Oracle Endeca Commerce

URL Optimization API for Java Developer's Guide
Version 3.1.1 « December 2012

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 7
Conventions USEd N thiS QUIE.........oi it e st e e s e e e s aanneees 8
(0fe] gl =T 1] o I @ = Yol (TS U] o] oo | AT TP PP TR TR OPRPP 8
Chapter 1: INtrodUCTION.........ccooiiiiiiic e 9
(= (o G Vo [T T (=] | €= SRR 9
Introduction t0 URL OPLIMIZATION.........ooiiiiiiiie ittt et e et e e eba e e e e e 9
Overview of the URL Optimization API Capabilities.cccuiiiiiiiiiiiiiii e 9
ADOUt URL CaNONICANIZALION.cciiiriieiiiieit ettt ettt e e s e e s e e nnnn e e nnne s 11
Chapter 2: Preparing your application..........cccccceeeiiiieeeiiiini e 13
Preparing YOUr IMENSIONS.uiiiiiiiiiie ettt s st e et et e e s s bbbt e e s aa bbbt e e e s bbbe e e e s anbbaeeeesnnnnneeens 13
Preparing YOUr PrOPEITIES.oii et e e ettt e e e e e e et e e e e e e e e e e e e e e annneeeeees .13
Handling images and external JavaScript files .14
(6] I =Y 0 11 To T3 11 o TS PRSP PP 14
Chapter 3: Building URLs with the URL Optimization API.................... 15
Core components in the URL Optimization APL..........cooiiiiiiie et 15
Overview of building URLs using the URL Optimization APl..............uiiiiiiiiieiii e 15
Parsing an incoming query and sending it to an MDEX ENQINE...........cuiiiiiiiiiiaiiiiiieee e 16
Informing the UrlState of the navigation STAte............oouiiii i 16
Creating link URLS from @ U STAte.........uueeiii i e e e e e e e e e e e e e e e e e e e ae e eene it 17
Chapter 4: Configuring URLS.......ccoooiiiiiiiiiii e
Anatomy of an optimized ENAECA URLuuiiiiiiiiioi i e e e e e e s e s e e e e e eeeeeeessnnnnnns
About the URL configuration fil...........coo i e e
Creating @ URL CONfIQUIALION FIlE.........uiiiiiiiiieeiee ettt e e e e e ee e
About optimizing the MISC-PALN........ccei e e e e e e s e s reeeeeeeeesannnnnes

Formatting misc-path strings in optimized URLS...........coiiiiiiiiiiiiiie e

Optimizing URLS fOr NAVIGAION PAGES.uuutiiiiiiiiaeaeee ittt e e e e et e e e e e e e e e e s aanbbbaeeeeaaaaeeaeas

Canonicalization configuration OPtioNS.............uvviiiiiieeeri e

Optimizing URLS for record detail Pages........coocvvviieiiiiieeeiiiieee e

Optimizing URLSs for aggregate record detail pages
Configuring the path-param-SEPAIALOr.cciiiii i e e e e e s e s e e e e e e e e e s e s snrnraeneeees
About optimizing the path-params and QUETY SIHNG........cocuiiiiiiiiiiiiii e

Moving Endeca parameters out of the QUErY SEFiNG..........cueiiiiiiiiiiiiie e

S aTetoTo To I =t g lo [oTor= W 0 T= 1= U 1= (= PRSP

RemMOVING SESSION-SCOPE PAIAIMELEIS. .. .ciiiiitiiiie ittt e ettt e ettt e e sttt e e s abb e e e e s sbb et e e s abbe e e e e s ananneeeas

About passing non-Endeca parameters t0 the APL.........coo i
Using the URL configuration file with your application............ccccuuiiiiiiiii e
Chapter 5: Integrating with the Sitemap Generator.............c.ccccceevns 47
The Sitemap Generator Urlconfig.Xml fil€...........oiiiii e 47
Adding custom dimensions to the Sitemap Generator configuration...............cccceeiriiiiiiiiiiiiieeee e a7
Using the URL Optimization API urlconfig.xml file for sitemap generation...........cccccceeeeeeviiiicciiiiieeeeeeeeennn, 48

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the major tasks involved in developing an application that utilizes the Endeca
URL Optimization API for Java.

This guide assumes that you are familiar with the terminology in the Endeca Glossary and the concepts
in the Oracle Endeca Commerce Concepts Guide.

Who should use this guide

This guide is intended for developers who are building applications that leverage the Endeca URL
Optimization API.

This document assumes that the reader has a working knowledge of the following software and
concepts:

» Basic Endeca concepts such as dimensions, dimension values, refinements, ancestors, records,
aggregated records, etc.

» Configuring Endeca dimensions using Developer Studio

8 | Preface

« The Endeca Presentation API, specifically:

» UrlGen class
« ENEQueryToolkit class
» Guided Navigation classes, e.g. DimVal, Dimension, DimLocation, etc.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

https://support.oracle.com

Chapter 1
Introduction

This section provides an introduction to the URL Optimization API and its capabilities.

Package contents

The URL Optimization API is installed as part of the Oracle Endeca Tools and Frameworks package.

The ToolsAndFrameworks\<version>\assembler\lib\endeca assembler-<version>. jar
contains the URL Optimization API classes and dependencies.

The endeca_assembler-<version>. jar file is also included under the
ToolsAndFrameworks\<version>\reference\discover-electronics-authoring\WEB-INF\lib
directory to enable the API for the Discover Electronics reference application.

Introduction to URL optimization

Dynamically generated URLSs that are comprised of meaningless strings and no keywords may
negatively impact search engine ranking as well as user experience. As an answer to this problem,
the Endeca URL Optimization API enables users to create site links using directory-style URLSs that
include keywords and store the dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary Endeca
values are stored in the URL path, resulting in search engine-friendly URLSs.

%
Note: The examples in this guide assume a sample Web application running on
http://localhost:8888 against a wine data set.

Overview of the URL Optimization API capabilities

The URL Optimization API is designed to help increase your natural search engine rankings by enabling
the creation of search engine-friendly URLSs.

10

Introduction | Overview of the URL Optimization API capabilities

Integration of keywords into the URL string

Many search engines take URL strings in as part of their relevancy ranking strategy. Generating URLs
that include keywords can increase your natural search engine ranking as well as create visitor-friendly
URLSs that are easier for front-end users to understand.

Using the URL Optimization API, you can configure the following strings to display in the URL:

e Dimension names

« Dimension value names
¢ Ancestor names

« Record property strings
 Text search strings

For example, the base URL for a Merlot page in a wine application can be configured to include
ancestors in the string: http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-
Red-Merlot/

The optimized URL is more comprehensible to front-end users and more search-engine friendly than
the traditional URL which contains no keywords: http://1ocalhost:8888/endeca_jspref/con-
troller. jsp?sid=122C7EA4C912&Ne=6200&enePort=15000&eneHost=1ocalhost&N=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking.

For example, users might be able to reach the Napa white wine page by first clicking on “Napa” and
then clicking on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically
unigue links pointing to the same Napa White page:

* http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_/N-1z141vcZ66t

e http://1ocalhost:8888/urlformatter_jspref/controller/Region-Germany/Wine-
White/_/N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the URL
Optimization API provides provides options for canonicalizing URLSs.

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the
word separator is the dash character "-":

http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_ /N-1z141vcZ66t

Moving Endeca URL parameters out of the query string

In order to create directory-style URLSs, you can limit the number of Endeca parameters in the query
string by moving them from the query string and into the path-params section of the URL.

For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the query string:

http://1ocalhost/ContentAssemblerRefApp/Content.aspx/Bor-
deaux?N=4294966952&Fromsearch=fal se&Ntk=Al 1&Ntt=red&Ntx=mode%2bmatchal Ipar-
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Introduction | About URL canonicalization 11

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-
4294966952/Ntt-red?fromsearch=False&Ntk=Al I&Ntx=mode%2bmatchal Ipartial

Encoding Endeca Parameters
In order to shorten URLSs, the URL Optimization API allows base-36 encoding of Endeca parameters.

For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996
(4294962059):

http://l1ocalhost/ContentAssemblerRefApp/Content.aspx/_/N-4294962059
By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-1z13xxn

About URL canonicalization

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking. Canonicalizing your
URLSs reduces that duplicate content and improves search engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that
point to a particular page. The more links there are that point to a particular page, the higher the page
rank. Dynamic URLs can dilute the link value of a page by creating multiple versions of a URL.

For example, users might be able to reach the Napa Red wine page by first clicking on “Napa” and
then clicking on “Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically
unigue links pointing to the same Napa Red page:

e http://localhost:8888/urlformatter_jspref/controller/Wine-Red/Region-Na-
pa/_/N-1z141vcZ66t

e http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page with identical or
near-identical content, and each page takes a portion of the link references.

To improve quality, search engines try to minimize the appearance of largely similar pages within
results sets. Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates
before a page is selected to be displayed in the search results. In the case of the Napa Red page,
only one of the two URLs would be selected -- and therefore only half of the link references are
evaluated. This link dilution of the Napa Red page may result in a lower position within search results.
Multiple parameters in URLs have the same effect.

In order to avoid multiple versions of URLS per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the
canonical version via a "301" (permanent) redirect.

By design, the URL Optimization API prevents the creation of syntactically different URLs by
canonicalizing keywords, ensuring that equivalent pages have URLSs with the same syntax even if they
can be navigated to through different paths. You can choose from a number of configuration options
to control the arrangement of keywords. For example, you can configure your Ur IFormatter to
arrange dimensions alphabetically in an ascending order:

e http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

12 Introduction | About URL canonicalization

Now even if a user navigates to "Red" before "Napa", the link still appears as /Region-Napa/Wine-
Red.

Related Links

Canonicalization configuration options on page 31
You can customize the canonicalization of URLSs for navigation pages by choosing a sort
method, for example by dimension name or dimension ID, and then a sort direction.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Chapter 2
Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Preparing your dimensions

If you intend to display dimensions or dimension values in your URLS, you must configure each of the
dimensions to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions
to Show with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

Select the dimension you need to edit.
Select the Show with record list checkbox.
Select the Show with record checkbox.
Click OK.

Save your changes.

N o ok~

For more information, please refer to the Oracle Endeca Developer Studio Help.

Preparing your properties
If you intend to display record properties in your URLS, you must configure each property to Show
with record and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to
Show with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

14

Preparing your application | Handling images and external JavaScript files

Select the dimension you need to edit.
Select the Show with record list checkbox.
Select the Show with record checkbox.
Click OK.

Save your changes.

No o pr~w

For more information, please refer to the Oracle Endeca Developer Studio Help.

Handling images and external JavaScript files

When you modify your application to produce optimized URLS, it is important to ensure that the server
can still locate resources requested by the application, such as image files, JavaScript files, and CSS
files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative
URLs:

« "Site-relative" URLSs are relative to the root directory on the site that hosts the Web page, for
example: /sitemap.htm
* "Non-site-relative" URLSs are relative to their parent pages, for example: . ./sitemap.htm

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved,
optimized URLs may create unresolved links when external resources are referenced. When using
the URL Optimization API, Endeca recommends replacing non-site-relative URLSs with site-relative
URLSs to ensure that links resolve properly.

URL transitioning

Managing redirects is an important aspect of search engine optimization. In order to maintain page
rank for resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional Endeca URLSs to optimized Endeca URLSs, or when you change the
configuration of optimized URLs, it is important to ensure that:

* Links throughout your Web site are updated
« Links to external resources (such as image files, CSS, or Javascript files) are updated
« External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the
new URLs. However, external references to your site must be redirected in order to prevent unresolved
links.

The URL Optimization API is responsible for transforming URLs into Endeca search and navigation
queries, and vice-versa. It does not implement redirect logic. In order to redirect incoming requests,
you must include the appropriate logic in your application controller. By comparing an inbound URL
to the canonical (optimized) form, you can redirect to the canonical URL in cases where the inbound
URL is different.

Oracle recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking
information and index content on a site against the source URL, 301 redirects apply this information
to the destination URL.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Chapter 3
Building URLs with the URL Optimization API

This section describes the basic tasks for using the URL Optimization API to build search
engine-optimized URLs.

Core components in the URL Optimization API

The primary classes and interfaces of the URL Optimization APl are Ur1State, UrlFormatter, and
QueryBuilder.

UrlState

A UrlState instance represents the URL, including any parameters, for a particular navigation state
in your Endeca application. You typically create a UrIState by using a Ur IFormatter to parse a
URL string. You then inform the Ur 1State of the navigation state that it represents by passing it a
set of Endeca query results. Once the Ur 1State is informed, you can modify it in order to generate
URLSs representing links to other states in your application, such as selecting refinements.

UrlFormatter

A UrlFormatter is responsible for parsing URL strings into Ur IState objects and transforming
UrlState objects back into URLs. The SeoUr IFormatter is a highly configurable implementation
of UrlFormatter that parses and generates search engine-optimized URLSs.

QueryBuilder

A QueryBui lder marshals Ur 1State objects into MDEX Engine queries. The BasicQueryBui lder
is an implementation of QueryBui Ider that creates ENEQuery objects from a given Ur1State.

For further information about these and other classes in the URL Optimization API, please refer to the
Endeca Assembler APl Reference (Javadoc).

Overview of building URLSs using the URL Optimization API

The URL Optimization API requires a different approach to building Endeca URLs than you would use
to build URLs with the Endeca Presentation API.

The high-level process is as follows:

16

Building URLs with the URL Optimization API | Parsing an incoming query and sending it to an MDEX
Engine

1. Setup your basic application configuration with a BasicQueryBui lder and SeoUr IFormatter.

How you create and configure the QueryBui lder and Ur IFormatter may vary depending on
your application, but they should be should be scoped at a global or application level.

Handle requests by parsing the incoming query and sending it to an MDEX Engine.
Inform a UrIState object of the navigation state.

Modify the Ur 1State object by adding or removing URL parameters.

Generate a URL from the UriState.

o s~ WD

Parsing an incoming query and sending it to an MDEX
Engine

Because it is possible for optimized URLs not to contain query string parameters (these parameters
can be stored in the path), you cannot rely on the Ur IENEQuery class to create an ENEQuery object
from a URL.

Instead, use a UrIFormatter to parse the incoming request URL in order to populate the Ur1State
with the current URL query parameters, then use a QueryBui lder to create the ENEQuery from the
UrlState.

To parse an incoming request and query an MDEX Engine:

1. Parse the request into a UrIState instance.
For example:
UrliState requestUrlState = urlFormatter.parseRequest(request);
2. Build an ENEQuery based on the UriState.
For example:
ENEQuery eneQuery = queryBuilder._buildQuery(requestUriState);
3. Execute the request and retrieve the results.

For example:

HttpENEConnection conn = new HttpENEConnection(mdexHost, mdexPort);
ENEQueryResults eneQueryResults = conn.query(eneQuery);

Informing the UrlState of the navigation state

Informing is the process of providing the Ur 1State object with information about the current query
results.

From this information, the Ur 1 State object creates either a NavStateUr 1Param if the query results
are from a navigation query, an ERecUr IParam if the query results are from a record detail query, or
an AggrERecUr 1Param if the query results are from an aggregated record detail query.

The SeoUr IFormatter can use the extra information in these objects to generate customized URLs
based on the current navigation state or properties and dimensions associated with these results.

To inform a Ur 1State of the current navigation state:

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Building URLs with the URL Optimization API | Creating link URLs from a UrlState 17

Add code similar to the following:
urlState. inform(eneQueryResults);

You can generate properly formatted URLS representing either the current navigation state, a record
detail link, or an aggregated record detail link. Note that of these three possiblities, only the record
detail link is guaranteed to be complete when calling inform on an empty Ur1State. A navigation
URL would be correct but, without further modification, only reflects the selected dimension values
(the N parameter values). An aggregated record detail URL would not work without adding the required
An and Au parameters.

The intent of the inform() method is to give the Ur IFormatter and Ur IState access to property
and dimension information, not to copy your query. In some cases a complete query URL can only be
created through a combination of using Ur IFormatter . parseRequest() on the initial request and
calling UrlState.setParam() as needed in addition to using inform().

Creating link URLs from a UrlState

In order to create link URLs on a particular page to different navigation states within your application,
you modify the UrIState and then transform the modified Ur IState to a URL string.

This procedure assumes that you already have an informed Ur 1State that represents the current
navigation state of your page.

To create a link URL:

1. Modify the Ur1State to reflect a different navigation state in your application.

For example, you can use the following to create a refinement link for a Guided Navigation
component in your application:
UrlState refinedUrlState =
informedUriState.selectRefinement(refDim, refDimvVal, true);

The final parameter indicates whether the modification should be performed on a cloned version
of the current Ur 1State, and should typically be true. For instance, in the case of a Guided
Navigation component, you would loop through the possible refinements and create a modified
Ur1State based on the current Ur 1 State for each refinement link. If you wanted to select several
refinements in the same URL, you would pass false as the value of this parameter.

For further details about additional methods that can be used to modify a UrIState, please refer
to the Endeca Assembler API Reference (Javadoc).

2. Generate the URL string from the modified Ur1State.
String refinedUrl = refinedUriState.toString();

The UrlState. toString() method calls the fFormatString() method of the UrIFormatter
that constructed the UrIState instance.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Chapter 4
Configuring URLs

The following sections provide information about creating and using a URL configuration file similiar
to the urlconfig.xml file included with the URL Optimization API to optimize your URLs. The
information and examples provided in this section relate to basic URL configuration tasks, and do not
cover the entire breadth of the URL Optimization API capabilities. Endeca recommends consulting
the APl documentation as you develop your application.

Anatomy of an optimized Endeca URL

An optimized Endeca URL is made up of four configurable sections.

General URL References

When referring to URLSs in general, the URL Optimization APl documentation may use the terms "base
URL" and "URL query parameters.” The "base URL" is the part of the URL that precedes the question
mark.

For example, in the URL:
http://www.example.com/pathparaml/pathparam2/pathparam3/results?queryparam=123
the base URL is the string that displays before the question mark:

http://www.example.com/pathparaml/pathparam2/pathparam3/results

Optimized Endeca URLs
For reference purposes, the documentation identifies four distinct sections of optimized Endeca URLSs:

* misc-path

* path-param-separator
 path-params

* query string

For example, the following URL is broken down into subsections:

http://1ocalhost:8888/control ler[/Wine-Red-Mer lot/Napa/Pine-Ridge/ /N-12ZafZfd?Ne=123]
The sections of the URL encased in square brackets can be broken down into the following components:
[/<misc-path>] [/<path-param-separator>][/<path-params>][?<query-string>]

The components correspond to the following strings:

20 Configuring URLs | About the URL configuration file

Section String
misc-path Wine-Red-Merlot/Napa/Pine-Ridge

path-param-separator

path-params N-12Zafzfd
query string Ne=123
misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search
engine-optimized URLs. The misc-path section of the optimized URL can be generated based on
dimension names, dimension values, ancestor names, and record properties. The misc-path component
is largely ignored by the application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting
point for path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of
the application. This may include the numerical representation of the navigation state or a specific
record, as well as any other parameter key-value pairs that have an effect on the displayed content.
This component can be configured to contain several parameters that would typically be included as
part of the query string in traditional Endeca URLS, such as the N, Ne, Ntt, and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the
path-params and query string represents the current state of the application. Endeca parameters such
as N, Ne, Ntt, and R that are not configured to display in the path-params section of the URL display
in the query string.

About the URL configuration file

The URL Optimization API reference application uses an XML file named urlconfig.xml to configure
the format of the URLSs that it generates.

The reference application uses the Spring Framework for this configuration file. Although the URL
Optimization API does not require the Spring Framework, it supplies a convenient and flexible
configuration mechanism. In addition, if you plan to use the Sitemap Generator with your application,
Endeca strongly recommends using the urlconfig.xml file to configure your optimized URLS,
because the Sitemap Generator relies on the same format for configuration. If you need further
information about the Spring Framework syntax, please consult the documentation provided with the
Spring Framework.

The URL configuration file contains basic configurations for the following objects:

« A BasicQueryBuilder to transform UrState objects into ENEQuery objects
* An SeoUrlFormatter to transform Ur1State objects into optimized URL strings

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | Creating a URL configuration file 21

By specifying settings for additional components in the configuration file, you can configure the following
aspects of your URLSs:

« the dimension values and properties to display in the misc-path
canonicalization options for dimensions in the misc-path

the path-param-separator

Endeca parameters to be included in the path-params instead of the query string
base-36 encoding for numeric Endeca parameters

Creating a URL configuration file

A simple URL configuration file defines a BasicQueryBui lder and a top-level SeoUr 1Formatter.

To create a URL configuration file:

1. Create a basic query builder that invokes the com.endeca.soleng.urlformatter_basic.Ba-

sicQueryBui lder class:

For example:

<bean id="queryBuilder' class="com.endeca.soleng.urlformatter.basic.Ba-

sicQueryBuilder'>
</bean>

2. Add the following properties:

Option
queryEncoding
baseUr 1ENEQuery

baseNaviga—-
tionUrlENEQuery

baseERecUr 1ENEQuery

baseAggrERecUr 1ENE-
Query

defaul tUr lENEQuery

For example:

Description
Specifies the query encoding. For example: <value>UTF-8</value>

Sets the baseUrLENEQuery. This query is used to create the
Ur IENEQuery if the UrIState is not associated with a record or
navigation state. If this value is <nul />, a new query is created.

Sets the baseNavigationUr IENEQuery. This query is used to create
the UrlENEQuery if the Ur1State is associated with a navigation
state (but not a record or aggregate record). If this value is <nul 1/>,
a new query is created.

Sets the baseERecUr 1ENEQuery. This query is used to create the
Ur1ENEQuery if the Ur1State is associated with a record (but not
an aggregate record). If this value is <nul 1 />, a new query is created.

Sets the baseAggrERecUr 1ENEQuery. This query is used to create
the Ur IENEQuery if the Ur 1State is associated with an aggregate
record. If this value is <nul 1/>, a new query is created.

Sets the detaultUr IENEQuery. This query is used to create the
Ur 1ENEQuery if the Ur 1State contains no parameters.

<bean id="queryBuilder' class=""com.endeca.soleng.urlformatter.basic.Ba-

sicQueryBuilder'>

<property name="queryEncoding'>
<value>UTF-8</value>

</property>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

22

Configuring URLs | Creating a URL configuration file

<property name="baseUr 1ENEQuery'>
<value><![CDATA[N=0&Ns=P_Price]1&Nr=8020]]1></value>
</property>

<property name="'baseNavigationUrENEQuery"'>
<value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
</property>

<property name="baseERecUrENEQuery">
<null/>
</property>

<property name="baseAggrERecUr 1ENEQuery >
<value>An=0</value>
<null/>

</property>

<property name="‘defaultUrlENEQuery'>
<value>N=0</value>
</property>

</bean>

3. Create a top-level seoUr IFormatter bean to invoke the com.endeca.soleng.urlformat-
ter.seo.SeoUrIFormatter class:
For example:

<bean i1d="'seoUrlFormatter"™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter>
</bean>

4. Add the following properties:
Option Description

defaultEncoding Specifies the default query encoding. For example: <val-

ue>UTF-8</value>

pathSeparatorToken Specifies the character used to separate the misc-path from the

path-params section in URLSs.

pathKeyValueSeparator Specifies the character used to separate key-value pairs in the

path parameter section of the URL.

For example:

<bean id="seoUrlFormatter" class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter*>

<property name="defaultEncoding'>
<value>UTF-8</value>
</property>

<property name="'pathSeparatorToken'>
<value>_</value>
</property>

<property name="'pathKeyValueSeparator'>
<value>-</value>
</property>

<I-- additional elements deleted from this example --1>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | Creating a URL configuration file 23

</bean>

5. Set any required properties to specify configuration beans.

b
Note: The instructions in this chapter explain which of beans are required for each task. You
can set these properties on your SeoUr IProvider object as you work through the chapter.

For example:

<bean i1d="'seoUrlFormatter"™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter>

<property name="‘pathParamKeys''>
<list>
<value>R</value>
<value>A</value>
<value>An</value>
<value>Au</value>
<value>N</value>
<value>No</value>
<value>Np</value>
<value>Nu</value>
<value>D</value>
<value>Ntt</value>
<value>Ne</value>
</list>
</property>

<property name="navStateFormatter'>
<ref bean="navStateFormatter"/>
</property>

<property name="ERecFormatter™>
<ref bean="erecFormatter"/>
</property>

<property name="aggrERecFormatter'>
<ref bean="aggrERecFormatter"/>
</property>

<property name="navStateCanonicalizer'>
<ref bean="navStateCanonicalizer"/>
</property>

<property name="'urlParamEncoders''>
<list>
<ref bean="N-paramEncoder"/>
<ref bean="Ne-paramEncoder"/>
<ref bean="An-paramEncoder"/>
</list>
</property>

</bean>

After you have created the basic URL configuration file, you create additional beans to specify further
configuration for the misc-path and path-params. Follow the procedures in the sections below to
complete your URL configuration.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

24 Configuring URLs | About optimizing the misc-path

About optimizing the misc-path

With the URL Optimization API you can configure dimensions, dimension values, record properties,
and aggregate record properties to display in the misc-path of URLS. You can also specify the order
in which dimension and dimension values display. The urlconfig.xml file provides a simple and
convenient method for configuring these options.

navStateFormatter

The navStateFormatter bean invokes the com.endeca.soleng.urlformatter.seo.SeoN—
avStateFormatter class to define dimLocationFormatters for each dimension that you want
to configure.

Using the dimLocationFormatters defined in the navStateFormatter bean, you can configure
URLSs for navigation pages to include dimension names, roots, ancestors, and dimension value names
in the misc-path of URLSs for navigation pages.

For example, the following URL is for the navigation state Region > Napa:
http://1ocalhost:8888/endeca_jspref/controller. jsp?&Ne=8&N=4294967160

Using URL Optimization API, that same URL can be formatted as follows:
http://localhost:8888/urlformatter_jspref/controller/Napa/_/N-1z141vc/Ne-8

navStateCanonicalizer

The navStateCanonical izer bean invokes the com.endeca.soleng.urlformatter.seo.SeoN—
avStateCanonicalizer to order the dimension and dimension value names included in the misc-path
for navigation pages. For example, an end user can reach the Wine Type > Red, Region > Napa page
by navigating first to Wine Type > Red and then to Region > Napa, or by navigating to Region > Napa
and then Wine Type > Red. To avoid two syntactically different URLs for the same Wine Type > Red,
Region > Napa page, you can use the navStateCanonical izer to standardize the order of dimension
and dimension values in the misc-path.

%
Note: By design, the URL Optimization API prevents the creation of syntactically different URLs
by canonicalizing keywords. You can choose from a number of configuration options to control
the arrangement of keywords, but the URLSs are always canonicalized.

erecFormatter

URL optimization for record detail pages is configured separately from navigation pages and aggregate
record details pages. The erecFormatter bean invokes the com.endeca.soleng.urlformat-
ter.seo.SeoERecFormatter class to define dimLocationFormatters for each dimension that
you want to configure.

The same options for including dimension names, roots, ancestors, and dimension value names are
available for record detail pages as are available for navigation pages. While the urlconfig.xml
configuration file uses the same dimLocationFormatters for the erecFormatter and the ag-
gErecFormatter as are used for the navStateFormatter, this is not a requirement. You can
create separate dimLocationFormatters for navigation pages, record detail pages, and aggregate
record detail pages.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 25

aggrERecFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages
and record details pages as are available for navigation pages. The aggrERecFormatter bean
invokes the com.endeca.soleng.urlformatter.seo.SeoAggrERecFormatter class to define
dimLocationFormatters for each dimension that you want to configure. The same options for
including dimension names, roots, ancestors, a nhd dimension value names are available for aggregate
record detail pages. While the ur lconfig.xml configuration file uses the same dimLocationFor-
matters for the aggrERecFormatter and the erecFormatter as are used for the navStateFor-
matter, this is not a requirement. You can create separate dimLocationFormatters for navigation
pages, record detail pages, and aggregate record detail pages.

Formatting misc-path strings in optimized URLs

The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in URLSs.

You can format the strings in the misc-path section of a URL by using string formatters that are
predefined in the URL Optimization API. Formatting may include changing capitalization or applying
a regular expression to replace portions of the string.

There are several StringFormatter objects in the URL Optimization API:

* LowerCaseStringFormatter — formats path-keyword data into lower case.
* UpperCaseStringFormatter— formats path-keyword data into upper case.
« UrlEncodedStringFormatter — URL-encodes strings.

* RegexStringFormatter — You can create a new RegexStringFormatter object and
customize the pattern, replacement, and replaceAll properties to perform custom string
formatting. For more information on the properties, please refer to the generated APl documentation
for the api-seo library.

To define StringFormatter objects in the urlconfig.xml file:

1. Create a bean to invoke a StringFormatter class.
This example shows the configuration for a RegexStringFormatter that replaces all non-word
character sequences with a single "-" character:

<bean class="'com.endeca.soleng.urlformatter.seo.RegexStringFor-

matter'>

<property name="pattern’>
<value><![CDATA[\W_&&[\u00CO-\uOOFF]]+]1]1></value>

</property>

<property name="‘replacement''>
<value>-</value>

</property>

<property name="replaceAll'>
<value>true</value>

</property>

</bean>

2. Optionally, you can build a StringFormatterChain to apply more than one StringFormatter
to a string in series.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

26 Configuring URLs | About optimizing the misc-path

The following example shows the defaul tStringFormatterChain thatis used throughout the
sample urlconfig.xml file.

<bean name="'defaultStringFormatterChain"
class=""com.endeca.soleng.urlformatter.seo.StringFormatterChain">

<property name="'stringFormatters'>
<list>

<l--
HH R R R R R R R R R R R R R R
replace all non-word character sequences with a single "-*
#

-——>

<bean class="com.endeca.soleng.urlformatter.seo.RegexStringFor-

matter'>
<property name="pattern’>
<value><![CDATA[\W_&&[™\u00CO-\uOOFF]]+]1]1></value>

</property>

<property name="‘replacement'>
<value>-</value>
</property>

<property name="‘replaceAll">
<value>true</value>
</property>
</bean>

<1-_
I R R R R R R

trim leading and trailing "-" characters (if any)
#
-——>
<bean class="'com.endeca.soleng.urlformatter.seo.RegexStringFor-

matter'>
<property name="'pattern'>
<value><!I[CDATA[-?([\w\uOOCO-\uOOFF] [\w-\u00CO-
\UOOFF]*[\w\uOOCO-\uOOFF])-?$]]1></value>

</property>

<property name="‘replacement''>
<value>$1</value>

</property>

<property name="‘replaceAll">
<value>false</value>
</property>
</bean>

</list>
</property>
</bean>

Note that because StringFormatterChainimplements StringFormatter, you can nest chains
For example:

<bean class=""com.endeca.soleng.urlformatter.seo.StringFormatterChain'>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 27

<property name="'stringFormatters'>
<list>

<I-- replace "Wine Type® with *Wine® -->

<bean class=""com.endeca.soleng.urlformatter.seo.RegexStringFor-

matter''>
<property name="pattern’>
<value>Wine Type</value>
</property>
<property name="‘replacement'>
<value>Wine</value>
</property>
<property name="‘replaceAll">
<value>false</value>
</property>
</bean>
<l-- execute the default string formatter chain -->
<ref bean="defaultStringFormatterChain"/>
</list>
</property>
</bean>

Optimizing URLSs for navigation pages

Using the URL Optimization API, you can include dimension and dimension value names in the
misc-path of URLSs. You can also choose to canonicalize these dimension and dimension value names
in order to avoid duplicate content and to increase your natural search rankings.

&
7 Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLSs for navigation pages:

1. Create a navStateFormatter bean to invoke the com.endeca.soleng.urlformat-
ter.seo.SeoNavStateFormatter:

For example:

<bean id="navStateFormatter"™ class="com.endeca.soleng.urlformat-
ter.seo.SeoNavStateFormatter''>
</bean>

2. Add a navStateFormatter property to your top-level seoUr IFormatter bean.
For example:

<bean id="seoUrlFormatter" class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter*>

<I-- additional elements deleted from this example --1>

<property name="navStateFormatter'>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

28 Configuring URLs | About optimizing the misc-path

<ref bean="navStateFormatter'/>
</property>

</bean>

3. Add a useDimensionNameAsKey property on the navStateFormatter.
For example:

<bean id="navStateFormatter™ class="com.endeca.soleng.urlformat-
ter.seo.SeoNavStateFormatter' >

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>
</bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

<bean id="navStateFormatter™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoNavStateFormatter''>

<property name="‘useDimensionNameAsKey''>
<value>true</value>
</property>

<property name="dimLocationFormatters'>
<list>
<ref bean="wineTypeFormatter"/>
<ref bean="‘regionFormatter"/>
<ref bean="wineryFormatter"/>
<ref bean="flavorsFormatter"/>
</list>
</property>

</bean>

5. Create adimLocationFormatter for each of the dimensions in the dimLocationFormatters
list.
For example:
<bean i1d="regionFormatter"
class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter'>

</bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages. You can choose
to create unique dimLocationFormatters for each page type.

6. Add the following properties to each dimLocationFormatter:
Property Description

key In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to
true, then use the dimension name as the value for this property (for

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 29

Property Description

example <value>Region</value>). If you set the useDimension-
NameAsKey to false, use the dimension ID number.

appendRoot Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

appendAncestors Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

appendDescriptor Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

separator Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

rootStringFormat- Specifies the bean to format the dimension name. The reference application
ter uses a defaultStringFormatterChain bean to invoke the com.en-
deca.soleng.urlformatter.seo.StringFormatterChain

dimValStringFor- Specifies the bean to format the dimension value names. The reference

matter application uses a defaultStringFormatterChain bean to invoke
the com.endeca.soleng.urlformatter._seo.StringFormatter-
Chain. The examples below also use a defaultStringFormatter-
Chain bean.

For example:

<bean id="'regionFormatter"
class=""com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter'>

<property name="key''>
<value>Region</value>
</property>

<property name="‘appendRoot'>
<value>false</value>
</property>

<property name="‘appendAncestors'>
<value>false</value>
</property>

<property name="‘appendDescriptor'>
<value>true</value>
</property>

<property name=''separator'>
<value>-</value>
</property>

<property name="'rootStringFormatter">
<ref bean="defaultStringFormatterChain"/>
</property>

<property name="dimValStringFormatter'>

<ref bean="defaultStringFormatterChain"/>
</property>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

30 Configuring URLs | About optimizing the misc-path

</bean>

7. Create a navStateCanonicalizer bean to invoke the com.endeca.soleng.urlformat-
ter.seo.SeoNavStateCanonicalizer class.
For example:
<bean name="navStateCanonicalizer' class="com.endeca.soleng.urlformat-

ter.seo.SeoNavStateCanonicalizer™>
</bean>

4 Note: Canonicalizing the dimension and dimension value names in the misc-path also
changes the order in which they appear in the path-params section of the URL. For example,
if Napa is configured to display before Red in the misc-path, the Napa dimension value ID
displays before the Red dimension value ID in the path-params section.

8. Add a navStateCanonicalizer property to your top-level seoUr IFormatter bean.
For example:

<bean id="seoUrlFormatter" class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter*>
<I-- additional elements deleted from this example --1>

<property name="'navStateCanonicalizer'>
<ref bean="navStateCanonicalizer'/>
</property>

</bean>

9. Configure the navStateCanonicalizer.
For example, the following configuration creates URLSs sorted by dimension ID in descending order:
<bean name="navStateCanonicalizer' class="com.endeca.soleng.urlformat-
ter.seo.SeoNavStateCanonicalizer'>

<property name="'sortByName''>
<value>false</value>
</property>

<property name="'sortByDimension'>
<value>true</value>
</property>

<property name="‘ascending">
<value>false</value>
</property>

</bean>

Note: There a number of possible configuration options for canonicalization.

Related Links

Preparing your dimensions on page 13
If you intend to display dimensions or dimension values in your URLS, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 13

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 31

If you intend to display record properties in your URLS, you must configure each property to
Show with record and Show with record list.

About URL canonicalization on page 11
Dynamic sites often produce syntactically different URLSs for the same page. Multiple variant
URLSs result in duplicate content and therefore lower natural search engine ranking.
Canonicalizing your URLSs reduces that duplicate content and improves search engine ranking.

Formatting misc-path strings in optimized URLSs on page 25
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Canonicalization configuration options

You can customize the canonicalization of URLSs for navigation pages by choosing a sort method, for
example by dimension name or dimension ID, and then a sort direction.

The following example configurations use the dimensions:

* Wine Type (dimension ID: 6200)
* region (dimension ID: 8)

and the dimension values:

* red (dimension value ID: 8021)
» Napa (dimension value ID: 4294967160)

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

32 Configuring URLs | About optimizing the misc-path

Sort direction

Sort Configuration
Direction
Ascending | <property name="ascending">
<value>true</value>
</property>
Descending | <property name="ascending'>

<value>false</value>
</property>

Sort method

Sort by Configuration
Dimension | <property name="sortByName''>
name, case <value>true</value>
sensitive </property>
<property name="sortByDimension">
<value>true</value>
</property>
<property name=""ignoreCase'>
<value>false</value>
</property>
Dimension | <property name="sortByName'>
name, case <value>true</value>
insensitive | </property>
<property name="sortByDimension'>
<value>true</value>
</property>
<property name=""ignoreCase'>
<value>true</value>
</property>
Dimension | <property name="sortByName'>
ID <value>false</value>
</property>
<property name="sortByDimension">
<value>true</value>
</property>
Dimension | <property name="sortByName">
value name, | <value>true</value>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Example base URL (sorted by
dimension ID)

http://localhost/urlformat-
ter_jspref/controller/region-
Napa/Wine-red/

http://localhost/urlformat-
ter_jspref/controller/Wine-
red/region-Napa/

Example base URL (sort direction
ascending)

http://localhost/urlformat—
ter_jspref/controller/Wine-
red/region-Napa/

http://localhost/urlformat-
ter_jspref/controller/region-
Napa/Wine-red/

http://localhost/urlformat-
ter_jspref/controller/region-
Napa/Wine-red/

http://localhost/urlformat-
ter_jspref/controller/region-

Sort by

case
sensitive

Dimension
value name,
case
insensitive

Dimension
value ID

Configuring URLs | About optimizing the misc-path 33

Configuration Example base URL (sort direction
ascending)
</property> Napa/Wine-red/

<property name="sortByDimension">

<value>false</value>
</property>

<property name='‘ignoreCase'>
<value>false</value>

</property>

<property name="sortByName'> http://localhost/urlformat-
<value>true</value> ter_jspref/controller/region-

</property> Napa/Wine-red/

<property name="sortByDimension">

<value>false</value>
</property>

<property name='‘ignoreCase'>
<value>true</value>

</property>

<property name="sortByName'> http://localhost/urlformat-
<value>false</value> ter_jspref/controller/Wine-

</property> red/region-Napa/

<property name="sortByDimension">

<value>false</value>
</property>

Example 1: the following code sample creates a canonicalized URL that sorts by dimension name,
case sensitive, in an ascending order:

<bean name="navStateCanonicalizer™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoNavStateCanonicalizer'>

<property name="sortByName"'>
<value>true</value>
</property>

<property name="'sortByDimension'>
<value>true</value>
</property>

<property name="‘ascending'>
<value>true</value>
</property>

<property name="'ignoreCase'>
<value>false</value>
</property>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

34 Configuring URLs | About optimizing the misc-path

</bean>

The resulting base URL: http://localhost/urlformatter_jspref/controller/Wine-
red/region-Napa/

Example 2: the following code sample creates a canonicalized URL that sorts by dimension value ID
in a descending order:

<bean name="‘navStateCanonicalizer™ class="'com.endeca.soleng.urlformat-
ter.seo.SeoNavStateCanonicalizer'>

<property name="sortByName">
<value>false</value>
</property>

<property name="'sortByDimension'>
<value>true</value>
</property>

<property name="‘ascending'>
<value>false</value>
</property>

</bean>

The resulting base URL: http://l1ocalhost/urlformatter_jspref/controller/region-
Napa/Wine-red/

4 Note: Canonicalizing the dimension and dimension value names in the misc-path changes the
order in which they appear in the path-params section of the URL. For example, if Napa is
configured to display before Red in the misc-path, the Napa dimension value ID displays before
the Red dimension value ID in the path-params section.

Optimizing URLSs for record detail pages

Using the URL Optimization API, you can include dimension names, dimension value names, and
record properties in the misc-path of URLSs for record detail pages.

&
7 Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for record detail pages:

1. Create an erecFormatter bean to invoke the com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter:
For example:

<bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter''>
</bean>

2. Add an ERecFormatter property to your top-level seoUr IFormatter bean.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 35

For example:

<bean id="'seoUrlFormatter"™ class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>

<I-- additional elements deleted from this example --1>

<property name="ERecFormatter">
<ref bean="‘erecFormatter'/>
</property>

</bean>

. Add a useDimensionNameAsKey property on the erecFormatter.
For example:

<bean id="erecFormatter' class="com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter''>

<property name="‘useDimensionNameAsKey"'>
<value>true</value>
</property>

</bean>

Setting useDimensionNameAsKey to false creates a key on the dimension ID numbers.

. Add a propertyKeys property to include record properties in the URLs of record details pages.
For example:

<bean id="erecFormatter'" class=""com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter''>

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="propertyKeys'>
<list>
<value>P_Name</value>
</list>
</property>

</bean>

. Add a propertyFormatter property to format record properties included in the URLs of record
details pages.
For example:

<bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter™>

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="propertyKeys'>
<list>
<value>P_Name</value>
</list>
</property>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

36 Configuring URLs | About optimizing the misc-path

<property name="‘propertyFormatter'>
<ref bean="defaultStringFormatterChain"/>
</property>

</bean>

6. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

<bean id="erecFormatter"™ class="com.endeca.soleng.urlformatter.seo.Seo-
ERecFormatter™>

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="dimLocationFormatters'>
<list>
<ref bean="‘regionFormatter"/>
<ref bean="wineryFormatter"/>
<ref bean="wineTypeFormatter"/>
<ref bean="vintageFormatter"/>
</list>
</property>

<property name="propertyKeys'>
<list>
<value>P_Name</value>
</list>
</property>

<property name="propertyFormatter'>
<ref bean="defaultStringFormatterChain"/>
</property>

</bean>

7. Create adimLocationFormatter for each of the dimensions in the dimLocationFormatters
list.
For example:

<bean i1d="regionFormatter"
class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

</bean>

] , , , ,
7~ Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages. You can choose
to create unique dimLocationFormatters for each page type.

8. Add the following properties to each dimLocationFormatter:
Property Description

key In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to
true, then use the dimension name as the value for this property (for
example <value>Region</value>). If you set the useDimension-
NameAsKey to false, use the dimension ID number.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Property
appendRoot

appendAncestors

appendDescriptor

separator

rootStringFormat-
ter

dimvValStringFor-
matter

For example:

Configuring URLs | About optimizing the misc-path 37

Description

Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

Specifies the bean to format the dimension name. The reference application
uses a defaultStringFormatterChain bean to invoke the com.en-
deca.soleng.urlformatter.seo.StringFormatterChain

Specifies the bean to format the dimension value names. The reference
application uses a defaultStringFormatterChain bean to invoke
the com_endeca.soleng.urlformatter._seo.StringFormatter-
Chain. The examples below also use a defaultStringFormatter-
Chain bean.

<bean id="'regionFormatter"
class=""com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter'>

<property name="key'>
<value>Region</value>

</property>

<property name="‘appendRoot'>
<value>false</value>

</property>

<property name="‘appendAncestors'>
<value>false</value>

</property>

<property name="‘appendDescriptor'>
<value>true</value>

</property>

<property name=''separator'>
<value>-</value>

</property>

<property name="‘rootStringFormatter">
<ref bean="defaultStringFormatterChain"/>

</property>

<property name="dimValStringFormatter'>
<ref bean="defaultStringFormatterChain"/>

</property>

</bean>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

38 Configuring URLs | About optimizing the misc-path

Related Links

Preparing your dimensions on page 13
If you intend to display dimensions or dimension values in your URLS, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 13
If you intend to display record properties in your URLS, you must configure each property to
Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 25
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Optimizing URLs for aggregate record detail pages

Using the URL Optimization API, you can include dimension names, dimension value names, and
record properties in the misc-path of URLSs for aggregate record detail pages. These are configured
separately from the optimizations for navigation pages.

%
Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for aggregate record detail pages:

1. Create an aggrERecFormatter bean to invoke the com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter class:

For example:

<bean id="aggrERecFormatter™ class="com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter' >
</bean>

2. Add an aggrERecFormatter property to your top-level seoUr 1Formatter bean.
For example:

<bean i1d="seoUrlFormatter™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>
<I-- additional elements deleted from this example --1>

<property name="aggrERecFormatter'>
<ref bean="‘aggrERecFormatter'/>
</property>

</bean>

3. Add a useDimensionNameAsKey property on the aggrERecFormatter.
For example:

<bean i1d=""aggrERecFormatter™ class=""com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter''>

<property name="‘useDimensionNameAsKey"''>
<value>true</value>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path 39

</property>
</bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Add a propertyKeys property to include record properties in the URLs of record details pages.
For example:

<bean i1d=""aggrERecFormatter™ class="com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter' >

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="‘propertyKeys'>
<list>
<value>P_Name</value>
</list>
</property>

</bean>

5. Add a propertyFormatter property to format record properties included in the URLs of record
details pages.
For example:

<bean id="‘aggrERecFormatter"™ class="com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter'>

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="propertyKeys'>
<list>
<value>P_Name</value>
</list>
</property>
<I-- use default string formatter chain -->

<property name="‘propertyFormatter'>
<ref bean="defaultStringFormatterChain"/>
</property>

</bean>

6. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

<bean i1d="aggrERecFormatter™ class="com.endeca.soleng.urlformat-
ter.seo.SeoAggrERecFormatter' >

<property name="‘useDimensionNameAsKey"''>
<value>true</value>
</property>

<property name="dimLocationFormatters'>
<list>
<ref bean="‘regionFormatter"/>
<ref bean="wineryFormatter"/>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

40

Configuring URLs | About optimizing the misc-path

</list>
</property>

<property name="propertyKeys'>

<list>

<value>P_Name</value>

</list>
</property>

<property name="‘propertyFormatter'>
<ref bean="defaultStringFormatterChain"/>

</property>

</bean>

%
Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages. You can choose
to create unique dimLocationFormatters for each page type.

7. Create adimLocationFormatter for each of the dimensions inthe dimLocationFormatters

list.
For example:

<bean id="'regionFormatter"
class=""com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter'>

</bean>

8. Add the following properties to each dimLocationFormatter:

Property
key

appendRoot

appendAncestors

appendDescriptor

separator

rootStringFormat-
ter

dimvValStringFor-
matter

Description

In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to
true, then use the dimension name as the value for this property (for
example <value>Region</value>). If you set the useDimension-
NameAsKey to false, use the dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

Specifies the bean to format the dimension name. The reference application
uses a defaultStringFormatterChain bean to invoke the com.en-
deca.soleng.urlformatter.seo.StringFormatterChain

Specifies the bean to format the dimension value names. The reference
application uses a defaultStringFormatterChain bean to invoke
the com_endeca.soleng.urlformatter_seo.StringFormatter-
Chain. The examples below also use a defaultStringFormatter-
Chain bean.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | Configuring the path-param-separator 41

For example:

<bean id="‘regionFormatter"
class=""com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter'>

<property name="'key''>
<value>Region</value>
</property>

<property name="‘appendRoot'>
<value>false</value>
</property>

<property name="‘appendAncestors'>
<value>false</value>
</property>

<property name="‘appendDescriptor'>
<value>true</value>
</property>

<property name=''separator'>
<value>-</value>
</property>

<property name="‘rootStringFormatter">
<ref bean="defaultStringFormatterChain"/>
</property>

<property name="dimValStringFormatter'>
<ref bean="defaultStringFormatterChain"/>
</property>

</bean>

Related Links
Preparing your dimensions on page 13
If you intend to display dimensions or dimension values in your URLS, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 13
If you intend to display record properties in your URLS, you must configure each property to
Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 25
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Configuring the path-param-separator

You can customize the string that displays between the misc-path and the path-params components
of URLs.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

42

Configuring URLs | About optimizing the path-params and query string

The sample urlconfig.xml file provided with the URL Optimization APl uses an underscore to
separate the misc-path from the path-params in URLs. For example: http://localhost/urlfor-
matter_jspref/controller/Wine-Red-Pinot-Noir/_/N-66w

You must create a URL configuration file before completing this procedure.

To change the path-param-separator string:

1. Locate the top-level URL formatter bean in your URL configuration file.
For example:
<bean id="'seoUrlFormatter"™ class="'com.endeca.soleng.urlformat-

ter.seo.SeoUrlFormatter™ >
</bean>

2. Customize the value of the pathSeparatorToken property:
For example:

<bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>
<property name="‘pathSeparatorToken'>
<value>separator</value>
</property>
</bean>

The new URL displays as: http://localhost/urlformatter_jspref/controller/Wine-
Red-Pinot-Noir/separator/N-66w

About optimizing the path-params and query string

The URL Optimization API provides functionality for encoding path parameters and moving Endeca
path parameters from the query string into the path-params section of the URL.

Moving Endeca parameters out of the query string

In order to create directory-style URLSs, you can limit the number of parameters in the query string by
configuring a list of Endeca parameters to move from the query string and into the path-params section
of the URL. For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the
query string:

http://1ocalhost/ContentAssemblerRefApp/Content.aspx/Bor-
deaux?N=4294966952&Fromsearch=fal se&Ntk=Al I&Ntt=red&Ntx=mode%2bmatchal Ipar-
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/ /N-
4294966952/Ntt-red?fromsearch=false&Ntk=Al 1&Ntx=mode%2bmatchal Ipartial

%
Note: To ensure the best possible natural search-engine ranking, it is recommended that you
limit the number of parameters you include in the path-params section.

Encoding Endeca parameters

In order to shorten URLs, the URL Optimization API allows base-36 encoding of Endeca parameters.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the path-params and query string 43

For example, the following URL for Region > Napa contains the dimension value ID for Napa
(4294966952):

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-4294966952
By base-36 encoding the N parameter, you can shorten the URL:
http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_ /N-1z141pk

%
Note: Only the numeric Endeca parameters can be encoded:
* N
* Ne
* An
e Dn

Removing session-scope parameters

In order to simplify the URLS, session-scope parameters should be removed from the URL string and
stored as session objects. This might include any parameters that do not change value during the
session, such as the session ID or MDEX Host and Port values.

Passing non-Endeca parameters to the API

You can add non-Endeca parameters to URLs by passing them through the API.

Moving Endeca parameters out of the query string

In order to create directory-style URLSs, you can limit the number of parameters in the query string by
configuring a list of Endeca parameters to move from the query string and into the path-params section
of the URL.

You must create a URL configuration file before completing this procedure.

To move Endeca parameters out of the query string and into the path-params section of the URL:

1. In your URL configuration file, locate the top-level URL formatter.
For example:

<bean id="'seoUrlFormatter"™ class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>

<property name="defaultEncoding'>
<value>UTF-8</value>
</property>

<property name="‘pathSeparatorToken'>
<value>_</value>
</property>
<I-- additional elements deleted from this example --1>
</bean>

2. Add a pathParamKeys property.
For example:

<bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

44 Configuring URLs | About optimizing the path-params and query string

<property name="pathParamKeys'>
</property>

</bean>

3. Add a list attribute containing all of the Endeca parameters you want moved from the query
string.
For example:

<bean id="seoUrlFormatter’ class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>

<property name="‘pathParamKeys'>
<list>
<value>R</value>
<value>A</value>
<value>An</value>
</list>
</property>

</bean>

Encoding Endeca parameters

You can use the URL Optimization API to apply base-36 encoding to numeric Endeca parameters.
You must create a URL configuration file before completing this procedure.

Only the numeric Endeca parameters can be encoded:
*N
* Ne
* An
* Dn

The following procedure provides instructions for applying base-36 encoding to the An parameter. You
can apply base-36 encoding to any numeric Endeca parameter, but each parameter requires a
separately configured paramEncoder bean.

To encode numeric Endeca parameters:

1. Create a paramEncoder bean to invoke the com_endeca.soleng.urlformatter.seo.SeoN-
avStateEncoder
For example:
<bean name="An-paramEncoder™ class=""com.endeca.soleng.urlformat-

ter.seo.SeoNavStateEncoder™>
</bean>

\QJ Remember: You need to create a separate parameEncoder bean for each humeric Endeca
parameter you want to encode.

2. Add a paramKey property to specify which numeric Endeca parameter to encode.
For example:

<bean name="'An-paramkEncoder' class=""com.endeca.soleng.urlformat-
ter.seo.SeoNavStateEncoder* >

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the path-params and query string 45

<property name="'paramKey'>
<value>An</value>
</property>
</bean>

3. Repeat steps one and two for each Endeca parameter you want to encode.

4. Locate the top-level URL formatter bean in your URL configuration file.
For example:
<bean i1d="'seoUrlFormatter"™ class="'com.endeca.soleng.urlformat-

ter.seo.SeoUrlFormatter™>
</bean>

5. Add a urlParamEncoders property:

<bean id="seoUrlFormatter" class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>
<property name="'urlParamEncoders'>
</property>
</bean>

6. Add a li1st attribute and specify each of the parameter encoder beans.
For example:
<bean id="'seoUrlFormatter"™ class="'com.endeca.soleng.urlformat-
ter.seo.SeoUrlFormatter'>
<property name="‘urlParamEncoders'>
<list>
<ref bean="N-paramEncoder"/>
<ref bean="Ne-paramEncoder"/>
<ref bean="An-paramEncoder"/>
</list>
</property>
</bean>

Removing session-scope parameters

In order to simplify the URLS, session-scope parameters should be removed from the URL string and
stored as session objects.

This might include any parameters that do not change value during the session, such as the session
ID or MDEX Host and Port values. For example, the following URL contains information about the the
MDEX Host and Port:

http://1ocalhost:8888/endeca_jspref/controller.jsp?N=0&eneHost=local-
host&enePort=15002

You can remove the MDEX Host and Port values from the URL and store them as session objects.
The resulting URL is simplified:

http://1ocalhost:8888/endeca_jspref/controller._jsp

The following procedure provides instructions for removing the MDEX Host and Port values from the
URL, but this procedure can be adapted as necessary to remove other session-scope parameters.

To remove the MDEX Host and Port values from the URL and store them as session attribute values:

1. To set the attribute, use the following code:
session.setAttribute('eneHost", eneHost);

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

46 Configuring URLs | Using the URL configuration file with your application

2. To retrieve the attribute value, use the following code:
eneHost = (String)session.getAttribute(“eneHost™);

About passing non-Endeca parameters to the API

You can add non-Endeca parameters to URLs by passing them through the API.

For example, you could add information about how many records per page should display in each
results set:
In the reference application's control ler . jsp file, find the following section:

UriState baseUrlState = urlFormatter.parseRequest(request);

ENEQuery usq = queryBuilder.buildQuery(baseUriState);

and add code similar to the following:
baseUrlState.setParam(‘'records_per_page™, "25");

%
Note: Endeca recommends limiting the number of parameters that display in URLSs. It is
recommended that session-scope parameters be removed from the URL and stored as session
objects.

Using the URL configuration file with your application

Before you can create optimized URLs with your own application, you need to include the URL
configuration file in your application's classpath.

To use the URL configuration file with your application:

1. Stop the Endeca HTTP service.
2. Locate your URL configuration file.

3. Copy the URL configuration file into the WEB- INF subdirectory of your Web application directory.
For example:
C:\Endeca\ToolsAndFrameworks\<version>\reference\discover-electronics-authoring\WEB-INF

4. Start the Endeca HTTP service.

To verify that the URL configurations are working properly, open a Web browser and navigate to your
Web application. Check that the URLSs display as you configured them with the URL configuration file.

Related Links
Creating a URL configuration file on page 21
A simple URL configuration file defines a BasicQueryBui lder and a top-level SeoUr 1For-
matter.

Creating a URL configuration file on page 21
A simple URL configuration file defines a BasicQueryBui lder and a top-level SeoUr 1For-
matter.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Chapter 5
Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX
Engine, not information stored on your application server. Because of this, you need to ensure that
the URLs produced by the Sitemap Generator match the URLs in your application. To make certain
that the URLs match, you need to configure the Sitemap Generator's urlconfig.xml file to make
the same customizations to URLs that the URL Optimization API configurations are making.

The Sitemap Generator urlconfig.xml file

The Sitemap Generator uses a URL configuration file that must mirror your URL configurations in order
to output a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine
to retrieve the necessary record, dimension, and dimension value data. It uses this information to build
an index of pages. The formatting of the URLSs it creates is controlled by the urlconfig.xml file
located in the conf subdirectory of your Sitemap Generator installation directory. For example:
C:\Endeca\SEM\SitemapGenerator\<ver si on>\conf

To ensure that the URLSs in the sitemap are consistent with the URLs produced by the URL Optimization
API, any configurations made in with the URL Optimization API must be configured appropriately in
the Sitemap Generator's urlconfig.xml file.

Because the urlconfig.xml file included with the Sitemap Generator uses the same format as the
sample urlconfig.xml file for the URL Optimization API, you can use your URL Optimization API
urlconfig.xml file for sitemap generation.

Adding custom dimensions to the Sitemap Generator
configuration

In order for dimensions to display in the URLs produced by the Sitemap Generator, they must be
specified in the <QUERY_FIELD_LIST> in the Sitemap Generator's conf._xml file.

The <QUERY_FIELD_LIST> inthe conf.xml of the Sitemap Generator is configured for the Endeca
wine data set. Before you can generate a sitemap for your own data set, you need to specify your own
dimensions to the <QUERY_FIELD_LIST>.

To specify dimensions in the Sitemap Generator <QUERY_FIELD_LIST>:

48 Integrating with the Sitemap Generator | Using the URL Optimization API urlconfig.xml file for sitemap
generation

1.

3.

Open the conf.xml file located in the \conf subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\Si temapGenerator\<version>\conf

Locate the <QUERY_FIELD_LIST>.
For example:

<I-- additional elements deleted from this sample -->

<QUERY_FIELD_LIST>
<QUERY_FIELD>P_Name</QUERY_FIELD>
<QUERY_FIELD>Wine Type</QUERY_FIELD>
<QUERY_FIELD>Region</QUERY_FIELD>
<QUERY_FIELD>Winery</QUERY_FIELD>
<QUERY_FIELD>Vintage</QUERY_FIELD>
<QUERY_FIELD>P_Winery</QUERY_FIELD>
<QUERY_FIELD>Flavors</QUERY_FIELD>
<QUERY_FIELD>Designation</QUERY_FIELD>

</QUERY_FIELD_LIST>

<I-- additional elements deleted from this sample -->

Replace the existing wine data dimensions with dimensions specific to your application.

For more information about the Sitemap Generator conf . xml file, please refer to the Endeca Sitemap
Generator Developer's Guide.

Using the URL Optimization API urlconfig.xml file for
sitemap generation

You can use the same ur lconfig.xml file you created for URL optimization as the URL configuration
file for sitemap generation.

To use the URL Optimization APl URL configuration file with the Sitemap Generator:

1.

4

Open the conf.xml file located in the conT subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\SitemapGenerator\<ver si on>\conf

Locate the URL_FORMAT_FILE:
For example:

<URL_FORMAT_FILE>urlconfig.xml</URL_FORMAT FILE>

Edit the <URL_FORMAT_FILE> value so that it points to the urlconfig.xml file you created with
the URL Optimization API.
For example:

<URL_FORMAT_ FILE>C:\Endeca\ToolsAndFrameworks\<version>\reference\discover-
electronics-authoring\WEB-INF\urlconfig.xml</URL_FORMAT_FILE>

Save and close the conf.xml file.

You can also copy your URL Optimization APl urlconfig.xml file to the conf subdirectory of your
Sitemap Generator installation directory. If you choose to do this, you need to make sure that the two
urlconfig.xml files maintain identical configurations.

For more information about the Sitemap Generator, please refer to the Endeca Sitemap Generator
Developer's Guide.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Integrating with the Sitemap Generator | Using the URL Optimization API urlconfig.xml file for sitemap 49
generation

Related Links
Creating a URL configuration file on page 21
A simple URL configuration file defines a BasicQueryBui lder and a top-level SeoUr 1For-
matter.

About the URL configuration file on page 20
The URL Optimization API reference application uses an XML file named urlconfig.xml
to configure the format of the URLSs that it generates.

Oracle Endeca Commerce URL Optimization API for Java Developer's Guide

Index

301 redirects 14

A

aggERecFormatter 38
aggregate record detail pages 38
aggrERecFormatter 24

B

baseUr|State 46
basic query builder 21

C

canonicalization 11, 27, 31
canonicalizing

keywords 10
configuring URLs
CSs

handling 14

D

dimensions

preparing 13
dimLocationFormatters 24
directory-style URLs 42, 43
duplicate content 11

E

Endeca parameters
base-36 encoding 44
encoding 10, 42
moving 42, 43
moving out of the query string 10
Endeca Sitemap Generator
integrating with Endeca URL Optimization API
URL configuration file 47, 48
urlconfig.xml 47, 48
Endeca URL Optimization API
application recommendations
basic application requirements
configuring URLs
external resources 14
integrating with Endeca Sitemap Generator
introduction 9
overview 10
package contents 9
preparing your application
URL configuration

Endeca URL Optimization API (continued)

using 46
erecFormatter 24, 34
external resources

handling 14

images
handling 14
introduction
Endeca URL Optimization API 9

J

Javascript files
handling 14

K

keywords
adding 24
canonicalizing 10
integrating into URLs 10

M

misc-path
optimizing 24

N

navigation pages 27
navStateCanonicalizer 24
navStateFormatter 24, 27
non-Endeca parameters
passing 42, 46

O

optimized URLs
overview 19
overview
Endeca URL Optimization API 10

P

package contents
Endeca URL Optimization API 9
paramEncoder 44

Index

parameters

encoding 42, 44

Endeca 42, 43, 44

non-Endeca 42, 46

session-scope 42, 45
path-param-separator

optimizing 42
path-params

optimizing 42
pathParamKeys 43
pathSeparatorToken 42
properties

preparing 13

Q

query string
optimizing 42

R

record detail pages 34
relative URLs 14

S

SeoNavStateEncoder 44

session objects 45, 46

session-scope parameters
removing 42, 45

show with record 13

show with record list 13

Sitemap Generator, See Endeca Sitemap Generator

U

URL
anatomy 19

52

URL (continued)
components 19
URL canonicalization, See canonicalization
URL configuration
aggregate record detail pages 38
canonicalization 11, 27, 31
keywords 24
misc-path 24, 27, 34, 38
navigation pages 27
path-param-separator 42
path-params 42
query string 42
record detail pages 34
URL configuration file
creating 21
using 46
using with Endeca Sitemap Generator 48
using with Endeca URL Optimization API 48
URL formatter 21
URL formatting 21
See also URL configuration
URL transitioning 14
urlconfig.xml 21
See also URL configuration file
Endeca Sitemap Generator 47
using 46
using with Endeca Sitemap Generator 48
using with Endeca URL Optimization API 48
See also URL configuration file
URLs
directory-style 42, 43

w

word separator
configuring 10

Oracle Endeca Commerce

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction
	Package contents
	Introduction to URL optimization
	Overview of the URL Optimization API capabilities
	About URL canonicalization

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files
	URL transitioning

	Building URLs with the URL Optimization API
	Core components in the URL Optimization API
	Overview of building URLs using the URL Optimization API
	Parsing an incoming query and sending it to an MDEX Engine
	Informing the UrlState of the navigation state
	Creating link URLs from a UrlState

	Configuring URLs
	Anatomy of an optimized Endeca URL
	About the URL configuration file
	Creating a URL configuration file
	About optimizing the misc-path
	Formatting misc-path strings in optimized URLs
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving Endeca parameters out of the query string
	Encoding Endeca parameters
	Removing session-scope parameters
	About passing non-Endeca parameters to the API

	Using the URL configuration file with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Adding custom dimensions to the Sitemap Generator configuration
	Using the URL Optimization API urlconfig.xml file for sitemap generation

	Index

