdown menus, or in the case of Example 13-1, as a child page that can present the user with additional options for application settings.
You also use the <adfmf:preferences>
element to create the preferences that users manage within each application feature.
Example 13-1 Defining Application-Level Preferences with the <adfmf:preferences> Element
Figure 13-1 shows an example of how opening child user preferences page can offer subsequent options.
Preference pages are defined within the <adfmf:preferenceGroup>
element and have the following child elements:
<adfmf:preferencePage>
—Specifies a new page in the user interface. <adfmf:preferenceList>
—Provides users with a specific set of options. <adfmf:preferenceValue>
—A child element that defines a list element. <adfmf:preferenceBoolean>
—A boolean setting. <adfmf:preferenceText>
—A text preference setting. See Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile Tag Documentation for more information on these elements and their attributes.
For an example of creating preference pages at both the ADF Mobile application and application-feature levels, refer to the PrefDemo sample application. This sample application is located in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
The PrefDemo application is comprised of an application-level settings page as well as three application feature preference pages, which are implemented as ADF Mobile AMX. Figure 13-2 shows the PrefDemo application settings page, which you invoke from the general settings page. In this illustration, the preference settings page is invoked from the iOS Settings application.
The application feature preference pages, illustrated by App, Feature1 (which is selected), and Feature 2 in Figure 13-3, provide examples of preferences pages constructed from the ADF Mobile Boolean Switch, Input Text, and Output Text components that use EL (Expression Language) to access the application feature and the various <adfmf:preferences>
components configured within it. For more information, see Section 13.3, "Using EL Expressions to Retrieve Stored Values for User Preference Pages."
In the PrefDemo application, each ADF Mobile AMX preference page is referenced by a single bounded task flow comprised of a view activity and a control flow case that enables the page refresh.
The Preferences page of the adfmf-application.xml
overview editor, shown in Figure 13-4, enables you to build sets of application-level preference pages by nesting the child preference page elements within <adfmf:preferenceGroup>
. The page presents the <adfmf:preferencesGroup>
and its child elements as similarly named options (that is, Preference Group, Preference Page, Preference List, and so on), which you assemble into a hierarchy (or tree), similar to the Structure window in JDeveloper.
To ensure that the adfmf-application.xml
file is well-formed, use the Preferences page's Add dropdown list, shown in Figure 13-4 to construct the user preferences pages. While you can also drag components from the Preferences palette, shown in Figure 13-5, into either the editor, the Source window, or the Structure window, the page's dropdown list presents only the elements that can have the appropriate parent, child, or sibling relationship to a selected preferences element. For example, Figure 13-4 shows only the components that can be inserted within the Preference Group element, Oracle Mobile App. The editor also enables you to enter the values for the attributes specific to each preference element.
To create preferences pages:
<adfmf:preferenceGroup>
element. The Preference Page component enables you to create a new user interface page. You create a Preference Page using the Insert Before, Insert Inside, Insert After options.
Before you begin:
You must create a Preferences Group element.
To create a new user preference page:
After you define the Preference Page and its child Preference Group components in the overview editor, JDeveloper generates an <adfmf:preferencePage>
with attributes similar to Example 13-2. The <adfmf:preferencePage>
is nested within a parent <adfmf:preferenceGroup>
element.
Example 13-2 Adding an <adfmf:PreferencePage element>
Add a Preference List component to create a list of options.
Before you begin:
You must create Preference Group as the parent to the Preference List or any other list-related component.
To create a user preference list:
You can present the user with a default setting by choosing Default. As illustrated in Example 13-2, the default status is defined within the <adfmf:preferenceList>
element as default="ENTERPIRSE"
.
Tip: In addition to clicking Add, you can add Preference Value components by dragging them either into the Structure window or the Source window. |
After you add Preference List component to a Preference Group and then define a series of Preference Values, JDeveloper updates the <adfmf:preferences>
section with an <adfmf:preferenceList>
element, as shown in Example 13-2.
See, for example, Example 13-1.
Before you begin:
Because an <adfmf:preferenceBoolean>
element must be nested within an <adfmf:preferenceGroup>
element, you must first insert a Preference Group component to the hierarchy.
To create a boolean preference list:
false
, or select true
. When you add a Boolean Preference and designate its default value, JDeveloper updates the <adfmf:preferences>
section of the adfmf-application.xml
file with a <adfmf:preferenceBoolean>
element, as illustrated in Example 13-3.
Use the insert options, shown in Figure 13-15, to create a Text Preference, a dialog that enables users to store information or view default text. Figure 13-15 shows creating a text preference within a Preference Group called Security.
Before you begin:
Create a Preference Group element.
To create a text preference:
Figure 13-17 Defining the Text Preference
When you add a Text Preference and designate its default value, JDeveloper updates the <adfmf:preferences>
section of the adfmf-application.xml
file with a <adfmf:preferenceText>
element, as illustrated in Example 13-4.
Example 13-4 Adding the <adfmf:preferenceText> Element
The Preference Group elements that define a security URL, user name, and password preference setting display similarly to Figure 13-18.
Figure 13-18 illustrates <adfmf:preferenceText>
elements with a seeded value for the Security URL and an input value for the User Name. Because the ADF Mobile preferences are integrated with the iOS Settings application, the secret="true"
attribute for the Password input text results in the application following the iOS convention of obscuring the user input with bullet points. For more information, see the description for the isSecure
text field element in Settings Application Schema Reference, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
) and Section 13.4, "Platform-Dependent Display Differences."
After you deploy the ADF Mobile application, the application-wide preference settings page is propagated to the device's global settings application, such as the Settings application on iOS-powered devices. For more information, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device," Section 17.4.5.1, "What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device," and Appendix C, "Converting Preferences for Deployment."
As described in Section 5.13, "Working with Feature Archive Files," you can distribute an application feature independently of its ADF Mobile application by adding a Feature Application Archive (FAR) .jar
file containing the application feature to the library of another ADF Mobile application. You then reference the application feature in the application's adfmf-application.xml
file. If an application feature requires a specific set of user preferences in addition to the general preferences defined for the consuming application, you can define them using the Preferences tab of the adfmf-feature.xml
overview editor, shown in Figure 13-19. You build application feature preferences in the same manner as the application-level preferences, which are described in Section 13.1, "Creating User Preference Pages for an ADF Mobile Application." After you define the preferences in the adfmf-feature.xml file
, you then create the actual preference page by creating an application feature that references an ADF Mobile AMX page that is embedded with the Boolean Switch, Input, and Output components described in Section 7.3, "Creating and Using UI Components."
When creating an application feature-level preference page, you add EL expressions to the ADF Mobile AMX components, such as the Input Text component in Example 13-5.
Example 13-5 Referencing Preference Values Using EL in ADF Mobile AMX Components
As illustrated in Example 13-5, EL expressions use the preferenceScope
object to enable applications to access an application feature-level preference. These EL expressions are in the following format:
Figure 13-20 illustrates using the Expression Builder to create the EL expression.The preference itself is designated by the IDs configured for various components in adfmf-feature.xml
, such as the ID of the application feature <adfmf:feature id="Feature1">
), the ID of a Preference Group (<adfmf:preferenceGroup id="f1top">
), and the ID of a preference property (<adfmf:preferenceNumber id="f1Number">
).
The EL expression may include zero or more group-id
and property-id
elements.
An EL expression has the following resolution pattern:
The resolution of adf.mf.el.getValue
begins with an attempt to resolve the expression locally using the JS-EL parser and JavaScript Context Cache. If the expression cannot be resolved locally, the expression is passed to the embedded Java layer for evaluation where it is resolved by the Java EL parser. This is done through the GenericInvokeRequest
to the Model's getValue
method.
For a setValue
method, the expression is resolved as follows:
Evaluation of the EL expression involves looking up the preferenceScope
object. The evaluation is from left to right, where each token is resolved independently. After a token is resolved, it is used to resolve the next token (which is on its right).
Preferences cannot be exposed without the preferenceScope
object.
ADF Mobile integrates APIs provided for a native UI (such as UIView
or UIViewController
) to allow certain configurations on iOS platform.
When the native UI is initialized, an instance of the ADFSession
object becomes available. You can use its getPreferences
method to instruct ADF Mobile to provide a listing of the available preferences for the application as defined in the adfmf-application.xml
file. As shown in Example 13-6, this method returns a NSArray*
of preference property objects that can include the id
, value
, and label
for the preference. This API call ensures that either the end user provided the value for a particular preference, or that the default value of the preference is returned.
Example 13-6 Getting Preferences
The ADF Mobile preference pages maintain the native look-and-feel for both the iOS and Android platforms. Consequently, the ADF Mobile preference pages display differently on the two platforms. As shown in Table 13-1, preferences display inline on the iOS platform, meaning that the system does not invoke dialog pages. With a few exceptions, the Android platform presents these components as dialogs.
Table 13-1 Preference Component Comparison by Platform
Component | iOS | iOS Display Examples | Android | Android Display Examples |
---|---|---|---|---|
Boolean Preference List | The Boolean preference is represented as value pair, such as on and off. | Android presents the Boolean preference as a check box. | ||
Text Preference (as default text) | iOS displays the text inline. | Android displays the text inline. | ||
Text Preference (as input text) | On iOS platforms, users enter text inline. | Android launches an input text dialog. | ||
Text Preference (as secret input text) | On iOS platforms, users enter text inline, with each character obscured by a bullet point after it has been entered. For more information, see Section 13.1.1.8, "What Happens When You Define a Text Preference." | Android launches an input text dialog and obscures each character with a bullet point after it has been entered. | ||
Single Item Selection List (from a Preference List) | iOS platforms display the single item selection list in a separate preferences page. | Android displays the single item selection list in a dialog. | ||
Preference Groups (Category Selection) | The iOS platform displays the preference elements within their parent preference group. | The Android platform displays the preference elements within their parent preference group. | ||
Preference Page | iOS launches a child preference page from a preference group. | Android launches a child preference page from a preference group. |
Although iOS and Android platforms have a Settings application, only the iOS platform supports integrating application-level preferences into the Settings application, as shown by the preferences in Figure 13-21.
On Android-powered devices, users access application-specific preferences pages similar to the one shown in Figure 13-22 only when the application is running.
To minimize user error when entering the Configuration Service URL endpoint in the Configuration Service prompt dialog, you can create a preference for the Configuration Service URL that retrieves a default URL, as shown in Figure 13-23. Because the URL populated to the dialog is based on the preference value, ADF Mobile can populate the dialog with a new URL whenever a user updates the preference.
Including a default value for the configuration URL, which can be a company-specific URL, is optional. It replaces the value defined for the adfmf-configuration-service-seed-url
property in the adf-config.xml
file described in Section 10.2, "Using the Configuration Service."
Create a Text Preference that includes a default value for the Configuration Service URL and then update the adf-config.xml
file to reference this Text Preference.
Tip: Because the Configuration Service is not associated with individual application features, create an application-level Text Preference. |
Before you begin:
Refer to Section 10.2, "Using the Configuration Service."
To create an application-wide preference:
Example 13-7 Creating the Text Preference for the Configuration Service URL
To reference the preference value:
adf-config.xml
file (located in ADF META-INF
directory in the Application Navigator), add the adfmf-configuration-service-seed-url-preference
property. id
values for the Preference Group and the Text Preference that are configured in the adfmf-application.xml
file, as illustrated in Example 13-7. Example 13-8 illustrates using the format of application.Configuration_Service.seed_URL
to create this reference. Example 13-8 Configuring the adfmf-configuration-service-seed-url-preference Property
Note: Including the |
The checkForNewConfiguration
method prompts ADF Mobile to check the adf-config.xml
file for the referenced Text Preference defined in the adfmf-configuration-service-seed-url-preference
property. If the preference includes the default
value defined for Configuration Server URL, then ADF Mobile populates the Configuration Service prompt dialog with this string, as shown in Figure 13-24.
If the preference does not include the string (which may be the case for ADF Mobile applications deployed to, but not yet started on, Android-powered devices), ADF Mobile instead populates the field with the hard-coded value defined for the adfmf-configuration-service-seed-url
property. For subsequent checks (that is, when the user credentials are cached in the local store), ADF Mobile populates the dialog with the Text Preference's default
value as the Configuration Service URL. For more information, see Section B.2.3, "checkforNewConfiguration."
Although the runtime fetches the default value for the Text Preference if a URL is not present in the dialog, this behavior varies by platform. The first time a user runs an ADF Mobile application on an Android-powered device, ADF Mobile cannot populate the Configuration Services prompt dialog using the preference value. Instead, it uses the string defined for adfmf-configuration-service-seed-url
property, because the runtime has not yet populated the preference with the value defined in adfmf-application.xml
. Further, users cannot update the application-specific settings with this URL if an application is not running. Only after the application has been started can a user update the preference with the Configuration Service URL, which will be used the next time the ADF Mobile application starts. For more information, see Section 13.4, "Platform-Dependent Display Differences."
Tip: Because of these device- and state-related considerations, define a default URL value for the Text Preference, or include both the |
This chapter describes how to set constraints that can restrict an application feature based on user access privileges or device requirements.
This chapter includes the following sections:
A constraint describes when an application feature or application content should be used. Constraints can restrict access based on users and user roles, the characteristics of the device on which the mobile application is targeted to run, and the hardware available on the device. You can set constraints at two levels: at the application feature level, where you control the visibility of an application feature on a user's device, and at the content level, where you can specify which type of ADF Mobile content can be delivered for an application feature. The overview editor for the adfmf-feature.xml
file enables you to set both of these types of constraints. Constraints are evaluated by the ADF Mobile runtime and must evaluate to true
to enable the end user to view or use specific content, or even access the application feature itself.
The Constraints tab, shown in Figure 14-1, enables you to set the application feature-level constraints. For example, an application feature that uses the device's camera displays within the ADF Mobile application's navigation bar or springboard only if the ADF Mobile runtime determines that the device actually has a camera function. You can also use feature level constraints to secure an application based on user roles and privileges. Figure 14-1 illustrates creating constraints that would allow only a user with administrator privileges to access the application, should the
ADF Mobile runtime evaluate the constraint to true
. If the runtime evaluates the constraint to false
, then it prevents an end user from accessing the application feature, because it does not appear on the navigation bar or within the springboard.
To accommodate such factors as device hardware properties or user privileges, a single application feature can have more than one type of content to deliver different versions of the user interface. By setting constraints on the content of an application feature, you designate the conditions for determining what end users can see or how application pages can be used.
Using the Content tab, shown in Figure 14-2, you can, for example, specify content that delivers one type of user interface for users who have been granted administrative privileges and a separate user interface for those who have basic user privileges. In addition, content-level constraints can accommodate the layout considerations of a device. Figure 14-2 illustrates how the HR sample application performs this using a constraint based on the screen width of a device to deliver AMX Mobile task flows that call pages tailored to the layout of the iPhone and the iPad. When an end user launches the HR sample application, the ADF Mobile runtime evaluates the constraint that is set for the Employees application feature. If the runtime ascertains that the device's screen width is greater than 500 pixels, it selects the Employees_pad_taskflow.xml
file, which calls the ADF Mobile AMX pages designed for the iPad. If this constraint evaluates to false
(that is, the screen width is less than 500 pixels), then the runtime selects the ADF Mobile taskflow that calls iPhone-specific pages, Employees_phone_taskflow.xml
. In addition, the Content tab enables you to select navigation bar and springboard images that display when the runtime selects specific content. If you do not select content-specific images, then ADF Mobile instead uses the application feature-level images that are designated in the General tab.
Note: Images must adhere to the platform-specific guidelines, as described in Section 5.9.1, "How to Define the Basic Information for the Application Feature." |
For more information on the HR sample application, see Appendix F, "ADF Mobile Sample Applications." The HR sample application is included in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
When setting application feature-level constraints, the property
, operator
, and value
attributes of the <adfmf:constraint>
element (a child element of <adfmf:constraints>
) enable you to restrict application usage based on a user, a device, or hardware. An example of defining these attributes, shown in Example 14-1, illustrates defining these attributes to restrict access to an application feature to a Field Rep and to also restrict the application to run only on an iOS-powered device.
Example 14-1 The <adfmf:constraint> Element
You declaratively configure the constraints for a selected application feature using the Constraints tab in the Features page, shown in Figure 14-2.
Figure 14-3 Defining Constraints
Defining the constraints for an application feature:
Entering the values in the Constraints tab updates the descriptor file's <adfmf:constraints>
element with defined <adfmf:constraint>
elements, similar to Example 14-1.
ADF Mobile provides a set of property
attributes that reflect users, devices, and hardware properties. Using these properties in conjunction with the following operators and an appropriate value determines how an application feature can be used.
contains
equal
less
more
not
After a user logs into an ADF Mobile application, the ADF Mobile runtime reconciles the user role-based constraints configured for each application feature against the user roles and privileges retrieved by the Access Control Service (ACS). ADF Mobile then presents only the application feature (or application feature content) to end users whose privileges satisfy the constraints. In addition to setting these user privilege and role constraints, you create access control for the ADF Mobile application by entering the following in the Create ADF Mobile Login Connection dialog, shown in Figure 14-4 (and described in Section 18.4.2, "How to Designate the Login Page"):
See also Section 18.4.7, "What You May Need to Know About the Access Control Service."
You control access to application features using constraints based on user.roles
and user.privileges
. For example, to allow only a user with manager_role role to access an application feature, you must add a constraint of user.roles contains manager_role
to the definition of the application feature.
The user.roles
and user.privileges
use the contains
and not
operators as follows:
contains
—If the collection of roles or privileges contains the named role or privilege, then the runtime evaluates the constraint to true
. Example 14-2 shows an example of using the user.roles
property with the contains
operator. The application feature will appear in the mobile application if the user's roles include the role of employee. not
—If the collection of roles or privileges does not contain the named role or privilege, then the runtime evaluates the constraint to true
. In Example 14-3, the application feature is not included if the user's privileges contain the manager privilege. The hardware object references the hardware available on the device, such as the presence of a camera, the ability to provide compass heading information, or to store files. These properties use the equal
operator.
hardware.networkStatus
—Indicates the state of the network at the startup of the application. This property can be modified with three attribute values: NotReachable
, CarrierDataConnection
, and WiFiConnection
. Example 14-4 illustrates the latter value. As illustrated in this example, setting this value means that this mobile application feature only displays in the mobile application if the device hardware indicates that there is a Wi-Fi connection. In other words, if the device does not have a Wi-Fi connection when the ADF Mobile application loads, then this application feature will not display. Example 14-4 Defining the hardware.networkStatus Property
Note: This constraint is evaluated at startup on iOS-powered devices. If a device does not have a Wi-Fi connection at startup but subsequently attains one (for example, when a user enters a Wi-Fi hotspot), then the application feature remains unaffected and does not become available until the user stops and then restarts the mobile application. |
hardware.hasAccelerometer
—Indicates whether or not the device has an accelerometer. This property is defined by a true
or false
value. Example 14-5 shows a true
value, indicating that this application feature is only available if the hardware has an accelerometer. Example 14-5 Using the hardware.hasAccelerometer Property
Note: Because all iOS-based hardware have accelerometers, this property must always have a value of |
hardware.hasCamera
—Indicates whether or not the device has a camera. This constraint is defined using a value attribute of true
or false
. In Example 14-6, the value is set to true
, indicating that the application feature is only available if the device includes a camera. Example 14-6 Using the hardware.hasCamera Property
Note: Not all iOS-based hardware have cameras. This value is dynamically evaluated at the startup of ADF Mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to |
hardware.hasCompass
—Indicates whether the device has a compass. You define this constraint with the attribute value of true
or false
, as shown in Example 14-7. Example 14-7 Using the hardware.hasCompass Property
Note: Not every iOS-powered device has a compass. This value is dynamically evaluated at the startup of ADF Mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to |
hardware.hasContacts
—Indicates whether the device has an address book or contacts. You define this constraint with the attribute value of true
or false
, as shown in Example 14-8. Example 14-8 Using the hardware.hasContacts Property
Note: Because contacts on iOS-based hardware are accessed through Apache Cordova, the |
hardware.hasFileAccess
—Indicates whether the device provides file access. You define this constraint with the attribute value of true
or false
, as shown in Example 14-9. The application feature is only available if the runtime evaluates this constraint to true
. Example 14-9 Using the hardware.hasFileAccess Property
Note: Because file access on iOS-based hardware is accessed through Apache Cordova, the |
hardware.hasGeoLocation
—Indicates whether or not the device provides geolocation services. You define this constraint with the attribute value of true
or false
, as shown in Example 14-10. The application feature is only available if the device supports geolocation. Example 14-10 Using the hardware.hasGeoLocation Property
Note: Apache Cordova does not provide access to the gelocation service for all iOS-powered devices. Depending on the device, the application feature may not be available when the constraint is evaluated by the runtime. |
hardware.hasLocalStorage
—Indicates whether the device provides local storage of files. You define this constraint with the value
attribute of true
or false
, as shown in Example 14-11. The application feature only displays if the device supports storing files locally. Example 14-11 Using the hasLocalStorage Property
Note: Because Apache Cordova provides access to local file storage on all iOS hardware, the |
hardware.hasMediaPlayer
—Indicates whether or not the device has a media player. You define this constraint with the value
attribute of true
or false
, as shown in Example 14-12. The application feature only displays if the device has a media player. Example 14-12 Using the hardware.hasMediaPlayer Property
Note: For iOS-powered devices, the |
hardware.hasMediaRecorder
—Indicates whether or not the device has a media recorder. You define this constraint with the value
of true
or false
, as shown in Example 14-13. The application feature is only included if the device hardware supports a media recorder. Example 14-13 Using the hardware.hasMediaRecorder Property
Note: Set this value to |
hardware.hasTouchScreen
—Indicates whether or not the hardware provides a touch screen. You define this constraint with the value
attribute of true
or false
, as shown in Example 14-14. The application feature is only included if the device hardware supports a touch screen. Example 14-14 Using the hardware.hasTouchScreen Property
Note: Set the |
hardware.screen.width
—Indicates the width of the screen for the device in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical device pixels (such as such as 320 in Example 14-15), not physical device pixels, which represent the actual pixels that appear on a device. The value depends on the orientation of the device. Example 14-15 Using the hardware.screen.width Property
Note: This value is evaluated at the startup of the mobile application when the runtime evaluates constraints and dismisses application features with constraints that do not evaluate to |
hardware.screen.height
—Indicates the height of screen for the device in its current position. Enter a numerical value that reflects the screen's height in terms of logical pixels, such as 320 or 480, as shown in Example 14-16. The value depends on the orientation of the device. Example 14-16 Using the hardware screen.height Property
Note: When the mobile application starts, the ADF Mobile runtime evaluates the screen height value for this constraint as part of the process of dismissing application features with constraints that do not evaluate to |
hardware.screen.availableWidth
—Indicates the available width of the device's screen in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 14-17. The value depends on the orientation of the device. hardware.screen.availableHeight
—Indicates the available height of the screen for the device in its current position. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 14-18. The value depends on the orientation of the device. This chapter describes how an ADF Mobile application can access data hosted on Oracle Java Cloud Service.
This chapter includes the following section:
ADF Mobile applications can access both SOAP and REST web services hosted on Oracle Cloud. To enable access to the hosted SOAP web services, create a web service data control as described in Section 9.2, "Creating a Web Service Data Control." You can enable access to RESTful web services by creating a URL Service data control as described in the "Exposing URL Services with ADF Data Controls" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Depending on the content type, ADF Mobile applications can access cloud data by dragging and dropping a data control into an ADF Mobile AMX UI component, as described in Section 6.3.2, "How to Add UI Components and Data Controls to an ADF Mobile AMX Page," or programmatically, for applications whose content is delivered from a either a remote web server, or from locally stored HTML files.
You use the ADF Mobile Login Server Connection dialog to create a login server connection to authenticate against Oracle Cloud.
Before you begin:
Obtain the Oracle Cloud URL that is used for the login server connection.
To create a login URL with an Oracle Cloud endpoint:
For more information, refer to the Oracle JDeveloper online help and Section 18.4.2, "How to Designate the Login Page."
The Create Data Service Control Wizard enables you to create the data control that accesses the hosted data. You use the WSDL URL of the SOAP web service deployed to Oracle Java Cloud to create this data control. If you do not know this URL, then you must create the URL to the WSDL document by appending the web service port name and ?wsdl
to the application context root.
Before you begin:
You must have access to a SOAP web service application that has been deployed to Oracle Java Cloud Service. This application must be available through the Applications pane of the Oracle Java Cloud Service Control home page. In addition, its Status and State must be noted as both Up and Active, respectively, as illustrated by the HCMMobileService application shown in Figure 15-2.
To create a web service data control:
?wsdl
to the application context root, such as HCMServicePort?wsdl
in Figure 15-4. Figure 15-5 shows the web service operations returned by the ADF Mobile design time that can be made available to the ADF Mobile application. In this example, the design time has queried a web service that hosts human resources data and has returned operations to retrieve employee data, including expense approvals.
You must configure a policy for a SOAP-based web service that is secured on Oracle Cloud. Using the Edit Data Service Control Policies dialog, described at Section 9.5, "Accessing Secure Web Services," you can select the oracle/wss_http_token_over_ssl_client_policy
. See also the "How to Define Web Service Data Control Security" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: Only the |
This chapter describes how to enable ADF Mobile applications to register for, and handle, push notification messages.
This chapter includes the following sections:
Push notifications are notifications sent from an external source, such as a server, to an application on a mobile device. These may appear as messages in the form of an alert, or as a banner, depending on the state of the application and user settings. Figure 16-1 shows a push notification alert on an iOS-powered device.
When users are notified, they can launch the application, or they can choose to ignore the notification. In this case, the application is not activated. Notifications may also accompany an alert message with a brief, distinctive sound.
Applications must register with a notification service to receive push notifications. If the registration succeeds, then the notification service issues a token to the application. The application shares this token with its provider (located on a remote server), and in doing so, enables the provider to send notifications to the application through the notification service. ADF Mobile registers on behalf of the application using application-provided registration configuration, described in Section 16.2, "Enabling Push Notifications for an ADF Mobile Application." Registration occurs upon every start of the ADF Mobile application to ensure a valid token. After a successful registration, ADF Mobile shares the token obtained from the platform-specific notification service with the provider. On iOS, the notification service is Apple Push Notification Service (APNs). Google Cloud Messaging (GCM) for Android provides the notification service for applications installed on Android-powered devices.
An ADF Mobile application can receive push notifications regardless of its state; the display of these messages, which can appear even when the application is not in the foreground, depends on the state of the ADF Mobile application and the user settings. Table 16-1 describes how the iOS operating system handles push notifications depending on the state of the ADF Mobile application.
Table 16-1 Handling Push Notifications on an iOS-Powered Device
State | Action |
---|---|
The ADF Mobile application is installed, but not running. | The notification message displays with the registered notification style (none, banner, or alert). When the user taps the message (if its a banner-style notification) or touches the action button (if the message appears as an alert), the ADF Mobile application launches, invoking the application notification handlers. |
The ADF Mobile application is running in the background. | The notification message displays with the registered notification style (none, banner, alert). When the user taps the message (if it is a banner-style notification), or touches the action button (if the message appears as an alert), the ADF Mobile application launches, invoking the application notification handlers. |
The ADF Mobile application is running in the foreground. | No notification message displays. The application notification handlers are invoked. |
On the iOS and Android platforms, if the application is not running in the foreground, then any push notification messages associated with it are queued in a specific location, such as the iOS Notification Center or the notification drawer on Android-powered devices.
You can enable push notifications by performing the following tasks:
oracle.adfmf.application.PushNotificationConfig
interface in the ALCL. This interface provides the registration configuration for push notifications. Override and implement the getNotificationStyle
and getSourceAuthorizationID
methods of the PushNotificationConfig
interface. The getNotificationStyle
method enables you to style the notification per the iOS Settings application. The getSourceAuthorizationID
method enables you to enter the Google Project Number of the accounts authorized to send messages to the ADF Mobile application. For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
NativePushNotificationListener
) that handles push notification events. This class must implement the oracle.adfmf.framework.event.EventListener
interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener
interface, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile. Override and implement the onOpen
and onMessage
methods to handle notifications. After a successful registration with the push notification service, ADF Mobile calls onOpen
with the registration token that must be shared with the provider by the application developer. If there was an error registering with the notification service, the registration token would be a null
object.
ADF Mobile calls the onMessage
method with the notification payload whenever the application receives a notification.
EventSource
object in the start
method of the ALCL class that represents the source of a native push notification event: ADF Mobile respects the following keys for a JSON-formatted payload:
alert
: the text message shown in the notification prompt. sound
: a sound that is played when the notification is received. badge
: the number to badge the application icon on iOS. Describes how to enable security for an ADF Mobile application as well as how to deploy and debug an application
Part VI contains the following chapters:
This chapter describes how to deploy ADF Mobile applications for testing and for publishing.
This chapter includes the following sections:
Before you can publish an application for distribution to end users, you must test it on a simulator or on an actual device to assess its behavior and ease of use. By deploying an iOS application bundle (.ipa
and .app
files) or Android application package (.apk
) file to the platform-appropriate device or simulator, ADF Mobile enables you to test applications before publishing them to the App Store (Apple iTunes), or to an application marketplace, such as Google Play.
ADF Mobile executes the deployment a project by copying a platform-specific template application to a temporary location, updating that application with the code, resources, and configuration defined in the ADF Mobile project. ADF Mobile then builds and deploys the application using the tools of the target platform. The tasks that comprise deployment are as follows:
Note: The template file may not be present if you selected Build > Clean All. |
adfmf-application.xml
and adfmf-feature.xml
files. For a detailed description of the deployment flow for Android applications, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device." For iOS applications, see Section 17.4.5.1, "What Happens in JDeveloper When You Deploy an Application to an iOS Simulator or iOS-Powered Device."
The libraries that you declare for the project using the Customize Libraries and Classpaths Dialog, shown in Figure 17-1, are included in the deployment artifacts for the project. This dialog enables the application features to access these libraries at runtime.
For both Android and iOS applications, each ADF Mobile deployment includes a set of a different libraries that are specific to the type of deployment (release or debug) in combination with the deployment target (simulators or actual devices). In addition, each set of these libraries includes a JAR file of JVM 1.4. The application binding layer resides within this virtual machine, which is a collection of Objective-C libraries. For example, ADF Mobile deploys a JVM 1.4 JAR file and a set of libraries for a debug deployment targeted at an iOS simulator, but deploys a different JVM 1.4 JAR file and set of libraries to a debug deployment targeted to an actual iOS-powered device.
Preparing ADF Mobile applications for deployment begins with the creation of platform-specific deployment profiles. A deployment profile defines how an application is packaged into the archive that will be deployed to iOS- or Android-powered devices, iOS simulators, or Android emulators. The deployment profile does the following:
.ipa
file, known as an application bundle. For Android, the format is an Android application package (.apk
) file. Note: The |
As described in Section 4.2.2.3, "About Automatically Generated Deployment Profiles," ADF Mobile creates a set of deployment profiles when you create an ADF Mobile application. You can deploy an application using these profiles, edit them, or construct new ones using the ADF Mobile-specific deployment profile pages. The Create Deployment Profile wizard, shown in Figure 17-2, enables you to create a default deployment profile from these pages. You can create as many deployment profiles as needed. For more information on these standard ADF deployment profile pages, click Help to see the JDeveloper online help.
Note: ADF Mobile application deployment only requires the creation of an application-level deployment profile; you do not have to create a view controller-level deployment profile. |
Before you begin:
To enable JDeveloper to deploy ADF Mobile applications, you must designate the SDKs for the target platforms using the ADF Mobile Preferences page as described in Section 3.3.1, "How to Configure the Development Environment for Platforms and Form Factors." See also the Certification and Support Matrix on Oracle Technology Network (http://www.oracle.com/technetwork/developer-tools/jdev/jdev11gr2-cert-405181.html
).
Tip: For iOS deployments, run iTunes and the iOS Simulator at least once before you configure their directory locations in the ADF Mobile Platforms preferences page. |
To create a deployment profile:
After you complete the wizard, JDeveloper creates a deployment profile and opens the Deployment Profile Properties editor.
Table 17-1 lists the ADF Mobile-specific pages in the Deployment Profile Properties editor, shown in Figure 17-7.
Table 17-1 ADF Mobile-Specific Deployment Profile Pages
Page | Function |
---|---|
iOS Options | Enables you to modify the settings for an application to be deployed on an iOS-powered device or iOS simulator. |
Android Options | Enables you to modify the settings for an application deployed to an Android-powered device or Android emulator. |
Application Images | Enables you to assign custom icons to an application by adding the appropriate graphics file. |
Device Orientations | Enables you to restrict the display of an application to certain device orientations. This page is used only for iOS deployment profiles. |
Note: Deployment depends on the needs of your application. You can deploy an application using the default values seeded in the pages listed in Table 17-1. |
When you deploy an application, JDeveloper creates a deployment directory and related subdirectory. It also creates Feature Archive files (FARs) for the view controller projects (which must have different names) and application controller project. In addition to these two FARs, JDeveloper creates copies of any FARs that were imported into the project. Changes to the compilation profiles require the removal of the deployment directory. You can remove this directory, as well as the deployment directory within the view controller project that contains the FAR, by selecting Build and then Clean All.
Using the Filters panel, shown in Figure 17-3, you can exclude any selected artifact from being deployed. In particular, you can use the Filters panel to exclude any artifact that does not match the target deployment platform. For more information, refer to the online help for Oracle JDeveloper.
The deployment profile creates the template for the application deployment to an Android device or emulator, or for creating an application as an Android application package (.apk
) file.
To create the deployment profile for Android, you must define the signing options for the application, the behavior of the javac
compiler, and if needed, override the default Oracle images used for application icons with custom ones.
Before you begin:
Install and download the Android SDK as described in Section 3.5, "Setting Up Development Tools for Android Platform."
To enable ADF Mobile deployment framework to compile files required for push notifications, install the package for the Google Cloud Messaging Library (Revision 3 and later) in the Android SDK Manager, as shown in Figure 17-4.
If you deploy to an Android emulator, you must create a virtual device for each emulator instance using the Android Virtual Device Manager, as described in the "Managing Virtual Devices" document, available from the Android Developers website (http://developer.android.com/tools/devices/index.html
). In creating an Android Virtual Device (AVD), ensure that the CPU/ABI value reflects an ARM system image, such as ARM (armeabi-v7a) in Figure 17-5. In addition, set the size of the AVD's SD card image file to a large RAM size, such as the value of 1024 MB (1 GB) set for the Device ram size property in Figure 17-5. You can, however, opt for a smaller size.
Note: ADF Mobile only supports the ARM EABI v7a System Image. Although ADF Mobile supports Android-powered devices that run on the Android 2.3.n platform (API Level 9), it does not support deployment to emulators running on this platform because they are based on the ARM926EJ-S rev 5 (v51) processor. Further, JVM 1.4 cannot run properly when deployed to Android emulators for the 2.n platform. |
You must also set the ADF Mobile preferences for the Android platform SDKs (accessed by choosing Tools, then Preferences, then ADF Mobile, then Platforms, and then Android) to point to the locations for the Android SDK itself and its tool components.
The SDK and platform locations for Android 4.2 (API 17) differ from previous versions, which are illustrated by the directory structures in Figure 17-6.
For example, enter:
For example, enter:
Note: The structure of the SDK tools is changed in the release of Revision 22, with the build tools components relocated from the ADF Mobile queries the Android SDK for the location of the |
Note: Push notifications require devices and emulators running Android 2.2 platform (or later). The Google Play store must be installed on these devices. The Google API must be installed in the SDK to enable push notifications on emulators. Users must create a Google account (and be logged in) on devices running platforms earlier than 4.0.4 (API 15). See also "GCM Architecture Overview" chapter in Google Cloud Messaging for Android, available from the Android Developers website (|
Using the Platforms page, you also define the debug and release properties for a key that is used to sign the Android applications. Within the deployment profile, you subsequently designate an ADF Mobile application's release as either debug or release. You only need to define the signing key properties once. For more information, see Section 17.2.3.3, "Defining the Android Signing Options." See also the application publishing information in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html
).
Note: To deploy an application to an Android emulator, you must install API 14 or later (that is, Platform 4.0.n) |
The Android Options page, shown in Figure 17-7, enables you to do the following:
http://developer.android.com/tools/publishing/versioning.html
). .apk
files. Data files stored in each application package, such as data manifests, are continually accessed by multiple processes within the Android operating environment. For more information, see the "zipalign" document, available from the Android Developers website (http://developer.android.com/tools/help/zipalign.html
). To set the application options:
id
attribute of the adfmf-application.xml
file. Each application deployed to an Android device has a unique ID, one that cannot start with a numeric value. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application." If needed, you can override this value in the deployment file. However, for the application to deploy, this name must follow the <manifest>
element's package
attribute of the Android manifest file. This element is described in the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html
). Specifically, the ID uses a reverse package format of an internet domain (com.company.application). To avoid naming collisions, the package name reflects domain ownership, such as com.oracle.application.
Note: The application bundle ID cannot contain spaces. |
.apk
file created by ADF Mobile. Otherwise, accept the default name. By default, ADF Mobile bases the name of the .apk
file on the application id
attribute configured in the adfmf-application.xml
file. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application."
The Options page enables you to set values that are passed in by the javac
compiler tool options, set the zipalign options, and also the Android API revisions.
To set the JDK-Compatibility level for the R.java and .class files:
javac
tool to compile R.java
, the Android-generated file for referencing application resources, using the javac
-source
option. Available values include: For information on R.java
, see the "Accessing Resources" document, available from the Android Developers website (http://developer.android.com/guide/topics/resources/accessing-resources.html
).
.class
files from the Class Files dropdown list. The value is specified when the deployment runs the javac
tool to compile the R.java
file using the javac
-target
option. The default value is 1.5. Available values include: <uses-sdk>
attribute in the document entitled "The AndroidManifest.xml File," available through the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html
). To set the ZIP alignment options:
Select the byte alignment (32-bit or 64-bit). Selecting 32-bit (the default) provides 4-byte boundary alignment.
To set the logging level:
Select Verbose Output for the Android deployment to log the full output provided by each of the command-line tools invoked by the deployment while building the .apk
. If you do not select this option, then the deployment does not log the full output.
An application must be signed before it can be deployed to an Android device or emulator. Android does not require a certificate authority; an application can instead be self-signed.
Defining how the deployment signs an ADF Mobile application is a two-step process: within the ADF Mobile Platforms preference page, you first define debug and release properties for a key that is used to sign Android applications. You only need to configure the debug and release signing properties once. After you define these options, you configure the deployment profile to designate if the application should be deployed in the debug or release mode.
Before you begin:
If no keystore file exists, you can create one using the keytool utility, as illustrated in Example 17-1.
Example 17-1 Generating a Keystore
As described in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html
), the keytool prompts you to provide passwords for the keystore and key, and to provide the Distinguished Name fields for your key before it generates the keystore. In Example 17-1, the keystore contains a single key, valid for 10,000 days. Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html
) for information on how to use the keytool utility.
Tip: Use the |
To configure the key options for the debug mode:
To configure the key options for a release mode:
-alias
argument. Only the first eight characters of the alias are used. Tip: Enter the password and key password requested by the keytool utility before it generates the keystore. |
In addition to designating how the application will be signed, these parameters designate how the R.Java
classes are compiled. For more information, see Section 17.2.3.6, "What Happens in JDeveloper When You Deploy an Application to an Android Emulator or Android-Powered Device."
To Set the Android build mode:
Note: You cannot publish an application signed with the debug keystore and key; this keystore and key are used for testing purposes only and cannot be used to publish an application to end users. |
Tip: Use the release mode, not the debug mode, to test application performance. |
After the .apk
file is signed in either the debug or release modes, you can deploy it to a device or to an emulator.
Enabling ADF Mobile application icons to display properly on Android-powered devices of different sizes and resolutions requires low-, medium-, and high-density versions of the same images. ADF Mobile provides default Oracle images that fulfill these display requirements. However, if the application requires custom icons, you can use the Application Images page, shown in Figure 17-9, to override default images by selecting PNG-formatted images for the application icon and for the splash screen. For the latter, you can add portrait and landscape images. If you do not add a custom image file, then the default Oracle icon is used instead. To create custom images, refer to the "Iconography" document, available from the Android Developers website (http://developer.android.com/design/style/iconography.html
).
Before you begin:
Obtain the images in the PNG, JPEG, or GIF file format that use the dimensions, density, and components that are appropriate to Android theme and that can also support multiple screen types. For more information, see "Supporting Multiple Screens" document, available from the Android Developers website (http://developer.android.com/guide/practices/screens_support.html
).
To add custom images:
During deployment, ADF Mobile enables JDeveloper to copy the images from their source location to a temporary deployment folder. For the default images that ship with the ADF Mobile extension (located at application workspace directory
\Application Resources\Resources\images
), JDeveloper copies them from their seeded location to a deployment subdirectory of the view controller project (application workspace
\ViewController\deploy
). As shown in Table 17-2, each image file is copied to a subdirectory called drawable
, named for the drawable
object, described on the Android Developers website (http://developer.android.com/reference/android/graphics/drawable/Drawable.html
). Each drawable
directory matches the image density (ldpi
, mdpi
, hdpi
, and xhdpi
) and orientation (port
, land
). Within these directories, JDeveloper renames each icon image file as adfmf_icon.png
and each splash screen image as adfmf_loading.png
.
Table 17-2 Deployment File Locations for Seeded Application Images
Source File (...\resource\Android) | Temporary Deployment File (...ViewController\deploy) |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For custom images, JDeveloper copies the set of application icons from their specified location to the corresponding density and orientation subdirectory of the temporary deployment location.
For the runtime deployment to an Android-powered device, the deployment framework performs the following:
Oracle_ADFmf_Framework.zip
. AndroidManifest.xml
file from an AndroidManifest.template.xml
file that is provided in the template. preferences.xml
, strings.xml
, and arrays.xml
files from the content in the adfmf-application.xml
and adfmf-feature.xml
files. For more information, see Section C.2, "Converting Preferences for Android." aapt.exe
on Windows, appt
on Mac) to generate an R.java
file and initial .apk
file. R.java
file by invoking javac
externally from the JDeveloper project compilation process. This file must be compiled with a JDK version compatibility of 1.5 (or later) because the file runs within the Android JVM. .java
code using the JVM 1.4 JDK. These files must be compiled with the JDK and are executed in the JVM 1.4. dex.bat
) from .class
files or archive compatible files containing .class
files. The content in the Android template JAR files is included as well (cordova-2.2.0.jar
, container.jar
, and ksoap.jar
). aapt.exe
) tool to update the application file created in Step 6 with the Dalvik byte code file. adb.exe
on Windows, adb
on Mac) tool to deploy the application to an Android-powered device. For iOS, use the Deployment Profiles Properties Editor to define the iOS application build configuration as well as the locations for the splash screen images and application icons.
Before you begin:
Download Xcode 4.6 (the minimum supported version required to compile applications), which includes the Xcode IDE, performance analysis tools, the iOS simulator, the Mac OS X and iOS SDKs, to the Apple computer that also runs JDeveloper.
Because Xcode is used during deployment, you must install it on the Apple computer before you deploy the ADF Mobile application from JDeveloper.
Tip: While the current version of Xcode is available through the App Store, you can download prior versions through the following site:
Access to this site requires an Apple ID and registration as an Apple developer. |
After you download Xcode, you must enter the location of its xcodebuild tool and, for deployment to iOS simulators, the location of the iOS simulator's SDK, in the ADF Mobile Platforms preference page. For more information, see Chapter 3, "How to Configure the Development Environment for Platforms and Form Factors."
Note: Run both iTunes and the iOS simulator at least once before entering their locations in the ADF Mobile Platforms preference page. |
To deploy an ADF Mobile application to an iOS-powered device (as opposed to deployment to an iOS simulator), you must obtain both a provisioning profile and a certification from the iOS Provisioning Profile as described in Section 17.2.4.2, "Setting the Device Signing Options."
To create a deployment profile:
Note: The application bundle ID cannot contain spaces. |
Because each application bundle ID is unique, you can deploy multiple ADF Mobile applications to the same device. Two applications can even have the same name as long as their application bundle IDs are different. Mobile applications deployed to the same device are in their own respective sandboxes. They are unaware of each other and do not share data (they have only the Device scope in common).
.ipa
file or the .app
file. ADF Mobile creates an .ipa
file when you select either the Deploy to distribution package or Deploy to iTunes for synchronization to device options in the Deployment Action dialog, shown in Figure 17-22. It creates an .app
file when you select the Deploy application to simulator option. Otherwise, accept the default name. For more information, see Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device" and Section 17.4.5, "How to Distribute an iOS Application to the App Store." By default, ADF Mobile bases the name of the .ipa
file (or .app
file) on the application id
attribute configured in the adfmf-application.xml
file. For more information, see Section 5.3, "Setting the Basic Information for an ADF Mobile Application."
Note: You can deploy an application to an iOS-powered device that runs SDK 5.0. |
http://developer.apple.com/library/ios/navigation/
). Note: Older versions of the iOS target version are usually available in the simulator for testing. |
The iOS build options enable you to deploy an application with debug or release bits and libraries. The Options page presents the configuration options for the iOS signing modes, debug and release modes.
Before you begin:
Deployment of an iOS application (that is, an .ipa
file) to an iOS-powered device requires a provisioning profile, which is a required component for installation, and also a signed certificate that identifies the developer and an application on a device. You must obtain these from the iOS Provisioning portal as described in Section 17.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device." In addition, you must enter the location for a provisioning profile and the name of the certificate in the ADF Mobile Platforms preference page, as described in Section 17.2.4.2, "Setting the Device Signing Options."
How to set the build options:
Tip: Use the release mode, not the debug mode, to test application performance. |
The ADF Mobile Platforms preference page for iOS includes fields for the location of the provisioning profile on the development computer and the name of the certificate. You must define these parameters if you deploy an application to an iOS device or as an ADF Mobile Application Archive.
Note: Neither a certificate nor a provisioning profile are required if you deploy an ADF Mobile application to an iOS simulator. |
To set the signing options:
Note: There are provisioning profiles used for both development and release versions of an application. While a provisioning profile used for the release version of an application can be installed on any device, a provisioning profile for a development version can only be installed on the devices whose IDs are embedded into the profile. For more information, see the "Configuring Development and Distribution Assets" chapter in Tools Workflow Guide for iOS, which is available from the iOS Developer Library (|
The Application images page enables you to override the default Oracle image used for application icons with custom images. The options in this page, shown in Figure 17-14, enable you to enter the locations of custom images used for different situations, device orientation, and device resolutions. For more information on iOS application icon images, see the "Custom Icon and Image Creation Guidelines" section in iOS Human Interface Guidelines. These documents are available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
Note: All images must be in the PNG format. |
To add custom images:
ADF Mobile displays the location within the Resources directory for the image files that are appropriate to each selected device type.
.ipa
files. This image is required for all applications and must be 512 x 512 pixels for both iPhone and iPad applications. For more information, see Section 17.2.4.4, "What You May Need to Know About iTunes Artwork." http://developer.apple.com/library/ios/navigation/
). Table 17-3 lists the required dimensions, in pixels, for the device-specific application images. Default.png
. Depending on the device type and orientation, this image can be overridden by the images selected for its portrait or landscape versions. The ADF Mobile deployment framework attaches the Portrait and Landscape modifiers to the file names, as well as @2x to denote the high-resolution images used on iPhone 5 and Retina displays. For more information, see the "App Launch (Default) Images" and "Providing Device-Specific Launch Images" sections in iOS App Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
). Table 17-4 lists the required dimensions, in pixels, for the splash screen images. Note: JDeveloper notes errors to safeguard against selecting an incorrect (or nonexistent) image file, such as the erroneously entered |
By default, ADF Mobile applications deployed to an iOS device through iTunes, or deployed as an archive (.ipa
file) for download, use the default Oracle image, shown in Figure 17-13 unless otherwise specified.
By selecting an iTunes artwork image as the icon for the deployed application, you override the default image. You can use an image to differentiate between versions of the application. Figure 17-15 illustrates the difference between the default image and a user-selected image, where Application4 is displayed with the default image and Application6 is displayed with a user-selected image (the Oracle icon, scaled to 512 x 512 pixels).
During deployment, ADF Mobile ensures that the icon displays in iTunes by adding the iTunes artwork image to the top-level of the .ipa
file in a file called iTunesArtwork.
By default, ADF Mobile supports all orientations for both iPhone and iPad. If, for example, an application must display only in portrait and in upside-down orientations on iPads, you can limit the application to rotate only to these orientations using the Device Orientation page, shown in Figure 17-16
To limit the display of an application to a specific device orientation:
Table 17-5 iPhone Device Orientations
Icon | Description |
---|---|
| iPad, portrait—The home button is at the bottom of the screen. |
| iPad, upside-down—The home button is at the top of the screen. |
| iPad, landscape left—The home button is at the left side of the screen. |
| iPad, landscape right—The home button is at the right side of the screen. |
| iPhone, portrait—The home button is at the bottom of the screen. |
| iPhone, upside-down—The home button is at the top of the screen. |
| iPhone, landscape left—The home button is at the left side of the screen. |
| iPhone, landscape right—The home button is at the right side of the screen. |
After you define the deployment profile, you can deploy an ADF Mobile application to the Android platform using the Deployment Action dialog, shown in Figure 17-17. Using this dialog, you can deploy the completed application to an Android emulator or to an Android-powered device for testing. After you have tested and debugged the application, this dialog enables you to bundle the ADF Mobile application as an Android application package (.apk
) file so that it can be published to end users through an application marketplace, such as Google Play.
Tip: As an alternative to the Deployment Action dialog, you can deploy an ADF Mobile application to the Android platform manually using the OJDeploy command line tool as described in Section 17.8, "Deploying ADF Mobile Applications from the Command Line." |
You can deploy the ADF Mobile application directly to an Android emulator.
Before you begin:
Deployment to an Android emulator requires the following:
Note: You must install the Android 4.0.n platform (API 14 or later). |
Note: The ADF Mobile Platforms preferences page must be configured with the password that is used to generate the keystore and key for debug-mode deployment. See Section 17.2.3.3, "Defining the Android Signing Options." |
You can start the emulator using the Android Virtual Device Manager, as illustrated in Figure 17-18, or from the command line by first navigating to the tools
directory (located in Android\android-sdk
) and then starting the emulator by first entering emulator -avd
followed by the emulator name (such as -avd AndroidEmulator1
).
Note: You can run only one Android emulator during a deployment. |
To deploy an application to an Android emulator:
Note: The Summary page shown in Figure 17-19 shows that the application bundle ID is in the reverse package format required for a successful deployment to an emulator. Deploying an application that does not follow the reverse-package format causes the emulator to shut down, which prevents the deployment from completing. |
.apk
that is deployed to an Android target. You can deploy an ADF Mobile application directly to an Android-powered device that runs on a platform of 2.n (API Level 9) or later.
Before you begin:
Connect the device to the development computer that hosts JDeveloper, as described in Section 3.5.2, "How to Set Up an Android-Powered Device."
In the Deployment Options page, shown in Figure 17-7, select Debug as the build mode. Ensure that the debug signing credentials are configured in the ADF Mobile Platforms Preferences page, shown in Figure 17-8.
To deploy an application to an Android device:
After you have tested and debugged the application, as described in Chapter 19, "Testing and Debugging ADF Mobile Applications," you can publish it to an application marketplace (such as Google Play) by following the instructions provided on the Android Developers website (http://developer.android.com/tools/publishing/publishing_overview.html
).
Before you begin:
In the Android Options page of the deployment profile, select Release as the build mode.
Note: You must configure the signing options in the ADF Mobile Platforms preferences page (accessed by choosing Tools > Preferences > ADF Mobile) as described in Section 17.2.3.3, "Defining the Android Signing Options." |
To deploy an application as an .apk file:
Deploying an application results in the following being deployed in an .apk
file.
adfmsrc
.adf
folder adfmf-application.xml
and adfmf-feature.xml
files logging.properties
file Table 17-6 Contents of the .apk File
Content | Location Within the .apk File |
---|---|
The content in the | The root folder of the Android application file (|
The content in the | The deployment packages the content in the This JAR file contains the following:
This JAR file is not processed by the Dalvik virtual machine. Because the |
| Located in a file called Configuration (|
| Located in the root of the application file. |
JVM 1.4 files | The JVM files are packaged into two separate folders:
|
After you select a deployment action, JDeveloper creates a shortcut on the Deploy menu that enables you to easily redeploy the application using that same deployment action.
The deployment restarts the Android Debug Bridge server five times until it detects a device (if deploying to a device) or emulator (if deploying to an Android emulator). If it detects neither, then it ends the deployment process, as shown in Figure 17-21.
If you are using the Android Debug Bridge command line tool prior to deployment, then you must enter the same command again after the deployment has completed. For example, if you entered adb logcat
to view logging information for an emulator or device prior to deployment, you would have to enter adb logcat
again after the application has been deployed to resume the retrieval of the logging output. For more information about the Android Debug Bridge command line tool, which is located within (and executed from) the platform-tools
directory of the Android SDK installation, refer to the Android Developers website (http://developer.android.com/tools/help/adb.html
).
The Deployment Action dialog, shown in Figure 17-22, enables you to deploy an iOS application directly to an iOS simulator or to a device through iTunes. You can only deploy an iOS application from an Apple computer. Deployment to the iOS simulator does not require membership to either the iOS Developer Program or the iOS Developer Enterprise Program; registration as an Apple developer, which provides access to versions of Xcode that are not available through the App Store, will suffice. For more information on iOS developer programs, which are required for deployment to iOS-powered devices (and are described at Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device," and Section 17.4.5, "How to Distribute an iOS Application to the App Store"), see https://developer.apple.com/programs/
.
Tip: As an alternative to the Deployment Action dialog, you can deploy an ADF Mobile application to the iOS platform manually using the OJDeploy command line tool as described in Section 17.8, "Deploying ADF Mobile Applications from the Command Line." |
The Deployment Actions dialog enables you to deploy an iOS application directly to an iOS simulator.
Before you begin:
To enable deployment to an iOS simulator, you must perform the following tasks:
Note: You must run Xcode at least once before you deploy the application to the iOS simulator. Otherwise, the deployment will not succeed. |
Note: You must enter the location of the provisioning profile and the name of the certificate in the ADF Mobile Platforms page (accessed by choosing Tools > Preferences > Platforms). For more information, refer to Section 17.2.4.2, "Setting the Device Signing Options." |
To deploy an application to an iOS simulator:
Note: Deployment to an iOS simulator does not require that the values for Certificate and Provisioning profile be defined. In this deployment scenario, the Summary page displays <Not Specified> for these values. |
The Deploy to iTunes for Synchronization to device option enables you to deploy an ADF Mobile application to an iOS-powered device for debugging and testing. Deployment to an iOS-powered device or to a distribution site requires membership to either the iOS Developer Program or the iOS Developer Enterprise Program. For more information, see https://developer.apple.com/programs/
.
Before you begin:
You cannot deploy an application directly from JDeveloper to a iOS device; an application must instead be deployed from the Applications folder in Apple iTunes. To accomplish this, you must perform the following tasks:
Automatically Add to iTunes
folder (the location used for application deployment) in the ADF Mobile Platforms preference page, shown in Figure 17-24. Tip: Although your user home directory (
For instructions, refer to Apple Support (You must also update the location in the ADF Mobile Platforms preference page. |
/Developer/usr/bin
in Figure 17-24. .ipa
files to the App Store or to an internal download site. Note: The deployment will fail unless you set the iOS provisioning profile and certificate to deploy to a device or to an archive. ADF Mobile logs applications that fail to deploy under such circumstances. For more information, see Section 17.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device." |
http://developer.apple.com/library/ios/navigation/
). To deploy an application to an iOS-powered device:
Note: The Certificate and Provisioning Profile values cannot be noted as <Not Specified>; you must specify these values in the Options page to enable deployment to iTunes. |
The application appears in the iTunes Apps Folder, similar to the one illustrated in Figure 17-15 after a successful deployment.
You cannot deploy an iOS application (that is, an .ipa
file) to an iOS-powered device or publish it to either the App Store or to an internal hosted download site without first creating a provisioning profile using the iOS Provisioning Portal, which is accessible only to members of the iOS Developer Program. You enter the location of the provisioning profile and the name of the certificate in the Options page as described in Section 17.2.4.2, "Setting the Device Signing Options."
As noted in the "Distributing Apps" chapter in Tools Workflow Guide for iOS (which is available through the iOS Developer Library at http://developer.apple.com/library/ios/navigation/
), a provisioning profile associates development certificates, devices, and an application ID. The iOS Provisioning Portal enables you to create these entities as well as the provisioning profile.
Tip: After you download the provisioning profile, double-click this file to add it to your |
Figure 17-25 The iOS Provisioning Portal
A certificate is an electronic document that combines information about a developer's identity with a public key and private key. After you download a certificate, you essentially install your identity into the development computer, as the iOS Development Certificate identifies you as an iOS developer and enables the signing of the application for deployment. In the iOS operating environment, all certificates are managed by the Keychain.
Using the Certificates page in the iOS Provisioning Portal, you log a CSR (Certificate Signing Request). The iOS Provisioning Portal issues the iOS Development Certificate after you complete the CSR.
After you install a certificate on your development computer, review the Current Available Devices tab (located in the iOS Provisioning Portal's Devices page) to identify the Apple devices used by you (or your company) for testing or debugging. The application cannot deploy unless the device is included in this list, which identifies each device by its serial number-like Unique Device Identifier (UDID).
An application ID is a unique identifier for an application on a device. An application ID is comprised of the administrator-created reverse domain name called a Bundle Identifier in the format described in Section 5.3.1, "How to Set the ID and Display Behavior for a Mobile Application" prefixed by a ten-character alpha-numeric string called a bundle seed, which is generated by Apple. Figure 17-26 illustrates an application ID that is unique, one that does not share files or the Keychain with any other applications.
Using a wildcard character (*) for the application name, such as 8E549T7128.com.oracle.*, enables a suite of applications to share an application ID. For example, if the administrator names com.oracle.ADF.* on the iOS Provisioning Portal, it enables you to specify different applications (com.oracle.ADF.application1 and com.oracle.ADF.application2).
Note: For applications that receive push notifications, the application ID must be a full, unique ID, not a wildcard character; applications identified using wildcards cannot receive push notifications. For more information, see the "Provisioning and Development" section of Local and Push Notification Programming Guide, available from the iOS Developer Library (|
When applications share the same prefix, such as 8E549T7128, they can share files or Keychains.
Note: The Bundle ID must match the application ID set in the Options page of the deployment profile. |
After you test and debug an application on an iOS device, you can distribute the application to a wider audience through the App Store or an internal download site. To publish an application to the App Store, you must submit the .ipa
file to iTunes Connect, which enables you to add .ipa
files to iTunes, as well as update applications and create test users.
Before you begin:
Before you distribute the application, you must perform the following tasks:
Automatically Add to iTunes
directory. Tip: Run iTunes at least once before entering this location. See also Section 17.4.2, "How to Deploy an Application to an iOS-Powered Device." |
Note: Only the Team Agent can create a distribution certificate. |
.ipa
file to iTunes. For information, see "Prepare App Submission" in the iOS Development Center's App Store Resource Center. Specifically, review the App Store Review Guidelines to ensure acceptance by the App Review Team. http://developer.apple.com/library/ios/navigation/
). To distribute an iOS application to the App Store:
Note: The Certificate and Provisioning Profile values cannot be noted as <Not Specified>; you must specify these values in the Options page to enable the |
.ipa
file to iTunes Connect for consideration using the Manage Your Applications module and the Application Loader described in the "Adding New Apps" and "Using Application Loader" sections in iTunes Connect Developer Guide. JDeveloper performs the following tasks after you complete the deployment wizard:
Oracle_ADFmc_Container_Template
file for iOS to a temporary location. That is, modules\adf-mobile\dist\jdev\extensions\oracle.adf.mobile\Oracle_ADFmc_Container_Template.zip
is unpacked to a profile sub-directory in the deploy
directory. Tip: Selecting Build > Clean enables you to modify the Xcode project settings, which provide additional options to those available in JDeveloper. |
JDeveloper also unzips the necessary ADF Mobile libraries from modules\adf-mobile\dist\jdev\extensions\oracle.adf.mobile\Oracle_ADFmc_Framework_Libraries.zip
to the Framework
directory in the previously unzipped template.
Note: Any libraries dependent the type of deployment (that is, debug, release, or deployment to a simulator, device, or as an archive) are added to the template at a later stage. |
icon.png
, icon-2x.png
, icon-72.png
, Default.png
, Default-Landscape.png
, and Default-Portrait.png
for the application icon names and splash screen names. For any image that has not been customized, JDeveloper copies the default image to the template. public_html
folder and its subdirectories within the ADF Mobile project are copied to the www
folder in the template. adfmf-application.xml
file. adfmf-feature.xml
files into one file and places it in the template. .plist
files. See Property List Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
) and also Section C.3, "Converting Preferences for iOS." .plist
files from the metadata files. These files create the preferences that are available from the iOS Settings application. root.plist
file with the application name, the bundle identifier, the version, and the flag that determines the use of pre-rendered icons. The application name, bundle identifier, and version are retrieved from the adfmf-application.xml
file and the iOS Options page, shown in Figure 17-11, "Setting the iOS Options". xcrun
command to package the application into the .ipa
file. This command creates an .ipa
file that has a folder entitled Payload
, which contains the application. It also adds the provisioning profile and signs the application with the developer's name. An example of the xcrun
command is as follows: .ipa
file to the iTunes Media/Automatically Add to iTunes
directory. To enable re-use by ADF Mobile view controller projects, application features— typically, those implemented as ADF Mobile AMX or Local HTML— are bundled into an archive known as a Feature Archive (FAR). A FAR is essentially a self-contained collection of application feature elements that can be consumed by ADF Mobile applications, such as icon images, resource bundles, HTML, JavaScript, or other implementation-specific files. (A FAR can also contain Java classes, though these classes must be compiled.) Example 17-2 illustrates the contents of a FAR, which includes a single adfmf-feature.xml
file and a connections.xml
file. For more information on connections.xml
, see the "Lookup Defined in the connections.xml File" section and "Reusing Application Components" chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Example 17-2 Contents of a Feature Archive File
Working with Feature Archive files involves the following tasks:
Note: ADF Mobile generates FARs during the deployment process. You only need to deploy a view controller project if you use the FAR in another application. |
Use the Create Deployment Profile dialog, shown in Figure 17-10.
Figure 17-27 Create ADF Mobile Feature Dialog
Before you begin:
Create the appropriate connections for the application. See the "Naming Considerations for Connections" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
How to create a deployment profile for a Feature Archive:
Note: You do not need to create a separate, application-level deployment profile. |
Note: Name the profile appropriately. Otherwise, you may encounter problems if you upload more than one application feature with the same archive name. For more information, see Section 5.13.3, "What You May Need to Know About Enabling the Reuse of Feature Archive Resources." |
The Deployment Actions dialog enables you to deploy the FAR as a JAR file. This dialog, shown in Figure 17-29, includes only one deployment option, Deploy to feature archive JAR file.
How to deploy the Feature Archive deployment profile:
After you complete the deployment action dialog, ADF Mobile creates a library JAR in the path shown in the Summary page. To make this JAR available for consumption by other applications, you must first make it available through the Resource Palette, shown in Figure 17-31 (and described in Section 5.13.1, "How to Use FAR Content in an ADF Mobile Application") by creating a connection to the location of the Feature Archive JAR. Figure 17-31 shows Feature Archives that can be made available to an ADF Mobile application through a file system connection. For more information, see "Working with the Resource Palette" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
You can create a new ADF Mobile application from an existing ADF Mobile application by first packaging the original ADF Mobile application as a Mobile Application Archive (.maa
) file and then by deriving a new ADF Mobile application from this file. An .maa
file can be used by third parties, as described in Section 17.7, "Creating Unsigned Deployment Packages."
An .maa
file preserves the structure of the ADF Mobile application. Table 17-7 describes the contents of this file.
Table 17-7 Contents of a Mobile Application Archive File
Directory | Description |
---|---|
| Contains the
|
| Contains a JAR file for each project in the workspace. For example, a |
| Contains the application-level libraries (including FARs) that are external to the original ADF Mobile application. |
| Includes the |
| Includes the following directories:
|
In addition to the artifacts listed in Table 17-7, the .maa
file includes any folder containing FARs or JAR files that are internal to the original ADF Mobile application, as well as its control (.jws)
file. See also Section 17.7.2, "What Happens When You Import an ADF Mobile Application Archive File."
JDeveloper creates a default ADF Mobile Application Archive deployment profile after you create an ADF Mobile application. Using the Mobile Application Archive wizard, you can create MAA file.
Tip: You can also create an |
To create a Mobile Application Archive file:
META-INF
folder (application_workspace\src\META-INF
). Figure 17-35 Editing Contributors to the Mobile Application Archive File
.maa
file or set the content inclusion or exclusion rules. To package an ADF Mobile Application as a Mobile Application Archive file:
The ADF Mobile Application Archive (.maa
) file format enables you to provide third-parties with an unsigned ADF Mobile application. By deriving an ADF Mobile application from an imported .maa
file, you enable various customizations, which include:
Note: Importing an |
You create an unsigned application by importing an .maa
file into a new ADF Mobile application.
To create an unsigned application:
Note: Alternatively, you can choose File, then Import, and then Mobile Application from Archive File (ADF). |
.maa
file, as shown in Figure 17-40, and then click Open. .maa
file in the Application File field, as shown in Figure 17-41. Figure 17-42 Summary of ADF Mobile Application Archive Contents
ADF Mobile performs the following after you import an .maa
file:
.jws
) file from the .maa
file to the application file and renames it per the user-specified value. adf
directory and its contents to the application folder. This directory is renamed .adf
. META-INF
directory and its contents and places them in a src
directory in the application folder. ExternalLibs
directory and its contents to the application folder. Note: While any of the external resources contained in this directory are available in the ADF Mobile application that has been packaged as an |
resources
directory to the application folder. Projects
directory, ADF Mobile performs the following: .jar
extension). .jpr
file. META-INF
, public_html
, src
, and adfmsrc
. ExternalLibs
directory. Note: While any of the external resources contained in this directory are available in the ADF Mobile project that has been packaged with the imported |
classlib
directory, which contains any Java classes packaged in a JAR file. Note: If the |
You can deploy iOS or Android applications from JDeveloper without starting the JDeveloper IDE using the OJDeploy command line tool. Command line deployment can serve as a tool for testing, as well as a means of deploying applications using a script.
After you have created iOS or Android deployment files using Deployment Profile Properties editor, you can use OJDeploy to deploy applications to iOS simulators and iOS-powered devices (through iTunes), or as iOS bundles (.ipa
and .app
files), or Feature Archive JAR files. Likewise, OJDeploy enables you to deploy applications to both Android emulators and Android-powered devices, or deploy them as an Android application package (.apk
) file or as Feature Archive JAR files. For information on OJDeploy, see "Deploying from the Command Line" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
Note: To use OJDeploy on a Mac, add the following line to the
This file is located at: |
The following commands enable you to deploy ADF Mobile deployment profiles:
deployToDevice
—Deploys an application to iOS- or Android-powered devices. For iOS applications, this command is used in debugging scenarios where the application is deployed to a device using iTunes. For more information, see Section 17.4.5, "How to Distribute an iOS Application to the App Store." deployToSimulator
—Deploys an application to an iOS simulator (as an .app
file) or Android emulator. You can only deploy an ADF Mobile application to an iOS simulator on an Apple computer. deployToPackage
—Deploys an iOS application as an .ipa
file or an Android application as an .apk
file. You can only package an application as an .ipa
file on an Apple computer. deployToFeatureArchive
—Deploys a Feature Archive to a JAR file. deployToApplicationArchive
—Packages an ADF Mobile application as an ADF Mobile Application Archive (.maa
) file. You use these commands in conjunction with the ojdeploy
command line tool, OJDeploy's arguments, and its options as follows:
Note: OJDeploy commands and arguments are case-sensitive. |
Table 17-8 lists the OJDeploy arguments that you use to modify the ADF Mobile deployment commands.
Tip: Using the |
Table 17-8 OJDeploy Arguments for ADF Mobile Deployments
Argument | Description |
---|---|
| The name of the Android or iOS deployment profile. For example: ojdeploy deployToSimulator -profile iosDeployProfile ... |
| The full path to the ADF Mobile application workspace container (... -workspace /usr/jsmith/mywork/Application1/Application1.jws To package an ADF Mobile application as an ADF Mobile Application Archive: ojdeploy deployToApplicationArchive -profile applicationArchiveProfile -workspace /usr/jdoe/Application1/application1.jws |
| For the ojdeploy deployToFeatureArchive -profile farProfileName -project ViewController ... |
| The full path to a build file for batch deploy. |
| Print XML Schema for the build file. |
In addition to the arguments listed in Table 17-8, you can also use OJDeploy options described in the "Command Usage" section of Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
Note: The following options are not supported:
|
Table 17-9 provides examples of how to use the OJDeploy options with the ADF Mobile deployment commands.
Table 17-9 OJDeploy Options for ADF Mobile Deployments
Option | Description |
---|---|
| Deletes all files from the project output directory before compiling. For example: ojdeploy deployToSimulator -profile iosDeployProfile -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws -clean |
| Redirects the standard output and error logging streams to a file for each profile and project. For example: ojdeploy deployToSimulator -profile iosDeployProfile -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws -clean -stdout /usr/jsmith/stdout/stdout.log -stderr /usr/jsmith/stderr/stderr.log |
Table 17-10 lists the macros used with the deployToApplicationArchive
command:
Table 17-10 Macros Used with ADF Mobile Application Archive Packaging
Macros | Description |
---|---|
| The name of the application workspace container file (without the |
| The directory of the application workspace container (|
| The name of the profile being deployed. |
| The default deployment directory for the profile. |
| Override the current OJDeploy directory using this parameter. You can also override the current OJDeploy directory using the basedir attribute in the build script. |
This chapter provides an overview of the security framework within ADF Mobile and also describes how to configure ADF Mobile applications to participate in security.
This chapter includes the following sections:
ADF Mobile presents users with a login page when a secured application feature has been activated, such as when it is about to be displayed within the web view or when the operating system returns the application feature to the foreground. In these instances, ADF Mobile determines whether access to the application feature requires user authentication and then challenges the user with a login page. Only when the user successfully enters valid credentials does ADF Mobile render the intended web view, UI component, or application page. By default, ADF Mobile only presents a login page when it is required, either when an application feature requires security or when it includes constraints based on user roles or user privileges. If either of these conditions exist, then ADF Mobile presents users with the login page at the startup of the ADF Mobile application and displays application features on the navigation bar accordingly. For more information, see Section 18.4.1, "How to Enable Application Features to Require Authentication," and Section 14.2.4, "About User Constraints and Access Control."
ADF Mobile uses JavaScript, an Apache Cordova plugin, and native Cordova command handlers that collectively handle the interaction with the login page, the navigation between application features, and interactions with the Oracle Access Management Mobile and Social (OAMMS) IDM Mobile SDK, whose classes and protocols verifies user credentials. The native Cordova command handler methods are executed through the Cordova plugins. The methods' results are sent back to corresponding JavaScript callback functions that navigate to either the requested application feature or to the web view that initiated the authentication process.
Note: The entire login process is executed within ADF Mobile. Embedded Java is not required. |
An ADF Mobile application uses either the default page or a customized login page that is written in HTML.
Login is required when a credential
attribute for the application feature definition (in the adfmf-feature.xml
file) is designated as either remote or local and the user has not been authenticated. From the end-user perspective, the login process is as follows:
Note: As described in Section 18.4.12.2, "The Custom Login Page," ADF Mobile provides not only a non-platform specific login page, but also supports the use of a custom login page. |
Note: ADF Mobile does not allow multiple users for the same application. If a user attempts to login to an application after a previous user was logged out because of a timeout, ADF Mobile prompts the end user to enter the initial user's name and password or to restart the application. A user can restart an application by logging off, because logging off terminates an application automatically. You must enable end users to terminate the application by logging off from the login screen. For information on calling methods of the |
Note: Authentication times out when a predefined time period has passed since the last activation of an application feature. ADF Mobile only renews the timer for the idle timeout when one of the application features that uses the connection to the authentication server has been activated. |
ADF Mobile authenticates against an authentication server, such as Oracle Access Management (OAM) Identity Server.
Note: ADF Mobile can authenticate against any basic authentication server. |
When ADF Mobile handles the authentication against a remote server, the flow of security is as follows:
Note: Logging into OAMMS populates the roles and privilege collections to the |
When at least one secured application feature includes the user.roles
or user.privileges
constraints, an end user must complete a login page to authenticate against an application login server when the application starts. Otherwise, the default application feature displays. If a default application feature participates in security, then ADF Mobile uses a login page to prompt the end user to authenticate against the login connection associated with the application feature. Instead of authenticating, an end user can also navigate to another application feature. For more information, see Section 14.2.4, "About User Constraints and Access Control."
Security is configured using both the overview editors for the adfmf-feature.xml
and adfmf-application.xml
files. The adfmf-application.xml
file's overview editor enables you to designate the type of login page (default or custom) that ADF Mobile presents to users when they select application features that require authentication or to include user role- or user privilege-based constraints. For application features whose content is served from a remote URL, the overview editor enables you to whitelist the domains so that remote URL content can display within the ADF Mobile web view. For more information, see Chapter 12, "Implementing Application Features as Remote URLs."
Using the overview editor for the adfmf-feature.xml
file enables you to designate whether an application feature requires authentication against a remote login server, or against a credential store on the device that houses the user's login credentials for a remote login server. In the former case, a mobile application may require user authentication against Oracle Access Manager used by Oracle ADF Fusion web applications. After the user is authenticated against the login server within the same application session (that is, within the lifecycle of the application execution), the authentication context is stored locally and subsequent authentication is executed against this local authentication context. A subsequent authentication does not attempt to contact the login server if the local authentication context is sufficient to authenticate the user. Although a connection to the remote login server is required for the initial authentication, continual access to the server is not required for local authentication. In addition, authentication against a local credential store can be faster than authentication against a remote login server.
Designating security for an application feature results in JDeveloper populating a credential
attribute to the application feature's <adfmf:feature>
element. When you embed such an application feature in a mobile application, you then configure login and logout server connection information and designate whether users are presented with the default login page provided by ADF Mobile or with a customized page. These requirements are noted by the attributes for the <adfmf:login>
element.
Login is required when the credential attribute for the application feature definition (in the adfmf-feature.xml
file) is either designated as remote or local (as described in Section 18.4.1, "How to Enable Application Features to Require Authentication") and when the user has not been authenticated within a timeout period set in the Create ADF Mobile Login Connection dialog, shown in Figure 18-7. See also Section 18.1, "Introduction to Security for an ADF Mobile Application."
Note: You must define at least one connection to the application login server for an application feature that participates in security using a remote login server, or using a locally stored set of credentials. The absence of a defined connection to an application login server results in an invalid configuration. As a result, the application will not function properly. |
Configuring security for an ADF Mobile application begins at the application feature level, where you designate which application features require users to authenticate against a remote login server or to a local credential store. You can define each application feature to participate in security. You perform the remainder of the security configuration using the Security page of the adfmf-application.xml
overview editor.
The Credentials tab of the adfmf-feature.xml
overview editor, shown in Figure 18-2, enables you to designate which application features participate in security and the type of authentication they require.
To designate user access for an application feature:
In addition to the overview editor shown in Figure 18-2, you can configure the security options in the Property Inspector, shown in Figure 18-3.
In addition to the local and remote options available in the overview editor, the Property Inspector also provides the none and <default> (none) options for application features that do not participate in security. Selecting none clears the Enable Feature Security option in the overview editor and updates <adfmf:feature>
with credentials="none"
. Selecting <default> (none) also clears Enable Feature Security and removes the credentials
attribute from <admf:feature>
, which has no credentials
attribute by default.
After you designate security for the application features, you use the Security page of the adfmf-application.xml
overview editor, shown in Figure 18-4, to configure the login page as well as create and assign a connection to the login server for each of the application features that participate in security. All of the application features listed in this page have been designated in the adfmf-feature.xml
file as requiring security. Typically, a group of application features are secured with the same login server connection, enabling users to open any of these applications without ADF Mobile prompting them for subsequent logins. In some cases, however, the credentials required for the application features can vary, with one set of application features secured by one login server and another set secured by a second login server. To accommodate such situations, you can define any number of connections to a login server for an ADF Mobile application. In terms of the adfmf-application.xml
file, the authentication server connections associated with the feature references are designated using the loginConnRefId
attribute as follows:
ADF Mobile applications can be authenticated against any standard login server that supports basic authentication over HTTP or HTTPS. ADF Mobile also supports authentication against Oracle Identity Management. You can also opt for a custom login page for a specific application feature. For more information, see Section 18.4.12, "What You May Need to Know About Login Pages."
Before you begin:
If the ADF Mobile application uses a custom login page, add the file to the public_html
directory of the application controller project (JDeveloper\mywork\
Application
\ApplicationController\public_html
) to make it available from the Web Content node in the Application Navigator, as shown in Figure 18-5. See also Section 18.4.12.3, "Creating a Custom Login HTML Page" and Section 5.10.2, "What You May Need to Know About Selecting External Resources."
Add constraints for user privileges and roles, as described in Section 14.2.4, "About User Constraints and Access Control."
Provision an Access Control Service (ACS) server. For more information, Section 18.4.7, "What You May Need to Know About the Access Control Service."
To designate the login page:
adfmf-application.xml
overview editor. Tip: Rather than retrieve the location of the login page using the Browse function, you can drag the login page from the Application Navigator into the field. |
To set the connection to the remote server:
You must first create the authentication-related connections as follows:
Note: You must define the application login server connection and assign it to the default application feature (if the default application feature is secured). Also, the credentials used for the application login server are also used to retrieve user and roles and services through the Access Control Service (ACS). See also Section 18.4.7, "What You May Need to Know About the Access Control Service." |
Note: ADF Mobile authenticates against the local credential store after an idle timeout, but does not perform this authentication after a session timeout. |
Note: You must edit the |
<adfmf:feature>
element includes credentials="remote"
as described in Section 18.4.1, "How to Enable Application Features to Require Authentication"), select to enable a REST web service to retrieve authorized user data stored on a login server by using the login server-generated user session cookie. For more information, see Section 18.4.9, "What You May Need to Know About Injecting Cookies into REST Web Service Calls." Note: To enable cookies to be injected in the REST web service call:
|
Note: Figure 18-7 shows a cookie for JSESSIONID, which is used for HTTP basic authentication against Oracle WebLogic Server. Because other authentication mechanisms require different cookies, you can obtain the cookie name through network tracing or through the HTTP Analyzer, described in the "Monitoring HTTP Using the HTTP Analyzer" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper. |
Tip: To authenticate against a resource other than OAM, configure both Login URL and Logout URL as the URL of the authentication resource, and enter JSESSIONID as the cookie. |
true
if it is clicked by a user who is granted a role of manager. Completing the fields in this tab enables the retrieval of the specific user roles that are checked by an application feature. The access control granted by the application login server is based on the evaluation of the user.roles
and user.privileges
constraints configured for an application feature, as described in Section 14.2.4, "About User Constraints and Access Control." For example, to allow only a user with manager_role role to access an application feature, you must define the <adfmf:constraints>
element in the adfmf-feature.xml
file with the following:
At the start of application, the RESTful web service known as the Access Control Service (ACS) is invoked for the application login server connection and the roles and privileges assigned to the user are then fetched. ADF Mobile then challenges the user to login against the application login server connection.
ADF Mobile evaluates the constraints configured for each application against the retrieved user roles and privileges and makes only the application features available to the user that satisfy all of the associated constraints.
Complete the authorization requirements as follows:
Note: ADF Mobile injects all cookies issued by the authentication server (that is, the login server) into the HTTP request header when it invokes the ACS. Cookie injection occurs when you select Include login server cookie in REST calls and enter identical addresses for Access Control URL and the Login URL parameters. See also Section 18.4.9, "What You May Need to Know About Injecting Cookies into REST Web Service Calls." |
Note: By default, all secured application features share the same connection, which, as shown in Figure 18-4, is denoted as <application login server>. The Property Inspector for a Feature Reference notes this default option in its Login Server Connection dropdown menu as |
You can enable users to login without having to provision Access Control Service (ACS) server by adding name=show-application-login-at-startup value=true
to the adf-config.xml
file (located in ADF META-INF
directory in the Application Navigator) as illustrated in Example 18-1. This flag triggers the login page when the ADF Mobile application starts.
Example 18-1 Configuring the Login Page in adf-config.xml
For more information, see the "adf-config.xml" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
ADF Mobile aggregates all of the connection information in the connections.xml
file (located in the Application Navigator's Application Resources panel under the Descriptors and ADF META-INF nodes). This file, shown in Example 18-2, can be bundled with the application or can be hosted for the Configuration Service. In the latter case, ADF Mobile checks for the updated configuration information each time an application starts.
Example 18-2 ADF Mobile Connections Defined in the connections.xml File
adfCredentialStoreKey="Connection_1"
For more information, see the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can set the maximum number of failed login attempts allowed for a user by adding the max_retries
attribute to the connections.xml
file, as shown in Example 18-3. If you do not configure this attribute, then ADF Mobile allows ten retries. The application closes automatically after a user exceeds the set number of login attempts.
By default, ADF Mobile grants a user three unsuccessful login attempts before it clears the user's locally stored credentials and contacts the remote login server for subsequent login attempts. By adding the maxFailuresBeforeCredentialCleared
element to the connections.xml
file, as shown in Example 18-3, you can change the number of login attempts that ADF Mobile allows a user before it purges the locally stored credentials.
Note: ADF Mobile clears locally stored user credentials even when the application feature is configured to use local authentication in the |
Example 18-3 Configuring the Maximum Retries in connections.xml
Selecting the Enable Feature Security option in the adfmf-feature.xml
overview editor and then selecting the subsequent type of authentication updates the <adfmf:feature>
element with a defined credentials
attribute. For example:
Note: Application features that do not require security (that is, those for which these security options have not been selected) are available to all users of the ADF Mobile application. These applications either have no |
After an application feature has been designated to participate in security, JDeveloper updates the Features With Security Enabled table with a corresponding feature reference, shown in Figure 18-4. If each of the referenced application features authenticate against the same login server connection defined in the connections.xml
file, JDeveloper updates the adfmf-application.xml
file with a single <adfmf:login>
element defined with a defaultConnRefId
attribute (such as <adfmf:login defaultConnRefId="Connection_1">
). For application features configured to use different login server connections defined in the connections.xml
file JDeveloper updates each referenced application feature with a loginConnReference
attribute (<adfmf:featureReference id="feature2" loginConnRefId="Connection2"/>
). For more information, see Section 18.4.1, "How to Enable Application Features to Require Authentication." See also Oracle Fusion Middleware Tag Reference for Oracle ADF Mobile.
The Access Control Service (ACS) is a RESTful web service with JSON that enables users to download their user roles and privileges through a single HTTP POST
message. This is a request message, one which returns the roles or privileges (or both) for a given user. It can also return specific roles and privileges by providing lists of required roles and privileges. The request message is comprised of the following:
If-Match
, Accept-Language
, User-Agent
, Authorization
, Content-Type
, Content Length
. userId
—The user ID. filterMask
—A combination of "role"
and "privilege"
elements are used to determine if either the filters for user roles, or for privileges, should be used. roleFilter
—A list of roles used to filter the user information. privilegeFilter
—A list of privileges used to filter the user information. Note: If all of the roles should be returned, then do not include the If all of the privileges should be returned, then do not include the |
Example 18-4 illustrates an HTTP POST
message and identifies a JSON object as the payload, one that requests all of the filters and roles assigned to a user, John Smith.
Example 18-4 The ACS Request for User Roles and Privileges
The response is comprised of the following:
Last-Modified
, Content-Type
, and Content-Length
. userId
—the ID of the user. roles
—A list of user roles, which can be filtered by defining the roleFilter
array in the request. Otherwise, the response returns an entire list of roles assigned to the user. privileges
—A list of the user's privileges, which can be filtered by defining the privilegeFilter
array in the request. Otherwise, the response returns an entire list of privileges assigned to the user. Example 18-5 illustrates the returned JSON object that contains the user name and the roles and privileges assigned to the user, John Smith.
Example 18-5 The Returned JSON Object
Note: There are no login screens for web services; user access is instead enabled by ADF Mobile, which automatically adds credentials to the header of the web service. For more information, see Section 9.5.3, "What You May Need to Know About Credential Injection." |
Note: You must implement and host the ACS service; ADF Mobile does not provide this service. |
Each time an ADF Mobile application requests a REST web service, ADF Mobile's security framework enables the transport layer of the REST web service to check if cookie injection is enabled for the login connection associated with the URL endpoint of the REST web service. (That is, the connections.xml
file must include <injectCookiesToRESTHttpHeader value="true"/>
, shown in Example 18-2.) If the connection allows cookie injection, and if the domains for the login server and the REST web service endpoint are identical, then the security framework retrieves the cookies stored when a user has logged in to an application feature. It then returns a string in the form of "<cookie name1>=<cookie value1>;<cookie name2>=<cookie value2>;...<cookie nameN>=<cookie valueN>"
. The security framework creates a cookie header and injects this string into it only if the domain configured for the login server is identical URL endpoint of the REST web service. Further, the string of stored cookies, which are expected by the REST web service, must match those returned from the login server.
Note: ADF Mobile constructs the cookie string by calling the IDM Mobile SDK APIs, which return cookies by name from a platform-specific cookie store. The IDM Mobile SDK APIs manage the cookies returned by authentication servers, the names of which are defined in the |
After a user has been successfully authenticated by an ADF Mobile application, the login server creates the security context for the user and generates a cookie that tracks the user session. If you selected the Include login server cookie in REST call option in the Create ADF Mobile Login Connection dialog, shown in Figure 18-2, you instruct ADF Mobile to retrieve this user session cookie sent by the login server and then inject it into the HTTP header of the REST web service call that originated from the ADF Mobile application. Propagating the cookie to the web service call enables the retrieval of the user's security context, which is stored on the login server, and enables the ADF Mobile application to use the REST web service to access the application data that is authorized for the user. After the user session cookie expires, ADF Mobile challenges the user for credentials and then re-authenticates the user. A user that has been re-authenticated can continue to access the authorized application data through the REST web service call.
By default, ADF Mobile enables application features to access secure resources from servers that do not honor cookies by injecting a basic authentication header in the HTTP requests made from the web views. Although ADF Mobile injects the basic authentication header when the connections.xml
file includes a definition for an authentication realm (the <realm>
element) followed by <injectBasicAuthHeader value="true">
, as illustrated in Example 18-6, ADF Mobile injects the header regardless of whether the connections.xml
file includes these definitions or not. To prevent ADF Mobile from injecting the basic authentication header, set the value
attribute to false
for the <injectBasicAuthHeader>
element.
Note: You must enter the |
Example 18-6 Injecting the Basic Authentication Header
There are no login screens for web services; user access is instead enabled by ADF Mobile injecting credentials into the header of the web service call. Web services gain access to application data using the locally stored credentials persisted by ADF Mobile after the user's first successful login to the authentication server. The name of the local credential store is reflected by the adfCredentialStoreKey
attribute of the login server connection (such as adfCredentialStoreKey="Connection_1"
in Example 18-2). To enable a web service to use this credential store, the name defined for the adfCredentialStoreKey
attribute of a SOAP or REST web service connection must match the name defined for the login server's adfCredentialStoreKey
attribute.
Note: Because there is no overview editor for the |
For more information, see Section 9.5.3, "What You May Need to Know About Credential Injection."
The entry point for the authentication process to an application feature is the activate
lifecycle event, described at Section 5.7.2, "Timing for Mobile Application Events." Every time an application feature is activated (that is, the activate
event handler for the application feature is called), the application feature login process is executed. This process navigates to the login page (which is either the default or a custom login page) where it determines if user authentication is needed. Before the process navigates to the login page, however, the originally intended application feature must be registered with ADF Mobile. When authentication succeeds, the login page retrieves the originally intended destination from ADF Mobile and navigates to it.
The default login page provided by ADF Mobile (illustrated in Figure 18-1, "The Login Page") is comprised of a login button and input text fields for the user name and password. This is a cross-platform page, one written in HTML.
When you add a custom login page for a selected application feature using the overview editor for the adfmf-application.xml
file, JDeveloper adds the <adfmf:login>
element and populates its child <adfmf:LocalHTML>
element, as shown in Example 18-7. As with all <adfmf:LocalHTML>
elements, its url
attribute references a location within the public_html
directory. The user authentication mechanism and navigation control are identical to the default login page.
Example 18-7 The Login Element
ADF Mobile provides JavaScript APIs for accessing relevant security features. Because you implement a custom login page as an HTML page, you can enable ADF Mobile to process user commands by adding a call to the adf.mf.api.invokeSecurity
method, which is described in Table 18-1.
Table 18-1 The adf.mf.api.invokeSecurityMethod
Security Method | Return Value | Parameters Passed | Function |
---|---|---|---|
| None |
| Authenticates the user and provides the appropriate program flow execution (according to the authentication result). |
To enable logging out, call the logout
method of the AdfmfJavaUtilities
class as follows. For example:
You can invalidate the credentials (either remote or stored locally) that are specific to an application using the clearPasswordCredential
method of the adfmfJavaUtilities
class as illustrated in Example 18-8.
Example 18-8 Clearing User Credentials
The adfCredentialStorykey
parameter is returned as a String
object from the value defined for the adfCredentialStoreKey
parameter in the connections.xml
file. The method's username
parameter is returned as a String
object and represents the user whose credentials will be removed from the credential store.
By clearing this set of credentials, users can maintain their sessions in other secured application features or open a non-secured application feature without exiting the ADF Mobile application.
For more information on the AdfmfJavaUtilties
class and the usage of the key
parameter, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
You can create the custom login page using the default login page (adf.login.iphone.html
or adf.login.android.html
), an artifact generated by the ADF Mobile deployment in the www
directory.
Before you begin:
To access the login page within the www
directory, deploy an ADF Mobile application and then traverse to the deploy
directory. For iOS deployments, the adf.login.iphone.html
page is located at:
For Android deployments, the adf.login.android.html
page is located within the Android application package (.apk
) file at
To create a custom login page:
adf.login.iphone.html
or adf.login.android.html
) to a location within the application controller project's public_html
directory, such as JDeveloper\mywork\
application name
\ApplicationController\public_html
. adfmf-application.xml
file, select Custom and then click Browse to retrieve the location of the login page. For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior." As described in Section 4.2.2.1, "About the Application Controller Project-Level Resources," JDeveloper creates the cacerts
certificate file within the Application Resources Security
folder (located at JDeveloper\mywork\application name\resources\Security\cacerts
). This file identifies a set of certificates from well-known and trusted sources to JVM 1.4 and enables deployment. For an application that requires custom certificates (such as in cases where RSA cryptography is not used), you must add private certificates before deploying the application.
Before you begin:
Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html
) for information on the cacerts
file and how to use the keytool utility.
To add private certificates:
new_cert
. cacerts
file (cp cacerts cacerts.org
). cacerts
file. Example 18-9 illustrates adding certificates to a cacerts
file called new_cert
. Example 18-9 Adding a Certificate Using the keytool Utility
Example 18-9 illustrates how to add a single certificate. Repeat this procedure for each certificate. Table 18-2 lists the keytool options
Table 18-2 Options For Adding Certificates
Option | Description |
---|---|
| Imports a certificate. |
| Identifies the file location of the imported certificate. |
| Identifies the file containing the new certificate. |
| Provides a password for the |
- | Instructs the keytool not to ask the user (through |
cacerts
file to ensure that all of the fields are correct. Use the following command: Note: The certificate's common name (CN) must match the hostname exactly. |
Security
directory (JDeveloper\mywork\
application name
\resources\Security
) so that it can be read by JVM 1.4. Note: During deployment, if a certificate file exists within the |
This chapter provides information on testing and debugging ADF Mobile applications developed for both iOS and Android platforms.
This chapter includes the following sections:
Before you start any testing and debugging of your ADF Mobile application, you have to deploy it to one of the following:
You cannot run the ADF Mobile application until it is deployed. For more information, see Chapter 17, "Deploying ADF Mobile Applications."
To test and debug an ADF Mobile application, you generally take the following steps:
For more information, see the following:
There are two approaches to testing an ADF Mobile application:
Typically, a combination of both approaches yields the best results.
You should use a combination of the following methods to test the accessibility of your ADF Mobile application developed for iOS-powered devices:
For detailed information, see the "Testing the Accessibility of Your iPhone Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.
For more information, see the "Using VoiceOver to Test Your Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.
JDeveloper is equipped with debugging mechanisms that allow you to execute a Java program in debug mode and use standard breakpoints to monitor and control execution of an Oracle ADF application. For more information, see the section on debugging applications in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.
Since an ADF Mobile application cannot be run inside JDeveloper, the debugging approach is different: you can use the JDeveloper debugger to connect to a Java Virtual Machine (JVM) 1.4 instance on a mobile device or simulator and control the Java portions of your deployed ADF Mobile application.
The following are the steps you need to take to use JDeveloper to debug the Java code in your ADF Mobile application:
- Set the protocol to Attach to JPDA.
- Set the host to one of the following: 1) For simulator or emulator debugging, set to localhost; 2) For the device debugging, ensure that your development computer can access that device over the network (you may use the ping
command to test network access), and then enter the device's IP address.
- Set the port to the appropriate port number.
- Set the timeout to 2.
cvm.properties
file: The port number must match the one you set in JDeveloper.
For more information, see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript."
Note: To avoid timeout (20 seconds), start the debugger immediately after launching the application on the mobile device or simulator. |
If you use the mobile device for debugging, you have to connect through WiFi.
For additional information, see the following:
To debug an ADF Mobile application on the iOS platform using JDeveloper, follow the generic debugging procedure described in Section 19.3, "Debugging ADF Mobile Applications."
For information on how to configure an iOS-powered device or simulator and how to deploy an ADF Mobile application for debugging, see the following:
To debug an ADF Mobile application on the Android platform using JDeveloper, follow the generic debugging procedure described in Section 19.3, "Debugging ADF Mobile Applications."
For information on how to configure an Android-powered device or emulator and how to deploy an ADF Mobile application for debugging, see Section 17.3.1, "How to Deploy an Android Application to an Android Emulator."
When you debug Java code, either on an Android-powered device connected through USB or on an Android-powered device emulator, you need to forward the TCP port by executing the following command on a terminal:
adb -d forward tcp:
<host port>
tcp:
<target port>
adb -e forward tcp:
<host port>
tcp:
<target port>
For example, executing adb -d forward tcp:4510 tcp:4510
forwards the device TCP port 4510 to the host TCP port 4510. Upon execution, the debugging settings in the cvm.properties
file (see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript") should be defined as follows:
java.debug.enabled=true
java.debug.port=4510
Note: If the connection is made through Wi-Fi, ensure that this connection is correct. It is recommended to place both the debugger and target on the same network without the use of the virtual private network (VPN). |
If your ADF Mobile application includes the ADF Mobile AMX content, after you configure the device or emulator, you can set breakpoints, view the contents of variables, and inspect the method call stack just as you would when debugging a web-based ADF Faces application. For more information, see the "Testing and Debugging ADF Components" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: You can only debug your Java code and JavaScript (see Section 19.3.4, "How to Enable Debugging of Java Code and JavaScript"). Debugging of EL expressions or other declarative elements is not supported. |
A cvm.properties
file allows you to specify startup parameters for the JVM and web views of ADF Mobile to enable debugging of the Java code and JavaScript. The cvm.properties
file is automatically created and placed in the Descriptors/META-INF
directory under the Application Resources (see Section 19.4, "Using and Configuring Logging"), which corresponds to the <application_name>
/src/META-INF
location in your application file system.
You can use the following debugging properties in the cvm.properties
file:
java.debug.enabled
: Enables or disables Java debugging for ADF Mobile. Valid values are true
and false
. Caution: When |
java.debug.port
: Specifies the port to be used during debugging. The valid value is an integer. javascript.debug.enabled
: Enables or disables JavaScript debugging when the application is running in the device simulator. Valid values are true
and false
. javascript.debug.feature
: Specifies the application feature that is to trigger the activation of JavaScript debugging in ADF Mobile. The format of the value is featureId:port
. The port must be specified (it is initially set to a placeholder value). The contents of the cvm.properties
file may be similar to the following:
After the cvm.properties
file has been configured to debug JavaScript, you can navigate to the following URL to see a listing of all the loaded pages that can be debugged in ADF Mobile:
http://localhost:9999
Caution: Problems may arise if you debug JavaScript on a computer shared by multiple instances of an iOS-powered device simulator: if multiple instances of an iOS-powered device simulator are running, you might not be able to connect to your specific instance, which will prevent the debugging page from displaying. |
For information on how to use JDeveloper to debug the Java code, see Section 19.3, "Debugging ADF Mobile Applications."
If you are working with the iOS 6 platform, you can use the Safari 6 browser to debug JavaScript. To do so, open the Safari preferences, select Advanced, and then enable the Develop menu in the browser by selecting Show Develop menu in menu bar, as shown in Figure 19-2.
When the Develop menu is enabled, select either iPhone Simulator or iPad Simulator, as Figure 19-3 and Figure 19-4 show, and then select a UIWebView that you are planning to debug. Whether the Develop menu displays an iPhone Simulator or iPad Simulator option depends on which device simulator is launched.
You use the application's deployment profile to specify either the release or debug execution mode for your ADF Mobile application. The debug mode allows for inclusion of special debugging libraries and symbols at compile time.
Figure 19-5 shows how to set the debug mode option on Android.
Figure 19-6 shows how to set the debug mode option on iOS.
When you deploy your application in debug mode, just before the end of the deployment process the following log message is printed out in JDeveloper:
This ADF Mobile app was deployed in Debug mode and should not be used for performance evaluation purposes. Set the deployment profile Build Mode option to Release for performance testing.
Figure 19-7 Deployment Log Message
For more information, see the following:
For your ADF Mobile application, you can enable logging on all supported platforms through JavaScript (see Section 19.4.2, "How to Use JavaScript Logging") and embedded code (see Section 19.4.3, "How to Use Embedded Logging") using a single configuration with the log output directed to a single file. This log output includes the output produced by System.out.println
and System.err.println
statements.
The default ADF Mobile's logging process is as follows:
Application/Utilities
directory on your development computer. However, if your development computer is running on Mac OS 10.8.n, you can only access the Java logging output through a file of whose name and location you are notified as soon as the output redirection occurs and the file is generated. One of the possible locations for this file is /Users/
<userid>
/Library/Application Support/iPhone Simulator/6.0/Applications/
<AppID>
/Documents/logs/application.log
When you are running your application on an iOS-powered device, the console output is redirected to an application.log
file that is placed in the Documents/logs
directory of your application.
On Android, the output is forwarded to a text file with the same name as the application. The output file location is /sdcard
. If this location is not present or is configured as read-only, the log output is rerouted to the application's writable data directory.
logging.properties
file is automatically created and placed in the Descriptors/META-INF
directory under the Application Resources (see Section 19.4, "Using and Configuring Logging"), which corresponds to the <application_name>
/src/META-INF
location in your application file system. In this file, it is defined that all loggers use the com.sun.util.logging.ConsoleHandler
and SimpleFormatter
, and the log level is set to SEVERE
. You can edit this file to specify different logging behavior (see Section 19.4.1, "How to Configure Logging Using the Properties File"). Note: In your ADF Mobile application, you cannot use loggers from the |
ADF Mobile loggers are declared in the oracle.adfmf.util.Utility
class as follows:
The logger that you are to use in your ADF Mobile application is the ApplicationLogger
.
You can also use methods of the oracle.adfmf.util.logging.Trace
class.
For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Example 19-1 shows the logging.properties
file that you use to configure logging.
Example 19-1 logging.properties File
The oracle.adfmf.util.logging.ConsoleHandler
plays the role of the receiver of the custom formatter.
The oracle.adfmf.util.logging.PatternFormatter
allows the following advanced formatting tokens that enable log messages to be printed:
%LEVEL%
—the logging level. %LOGGER%
—the name of the logger to which the output is being written. %CLASS%
—the class that is being logged. %METHOD%
—the method that is being logged. %TIME%
—the time the logging message was sent. %MESSAGE%
—the actual message. The following logging levels are available:
SEVERE
: this is a message level indicating a serious failure. WARNING
: this is a message level indicating a potential problem. INFO
: this is a message level for informational messages. FINE
: this is a message level providing tracing information. FINER
: this level indicates a fairly detailed tracing message. FINEST
: this level indicates a highly detailed tracing message. Caution: When selecting the amount of verbosity for a logging level, keep in mind that by increasing the verbosity of the output at the |
The logger defined in the logging.properties
file matches the logger obtained from the oracle.adfmf.util.Utility
class (see Section 19.4, "Using and Configuring Logging"). The logging levels also match. If you decide to use the logging level that is more fine-grained than INFO
, you have to change the ConsoleHandler
's logging level to the same level, as Example 19-2 shows.
JavaScript writes the output to the console.log
or.error/.warn/.info
. This output is redirected into the file through the System.out
utility.
You customize the log output by supplying a message. The following JavaScript code produces "Message from JavaScript"
output:
To make use of the properties defined in the logging file, you need to use the adf.mf.log
package and the Application
logger that it provides.
The following logging levels are available:
adf.mf.log.level.SEVERE
adf.mf.log.level.WARNING
adf.mf.log.level.INFO
adf.mf.log.level.CONFIG
adf.mf.log.level.FINE
adf.mf.log.level.FINER
adf.mf.log.level.FINEST
To trigger logging, use the adf.mf.log.Application
logger's logp
method and specify the following through the method's parameters:
Example 19-3 shows how to use the logp
method in an ADF Mobile application.
Example 19-3 Using Logging Method
Upon execution of the logp
method, the following output is produced:
Embedded logging uses the com.sun.util.logging.Logger
, as illustrated in Example 19-4. Note that the EmbeddedClass
represents a Java class defined in the project.
Example 19-4 Using Embedded Logging
The preceding code produces the following output:
Even though it is not recommended to manipulate your ADF Mobile projects with Xcode because you can lose some or all of your changes during the next deployment with JDeveloper, you may choose to do so in exceptional circumstances.
Before you begin:
Deploy the application to the iOS simulator from JDeveloper.
To open the generated project directly in Xcode:
workspace_directory
\deploy\
deployment profile name
\temporary_xcode_project\
. Oracle_ADFmc_Container_Template.xcodeproj
. If your development computer is running on Mac OS 10.8.n and you are debugging your ADF Mobile application using Xcode, you cannot see the Java output in the IDE (on either JDeveloper console or Xcode console). Instead, the output is redirected to a file (see Section 19.4, "Using and Configuring Logging"). By adding the following argument to your application's schema, you can disable this behavior and enable access to the Java, JavaScript, and Objective-C log output in Xcode in real time when debugging on either an iOS-powered device or its simulator:
-consoleRedirect=FALSE
This appendix describes problems with various aspects of ADF Mobile applications, as well as how to diagnose and resolve them.
This appendix includes the following sections:
Issue:
On ADF Mobile applications deployed to iOS simulators, text entered into one <amx:inputText>
component field becomes attached to the beginning of the text entered in subsequent field when navigating from one field to another using a mouse. For example, on a page with First Name, Middle Name, and Last Name input text fields, if you enter John in the First Name field, then click the Middle Name field, and enter P, the text displays as JohnP. Likewise, when you click the Last Name field, and enter Smith, the text in that field displays as JohnPSmith, as shown in Figure A-1.
Note: This behavior only occurs on iOS simulators and in web pages, not on actual devices. |
Solution:
Use the keyboard on the simulator to traverse the input text fields rather than the mouse.
Issue:
In some iOS development environments, ADF Mobile application deployment fails because of code signing errors.
Solution:
To ensure that the ADF Mobile application is signed, add code signing data to the Mach-O (Mach object) file by configuring the environment with CODESIGN_ALLOCATE
. For example, enter the following from the Terminal:
For more information, see codesign_allocate(1) OS X Manual Page and OS X ABI Mach-O File Format Reference, both available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
Issue:
Deployment of an Android application fails because ADF Mobile cannot locate the aapt
file. ADF Mobile writes an error similar to the following in the Deployment-Log window:
Solution:
Verify that the location defined in the Android Build Tools Location field of the ADF Mobile Platforms page references the directory that contains the aapt
file (aapt.exe
on Windows systems). For Revision 22 of the Android SDK, this file, along with all of the other build tools components, is located within the build-tools
directory. For earlier revisions, the build tools components are located in the platform-tools
directory. For more information, see Section 17.2.3, "How to Create an Android Deployment Profile." See also Exploring the SDK, available from the Android Developers website (http://developer.android.com/sdk/exploring.html
).
This chapter describes the ADF Mobile JavaScript API extensions, the ADF Mobile Container Utilities API, and how to use the AdfmfJavaUtilities
API for HTML application features, including custom HTML springboard applications.
This chapter includes the following sections:
Using JavaScript to call the JavaScript API extensions enables you to add the navigation functions to a custom springboard page authored in HTML. As stated in Section 5.5.4, "What You May Need to Know About Custom Springboard Application Features with HTML Content," you can enable callbacks and leverage Apache Cordova by including methods in the JavaScript <script>
tag. Example B-1 illustrates using this tag to call Cordova.
Example B-1 Embedding the <script> Tag in an HTML Springboard Page
The relative path to the location of the www/js
directory always reflects the location of the HTML springboard page (or any custom HTML page), which can be located at the root of the view controller's public_html
directory, or within a subdirectory of it. In Example B-1, the paths defined by the src
attribute (../../../www/js/base.js
) and the adf.wwwPath
variable are relative to the location of the HTML springboard file when it is located at the root of the public_html
directory, as follows:
In other words, the adf.wwwPath
variable must have the same number of ../
entries as base.js
.
To enable the springboard files and custom HTML files located within the subdirectories of public_html
to access the hosted JavaScript files, you must adjust the relative path definition accordingly by adding ../
entries for each subdirectory location. The number of ../
entries varies. It depends on the location of the HTML page within the ADF Mobile application relative to the location of the deployed www
directory; if the HTML file is moved to a deeper level of folders, then you must add the appropriate number of ../
entries to the <script>
tags.
Tip: To access (and determine the location of) the |
Note: Because the path does not exist during design time, JDeveloper notes the JavaScript Includes in the source editor as an error by highlighting it with a red, wavy underline. This path is resolved at runtime. |
The ADF Mobile extension to the Cordova API enables the mobile device's API to access the configuration metadata in the adfmf-feature.xml
and adfmf-application.xml
files, which in turn results in communication between the mobile device and ADF Mobile's infrastructure. These extensions also direct the display behavior of the application features.
Note: Because ADF Mobile requires Cordova 2.2.0, you must migrate any installed PhoneGap plugins to the Cordova 2.2.0 versions of those plugins. For more information, see the upgrading guides, available in the Apache Cordova Documentation (|
For information on the default ADF Mobile springboard page, springboard.amx
, and about the ApplicationFeatures data control that you can use to build a customized springboard, see Section 5.5.5, "What You May Need to Know About Custom Springboard Application Features with ADF Mobile AMX Content."
Example B-2 illustrates a script defining the showpagecomplete
event on the handlePageShown
callback function. By listening to this event using standard DOM (Document Object Model) event listening, custom HTML pages (such as login pages) can invoke their own code after ADF Mobile has loaded and displayed the page for the first time.
Example B-2 Using the showpagecomplete Event
Note: The |
The methods of the ADF Mobile Container Utilities API provide ADF Mobile applications with such functionality as navigating to the navigation bar, displaying a springboard, or displaying application features. You can use these methods at the Java and JavaScript layers of ADF Mobile.
In Java, the Container Utilities API is implemented as static methods on the AdfmfContainerUtilities
class, which is located in the oracle.adfmf.framework.api
package. Example B-3 illustrates calling the gotoSpringboard
method. For more information on oracle.adfmf.framework.api.AdfmfContainerUtilities
, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Example B-3 Calling the Container Utilities API in Java
The signatures of Java and JavaScript both match. In Java, they are synchronous and return results directly. Because JavaScript is asynchronous, there are two callback functions added for every function: a success
callback that returns the results and a failed
callback that returns any exception that is thrown. Within a Java method, the success
value is returned from the function, or method, and the exception is thrown directly from the method. The pseudocode in Example B-4 illustrates how a call with no arguments, public static functionName() throws
, is executed within Java using try
and catch
blocks.
Example B-4 Executing a Call with No Arguments in Java
Because JavaScript calls are asynchronous, the return is required through the callback mechanism when the execution of the function is complete. The pseudocode in Example B-5 illustrates the signature of the JavaScript call.
Example B-5 The JavaScript Call Signature
As illustrated by Example B-5, this call is defined as function(request, response)
. The value of the request argument is the actual request. The response
is defined as function(request, response)
and its value is the actual request. The response is thrown during the execution of the function.
The pseudocode in illustrates how a call with one or more arguments, such as public static <return value> <function name>(<arg0>, <arg1>, ...) throws <exceptions>
, is executed within Java using a try-catch
block.
Example B-6 Executing a Call with Multiple Arguments in Java
JavaScript calls cannot return a result because they are asynchronous. They instead require a callback mechanism when the execution of the function has completed. The signature for both the success and failed callbacks is function(request, response)
, where the request
argument is a JSON representation for the actual request and the response
is the JSON representation of what was returned by the method (in the case of success
callback functions) or, for failed
callback functions, a JSON representation of the thrown exception.
Note: The callback functions must be invoked before subsequent JavaScript calls can be made to avoid problems related to stack depth or race conditions. |
The Container Utilities API provides the following methods:
connections.xml
file. The Container Utilities API also include methods for placing badges and badge numbers on applications. For more information, see Section B.2.16, "Application Icon Badging."
When the Configuration Service is used, this method requests that ADF Mobile check a server that hosts the connections.xml
file for any changes to the configured endpoints. To check for changes, ADF Mobile compares the connection-related content hosted on the server to the configuration on the device. (This comparison happens asynchronously in the background.) If ADF Mobile finds that the device configuration is outdated, then the checkforNewConfiguration
method issues a non-blocking call that notifies the user that a new configuration has been detected and then closes the application. ADF Mobile reminds the user to restart the application.
In Java, the method is as follows:
Example B-7 illustrates using this method.
Example B-7 Retrieving Configuration Information Using Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the associated AdfmfContainerUtilities
method's return value (void
). The failed
callback must be in the form of function(request, response)
where the request
argument contains the original request and the response
argument contains the error (AdfException
).
Example B-8 illustrates using these callback functions to retrieve the configuration information.
This method returns an ApplicationInformation
object that contains information about the application. This method returns such metadata as the application ID, application name, version, and the vendor of an application.
Within Java, this method is called as follows:
Example B-9 illustrates calling this method.
Example B-9 Retrieving Application Information Using Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the associated AdfmfContainerUtilities
method's return value, which is the ApplicatiaonInformation
object containing application-level metadata. This includes the application name, vendor, version, and application ID.
The failed
callback must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-10 illustrates using these callback functions to retrieve the application information.
This method requests that ADF Mobile display the default application feature. The default application feature is the one that is displayed when the ADF Mobile application is started.
Note: This method may not be able to display an application feature if it has authentication- or authorization-related problems. |
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback function must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the associated AdfmfContainerUtilities
method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the error.
Example B-11 illustrates using these callbacks to call the default application feature.
This method returns an array of FeatureInformation
objects that represent the available application features. The returned metadata includes the feature ID, the application feature name, and the file locations for the image files used for the application icons. This call enables a custom springboard implementation to access the list of application features that are available after constraints have been applied. (These application features would also display within the default springboard.)
Within Java, this method is called as follows:
Example B-12 illustrates using this method.
Example B-12 Retrieving the Application Feature Information Using Java
In JavaScript, the success
and failed
callback functions enable the returned values and the exceptions to be passed back to the JavaScript calling code as follows:
The success
callback function must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the associated AdfmfContainerUtilities
method's return value (the array of FeatureInformation
objects).
The failed
callback function must be in the form of function(request, response)
, where the request
argument contains the original request and the response
argument contains the error (AdfException
).
Example B-13 Using JavaScript Callback Functions to Retrieve Application Feature Information
This method requests that ADF Mobile display the application feature identified by its ID.
Note: This method may not be able to display an application feature if it has authentication- or authorization-related problems. |
Within Java, this method is called as follows:
This method's parameter, as shown in Example B-14, is the ID of the application feature.
Example B-14 Activating an Application Feature
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The featureId
parameter is the application feature ID. This parameter activates the success
callback function and must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated AdfmfContainerUtilities
method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-15 illustrates using these callback functions to call an application feature.
This method returns information about the application feature using the passed-in name of the application feature.
Within Java, this method is called as follows:
This method's parameter, as shown in Example B-16, is the name of the application feature.
Example B-16 Retrieving the Application Feature Information Using the Application Feature Name
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The featureName
parameter is the name of the application feature. The success
callback function and must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated AdfmfContainerUtilities
method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-17 illustrates using these callback functions.
Example B-17 Using JavaScript Callback Functions to Retrieve the Application Feature Information Using the Application Feature Name
This method retrieves an application feature using its application ID.
Within Java, this method is called as follows:
This method's parameter, as shown in Example B-18, is the ID of the application feature.
Example B-18 Retrieving an Application Feature Using its ID in Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The featureId
parameter is the ID of the application feature. The success
callback function and must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated AdfmfContainerUtilities
method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-19 illustrates using these callback functions to retrieve an application feature.
This method resets the state of the application feature. It resets the Java-side model for the application feature and then restarts the user interface presentation as if the ADF Mobile application had just been loaded and displayed the application feature for the first time.
Within Java, this method is called as follows:
The method's parameter, as shown in Example B-20, is the ID of the application feature that is to be reset.
Example B-20 Resetting an Application Feature in Java
In JavaScript, the success
and failed
callback functions enable the returned value and exception to be passed back to the JavaScript calling code as follows:
The success
callback function and must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated method's return value (The ID of the application feature).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-21 illustrates using these callback functions to call an application feature.
This method requests that ADF Mobile activate the springboard.
Note: This method may not be able to display the springboard if it has not been designated as a feature reference in the |
Within Java, this method is called as follows:
Example B-22 illustrates using this method
Example B-22 Activating the Springboard in Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-23 illustrates using these callback functions.
This method requests that ADF Mobile hide the navigation bar.
Within Java, this method is called as follows:
Example B-24 illustrates using this method.
Example B-24 Hiding the Navigation Bar in Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-25 illustrates using these callback functions.
This method requests that ADF Mobile display the navigation bar.
Within Java, this method is called as follows:
Example B-26 illustrates using this method.
Example B-26 Showing the Navigation Bar in Java
In JavaScript, the success
and failed
callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:
The success
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated method's return value (void
).
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Example B-27 illustrates using these callback functions.
This method is not available in Java. Example B-28 illustrates using the JavaScript callback methods to invoke a Java method from any class in a classpath.
Example B-28 Using JavaScript Callback Function to Call a Java Method
Table B-1 lists the parameters taken by this method.
Table B-1 Parameters Passed to invokeJavaMethod
Parameter | Description |
---|---|
| The class name (including the package information) that ADF Mobile uses to create an instance when calling the Java method. |
| The name of the method that should be invoked on the instance of the class specified by the |
The success
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the associated method's return value.
The failed
callback function must be in the form of function(request, response)
, where the request contains the original request and the response contains the error.
Examples of using this method with multiple parameters are as follows:
adf.mf.api.invokeMethod("TestBean", "getStringProp", success, failed);
The following illustrates using complex parameters:
The following illustrates using no parameters:
The following illustrates using String
parameters:
The invokeContainerJavaScriptFunction
invokes a JavaScript method. Table B-2 lists the parameters passed by this method.
Table B-2 Parameters Passed to invokeContainerJavaScriptFunction
Parameter | Description |
---|---|
| The ID of the application feature used by ADF Mobile to determine the context for the JavaScript invocation. The ID determines the web view in which this method is called. |
| The name of the method that should be invoked. |
| An array of arguments that are passed to the method. Within this array, these arguments should be arranged in the order expected by the method. |
This method returns a JSON object.
Note: The |
Example B-29 The invokeContainerJavaScriptFunction Method
The pseudocode in Example B-30 illustrates a JavaScript file called appFunctions.js
that is included in the application feature, called feature1
. The JavaScript method, application.testFunction
, which is described within this file, is called by the invokeContainerJavaScriptFunction method
, shown in Example B-31. Because the application includes a command button that is configured with an action listener that calls this function, a user sees the following alerts after clicking this button:
Example B-30 appFunctions.js
The pseudocode in Example B-31 illustrates how the invokeApplicationJavaScriptFunction
method calls the JavaScript method (application.testFunction
) that is described in Example B-30.
Example B-31 Calling the JavaScript Function from Java
For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile and the JSExtend sample application. This sample application is in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
The AdfmfContainerUtilities
class includes methods to place or retrieve a badge number on an ADF Mobile application icon. Table B-3 describes these methods.
Table B-3 Icon Badging Methods
Method | Description | Parameters |
---|---|---|
| Gets the current badge value on the ADF Mobile application icon. Returns zero (0) if the application icon is not badged. | None |
| Sets the badge number on an ADF Mobile application icon. | The value of the badge (|
Note: Application icon badging is not supported on Android. |
The adfmfJavaUtilties
API includes the getDirectoryPathRoot
method. This method, which can only be called from the Java layer, enables access to files on both iOS and Android systems. As shown in Example B-32, this method enables access to the location of the temporary files, application files (on iOS systems), and the cache directory on the device using the TemporaryDirectory
, ApplicationDirectory
, and DeviceOnlyDirectory
constants, respectively. Files stored in the DeviceOnlyDirectory
location are not synchronized when the device is connected.
Note: Verify that any directories or files accessed by an application exist before the application attempts to access them. |
For more information on oracle.adfmf.framework.api.AdfmfJavaUtilities
, see Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile.
Example B-32 Accessing Files
File storage requirements differ by platform. The Android platform does not prescribe a central location from which applications can access files; instead, an application can write a file to any location to which it has write permission. iOS platforms, on the other hand, generally store files within an application directory. Because of these differences, passing ApplicationDirectory
to the getDirectoryPathRoot
method can return the file location needed to display attachments for applications running on iOS-powered devices, but not on Android-powered devices. Rather than writing platform-specific code to retrieve these locations for applications intended to run on both iOS- and Android-powered devices, you can enable the getDirectoryPathRoot
method to return the paths to both the external storage location and the default attachments directory by passing it DownloadDirectory
. This constant (an enum
type) reflects the locations used by the displayFile
method of the DeviceManager
API, which displays attachments by using platform-specific functionality to locate these locations.
On Android, DownloadDirectory
refers to the path returned by the Environment.getExternalStorageDirectory
method (which retrieves the external Android storage directory, such as an SD card). For ADF Mobile applications running on iOS-powered devices, it returns the same location as ApplicationDirectory
. For more information on the getExternalStorageDirectory
, see the package reference documentation, available from the Android Developers website (http://developer.android.com/reference/packages.html
). See also Files System Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
This appendix describes how ADF Mobile converts user preferences during deployment.
This document includes the following sections:
Conversion of ADF Mobile application preferences to a mobile-platform representation occurs when a deployment target is invoked. Following conversion, the naming pattern described in Table C-1 ensures that each preference can be uniquely identified on the mobile platform. Each preference element in the adfmf-application.xml
and adfmf-feature.xml
files must be uniquely identified within the scope of its sibling elements prior to deployment.
The following are examples of identifier values:
application.gen.gps.trackGPS
feature.f0.gen.gps.trackGPS
Table C-1 describes how to generate fully qualified preference identifiers.
Table C-1 ADF Mobile Naming Patterns for Preferences
Expression | Description | Syntax |
---|---|---|
| Represents an identifier value of a preference element that has been converted to a mobile platform representation. |
|
| Use this expression to build a preference identifier value that is generated from the |
<adfmf:preferences> <adfmf:preferenceGroup id="gen"> <adfmf:preferenceGroup id="gps"> <!-- The mobile-platform identifier would be "application.gen.gps.trackGPS" --> <adfmf:preferenceBoolean id="trackGPS"/> </adfmf:preferenceGroup> </adfmf:preferenceGroup> </adfmf:preferences> |
| Use this expression to build a preference identifier value that is generated from the |
<adfmf:feature id="f0"> <adfmf:preferences> <adfmf:preferenceGroup id="gen"> <adfmf:preferenceGroup id="gps"> <!-- The mobile-platform identifier would be "feature.f0.gen.gps.trackGPS" --> <adfmf:preferenceBoolean id="trackGPS"/> </adfmf:preferenceGroup> </adfmf:preferenceGroup> </adfmf:preferences> </adfmf:feature> |
The <adfmf:preferences>
element cited in the code examples in Table C-1 does not have an id
attribute and is therefore not represented in any preference identifiers.
The ADF Mobile deployment uses XML and XLS to transform the user preference pages defined at both the application feature and ADF Mobile application-level into the following three XML documents:
preferences.xml
arrays.xml
strings.xml
This file contains the transformed preferences from both of the adfmf-feature.xml
and adfmf-application.xml
files.
Table C-2 shows the mapping of ADF Mobile's preference definitions to Android template preferences, and Android native preferences:
Table C-2 Mapping ADF Mobile Preferences to Android Preferences
ADF Mobile Preference Definition | Template Custom or Android Native Preference Definition (Used by Deployment) | Android Native Preference Definition (Not used by Deployment) |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The Preferences.xml
file contains references to string resources contained in both the strings.xml
and arrays.xml
files. The Android SDK defines the syntax for resources in XML files as @[<package_name>:]<resource_type>/<resource_name>. This file contains references to string values as well as the name and value pairs of list preferences. The XSL constructs the following for the strings and list preferences:
<package_name>
is the name of the package in which the resource is located (not required when referencing resources from the same package). This component of the reference will not be used. <resource_type>
is the R subclass for the resource type. This component will have a value of string
if constructing a string reference or array
if constructing a list preference. <resource_name>
is the android:name
attribute value in the XML element. The value for this component will be the value of the <PreferenceIdentifier>_title
when specifying the android:title
attribute (see Section C.1, "Naming Patterns for Preferences." for the definition of <PreferenceIdentifier>
. Table C-3 and Table C-4 show the mapping of ADF Mobile attributes for a given ADF Mobile preference to the Android preference.
In this table:
{default}
in Table C-3) indicate the value of an ADF Mobile attribute named X. <PreferenceIdentifier>
indicate the value of the preference identifier, as defined in Section C.1, "Naming Patterns for Preferences." preferences.xml
in the form adfmf:<attributeName>
. Otherwise, the attributes are part of the Android namespace and must appear in the preferences.xml
as android:<attributeName>
. Table C-3 Mapping of ADF Mobile Preference Attributes to Android Preferences
ADF Mobile Attribute Definition | Template Custom or Android Native Preference Attribute | Android Attribute Value | Applies to |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The overview editors for the adfmf-application.xml
and adfmf-feature.xml
files exclude an attribute name and value from the XML if:
xsd:boolean
. <default>
value option. <default>
as the value. The XSL must know the ADF Mobile attributes that are boolean typed and their corresponding default values. The XSL, then, specifies the appropriate Android or template custom attribute value where has been selected by the user.
Table C-4 indicates what the deployment will specify for the android:defaultValue
attribute if the ADF Mobile preference being transformed does not contain a default
attribute:
The preferences.xml
file has a root element called <PreferenceScreen>
. The Android template requires that this element have the following XML namespace definition:
xmlns:adfmf="http://schemas.android.com/apk/res/<Application Package Name>
The <Application Package Name>
element is defined as the same application package name in the AndroidManifest.xml
file. <Android Package Name>
defines the definition for the Android package name specified in the AndroidManifest.xml
file. For more information, see Section 5.3.1, "How to Set the ID and Display Behavior for a Mobile Application."
The deployment uses the Application Bundle Id value from the Android deployment profile if it exists. If it does not exist in the profile, the deployment obtains this value from the application display name and Application Id contained in the adfmf-application.xml
file. The deployment Java code will pass the value to the XSL document as a parameter.
Example C-1 shows ADF Mobile preferences contained in the adfmf-feature.xml
file.
Example C-1 Preferences Defined in the adfmf-feature.xml File
The arrays.xml
file consists of string-array elements that enumerate the names and values of list preferences that are referenced from the preferences.xml
file. Each <preferenceList>
element contained in the adfmf-application.xml
and adfmf-feature.xml
files is transformed into two string-array elements, one element for the name and one element for the values. For example, the ADF Mobile preferenceList
definition described in Example C-2 results in <string-array name="feature.oracle.hello.prefGroup.MyList___entry_values">
and <string-array name="feature.oracle.hello.prefGroup.MyList___entries">
in the arrays.xml
file shown in Example C-3.
Example C-2 PreferenceList Definition in the adfmf-feature.xml File
Example C-3 illustrates the pair of string array elements in the arrays.xml
file that are transformed from a <preferenceList>
element.
Example C-3 Preference Lists Converted to <string-array> Elements in arrays.xml
Example C-4 shows the <string-arrays>
referenced in preferences.xml
.
Example C-4 PreferenceList Reference from the preferences.xml File
The strings.xml
file, shown in Example C-5, consists of string elements that are referenced by the preferences.xml
file, as well as any resource bundle references defined in the adfmf-application.xml
and adfmf-feature.xml
files. Each string element has a name
attribute that uniquely identifies the string and the string value.
Example C-5 The strings.xml File
If the source of the string is not a reference to a resource bundle string, the naming convention for the name
attribute is <PreferenceIdentifier>___<androidAttributeName>
.
Example C-6 Resource Bundle References Defined in the adfmf-feature.xml File
The iOS deployer transforms the ADF Mobile preferences listed in Table C-4 to the preference list (.plist
) file representation required by an iOS Settings application.
Table C-5 ADF Mobile Preferences and Their iOS Counterparts
ADF Mobile Preferences Component | iOS Representation |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
For information on the iOS requirement for preference list (.plist
) files, see Preferences and Settings Programming Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
Example C-7 shows an ADF Mobile preferences stanza.
This appendix provides an introductory information on the ADF Mobile user experience.
This appendix includes the following sections:
After installing an ADF Mobile application (see Section D.2, "Installing the ADF Mobile Application on a Mobile Device"), the end user can start using it by selecting the application icon on their mobile device's home screen (see Figure D-1), which displays the splash screen while the application launches. After the completion of the launch, the end user can navigate between application features (see Section D.3, "Navigating Between Application Features"), set preferences (see Section D.4, "Setting Preferences"), and perform all other tasks.
The end user can download and install an ADF Mobile application through their regular application provisioning mechanism.
During installation, the application's Preferences are populated with default settings. For information on how to modify the defaults, see Section D.4, "Setting Preferences" and Section D.2.2, "How to Install ADF Mobile Applications on Android-Powered Devices".
Removing the ADF Mobile application from a mobile device is not different from uninstalling any other application (see Section D.2.3, "How to Uninstall an ADF Mobile Application").
Users of iOS-powered devices download and install ADF Mobile applications in one of the following ways:
In addition to installing ADF Mobile applications available through the application marketplace, the end user can download applications available outside of the application marketplace. It is recommended to search the web for information on how to do this.
An ADF Mobile application is removed from the mobile device just like any other application. During the uninstall process, all application data and all external preferences are removed along with the application.
To provide access to each application feature, ADF Mobile applications allow for navigation between enabled application features using either a navigation bar or a springboard.
For information on configuring navigation during the application development, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior."
Figure D-2 shows elements of the ADF Mobile UI displayed on an iPhone.
The UI consists of a navigation bar populated with navigation items (icons). The first navigation item is highlighted to indicate that it is selected.
Note: If the springboard is defined for the application, a Home navigation button represented by an overlay is rendered above the navigation bar, but is not a part of it. This button allows the end user to return to the springboard from the application content: If the springboard is not specified for the application, the Home icon is not displayed. For more information, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior." |
The navigation bar in the example that Figure D-2 shows contains six navigation items, and since not all of them can be displayed at the same time due to the space limitations on an iPhone, the fifth icon is represented by the More feature. When activated, the More feature expands the navigation bar into the mode that lists the remaining navigation items. On an iPad, all navigation items are displayed. The content area above the navigation bar provides the content specific to this particular solution, which is an approval tool for purchase orders and is bundled with the application.
Note: If at least one icon for an application feature is shown on the navigation bar, the end user is presented with Hide and Show buttons that allow to display the navigation bar when it is hidden, and hide when it is shown: If the application XML file (The Hide and Show buttons may not be presented to the end user and the navigation bar could be initially hidden if the adfmf-application.xml file does not reference any application features to be displayed on the navigation bar. In this case, if the springboard is defined, it will be the only navigation tool for the application. For more information, see Section D.3.1.2, "Using Single-Featured Applications." |
Figure D-3 shows the iPhone UI after the activation of the More icon and display of the remaining navigation items as a list.
To change which navigation items appear on the navigation bar at the application startup, the end user can select Edit to enter the Configure mode, as Figure D-4 shows.
The Configure mode allows for dragging icons from the content area and dropping them onto the navigation bar. In this example, Submit navigation item was replaced with Gle navigation item on the navigation bar, and Submit is listed under More items, as Figure D-5 shows. To exit the configuration mode, the user selects Done to return to the More screen.
If the end user selects the newly repositioned Gle navigation item in the navigation bar, Gle page is displayed in the content area, as Figure D-6 shows.
By default, the springboard navigation is disabled in ADF Mobile. It is enabled during development by configuring the adfmf-application.xml
file (see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior").
If an ADF Mobile application is enabled for navigation using the springboard, the end user is presented a display similar to the one shown in Figure D-7 when the application starts.
In the preceding illustration, the default springboard supplied by ADF Mobile is displayed on an iPhone in the default portrait layout (for information on how to create a custom springboard during development, see Section 5.5, "Configuring the Springboard and Navigation Bar Behavior"). There are three pages of the application content features that are available to the end user, which is indicated by the three dots at the bottom of the screen. The end user is on page one of the three pages, which is denoted by the bright dot in the first position.
To open the second page of features (see Figure D-8), the end user swipes the iPhone screen from right to left, pushing the first page to the left and bringing the second page from the right. As the first page moves left, it fades out, and as the second page moves in, it fades in.
In the preceding illustration, the end user is on page two of the three pages, which is denoted by the bright dot in the second position.
When the end user rotates the mobile device to landscape orientation, the springboard icons animate into positions that will better accommodate such change (see Figure D-9).
Note that the page did not change when the display orientation changed, and the end user is still on page two.
To return to the first page of features while the display is in landscape orientation (see Figure D-10), the end user swipes the iPhone screen from left to right, pushing the second page to the right and bringing the first page from the left.
To view a particular feature (such as Contacts) from page one, the end user touches the Contacts icon or its corresponding text.
On iOS-powered devices, the end user can return to the springboard from any application feature by performing a device shake gesture.
On Android-powered devices, the end user can use a menu item that lets them return to the springboard at any time.
Some applications may have only a single feature, and this feature is not configured to be displayed on a Springboard or navigation bar. In this case, only this single feature is presented to the end user; the special buttons that control the display of the navigation bar or return to the Springboard are not visible.
The application feature navigation on Android-powered devices is almost identical to the navigation on iOS-powered devices (see Section D.3.1, "How to Navigate Between Application Features on iOS-Powered Devices"), with the exception of the More feature: on Android-powered devices, the More feature, when activated, triggers the display of a list of the remaining navigation items. The navigation bar does not change its appearance.
The end user can configure the application preferences in the manner already prescribed by the mobile platform.
For information on configuring preferences during the application development, see Chapter 13, "Enabling User Preferences."
The end user can open the Settings application on their iOS-powered device and select ADF Mobile application's Settings icon to access all the settings available for that application. The modified settings take effect upon exiting the Settings application. This is a typical behavior of all applications on iOS-powered devices.
Preferences are populated with default values at startup. These values are defined in the adf-feature.xml
file. In addition to the standard ways of setting Preferences values, they can be defined as follows:
Preferences are displayed on cascading pages. Modifiable preferences can be easily distinguished from the ones that cannot be modified.
Preferences can be used to globally set the user credentials (see Chapter 18, "ADF Mobile Application Security").
Setting Preferences on Android-powered devices does not differ from the same operation on iOS-powered devices (see Section D.4.1, "How to Set Preferences on iOS-Powered Devices"): the Preferences are accessed through the Preferences menu item.
Note: The Preferences menu item does not appear in the menu if there are no preferences defined for the application. |
For diagnostic and support purposes, the application log file for enabled application features is available for viewing on the device.
On an iOS-powered device, log files are located in ~/Library/Logs/CrashReporter/MobileDevice/<DEVICE_NAME>
. Note that the device must be synchronized prior to accessing log files.
For information on locating and viewing log output on Android-powered devices, see http://developer.android.com/tools/help/logcat.html
.
For more information on logging, see Section 19.4, "Using and Configuring Logging".
There is a number of limitations to the usage of various modules of a typical ADF Mobile application.
When using an ADF Mobile AMX List View component (see Section 7.2.7, "How to Use List View and List Item Components"), the end user should be aware of the following limitation:
The following are limitations of which the end user should be aware when using ADF Mobile AMX data visualization components (see Section 7.5, "Providing Data Visualization"):
On Android 4.0.3, the device back button is disabled when an ADF Mobile application is running.
For more information, see Section 7.3.5.6, "Enabling the Back Button Navigation."
The following are limitations of which the end user should be aware when accessibility is required (see Section 7.8, "Understanding ADF Mobile Support for Accessibility"):
This appendix contains information about libraries that can be used to parse XML.
This appendix includes the following section:
kXML, one of the core ADF Mobile libraries, provides API that you can use to parse XML. This library is exposed to the application through the JDK Profiler Interface (JVMPI).
For more information, consult kXML documentation at:
This appendix describes the ADF Mobile sample applications.
This appendix includes the following section:
ADF Mobile ships with a set of a sample applications that provide different development scenarios, such as creating the basic artifacts, accessing such device-native features as SMS and e-mail, or performing CRUD (Create, Read, Update, and Delete) operations on a local SQLite database. These applications are in the PublicSamples.zip
file at the following location within the JDeveloper installation directory of your development computer:
To view these applications, extract the PublicSamples.zip
file to your JDeveloper working directory (typically, this is User Home Directory
/jdeveloper/mywork
).
Note: The sample applications that include a default springboard must be extracted to, and opened from, the To add the springboard to the classpath:
|
These applications, which are described in Table F-1, are complete. Except where noted otherwise, these applications can be deployed to a simulator after you configure the development environment as described in Chapter 3, "Setting Up the ADF Mobile Environment."
Tip: To get an idea of how to create an ADF Mobile application, review these applications in the order set forth in Table F-1. |
Table F-1 ADF Mobile Sample Applications
Recommended Order of Use | Application Name | Description | Additional Resources Required to Run the Sample Application |
---|---|---|---|
1 | HelloWorld | The "hello world" application for ADF Mobile, which demonstrates the basic structure of the framework. This basic application has a single application feature that is implemented with a local HTML file. Use this application to ascertain that the development environment is set up correctly to compile and deploy an application. See also Section 4.2.2, "What Happens When You Create an ADF Mobile Application." | |
2 | CompGallery | This application serves as an introduction to the ADF Mobile AMX UI components by demonstrating all of these components. Using this application, you can change the attributes of these components and see the effects of those changes in real time without recompiling and redeploying the application after each change. See generally Chapter 7, "Creating the ADF Mobile AMX User Interface." | |
3 | LayoutDemo | This application demonstrates the user interface layout and shows how to create the various list and button styles that are commonly used in mobile applications. It also demonstrates how to create the action sheet style of a popup component and how to use various chart and gauge components. See Section 7.3, "Creating and Using UI Components" and Section 7.5, "Providing Data Visualization." | This application must be opened from the |
4 | JavaDemo | This application demonstrates how to bind the user interface to Java beans. It also demonstrates how to invoke EL bindings from the Java layer using the supplied utility classes. See also Section 7.10, "Using Event Listeners" and Section 8.2, "Understanding EL Support." | |
5 | Navigation | This application demonstrates the various navigation techniques in ADF Mobile, including bounded task flows and routers. It also demonstrates the various page transitions. See also Section 6.2, "Creating Task Flows." | This application must be opened from the |
6 | LifecycleEvents | This application implements lifecycle event handlers on the ADF Mobile application itself and its embedded application features. This application shows you where to insert code to enable the applications to perform their own logic at certain points in the lifecycle. See also Section 5.7, "About Lifecycle Event Listeners." | For iOS, the LifecycleEvents sample application logs data to the Console application, located at Applications-Utilities-Console application. |
7 | DeviceDemo | This application shows you how to use the DeviceFeatures data control to expose such device features as geolocation, e-mail, SMS, and contacts, as well as how to query the device for its properties. See also Section 8.5, "Using the DeviceFeatures Data Control." | You must also run this application on an actual device, because SMS and some of the device properties do not function on an iOS simulator or Android emulator. |
8 | GestureDemo | This application demonstrates how gestures can be implemented and used in ADF Mobile applications. See also Section 7.4, "Enabling Gestures." | |
9 | StockTracker | This application demonstrates how data change events use Java to enable data changes to be reflected in the user interface. It also has a variety of layout use cases, gestures and basic mobile patterns. See also Section 8.7, "Data Change Events." | |
10 | HR | This human resources application is a CRUD application that demonstrates a variety of real-world application techniques. It uses a local SQLite database to store its data. The application persists the data between each startup and is based on the default HR schema that ships with all Oracle databases. See generally Chapter 11, "Using the Local Database." By providing layouts for both iPad and iPhone, this application demonstrates how different types of user interfaces can share the same data model. There are a variety of other patterns demonstrated in the application as well. This application uses a constraint to deliver the content to both an iPhone and iPad device. For more information, see Section 14.2.5, "About Hardware-Related Constraints." | |
11 | Skinning | This application demonstrates how to skin applications and add a unique look and feel by either overriding the supplied style sheets or extending them with their own style sheets. This application also shows how skins control the styling of ADF Mobile AMX UI components based on the type of device. See also Section 5.12, "Skinning ADF Mobile Applications." | |
12 | PrefDemo | This application demonstrates application-wide and application feature-specific user setting pages. See generally Chapter 13, "Enabling User Preferences" | |
13 | Weather1 | This application, which does not use Java code, demonstrates using declarative web services. The web services used by this application are SOAP web services, specifically a public web service provided by CDYNE Corporation (| |
14 | Weather2 | This application demonstrates using a programmatic invocation of web services and parsing the | |
15 | Weather3 | Although this application is identical to the Weather2 sample application, it demonstrates the use of a non-blocking background thread to invoke the web service and how the user interface is updated when the service returns. This application demonstrates how it updates the user interface by flushing the data change events from the thread. | |
16 | RESTDemo | This application demonstrates using REST web services. Its two application features, REST-XML and REST-JSON use the same publicly available web service to retrieve the geo-coordinates of a given IP address or domain. The service can return either XML or JSON formats. The REST-XML application feature uses an XSD and creates a URL data control to access the structured data. The user interface binds to that data control. In the REST-JSON version, the URL connection is used directly by the | |
17 | JSExtend | This application demonstrates how to invoke custom JavaScript methods from within an ADF Mobile AMX page. Use this approach to invoke the Apache Cordova APIs that are not included in the DeviceFeatures data control. You can also use this approach to add custom JavaScript methods to an application and invoke them as well. This application also demonstrates calling back to Java from the JavaScript methods. See also Section 5.10.1, "How to Define the Application Content" and Section B.2, "The ADF Mobile Container Utilities API." | |
18 | Attachments | This application demonstrates how to use the | |
19 | DVTDemo | This application provides a basic demonstration using different chart types. It also demonstrates how to change the chart layout and formatting. For more information, see Section 7.5, "Providing Data Visualization." |
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.