

[image: Oracle Corporation]

4 Extending Order-to-Activate Cartridges

This chapter describes how to extend the Order-to-Activate cartridges for Oracle Communications Order and Service Management (OSM).

The Order-to-Activate cartridges are provided as a working foundation which you can extend to design and build a solution. This chapter provides details and guidelines on how to extend the base model entities.

Adding a New Fulfillment Function

A fulfillment function is an activity that must be performed to process an order item, for example billing or provisioning. You can extend an existing fulfillment function to add data elements and entities without unsealing the productized Order-to-Activate cartridges.

Planning the Addition of a New Fulfillment Function

This section contains planning considerations for adding a new fulfillment function to a solution.

	
Is the new fulfillment function for a system type that is already modeled in the Order-to-Activate cartridge, or is it for a new system type?

	
If the new fulfillment function is for a new system type, you must know the naming convention configured in Oracle Application Integration Architecture (Oracle AIA) deployments for logical identifiers of instances of the new system type. See the coverage of EBMHeader/Sender/ID and EBMHeader/Target/ID elements for the various system interactions in AIA Foundation Pack Integration Developer's Guide. The Sender IDs and Target IDs in the EBM messages must match the logical identifiers for the system instances configured in the Oracle AIA deployment. See "Considerations When Integrating with Oracle AIA".

	
Summary of naming conventions for fulfillment functions in Oracle AIA 2.5.1.

	
Naming convention used for OSM central order management instances: OSMCFS_01, OSMCFS_02, and so on.

	
Naming convention used for OSM service order management instances: OSMPROV_01, OSMPROV_02, and so on.

	
Naming convention used for Billing and Revenue Management instances: BRM_01, BRM_02, and so on.

	
Naming convention used for Siebel Customer Relationship Management (Siebel CRM) instances: SEBL_01, SEBL_02, and so on.

	
What is the message format for the fulfillment function request and response?

	
The fulfillment function request must conform to an Enterprise Business Message (EBM).

	
The fulfillment function response can be either an EBM or an OrderFalloutNotification. Oracle AIA specifies XML schemas for the EBMs which describe the request and response format.

	
What are the JNDI names for the source and destination queues that are used to exchange request and response messages between OSM and Oracle AIA for the new fulfillment function?

	
What are the data elements on the order that are compensation-significant for the new fulfillment function? Compensation-significant data elements trigger compensation if a revision order contains changes to the values.

	
What service action codes will apply to the current fulfillment function? The predefined service action codes include:

	
ADD: Add a new service.

	
UPDATE: Make a change to an existing service.

	
DELETE: Remove a service.

	
SUSPEND: Suspend a service.

	
RESUME: Resume a suspended service.

	
MOVE-ADD: Add service as part of a home move process.

	
MOVE-DELETE: Remove service as part of a home move process.

	
NONE: Make no service change.

	
What processing is required for the different compensation modes? The following compensation modes supported in the existing Order-to-Activate fulfillment function and are mandatory:

	
do is required to handle new orders and change orders.

	
redo is required for amendment processing to fulfill an order revision

	
undo is required for order cancellation

	
What data elements from the fulfillment request XML schema must be included in the outbound fulfillment request?

	
Identify the data elements that must be copied as-is by OSM from the customer order to the fulfillment request. This data exists in the OSM order data in the messageXMLData element and does not need to be modeled separately.

	
Identify the data that must be generated by OSM and inserted into the fulfillment request. Consider data generation for all OSM compensation modes: do, redo, and undo.

	
What data elements from the fulfillment response XML schema must be included in data updates to Siebel CRM or included in subsequent fulfillment function requests? An example of this is a Service ID returned from provisioning that must be included in the fulfillment-data updates to Siebel CRM and in the FulfillBilling request that takes place after provisioning is complete.

Response Patterns in System Interactions

There are two patterns of handling responses in system interactions, the single-response pattern and the multiple-response pattern. Single-response patterns receive a single response in a system interaction with the Oracle AIA billing service, while multiple-response patterns can receive multiple responses.

Single Response Pattern

The single-response pattern is used in billing functions. Each billing function is transactional. In a system interaction with the Oracle AIA billing service, a single response is expected which is either a response EBM or an OrderFalloutNotification created by Oracle AIA error handling framework, and not both.

If a revision order with compensation-significant updates for the billing function arrives while the request is in progress in OSM central order management (that is, after an EBM has been put on the queue for the Oracle AIA billing service to pick up but before the arrival and processing of a response), the amendment is queued until the response is processed.

In this case, a single automated task in the subprocess for the fulfillment function (such as SyncCustomerSITask, InitiateBillingSITask, or FulfillBillingSITask) includes automation to generate the EBM and put it on a queue in do, redo, and undo compensation modes, and the same automated task also includes automation to correlate and process the response from Oracle AIA.

Multiple Response Pattern

The multiple-response pattern is used in ProvisionOrderFunction. In a system interaction with the Oracle AIA order provisioning service, multiple responses are expected in the form of a sequence of response EBMs of type ProcessFulfillmentOrderUpdateEBM or an OrderFalloutNotification created by the Oracle AIA error-handling framework.

If a revision order with compensation-significant updates for ProvisionOrderFunction arrives while a request is in progress in OSM central order management (that is, after a request EBM has been put on the queue for the Oracle AIA provisioning service to pick up but before the arrival and processing of a response), then a separate request for the revision is sent to the Oracle AIA order provisioning service.

In this case, a separate automated task, such as ProvisionOrderSIResponseTask, is needed in the subprocess to correlate and process the responses. The success flow without debugging breakpoints then becomes:

	
YourFunctionNameEntryPointTask

	
YourFunctionNameSITask

	
YourFunctionNameSIResponseTask

Entities to Create, Modify, or Reuse

Table 4-1 provides an overview of the entities that can be created, modified, or reused in the creation of a fulfillment function. Further information about many of these entities is provided in the following sections.

Table 4-1 Entities to be Created, Modified, or Reused

	Name	Type	Remarks
	
OracleComms_OSM_CommonDataDictionary

OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Data Dictionary

	
See "Data Dictionary and Order Templates" for information about how to make changes for the new fulfillment function.

	
COM_SalesOrderFulfillment_CreationTask

	
Manual Task

	
See "About Creation Tasks" for information about adding to task data for the new fulfillment function.

	
COM_SalesOrderFulfillment_OrderDetails

	
Manual Task

	
See "About Query Tasks" for information about adding to task data for the new fulfillment function.

	
FUNCTION/YourSystemTypeFunction extends FulfillmentFunction

FUNCTION/YourFunctionNameFunction extends YourSystemTypeFunction

SYSTEM/YourSystemTypeSystem extends FulfillmentSystem

UPDATES/YourFunctionNameSignificantUpdates extends SignificantUpdates

	
Order Component Specifications

	
If your system type is an already modeled system type such as Billing, you reuse: FUNCTION/BillingFunction and SYSTEM/BillingSystem

Existing GRANULARITY order component specifications are reusable for new fulfillment functions without any modifications.

	
SUBPROCESS/YourFunctionNameSubProcess

	
Process

	
See "About Subprocesses"

	
TASK/YourFunctionNameEntryPointTask

TASK/YourFunctionNameSITask

	
Automated Tasks

	
See "About Subprocesses" for automated tasks to be created for the new subprocess for the new fulfillment function.

	
TASK/YourFunctionNamePreSITask

TASK/YourFunctionNamePostSITask

TASK/YourFunctionNameFalloutRecoverTask

TASK/YourFunctionNameWaitForAmendmentTask

TASK/YourFunctionNameEPQTask extends TASK/YourFunctionNameEntryPointTask

TASK/YourFunctionNameSIQTask extends TASK/YourFunctionNameSITask

	
Manual Tasks

	
See "About Subprocesses" for manual tasks to be created for the new subprocess for the new fulfillment function.

Data Dictionary and Order Templates

Additional data fields for the new fulfillment function can be defined in the cartridge created for it. All order template entities can be placed in a separate cartridge, in an order that extends from COM_SalesOrderFulfillment. Orchestration sequences, processes, and tasks for the new fulfillment function can also be placed in this separate cartridge.

An XML data type element named messageXMLdata is used to store the incoming customer order data in an XML format inside the OracleComms_OSM_O2A_COM_Base cartridge. This element is defined in the OracleCgbuCommonDataDictionary data dictionary and is included in the order template. It should be added to any new tasks that require access to the raw customer order data. The raw data is used by automated tasks that copy some data as-is to the fulfillment request.

Model additional fields in the LineItemData structure in the data dictionary. The element names, types, and sub-structures in LineItemData mimic the structure of the SalesOrderLine structure in the Oracle AIA SalesOrderEBM schema. The following sections contain information about these changes.

Order Change Management Configuration

You may need to model data for order change management (OCM) configuration including keys and data significance. Add all data elements from the customer order line that are compensation-significant for the fulfillment function to the LineItemData structure (if they do not already exist in the LineItemData structure). The following XQuery file must be customized to add code to copy compensation-significant data from the customer order line to the order line item property BaseLineItemData.

Customize a copy of the BaseLineItemData.xquery XQuery file located in OracleComms_OSM_O2A_COM_Base/resources/OrderItemProperties to add code to copy compensation-significant data for the new fulfillment function from the customer order line to the order line item property.

	
Note:

Use XML catalogs to specify the location of XQuery files. Use a unique namespace prefix to avoid naming conflicts.

Data Required for Sending the Fulfillment Request or Processing the Fulfillment Request Response

You may need to model data that must be generated by OSM and copied to the fulfillment request, not including service order identification, and service order line identification. Add these to the LineItemData structure (if they do not already exist in the LineItemData structure). An example of this is new and prior values for customized billing date calculations to send to a billing provider.

You may also need to model data that can be updated back to central order management from the fulfillment system.

Additional Control Data Required for Orchestration Logic

If the new fulfillment function can process order lines with a service action code of UPDATE or MOVE-ADD, add an element such as OrderItemHasYourFunctionNameUpdates to the OrderItemControl structure. You can make a copy of CommunicationsSalesOrderItemProperties_OrderItemControl.xqy and edit the XQuery to set the property value for each order line item. A value of YES means that this order line has relevant changes for your fulfillment function to process. Relevant changes refers to a service action code that the fulfillment function can process, or in the case of UPDATE or MOVE-ADD, a service action code with compensation-significant updates.

Add a condition to the decomposition rule that decomposes from YourFunctionName Function to YourFunctionName SignificantUpdates. The condition checks for the existence of at least one order item in the fromOrderComponent having OrderItemHasYourFunctionNameUpdates set to YES. This avoids creating an executable order component, which avoids generating and sending a fulfillment request, in a scenario in which there does not exist at least one order line with relevant changes for the fulfillment function to process.

Data that Must be Modeled in the Order Template

If any additional data must be modeled in the order template:

	
Follow the same pattern as for the existing fulfillment functions model ControlData/Functions/YourFunctionNameFunction

	
Any data that must be generated by OSM and copied to the fulfillment request or data that can be updated back to central order management from the fulfillment system is added to:

ControlData/OrderItem/WorkLineItemData for OSM-generated new values, or new values from fulfillment function response

ControlData/OrderItem/WorkPriorLineItemData for OSM-generated prior values

	
Any additional control data required for the orchestration logic

About Creation Tasks

COM_SalesOrderFulfillment_CreationTask is the creation task for the OSM COM_SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can add data to this creation task through the task data contribution tab in the Order-to-Activate composite cartridge for the new fulfillment function.

About Query Tasks

COM_SalesOrderFulfillment_OrderDetails is the query task for the OSM COM_SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can add data to this query task through the task data contribution tab in the Order-to-Activate composite cartridge for the new fulfillment function.

About Subprocesses

A system interaction configured in the OracleComms_OSM_O2A_COM_Base cartridge handles the asynchronous communication to a fulfillment system instance of service order data. A fulfillment system instance is also referred to as a fulfillment provider. The system interaction should handle the delivery of a relevant subset of service order data to the fulfillment provider. When triggered, the system interaction also invokes the correct subprocess which represents the fulfillment function of the order component. Additionally, the system interaction must handle responses from the fulfillment provider and cope with messaging, fallout, status and data updates, and order change management.

Model the subprocess following the pattern established for the existing fulfillment functions as depicted in Figure 4-1. Prefix task names with YourFunctionName. The flow of the process is described in Table 4-2.

Figure 4-1 Creating Subprocesses

[image: Screenshot of a subprocess in Design Studio]

The manual tasks YourFunctionNamePreSITask, and YourFunctionNamePostSITask are optional. They are useful as cartridge breakpoints for a number of purposes including providing the user the ability to control process flow before and after functions and to examine data in the process flow, for revision testing. Cartridge breakpoints stop at manual tasks in subprocess flows for system interactions. In a success flow, the process flows distinguish whether to exit with 'success_debug' status (to include manual tasks in the subprocess flow) or success status (to skip the manual tasks in the subprocess flow).

Table 4-2 lists the tasks and flows associated with subprocess.

Table 4-2 Flows and Tasks

	Flow patterns	Tasks associated
	
Success flow without debug breakpoints

	
Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSITask --> End

	
Success flow with debug breakpoints

	
Start --> YourFunctionNameEntryPointTask --> YourFunctionNamePreSITask (manual) --> YourFunctionNameSITask --> YourFunctionNamePostSITask (manual) --> End

	
Failure flows

	
Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSITask -->YourFunctionNameFalloutRecoverTask (manual) -->

	
Option 1: abort End

	
Option 2: wait for amendment YourFunctionNameWaitForAmendmentTask (manual) --> End

	
Option 3: retry

Significance must be set in the task data for the nodes in CreateCommunicationsSalesOrderTask and the tasks in the subprocess for the fulfillment function YourFunctionName.

The system interaction for the fulfillment function is implemented by a subprocess named FulfillmentFunctionName SubProcess in the Order-to-Activate cartridges. The automated tasks in the subprocess accomplish the following:

	
Accept data from the original EBM message destined for the outbound message and properties for each of the configurable data elements as input.

	
Input data for data to pass through from original message (ProcessSalesOrderFulfillmentEBM) to outbound message:

	
Reference to message header (EBMHeader) from the original EBM

	
Reference to customer order header (DataArea/ProcessSalesOrderFulfillment) from the original EBM

	
References to line items from the original EBM destined for the outbound message

	
The in-bound message is expected to conform to the schema AIAComponents\EnterpriseObjectLibrary\Industry\Communications\EBO\SalesOrder\V2\SalesOrderEBM.xsd

	
Input data for the configurable elements of the outbound message:

	
EBMHeader/Sender/ID and all EBMHeader/Sender element values

	
EBMHeader/Target/ID

	
Automation actions in the automated task FulfillmentFunctionNameEntryPointTask update the order line data required for fulfillment function system interaction. Copy the SIEntryPoint.xqy, and customize it as needed.

Use XML catalogs to specify the location of the XQuery files. Use a unique namespace prefix to avoid naming conflicts.

Table 4-3 lists the XML catalogs.

Table 4-3 XML Catalogs

	Automation action	Compensation Mode(s)	Automation Type	Event Type	Customize
	
'FulfillmentFunctionNameEntryPointBean_doredo'

	
do, redo

	
XQuery Sender

	
Internal

	
Customize a copy of the SIEntryPoint.xqy XQuery file to add code to update order data before message generation for the new fulfillment function.

	
Logic for do and redo compensation modes (if applicable) include updating the order data in ControlData/Functions/FulfillmentFunctionName/orderItem/orderItemRef/WorkLineItemData. Because orderItemRef is a reference, subsequent functions on the same order line reference the same instance of the data. Any additional data that is generated by OSM for the fulfillment function request should be updated.

	
Automation actions FulfillmentFunctionNameRequestBean_do, FulfillmentFunctionNameRequestBean_redo, FulfillmentFunctionName RequestBean_undo in automated task FulfillmentFunctionNameSITask are configured as internal XQuery Senders to use the XQuery automation plug-in to construct the payload for the outbound message, in do, and redo, undo modes, respectively (if applicable).

	
Outbound message format: Identify the EBM

	
The outbound message must conform to the schema: Identify the Oracle AIA schema. As an example, the schema for the billing functions is: AIAComponents\EnterpriseObjectLibrary\Industry\Communications\EBO\FulfillmentOrder\V1\FulfillmentOrderEBM.xsd

	
Relevant line items: all line items targeted at the same fulfillment provider

	
Configure automation actions in automated task FulfillmentFunctionNameSITask to generate messages in EBM format and send the XML payload over JMS. You must specify the JNDI name of the JMS destination.

Table 4-4 lists the automation actions and the XQueries to be customized.

Table 4-4 Automation Actions

	Automation action	Compensation Mode(s)	Automation Type	Event Type	Customize
	
YourFunctionNameRequestBean_do

	
do

	
XQuery Sender

	
Internal

	
Customize a copy of the AIAEBMRequest_do.xqy XQuery file to add code to update the order data before message generation for the new fulfillment function.

	
YourFunctionNameRequestBean_redo

	
redo

	
XQuery Sender

	
Internal

	
Customize a copy of the AIAEBMRequest_redo.xqy XQuery file to add code to update the order data before message generation for the new fulfillment function.

	
YourFunctionNameRequestBean_undo

	
undo

	
XQuery Sender

	
Internal

	
Customize a copy of the AIAEBMRequest_undo.xqy XQuery file to add code to update the order data before message generation for the new fulfillment function.

	
Configure automation action FulfillmentFunctionName ResponseBean in automated task FulfillmentFunctionNameSITask as an external XQuery Automator to process responses. You must specify the JNDI name of the JMS source.

Table 4-5 lists the automated XQueries.

Table 4-5 Automated XQueries

	Automation action	Compensation Mode(s)	Automation Type	Event Type	Customize
	
FulfillmentFunctionNameResponseBean

	
N/A

	
XQuery Automater

	
External

	
Customize a copy of the AIAEBMResponse.xqy XQuery file to add code to update the order data before message generation for the new fulfillment function.

	
Success response: Recognize and process success response. Set reached milestone to YOUR FUNCTION NAME COMPLETE. A successful response is a well-formed response message, that conforms to the response EBM format, with an empty or non-existent EBMHeader/FaultNotification and FaultMessage Code.

	
Failure response: Recognize and process failure responses that OSM expects to be either a response EBM, or an OrderFalloutNotification.

	
No response: In this case OSM expects an OrderFalloutNotification from Oracle AIA.

Fulfillment Function Extension Point Interface

The Order-to-Activate cartridges use XQuery resources to perform functions including setting order item properties, mapping product classes to product specifications, managing fulfillment function dependencies, and managing the order life cycle. One way to customize XQueries is to rewrite or add to the out-of-box XQuery module and use the XML catalog to allow URI reference mapping. Extension points are defined for both fulfillment functions and fulfillment states. This section contains information about the fulfillment function extension points. For information about the fulfillment state extension points, see "Fulfillment State Extension Point Interface".

XML catalogs are system-wide entities, which means an XML Catalog specified in one cartridge will be used when processing requests for orders on other cartridges. With the use of solution cartridges, multiple solutions can be deployed to a single system and coexist with each other.

Each fulfillment function extension point has one XQuery API except for CREATE-EBM, which has three, one for each execution mode (do, redo, and undo) in OSM.

An XQuery extension script must be implemented in a standalone file. The file URI must be registered to the extension configuration.

Fulfillment Function Extension Point Overview

Table 4-6 lists the XQuery extension points for fulfillment functions in the Order-to-Activate cartridges.

Table 4-6 Fulfillment Function Extension Points

	Fulfillment Function Extension Point	Description
	
COMPONENT-START

	
Fulfillment function start extension point. Extension is expected to return a list of OrderItem properties to be updated when the fulfillment function is started.

	
COMPONENT-COMPLETE

	
Fulfillment function complete extension point. Extension is expected to return a list of OrderItem properties to be updated when the fulfillment function is completed.

	
COMPONENT-UPDATE

	
Fulfillment function update extension point. Extension is expected to return a list of OrderItem properties to be updated when the fulfillment function is updated.

	
CREATE-EBM

	
Fulfillment function create payload extension point. Extension is expected to return the EBM to be sent to the external system in do, redo, or undo mode operations.

	
VALIDATE-RESPONSE-EBM

	
Fulfillment function response validation extension point. Extension is expected to validate the EBM response coming back from the external system.

	
COMPONENT-RESPONSE-UPDATE

	
Fulfillment function response update extension point. Extension is expected to return a list of OrderItem properties to be updated when a valid EBM response comes back from the external system.

When a fulfillment function is introduced, you can create an ExtensionPointMap entry in the resources\SolutionConfig\ComponentExtensionPointMap.xml of the Order-to-Activate composite cartridge for each applicable fulfillment function extension point such as Component Start. You must create a separate XQuery file for each fulfillment function extension point.

COMPONENT-START Extension Point

This section describes the XQuery script that implements the logic to handle the COMPONENT-START extension point.

Table 4-7 lists the input parameters for the extension point XQuery.

Table 4-7 COMPONENT-START Input Parameters

	Name	Type	Scope	Description
	
$executionMode

	
xs:string

	
XQuery external variable

	
Task execution mode

	
$breakpointDebugControl

	
element()

	
XQuery external variable

	
Debug control XML fragment

	
$taskInputData

	
element()

	
XQuery external variable

	
Task data XML fragment with the schema for GetOrder.Response

	
.

	
Context node

	
XQuery context node

	
Order item data XML fragment

Table 4-8 lists the return parameters for the extension point XQuery.

Table 4-8 COMPONENT-START Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element that contains all the order item properties to be updated

Example 4-1 is a sample XQuery code fragment for the COMPONENT-START fulfillment function extension point.

Example 4-1 COMPONENT-START XQuery Code Fragment

import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $executionMode external;
declare variable $breakpointDebugControl external;
declare variable $taskInputData external;

(: This function registers to the <Fulfillment Function>/START event.
 : It returns a list of elements which are the properties to be updated for
 : the given order item. :)
declare function <YourFunction>fn:on<YourFunction>Start(
 $execMode as xs:string,
 $lineItem as element(),
 $taskData as element(),
 $debugControl as element()) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 <YourFunction>fn:on<YourFunction>Start($executionMode, $lineItem, $taskInputData, $breakpointDebugControl)
 }
 </OrderItem>

CREATE-EBM Extension Point for DO Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM extension point for do execution mode.

Table 4-9 lists the input parameters for the extension point XQuery.

Table 4-9 CREATE-EBM for DO Execution Mode Input Parameters

	Name	Type	Scope	Description
	
$ebmHeader

	
element()

	
XQuery external variable

	
SalesOrder request EBM header: This element can be used as a reference to populate the request EBM header.

	
$salesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which all order lines belong

	
$priorSalesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which the prior line data for all order lines belong

	
$component

	
element()

	
XQuery external variable

	
XML fragment containing the fulfillment function data

	
$targetIdentifier

	
element()

	
XQuery external variable

	
XML fragment describing the target system information

	
$idMap

	
element()

	
XQuery external variable

	
XML fragment describing the mapping between the original order line's BusinessComponentID and the newly generated BusinessComponentID to be populated into the EBM request message

	
$ebmId

	
xs:string

	
XQuery external variable

	
EBM ID to be populated into the EBM request message

	
$fulfillmentOrderId

	
xs:string

	
XQuery external variable

	
BusinessComponentID to be populated into the EBM request message as the Order ID

	
$fulfillmentOrderNumber

	
xs:string

	
XQuery external variable

	
Cross-system order number reference

	
$faultMode

	
xs:string

	
XQuery external variable

	
faultMode code to control how the emulator generates the response message: This element only applies if the request EBM is sent to an external system emulator rather than a real system.

	
.

	
Context node

	
XQuery context node

	
Fulfillment order header for the SalesOrder request EBM

Table 4-10 lists the return parameters for the extension point XQuery.

Table 4-10 CREATE-EBM for DO Execution Mode Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element that contains the EBM: The EBM format depends on external fulfillment provider requirements.

Example 4-2 is a sample XQuery code fragment for the CREATE-EBM fulfillment function extension point implementation for the do execution mode.

Example 4-2 CREATE-EBM XQuery Code Fragment for Do Execution Mode

import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $ebmHeader external;
declare variable $salesOrderLine external;
declare variable $priorSalesOrderLine external;
declare variable $component external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $faultMode external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 <YourFunction>fn:createDo<YourFunction>Payload(
 $ebmHeader,
 $fulfillmentOrder,
 $salesOrderLine,
 $priorSalesOrderLine,
 $component,
 $targetIdentifier,
 $idMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode)
 }
 </Ebm>

CREATE-EBM Extension Point for REDO Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM extension point for the redo execution mode.

Table 4-11 lists the input parameters for the extension point XQuery.

Table 4-11 CREATE-EBM for REDO Execution Mode Input Parameters

	Name	Type	Scope	Description
	
$ebmHeader

	
element()

	
XQuery external variable

	
SalesOrder request EBM header: This element can be used as a reference to populate the request EBM header.

	
$salesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which all order lines belong

	
$priorSalesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which the prior line data for all order lines belong

	
$histSalesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which all order lines belonged before amendment

	
$histPriorSalesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which the prior line data for all order lines belonged before amendment

	
$deletedlineItems

	
element()*

	
XQuery external variable

	
Order lines that were deleted by the amendment

	
$deletedpriorlineItems

	
element()*

	
XQuery external variable

	
Prior order line data that was deleted by the amendment

	
$addedlineItems

	
element()*

	
XQuery external variable

	
Order line data that was added by the amendment

	
$component

	
element()

	
XQuery external variable

	
XML fragment containing the fulfillment function data

	
$histComponent

	
element()

	
XQuery external variable

	
XML fragment with the pre-amendment fulfillment function data

	
$targetIdentifier

	
element()

	
XQuery external variable

	
XML fragment describing the target system information

	
$idMap

	
element()

	
XQuery external variable

	
XML fragment describing the mapping between the original order line's BusinessComponentID and the newly generated BusinessComponentID to be populated into the EBM request message

	
$histIdMap

	
element()

	
XQuery external variable

	
XML fragment describing the mapping between the original order line's BusinessComponentID and the BusinessComponentID populated into the earlier EBM request message

	
$ebmId

	
xs:string

	
XQuery external variable

	
EBM ID to be populated into the EBM request message

	
$fulfillmentOrderId

	
xs:string

	
XQuery external variable

	
BusinessComponentID to be populated into the EBM request message as the Order ID

	
$fulfillmentOrderNumber

	
xs:string

	
XQuery external variable

	
Cross-system order number reference

	
$hasFallout

	
xs:boolean

	
XQuery external variable

	
Boolean indicator of whether the previous EBM request sent to the external system has had fallout

	
$faultMode

	
xs:string

	
XQuery external variable

	
faultMode code to control how the emulator generates the response message: This element only applies if the request EBM is sent to an external system emulator rather than a real system.

	
.

	
Context node

	
XQuery context node

	
The fulfillment order header for the SalesOrder request EBM

Table 4-12 lists the return parameters for the extension point XQuery.

Table 4-12 CREATE-EBM for REDO Execution Mode Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element that contains the EBM: The EBM format depends on external fulfillment provider requirements.

Example 4-3 is a sample XQuery code fragment for the CREATE-EBM fulfillment function extension point implementation for the redo execution mode.

Example 4-3 CREATE-EBM XQuery Code Fragment for Redo Execution Mode

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";
import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $ebmHeader external;
declare variable $salesOrderLine external; (:check null:)
declare variable $priorSalesOrderLine external; (:check null:)
declare variable $histSalesOrderLine external; (:check null:)
declare variable $histPriorSalesOrderLine external; (:check null:)
declare variable $deletedlineItems external; (:check null:)
declare variable $deletedpriorlineItems external; (:check null:)
declare variable $addedlineItems external; (:check null:)
declare variable $component external;
declare variable $histComponent external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $histIdMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $faultMode external;
declare variable $hasFallout external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 <YourFunction>fn:createRedo<YourFunction>Payload(
 $ebmHeader,
 $fulfillmentOrder,
 pipextensionmodule:unWrapParameter($salesOrderLine),
 pipextensionmodule:unWrapParameter($priorSalesOrderLine),
 if ($hasFallout = fn:true()) then () else pipextensionmodule:unWrapParameter($histSalesOrderLine),
 if ($hasFallout = fn:true()) then () else pipextensionmodule:unWrapParameter($deletedlineItems),
 $component,
 $targetIdentifier,
 $idMap,
 $histIdMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode,
 $hasFallout)
 }
 </Ebm>

CREATE-EBM Extension Point for UNDO Execution Mode

This section describes the XQuery script that implements the logic to handle the CREATE-EBM extension point for the undo execution mode.

Table 4-13 lists the input parameters for the extension point XQuery.

Table 4-13 CREATE-EBM for UNDO Execution Mode Input Parameters

	Name	Type	Scope	Description
	
$ebmHeader

	
element()

	
XQuery external variable

	
SalesOrder request EBM header: This element can be used as a reference to populate the request EBM header.

	
$salesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which all order lines belong

	
$priorSalesOrderLine

	
element()*

	
XQuery external variable

	
Fulfillment function to which the prior line data for all order lines belong

	
$component

	
element()

	
XQuery external variable

	
XML fragment containing the fulfillment function data

	
$targetIdentifier

	
element()

	
XQuery external variable

	
XML fragment describing the target system information

	
$idMap

	
element()

	
XQuery external variable

	
XML fragment describing the mapping between the original order line's BusinessComponentID and the newly generated BusinessComponentID to be populated into the EBM request message

	
$ebmId

	
xs:string

	
XQuery external variable

	
EBM ID to be populated into the EBM request message

	
$fulfillmentOrderId

	
xs:string

	
XQuery external variable

	
BusinessComponentID to be populated into the EBM request message as the Order ID

	
$fulfillmentOrderNumber

	
xs:string

	
XQuery external variable

	
Cross-system order number reference

	
$fulfillmentOrderStatus

	
xs:string

	
XQuery external variable

	
The child order's current status (IN_PROGRESS or COMPLETE): This element controls how the EBM should be generated. The EBM is expected to be generated as a cancel order if the child order is IN_PROGRESS or as a disconnect order if the child order is COMPLETE.

	
$hasFallout

	
xs:boolean

	
XQuery external variable

	
Boolean indicator of whether the previous EBM request sent to the external system has had fallout

	
$faultMode

	
xs:string

	
XQuery external variable

	
faultMode code to control how the emulator generates the response message: This element only applies if the request EBM is sent to an external system emulator rather than a real system.

	
$verbCode

	
xs:string

	
XQuery external variable

	
faultMode code to control how the service order management orchestration order generates the response message: This element only applies if the request EBM is sent to service order management.

	
.

	
Context node

	
XQuery context node

	
Fulfillment order header for the SalesOrder request EBM

Table 4-14 lists the return parameters for the extension point XQuery.

Table 4-14 CREATE-EBM for UNDO Execution Mode Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element that contains the EBM: The EBM format depends on external fulfillment provider requirements.

Example 4-4 is a sample XQuery code fragment for the CREATE-EBM fulfillment function extension point implementation for the undo execution mode.

Example 4-4 CREATE-EBM XQuery Code Fragment for Undo Execution Mode

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";
import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $ebmHeader external;
declare variable $salesOrderLine external; (:check null:)
declare variable $priorSalesOrderLine external; (:check null:)
declare variable $component external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $fulfillmentOrderStatus external;
declare variable $faultMode external;
declare variable $hasFallout external;
declare variable $verbCode external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 <YourFunction>fn:createUndo<YourFunction>Payload(
 $ebmHeader,
 $fulfillmentOrder,
 pipextensionmodule:unWrapParameter($salesOrderLine),
 $component,
 $targetIdentifier,
 $idMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode,
 $hasFallout,
 $verbCode)
 }
 </Ebm>

VALIDATE-RESPONSE-EBM Extension Point

This section describes the XQuery script that implements the logic to handle the VALIDATE-RESPONSE-EBM extension point.

Table 4-15 lists the input parameters for the extension point XQuery.

Table 4-15 VALIDATE-RESPONSE-EBM Input Parameters

	Name	Type	Scope	Description
	
.

	
Context node

	
XQuery context node

	
Response EBM message to be validated

Table 4-16 lists the return parameters for the extension point XQuery.

Table 4-16 VALIDATE-RESPONSE-EBM Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element which contains an empty sequence if no error was found or a list of XML fragments that describe the validation error if an error was found

Example 4-5 is a code fragment from OracleComms_OSM_O2A_COM_Billing/resources/ExtensionPoint/SyncCustomerValidateResponseEBM_Event.xquery demonstrates the extension implementation.

Example 4-5 VALIDATE-RESPONSE-EBM XQuery Code Fragment

import module namespace aiaebmvalidationfn = "http://xmlns.oracle.com/communications/ordermanagement/pip/aiaebmvalidationfn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/aiaebmvalidationfn/AIAEBMResponse_ValidationModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare variable $SYNCCUST_RESPONSE_EBM := "ProcessFulfillmentOrderBillingAccountListResponseEBM";

declare function local:validateSyncCustomerResponse(
 $ebm as element() *) as element()
{
 if(fn:local-name($ebm) = $SYNCCUST_RESPONSE_EBM)
 then
 <oms:validationReport>
 {
 aiaebmvalidationfn:validateSyncCustomerResponse($ebm)
 }
 </oms:validationReport>
 else
 <oms:validationReport>{ $aiaebmvalidationfn:NO_VALID_EBM }</oms:validationReport>
};

let $ebm := .
return
 <Validation>
 {
 local:validateSyncCustomerResponse($ebm)
 }
 </Validation>

COMPONENT-UPDATE Extension Point

This section describes the XQuery script that implements the logic to handle the COMPONENT-UPDATE extension point.

Table 4-17 lists the input parameters for the extension point XQuery.

Table 4-17 COMPONENT-UPDATE Input Parameters

	Name	Type	Scope	Description
	
$executionMode

	
xs:string

	
XQuery external variable

	
Task execution mode

	
$breakpointDebugControl

	
element()

	
XQuery external variable

	
Debug control XML fragment

	
$taskInputData

	
element()

	
XQuery external variable

	
Task data XML fragment with the schema for GetOrder.Response

	
$hasFallout

	
xs:boolean

	
XQuery external variable

	
Boolean indicator of whether the previous EBM request sent to the external system has had fallout

	
$falloutMessage

	
xs:string

	
XQuery external variable

	
Fallout error message of this Order Item

	
$milestoneCode

	
xs:string

	
XQuery external variable

	
Injected milestone code

	
.

	
Context node

	
XQuery context node

	
Order item data XML fragment

Table 4-18 lists the return parameters for the extension point XQuery.

Table 4-18 COMPONENT-UPDATE Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element which contains all the order item properties to be updated

Example 4-6 is a sample XQuery code fragment for the COMPONENT-UPDATE fulfillment function extension point.

Example 4-6 COMPONENT-UPDATE XQuery Code Fragment

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";
import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";
import module namespace pipbreakpointfn = "http://xmlns.oracle.com/communications/ordermanagement/pip/pipbreakpointmodule" at "http://xmlns.oracle.com/communications/ordermanagement/pip/pipbreakpointmodule/BreakpointControlModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare namespace salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";

declare variable $executionMode external;
declare variable $breakpointDebugControl external;
declare variable $taskInputData external;
declare variable $hasFallout external;
declare variable $falloutMessage external;
declare variable $milestoneCode external;

declare function <YourFunction>fn:on<YourFunction>Update(
 $execMode as xs:string,
 $lineItem as element(),
 $taskData as element(),
 $debugControl as element(),
 $milestoneCode as xs:string) as element()*
{
 let $ponrOverride := pipbreakpointfn:checkPONROverride(<YOUR FUNCTION>, $debugControl)
 let $revisionPermissibleCode := if ($ponrOverride=fn:false()) then "HARD" else "NOT YET"
 let $updateRevisionPermissibleCode := ($taskData/oms:_root/oms:CustomerHeaders/oms:FulfillmentModeCode/text()!="TSQ")
 return
 <YourFunction>fn:on<YourFunction>Update($execMode, $lineItem, $taskData, $milestoneCode, $updateRevisionPermissibleCode, $revisionPermissibleCode)
};

let $lineItem := .
return
 <OrderItem>
 {
 <YourFunction>fn:on<YourFunction>Update($executionMode, $lineItem, $taskInputData, $breakpointDebugControl, $milestoneCode)
 }
 </OrderItem>

COMPONENT-RESPONSE-UPDATE Extension Point

This section describes the XQuery script that implements the logic to handle the COMPONENT-RESPONSE-UPDATE extension point.

Table 4-19 lists the input parameters for the extension point XQuery.

Table 4-19 COMPONENT-RESPONSE-UPDATE Input Parameters

	Name	Type	Scope	Description
	
$executionMode

	
xs:string

	
XQuery external variable

	
Task execution mode

	
$hasFallout

	
xs:boolean

	
XQuery external variable

	
Boolean indicator of whether the previous EBM request sent to the external system has had fallout

	
$falloutMessage

	
xs:string

	
XQuery external variable

	
Fallout error message of this order item

	
$orderItemFromResponse

	
element()

	
XQuery external variable

	
Order item data from the response message

	
.

	
Context node

	
XQuery context node

	
The order item data XML fragment

Table 4-20 lists the return parameters for the extension point XQuery.

Table 4-20 COMPONENT-RESPONSE-UPDATE Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element which contains all the order item properties to be updated

Example 4-7 is a sample XQuery code fragment for the COMPONENT-RESPONSE-UPDATE fulfillment function extension point.

Example 4-7 COMPONENT-RESPONSE-UPDATE XQuery Code Fragment

import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $hasFallout external;
declare variable $falloutMessage external;
declare variable $orderItemFromResponse external;

declare function <YourFunction>fn:on<YourFunction>ResponseUpdate(
 $lineItem as element(),
 $orderItemFromResponse as element()) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 <YourFunction>fn:on<YourFunction>ResponseUpdate($lineItem, $orderItemFromResponse)
 }
 </OrderItem>

COMPONENT-COMPLETE Extension Point

This section describes the XQuery script that implements the logic to handle the COMPONENT-COMPLETE extension point.

Table 4-21 lists the input parameters for the extension point XQuery.

Table 4-21 COMPONENT-COMPLETE Input Parameters

	Name	Type	Scope	Description
	
$executionMode

	
xs:string

	
XQuery external variable

	
The task execution mode

	
$breakpointDebugControl

	
element()

	
XQuery external variable

	
The debug control XML fragment

	
$taskInputData

	
element()

	
XQuery external variable

	
The task data XML fragment with the schema for GetOrder.Response

	
$hasFallout

	
xs:boolean

	
XQuery external variable

	
Boolean indicator of whether the previous EBM request sent to the external system has had fallout

	
$falloutMessage

	
xs:string

	
XQuery external variable

	
The fallout error message of this order item

	
.

	
Context node

	
XQuery context node

	
The order item data XML fragment

Table 4-22 lists the return parameters for the extension point XQuery.

Table 4-22 COMPONENT-COMPLETE Return Parameters

	Output Parameter Type	Description
	
element()*

	
XML wrapper element which contains all the order item properties to be updated

Example 4-8 is a sample XQuery code fragment for the COMPONENT-COMPLETE fulfillment function extension point.

Example 4-8 COMPONENT-COMPLETE XQuery Code Fragment

import module namespace pipextensionmodule = "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at "http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/ExtensionPointModule.xquery";
import module namespace <YourFunction>fn = "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn" at "http://xmlns.oracle.com/communications/ordermanagement/pip/<YourFunction>fn/<YourFunction>InteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $hasFallout external;
declare variable $falloutMessage external;

(: This function register to the <Fulfillment Function>/COMPLETE event.
 : It return a list of elements that are the properties to be updated for
 : the given order item. :)
declare function <YourFunction>fn:on<YourFunction>Complete(
 $lineItem as element(),
 $hasFallout as xs:boolean,
 $falloutMessage as xs:string*) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 <YourFunction>fn:on<YourFunction>Complete($lineItem, $hasFallout, pipextensionmodule:unWrapStringParameter($falloutMessage))
 }
 </OrderItem>

About Fallout

When creating a new fulfillment function, you must consider the fallout handling needed. Information about the fallout considerations is contained in the following sections.

Fallout Customization

The AIAResponseEBM.xqy is invoked from automated tasks, for example, in the Order-to-Activate cartridges, SyncCustomerSITask and ProvisionOrderSITask. When adding a fulfillment function, you must customize a copy of this file, located in OracleComms_OSM_O2A_COM_SalesOrderFulfillment\resources\ComponentInteraction, and invoke it from the automation task in the SITask that processes the response coming from the ABCS for the fulfillment system. The response can be either a response EBM or an OrderFalloutNotification.

You may need to customize the local:getEbmFromResponse function to extract the response EBM, depending on the fulfillment function.

The function local:getCFSystem extracts the system name from the value of the componentKey for the executable order component. Due to the four orchestration stages defined in the orchestration sequence in the OracleComms_OSM_O2A_COM_Base cartridge, the componentKey takes the format:

<Function name>.<system name>.<granularity>.<function significant updates>

An example of a component key for an executable FulfillBillingFunction Order Component targeted at the BRM-VoIP billing system using ServiceBundleGranularity processing granularity, with a base line ID of the service bundle line of 31383732333932333934333332373635 is:

FulfillBillingFunction.BRM-VOIP.ServiceBundleGranularity.31383732333932333934333332373635/ServiceBundleGranularity.FulfillBillingSignificantUpdates

Example 4-9 is a sample XQuery code fragment from OracleComms_OSM_O2A_COM_Base/resources/FalloutHandling/TargetMapping.xquery.

Example 4-9 Target System Map XQuery Code Fragment

(:
 : Function to return the Target system name that the given ActiveInteractionId is associate to.
 :)
declare function osmmappip:getCFSystem(
 $orderData as element()?,
 $activeInteractionId as xs:string) as xs:string?
{
 (: First use the $activeInteractionId to locate the FulfillmentComponent under _root/FulfillmentOrderManagement :)
 let $ffmOrdMgr := $orderData/osm:Data/oms:_root/oms:FulfillmentOrderManagement
 let $fulfillmentComponent := $ffmOrdMgr/oms:FulfillmentComponent[oms:FulfillmentOrder/oms:ActiveInteractionId/text()=$activeInteractionId]
 return
 if (fn:exists($fulfillmentComponent))
 then
 (
 (: FulfillmentComponent found, get the componentKey :)
 let $componentKey := $fulfillmentComponent/oms:componentKey/text()
 return
 substring-before(substring-after($componentKey, "."), ".")
)
 else ()
};

Failure During Revision

During the OSM fulfillment process, an order may fail due to various reasons like insufficient data, incorrect data and so on. To correct the failure, you may have to revise the failed order. In OSM, failure may occur even while revising the failed orders. With the existing functionality of Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management, the following events happen when fallout occurs during revision:

	
Initially, an update customer order status message, with Order Header status code (FAILED) and description "Order will be aborted due to failure during revision, manual intervention is required", is sent to Siebel CRM. This message contains the corresponding OrderLine status code/descriptions.

	
The base Central Order Management/Service Order Management orders are put into Aborted state in OSM, followed by another update customer order status message to Siebel CRM, with Order Header status code (FAILED and description "Order is aborted". This message does not include any OrderLine status information.

	
After the failure is resolved manually, Siebel CRM can resend the same customer order to OSM with the correct data.

When there are service order management and Provisioning systems involved in the customer order processing, the following events happen:

	
The aborting request is propagated to all service order management systems and then all provisioning systems abort all associated service orders.

	
The statuses of all associated service order management and provisioning AbortOrder requests are propagated back to central order management.

	
While the order is in AbortInProgress state, incoming revisions are blocked.

	
The statuses of the downstream order aborting operations are stored in the central order management or service order management order for reference.

It is mandatory that a fault thrown from a provisioning system must contain the service order state using an AlternateObjectKey element of the sales-order Identification element, where the ID element should have the attribute schemeID="SERVICE_ORDER_STATE". Otherwise, the fault is not treated as a fault during revision.

Since the AIA_CreateProvisioningOrderQueue, AIA_CreateProvisioningOrderResponseQueue, ProcessProvisioningOrderEBM and UpdateFulfillmentOrderEBM are reused for Abort Order Propagation,

	
A new value ABORT is introduced in the ProcessProvisioningOrderEBMfor the FulfillmentModeCode is introduced.

	
For the AIA_CreateProvisioningOrderResponseQueue, a JMS message property, CGBUPIPCFFALLOUT, is introduced as: "CGBUPIPCFFALLOUT IS NULL" "CGBUPIPCFFALLOUT LIKE 'ABORT%'" for AbortProvisioningOrderResponse. So it is mandatory that this JMS message property is not stripped off or changed.

Adding a New Fulfillment Function for a New Service Offering

This procedure describes how to add a new fulfillment function for a new service offering. For more information about performing the actions in this procedure in Oracle Communications Design Studio, see the information about adding a new fulfillment function in the section on extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment function:

	
Create a new OSM project to host the new fulfillment function.

	
In the Order and Service Management Cartridge editor Properties tab, deselect the Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution (rather than as a standalone cartridge).

	
Delete the Order entity.

	
Create a base task for the new function from which all other new tasks will be extended.

	
Create any other tasks required by the new function by extending them from the base task created in the previous step.

	
Create a process that will execute when fulfilling the new function. You can create an entirely new process or have the new process extend an existing process.

	
Create the new fulfillment function that either extends from COM_FulfillmentFunction or its extended fulfillment function, and specify keys for the following order data:

	
./componentKey for order data/ControlData/Functions/YourFunction

	
./orderItemRef/LineId for order data/ControlData/Functions/YourFunction/orderItem

For more information about adding a new fulfillment function, see the information about adding new functional order components in the Design Studio Modeling OSM Orchestration Help.

	
If new fulfillment states are to be introduced for the new fulfillment function, add external fulfillment state(s) for the new fulfillment function in the form of <State>-<Milestone>. For example, IN_PROGRESS-YourFunction_START.

	
Optionally create a new fulfillment system for the fulfillment function.

When you introduce a new fulfillment function, you may often also require a new fulfillment provider.

	
Create a new decomposition rule (with the COM_SalesOrderLine order item) that maps from the fulfillment function to the fulfillment provider.

For example, DecompSyncCustomer_To_BRM-VoIP in the OracleComms_OSM_O2A_TypicalTopology_Sample cartridge is a decomposition rule that maps SyncCustomer fulfillment function to the BRM-VoIP fulfillment provider.

	
Add the following cartridges to the Dependency tab for the new cartridge you created for the new fulfillment function:

	
OracleComms_OSM_CommonDataDictionary

	
OracleComms_OSM_O2A_COM_Base

	
OracleComms_OSM_O2A_CommonUtility

If there are any other cartridges that the new cartridge depends on, add them to the Dependency tab.

	
Add the cartridge you created for the new fulfillment function, to the Dependency tab for the Order-To-Activate composite cartridge.

	
Create composite cartridge views in the cartridge you created for the new fulfillment function.

	
Create a composite cartridge view that adds data to the sales order creation task COM_SalesOrderFulfillment_CreationTask for the new fulfillment function. This composite cartridge view should extend from the base task of the new fulfillment function.

	
Create a composite cartridge view that adds data to the sales order query tasks such as COM_SalesOrder_StateChangeView and COM_SalesOrder_AggregatedOLMView for the new fulfillment function.

	
Add the data for the new tasks you created to the composite cartridge views.

	
Create a task data contribution to extend the existing sales order creation task with the following information:

	
Order = COM_SalesOrderFulfillment

	
Process = COM_SalesOrderFulfillmentOrchestrationProcess

	
Task = COM_SalesOrderFulfillment_CreationTask

	
Composite Cartridge View = YourCompositeCartridgeViewForCreationTask

	
Create a query task data contribution to extend the existing sales order query tasks with the following fields:

	
Order = COM_SalesOrderFulfillment

	
Role = COM_SalesOrder_AggregatedOLM_Role, COM_SalesOrder_StateChange_Roles

	
Query Task = COM_SalesOrder_AggregatedOLMView, COM_SalesOrder_StateChangeView

	
Composite Cartridge View = YourCompositeCartridgeViewForQueryTask

	
In the resources/SolutionConfig folder of the Order-to-Activate composite cartridge such as OracleComms_OSM_O2A_COMSOM_TypicalSolution:

	
Add a new <Component> entry to the ComponentExtensionPointMap.xml file for the new fulfillment function. For each applicable fulfillment function extension point, create an XQuery file based on an existing fulfillment function extension point XQuery file, for example, SyncCustomerComplete_Event.xquery.

	
Add a new entry of a query task to the ComponentQueryViewMap.xml file for the new fulfillment function.

	
If new milestones are to be introduced for the new fulfillment function:

	
add a new <MilestoneMap> entry to the ComponentMilestoneMap.xml file for the new fulfillment function

	
add a new <StatusItemContext> entry for each new milestone to the OrderItemStatusContextMap.xml file

	
If fallout simulation is needed for the new fulfillment function, add a new <FaultModeMap> entry to the FaultModeMap.xml file.

	
Add a new <StatusMap> entry to the OrderStateMap.xml file for the new fulfillment function per system type and fulfillment mode.

	
If a new fulfillment provider is added, add a new <targetSystem> entry for each new fulfillment provider instance to the TargetSystemMap.xml file.

	
For each automated task in the process of the new fulfillment function, add a new <TaskExitStatusMap> entry to the TaskExitStatusMap.xml file.

	
Package and deploy the Order-To-Activate composite cartridge.

Adding a New Fulfillment Provider

Oracle AIA has logical identifiers for fulfillment providers (for example, fulfillment instances). There are naming conventions that have to line up with your Oracle AIA deployment, for example, fulfillment system type and fulfillment system code. Currently the logical identifiers and fulfillment system type and application are defined in XML Document TargetSystemMap.xml deployed with Order-to-Activate composite cartridge such as OracleComms_OSM_O2A_COMSOM_TypicalSolution. It is applicable when restructuring the fulfillment topology definition such as adding more billing system instances. The Sender IDs and Target IDs in the EBM messages must match the logical identifiers for the system instances configured in the Oracle AIA deployment. The following is the summary for fulfillment functions for Oracle AIA 2.5.1:

	
Naming convention used for OSM central order management instances: OSMCFS_01, OSMCFS_02, and so on

	
Naming convention used for OSM service order management instances: OSMPROV_01, OSMPROV_02, and so on

	
Naming convention used for Billing and Revenue Management instances BRM_01, BRM_02, and so on

	
Naming convention used for Siebel CRM instances: SEBL_01, SEBL_02, and so on

When adding a fulfillment provider, such as a billing system instance, you must customize a copy of the following files to map the Studio entity name of the system entity to the target ID:

	
<O2A_CompositeCartridge>\resources\SolutionConfig\TargetSystemMap.xml

For example,

OracleComms_OSM_O2A_COMSOM_TypicalSolution\resources\SolutionConfig\TargetSystemMap.xml contains all fulfillment providers and their logical identifiers used in the Order-to-Activate cartridges in Typical topology.

You can name the Studio entity using the Oracle AIA naming convention such as BRM_01, BRM_02, to simplify the fulfillment system mapping to be a direct mapping.

The following procedure describes how to add a new fulfillment provider. For more information about performing the actions in this procedure in Design Studio, see the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment function:

	
In the topology cartridge such as OracleComms_OSM_O2A_TypicalTopology_Sample cartridge, add a new order component specification that extends COM_FulfillmentSystem with COM_SalesOrderFulfillment namespace to represent the new fulfillment provider, and ensure the Order Component Executable check box is deselected.

	
Open the decomposition rule in the form of <Topology>_DetermineProcessingGranularity_For_<FulfillmentFunction> in the OracleComms_OSM_O2A_TypicalTopology_Sample or OracleComms_OSM_O2A_SimpleTopology_Sample cartridge depending on the topology.

For example, Typical_DetermineProcessingGranularity_For_SyncCustomer is the decomposition rule for SyncCustomerFunction fulfillment function in the Typical topology.

	
In the Decomposition Rule editor Source/Target tab, select the desired processing granularity under COM_FulfillmentGranularity in the Target Order Components section.

See "Configuring a New Processing Granularity Rule" for more information on creating a new processing granularity.

	
(Optional) Add or Change decomposition condition in the Decomposition Rule editor Conditions tab.

	
Package and deploy the Order-to-Activate composite cartridge.

Adding a New Fulfillment Mode

This procedure describes how to add a new fulfillment mode. For more information about performing the actions in this procedure in Design Studio, see the information about adding a new fulfillment mode in the section on extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment mode:

	
Create a new Order and Service Management project to host the new fulfillment mode.

	
In the Order and Service Management Cartridge editor Properties tab, deselect the Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution (rather than as a standalone cartridge with no dependencies).

	
Add a new fulfillment mode with COM_SalesOrderFulfillment namespace for central order management or SOM_ProvisionOrderFulfillment namespace for service order management.

	
Modify the order recognition rule's XQuery to recognize the new fulfillment mode.

	
Copy the existing OracleComms_OSM_O2A_COM_Base/resources/OrderRecognitionRule/AIAOrderRecognition.xquery to the resources folder of the new OSM cartridge created in step 2, if the new fulfillment mode is for central order management. For service order management, copy the existing OracleComms_OSM_O2A_SOM_Base/resources/OrderRecognitionRule/ProvisionOrderRecognition.xquery to the resources folder of the new OSM cartridge.

	
Modify the XQuery to recognize the new fulfillment mode

	
Create an XML Catalog rewrite rule to override the order recognition rule XQuery

For example, for central order management's AIAOrderRecognition.xquery

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/ordermanagement/o2acombase/order_recognition/AIAOrderRecognition.xquery" rewritePrefix="osmmodel:///<New_OSM_Cartridge>/1.0.0.0.0/resources /AIAOrderRecognition.xquery"/>

	
Add the new fulfillment mode to the base product specification or to any applicable product specifications.

	
Model the orchestration plan for the new fulfillment mode for all of the affected product specifications.

	
In the Fulfillment State Map editor for COM_FulfillmentStateMap in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge, create fulfillment state mappings for the new fulfillment mode.

	
Add the cartridge you created for the new fulfillment mode, to the Dependency tab for the Order-to-Activate composite cartridge.

	
Open the Ant view and select Add Buildfiles to add SolutionConfig.xml in the Order-to-Activate composite cartridge such as OracleComms_OSM_O2A_COMSOM_TypicalSolution.

	
In the Ant view, expand the Order-to-Activate composite cartridge and double-click config_Metadata_And_ModelVariable to ensure that the new fulfillment mode is visible in the Order-to-Activate composite cartridge.

	
Package and deploy the Order-to-Activate composite cartridge.

Adding a New Product Class

This section provides information about adding a new product class.

Mapping Product Classes to Order-to-Activate Sample Product Specifications

Product class entities can either be imported from a product catalog, such as Siebel CRM, or manually created in Design Studio. Each product class can be mapped to an Order-to-Activate sample product specification. Design Studio generates a mapping file named productClassMapping.xml in the resources/productClassMapping folder of the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge. In Oracle AIA, a field called fulfillment item code (FIC) is used to specify the product class name.

	
Note:

In communications industry customer orders in AIAEBM format, 'fulfillment item code' is a unique identifier that maps an order line item subject to a Studio recognized product specification entity. By default, this is populated with the product class name for product class mapping.
Alternatively you can use any combination of attribute values on the order template to drive the mapping of order lines to product specifications. The value 'item class name' determines some business classification of a product and can be used for product class mapping. It becomes significant when the CSP adopts a methodology that aligns commercial product classes with fulfillment commercial services (product specifications).

When new FulfillmentItemCodes are introduced, you must ensure a mapping of the new FulfillmentItemCode to a fulfillment pattern exists in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/resources/productClassMapping/productClassMapping.xml file so that product class validation will succeed.

Customizing Mapping Rules

The following section explains about customizing mapping rules for order line items to Order-to-Activate sample product specifications.

The XQuery function osmpip:getProductSpec() defined in the OracleComms_OSM_O2A_CommonUtility cartridge provides an API to access the mapping of an order line item on the customer order to an Order-to-Activate sample product specification.

The XQuery function osmpip:getProductSpec() is invoked from XQuery in the productSpec order line item property in the COM_SalesOrderLine order item specification entity in the OracleComms_OSM_O2A_COM_Base cartridge. By default, the direct mapping rules map the Fulfillment Item Code to a product specification.

Customize Rule for Line Item to Product Specification Mapping

Customize a copy of OracleComms_OSM_O2A_COM_Base/resources/OrderItemProperties/ProductSpec.xquery file to customize the direct mapping rule, such as to pass as input the Fulfillment Item Code, to adopt a methodology that aligns the commercial product classes with the fulfillment product specifications when the Fulfillment Item Code is not populated.

Customize Rule for Line Item with Product Class to Product Specification Mapping

Customize a copy of OracleComms_OSM_O2A_CommonUtility/resources/ProductClassToProductSpec.xquery file to enable the mapping of order line items with new product classes on the customer order to Order-to-Activate sample product specifications. The ProductClassToProductSpec.xquery file also provides access to common XQuery functions across the central order management cartridges.

Table 4-23 lists the functions found in ProductClassToProductSpec.xquery:

Table 4-23 Functions in ProductClassToProductSpec.xquery

	Name	Function Interface	Description
	
getProductSpec

	

declare function osmpip:getProductSpec(
 $salesOrder as element(),
 $salesOrderLine as element(),
 $productClassName as xs:string*) as xs:string

	
This function returns the product specification entity as a string based on the given Fulfillment Item Code of a customer order line. If the input value is not specified, or no direct mapping is found, the function uses mapping rules based on data provided on the customer order.

The mapping rules, applicable when no direct mapping is found, should check (in the order listed) whether there is a mapping rule specific to:

	
Subject of the order line item, if one exists (One of: Discount, Product, Service Bundle, Offer, SpecialRating, or Unknown).

	
Subject Type (a short way to get couple of other attributes), if one exists.

	
Unknown (as a last resort, use a default mapping rule that maps the Order Line Item to a Fulfillment Item Code of a special Unknown item action).

The default mapping rules achieve the following mappings:

	
Service bundle lines having no FulfillmentItemCode and identified by ServiceInstanceIndicator=true, are mapped to a product specification of its child order lines.

	
OFFER lines are mapped to product specification 'NonService.Offer'.

	
DISCOUNT, SPECIAL RATING, and BUNDLE lines having no FulfillmentItemCode are mapped to product specification 'NonService.BillingItem'.

	
When a product specification cannot be determined, it is set to product specification 'Service.Unknown'.

	
getDoublePlayPrimaryClassificationCode

	

declare function osmpip:getDoublePlayPrimaryClassificationCode(
 $orderline as element(),
 $salesOrder as element()) as xs:string*

	
This function returns the classification code of a customer order line. The classification code is used by decomposition rule conditions and order line item dependencies.

The classification of order line items is based on the fulfillment topology definition. For example, for order lines in which the product specification itself is not sufficient to determine the billing provider (such as offer, discount, and bundle lines) order line items are classified into VoIP only, BroadBand only, or combination Broadband and VoIP, based on the demonstration Typical fulfillment topology definition to determine the appropriate billing provider. Offer and bundle lines go to as many different, unique billing providers as in its child lines in the customer order. Discount lines, if contained in a service bundle, follow the service bundle.

	
getBillingPattern

	

declare function osmpip:getBillingPattern(
 $orderline as element()) as xs:string

	
Return the billing pattern of the current customer order line.

Creating a New Product Class

This procedure describes how to add a new product class. For more information about performing the actions in this procedure in Design Studio, see the information about adding a new product class in the section on extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new product class:

	
Create a new Order and Service Management project to host the new product class or optionally use the existing OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge to host the new product class.

	
In the Order and Service Management Cartridge editor Properties tab, deselect the Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution (rather than as a standalone cartridge with no dependencies).

	
If the new product class requires a new product specification, add a new product specification that extends from the base product specification BaseProductSpec.

	
If you added a new product specification, model the orchestration plan for the new product specification.

	
If you added a new product specification, include it on the appropriate decomposition rules.

	
Add a new product class and assign it to the appropriate product specification.

	
In the Preferences > Oracle Design Studio > Order and Service Management Preferences > Orchestration Preferences, select the appropriate folder such as OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/resources/productClassMapping folder as the Product Class Mapping folder.

	
If you added a new cartridge to host the new product class, add the cartridge to the Dependency tab for the Order-to-Activate composite cartridge.

	
Package and deploy the Order-to-Activate composite cartridge.

Creating a New Product Specification

This procedure describes how to add a new product specification. For more information about performing the actions in this procedure in Design Studio, see the information about adding a new product specification in the Design Studio Modeling OSM Orchestration Help.

To add a new product specification:

	
Create a new Order and Service Management project to host the new product specification or optionally use the existing fulfillment pattern sample cartridge such as OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample to host the new product specification.

	
In the Order and Service Management Cartridge editor Properties tab, deselect the Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution (rather than as a standalone cartridge with no dependencies).

	
Add a new product specification that extends from the base product specification BaseProductSpec or its extended product specification.

	
Model the orchestration plan for the new product specification such as indicating which fulfillment functions are decomposed for which fulfillment mode.

	
Include the new product specification on the appropriate decomposition rules that map order line items from fulfillment functions to fulfillment providers. For example, DecompSyncCustomer_To_BRM-VoIP is a decomposition rule that maps order line items for SyncCustomerFunction to BRM-VoIP fulfillment provider.

	
If there will not be a mapping from product class to the new product specification, customize the order line item to product specification mapping rules such as:

	
function osmpip:productSpecification in OracleComms_OSM_O2A_CommonUtility/resources/ProductClassToProductSpec.xquery

	
function sompctfmp:getFulfillmentPattern in OracleComms_OSM_O2A_CommonUtility/resources/SomProductClassToProductSpec.xquery

	
If you added a new cartridge to host the new product specification, add the cartridge to the Dependency tab for the Order-to-Activate composite cartridge.

	
Package and deploy the Order-to-Activate composite cartridge.

Importing the New Product Class

It is possible to query product classes and transaction attributes into Design Studio directly from the Oracle Product Hub. Design Studio users use the existing Oracle AIA interface QueryProductClassAndAttributesSCECommsReqABCSImpl to import product classes from both Siebel CRM and the Product Hub. When product classes are queried using this interface, the interface API checks for Product Hub implementation in the solution stack, and if it is there, the product classes will be imported to Design Studio from the Product Hub. Otherwise, the product classes will be imported from Siebel CRM.

Import the new product classes as described in the Design Studio Help. After importing the product classes, follow this procedure:

	
Open the newly imported or modified Product Class.

	
Map the new or changed Product Classes to the appropriate Product Specification.

Figure 4-2 Product Specification Mapping

[image: Screenshot of the Product Class Editor]

Managing Product Classes

There are a few main scenarios for managing product classes. These include:

	
The introduction of a new Product Class that maps to a Product Specification

	
The modification of a Product Class that results in a change to the Product Specification mapping, (this could include scenarios where changes to the product class require the mapping to a more specialized Product Specification or where changes to the offering result in a completely different Fulfillment Topology)

	
Removal or Deprecation of a Product Class where any subsequent orders that contain that class should result in Order Fallout

In all the above cases there are two main considerations:

	
The changes to the mapping should take effect immediately. This means that subsequent orders containing the new or modified Product Classes should map based on the new conditions.

	
The changes to the mapping should take effect at a predetermined time. In this case, consider the scenario where a new product is being introduced at the beginning of the month. It is desirable to model the Product Class and any new or changed mappings ahead of time while having the mapping take effect at the desired time.

In both scenarios there are common tasks to perform in Design Studio.

Updating the Cartridge Version

It is important to keep backups and to employ some form of source control system in case there is a need to roll back or make use of previous versions of the product classes.

In some cases, it is desirable to ensure that the Product-Class-to-Product-Specification mapping is based on a very specific version of the mapping. In most cases, it is preferred to ensure that the mapping is based on the latest version of the mapping file deployed to the server.

To update the cartridge version:

	
Open the project OracleComms_OSM_O2A_FulfillmentPatternMap_Sample and select the cartridge of the same name.

	
In the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge editor, increment the Major, Minor, Maintenance Pack, Generic Patch, and Customer Patch numbers appropriately for this new cartridge.

	
Save the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge.

	
If you wish to use the option where the mapping is based on the default version of the cartridge, select the Default check box to ensure that the new version is the default.

Updating the XML Catalog Settings

If it is necessary to map to a specific version of the Product Class Mapping cartridge, it is necessary to update the catalog.xml file in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge:

To update the catalog.xml file:

	
Open the Package Explorer view by selecting Window then selecting Show View and then Package Explorer.

	
In the Project Explorer view, open the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge and navigate to the directory xmlCatalogs/core.

	
Open the file catalog.xml.

	
Update the catalog.xml file as follows:

	
At the bottom of this file, there is an entry that looks like this:

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/ordermanagement/pip/productspec" rewritePrefix="osmmodel:/// OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/1.0.0.0.0/resources/productClassMapping"/>

	
Update this entry to point to the new cartridge version. For example, if you created version 2.1.0 of the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge, the entry should be updated as follows:

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/ordermanagement/pip/productspec" rewritePrefix="osmmodel:/// OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/2.1.0.0.0/resources/productClassMapping "/>

	
Note:

This entry must appear on a single line in the file.

	
If the expectation is that the mapping will occur based on the Default version of the deployed cartridge, it is required to update the catalog.xml file as follows:

	
Note:

This change only must be made once and not with each subsequent version of the cartridge.

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/ordermanagement/pip/productspec" rewritePrefix="osmmodel:/// OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/default/resources/productClassMapping "/>

Changing Processing Granularity

This section provides information on changing the processing granularity for an order item.

To change processing granularity for a fulfillment function:

	
Open the decomposition rule in the form of <Topology>_DetermineProcessingGranularity_For_<FulfillmentFunction> in the OracleComms_OSM_O2A_TypicalTopology_Sample or OracleComms_OSM_O2A_SimpleTopology_Sample cartridge depending on the topology.

For example, Typical_DetermineProcessingGranularity_For_SyncCustomer is the decomposition rule for SyncCustomerFunction fulfillment function in the Typical topology.

	
In the Decomposition Rule editor Source/Target tab, select the desired processing granularity under COM_FulfillmentGranularity in the Target Order Components section.

See "Configuring a New Processing Granularity Rule" for more information on creating a new processing granularity.

	
(Optional) Add or Change decomposition condition in the Decomposition Rule editor Conditions tab.

	
Package and deploy the Order-to-Activate composite cartridge.

Configuring a New Processing Granularity Rule

Begin by creating a Studio entity of type Order Component Specification that extends COM_FulfillmentGranularity with COM_SalesOrderFulfillment namespace and give it a name such as YourCustomGranularity.

On the Component ID tab of the newly created order component specification, specify an XQuery condition to return the ComponentId of an order line. Order lines with the same ComponentId value are grouped together for the processing of order lines a group at a time. To construct the XQuery, you can copy the XQuery expression from the Component ID tab of an existing processing granularity rule, such as BundleGranularity shown in Example 4-10, and in it replace BundleGranularity with YourCustomGranularity, and replace TypeCode=(BUNDLE) with the condition that identifies the parent of the group. If you require nested groups to make it on separate fulfillment requests, also replace [fn:last()] with [1]. There are multiple instances of index fn:last() in the XQuery expression; the ones to replace are highlighted below. Otherwise, nested groups are processed on the same fulfillment request.

Example 4-10 Customizable Granularity Configuration XQuery

(: Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved. :)
import module namespace comqueryviewconstants = "http://xmlns.oracle.com/communications/ordermanagement/o2acombase/comqueryviewconstants" at "http://xmlns.oracle.com/communications/ordermanagement/o2acombase/constants/QueryViewConstants.xquery";

declare namespace osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="COM_SalesOrderFulfillment";
declare namespace osmfn = "java:oracle.communications.ordermanagement.orchestration.generation.OrchestrationXQueryFunctions";

let $ancestors := osmfn:ancestors($comqueryviewconstants:COM_ORDER_ITEN_SPEC,$comqueryviewconstants:COM_PARENTCHILD_HIER, $comqueryviewconstants:COM_ORDER_NAMESPACE)
let $relatedItems := osmfn:ancestors($comqueryviewconstants:COM_ORDER_ITEN_SPEC,$comqueryviewconstants:COM_RELATEDITEM_HIER,$comqueryviewconstants:COM_ORDER_NAMESPACE)
return
 (: to locate the bundle that this order line should be included with on a fulfillment request, first follow the RelatedSalesOrderLineId references (if any exist) :)
 if (osm:properties/prop:RelatedSalesOrderLineId/text() != '' and fn:exists($relatedItems))
 then
 (
 let $topmostRelatedItem := $relatedItems[fn:last()]
 let $topmostRelatedItemAncestors := osmfn:ancestors($topmostRelatedItem,$comqueryviewconstants:COM_ORDER_ITEN_SPEC,$comqueryviewconstants:COM_PARENTCHILD_HIER,$comqueryviewconstants:COM_ORDER_NAMESPACE)
 return
 if (fn:exists($topmostRelatedItemAncestors[osm:properties/prop:TypeCode=('BUNDLE')]))
 then
 (
 (: for the topmost related order line, follow the ParentLineId references to locate the outermost bundle. This will cause nested bundles to make it on the same fulfillment request. :)
 concat($topmostRelatedItemAncestors[osm:properties/prop:TypeCode=('BUNDLE')][fn:last()]/osm:properties/prop:BaseLineId/text(),'/BundleGranularity')
)
 else
 (
 (: locate the root node, such that any other root node on the order along with their related order items makes a separate fulfillment request :)
 concat($topmostRelatedItemAncestors[fn:last()]/osm:properties/prop:BaseLineId/text(),'/BundleGranularity')
)
)
 else
 (
 if (fn:exists($ancestors[osm:properties/prop:TypeCode=('BUNDLE')]))
 then
 (
 (: follow the ParentLineId references to locate the outermost bundle. This will cause nested bundles to make it on the same fulfillment request. :)
 concat($ancestors[osm:properties/prop:TypeCode=('BUNDLE')][fn:last()]/osm:properties/prop:BaseLineId/text(),'/BundleGranularity')
)
 else
 (
 (: locate the root node, such that any other root node on the order along with their related order items makes a separate fulfillment request :)
 concat($ancestors[fn:last()]/osm:properties/prop:BaseLineId/text(),'/BundleGranularity')
)
)

Changing Fulfillment Function Dependencies

This procedure describes how to change fulfillment function dependencies. For more information about performing the actions in this procedure in Design Studio, see the information about the product specification editor in the Design Studio Modeling OSM Orchestration Help.

To change fulfillment function dependencies:

	
Open the Product Specification Editor Orchestration Plan tab for the base product specification or any applicable product specification for which the dependencies between fulfillment functions needed to be changed.

	
Select the fulfillment mode, for which the dependencies between fulfillment functions need to be changed, in the Fulfillment Mode field.

	
Select the Dependencies tab. In the Dependencies table, select the dependency and change the From Order Component or To Order Component to update the fulfillment function dependency.

OR

In the Dependencies table, add a new dependency and specify the From Order Component and To Order Component for the new fulfillment function dependency.

	
Package and deploy the Order-to-Activate composite cartridge.

Setting a Point of No Return

A point of no return (PoNR) is a point in time during the orchestration process when revisions are no longer accepted and processed for an order. The Hard PoNR indicates that it is technically infeasible to amend the order.

A PoNR is realized when a condition is met on an order line item.

The seeded values in the Order-to-Activate cartridges are:

	
A value of NOT YET indicates that the Soft PoNR has been reached for an order line.

	
A value of HARD indicates that a Hard PoNR has been reached for an order line, which signifies that it is technically infeasible to revise the order beyond this point.

Each product specification may have a PoNR set to HARD at a different fulfillment state in the fulfillment flow.

In the Order-to-Activate cartridge, the value of PoNR for each order line item is stored in ControlData/OrderItem/WorkLineItemData/RevisionPermissibleCode in the order data in the format as [SOFT]NOT YET or [HARD]HARD.

A fulfillment state is set before and after each fulfillment function. There may be multiple fulfillment states during a fulfillment function, such as IN_PROGRESS-PROVISION_DESIGNED and COMPLETE-PROVISION_COMPLETE, during the service order function. In this case, the RevisionPermissibleCode value is returned in the fulfillment data updates from provisioning and is updated into the order data.

RevisionPermissibleCode must be updated at every fulfillment function transition because there is no guarantee on the conditions that cause fulfillment functions to be called in a product specification. Update the order data as follows:

	
Before every fulfillment function until PoNR is reached (if a PoNR is non-existent or null, set RevisionPermissibleCode to NOT YET)

	
For every function transition after which the HARD PoNR is reached (if a PoNR is non-existent, null, or has the value NOT YET, set RevisionPermissibleCode to HARD)

	
productSpec1: (NOT YET) FunctionA --> (NOT YET)--> FunctionB--> (HARD) --> FunctionC

	
productSpec2: (NOT YET) FunctionA --> (HARD) --> FunctionB --> (HARD) --> FunctionC

A HARD PoNR is set at the FunctionC Start milestone for productSpec1, and at the FunctionB Start milestone for productSpec2. Assuming that FunctionB may be skipped if a conditional expression is not met, PoNR=HARD must be set between FunctionA and FunctionC: (NOT YET): FunctionA --> (HARD) --> FunctionC.

For fulfillment functions, these values are implemented in the orderdataupdates in the automated tasks of the subprocess. For example:

Table 4-24 lists the various hard PoNRs for each product specification.

Table 4-24 Hard Points of No Return by Product Specification

	Product Spec	Fulfillment Function	HARD PoNR is set	Fulfillment State
	
NonService.BillingInitatedItem

	
FulfillBillingFunction

	
Y

	
IN_PROGRESS-FULFILL_BILLING_START

	
NonService.BillingItem

	
FulfillBillingFunction

	
Y

	
IN_PROGRESS-FULFILL_BILLING_START

	
NonService.Offer

	
FulfillBillingFunction

	
Y

	
IN_PROGRESS-FULFILL_BILLING_START

	
Service.Broadband

	
ProvisionOrderFunction

	
Y

	
IN_PROGRESS-PROVISION_DESIGNED

	
Service.CPE.Broadband

	
ShipOrderFunction

	
Y

	
COMPLETE-SHIP_ORDER_SHIPPED

	
Service.CPE.VoIP

	
ShipOrderFunction

	
Y

	
COMPLETE-SHIP_ORDER_SHIPPED

	
Service.Install

	
InstallOrderFunction

	
Y

	
IN_PROGRESS-INSTALL_COMMITTED

	
Service.VoIP

	
FulfillBillingFunction

	
Y

	
IN_PROGRESS-FULFILL_BILLING_START

OSM enforces HARD PoNR in the order life-cycle policy by disallowing Submit Amendment if the PoNR value in the order data is found to be HARD (for a revised order line item) when a revision order arrives.

PoNR (SalesOrderLine/RevisionPermissibleCode) is included in status updates to Siebel CRM, which occur at every milestone data change. This enables Siebel CRM to enforce the rule that a revision cannot be submitted beyond HARD PoNR for an order line.

Modeling a PoNR

This section describes the steps to add a point of no return for a product specification. For more information about performing the actions in this procedure in Design Studio, see the information about configuring points of no return in the Design Studio Modeling OSM Orchestration Help.

To model a point of no return:

	
In the Product Specification Editor Orchestration Plan tab, select the fulfillment mode for which a PoNR will be added for the product specification, and also select a fulfillment function in Order Components section at which the PoNR will be set.

	
Once a fulfillment function is selected, add an entry to the Point of No Return Values box in the Point of No Return subtab. Either click Select and select an existing PoNR value, or click Add and add a new PoNR value. Then select a fulfillment state that will trigger this PoNR for the fulfillment flow of the product specification.

	
If you added a new PoNR value rather than selecting an existing value, it will automatically be added as a hard PoNR. If you would like your new PoNR to be a soft PoNR, click the Details tab in the Product Specification editor, select your new PoNR from the Point of No Return Values box and then deselect Hard Point of No Return in the Details subtab.

	
Note:

Point-of-no-return enforcement can be disabled for testing purposes when a new fulfillment function is introduced, or when revision or order cancellation testing is performed. See "Controlling Point of No Return" for more information.

Configuring Fulfillment States

This section describes the steps for configuring fulfillment states. For more information about performing the actions in this procedure in Design Studio, see the information about configuring fulfillment states in the Design Studio Modeling OSM Orchestration Help.

	
If a new fulfillment function is introduced, add external fulfillment state(s) to represent status information sent to OSM by fulfillment systems in the Order Component Specification Editor External Fulfillment States tab for that order component specification. The external fulfillment state(s) should be in the form of <State>-<Milestone> such as IN_PROGRESS-<YourFunction>_START, representing the starting of your fulfillment function.

	
In the Fulfillment State Map editor for COM_FulfillmentStateMap in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge, create a fulfillment state mapping for each new external fulfillment state for any applicable fulfillment mode for the COM_SalesOrderLine order line item.

	
In the Order Item Fulfillment State Composition Rule Set editor for COM_OrderItemStateCompositionRule in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge, modify existing composition rules for the BaseProductSpec product specification and COM_SalesOrderLine order item if necessary.

	
In the Order Fulfillment State Composition Rule Set editor for COM_OrderStateCompositionRule in the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge, modify existing composition rules for the COM_SalesOrderFulfillment order if necessary.

	
In the resources/FulfillmentState folder of the Order-to-Activate composite cartridge such as OracleComms_OSM_O2A_COMSOM_TypicalSolution:

	
If a new fulfillment state is introduced in addition to the base fulfillment states (that is, OPEN, IN_PROGRESS, COMPLETE, FAILED and CANCELLED) defined in COM_FulfillmentStateMap, modify the XQuery implementation for any applicable fulfillment state extension points. See Table 4-25 for more information about fulfillment state extension points.

	
Package and deploy the Order-to-Activate composite cartridge.

External Fulfillment States

In Order-to-Activate cartridges, the following structure in the order template is required for processing fulfillment states to support revision of orders. The default location for this structure is in the root level of the order data. The data elements (as opposed to the structure elements) are indicated in bold and described below. These values should be populated by the task that handles the interaction with the external system.

OrderLifeCycleManagement
 OrderItemStatus
 BaseLineId
 OrderItemComponentStatus
 componentKey
 MilestoneStatusRecord
 StatusTimestamp
 componentId
 Status
 Code

See the information about modeling order template structures for fulfillment states in the OSM Developer's Guide for more information.

Fulfillment State Extension Point Interface

The Order-to-Activate cartridges use XQuery resources to perform functions including setting order item properties, mapping product classes to product specifications, managing fulfillment function dependencies, and managing the order life cycle. One way to customize XQueries is to rewrite or add to the out-of-box XQuery module and use the XML catalog to allow URI reference mapping. Extension points are defined for both fulfillment functions and fulfillment states. This section contains information about the fulfillment state extension points. For information about the fulfillment function extension points, see "Fulfillment Function Extension Point Interface".

XML catalogs are system-wide entities, which means an XML Catalog specified in one cartridge will be used when processing requests for orders on other cartridges. With the use of solution cartridges, multiple solutions can be deployed to a single system and coexist with each other.

An XQuery extension script must be implemented in a standalone file. The file URI must be registered to the extension configuration.

Fulfillment State Extension Point Overview

Table 4-25 lists the XQuery extension points for fulfillment states in the Order-to-Activate cartridges.

Table 4-25 Fulfillment State Extension Points

	Fulfillment State Extension Point	Description
	
ORDER_STATUS

	
ORDER_STATUS at the order level is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for the order. This extension point provides order status to the upstream system.

ORDER_STATUS at the order item level is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order item. This extension point provides order item status to the upstream system.

	
ORDER_STATUSCONTEXT

	
ORDER_STATUSCONTEXT is triggered when the OSM fulfillment state engine finishes evaluation of the composite fulfillment state for the order. This extension point provides order status context to the upstream system.

	
ORDERITEM_STATUSCONTEXT

	
ORDERITEM_STATUSCONTEXT is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order item. This extension point provides order item status context to the upstream system.

	
ORDERITEM_MILESTONE

	
ORDERITEM_MILESTONE is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order item. This extension point calculates the order item milestone, taking order cancellation into consideration.

	
ORDER_FULFILLMENT_STATE_UPDATED

	
ORDER_FULFILLMENT_STATE_UPDATED is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order. This extension point overrides the default evaluation of the order composite fulfillment state modeled in COM_OrderStateCompositionRule to support an order with no order items (order items had been dropped during revision), and to support the completion of a cancellation order.

	
ORDERITEM_FULFILLMENT_STATE_UPDATED

	
ORDERITEM_FULFILLMENT_STATE_UPDATED is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order item. This extension point overrides the default evaluation of the order item composite fulfillment state modeled in COM_OrderItemStateCompositionRule to support an order with no order items (order items had been dropped during revision), and to support the completion of a cancellation order.

	
REPORT_ORDERITEM_STATUS

	
REPORT_ORDERITEM_STATUS is triggered when the OSM fulfillment state engine finishes calculating the composite fulfillment state for an order item. This extension point is not currently being used in the Order-to-Activate cartridges.

	
REPORT_ORDERITEM_MILESTONE

	
REPORT_ORDERITEM_MILESTONE is triggered when the OSM fulfillment state engine finishes evaluating the composite fulfillment state for an order item. This extension point overrides the default milestone when handling a cancellation order.

	
REPORT_ORDERITEM_STATUSCONTEXT

	
REPORT_ORDERITEM_STATUSCONTEXT is triggered when the OSM fulfillment state engine finishes calculating the composite fulfillment state for an order item. This extension point overrides the default evaluation of the order item composite fulfillment state modeled in COM_OrderItemStateCompositionRule to support different order item status contexts for failed order items with different order fulfillment modes.

Fulfillment state extension points provide a means to handle additional context, such as fulfillment mode and order types (cancel order, revision order, etc), in Order-to-Activate cartridges. This allows you to alter the default behavior modeled in both order composition rules and order item composition rules.

For example, in the ORDER_FULFILLMENT_STATE_UPDATED fulfillment state extension point, the order fulfillment state is changed from what is configured in the COM_OrderStateCompositionRule for the following scenarios:

	
If an order has no child order items (because existing lines were dropped in a revision order), the order fulfillment state should be CANCELLED (fulfillment mode CANCEL) or COMPLETED (fulfillment mode DELIVER) instead of PENDING.

	
If an order is in progress, the order fulfillment state should be IN_PROGRESS regardless of whether all of order items have been completed.

	
If an order is completed, the order fulfillment state should be COMPLETE or, if the order's fulfillment mode is CANCEL, CANCEL COMPLETE.

ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point

This section describes the XQuery script that implements the logic to handle the ORDERITEM_FULFILLMENT_STATE_UPDATED extension point. The extension point detects an orphaned order item and sets the fulfillment state value for the orphaned order item. For example, an order item might have no child order item and may not invoke any components (possibly because the order itself does not have any lines in its base order, or because existing lines or components have been removed due to an order amendment). The core fulfillment state engine will not update the order item's fulfillment state, and the order item fulfillment state will remain as PENDING (if no order line was present) or IN_PROGRESS (if an order line has been started but has been removed by an order amendment). In either case, the actual fulfillment state of this order depends on the type of operation (CANCEL or DELIVER). If it is CANCEL, this script changes the fulfillment state of the orphaned order item to CANCELLED. If the operation is DELIVER, the script changes the fulfillment state of the orphaned order item to COMPLETED.

Table 4-26 lists the input parameters for the extension point XQuery.

Table 4-26 ORDERITEM_FULFILLMENT_STATE_UPDATED Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
Order item's current composite fulfillment state

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$hasChildLines

	
xs:boolean

	
XQuery external variable

	
True to indicate this order item has children, otherwise false

	
$hasComponents

	
xs:boolean

	
XQuery external variable

	
True to indicate this order item is contained in fulfillment function, otherwise false

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement/OrderItemStatus XML fragment for the order item.

Table 4-27 lists the return parameters for the extension point XQuery.

Table 4-27 ORDERITEM_FULFILLMENT_STATE_UPDATED Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated fulfillment state to be set for the orphaned order item

Example 4-11 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OnOrderItemFulfillmentStateUpdated.xquery that demonstrates the extension implementation.

Example 4-11 ORDERITEM_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog = "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xquery";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace fulfillmeneStateConstant = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $hasChildLines as xs:string external;
declare variable $hasComponents as xs:string external;

declare variable $MODULE_NAME := "OnOrderItemFulfillmentStateUpdate";

declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_CANCELLED();
declare variable $ORDER_EVENT_UPDATE := fulfillmeneStateConstant:ORDER_EVENT_UPDATE();
declare variable $ORDER_EVENT_COMPLETE := fulfillmeneStateConstant:ORDER_EVENT_COMPLETE();

declare variable $ORDER_OPERATION_NORMAL := fulfillmeneStateConstant:ORDER_OPERATION_NORMAL();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_OPERATION_CANCEL();

declare variable $HAS_CHILDS := fulfillmeneStateConstant:HAS_CHILDS();
declare variable $HAS_COMPONENT := fulfillmeneStateConstant:HAS_COMPONENTS();

let $calculatedFulfillmentState :=
 if ($hasChildLines != $HAS_CHILDS and $hasComponents != $HAS_COMPONENT)
 then
 (
 (:
 : No current status can be detects from components or children lines, meaning this line don't invoke any component
 : and also no children line exists, set the status to cancelled if this is cancel order operation or set the status to complete if
 : this is not cancel operation
 :)
 if ($orderEventType = ($ORDER_EVENT_UPDATE, $ORDER_EVENT_COMPLETE))
 then
 (
 if ($orderOperationType = $ORDER_OPERATION_CANCEL)
 then $o2acomfulfillmentstate:CANCELLED_STATE
 else $o2acomfulfillmentstate:COMPLETE_STATE
)
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else $fulfillmentState
return
 $calculatedFulfillmentState

ORDER_FULFILLMENT_STATE_UPDATED Extension Point

This section describes the XQuery script that implements the logic to handle the ORDER_FULFILLMENT_STATE_UPDATED extension point. This extension point overrides the default calculation result that is based on the COM_OrderStateCompositionRule defined in cartridge OracleComms_OSM_O2A_FulfillmentPatternMap_Sample. The COM_OrderStateCompositionRule only defines the basic aggregation rule that is based on children order item's fulfillment state and does not consider the current order's operation and event.

For example, if an order has no children order item (may due to the order itself does not have any lines in its base order, or due do existing lines get dropped during revision). The server Fulfillment state engine may not update the order level fulfillment state or will calculate the order level fulfillment state as PENDING (If no line has started) or IN_PROGRESS (If line has been started but now get dropped). In either case, the actual fulfillment state of this order should depends on the type of operation (CANCEL or DELIVER) and if is CANCEL then this script will override it to CANCELLED or if it is DELIVER then the script will override it to COMPLETED.

Given another example where the fulfillment state engine calculates a CANCEL or COMPLETE state but the order is still in progress state (detected with $orderEventType=ORDER_EVENT_UPDATE), the override value in this case is IN_PROGRESS since the order is still in the middle of processing.

ORDER_EVENT_COMPLETE can be due to DELIVER COMPLETE or DELIVER COMPLETE of a CANCEL order. In this case, operation type is used to detect if it is a normal COMPLETE or CANCEL COMPLETE.

Table 4-28 lists the input parameters for the extension point XQuery.

Table 4-28 ORDER_FULFILLMENT_STATE_UPDATED Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
Order item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$hasChildLines

	
xs:boolean

	
XQuery external variable

	
True to indicate this order item has children, otherwise false.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment

Table 4-29 lists the return parameters for the extension point XQuery.

Table 4-29 ORDER_FULFILLMENT_STATE_UPDATED Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated fulfillment state for the order

Example 4-12 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OnOrderFulfillmentStateUpdated.xquery that demonstrates the extension implementation.

Example 4-12 ORDER_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";
declare namespace fulfillmeneStateConstant = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $hasChildLines as xs:string external;

declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_CANCELLED();
declare variable $ORDER_EVENT_UPDATE := fulfillmeneStateConstant:ORDER_EVENT_UPDATE();
declare variable $ORDER_EVENT_COMPLETE := fulfillmeneStateConstant:ORDER_EVENT_COMPLETE();
declare variable $ORDER_OPERATION_NORMAL := fulfillmeneStateConstant:ORDER_OPERATION_NORMAL();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_OPERATION_CANCEL();
declare variable $HAS_CHILDS := fulfillmeneStateConstant:HAS_CHILDS();

let $calculatedFulfillmentState :=
 if ($hasChildLines != $HAS_CHILDS)
 then
 (
 (: No child lines detected :)
 if ($orderEventType = $ORDER_EVENT_UPDATE)
 then $o2acomfulfillmentstate:IN_PROGRESS_STATE
 else if ($orderEventType = $ORDER_EVENT_COMPLETE)
 then
 (
 (: This is an order complete event,
 : if this is a normal order completion, the status is complete.
 : if this is a cancel order completion, the status is canceled.
 :)
 if ($orderOperationType = $ORDER_OPERATION_NORMAL)
 then $o2acomfulfillmentstate:COMPLETE_STATE
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else if($fulfillmentState = ($o2acomfulfillmentstate:COMPLETE_STATE, $o2acomfulfillmentstate:CANCELLED_STATE))
 then
 (
 (: Children line exist and all completed or cancelled
 : However if the event is not an order complete or cancelled even than need
 : to switch the status back to in progress
 :)
 if ($orderEventType != $ORDER_EVENT_COMPLETE and $orderEventType != $ORDER_EVENT_CANCELLED)
 then $o2acomfulfillmentstate:IN_PROGRESS_STATE
 else $fulfillmentState
)
 else
 (
 if ($orderEventType = $ORDER_EVENT_COMPLETE)
 then
 (
 if ($orderOperationType = $ORDER_OPERATION_CANCEL)
 then
 (
 (: An OSM order get cancelled by AIA or Admin then always set the order status to cancelled :)
 $o2acomfulfillmentstate:CANCELLED_STATE
)
 else (
 (: Only set status to complete if it is not failed.
 : So OPEN and IN_PROGRESS will forced to COMPLETE but FAILED will be remained.
 :)
 if ($fulfillmentState != $o2acomfulfillmentstate:FAILED_STATE)
 then $o2acomfulfillmentstate:COMPLETE_STATE
 else $fulfillmentState
)
)
 else $fulfillmentState
)
return
 $calculatedFulfillmentState

ORDER_STATUS Extension Point

This section describes the XQuery script that implements the logic to handle the ORDER_STATUS extension point. This extension point generates the upstream expected status value for the order or order item. The generated value is based on the current composite fulfillment state value of the order or order item.

The mapping between the composite fulfillment state and the upstream status is defined in OracleComms_OSM_O2A_Configuration/solution-config/OrderStatusMap.xml.

Table 4-30 lists the input parameters for the extension point XQuery.

Table 4-30 ORDER_STATUS Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
Current composite fulfillment state of the order or order item

	
$componentType

	
xs:string

	
XQuery external variable

	
Should be set to OrderLifecycleManagement

	
$systemType

	
xs:string

	
XQuery external variable

	
Should be set to CRM

	
.

	
Context node

	
XQuery context node

	
OrderLifeCycleManagement/OrderItemStatus XML fragment if this is invoked for an order item or OrderLifeCycleManagement XML fragment if this is invoked for an order

Table 4-31 lists the return parameters for the extension point XQuery.

Table 4-31 ORDER_STATUS Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated status value

Example 4-13 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OrderStatus.xquery that demonstrates the extension implementation.

Example 4-13 ORDER_STATUS XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $componentType as xs:string external;
declare variable $systemType as xs:string external;
statusctxmapmodule:getOrderStatus($fulfillmentMode, $fulfillmentState, $componentType, $systemType)

ORDER_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the ORDER_STATUSCONTEXT extension point. This extension point generates the upstream expected description value to the status for Order. The generated value is based on the current composite fulfillment state value of the Order.

The status context is defined in OracleComms_OSM_O2A_Configuration/solution-config/OrderStatusContextMap.xml.

Table 4-32 lists the input parameters for the extension point XQuery.

Table 4-32 ORDER_STATUSCONTEXT Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$doubleFailure

	
xs:boolean

	
XQuery external variable

	
True to indicate this Order is in Fallout during a revision.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-33 lists the return parameters for the extension point XQuery.

Table 4-33 ORDER_STATUSCONTEXT Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated description of the current order status

Example 4-14 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OrderStatusContext.xquery that demonstrates the extension implementation.

Example 4-14 ORDER_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";
import module namespace osmpiplog = "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xquery";
import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneStateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $doubleFailure as xs:string external;

declare variable $IS_DOUBLE_FAILURE := fulfillmeneStateConstant:DOUBLE_FAILURE_TRUE();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_OPERATION_CANCEL();
declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_CANCELLED();

declare variable $TRUE := "TRUE";
declare variable $FALSE := "FALSE";
declare variable $MODULE_NAME := "OrderStatusContext";

declare function local:hasOrderItemCancelled(
 $orderItemsFulfilmentState as element()) as xs:boolean
{
 fn:exists($orderItemsFulfilmentState/oms:fulfillmentState[text()=$o2acomfulfillmentstate:CANCELLED_STATE])
};

declare function local:isAllOrderItemFailed(
 $orderItemsFulfilmentState as element()) as xs:boolean
{
 let $itemCount := fn:count($orderItemsFulfilmentState/oms:fulfillmentState)
 let $failCount := fn:count($orderItemsFulfilmentState/oms:fulfillmentState[text()=$o2acomfulfillmentstate:FAILED_STATE])
 return
 if ($itemCount = $failCount)
 then fn:true()
 else fn:false()
};

let $orderItemsFulfilmentState := .
return
(
 let $statusStateInfo :=
 <oms:StatusStateInfo>
 {
 if ($fulfillmentState = $o2acomfulfillmentstate:COMPLETE_STATE)
 then
 (
 <oms:statusState>
 {
 if (local:hasOrderItemCancelled($orderItemsFulfilmentState)=fn:true())
 then fulfillmeneStateConstant:COMPLETE_WITH_CANCELLED()
 else fulfillmeneStateConstant:COMPLETE_ALL_COMPLETE()
 }
 </oms:statusState>
)
 else if ($fulfillmentState = $o2acomfulfillmentstate:FAILED_STATE)
 then
 (
 <oms:statusState>
 {
 if ($orderOperationType = $ORDER_OPERATION_CANCEL or $doubleFailure = $IS_DOUBLE_FAILURE)
 then fulfillmeneStateConstant:FAILED_REVISION_FAILED()
 else
 (
 if (local:isAllOrderItemFailed($orderItemsFulfilmentState)=fn:true())
 then fulfillmeneStateConstant:FAILED_ALL_FAILED()
 else fulfillmeneStateConstant:FAILED_PARTIAL_FAILED()
)
 }
 </oms:statusState>
)
 else if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then
 (
 <oms:statusState>
 {
 if ($orderEventType = $ORDER_EVENT_CANCELLED)
 then fulfillmeneStateConstant:CANCELLED_BY_ADMIN()
 else fulfillmeneStateConstant:CANCELLED_BY_UPSTREAM()
 }
 </oms:statusState>,
 <oms:hasOrderItems>
 {
 if (fn:exists($orderItemsFulfilmentState/oms:fulfillmentState))
 then $TRUE
 else $FALSE
 }
 </oms:hasOrderItems>
)
 else ()
 }
 </oms:StatusStateInfo>
 return
 statusctxmapmodule:getOrderStatusContext($fulfillmentMode, $fulfillmentState, $statusStateInfo)
)

ORDERITEM_MILESTONE Extension Point

This section describes the XQuery script that implements the logic to handle the ORDERITEM_MILESTONE extension point. This extension point generates the upstream expected milestone value to the Order Item. The implementation for this script is to calculate the milestone value (expected by the upstream CRM system) based on the calculated fulfillment state value and the last reported milestone. For a fulfillment state value equal to CANCELLED, the milestone code is the last milestone code before the cancel was applied to this order item. For other fulfillment states, the milestone code is the current latest milestone code injected by Order-to-Activate or reported from external system.

Also if none of the components invoked by this order item has started then if fulfillment state value equals to CANCELLED, the milestone code is $o2acomfulfillmentstate:NOTSTARTED_MILESTONE, and for all other fulfillment state value, the milestone code is $o2acomfulfillmentstate:NO_MILESTONE.

Table 4-34 lists the input parameters for the extension point XQuery.

Table 4-34 ORDERITEM_MILESTONE Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-35 lists the return parameters for the extension point XQuery.

Table 4-35 ORDERITEM_MILESTONE Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated milestone value for the current order item

Example 4-15 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OrderItemMilestone.xquery that demonstrates the extension implementation.

Example 4-15 ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog = "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;

declare variable $MODULE_NAME := "OrderItemMilestone";

(:
 : Current fulfillment state is not cancelled then calculate the latest milestone of this line for this time being.
 :)
declare function local:getLatestMilestoneFromComponents(
 $orderItemStatus as element()?) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $lookupIndex := fn:max($orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord/oms:Status/oms:Code/@index)
 let $latestMilestoneStatusRecord := $orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status/oms:Code/@index=$lookupIndex]
 return
 $latestMilestoneStatusRecord/oms:MilestoneCode/text()
)
 else $o2acomfulfillmentstate:NO_MILESTONE
};

declare function local:getLastMilestoneCodeBeforeCancel(
 $orderItemStatus as element()?) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $lookupIndex := fn:min($orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord/oms:Status/oms:Code[text()=$o2acomfulfillmentstate:CANCELLED_STATE]/@index)
 let $cancelledMilestoneStatusRecord := $orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status/oms:Code/@index=$lookupIndex]
 let $milestoneStatusRecordBeforeCancelled := $cancelledMilestoneStatusRecord/preceding-sibling::oms:MilestoneStatusRecord[1]
 return
 if (fn:exists($milestoneStatusRecordBeforeCancelled))
 then $milestoneStatusRecordBeforeCancelled/oms:MilestoneCode/text()
 else $o2acomfulfillmentstate:NOTSTARTED_MILESTONE
)
 else $o2acomfulfillmentstate:NOTSTARTED_MILESTONE
};

let $orderItemStatus := .
return
 if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then local:getLastMilestoneCodeBeforeCancel($orderItemStatus)
 else local:getLatestMilestoneFromComponents($orderItemStatus)

ORDERITEM_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the ORDERITEM_STATUSCONTEXT extension point. This extension point generates the upstream expected description value to the status for Order Item. The generated value is based on the current composite fulfillment state value of the Order Item. The implementation for this script is to calculate the status context (Description of status) value (expected by the upstream CRM system) based on the calculated fulfillment state value and the current calculated milestone (The milestone code calculated by the XQuery registered to extension ORDERITEM_MILESTONE).

For fulfillment state value equals to FAILED, the status context is the error message map defined in OracleComms_OSM_O2A_Configuration/solution-config/OrderMessageMap.xml.

For all other fulfillment state, the status context is the milestone code append with the string define in OracleComms_OSM_O2A_Configuration/solution-config/OrderItemStatusContextMap.xml

Table 4-36 lists the input parameters for the extension point XQuery.

Table 4-36 ORDERITEM_STATUSCONTEXT Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$milestoneCode

	
xs:string

	
XQuery external variable

	
The current milestone code of the Order Item.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-37 lists the return parameters for the extension point XQuery.

Table 4-37 ORDERITEM_STATUSCONTEXT Return Parameters

	Output Parameter Type	Description
	
xs:string

	
Calculated description of the current order item status

Example 4-16 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OrderItemStatusContextForDeliver.xquery that demonstrates the extension implementation.

Example 4-16 ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/statusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";
import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog = "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at "http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $milestoneCode as xs:string external;

declare variable $MODULE_NAME := "OrderItemStatusContextForDeliver";

(:
 : For DELIVER, CANCEL fulfilllmentMode order, only return the last reported lifecycle if that is failure.
 :)
declare function local:getLatestFailedMilestoneStatusRecordsFromComponent(
 $orderItemComponentStatus as element()) as element()?
{
 let $lookupIndex := fn:max($orderItemComponentStatus/oms:MilestoneStatusRecord/oms:ExternalFulfillmentStateCode/@index)
 let $latestMilestoneStatusRecord := $orderItemComponentStatus/oms:MilestoneStatusRecord[oms:ExternalFulfillmentStateCode/@index=$lookupIndex]
 return
 if ($latestMilestoneStatusRecord/oms:ExternalFulfillmentStateCode/text()=$o2acomfulfillmentstate:FAILED_STATE)
 then
 (
 <oms:OrderItemComponentStatus>
 <oms:componentKey>{ $orderItemComponentStatus/oms:componentKey/text() }</oms:componentKey>
 <oms:componentType>{ $orderItemComponentStatus/oms:componentType/text() }</oms:componentType>
 <oms:systemType>{ $orderItemComponentStatus/oms:systemType/text() }</oms:systemType>
 {
 $latestMilestoneStatusRecord
 }
 </oms:OrderItemComponentStatus>
)
 else ()
};

(:
 : Concatenate all translated error message from all components that is currently failed.
 :)
declare function local:getStatusContextForFailedFulfillmentState(
 $orderItemStatus as element()) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $allOrderItemComponentStatus := $orderItemStatus/oms:OrderItemComponentStatus
 let $allFailedComponent :=
 <oms:AllFailedComponents>
 {
 for $orderItemComponentStatus in $allOrderItemComponentStatus
 return local:getLatestFailedMilestoneStatusRecordsFromComponent($orderItemComponentStatus)
 }
 </oms:AllFailedComponents>
 let $allFailedStatusContext :=
 <oms:AllFailedStatusContext>
 {
 for $failedComponent in $allFailedComponent/oms:OrderItemComponentStatus
 let $failedRecord := $failedComponent/oms:MilestoneStatusRecord
 return
 if ($failedRecord/oms:Status/oms:Description/text()!="")
 then
 (
 let $errorMsg := statusctxmapmodule:translateErrorMessage($failedComponent/oms:componentType/text(), $failedComponent/oms:systemType/text(), $failedRecord/oms:Status/oms:Description/text())
 return
 <oms:context>{ fn:concat($failedRecord/oms:MilestoneCode/text(),": ", $errorMsg)}</oms:context>
)
 else ()
 }
 </oms:AllFailedStatusContext>
 return
 if (fn:exists($allFailedStatusContext/oms:context))
 then fn:string-join($allFailedStatusContext/oms:context/text(), ", ")
 else ""
)
 else ""
};

let $orderItemStatus := .
return
 if ($fulfillmentState = $o2acomfulfillmentstate:FAILED_STATE)
 then local:getStatusContextForFailedFulfillmentState($orderItemStatus)
 else statusctxmapmodule:getOrderItemStatusContext($fulfillmentMode, $fulfillmentState, $milestoneCode)

REPORT_ORDERITEM_STATUS Extension Point

This section describes the XQuery script that implements the logic to handle the REPORT_ORDERITEM_STATUS extension point. This extension point enhances the upstream expected status value of the given Order Item. The enhanced value will then be updated to Order Item status field.

Table 4-38 lists the input parameters for the extension point XQuery.

Table 4-38 REPORT_ORDERITEM_STATUS Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$orderItem

	
Java Object

OrderItemFulfillmentStateLifecycle

	
XQuery external variable

	
The Java Object OrderItemFulfillmentStateLifecycle.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-39 lists the return parameters for the extension point XQuery.

Table 4-39 REPORT_ORDERITEM_STATUS Return Parameters

	Output Parameter Type	Description
	
xs:string

	
The decorated status value of this order item.

	
Note:

This extension point is not used in current Order-to-Activate implementation.

REPORT_ORDERITEM_MILESTONE Extension Point

This section describes the XQuery script that implements the logic to handle the REPORT_ORDERITEM_MILESTONE extension point. This extension point enhances the upstream expected milestone value of the given Order Item. The enhanced value will then be updated to Order Item milestone field.

The implementation for this script is to override the milestone value which is generated by the XQuery registered to extension ODERITEM_MILESTONE. Due to Oracle AIA requirements, if the order item's fulfillment state is cancelled then the milestone value set to upstream must be empty.

Table 4-40 lists the input parameters for the extension point XQuery.

Table 4-40 REPORT_ORDERITEM_MILESTONE Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$orderItem

	
Java Object

OrderItemFulfillmentStateLifecycle

	
XQuery external variable

	
The Java Object OrderItemFulfillmentStateLifecycle.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-41 lists the return parameters for the extension point XQuery.

Table 4-41 REPORT_ORDERITEM_MILESTONE Return Parameters

	Output Parameter Type	Description
	
xs:string

	
The decorated milestone value of this order item.

Example 4-17 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OnReportMilestoneDeliver.xquery that demonstrates the extension implementation.

Example 4-17 REPORT_ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";

declare namespace orderitem = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFulfillmentStateLifecycle";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $orderItem external;

let $fulfillmentState := orderitem:getFulfillmentState($orderItem)
return
 if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then ""
 else orderitem:getLatestMilestoneCode($orderItem)

REPORT_ORDERITEM_STATUSCONTEXT Extension Point

This section describes the XQuery script that implements the logic to handle the REPORT_ORDERITEM_STATUSCONTEXT extension point. This extension point enhances the upstream expected status context (Description) value of the given Order Item. The decorated value will then be updated to Order Item status context field.

The implementation for this script is to decorate the status context value which is generated by the XQuery registered to extension ORDERITEM_STATUSCONTEXT.

For DELIVER and CANCEL, if an order item's fulfillment state is FAILED and if the failure is not by the order item itself (Not fail due to its invoking component) then populate a message to indicate the failure is caused by its children, otherwise concatenate the milestone value and the status context value.

Table 4-42 lists the input parameters for the extension point XQuery.

Table 4-42 REPORT_ORDERITEM_STATUSCONTEXT Input Parameters

	Name	Type	Scope	Description
	
$fulfillmentMode

	
xs:string

	
XQuery external variable

	
Fulfillment mode of the sales order (DELIVER, CANCEL or TSQ)

	
$fulfillmentState

	
xs:string

	
XQuery external variable

	
The Order Item's current composite fulfillment state.

	
$orderEventType

	
xs:string

	
XQuery external variable

	
The event type when this extension is triggered. ORDER_EVENT_UPDATE and ORDER_EVENT_COMPLETE. ORDER_EVENT_UPDATE is set if this is triggered within the fulfillment function's Sub-process's automation task. ORDER_EVENT_COMPLETE is set if this is triggered within OSM order complete event handler.

	
$orderOperationType

	
xs:string

	
XQuery external variable

	
ORDER_OPERATION_CANCEL is set if the Oracle AIA order is doing a cancel operation no matter the cancel is triggered from upstream or from OSM Web Client, otherwise ORDER_OPERATION_NORMAL is set.

	
$orderItem

	
Java Object

OrderItemFulfillmentStateLifecycle

	
XQuery external variable

	
The Java Object OrderItemFulfillmentStateLifecycle.

	
.

	
Context node

	
XQuery context node

	
The OrderLifeCycleManagement XML fragment.

Table 4-43 lists the return parameters for the extension point XQuery.

Table 4-43 REPORT_ORDERITEM_STATUSCONTEXT Return Parameters

	Output Parameter Type	Description
	
xs:string

	
The decorated status context value of this order item.

Example 4-18 is a code fragment from OracleComms_OSM_O2A_Configuration/fulfillment-state-extension/OnReportStatusContextForDeliver.xquery that demonstrates the extension implementation.

Example 4-18 REPORT_ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace o2acomfulfillmentstate = "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant" at "http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/constant/FulfillmentStateConstantModule.xquery";

declare namespace orderItem = "java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFulfillmentStateLifecycle";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $orderItem external;

let $fulfillmentState := orderItem:getFulfillmentState($orderItem)
let $milestone := orderItem:getLatestMilestoneCode($orderItem)
let $statusContext := orderItem:getStatusContext($orderItem)
return
 if ($fulfillmentState = ($o2acomfulfillmentstate:FAILED_STATE, $o2acomfulfillmentstate:CANCELLED_STATE))
 then $statusContext
 else
 (
 if (fn:exists($milestone) and fn:exists($statusContext) and $milestone != "" and $statusContext != "")
 then fn:concat($milestone, ": ", $statusContext)
 else ""
)

Adding a New Service

This procedure describes how to add a new service such as broadband, VoIP, or TV to an Order-to-Activate solution cartridge. In this example, the new service would work with new Design Studio elements such as a new product class, product specification, and fulfillment provider. The procedure uses techniques and resources discussed throughout this chapter. For more information about performing the actions in this procedure in Design Studio, see the information about adding a new service in the section on extending component cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new service using Design Studio:

	
Create a new Order and Service Management project to host the new service.

	
In the Order and Service Management Cartridge editor Properties tab, deselect the Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the solution, rather than as a standalone cartridge with no dependencies.

	
Add a new product specification that extends from the base specification BaseProductSpec (or its extended product specification) to represent the new service in central order management.

See "Creating a New Product Specification" for more information about adding a product specification. See also the Design Studio Modeling OSM Orchestration Help for information about the Dependencies subtab in the product specification editor for information about setting appropriate dependencies in the orchestration plan for your new product specification.

	
If the new service will communicate with one or more new external systems, create new fulfillment providers for the new systems.

See "Adding a New Fulfillment Provider" for more information about adding a fulfillment provider.

	
Add a new product class and assign it to the appropriate product specification.

See "Creating a New Product Class" for more information about adding a product class.

	
Identify the location of the external folder containing the product specification. From the Window menu, select Preferences, then expand Oracle Design Studio in the Preferences navigation tree, then select Order and Service Management Preferences, and then select Orchestration Preferences. Select the appropriate folder, for example, OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/resources/productClassMapping folder as the Product Class Mapping folder.

	
If a new fulfillment provider is introduced for the new service, add decomposition rules for the new service in the topology cartridge, for example, OracleComms_OSM_O2A_TypicalTopology_Sample cartridge for central order management.

Alternatively, modify existing decomposition rules such as, for example, DecompFulfillmentFunction_To_FulfillmentProvider for the new service in the topology cartridge.

	
Add a new product specification that extends from the base specification SOM_Service.Provision (or its extended product specification) to represent the new service in service order management.

See "Creating a New Product Specification" for more information about adding a product specification. See also the Design Studio Modeling OSM Orchestration Help for information about the Dependencies subtab in the product specification editor for information about setting appropriate dependencies in the orchestration plan for your new product specification.

	
Add decomposition rules for the new service in the OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample cartridge for service order management.

Alternatively, modify existing decomposition rules such as DecompSomProvisionOrder_To_FulfillmentProvider for the new service in the topology cartridge.

	
If the new service will communicate with one or more new external systems, create a new provisioning cartridge similar to OracleComms_OSM_O2A_SomProvisionVoIP_Sample to provision the service.

	
Add the cartridge you created for the new service and other cartridges on which it has dependencies to the Dependency tab for the Order-to-Activate composite cartridge.

	
In the resources/SolutionConfig folder of the Order-to-Activate composite cartridge, for example OracleComms_OSM_O2A_COMSOM_TypicalSolution, make the following modifications:

	
If new milestones are to be introduced for the new service for new fulfillment provider, add a new <MilestoneMap> entry to the ComponentMilestoneMap.xml file for the new service without the PONR portion.

For example:

 <oms:MilestoneMap systemType="BRM" systemName="*" execMode="do redo amend_do">
 <oms:ComponentMilestone>COMPONENT-COMPLETE</oms:ComponentMilestone>
 <oms:Milestone>SYNC CUSTOMER COMPLETE</oms:Milestone>
 </oms:MilestoneMap>

	
If a new fulfillment provider is added for the new service, add a new <targetSystem> entry for each new fulfillment provider instance to the TargetSystemMap.xml file.

	
(Optional) Add a new role for your service if desired. If you add a new role, you must add an entry to the userConfig.xml file for your composite cartridge by doing the following:

	
Open the Package Explorer view and expand the package for your solution cartridge, such as OracleComms_OSM_O2A_COMSOM_TypicalSolution.

	
Expand the userConfig folder and open the userConfig.xml file.

	
Select the Source tab and scroll to the end. Before the closing </userConfig> element, add an entry like the following:

<workgroup name="YourRoleName">
 <user>oms-automation</user>
 <user>osmlf</user>
</workgroup>

	
Ensure that the appropriate orders, product specifications, and recognition rules are included in the manifest for the solution cartridge.

	
Package and deploy the Order-to-Activate composite cartridge.

Extending XQueries

This section contains general information about extending XQueries.

If it is necessary to extend XQueries that reside in a sealed cartridge, it is necessary to make a copy of the XQuery file and extend it to include custom business logic using XML catalog.

Describes design steps to extend an XQuery.

	
Open the Package Explorer view by selecting Window then selecting Show View and then Package Explorer.

	
Copy the XQuery file that needs to be extended and modify the copy to include custom logic. It's recommended to put the copy of the XQuery files in the Order-to-Activate composite cartridge.

	
In the Project Explorer view, open the Order-to-Activate composite cartridge and navigate to the directory xmlCatalogs/core.

	
Open the file catalog.xml.

	
Update the catalog.xml file as follows:

	
Add an entry to override the XQuery implementation that looks like this:

<rewriteURI uriStartString="http://xmlns.oracle.com/communications/ordermanagement/pip/<path>/<XQuery>.xquery” rewritePrefix="osmmodel:///OracleComms_OSM_O2A_COMSOM_TypicalSolution/1.0.0.0.0/resources/<path>/<XQuery>.xquery"/>

	
Note:

This entry must appear on a single line in the file.

Sending Enriched Data to the CRM System

Data that was not originally supplied in the order from the CRM system must often be sent up to Siebel CRM from a downstream system; this data is referred to as enriched data. Enriched data can be an update to an order header value or an added attribute to a line item that was originally supplied in the order from the CRM system. Enriched data cannot include new line items that were not part of the original order from Siebel CRM (only modifications to existing line items).

In the Order-to-Activate cartridges, downstream systems can send enriched data up to the CRM system using the SpecificationGroup area of each order line item. SpecificationGroup is a structure that contains multiple substructures of the order specification. The Specification.Name and Specification.Value parameters store the enriched data.

The demonstration cartridges OracleComms_OSM_O2A_SomProvisionBroadband_Sample and OracleComms_OSM_O2A_SomProvisionVoIP_Sample provide an example of sending enriched data to the CRM system. These cartridges must populate the EBM type ProcessProvisioningOrderUpdateEBM and send that data to the OracleComms_OSM_O2A_SOM_Base cartridge. The OracleComms_OSM_O2A_SOM_Base cartridge in turn creates another EBM type ProcessFulfillmentOrderUpdateEBM that contains the SpecificationGroup structure and sends that data to the OracleComms_OSM_O2A_SOM_Base cartridge. The OracleComms_OSM_O2A_SOM_Base cartridge in turn creates the EBM type UpdateSalesOrderEBM and sends that data to the CRM system. The SpecificationGroup structure is defined in all of these EBM types.

For example, when the Provisioning task completes in the OracleComms_OSM_O2A_SomProvisionBroadband_Sample cartridge, the Service ID is populated and propagated back to the CRM system, which can now use the Service ID to track the asset.

Considerations When Integrating with Oracle AIA

The following points refer to EBO attributes that use domain value maps in Oracle AIA, and how to extend the list of seeded values in the OSM cartridges. You update the validation rule in the OracleComms_OSM_O2A_COM_Base cartridge (either reduce the validation level or include the new value(s)) and describe the extensibility of each such EBO attribute on a case-by-case basis.

Consider the following factors when integrating OSM with Oracle AIA:

	
XML tags - some fields are key fields with enumerated values. These values are hard coded in the cartridge so they have to match. These are documented in the data dictionary in the cartridge itself.

	
The EBO attribute values can be extended - you can add your own values, but they have to line up in the data dictionary in the cartridge, in the customized rules in the cartridge, for instance, where you choose a billing instance based on a value such as BUSINESS vs. RESIDENTIAL. The value would have to come from Application Business Connector Service (ABCS) correctly to match. Other custom rules could be created that switch on this value.

	
Consumers of OSM generated EBMs such as OSM in its service order management role, and ABCS should not make use of the attributes schemeID, and schemeAgencyID in order identifications, order references, line identifications, and line references. The following are couple of examples:

<corecom:BusinessComponentID schemeID="SALESORDER_ID" schemeAgencyID="COMMON">
<corecom:BusinessComponentID schemeID="SALESORDER_LINEID" schemeAgencyID="COMMON">

	
Queue names have to agree if you add another billing function - you would not have to add more queues if you were not adding more fulfillment functions. But if you do, the queue names have to agree with the ABCS.

Table 4-44 lists the summary of JNDI names for WebLogic JMS Queues for system interactions included in the Order-to-Activate cartridges. In support of system interactions, OSM central order management and OSM service order management communicate with the Application Business Connector Services (ABCS) for the fulfillment systems such as Siebel CRM ABCS, and Oracle Communications Billing and Revenue Management (BRM) ABCS through posting JMS messages to the queues given below.

In the WebLogic console, queues are found in: Home >JMS Modules >oms_jms_module

	
Note:

There must be an alignment of JNDI names across Order Management and Application Business Connector Services which communicate. You must be aware of this alignment if you add additional queues for new fulfillment functions.

Table 4-44 WebLogic JNDI Request/Response queues

	System interaction request/response	JNDI name	In-bound/Out-bound
	
AIA Customer Order support

	
oracle/communications/ordermanagement/WebServiceQueue

	
Siebel CRM ABCS to OSM central order management

	
AIA Service Order support

	
oracle/communications/ordermanagement/WebServiceQueue

	
In-bound to OSM service order management

	
SyncCustomer request

	
oracle/communications/ordermanagement/WebServiceCreateCustomerQueue

	
OSM central order management to BRM ABCS

	
SyncCustomer response

	
oracle/communications/ordermanagement/WebServiceCreateCustomerResponseQueue

	
BRM ABCS to OSM central order management

	
InitiateBilling request

	
oracle/communications/ordermanagement/WebServiceCreateBillingOrderQueue

	
OSM central order management to BRM ABCS

	
InitiateBilling response

	
oracle/communications/ordermanagement/WebServiceCreateBillingOrderResponseQueue

	
BRM ABCS to OSM central order management

	
FulfillBilling request

	
oracle/communications/ordermanagement/WebServiceCreateBillingOrderQueue

	
OSM central order management to BRM ABCS

	
FulfillBilling response

	
oracle/communications/ordermanagement/WebServiceCreateBillingOrderResponseQueue

	
BRM ABCS to OSM central order management

	
ProvisionOrder request

	
oracle/communications/ordermanagement/WebServiceCreateProvisioningOrderQueue

	
OSM central order management to Oracle AIA destined for OSM service order management

	
ProvisionOrder response (ProcessFulfillmentOrderUpdate)

	
oracle/communications/ordermanagement/WebServiceUpdateFulfillmentOrderQueue

	
OSM service order management to Oracle AIA destined for OSM central order management

	
CancelProvisioningOrder request

	
oracle/communications/ordermanagement/WebServiceCancelProvisioningOrderQueue

	
OSM central order management to OSM service order management

	
UpdateSalesOrder

	
oracle/communications/ordermanagement/WebServiceUpdateSalesOrderQueue

	
OSM central order management to Siebel CRM ABCS

	
CreateTroubleTicket request

	
oracle/communications/ordermanagement/CreateTroubleTicketRequestQueue

	
OSM central order management to Siebel CRM ABCS

	
CreateTroubleTicket response

	
oracle/communications/ordermanagement/CreateTroubleTicketResponseQueue

	
Siebel CRM ABCS to OSM central order management

	
UpdateTroubleTicket request

	
oracle/communications/ordermanagement/UpdateTroubleTicketRequestQueue

	
OSM central order management to Siebel CRM ABCS

	
CreateErrorFault

	
oracle/communications/ordermanagement/CreateErrorFaultQueue

	
OSM service order management to Oracle AIA

	
Fallout for service order management response

	
oracle/communications/ordermanagement/WebServiceFalloutLFResponseQueue

	
OSM service order management to central order management

	
Abort order response

	
oracle/communications/ordermanagement/LFAbortOrderPropagationRespQueue

	
OSM Provisioning to service order management

5 Performing Order-to-Activate Cartridge Operations

This chapter describes operational procedures that may be needed for the Order-to-Activate cartridges for Oracle Communications Order and Service Management (OSM).

XQuery Transformation Logging

In XQuery files, use a variable such as activityqueuelogging set to TRUE, and a message goes into a queue, the order activity queue, that turns logging on for that XQuery transformation.

XQuery files in the CommunicationsSalesOrderFulfillmentPIP cartridge, which support XQuery transformation logging, have a variable called logOrderactivity declared near the top of the file:

declare variable $logOrderactivity := false();

The variable should be set to false() in a production environment. In a test environment, set the variable to true() to enable debugging. Remember to rebuild and redeploy the cartridge after changing this value. Each time the XQuery transformation is invoked during processing of a customer order, a message is written to a JMS queue called OSM_OrderActivityQueue containing input to, and output from the XQuery transformation. Toggling the value between true and false must be done on a per-file basis, and is not dynamically controllable at runtime.

declare variable $logOrderactivity := true();

The JMS queue OSM_OrderActivityQueue in the WebLogic console can be found at: Home >JMS Modules >oms_jms_module >OSM_OrderActivityQueue.

Troubleshooting Order-to-Activate Cartridges

The following details help you in troubleshooting the Order-to-Activate cartridges.

Updating the JMS Redelivery Configuration Settings

When the Order-to-Activate cartridges are installed, the Redelivery Delay Override and Redelivery Limit WebLogic parameters are set during installation to 7000ms and 10, respectively. However, different values may be more effective for your OSM environment depending on your usage of the system.

If you encounter timing-related issues for message delivery on JMS queues, there are a number of WebLogic settings that you can modify to resolve the issue. These values are set on every JMS queue through the WebLogic Service Console. From Home, select JMS Modules, and then select oms_jms_module to modify the following settings:

	
Redelivery Delay Override: Delay in milliseconds before rolled back or recovered messages are redelivered. This value overrides the Redelivery Delay setting.

	
Redelivery Limit: The number of times to attempt to redeliver a message.

	
Time-to-Deliver: Delay in milliseconds before a sent message is visible at the target destination. Typical values for this setting are 100 through 700.

To find the best values for these parameters, start with initial values less than 7000ms for the Redelivery Delay Override, 10 for the Redelivery Limit and 100 for the Time-to-Deliver parameter and increase them slightly until no occurrences of errors are observed. The actual values you finalize on will depend on your particular implementation of OSM. See the Oracle WebLogic documentation for complete details on these parameters.

Setting Cartridge Breakpoints

There are process flows in the cartridge with a manual task between each automated task. With certain input data in the customer order, it causes it to go through the automation and stop at a particular manual task.

The Order-to-Activate cartridges have been instrumented with control points in the process flows so that a tester can control the process flow before or after functions, examine data anywhere in the flow, do revision testing, and do point-of-no-return testing. The flows are automated, but can be instructed to stop at a manual task before or after normal automated tasks.

The Siebel Customer Relationship Management (Siebel CRM) sales order number is used to control the flows by prefixing the number with format [AIATest.Task#.Target#]. Only one breakpoint can be set.

Table 5-1 lists the task numbers and names.

Table 5-1 Task Number and Task Name

	Task #	Task Name
	
0

	
<Any>

	
1

	
Before SyncCustomer Task

	
2

	
Before InitiateBilling Task

	
3

	
Before FulfillBilling Task

	
7

	
After SyncCustomer Task

	
8

	
After InitiateBilling Task

	
9

	
After FulfillBilling Task

	
10

	
After Provisioning Request Sent Task

	
11

	
After Provision Response Received Task

	
31

	
Before Provision InternetServiceBundle Task

	
32

	
Before Provision InternetMediaServiceBundle Task

	
33

	
Before Provision InternetEmailServiceBundle Task

	
34

	
Before Provision CPEEntryPointTask

	
41

	
Before Provision VoIPServiceBundle Task

	
42

	
Before Provision VoIPCPE Task

Table 5-2 lists the OSM and Oracle Application Integration Architecture (Oracle AIA) fulfillment systems.

Table 5-2 OSM and Oracle AIA Targets

	Target#	OSM Fulfillment System Name	AIA Logical Fulfillment System ID
	
0

	
<Any>

	
<Any>

	
1

	
BRM-ALL

	
BRM_01

	
2

	
BRM-VoIP

	
BRM_02

	
4

	
BRM-REZBDB

	
BRM_03

	
4

	
BRM-BIZBDB

	
BRM_04

	
7

	
Provisioning-ALL

	
OSMPROV_01

	
8

	
Provisioning-VoIP

	
OSMPROV_02

	
9

	
Provisioning-VoIP

	
OSMPROV_02

	
10

	
Provisioning-BRD

	
OSMPROV_03

It is also possible to disable the PoNR per-component level by setting the order key prefix as [PONRControl.Component#].

Table 5-3 lists the OSM component levels.

Table 5-3 OSM Component levels

	Component #	OSM Component Name	Example
	
0

	
<Any>

	
[PONRControl.0]

	
1

	
SyncCustomerFunction

	
[PONRControl.1]

	
2

	
InitiateBillingFunction

	
[PONRControl.2]

	
3

	
ProvisionOrderFunction

	
[PONRControl.3]

	
4

	
ShipOrderFunction

	
[PONRControl.4]

	
5

	
InstallOrderFunction

	
[PONRControl.5]

	
6

	
FulfillBillingFunction

	
[PONRControl.6]

	
7

	
InstallOrderFunction ShipOrderFunction

	
[PONRControl.7]

	
8

	
ProvisionOrderFunction,

InstallOrderFunction,

ShipOrderFunction

	
[PONRControl.8]

1 Overview of the Order-to-Activate Cartridges

This chapter describes how to install and use the Oracle Communications Order and Service Management (OSM) Order-to-Activate cartridges for the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management.

About the Application Integration Architecture Order-to-Activate Cartridges

The Order-to-Activate cartridges are pre-built OSM cartridges that support the Oracle Order-to-Activate business process to be used with the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management (Order to Cash Integration Pack for OSM). See "Order-to-Activate Business Process Overview" for a discussion of the Order-to-Activate business process.

Oracle Application Integration Architecture (Oracle AIA) integrates Oracle applications, such as OSM, Siebel Customer Relationship Management (Siebel CRM), and Oracle Communications Billing and Revenue Management (BRM). External systems, such as workforce management applications, can also be included in the solution.

In Order-to-Activate cartridges:

	
OSM performs central order management by orchestrating the fulfillment of customer orders coming from Oracle AIA.

	
OSM performs service order management by orchestrating service orders sent to fulfillment systems.

See OSM Concepts for more details.

Order-to-Activate Business Process Overview

The Oracle Order-to-Activate business process is at the core of business and operational support systems for any Communications Service Provider (CSP). The process extends from the time a quote or order is created to the time when the goods and services are delivered and properly billed.

Figure 1-1 illustrates the functional flow of the Order-to-Activate business process.

Figure 1-1 Order-to-Activate Functional Flow

[image: Functional flow of the Order-to-Activate business process.]

The following are the steps for the functional flow of the Order-to-Activate business process as shown in the preceding figure:

	
A customer order is captured in Siebel CRM. For some orders, the order may require technical qualification, such as validating that the network has enough capacity to offer the purchased products. After an order capture is complete and the order is validated in Siebel CRM, the system submits it to OSM in the central order management role for delivery. The two arrows from Capture Customer Order to Fulfill Customer Order show the Qualify scenario and the Deliver scenario.

	
Customer orders (both Qualify and Deliver request types) received in OSM in the central order management role are first recognized (as Oracle AIA customer orders), mapped to fulfillment patterns, and enriched with fulfillment metadata.

	
OSM in the central order management role decomposes the customer order, dividing it into suborders, called order components, which have cross-order components, cross-order lines, and cross-order dependencies that reflect the specific demands of the CSP.

	
The outcome is an order orchestration plan that is uniquely generated to match the fulfillment needs of that order. The fulfillment flow that is produced orchestrates fulfillment requests to different fulfillment providers (such as fulfillment system instances or stacks) using preconfigured fulfillment functions, like sync customer, initiate and fulfill billing, and provision order. OSM Order-to-Activate cartridges provide out of the box ready-to-use automatic integration to Oracle AIA Web services. When the BRM pre-built integration option is in use, it takes the billing related requests (Sync Customer, Initiate and Fulfill Billing) made by OSM in the central order management role to Oracle AIA, from Oracle AIA to BRM. The Sync Customer Oracle AIA process integration also uses the Siebel CRM pre-built integration option to get customer account details.

	
OSM in the central order management role manages Order Lifecycle Management (OLM) events. For cancel and revision requests, OSM generates and executes compensation plans to efficiently match a change. OLM manages order data and status updates, and order fallout.

	
Throughout the fulfillment process, OSM in the central order management role maps fulfillment function responses to common statuses, which are then aggregated into order line statuses and order header status values. The status management capability updates Siebel CRM with relevant customer status and milestone values. OSM updates Siebel CRM when order lines reach their point-of-no-return (PoNR) to prevent the submission of new revisions. It also updates Siebel CRM with any enrichment to order lines that may have occurred during fulfillment. Errors may occur for many reasons. Oracle AIA reports such errors to OSM for fallout management. Additionally, validation logic in OSM may raise fallout incidents.

	
OSM detects, reports, and resolves order fulfillment fallout incidents such as system, validation, and fulfillment errors. The Oracle approach creates trouble tickets in Siebel CRM to take advantage of the rich notification, reporting, and management capabilities of Siebel CRM.

The Order-to-Activate business process is a sub-process within the Order to Cash business process. The Oracle Communications Order to Cash pre-built integration provides CSPs deployment and integration accelerators that build on forward-looking industry methodology and best practices. The Oracle Communications Order to Cash automates Business Support Systems (BSS) Concept to Launch and BSS Order-to-Activate processes across Siebel CRM, OSM, BRM, and Oracle Product Hub for Communications. For more information about the Order to Cash business process see Oracle Communications Order to Cash Integration Pack Implementation Guide for Siebel CRM, Oracle Order and Service Management, and Oracle Billing and Revenue Management in the Oracle Application Integration Architecture documentation.

Overview of the Order-to-Activate Cartridges

The Order to Cash Integration Pack for OSM solution integrates several Oracle applications that play particular roles in order processing:

	
Siebel CRM for order capture and trouble ticketing

	
OSM for order processing and service fulfillment

	
Oracle Communications Design Studio for product specification definition including fulfillment metadata and order line to fulfillment pattern mapping

	
BRM for rating, billing, and revenue management

	
Oracle AIA Error handling Framework for Fallout management

The order is captured by Siebel CRM and is sent to OSM (in its central order management role) for processing. Using the recognition rules and other entities provided by the OSM cartridges in the Order to Cash Integration Pack for OSM solution, OSM decomposes the order and dynamically generates an orchestration plan that is used to manage the fulfillment of the customer's order across other enterprise systems.

To manage service fulfillment, OSM in the central order management role creates service orders that it sends to OSM in the service order management role. Depending on the order, recognition rules can be used again to process the order. Each service order is decomposed into processes and tasks that handle the order fulfillment.

In the Oracle AIA solution, OSM does not directly interact with billing, CRM, or Provisioning systems. It interacts with Oracle AIA which in turn uses BRM Application Business Connector Service (ABCS) for billing and CRM ABCS for Siebel CRM.

For more details on Oracle AIA, Siebel CRM, and Oracle AIA interactions, see OSM Concepts and Oracle Communications Order to Cash Integration Pack Implementation Guide for Siebel CRM, Oracle Order and Service Management, and Oracle Billing and Revenue Management.

Figure 1-2 illustrates the integration points between the systems. The integration points include the following:

	
Customer order submission from Siebel CRM to OSM and updates from OSM to Siebel CRM

	
Customer data synchronization and order billing from OSM to BRM

	
Service provisioning from OSM central order management to OSM service order management

	
Mapping OSM with Siebel CRM by associating Siebel CRM product classes with OSM product specifications

	
Trouble ticket logging for fallout from OSM to Siebel CRM

Figure 1-2 Order-to-Activate Cartridges Oracle AIA Integration Points

[image: AIA Interaction points]

OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution

There are two categories of cartridges that support the Order to Cash Integration Pack for OSM solution in OSM: productized cartridges and demonstration cartridges.

Productized cartridges are customized cartridges supplied by Oracle. They support integration with other applications.

Demonstration cartridges demonstrate the capabilities of OSM and are preconfigured with fulfillment patterns either in Simple or Typical topologies. See "About Fulfillment Topologies" for more details on topologies.

Demonstration cartridges complement productized cartridges to provide a working end-to-end sample set of product specifications and fulfillment patterns. See "Extending the Cartridges" for more details.

OSM central order management orchestrates the fulfillment of customer orders by mapping them to the product specifications of the demonstration cartridges.

OSM entities (recognition rules, tasks, roles, decomposition sequences, and others) play a vital role in the Order to Cash Integration Pack for OSM solution. For more information on an entity in a cartridge, open the entity in Design Studio and click the Information icon.

The cartridges are subclassified into central order management cartridges, or service order management cartridges depending on the fulfillment functions they perform.

Extending the Cartridges

Using Design Studio, OSM allows you to extend the functionality of a productized cartridge to have required functionality.

You can consider a demonstration cartridge as a starting point to understand the capabilities it can offer and then plan to extend the productized cartridge according to your requirements. You can extend a productized cartridge by adding product specifications, inheriting from existing specifications, fulfillment patterns, decomposition sequences, and modifying other entities.

See "Extending Order-to-Activate Cartridges" for more information on extending cartridges.

Example

If you have productized and demonstration cartridges in different namespaces with corresponding product specification type entities, you can create a customized product specification by modifying the product specification type entity in the demonstration cartridge and mapping it to the appropriate product specification type entity in the productized cartridge.

To facilitate this customization, OSM derives the ProductSpec name from the property ProductSpecMappingProperty of the OrderItemSpecifcation entity and lets you map it to the appropriate entity in the productized cartridge under the same namespace.

	
Note:

A namespace is a unique qualifier that logically binds related entities, cartridges, and specifications. To view the namespace and other details about an entity, open the entity in Design Studio and click the Information icon.

Time Zones in Order-to-Activate Cartridges

OSM supports orders and users in multiple time zones. The time zone used by OSM is configured on the server at system installation, and is used to time-stamp incoming and outgoing orders and to schedule work for groups. See OSM Installation Guide for more details.

Time Zones in OSM with Order-to-Activate Cartridges

When OSM uses Order-to-Activate cartridges, the OSM server accepts and processes only those orders that have time stamps in the Coordinated Universal Time (UTC) in the GMT time zone (also called the Z convention). For example, 2010-03-12 08:23Z.

The Order-to-Activate cartridges support only Z convention-based fields, except for the RequestedDeliveryDateTime field.

The RequestedDeliveryDateTime field on the ProcessSalesOrderFulfillmentEBM (incoming customer order) is mapped to the Web service API's date time field for initial order creation. This field allows the use of the +/-hh:mm convention along with the Z convention.

The other Oracle AIA-relevant date and time fields that follow the Z convention are:

	
ActualDeliveryDateTime

	
ExpectedDeliveryDateTime

	
EarliestDeliveryDateTime

	
StartDateTime

	
EndDateTime

	
ServiceUsageStartDateTime

	
PurchaseDate

	
CycleStartDateTime

Oracle AIA Emulators

The Oracle AIA Emulators emulate responses from Oracle AIA when a central order management cartridge is used in a standalone (without integration with other applications) environment. The OracleComms_OSM_O2A_Install project contains an Ant build file. This file is used to build and deploy emulators, which are enterprise applications built and deployed into WebLogic for central order management, service order management, and fallout.

About Fulfillment Topologies

A fulfillment topology defines the arrangement of various network elements, processes, systems, software, that are used to perform a complete service. The Order to Cash Integration Pack for OSM solution comes with two sample fulfillment topology definitions. The sample fulfillment topology by name 'Simple' supports a single instance of each fulfillment system. The sample fulfillment topology with the name 'Typical' supports multiple instances of each fulfillment system, and a simulation of additional fulfillment systems including workforce management and supply chain management. OSM also supports you to configure a fulfillment topology. See OSM Concepts for more information.

You can use the sample fulfillment topologies (Simple and Typical) as examples to learn from while configuring your own topologies for providing order fulfillment services. Both Simple and Typical topologies have their distinct characteristics and participating systems. CSPs can build their own topologies depending on the systems and instances required. Generally a CSP's fulfillment topology includes all of the BSS and OSS systems that participate in the order capture and order fulfillment.

Simple fulfillment topology provides basic fulfillment patterns when OSM operates in the central order management role.

Typical fulfillment topology extends the fulfillment systems to include workforce management and supply chain management apart from Siebel CRM and BRM.

OSM uses fulfillment patterns named Danube and Nile (code names for sample fulfillment patterns), for Simple and Typical topologies, respectively. These fulfillment patterns:

	
Match the number of fulfillment system types used in each of the fulfillment topology scenarios

	
Stay agnostic to the number and domain of fulfillment providers, that is, the fulfillment patterns is independent of the number of system instances participating (For instance, even if there are three billing system instances, the fulfillment pattern for each product specification remains the same)

	
Provide fulfillment pattern variations that collectively provide significant coverage of requirements

See OSM Concepts for more details on topologies.

Simple Fulfillment Topology

The Simple fulfillment topology uses one Siebel CRM system, one BRM system, and one provisioning system in the process of fulfilling an order. Figure 1-3 illustrates this concept.

Figure 1-3 Simple Fulfillment Topology

[image: Illustration of the simple fulfillment topology]

The sample demonstration cartridge adopts the Simple fulfillment topology and Danube fulfillment pattern in fulfilling an order. That is, in Simple fulfillment topology, the relationship between Siebel CRM, BRM, and central order management is set to support communication using the Danube fulfillment pattern in fulfilling an order.

The Danube Fulfillment Pattern

The Danube fulfillment pattern is used with the Simple fulfillment topology in the OSM fulfillment process. Figure 1-4 illustrates a smaller portion of a sample Danube fulfillment pattern.

Figure 1-4 Danube Fulfillment Pattern

[image: Illustrates a subset of a sample Danube fulfillment pattern]

	
The main fulfillment functions in Figure 1-4 are represented in a box and are indicated by the bold item underlined. The activity name is followed by the target fulfillment system instance in square brackets. For example, InitiateBilling[BRM-ALL].

	
The arrows between the fulfillment functions and the fulfillment pattern represent the dependency for starting the activity at the arrowhead end on the indicated milestone. For example, COMPLETED.

	
Note:

Milestones track the progress of the order fulfillment process. You can configure the milestones for each fulfillment pattern in various topologies. OSM sends the status updates to Siebel CRM that include the details of the last reached milestone for each order line item.

	
Dependencies are established at the order line level. For readability purposes, Figure 1-4 combines all dependencies between two order components into a single arrow.

	
SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add (MA) fulfillment functions.

	
Note:

Each customer order line in the incoming customer order has an action code. Some fulfillment functions process order lines only with specific action codes.
For example, SyncCustomer processes UPDATE order lines only when there are significant updates (certain fields have updated values). The following are some of the action codes:

	
Add: Adds a new instance

	
Update: Updates the current instance with the revised details

	
Move-Add: Adds a new instance after moving existing customer details to a new location. For example, you can add a new service to an existing customer after moving its details.

	
Delete: Deletes the current instance

	
Resume: Resumes the current instance

	
Suspend: Suspends the current instance

	
Move-Delete: Deletes an instance as part of moving the existing customer details.

	
The relevant order line item actions indicated in Figure 1-4 are a property of the fulfillment function and not the fulfillment pattern.

Typical Fulfillment Topology

The Typical fulfillment topology uses one Siebel CRM system, three BRM system instances, and three provisioning system instances in the process of fulfilling an order. To fulfill an order in a Typical fulfillment topology, the Nile fulfillment pattern is used. Figure 1-5 illustrates this topology.

Figure 1-5 Typical Fulfillment Topology

[image: Depiction of Typical fulfillment topology]

The Nile Fulfillment Pattern

The Nile fulfillment pattern is used with the Typical fulfillment topology in the OSM fulfillment process. Figure 1-6 depicts a smaller portion of the actual fulfillment pattern.

Figure 1-6 Nile Fulfillment Pattern

[image: Depiction of the Nile fulfillment pattern]

	
The main fulfillment functions in Figure 1-6 are represented in a box and are indicated by the bold item underlined. The activity name is followed by the target fulfillment system instance in brackets. For example, SyncCustomer[BRM-REZBDB].

	
The arrows between the fulfillment functions and the fulfillment pattern represent the dependency for starting the activity at the arrowhead end on the indicated milestone. For example, COMPLETED.

	
Dependencies are established at the order line item level. For readability purposes, Figure 1-6 combines all dependencies between two order components into a single arrow.

	
Service Bundle (FulfillBilling processing granularity) is set to WholeItem FulfillBilling and OSM produces a single invocation in this case.

	
SyncCustomer accepts all line items, and ProvisionOrder accepts all line items except billing-only line items.

	
SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add(MA) fulfillment functions.

	
The relevant order line actions indicated in Figure 1-6 are a property of the fulfillment function and not the fulfillment pattern.

	
For Initiate - Fulfill billing fulfillment patterns, OSM fulfillment patterns are required to compute the new and prior values for the Start Cycle Date, Start Usage Date, and Purchase Date.

6 Prior Versions of Order-to-Activate Cartridges

This chapter provides information about prior versions of Oracle Communications Order and Service Management (OSM) Order-to-Activate cartridges. It contains information about updating prior versions of the Order-to-Activate cartridges to work with newer versions of OSM and describes the changes that were made in recent versions of the cartridges.

Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM

It is possible to update prior versions of the Order-to-Activate cartridges to work with newer versions of OSM. To update Order-to-Activate cartridges to work with OSM 7.2 and earlier, see OSM Cartridge Guide for Oracle Application Integration Architecture for the version of OSM you want to use. To update Order-to-Activate cartridges to work with OSM 7.2.2 or later, see OSM Installation Guide for the version of OSM you want to use.

Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1

This section provides a high-level description of the changes between Order-to-Activate 7.2 cartridges and Order-to-Activate 2.0.1 cartridges.

Release Number Changes and Packaging Changes

This release of the Order-to-Activate cartridges contains changes to the way releases are numbered and changes to the way the cartridges are packaged.

Through the OSM 7.2 release, the Order-to-Activate cartridges were released at the same time as the OSM software, and the release numbers for OSM and Order-to-Activate were the same. Now however, Oracle has decided to separate the OSM and Order-to-Activate releases. The Order-to-Activate releases are now being aligned toward the Oracle Application Integration Architecture (Oracle AIA) releases. Because of these changes, the Order-to-Activate cartridges are being given their own release numbers. Order-to-Activate 2.0.1 is the first in the new version number series. Release numbers for the older versions of the Order-to-Activate cartridges are not being updated.

Order-to-Activate cartridges are also separate from the OSM media pack on the Oracle Software Delivery Web site, and patches for the Order-to-Activate cartridges will be released separately from OSM patches. For more information, see Cartridges for Oracle Application Integration Architecture Release Notes, Release 2.0.1.

Support for Multiple Price Lists

Previously, the productized integration supported only one default price list, so price list information was not included on the order. In Order-to-Activate 2.0.1, the price list has been added to the order so that multiple price lists can be supported.

Price list information is passed from Oracle AIA to the Order-to-Activate cartridges as part of the ProcessSalesOrderFulfillmentEBM message. the Order-to-Activate cartridges then populate the order item into the order template. When interacting with the billing system, the Order-to-Activate cartridges generate a ProcessFulfillmentOrderBillingEBM, which includes the price list information base on the Oracle AIA EBM schema.

The price list information is populated into the following structure in OSM:

/ControlData/Functions/FunctionName/orderItemRef/orderItem/BaseLineItemData/SalesOrderSchedule/PriceListReference

Support for Importing Product Classes Directly from Oracle Product Hub

It is possible to query product classes and transaction attributes into Oracle Communications Design Studio directly from the Oracle Product Hub. Design Studio users use the existing Oracle AIA interface QueryProductClassAndAttributesSCECommsReqABCSImpl to import product classes from both Siebel Customer Relationship Management (Siebel CRM) and the Product Hub. When product classes are queried using this interface, the interface API checks for Product Hub implementation in the Oracle Communications Order to Cash implementation, and if it is there, the product classes are imported to Design Studio from Product Hub. If Product Hub is not present in the Order to Cash implementation, the product classes are imported into Design Studio from Siebel CRM.

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

This section provides a high-level description of the changes between Order-to-Activate 7.0.3 cartridges and Order-to-Activate 7.2 cartridges.

Cartridge Re-Factoring Overview

In version 7.2, the Order-to-Activate cartridges have been reorganized to make use of cartridge extensibility. The changes include:

	
The cartridges have been renamed with the prefix OracleComms_OSM_O2A_.

	
Composite cartridges have been introduced.

	
The base cartridges for central order management and service order management have been re-factored into multiple cartridges per fulfillment system.

	
Cartridges that ordinarily should not be modified have been sealed. Cartridges that can be modified are not sealed and have the suffix _Sample.

	
Fulfillment states have been implemented.

	
The order template for a function is now constructed from OracleComms_OSM_CommonDataDictionary and the local data dictionary OracleComms_OSM_O2A_COM_Function according to general recommendations for working with the common data dictionary.

	
Composite cartridge views have been created to add task data to COM_SalesOrderFulfillment_CreationTask, COM_SalesOrder_StateChangeView, and COM_SalesOrder_AggregatedOLMView.

	
The order component GetCommunicationsServiceConfigurationDetails has been removed from service order management.

Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2

Table 6-1 shows the functional mapping between the Order-to-Activate 7.0.3 cartridges and the Order-to-Activate 7.2 cartridges. See "Cartridge Overview" for descriptions of the Order-to-Activate 7.2 cartridges.

Table 6-1 7.0.3-to-7.2 Order-to-Activate Cartridge Mapping

	Order-to-Activate 7.0.3 Cartridge	Order-to-Activate 7.2 Cartridge
	
[No equivalent]

	
OracleComms_OSM_CommonDataDictionary

	
OracleCgbuOsmAIAInstallation

	
OracleComms_OSM_O2A_Install

	
OracleCgbuAIAComponentsDataDictionaryPIP

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
OracleCgbuCommonDataDictionaryPIP

	
OracleComms_OSM_O2A_CommonUtility

	
OracleCommSystemAdminOrders

	
OracleComms_OSM_O2A_SystemAdmin

	
OracleCgbuControlMap

	
OracleComms_OSM_O2A_ControlMap

	
OracleCgbuSIFalloutPIP

	
[Merged into OracleComms_OSM_O2A_COM_Base]

	
CommunicationsSalesOrderFulfillmentPIP

	
OracleComms_OSM_O2A_COM_Base

OracleComms_OSM_O2A_COM_SalesOrderFulfillment

OracleComms_OSM_O2A_COM_Shipping_Sample

OracleComms_OSM_O2A_COM_Billing

OracleComms_OSM_O2A_COM_Provisioning

OracleComms_OSM_O2A_COM_Install_Sample

	
OracleCgbuProvisioningFallout

	
[Merged into OracleComms_OSM_O2A_SOM_Base]

	
CommunicationsProvisioningOrderFulfillmentPIP

	
OracleComms_OSM_O2A_SOM_Base

OracleComms_OSM_O2A_SOM_Provisioning

OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

	
OracleCgbuCommunicationsORPFalloutPIP

	
OracleComms_OSM_O2A_RecognitionFallout

	
[Drawn from various base cartridges]

	
OracleComms_OSM_O2A_COMSOM_Recognition_Sample

	
[Drawn from various base cartridges]

	
OracleComms_OSM_O2A_COM_Recognition_Sample

	
[Drawn from various base cartridges]

	
OracleComms_OSM_O2A_SOM_Recognition_Sample

	
OracleCgbuDoublePlayProductMap

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
DoublePlayProductSpecificationNile

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample

	
DoublePlayProductSpecificationDanube

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample

	
OracleCgbuDoublePlayProductSpecNileTdDcn

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlowDcn_Sample

	
TypicalSalesOrderFulfillment

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
SimpleSalesOrderFulfillment

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
OracleCgbuTypicalSalesOrderFulfillment

	
[Cartridge has been removed, but functionality is duplicated in OracleComms_OSM_O2A_ControlMap]

	
BroadbandServicesProvisioning

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
VoIPServiceProvisioning

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
SalesOrderSubmission

	
OracleComms_OSM_O2A_SalesOrders_Sample

Oracle® Communications Order and Service Management

Cartridge Guide for Oracle Application Integration Architecture

Release 2.0.1

E35422-01

March 2013

Oracle Communications Order and Service Management Cartridge Guide for Oracle Application Integration Architecture, Release 2.0.1

E35422-01

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Oracle Communications Order and Service Management (OSM) delivers pre-built cartridges supporting the Order-to-Activate business process to be used with the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management. This guide provides information about the OSM Order-to-Activate cartridges for the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management. It explains how to install and deploy the cartridges and provides detailed information and best practices on how to extend them for your own implementation.

	
Note:

The Oracle Application Integration Architecture Order-to-Activate Process Integration Pack is renamed to Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management. The OSM cartridges are referred to as Order-to-Activate cartridges in all OSM documentation because they support the Order-to-Activate business sub-process within the overall Order to Cash business process for service providers. See "Order-to-Activate Business Process Overview" for a description of the Order-to-Activate business sub-process.
The term Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management and the term Order to Cash Integration Pack for OSM are used synonymously in OSM documentation.

For more information about the Oracle Communications Order to Cash Integration Pack for Oracle Communications Order and Service Management, see Oracle Communications Order to Cash Integration Pack Implementation Guide for Siebel CRM, Oracle Order and Service Management, and Oracle Billing and Revenue Management in the Oracle Application Integration Architecture documentation.

Audience

This document is intended for programmers who have a working knowledge of:

	
System interfaces

	
Java development

	
Java Messaging Service (JMS)

	
XML Technologies (including XQuery and XPath)

This document assumes that you have read OSM Concepts, and have a conceptual understanding of:

	
Cartridges

	
Topologies

	
Orders

	
Order states

	
Tasks

	
Task states

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

3 Order-to-Activate Cartridge Contents

This chapter describes the various Order-to-Activate cartridges, their entities, and how these entities can be extended.

	
Note:

In the Oracle Communications Order to Cash solution, Oracle Communications Order and Service Management (OSM) does not directly interact with Oracle Communications Billing and Revenue Management (BRM), Siebel Customer Relationship Management (Siebel CRM), or provisioning systems. OSM uses Oracle Application Integration Architecture (Oracle AIA), which in turn uses BRM Application Business Connector Service (ABCS) for billing and CRM ABCS for Siebel CRM.

Cartridge Overview

Following is an overview of the cartridges. You should not modify productized cartridges, but demonstration cartridges are sample cartridges provided so that you can modify them to meet your needs.

Common Order Management Cartridges

Common order management cartridges contain data that can be shared by other Order-to-Activate cartridges.

Table 3-1 lists and describes the common order management cartridges.

Table 3-1 Common Cartridges

	Cartridge Name	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized cartridge. Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized cartridge. This data dictionary cartridge contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized cartridge. This data dictionary cartridge contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized cartridge. This cartridge works in conjunction with the Inbound Message Recovery message-driven bean (MDB) to create fallout tasks that help you recover from inbound message processing errors.

Central Order Management Cartridges

Central order management cartridges contain the processes for the central order management functionality and also the Oracle AIA interaction mechanism which in turn interacts with Siebel CRM, BRM, and OSM in its service order management role.

Table 3-2 lists and describes the central order management cartridges.

Table 3-2 Central Order Management Cartridges

	Cartridge Name	Description
	
OracleComms_OSM_O2A_COM_Base

	
Productized cartridge. This cartridge supports the orchestration of customer orders from Oracle AIA.

	
OracleComms_OSM_O2A_COM_SalesOrderFulfillment

	
Productized cartridge. This cartridge supports the communications between central order management and fulfillment systems.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized cartridge. This cartridge generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

	
OracleComms_OSM_O2A_ControlMap

	
Productized cartridge. This cartridge provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_COM_Billing

	
Productized cartridge. This cartridge supports billing fulfillment functions.

	
OracleComms_OSM_O2A_COM_Provisioning

	
Productized cartridge. This cartridge supports provisioning fulfillment functions.

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
Demonstration cartridge. This cartridge supports shipping fulfillment functions.

	
OracleComms_OSM_O2A_COM_Install_Sample

	
Demonstration cartridge. This cartridge supports installation fulfillment functions.

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
Demonstration cartridge. This cartridge contains the mappings between product classes and product specifications.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample

	
Demonstration cartridge. This cartridge contains configuration for the Danube flow.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample

	
Demonstration cartridge. This cartridge contains configuration for the Nile flow.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlowDcn_Sample

	
Demonstration cartridge. This cartridge contains configuration for the Nile flow with data change dependency.

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Demonstration cartridge. This cartridge contains decomposition rules and order components for the Simple topology.

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Demonstration cartridge. This cartridge contains decomposition rules and order components for the Typical topology

	
OracleComms_OSM_O2A_COM_Recognition_Sample

	
Demonstration cartridge. This cartridge recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order.

	
OracleComms_OSM_O2A_COM_SimpleSolution

	
Demonstration composite cartridge. This cartridge references all cartridges required for central order management in the Simple topology.

	
OracleComms_OSM_O2A_COM_TypicalSolution

	
Demonstration composite cartridge. This cartridge references all cartridges required for central order management in the Typical topology.

	
OracleComms_OSM_O2A_COMSOM_Recognition_Sample

	
Demonstration cartridge. This cartridge recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order. It is used when central order management and service order management are deployed to the same instance of OSM.

	
OracleComms_OSM_O2A_COMSOM_SimpleSolution

	
Demonstration composite cartridge. This cartridge references all cartridges required for central order management for the Simple topology when central order management and service order management are deployed to the same instance of OSM.

	
OracleComms_OSM_O2A_COMSOM_TypicalSolution

	
Demonstration composite cartridge. This cartridge references all cartridges required for central order management for the Typical topology when central order management and service order management are deployed to the same instance of OSM.

	
OracleComms_OSM_O2A_SalesOrders_Sample

	
Demonstration cartridge. This cartridge contains sample customer orders.

	
Note:

Danube and Nile are the names for the process fulfillment patterns in the Simple and Typical topologies, respectively. See "About Fulfillment Topologies" for more details on topologies.

Service Order Management Cartridges

Service order management cartridges contain the OSM functionality that handles a provisioning request as a service order from central order management and completes the predetermined tasks to fulfill the service order.

Table 3–3 lists and describes the service order management cartridges.

Table 3-3 Service Order Management Cartridges

	Cartridge Name	Description
	
OracleComms_OSM_O2A_SOM_Base

	
Productized cartridge. This cartridge supports the orchestration of service orders, including handling status and data updates from fulfillment requests back to central order management.

	
OracleComms_OSM_O2A_SOM_Provisioning

	
Productized cartridge. This cartridge supports provisioning fulfillment functions in service order management.

	
OracleComms_OSM_O2A_SOM_Recognition_Sample

	
Demonstration cartridge. This cartridge recognizes a service order and triggers the creation of a SOM_ProvisionOrderFulfillment order. Catches all in-bound messages not recognized by any other provisioning recognition rules.

	
OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

	
Demonstration cartridge. This cartridge contains product specifications for service order management functions.

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
Demonstration cartridge. This cartridge supports service orders for broadband services.

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
Demonstration cartridge. This cartridge supports service orders for Voice over Internet Protocol (VoIP) services.

	
OracleComms_OSM_O2A_SOM_Solution

	
Demonstration composite cartridge. This cartridge references all cartridges necessary for service order management.

Common Order Management Cartridges

The following cartridges provide common data dictionary elements that are used by or referenced by other Order-to-Activate cartridges.

OracleComms_OSM_CommonDataDictionary

The OracleComms_OSM_CommonDataDictionary cartridge is a productized data dictionary cartridge. It contains the data schema that defines the data elements for modeling orchestration entities in OSM.

This cartridge is referenced by the following cartridges:

	
OracleComms_OSM_O2A_COM_Base

	
OracleComms_OSM_O2A_COM_Billing

	
OracleComms_OSM_O2A_COM_Install_Sample

	
OracleComms_OSM_O2A_COM_Provisioning

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
OracleComms_OSM_O2A_SOM_Base

	
OracleComms_OSM_O2A_SOM_Provisioning

OracleComms_OSM_O2A_AIAEBMDataDictionary

The OracleComms_OSM_O2A_AIAEBMDataDictionary cartridge is a productized data dictionary cartridge that is part of the core OSM product. It contains the data schema that defines the data elements from the Oracle AIA EBM schema. Cartridges that must include data elements from Oracle AIA EBM can reuse the elements defined in this cartridge.

This cartridge is referenced by the OracleComms_OSM_O2A_COM_Base cartridge.

OracleComms_OSM_O2A_CommonUtility

The OracleComms_OSM_O2A_CommonUtility cartridge is a productized component cartridge. It contains the data schema that defines the data elements for Order-to-Activate cartridges. Cartridges that extend Order-to-Activate cartridges can reuse the elements defined in this cartridge.

This cartridge is referenced by the following cartridges:

	
OracleComms_OSM_O2A_COM_Base

	
OracleComms_OSM_O2A_COM_Recognition_Sample

	
OracleComms_OSM_O2A_COMSOM_Recognition_Sample

	
OracleComms_OSM_O2A_SOM_Base

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

Table 3-4 describes the data schema elements that can be reused when extending Order-to-Activate cartridges:

Table 3-4 OracleComms_OSM_O2A_CommonUtility Extensible Data Dictionary Elements

	Data Dictionary Element	Extension
	
Order Component

	
New fulfillment functions should use this data dictionary element or its extended type as the base fulfillment function type.

Table 3-5 describes the XQuery modules in the cartridge.

Table 3-5 OracleComms_OSM_O2A_CommonUtility XQuery Modules

	XQuery Module	Extendable	Description
	
AIAEBMUtilityModule

	
No

	
Provides utilities for manipulating Oracle AIA EBM.

	
AIAFaultMsgEBMUtilityModule

	
No

	
Provides utilities for handling Oracle AIA fault messages.

	
BreakpointControlModule

	
No

	
Provides services related to breakpoint control in Order-to-Activate. Please refer to the OracleComms_OSM_O2A_ControlMap cartridge for an extensible way to control breakpoints.

	
ComponentDataManagementModule

	
No

	
Manipulates data structures for fulfillment functions.

	
ExtensionPointModule

	
No

	
Defines XQuery extension points for fulfillment functions.

	
ExtensionPointSelector

	
No

	
Sets the order of the fulfillment function's extension points based on priority.

	
FalloutLifecycleModule

	
No

	
Provides services related to message fallout and trouble ticket tracking.

	
FalloutSimulationModule

	
No

	
Simulates fallout.

	
FulfillmentOrderEventModule

	
No

	
Manages the fulfillment request's events in central order management and service order management.

	
FulfillmentOrderLifecycle-ManagementModule

	
No

	
Provides services related to the fulfillment request's order lifecycle management.

	
LogModule

	
No

	
Provides logging facility for Order-to-Activate cartridges.

	
OrderLifecycleModule

	
No

	
Provides services related to the fulfillment request's external fulfillment state, milestone tracking, upstream order status map, and status context calculation.

	
OSMEBMUtilityModule

	
No

	
Provides utilities for manipulating EBM in central order management.

	
OsmWebServiceModule

	
No

	
Provides services for OSM Web service requests.

	
PerspectiveModule

	
No

	
Provides utilities for retrieving historical perspectives.

	
ProductClassToFulfillmentPatternModule

	
No

	
Provides utilities for order line retrieval for both fulfillment request and service order.

	
ProductClassToProductSpec

	
Yes

	
Provides services related to the mapping between product classes and fulfillment patterns.

	
ProvisionOrderLifecycle-ManagementModule

	
No

	
Provides services related to service order management-to-fulfillment request lifecycle management.

	
SOMEBMUtilityModule

	
No

	
Provides utilities for manipulating the EBM in service order management.

	
SomProductClassToProductSpec

	
Yes

	
Provides services related to the mapping between product classes and fulfillment patterns in SOM.

	
SystemInteractionModule

	
No

	
Provides services related to message sequencing and generation and order locking.

	
TargetSystemManagementModule

	
No

	
Provides services related to target system information such as target system identifier and code.

	
UpdateServiceOrderStatusFunctionsModule

	
No

	
Provides services to create EBM message for the service provisioning order to update the service order management order.

OracleComms_OSM_O2A_SystemAdmin

The OracleComms_OSM_O2A_SystemAdmin cartridge is a productized cartridge that works in conjunction with the Inbound Message Recovery MDB to create fallout tasks that help you recover from inbound message processing errors. The OracleComms_OSM_O2A_SystemAdmin cartridge and Inbound Message Recovery MDB handle errors caused by the following:

	
Suspended orders (See "Recovering from Inbound Message Errors Due to Suspended Orders")

	
Order-to-Activate resource issues (See "Recovering from Inbound Message Errors Due to Resource Issues")

Table 3-6 describes the XQuery modules in the cartridge.

Table 3-6 OracleComms_OSM_O2A_SystemAdmin XQuery Modules

	XQuery Module	Extendable	Description
	
InBoundMessageRecovery

	
No

	
Routes the inbound message for recovery to appropriate target system.

	
ResumePendingInBoundMessage_OrderDataRule

	
No

	
Module used as order data rule when recognizing the inbound message to create the ResumePendingInBoundMessage order.

How the Inbound Message Recovery MDB Works

The Inbound Message Recovery MDB works with the OracleComms_OSM_O2A_SystemAdmin cartridge to handle inbound message errors. When the message cannot be delivered to the response queue due to JMS system errors, the response queue uses the OSM Integration Pack Fallout Queue. The Inbound Message Recovery MDB listens to the OSM Integration Pack Fallout Queue and does the following:

	
Routes the message (response) to the OSM InBoundMessageRecoveryQueue queue.

	
Produces a request to OSM to create the ResumePendingInBoundMessage order (using the OracleComms_OSM_O2A_SystemAdmin cartridge) by doing the following:

	
Running a manual task that allows order management personnel to confirm that resource or XQuery logic errors have been resolved.

This step can be configured to redeliver the inbound message automatically, by setting the JVM parameter pip.require.ack to NO. The number of automatic redelivery attempts for inbound messages is configured in the model variable named IB_MSG_MAX_RETRY in the Order-to-Activate composite cartridge.

	
Running an automated task that moves the message from the recovery queue to the response queue.

OSM recognizes the ResumePendingInBoundMessage order, and the OracleComms_OSM_O2A_SystemAdmin cartridge begins to process.

Recovering from Inbound Message Errors Due to Suspended Orders

The following steps demonstrate how the Inbound Message Recovery MDB and the OracleComms_OSM_O2A_SystemAdmin cartridge recover from an error scenario where an inbound message is not processed because its associated order is suspended.

	
OSM sends a message to an external system using an automation task.

	
Before the automation task receives the inbound response message from the external system, the order associated with the automation task is suspended.

	
OSM receives the response message from the external system.

	
The automation task that receives the inbound response message does the following:

	
Checks the order state while processing the response.

	
If the order state is Suspended, moves the message to the OSM Inbound Message Recovery Queue (passing required order information such as order ID and FulfillmentFunction name, etc.)

This logic is implemented in the resource AIAEBMResponse.xqy, which is located in OracleComms_OSM_O2A_COM_SalesOrderFulfillmentPIP/resources/ComponentInteraction.

	
When the order state changes from Suspended to In Progress, the order state change event handler creates the ResumePendingInBoundMessage order (using the OracleComms_OSM_O2A_SystemAdmin cartridge).

	
The ResumePendingInBoundMessage automation task of the process associated with the ResumePendingInBoundMessage order moves the original response message from the OSM Inbound Message Recovery Queue back to the response queue.

	
The automation task that could not process the inbound message in the response queue originally (due to its associated order being suspended) processes the inbound message successfully.

Recovering from Inbound Message Errors Due to Resource Issues

The following steps demonstrate how the Inbound Message Recovery MDB and the OracleComms_OSM_O2A_SystemAdmin cartridge recover from an error scenario where an inbound message processing error occurs due to a resource issue such as a Global Transaction Error (GTX) or an incorrect XQuery script.

	
OSM sends a message to an external system using an automation task and receives a response back from the external system.

	
The automation task receives the inbound response message in the response queue but cannot process the message because a resource required to process the message is currently locked by another task.

For example, the resource could be locked because of a GTX timeout or because of an error in the logic of an XQuery script.

	
After a few retries, the automation task raises a fallout.

	
The fallout message goes to the OSM Integration Pack Fallout Queue.

	
The Inbound Message Recovery MDB, listening on the OSM Integration Pack Fallout Queue, moves the response message to the OSM Inbound Message Recovery Queue.

	
The MDB creates the ResumePendingInBoundMessage order (using the OracleComms_OSM_O2A_SystemAdmin cartridge), and its process begins to run.

	
The order process assigns a manual task (a fallout or confirmation task) to order management personnel who manage fallout.

	
The fallout task is displayed on the worklist of the Task Web client.

	
Note:

OSM does not raise a fallout notification to inform order management personnel that a fallout task has been created on the worklist.

	
Order management personnel resolve the resource error. For example, they correct the XQuery script logic and restart the system.

	
In the worklist, order management personnel click the Confirm button on the task and (optionally) specify the name of the response queue of the automation task that could not originally process the inbound message. If the name of the response queue is not specified, the ResumePendingInBoundMessage automated task uses the EBM type to detect which queue is the response queue and routes the message accordingly.

	
After the confirmation task completes, the process in the OracleComms_OSM_O2A_SystemAdmin cartridge runs the ResumePendingInBoundMessage automation task, which moves the original response message back to the response queue.

	
The original automation task that could not process the inbound message in the response queue is retried, and the message processes successfully.

Central Order Management Cartridges

The following cartridges operate in the central order management role, which coordinates fulfillment functions across the Business Support Systems (BSS) and Operations Support Systems (OSS) such as Siebel CRM, BRM, and provisioning.

OracleComms_OSM_O2A_COM_Base

The OracleComms_OSM_O2A_COM_Base cartridge is a productized cartridge supporting the orchestration of customer orders from Oracle AIA. It includes communication to and from fulfillment providers and handles status and data updates.

Order Events

When the COM_SalesOrderFulfillment order reaches one of the order events listed in Table 3-7, it triggers the listed XQuery module to send an order update to the upstream system.

Table 3-7 OracleComms_OSM_O2A_COM_Base Order Events

	Order Event	Description
	
stateChange

	
Calls the OrderStateChangeHandler XQuery module to send an order update to the Siebel CRM system.

	
completion

	
Calls the OrderCompletionHandler XQuery module to send the order completion to the Siebel CRM system.

Processing Granularity Rules

There are four orchestration stages defined in the orchestration sequence to decompose the order line items. The result of each stage of decomposition is the source for the next stage of decomposition.

	
In the first stage, the order line items are decomposed by fulfillment function.

	
In the second stage, the order line items are decomposed by fulfillment provider.

	
In the third stage, the order line items are decomposed by granularity rule.

	
In the fourth stage, depending on the fulfillment function process, central order management will use the fulfillment function process to determine whether to create an executable order component with all of the order line items if a significant change is detected on any order line item.

Granularity rules provide the configuration for the third stage of decomposition. During orchestration plan generation at run time, the granularity rule takes as input the order line items that have already been grouped by fulfillment function and subdivided by fulfillment provider.

The behavior of granularity rules varies between design time and run time.

For example, during design time, a granularity rule such as ServiceBundleGranularity or BundleGranularity is selected per fulfillment function by creating one decomposition rule per fulfillment function for use in the third stage of decomposition.

During run time, granularity rules group the order line items into one or more fulfillment requests. Granularity rules group the order line items that are targeted at the same fulfillment function and are specific to a fulfillment provider.

Table 3-8 lists the processing granularity rules.

Table 3-8 OracleComms_OSM_O2A_COM_Base Processing Granularity Rules

	Name	Entity Type	Description
	
BundleGranularity

	
Order Component Specification

	
This granularity rule selects:

	
An order line item that represents a bundle along with bundle components and related order line items

Nested bundles are considered components of the root bundle and are processed in the same fulfillment request. In Siebel CRM, a bundle is referred to as a Commercial Bundle.

	
Order line items of any other root node on the order along with their related order line items

	
OfferGranularity

	
Order Component Specification

	
This granularity rule selects:

	
An order line item that represents an offer along with offer components and Related order line items

In Siebel CRM, an offer is referred to as a promotion.

	
Order line items of any other root node on the order along with their related order line items

	
OrderGranularity

	
Order Component Specification

	
This granularity rule selects all lines targeted at the same fulfillment function and specific to a fulfillment provider make a single fulfillment request.

	
ServiceBundleGranularity

	
Order Component Specification

	
This granularity rule selects:

	
An order line item that represents a service bundle along with service bundle components and related order line items

Nested service bundles and their components make separate fulfillment requests.

	
Order line items of any other root node on the order along with their related order line items

This granularity rule implements an optimization to group together offers and non-service billing items into a single fulfillment request to be fulfilled at the same time

	
WholeItemGranularity

	
Order Component Specification

	
This granularity rule selects:

	
An order line item that represents a whole item along with whole item components and related order line items

Nested whole items and their components make separate fulfillment requests.

	
Order line items of any other root node on the order along with their related order line items

Abstract Orchestration Entities

Table 3-9 lists the orchestration entities that are used as base entities for fulfillment function, fulfillment system, process granularity rule, and fulfillment function updates.

Table 3-9 OracleComms_OSM_O2A_COM_Base Abstract Orchestration Entities

	Name	Type	Description
	
COM_FulfillmentFunction

	
Order Component Specification

	
This order component specification represents the base fulfillment function in central order management. All fulfillment functions, such as SyncCustomerFunction, should extend from it.

This order component also contains the external fulfillment state definitions.

	
COM_FulfillmentGranularity

	
Order Component Specification

	
This order component specification represents the processing granularity rule used in the orchestration stage. All processing granularity rules should extend from it.

	
COM_FulfillmentSystem

	
Order Component Specification

	
This order component specification represents the base fulfillment system in central order management. All fulfillment systems, such as BRM-VOIP, should extend from it.

	
COM_FulfillmentSignificantUpdates

	
Order Component Specification

	
This order component specification represents the base fulfillment function with significant updates in the fourth orchestration stage.

XQuery Modules in the OracleComms_OSM_O2A_COM_Base Cartridge

Table 3-10 through Table 3-18 list the different types of XQuery modules in this cartridge.

Table 3-10 OracleComms_OSM_O2A_COM_Base XQuery Module for Constants

	Constants XQuery Module	Extendable	Description
	
QueryViewConstants

	
No

	
Defines constants for querying views in central order management.

Table 3-11 OracleComms_OSM_O2A_COM_Base XQuery Modules for Fallout Handling

	Fallout Handling XQuery Module	Extendable	Description
	
AbortOrderRequest

	
No

	
Sends an order termination request for the fulfillment request through the Web service API.

	
AbortOrderResponse

	
No

	
Receives the response to the order termination request for the fulfillment request through the Web service API.

	
CFwsResponseHandler

	
No

	
Utility module for providing retrieval and update to central order management order.

	
CloseCreationFailedTroubleTickets

	
No

	
Sends a request to the trouble ticketing system to close the trouble tickets for orders with the same Oracle AIA sales order key.

	
CloseTroubleTicket

	
No

	
Creates a request to the trouble ticketing system to close a trouble ticket.

	
CreateSIFalloutTroubleTicket

	
No

	
Creates a trouble ticket for system interaction.

	
CreateToubleTicket

	
No

	
Creates a trouble ticket for both system interactions and Order Request Processor (ORP) errors.

	
FalloutNotificationRouter

	
No

	
Routes fallout notifications to different fallout process to handle updating EBM, creating a trouble ticket, and keeping track of the trouble ticket in the OSM order.

	
FalloutNotificationToCFTask

	
No

	
Directs fallout notifications to central order management.

	
FindFulfillmentOrderData

	
No

	
Retrieves the fulfillment request data in fallout.

	
FindOrderCreationFailedTroubleTickets

	
No

	
Finds an order that failed at creation with the Oracle AIA sales order key.

	
GetCreationFailFulfillmentOrder

	
No

	
Retrieves the order data for an order that failed at creation.

	
GetTroubleTicketData

	
No

	
Updates trouble ticket data on the OSM order.

	
OrderAbortPropagation

	
No

	
Sends an order termination request to the service order through the Oracle AIA provisioning order queue.

	
OrderAbortPropagationCheck

	
No

	
Checks the status of the order termination request for the service order.

	
OrderAbortPropagationResp

	
No

	
Handles the response of the order termination request to the service order.

	
SuspendCFOrder

	
No

	
Suspends a central order management order.

	
TargetMapping

	
No

	
Returns the target system name for a given active interaction ID.

	
TroubleTicket

	
No

	
Provides utilities for trouble ticketing.

	
UpdateCreationFailFulfillmentOrder

	
No

	
Updates the trouble ticket information back to the OSM order that failed at creation.

	
UpdateFulfillmentOrder

	
No

	
Updates the trouble ticket data on the OSM order. This is used by both UpdateCreationFailFulfillmentOrder and UpdateSIFalloutTroubleTicket XQuery file.

	
UpdateSIFalloutTroubleTicket

	
No

	
Updates the trouble ticket information back to the OSM order that has system interaction fallout.

	
UpdateStatusRequest

	
No

	
Creates an update status EBM to the Siebel CRM system for fallout.

	
UpdateTroubleTicket

	
No

	
Creates the trouble ticket payload for the trouble ticketing system.

Table 3-12 OracleComms_OSM_O2A_COM_Base Orchestration Sequence XQuery Modules

	Orchestration Sequence XQuery Module	Extendable	Description
	
FulfillmentModeExpression

	
No

	
Marshals the fulfillment mode code from the customer order.

	
OrderItemSelector

	
No

	
Selects all order line items from the customer order.

Table 3-13 OracleComms_OSM_O2A_COM_Base Order Data Change XQuery Modules

	Order Data Change XQuery Module	Extendable	Description
	
CloseFalloutTroubleTicket

	
No

	
Creates a request to close a trouble ticket.

	
CreateFalloutOrderNotification

	
No

	
Creates a fallout order notification to handle fallout for an order that failed at creation.

	
UpdateSalesOrderFalloutStatusRequest

	
No

	
Creates an EBM with order status context being populated with fallout information.

Table 3-14 OracleComms_OSM_O2A_COM_Base Order Item XQuery Modules

	Order Item XQuery Module	Extendable	Description
	
InterOrderDependency

	
No

	
Determines the inter-order dependency based on the order item's dependencies across different orders.

	
LineIdKey

	
No

	
Retrieves the order line item's ID.

	
ParentLineIdKey

	
No

	
Retrieves the parent order line item's ID.

	
RelatedSalesOrderLineIdKey

	
No

	
Retrieves the related sales order line item's ID.

Table 3-15 OracleComms_OSM_O2A_COM_Base Order Item Property XQuery Modules

	Order Item Property XQuery Module	Extendable	Description
	
BaseLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
BaseLineItemData

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
BillingPattern

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
BillingProductTypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
CustomerPartyAccountTypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
CustomerPartyReference

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
DependingSalesOrderBaseLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
DependingSalesOrderId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
FulfillmentCompositionTypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
IsLineInvokeInitiateBilling

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineDescription

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineName

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineRequestedDeliveryDateTime

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineXmlData

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
OrderItemControl

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ParentLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
PermittedTypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
PrimaryClassificationCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
PriorLineXmlData

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ProductClass

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ProductSpec

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
RelatedSalesOrderLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ServiceActionCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ServiceAddressCountryCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
StatusCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
StatusDescription

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
TypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

Table 3-16 OracleComms_OSM_O2A_COM_Base Order Recognition XQuery Modules

	Order Recognition XQuery Module	Extendable	Description
	
AIAOrderData

	
No

	
Transforms the customer order to an OSM order.

	
AIAOrderPriority

	
No

	
Retrieves the priority of the customer order.

	
AIAOrderRecognition

	
No

	
Recognizes the customer order.

	
AIAOrderReference

	
No

	
Adds the -TSQ suffix to order identification if the order is to be processed in Technical Service Qualification mode. (This allows the same customer order to be sent later as a DELIVER order with the same order ID.)

	
AIAOrderValidation

	
No

	
Validates the customer order.

Table 3-17 OracleComms_OSM_O2A_COM_Base Order State XQuery Modules

	Order State XQuery Module	Extendable	Description
	
OrderAbortedStateHandler

	
No

	
Creates an EBM to update the Siebel CRM order with an aborted status context.

	
OrderCancelledStateHandler

	
No

	
Creates an EBM to update the Siebel CRM order with a canceled status context.

	
OrderCompletedStateHandler

	
No

	
Creates an EBM to update the Siebel CRM order with a completed status context.

	
OrderCompletionHandler

	
No

	
Responds to the central order management order completion event and triggers the OrderCompletedStateHandler module.

	
OrderFailedStateHandler

	
No

	
Creates an EBM to update the Siebel CRM order with a failed status context.

	
OrderInProgressStateHandler

	
No

	
Creates an EBM to update the Siebel CRM order with an in-progress status context.

	
OrderStateChangeHandler

	
No

	
Responds to the central order management order state change event and triggers the appropriate OrderStateHandler according to the order state.

	
OrderStateUtilityModule

	
No

	
Provides utility functions related to order state.

Table 3-18 OracleComms_OSM_O2A_COM_Base Processing Granularity XQuery Modules

	Processing Granularity XQuery Module	Extendable	Description
	
BundleGranularity

	
No

	
Groups related order items as a bundle for processing.

	
OfferBundleGranularity

	
No

	
Groups related order items as an offer for processing.

	
ServiceBundleGranularity

	
No

	
Groups related order items as a service for processing.

	
WholeItemGranularity

	
No

	
Groups related order items as a whole item for processing.

Automation Modules in the OracleComms_OSM_O2A_COM_Base Cartridge

Table 3-19 lists the automation modules in the cartridge with their associated automated tasks.

Table 3-19 OracleComms_OSM_O2A_COM_Base Automation Modules

	Automation Module	Automated Task	Description
	
AbortOrderRequestBean

	
AbortFulfillmentOrderTask

	
Calls the AbortOrderRequest XQuery.

	
CloseOrderCreationFailedTroubleTicketsBean

	
CloseCreationFailedTroubleTicketTask

	
External event receiver to invoke CloseCreationFailedTroubleTicket XQuery.

	
FindOrderCreationFailedTroubleTicketsBean

	
CloseCreationFailedTroubleTicketTask

	
Calls the FindOrderCreationFailedTroubleTickets XQuery.

	
CreateSIFalloutTroubleTicketRequestBean

	
CreateSIFalloutTroubleTicketTask

	
Calls the CreateSIFalloutTroubleTicket XQuery.

	
GetSIFalloutTroubleTicketResponse

	
CreateSIFalloutTroubleTicketTask

	
External event receiver to invoke GetTroubleTicketData XQuery.

	
FalloutnotificationRouterBean

	
FalloutNotificationRouterTask

	
Calls the FalloutNotificationRouter XQuery.

	
SIFalloutNotificationToCF

	
FalloutNotificationToCFTask

	
Internal event receiver to invoke FalloutNotificationToCFTask XQuery.

	
GetCreationFailFulfillmentOrderBean

	
GetCreationFailFulfillmentOrderTask

	
Internal event receiver to invoke GetCreationFailFulfillmentOrder XQuery.

	
GetFulfillmentOrder

	
GetFulfillmentOrderTask

	
Calls the FindFulfillmentOrderData XQuery.

	
GetFulfillmentOrderResponse

	
GetFulfillmentOrderTask

	
External event receiver to invoke CFwsResponseHandler XQuery.

	
OrderAbortPropagationCheckPlugin

	
OrderAbortPropagationCheck

	
Calls the OrderAbortPropagationCheck XQuery.

	
OrderAbortPropagationPlugin

	
OrderAbortPropagationTask

	
Calls the OrderAbortPropagation XQuery.

	
OrderAbortPropagationRespPlugin

	
OrderAbortPropagationTask

	
External event receiver to invoke OrderAbortPropagationResp XQuery.

	
SuspendCFOrderPlugin

	
SetCFOrderAbortInProgressTask

	
Calls the SuspendCFOrder XQuery.

	
SuspendCFOrderRespPlugin

	
SetCFOrderAbortInProgressTask

	
External event receiver to invoke CFwsResponseHandler XQuery.

	
UpdateCreationFailFulfillmentOrderBean

	
UpdateCreationFailFulfillmentOrderTask

	
Calls the UpdateCreationFailFulfillmentOrder XQuery.

	
UpdateFulfillmentOrderBean

	
UpdateFulfillmentOrderTask

	
Calls the UpdateFulfillmentOrder XQuery.

	
UpdateSIFalloutTroubleTicketRequest

	
UpdateSIFalloutTroubleTicketTask

	
Calls the UpdateSIFalloutTroubleTicket XQuery.

	
UpdateStatusRequestBean

	
UpdateStatusToCRMTask

	
Calls the UpdateStatusRequest XQuery.

External Fulfillment States in the OracleComms_OSM_O2A_COM_Base Cartridge

External fulfillment states are defined in the COM_FulfillmentFunction order component specification, representing the base fulfillment function. All fulfillment functions, such as SyncCustomerFunction, extend from COM_FulfillmentFunction.

The following external fulfillment states are defined in this cartridge:

	
OPEN

	
IN_PROGRESS

	
IN_PROGRESS-FULFILL_BILLING_START

	
IN_PROGRESS-INITIATE_BILLING_START

	
IN_PROGRESS-INSTALL_START

	
IN_PROGRESS-INSTALL_PLANNED

	
IN_PROGRESS-INSTALL_COMMITTED

	
IN_PROGRESS-PROVISION_START

	
IN_PROGRESS-PROVISION_DESIGNED

	
IN_PROGRESS-SHIP_ORDER_START

	
IN_PROGRESS-SHIP_ORDER_PLANNED

	
IN_PROGRESS-SYNC_CUSTOMER_START

	
COMPLETE

	
COMPLETE-FULFILL_BILLING_COMPLETE

	
COMPLETE-INITIATE_BILLING_COMPLETE

	
COMPLETE-INSTALL_COMPLETE

	
COMPLETE-PROVISION_COMPLETE

	
COMPLETE-SHIP_ORDER_SHIPPED

	
COMPLETE-SYNC_CUSTOMER_COMPLETE

	
CANCELLED

	
CANCELLED-FULFILL_BILLING_COMPLETE

	
CANCELLED-FULFILL_BILLING_START

	
CANCELLED-INITIATE_BILLING_COMPLETE

	
CANCELLED-INITIATE_BILLING_START

	
CANCELLED-INSTALL_COMMITTED

	
CANCELLED-INSTALL_COMPLETE

	
CANCELLED-INSTALL_PLANNED

	
CANCELLED-INSTALL_START

	
CANCELLED-PROVISION_COMPLETE

	
CANCELLED-PROVISION_DESIGNED

	
CANCELLED-PROVISION_START

	
CANCELLED-SHIP_ORDER_PLANNED

	
CANCELLED-SHIP_ORDER_SHIPPED

	
CANCELLED-SHIP_ORDER_START

	
CANCELLED-SYNC_CUSTOMER_COMPLETE

	
CANCELLED-SYNC_CUSTOMER_START

	
FAILED

	
FAILED-FULFILL_BILLING_COMPLETE

	
FAILED-FULFILL_BILLING_START

	
FAILED-INITIATE_BILLING_COMPLETE

	
FAILED-INITIATE_BILLING_START

	
FAILED-INSTALL_COMMITTED

	
FAILED-INSTALL_COMPLETE

	
FAILED-INSTALL_PLANNED

	
FAILED-INSTALL_START

	
FAILED-PROVISION_COMPLETE

	
FAILED-PROVISION_DESIGNED

	
FAILED-PROVISION_START

	
FAILED-SHIP_ORDER_PLANNED

	
FAILED-SHIP_ORDER_SHIPPED

	
FAILED-SHIP_ORDER_START

	
FAILED-SYNC_CUSTOMER_COMPLETE

	
FAILED-SYNC_CUSTOMER_START

	
TSQ_Passed

	
TSQ_Passed-PROVISION_DESIGNED

	
TSQ_Failed

	
TSQ_Failed-PROVISION_DESIGNED

OracleComms_OSM_O2A_COM_SalesOrderFulfillment

The OracleComms_OSM_O2A_COM_SalesOrderFulfillment cartridge is a productized cartridge supporting the communications between central order management and fulfillment systems. It includes resources to generate requests to fulfillment providers and consume their responses and to do validation and condition evaluation.

Table 3-20 lists the XQuery modules defined in this cartridge.

Table 3-20 OracleComms_OSM_O2A_COM_SalesOrderFulfillment XQuery Modules

	XQuery Module	Extendable	Description
	
AIAEBMRequest_do

	
No

	
Generates Oracle AIA EBM requests to a fulfillment provider.

	
AIAEBMRequest_redo

	
No

	
Generates Oracle AIA EBM requests to a fulfillment provider for redo.

	
AIAEBMRequest_undo

	
No

	
Generates Oracle AIA EBM requests to a fulfillment provider for undo.

	
AIAEBMResponse_ValidationModule

	
No

	
Validates Oracle AIA EBM responses from a fulfillment provider.

	
AIAEBMResponse

	
No

	
Consumes Oracle AIA EBM responses from a fulfillment provider.

	
FalseRevision

	
No

	
Utility module to detect a false revision order.

	
InitiateWaitForProvisioningResponse

	
No

	
Initiates the wait for a provisioning response.

	
OrderLifecycleManagementModule

	
No

	
Utility module to support order lifecycle management for order and order line items.

	
PostSIBreakpoint

	
No

	
Supports breakpoints for the automated task FunctionPostSIBreakTask during undo.

	
PreSIBreakpoint

	
No

	
Supports breakpoints for the automated task FunctionPreSIBreakTask during undo.

	
SIEntryPoint

	
No

	
Provides lifecycle management for both customer order and service order. Used by automated task FunctionEntryPointTask. (This task should be used as the entry point task for a new fulfillment function.)

	
SIExitPoint

	
No

	
Module used by automated task FunctionExitPointTask to simulate order item data updates for the InstallOrder and ShipOrder fulfillment functions.

	
SIMilestone_doredo

	
No

	
Simulates milestone updates for the automated task FunctionPlannedTask for both InstallOrder and ShipOrder fulfillment function.

	
SIStartPoint

	
No

	
Module used by automated task FulfillBillingStartTask to provide a breakpoint prior to the start of the FulfillBilling function.

	
UpdateSalesOrderStatusFunctions

	
No

	
Provides functions for updating customer order's status.

	
FulfillmentStateModule

	
No

	
Contains configuration for calculating order and order item fulfillment state.

	
PointOfNoReturn

	
No

	
Checks whether an order component or order item has reached the point of no return.

OracleComms_OSM_O2A_RecognitionFallout

The OracleComms_OSM_O2A_RecognitionFallout cartridge is a productized cartridge that generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

Table 3-21 lists the entities that are defined in this cartridge.

Table 3-21 OracleComms_OSM_O2A_RecognitionFallout Entities

	Entity Name	Entity Type	Description
	
ORPFalloutPIPOrder

	
Order

	
The order that is created when an unrecognizable message is received.

	
CreationORPFalloutTask

	
Manual Task

	
Creation task that is used to create an ORPFalloutPIPOrder.

	
ORPQueryTask

	
Manual Task

	
Query task used by a manual user to view the fallout order.

	
ORPFalloutProcessErrorTask

	
Manual Task

	
Task that handles error when creating a fault message in service order management or when creating a fulfillment request for the trouble ticketing system.

	
ORPFalloutProcess

	
Process and tasks

	
Fallout process that creates a trouble ticket for Oracle AIA.

	
ORPFalloutRole

	
Role

	
Role with privileges to create and view fallout orders.

Table 3-22 lists the XQuery modules defined in this cartridge.

Table 3-22 OracleComms_OSM_O2A_RecognitionFallout XQuery Modules

	XQuery Module	Extendable	Description
	
CreateErrorFault

	
No

	
Used by service order management to create a fault notification.

	
CreateORPFalloutTroubleTicket

	
No

	
Creates a trouble ticket EBM for Oracle AIA indicating an ORP error.

	
CreateORPFalloutTroubleTicketResponse

	
No

	
Handles responses from the ORP trouble ticket request.

	
DetectORPFalloutHandlingType

	
No

	
Determines the fallout mode depending on whether this is used in a central order management or service order management context. For central order management, the fallout processing requires creation of a trouble ticket request to the upstream system. For service order management, fallout processing requires creation of a fault notification that is sent to the Oracle AIA error handling queue.

Table 3-23 lists the automation modules (with their associated automated tasks) defined in this cartridge.

Table 3-23 OracleComms_OSM_O2A_RecognitionFallout Automation Modules

	Automation Module	Automated Task	Description
	
CreateErrorFaultBean

	
CreateFaultErrorTask

	
Calls the CreateErrorFault XQuery.

	
CreateORPFalloutTroubleTicketRequestBean

	
CreateORPFalloutTroubleTicketTask

	
Calls the CreateORPFalloutTroubleTicket XQuery.

	
ORPTTResponseBean

	
CreateORPFalloutTroubleTicketTask

	
External event receiver to invoke CreateORPFalloutTroubleTicketResponse XQuery.

	
DetectORPFalloutHandlingTypeBean

	
DetectORPFalloutHandlingTypeTask

	
Calls the DetectORPFalloutHandlingType XQuery.

OracleComms_OSM_O2A_ControlMap

The OracleComms_OSM_O2A_ControlMap cartridge is a productized cartridge that provides the ability to:

	
Stop at a breakpoint when OSM executes central order management tasks

	
Disable a point of no return

	
Simulate a fallout scenario

	
Configure the processing granularity of billing fulfillment functions dynamically

	
Manage the frequency of order updates to the upstream system for debugging

To use these functions:

	
Create a control file in XML, using the parameters listed in the following sections. The same control file can contain more than one control function.

	
Validate your control file against the BFPMap.xsd schema located in OracleComms_OSM_O2A_ControlMap\resource.

You must validate your control file against the schema because OSM will not validate control files and report errors during order processing. If the file is not a valid XML file, the entire file will be ignored by OSM. If a file contains an invalid element or value, the control function containing the invalid element or value will be ignored.

	
Put your control file into the OracleComms_OSM_O2A_ControlMap\resource directory.

	
When you want to use the control file for an order, preface the order number with the name of the control file inside square brackets and without the .xml extension. For example, if you have a control file named control001.xml in the OracleComms_OSM_O2A_ControlMap\resource directory, and you want to use it with an order numbered VOIP01, send the order in with the orderID [control001]VOIP01.

Configuring Breakpoints for Central Order Management

If you enable breakpoint control, you can set a breakpoint in the order process to cause the order to go through a particular manual task or a special automated task before or after an interaction with an external system. This allows you to do things like check status and define data.

A breakpoint for central fulfillment task is defined by:

	
BreakComponent: This is an order component name; for example, SyncCustomerFunction

	
ExecutionMode: do, redo, undo, and amend_do

	
Event: Component_PRESTART (before the component has started), only applicable to FulfillBillingFunction), Component_START (after the component has started), and Component_COMPLETE (after the component has completed)

	
TargetSystem: ANY, or a particular target system such as BRM-ALL

Example 3-1 contains a control file to configure a breakpoint before FulfillBillingFunction starts.

Example 3-1 Control File to Configure a Breakpoint in FulfillBillingFunction

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:BreakPointControlMap>
 <oms:BreakComponent>FulfillBillingFunction</oms:BreakComponent>
 <oms:ExecutionMode>do</oms:ExecutionMode>
 <Event>Component_PRESTART</Event>
 <TargetSystem>ANY</TargetSystem>
 </oms:BreakPointControlMap>
</oms:ControlMap>

Controlling Point of No Return

During testing, a user may want to disable OSM's ability to set or check for points of no return. This allows the user to submit an amendment order successfully in situations that would not be allowed under normal circumstances.

You can disable point of no return processing either for all order components or selectively using the following field:

	
PONRComponent: This can contain any of the following

	
Order Component Name - For example, SyncCustomerFunction

	
ALL - Disable point of no return setting and checking for all order components

	
CONFIG - Disable point of no return checking for all order components when an order amendment is received

Example 3-2 contains a control file that disables point of no return setting and checking for all order components.

Example 3-2 Control File to Disable Points of No Return

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:PONRControlMap>
 <oms:PONRComponent>ALL</oms:PONRComponent>
 </oms:PONRControlMap>
</oms:ControlMap>

Controlling Fault Simulation

If you are using the Oracle AIA emulators included with the Order-to-Activate cartridges, you can simulate fallout scenarios using control files.

Simulating Faults in Central Order Management

You can create a control file to simulate fault situations in central order management using the following parameters:

	
FaultComponent: this is an order component name, for example, SyncCustomerFunction

	
ExecutionMode: do, redo, undo, and amend_do

	
FaultMode: ANY, or a particular target system such as BRM-ALL

Example 3-3 contains a control file that simulates an invalid response for SyncCustomerFunction.

Example 3-3 Control File to Simulate a Fault in Central Order Management

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:FaultControlMap>
 <oms:FaultComponent>SyncCustomerFunction</oms:FaultComponent>
 <oms:ExecutionMode>do</oms:ExecutionMode>
 <FaultMode>InvalidRESP</FaultMode>
 </oms:FaultControlMap>
</oms:ControlMap>

Simulating Faults in Service Order Management

You can create a control file to simulate fault situations for broadband provisioning in service order management using the following parameters:

	
ExecutionMode: do, redo, undo, and amend_do

	
VerbMode: This can contain any of the following:

	
SIMULATE_FAIL_BRD_SERVICEBUNDLE_FAULT

	
SIMULATE_FAIL_BRD_EMAILSERVICEBUNDLE_FAULT

	
SIMULATE_FAIL_BRD_MEDIASERVICEBUNDLE_FAULT

	
SIMULATE_FAIL_BRD_CPE_FAULT

	
SIMULATE_FAIL_VOIP_SERVICEBUNDLE_FAULT

	
SIMULATE_FAIL_VOIP_CPE_FAULT

Example 3-4 contains a control file that simulates a failure in provisioning broadband customer premise equipment in execution mode redo.

Example 3-4 Control File to Simulate a Fault in Central Order Management

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:LF_FaultControlMap>
 <oms:ExecutionMode>redo</oms:ExecutionMode>
 <VerbMode>SIMULATE_FAIL_BRD_CPE_FAULT</VerbMode>
 </oms:LF_FaultControlMap>
</oms:ControlMap>

Controlling Order Updates

In Order-to-Activate, order updates are sent by central order management to upstream systems at every milestone update on the order, unless the order is in the Canceling state. The milestones are defined in OracleComms_OSM_O2A_Configuration\solution-config\ComponentMilestoneMap.xml. You can use a control file to disable the order updates for one or more specific milestones.

Following are the attributes and elements to use in your control file to disable updates for a breakpoint:

	
system: OracleComms_OSM_O2A_SystemAdmintarget system name defined in the <oms:targetSystem> element of the resources/SolutionConfig/TargetSystemMap.xml file in the Order-to-Activate composite cartridge.

	
execMode: do, redo, and amend_do

	
ComponentMilestone: COMPONENT-START, COMPONENT-UPDATE, or COMPONENT-COMPLETE

	
Milestone: Milestone defined by external system such as PROVISION DESIGNED. This field is optional and only applicable to the COMPONENT-UPDATE component milestone.

	
UpdateUpstreamSystem: Set this to false to disable the event

Example 3-5 contains a control file that disables the sending of updates for the PROVISION START milestone.

Example 3-5 Control File to Disable Updates for PROVISION START

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:MilestoneMap system="OSMPROV" systemName="*" execMode="do">
 <oms:ComponentMilestone>COMPONENT-START</oms: ComponentMilestone >
 <oms:Milestone>PROVISION START</oms:Milestone>
 <oms:UpdateUpstreamSystem>false</oms:UpdateUpstreamSystem>
 </oms: MilestoneMap>
</oms:ControlMap>

Controlling Processing Granularity for FulfillBillingFunction

In Order-to-Activate, the granularity decomposition rule for FulfillBillingFunction uses ServiceBundle granularity by default. If you want to test Order granularity on FulfillBillingFunction, use a control file.

Following are the elements in the control file to change processing granularity:

	
GranularityFunction: Only FulfillBillingFunction is supported for this element. Any other value is ignored.

	
Granularity: Only Order and ServiceBundle are supported for this element. Any other value is ignored.

Example 3-6 contains a control file that changes the processing granularity to Order:

Example 3-6 Control File to Change Processing Granularity

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:GranularityControlMap>
 <oms:GranularityFunction>FulfillBillingFunction</oms:GranularityFunction>
 <oms:Granularity>Order</oms: Granularity>
 </oms:GranularityControlMap>
</oms:ControlMap>

OracleComms_OSM_O2A_COM_Billing

The OracleComms_OSM_O2A_COM_Billing cartridge is a productized cartridge that supports billing fulfillment functions. These functions specify subprocesses to handle delivery of a relevant subset of order data to the BRM ABCS, and handle responses from BRM ABCS. The modeled interaction includes coping with fallout, order change management, and status or data updates back to the CRM ABCS.

Table 3-24 lists the fulfillment functions defined in the cartridge.

Table 3-24 OracleComms_OSM_O2A_COM_Billing Fulfillment Functions

	Fulfillment Function	Billing Pattern	Description
	
SyncCustomerFunction

	
Single-phase, two-phase

	
Provides the ability to synchronize only accounts from CRM to Billing as part of an order. SyncCustomerFunction is used in both single-phase and two-phase billing patterns. This function is essential because the pre-existence of a customer account in the billing provider is assumed before billing.

	
InitiateBillingFunction

	
Two-phase

	
Provides the ability to start the usage cycle. InitiateBillingFunction is the first phase in the two-phase billing pattern. In two-phase billing patterns, the first phase invokes InitiateBillingFunction, and the second phase invokes FulfillBillingFunction.

	
FulfillBillingFunction

	
Single-phase, two-phase

	
Provides the ability to start the billing cycle. FulfillBillingFunction is the single phase in the single-phase billing pattern and the second phase in the two-phase billing pattern.

Table 3-25 lists the XQuery modules in the cartridge that support component interaction.

Table 3-25 OracleComms_OSM_O2A_COM_Billing Component Interaction XQuery Modules

	Component Interaction XQuery Module	Extendable	Description
	
BillingPatternModule

	
No

	
Determines the billing pattern based on order item's billing product type and product class.

	
BillingInteractionModule

	
No

	
Creates a fulfillment request (in the format of an Oracle AIA EBM) to send to the billing system.

	
SyncCustomerInteractionModule

	
No

	
Provides functions to support SyncCustomerFunction.

	
InitiateBillingInteractionModule

	
No

	
Provides functions to support InitiateBillingFunction, using the BillingInteractionModule utility module.

	
FulfillBillingInteractionModule

	
No

	
Provides functions to support FulfillBillingFunction, using the BillingInteractionModule utility module.

SyncCustomerFunction

This section provides details of SyncCustomerFunction, one of the three fulfillment functions in the OracleComms_OSM_O2A_COM_Billing.

SyncCustomerFunction and Decomposition Rules

For the fulfillment request to be relevant for the billing provider to process, there must be at least one order line item with a service action that is relevant for the SyncCustomerFunction function to process. The decomposition rules in Table 3-26 ensure that SyncCustomerFunction is called only if relevant.

Table 3-26 Decomposition Rules for SyncCustomerFunction

	Topology	Cartridge	Decomposition Rule
	
Simple

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Simple_DetermineSignificantUpdates_For_SyncCustomer

	
Typical

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Typical_DetermineSignificantUpdates_For_SyncCustomer

The decomposition conditions in the rules above return true() if fromOrderComponent (the order component being decomposed from) has at least one order line item that is relevant for SyncCustomerFunction to process. An order line item property is initialized to YES if the order line item is relevant for the billing provider's SyncCustomerFunction to process. By default, the service actions that are relevant for SyncCustomerFunction to process are:

	
Order line items with ServiceActionCode=ADD

	
SyncCustomer compensation-significant updates: Order line items with ServiceActionCode=UPDATE or MOVE-ADD with compensation-significant updates as determined by a comparison of the new and prior values from Siebel CRM in the customer order

SyncCustomerFunction and Product Specifications

The SyncCustomerFunction order component for fulfillment mode DELIVER is selected for each product specification that supports the single and two-phase billing patterns. The order component SyncCustomerFunction is included in the BaseProductSpec product specification. As a result, all product specifications which inherit from BaseProductSpec include SyncCustomerFunction is as part of their fulfillment flow. This applies to each entity in the cartridge that configures product specifications, including any custom cartridge specifying the COM_SalesOrderFulfillment namespace.

SyncCustomerFunction XQuery Modules

Table 3-27 lists the XQuery modules defined for the SyncCustomerFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-27 SyncCustomerFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
SyncCustomerComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the SyncCustomerFunction component is completed.

	
SyncCustomerCreateEBM_DoEvent

	
CREATE-EBM

(execution mode: do)

	
Invoked when the EBM is created in the do execution mode for the SyncCustomerFunction component.

	
SyncCustomerCreateEBM_ReDoEvent

	
CREATE-EBM

(execution mode: redo)

	
Invoked when the EBM is created in the redo execution mode for the SyncCustomerFunction component.

	
SyncCustomerCreateEBM_UnDoEvent

	
CREATE-EBM

(execution mode: undo)

	
Invoked when the EBM is created in the undo execution mode for the SyncCustomerFunction component.

	
SyncCustomerStart_Event

	
COMPONENT-START

	
Invoked when the SyncCustomerFunction component is started.

	
SyncCustomerValidateResponseEBM_Event

	
VALIDATE-RESPONSE-EBM

	
Invoked to validate the EBM response for the SyncCustomerFunction component.

SyncCustomerFunction Automation Modules

Table 3-28 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the SyncCustomerFunction fulfillment function.

Table 3-28 SyncCustomerFunction Automation Modules

	Automation Module	Automated Task	Description
	
SyncCustomerEntryPointBean_doredo

	
SyncCustomerEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
SyncCustomerBreakpointRequestBean

	
SyncCustomerPreSIBreakTask

	
Calls the PreSIBreakpoint XQuery.

	
SyncCustomerRequestBean_do

	
SyncCustomerSITask

	
Calls the AIAEBMRequest_do XQuery.

	
SyncCustomerRequestBean_redo

	
SyncCustomerSITask

	
Calls the AIAEBMRequest_redo XQuery.

	
SyncCustomerRequestBean_undo

	
SyncCustomerSITask

	
Calls the AIAEBMRequest_undo XQuery.

	
SyncCustomerResponseBean

	
SyncCustomerSITask

	
External event receiver to invoke AIAEBMResponse XQuery.

	
SyncCustomerBreakpointRequestBean

	
SyncCustomerPostSIBreakTask

	
Calls the PostSIBreakpoint XQuery.

InitiateBillingFunction

This section provides details of InitiateBillingFunction, one of the three fulfillment functions in the OracleComms_OSM_O2A_COM_Billing.

InitiateBillingFunction and Decomposition Rules

For the fulfillment request to be relevant for the billing provider to process, there must be at least one order line item with a service action that is relevant for the InitiateBillingFunction function to process. The decomposition rules in Table 3-29 ensure that InitiateBillingFunction is called only if relevant.

Table 3-29 Decomposition Rules for InitiateBillingFunction

	Topology	Cartridge	Decomposition Rule
	
Simple

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Simple_DetermineSignificantUpdates_For_InitiateBilling

	
Typical

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Typical_DetermineSignificantUpdates_For_InitiateBilling

The decomposition conditions in the rules above return true() if fromOrderComponent (the order component being decomposed from) has at least one order line item that is relevant for InitiateBillingFunction to process. By default, the service actions that are relevant for InitiateBillingFunction to process are:

	
Order line items with ServiceActionCode=ADD

InitiateBillingFunction and Product Specifications

The InitiateBillingFunction order component for fulfillment mode DELIVER is selected for each product specification that supports the two-phase billing pattern. This includes the OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample, OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample, or any custom cartridge specifying the COM_SalesOrderFulfillment namespace.

Some of the sample product specifications included in the InitiateBillingFunction in the fulfillment flow:

	
Service.VoIP

	
Service.CPE.VoIP (The IntiateBillingFunction order component is conditional based on whether the VoIP CPE is contained in a VoIP service. This condition is included in decomposition rules InitiateBillingFunction_To_<YourSystemInstanceName1>… InitiateBillingFunction_To_<YourSystemInstanceNameN>)

	
NonService.Offer (The IntiateBillingFunction order component is conditional based on whether the Offer contains VoIP services. This condition is included in decomposition rules InitiateBillingFunction_To_<YourSystemInstanceName1>… InitiateBillingFunction_To_<YourSystemInstanceNameN>)

	
NonService.BillingInitiatedItem

	
Non.Service.BillingItem

InitiateBillingFunction XQuery Modules

Table 3-30 lists the XQuery modules defined for the InitiateBillingFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-30 InitiateBillingFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
InitiateBillingComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the InitiateBillingFunction component is completed.

	
InitiateBillingCreateEBM_DoEvent

	
CREATE-EBM

(execution mode: do)

	
Invoked when the EBM is created in the do execution mode for the InitiateBillingFunction component.

	
InitiateBillingCreateEBM_ReDoEvent

	
CREATE-EBM

(execution mode: redo)

	
Invoked when the EBM is created in the redo execution mode for the InitiateBillingFunction component.

	
InitiateBillingCreateEBM_UnDoEvent

	
CREATE-EBM

(execution mode: undo)

	
Invoked when the EBM is created in the undo execution mode for the InitiateBillingFunction component.

	
InitiateBillingStart_Event

	
COMPONENT-START

	
Invoked when the InitiateBillingFunction component is started.

	
InitiateBillingValidateResponseEBM_Event

	
VALIDATE-RESPONSE-EBM

	
Invoked to validate the EBM response for the InitiateBillingFunction component.

InitiateBillingFunction Automation Modules

Table 3-31 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the InitiateBillingFunction fulfillment function.

Table 3-31 InitiateBillingFunction Automation Modules

	Automation Module	Automated Task	Description
	
InitiateBillingEntryPointBean_doredo

	
InitiateBillingEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
InitiateBillingBreakpointRequestBean

	
InitiateBillingPreSIBreakTask

	
Calls the PreSIBreakpoint XQuery.

	
InitiateBillingRequestBean_do

	
InitiateBillingSITask

	
Calls the AIAEBMRequest_do XQuery.

	
InitiateBillingRequestBean_redo

	
InitiateBillingSITask

	
Calls the AIAEBMRequest_redo XQuery.

	
InitiateBillingRequestBean_undo

	
InitiateBillingSITask

	
Calls the AIAEBMRequest_undo XQuery.

	
InitiateBillingResponseBean

	
InitiateBillingSITask

	
External event receiver to invoke AIAEBMResponse XQuery.

	
InitiateBillingBreakpointRequestBean

	
InitiateBillingPostSIBreakTask

	
Calls the PostSIBreakpoint XQuery.

FulfillBillingFunction

This section provides details of FulfillBillingFunction, one of the three fulfillment functions in the OracleComms_OSM_O2A_COM_Billing.

InitiateBillingFunction and Decomposition Rules

For the fulfillment request to be relevant for the billing provider to process, there must be at least one order line item with a service action that is relevant for the FulfillBillingFunction function to process. The decomposition rules in Table 3-32 ensure that FulfillBillingFunction is called only if relevant.

Table 3-32 Decomposition Rules for FulfillBillingFunction

	Topology	Cartridge	Decomposition Rule
	
Simple

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Simple_DetermineSignificantUpdates_For_FulfillBilling

	
Typical

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Typical_DetermineSignificantUpdates_For_FulfillBilling

The decomposition conditions in the rules above return true() if fromOrderComponent (the order component being decomposed from) has at least one order line item that is relevant for FulfillBillingFunction to process. By default, the service actions that are relevant for FulfillBillingFunction to process are:

	
Order line items with ServiceActionCode=ADD, DELETE, UPDATE, SUSPEND, RESUME, MOVE-ADD, or MOVE-DELETE

FulfillBillingFunction and Product Specifications

The order component FulfillBillingFunction is included in the orchestration plan for the BaseProductSpec product specification. This ensures that FulfillBillingFunction is included in the fulfillment flow for all product specification entities that extend from BaseProductSpec. This includes product specifications OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample, OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample, or any custom cartridge specifying the COM_SalesOrderFulfillment namespace.

All sample product specifications include FulfillBillingFunction.

Sample product specifications that include FulfillBillingFunction in a single-phase billing pattern (without InitiateBillingFunction) in the fulfillment flow are:

	
Service.Broadband

	
Service.CPE.Broadband

	
NonService.BillingItem

FulfillBillingFunction XQuery Modules

Table 3-33 lists the XQuery modules defined for the FulfillBillingFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-33 FulfillBillingFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
FulfillBillingComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the FulfillBillingFunction component is completed.

	
FulfillBillingCreateEBM_DoEvent

	
CREATE-EBM

(execution mode: do)

	
Invoked when the EBM is created in the do execution mode for the FulfillBillingFunction component.

	
FulfillBillingCreateEBM_ReDoEvent

	
CREATE-EBM

(execution mode: redo)

	
Invoked when the EBM is created in the redo execution mode for the FulfillBillingFunction component.

	
FulfillBillingCreateEBM_UnDoEvent

	
CREATE-EBM

(execution mode: undo)

	
Invoked when the EBM is created in the undo execution mode for the FulfillBillingFunction component.

	
FulfillBillingStart_Event

	
COMPONENT-START

	
Invoked when the FulfillBillingFunction component is started.

	
FulfillBillingValidateResponseEBM_Event

	
VALIDATE-RESPONSE-EBM

	
Invoked to validate the EBM response for the FulfillBillingFunction component.

FulfillBillingFunction Automation Modules

Table 3-34 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the FulfillBillingFunction fulfillment function.

Table 3-34 FulfillBillingFunction Automation Modules

	Automation Module	Automated Task	Description
	
FulfillBillingEntryPointBean_doredo

	
FulfillBillingEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
FulfillBillingBreakpointRequestBean

	
FulfillBillingPreSIBreakTask

	
Calls the PreSIBreakpoint XQuery.

	
FulfillBillingRequestBean_do

	
FulfillBillingSITask

	
Calls the AIAEBMRequest_do XQuery.

	
FulfillBillingRequestBean_redo

	
FulfillBillingSITask

	
Calls the AIAEBMRequest_redo XQuery.

	
FulfillBillingRequestBean_undo

	
FulfillBillingSITask

	
Calls the AIAEBMRequest_undo XQuery.

	
FulfillBillingResponseBean

	
FulfillBillingSITask

	
External event receiver to invoke AIAEBMResponse XQuery.

	
FulfillBillingBreakpointRequestBean

	
FulfillBillingPostSIBreakTask

	
Calls the PostSIBreakpoint XQuery.

	
FulfillBillingStart

	
FulfillBillingStartTask

	
Calls the SIStartPoint XQuery.

Billing Dates for Billing Patterns

Billing dates are set when usage events start being rated (usage start date time), when cycle charges start being billed (cycle start date time), and when one time purchase charges should be billed (purchase start time). This section discusses how billing dates are generated.

Default Billing Dates for Two-Phase Billing Patterns

In a two-phase billing pattern, the billing dates are calculated based on data from the customer order and the determination of whether the LATENCY or VALIDATION pattern is used.

The billing dates are reset between the two billing phases (InitiateBillingFunction and FulfillBillingFunction).Billing dates are only set for order line items having the ServiceActionCode of ADD. The following order item properties are updated with the billing dates:

	
For phase 1, order item properties in ControlData/Functions/IntiateBillingFunction/orderItem/orderItemRef/WorkLineItemData/SalesOrderSchedule

	
ServiceUsageStartDate

	
PurchaseDate

	
CycleStartDate

	
Note:

The three elements above have a data type of DateTime. However the names of the data elements as defined in the Oracle AIA EBM do not end with DateTime but Date only. O2A is following the names defined in the Oracle AIA EBM.

	
For phase 2, the order item properties from phase 1 are copied into properties with the same names in ControlData/Functions/FulfillBillingFunction/orderItem/orderItemRef/WorkPriorLineItemData/SalesOrderSchedule and all three Date fields are re-calculated as indicated in the Default Billing Dates for Phase 2 column in Table 3-35.

Table 3-35 lists the default date calculations applicable to two-phase billing patterns.

Table 3-35 Two-Phase Billing Pattern Date Calculations

	Billing Pattern	Default Billing Dates for Phase 1	Default Billing Dates for Phase 2
	
LATENCY

	
ServiceUsageStartDate= OrderingBaseDateTime

PurchaseDate = OrderingBaseDateTime

CycleStartDate = OrderingBaseDateTime + 1 year

	
CycleStartDate = SalesOrderLine/CycleStartDate if populated; otherwise compute as Actual Delivery Date Time or Requested Delivery Date Time, whichever is later.

	
VALIDATION

	
ServiceUsageStartDate= OrderingBaseDateTime + 1 year

PurchaseDate=OrderingBaseDateTime + 1 year

CycleStartDate = OrderingBaseDateTime + 1 year

	
ServiceUsageStartDate = SalesOrderLine/ ServiceUsageStartDate if populated; otherwise Actual Delivery Date Time

PurchaseDate = SalesOrderLine/PurchaseDate if populated; otherwise Actual Delivery Date Time

CycleStartDate = SalesOrderLine/ CycleStartDate if populated; otherwise Actual Delivery Date Time or Requested Delivery Date Time, whichever is later.

Default Billing Dates for Single-Phase Billing Patterns

In a single-phase billing pattern, the billing dates are calculated based on data from the customer order.

Billing dates are only set for order line items having the ServiceActionCode of ADD. The following order item properties are updated with the billing dates:

	
Order item properties in ControlData/Functions/IntiateBillingFunction/orderItem/orderItemRef/WorkLineItemData/SalesOrderSchedule

	
ServiceUsageStartDate: This is set to SalesOrderLine/ ServiceUsageStartDate if populated; otherwise ActualDeliveryDateTime

	
PurchaseDate: This is set to SalesOrderLine/PurchaseDate if populated; otherwise ActualDeliveryDateTime

	
CycleStartDateTime: This is set to SalesOrderLine/CycleStartDateTime if populated; otherwise Actual Delivery Date Time or Requested Delivery Date Time, whichever is later.

OracleComms_OSM_O2A_COM_Provisioning

The OracleComms_OSM_O2A_COM_Provisioning cartridge is a productized cartridge that supports the provisioning fulfillment functions. These functions specify a subprocess to handle delivery of a relevant subset of order data to the provisioning ABCS and to handle responses from the provisioning ABCS.

Table 3-36 lists the XQuery modules in the cartridge that support component interaction.

Table 3-36 OracleComms_OSM_O2A_COM_Provisioning Component Interaction XQuery Modules

	Component Interaction XQuery Module	Extendable	Description
	
ProvisionOrderInteractionModule

	
No

	
Provides functions to support ProvisionOrderFunction.

Table 3-37 lists the XQuery modules defined for the ProvisionOrderFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-37 ProvisionOrderFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
ProvisionOrderComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the ProvisionOrderFunction component is completed.

	
ProvisionOrderCreateEBM_DoEvent

	
CREATE-EBM

(execution mode: do)

	
Invoked when the EBM is created in the do execution mode for the ProvisionOrderFunction component.

	
ProvisionOrderCreateEBM_ReDoEvent

	
CREATE-EBM

(execution mode: redo)

	
Invoked when the EBM is created in the redo execution mode for the ProvisionOrderFunction component.

	
ProvisionOrderCreateEBM_UnDoEvent

	
CREATE-EBM

(execution mode: undo)

	
Invoked when the EBM is created in the undo execution mode for the ProvisionOrderFunction component.

	
ProvisionOrderStart_Event

	
COMPONENT-START

	
Invoked when the ProvisionOrderFunction component is started.

	
ProvisionOrderValidateResponseEBM_Event

	
VALIDATE-RESPONSE-EBM

	
Invoked to validate the EBM response for the ProvisionOrderFunction component.

	
ProvisionOrderUpdate_Event

	
COMPONENT-RESPONSE-UPDATE

	
Invoked when the EBM response for ProvisionOrderFunction component is updated.

Table 3-38 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Provisioning cartridge for the ProvisionOrderFunction fulfillment function.

Table 3-38 ProvisionOrderFunction Automation Modules

	Automation Module	Automated Task	Description
	
ProvisionOrderEntryPointBean_doredo

	
ProvisionOrderSIEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
ProvisionOrderBreakpointRequestBean

	
ProvisionOrderPreSIBreakTask

	
Calls the PreSIBreakpoint XQuery.

	
ProvisionOrderRequestBean_do

	
ProvisionOrderSITask

	
Calls the AIAEBMRequest_do XQuery.

	
ProvisionOrderRequestBean_redo

	
ProvisionOrderSITask

	
Calls the AIAEBMRequest_redo XQuery.

	
ProvisionOrderRequestBean_undo

	
ProvisionOrderSITask

	
Calls the AIAEBMRequest_undo XQuery.

	
ProvisionOrderResponseBean

	
ProvisionOrderSITask

	
External event receiver to invoke AIAEBMResponse XQuery.

	
ProvisionOrderBreakpointRequestBean

	
ProvisionOrderPostSIBreakTask

	
Calls the PostSIBreakpoint XQuery.

	
InitiateWaitforProvisioningResponseBean

	
ProvisionOrderSIResponseTask

	
Calls the InitiateWaitforProvisioningResponse XQuery.

	
ProvisioningResponseBean

	
ProvisionOrderSIResponseTask

	
External event receiver to invoke AIAEBMResponse XQuery for do, redo and amend-do mode.

OracleComms_OSM_O2A_COM_Shipping_Sample

The OracleComms_OSM_O2A_COM_Shipping_Sample cartridge is a demonstration cartridge that supports the shipping fulfillment functions. These functions specify subprocesses to handle delivery of a relevant subset of order data to supply chain management.

Table 3-39 lists he XQuery modules in the cartridge that support component interaction.

Table 3-39 OracleComms_OSM_O2A_COM_Shipping_Sample Component Interaction XQuery Modules

	Component Interaction XQuery Module	Extendable	Description
	
ShipOrderInteractionModule

	
Yes

	
Provides functions to support ShipOrderFunction.

Table 3-40 lists the XQuery modules defined for the ShipOrderFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-40 ShipOrderFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
ShipOrderComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the ShipOrderFunction component is completed.

	
ShipOrderStart_Event

	
COMPONENT-START

	
Invoked when the ShipOrderFunction component is started.

Table 3-41 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Shipping_Sample cartridge for the ShipOrderFunction fulfillment function.

Table 3-41 ShipOrderFunction Automation Modules

	Automation Module	Automated Task	Description
	
ShipOrderEntryPointBean

	
ShipOrderEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
ShipOrderPlannedBean

	
ShipOrderPlannedTask

	
Calls the SIMilestone_doredo XQuery to return the SHIP ORDER PLANNED milestone.

	
ShipOrderExitPointBean

	
ShipOrderExitPointTask

	
Calls the SIExitPoint XQuery.

OracleComms_OSM_O2A_COM_Install_Sample

The OracleComms_OSM_O2A_COM_Install_Sample cartridge is a demonstration cartridge that supports the installation fulfillment functions for High-Speed Internet. These functions specify subprocesses to handle delivery of a relevant subset of order data to supply chain management.

Table 3-42 lists he XQuery modules in the cartridge that support component interaction.

Table 3-42 OracleComms_OSM_O2A_COM_Install_Sample Component Interaction XQuery Modules

	Component Interaction XQuery Module	Extendable	Description
	
InstallOrderInteractionModule

	
Yes

	
Provides functions to support InstallOrderFunction.

Table 3-43 lists the XQuery modules defined for the InstallOrderFunction fulfillment function. Customers can provide their own implementation of the XQuery modules in this fulfillment function indicated extension points. See "Extending XQueries" for more information about XQuery extension points.

Table 3-43 InstallOrderFunction XQuery Modules

	XQuery Module	XQuery Extension Point	Description
	
InstallOrderComplete_Event

	
COMPONENT-COMPLETE

	
Invoked when the InstallOrderFunction component is completed.

	
InstallOrderStart_Event

	
COMPONENT-START

	
Invoked when the InstallOrderFunction component is started.

Table 3-44 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_COM_Install_Sample cartridge for the InstallOrderFunction fulfillment function.

Table 3-44 InstallOrderFunction Automation Modules

	Automation Module	Automated Task	Description
	
InstallOrderEntryPointBean

	
InstallOrderEntryPointTask

	
Calls the SIEntryPoint XQuery.

	
InstallOrderPlannedBean

	
InstallOrderPlannedTask

	
Calls the SIMilestone_doredo XQuery to return the INSTALL PLANNED milestone.

	
InstallOrderCommittedBean

	
InstallOrderCommittedTask

	
Calls the SIMilestone_doredo XQuery to return the INSTALL COMMITTED milestone.

	
InstallOrderExitPointBean

	
InstallOrderExitPointTask

	
Calls the SIExitPoint XQuery.

OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

The OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge is a demonstration cartridge. It contains the mappings between product classes and product specifications, where the product classes are either imported from customer's Siebel CRM system or manually created. In either case, this cartridge can be extended and can contain custom product class information.

The following product classes, which represent orderable items from a product catalog, are defined in this cartridge:

	
Billing product classes

	
Broadband Pricing Event Class

	
Pricing Event Class

	
VoIP Pricing Event Billing Validation Class

	
VoIP Pricing Event Class

	
Broadband product classes

	
Broadband Modem Class

	
Broadband Service Class

	
Content Service Class

	
EMail Service Class

	
High Speed Internet Service Class

	
High Speed Internet Service Feature Class

	
Internet Media Class

	
Wireless Router Class

	
Installation product class

	
High-Speed Internet Installation Class

	
VoIP product classes

	
VoIP Equipment Class

	
VoIP Service Class

	
VoIP Service Feature Billing Validation Class

	
VoIP Service Feature Class

	
VoIP Service Plan Billing Validation Class

	
VoIP Service Plan Class

This cartridge also contains the following product class-to-product specification mapping file:

OracleComms_OSM_O2A_FulfillmentPatternMap_Sample/resources/productClassMapping/productClassMapping.xml

This cartridge also contains the following common fulfillment state definitions, which are used in composition rules. Listed under each main fulfillment state are its child states.

	
OPEN

	
IN_PROGRESS

	
IN_PROGRESS-INSTALL_START

	
IN_PROGRESS-INSTALL_PLANNED

	
IN_PROGRESS-SYNC_CUSTOMER_START

	
IN_PROGRESS-PROVISION_DESIGNED

	
IN_PROGRESS-INITIATE_BILLING_START

	
IN_PROGRESS-INSTALL_COMMITTED

	
IN_PROGRESS-PROVISION_START

	
IN_PROGRESS-SHIP_ORDER_PLANNED

	
IN_PROGRESS-FULFILL_BILLING_START

	
IN_PROGRESS-SHIP_ORDER_START

	
COMPLETE

	
COMPLETE-PROVISION_COMPLETE

	
COMPLETE-SYNC_CUSTOMER_COMPLETE

	
COMPLETE-FULFILL_BILLING_COMPLETE

	
COMPLETE-INITIATE_BILLING_COMPLETE

	
COMPLETE-SHIP_ORDER_SHIPPED

	
COMPLETE-INSTALL_COMPLETE

	
CANCELLED

	
CANCELLED-PROVISION_COMPLETE

	
CANCELLED-INSTALL_START

	
CANCELLED-INSTALL_PLANNED

	
CANCELLED-SYNC_CUSTOMER_START

	
CANCELLED-PROVISION_DESIGNED

	
CANCELLED-INITIATE_BILLING_START

	
CANCELLED-SYNC_CUSTOMER_COMPLETE

	
CANCELLED-FULFILL_BILLING_COMPLETE

	
CANCELLED-INSTALL_COMMITTED

	
CANCELLED-PROVISION_START

	
CANCELLED-SHIP_ORDER_PLANNED

	
CANCELLED-FULFILL_BILLING_START

	
CANCELLED-INITIATE_BILLING_COMPLETE

	
CANCELLED-SHIP_ORDER_START

	
CANCELLED-SHIP_ORDER_SHIPPED

	
CANCELLED-INSTALL_COMPLETE

	
FAILED

	
FAILED-PROVISION_COMPLETE

	
FAILED-INSTALL_START

	
FAILED-INSTALL_PLANNED

	
FAILED-SYNC_CUSTOMER_START

	
FAILED-PROVISION_DESIGNED

	
FAILED-INITIATE_BILLING_START

	
FAILED-SYNC_CUSTOMER_COMPLETE

	
FAILED-FULFILL_BILLING_COMPLETE

	
FAILED-INSTALL_COMMITTED

	
FAILED-PROVISION_START

	
FAILED-SHIP_ORDER_PLANNED

	
FAILED-FULFILL_BILLING_START

	
FAILED-INITIATE_BILLING_COMPLETE

	
FAILED-SHIP_ORDER_START

	
FAILED-SHIP_ORDER_SHIPPED

	
FAILED-INSTALL_COMPLETE

OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample

The OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample cartridge is a demonstration cartridge containing configuration for the Danube flow. It contains product specifications, each of which configures a fulfillment flow and dependencies between the fulfillment functions. The fulfillment flows include billing and provisioning fulfillment functions. The demonstration VoIP and Broadband products and non-service billing items map to the product specifications.

The following product specifications are configured in this cartridge:

	
BaseProductSpec – All other product specifications extend from this.

	
NonService.BillingInitiatedItem

	
NonService.BillingItem

	
NonService.Offer

	
Service.Broadband

	
Service.CPE.Broadband

	
Service.CPE.VoIP

	
Service.Install

	
Service.VoIP

OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample

The OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample cartridge is a demonstration cartridge containing configuration for the Nile flow. It contains product specifications, each of which configures a fulfillment flow and dependencies between the fulfillment functions. The fulfillment flows include billing and provisioning fulfillment functions. The demonstration VoIP and Broadband products and non-service billing items map to the product specifications.

The following product specifications are configured in this cartridge:

	
BaseProductSpec – All other product specifications extend from this.

	
NonService.BillingInitiatedItem

	
NonService.BillingItem

	
NonService.Offer

	
Service.Broadband

	
Service.CPE.Broadband

	
Service.CPE.VoIP

	
Service.Install

	
Service.VoIP

Table 3-45 lists the XQuery modules defined in this cartridge.

Table 3-45 OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample XQuery Modules

	XQuery Module	Extendable	Description
	
DoublePlayNileComponentDependency

	
Yes

	
Determines the dependency between order component specifications for the Nile flow.

OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlowDcn_Sample

The OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlowDcn_Sample cartridge is a demonstration cartridge containing configuration for the Nile flow with data change dependency. It contains product specifications, each of which configures a fulfillment flow and dependencies between the fulfillment functions. The fulfillment flows include billing and provisioning fulfillment functions. The demonstration VoIP and Broadband products and non-service billing items map to the product specifications.

The following product specifications are configured in this cartridge:

	
BaseProductSpec – All other product specifications extend from this.

	
NonService.BillingInitiatedItem

	
NonService.BillingItem

	
NonService.Offer

	
Service.Broadband

	
Service.CPE.Broadband

	
Service.CPE.VoIP

	
Service.Install

	
Service.VoIP

OracleComms_OSM_O2A_SimpleTopology_Sample

The OracleComms_OSM_O2A_SimpleTopology_Sample cartridge is a demonstration cartridge containing decomposition rules and order component specifications to decompose billing and provisioning fulfillment functions into the Simple topology: a single billing instance and a single local fulfillment instance.

Table 3-46 contains a list of the order component specifications defined in this cartridge.

Table 3-46 OracleComms_OSM_O2A_SimpleTopology_Sample Order Component Specifications

	Order Component Specification	Description
	
BRM-ALL

	
Represents the billing fulfillment system.

	
Provisioning-ALL

	
Represents the provisioning fulfillment system.

Table 3-47 contains a list of the decomposition rules defined in this cartridge.

Table 3-47 OracleComms_OSM_O2A_SimpleTopology_Sample Decomposition Rules

	Decomposition Rule	Description
	
SimpleDecompFulfillBilling_To_BRM-ALL

SimpleDecompInitiateBilling_To_BRM-ALL

SimpleDecompProvisionOrder_To_Provisioning-ALL

SimpleDecompSyncCustomer_To_BRM-ALL

	
Decomposition rules that map order line items from functions to fulfillment provider systems.

	
SimpleDetermineProcessingGranularity_For_FulfillBilling

SimpleDetermineProcessingGranularity_For_InitiateBilling

SimpleDetermineProcessingGranularity_For_ProvisionOrder

SimpleDetermineProcessingGranularity_For_SyncCustomer

	
Decomposition rules that map order line items from function level to processing granularity level.

	
Simple_DetermineSignificantUpdates_For_FulfillBilling

Simple_DetermineSignificantUpdates_For_InitiateBilling

Simple_DetermineSignificantUpdates_For_InstallOrder

Simple_DetermineSignificantUpdates_For_ProvisionOrder

Simple_DetermineSignificantUpdates_For_ShipOrder

Simple_DetermineSignificantUpdates_For_SyncCustomer

	
Decomposition rules that map order line items from functions to significance to determine if the order line items must be sent to a fulfillment system.

OracleComms_OSM_O2A_TypicalTopology_Sample

The OracleComms_OSM_O2A_TypicalTopology_Sample cartridge is a demonstration cartridge containing decomposition rules and order component specifications to decompose billing, provisioning, shipping, and install fulfillment functions into the Typical topology: multiple billing, local fulfillment, supply chain management, and workforce management instances.

Table 3-48 contains a list of the order component specifications defined in this cartridge.

Table 3-48 OracleComms_OSM_O2A_TypicalTopology_Sample Order Component Specifications

	Order Component Specification	Description
	
BRM-BIZBDB

	
Represents the billing fulfillment system for business DSL customers.

	
BRM-REZBDB

	
Represents the billing fulfillment system for residential DSL customers.

	
BRM-VoIP

	
Represents the billing fulfillment system for VoIP customers.

	
Provisioning-DSL

	
Represents the provisioning system for DSL customers outside the UK.

	
Provisioning-UKDSL

	
Represents the provisioning system for DSL customers inside the UK.

	
Provisioning-VoIP

	
Represents the provisioning system for VoIP customers.

	
Shipping-InHouse

	
Represents the shipping system for shipments without partner involvement.

	
Shipping-PartnerInc

	
Represents the shipping system for shipments with partner involvement.

	
WFM-ALL

	
Represents the workflow management system.

Table 3-49 contains a list of the decomposition rules defined in this cartridge.

Table 3-49 OracleComms_OSM_O2A_TypicalTopology_Sample Decomposition Rules

	Decomposition Rule	Description
	
DecompFulfillBilling_To_BRM-BIZBDB

DecompFulfillBilling_To_BRM-REZBDB

DecompFulfillBilling_To_BRM-VoIP

DecompInitiateBilling_To_BRM-BIZBDB

DecompInitiateBilling_To_BRM-REZBDB

DecompInitiateBilling_To_BRM-VoIP

DecompInstallOrder_To_WFM-ALL

DecompProvisionOrder_To_Provisioning-DSL

DecompProvisionOrder_To_Provisioning-UKDSL

DecompProvisionOrder_To_Provisioning-VoIP

DecompShipOrder_To_Shipping-InHouse

DecompShipOrder_To_Shipping-PartnerInc

DecompSyncCustomer_To_BRM-BIZBDB

DecompSyncCustomer_To_BRM-REZBDB

DecompSyncCustomer_To_BRM-VoIP

	
Decomposition rules that map order line items from functions to fulfillment provider systems.

	
Typical_DetermineProcessingGranularity_For_FulfillBilling

Typical_DetermineProcessingGranularity_For_InitiateBilling

Typical_DetermineProcessingGranularity_For_InstallOrder

Typical_DetermineProcessingGranularity_For_ProvisionOrder

Typical_DetermineProcessingGranularity_For_ShipOrder

Typical_DetermineProcessingGranularity_For_SyncCustomer

	
Decomposition rules that map order line items from function level to processing granularity level.

	
Typical_DetermineSignificantUpdates_For_FulfillBilling

Typical_DetermineSignificantUpdates_For_InitiateBilling

Typical_DetermineSignificantUpdates_For_InstallOrder

Typical_DetermineSignificantUpdates_For_ProvisionOrder

Typical_DetermineSignificantUpdates_For_ShipOrder

Typical_DetermineSignificantUpdates_For_SyncCustomer

	
Decomposition rules that map order line items from functions to significance to determine if the order line items must be sent to a fulfillment system.

OracleComms_OSM_O2A_COM_Recognition_Sample

The OracleComms_OSM_O2A_COM_Recognition_Sample cartridge is a demonstration cartridge that recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order. In addition, this cartridge recognizes order fallout notifications, trouble ticket requests, and inbound message errors due to suspended orders or resource issues. It also catches all unrecognizable messages.

Table 3-50 lists the order recognition rules defined in this cartridge.

Table 3-50 OracleComms_OSM_O2A_COM_Recognition_Sample Order Recognition Rules

	Order Recognition Rule	Description
	
COM_CloseTroubleTicketWorkOrder_Recognition

	
Recognizes a request to close an order as a result of a trouble ticket.

	
COM_FaultNotificationOrder_Recognition

	
Recognizes order fallout notifications from Oracle AIA.

	
COM_ORPFallout_CTT_OrderRecognitionRule

	
Recognizes an ORP fallout and triggers creation of a fulfillment request for a trouble ticketing system.

	
COM_ResumePendingIbMsg_OrderRecognitionRule

	
Recognizes an inbound message and triggers creation of a ResumePendingInBoundMessage order.

	
COM_SalesOrderFulfillment_Recognition

	
Recognizes an Oracle AIA customer order and triggers the creation of a COM_SalesOrderFulfillment order.

OracleComms_OSM_O2A_COM_SimpleSolution

The OracleComms_OSM_O2A_COM_SimpleSolution cartridge is a demonstration composite cartridge that references all cartridges required for central order management in the Simple topology.

Table 3-51 lists the component cartridges that are referenced in this cartridge:

Table 3-51 OracleComms_OSM_O2A_COM_SimpleSolution Component Cartridges

	Cartridge Name	Type	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized

	
Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized

	
Contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized

	
Contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized

	
Works in conjunction with the Inbound Message Recovery MDB to create fallout tasks.

	
OracleComms_OSM_O2A_ControlMap

	
Productized

	
Provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized

	
Generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

	
OracleComms_OSM_O2A_COM_Base

	
Productized

	
Supports the orchestration of customer orders from Oracle AIA.

	
OracleComms_OSM_O2A_COM_SalesOrderFulfillment

	
Productized

	
Supports the communications between central order management and fulfillment systems.

	
OracleComms_OSM_O2A_COM_Billing

	
Productized

	
Supports billing fulfillment functions.

	
OracleComms_OSM_O2A_COM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions.

	
OracleComms_OSM_O2A_COM_Install_Sample

	
Demonstration

	
Supports installation fulfillment functions.

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
Demonstration

	
Supports shipping fulfillment functions.

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
Demonstration

	
Contains the mappings between product classes and product specifications.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample

	
Demonstration

	
Contains configuration for the Danube flow.

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Demonstration

	
Contains decomposition rules and order components for the Simple topology.

	
OracleComms_OSM_O2A_COM_Recognition_Sample

	
Demonstration

	
Recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order.

OracleComms_OSM_O2A_COM_TypicalSolution

The OracleComms_OSM_O2A_COM_TypicalSolution cartridge is a demonstration composite cartridge that references all cartridges required for central order management in the Typical topology.

Table 3-52 lists the component cartridges that are referenced in this cartridge:

Table 3-52 OracleComms_OSM_O2A_COM_TypicalSolution Component Cartridges

	Cartridge Name	Type	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized

	
Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized

	
Contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized

	
Contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized

	
Works in conjunction with the Inbound Message Recovery MDB to create fallout tasks.

	
OracleComms_OSM_O2A_ControlMap

	
Productized

	
Provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized

	
Generates Oracle AIA trouble ticket creation request messages for unrecognizable customer orders.

	
OracleComms_OSM_O2A_COM_Base

	
Productized

	
Supports the orchestration of customer orders from Oracle AIA.

	
OracleComms_OSM_O2A_COM_SalesOrderFulfillment

	
Productized

	
Supports the communications between central order management and fulfillment systems.

	
OracleComms_OSM_O2A_COM_Billing

	
Productized

	
Supports billing fulfillment functions.

	
OracleComms_OSM_O2A_COM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions.

	
OracleComms_OSM_O2A_COM_Install_Sample

	
Demonstration

	
Supports installation fulfillment functions.

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
Demonstration

	
Supports shipping fulfillment functions.

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
Demonstration

	
Contains the mappings between product classes and product specifications.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample

	
Demonstration

	
Contains configuration for the Nile flow.

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Demonstration

	
Contains decomposition rules and order components for the Typical topology.

	
OracleComms_OSM_O2A_COM_Recognition_Sample

	
Demonstration

	
Recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order.

OracleComms_OSM_O2A_COMSOM_Recognition_Sample

The OracleComms_OSM_O2A_COMSOM_Recognition_Sample cartridge is a demonstration cartridge that is used when central order management and service order management are deployed together in the same OSM instance. It recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order. In addition, this cartridge recognizes order fallout notifications, trouble ticket requests, and inbound message errors due to suspended orders or resource issues. It also catches all unrecognizable messages.

Table 3-53 lists the order recognition rules defined in this cartridge.

Table 3-53 OracleComms_OSM_O2A_COMSOM_Recognition_Sample Order Recognition Rules

	Order Recognition Rule	Description
	
COMSOM_CloseTroubleTicketWorkOrder

	
Recognizes a request to close an order as a result of a trouble ticket.

	
COMSOM_FaultNotificationOrder

	
Recognizes order fallout notifications from Oracle AIA.

	
COMSOM_LFAbortOrderPropagationOrder

	
Recognizes a termination request for an order.

	
COMSOM_ORPFallout_CTT_Order

	
Recognizes an ORP fallout and triggers creation of a fulfillment request for a trouble ticketing system.

	
COMSOM_ProvisionOrderFulfillment

	
Recognizes a service order that must be executed and creates a SOM_ProvisionOrderFulfillment order.

	
COMSOM_ResumePendingIbMsg

	
Recognizes an inbound message and triggers creation of a ResumePendingInBoundMessage order.

	
COMSOM_SalesOrderFulfillment

	
Recognizes an Oracle AIA customer order and triggers the creation of a COM_SalesOrderFulfillment order.

OracleComms_OSM_O2A_COMSOM_SimpleSolution

The OracleComms_OSM_O2A_COMSOM_SimpleSolution cartridge is a demonstration composite cartridge that references all cartridges required for central order management in the Simple topology.

Table 3-54 lists the component cartridges that are referenced in this cartridge:

Table 3-54 OracleComms_OSM_O2A_COMSOM_SimpleSolution Component Cartridges

	Cartridge Name	Type	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized

	
Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized

	
Contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized

	
Contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized

	
Works in conjunction with the Inbound Message Recovery MDB to create fallout tasks.

	
OracleComms_OSM_O2A_ControlMap

	
Productized

	
Provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized

	
Generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

	
OracleComms_OSM_O2A_COM_Base

	
Productized

	
Supports the orchestration of customer orders from Oracle AIA.

	
OracleComms_OSM_O2A_COM_SalesOrderFulfillment

	
Productized

	
Supports the communications between central order management and fulfillment systems.

	
OracleComms_OSM_O2A_COM_Billing

	
Productized

	
Supports billing fulfillment functions.

	
OracleComms_OSM_O2A_COM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions.

	
OracleComms_OSM_O2A_COM_Install_Sample

	
Demonstration

	
Supports installation fulfillment functions.

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
Demonstration

	
Supports shipping fulfillment functions.

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
Demonstration

	
Contains the mappings between product classes and product specifications.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample

	
Demonstration

	
Contains configuration for the Danube flow.

	
OracleComms_OSM_O2A_SimpleTopology_Sample

	
Demonstration

	
Contains decomposition rules and order components for the Simple topology.

	
OracleComms_OSM_O2A_COMSOM_Recognition_Sample

	
Demonstration

	
Recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order. It is used when central order management and service order management are deployed to the same instance of OSM.

	
OracleComms_OSM_O2A_SOM_Base

	
Productized

	
Supports the orchestration of service orders.

	
OracleComms_OSM_O2A_SOM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions in service order management.

	
OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

	
Demonstration

	
Contains product specifications for service order management functions.

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
Demonstration

	
Supports service orders for broadband services.

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
Demonstration

	
Supports service orders for VoIP services.

The OracleComms_OSM_O2A_COMSOM_SimpleSolution/resources/SolutionConfig directory contains XML configuration files you can use to configure additional fulfillment functions, fulfillment systems, fulfillment modes, etc. For more information, see "Extending Order-to-Activate Cartridges". Table 3-55 lists the XML files defined in this cartridge.

Table 3-55 OracleComms_OSM_O2A_COMSOM_SimpleSolution XML Files

	XML File	Extendable	Description
	
ComponentExtensionPointMap

	
Yes

	
XQuery extension point for fulfillment function

	
ComponentQueryViewMap

	
Yes

	
Task view used for fulfillment function to support revision

	
ComponentMilestoneMap

	
Yes

	
Milestone definition and order update configuration for fulfillment function

	
FaultModeMap

	
No

	
Fault mode for simulating fault in service order management

	
FulfillmentOrderEventMap

	
Yes

	
XQuery extension point for handling service order events

	
FulfillmentStateExtensionMap

	
Yes

	
XQuery extension point for translating internal fulfillment states to external Siebel CRM-expected values and milestone and state description population

	
OrderItemStatusContextMap

	
Yes

	
Mapping of order item status context to order item milestone

	
OrderMessageMap

	
Yes

	
Mapping of internal message code to external message

	
OrderStatusContextMap

	
No

	
Mapping of order status context to order status for a given fulfillment mode

	
OrderStatusMap

	
Yes

	
Mapping of OSM order status to external status

	
SolutionModelProperties

	
No

	
Model variables defined in the solution cartridge

	
TargetSystemMap

	
Yes

	
Mapping each target system with its unique identifier and with its request and response queues.

	
TaskExitStatusMap

	
Yes

	
Exit status mapped for tasks used for debugging

OracleComms_OSM_O2A_COMSOM_TypicalSolution

The OracleComms_OSM_O2A_COMSOM_TypicalSolution cartridge is a demonstration composite cartridge that references all cartridges required for central order management in the Typical topology.

Table 3-56 lists the component cartridges that are referenced in this cartridge:

Table 3-56 OracleComms_OSM_O2A_COMSOM_TypicalSolution Component Cartridges

	Cartridge Name	Type	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized

	
Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized

	
Contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized

	
Contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized

	
Works in conjunction with the Inbound Message Recovery MDB to create fallout tasks.

	
OracleComms_OSM_O2A_ControlMap

	
Productized

	
Provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized

	
Generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

	
OracleComms_OSM_O2A_COM_Base

	
Productized

	
Supports the orchestration of customer orders from Oracle AIA.

	
OracleComms_OSM_O2A_COM_SalesOrderFulfillment

	
Productized

	
Supports the communications between central order management and fulfillment systems.

	
OracleComms_OSM_O2A_COM_Billing

	
Productized

	
Supports billing fulfillment functions.

	
OracleComms_OSM_O2A_COM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions.

	
OracleComms_OSM_O2A_COM_Install_Sample

	
Demonstration

	
Supports installation fulfillment functions.

	
OracleComms_OSM_O2A_COM_Shipping_Sample

	
Demonstration

	
Supports shipping fulfillment functions.

	
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

	
Demonstration

	
Contains the mappings between product classes and product specifications.

	
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample

	
Demonstration

	
Contains configuration for the Nile flow.

	
OracleComms_OSM_O2A_TypicalTopology_Sample

	
Demonstration

	
Contains decomposition rules and order components for the Typical topology

	
OracleComms_OSM_O2A_COMSOM_Recognition_Sample

	
Demonstration

	
Recognizes a customer order from Oracle AIA and triggers the creation of a COM_SalesOrderFulfillment order. It is used when central order management and service order management are deployed to the same instance of OSM.

	
OracleComms_OSM_O2A_SOM_Base

	
Productized

	
Supports the orchestration of service orders.

	
OracleComms_OSM_O2A_SOM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions in service order management.

	
OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

	
Demonstration

	
Recognizes a service order and triggers the creation of a SOM_ProvisionOrderFulfillment order.

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
Demonstration

	
Supports service orders for broadband services.

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
Demonstration

	
Supports service orders for VoIP services.

The OracleComms_OSM_O2A_COMSOM_TypicalSolution/resources/SolutionConfig directory contains XML configuration files you can use to configure additional fulfillment functions, fulfillment systems, fulfillment modes, etc. For more information, see "Extending Order-to-Activate Cartridges". Table 3-57 lists the XML files defined in this cartridge.

Table 3-57 OracleComms_OSM_O2A_COMSOM_TypicalSolution XML Files

	XML File	Extendable	Description
	
ComponentExtensionPointMap

	
Yes

	
XQuery extension point for fulfillment function

	
ComponentQueryViewMap

	
Yes

	
Task view used for fulfillment function to support revision

	
ComponentMilestoneMap

	
Yes

	
Milestone definition and order update configuration for fulfillment function

	
FaultModeMap

	
No

	
Fault mode for simulating fault in service order management

	
FulfillmentOrderEventMap

	
Yes

	
XQuery extension point for handling service order events

	
FulfillmentStateExtensionMap

	
Yes

	
XQuery extension point for translating internal fulfillment states to external Siebel CRM-expected values and milestone and state description population

	
OrderItemStatusContextMap

	
Yes

	
Mapping of order item status context to order item milestone

	
OrderMessageMap

	
Yes

	
Mapping of internal message code to external message

	
OrderStatusContextMap

	
No

	
Mapping of order status context to order status for a given fulfillment mode

	
OrderStatusMap

	
Yes

	
Mapping of OSM order status to external status

	
SolutionModelProperties

	
No

	
Model variables defined in the solution cartridge

	
TargetSystemMap

	
Yes

	
Mapping each target system with its unique identifier and with its request and response queues.

	
TaskExitStatusMap

	
Yes

	
Exit status mapped for tasks used for debugging

OracleComms_OSM_O2A_SalesOrders_Sample

The OracleComms_OSM_O2A_SalesOrders_Sample cartridge is a demonstration cartridge that contains sample customer orders. These orders are in the same format as orders that are received in an integrated environment with Oracle AIA, Siebel CRM, and CRM ABCS. In a standalone OSM environment, you can submit them to central order management to generate and execute an orchestration plan. In a standalone OSM environment, EBMs are placed on OSM JMS queues for pickup by Oracle AIA.

This cartridge contains sample orders in XML files. The names of the XML files use the following conventions:

	
NSalesOrder: Order to add services

	
CSalesOrder: Change order, otherwise known as a Move Add Change Delete (MACD) order

	
FSalesOrder: Follow-on order, used to update an order that has passed the point of no return

	
R1, R2, R3, R4: revision order for submission after the original base order with the same name

	
TBO: An order specifying time-based offerings

	
Cancel: Cancel order

	
Note:

Each customer order that you send must contain a unique EBM ID. For example, the EBM ID of a cancel order request (revision order) cannot be the same as the EBM ID of the original base order (new order).

Table 3-58 describes the order numbers for new and change orders:

Table 3-58 OracleComms_OSM_O2A_SalesOrders_Sample Order Descriptions

	Order Number	Description
	
Sales Order 10000

	
Double Play First-Time Purchase

	
Sales Order 10010

	
Double Play Promotion change orders for broadband

	
Sales Order 10020

	
Double Play Promotion change orders for VoIP

	
Sales Order 10030

	
Double Play Change Purchased Products

	
Sales Order 10040

	
Double Play Update Attributes of a Product

	
Sales Order 10050

	
Double Play Suspend Services

	
Sales Order 10060

	
Double Play Suspend and Resume on the Same Order

	
Sales Order 10070

	
Double Play Move Services to Different Address

	
Sales Order 10080

	
Double Play Disconnect Optional Products

Following is a list of the order XML files included in the cartridge:

	
NSalesOrderTBOEBM.xml

	
CSalesOrderTBOEBM.xml

	
GoldFSalesOrder10000F-1FFEBM.xml

	
GoldNSalesOrder10000-V2EBM-Predecessor.xml

	
GoldNSalesOrder10000-V2EBM-Successor.xml

	
GoldNSalesOrder10000-V2EBM.xml

	
GoldNSalesOrder10000F-1EBM.xml

	
GoldNSalesOrder10000F-1FO1EBM.xml

	
GoldNSalesOrder10000WithAdditionalFulfillmentItemCodeEBM.xml

	
GoldNSalesOrder10010-V2EBM.xml

	
GoldCSalesOrder10010-V2EBM.xml

	
GoldCSalesOrder10020-2-1EBM.xml

	
GoldCSalesOrder10020-2-1R1EBM.xml

	
GoldCSalesOrder10020-V2EBM.xml

	
GoldNSalesOrder10020-2-1EBM.xml

	
GoldNSalesOrder10020-V2EBM.xml

	
GoldNSalesOrder10030-V2EBM.xml

	
GoldNSalesOrder10030_2V1EBM.xml

	
GoldCSalesOrder10030-V2EBM.xml

	
GoldCSalesOrder10030R1_2V1EBM.xml

	
GoldCSalesOrder10030R3_2V1EBM.xml

	
GoldCSalesOrder10030R4_2V1EBM.xml

	
GoldCSalesOrder10030_2V1EBM.xml

	
GoldNSalesOrder10040-V2EBM.xml

	
GoldNSalesOrder10040_2V1EBM.xml

	
GoldCSalesOrder10040-V2EBM.xml

	
GoldR1SalesOrder10040-V2EBM.xml

	
GoldCSalesOrder10040R2_2V1EBM.xml

	
GoldR3SalesOrder10040-V2EBM.xml

	
GoldCSalesOrder10040R4_2V1EBM.xml

	
GoldCSalesOrder10040_2V1EBM.xml

	
GoldNSalesOrder10050-V2EBM.xml

	
GoldCSalesOrder10050-V2EBM.xml

	
GoldNSalesOrder10060-V2EBM.xml

	
GoldCSalesOrder10060-V2EBM.xml

	
GoldNSalesOrder10070-V2EBM.xml

	
GoldCSalesOrder10070-V2EBM.xml

	
GoldCSalesOrder10070R1-V2EBM.xml

	
GoldNSalesOrder10080-V2EBM.xml

	
GoldCSalesOrder10080-V2EBM.xml

	
GoldR1SalesOrder10080-V2EBM.xml

	
GoldR2SalesOrder10080-V2EBM.xml

	
NSalesOrderWirelessProductsEBM.xml

	
SalesOrder10000CancelEBM.xml

	
SalesOrder10000DeliverEBM.xml

	
Note:

The testfalloutnotification.xml file is a sample order fallout notification but not a sample customer order. This XML file is used to send a particular task to fallout manually by pausing the corresponding queue.

Table 3-59 contains information about the changes included in the specific revision orders above:

Table 3-59 OracleComms_OSM_O2A_SalesOrders_Sample Order Revision Details

	Order Number	Description
	
GoldCSalesOrder10030R1_2V1EBM

	
ADD canceled on revision, DELETE canceled on revision

	
GoldCSalesOrder10030R3_2V1EBM

	
ADD modified on revision

	
GoldCSalesOrder10030R4_2V1EBM

	
New ADD on revision

	
GoldR1SalesOrder10040-V2EBM

	
UPDATE modified on revision

	
GoldCSalesOrder10040R2_2V1EBM

	
UPDATE canceled on revision

	
GoldR3SalesOrder10040-V2EBM

	
New ADD on revision

	
GoldCSalesOrder10040R4_2V1EBM

	
DELETE added on revision

	
GoldCSalesOrder10070R1-V2EBM

	
MOVE canceled on revision

	
GoldR1SalesOrder10080-V2EBM

	
DELETE modified on revision (future date)

	
GoldR2SalesOrder10080-V2EBM

	
UPDATE added on revision

Service Order Management Cartridges

The following cartridges operate in the service order management role, which translates Oracle AIA service orders into OSM service orders and processes those orders.

OracleComms_OSM_O2A_SOM_Base

The OracleComms_OSM_O2A_SOM_Base cartridge is a productized cartridge supporting the orchestration of service orders that have come from Oracle AIA. It includes handling status and data updates from fulfillment requests back to central order management.

Order Events

When the COM_SalesOrderFulfillment order reaches one of the order events listed in Table 3-60, it triggers the listed XQuery module to send an order update to the upstream system.

Table 3-60 OracleComms_OSM_O2A_SOM_Base Order Events

	Order Event	Description
	
creation

	
Calls the LFCheckCreationOrderFailure XQuery to determine if a failure has occurred. If so, generates a message to central order management through the Oracle AIA error handling framework.

	
completion

	
Calls the ProvisionOrderCompleteEventHandler XQuery module to send the order completion to central order management.

Processing Granularity Rules

There are three orchestration stages defined in the orchestration sequence to decompose the order line items. The result of each stage of decomposition is the source for the next stage of decomposition.

	
In the first stage, the order line items are decomposed by fulfillment function.

	
In the second stage, the order line items are decomposed by fulfillment provider.

	
In the third stage, the order line items are decomposed by granularity rule.

Granularity rules provide the configuration for the third stage of decomposition. During orchestration plan generation at run time, the granularity rule takes as input the order line items that have already been grouped by fulfillment function and subdivided by fulfillment provider.

Table 3-61 lists the processing granularity rule entities.

Table 3-61 OracleComms_OSM_O2A_SOM_Base Processing Granularity Rules

	Entity Name	Entity Type	Description
	
ServiceGranularity

	
Order Component Specification

	
This granularity rule selects:

	
An order line item that represents a service along with service components and related order line items

	
Order line items of any other root node on the order along with their related order line items

XQuery Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge

Table 3-62 through Table 3-69 list the different types of XQuery modules in this cartridge.

Table 3-62 OracleComms_OSM_O2A_SOM_Base XQuery Module for Constants

	Constants XQuery Module	Extendable	Description
	
SomQueryViewConstants

	
No

	
Defines constants for querying views in service order management.

Table 3-63 OracleComms_OSM_O2A_SOM_Base XQuery Modules for Fallout Handling

	Fallout Handling XQuery Module	Extendable	Description
	
AbortLFOrderRequest

	
No

	
Sends an order termination request for the fulfillment request through the Web service API.

	
FindLFOrder

	
No

	
Creates a find order request for a fulfillment request with a given order key.

	
LFAbortOrderPropagation

	
No

	
Sends an order termination request for a given fulfillment request.

	
LFAbortOrderPropagationCheck

	
No

	
Checks the status of the order termination request for fulfillment request.

	
LFAbortOrderPropagationResp

	
No

	
Handles the response of the order termination request for the fulfillment request.

	
LFwsResponseHandler

	
No

	
Utility module for providing retrieval and update to service order.

	
SendAbortLFOrderFailure

	
No

	
Sends a fulfillment order failure update when the order termination request failed.

	
SendAbortLFOrderSuccess

	
No

	
Sends a fulfillment order success update when the order termination request succeeded.

	
SuspendLFOrder

	
No

	
Creates a suspend order request for a fulfillment request with a given order key.

Table 3-64 OracleComms_OSM_O2A_SOM_Base Orchestration Sequence XQuery Modules

	Orchestration Sequence XQuery Module	Extendable	Description
	
FulfillmentModeExpression

	
No

	
Marshals the fulfillment mode code from the service order.

	
OrderItemSelector

	
No

	
Module to select all order line items from the service order.

Table 3-65 OracleComms_OSM_O2A_SOM_Base Order Data Change XQuery Modules

	Order Data Change XQuery Module	Extendable	Description
	
CreateLFFaultToAIAEH

	
No

	
Creates an error message to be sent to the Oracle AIA error handling queue.

Table 3-66 OracleComms_OSM_O2A_SOM_Base Order Item XQuery Modules

	Order Item XQuery Module	Extendable	Description
	
LineIdKey

	
No

	
Retrieves the order line item's ID.

	
ParentLineIdKey

	
No

	
Retrieves the parent order line item's ID.

Table 3-67 OracleComms_OSM_O2A_SOM_Base Order Item Property XQuery Modules

	Order Item Property XQuery Module	Extendable	Description
	
BaseLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
BaseLineItemData

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineDescription

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineName

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
LineRequestedDeliveryDateTime

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ParentLineId

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ProductClass

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ProductSpec

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
ServiceActionCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
StatusCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
StatusDescription

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

	
TypeCode

	
No

	
Retrieves the specified order item property from the appropriate location in the order data.

Table 3-68 OracleComms_OSM_O2A_SOM_Base Order Recognition XQuery Modules

	Order Recognition XQuery Module	Extendable	Description
	
ProvisionOrderData

	
No

	
Transforms the Oracle AIA service order to an OSM service order.

	
ProvisionOrderPriority

	
No

	
Retrieves the priority of the Oracle AIA service order.

	
ProvisionOrderRecognition

	
No

	
Recognizes the Oracle AIA service order.

	
ProvisionOrderValidation

	
No

	
Validates the Oracle AIA service order.

Table 3-69 OracleComms_OSM_O2A_SOM_Base Order State XQuery Modules

	Order State XQuery Module	Extendable	Description
	
LFCheckCreationOrderFailure

	
No

	
Determines if a failure has occurred. If so, generates an error message to central order management through the Oracle AIA error handling framework.

	
ProvisionOrderCompleteEventHandler

	
No

	
Sends service order status update with COMPLETE status code back to central order management.

Automation Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge

Table 3-70 lists the automation modules in the cartridge with their associated automated tasks.

Table 3-70 OracleComms_OSM_O2A_SOM_Base Automation Modules

	Automation Module	Automated Task	Description
	
AbortLFOrderPlugin

	
AbortLFOrderTask

	
Calls the AbortLFOrderRequest XQuery.

	
AbortLFOrderRespPlugin

	
AbortLFOrderTask

	
External event receiver to invoke LFwsResponseHandler XQuery.

	
FindLFOrderPlugin

	
GetLFOrderTask

	
Calls the FindLFOrder XQuery

	
GetLFOrderDataPlugin

	
GetLFOrderTask

	
External event receiver to invoke LFwsResponseHandler XQuery.

	
SendAbortLFOrderFailurePlugin

	
LFAbortOrderFailureTask

	
Calls the SendAbortLFOrderFailure XQuery.

	
SendAbortLFOrderSuccessPlugin

	
LFAbortOrderSuccessTask

	
Calls the SendAbortLFOrderSuccess XQuery.

	
LFOrderAbortPropagationCheckPlugin

	
LFOrderAbortPropagationCheck

	
Internal event receiver to invoke LFAbortOrderPropagationCheck XQuery

	
LFAbortOrderPropagationPlugin

	
LFOrderAbortPropagationTask

	
Internal event receiver to invoke LFAbortOrderPropagation XQuery

	
LFAbortOrderPropagationRespPlugin

	
LFOrderAbortPropagationTask

	
External event receiver to invoke LFAbortOrderPropagationResp XQuery.

	
SuspendLFOrderPlugin

	
SuspendLFOrderTask

	
Internal event receiver to invoke SuspendLFOrder XQuery

	
SuspendLFOrderRespPlugin

	
SuspendLFOrderTask

	
Calls the LFwsResponseHandler XQuery

OracleComms_OSM_O2A_SOM_Provisioning

The OracleComms_OSM_O2A_SOM_Provisioning cartridge is a productized cartridge that supports provisioning fulfillment functions. These functions specify a subprocess to handle delivery of a relevant subset of order data to the provisioning system and handle responses from the provisioning system.

Table 3-71 lists he XQuery modules in the cartridge that support component interaction.

Table 3-71 OracleComms_OSM_O2A_SOM_Provisioning Component Interaction XQuery Modules

	Component Interaction XQuery Module	Extendable	Description
	
SomProvisionOrderInteractionModule

	
Yes

	
Provides functions to support ProvisionOrderFunction in service order management.

Table 3-72 lists the XQuery modules defined for the SomProvisionOrderFunction fulfillment function.

Table 3-72 SomProvisionOrderFunction XQuery Modules

	XQuery Module	Extendable	Description
	
CreateProvisioningOrderRequest_do

	
No

	
Generates the Oracle AIA EBM requests to the external provisioning system.

	
CreateProvisioningOrderRequest_redo

	
No

	
Generates the Oracle AIA EBM requests to the external provisioning system.

	
CreateProvisioningOrderRequest_undo

	
No

	
Generates the Oracle AIA EBM requests to external provisioning system for undo.

	
CreateProvisioningOrderResponse

	
No

	
Consumes the Oracle AIA EBM response from the external provisioning system.

	
InitialSomProvisionOrderSIResponse

	
No

	
Sets the correlation context prior to consuming Oracle AIA EBM response from the external provisioning system.

	
RetryCreateProvisioningOrderResponse

	
No

	
Handles fallout in service order management's provisioning order by re-creating the response from the external provisioning system.

	
SomProvisionOrderSIEntryPoint

	
No

	
Handles extension point COMPONENT-START, updates order item properties, and reports milestones to lifecycle management for service order management and then to central order management.

	
SomProvisionOrderSIResponse

	
No

	
Consumes the Oracle AIA EBM response from the external provisioning system.

	
SomProvisionOrderSIResponseFalloutPrepare

	
No

	
Handles manual retry process to re-submit EBM to the external provisioning system.

	
UpdateProvisionOrderStatusFunctions

	
No

	
Provides functions to create an EBM that contains the fulfillment request's update and send the EBM to central order management.

Table 3-73 lists the automation modules (with their associated automated tasks) defined in the OracleComms_OSM_O2A_SOM_Provisioning cartridge for the SomProvisionOrderFunction fulfillment function.

Table 3-73 SomProvisionOrderFunction Automation Modules

	Automation Module	Automated Task	Description
	
SomProvisionOrderSIEntryPointBean

	
SomProvisionOrderSIEntryPointTask

	
Calls the SomProvisionOrderSIEntryPoint XQuery.

	
SomProvisionOrderSIResponseFalloutPrepareBean

	
SomProvisionOrderSIResponseFalloutPrepareTask

	
Calls the SomProvisionOrderSIResponseFalloutPrepare XQuery.

	
InitialSomProvisionOrderSIResponseBean

	
SomProvisionOrderSIResponseTask

	
Calls the InitialSomProvisionOrderSIResponse XQuery.

	
SomProvisionOrderSIResponseBean

	
SomProvisionOrderSIResponseTask

	
External event receiver to invoke SomProvisionOrderSIResponse XQuery.

	
RetryCreateProvisioningOrderRequestBean

	
SomProvisionOrderSIRetryTask

	
Calls the CreateProvisioningOrderRequest_do XQuery.

	
RetryCreateProvisioningOrderResponseBean

	
SomProvisionOrderSIRetryTask

	
External event receiver to invoke RetryCreateProvisoningOrderResponse XQuery.

	
CreateProvisiongOrderRequestBean_do

	
SomProvisionOrderSITask

	
Calls the CreateProvisioningOrderRequest_do XQuery.

	
CreateProvisiongOrderRequestBean_redo

	
SomProvisionOrderSITask

	
Calls the CreateProvisioningOrderRequest_redo XQuery.

	
CreateProvisiongOrderRequestBean_undo

	
SomProvisionOrderSITask

	
Calls the CreateProvisioningOrderRequest_undo XQuery.

	
CreateProvisioningOrderResponseBean

	
SomProvisionOrderSITask

	
External event receiver to invoke CreateProvisoningOrderResponse XQuery.

	
SomProvisionOrderSIResponseUndoBean

	
SomProvisionOrderSITask

	
External event receiver to invoke SomProvisionOrderSIResponse XQuery.

OracleComms_OSM_O2A_SOM_Recognition_Sample

The OracleComms_OSM_O2A_SOM_Recognition_Sample cartridge is a demonstration cartridge that recognizes a service order and triggers the creation of a SOM_ProvisionOrderFulfillment order. In addition, this cartridge catches all in-bound messages not recognized by any other provisioning recognition rules.

Table 3-74 lists the order recognition rules defined in this cartridge.

Table 3-74 OracleComms_OSM_O2A_SOM_Recognition_Sample Recognition Rules

	Order Recognition Rule	Description
	
SOM_LFAbortOrderPropagationOrder_Recognition

	
Recognizes a termination request for an order.

	
SOM_ORPFallout_CFM_OrderRecognitionRule

	
Recognizes an ORP fallout to create a fault message to be sent to Oracle AIA error handling queue.

	
SOM_ProvisionOrderFulfillment_Recognition

	
Recognizes a service order that must be executed and creates a SOM_ProvisionOrderFulfillment order.

	
SOM_ResumePendingIbMsg_OrderRecognitionRule

	
Recognizes an inbound message to create a ResumePendingInBoundMessage order in service order management.

OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

The OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample cartridge is a demonstration cartridge containing product specifications, each of which configures a fulfillment flow for provisioning fulfillment functions. The demonstration VoIP and Broadband products map to the product specifications.

The following product specifications are configured in this cartridge:

	
SOM_Service.Provision – All other product specifications extend from this.

	
SOM_Service.Broadband

	
SOM_Service.CPE.Broadband

	
SOM_Service.CPE.VoIP

	
SOM_Service.VoIP

OracleComms_OSM_O2A_SomProvisionBroadband_Sample

The OracleComms_OSM_O2A_SomProvisionBroadband_Sample cartridge is a demonstration cartridge supporting service orders for broadband services.

Table 3-75 to Table 3-77 list the entities in the OracleComms_OSM_O2A_SomProvisionBroadband_Sample cartridge.

Table 3-75 OracleComms_OSM_O2A_SomProvisionBroadband_Sample Entities

	Name	Type	Description
	
OSM_O2A_SomProvisionBroadband_Recognition

	
Order Recognition Rule

	
Recognizes a broadband service order and creates an OracleComms_OSM_O2A_SomProvisionBroadband_SampleOrder service order to manage its fulfillment.

	
OracleComms_OSM_O2A_SomProvisionBroadband_SampleOrder

	
Order

	
Local service order structure for managing a service order for broadband services.

	
BroadbandProvisioningOrderLifeCycle

	
Lifecycle Policy

	
Defines the security permissions for order transactions.

	
BroadbandProvisioningRole

	
Role

	
Role with permissions to create and view OracleComms_OSM_O2A_SomProvisionBroadband_SampleOrder.

	
BroadbandServicesProvisioningProcess

	
Process and Tasks

	
Process to handle provisioning of broadband services such as email, Internet and customer premise equipment.

	
CreateBroadbandServicesProvisioningOrderTask

	
Manual Task

	
Creation task to create an OracleComms_OSM_O2A_SomProvisionBroadband_SampleOrder.

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
Data Schema

	
Data structures for managing broadband services.

Table 3-76 OracleComms_OSM_O2A_SomProvisionBroadband_Sample XQuery Modules

	XQuery Module	Extendable	Description
	
ActivityRouterTask

	
Yes

	
Transit to the next task with different task exit status depending on broadband provisioning service.

	
BroadbandServiceErrorFault

	
Yes

	
Creates error fault for broadband provisioning service.

	
BroadbandServiceOrderCompleteEventHandler

	
Yes

	
Sends broadband service order status update with COMPLETE status code back to service order management.

	
BroadbandServiceProcessEntryUndoBean

	
Yes

	
Updates the provisioning order and sends broadband service order status.

	
BroadbandServiceProvisioningOrderDataRule

	
Yes

	
Transforms the Oracle AIA service order to an OSM service order.

	
BroadbandServiceUtilityModule

	
Yes

	
Utility module to provide functions to support provisioning broadband service.

	
ProvisionTaskComplete

	
Yes

	
Completes a provisioning task.

	
ProvisionTaskStart

	
Yes

	
Starts a provisioning task.

Table 3-77 OracleComms_OSM_O2A_SomProvisionBroadband_Sample Automation Modules

	Automation Module	Automated Task	Description
	
ActivityRouterBean

	
ActivityRouterTask

	
Calls the ActivityRouterTask XQuery.

	
BroadbandServiceErrorFaultBean

	
BroadbandServiceErrorFaultTask

	
Calls the BroadbandServiceErrorFault XQuery.

	
BroadbandServiceErrorFaultBean_redo

	
BroadbandServiceErrorFaultTask

	
Calls the BroadbandServiceErrorFault XQuery for redo mode.

	
BroadbandServiceProcessEntryUndoBean

	
BroadbandServiceProcessEntryTask

	
Calls the BroadbandServiceProcessEntryUndoBean XQuery.

	
BroadbandServiceProcessExitBean

	
BroadbandServiceProcessExitTask

	
Calls the BroadbandServiceProcessExitBean XQuery.

	
ProvisionCPEEntryPointBean

	
ProvisionCPEEntryPointTask

	
Calls the ProvisionTaskStart XQuery.

	
ProvisionCPEExitPointBean

	
ProvisionCPEExitPointTask

	
Calls the ProvisionTaskComplete XQuery.

	
ProvisionInternetEmailServiceBundleEntryPointBean

	
ProvisionInternetEmailServiceBundleEntryPointTask

	
Calls the ProvisionTaskStart XQuery.

	
ProvisionInternetEmailServiceBundleExitPointBean

	
ProvisionInternetEmailServiceBundleExitPointTask

	
Calls the ProvisionTaskComplete XQuery.

	
ProvisionInternetMediaServiceBundleEntryPointBean

	
ProvisionInternetMediaServiceBundleEntryPointTask

	
Calls the ProvisionTaskStart XQuery.

	
ProvisionInternetMediaServiceBundleExitPointBean

	
ProvisionInternetMediaServiceBundleExitPointTask

	
Calls the ProvisionTaskComplete XQuery.

	
ProvisionInternetServiceBundleEntryPointBean

	
ProvisionInternetServiceBundleEntryPointTask

	
Calls the ProvisionTaskStart XQuery.

	
ProvisionInternetServiceBundleExitPointBean

	
ProvisionInternetServiceBundleExitPointTask

	
Calls the ProvisionTaskComplete XQuery.

OracleComms_OSM_O2A_SomProvisionVoIP_Sample

The OracleComms_OSM_O2A_SomProvisionVoIP_Sample cartridge is a demonstration cartridge supporting service orders for VoIP services.

Table 3-78 to Table 3-80 list the entities in the OracleComms_OSM_O2A_SomProvisionVoIP_Sample cartridge.

Table 3-78 OracleComms_OSM_O2A_SomProvisionVoIP_Sample Entities

	Name	Type	Description
	
OSM_O2A_SomProvisionVoIP_Recognition

	
Order Recognition Rule

	
Recognizes a VoIP service order and creates an OracleComms_OSM_O2A_SomProvisionVoIP_SampleOrder service order to manage its fulfillment.

	
OracleComms_OSM_O2A_SomProvisionVoIP_SampleOrder

	
Order

	
Local service order structure for managing a service order for VoIP services.

	
VoIPProvisioningOrderLifeCycle

	
Lifecycle Policy

	
Defines the security permissions for order transactions.

	
VoIPProvisioningRole

	
Role

	
Role with permissions to create and view OracleComms_OSM_O2A_SomProvisionVoIP_SampleOrder.

	
VoIPServicesProvisioningProcess

	
Process and Tasks

	
Process to handle provisioning of VoIP services such as VoIP service and customer premise equipment.

	
CreateVoIPServicesProvisioningOrderTask

	
Manual Task

	
Creation task to create an OracleComms_OSM_O2A_SomProvisionVoIP_SampleOrder.

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
Data Schema

	
Data structures for managing VoIP services.

Table 3-79 OracleComms_OSM_O2A_SomProvisionVoIP_Sample XQuery Modules

	XQuery Module	Extendable	Description
	
VoIPActivityRouterTask

	
Yes

	
Transit to the next task with different task exit status depending on VoIP provisioning service.

	
VoIPServiceErrorFault

	
Yes

	
Creates error fault for VoIP provisioning service.

	
VoIPServiceOrderCompleteEventHandler

	
Yes

	
Sends VoIP service order status update with COMPLETE status code back to service order management.

	
VoIPServiceProcessEntryBean

	
Yes

	
Updates the provisioning order and sends VoIP service order status.

	
VoIPServiceProvisioningOrderDataRule

	
Yes

	
Transforms the Oracle AIA service order to an OSM service order.

	
VoIPServiceUtilityModule

	
Yes

	
Utility module to provide functions to support provisioning VoIP service.

	
VoIPProvisionTaskComplete

	
Yes

	
Completes a provisioning task.

	
VoIPProvisionTaskStart

	
Yes

	
Starts a provisioning task.

	
VoIPServiceProcessExitBean

	
Yes

	
Completes a task using a successful status.

Table 3-80 OracleComms_OSM_O2A_SomProvisionVoIP_Sample Automation Modules

	Automation Module	Automated Task	Description
	
VoIPActivityRouterBean

	
VoIPActivityRouterTask

	
Calls the VoIPActivityRouterTask XQuery.

	
VoIPServiceErrorFaultBean

	
VoIPServiceErrorFaultTask

	
Calls the VoIPServiceErrorFault XQuery.

	
VoIPServiceErrorFaultBean_redo

	
VoIPServiceErrorFaultTask

	
Calls the VoIPServiceErrorFault XQuery for redo mode.

	
VoIPServiceProcessEntryBean

	
VoIPServiceProcessEntryTask

	
Calls the VoIPServiceProcessEntryBean XQuery.

	
VoIPServiceProcessExitBean

	
VoIPServiceProcessExitTask

	
Calls the VoIPServiceProcessExitBean XQuery.

	
ProvisionVoIPCPEEntryPointBean

	
ProvisionVoIPCPEEntryPointTask

	
Calls the VoIPProvisionTaskStart XQuery.

	
ProvisionVoIPCPEExitPointBean

	
ProvisionVoIPCPEExitPointTask

	
Calls the VoIPProvisionTaskComplete XQuery.

	
ProvisionVoIPServiceBundleEntryPointBean

	
ProvisionVoIPServiceBundleEntryPointTask

	
Calls the VoIPProvisionTaskStart XQuery.

	
ProvisionVoIPServiceBundleExitPointBean

	
ProvisionVoIPServiceBundleExitPointTask

	
Calls the VoIPProvisionTaskComplete XQuery.

OracleComms_OSM_O2A_SOM_Solution

The OracleComms_OSM_O2A_SOM_Solution cartridge is a demonstration composite cartridge that references all cartridges required for service order management.

Table 3-81 lists the component cartridges that are referenced in this cartridge:

Table 3-81 OracleComms_OSM_O2A_SOM_Solution Component Cartridges

	Cartridge Name	Type	Description
	
OracleComms_OSM_CommonDataDictionary

	
Productized

	
Orchestration Common ControlData dictionary (core Design Studio product cartridge)

	
OracleComms_OSM_O2A_AIAEBMDataDictionary

	
Productized

	
Contains the data schema that defines the data elements from the Oracle AIA Enterprise Business Message (EBM) schema.

	
OracleComms_OSM_O2A_CommonUtility

	
Productized

	
Contains the data schema that defines the data elements for modeling orchestration entities in OSM.

	
OracleComms_OSM_O2A_SystemAdmin

	
Productized

	
Works in conjunction with the Inbound Message Recovery MDB to create fallout tasks.

	
OracleComms_OSM_O2A_ControlMap

	
Productized

	
Provides testing utilities including breakpoints and point of no return disabling.

	
OracleComms_OSM_O2A_RecognitionFallout

	
Productized

	
Generates Oracle AIA trouble ticket creation request messages for unrecognizable customer order messages.

	
OracleComms_OSM_O2A_SOM_Base

	
Productized

	
Supports the orchestration of service orders.

	
OracleComms_OSM_O2A_SOM_Provisioning

	
Productized

	
Supports provisioning fulfillment functions in service order management.

	
OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_Sample

	
Demonstration

	
Recognizes a service order and triggers the creation of a SOM_ProvisionOrderFulfillment order.

	
OracleComms_OSM_O2A_SomProvisionBroadband_Sample

	
Demonstration

	
Supports service orders for broadband services.

	
OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	
Demonstration

	
Supports service orders for VoIP services.

	
OracleComms_OSM_O2A_SOM_Recognition_Sample

	
Demonstration

	
References all cartridges necessary for service order management.

The OracleComms_OSM_O2A_SOM_Solution/resources/SolutionConfig directory contains XML configuration files you can use to configure additional fulfillment functions, fulfillment systems, fulfillment modes, etc. For more information, see "Extending Order-to-Activate Cartridges". Table 3-82 lists the XML files defined in this cartridge.

Table 3-82 OracleComms_OSM_O2A_SOM_Solution XML Files

	XML File	Extendable	Description
	
ComponentExtensionPointMap

	
Yes

	
XQuery extension point for fulfillment function

	
ComponentQueryViewMap

	
Yes

	
Task view used for fulfillment function to support revision

	
ComponentMilestoneMap

	
Yes

	
Milestone definition and order update configuration for fulfillment function

	
FaultModeMap

	
No

	
Fault mode for simulating fault in service order management

	
FulfillmentOrderEventMap

	
Yes

	
XQuery extension point for handling service order events

	
FulfillmentStateExtensionMap

	
Yes

	
XQuery extension point for translating internal fulfillment states to external Siebel CRM-expected values and milestone and state description population

	
OrderItemStatusContextMap

	
Yes

	
Mapping of order item status context to order item milestone

	
OrderMessageMap

	
Yes

	
Mapping of internal message code to external message

	
OrderStatusContextMap

	
No

	
Mapping of order status context to order status for a given fulfillment mode

	
OrderStatusMap

	
Yes

	
Mapping of OSM order status to external status

	
SolutionModelProperties

	
No

	
Model variables defined in the solution cartridge

	
TargetSystemMap

	
Yes

	
Mapping each target system with its unique identifier and with its request and response queues.

	
TaskExitStatusMap

	
Yes

	
Exit status mapped for tasks used for debugging

Oracle AIA Emulators

The Oracle AIA emulators are used in development and testing when Oracle AIA is not available.

Table 3-83 lists and describes the emulators contained in the OracleComms_OSM_O2A_Install project.

	
Note:

In the Order to Cash solution, OSM interacts with billing, CRM, and Provisioning systems using Oracle AIA. It does not directly interact with Siebel CRM, BRM, and provisioning systems.

Table 3-83 Emulators in OSM

	Name	Description
	
osm_AIASyncCustomerEmulator

	
Emulates Oracle AIA billing service (for example, BRM ABCS by generating response messages in EBM format for requests targeted at a billing provider to synchronize customer account details.

	
osm_AIAInitiateFulfillBillingEmulator

	
Emulates Oracle AIA billing service by generating response messages in EBM format for requests targeted at a billing provider to initiate or fulfill billing.

	
osm_AIAFalloutNotificationToOrderEmulator

	
Emulates Oracle AIA error handling by generating order fallout notification messages for faults targeted at Oracle AIA error handling. These are error faults generated by the external systems (such as Provisioning). Error faults are sent to Oracle AIA which then translate them into fallout notifications and sent to OSM central order management.

	
osm_AIATroubleTicketEmulator

	
Emulates an Oracle AIA trouble ticket Siebel CRM service by generating response messages in EBM format for requests targeted at Siebel CRM to create trouble tickets. Note that no trouble ticket response is generated for Update Trouble ticket EBMs but only for Create Trouble ticket EBMs.

	
osm_CF2LFProvisionOrderCreateEmulator

	
Emulates an OSM service (for example, OSM ABCS) for service order creation by wrapping EBM format messages in OSM format for requests targeted at OSM service order management fulfillment to process service orders

	
osm_LF2CFProvisionOrderUpdateEmulator

	
Emulates an OSM service (for example, OSM ABCS) for order update by wrapping EBM format messages in OSM format for messages targeted at OSM central order management fulfillment to update service orders

	
osm_AIAProvisionOrderEmulator

	
Emulates Oracle AIA Provisioning service (for example, order management) fulfillment by generating response messages in EBM format for requests targeted at OSM service order management fulfillment to process service orders

2 Installing the Order-to-Activate Components

This chapter contains information about installing the Oracle Communications Order and Service Management (OSM) Order-to-Activate cartridges in an OSM environment. It also provides information about uninstalling the cartridges.

Cartridge Installation Overview

The Order-to-Activate cartridges are installed into Oracle Communications Design Studio and deployed from there onto the OSM server. In order for the cartridges to work properly, various entities must be created in the Oracle WebLogic Server that contains OSM. An Ant script is provided to create these entities.

Following is the general process for installing the OSM Order-to-Activate cartridges:

	
Ensure that the system requirements are met.

	
Perform the pre-installation procedures, which set up Eclipse for the Order-to-Activate cartridges.

	
Install the Order-to-Activate cartridges:

	
Import the installation cartridge and use it to import the other Order-to-Activate cartridges.

	
Configure the WebLogic server resources, which includes adding users and setting up communications for OSM.

	
Build the cartridges and deploy them to the OSM servers.

	
You may then run one or more test orders to validate that the installation was successful.

System Requirements

To install the Order-to-Activate cartridges successfully, ensure that you have the following software installed on your Windows system:

	
The supported version of WebLogic Server and ADF (see OSM Installation Guide for more information).

	
OSM Administrator Software Development Kit (SDK) components

	
Java JDK 1.6.0: Use the version of Java that matches the one being used by the OSM server. See the discussion on software requirements in OSM Installation Guide.

	
Eclipse with Design Studio plug-ins

	
Note:

The Order-to-Activate cartridges require the following Design Studio plug-ins:
	
Design Studio Platform

	
Design Studio for Order and Service Management

	
Design Studio for Order and Service Management Orchestration

	
Design Studio for Order and Service Management Integration

	
Design Studio for Order and Service Management Orchestration Application Integration Architecture (Oracle AIA)

See Design Studio Installation Guide for information about installing Design Studio plug-ins and how to confirm which plug-ins are installed.

Order-to-Activate Cartridge Compatibility

To install or upgrade the Order-to-Activate cartridges, you must ensure compatibility between the following:

	
OSM software version and Order-to-Activate cartridge version

OSM is compatible with all cartridges developed in a previous release, including Order-to-Activate cartridges. So, any OSM version is compatible with the same version or an earlier version of the Order-to-Activate cartridges. For information about updating Order-to-Activate cartridges from a previous release, see "Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM".

	
OSM Order-to-Activate cartridge version and Oracle Application Integration Architecture (Oracle AIA) Order to Cash Integration Pack for OSM version

For details on Order-to-Activate cartridge compatibility, see knowledge article 1388662.1, OSM - Order to Activate O2A - AIA Compatibility Matrix on the Oracle Support Web site:

https://support.oracle.com

Order-to-Activate Cartridge Pre-Installation

Before you install the Order-to-Activate cartridges, you must set Design Studio preferences. The preferences settings ensure proper installation of the cartridges and the correct mapping of applications such as WebLogic Server, Java SDK, and OSM.

	
Caution:

Be careful to set the Design Studio preferences to the correct values. If they are set to the incorrect values, you will have to fix the values and then perform many of the installation steps again.

To set Design Studio preferences:

	
Start Design Studio.

	
From the Window menu, select Preferences.

The Preferences dialog box is displayed.

	
In the Preferences navigation tree, expand Oracle Design Studio.

	
Select Order and Service Management Preferences.

The Order and Service Management Preferences page includes the Deploy Properties pane in which you can provide home directories for various tools.

	
In the WebLogic Home field, enter or browse to the directory in which the WebLogic Server is installed, for example C:\Oracle Middleware\wlserver_10.3.

	
In the Java SDK Home field, enter or browse to the directory in which you have installed the JDK for the version of Java that matches the version of Java on your OSM server, for example, C:\Oracle Middleware\Java\jdk160_31.

	
In the OSM SDK Home field, enter or browse to the directory in which you have installed the OSM SDK, for example, C:\Oracle Communications\OSM7\SDK.

	
Select Inherit significance from order contributors and Inherit keys from order contributors.

	
Expand Order and Service Management Preferences and select Application Integration Architecture (AIA) Preferences.

	
In the Oracle Middleware Home field, enter the directory in which you have installed Oracle Middleware products, for example, C:\Oracle Middleware.

	
In the Preferences navigation tree, expand Java and select Compiler. Ensure that Compiler compliance level is set to 1.6.

	
Under Java, select Installed JREs.

	
If the Java directory that you entered for Java SDK Home in step 6 is not displayed, add it and ensure that it is selected, as shown in Figure 2-1.

Figure 2-1 Extract from Installed JREs Window

[image: Screenshot for Installed JREs section, Preferences window]

	
Click OK.

	
From the Project menu, deselect Build Automatically.

Installing the Order-to-Activate Cartridges

You install the Order-to-Activate Cartridges by importing the installation cartridge, and then using that cartridge to import the Order-to-Activate cartridges.

Downloading the Installation Package

To download the Order-to-Activate components:

	
Go to the Oracle software delivery Web site:

https://edelivery.oracle.com/

	
For Select a Product Pack, select Oracle Communications Applications and select your platform.

	
Download the installer file for the Oracle Communications Order and Service Management Cartridges for Application Integration Architecture media pack.

	
Unzip the downloaded file into a directory on your Windows system.

The OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip file is created.

	
Unzip OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip.

The OSM.PIP directory containing the OracleComms_OSM_O2A_Install.zip file is created.

Importing the Installation Cartridge

To import the installation cartridge:

	
Start Design Studio.

	
From the Studio menu, select Show Design Perspective.

	
From the Window menu, select Show View, and then select Package Explorer.

	
From the Window menu, select Show View, and then select Other.

The Show View window is displayed.

	
Expand Ant and select Ant from below it. Click OK.

The Ant view opens.

	
In the Package Explorer view, right-click and select Import.

The Import dialog box is displayed.

	
Expand the General folder and select Existing Projects into Workspace.

	
Click Next.

The Import Projects dialog box is displayed.

	
Select Select archive file and click Browse.

	
Browse to the OSM.PIP folder and select OracleComms_OSM_O2A_Install.zip.

	
Click Open.

The OracleComms_OSM_O2A_Install project is displayed and selected in the Projects field.

	
Click Finish.

The OracleCgbuOsmAIAInstall project is imported.

Importing the OSM Order-to-Activate Cartridges

To import the OSM Order-to-Activate cartridges:

	
Open the Ant view.

	
Right-click in the Ant view and select Add Buildfiles.

The Buildfile Selection dialog box is displayed.

	
Expand OracleComms_OSM_O2A_Install and select OSM.O2A.Installation.xml.

	
Click OK.

The OSM.O2A.Installation item is displayed in the Ant view.

	
Right-click OSM.O2A.Installation and select Run As.

	
Select Ant Build... (not Ant Build), as shown in Figure 2-2.

Figure 2-2 Run As Menu

[image: Screen capture for selecting Ant Build... from the menu.]

The Edit Configuration dialog box is displayed.

	
Click the Build tab and deselect Build before launch.

	
Click the Properties tab and deselect Use global properties as specified in the Ant runtime preferences.

	
Click the JRE tab and select Run in the same JRE as the Workspace.

	
Click Close and click Yes.

	
In the Ant view, expand OSM.O2A.Installation and double-click import_solution.

	
In the first Ant Input Request window, do one of the following:

	
To import the cartridges for the Typical solution topology, enter t and click OK.

	
To import the cartridges for the Simple solution topology, enter s and click OK.

	
In the second Ant Input Request window, do one of the following:

	
To deploy both central order management and service order management to the same OSM instance, enter s and click OK.

	
To deploy central order management and service order management to different OSM instances, enter m and click OK.

The cartridges appropriate for the settings you selected are imported into the workspace. This may take a few minutes.

Configuring WebLogic Server Resources

The process in this section configures the metadata for the composite cartridges in addition to configuring the WebLogic Server resources.

To configure the WebLogic Server resources:

	
Open the Ant view.

	
Find the one row in Table 2-1 that matches your situation. For each cartridge listed in the corresponding "SolutionConfig.xml Files to Add" column of the table:

	
Right-click in the Ant view and select Add Buildfiles.

The Buildfile Selection dialog box is displayed.

	
Expand the cartridge listed in the table and click on the SolutionConfig.xml file.

	
Click OK.

Table 2-1 SolutionConfig.xml Files to Use in Different Situations

	Topology	Configuration	SolutionConfig.xml Files to Add
	
Simple

	
Central order management and service order management are on the same OSM instance

	
OracleComms_OSM_O2A_COMSOM_SimpleSolution

	
Simple

	
Central order management and service order management are on different OSM instances

	
OracleComms_OSM_O2A_COM_SimpleSolution

OracleComms_OSM_O2A_SOM_Solution

	
Typical

	
Central order management and service order management are on the same OSM instance

	
OracleComms_OSM_O2A_COMSOM_TypicalSolution

	
Typical

	
Central order management and service order management are on different OSM instances

	
OracleComms_OSM_O2A_COM_TypicalSolution

OracleComms_OSM_O2A_SOM_Solution

The items are displayed in the Ant view. Each SolutionConfig.xml file is listed as the name of the cartridge it was added from. For example, if you added the SolutionConfig.xml file from OracleComms_OSM_O2A_COMSOM_SimpleSolution, it is listed as OracleComms_OSM_O2A_COMSOM_SimpleSolution in the Ant view.

	
For each SolutionConfig.xml file you have added, configure the buildfile:

	
In the Ant view, right-click the name of the cartridge for the SolutionConfig.xml file and select Run As.

	
Select Ant Build... (not Ant Build).

The Edit Configuration dialog box is displayed.

	
Click the Build tab and deselect Build before launch.

	
Click the Properties tab and deselect Use global properties as specified in the Ant runtime preferences.

	
Click the JRE tab and select Run in the same JRE as the Workspace.

	
Click Close and click Yes.

	
Right-click the name of the cartridge for the SolutionConfig.xml file and select Run As again.

	
Select Ant Build... (not Ant Build).

The Edit Configuration dialog box is displayed.

	
Note:

It is necessary to close and reopen the Edit Configuration dialog box because after you have deselected the Use global properties... check box, Eclipse prevents you from changing any of these properties until you close and re-open the Edit Configuration dialog box.

	
Click the Properties tab and set the appropriate values according to Table 2-2.

Table 2-2 Values for Ant Edit Configuration Properties Tab

	Property Name	Description	Notes
	
aia.emulator.serverName

	
Name of the server within WebLogic Server to which you want to deploy the emulators. Set this to the name of the cluster if OSM is installed to a cluster or to the (administration or managed) server name if OSM is installed on a single server.

If both central order management and service order management are in the same OSM server instance, set this to the name of the cluster or server for the single OSM instance.

If central order management and service order management are in different OSM server instances, set this to the name of the cluster or server for central order management in the central order management buildfile and to the name of the cluster or server for service order management in the service order management buildfile.

	
Set this property in all files if you are installing the Oracle AIA emulators.

	
cf.adminServerListenAddress

	
Host name of the system where the WebLogic Server for central order management is running. If you are in a clustered environment, set this to the server where the Proxy server is located.

	
Set this if the name of the cartridge associated with the buildfile contains COM or COMSOM.

	
cf.adminServerListenPort

	
Port on which the WebLogic Server for central order management is listening. If you are in a clustered environment, set this to the port on which the Proxy server is listening.

	
Set this if the name of the cartridge associated with the buildfile contains COM or COMSOM.

	
cf.clusterName

	
Name of the cluster for central order management, exactly as it is shown in the WebLogic Server console.

	
Set this if the name of the cartridge associated with the buildfile contains COM or COMSOM and you are in a clustered WebLogic environment.

	
cf.userName

	
Name of a user with administrative privileges on the WebLogic Server for listening on cf.adminServerListenAddress and cf.adminServerListenPort.

	
Set this if the name of the cartridge associated with the buildfile contains COM or COMSOM.

	
lf.adminServerListenAddress

	
Host name of the system where the WebLogic Server for service order management is running. If you are in a clustered environment, set this to the server where the Proxy server is located.

	
Set this if the name of the cartridge associated with the buildfile contains SOM.

	
lf.adminServerListenPort

	
Port on which the WebLogic Server for service order management is listening. If you are in a clustered environment, set this to the port on which the Proxy server is listening.

	
Set this if the name of the cartridge associated with the buildfile contains SOM.

	
lf.clusterName

	
Name of the cluster for service order management, exactly as it is shown in the WebLogic Server console.

	
Set this if the name of the cartridge associated with the buildfile contains SOM and you are in a clustered WebLogic environment.

	
lf.userName

	
Name of a user with administrative privileges on the WebLogic Server listening on lf.adminServerListenAddress and lf.adminServerListenPort.

	
Set this if the name of the cartridge associated with the buildfile contains SOM.

	
Click Close and click Yes.

	
For each SolutionConfig.xml file you have added, do the following:

	
In the Ant view, expand the cartridge name and double-click config_All.

	
The first Ant Input Request window requests the WebLogic administrator user password. Enter the password for the user you entered in cf.userName or lf.userName (whichever value you configured for the buildfile you are running). Click OK.

	
In the second Ant Input Request window, enter y to use the same password for all of the users being created or enter n to use a different password for each user. Click OK.

	
Enter the passwords requested for the Order-to-Activate users by the Ant Input Request windows:

	
Note:

Ensure that the passwords you enter meet the security requirements of your WebLogic Server domain. By default, the WebLogic server requires passwords of at least eight characters, with at least one numeric or special character. However, the requirements for your domain may be different.

If you entered y in the previous step, enter the common password for th