

[image: Oracle Corporation]

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 About Skinning a Web Application

	1.1 Introduction to Skinning a Web Application
	1.2 Using the ADF Skin Editor for Different Releases of Oracle ADF
	1.3 Overview of Developing an ADF Skin
	1.4 Taking a Look at an ADF Skin
	1.5 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

2 Working with ADF Skin Selectors

	2.1 About ADF Skin Selectors
	2.1.1 ADF Skin Selectors and Pseudo-Elements
	2.1.2 ADF Skin Selectors and Icon Images
	2.1.3 Grouped ADF Skin Selectors
	2.1.4 Descendant ADF Skin Selectors

	2.2 Pseudo-Classes in the ADF Skinning Framework
	2.3 Properties in the ADF Skinning Framework
	2.4 Rules in the ADF Skinning Framework

3 Working with the Oracle ADF Skin Editor

	3.1 Overview of the ADF Skin Editor
	3.2 Working with the Selector Tree
	3.3 Working with the Property Inspector
	3.4 Navigating to the ADF Skins That Your ADF Skin Extends
	3.5 Customizing the ADF Skin Editor
	3.5.1 How to Change the Look and Feel of the ADF Skin Editor
	3.5.2 How to Customize the General Environment for the ADF Skin Editor
	3.5.3 How to Customize Dockable Windows in the ADF Skin Editor

	3.6 Searching the Source Files of ADF Skins
	3.6.1 How to Search the Source Files of ADF Skins

	3.7 Working with Extensions
	3.7.1 How to Install Extensions with Check for Updates

	3.8 Working with the Overview Editor in the ADF Skin Editor
	3.8.1 How to Use the Overview Editor for JSF Configuration Files in the ADF Skin Editor

	3.9 Adding External Tools to the ADF Skin Editor
	3.9.1 How to Add External Tools to the ADF Skin Editor

	3.10 Navigating the ADF Skin Editor
	3.10.1 How to Work With Shortcut Keys In the ADF Skin Editor
	3.10.2 Keyboard Navigation In the ADF Skin Editor
	3.10.2.1 Common Navigation Keys
	3.10.2.2 Navigation In Standard Components
	3.10.2.3 Navigating Complex Controls
	3.10.2.4 Navigation in Specific Components

4 Creating the Source Files for an ADF Skin

	4.1 About Creating an ADF Skin
	4.2 Creating ADF Skin Applications and ADF Skin Projects
	4.2.1 How to Create an ADF Skin Application
	4.2.2 How to Create a New ADF Skin Project

	4.3 Opening an Application Created Outside of the ADF Skin Editor
	4.4 Creating an ADF Skin File
	4.4.1 How to Create an ADF Skin in the ADF Skin Editor
	4.4.2 How to Create an ADF Skin in JDeveloper
	4.4.3 What Happens When You Create an ADF Skin

	4.5 Versioning ADF Skins
	4.5.1 How to Version an ADF Skin
	4.5.2 What Happens When You Version ADF Skins

	4.6 Managing Working Sets
	4.7 Importing ADF Skins from an ADF Library JAR
	4.7.1 How to Import an ADF Skin from an ADF Library JAR
	4.7.2 What Happens When You Import an ADF Skin from an ADF Library JAR

5 Working with Component-Specific Selectors

	5.1 About Working with Component-Specific Selectors
	5.2 Changing ADF Faces Components' Selectors
	5.3 Changing ADF Data Visualization Components' Selectors
	5.4 Changing a Component-Specific Selector
	5.4.1 How to Change a Component-Specific Selector
	5.4.2 What Happens When You Change a Component-Specific Selector

	5.5 Configuring ADF Skin Properties to Apply to Messages
	5.5.1 How to Configure an ADF Skin Property to Apply to a Message
	5.5.2 What Happens When You Configure an ADF Skin Property to Apply to a Message
	5.5.3 What You May Need to Know About Configuring an ADF Skin Property to Apply to a Message

	5.6 Applying Themes to ADF Faces Components
	5.6.1 How to Enable Themes for Components
	5.6.2 How to Set Theme Properties for a Component in an ADF Skin
	5.6.3 How to Prevent a Component Inheriting a Theme from a Parent Component

	5.7 Configuring an ADF Skin for Accessibility
	5.7.1 How to Configure an ADF Skin for Accessibility

6 Working with Images in Your ADF Skin

	6.1 About Working with Images in an ADF Skin
	6.2 Changing an Image for a Component Selector
	6.2.1 How to Copy an Image into the Project
	6.2.2 What Happens When You Copy an Image into the Project

	6.3 Working with the Images Window
	6.3.1 How to Generate Images Using the Images Window
	6.3.2 What Happens When You Generate Images Using the Images Window

7 Working With Text in an ADF Skin

	7.1 About Working with Text in an ADF Skin
	7.2 Using Text From Your Own Resource Bundle
	7.2.1 How to Specify an Additional Resource Bundle for an ADF Skin
	7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

8 Working With Global Selector Aliases

	8.1 About Global Selector Aliases
	8.2 Creating a Global Selector Alias
	8.2.1 How to Create a Global Selector Alias
	8.2.2 What Happens When You Create a Global Selector Alias

	8.3 Modifying a Global Selector Alias
	8.3.1 How to Modify a Global Selector Alias

	8.4 Applying a Global Selector Alias
	8.4.1 How to Apply a Global Selector Alias
	8.4.2 What Happens When You Apply a Global Selector Alias
	8.4.3 What You May Need to Know About Applying a Global Selector Alias

	8.5 Referencing a Property Value from Another Selector
	8.5.1 How to Reference a Property Value from Another Selector
	8.5.2 What Happens When You Reference a Property Value from Another Selector

9 Working with Style Classes

	9.1 About Style Classes
	9.2 Creating a Style Class
	9.2.1 How to Create a Style Class
	9.2.2 What Happens When You Create a Style Class

	9.3 Modifying a Style Class
	9.3.1 How to Modify a Style Class

	9.4 Configuring a Style Class for a Specific Instance of a Component
	9.4.1 How to Configure a Style Class for a Specific Instance of a Component
	9.4.2 What Happens When You Configure a Style Class for a Specific Instance of a Component

10 Applying the Finished ADF Skin to Your Web Application

	10.1 About Applying a Finalized ADF Skin to an Application
	10.2 Testing Changes in Your ADF Skin
	10.2.1 How to Set Parameters for Testing Your ADF Skin
	10.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

	10.3 Packaging an ADF Skin into an ADF Library JAR
	10.3.1 How to Package an ADF Skin into an ADF Library JAR
	10.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

	10.4 Applying an ADF Skin to Your Web Application
	10.4.1 How to Apply an ADF Skin to an Application
	10.4.2 What Happens When You Apply an ADF Skin to an Application

11 Advanced Topics

	11.1 Referring to URLs in an ADF Skin's CSS File
	11.2 ADF Skinning Framework and Supported Render Kits
	11.3 Configuration Files for an ADF Skin
	11.4 ADF Skins Provided by Oracle ADF

Oracle® Fusion Middleware

Skin Editor User's Guide for Oracle Application Development Framework

11g Release 2 (11.1.2.4.0)

E17456-07

March 2013

Documentation for Oracle Application Development Framework (Oracle ADF) developers and user interface designers that describes how to create and apply skins to an application using the ADF Skin Editor.

Oracle Fusion Middleware Skin Editor User's Guide for Oracle Application Development Framework 11g Release 2 (11.1.2.4.0)

E17456-07

Copyright © 2011, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Walter Egan

Contributing Author: Laura Akel

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Welcome to the Skin Editor User's Guide for Oracle Application Development Framework.

Audience

This document is intended for application developers and user interface designers who want to change the look and feel of their application by skinning ADF Faces Rich Client components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents for the release that pertains to the application that you are skinning:

	
Oracle Fusion Middleware Installation Guide for Oracle Application Development Framework Skin Editor

	
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Faces

	
Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

	
Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces

	
Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin Selectors

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 About Skinning a Web Application

This chapter introduces you to skinning, the ADF skinning framework, and the ADF skins that Oracle ADF provides to apply to your Fusion web application or to help you get started creating your own ADF skin. It also describes how you use the ADF Skin Editor to create ADF skins for applications developed using various releases of Oracle ADF.

This chapter includes the following sections:

	
Section 1.1, "Introduction to Skinning a Web Application"

	
Section 1.2, "Using the ADF Skin Editor for Different Releases of Oracle ADF"

	
Section 1.3, "Overview of Developing an ADF Skin"

	
Section 1.4, "Taking a Look at an ADF Skin"

	
Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF"

1.1 Introduction to Skinning a Web Application

Skinning refers to the task of developing an ADF skin to apply to a web application that uses ADF Faces and ADF Data Visualization components in the user interface. An ADF skin is a special type of cascading style sheet (CSS) that allows you to customize the appearance of these components. Instead of providing a CSS file for each component, or inserting a style sheet on each page of the application, you create one ADF skin for the web application. Every component that renders in the user interface automatically uses the styles defined by the ADF skin. This means you do not have to make design-time changes to individual pages to change their appearance when you use an ADF skin.

Using an ADF skin also makes it easy for you to maintain a consistent appearance for all the pages that the application renders. Changes to the appearance of your application can easily be made should you decide to do so. You might decide, for example, to change colors to make your application adhere to your company's corporate brand. Additionally, you may want to define a style property for a component to make your application more usable. For example, Figure 1-1 shows an ADF Faces inputText component.

Figure 1-1 Writable inputText Component

[image: Writable inputText Component]

Figure 1-2 shows another ADF Faces inputText component where the background color is grayed out by the ADF skin to indicate to the end user that the inputText component is read only.

Figure 1-2 Read-Only inputText Component with Grayed-Out Background Color

[image: Input Text Component With Grayed Out Color]

Other benefits of skinning include the ability to easily change the default text labels that ADF Faces components render at runtime. For example, the default text for the dialog component's labels are OK and Cancel if you set the component's type property to okCancel. You cannot modify the values of these labels by specifying properties for the dialog component. Instead, if you want to change OK to Submit, for example, you make changes in the ADF skin that references a resource bundle with the string value, Submit. For more information, see Chapter 7, "Working With Text in an ADF Skin."

The previous examples illustrate some of the use cases for ADF skins plus the benefits of creating an ADF skin. Note that you do not have to define all the changes that you want for your application in one ADF skin. You can create different ADF skins to serve different purposes. For example, you might create ADF skins with different color schemes to adhere to the corporate brand of different companies. In addition, you can configure an application so that end users can dynamically change the ADF skin at runtime.

Note that this guide makes the following assumptions:

	
You are familiar with the ADF Faces and ADF Data Visualization components that you can skin. The usage and functionality of these components is beyond the scope of this guide. For more information about these components, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

	
You are familiar with CSS. It is beyond the scope of this guide to explain CSS. For extensive information about CSS, including the official specification, visit the World Wide Web Consortium (W3C) web site at:

http://www.w3.org/

1.2 Using the ADF Skin Editor for Different Releases of Oracle ADF

You can use the ADF Skin Editor to create ADF skins for Fusion web applications developed using various releases of Oracle ADF. You choose the release of Oracle ADF for which you want to create an ADF skin by selecting a supported release from the Target Application Release dropdown list. You do this when you create an ADF skin project, as described in Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects." The ADF Skin Editor configures the ADF skin project when you choose a release from the Target Application Release dropdown list so that only appropriate features to the Oracle ADF release you choose appear in the ADF skin project. Examples of configuration changes include the following:

	
Filters the list of ADF skins that you can extend from to display only those ADF skins supported by the release you choose. For example, if you choose to create an ADF skin for 11g Release 1 (11.1.1.5.0), the ADF Skin Editor does not display the fusionFx-v2 ADF skin because this ADF skin was introduced in a later release.

	
Selectors that a particular release of Oracle ADF does not support do not appear in the Selector Tree. For example, if you target a release earlier than 11g Release 2 (11.1.2), the ADF Skin Editor will not display selectors for the ADF Data Visualization Thematic Map component because this component was first introduced in 11g Release 2 (11.1.2).

	
Tip:

Press the F1 key on a selector in the Selector Tree to display the tag reference information for the release that you target.

As of 11g Release 2 (11.1.2), Oracle JDeveloper also provides a visual editor with the capability to create ADF skins for Oracle ADF applications created using that release. You can create an ADF skin within the project for a Fusion web application, as described in Section 4.4.2, "How to Create an ADF Skin in JDeveloper." The visual editors in JDeveloper and in the ADF Skin Editor offer the same functionality so the procedures described in this guide can be used to carry out tasks in both visual editors.

	
Note:

If you want to create an ADF skin for an application developed using a release of Oracle ADF earlier than 11g Release 2 (11.1.2), use the ADF Skin Editor.

1.3 Overview of Developing an ADF Skin

Developing an ADF skin is an iterative process. Before you proceed, familiarize yourself with the concepts of CSS plus the ADF Faces and ADF Data Visualization components. The high level steps to develop an ADF skin are:

	
Create a source file for the ADF skin.

You create a source file where you write the declarations for the selectors. When creating a source file using the visual editor in JDeveloper or the ADF Skin Editor, you must choose an existing ADF skin to extend from. If this ADF skin is the first ADF skin that you create, you choose from one of the ADF skins that Oracle ADF provides. For more information, see Section 11.4, "ADF Skins Provided by Oracle ADF." For information about the inheritance relationship between these ADF skins, see Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF." If you create subsequent ADF skins, you can choose to extend from an ADF skin that you created previously.

For more information about creating an ADF skin, see Section 4.4, "Creating an ADF Skin File."

	
Define values for the ADF skin properties and CSS properties. You can write values for these properties using the selectors exposed by the ADF Faces and ADF Data Visualization components through the ADF skinning framework.

For a description of the different categories of selectors, rules, and pseudo-elements, see Chapter 2, "Working with ADF Skin Selectors."

For information about how to define values for the selectors exposed by the ADF Faces and ADF Data Visualization components, see Section 5, "Working with Component-Specific Selectors."

	
If applicable, import images that you want your ADF skin to reference at runtime in the Fusion web application. For more information, see Chapter 6, "Working with Images in Your ADF Skin."

	
Tip:

If you choose to extend an ADF skin from the Fusion Simple family of ADF skins, described in Section 11.4, "ADF Skins Provided by Oracle ADF," you can use the Images window to import and edit images in the project for your ADF skin. For more information about the Images window, see Section 6.3, "Working with the Images Window."

	
If applicable, override the default text labels defined for the ADF Faces and ADF Data Visualization components by entering new values in a resource bundle. For more information, see Chapter 7, "Working With Text in an ADF Skin."

	
If applicable, edit or create themes in your ADF skin. Themes are a way of implementing a look and feel at a component level. For more information, see Section 5.6, "Applying Themes to ADF Faces Components."

	
Preview and test the changes that you made to the ADF skin to verify that the results are what you want. Modify the ADF skin as necessary. For more information about previewing and testing an ADF skin, see Section 10.2, "Testing Changes in Your ADF Skin."

	
Once you complete development of the ADF skin, you may want to package it for distribution. For more information, see Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

	
Having completed the ADF skin and distributed it, you configure your Fusion web application so that it uses it. For more information, see Section 10.4, "Applying an ADF Skin to Your Web Application."

	
Tip:

Consider completing the Changing an Application's Look and Feel by Using Skins tutorial that is available on the Oracle Technology Network (OTN). This tutorial provides a step-by-step guide to developing an ADF skin using the visual editor for ADF skins in JDeveloper. The tutorial also provides an accompanying sample application for you to use. For more information, navigate to: http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html.

1.4 Taking a Look at an ADF Skin

An ADF skin is a type of cascading style sheet. It differs from a cascading style sheet in a number of ways. One way it differs is that you can specify properties for the selectors that the ADF skinning framework exposes in the source file for the ADF skin. A selector exposed by the ADF skinning framework is similar to a CSS selector in that it identifies the ADF Faces and ADF Data Visualization components for which you want to change the appearance and allows you to specify one or more style properties for the component.

A selector exposed by the ADF skinning framework differs from a CSS selector in that it allows you to set values both for CSS properties and ADF skin properties exposed by the ADF skinning framework. CSS properties are interpreted directly by the end user's browser. ADF skin properties are prefaced by the characters -tr-. Some of these ADF skin properties are read and interpreted by the Fusion web application. These properties are also known as server-side properties. A component that renders in the user interface may read these properties before it decides what to render. Other types of ADF skin properties, for example -tr-rule-ref or -tr-property-ref, enhance the capabilities of the ADF skinning framework, as described in Section 2.3, "Properties in the ADF Skinning Framework."

Example 1-1 shows the selector for the gauge component that sets values for the ADF skin properties -tr-graphic-antialiasing and -tr-animation-indicators, plus the CSS properties background-color and font-family.

Example 1-1 Gauge Component's Selector with ADF Skin and CSS Properties

af|dvt-gauge
{
 /** ADF skin properties */
 -tr-graphic-antialiasing: false;
 -tr-animation-indicators: none;
 /** CSS properties */
 font-family: Geneva, Arial, Helvetica, sans-serif;
 background-color: rgb(243,255,185);
}

As Example 1-1 demonstrates, you can set values for CSS properties and ADF skin properties within the declaration of a selector exposed by the ADF skinning framework. The ADF skinning framework exposes the ADF skin properties that you can define. In addition to ADF skin properties, the ADF skinning framework defines a number of pseudo classes and rules that you can specify in an ADF skin. Examples of supported rules and pseudo classes include @platform, @agent, @accessibility-profile, :rtl, and @locale. For more information, see Chapter 2, "Working with ADF Skin Selectors."

At runtime, the Fusion web application reads the source file for the ADF skin, converts the entries in the ADF skin to style classes that it dynamically adds to the generated HTML output for an ADF Faces component.

Figure 1-3 demonstrates the impact that an ADF skin can have on the appearance of an application's page. The page on the left renders using the fusion ADF skin. The page on the right renders using the simple ADF skin. Each ADF skin defines values for colors and fonts. The fusion ADF skin uses many more colors, in addition to referencing an image for the Oracle logo.

Figure 1-3 File Explorer Application Using the Fusion ADF Skin and the Simple ADF Skin

[image: Page Using the Fusion Skin and the Simple Skin]

	
Note:

An ADF skin can affect the time it takes a client to render the user interface. The more styles that an ADF skin uses, the more the client has to load. This can affect performance in low bandwidth or high latency environments.

1.5 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

Oracle ADF provides a number of ADF skin families that you can use in your application or extend when you create an ADF skin. The ADF skins provided by Oracle ADF offer increasing levels of customization for the appearance rendered by ADF Faces and ADF Data Visualization components at runtime. Figure 1-4 illustrates the inheritance relationship between the different ADF skin families where, for example, the fusion-base ADF skin inherits the style properties defined in the simple ADF skin in addition to defining more style properties. All ADF Faces components use, at a minimum, styles defined in the simple ADF skin as this is the skin from which the others extend from. The simple ADF skin defines the minimum style properties that ADF Faces components require to render in an ADF application. If you want to create an ADF skin with a minimal amount of customization, you create an ADF skin that extends from the simple ADF skin. If you want to create an ADF skin that resembles the Fusion family of ADF skins but is easier to modify (because it uses fewer colors and fonts), consider creating an ADF skin that extends from the Fusion Simple family of ADF skins.

Figure 1-4 Inheritance Relationship of ADF Skin Families Provided by Oracle ADF

[image: Hierarchy of ADF Skins Provided by Oracle ADF]

	
Note:

The Blafplus family of ADF skins shown in Figure 1-4 is deprecated.

You can apply any of the ADF skins in Figure 1-4 or an ADF skin that you create yourself to an application. For more information, see Section 10.4, "Applying an ADF Skin to Your Web Application."

For a more detailed description of the ADF skins that Oracle ADF provides, see Section 11.4, "ADF Skins Provided by Oracle ADF."

2 Working with ADF Skin Selectors

This chapter describes the ADF skin selectors. These selectors along with pseudo-elements, pseudo-classes, ADF skin properties and ADF skinning framework rules allow you to customize the appearance of ADF Faces and ADF Data Visualization components.

This chapter includes the following sections:

	
Section 2.1, "About ADF Skin Selectors"

	
Section 2.2, "Pseudo-Classes in the ADF Skinning Framework"

	
Section 2.3, "Properties in the ADF Skinning Framework"

	
Section 2.4, "Rules in the ADF Skinning Framework."

2.1 About ADF Skin Selectors

The ADF skinning framework provides a range of selectors that you can specify in an ADF skin to customize the appearance of ADF Faces and ADF Data Visualization components. There are two types of selectors: global selectors and component-specific selectors. A global selector defines style properties that you apply to one or more selectors. A component-specific selector defines style properties that apply to one selector.

The ADF skins provided by Oracle ADF define many global selectors (Global Selector Aliases in the user interface of the visual editor) that many ADF Faces components inherit. These ADF skins do not define global selectors inherited by the ADF Data Visualization components. For example, many ADF Faces components use the .AFDefaultFontFamily:alias selector to specify the font family. If you create an ADF skin that overrides this selector by specifying a different font family, that change affects all the components that have included the .AFDefaultFontFamily:alias selector in their selector definition. Figure 2-1 shows the .AFDefaultFontFamily:alias selector in the source view and the design view. The View as list displays the current list of ADF Faces components that use the value defined in the .AFDefaultFontFamily:alias global selector alias to determine what font family to use.

Figure 2-1 The .AFDefaultFontFamily:alias Global Selector Alias

[image: The .AFDefaultFontFamily:alias Global Selector Alias]

An ADF skin that you create inherits the global selector aliases defined in the ADF skin that it extends from. You can also create new global selector aliases in your ADF skin files. For more information, see Chapter 8, "Working With Global Selector Aliases."

Component-specific selectors are selectors that the ADF skinning framework exposes that allow you to identify the corresponding ADF Faces and ADF Data Visualization components for which you can define style properties. For example, Figure 2-2 shows the selector for the ADF Faces inputText component in the source editor and visual editor. A value of red has been set for the CSS background-color property in the content pseudo-element exposed by this component's selector (af|inputText).

Figure 2-2 inputText Component's Skin Selector

[image: Input Text Component’s Skin Selector]

For more information about the component-specific selectors, see Chapter 5, "Working with Component-Specific Selectors." For more information about global selector aliases, see Chapter 8, "Working With Global Selector Aliases."

2.1.1 ADF Skin Selectors and Pseudo-Elements

Many ADF skin selectors expose pseudo-elements. A pseudo-element denotes a specific area of a component for which you can define style properties. Pseudo-elements are denoted by a double colon followed by the portion of the component the selector represents. For example, Figure 2-3 shows how the days-row pseudo-element exposed by the af|chooseDate selector allows you to configure style properties for the appearance of the calendar grid.

Figure 2-3 Pseudo-Elements for the Choose Date Component

[image: Pseudo-Elements for the Choose Date Component]

2.1.2 ADF Skin Selectors and Icon Images

ADF Faces components that render icons do so using a set of base icon images. No CSS code entries appear in the source file of the ADF skin for these icon images in contrast to, for example, the CSS code entries that appear in a source file when you specify an image as a value for the CSS background-image property. Instead, the ADF skinning framework registers the icon image for use with the renderer. For more information about the renderer and supported render kits, see Section 11.2, "ADF Skinning Framework and Supported Render Kits."

ADF skin selectors use two naming conventions for pseudo-elements that identify icon images that render in a component. The names of these pseudo-elements end in -icon or in icon-style. For example, the Panel Collection selector's pseudo-elements end in -icon, as shown in Figure 2-4.

Figure 2-4 Panel Collection Pseudo-Elements for Icon Images

[image: Panel Collection Pseudo-Elements for Icon Images]

In contrast, the Column selector (af|column) defines pseudo-elements that end in both -icon and -icon-style, as shown in Figure 2-5.

Figure 2-5 Column Pseudo-Elements for Icons

[image: Table Column Pseudo-Elements for Icons]

In Figure 2-5, the sort-ascending-icon-style pseudo-element styles the icon used for the sort ascending indicator in the column selector. This pseudo-element specifies the icon as a background image. Use the :hover and :active pseudo-classes to customize the appearance. For example, write the following syntax to make the background red if the end user hovers the mouse over the sort ascending indicator:

af|column::sort-ascending-icon-style:hover
{
 background-color: Red;
}

	
Tip:

Many browsers do not render background images when in accessibility mode. The following example demonstrates how you can work around this behavior if you want your application to display an image when in accessibility mode.

If you want to use your own image rather than the icon specified as a background image, you need to first prevent the background image from rendering. You do this by specifying the -tr-inhibit ADF skin property for the sort-ascending-icon-style pseudo-element as follows:

af|column::sort-ascending-icon-style
{
 -tr-inhibit: background-image;
}

Next you specify the text or image that you want to render as a value for the content property of the sort-ascending-icon selector. For example, write syntax similar to the following to specify an alternative image:

af|column::sort-ascending-icon
{
 content:url("images/arrow-up.jpg");
 width: 10px;
 height: 10px;
}

The ADF skinning framework also defines a number of global selector aliases that specific icon images to use in different scenarios. These global selector aliases appear under the Icons node in the Selector Tree, as shown in Figure 2-6. The .AFChangedIcon:alias shown in Figure 2-6 enables you to globally set the changed icon for all components using that icon.

Figure 2-6 Global Selector Aliases for Icons

[image: Global Selector Aliases for Icons]

For more information, see Chapter 6, "Working with Images in Your ADF Skin."

2.1.3 Grouped ADF Skin Selectors

You can group ADF skin selectors and global selector aliases to minimize the number of entries in the source file of the ADF skin. The selectors that you group render under the Grouped Selectors node in the Selector Tree, as shown in Figure 2-7. The View as list in the Preview Pane displays all the selectors that you grouped.

As the visual editor does not provide a way to specify grouped selectors, you use the source editor to specify the selectors and/or global selector aliases that you want to put in a grouped selector. Separate each selector by a comma (,) to include in the grouped selector.

Figure 2-7 Grouped Selectors in the Selector Tree

[image: Grouped Selectors in the Skinning Navigator]

2.1.4 Descendant ADF Skin Selectors

A descendant selector is made up of two or more selectors separated by white space. You can configure descendant selectors for ADF skin selectors. These allows you to configure style properties for specific selectors when they render within another selector. When you configure a descendant selector, the visual editor displays a Descendant Selectors node under the selector included in the descendant selector, as shown in Figure 2-8.

Figure 2-8 Descendant Selectors in the Selector Tree

[image: Descendant Selectors in the Skinning Navigator]

As the visual editor does not provide a way to specify descendant selectors, you use the source editor to specify the selectors and/or global selector aliases that you want to specify in a descendant selector. Separate each selector by a white space.

2.2 Pseudo-Classes in the ADF Skinning Framework

The CSS specification defines pseudo-classes, such as :hover and :active, which are used to define style properties for when a selector is in a particular state. You can apply these pseudo-classes to almost every ADF Faces component. In addition, the ADF skinning framework provides additional pseudo-classes for specialized functions. Examples include pseudo-classes to apply when a browser's locale is a right-left language (:rtl) or for drag and drop operations (:drag-target and :drag-source). The syntax that appears in the source file of an ADF skin to denote a pseudo-class uses the following format(s):

adfskinselector:pseudo-class

adfskinselector::pseudo-element:pseudo-class

Figure 2-9 shows the syntax that you write in the source file of an ADF skin for the :hover pseudo-class so that a panelList component's link renders green when an end user hovers a mouse over the link in Figure 2-9.

Figure 2-9 Pseudo-Class Syntax and Runtime Behavior for a Panel List Link

[image: Pseudo-Class Syntax and Runtime Behavior for a Link]

Some components make more use of pseudo-classes than other components. The panelBox component's selector, for example, makes extensive use of pseudo-classes to define its appearance when it is in various states (for example, active, disabled, rendering right to left). Figure 2-10 shows the list of available pseudo-classes that renders when you select the panelBox component's selector in the Selector Tree and click the Add Pseudo-Class icon to display the list of available pseudo-classes.

Figure 2-10 Pseudo-classes for the panelBox Component's Selector

[image: Pseudo-Classes for the PanelBox Component Selector]

Pseudo-classes can also be applied to pseudo-elements that selectors expose. The panelBox component selector's pseudo elements are a good example. Figure 2-11 shows the list of pseudo-classes that the header-start pseudo-element exposed by the panelBox component selector accepts. Many of these pseudo-classes allow you to define the appearance for the panelBox component depending on the value that the application developer sets for its attributes. For example, the core and highlight pseudo-classes define the corresponding appearance when the application developer sets the panelBox component's ramp attribute to core or highlight.

Figure 2-11 Pseudo-classes for the header-start pseudo-element

[image: Pseudo-classes for the the header-start pseudo-element]

The following are common pseudo-classes used by ADF Faces selectors.

	
Drag and drop: The two pseudo-classes available are :drag-source applied to the component initiating the drag and removed once the drag is over, and :drop-target applied to a component willing to accept the drop of the current drag.

	
Standard: In CSS, pseudo-classes like :hover, :active, and :focus are considered states of the component. This same concept is used in applying skins to components. Components can have states like read-only or disabled. When states are combined in the same selector, the selector applies only when all states are satisfied.

	
Right-to-left: Use this pseudo-class to set a style or icon definition when the browser is in a right-to-left language. Another typical use case is asymmetrical images. You will want the image to be flipped when setting skin selectors that use the image in a right-to-left reading direction. Be sure to append the :rtl pseudo-class to the very end of the selector and point it to a flipped image file. For example, the end image of the panelBox component will be the panelBoxStart.png file when the browser is set to right-to-left. The panelBox end image in right-to-left is the same as the flipped left-to-right panelBox start image.

af|panelBox::medium af|panelBox::top-end:rtl {
 background-image: url(/skins/purple/images/panelBoxStart.png);
 width:8px;
 height:8px
}

You can also use :rtl to apply to skin icons. For more information, see Chapter 6, "Working with Images in Your ADF Skin."

	
Inline editing: This pseudo-class is applied when the application activates a component subtree for editing in the browser. For example, :inline-selected is a pseudo-class applied to currently selected components in the active inline-editable subtree.

	
Message: This pseudo-class is used to set component-level message styles using CSS pseudo-classes of :fatal, :error, :warning, :confirmation, and :info. For more information, see Section 5.5, "Configuring ADF Skin Properties to Apply to Messages."

	
Note:

The global selector aliases that appear in the Selector Tree are a special type of pseudo-class (:alias). For more information, see Chapter 8, "Working With Global Selector Aliases."

2.3 Properties in the ADF Skinning Framework

The ADF skinning framework defines a number of ADF skin properties. The Fusion web application, rather than the user's browser, interprets ADF skin properties. When configured, ADF skin properties enable you to do the following:

	
Suppress styles defined in an ADF skin with the -tr-inhibit skin property.

Suppress or reset CSS properties inherited from a base skin with the -tr-inhibit skin property. For example, the -tr-inhibit:padding property will remove any inherited padding. Remove (clear) all inherited properties with the -tr-inhibit:all property. The suppressed property name must be matched exactly with the property name in the base skin

	
Reference styles from other selectors with the -tr-rule-ref property.

Create your own global selector alias and combine it with other selectors using the -tr-rule-ref property. For more information, see Section 8.2, "Creating a Global Selector Alias."

	
Reference the value of a property defined in another selector using the -tr-property-ref property.

For more information, see Section 8.5, "Referencing a Property Value from Another Selector."

	
Configure the themes for child components with the -tr-children-theme property.

For more information, see Section 5.6, "Applying Themes to ADF Faces Components."

	
ADF skin selectors with style properties.

Skin style properties allow you to customize the rendering of a component throughout the application. A CSS property is stored with a value in the Skin object and is available when the component is being rendered. For example, in af|breadCrumbs{-tr-show-last-item: false}, the skin property -tr-show-last-item is set to hide the last item in the breadCrumbs component's navigation path.

The ADF skinning framework also provides the + and - operators that allow you to set a selector's color or font properties relative to the value that you specify for the color or font properties of another selector. This is useful if you want to apply a range of colors to selectors or maintain a relative size between fonts.

Example 2-1 demonstrates the syntax that you write to make use of this feature for a color property. A global selector alias defines the background color that two additional global selector aliases (.fooColorTestPlus and .fooColorTestMinus) apply using the + and - operators.

Example 2-1 Using the + and - Operators to Apply Color

.BaseBackgroundColor:alias { background-color: #0099ff; }
.fooColorTestPlus {
 -tr-rule-ref: selector(".BaseBackgroundColor:alias");
 background-color: +#333333;
 }
.fooColorTestMinus {
 -tr-rule-ref: selector(".BaseBackgroundColor:alias");
 background-color: -#333333;
}

Example 2-2 demonstrates the syntax that you write to make use of this feature for a font property. A global selector alias defines the font size and an additional global selector alias (.fooFont Test) increases this font size by 1pt using the + operator.

Example 2-2 Using the + Operator to Increase Font Size

.FontSizeTest:alias {font-size: 12pt;}
.fooFontTest {
 -tr-rule-ref: selector(".FontSizeTest:alias");
 font-size:+1pt;
}

2.4 Rules in the ADF Skinning Framework

The ADF skinning framework defines a number CSS at-rules that allow you to define properties for selectors that you do not want to apply to all browsers, platforms, locales, or reading directions.

For example, you may need to add some padding in Internet Explorer that you do not need on any other browser or maybe you want a font style to be different on Windows than it is on other platforms. To style a selector for a particular user environment, put that skinning information inside an ADF skinning framework rule. The ADF skinning framework picks the styles based on the HTTP request information, such as agent and platform, and merges them with the styles without rules. Those CSS properties that match the rules get merged with those outside of any rules. The most specific rules that match a user's environment take precedence.

	
Note:

The visual editor does not currently support the creation of the following rules in an ADF skin. Use the source editor to create and modify the supported rules.

The ADF skinning framework currently supports these rules:

	
Define platform styles using @platform

The supported values to set a platform-specific style are windows, macos, linux, solaris, and ppc.

	
Define browser styles using @agent

The supported values to set a browser agent-specific style are ie, mozilla, gecko, webkit (maps to safari), ice, and email.

	
Specify styles for any version of Internet Explorer:

@agent ie

	
Optionally, specify a specific version of the agent using the and keyword. For example, to specify version 7 of Internet Explorer:

@agent ie and (version: 7)

	
Use comma-separated rules to specify styles for a number of agents. For example, use the following rule to specify styles for Internet Explorer 6.x, Internet Explorer 7.x, or Gecko 1.9:

@agent ie and (version: 6), ie and (version: 7), gecko and (version: 1.9)

	
Note that the following two syntax examples specify the same rule:

@agent ie and (version: 7.*)

@agent ie and (version: 7)

To specify a rule for styles to apply only to Internet Explorer 7.0.x, write the following:

@agent ie and (version: 7.0.x)

	
Use the max-version and min-version keywords to specify a range of versions. For example, you can rewrite the following rule:

@agent ie and (version: 6), ie and (version: 7)

as:

@agent ie and (min-version: 6) and (max-version: 7)

to apply styles that you define to all versions of Internet Explorer 6 and 7.

The following example demonstrates how you set the content area of the inputText component to the color pink for versions 7 and 8 of Internet Explorer, and version 1.9 of gecko on the Windows and Linux platforms.

@platform window, linux {
 @agent ie and (version: 7) and (version: 8), gecko and (version: 1.9) {
 af|inputText::content {background-color:pink
 }
 }
}

You can also use the @agent rule to determine styles to apply to agents that are touchscreen devices. The following examples show the syntax that you write in a custom skin file to configure this capability.

@agent (touchScreen) {
 /* Touchscreen specific styles for all touchscreen devices: both single and multiple touch. */
}

@agent (touchScreen:single) {
 /* Styles specific for a touchscreen device with single touch. */
}

@agent (touchScreen:multiple) {
 /* Styles specific for a touchscreen with multiple touch. */
}

@agent (touchScreen:none) {
 /* Styles that should not render on touchscreen devices. */
}

Use the @agent (touchScreen:none) at-rule to specify styles that you do not want to render on a touch device. For example, the Fusion Simple family of ADF skin (fusionFx-simple-v1.2 and later) applies this at-rule to selectors configured to use the :hover pseudo class. This is because the :hover pseudo-class is not appropriate for use on a touch device. The @agent (touchScreen:none) at-rule wraps selectors that use the :hover pseudo-class, as in this example:

@agent (touchScreen:none){
 af|breadCrumbs:step:hover{
 text-decoration:underline;
 }
}

	
@import

Specify another ADF skin that defines styles which you can import into your ADF skin. The following example demonstrates valid syntax to import an ADF skin (skinA) into the current ADF skin:

@import "skinA.css";
@import url("skinA.css");

The @import statement(s) must be the first entry in your ADF skin file, as shown in the following example that imports two ADF skins into the current ADF skin:

@import url("skinA.css");
@import url("skinB.css");

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

af|inputText{
 background-color: Green;
}
...

	
@accessibility-profile

Define @accessibility-profile, which defines styles for high-contrast and large-fonts accessibility profile settings when enabled in the trinidad-config.xml file.

The high-contrast value is for cases where background and foreground colors need to contrast highly with each other. The large-fonts value is for cases where the user must be allowed to increase or decrease the text scaling setting in the web browser. Defining large-fonts does not mean that the fonts are large, but rather that they are scalable fonts or dimensions instead of fixed pixel sizes.

<!-- Enable both high-contrast and large-fonts content -->
 <accessibility-profile>high-contrast large-fonts</accessibility-profile>

For more information about the @accessibility-profile rule, see Section 5.7, "Configuring an ADF Skin for Accessibility."

	
@locale

A certain locale must be specified, either only the language or both the language and the country. This defines styles only for a particular language and country. Example 2-3 demonstrates how you can set the color of text rendered by the af:commandMenuItem component on a menu bar when the locale is German (de).

	
Note:

The ADF skinning framework does not support the :lang pseudo class.

Example 2-3 shows several selectors in the CSS file that will be merged together to provide the final style.

Example 2-3 Merging of Style Selectors

/** For IE and Gecko on Windows, Linux and Solaris, make the color pink. **/
@platform windows, linux, solaris
 {
 @agent ie, gecko
 {
 af|inputText::content {background-color:pink}
 }
 }
 af|someComponent {color: red; width: 10px; padding: 4px}

/* For IE, we need to increase the width, so we override the width.
 We still want the color and padding; this gets merged in. We want to add
 height in IE. */

@agent ie { af|someComponent {width: 25px; height: 10px} }
/* For IE 7 and 8, we also need some margins.*/
@agent ie (version: 7) and (version: 8)
 {
 af|someComponent {margin: 5px;}
 }

/* For Firefox 3 (Gecko 1.9) use a smaller margin.*/
@agent gecko (version: 1.9)\
 {
 af|someComponent {margin: 4px;}
 }

/* The following selectors are for all platforms and all browsers. */
/* rounded corners on the top-start and top-end */
/* shows how to use :rtl mode pseudo-class. The start image in ltr mode is the */
 /* same as the end image in the right-to-left mode. */
af|panelBox::medium af|panelBox::top-start,
af|panelBox::medium af|panelBox::top-end:rtl {
 background-image: url(/skins/purple/images/panelBoxStart.png);
 width:8px;
 height:8px
 }
/* The following example sets the text color to red when the locale is German (de)*/
@locale de {
 af|commandMenuItem::bar-item-text
 {
 color: Red;
 }
}
af|panelBox::medium af|panelBox::top-end,
af|panelBox::medium af|panelBox::top-start:rtl {
 background-image: url(/skins/purple/images/panelBoxEnd.png);
 height: 8px;
 width: 8px;
 }

3 Working with the Oracle ADF Skin Editor

This chapter describes the visual editor for creating ADF skins. Key features of this editor such as the Selector Tree that you use to browse the items that you can configure in an ADF skin, the Property Inspector that you use to set properties, and how you navigate to an ADF skin that you extend are also described.

This chapter includes the following sections:

	
Section 3.1, "Overview of the ADF Skin Editor"

	
Section 3.2, "Working with the Selector Tree"

	
Section 3.3, "Working with the Property Inspector"

	
Section 3.4, "Navigating to the ADF Skins That Your ADF Skin Extends"

	
Section 3.5, "Customizing the ADF Skin Editor"

	
Section 3.6, "Searching the Source Files of ADF Skins"

	
Section 3.7, "Working with Extensions"

	
Section 3.8, "Working with the Overview Editor in the ADF Skin Editor"

	
Section 3.9, "Adding External Tools to the ADF Skin Editor"

	
Section 3.10, "Navigating the ADF Skin Editor"

3.1 Overview of the ADF Skin Editor

The ADF Skin Editor provides a range of features that facilitate the creation and modification of ADF skins. The following list, for which each item has a corresponding label number in Figure 3-2, describes the individual features that the editor exposes when you create an ADF skin, as described Section 4.4, "Creating an ADF Skin File":

	
The Projects node in the Application Navigator contains a node named skins where the source files for the ADF skins that you create are stored. The skins node is not created until after you create the first ADF skin, as described in Chapter 4, "Creating the Source Files for an ADF Skin."

	
The Structure window lists the selectors, global selector aliases, and style classes that you add to the ADF skin file.

For more information, see Chapter 2, "Working with ADF Skin Selectors."

	
Click the Hide/Show Divider icon to hide or show the Selector Tree.

	
Filter the selectors that appear in the Selector Tree to display all selectors (Available Selectors) or only those that you modified in the ADF skin (Updated Selectors).

	
The Extended Skins list displays the list of ADF skins from which the current ADF skin extends.

For more information, see Section 3.4, "Navigating to the ADF Skins That Your ADF Skin Extends."

	
Use the Add icon to create a new style class or alias selector.

For more information about creating a new style class, see Chapter 9, "Working with Style Classes." For information about creating an alias selector, see Chapter 8, "Working With Global Selector Aliases."

	
Use the Delete icon to remove a selector that you added to the ADF skin.

	
Click the Refresh icon to update the Preview Pane after you make changes to the properties of a selector in the Property Inspector.

	
Click the Add Pseudo-Class icon to apply a pseudo-class to the item that you selected in the Selector Tree.

For more information about pseudo-classes, see Section 2.2, "Pseudo-Classes in the ADF Skinning Framework."

	
Click the Clear Property Settings icon to undo any change that you made to the item selected in the Selector Tree.

	
Click the Delete Pseudo-Class from Skin File icon to delete any pseudo-classes that you specified in the ADF Skin.

	
The View as list allows you to preview how changes you make to a global selector alias in the Selector Tree affect the components that reference the global selector alias. The View as list displays all components that reference the global selector alias. The View as list also allows you to preview how changes you make to the properties of one component-specific selector impact all sub-types of that component. For example, Figure 3-1 shows the ADF Data Visualization component selector for the graph component (af|dvt-graph) that exposes a single set of component-specific selectors that apply changes to all graph types. Use the View as list to preview a change that you make to a selector in one of the other types of graph (for example, Bar, Funnel, Pareto, and so on).

Figure 3-1 View as List for a Component

[image: View as List for a Component]

For more information about global selector aliases, Chapter 8, "Working With Global Selector Aliases."

	
The Selector Tree displays the list of selectors, global selector aliases, and style classes that you can configure values for in an ADF skin.

For more information, see Section 3.2, "Working with the Selector Tree.".

	
The Preview Pane renders a preview of the changes that you make to a selector in an ADF skin after you click the Refresh icon (8).

	
You can also view the source of an ADF skin file.

	
Tip:

Select Split Document from a context menu that you can invoke from the Preview Pane to render the source and design views of an ADF skin side by side.

	
The Property Inspector identifies properties that you can configure for the ADF skin.

For more information, see Section 3.3, "Working with the Property Inspector."

	
The tabs for themes allow you to preview changes that you make for supported themes.

For more information, see Section 5.6, "Applying Themes to ADF Faces Components."

	
The Images window helps you manage the images that you want to use with an ADF skin.

For more information, see Section 6.3, "Working with the Images Window."

Figure 3-2 Overview of the ADF Skin Editor

[image: Overview of the ADF Skin Editor]

3.2 Working with the Selector Tree

The Selector Tree displays a list of the style classes, global selector aliases, and selectors for which you can configure properties to change the appearance of ADF Faces and ADF Data Visualization components.

Figure 3-3 shows the nodes that the Selector Tree exposes:

	
Style Classes

A style class defines one or more style properties that you can apply to specific instances of a component. The Selector Tree categorizes the inherited style classes into style classes defined for general usage, note windows, and popups. For more information, see Chapter 9, "Working with Style Classes."

	
Global Selector Aliases

A global selector alias defines style properties that you apply to one or more selectors. The Selector Tree categorizes the inherited global selector aliases into selector aliases defined for general usage, icons, and messages. For more information, see Chapter 8, "Working With Global Selector Aliases."

	
Grouped Selectors

Identifies style properties grouped into one declaration to apply to more than one selector. For example, Figure 3-3 shows a grouped selector for the commandImageLink and goImageLink component's selectors.

	
Faces Component Selector

Selectors identify the ADF Faces components for which you can configure properties. The Selector Tree displays subcategories for pseudo-elements, component selector aliases, and descendant selectors. For brevity, the ADF Faces components node is not expanded. For more information, see Chapter 5, "Working with Component-Specific Selectors."

	
Data Visualizations Component Selectors

Selectors identify the ADF Data Visualization components for which you can configure properties. The Selector Tree displays subcategories for pseudo-elements, component selector aliases, and descendant selectors. For more information, see Chapter 5, "Working with Component-Specific Selectors."

Figure 3-3 Selector Tree

[image: Skinning Navigator]

3.3 Working with the Property Inspector

The Property Inspector serves a number of functions apart from its primary role of allowing you to set values for CSS properties and ADF skin properties for the selectors that the ADF skinning framework exposes. These functions are the ability to:

	
Copy an image into the project where you develop the ADF skin.

For more information, see Chapter 6, "Working with Images in Your ADF Skin."

	
Identify the properties that inherit their values from an extended ADF skin and identify the properties that you configured in the ADF skin, as shown in Figure 3-4.

	
Present ADF skin properties that you can configure for a selector.

For more information, see Section 2.3, "Properties in the ADF Skinning Framework."

	
Navigate to the selector in an extended ADF skin that defines an inherited property in your ADF skin (Go to Declaration).

For more information, see Section 3.4, "Navigating to the ADF Skins That Your ADF Skin Extends."

	
Invoke a dialog where you can define the colors for properties that support color value.

Figure 3-4 presents an overview of the various controls that the Property Inspector exposes when you edit an ADF skin.

Figure 3-4 Property Inspector Controls for ADF Skins

[image: Property Inspector Controls for ADF Skins]

3.4 Navigating to the ADF Skins That Your ADF Skin Extends

When you create an ADF skin, as described in Section 4.4, "Creating an ADF Skin File," you choose an ADF skin from which to extend. The ADF skin that you choose to extend from defines properties that your newly created ADF skin inherits. When you create your first ADF skin, you must choose one of the ADF skins that Oracle ADF provides.

Subsequent ADF skins that you create can extend an ADF skin that you created or one of the ADF skins provided by Oracle ADF. For example, you create your first ADF skin named skinA that extends the simple ADF skin provided by Oracle ADF. You then create a second ADF skin named skinB. When creating skinB, you have the choice of extending from skinA or from any of the ADF skins provided by Oracle ADF. If you choose to extend skinB from skinA, the inheritance relationship between the ADF skins is as illustrated in Figure 3-5.

For more information about the ADF skins that Oracle ADF provides, see Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF," and Section 11.4, "ADF Skins Provided by Oracle ADF."

Figure 3-5 Example Inheritance Relationship Between ADF Skins

[image: Inheritance Relationship Between ADF Skins]

The Extended Skins list in the visual editor displays the list of ADF skins that the current ADF skin extends. Figure 3-6 shows the list of ADF skins that appears if you implement the inheritance relationship described in Figure 3-5. You open an extended ADF skin that you want to view by clicking it in the Extended Skins list.

Figure 3-6 Extended Skins List

[image: Extended Skins List]

	
Note:

You cannot edit the properties of the selectors in the ADF skins provided by Oracle ADF. You can only edit the properties of selectors in extended ADF skins that you created.

Using the Go to Declaration menu that the Property Inspector exposes, you can navigate to the location in an extended ADF skin where the extended ADF skin declares style properties inherited by other ADF skins. For example, assume that the skinA ADF skin defines a background color of Red for the af|goButton selector's access-key pseudo-element, as shown in Figure 3-4.

Figure 3-7 Declaration of a Property Value

[image: Declaration of a Property Value]

The skinB ADF skin that extends from skinA ADF skin inherits the property values, as shown in Figure 3-4.

Figure 3-8 Inheriting a Property Value from an Extended Skin

[image: Inheriting a Property Value from an Extended Skin]

To go to the declaration of a property:

	
Identify a property in your ADF skin that inherits its values from an extended ADF skin. A blue upward-pointing arrow, as shown in Figure 3-8, identifies these properties.

	
Click the list beside this property to invoke a context menu where you select Go to Declaration, as shown in Figure 3-9.

Figure 3-9 Go to Declaration Context Menu

[image: Go to Declaration Context Menu]

The extended ADF skin opens in the source view, as shown in Figure 3-10. If the extended ADF skin is one that you created, you can modify the property values defined in it. The ADF skins provided by Oracle ADF, described in Section 11.4, "ADF Skins Provided by Oracle ADF," are read-only.

Figure 3-10 Property Value Defined in Extended ADF Skin

[image: Property Value Definded in Extended ADF Skin]

3.5 Customizing the ADF Skin Editor

You can alter the appearance and functionality of a variety of ADF Skin Editor features.

3.5.1 How to Change the Look and Feel of the ADF Skin Editor

You can alter the appearance of the ADF Skin Editor using pre-defined settings.

To change the look and feel of the ADF Skin Editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node if it is not already selected.

	
On the Environment page, select a different look and feel from the Look and Feel list.

	
Click OK.

	
Restart the ADF Skin Editor.

	
Note:

The key bindings in Motif are different from key bindings in Windows. Under Motif, the arrow keys do not change the selection. Instead they change the lead focus cell. You must press Ctrl + Space to select an item. This is expected behavior.

3.5.2 How to Customize the General Environment for the ADF Skin Editor

You can customize the default display options (such as whether dockable windows are always on top), as well as other general behavior, such as whether the ADF Skin Editor will automatically reload externally modified files and whether output to the Log window is automatically saved to a file.

To change the general environment settings for the ADF Skin Editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node if it is not already selected.

	
On the Environment page, select the options and set the fields as appropriate.

	
Click OK.

	
Restart the ADF Skin Editor.

For information about how to start the ADF Skin Editor, see the Oracle Fusion Middleware Installation Guide for Oracle Application Development Framework Skin Editor.

3.5.3 How to Customize Dockable Windows in the ADF Skin Editor

You can customize the layout for dockable windows in their docked position. You can also set dockable windows to remain on top of other GUI elements, or not, when those windows are moved.

To change the shape of one or more of the four docking areas:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node select Dockable Windows.

	
On the Dockable Windows page, click the corner arrows to lengthen or shorten each docking area's shape.

	
Click OK.

To change whether dockable windows remain on top or not when moved:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node select Dockable Windows.

	
On the Dockable Windows page, select or deselect Dockable Windows Always on Top as appropriate.

	
Click OK.

3.6 Searching the Source Files of ADF Skins

The ADF Skin Editor provides a source editor where you can view, edit, and search the syntax that the visual editor generates for an ADF skin.

3.6.1 How to Search the Source Files of ADF Skins

You can search the source files of an ADF skin in a number of ways.

To search a source file currently open in the source editor, with the option to replace text:

	
With the file open in the source editor, make sure that the editor has focus.

	
Optionally, if an instance of the text you want to search for is easily found, you can highlight it now.

	
From the main menu, choose Search > Find. Alternatively, press Ctrl+F.

	
In the Find Text Dialog, enter or select the text to locate.

Text previously searched for in this session of the ADF Skin Editor appears in the Text to Search For list.

	
Select other search parameters accordingly.

For more information, press F1 or click Help from within the dialog.

	
Click OK.

To do a simple search in the open source file for a single text string:

	
With the file open in the editor, ensure that the editor has focus.

	
Place the cursor in the file at the point you wish to search from.

	
From the main menu, choose Search > Incremental Find Forward or Search > Incremental Find Backwards.

	
In the dialog, enter the search text.

As you type, the cursor jumps to the next instance of the group of letters displayed.

Alternatively, enter the text string in the search box. As you type, the cursor jumps to the next instance of the group of letters displayed. Use the Previous or Next buttons to search up and down the file. Click in the search box to set Match Case, Whole Word, or Highlight Occurrences.

3.7 Working with Extensions

Extensions are components that are loaded and integrated with the ADF Skin Editor after it is started. Extensions can access the editor and perform many useful tasks. You can add existing extensions into the ADF Skin Editor, or create your own.

This section contains information on finding and installing extensions. The simplest way to find and download extensions is through the Check for Updates wizard.

If you need additional capabilities (such as integration with a version control system or a special editor), you can add external tools to the ADF Skin Editor. See Section 3.9, "Adding External Tools to the ADF Skin Editor" for more information.

In addition, you can obtain additional extension development tools and functionality in the Extension Software Development Kit (SDK). You can download the Extension SDK via the Check for Updates wizard.

You can also download the Extension SDK from the Oracle Technology Network Web page.

	
Note:

Any time an extension is added or upgraded, the migration dialog appears at startup in case you need to migrate any previous settings related to that extension.

3.7.1 How to Install Extensions with Check for Updates

The easiest way to find and install extensions is to use the Check for Updates wizard.

To install extensions using the Check for Updates wizard:

	
From the Help menu, select Check for Updates.

	
Follow the steps in the wizard to browse, download, and install patches and extensions.

3.8 Working with the Overview Editor in the ADF Skin Editor

Although the ADF Skin Editor creates the faces-config.xml file by default when you create a new ADF skin project, this file is not required for ADF skin projects. In the unlikely event that you need to edit the faces-config.xml file, you can use the overview editor for JSF configuration files. Figure 3-11 displays the overview editor.

Figure 3-11 Overview Editor for JSF Configuration File

[image: Overview Editor for JSF Configuration File]

When you open faces-config.xml its contents are displayed in an editor group. When you select the Overview tab at the bottom of this group, the overview editor appears.

When the overview editor is open, the Property Inspector displays the metadata child elements for the currently selected element. Use the Property Inspector to manage these. For instance, you use the Property Inspector to set the <description> and <display-name> child elements.

The overview editor has three sections:

	
The left-hand column displays the main JSF configuration elements.

	
The top area of the main panel shows child elements for the element selected in the element list on the left.

	
The bottom area of the main panel shows child elements for the element selected at the top area.

3.8.1 How to Use the Overview Editor for JSF Configuration Files in the ADF Skin Editor

You can add, delete, or edit your JSF element and child elements using the Overview Editor.

To work with a main JSF configuration element and its immediate child elements:

	
In Application Navigator, open the workspace that contains your JSF application.

	
In the workspace, open the project that contains your JSF pages.

	
In the project, open the WEB-INF node.

	
Under the WEB-INF node, double-click the faces-config.xml file to open.

	
At the bottom of the editor, select the Overview tab.

	
Select an element from the element list on the left. The main panel displays corresponding configurable child elements in a table at the top of the main panel.

To add, delete, or edit JSF configuration elements:

	
To add a new child element. Click New. A dialog box opens to create the element. If no new button displays, the child element must be an existing class. You can select the class by clicking Browse... . If no browse button appears, or if the entry is not a class name, you can enter a value directly.

	
To delete an existing child element. Select the element from the table and click Delete. The element is removed from the table. If no delete button displays, the entry can be deleted manually.

	
To edit an existing child element. Select the element from the table and click Edit. The Properties panel for the element opens to change the value.

To view, add, delete, or edit child configuration element child element:

	
To view child elements. Select an element from the element list on the left. The main panel displays. Select an existing child element from a table at the top of the main panel. Allowed child elements display in a table at the bottom of the main panel. If a child element allows child elements, but no children are currently defined, the list area for those children might be hidden. To display the list area and add children, click the show arrow to the left of the area title. To hide the list area, click the hide arrow.

	
To add a new child element. Click New. If no new button displays and the child element must be an existing class, you can select the class by clicking Browse... to open the Class Editor dialog box. If no browse button appears, or if the entry is not a class name, you can enter a value directly.

	
To edit an existing child element. Select it from the table and click Edit. The Properties panel for the element opens to change the value. If no edit button displays, you can either select a new class (if applicable), or edit the entry To delete an existing child element, select it from the table and click Delete.To delete an existing child element. Select it from the table and click Delete. The element is removed from the table. If no delete button displays, you can delete the entry manually.

3.9 Adding External Tools to the ADF Skin Editor

External tools are custom ADF Skin Editor menu items and toolbar buttons that launch applications installed on your system, applications that are not packaged as part of the ADF Skin Editor.

3.9.1 How to Add External Tools to the ADF Skin Editor

You find and add available external tools to the ADF Skin Editor using the External Tools menu.

To find all external programs that the ADF Skin Editor is preconfigured to support:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click Find Tools.

To add access to an external program from the ADF Skin Editor:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click New. Follow the instructions in the wizard.

To change how an external program appears, or remove access to an external program from the ADF Skin Editor:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click Edit or Delete. If you are editing the options, display, integration or availability of an external tool from the ADF Skin Editor, select the corresponding tab and change the values. Click Help for help choosing valid values.

	
Click OK. Your changes are reflected immediately.

3.10 Navigating the ADF Skin Editor

You can accomplish any task in the ADF Skin Editor using the keyboard as you use the mouse.

3.10.1 How to Work With Shortcut Keys In the ADF Skin Editor

The ADF Skin Editor comes with several predefined keyboard schemes. You can choose to use one of these, or customize an existing set to suit your own coding style by changing which keyboard shortcuts map to which actions.

To load preset keyboard schemes:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
On the shortcut keys page, click More Actions and then select Load Keyboard Scheme. The Load Keyboard Scheme dialog appears, with the currently loaded keyboard scheme highlighted.

	
In the Load Keyboard Scheme dialog, select the scheme you wish to load and click Ok.

	
On the Shortcut Keys page, if you have finished, click Ok.

To view the ADF Skin Editor commands and their associated keyboard shortcuts (if assigned):

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node.

	
On the Shortcut Keys page, under Available Commands, you can view the complete set of the ADF Skin Editor commands, and what keyboards shortcuts (if any) are assigned to each. If you are looking for a particular command or shortcut, or want to look at shortcuts for a particular category of commands only, enter a filtering expression in the Search field.

	
You can also define new shortcuts, or change existing ones.

To define a new keyboard shortcut for a command within a given keyboard scheme:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node. For more information at any time, press F1 or click Help from within the preferences dialog.

	
On the Shortcut Keys page, under Available Commands, select the command that you wish to define a new shortcut for.

	
To define a new shortcut for this action, place focus on the New Shortcut field, and then press the key combination on the keyboard.

If this proposed shortcut already has a command associated with it, that command will now appear in the Conflicts field. Any conflicting shortcuts are overwritten when a new shortcut is assigned.

	
To assign this shortcut to the action selected, click Assign. If you want to delete an already-assigned shortcut, click the Delete button in the toolbar.

If you want to assign more than one shortcut to a command, select the command and click the Duplicate button. Then, type the shortcut key in the New Shortcut field and click Assign.

	
When you are finished, click Ok.

To import or export keyboard schemes:

	
From the main menu, select Tools > Preferences to open the Preferences dialog.

	
Click More Actions > Export or Import. Keyboard schemes are stored as XML files.

3.10.2 Keyboard Navigation In the ADF Skin Editor

For any action that can be accomplished with a mouse, including selection, there is a way to accomplish the action solely from the keyboard. You can accomplish any task in the ADF Skin Editor using the keyboard as you can using the mouse.

The shortcut keys defined in the Java Look and Feel guidelines provide the base set for the ADF Skin Editor. The various predefined keyboard schemes available in the ADF Skin Editor are then overlaid upon this base set. If the same shortcut key exists in both the look and feel guidelines and the ADF Skin Editor keyboard scheme, the ADF Skin Editor scheme prevails. If a shortcut key defined by the look and feel guidelines does not appear in the ADF Skin Editor scheme, then it is the original look and feel definition that remains in effect when the scheme in question is enabled.

At any given time, then, the shortcut keys enabled in the ADF Skin Editor depend upon the interaction of the currently enabled scheme with the Java look and feel guidelines. When you first open the ADF Skin Editor, the default scheme is enabled. You can change this scheme whenever you wish, and within each scheme, you can customize any of the shortcut key assignments that you would like. Note that any customized shortcuts you create in a scheme are not retained when another predefined keyboard scheme is activated (or even if the same scheme is reloaded).

To load predefined keyboard schemes, view current shortcut assignments within a scheme, and customize those assignments, you will need to open the preferences dialog. To open the dialog, choose Tools > Preferences (or on the keyboard, press Alt+T+P) from the main menu and then, using the arrow keys in the left-hand pane, navigate to the Shortcut Keys node. For details on working with the dialog, with the page displayed, click Help (or on the keyboard press H).

3.10.2.1 Common Navigation Keys

The following table describes the common methods of moving the cursor in the ADF Skin Editor:

Table 3-1 Common Methods of Moving the Cursor

	Key	Cursor Movement	Ctrl+cursor Movement
	
Left Arrow

	
Left one unit (e.g., a single character)

	
Left one proportionally larger unit (e.g., a whole word)

	
Right Arrow

	
Right one unit

	
Right one proportionally larger unit

	
Up Arrow

	
Up one unit or line

	
Up one proportionally larger unit

	
Down Arrow

	
Down one unit or line

	
Down one proportionally larger unit

	
Home

	
Beginning of the line

	
To the beginning of the data (top-most position)

	
End

	
End of the line

	
To the end of the data (bottom-most position)

	
Tab

	
Next field or control, except when in a text area or field. In this case, press Ctrl+Tab to navigate out of the control.

Where there are fields and controls ordered horizontally as well as vertically, pressing Tab moves the cursor first horizontally to the right, then at the end of the line, down to the left of the next line.

	
To the next pane which may be a navigator, an editor, or a palette, except when in a text area or field. In this case, press Ctrl+Tab to navigate out of the control

	
Shift+Tab

	
Previous field

	
To previous tab position. In property sheets, this moves the cursor to the next page

	
Enter

	
Selects and highlights the default button, except when in a combo box, shuttle button, or similar control.

Note: The default button changes as you navigate through controls.

	
n/a

3.10.2.2 Navigation In Standard Components

This section describes keyboard navigation in the standard ADF Skin Editor components.

Buttons

The following table describes the keyboard actions to perform navigation tasks involving buttons.

Table 3-2 Keyboard Navigation for Buttons

	Navigation	Keys
	
Navigate forward to or from button

	
Tab

	
Navigate backward to or from button

	
Shift+Tab

	
Activate the default button (when the focus is not on a button)

	
Enter

	
Activate any button while it has focus

	
Enter, Spacebar, or keyboard shortcut (if one has been defined)

	
Activate Cancel or Close buttons on a dialog

	
Esc

Checkboxes

The following table describes the keyboard actions to perform navigation tasks involving checkboxes.

Table 3-3 Keyboard Navigation for Checkboxes

	Navigation	Keys
	
Navigate forward to or from checkbox

	
Tab

	
Navigate backward to or from checkbox

	
Shift+Tab

	
Select or deselect (when the focus is on the checkbox)

	
Spacebar or keyboard shortcut (if one has been defined)

	
Navigate to checkbox and select or deselect (when the focus is not on the checkbox)

	
Keyboard shortcut (if one has been defined)

Dropdown Lists And Combo Boxes

The following table describes the keyboard actions to perform navigation tasks involving dropdown lists and combo boxes.

Table 3-4 Keyboard Navigation for Dropdown Lists and Combo Boxes

	Navigation	Keys
	
Navigate forward to or from a combo box or dropdown list

	
Tab or keyboard shortcut (if one has been defined)

	
Navigate backward to or from a combo box or dropdown list

	
Shift+Tab

	
Toggle list open and closed

	
Spacebar (the current selection receives the focus)

	
Open a list

	
Down Arrow to open (first item on list receives focus)

	
Move up or down within list

	
Up and Down Arrow keys (highlighted value has focus)

	
Move right and left within the initial entry on a combo box

	
Right and Left Arrow keys

	
Select list item

	
Enter

Note: The first time you press Enter, the item in the list is selected. The second time you press Enter, the default button is activated.

	
Close list (with the highlighted value selected)

	
Esc

List Boxes

The following table describes the keyboard actions to perform navigation tasks involving list boxes.

Table 3-5 Keyboard Navigation for List Boxes

	Navigation	Keys
	
Navigate forward into or out of a list

	
Tab

	
Navigate backward into or out of list

	
Shift+Tab

	
Make a selection

	
Up Arrow, Down Arrow, Spacebar, or Enter

Note: The first time you press Enter, the highlighted item in the list is selected. The second time you press Enter, the default button is activated.

	
Move within list

	
Up Arrow or Down Arrow

	
Move to beginning of list

	
Home or Ctrl+Home

	
Move to end of list

	
End or Ctrl+End

	
Select all entries

	
Ctrl+A

	
Toggle (select or deselect) an item

	
Spacebar or Ctrl+Spacebar

	
Select next item up in list without deselecting item with current focus

	
Shift+Up Arrow Key

	
Select next item down in list without deselecting item with current focus

	
Shift+Down Arrow Key

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select current item and all items visible above that item

	
Shift+Page Up

	
Select current item and all items visible below that item

	
Shift+Page Down

	
Select item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus.

	
Ctrl+Up Arrow or Ctrl+Down Arrow

Radio Buttons

Table 3-6 Keyboard Navigation for Radio Buttons

	Navigation	Keys
	
Navigate forward to or from radio button

	
Tab

	
Navigate backward to or from radio button

	
Shift+Tab

	
Navigate forward from radio button

	
Arrow Keys

	
Navigate backward from radio button

	
Shift+Arrow Keys

	
Select radio button

	
Arrow key (navigating to a radio button via arrows selects it) or keyboard shortcut (if one has been defined)

	
Deselect radio button

	
Select a different radio button in the group using one of the commands above

Shuttles

The following table describes the keyboard actions to perform navigation tasks involving shuttles.

Table 3-7 Keyboard Navigation for Shuttles

	Navigation	Keys
	
Navigate forward into or out of a list

	
Tab

	
Navigate backward into or out of list

	
Shift+Tab

	
Make a selection

	
Up Arrow or Down Arrow

	
Move within list

	
Up Arrow or Down Arrow

	
Move to beginning of list

	
Home or Ctrl+Home

	
Move to end of list

	
End or Ctrl+End

	
Select all entries

	
Ctrl+A

	
Toggle (select or deselect) an item

	
Spacebar or Ctrl+Spacebar

	
Select next item up in list without deselecting item with current focus

	
Select next item up in list without deselecting item with current focus

	
Select next item down in list without deselecting item with focus

	
Shift+Down Arrow Key

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select current item and all items visible above that item

	
Shift+Page Up

	
Select current item and all items visible below that item

	
Shift+Page Down

	
Select item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus.

	
Ctrl+Up Arrow or Ctrl+Down Arrow

Sliders

The following table describes the keyboard actions to perform navigation tasks involving sliders.

Table 3-8 Keyboard Navigation for Sliders

	Navigation	Keys
	
Navigate forward to or from slider

	
Tab

	
Navigate backward to or from slider

	
Shift+Tab

	
Increase value

	
Up Arrow or Right Arrow

	
Decrease value

	
Left Arrow or Down Arrow

	
Minimum value

	
Home

	
Maximum value

	
End

Spin Controls

The following table describes the keyboard actions to perform navigation tasks involving spin controls.

Table 3-9 Keyboard Navigation for Spin Controls

	Navigation	Keys
	
Navigate forward to or from spin control

	
Tab

	
Navigate backward to or from spin control

	
Shift+Tab

	
Increase value

	
Up Arrow or Right Arrow, or type the value you want

	
Decrease value

	
Left Arrow or Down Arrow, or type the value you want

	
Minimum value

	
Home

	
Maximum value

	
End

Text Fields

The following table describes the keyboard actions to perform navigation tasks involving text fields.

Table 3-10 Keyboard Navigation for Text Fields

	Navigation	Keys
	
Navigate forward into or out of text box

	
Tab or keyboard shortcut (if one has been defined)

	
Navigate backward into or out of text box

	
Shift+Tab

	
Move to previous/next character within text box

	
Left Arrow/Right Arrow

	
Move to start/end of box

	
Home/End

	
Select all text

	
Ctrl+A

	
Deselect all text

	
Left Arrow or Right Arrow

	
Select current item and all items up to the Left/Right

	
Shift+Left Arrow, Shift+Right Arrow

	
Select current item and all items up to the Start/End

	
Shift+Home, Shift+End

	
Select current item and all items up to the previous/next word

	
Ctrl+Shift+Left Arrow, Ctrl+Shift+Right Arrow

	
Copy selection

	
Ctrl+C

	
Cut selection

	
Ctrl+X

	
Paste from clipboard

	
Ctrl+V

	
Delete next character

	
Delete

	
Delete previous character

	
Backspace

3.10.2.3 Navigating Complex Controls

This section contains information about keyboard shortcuts for complex UI components.

Dockable Windows

The following table describes the keyboard actions to perform navigation tasks involving dockable windows.

Table 3-11 Keyboard Navigation for Dockable Windows

	Navigation	Keys
	
Navigate forward in or out of dockable window

	
Ctrl+Tab

	
Navigate backward in or out of dockable window

	
Ctrl+Shift+Tab

	
Display context menu

	
Shift+F10

	
Navigate between tabs within a dockable window

	
Alt+Page Down, Alt+Page Up

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab

	
Move up/down through dockable window contents (scrollbar)

	
Up Arrow, Down ArrowThis scrolls the window contents if the focus moves beyond visible area of canvas.

	
Move left/right (scrollbar)

	
Up Arrow, Down ArrowThis scrolls the pane contents if focus moves beyond visible area of canvas.

	
Move to start/end of data (component buttons)

	
Ctrl+Home, Ctrl+End

	
Select an element

	
Enter or Spacebar

	
Scroll left/right within the canvas area (without moving through the window contents)

	
Ctrl+Left/Ctrl+Right

	
Scroll Up/Down within the canvas area (without moving through the window contents)

	
Ctrl+Up/Ctrl+Down

Menus

Context menus are accessed using Shift+F10. Menus from the main menu bar are accessed using the keyboard shortcut for the menu.

The following table describes the keyboard actions to perform navigation tasks involving the menu bar.

Table 3-12 Keyboard Navigation for Menus

	Navigation	Keys
	
Navigate to menu bar

	
F10

	
Navigate out of menu bar

	
Esc

	
Navigate between menus in menu bar

	
Right Arrow, Left Arrow

	
Navigate to menu item

	
Up Arrow, Down Arrow

	
Navigate from menu item

	
Up Arrow, Down Arrow

	
Activate item

	
Enter, Spacebar, or keyboard shortcut (if one has been defined)

	
Open submenu

	
Right Arrow

	
Retract submenu

	
Left Arrow or Esc

Panels

The following table describes the keyboard actions to perform navigation tasks involving panels.

Table 3-13 Keyboard Navigation for Panels

	Navigation	Keys
	
Navigate in/out forward

	
Tab

	
Navigate in/out backward

	
Shift+Tab

	
Expand panel (when focus on header)

	
Right Arrow

	
Collapse panel (when focus on header)

	
Left Arrow

	
Navigate within panel

	
Up Arrow, Down Arrow

	
Navigate to panel header from contents (when focus is on top item in list)

	
Up Arrow

	
Navigate to panel contents from header (when focus is on header)

	
Down Arrow

Tables

Arrow keys move focus in the direction of the arrow, except when a web widget has focus; in that case, the down arrow or enter key initiates the widget control action, such as opening a choice list. tab moves the focus right, shift+tab moves the focus left.

The following table describes the keyboard actions to perform navigation tasks involving tables.

Table 3-14 Keyboard Navigation for Tables

	Navigation	Keys
	
Navigate forward in or out of table

	
Ctrl+Tab

	
Navigate backward in or out of table

	
Shift+Ctrl+Tab

	
Move to next cell (wrap to next row if in last cell)

	
Tab Arrow or Right Arrow

	
Move to previous cell (wrap to previous row if in first cell)

	
Shift+Tab or Left Arrow

	
Controls in cells open

	
Down Arrow or Enter

	
Block move left

	
Ctrl+Page Up

	
Block move right

	
Ctrl+Page Down

	
Block move up

	
Page Up

	
Block move down

	
Page Down

	
Move to first cell in row

	
Home

	
Move to last cell in row

	
End

	
Move to first cell in table

	
Ctrl+Home

	
Move to last cell in table

	
Ctrl+End

	
Select all cells

	
Ctrl+A

	
Deselect current selection (and select alternative)

	
Any navigation key

	
Extend selection on row

	
Shift+Up Arrow

	
Extend selection one column

	
Shift+Down Arrow

	
Extend selection to beginning of row

	
Shift+Home

	
Extend selection to end of row

	
Shift+End

	
Extend selection to beginning of column

	
Ctrl+Shift+Home

	
Extend selection to end of column

	
Ctrl+Shift+End

	
Edit cell without overriding current contents, or show dropdown list in combo box

	
F2

	
Reset cell content prior to editing

	
Esc

Tabs

This section refers to the tabs that appear within a dockable window, view or dialog. The following table describes the keyboard actions to perform navigation tasks involving tabs in dockable windows, views and dialogs.

Table 3-15 Keyboard Navigation for Tabs

	Navigation	Keys
	
Navigate forward into or out of tab control

	
Tab

	
Navigate backward into or out of tab control

	
Ctrl+Tab

	
Move to tab (within control) left/right

	
Left Arrow/Right Arrow

	
Move to tab (within control) above/below

	
Up Arrow/Down Arrow

	
Move from tab to page

	
Ctrl+Down

	
Move from page to tab

	
Ctrl+Up

	
Move from page to previous page (while focus is within page)

	
Ctrl+Page Up

	
Move from page to next page (while focus is within page)

	
Ctrl+Page Down

Trees

The following table describes the keyboard actions to perform navigation tasks involving trees.

Table 3-16 Table Navigation for Trees

	Navigation	Keys
	
Navigate forward into or out of tree control

	
Tab

	
Navigate backward into or out of tree control

	
Shift+Tab

	
Expand (if item contains children)

	
Right Arrow

	
Collapse (if item contains children)

	
Left Arrow

	
Move to parent from child (if expanded)

	
Left Arrow

	
Move to child from parent (if already expanded)

	
Right Arrow

	
Move up/down one item

	
Up Arrow, Down Arrow

	
Move to first item

	
Home

	
Move to last entry

	
End

	
Select all children of selected parent

	
Ctrl+A

	
Select next item down in list without deselecting that item that currently has focus

	
Shift+Down Arrow

	
Select next item up in list without deselecting that item that currently has focus

	
Shift+Up Arrow

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select the item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus

	
Ctrl+Up/Down Arrow

Wizards

The Following Table Describes The Keyboard Actions To Perform Navigation Tasks Involving Wizards.

Table 3-17 Keyboard Navigation for Wizards

	Navigation	Keys
	
Navigate between stops on the roadmap or between pages

	
Up Arrow, Down Arrow (these do not wrap)

	
Navigate forward between components on wizard panel, wizard navigation bar buttons, and navigation panel

	
Tab

	
Navigate backward between components on wizard panel, wizard navigation bar buttons, and navigation panel

	
Shift+Tab

	
Navigate between buttons on Navigation Bar

	
Right and Left Arrow Key (does not wrap)

	
Navigate between stops on Roadmap/between wizard pages

	
Ctrl Page Up and Ctrl Page Down

3.10.2.4 Navigation in Specific Components

This section contains information about keyboard shortcuts for the ADF Skin Editor-specific UI components.

Dialogs

The following table describes the keyboard actions to perform navigation tasks involving dialogs.

Table 3-18 Keyboard Navigation for Dialogs

	Navigation	Keys
	
Close dialog without making any selections or changes

	
Esc

	
Activate the default button (if one is defined)

	
Enter

Overview Editor (Form + Mapping)

The following table describes the keyboard actions to perform navigation tasks involving overview editors.

Table 3-19 Keyboard Navigation for the Overview Editor

	Navigation	Keys
	
Navigate into or out of overview editor from other pages in editor (for example Source or History)

	
Alt+Tab

	
Navigate from the tab group to next control in editor)

	
Tab or Ctrl+Down Arrow

	
Navigate forward or backwards between controls on overview editor

	
Tab or Alt+Tab

	
Move between tabs in the side tab control (when the focus in the tab group)

	
Up Arrow, Down Arrow

	
Move between tabs in side tab control (when focus on Page)

	
Ctrl+Page Up/Ctrl+Page Down

	
Move from page to tab group (from next control in editor)

	
Ctrl+Tab

	
Move from page to tab group (from any control in editor)

	
Ctrl+Up Arrow

	
Open and close Sections (when focus is on a section header)

	
Enter, Spacebar, Right Arrow/Left Arrow

Component and Resource Palettes

The following table describes the keyboard actions to perform navigation tasks involving palettes.

Table 3-20 Keyboard Navigation for Component and Resource Palettes

	Navigation	Keys
	
Navigate forward in or out of palette

	
Ctrl+Tab This moves you into first item within the pane.

	
Navigate backward in or out of palette

	
Ctrl+Shift+Tab

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab, Shift+Tab

	
Move up/down elements in a list or tree

	
Up Arrow/Down Arrow

	
Move left/right elements in a list or tree

	
Left Arrow/Right Arrow

	
Move to start/end of data (component buttons)

	
Ctrl+Home/Ctrl+End

	
Select a component button

	
Enter

Navigators

The following table describes the keyboard actions to perform navigation tasks involving navigators.

Table 3-21 Keyboard Navigation for Navigators

	Navigation	Keys
	
Navigate forward in or out of navigator

	
Ctrl+Tab This moves you into first item within the pane.

	
Navigate backward in or out of navigator

	
Ctrl+Shift+Tab

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab

	
Move up/down elements in a list or tree

	
Up Arrow/Down

	
Move left/right elements in a list or tree

	
Left Arrow/Right Arrow

	
Move to start/end of data (component buttons)

	
Ctrl+Home/Ctrl+End

	
Select a component button

	
Enter

	
Select an element

	
Enter

Property Inspector

The following table describes the keyboard actions to perform navigation tasks involving the Property Inspector.

Table 3-22 Keyboard Navigation for the Property Inspector

	Navigation	Keys
	
Navigate forward into or out of Property Inspector

	
Ctrl+Tab

	
Navigate backward into or out of Property Inspector

	
Ctrl+Shift+Tab

	
Navigate from side tab group to page

	
Tab

	
Navigate backward and forwards between elements on page

	
Tab, Shift+Tab

	
Move to tab above/below (when focus is on the side tab)

	
Up Arrow, Down Arrow

	
Move to tab right or left, above or below (when focus is on the internal tab group)

	
Up Arrow, Down Arrow, Right Arrow, Left Arrow

	
Move from side tab group to page

	
Ctrl+Down Arrow

	
Move from page to side tab group

	
Ctrl+Up Arrow

	
Move to side tab above (previous) when focus on page

	
Ctrl+Page Up

	
Move to side tab below (next) when focus on page

	
Move to side tab below (next) when focus on page

	
Open and Close sections (when focus is on a section header)

	
Enter

Text Editors

The following table describes the keyboard actions to perform navigation tasks involving the pane elements of text editors.

Table 3-23 Keyboard Navigation for Text Editors

	Navigation	Keys
	
Navigate forward in or out of editor

	
Ctrl+Tab

	
Navigate backward in or out of editor

	
Ctrl+Shift+Tab

	
Move from page to previous page

	
Alt+Page Up

	
Move from page to next page

	
Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks involving the text or canvas areas of text editors.

Table 3-24 Keyboard Navigation for Canvas Areas of Text Editors

	Navigation	Keys
	
Move up/down one line

	
Up Arrow, Down Arrow

	
Move left/right one character

	
Left Arrow, Right Arrow

	
Move to start/end of line

	
Home, End

	
Move to previous/next word

	
Ctrl+Left Arrow, Ctrl+Right Arrow

	
Move to start/end of text area

	
Ctrl+Home/Ctrl+End

	
Move to beginning/end of data

	
Ctrl+Home/Ctrl+End

	
Move up/down one vertical block

	
Page Up/Page Down

	
Block move left

	
Ctrl+Page Up

	
Block move right

	
Ctrl+Page Down

	
Block extend up

	
Shift+Page Up

	
Block extend down

	
Shift+Page Down

	
Block extend left

	
Ctrl+Shift+Page Up

	
Block extend right

	
Ctrl+Shift+Page Down

	
Select all

	
Ctrl+A

	
Deselect all

	
Up Arrow, Down Arrow, Left Arrow, Right Arrow

	
Extend selection up/down one line

	
Shift+Up Arrow/Shift+Down Arrow

	
Extend selection left/right one component or char

	
Shift+Left Arrow/Shift+Right Arrow

	
Extend selection to start/end of line

	
Shift+Home/Shift+End

	
Extend selection to start/end of data

	
Ctrl+Shift+Home/Ctrl+Shift+End

	
Extend selection up/down one vertical block

	
Shift+Page Up/Shift+Page Down

	
Extend selection to previous/next word

	
Ctrl+Shift+Left Arrow /Ctrl+Shift+Right Arrow

	
Extend selection left/right one block

	
Ctrl+Shift+Page Up/Ctrl+Shift+Page Down

	
Copy selection

	
Ctrl-C

	
Cut selection

	
Ctrl-X

	
Paste selected text

	
Ctrl-V

Graphical Editors

The following table describes the keyboard actions to perform navigation tasks involving graphical editors.

Table 3-25 Keyboard Navigation for Graphical Editors

	Navigation	Keys
	
Navigate forward in or out of editor

	
Ctrl-Tab

	
Navigate backward in or out of editor

	
Ctrl+Shift+Tab

	
Move from page to previous page

	
Alt+Page Up

	
Move from page to next page

	
Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks involving the canvas areas of graphical editors.

Table 3-26 Keyboard Navigation for Canvas Areas of Graphical Editors

	Navigation	Keys
	
Move to the next focusable element within editor area

	
Up Arrow, Down Arrow, Left Arrow, Right Arrow

	
Select element

	
Spacebar

	
Activate context menu

	
Shift+F10

4 Creating the Source Files for an ADF Skin

This chapter describes how to create the source files for an ADF skin in the ADF Skin Editor and in JDeveloper. Information on how to open an application or project in the ADF Skin Editor that was created in a prior release of JDeveloper and how to import an ADF skin from an ADF Library JAR file is also provided.

This chapter includes the following sections:

	
Section 4.1, "About Creating an ADF Skin"

	
Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects"

	
Section 4.3, "Opening an Application Created Outside of the ADF Skin Editor"

	
Section 4.4, "Creating an ADF Skin File"

	
Section 4.5, "Versioning ADF Skins."

	
Section 4.6, "Managing Working Sets"

	
Section 4.7, "Importing ADF Skins from an ADF Library JAR"

4.1 About Creating an ADF Skin

An ADF skin defines the properties for the selectors that ADF Faces and ADF Data Visualization components expose. Using the visual editor in JDeveloper or the ADF Skin Editor, you can create a source file for an ADF skin. As a source file for an ADF skin is a type of CSS file, you could create it without using an editor. However, when you use the editor, associated configuration files get created (the first time that you create an ADF skin) or modified (when you create subsequent ADF skins). For more information about these configuration files, see Section 11.3, "Configuration Files for an ADF Skin."

4.2 Creating ADF Skin Applications and ADF Skin Projects

New ADF skin applications and ADF skin projects can be created in the ADF Skin Editor.

4.2.1 How to Create an ADF Skin Application

This section describes how to create an ADF skin application and a project within it in the ADF Skin Editor.

To create a new ADF skin application:

	
Open the Create ADF Skin Application dialog by choosing File > New > ADF Skin Application.

	
In the Create ADF Skin Application dialog, enter application details like the name and directory. For help with the wizard, press F1.

	
Click Next to open the ADF Skin Project page where you specify the name of your ADF skin project and the directory to store it.

	
In the Target Application Release list, select the release of Oracle ADF that the application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the release you specify. For example, the ADF Skin Editor filters the list of ADF skins that you can extend from, as described in Section 4.4.1, "How to Create an ADF Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin selectors to display only those that the release you target supports. It will not display a skin selector introduced in a later release if you target your ADF skin project at an earlier release.

	
When you are done, click Finish.

4.2.2 How to Create a New ADF Skin Project

You use the Application Navigator to keep track of the ADF skin projects (collections of source files for ADF skins, images, and related files) you use while developing your ADF skin application.

You can create a new empty ADF skin project in an ADF skin application.

All ADF skin projects inherit the settings specified in the Default Project Properties dialog. As soon as you create the ADF skin project, it is added to the active ADF skin application.

To create a new ADF skin project:

	
In the Application Navigator, select the ADF skin application within which the project will appear.

	
Open the Create ADF Skin Project dialog by choosing File > New > ADF Skin Project.

	
In the Create ADF Skin Project dialog, enter project details like the name and directory.

	
In the Target Application Release list, select the release of Oracle ADF that the application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the release you specify. For example, the ADF Skin Editor filters the list of ADF skins that you can extend from, as described in Section 4.4.1, "How to Create an ADF Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin selectors to display only those that the release you target supports. It will not display a skin selector introduced in a later release if you target your ADF skin project at an earlier release.

	
When you are done, click Finish.

The new ADF skin project appears in the Application Navigator. It inherits whatever default properties you've already set. To alter project properties for this project, either double-click the filename or right-click and choose Project Properties.

4.3 Opening an Application Created Outside of the ADF Skin Editor

When you open an application or project that was created in a prior release of JDeveloper, the ADF Skin Editor will prompt you to migrate the project to JDeveloper 11g format. Depending on the content of the project, the ADF Skin Editor may display additional prompts to migrate some specific source files as well. Oracle recommends that you make a backup copy of your projects before you open them in the ADF Skin Editor or migrate them using the ADF Skin Editor.

4.4 Creating an ADF Skin File

You can create an ADF skin file in the ADF Skin Editor or in JDeveloper that defines how ADF Faces and ADF Data Visualization components render at runtime. The ADF skin that you create must extend either one of the ADF skins that Oracle ADF provides or from an existing ADF skin that you created. The ADF skins that Oracle ADF provides vary in the level of customization that they define for ADF Faces and ADF Data Visualization components. For information about the inheritance relationship between the ADF skins that Oracle ADF provides, see Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF." For information about the levels of customization in the ADF skins provided by Oracle ADF and for a recommendation about the ADF skin to extend, see Section 11.4, "ADF Skins Provided by Oracle ADF."

The visual editor of the ADF Skin Editor and in JDeveloper supports the creation of ADF skins for the org.apache.myfaces.trinidad.desktop render kit.

You can create ADF skins for other render kits using the source editor in JDeveloper and in the ADF Skin Editor. For more information, see Section 11.2, "ADF Skinning Framework and Supported Render Kits."

After you create an ADF skin, you set values for the selectors that the ADF Faces and ADF Data Visualization components expose. Otherwise, the ADF skin that you create defines the same appearance as the ADF skin from which it extends. For more information, see Chapter 5, "Working with Component-Specific Selectors."

4.4.1 How to Create an ADF Skin in the ADF Skin Editor

You can create an ADF skin in the ADF Skin Editor.

To create an ADF skin in the ADF Skin Editor:

	
In the Application Navigator, right-click the project where you want to create the new ADF skin and choose New > ADF Skin File.

	
In the Create ADF Skin File dialog, enter the following:

	
File Name: Enter a file name for the new ADF skin.

	
Directory: Enter the path to the directory where you store the CSS source file for the ADF skin or accept the default directory proposed by the editor.

	
Family: Enter a value for the family name of your skin.

You can define a new family or select an existing family by entering a value in the input field. A family groups together ADF skins for an application. You configure an application to use a particular family of ADF skin.

The value you enter must be unique. You can use an EL expression to select an ADF skin for your application at runtime by referencing this value.

	
Use as the default skin family for this project: Deselect this checkbox if you do not want to make the ADF skin the default for your project immediately.

	
Extends: Select the ADF skin that you want to extend. ADF Faces provides a number of ADF skins that you can extend. For more information and a recommendation on the ADF skin to extend, see Section 11.4, "ADF Skins Provided by Oracle ADF."

	
Note:

The value you select for Target Application Release, as described in Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects," determines the list of ADF skins from which you can extend.

	
Skin Id: A read-only field that displays a concatenation of the value you enter in File Name and the ID of the render kit (desktop) for which you create your ADF skin. You select this value from the Extends list if you want to create another ADF skin that extends from this one.

The ADF Skin Editor writes the value to the <id> element in the trinidad-skins.xml file.

	
Click OK.

4.4.2 How to Create an ADF Skin in JDeveloper

You can create an ADF skin in JDeveloper.

To create an ADF skin in JDeveloper:

	
In the Application Navigator, right-click the project that contains the code for the user interface and choose New.

	
In the New Gallery, expand Web Tier, select JSF/Facelets and then ADF Skin, and click OK.

	
In the Create ADF Skin File dialog, enter the following:

	
File Name: Enter a file name for the new ADF skin.

	
Directory: Enter the path to the directory where you store the CSS source file for the ADF skin or accept the default directory proposed by the editor.

	
Family: Enter a value for the family name of your skin.

You can define a new family or select an existing family by entering a value in the input field. A family groups together ADF skins for an application. You configure an application to use a particular family of ADF skin.

The value you enter must be unique. You can use an EL expression to select an ADF skin for your application at runtime by referencing this value.

	
Use as the default skin family for this project: Deselect this checkbox if you do not want to make the ADF skin the default for your project immediately. If you select the checkbox, the trinidad-config.xml file is updated, as described in Section 4.4.3, "What Happens When You Create an ADF Skin."

	
Extends: Select the ADF skin that you want to extend. ADF Faces provides a number of ADF skins that you can extend. For more information and a recommendation on the ADF skin to extend, see Section 11.4, "ADF Skins Provided by Oracle ADF."

	
Skin Id: A read-only field that displays a concatenation of the value you enter in File Name and the ID of the render kit (desktop) for which you create your ADF skin. You select this value from the Extends list if you want to create another ADF skin that extends from this one.

JDeveloper writes the value to the <id> element in the trinidad-skins.xml file.

	
Click OK.

4.4.3 What Happens When You Create an ADF Skin

If you accepted the default value proposed for the Directory field, a file with the extension .css is generated in a subdirectory of the skins directory in your project. This file is opened in the visual editor for the ADF skin, as illustrated in Figure 4-1.

Figure 4-1 Newly-Created ADF Skin

[image: ADF Skin File in JDeveloper]

The trinidad-skins.xml file is modified to include metadata for the ADF skin that you create, as illustrated in Example 4-1.

Example 4-1 trinidad-skins.xml File

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">

 <skin>
 <id>skin2.desktop</id>
 <family>skin2</family>
 <extends>fusionFx-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
 </skin>
</skins>

If you select the Use as the default skin family for this project check box in the Create New ADF Skin file dialog, the trinidad-config.xml file is modified to make the new ADF skin the default skin for your application. Example 4-2 shows a trinidad-config.xml file that makes the ADF skin in Example 4-1 the default for an application.

Example 4-2 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>skin2</skin-family>
</trinidad-config>

The source file for the ADF skin contains a comment and namespace references, as illustrated in Example 4-3. These entries in the source file for the ADF skin distinguish the file from non-ADF skin files with the .css file extension. A source file for an ADF skin requires these entries in order to open in the visual editor for the ADF skin.

Example 4-3 Default Entries for a Newly Created ADF Skin File

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

The first time that you create an ADF skin in your project, a resource bundle file (skinBundle.properties) is generated, as illustrated in Figure 4-1. For more information about using resource bundles, see Chapter 7, "Working With Text in an ADF Skin."

4.5 Versioning ADF Skins

You can specify version numbers for your ADF skins in the trinidad-skins.xml file using the <version> element. Use this capability if you want to distinguish between ADF skins that have the same value for the <family> element in the trinidad-skins.xml file. Note that when you configure an application to use a particular ADF skin, you do so by specifying values in the trinidad-config.xml file, as described in section Section 10.4, "Applying an ADF Skin to Your Web Application."

4.5.1 How to Version an ADF Skin

You specify a version for your ADF skin by entering a value for the <version> element in the trinidad-skins.xml file.

To version an ADF skin:

	
In the Application Navigator, double-click the trinidad-skins.xml file. By default, this is in the Web Content/WEB-INF node.

	
In the Structure window, right-click the skin node for the ADF skin that you want to version and choose Insert inside skin > version.

	
In the Insert version dialog, select true from the default list if you want your application to use this version of the ADF skin when no value is specified in the <skin-version> element of the trinidad-config.xml file, as described in Section 10.4, "Applying an ADF Skin to Your Web Application."

	
Enter a value in the name field. For example, enter v1 if this is the first version of the ADF skin.

	
Click OK.

4.5.2 What Happens When You Version ADF Skins

Example 4-4 shows an example trinidad-skins.xml that references three source files for ADF skins (skin1.css, skin2.css, and skin3.css). Each of these ADF skins have the same value for the <family> element (test). The values for the child elements of the <version> elements distinguish between each of these ADF skins. At runtime, an application that specifies test as the value for the <skin-family> element in the application's trinidad-config.xml file uses skin3 because this ADF skin is configured as the default skin in the trinidad-skins.xml file (<default>true</default>). You can override this behavior by specifying a value for the <skin-version> element in the trinidad-config.xml file, as described in Section 10.4, "Applying an ADF Skin to Your Web Application."

Example 4-4 trinidad-skins.xml with versioned ADF skin files

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>skin1.desktop</id>
 <family>test</family>
 <extends>fusionFx-simple-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin1/skin1.css</style-sheet-name>
 <version>
 <name>v1</name>
 </version>
 </skin>
 <skin>
 <id>skin2.desktop</id>
 <family>test</family>
 <extends>skin1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 <skin>
 <id>skin3.desktop</id>
 <family>test</family>
 <extends>skin2.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin3/skin3.css</style-sheet-name>
 <version>
 <default>true</default>
 <name>v3</name>
 </version>
 </skin>
</skins>

4.6 Managing Working Sets

Working sets allow you to configure the Application Navigator to show you a subset of files from your project. This is particularly useful when working with large projects. Before you define your own working sets the only one available is Default, and it is a working set which includes all the files in the current application.

You can define a working set by selecting from files or containers in the Application Navigator, or by providing include and exclude filter patterns through the Manage Working Sets dialog.

To group objects in the Application Navigator into a working set:

	
In the Application Navigator, select the objects that you want to include in a new working set.

	
In the Application Navigator, click the Working Sets icon and select New from Selection.

This opens a Save As dialog. For more information at any time, press F1 or click Help from within the Save As dialog.

	
Enter a name for the working set, then click OK.

To create a working set by defining file and directory filters:

	
In the Application Navigator, click the Working Sets icon and select Manage Working Sets.

This opens the Working Sets dialog. Use the tree on the left to select the projects to include. In the right panel, select which files in the current project to include. For more information at any time, press F1 or click Help from within the Working Sets dialog.

	
Click Save As to save the working set.

To create a working set from the results of a search in the Log window:

	
In the Log window, right-click and choose Save as Working Set from the context menu.

	
In the Create Working Set dialog, enter a name for the working set.

To see which working set you are currently using:

	
In the Application Navigator, hover the mouse over the Working Sets icon. The name of the current working set is displayed as a tooltip. Alternatively, click the Working Sets icon to bring up a menu in which the active working set is checked.

To change the active working set:

	
In the Application Navigator, click the Working Sets icon and select the working set you want to open.

Files not belonging to the working set are removed from view.

To edit files and projects in a working set:

	
In the Application Navigator, click the Working Sets icon and select Manage Working Sets.

This opens the Working Sets dialog. For more information at any time, press F1 or click Help from within the Working Sets dialog.

	
Select the working set that you want to change from the Working Set drop-down list.

	
Make the changes as required.

To restore the view in the Application Navigator to show all files:

	
In the Application Navigator, click the Working Sets icon and select (All Files).

4.7 Importing ADF Skins from an ADF Library JAR

You can import ADF skins into your project that have been packaged in a JAR file. When you import an ADF skin into your project, the imported ADF skin is available to extend from when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File."

The recommended type of JAR file to use to package an ADF skin is an ADF Library JAR file. For information about how to package an ADF skin into this type of JAR file, see Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

You can import an ADF skin that you have packaged in other types of JAR file. For these ADF skins to appear in the user interface as a choice to extend from when you create a new ADF skin, your JAR file must have the same directory structure shown in Example 4-5. Your JAR file must also include an oracle.adf.common.services.ResourceService.sva file. You can generate this file by following the instructions in Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

Images referenced by the ADF skin you want to import must appear under a directory named adf, as shown in Example 4-5.

Example 4-5 Required Directory Structure and Files for a non-ADF Library JAR File

META-INF
| MANIFEST.MF
| oracle.adf.common.services.ResourceService.sva
| trinidad-skins.xml
|
+---adf
| \---skins
| \---jarredskin
| \---images
| \---af_column
| sort_des_selected.png
|
\---skins
 \---jarredskin
 jarredskin.css

4.7.1 How to Import an ADF Skin from an ADF Library JAR

You can import ADF skins into your project that have been packaged in a JAR file.

To import an ADF skin from an ADF Library JAR:

	
From the main menu, choose Application > Project Properties.

	
In the Project Properties dialog, select the Libraries and Classpath page and click Add JAR/Directory.

	
In the Add Archive or Directory dialog, navigate to the JAR file that contains the ADF skin you want to import and click Select.

The JAR file appears in the Classpath Entries list.

	
When finished, click OK.

4.7.2 What Happens When You Import an ADF Skin from an ADF Library JAR

The ADF skin(s) that you import from the JAR file appear in the Extends list when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File." After you create a new ADF skin by extending an ADF skin that you imported from a JAR file, the Extended Skins list in the Preview Pane displays the name of the ADF skin that you imported. For example, in Figure 4-2 the skin2.css ADF skin has been created by extending the ADF skin, jarredskin.css, that was imported into the project from a JAR file.

Figure 4-2 Imported ADF Skin in the Extended Skins List

[image: Imported ADF Skin in the Extended Skins List]

Properties that have been defined in the ADF skin that you imported appear with a blue upward pointing arrow in the Property Inspector. An information tip about the inheritance relationship displays when you hover the mouse over the property, as illustrated in Figure 4-3.

Figure 4-3 Property Inherited from an Imported ADF Skin

[image: Property Inherited from an Imported ADF Skin]

5 Working with Component-Specific Selectors

This chapter describes how to change the appearance of ADF Faces and ADF Data Visualization components by specifying properties for the selectors that the ADF skinning framework exposes for these components. Features such as the ability to configure ADF skin properties to apply to messages, themes that you can apply to ADF Faces components, and how to configure an ADF skin for accessibility are also described.

This chapter includes the following sections:

	
Section 5.1, "About Working with Component-Specific Selectors"

	
Section 5.2, "Changing ADF Faces Components' Selectors"

	
Section 5.3, "Changing ADF Data Visualization Components' Selectors"

	
Section 5.4, "Changing a Component-Specific Selector"

	
Section 5.5, "Configuring ADF Skin Properties to Apply to Messages"

	
Section 5.6, "Applying Themes to ADF Faces Components"

	
Section 5.7, "Configuring an ADF Skin for Accessibility"

5.1 About Working with Component-Specific Selectors

You customize the appearance of an ADF Faces component or ADF Data Visualization component by defining style properties for the selectors that the component exposes. To achieve the appearance you want, you need to become familiar with the component-specific selectors that the ADF Faces and ADF Data Visualization components expose, plus the global selector aliases and descendant selectors that a component-specific selector may reference. The ADF skins that you extend from when you create an ADF skin define many global selector aliases and descendant selectors. You also need to become familiar with the component itself and how it relates to other components. For example, customizing the appearance of the ADF Faces table component shown in Figure 5-1 requires you to define style properties for selectors exposed by the af:column component in addition to selectors exposed by the ADF Faces table component. You may also need to modify the style properties for one or more of the icon or message global selector aliases that the ADF skin you extend defines.

Figure 5-1 Selectors for an ADF Faces table Component

[image: Selectors for an ADF Faces Table Component]

Use the tools that the visual editor for ADF skins provides to customize the appearance of the ADF Faces components and ADF Data Visualization components. For more information, see Chapter 3, "Working with the Oracle ADF Skin Editor."

Other sources of information that may help you as you change the selectors of ADF Faces and ADF Data Visualization components include the following:

	
Images: An ADF skin can reference images that render icons and logos, for example, in a page. For more information about how to work with images in an ADF skin, see Chapter 6, "Working with Images in Your ADF Skin."

	
Text: An ADF skin does not include text strings that render in your page. However, you can specify a resource bundle that defines the text strings you want to appear in the page. For more information, see Chapter 7, "Working With Text in an ADF Skin."

	
Global selector aliases: A global selector alias specifies style properties that you can apply to multiple ADF Faces components simultaneously. For more information about global selector aliases, see Chapter 8, "Working With Global Selector Aliases."

	
Style Classes: A style class in an ADF skin specifies a number of style properties that an ADF Faces component can reference as a value if it exposes a style-related attribute (styleClass and inlineStyle). For more information about style classes, see Chapter 9, "Working with Style Classes."

	
ADF Faces Rich Client Components Hosted Demo: The Oracle Technology Network (OTN) web site provides a link to an application that demonstrates how ADF skins change the appearance of ADF Faces and ADF Data Visualization components. For more information, navigate to http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html

5.2 Changing ADF Faces Components' Selectors

ADF Faces components render user interface controls such as command buttons, command links and check boxes in your web application. ADF Faces components also include components that render calendars, panels to arrange other user interface controls and tables in your web application. For more information about ADF Faces components and the functionality that they provide, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

You can change the runtime appearance of ADF Faces components by editing the properties that each ADF Faces skin selector exposes. The number of selectors that an ADF Faces component exposes varies by component. For example, the ADF Faces components, af:image and af:popup, expose one selector each. In contrast, the ADF Faces component, af:panelHeader, exposes a variety of selectors that enable you to change the appearance of different parts of the user interface of that component. There are, for example, selectors that allow you to change the af:panelHeader component's instruction text, help icons, and titles.

The process to follow to change the runtime appearance of an ADF Faces component is the same for each component; the only difference is the number of selectors that each ADF Faces component exposes. Figure 5-2 and Figure 5-3 take the goButton component as an example and illustrate how you can customize the appearance of this component using pseudo-elements and the component's selector. Figure 5-2 shows the application of the default ADF Faces' fusion skin on the goButton component and the component icon.

Figure 5-2 goButton Component Default Appearance with Fusion ADF Skin

[image: Button (Go) Component Default Appearance with Fusion Skin]

Figure 5-3 shows the appearance of the component after you set values for the following pseudo-elements on the component's selector:

	
access-key: The Color property is set to red

	
icon-style: The Border property is set to 1px solid black

Figure 5-3 goButton Component with Modified Selectors

[image: Button (Go) Component with Modified Selectors]

Reference information about the selectors that ADF Faces components expose can be found in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the application you are skinning).

5.3 Changing ADF Data Visualization Components' Selectors

The ADF Data Visualization components are a set of components that provide functionality to represent data in graphical and tabular formats. Examples of the ADF Data Visualization components include the following: graph, gantt, pivot table, and hierarchy viewer. For more information about ADF Data Visualization components and the functionality that they provide, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

You can change the runtime appearance of ADF Data Visualization components by editing the properties that each ADF Data Visualization component selector exposes. The number of selectors exposed by an ADF Data Visualization component varies by component.

Figure 5-4 shows an ADF skin with the nodes expanded to show the selectors that you can customize for the ADF Data Visualization gauge component.

Figure 5-4 ADF Data Visualization Component Selectors

[image: ADF Data Visualization Component Skinning Keys]

You customize the appearance of ADF Data Visualization components by defining style properties for the selectors that each ADF Data Visualization component exposes. Using the tools provided by JDeveloper's visual editor for ADF skins or the ADF Skin Editor, you customize the appearance of the ADF Data Visualization components. For more information, see Chapter 3, "Working with the Oracle ADF Skin Editor."

To achieve the appearance you want, you need to become familiar with the selectors that the ADF Data Visualization component exposes, the global selector aliases that the component may reference and which are defined in the ADF skin that you extend when you create an ADF skin. You also need to become familiar with the component itself and how it relates to other components. For example, customizing the appearance of the ADF Data Visualization pivotTable component shown in Figure 5-5 requires you to define style properties for this selector's pseudo-elements. You may also need to modify the style properties for one or more of the global selector aliases that the ADF skin you extend defines.

Figure 5-5 ADF Data Visualization pivotTable Component

[image: Skinning Keys for pivotTable Component]

Many ADF Data Visualization component selectors, such as the selectors for the graph and hierarchyViewer components, expose pseudo-elements for which you configure ADF skin properties. These ADF skin properties modify the appearance of the area specified by the pseudo-element. The characters -tr- preface the names of ADF skin properties. For example, Figure 5-6 shows the properties of the hierarchy viewer's lateral-navigation-button selector, all of which are prefaced by -tr-.

Figure 5-6 Properties for the hierarchyViewer Component lateral-navigation-button Pseudo-Element

[image: Hierarchy Component’s lateral-navigation-button Properties]

In contrast, the gantt component's summary-task-left selector, shown in Figure 5-7, exposes only two ADF skin properties (-tr-rule-ref and -tr-inhibit-) as the majority of the properties that you configure for this selector are CSS properties.

For more information about ADF skin properties, see Section 2.3, "Properties in the ADF Skinning Framework."

Figure 5-7 Properties for the gantt Component summary-task-left Pseudo-Element

[image: Gantt Component’s Skinning Key Properties]

Reference information about the selectors, pseudo-elements, and pseudo-classes that ADF Data Visualization components expose can be found in the Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin Selectors (for the release that pertains to the application you are skinning).

5.4 Changing a Component-Specific Selector

The process to change a component-specific selector is the same for both the ADF Faces and ADF Data Visualization components. In the Selector Tree, you expand the Faces Components Selectors or Data Visualization Selectors node to select the selector of the component you want to modify. You then set values for this selector using the Property Inspector. You can also set properties for any pseudo-elements, component style classes, component selector aliases, or descendant selectors that the selector you select references. In addition, you can add pseudo-classes that the component-specific supports. For more information about pseudo-classes, see Section 2.2, "Pseudo-Classes in the ADF Skinning Framework." Figure 5-8 shows a view of the skin selector for the ADF Faces table component in the Selector Tree with the different items that you can configure for this skin selector.

Figure 5-8 Selector for the table Component

[image: Selector for the table Component]

Figure 5-9 shows a runtime view of an ADF Faces table component that renders data using the style properties provided by the ADF Faces simple skin.

Figure 5-9 ADF Faces table Component Rendered By the simple Skin

[image: ADF Faces table Component Rendered By the simple Skin]

5.4.1 How to Change a Component-Specific Selector

You change a component-specific selector by selecting the selector in the Selector Tree and setting values for the selector, its pseudo-elements, or descendant selectors in the Property Inspector. In addition, you can add a pseudo-class if the component-specific selector supports one.

To change a component-specific selector:

	
In the Selector Tree of the visual editor, choose the appropriate option:

	
Expand the Faces Component Selectors node if you want change a selector for an ADF Faces component.

	
Expand the Data Visualization Selectors node if you want to change a selector for an ADF Data Visualization component.

For example, expand the Faces Component Selectors node, the Column node, the Pseudo-Elements node, and select the column-header-cell selector.

	
In the Property Inspector, specify values for the properties that the selector you selected in step 1 supports.

For example, in the Common section of the Property Inspector, specify values for the following attributes:

	
Background Color: Specify the background color that you want to appear in the header row of the table.

	
Color: Specify the color that you want to apply to text that appears in the header row of the table's column.

	
In the Preview Pane, click the Add Pseudo-Class icon to choose a supported pseudo-class from the displayed list of supported pseudo-classes that appears.

5.4.2 What Happens When You Change a Component-Specific Selector

The visual editor displays the changes that you make to the selector after you click the Refresh icon in the Preview Pane. If you add a pseudo-class to the selector, the Preview Pane also displays an entry for the selector with the added pseudo-class. For example, Figure 5-10 shows an entry for a selector with the :hover pseudo-class added.

	
Note:

The Preview Pane for the af|document selector only displays one entry even if you add a pseudo-class to this selector.

Figure 5-10 Preview Pane with a Component Specific Selector and a Pseudo-Class

[image: Preview Pane with a Selector and a Pseudo-Class]

The visual editor also writes the values that you specify for the selectors in the Property Inspector to the source file for the ADF skin. Example 5-1 shows the changes that appear in the source file after making some of the changes described in Section 5.4.1, "How to Change a Component-Specific Selector."

Example 5-1 Selector Values to Skin the Header Row in a Column

af|column::column-header-cell
{

 color: Black;
 background-color: Olive;
 font-weight: bold;
}

When a web application uses an ADF skin that contains the values shown in Example 5-1, header rows in the columns of a table rendered by the ADF Faces table component appear as illustrated by Figure 5-11 where the table uses a skin that extends the simple skin.

Figure 5-11 ADF Faces table with a Header Row Skinned

[image: ADF Faces table with a Header Row Skinned]

5.5 Configuring ADF Skin Properties to Apply to Messages

You can apply styles to ADF Faces input components based on whether or not the input components have certain types of message associated with them. When a message of a particular type is added to a component, the styles of that component are automatically modified to reflect the new status. If you do not define styles for the type of message in question, the component uses the default styles defined in the ADF skin.

The types of message property are:

	
:fatal

	
:error

	
:warning

	
:confirmation

	
:info

Figure 5-12 shows an inputText component rendered using the simple ADF skin. In Figure 5-12, the simple ADF skin defines style values for the :warning message property to apply to the inputText component when an end user enters values that generate a warning.

Figure 5-12 inputText Component Displaying Style for :warning Message Property

[image: Input Text Component Displaying Style for Message Property]

Figure 5-13 shows the same inputText component as in Figure 5-12. In Figure 5-13, the end user entered a value that generated an error. As a result, the inputText component renders using the style properties configured for the :error message property.

Figure 5-13 inputText Component Displaying Style for :error Message Property

[image: Input Text Component Displaying Style for Message Property]

The ADF skinning framework defines a number of global selector aliases that define style properties to apply to messages. Figure 5-14 shows a list of global selector aliases under the Message node in the Selector Tree. The Preview Pane, on the right of Figure 5-14, shows how the style properties defined for the global selector alias currently selected in the Selector Tree render the component selected from the View as list.

Figure 5-14 Global Selector Aliases for Messages

[image: Selector Aliases for Messages]

You can customize the global selector aliases that the ADF skinning framework provides for messages by defining style properties in your ADF skin. The style properties that you define for the global selector alias affect all ADF Faces components that reference the global selector alias. For example, if you change the border color for the global selector alias shown in Figure 5-14 to green, all the ADF Faces components shown in the View as list render with a border that is green. For more information about global selector aliases, see Chapter 8, "Working With Global Selector Aliases."

For more information about configuring messages for ADF Faces components, see the "Displaying Tips, Messages, and Help" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

5.5.1 How to Configure an ADF Skin Property to Apply to a Message

You add a pseudo-class to the component's selector for the message type that you want to configure. You then define style properties for the pseudo-class using the Property Inspector.

To configure an ADF skin property to apply to a message:

	
In the Selector Tree of the visual editor, expand the Faces Component Selectors section and select the selector for the ADF Faces component for which you want to configure the style properties to apply to a message.

For example, select the af|inputText selector to configure the style properties to apply to the ADF Faces inputText component.

	
Click the Add Pseudo- Class icon to display a list of the available pseudo-classes for the selector that you selected in step 1.

	
Select the pseudo-class that corresponds to the message for which you want to configure style properties. The following pseudo-classes are available for the ADF Faces components:

	
fatal

	
error

	
warning

	
confirmation

	
info

	
Configure the style properties that you want to apply to the component at runtime when the application displays a message with the component.

5.5.2 What Happens When You Configure an ADF Skin Property to Apply to a Message

The visual editor writes the values that you specify for the selector's pseudo-class in the Property Inspector to the source file for the ADF skin. For example, assume that you set the value of the Border Color property to Red for the af|inputText selector's error pseudo-class. Figure 5-15 shows the change that appears in the source file and in the Preview Pane of the ADF skin.

Figure 5-15 Style Properties for an inputText Component's Error Message

[image: Style Property for an Input Text Component’s Error Message]

If you want to define style properties to appear when the component displays an error message, use the error pseudo class. For example, set the content pseudo element's background color property for the af:inputText component's to Red when an error occurs as follows:

af|inputText::content:error
{
 background-color:Red
}

5.5.3 What You May Need to Know About Configuring an ADF Skin Property to Apply to a Message

The visual editor does not support the addition or the configuration of the pseudo-classes for message types to a selector's pseudo-element. Use the source editor for the ADF skin if you want to add a pseudo-class for a message type to a selector's pseudo-element. Example 5-2 demonstrates the syntax to write if you want to define red as the background color for the af|inputText selector's content pseudo-element

Example 5-2 Adding a Message Pseudo-Class to a Pseudo-Element

af|inputText::content:error
{
 background-color:Red
}

5.6 Applying Themes to ADF Faces Components

Themes are a way of implementing a look and feel at a component level. A theme's purpose is to provides a consistent look and feel across multiple components for a portion of a page. A common usage for themes is in a JSF page template where certain areas have a distinct look. For example, a page may have a branding area at the top with a dark background and light text, a navigation component with a lighter background, and a main content area with a light background.

A component that sets a theme exposes that theme to its child components and therefore the theme is inherited. Themes can be set (started or changed) by the af:document and af:decorativeBox components.

The Fusion ADF skins support the following themes:

	
dark

	
medium

	
light

	
None (default)

You can also create your own theme by entering syntax similar to the following in the source file of an ADF skin:

af|document[theme=UserCreated] {}

Figure 5-16 shows how the visual editor renders tabs where you can configure style properties for each theme provided by the Fusion ADF skins in addition to a user-created theme.

Figure 5-16 Tabs in the Visual Editor for Themes

[image: Visual Editor Theme Tabs]

Figure 5-17 shows how the different themes contrast to each other.

Figure 5-17 Default Appearance of Themes

[image: Default Appearance of Themes]

In addition to the themes listed previously, there is one other theme (contentBody) that the af|decorativeBox selector uses, as shown in Figure 5-18. The af:decorativeBox component is the only component that ever renders using the style properties defined for this theme.

Figure 5-18 Themes for the decorativeBox Selector

[image: Themes for the decorativeBox Selector]

In your application, you start the theme by specifying it as an attribute of the af:document component in the JSF page, as shown in the following example:

<af:document theme="dark">
 <af:panelTabbed>...</af:panelTabbed>
</af:document>

	
Note:

You can also start a theme by specifying it as an attribute of the af:decorativeBox component.

You can prevent a component inheriting modifications made to a parent component. For example, you can prevent the af:panelTabbed child component inheriting the dark theme defined for the af:document parent component in the JSF page. For more information, see the Section 5.6.3, "How to Prevent a Component Inheriting a Theme from a Parent Component."

By default, themes are not set for components or their child components. Because themes are inherited, the following values are supported when a component has a theme attribute that is not set:

	
not given - If no theme is given, the theme is inherited, as in <af:decorativeBox>...

	
#{null}- The theme is inherited; same as not given.

	
inherit - The theme is inherited; same as null.

	
default - The theme is removed for the component and its child components.

	
empty string - If the theme is set to a blank string, it has the same behavior as default. For example, <af:decorativeBox theme=""> will remove the theme for the component and its child components.

Because the themes are added to every HTML element of a component that supports themes and that has style classes, there is no need for containment-style CSS selectors for themes. With the exception of :ltr and :rtl, all theme selectors should always appear on the last element of the selector. For example, the selector to apply a dark theme to each step of an af:breadCrumbs component is:

af|breadCrumbs::step:disabled[theme="dark"] {
 color:#FFFFFF;
}

Color incompatibility may occur if a component sets its background color to a color that is not compatible with its encompassing theme color. For example, if a panelHeader component is placed in a dark theme, the CSS styles inside the panelHeader component will set its component background to a light color without changing its foreground color accordingly. The result is a component with a light foreground on a light background. Many other components also set their foreground color to a light color when placed in a dark theme.

If color incompatibility occurs, you can resolve color incompatibility between parent and child components by setting a value for the -tr-children-theme property. For components that do not have a parent-child relationship, you can manually set the component's theme color to a color that is compatible with the surrounding theme color. You do this by inserting the panelGroupLayout or panelStretchLayout component inside the component and by setting the panelGroupLayout or panelStretchLayout theme to a compatible color.

<af:panelHeader text="Header Level 0">
 <af:panelGroupLayout layout="vertical" theme="default">
 ...
 </af:panelGroupLayout>
</af:panelHeader>

5.6.1 How to Enable Themes for Components

You enable themes on a per-component basis in an ADF skin. Enabling themes on a per-component basis means that you do not generate unnecessary HTML attributes that the ADF skin will not use.

To enable themes for components:

	
In the source editor, enter syntax for the component's selector to enable themes for the component in the ADF skin. For example, to enable theme support in an ADF skin for the outputLabel component, enter the following:

 af|outputLabel {
 -tr-enable-themes: true;
 }

5.6.2 How to Set Theme Properties for a Component in an ADF Skin

You set theme properties for a component using the tab in the visual editor that corresponds to the theme you want to configure.

To set theme properties for a component in an ADF skin:

	
In the Selector Tree of the visual editor, expand the appropriate node for which you want to set theme properties.

You can configure items under the Style Classes, Faces Component Selectors, Data Visualization Component Selectors, and Other nodes.

	
Click the tab that corresponds to the theme for which you want to set properties.

For example, if you want to set a property for the dark theme, click Dark Theme, as shown in Figure 5-19.

Figure 5-19 Dark Theme in Visual Editor

[image: Dark Theme in Visual Editor]

	
In the Property Inspector, set values for the properties that you want to configure for the selected theme.

Example 5-3 shows the entry that appears in the source file of an ADF skin if you set the background-color property of the af:panelTabbed component's dark theme to Red.

Example 5-3 Defining a Theme for a Component in an ADF Skin

af|panelTabbed[theme="dark"] {
 background-color: Red;
}

5.6.3 How to Prevent a Component Inheriting a Theme from a Parent Component

If you do not want a child component to inherit modifications made to a parent component in a JSF page, set a value for the -tr-children-theme property in the source file of the ADF skin. For example, you do not want the af:panelTabbed child component to inherit the dark theme defined for the af:document parent component in the JSF page. Set the -tr-children-theme property in the source file for the ADF skin as shown in Example 5-4.

Note that if you do not want a component to inherit modifications for a specific theme, you must specify the themed version. In Example 5-4, this is the dark theme. If you wanted to prevent the inheritance of modifications for the medium theme, you also set the -tr-children-theme property in the source file for the medium theme.

Example 5-4 Child Component Preventing Inheritance of a Theme from a Parent Component

af|panelTabbed[theme="dark"] {
 -tr-children-theme: default;
}

5.7 Configuring an ADF Skin for Accessibility

Oracle ADF provides application accessibility support to make applications developed using ADF Faces components usable for persons with disabilities. You can define style properties in your ADF skin specifically for persons with disabilities as part of efforts to make your application accessible. You preface these style properties with the @accessibility-profile rule.

The @accessibility-profile rule allows you to define style properties for the high-contrast and large-fonts accessibility profile settings that you can specify in the trinidad-config.xml file. For more information about the trinidad-config.xml file, Section 11.3, "Configuration Files for an ADF Skin."

Define style properties for the high-contrast accessibility profile where you want background and foreground colors to contrast highly with each other. Define style properties for the large-fonts accessibility profile for cases where the user must be allowed to increase or decrease the text scaling setting in the web browser. Defining large-fonts does not mean that the fonts are large, but rather that they are scalable fonts or dimensions instead of fixed pixel sizes.

Example 5-5 shows style properties that get applied to the af|column::sort-ascending-icon pseudo-element when an application renders using the high-contrast accessibility profile.

Example 5-5 Style Properties Defined Using the @accessibility-profile

@accessibility-profile high-contrast {
 af|column::sort-ascending-icon {
 content: url("/afr/fusion/sort_asc_ena.png");
 }
 af|column::sort-ascending-icon:hover {
 content: url("/afr/fusion/sort_asc_ovr.png");
 }
 af|column::sort-ascending-icon:active {
 content: url("/afr/fusion/sort_asc_selected.png");
 }
 af|column::sort-descending-icon {
 content: url("/afr/fusion/sort_des_ena.png");
 }
 af|column::sort-descending-icon:hover {
 content: url("/afr/fusion/sort_des_ovr.png");
 }
 af|column::sort-descending-icon:active {
 content: url("/afr/fusion/sort_des_selected.png");
 }
 af|column::sorted-ascending-icon {
 content: url("/afr/fusion/sort_asc_selected.png");
 }
 af|column::sorted-descending-icon {
 content: url("/afr/fusion/sort_des_selected.png");
 }

For more information about developing accessible ADF Faces pages and accessibility profiles, see the "Developing Accessible ADF Faces Pages" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

5.7.1 How to Configure an ADF Skin for Accessibility

You define style properties for the selector or selector´s pseudo-elements that you want to configure and preface these style properties with the @accessibility-profile rule.

To configure an ADF skin for accessibility:

	
Define style properties for the selectors and selectors´ pseudo-elements that you want to configure, as described in Section 5.4, "Changing a Component-Specific Selector."

	
In the source file for the ADF skin, preface the skinning keys that you configured with the @accessibility-profile rule, as illustrated in Example 5-5.

6 Working with Images in Your ADF Skin

This chapter describes how to work with images in an ADF skin. Key features such as how you change an image for a component selector are described in addition to how to work with the Images window that is enabled when your ADF skin extends from the Fusion Simple family of ADF skins.

This chapter includes the following sections:

	
Section 6.1, "About Working with Images in an ADF Skin"

	
Section 6.2, "Changing an Image for a Component Selector"

	
Section 6.3, "Working with the Images Window"

6.1 About Working with Images in an ADF Skin

You can reference images in an ADF skin by using a URL to specify the location of the image. You do this when you want to specify an image as a company logo for use in multiple web pages, for example. Other scenarios where you use images include when you want to display an image in conjunction with a warning or error message to capture your end user's attention or you want to render an image to make your application more visually appealing. Figure 6-1 shows an example that illustrates how using images referenced by an ADF skin can change the user interface that an application renders. The page in Figure 6-1 is the same page rendered by the same application using two different ADF skins.

Figure 6-1 ADF Skin Using an Image

[image: ADF Skin File Using an Image]

The ADF skin that the web page in the foreground of Figure 6-1 uses does not reference an image while the ADF skin that the web page in the background renders a company logo. It renders the company logo by defining the location of the image as a value for the background-image property in the .AFBrandingBarLogo style class.

Apart from defining images as the values for the background-image property, there are a range of selectors that reference images. These images appear, for example, as icons in ADF Faces components that render at runtime. For more information, see Section 2.1.2, "ADF Skin Selectors and Icon Images."

6.2 Changing an Image for a Component Selector

Many ADF Faces and ADF Data Visualization components reference images using selectors. These images display in the background of the component or render as icons or controls on the component. When you create an ADF skin, the ADF skin that you extend from provides the values for these selectors such as, for example, the relative path to an image, sizes for height, width, and so on.

Figure 6-2 shows a runtime view of the ADF Faces table component rendering a control that sorts the data in a table column in ascending order. The image that renders this control is referenced by the ADF Faces column component's sort-ascending-icon-style selector.

Figure 6-2 Image Referenced by the sort-ascending-icon-style Selector

[image: Image for the sort-ascending-icon-style Selector]

Figure 6-3 shows a design-time view where an ADF skin inherits values for the ADF Faces column component's sort-ascending-icon-style selector from the extended ADF skin. The values inherited include the file name for the image used as an icon (sort_asc_ena.png), the height, and the width for the image.

Figure 6-3 Inherited Values for the sort-ascending-icon-style Selector

[image: Inherited Values for sort-ascending-icon-style Selector]

Other examples of ADF Faces and ADF Data Visualization components that expose selectors which reference images associated with the component include the following:

	
ADF Faces progressIndicator component exposes the determinate-empty-icon-style selector.

	
ADF Faces panelAccordion component exposes the disclosed-icon-style selector.

	
ADF Data Visualization mapToolbar component exposes the zoomin-enable-icon selector.

If you decide that you want to modify the image that is associated with a component selector, you need to modify the selector in your ADF skin and copy the image into the project for your ADF skin. You can copy images individually using the procedure in Section 6.2.1, "How to Copy an Image into the Project" or you can import multiple images using the Images window, as described in Section 6.3, "Working with the Images Window."

After you import an image into your project, the selector that references the image uses a URL in the source file of the ADF skin to refer to this image. Note that this URL is updated when you deploy your ADF skin (and associated files) in an ADF Library JAR, as described in Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

	
Tip:

Associate an image with a global selector alias. If multiple component selectors reference the global selector alias, you only need to make one change if you want to use a different image at a later time (change the image associated with the global selector alias). For more information about global selector aliases, see Section 8.2, "Creating a Global Selector Alias."

6.2.1 How to Copy an Image into the Project

You use a context menu to copy an image that an extended ADF skin references into a directory of the project for your ADF skin. You then make the changes that you want to the image.

To copy an ADF skin image into your project:

	
In the Selector Tree of the visual editor, select the selector that references the image you want to change.

For example, select the ADF Faces column component's sort-ascending-icon-style selector to change the sort ascending icon, as shown in Figure 6-1.

Figure 6-4 Column Component's sort-ascending-icon-style Selector

[image: Table Column sort-ascending-icon-style selector]

	
In the Property Inspector, expand the Common section and select Copy Image from the Background Image list, as shown in Figure 6-5.

Figure 6-5 Copy Image Menu to Import an Image into ADF Skin Project

[image: Copy Image Menu to Import an Image into ADF Skin]

This copies the image into the project for your ADF skin.

6.2.2 What Happens When You Copy an Image into the Project

The image is copied into a subdirectory that is generated in the project of your ADF skin. For example, if you decided to copy the image that the ADF Faces column component's sort-ascending-icon-style selector references, the sort_asc_ena.png file is copied to the following directory:

/public_html/skins/skin1/images/af_column

where af_column refers to the ADF Faces column component.

The relative URL value of the property in the Property Inspector is modified to reference the new location of the image. Figure 6-6 shows an example.

In addition, the Property Inspector indicates that the selector no longer inherits the image from the extended ADF skin by displaying a green icon to the left of the property label. Figure 6-6 shows the Property Inspector after importing the sort_asc_ena.png file into the project for the ADF skin. Note that the ADF skin still inherits the values for the Height and Width properties from the extended ADF skin.

Figure 6-6 Property Inspector After Importing an Image into an ADF Skin

[image: Property Inspector After Importing an Image into a Skin]

Finally, CSS syntax appears in the source file of your ADF skin. Example 6-1 shows the CSS syntax that corresponds to the values shown in Figure 6-6.

Example 6-1 CSS Syntax in Source File of ADF Skin After Importing an Image

af|column::sorted-ascending-icon-style
{
 background-image: url("images/af_column/sort_asc_selected.png");
}

6.3 Working with the Images Window

The Images window helps you manage the images that you want to use with an ADF skin that extends from the Fusion Simple family of ADF skins. You access it by clicking the Images tab of an open ADF skin.

	
Note:

Your ADF skin must extend the Fusion Simple family of ADF skins if you want to use the functionality in the Images window. You cannot use the Images window if you extend ADF skins from other skin families.

Figure 6-7 shows the Images window that appears when you first click the Images tab in your ADF skin. The Generate Images Using list displays the following options:

	
Current Skin Aliases: Select to start with a colorized version using the global selector aliases that appear in the Color category of the current ADF skin. Choosing this option displays the Alias Color list where you can modify the values of these global selector aliases.

	
Desaturated Fusion Simple Colors: Select to start with a desaturated version of the set of images for the Fusion Simple skin.

	
Fusion Simple Colors: Select to start with a set of images for the Fusion Simple skin.

	
Tip:

Selecting Desaturated Fusion Simple Colors from the Generate Images Using list and clicking Apply to Skin is a useful method to retrieve all the current images if you want to modify them manually in another tool.

The Generated Images list displays the available images that you can apply to your ADF skin by clicking the Apply to Skin button. When you click the Apply to Skin button, the selected images in the Generated Images list are imported into an images directory that is a subdirectory of the directory in your project where you store your ADF skin.

Figure 6-7 Images Window for an ADF Skin

[image: Images Window for an ADF Skin]

The Alias Colors list that appears when you select Current Skin Aliases in the Generate Images Using list displays the color aliases that impact the color of layout and icon images. These color aliases are a subset of the available color aliases. Changing the color aliases in this subset can have a significant impact on the appearance of your application. Figure 6-8 shows a page from an application where the parts of a page that use these color aliases are labeled. For example, Bookmarkable Link uses the .AFLightVisitedLinkForeground color alias after a user clicks the link.

Figure 6-8 Application Page Using Color Aliases

[image: Application Page Using Color Aliases]

Figure 6-9 shows another example where the usage of color aliases is labeled.

Figure 6-9 ADF Faces Table Component Using Color Aliases

[image: ADF Faces Table Component Using Color Aliases]

For more information about the Color category of global selector aliases, see Section 8.1, "About Global Selector Aliases."

The Oracle Technology Network (OTN) web site provides an online demonstration that shows you how to change the color aliases in the Color Alias list as part of the process of developing an ADF skin. For more information, navigate to http://www.oracle.com/technetwork/developer-tools/adf/overview/index.html.

6.3.1 How to Generate Images Using the Images Window

You generate images using the Images window by choosing one of the supported methods and using it to apply changes to your ADF skin.

To generate images using the Images window:

	
Create an ADF skin that extends the Fusion Simple family of ADF skins.

For more information about creating an ADF skin, see Section 4.4, "Creating an ADF Skin File." For more information about the Fusion Simple family of ADF skins, see Section 11.4, "ADF Skins Provided by Oracle ADF."

	
Click the Images tab for the newly-created ADF skin.

	
Choose the method that you want to use to generate the images from the Generate Images Using list.

	
Choose the appropriate option for the image types that you want to include:

	
Layout Slices: select this checkbox to include this type of image in your ADF skin.

	
Icons: select this checkbox to include this type of image in your ADF skin.

	
(Optional) If you selected Current Skin Aliases from the Generate Images Using dropdown menu, modify the values for the entries in the Alias Color list.

You can do this in a number of ways:

	
Enter a Hex code directly in the input field for the global selector alias that you want to modify

	
Invoke the Adjust Hue/Saturation/Brightness dialog by clicking Adjust Hue/Saturation/Brightness. This dialog enables you to adjust the hue, saturation and brightness levels of the colors that your ADF skin uses.

	
Invoke a color picker by clicking the dropdown menu beside the input field. You can also invoke the Select Custom Color dialog by clicking the Custom button in the color picker or reset the value of the global selector alias using the Default button. Figure 6-10 shows these buttons and the dropdown menu that initially displays the buttons.

Figure 6-10 Editing Options for Color Aliases

[image: Color Picker for Color Aliases]

	
(Optional) If you selected Current Skin Aliases from the Generate Images Using dropdown menu, you can click the Exclude Color icon to inhibit the usage of a color alias when you generate images. The Exclude Color icon appears when you move your mouse over a color alias, as shown in Figure 6-11.

Figure 6-11 Exclude Color Icon for Color Aliases

[image: Exclude Color Icon for Color Aliases]

	
In the Generated Images list, select the images that you want to apply to the ADF skin. Use the checkboxes on the Generated Images list to select or deselect all the images or to select one or more images. By default, the selected images are those that have been modified as a result of changes to the color aliases.

	
Note:

Scroll to the bottom of the Generated Images list to verify that all the images that you want to apply to the skin are selected.

	
Click Apply to Skin.

6.3.2 What Happens When You Generate Images Using the Images Window

The image files that you selected in the Generated Images list are imported into the project. Entries appear for each image that you generate in the source file of the ADF skin. Entries also appear for each global selector alias that you modify in the Alias Colors list if you chose to generate the images using the Current Skin Aliases option. Example 6-2 shows some entries that appear in the source file of an ADF skin where images were generated using the Current Skin Aliases option with values modified for the AFDarkestNeutralBackground and AFVeryLightBackground global selector aliases.

Example 6-2 Entries in the Source File of an ADF Skin after Generating Images

af|panelWindow::footer-end
{
 background-image: url(images/generated/adf/images/fusion/dialog-footer-small-right.png);
}
...

af|train::stop-icon-unvisited:hover, af|train-vertical::stop-icon-unvisited:hover
{
 background-image: url(images/generated/adf/images/fusion/train_unvisited_ovr.png);
}
...

.AFDarkestNeutralBackground:alias
{
 background-color: #00ff00;
}
.AFVeryLightBackground:alias
{
 background-color: #00ff00;
}

7 Working With Text in an ADF Skin

This chapter describes how to work with text in an ADF skin. Key concepts such as how the resource strings that ADF Faces components render at runtime are stored in resource bundles are described in addition to how you can specify additional resource bundles with different resource strings.

This chapter includes the following sections:

	
Section 7.1, "About Working with Text in an ADF Skin"

	
Section 7.2, "Using Text From Your Own Resource Bundle"

7.1 About Working with Text in an ADF Skin

The source file for an ADF skin does not store any text that ADF Faces components render in the user interface of your application. Applications that render ADF Faces components abstract the text that these components render as resource strings and store the resource strings in resource bundles. For example, Figure 7-1 shows an ADF Faces dialog component that renders command buttons with OK and Cancel labels.

Figure 7-1 ADF Faces dialog Component

[image: ADF Faces Dialog Component]

The text that appears as the labels for these command buttons (OK and Cancel) is defined in a resource bundle and referenced by a resource string. If you want to change the text that appears in the command button labels, you create a resource bundle where you define the values that you want to appear by specifying alternative text for the following resource strings:

	
af_dialog.LABEL_OK

	
af_dialog.LABEL_CANCEL

	
Note:

By default, a resource bundle (skinBundle.properties) is created in your project when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File."

In addition to the resource strings that define the text to appear in the user interface for specific components, there are a range of resource strings that define text to appear that is not specific to any particular component. These resource strings are referred to as global resource strings. For more information about the resource strings for ADF Faces components and global resource strings, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the application you are skinning).

ADF Faces components provide automatic translation. The resource bundle used for the ADF Faces components' skin is translated into 28 languages. If, for example, an end user sets the browser to use the German (Germany) language, any text contained within the components automatically displays in German. For this reason, if you create a resource bundle for a new ADF skin, you must also create localized versions of that resource bundle for any other languages your web application supports.

For more information about creating resource bundles, resource strings, and localizing ADF Faces components, see the "Internationalizing and Localizing Pages" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

7.2 Using Text From Your Own Resource Bundle

If you enter alternative text in a resource bundle to override the default text values that render in the user interface of the ADF Faces components in your application, you need to specify this resource bundle for your application. At runtime, the application renders the alternative text in your resource bundle for the resource strings that you override. For resource strings that you do not override, the application renders the text defined in the base resource bundle. For example, Figure 7-4 shows an ADF Faces dialog component where the application developer overrides the default value for the af_dialog.LABEL_OK resource string from OK to Yay while the default value for the af_dialog.LABEL_CANCEL resource string remains unchanged. That is, the application developer did not define a value for the af_dialog.LABEL_CANCEL resource string in a resource bundle; the application references the base resource bundle for this resource string's value.

Figure 7-2 Overridden and Default Values Resource Strings

[image: Overriden Value for af_dailog.LABEL_OK Resource String]

For more information about how to create a resource bundle and how to define string key values, see the "Internationalizing and Localizing Pages" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

7.2.1 How to Specify an Additional Resource Bundle for an ADF Skin

You specify a resource bundle for your ADF skin by adding its name and location as a value to the bundle-name property in the trinidad-skins.xml file.

To specify an additional resource bundle for an ADF skin:

	
In the Application Navigator, double-click the trinidad-skins.xml file for your application. By default, this is under the Web Content/WEB-INF node.

	
In the Structure window, right-click the skin node for which you want to add an additional resource bundle and choose Insert inside skin > bundle-name.

	
In the Property Inspector, specify the name and location for your resource bundle as a value for the bundle-name property.

For example, the resource bundle that is created by default after you create the first ADF skin in your project, as illustrated in Figure 7-3, specifies the following value for the <bundle-name> element:

<bundle-name>resources.skinBundle</bundle-name>

Figure 7-3 Default Resource Bundle for an ADF Skin

[image: List Resource Bundle]

7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

The trinidad-skins.xml file references the resource bundle that you specified as a value for the bundle-name property, as shown in Example 7-1.

Example 7-1 Specifying an Additional Resource Bundle in trinidad-skins.xml

<skin>
 <id>skin1.desktop</id>
 <family>skin1</family>
 <extends>fusionFx-simple-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin1/skin1.css</style-sheet-name>
 <bundle-name>resources.skinBundle</bundle-name>
</skin>

At runtime, the application renders text values that you specified in your resource bundle to override the default text values. For example, assume that you defined a resource bundle where you specified Yeah as the value for the af_dialog.LABEL_OK resource sting and Oops as the value for the af_dialog.LABEL_CANCEL. Example 7-1 shows a dialog component that renders labels using these values.

Figure 7-4 Dialog Rendering Labels Defined in a Custom Resource Bundle

[image: Dialog Rendering Labels Defined in a Custom Resource Bundle]

8 Working With Global Selector Aliases

This chapter describes how to work with global selector aliases. Information on how to create, modify, and apply a global selector alias is provided in addition to describing how to reference a property value from another selector.

This chapter includes the following sections:

	
Section 8.1, "About Global Selector Aliases"

	
Section 8.2, "Creating a Global Selector Alias"

	
Section 8.3, "Modifying a Global Selector Alias"

	
Section 8.4, "Applying a Global Selector Alias."

	
Section 8.5, "Referencing a Property Value from Another Selector"

8.1 About Global Selector Aliases

A global selector alias defines style properties in one location in the ADF skin that you can apply to multiple ADF Faces and ADF Data Visualization components. A global selector alias may also be referred to as a selector alias, or simply a selector. The ADF skins provided by Oracle ADF, described in Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF" and Section 11.4, "ADF Skins Provided by Oracle ADF" make extensive use of global selector aliases to define common style properties for text, messages, icons, colors and different groups of components. Many component-specific selectors inherit the styles defined for these global selector aliases. For example, the.AFDefaultFontFamily:alias global selector alias defines a default font family for all ADF Faces components in your application that display text. Any ADF skin that you create by extending from one of the ADF skins provided by Oracle ADF inherits the properties defined in the .AFDefaultFontFamily:alias global selector alias. Figure 8-1 shows how the visual editor displays that the af|commandButton selector inherits the value for font family from the.AFDefaultFontFamily:alias global selector alias.

Figure 8-1 Component Selector Inheriting Value from Global Selector Alias

[image: Component Selector Inheriting from Global Selector Alias]

Figure 8-1 also shows the different categories of global selector aliases. Each category groups global selector aliases according to their purpose:

	
Color: Defines colors used by the ADF skins provided by Oracle ADF. Many global selector aliases that you may want to override appear in this category because they determine most of the colors that appear in a Fusion web application. Changes that you make to these global selector aliases have the most effect if you extend the Fusion Simple family of ADF skins described in Section 11.4, "ADF Skins Provided by Oracle ADF." As with other global selector aliases, you can view which component-specific selectors inherit the values defined in a specific global selector using the View as list.

	
Component Group: Button: Defines style properties inherited by selectors for many of the ADF Faces components that render buttons. For example, the .AFButtonAccessKeyStyle:alias global selector alias defines style properties for the access key rendered by the ADF Faces button and dialog components among others.

	
Component Group: Form Controls: Defines style properties for form controls.

	
Component Group: Link: Defines style properties for many of the link components.

	
Component Group: PanelBox and Region: Defines style properties for the panelBox and region components.

	
Component Group: Tabs: Defines style properties for many of the ADF Faces components that render tabs. For example, the .AFFormAccessKeyStyle:alias global selector alias defines the style properties for access keys that render in the ADF Faces panelTabbed and navigationPane components.

	
Font: Defines style properties for fonts. For example, the .AFDefaultFontFamily:alias global selector alias defines the style properties inherited by many of the ADF Faces component selectors.

	
Icons: Defines the style properties that apply to icons that render in multiple components.

	
Message: Defines style properties for messages that ADF Faces input components display when they render different types of messages. For more information, see Section 5.5, "Configuring ADF Skin Properties to Apply to Messages."

	
Miscellaneous: Defines global selector aliases that do not fit in the other categories. For example, the .AFDynamicHelpIconStyle:alias global selector alias defines the style to use for the dynamic help icon.

	
Text: Defines style properties to use for text.

For detailed descriptions of the global selector aliases, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the application you are skinning). Global selector aliases that you define appear under the Global Selector Aliases node, as shown by the entry for the .UserDefined:alias in Figure 8-1.

The View as list displays the list of components that reference a global selector alias when you select a global selector alias in the Selector Tree. In Figure 8-2, the user selected Panel Window from the list because the panelWindow component references the global selector alias.

	
Note:

Sometimes components appear in the View as list for which the style properties defined in the global selector alias do not render in the component. This may be because the component initially referenced the global selector alias in an extended ADF skin and your ADF skin overrides the global selector alias for that component. Alternatively, it may be because the component itself overrides the global selector alias using one of its style-related attributes (styleClass or inlineStyle).

In Figure 8-2, the user has changed the inherited value for the .AFDefaultFontFamily:alias global selector alias and viewed the resulting change as it applies to the panelWindow component. All selectors that inherit the value of the .AFDefaultFontFamily:alias global selector alias will render at runtime using the font family defined in the ADF skin. For example, both the dialog and panelWindow components render using this font family.

Figure 8-2 ADF Skin Changing a Global Selector Alias

[image: ADF Skin Changing a Global Selector Alias]

In addition to the global selector aliases already described, a number of component selectors define selector aliases that are specific to these components only. These selector aliases appear under the nodes for the component selectors in the Selector Tree. Figure 8-3 shows examples from a number of the component selectors that expose these types of selector aliases.

Figure 8-3 Component Selector Aliases

[image: Component Selector Alias]

8.2 Creating a Global Selector Alias

You can create a global selector alias to define in one location the style properties that you want a number of selectors to reference. You enter the name of the new global selector alias in the Create Alias Selector dialog. The ADF Skin Editor appends the keyword :alias and prepends . to the name that you enter in the dialog. For example, if you enter myGlobalSelector as the name in the dialog, the resulting name that appears in the user interface and in the source file of the ADF skin is:

.myGlobalSelector:alias

The keyword :alias identifies your global selector alias as a CSS pseudo-class and serves as a syntax aid to organize the CSS code in the source file of your ADF skin.

After you create a global selector alias, you modify it to define the style properties that you want it to contain. For more information, see Section 8.3, "Modifying a Global Selector Alias."

8.2.1 How to Create a Global Selector Alias

You can create a global selector alias that defines the style properties that you want a number of user interface components to use.

To create a global selector alias:

	
In the Selector Tree of the visual editor, select New Alias Selector from the Plus icon's list, as illustrated in Figure 8-4.

Figure 8-4 New Alias Selector Option in the Selector Tree

[image: New Alias Selector Option in the Skinning Navigator]

The Create Alias Selector dialog opens.

	
Enter a name for the global selector alias in the Alias Selector Name field.

	
Tip:

Enter a name for the global selector alias that indicates the purpose it serves. For example, MyLinkHoverColor for a global selector alias that is to change the color of a link when an end user hovers over the link.

	
Click OK.

	
In the Property Inspector, set values for the properties that you want to configure in the global selector alias.

8.2.2 What Happens When You Create a Global Selector Alias

The global selector alias appears under the Global Selector Aliases node in the Selector Tree and a visual representation as it applies to a component appears in the Preview Pane, as illustrated in Figure 8-5.

Figure 8-5 Newly-Created Global Selector Alias

[image: Newly-Created Shared Skinning Key]

CSS syntax for the global selector alias that you create appears in the source file of the ADF skin. Figure 8-5 shows the entries that appear in the source file of the ADF skin in Figure 8-5.

Example 8-1 CSS Syntax for a Newly-Created Global Selector Alias

.MyLinkHoverColor:alias{
}

8.3 Modifying a Global Selector Alias

You can modify any of the categories of global selector alias described in Section 8.1, "About Global Selector Aliases." Modifying a global selector alias that appears under the Global Selector Aliases node in the Selector Tree when you first create the ADF skin means that you override the inherited style properties defined in the parent ADF skin of your ADF skin. The parent ADF skin is the ADF skin from which your ADF skin extends. You chose the ADF skin from which to extend when you created an ADF skin, as described in Section 4.4, "Creating an ADF Skin File." After you modify a global selector alias, the component-specific selectors that inherit the style properties defined in the global selector alias use the modified values.

Modifying a global selector alias that you create in your ADF skin does not override any style properties inherited from the parent ADF skin.

8.3.1 How to Modify a Global Selector Alias

You modify a global selector alias by setting values for it in the Property Inspector. You then verify that the changes you make apply to the component-specific selectors as you intend.

To modify a global selector alias:

	
In the Selector Tree of the visual editor, select the global selector alias that you want to modify.

For example, if you want to modify the global selector alias that defines the default font family, select it as illustrated in Figure 8-6.

Figure 8-6 Modifying a Global Selector Alias

[image: Modifying a Global Selector Alias]

	
In the Property Inspector, set values for the properties that you want to modify.

	
In the visual editor, click the View as list to select a component-specific selector that inherits the property values defined in the global selector alias that you have just modified.

	
In the visual editor, verify that the changes render for the component-specific selector as you intend. Repeat steps 1 to 3 until you achieve the changes you want for the component-specific selectors that inherit from the global selector alias.

8.4 Applying a Global Selector Alias

After you create a global selector alias in your ADF skin, you need to specify the ADF Faces and ADF Data Visualization components that you want to render at runtime using the style properties that you defined in the global selector alias.

Applying a global selector alias to an ADF Faces or ADF Data Visualization component requires you to:

	
Select the selector, pseudo-element, or pseudo-class for each component that you want to apply the style properties defined in the global selector alias. If you want to apply the style properties defined in your global selector alias to another global selector alias, select the target global selector alias.

	
Set the global selector alias as a value for the ADF skin -tr-rule-ref- property

8.4.1 How to Apply a Global Selector Alias

You apply a global selector alias by specifying it as a value for the ADF skin's -tr-rule-ref- property.

To apply a global selector alias:

	
In the Selector Tree of the visual editor, select the item to which you want to apply the global selector alias.

For example, select the inputText component's content pseudo-element if you want to apply the style properties defined in your global selector alias to the label for that component, as shown in Figure 8-7.

	
In the Property Inspector, expand the Common section and then click the Add icon next to the -tr-rule-ref- field.

	
Enter the name of the global selector alias. Enter the name between quotes that you preface with the selector keyword in the Value field.

For example, if the name of the global selector alias is .MyBackgroundColor:alias, enter selector(".MyBackgroundColor:alias"), as illustrated in Figure 8-7.

Figure 8-7 inputText Component's content Pseudo-Element

[image: Input Text Component’s label Skinning Key]

	
Click the Refresh icon in the Preview Pane to view the changes.

8.4.2 What Happens When You Apply a Global Selector Alias

The selector to which you applied the global selector alias inherits the style properties defined in the global selector alias. Figure 8-8 shows the content pseudo-element for the inputText component's selector that inherits the style properties defined in the .MyBackgroundColor:alias global selector alias. The properties that inherit their values from a global selector alias when you specify the global selector alias as a value for the ADF skin -tr-rule-ref property update to use the inheritance icon, as shown for the Background Color and Color fields in Figure 8-8.

At runtime, the inputText component's content area renders using the style properties defined in the global selector alias.

Figure 8-8 Global Selector Alias Applied to inputText Component

[image: placeholder graphic for question above]

8.4.3 What You May Need to Know About Applying a Global Selector Alias

If you override a global selector alias in an extended ADF skin, component selectors that used the –tr-rule-ref ADF skin property to determine the value of a style property in the parent ADF skin use the overridden value of the global selector alias. Example 8-2 shows ADF Skin B that extends ADF Skin A. At runtime, the top of a decorativeBox component renders red for the background-color CSS property because the global selector alias in ADF Skin B overrides ADF Skin A.

Example 8-2 Overriding an Inherited Global Selector Alias

/** Skin A **/
/** ---------------------------------- **/
.MyBackColor:alias
{
 background-color: blue
}

af|decorativeBox::top
{
 -tr-rule-ref: selector(".MyBackColor:alias");
}

/** Skin B **/
/** ---------------------------------- **/

.MyBackColor:alias
{
 background-color: Red
}

If you specify a style property value in an extended ADF skin where the parent ADF skin also specifies a value for the style property, the ADF skinning framework applies the value in the extended ADF skin. Example 8-3 shows ADF Skin C where the .myClass style class specifies Red as the value for the background-color CSS property. If an application uses ADF Skin D (that extends ADF Skin C), components that apply the .myClass style class apply Lime for the background-color CSS property. This is because the ADF skinning framework calculates the values of statements that include values in an ADF skin (like –tr-rule-ref) first. The ADF skinning framework then calculates specific properties (for example, background-color) next. As a result, the value for the background-color CSS property in ADF Skin D (Lime) overrides the value for the –tr-rule-ref ADF skin property (Blue) or inherited values from ADF Skin C (Red).

	
Note:

If you subsequently override the .myClass style class as follows in ADF Skin D, the value that the ADF skinning framework applies for the background-color CSS property is Blue:

.myClass {-tr-rule-ref: selector(".MyBlueColor:alias")}

Example 8-3 Overriding a Local Global Selector Alias

/** ADF Skin C **/
/** ---------------------------------- **/
.myClass {
 background-color: Red
}

/** ADF Skin D **/
/** ---------------------------------- **/
.MyBackColor:alias {
 background-color: Blue;
}

.myClass {
 background-color: Lime;
 -tr-rule-ref: selector(".MyBackColor:alias")
}

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for your browser), when you run your application to determine what style property value the ADF skinning framework applies to a component selector at runtime. For more information, see Section 10.2, "Testing Changes in Your ADF Skin."

8.5 Referencing a Property Value from Another Selector

Rather than set a specific style property for each selector to which you want to apply the style property, you can reference the value of a property using the -tr-property-ref ADF skin property. You can configure this ADF skin property for global selector aliases and component-specific selectors. For example, you could define a value for the background-color property in a global selector alias and reference this value from multiple other selectors. If you decide at a later time to change the value of the background-color property, you change the value in the global selector alias. All selectors that reference the background-color property using the -tr-property-ref ADF skin property update to use the change you make. The -tr-property-ref ADF skin property can also be used with compact CSS properties like, for example, border.

8.5.1 How to Reference a Property Value from Another Selector

You reference the property value that you want to use for a selector using the -tr-property-ref ADF skin property.

To reference a property value from another selector:

	
In the Selector Tree of the visual editor, select the selector that you want to reference a property value from another selector.

For example, if you want the content area of the panelWindow component to reference a style property defined in another selector, select content under the Pseudo-Elements node of the panelWindow component, as illustrated in Figure 8-9.

Figure 8-9 Panel Window Component's content Pseudo-Element

[image: Panel Window Component’s content Pseudo-Element]

	
In the Property Inspector, specify the property value that you want to reference as a value for the selector's property using the -tr-property-ref ADF skin property.

For example, assume that you created the following global selector alias:

.MyColor:alias {
 color: rgb(255,181,99);
 font-weight: bold;
}

and that you want to reference the color property from this global selector alias for the background-color property of the content pseudo-element that you selected in step 1. In this scenario, enter the following value for the background-color property of the content pseudo-element,

-tr-property-ref(".MyColor:alias","color");

If you want to use the -tr-property-ref in compact values, enter syntax similar to the following:

border: 10px solid -tr-property-ref(".AFDefaultColor:alias", "color");

8.5.2 What Happens When You Reference a Property Value from Another Selector

The Property Inspector shows that the property for which you set a value using the -tr-property-ref ADF skin property to reference a value from another selector inherits its value, as illustrated in Figure 8-10.

Figure 8-10 Selector Property Referencing a Property Value from Another Selector

[image: Property Referencing a Property Value from Another Selector]

Syntax similar to Example 8-4 appears in the source file of the ADF skin.

Example 8-4 -tr-property-ref ADF Skin Property

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";

@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

.MyColor:alias {
 color: rgb(255, 181, 99);
 font-weight: bold;
}

.AFDefaultColor:alias {
 color: Red;
}

af|panelWindow::content {
 background-color: -tr-property-ref(".MyColor:alias", "color");
 border: 10px solid -tr-property-ref(".AFDefaultColor:alias", "color");
}

9 Working with Style Classes

This chapter describes how to work with style classes. Information on how to create, modify, and apply a style class is provided in addition to describing how to configure a style class for a specific instance of a component.

This chapter includes the following sections:

	
Section 9.1, "About Style Classes"

	
Section 9.2, "Creating a Style Class"

	
Section 9.3, "Modifying a Style Class"

	
Section 9.4, "Configuring a Style Class for a Specific Instance of a Component"

9.1 About Style Classes

A style class allows you to specify a number of style properties in one location in an ADF skin that you want to apply to specific instances of ADF Faces or ADF Data Visualization components. The style properties that you define for a style class take precedence over the style properties that you define for the component's selectors. Application developers can specify a style class as a value for the styleClass and inlineStyle attributes that many ADF Faces components expose. At runtime, the style properties that you defined in the style class get applied to the ADF Faces component rather than other style properties defined in the ADF skin. Style classes differ from the global selector aliases, described in Chapter 8, "Working With Global Selector Aliases," which enable you to define style properties that you want to apply to multiple ADF Faces components.

Figure 9-1 shows an ADF skin with the nodes expanded for the different categories of style classes.

Figure 9-1 Categories of Style Class

[image: Categories of Shared Style Class]

Each category of style class serves a purpose:

	
Descendant Selectors: Style classes inherited from the extended ADF skins for descendant selectors.

	
Miscellaneous: Miscellaneous style classes inherited from the extended ADF skins. For example, this category includes the .AFBrandingBar style class that can be used for a branding bar containers.

	
Note Window: Style classes inherited from the extended ADF skins that affect the noteWindow component.

	
Popup: Style classes inherited from the extended ADF skins that affect the popup component.

	
Text: Style classes inherited from the extended ADF skins that determine the appearance of various types of text (for example, address fields and instruction text).

Style classes that you or other users define appear under the Style Classes node as shown by the entry for the .UserDefined style class in Figure 9-1. For detailed descriptions of the style classes in the ADF skins that Oracle ADF provides, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the application you are skinning).

9.2 Creating a Style Class

You can create a new style class in your ADF skin or override a style class that your ADF skin inherits from the ADF skin that it extends.

After you create a style class, you modify it to define the style properties that you want it to contain. For more information, see Section 9.3, "Modifying a Style Class."

9.2.1 How to Create a Style Class

You can create a style class that defines the style properties you want an application developer to apply to an ADF Faces or ADF Data Visualization component using the component's styleClass or inlineStyle attribute.

To create a style class:

	
In the Selector Tree of the visual editor, select New Style Class from the Plus icon's list, as shown in Figure 9-2.

Figure 9-2 New Style Class Option in the Selector Tree

[image: New Shared Style Class Option in the Skinning Navigator]

The Create Style Class dialog opens.

	
Choose the appropriate option:

	
Enter a new name if you want to create a new style class that does not inherit style properties from an ADF skin that your ADF skin extends.

	
Tip:

Enter a name for the style class that indicates the purpose it serves.

	
Enter the name of a style class that inherits style properties from an ADF skin that your ADF skin extends and for which you want to override style properties in your ADF skin.

	
Click OK.

9.2.2 What Happens When You Create a Style Class

The style class appears under the Style Classes node in the Selector Tree and a visual representation as it applies to a component appears in the Preview Pane, as shown in Figure 9-3.

Figure 9-3 Newly-Created Style Class

[image: Newly-Created Shared Style Class]

CSS syntax for the style class that you create appears in the source file of the ADF skin. Example 9-1 shows the entries that appear in the source file for the ADF skin in Figure 9-3.

Example 9-1 CSS Syntax for a Newly-Created Style Class

.OrderOverdue
{
}

9.3 Modifying a Style Class

The process to modify a style class is the same for the different categories of style class that appear in the visual editor. You select the style class in the Selector Tree and use the menus in the Preview Pane to add or remove pseudo-classes to the style class or use the Property Inspector to set or override style properties for the style class.

9.3.1 How to Modify a Style Class

You select the style class under the Style Classes node in the Selector Tree and modify its properties using the Property Inspector.

To modify a style class:

	
In the Selector Tree, navigate to the style class that you want to modify.

	
In the Property Inspector, make changes to the properties that you want to configure for the style class.

	
Click the Refresh icon to update the Preview Panel after you make changes to the style class.

9.4 Configuring a Style Class for a Specific Instance of a Component

You can define a style class where you define style properties to apply to a specific instance of a component. Consider, for example, a panelBox component that application developers use to show or hide content on a page. One page can render multiple instances of a panelBox component. You decide to make white the default background color for panelBox components, as shown in Figure 9-4

Figure 9-4 Setting Background Color for a panelBox Component

[image: Setting Background Color for a panelBox Component]

However, you decide that you want to render one or more instances of the panelBox component without the disclosure link control that allows end users to show and hide the content in the component. Additionally, you decide that you want the background color of these instances of the panelBox component to render with the background color set to red. To achieve this, you define style properties for a style class in the ADF skin. You then specify the style class as the value for the styleClass attribute for each instance of the panelBox component that you want to render using these style properties. Example 9-2 shows the syntax that appears in the source file of the ADF skin to achieve the outcome just described.

Example 9-2 Syntax for a Style Class in an ADF Skin

.panelBoxInstanceClass af|panelBox::disclosure-link{display:none;}
.panelBoxInstanceClass af|panelBox::content{background-color:red}

9.4.1 How to Configure a Style Class for a Specific Instance of a Component

You specify the style class as the value for the styleClass attribute for each instance of a component that you want to render using the style class.

To configure a style class for a specific instance of a component:

	
Create a style class, as described in Section 9.2, "Creating a Style Class."

	
In JDeveloper, set the component's styleClass attribute to the name of the style class you created in step 1.

For more information about setting the component's styleClass attribute, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

9.4.2 What Happens When You Configure a Style Class for a Specific Instance of a Component

At runtime, instances of the component for which you do not specify instance-specific style properties using a style class render using the style properties defined in the component-specific selectors and global selector aliases. In Figure 9-5, this is the panelBox component labeled First Panel Box. Instances of the component for which you specify a style class as a value for the styleClass attribute render using the style properties defined in this style class. In Figure 9-5, this is the panelBox component labeled Second Panel Box.

Figure 9-5 Component Rendering with Style Properties Defined in Style Class

[image: Component with Styles Defined in Shared Style Class]

10 Applying the Finished ADF Skin to Your Web Application

This chapter describes how to completes tasks that you need to do once you finish your ADF skin. Information is provided on how to test your ADF skin, package the completed ADF skin in an ADF Library JAR, and configure an ADF application so that it uses the completed ADF skin.

This chapter includes the following sections:

	
Section 10.1, "About Applying a Finalized ADF Skin to an Application"

	
Section 10.2, "Testing Changes in Your ADF Skin"

	
Section 10.3, "Packaging an ADF Skin into an ADF Library JAR"

	
Section 10.4, "Applying an ADF Skin to Your Web Application"

10.1 About Applying a Finalized ADF Skin to an Application

After you create an ADF skin where you define style properties for one or more ADF skin selectors, you may want to test the changes that you make in the ADF skin. Once you complete testing the changes in your ADF skin and are satisfied with the final ADF skin, you can package the ADF skin and associated files (images, resource bundles, and configuration files) into an ADF Library JAR to distribute for inclusion to the application projects that use the final ADF skin. Once you have distributed the final ADF skin, you configure the application to apply the ADF skin to it.

10.2 Testing Changes in Your ADF Skin

Once you have created an ADF skin and defined style properties that you want for one or more selectors, you may want to test how these style properties render at runtime in a browser. To do this, you apply the ADF skin to your application and run a page that renders the ADF Faces component which exposed the selector.

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for your particular browser), when you run your application. These tools provide useful information that can help you as you iteratively develop your ADF skin. For example, in addition to inspecting changes that you have already made, these tools can help you identify the ADF skin selectors that correspond to a particular DOM element.

You can also configure context initialization parameters in the web.xml file of your application that allow you to:

	
View changes in an ADF skin without having to restart the application

Set the value of the following context initialization parameter to true:

org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

	
Display the full uncompressed CSS style class name at runtime

Set the value of the following context initialization parameter to true:

org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

Note that not all changes that you make to an ADF skin in your Fusion web application appear immediately if you set the CHECK_FILE_MODIFICATION to true. You must restart the Fusion web application to view changes that you make to icon and ADF skin properties.

For more information about context initialization parameters, see the "ADF Faces Configuration" appendix in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

Figure 10-1 demonstrates how the name of a style class (fndGlobalSearchCategory) defined in an ADF skin, and applied to an ADF Faces commandLink component using the component's styleClass attribute, is compressed when it renders in a browser.

Figure 10-1 Compressed Style Class Name from an ADF Skin

[image: Compressed Style Class Name from an ADF Skin]

Figure 10-2 shows how the browser renders the full uncompressed name of the style class and the ADF Faces component when you set the DISABLE_CONTENT_COMPRESSION parameter to true. In Figure 10-2, the uncompressed style class af_commandLink corresponds to the af|commandLink selector documented in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors (for the release that pertains to the application you are skinning).

The uncompressed style classes that correspond to the pseudo-elements that an ADF skin selector exposes can also be identified. For example, the tab-end pseudo-element exposed by the af|panelTabbed selector (af|panelTabbed::tab-end) translates to the uncompressed af_panelTabbed_tab-end style class at runtime.

Similarly, changes that you make to the appearance of a component when it is in a specific state can also be identified or inspected using browser tools. For example, the following entry in the source file of an ADF skin allows you to define the style for the ADF Faces panelTabbed component when a user selects the right-hand side of the component:

af|panelTabbed::tab:selected af|panelTabbed::tab-end

At runtime, the uncompressed style class name translates to the following:

.af_panelTabbed_tab.p_AFSelected .af_panelTabbed_tab-end

Note that :selected translates to p_AFSelected although sometimes the generated CSS does not have a p_AFSelected equivalent because some browsers have built-in support for that particular state, as is the case for other pseudo-classes like :hover.

It is recommended that you only customize the ADF skin selectors, pseudo-elements, and pseudo-classes documented in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors and the Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces (for the release that pertains to the application you are skinning). Customizing other ADF skin selectors may result in unexpected or inconsistent behavior for your application.

Figure 10-2 Uncompressed Style Class Name from an ADF Skin

[image: Uncompressed Style Class Name from an ADF Skin]

10.2.1 How to Set Parameters for Testing Your ADF Skin

You set the CHECK_FILE_MODIFICATION and DISABLE_CONTENT_COMPRESSION context initialization parameters to true in the web.xml file of your application.

To set parameters for testing your ADF skin:

	
In the Application Navigator, double-click web.xml to open the file.

	
Add the following context initialization parameter entries and set to true:

	
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

	
org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

	
Save and close the web.xml file.

10.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

Entries appear in the web.xml file for your application, as illustrated in Example 10-1.

Example 10-1 web.xml Entry

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
</context-param>
<context-param>
 <param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION</param-name>
 <param-value>true</param-value>
</context-param>

Changes that you make to a selector for an ADF Faces component (other than changes to icon and skin properties) render immediately when you refresh a Fusion web application's page that renders the ADF Faces component. Using Firebug if your browser is Mozilla Firefox or Google Chrome's developer tools, you can see the uncompressed style class names that render at runtime and establish what ADF skin selector it corresponds to. Remember that setting org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION to true incurs a performance cost for your Fusion web application so set it to false when you finish testing your changes.

10.3 Packaging an ADF Skin into an ADF Library JAR

You can deploy an ADF skin and associated files (for example, image files, configuration files, and resource bundles) in an ADF Library JAR. This enables you to package files required to apply an ADF skin to an application. The benefits of packaging ADF skins into an ADF Library JAR as compared to bundling them into the application are the following:

	
An ADF skin can be deployed and developed separately from the application. This also helps to reduce the number of files to be checked in case some changes must be applied to the ADF skin.

	
The source files for an ADF skin and images can be separated into their own ADF Library JARs. Therefore, you can partition the image base into separate ADF Library JARs, so that not all files have to be deployed with all applications.

10.3.1 How to Package an ADF Skin into an ADF Library JAR

Create an ADF Library JAR file deployment profile to package the ADF skin into an ADF Library JAR.

To create an ADF Library JAR file deployment profile:

	
In the Application Navigator, right-click the project that contains the ADF skins and choose Deploy > New Deployment Profile.

	
In the Create Deployment Profile dialog, choose ADF Library JAR File in the Profile Type dropdown list.

	
Enter a name for the deployment profile in the Deployment Profile Name input field and click OK.

	
Review the options in the Edit ADF Library JAR Deployment Profile Properties dialog that appears. For more information at any time, click Help.

	
Click OK.

To package an ADF skin into an ADF Library JAR:

	
In the Application Navigator, right-click the project that contains the ADF skin and choose Deploy > deployment, where deployment is the name of the ADF Library JAR file deployment profile.

	
In the Deploy dialog Deployment Action page, click Next and then click Finish.

10.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

An ADF Library JAR file is written to the directory specified by the deployment profile. This ADF Library JAR contains the source file for the ADF skin, the trinidad-skins.xml file, image files, and any resource bundles that you created to define resource strings or to override the default strings defined for ADF Faces components. The ADF Library JAR file also contains other files from the ADF skin's project not related to skinning.

Example 10-2 shows the directory structure for a project that contains the following items for an ADF skin:

	
The trinidad-skins.xml file

	
An image file (sort_des_ena.png) copied into the ADF skin project

	
The source file for an ADF skin (skin1.css)

	
An .sva file (oracle.adf.common.services.ResourceService.sva) that is used to inspect the content of the ADF Library JAR when you import it into a project, as described in Section 4.7, "Importing ADF Skins from an ADF Library JAR."

	
A resource bundle (skinBundle.properties) that contains string values to override strings from the default resource bundle

For information about how to specify resource bundles that contain string values you define, see Section 7.2.1, "How to Specify an Additional Resource Bundle for an ADF Skin."

Example 10-2 Directory Structure for an ADF Library JAR Containing an ADF Skin

ADFLibraryJARRootDirectory
+---META-INF
| | MANIFEST.MF
| | oracle.adf.common.services.ResourceService.sva
| | trinidad-skins.xml
| |
| +---adf
| | \---skins
| | \---skin1
| | \---images
| | \---af_column
| | sort_des_selected.png
| |
| \---skins
| \---skin1
| skin1.css
|
+---resources
| skinBundle.properties
|
\---WEB-INF
 faces-config.xml

The directory paths for images in the ADF skin that appear in the ADF Library JAR are modified to include the directory path from the ADF skin project. Example 10-3 demonstrates an example of the changes that occur:

Example 10-3 Modified Directory Path for Images in a Deployed ADF Skin

// Reference to an image in an ADF skin prior to deployment to an ADF Library JAR
af|column::sorted-descending-icon-style
{
 background-image: url("images/af_column/sort_des_selected.png");
}

// Reference to an image in an ADF skin after deployment to an ADF Library JAR
af|column::sorted-descending-icon-style
{
 background-image: url("/adf/skins/skin1/images/af_column/sort_des_selected.png");
}

10.4 Applying an ADF Skin to Your Web Application

You configure an application to use an ADF skin by specifying values in the application's trinidad-config.xml file. You specify a value for the <skin-family> element that identifies the ADF skin family the application uses at runtime. If you created more than one ADF skin in the skin family, you can version these ADF skins, as described in Section 4.5, "Versioning ADF Skins." If you versioned multiple ADF skins in the same skin family, use the <skin-version> element to identify the specific version that you want the application to use.

Note that you can also configure an application page for your end users to dynamically select the ADF skin that they want the application to use. For more information, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

10.4.1 How to Apply an ADF Skin to an Application

You apply an ADF skin to an application by modifying the application's trinidad-config.xml file. You do this by editing the application's trinidad-config.xml file to specify the ADF skin family to use. Alternatively, you can select the ADF skin family from a list in the ADF View options of JDeveloper's Project Properties dialog.

To apply an ADF skin to an application:

	
In the Application Navigator, double-click the trinidad-config.xml file to open it in the source editor. By default, this file is in the Web Content/WEB-INF node.

	
In the trinidad-config.xml file, write entries to specify the value of the <skin-family> element and, optionally, the <skin-version> element as shown in Example 10-4.

10.4.2 What Happens When You Apply an ADF Skin to an Application

The values that you specify for the <skin-family> element and, optionally, the <skin-version> element in the trinidad-config.xml file determine the ADF skin that the Fusion web application uses at runtime, as shown in Example 10-4.

Example 10-4 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>fusionFx</skin-family>
 <skin-version>v1.1</skin-version>
</trinidad-config>

11 Advanced Topics

This chapter provides information to help you if you make changes in the source file of an ADF skin or in the configuration files that control the usage of ADF skins. The chapter also lists and describes the ADF skins provided by Oracle ADF.

This chapter includes the following sections:

	
Section 11.1, "Referring to URLs in an ADF Skin's CSS File"

	
Section 11.2, "ADF Skinning Framework and Supported Render Kits"

	
Section 11.3, "Configuration Files for an ADF Skin"

	
Section 11.4, "ADF Skins Provided by Oracle ADF"

11.1 Referring to URLs in an ADF Skin's CSS File

An ADF skin's CSS file typically uses a URL to refer to a resource that is external to the file. For example, an image that an application uses to render with an error message. You can refer to a URL from an ADF skin's CSS file in a number of different formats. The supported formats are:

	
Absolute

You specify the complete URL to the resource. For example, a URL in the following format:

http://www.mycompany.com/WebApp/Skin/skin1/img/errorIcon.gif

	
Relative

You can specify a relative URL if the URL does not start with / and no protocol is present. A relative URL is based on the location of the ADF skin's CSS file. For example, if the ADF skin's CSS file directory is WebApp/Skin/skin1/ and the specified URL is img/errorIcon.gif, the final URL is /WebApp/Skin/mySkin/img/errorIcon.gif

	
Context relative

This format of URL is resolved relative to the context root of your web application. You start a context relative root with /. For example, if the context relative root of a web application is:

/WebApp

and the specified URL is:

/img/errorIcon.gif

the resulting URL is:

/WebApp/img/errorIcon.gif

	
Server relative

A server relative URL is resolved relative to the web server. This differs to the context relative URL in that it allows you reference a resource located in another application on the same web server. You specify the start of the URL using //. For example, write a URL in the following format:

//WebApp/Skin/mySkin/img/errorIcon.gif

The format of URL that you use may be important if you create a Java Archive (JAR) file to package and distribute your ADF skin and its associated files. For more information, see Chapter 10, "Packaging an ADF Skin into an ADF Library JAR."

11.2 ADF Skinning Framework and Supported Render Kits

The ADF skinning framework supports the creation of ADF skins for the following render kits:

	
org.apache.myfaces.trinidad.desktop

	
org.apache.myfaces.trinidad.pda

You can use the visual editor in the ADF Skin Editor and in JDeveloper to create ADF skins for the following render kit:

org.apache.myfaces.trinidad.desktop

You can create an ADF skin for the following render kit using the source editor in the ADF Skin Editor or in JDeveloper:

org.apache.myfaces.trinidad.pda

ADF Faces components delegate the functionality of the component to a component class, and the display of the component to a renderer. By default, all tags for ADF Faces combine the associated component class with an HTML renderer, and are part of the HTML render kit. HTML render kits are included with ADF Faces for display on both desktop and PDA. You cannot customize ADF Faces renderers. However, you can customize how components display using ADF skins.

11.3 Configuration Files for an ADF Skin

The following list describes the configuration files associated with the project for an ADF skin. You modify values in these files while you develop your ADF skin or when you finish development and want to apply the finished ADF skin to an application.

	
trinidad-skins.xml

This file registers the ADF skins that you create, as described in Section 4.4, "Creating an ADF Skin File." For more information about this file, see the "Configuration in trinidad-skins.xml" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

	
trinidad-config.xml

You configure the <skin-family> element in this configuration file to tell the application what ADF skin to use, as described in Section 10.4, "Applying an ADF Skin to Your Web Application."

For more information about this file, see the "Configuration in trinidad-config.xml" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

	
web.xml

You can configure context initialization parameters in this file to facilitate the development and testing of your ADF skin, as described in Section 10.2, "Testing Changes in Your ADF Skin." You can also configure a context initialization parameter (org.apache.myfaces.trinidad.skin.MAX_SKINS_CACHED) to specify the maximum number of unique ADF skins (for example, fusion or fusionFx-simple) for which you store information in memory about the generated CSS files. Using this context initialization parameter can help maintain the performance of your application if you use many different skins.

For more information about the web.xml file and context initialization parameters, see the "Configuration in web.xml" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (for the release that pertains to the application you are skinning).

11.4 ADF Skins Provided by Oracle ADF

Oracle ADF provides a variety of ADF skins from which you can extend when you create a new ADF skin. It is recommended that you extend the latest version of the Fusion Simple family of ADF skins (fusionFx-simple-vN.N) when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File." The Fusion Simple family of ADF skin is available in the following versions:

	
fusionFx-simple-v1

	
fusionFx-simple-v1.1

	
fusionFx-simple-v1.2

	
fusionFx-simple-v2

	
fusionFx-simple-v2.1

The ADF skins that are available to you to extend from depend on the release of Oracle ADF that you target your ADF skin project at, as described in Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects." As a result, all ADF skins described here will not be available for you to extend from.

The following list describes the differences between each ADF skin that Oracle ADF provides:

	
simple: Contains only minimal formatting.

	
blafplus-medium: Provides a modest amount of styling. This style extends the simple skin.

	
blafplus-rich: This skin extends the blafplus-medium skin. Provides more styling than the blafplus-medium skin. For example, graphics in the blafplus-rich skin have rounded corners.

	
Note:

The blafplus skins are deprecated.

	
fusion: Defines the default styles for ADF Faces components. This skin provides a significant amount of styling. This skin extends the simple skin.

	
fusion-11.1.1.3.0: Modifies the fusion skin to make the hierarchy structure in certain components that render tabs clearer. These components are panelTabbed, navigationPane (attribute hint="tabs"), and decorativeBox. This skin also defines a more subtle background image for disclosed panelAccordion component panes to make text that appears in these panes easier to read.

	
fusionFx-v1: This skin extends from the fusion-11.1.1.3.0 skin. If you create an ADF skin that extends the fusionFx-v1 skin, register it in the trinidad-skins.xml file using the following values:

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your application to use the fusionFx-v1 skin:

<skin-family>fusionFx</skin-family>

The fusionFx-v1 skin contains design improvements and changes to address a number of issues. Specifically, it adds:

	
A background color to the .AFMaskingFrame global style selector to prevent the display of content from an underlying frame when an inline popup displays in certain browsers.

	
A boolean ADF skin property, -tr-stretch-dropdown-table, for the inputComboboxListOfValues component. This property determines whether the table in the list stretches to show the content of the table columns or limits the width of the table to the width of the input field in the inputComboboxListOfValues component.

	
The inlineFrame component displays an image that serves as a loading indicator until the browser determines that the frame's contents have been loaded.

You can implement this functionality in a ADF skin that you create. The af|inlineFrame selector has "busy" and "flow" pseudo-classes that enable you to do this. The inlineFrame component only generates an IFrame element when the parent component does not stretch the inlineFrame component (the inlineFrame component is flowing). Use af|inlineFrame:busy:flow to define a background-image style that references a loading indicator. When the parent component stretches the inlineFrame component, the generated content is more complex. This complexity allows you define a content image URL using the af|inlineFrame::status-icon and an optional additional background-image using the af|inlineFrame::status-icon-style. It also allows you to reuse images that other component selectors use. For example, the carousel component's af|carousel::status-icon and af|carousel::status-icon-style selectors. Use skinning aliases to reuse these images.

The following global selectors have also been introduced that you can use if you implement this functionality in your ADF skin:

	
.AFBackgroundImageStatus:alias: use to reference the background image used in af|inlineFrame::busy:flow.

	
.AFStatusIcon:alias use to reference the af|carousel::status-icon and af|inlineFrame::status-icon.

	
.AFStatusIconStyle:alias use to reference the af|carousel::status-icon-style and af|inlineFrame::status-icon-style.

A resource key (af_inlineFrame.LABEL_FETCHING) defines the string to display for the inlineFrame component's loading icon.

	
fusionFx-v1.1: This skin extends from the fusionFx-v1 skin. It adds support for the ability to clear Query-By-Example (QBE) filters in an af:table component.

If you create an ADF skin that extends the fusionFx-v1.1 skin, register it in the trinidad-skins.xml file. Use the following values in the trinidad-skins.xml file if you want to do this:

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.1.desktop</extends>
 …
</skin>

Use the following value in the trinidad-config.xml file if you want your application to use the fusionFx-v1.1 skin:

<skin-family>fusionFx</skin-family>
 <skin-version>v1.1<skin-version>

	
fusionFx-v1.2: This skin extends from the fusionFx-v1.1 skin. It contains a number of user interface enhancements, including optimizations for when your application renders in a touch screen device.

Use the following values in the trinidad-skins.xml file if you want to extend the fusionFx-v1.2 skin.

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.2.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your application to use the fusionFx-v1.2 skin:

<skin-family>fusionFx</skin-family> <skin-version>v1.2<skin-version>

	
fusionFx-v2: This skin extends from the fusionFx-v1.1 skin. It makes the hierarchy structure in certain components that render tabs clearer. These components are panelTabbed, navigationPane (attribute hint="tabs"), and decorativeBox. This skin also defines a more subtle background image for disclosed panelAccordion component panes to make text that appears in these panes easier to read.

If you create an ADF skin that extends the fusionFx-v2 skin, register it in the trinidad-skins.xml file. Use the following values in the trinidad-skins.xml file to do this:

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v2.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your application to use the fusionFx-v2 skin:

<skin-family>fusionFx</skin-family>
<skin-version>v2</skin-version>

	
fusionFx-v2.1: This skin extends from the fusionFx-v2 skin. It contains a number of user interface enhancements, including optimizations for when your application renders in a touch screen device.

Use the following values in the trinidad-skins.xml file if you want to extend the fusionFx-v2.1 skin.

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v2.1.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your application to use the fusionFx-v2.1 skin:

<skin-family>fusionFx</skin-family>
 <skin-version>v2.1<skin-version>

	
fusionFx-simple-vN.N: The fusionFx-simple skin is the same as the fusion skin, but with a simplified color palette. This makes changing the color scheme for ADF skins that extend the fusionFx-simple skin easier than changing the color scheme for skins that extend the fusion skin. You can change a small number of color aliases in an ADF skin that extends the fusionFx-simple skin to make significant changes to the color scheme. In addition, you can use the Images window to change the color scheme of your ADF skin when you extend fusionFx-simple skin. For more information about the Images window, see Section 6.3, "Working with the Images Window."

	
Projector skins: ADF Faces provides projector skins that you can download from the Oracle Technology Network (OTN) web site. These skins define styles for an application that you want to demonstrate to an audience using a projector. Each projector skin modifies a number of elements in a parent skin so that an application renders appropriately when displayed using table-top projectors (particularly older models of projector). These skins are useful if the audience is present at the same location as the projector. They may not be appropriate for an audience that views an application online through a web conference. ADF Faces provides the following projector skins:

	
fusion-projector: This skin modifies a number of elements in the fusion skin so that an application renders appropriately on a projector.

	
fusionFx-v2-projector: This skin modifies a number of elements in the fusionFx-v2 skin so that an application renders appropriately on a projector.

	
fusion-11.1.1.3.0-projector: This skin modifies a number of elements in the fusion-11.1.1.3.0 skin so that an application renders appropriately on a projector.

You can apply any of the previously listed ADF skins to your web application. For more information, see Section 10.4, "Applying an ADF Skin to Your Web Application." For a diagram that illustrates the inheritance relationship between the ADF skins, see Section 1.5, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF."

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/adfsg_work_d008.png
sk css x

/*TADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af “http://xulns.oracle.con/a
Snamespace avt “http://xulns.oracle. con/!

Elat | goButton:
¢

background-color: Red;

cess-key

OEBPS/img/adfsg_images_004.png
t1_below_start_n_rtl.png
2 1 helow stant

Alghierghsaround: (#2121 | [

AFBrightBackground; f#ebifa LT
T T
AFlightAccentBackground: [#bachdc

AFMedmBackaround:

AFMedimAccentBackaround:

AFLightBackground:
AFVstedrkFareground:
AFLightNeutralBackground:

AFLightyistedLinkForeground:
Custom.

AFVeryLightAccentBackaround:
t1_sbove_mid_a.png

el FeSafurafion/Brifiness t2_sbove.rid_apng

OEBPS/img/adfsg_faces_009.png
fectors <] | - K Defaul (o) Theme Dark The
@ dk- @ K | vewes

03 Style Classes
23 Global selsctor Alases
=G5 Faces Component Selectors
2 BreadCrumbs
@ uttan
& @ Button (6o)
[aflgobutton
G Poudo-Elements
[0 access-key

ofgoButtonsiicon-style

s

OEBPS/dcommon/conticon.gif

OEBPS/img/adfsg_shared_skin_jdev004.png
F-%
13 rvedond] i syl Cls,

fvalable Selectrs < |

OEBPS/dcommon/booklist.gif

OEBPS/img/adfsg_text_002.png
Test Dialog

*Requred

>IDetails

@R

OEBPS/img/adfsg_faces_015.png
alable Selectors v | v 3¢ Default (No) Theme | Dark Theme | Medium Theme Light Theme

W @ 3K | viewas:[Panel Tabbed]

frk]

(5 Panel strech Layout

aflpaneTabbed[them

02 Psoudo-Elements
Descendant Selectors Empty Tab 1 Empty Tab 2 Icon Tat

- [Z] Panel window Tab 4 Fist Child
& &5 Popup Tab 4 Second Chid

&2 Progress Indicator

OEBPS/img/adfsg_selectors_001.png
[Extended Skins ~

[Fwaiobo soiors <] | b~ X Defadt (Vo) Therne Dk Therme | edu Theme | Lt Theme
5 03 sl Clsses 7| @ @ X vewes

(5 Global Selector Alases st T
@03 Colr adlogicose-con futton
& C3 Compenent Group: Buton buton (62)
- C3 Companent Group: Form Controk Dialog With panelFormp,on (Reset)

5 C3 Component Group: Link lcalener
5 C3 Companent Group: Pancliox and Re o

£3 Component Group: Tabs rouper [Checkbox
g Sron " Srouped L icheckbor (sslect Many)

rouped 2 | [choice
(choice (Select Mary)
Ichaase Color

Ichoose Dete
AFLargeHeaderFont:aias s

AFMedimHeaderFant:alias Ipecorative Bax

AFsmalHeaderFart alias R —
02 Teons e

AFDefaultBaldFont:alias
AFDsfaulFont;alias arouped 3

[wlwlw]wwlw]

ccument
G2 ossoge Cemgraphi e
@£ Miscellaneous. af|dislog::dynamic-help-icon-stijerarchy viewer
503 ex (] Dilog With paneiFormmece 60)
(3 Faces Component Selectors I+ [[nput Color -
R 3 lahel 1

Design) Images Source

- Find

/**ADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xulns.oracle.con/adf/faces/rich";
Snamespace avt “http://xnlns.oracle. con/dss/ade/faces;

(31 rDe faul tFontFamily:alias (

: Tahoma, Verdana, Helvetica, sans-serif;

OEBPS/img/adfsg_skin_001.png
Simple

fusion-base
fusion fusion-simple
fusion-11.1.1.3.0 fusionFx-simple

fusionFx

1
blafplus

|

blafplus-medium

]

blafplus-rich

OEBPS/img/adfsg_apply_001.png
*Person 1D 100
First Name [Steven
Last Name [King
Frst | Previous | Next

afcllxlnd.xg9 [157:15]

Bomerts | (| Resources U Sorpts (% Tielne
B)

RSt

<strs
»ctr clas:
EIETSRYTS
</tbody>
</tables
<sta>
<strs
vetrs
vetd clas

v <tbody>
b ctroug/trs
vetrs

ctavestds

> <divsac/divs > border-right: 1px solid [1#£0E3E8; K
vedivs » border-tap: lpx solid M#606974;
<a 1d="cl1" class color: Mred;
xind xg9" onclick= display: block;
returq false;" href= padding-left: 2px;
#7>Cllte a new padding-right: 13px;
records/a> text -decoration: none;
<saiv> white-space: nowrap;
<saiv> width: 140px;
<sta>
<strs x3p a, skinl -desktop-izrion-ltr-safar.
</tbody> “PortletHeaderLink, .xc5, -PortletSubfeaderL ink,
</tables Lxcd, .xg9, .xg0, .XgP, -XgN, -XEF, -X€5, -AgY {
<sta> + +
<strs Font -Fanily: Tahoma, Verdana, Arial, Helveti.
</tbody> Font-size: llpx;
</tables Font -weight s normal;
<saiv> tertdecoratiomnoner

<sdivs

Q

#ps2

#psi2:c

it

[=1E=]

Rt

2av" calspar

table

tmaches |G croaee |

Show inherited. |
*

Profies

B Qs Lo

[» Computed Style
v Stytes
elenent.style {

b
ielhed CSS Fies

skinl -desktop-izrioh-1tr-safar,
- FndGlobalSearchCategory, .xind,

_fndGlobalSearchCat egary[thens

dark"],

“xlnd[thene="dark"1,

~FnuGlobalsearchCat egory[thene="nediun"1,
“xInd[thene="nediun"1,
~FndGlobalsearcnCat egory[theme="1ight" 1,
_xind[thene="light"] {

background-color: [Juhite;
» background-position: 100% 50%;

> background-repeat: no-repeat;

> border-botton: lpx solid [I#EQE3ES;
> border-left: 1px solid M#606974;

¥

o [t iy |0 |10 | o | av

thody

OEBPS/img/adfsg_dvt_007.png
(iskin3.css *

(=) &@af|dv-hierarchyviewer. lateral-navig

[Extended Skins ~

@

@I/ Qrnd

e) - X

3 Sty Classes
23 GlobalSelctor Alases
(23 Faces Component selctors
& G Data Viualizatons Companent Selectrs
< Gantt
& Gauge
@ Geographic tap
@ Grah
& & Herarchy Viewer
D) et Herarchyviener
& 5 Pseudo- Elements (af|dt-hierarc
=0
[lteraknavigatior-ne.
) afldvelnk
[afldvnode
53 Paeudo Hements (ot node)
[afldw-panelcard
(53 Paeudo-Hements (f|dt-panelc
23 Component Selector Alases

£ Descendant selectors

Default (No) Theme Dark Theme | Medium Th.

W @ K | view as: [Herarchy viewer_~]

v

ofd-ierarchyViswer: laterak-navigation-button

He

PanelC

o

sonpletont p

@ -tr-border-color:

-4rbackgroundcoor: [FESEREE
a-trfitype Er—

o -tr-color:

OEBPS/dcommon/rightnav.gif

OEBPS/img/adfsg_project_002.png
Background Color: fransparent [»| v

fkﬁackqmund Image: LrCadtfskinsfianredskil=] v
————

[rherted from o columsorted-descending icon-style ' jar 22ai7 o2

T cob — T~

OEBPS/dcommon/index.gif

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/img/adfsg_work_d006.png
[skinB.css * (~) E@af|goButton::access-key - Property Inspector %
© Exended s - @B/ armd

- 3¢ | Defauk (N Theme DarkcTheme | . * | [Ecommon

@ - & K| vewss: [buton (50) ot Red

Contert

gollutton
wordercoons [
—

Margin: Fr—

[avotebe sobctors ~]

Style Classes
23 Global selsctor Alases
=G Faces Component Selectc
2 BreadCrumbs
@ uttan
& @ Button (Go)

[aflgobutton
&G Poudo-Elements

oflgoButtons:accesshey.

23 Descendant sele
@ Button (Reset)

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/img/adfsg_faces_007.png
Disabled:

helo

OEBPS/img/adfsg_images_jdev004.png
| &laf| column::sorted-ascending-can-style - Property Inspector

£ Common

®

B S— |
o Background Iege: riCmages/af_colmnjsort_ssc_selectedpng) [|[r]

Cortent:
Calor:

@ Height:

ik

v
- r—

OEBPS/img/adfsg_faces_013.png
Dark theme (top facet) Medium theme (top facet)

Darktheme Medim theme cantents

Light therme (top facet) Default therne (top facet)

Light theme contents Default theme conterts

OEBPS/img/adfsg_shared_skin_001.png
[opistedseloors <] | b X

(=G Faces Conponent eectors
& [E Calendar
&G Companent Selector Alases
[ARCHendarActiveDayHeaderBackaroundaias
[-AFCalendarlightBackroundialas
[AFCaendarTodayBackground:alis
& @ Carousel
& G Companent Selecor Alases
[) -AFCarouseltemBorder:alas
=@ Query
&G Companent Selecor Alases
[AFBetweenseperatorlcon:alis
& B Table
&G Companent Selecor Alases
[) -AFTableCellandedBackground:alas
& oo Tran
&G Companent Selecor Alases
0 AFTrarDefautialas

OEBPS/dcommon/mix.gif

OEBPS/img/adfsg_shared_skin_jdev009.png
23 Extended sins -

e e =] b X

23 Component Group: Form Controls
£3 Component Group: Link.

£3 Component Group: PanelBox and Re
C3 Component Group: Tabs

&G Font

AFDefaultBaldFont:alias
AFDefaultFont:alas

AFLargeHeaderFont:alias
AFMedimHeaderFant:alias
AFsmalHeaderFart alias

3 Miscellneous
03 Text
55 Faces Componert Selectors

Default o) Theme

I e -

aflgoButtonshover
oButton

oflgoButtonsactive
oButton

oflgoButton:activeshover
oButton

oflgoButton

goButtan

OEBPS/img/adfsg_faces_003.png
af|column: : row-column-header-cell

af|column: :column-header-cell

Bisic table
jo [Name | Size of the file in Kilo Bytes | No.| DateModffied |ColS |cols.
o © af|column: :banded-data-cell o 07/12{2004 . 07/122
18 . 08 1 07/12j2004 . 07/12}2
2 [admin.jar 1KB 2 05/11/2004 admin.jar 051142
3 2 applib af|column::data-celld 07/12/2004 applb 07/12{2
4 [applications 0B 4 07/12{2004 applications 0712/
5 [config 08 5 07/12/2004 config 071242
6 () connectors 0B 3 07/12/2004 connectors 07/122
7) database 0B 7 07/12/2004 database 07122
8 () default-web-app 0B 8 07/12/2004 default-web-app 07/122
9 [iiop.jar 1,290 KB 9 05/11/2004 iiop. jar 051142
10 [iiop_gen_bin.jar 37KB 10 05/11/2004 iiop_gen_bin.jar 057112
11 [) iiop_rmic.jar 144 KB 11 05{11/2004 iiop_rmic.jar 05112
12) jen 0B 12 07/12{2004 jazn 07/122
13 [jaen.jar 266 KB 13 0S/11j2004 jazn.jar 05/11/2
14 :] jazncore.jar S53KB 14 05/11/2004 jazncore.jar 05/11/2
15 [jaznplugin.jar 12K8 1S 0S/11/2004 jaznplugin.jar 05/11/2
16 2 isp 0B 16 07/12/2004 isp 0712/
—~17 b 08 17 07/12j2004 lib 071242

OEBPS/dcommon/indxicon.gif

OEBPS/img/adfsg_work_d011.png
Managed Beans
Navigation Rules © Managed Beans

Valdators

Converters Name oss

Appication

ReferencedBeans = Managed Properties
Render Kits

e cycle Name
Factory

Components
Artifact Ordering

Managed Property

Diagram | Overview| Source Hstory ¢

OEBPS/img/adfsg_work_d004.png
[EskinBess <
et

(vl skincss
dvtsimple.css

g tichcomponents-simple-desktop.css

OEBPS/dcommon/toc.gif

OEBPS/img/adfsg_style_class_jdev001.png
3 Extended skins =

[vatabloselectors =]

=G Style Classes

Default o) Theme D

W@ X v

23 Descendant selectors

UserDefined

£3 Miscellaneous SampleText

23 Note Window

£ Global selsctor Alases
23 Faces Component Selectors
23 Data Visuslzations Component Selectors

OEBPS/img/adfsg_faces_011.png
[t sobcrs <] | b~ X

Default (o) Theme Dark Theme | Medium Ther

B input List O values

Inpu List of Vaues (Combobox)
& Input Number Spinbox

=g Input Text

0 EmE

Pseudo-Elements
£3 Companent Sty Classes
23 Descendant selectors

P ik
P ik (Go)

istho (Select Many)

B vedn

affinputText

Hame: [nello

affinputTextierror

Design | Images Source

- Find

namespace at "htt

(5 at | inputText:error
¢

border-color: Red;

/*TADFFaces_Skin_File / DO NOT REMOVE®+/
/xulns. oracle. con/adt/

Snamespace avt “http://xulns.oracle.con/dss,

ces/rich”
at/gaces”;

OEBPS/img/adfsg_shared_skin_jdev007.png
[Eiskind.css x|

e«

@

(5] | @aflinputTexti:content - Property Inspector X

Hi/ arnd

s <) - X

Default o) Theme

Image (Go)
(] 1ine Frame:
25 Input Color
[tmput Date.
(9 put e
Input st of Vaues
Input List of Values (Combobox)
52 Input Number Spibox
5 Input Text:
[affinputText
& Pseudo-Eements
[accesskey
[changed-icon
B cortent
) contest-content
) dynamic-hefp-con

DarkTheme | Medum Theme

@ *-oX

Light Theme.

affinputText::content

o

affinputText::content requied

o

affinputText::contentdisabled

affinputText::content:tl

o |

Design | Source Hstory.

[common————

pgeckgrand coor fereen
Inherited from MyBackgroundColor:alias i 74 c:5

Q- Find

 .1yBackgroundColo
¢
background-colos
color: Red;

Green;

Elaf | inputText: :content (

/**ADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xnlns.oracle. con/adf/faces/rich”;
Snamespace avt “http://xulns.oracle. con/dss/ade/faces;

-tr-rule-ref: selector(".MyBackgrowndColor:alias”];

Content:
& Color Red
height: fauta

@it 70

rone medum
rozs78e

#Margin e

e 2o 1 3

“trre-ref trnhibit

Border:

Border Color

Padding

Ve

selector(’

WBackgroundcoloralss”)

hanERy

EIFont/Text

Font Stretch
Font Style:
Font Variant:

@ Font vieight:

OEBPS/img/adfsg_selectors_005.png
X Default (o) Theme Dark Theme Medium
@ - @ X | vewes: [com

=G Faces Component Selectors
&8 Coumn
G Poudo-Elements

aflcalumn sorted-ascending-conr-style

2

Row
Mo | |nare lciom

OEBPS/dcommon/leftnav.gif

OEBPS/img/adfsg_images_jdev002.png
=G Faces Component Selectors
&8 Coumn
G Poudo-Elements

OEBPS/dcommon/feedback.gif

OEBPS/img/adfsg_images_006.png
DRACLE’ ADF Faces Rich Client AFDark Foreground;

B Accesshilty About

3 ArLghtvisted inkForeground:

ag Guide gashebeticd | ADF Faces Rich Client [~
. P FveryDarkForeground:
 Learn more abou ADF Faces Rich Clent,
« Tag Guide
‘ Demonstraiansof camponents, valdators, converters, and miscelanzous tags dong wth a poperty edtor t see how attribute values affect h
componert.
« Skinning

© Exanmpls to learm ore about custom skining of components with the “demoComponents” skin
« Feature Demas.

. © Demonstrations of framevork-evel festures such a5 a Fle Explorer browser nked to 3 ive server model, a colction of Sarpl Page Templates,
iavigation mare,

Output « isualDesigns
 Demonstrations rouped by visuslthere.
Query o Styles
Table © Demonstrations of the sffect of ninestyle and contentstyls on the componets.
Other Tags j + Commonly Confused Components

© Comparisons of companents that are often corfused,

[ArighiBackaround

[T ——

L

AFMedmBackaround:

LR e r—

>/ Feature Demmws
>/ Visual Designs
>/ Styles

>/ Commonly Confused

OEBPS/img/adfsg_faces_005.png
@ Error: Error message SUMMARY text.
Error message DETAIL text

eror | [error

OEBPS/dcommon/feedbck2.gif
<

OEBPS/img/adfsg_work_d002.png
12

3
lcation Navigator (=)l : G}
'stApD. o @* Q Find
jects ARV E- [ivalable Selectors v | - 3 P v...,' Dark Theme | Mechum Theme |- Light Theme: = Common
i,Y;lem | @ K | vewas ° oBsdgondCor: [
123 Appicaton Sources
@ Ot Text 2 Backoround Image: o
& @ resources @ A Output Text (active) affpanelBox o
& dip Output Tet (Formtted) S ——— Content L
@ T Outpu Text (Labe)) pensReh Color: C
) @ Header text
Panel Box Content. Height: [ou
& [paneisox width: o
do @ || e -
8 fecesconfigumd ® (2 Pseudo-Elements rcer ke
6] trinidad-config sl @0 Descendant Selectors ¥ & stretched . Border Color: C
6] trinidag-skins. i & {5 Panel Colletion Panel Box Stretched Content (width:500p; height:100px) Margn: [op
2 webnl Panel Dashboard
& arsrron e romtbors fos o
Panel Group Layout it Areref

|

@ '] Panel Header

@ @) Panel Label And Message.
PanelList

& [T Pone pltter

& Panel stretch Layout

@ (5] Panel Tabbed

aflpanelBoxikr
PanelBox with icon
¥ & Header text

fcation Resources 2[5 Dl o 5
ently Opened Fies - =
Design, Images : i}
11.css - Structure % Qe { Find
8- /**ADFFaces_Skin_File / DO NOT REMOVE®*/
snamespace Ctp: //xulns. oracle. con/adt/faces/ich;
B selectors Snamespace dvt "http://xuins.oracle.con/dss/ade/faces";
afpanelox

€ at Ipane1Box(

background-color: Lime;

“ m| #-tr-animation-duration:

value

Z

@ -tr-header-height: Bs
@ -tr-never-header-height: f7p
+-trfooter-height: s

@ -tr-center-start-width: [1p
-trconer-endwih
—_—

OEBPS/img/adfsg_shared_skin_jdev005.png
[avaiableSelectors <] | - Default (o) Theme

WX

03 Style Classes

=G Global Selector Alsses

MylinkHoverColorsaias
SampleText

23 Color
23 Component Group: Button

£3 Component Groups Form Controls

£3 Component Group: Link.

£3 Component Group: PaneiBox and Regi
£3 Component Group: Tabs

3 Font

3 1eons

03 message

3 Miscellneous

03 Text

£ Faces Component Selectors

OEBPS/img/adfsg_work_d009.png
[@stanpiess x|

5 Exended sans -
[vaiabe Seectors =] 1 o - X

E Dﬂﬁ@
3 Component Group: Menu
£3 Component Group: PanelHeader
£3 Miscellaneous
£3 Note Window
£3 Popup.
03 Text
3 Descendant Selectors
(5[Global Selector Aliases
£3 color
£3 Component Group: Button
£3 Component Group: Form Controls
£3 Component Group: Link.
£ Component Group: PanelBox and Region
£3 Component Group: Tabs
£3 Font
£3 Ieons.
(3 Message
£3 Miscellaneous
03 Text
3 Faces Component Selectors
(=& Data Visualizations Component Selectors.
€D Gantt
&) Gauge
® Geomraphic
G orah
2, Herarchy Viewer
ot Table
2 Toobr

OEBPS/img/adfsg_style_class_jdev003.png
Default (No) Theme Dark Ther

[valsle Slectors =)

=G Style Classes

W& R vewas

23 Descendant selectors
3 Miscellaneous

23 Note Window

3 Popup

03 Tet

£ Global selsctor Alases

23 Faces Component Selectors

£ Data Visualzations Companent Selectars

Orderoverdue
SampleText

OEBPS/img/adfsg_selectors_007.png
Extended Skins ~

B/ armd

i) - %

03 Style Classes
=G Global Selector Alsses
Color

3 Component Group:
Companent Group:
3 Component Group:
3 Component Group:
Companent Group:

3 Font

Button
Form Controls
Lk,

PanelEox and Regi
Tabs

[0 AFConfimationlcan:alias

Default (o) Theme

W@ - @ K1 viewss: [Checkbox

eflselectBoaleanCheckboxichanged-ican

Selected chectbox (7] coffee

£ Common
Backaround Color:
Backaround Image:

@ Content;
o B

Height

widh

Border:

Border Colr:

Margin

l{fafr ffusionjupdatedvalue_stz
I
o
o
e
|

OEBPS/img/adfsg_selectors_011.png
(it soctors =] - X

etz Windaw
A ouput et

A Output Text (Active)
iy output Text (Formatted)
3 Output Text (Label)

(L] Penel ccordion

(4 Panel Border Layout

& [Panel Box

23 Pseudo-Elements
23 Descendant selectors
Panel Collction

anel Dashboard

] panelForm Layout
Panel Group Layout

*E] Panel Header

I3 ane Label And essage
Panel Lt

0] panel spiter

5, Panel stretch Layout

Default (No) Theme Dark Theme | Medium Theme

@ &R~ & 3K | viewas: [PanelBox

o
Pal

active
active-il
busy
dsabled
drag-source.
drop-target
focus

dtable-container

hover
hover-target
nine-editable
Inlne-selectable
inlne-selected

b

no-update
no-update-badge
n

ioht:

OEBPS/img/adfsg_text_005.png
() | @aflpaneliindows:content - Property Inspector X

| 5 tended s - @& £ ar
alabe scec.. v | e+ 9§ | Defal (o) Theme Dark Theme | Medum Theme | Light Theme = Common

"] PanelAccorgon <
& (4 Ponel Border Layoul

© [panelsox

(28] Panel Dashboard
@

®
93 panelLabe nd et

(1] Panel Spitter
- Panel sretch LayoL
(] Panel Tabbed

@O K st inio)

ofpanefwindow: content
Panel Collction

(22 panelWindow With panelFormLayout

i PeneiFom Layout
ane roup Layout
*E] Panel Header

Panel List

Shaw Ancther Window

) affpanetwindor
& G Pseudo-Elemert
dose-con

afpanefwindow: content:focus

dose-icon-s
(22 panelWindow With panelFormLayout

Background Color: tr-property-ref(" MyColorial

Inherited from MyColor:alias and property colo
Content

widkh e

ign Isges Source History

Find
/**ADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xnlns.oracle. con/adf/faces/rich”;

namespace avt “http://xuins. oracle. con/dss/ade/faces;

 MyColor:alias {
color: rap(255, 181, 93
font-veight: bold:

. AFDefaultColor:alias {
color: Red;

Ml

Bordar Colr

I

Margn 0p O O Opx
Padding: 0p O O Opx

rinhibi -tr-ule-ref

vaue

hanERy

[=IFont/Text
I

Font Stretch

Foweghts pomd
v speng o

Text Algn

Font Style:

Font Variant:

OEBPS/img/adfsg_dvt_005.png
Sales Units

All Channels | All Channels

World | Boston | World | Boston

2007 |Tents | 20,000 500 200 50
Canoes | 15,000 1,500 75 8

2006 |Tents | 10,000 250 100 25
Canoes | 7,500 750 40 4

2005 | Tents 5,000 125 50 15
Canoes | 3,750 375 20 2

OEBPS/dcommon/masterix.gif

OEBPS/img/adfsg_skin_002.png
ORACLE File Explorer Festure Demos

8 0rade Carparaton |

T | —

Logo Here File Explorer

Fie~_Ed

Views_Help~,

D OB | sebctswn[ompe o Rewsn [T S

‘Current Location: My Files/Folderd

% Folders
= B8 My Files
2 Foldeid]
2 Foldert
BA Folder2
et
£ Foldert
B8 Folders.

B3 Folder?
B3 Folderd.

Folder10

£ Table || Tree Table

= st

View | i Detach
[Name

[File0 doc.

S Filed html

4 Fis0 pa

= File0 xis

OEBPS/img/adfsg_selectors_010.png
(gaskind.css *
Estended shins -

e =] - X

'] Panel Header

I3 panel Labeland Hessage

542 panelLit

[aflpanellist

5 Pseudo-Elements
w0 o

oa Panel Menu Bar L

Tl parl ster i

5 Panel Stretch Layout i

[Panei Tabbed

aflpane

|
] panel window |

=1

myCompanyLogo
5 oo

hoaze 3 Skin | fusion v

« Home

© Follow this link <o find yourself
back hore.

Design) Source.

* Skin selegors
F

Q.

Find =

/**ADFFaces_Skin_File / DO NOT REND
namespace af “http://xuins. oracle.
namespace avt “http://xulns.oracle

color: green;

thatare avaifible to be styld
« Skin Demarstration
© Demarstrates how to skin ADF
compones.

OEBPS/dcommon/bookicon.gif

OEBPS/img/adfsg_selectors_002.png
(23 Extended skins -

miessetos =] - X

=30 Input Text
[affiputText
&G Pscudo-Elements
[accesskey
[chengedcon

) context-content
[dynamic-helpcon
LY -t

Default (o) Theme Dark Theme | Medium

@ @ K | Vo s Tt

affinputText::content

e

affinputText::content busy

e

Design) Images Source.

Find

/*TADFFaces_Skin_File / DO NOT REMOVE®+/

Snamespace af "http://xulns.oracle.con/adf/faces/rich’,

Snamespace avt “http://xnlns.oracle. con/dss/ade/faces;

(Elaf | inputText

ontent {

background-colos

OEBPS/img/adfsg_images_jdev005.png
Basic table
Eort Al Rons o Excel|_ Eport Sekected Rons o Excel | _printlter Cntent

Noltame 4 [Szeofthe el No.|_ate voded
=) 08 0 07/12/2004
=) 08 1 orjuafs
2 [adminjar 166 2 os/i04
[o S

OEBPS/img/adfsg_style_class_jdev004.png
[skins.css * (&) @@aflpanelBoxiicantent - Praperty Inspe
5 tondod s - @&/ am
o seins o] - X ook () There Dakreme | e > || common

Q- @ R | vewss oo~ oBsclground Colr: [ohee

Backaround Image: hane

Content:
PanelEox with con o [—
& Header text

Panel Box Cortent height; fouto
width: [auto

(4 Panel Border Layout
& [Panel o
[aflpanelBox
5 Pseudo-Elements
o) center
0 E

[dsdoseckion

ofpanelBox::content

OEBPS/img/adfsg_project_jdev001.png
|Applcation Navigator *

&l Testap -]
R®Y-E-

IProjects

Testroject
= £ Applcaton sources
=1 resources
skitunde propertes
=23 web Content
& Caskns
& Csn
B sk cos
= skinz
1 sknzcss
& Cawee
B acssconfgol
[tindac-config xrl
(6] inidadsins .
b

{23 Page Fiows

=l Applcaion Resources
IRecently Opened Fes

in2.css - Structure. %
-

D selectors

(5]

[Eskint.css * [[Eskinz.css % |

B

+-X

(votablo solecors <]

5 Syle Closses

53 Gibal elctor Aloses

(=G Faces Conponent selectors
<2< EreadCrumbs

@ utton

@ utton (6o)

@ button (Reset)

(& Calendar

@ Carousel

D Carouselltem
] Checkbox

[se] Checkbox (selct any)
2 choce

Choce (selct Hany)
8 Choose Color

{E chooss Date

B Column

18 context Info.

[Decorative Box

Documert
] mags
& mage (60)

Inine Frame

8 rput Color

[1mput Date.

9 Input il

Input Uit Of Valuss

Input st of Values (Combobox)
& Input Number Spinbox

2 Input Text

Pk

P ik (Go)

& Link (image)

Default (o) Theme

@i+ oX

Drk Theme

Medun Theme

g

OEBPS/img/adfsg_apply_002.png
*Person D 100
st Name [Steven

Last Name [King

Previous | Next

B oo @) roconces O sorvie (% Toine (1 e

vtd class=
aF_panelFornLayout_conten

> <divsac/divs

¥ <div>
<a 1d="cl1" clas:
*FndGlobalSearchCateg
ory af_commandLink"
anclick="return
False;" b
#">Create a new
recordz/a>

<saiv>
<saiv>
<sta>
<strs
</tbody>
</tables
<sta>
<strs
</tbody>
</tables
<saiv>
<sdivs
b cdiv id="ps12:irt class=

AFPrivatePositionAbsoluteOverfloutidde

style @pix; right: @pix; width: 10dpx;
botto Sucsdivy
<saiv>
<saiv>
<saiv>
<input type="hidden" name=

rg. apache. nyFaces. trinidad. faces. FORK" value=

AdF-Hindou-Id" type

idden”

<farm>

Q table | thody |t td | table | thody |t td

E oo @i [gomme
A[> Computed Styte

¥ Styles

element.style {

Show inherited. &

*

b
ielhed CSS Fies

- FndGlobalSearchCategory,
_FndGlobalSearchCat egary[thens
_FndGlobalSearchCat egary[thens
_FndGlobalsearchCat egary[thens
background-color: [Iuhite;
» background-position: 100% 50%;
> background-repeat: no-repeat;
> border-botton: lpx solid [I#EQE3ES;
> border-left: 1px solid M#606974;
» border-right: lpx solid | [#EQE3ES;
> border-top: 1px solid M#606974;
color: Mred;
display: block;
padding-left: 2px;
padding-right: 13px;
text-decoration: none;
white-space: nowrap;
width: 140px;

b

.af_panellist a, skinl-desktop-izrioh-ltr-safar
~PortletHeadert ink, .PortletSubHeaderL ink,
~af_commandLink, .af_golink,
~af_messages_companent -link, .af_calendar_list-
day-of-month-Link, .af_calendar_List-title-link,
+af_calendar_mont h-grid-cell-header-day-1ink,
_af_calendar_ueek-header-day-link {

coronsM#003861

Font -Fanily: Tahoma, Verdana, Arial, Helveti.

Font-size: llpx;

Font -weight s normal;

&,

#oglt

53

dv

OEBPS/img/adfsg_images_003.png
@

Generate Images Using;

[Current skin Alases ~|

Include Image Types:

Layout sices

Teons
Alas Colors:

(2] L
AFYerylightBackground;]
AFYeryDarkBackground: []
AFlightestheutralBackground:]
AFDarkBackground: []
AFLightBrghtBackground:]
AFBrightBackground;]
AFLightAccentBackground:]
AFttedumBackground:]
AFMedumiccentBackground;]
AFLightBackground;]
AFvistedLirkForeground: []

AFLightNeutralBackground:

a

AFLightyistedLinkForeground:

a

AFVeryLightAccentBackaround:

a

clust Hue Seturation Brctiness

Select the images you want to use and cick Apply to SKin. T you changs aliss colors,
‘when you clek Apply to skin, the colr aisses are afso updated n your ki

Generated Images:
[Name
t1_sbove .
t1_sbove .
t2_sbove .
t2_sbove .
t1_shove_e.
t1_shove_e.
t2_shove_e.
t2_shove_e.
t1_sbove
t2_abave
t1_below_st.
1 below_st.
t2_below_st.
t2_below_st.
t1_below_e.
t1_below_e.
t2_belou_e.
t2_belou_e.
t1_belon_m,
t2_belon_m.
t1_sbove .
t1_sbove .
t2_sbove .
t2_sbove .
t1_shove_e.
t1_shove_e.
t2_shove_e.
t2_shove_e.
t1_sbove

width
18
18
18
18
Ed
Ed
Ed
Ed

18
18
18
18
Ed
Ed
Ed
Ed

18
18
18
18
Ed
Ed
Ed
Ed
1

Height
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

Skint

|

n
|

A

4\

Fusion Simple:

NEE |

PAER | B

Apply To skin

Type
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies
Slies

OEBPS/img/adfsg_faces_016.png
[Default (o) Theme Dark Theme.

@ - @ K| vewas[chm]

Medim Theme

Light Theme.

ofcolumn:column-header-cel

2)]

¢ | []]

EEE 08 o ornzjnns 071212004 05
HEE o8 o orzpnns 071212004 05
HEE 08 o oo 071212004 o5
HEE o8 o orzpnns 071212004 05
HEE 08 o ornzpnns 071212004 05
HEE 08 o ornzpnns 071212004 05
HEE o8 o orzpnns 071212004 05
HEE 08 o oo 071212004 o5
HEE o8 o orzpnns 071212004 05
(HEE 05 o ornzpnns 071212004 05

Total

aflcolumn:colmn-header-cehover
¢ | []
>le 08 o ornzjnns 071212004 05
HE) e o orjizfzo0e 07/12j2004 08

OEBPS/img/adfsg_dvt_006.png
Extendsd Skins

@ || Q Fnd

+-X
55 Deta Visuakzations Companent Selectors
-4 Gantt
G5 Poudo-Elements

~0

[Updted selctrs ~]

S I e —

advanced
[TmR— e

\ i
v R/XI G XODI D e

Al space Treatment:
Ao [y

22j04 | 29/04 0605 | 13/05

ok v s resource) | [————— Cheo

X REEE LRI LLEy —— = —— Bookmark Label:

Appearance:

—
—
—

|E—

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Skin Editor User's
Guide for Oracle Application
Development Framework, 11g Release
2(11.1.2.4.0)

OEBPS/dcommon/rarrow.gif

OEBPS/img/adfsg_work_d007.png
& qoBLtton: access-key - Property Inspector

HiZ arm (

£ Common

Background mage: Ba‘:‘:““”““‘“' &
Content; (] cotaDecaration

ol O

Height i Erroperty v

et th backapoun sl o an
i [element.
. =

OEBPS/img/adfsg_shared_skin_jdev003.png
SR e s o~ el ES S il
@otri.com * =) [ADefaultFontramilyalias - Poperty In
(23 Extended skins ~ &I al
[vaiete seectors =] 1 o - 3 ey Content [
B e s W g @ K | view as: [Panel window oo —
(5[Global Selector Aliases
£3 color AFDefaultFontFamily:alias height: fauto
2 Companet Group: Euton N o
anetindow Wit panelFormi it o
£3 Component Group: Form Controls e
Border oo modm
€2 Companent Grous Link it] e &
£3 Component Group: PanelBox and 3 Border Color:
£3 Component Group: Tabs label
aroupet1 opton o rr——
ey oo ara o e o
[AFDefaultBoldFont:alias G option 3 Padding o O O O
AFefatFontss rouseds opon
B s wion 4 FErR—
D) -ARLargeHeaderFontialias Show Ancther Window.
[} APvedhHeaderPontslas e
[AFsmalHeaderFortalas
£3 Ieons.
£3 Message sflpanshiindow:ititle
08 ticokancous © ponemindow with panerFormLayout B
03 Text
€3 Faces Companent Selectors f— () Y
£3 Data Visuslzations Component: Selector N RAaDmans
£3 Other arouped 1 tabel [option 1
& ‘option 2 (= Font,/ Text
roupea 2 :
oen Golr |
arouped 3 ‘option 4
Font el nomal ol 100

‘Show Ancther Windaw.

prial, Helveti, sans-ser]

Proparty has been modfied

Font Strekch:

OEBPS/dcommon/bookbig.gif

OEBPS/img/adfsg_text_003.png
3]

Yay| Cancel

OEBPS/dcommon/oracle.gif

OEBPS/dcommon/larrow.gif

OEBPS/img/adfsg_faces_001.png
Personld & |PrincipalName | Tile FirstName Lasthame
108 NGREENBE| Nancy| Greenberg
109 DFAVIET Daniel Faviet|
110 ICHEN john| Chen|

M1 ISCIARRA! Ismael Sciarra|
112 IMURMAN jose Manuel [Urman|
113 LPOPP| Luis| Poppl
114 DRAPHEAL Den| Raphaely|
115 AKHOO! Alexander| Khoa
116 SBAIDA Shell| Baidal
117 STOBIAS| Sigal Tobias|

OEBPS/img/adfsg_selectors_009.png
Extended skins -

ey Defat (o) Theme Dark Theme
@ Novgston tem @ - & X | vewss: o

(48] Navigation Pane:

Note Window affpanelst f outputText

&\ Output Text Stylingis never applied directly to th
[afoutputText

G5 Descendant Selectors

) afltoolbar affoutputText
A output Text (active)
fiy Output Text (Formattec)
T Outpt Text (Label)
] panel Accardion
(2 Panel Border Layout
[panelox
- #8] Panel Collection

Design) Images Source

- Find

/*TADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xulns.oracle.con/adf/faces/rich’,
Snamespace avt “http://xnlns.oracle. con/dss/ade/faces;

Siatipanersist. atioutpuetext {
bsckgrowni-color: Teds
cotors Hue;
background-inage: none:

OEBPS/img/adfsg_faces_006.png
(it soctors =] - 3

03 style Classes
=G5 Gobal Selctor Alases
3 Color
€3 Component Group: Button
€3 Companent Group: Form Controls
€3 Component Group: Link
€3 Companent Group: PanelBox and Region
€3 Component Group: Tabs
3 Font
3 Teons
565 Message

[AeErorBackground:alies

() AFFataBackgroundiles

[-AFFormComponentOLtineFatalaias
[AFFarmCampanentOLtingWarring:aias
[) -AFwarningBackground:alias
e e

Default o) Theme

W@ R vewas

affinputText:fatak:content

aflinputTextierrorscortent [Choase Date

i Cor
me: [rei
[TR i

fnput Text =

[chaice

finput Fe:
finut it Of Values
lnput it of Values (Combobax)
Jnput Number Spinbox

lListbax
listbos (Select Many)
Iich Text Edtor
lshuttie

[shutte (ordsred)

OEBPS/img/adfsg_images_jdev003.png
o column: sorted:-ascendingicon-style - roperty Inspec (]

£ Common

sackqround Cob

@ Background Image:

Cortent:
Calor:

@ Height:

ik
Border:
Border Calor:
Margi

Padding:

il faffusionjsort._asc_seled~]
Background Image
Edt.

Gato Declaration

Copy Imag

ElProperty Help

[Sets an image =5 the backoround.

OEBPS/dcommon/help.gif

OEBPS/img/adfsg_selectors_004.png
[Updated selectors ~] | - Default (No) Theme Dark Theme | Medum
= (& Faces Component Selectors W@ e @ 31 view as: [Choose Date

&-[E Choose Date 3
af|chooseDate::days-row

03 weskchesder-ron

Desin Insges sarce |
Q- s

/*TADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xulns.oracle.con/adf/faces/rich";
Snamespace avt “http://xulns.oracle. con/dss/ade/faces;

af|chooseDate: :days-row {
backgrownd-color: roh (255, 239, 181);

)

af |chooseDate: :week-header -row {
background-color: Gray;

OEBPS/img/adfsg_images_001.png
e Edt Vew Hgtory Bookmarks Toos telp

Branding Bar

Skn v Settings +

Feature Demos > Layout Basics > Branding Bar

Layout Basics L g

“Tis can o be seen demorstrated i the branding ba sk
Sample Title
) Branding Bar Layout Pattern Example - Mozila Firefo>

Edit Bookmarks o
Logo Here Branding Bar

ut Basics > Branding Bar

ut Basics Branding Bar Form Layout Navig:

Thi
Logo Here Sample Title

d in the

OEBPS/img/adfsg_faces_014.png
1] | (3 Extended skins ~

- X Defaul (o) Theme | Dark Theme | Medium Theme | Light Theme | UserCreated Theme

@ @ XK | Viowes oot]

[volabl solectors <]
Eloes

=[] Document.

of document{theme=UserCreated]
23 Pseudo-glements

& mage

Empty Document

OEBPS/dcommon/prodicon.gif

OEBPS/img/adfsg_project_001.png
[{skin2.css

(55 Extended skins ~

(v

P ————) Te—T——

OEBPS/img/adfsg_work_d010.png
fvalable Selectrs <

*- X

03 Style Classes

3 Global Selector Aliases.
(53 Foces Componert Selectors
=& Data Visualizations Component Selectors.
© Gantt
6 Gauge:
@ Geagrapic iap
= @ erah
[e
2 Herarchy Vewer
ot Table
& Toobar

Default (No) Theme Dark Theme Medium Theme | Light Theme.

T

dvtlgraph

ldvt:bubbleGraph

Title Subtitle [dvtscomboraph

180
140
120
100
&
@
a
B

ldvt:cualvBarGraph
ldvt:cualYCombocraph
ldvt:cualrLineGraph
ldvt:furnelGraph
Javt:harizontalBarGraph
Jvt:harizontalstackedBarGraph

JaveiscatterGraph
lavestackedBarGraph
JavtistockCandeGraph

Group A Group [utstockGraph

OEBPS/img/adfsg_work_d005.png
(53 Extended skins ~

@

&1/ QrFnd

i) - R

03 Style Classes
23 Global selsctor Alases
=G5 Faces Component Selectors

2 BreadCrumbs
@ utton
& @ Button (Go)

[aflgobutton
G Poudo-Elements

03 onayke
23 Descendant Selectors

Default (o) Theme

W@ X

Dark Theme | Med

oflgoButtons:accesshey.
golbitton

Vi as: [Buton (Go)

v

£ Common
@ Background Color:
Backaround Image:
Content:
Coor:
Height
widh
Border:

Border Colr:

ot

fauta
fauta

e medi

[TEETE(T

OEBPS/dcommon/contbig.gif

OEBPS/img/adfsg_faces_008.png
goButton

OEBPS/img/adfsg_dvt_002.png
[ovtoie e =] | - 5

3 Sty Clases
23 GlobalSelctor Alases
(23 Faces Component selctors
& (5 Data Viualizatons Companent Selc

< Gantt
& & Gauge

[dwtlgauge
& Pseudo-Elments
) botomabel

[sauge font
) sevgerrame
[gauge-set-background
) ndcator
) indcator-ber
) indecatorbase
[legend-area
) legendtext
[legendette
) fomer-abelframe.
[metriclabel
D) latarea
[threshoid
D) vkabel
[tikmark
D) topabel
[upper-abebframe

Defaul (o) Theme.

WX

Dark Theme | Medium The

View ast [Gauge

dvtlgauge::gauge-background
Column 1

—

V)

(20 L)
o 100

Row 1 63

Legend Tite
W <G0% a0k o0% I >e0%

OEBPS/img/adfsg_faces_012.png
[Avalable selectors v | e~ 3¢ Default (o) Theme | Dark Theme | Medium Theme | Light Theme |~ ContentBody Theme

T Chosse Color @ Ak @ 3K | viewas: [Decorative Box_~
=] choose pate

5 comextinta afldecoratiegostheme=contentsoch]

3 Decoratve Box

02 Peudo-Elements
£3 Descendant Selectors
Diakag

OEBPS/img/adfsg_selectors_006.png
[fvateScctrs =] | - 3

T Output Text (Label)
L] panel Accodion

(el Border Layout
] panelgox

&G Preud-ments

[freeze-dsabledicon
D) freezsicon

[gotortopissbledcon
D) soto-topricon

) soupdisabledcon
D) goupicon

[masinize-con
) dbeicon

) showas top-dsablecicon
D) show-as-topicon

[wrap-dsablecicon
[wrapricon

Default (No) Theme Dark Theme

W - @ K | vewas

aflpaneiCollection

Medium Theme.

Actons Views =)
colt o2 oty

OEBPS/img/adfsg_shared_skin_jdev008.png
*- X

[avatable selctors <]

5 sty Casses
=G Gobal Scector liases
[RT————

& Colr

2 Companet Group: Euton

€2 Companent Group: Form Cartrols
€2 Companent Grous Link

€2 Companert Group: Panelbox and Re
2 Companet Group: Tabs

@ Fort

AFDefaultBaldFont:alias
JrESERp—
AFDefaultFantFamiy:alas
aoHsederkont
AFMedimHeaderFant:alias

[wliwi /il rlw]

[AFsmalHeaderFortalias
3 1eons

03 message

3 Miscellneous

03 Text

=G5 Faces Component Selectors

2 BreadCrumbs

53 Descendant: Selctors
@ utton (Go)

@ button (Reset)

B Calendar

@ Carousel

D Carouselltem
] Checkbox

[se] Checkbox (selct any)
Choice

Choce (selct Hany)
8 Choose Color

{E chooss Date

Cortet Tofn

@

Default (No) Theme Dark Theme | Medium T,

W& R vewas

futton

ECommon

@Background Color: [#bacsdc

of commandgutton

commandgutton

&

of commandguttontext-only

commandgutton

4

of commandguttonshover

commandgutton

&

of commandButtonfocus

commandgutton

&

ofcommandguttonhover:focus

commandgutton

&

of commandButtonsactive

commandgutton

&

Desian Source History

4 Background Image: Lrl('/afr/fusion/button_bg_ena.png’)
worderconrs [

#Margin fopx

Padding 1 1 o 2

“trre-ref trnhibit

vaue

EIFont/Text

Color [EE=
Font: rormalnormel normal 100% nrmal

Inherited from AFDefaultFontramily:alias
Declaration Details:
of commandgutton i ichcomponents-simple-deskiop.c:

AFButtanForeground:alias i richcamponent:simple-de

AFDefaukFont;aiis n simple-deskiop css, delegates

OEBPS/img/adfsg_images_jdev001.png
€@ afcolamnsort-sscending-con-styl - roperty Inspector

© Exended Sk~ @ / QFnd
CrE @ A & X | vewes: [l] Sadgond ol fraparen
=8 Column Background Image: Lrl("fafr/fusion/sort_asc_ena.png")

&G ProudoEloments e Fram o columnsort-ascending-icon-style
) bandeddats-cell = & —

[column-Fikter-cell Mo [Name [Size 4 Height: 14

D column-header-cell > & 08

[coumnheader-cel-c > m Border: foremedun

[columheader-table
[context
[datacel
D) detaeel
[detalcohmn-header
) dynamichelp-con
) dynamic-helpicon-s
) rom-columrheader-<
[rowhesder-cell
) select-ahheader
[sort-ascendng-con

1) sort-descending-con
[sort-descendingican
[sorted-ascending ico

D) sorted-ascendngico
=il

=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y
=Y

— T

08
08
08
08
08
08
08
08
08
08
08
08
08
08

08

Border Colr:

Margn 0p O O Opx
Padding: 0p O O Opx

rinhibi -tr-ule-ref

vaue

B 20888

(=IFont,/ Text

OEBPS/dcommon/topnav.gif

OEBPS/img/adfsg_selectors_008.png
2 Extended Skins -

i) - %

3 Sty Clases

3 GlobalSelctor Alases

=G Grouped selectors

[AFPanelboxteaderEnd:alas, ol
[) .AFpanelBoxtHeaderEndialias, AFPa

[

5 G5 Faces Companert Selctors
S

@ Button

@ Button (Go)

@ Button (Reset)

& Calender

@ Carousel

T Carousel Ttem

] checibox

] Checkbox (Select Many)

Wi+ oX

efault o) Thee

View as: Panel Box

lPanel Accordion

oflpanelgox

Paelboc i on
) & Header tent

el o Contert:

e —
el B o HasderCorent

—_—
) & stretched

PanelBox Stretched Content (vickh:S0DpGheight: 100

|

Design) Images Source

Find

(Eaf IpanelBox, af Ipanelfccordion {

/**ADFFaces_Skin_File / DO NOT REMOVE®+/
Snamespace af "http://xulns.oracle.con/adf/faces/rich";
Snamespace avt “http://xnlns.oracle. con/dss/ade/faces;

background-color: red;

OEBPS/img/adfsg_text_jdev001.png
Test Dialog L
oo e o | o
=) 08 o n7/ﬁ
1@ 08 1 o7

2) sdnnger 148 2 os/1/.
3 D b 08 3 7/12/.
4 @ mplcatons 08 4 7/12/.

5 B wnfig 08 5 7/12/.

6 @ omecos 08 5 7/12/.

7 @ detebese 08 7 7/12/.

8 @ defaultnebapr0s s 7j12/.

9 [ioper 1200 s os/11/.
10 [iop_gen_biniar 37k 0 os/1/.
1 [iopmicir 143KB 1 os/1/.
2 12

Qe 08

nv/ﬁ;l
>

okl _cencel |

OEBPS/img/adfsg_faces_002.png
108 NGREENBE Nanc: Greenberg
109 DFAVIET Daniel Faviet|
110 ICHEN john| Chen|

M1 ISCIARRA! Ismael Sciarra|
112 IMURMAN jose Manuel [Urman|
113 LPOPP| Luis| Poppl

114 DRAPHEAL Den| Raphaely|
115 AKHOO! Alexander| Khoa

116 SBAIDA Shell| Baidal
117 STOBIAS| Sigal Tobias|

OEBPS/img/adfsg_faces_010.png
Eskint.css x|

e«

iessetos =] - X

T A T £t
— Separator

> Show Detail

*E] Show Detail Header
() showDeta
39 Shutte

] Shuttle (Ordered)
T slider (Number)
Slider (Range)

B Sttus ndetor

Paeuda-Elements
1) columreresize-ndiator
[datarow

[detai-areacel
) dsclosedticon

[dscosedcon-stle
) recordrangefoster

[0 status message
) undsclosedicon

[undsclosedcon-style
€3 Component Stye Clsses
€3 Componert Selector Alsses
3 Descendant Selectors
@ Toobar

Default o) Theme

Drk Theme

Medum Theme

® &K vowes

oftable
Row || 5
o | ame oo
o -0 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08
L= 08

OEBPS/img/adfsg_work_d003.png
simple

skinA

skinB

OEBPS/dcommon/prodbig.gif

OEBPS/img/adfsg_style_class_jdev002.png
F-X

[avalable Selectors

A o e

A\ oupstText| tiew Al Selector. 1§
A Output Te:

OEBPS/img/adfsg_shared_skin_jdev006.png
[skind.css * |

[Extended Skins ~

@

(5] | @aflinputTexti:content - Property Inspector X

|/ QFnd

=

[mput Date.
9 Input il
Input List of Vaes:
Input st of Values (Combobox)
& Input Number Spinbox
=g Input Text

[affiputText
&G Pscudo-Elements

[accesskey
[chengedcon

) context-content
[dynamic-helpcon
D) dynamic help-canstyle
00 tabel
€3 Componert Stye Classes
3 Descendant Selectors

Default o) Theme

@ *-oX

Drk Theme

Medum Theme

Light Theme.

affinputText::content

o

affinputText::content requied

o

affinputText::content:disabled

o

affinputText::content:tl

o

affinputText::content busy
S

£ Common

#Background Color: fareen
@ Background Image: blCfaf/fusion/inputText

Content:
Color ===
height: fauta

@it 70

rone medum
rozs78e

#Margin e

e 2o 1 3

“trre-ref trnhibit

Border:

Border Color

Padding

Ve

OEBPS/img/adfsg_text_004.png
|Appication Navigator (=]

Q-

SkinAppicationt

IProjects

Sirprojct
= £ Applcaton saurces
=1 resources
skintunde properties
=23 web Content
& Caskns
= [skint
B sk cos
& Cawee

faces-confg xnl
- fo] ridadconfig sl
(6] inidadsins .

2 weboxm

[Elskingundie.properties *
Find

This file may be used to define ¢
strings that appear in the user i
Exanple: To change the text that
af:aialog component from Ok and C
add the following to this file:
AF_DIALOG. LABEL_OK = Continue
AF_DIALOG. LABEL_CANCEL = Go Back

OEBPS/img/adfsg_selectors_012.png
(ol ecors =) | - X

T4 PenelBorder Layout
& [Panel o
[aflpanelBox
5 Pseudo-Elements
o) conter
[content
) dsclosedticon
[dsclosedcon-stye
) discosue-ink
[dynamichelpcon
00 dynamic help-canstyle
[footer-center
D) footer-end
[footerstart
) hesder-center
[header-clement:
1) header-end

) hesdertext
[ronste

Defaul (o) Theme Dark Theme | Mecium Theme | Light T

@ &R~ & K | viewas: [panelboc ~|

o
Pal

Design | Images Source

active
active-rline-ecitable-cantainer
busy

dark

dsabled

drag-source.

drop-target

focus

highight

hover

hover-target

nine-editable

Inlne-selectable
inlne-selected

light

b

medum

no-update

icht: 1000)

no-update-badge

OEBPS/img/adfsg_images_007.png
Basic table
Export All Rows to Excel | Export Selected Rows to Excel | _print spitter Conts 3 AFLishtAccentBckground:

Number [Name Sie of the file i Kio Number| _Date Modfied _|CalS r
=) 05 o oritzizoos [3 Arveryliohtseckground:
A=) [1 orpizrzns
2/ () adminjor 1Ko 2| o511/2004 |admin.jor
= AFsrightBackground;
415 applcations 05, 4] ooz ppleations L% AP

5|5 config 08 07j12/2004confin

7150 databsse IR e m——
8| default-web-apf 8| 07/12/2004 e dun-eL-a
o) o s osfaos o

10] () fop_gen_bin.jar
11) iop_rmic.jar

10| 05{11/2004 fiop_gen_binja
11 osfiijzo0efiop_mic.jar

12| jan 12 07/12/2004 jazn
[3 Averylightsackaround 13| OS11j2004 e
FT ~ 14| ospuifzons fisane I AFTextForeground:
15| () jaznplugin.jar 15 05/11/2004 |jsenplugin.jar
1602 #e 16| ornzzos e B
il | >

arouped 1

I R

woupsda [

OEBPS/img/adfsg_style_class_001.png
>|First Panel Box.

Second Panel Bos

OEBPS/dcommon/uarrow.gif

OEBPS/img/adfsg_images_005.png
les Colors

2]

@) aFverylihtBackground:

AFLightestheutralBackaround:

Jga@aaa

OEBPS/dcommon/doclib.gif

OEBPS/img/adfsg_skin_004.png
eneravaloes [

OEBPS/img/adfsg_shared_skin_jdev010.png
[vatabl selecors =] | - 3¢ Dcfoul (o) Theme. Dark Theme | Medum Therme | Light Theme
=, Panel Group Layauk @ id-@X
el Header

52 Pane Lo and Hessage alpanetundowicontent

Panel List
[Panel Spliter (22 panelWindow With panelFormLayout

5 panelSretch Layout
[Panei Tabbed

label 1 label 3 Submit

label 4
option 1
-] panel window p— oo
[aflpanetwindow z
G Poudo-Elements aroupedz option 3
dosercon rouped 3 option 4
dose-conregion
dose-con-style Show Ancther Window

dose-contyleregion

cantent-center

aflpanelWindow: :content:focus.

OEBPS/img/adfsg_faces_004.png
s Warning: Warning message SUMMARY text
(Detail text null).

Warning message SUMMARY text (Detail text
nul)

firmation | info [Input displays warning

OEBPS/img/adfsg_work_d001.png
Click this

Blue icon
indicates this
property
inherits its
value.

Green icon
indicates the
property has

been
modified

Properties
prefaced by
e
are ADF skin
properties,
not €S8
properties.

le——

dropdown
Tistto view a
list of
predefined
values.
Y
of|goButton - Propert
& Q Fnd
8 3|

#Background Color: [¢FDFOFA

v| v =] Click this dropdown

list to view menu

Background Image: fone Mg entries to edit the
Content: [v property or go to the
o S || s
Height: v (Go to Declaration)
wiah; o) v
Border: ne medum M | —
— S| ke
Margin: [opxOpcop opx [~ox v you can define a color
#Paddng: [1p 9 opx 2px [+]ex v for this property
“trerule-ref: [&
s [ol
RaDERR
@ Font/Text |
Line Box

