

JD Edwards World

Programmer’s Guide

Version A7.3

Copyright Notice
Copyright © 2012, Oracle. All rights reserved.
Trademark Notice
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.
Subject to patent protection under one or more of the following U.S. patents: 5,781,908; 5,828,376; 5,950,010; 5,960,204; 5,987,497;
5,995,972; 5,987,497; and 6,223,345. Other patents pending.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.
Restricted Rights Notice
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Hazardous Applications Notice
This software is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this
software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused
by use of this software in dangerous applications.
Third Party Content, Products, and Services Disclaimer
This software and documentation may provide access to or information on content, products and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third party
content, products and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third party content, products or services.
Contains GNU libgmp library; Copyright 1991 Free Software Foundation, Inc. This library is free software which
can be modified and redistributed under the terms of the GNU Library General Public License.
Includes Adobe PDF Library, Copyright 1993-2001 Adobe Systems, Inc. and DL Interface, Copyright 1999-2008 Datalogics Inc. All
rights reserved. Adobe is a trademark of Adobe Systems Incorporated.
Portions of this program contain information proprietary to Microsoft Corporation. Copyright 1985-1999 Microsoft Corporation.
Portions of this program contain information proprietary to Tenberry Software, Inc. Copyright 1992-1995 Tenberry Software, Inc.
Portions of this program contain information proprietary to Premia Corporation. Copyright 1993 Premia Corporation.
This product includes code licensed from RSA Data Security. All rights reserved.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com). All rights reserved.
This product includes the Sentry Spelling-Checker Engine, Copyright 1993 Wintertree Software Inc. All rights reserved.
Open Source Disclosure
Oracle takes no responsibility for its use or distribution of any open source or shareware software or documentation and disclaims
any and all liability or damages resulting from use of said software or documentation. The following open source software may be
used in Oracle's JD Edwards World products and the following disclaimers are provided.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999-2000
The Apache Software Foundation. All rights reserved. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JD Edwards World A7.3 Programmer’s Guide 1

Table of Contents

Overview ... 3
What’s in this Publication... 3
Other Publications... 3

General and Financial Systems ... 4
Database Changes.. 4

Financial Systems ... 4
Electronic Commerce.. 6

PPAT (J.D. Edwards E-Mail) System Design ... 7
File Normalization .. 7
X00PPAT1: E-Mail Message Server .. 9

Distribution and Manufacturing Systems .. 12
Database Changes.. 12

Distribution System .. 13
Manufacturing System .. 15

Distribution System Changes... 18
Obsolete Item Processing.. 18
Receipt File Modification (F43121).. 18
Exclude Cash from Open Order Amount.. 18
Sales Detail Tag File... 19
Pricing Security - Audit Log... 20
Sales Order/Purchase Order Integrity ... 21
Summary Matching/Re-Costing ... 23
Serial Number Processing... 26
Stock Valuation... 37
Container Management ... 40
Load/Delivery and Agreement Management Systems.. 42
File Servers ... 46
Conversion Programs.. 49
Unit of Measure Conversion Server.. 49

Manufacturing System Changes .. 52
Configurator Enhancements.. 52
Forecast Consumption Logic .. 57
Summarized Manufacturing J/Es .. 59
Multiple Supplier Split Percentages.. 59
Warehouse Management Picking Interface... 60
Engineering Change Order Enhancements ... 60

Human Resources and Payroll Systems ... 61
Database Changes.. 62

Files Common to Payroll and HR - System 05 ... 62
HR Files - System 08 .. 68

Architecture/Engineering/Construction Systems .. 69
Database Changes.. 69

Fixed Assets.. 69
Property Management ... 72

JD Edwards World A7.3 Programmer’s Guide 2

Work Orders ... 72
Contract Management ... 72
Homebuilder Management.. 73
Service Billing .. 73
Contract Billing... 75
Job Cost .. 76
Equipment Management ... 77

Programmer’s Tools and Considerations... 80
Re-Engineering Modules and Conversion Tools ... 80

Recompiling Source Supplied by J.D. Edwards ... 81
Specific Functions - What They Do.. 82
Exceptions to Specific Functions - What They Don’t Do... 84
Specific Functions - Reports ... 84
Re-Engineering Modules for New DDS Keywords .. 87
Financial Systems Source Search Report - P98330C.. 88
CASE-Generated Programs .. 89
Double-Byte Enablement.. 91

Performance Considerations for Programmers .. 92
What Makes an Application Run Slowly.. 92
Program Calls/Initialization .. 93
Common Subroutines.. 94
Database Read/Write .. 95
Sequential I/O ... 97
Caching Control Files ... 98
Expensive Instructions .. 100
General Batch Considerations... 105

National Language Support ... 108
CDRA Overview... 108
J.D. Edwards Implementation... 108
Programming Guidelines .. 109
Invariant Character Set ... 110

JD Edwards World A7.3 Programmer’s Guide 3

Overview

This publication provides detailed technical information for the A7.3 software
release from J.D. Edwards. It is written for programmers that integrate other
software with J.D. Edwards software, or customize J.D. Edwards software for
their particular needs. It does not provide an understanding of the “big
picture,” or how programs work together within the J.D. Edwards system, but
it has details of specific interest to the programmer.

What’s in this Publication

This publication includes database and system changes for the following
product groups:

 General and Financial systems

 Distribution and Manufacturing systems

 Human Resources and Payroll systems

 Architecture, Engineering, and Construction systems

Database changes include such items as fields added or changed, new or
obsolete files, and new or changed logical files.

System changes describe various enhancements, such as new servers, programs,
and files. The descriptions provide helpful information you should be aware of
as you integrate or customize J.D. Edwards software.

In addition, this publication includes information about:

 Re-engineering modules and conversion tools

 Performance considerations

 National language support

Other Publications

Use this publication with the technical upgrade notes, which are provided by
J.D. Edwards in two ways:

 The Technical Upgrade Notes Guide (Stand-Alone Version - JDETUN)
with accompanying tape

JD Edwards World A7.3 Programmer’s Guide 4

 The Work With Tech Upgrade Notes selection on the Software
Upgrade Menu (A97IBM)

NOTE: For more information about this selection, refer to the
Upgrade Reference Guide.

Other helpful publications include:

 Reinstallation Workbook

 Upgrade Reference Guide

If you have suggestions for items to include or not include in this document,
call your J.D. Edwards Worldwide Customer Support representative.

General and Financial Systems

This section provides the following:

 Database changes for financial systems and electronic commerce

 PPAT (J.D. Edwards E-Mail) system design changes

Database Changes

This chapter lists database changes for financial systems and electronic
commerce.

Financial Systems

Fields Added

File Fields Added

F0312 VR01 - Reference
AR - Reason Code

F092181 ALA - Alternate Account
AAD - Alternate Account Description

JD Edwards World A7.3 Programmer’s Guide 5

New Logical Files

File Key Fields

F01131LA
F01131LB
F01131LC
F01131LD
F01131LE
F01131LF
F01131LG
F01131LH
F01132LA
F01133LA
F01133LB
F01133LC
F01133LD
F01133LE
F01133LF
F01133LG
F01133LH
F01134LA
F01134LB
F01134LC
F01134LD
F01134LE
F0311LY
F092181

SERK, AN8, DTI
PA8, DTI, MBDS
PA8, DTI (descending)
AN8, DSS5, DTI
AN8, DTI, MBDS
AN8, DTI (descending)
AN8, DSS5
PA8, DSS5
SERK, LIN
AN8, DTI, MBDS
AN8, MBDS, DTI (descending)
AN8, MBDS, DSS5, DTI
SERK, STSM, DTI
AN8, MBDS, STSM, DTI (descending)
AN8, MBDS, DTI
AN8, MBDS, STSM, DTI
AN8, MBDS, DSS5
USER, DSS5
AN8, USER
UGRP, DSS5
AN8, UGRP
UGRP, AN8
VR01, AN8
N001, ALA, MCU, OBJ, SUB

Logical File Changes

File New Key Fields Underlined

F0911LJ ICUT, ICU, CO, FY, PN

New Files

File File Name File Contents Prefix

F01131 PPAT Message Header PPAT Message Header ZZ

JD Edwards World A7.3 Programmer’s Guide 6

F01132 PPAT Message Text PPAT Message Text CY

F01133 PPAT Message Distribution PPAT List Distribution Info ZT

F01134 Bulletin Board Enrollment Information about who is
subscribed to bulletin boards

ZW

F01136 Incoming Mail Filters Information to support PPAT
mail filter feature

ZP

T011121 Outbound Internet Workfile Outbound Internet Messages CT

Obsolete Files

File Description

F0113
Message Log Ledger File - Obsolete Physical (replaced by F01131,
 F01132, F01133)

F0113LA
Obsolete logical over F0113

F0113LB
Obsolete logical over F0113

F0113LE
Obsolete logical over F0113

Electronic Commerce

Fields Added

File Fields Added

F4706 AN8 - Address Number

JD Edwards World A7.3 Programmer’s Guide 7

New Files

File File Name File Contents Prefix

F470161 EDI P.O. Additional Header
- Outbound

This file contains additional tax
and terms data

Z3

F470171 EDI P.O. Additional Detail -
Outbound

This file contains additional tax
and terms data

Z4

F471061 EDI Response to RFQ
Additional Header -
Outbound

This file contains additional tax
and terms data

Z3

F471071 EDI Response to RFQ
Additional Detail -
Outbound

This file contains additional tax
and terms data

Z4

F471861 EDI Product Transfer and
Resale Report Additional
Header - Outbound

This file contains additional tax
and terms data

S3

F471871 EDI Product Transfer and
Resale Report Additional
Detail - Outbound

This file contains additional tax
and terms data

S4

PPAT (J.D. Edwards E-Mail) System Design

This chapter describes changes made to the J.D. Edwards e-mail (PPAT)
system.

File Normalization

As of release A7.3, the Message Log Ledger File has been broken up into three
different files as part of a significant enhancement to the PPAT system. We also
added two new files to support new features in the system. Following is a brief
description of the type of information contained in each file. The final section is
an explanation on how to use the called program X00PPAT1 to send automatic
e-mail messages from within other programs.

JD Edwards World A7.3 Programmer’s Guide 8

NOTE: The PPAT system is now capable of sending e-mail via the Internet.
However, that facility is not documented here. While it is a fully-working
function that we are currently using internally, there are limitations to its use at
this time and we are working on further enhancements that you may want to
receive if you are would like to enable this capability. If you are interested in this
feature, please contact the Denver Support Line and they will establish a
development contact for you to explain how to enable the connection.

F01131: PPAT Message Header

This file contains the information from the header portion of a PPAT message
such as Sender, Recipient, and Mailbox ID. This file is uniquely keyed on the
following field:

 Key Value Serial Number (ZZSERK)

This key is simply a system-assigned next number from Next Number System
Table 02, Index 01. The value itself is of no interest to a user of the system.

F01132: PPAT Message Text

This file contains the detail text of a PPAT message. It is uniquely keyed on the
following fields:

 Key Value Serial Number (CYSERK)

 Command Flag (CYCMDF)

 Line Number (CYLIN)

The command flag is a one-character field that is used to indicate that the
information on the record is an AS/400 command string as opposed to
viewable message text. For more information on this feature, see the
description of the X00PPAT1 module later in this document.

F01133: PPAT Message Distribution

As part of the system redesign, we are no longer creating separate copies of
messages sent to multiple people through a distribution list. We are now storing
only one copy of the message in the F01131 and F01132 files. This file is then
used to store information about the list of recipients and the status of the
message in each of their mailboxes. This file is uniquely keyed on the following
fields:

 Key Value Serial Number (ZTSERK)

 Recipient Address Number (ZTAN8)

JD Edwards World A7.3 Programmer’s Guide 9

F01134: Bulletin Board Enrollment

A new system feature in A7.3 is the ability to establish bulletin boards that users
may subscribe to if they are interested in viewing the contents. This file contains
information about who has subscribed to each bulletin board. This file is
uniquely keyed on the following fields:

 User ID (ZWUSER)

 User Class/Group (ZWUGRP)

 Bulletin Board Address Number (ZWAN8)

F01136: Incoming Mail Filters

Another new system feature is the ability to separate or “pre-sort” incoming
messages into three different mailboxes (Priority Mail, Personal In Box, or Junk
Mail) depending on who the sender is or which distribution list was used to
send the message. This file contains information about which filters have been
established by each system user. It is uniquely keyed on the following fields:

 Sending User or Distribution List Address (ZPPA8)

 Recipient Address (ZPAN8)

X00PPAT1: E-Mail Message Server

This program can be called from within any other program and will send an
automatic e-mail message to a recipient. For example, in the standard J.D.
Edwards software, we use this module to send messages from our Purchase
Requisition Entry program to the approver of each requisition. The message
alerts the approver that there is a requisition awaiting their approval.

An additional optional feature of this module is the ability to turn the message
into an “active message”. When F15 is pressed on the message text viewing
screen on an active message, the user will be automatically exited to a program
that will help them carry out the requested action. In the above purchasing
example, we use F15 to send the approver directly to the Purchase Requisition
Approval program with the required requisition record preloaded on the screen
for their review. Anything you can do from an AS/400 command line can also
be done with an active message.

JD Edwards World A7.3 Programmer’s Guide 10

Creating an Automatic Message

► To Create an Automatic Message

Following are the three mandatory steps needed to create an automatic
message. The fourth step describes the optional second call to X00PPAT1 that
is necessary if you want to make your message an active message.

1. A prerequisite to the use of this program is to create a message
“template” in the J.D. Edwards data dictionary. A template contains the
static text of the message you want to send from your program along
with place holders for variable text items you want to include at run time.
As an example, the following screen represents the dictionary template
we use in the purchasing example described above.

 92001 Data Item Glossary Revisions Language
 Applic Override
 Scrn/Rpt
 Action Code. I
 Data Item. JDE4300 Desc JDE - Requisition Approval Required
 System Code. 43 Reporting System Code. 43
 Glossary Group . . . J

 Requisition Approval Required
 RE : Requisition Approval
 ORDER : &1 &2

 Your approval is required on the above requisition. Press
 F15 to exit to Approval Review.

 (*CHAR 8) (*CHAR 2)

The text in bold type is the actual message the user will see. Notice the
characters ‘&1’ and ‘&2’. These are the “placeholders” for variable text
that you want substituted in at runtime. In this case, we want to include
the specific purchase requisition document number and document type
in each message. The information at the very bottom of the screen is the
definition of the data items that are going to be substituted in place of
the ‘&’ items. In this case, Document Number is an eight-byte character
field that will be substituted for ‘&1’ and Document Number is a two-
byte character field that will be substituted for ‘&2’. The definitions must
be entered on the last line of the screen exactly as shown.

NOTE: The data item name must start with the characters ‘JDE’ and the
item must be created in glossary group ‘J’.

2. Once the data dictionary item is in place, you must make it available to
X00PPAT1 by running a batch job that will write the template from the

JD Edwards World A7.3 Programmer’s Guide 11

data dictionary to an IBM system message file. The job to be run is
J98DDMSGF. It is option 2 on menu G9642.

3. Here is a sample of the RPG code needed to call X00PPAT1 to send a
message:

 0136.00 C CALL ’X00PPAT1’
 0137.00 C ---- --------
 0138.00 C PARM DSPARM
 0139.00 C PARM DSDATA
 0140.00 C* PARM PSVERS 10
 0141.00 C* PARM PSERR 4

Explanation of parameters:

I/O Parameter Description

Input DSPARM A data structure containing the destination address,
J.D. Edwards message template ID, and serial number
(optional - see the Command String definition section
below for more information on this parameter). This
data structure is made available by including module
I00PPAT by using the /COPY command.

Input DSDATA Variable data to be substituted into the template at
runtime. DSDATA should be a concatenated string
formatted to the length of the variables defined in the
template. In our example, if the message is alerting an
approver to review document number ‘02198003’,
document type ‘OR’, then this parameter would be
formatted as ‘02198003OR’. The program will break
the string up according to the field definitions on the
template.

Input PSVERS The DREAM Writer version of X00PPAT1 that you
want to call. This is used if you want to control the
mailbox that the message will be sent to (Mailbox ID
is a processing option on X00PPAT1).

Output DSPARM The only field in this data structure that is relevant for
output is the Serial Number for the PPAT message
that was just created. This value is needed if you are
going to turn this message into an active message as
described below.

Output PSERR Error message ID.

NOTE: Additional details about the parameters and how to use them
are included as comments in the source code for X00PPAT1.

► Second Call to X00PPAT1 to Create an Active Message (Optional)

This step is actually a repeat of the above three steps with some minor changes.
As mentioned earlier, you can do anything with an active message that you can

JD Edwards World A7.3 Programmer’s Guide 12

do from an AS/400 command line. The reason for this is that we actually store
an AS/400 CL command string in the PPAT file and then execute it when the
user presses F15.

The way you create the command string is almost exactly the same way you
create the viewable message:

1. Create a data dictionary template. The only difference here is that this
template is actually the shell of an interactive CL command with ‘&’
values in place of the actual parameters that will be supplied at runtime.
For example, the template for the call to the Purchase Requisition
Approval program would look like this:

CALL P43080 (‘&1’ ‘&2’ ‘&3’ ‘&4’ ‘&5’)

2. Run batch job J98DDMSGF. No change here.

3. Call X00PPAT1. Other that the obvious fact that this call should include
information about the command string template rather that the message
template, there is only one minor but critical difference to note. You
must pass in the serial number that you receive back from the first call
(see the output parameter description above) as an input parameter to the
second call. This is so we can associate this command string with the
viewable message that was just created. This link enables the message
display program to know which command string to execute with a
particular message.

Distribution and Manufacturing Systems

This section provides the following:

 Database changes for the distribution, manufacturing, and load and
delivery management systems

 Distribution system changes

 Manufacturing system changes

Database Changes

This chapter lists database changes for the distribution, manufacturing, and load
and delivery management systems.

JD Edwards World A7.3 Programmer’s Guide 13

Distribution System

Fields Added or Changed

File File Name Status Field/Notes

F4009 System Constants Added
Changed

CPCCTL ESC Control (Y/N)
CPCP08 Pricing Audit (Y/N)

F40309 Delivery Date Preference
File

Added DYPRIO Priority Code

F41001 Branch Plant Constants Changed CIOT4Y Quality Management (Y/N)

F4211 Sales Detail File Changed SDPDDJ Pick Date
SDPPDJ Ship Date
SDSO02 Interbranch Processing
(value added to data dictionary)
SDSO11 Transfer/Direct Ship Order
Flag
SDSO12 Deferred Entries Flag

F4600 Warehouse Management
Requests

Added R1UKID Unique Key ID (Internal)

F4611 Warehouse Management
Suggestions

Added R2UKID Unique Key ID (Internal)
R2CKID Confirmed Unique Key ID
(Internal)
R2RCDS Record Status

File File Name Status Field/Notes

JD Edwards World A7.3 Programmer’s Guide 14

F49211 Sales Detail Tag File Changed
Added

Systems to 40/40 from 49/49
UDIAN8 Interbranch Address
UDPTC Interbranch Payment Terms
UDDOC Interbranch Document
Number
UDDCT Interbranch Document
Type
UDKCO Interbranch Document
Company
UDCRR Interbranch Exchange Rate
UDCRCD Interbranch Currency
Code
UDTXA1 Interbranch Tax
Rate/Area
UDEXR1 Interbranch Tax Expl
Code

Logical File Changes

File New Key Fields Underlined

F41003LA UCRUM, UCUM (record format I41003 - fields switched)
UCUM, UCRUM (record format I41003I - fields
switched)

F4102LM IBPRP4, IBMCU, IBMPST, IBSTKT

F4102LN IBANPL, IBMCU, IBPRP4, IBMPST, IBSTKT

F4102LP IBBUYR, IBMCU, IBPRP4, IBMPST, IBSTKT

F4111LE ILITM, ILMCU, ILTRDJ, ILTDAY

F4111LG ILITM, ILDGL, ILTDAY

F4311LS PDDCTO, PDAN8, PDOMCU, PDSUB, PDOBJ,
PDSBL, PDSBLT

JD Edwards World A7.3 Programmer’s Guide 15

Manufacturing System

Fields Added

File Data Item Description

F3013 ITC ITC - Issue Type Code

F3291 LITM
AITM
RNDC
UPCC
USER
PID
JOBN
UPMJ
TDAY

2nd Item Number
3rd Item Number
Derived Calculation Round
Update Category Code
User ID
Program ID
Work Station ID
Date Updated
Time of Day

F3292 LITM
AITM
URCD
URDT
URAT
URAB
URRF

2nd Item Number
3rd Item Number
User Reserved Code
User Reserved Date
User Reserved Amount
User Reserved Number
User Reserved Reference

F3293 LITM
AITM
FORQ
ITC
LOVD
BSEQ
EPGM
DERP
TBLC
URCD
URDT
URAT
URAB
URRF
USER
JOBN
UPMJ
TDAY

2nd Item Number
3rd Item Number
Fixed or Variable Quantity
Issue Type Code
Leadtime Offset Days
Bubble Sequence
External Program ID
Smart Part Calculation
Rules Table Name
User Reserved Code
User Reserved Date
User Reserved Amount
User Reserved Number
User Reserved Reference
User ID
Work Station ID
Date Updated
Time of Day

JD Edwards World A7.3 Programmer’s Guide 16

F3294 CSID
USER
PID
JOBN
UPMJ
TDAY

Configured String ID
User ID
Program ID
Work Station ID
Date Updated
Time of Day

File Data Item Description

F3296 LNTY
USER
PID
JOBN
UPMJ
TDAY

Line Type
User ID
Program ID
Work Station ID
Date Updated
Time of Day

Fields Changed

File Data Item Description

F3294 CFGS Configured String

Fields Deleted

File Data Item Description

F3294 AISL
BIN

Aisle
Bin

New Files

File Description

JD Edwards World A7.3 Programmer’s Guide 17

F3105
F3108
F3209
F3214
F3281
F3282
F32821
F3283
F32941
F32942
F3405
F3462
F43211

Work Order Serial Numbers
Summarized Work Order Cross Reference
Configurator Constants
Configured Model Text
Rules Table Definition
Configured Item/Rules Table Cross Reference
Rules Table Value Definition
Rules Table Detail
Configured String Master
Configured String Detail
Forecast Consumption Periods
Forecast Shipment Summary
Supplier Split Percentages

New Logicals

File Key Fields

F3013LE KIT, MMCU, SRV

F3013LF ITM, MMCU, TRV

F3105LA DOCO, DCT, MCU, LINS

F3105LB DOCO, DCT, MCU, LOTN

F3108LA DOCO, JDOC

F3214LA DOCO, DCT, KCOO, LNID, LINS

F3281LA TBLC, MCU, RTBT

F3282LA TBLC, MCU, RTBT, KIT

F32821LA TBLC, MCU, RTBT, KIT, BSEQ

F3283LA TBLC, MCU, RTBT, TSV1, TSV2, TSV3, TSV4, TSV5,
TSV6, TSV7, TSV8, TSV9, TSV0, BSEQ

F32941LA KIT, CSID, SEQN

F32942LA KIT, CSID, ITM, PEL, SGVL

F32942LB CSID, KIT, ATLV

F32942LC KIT, PEL, SGVL, ITM

F3411LH ITM, DRQJ, MSGT, MSGA, HCLD

F3411LI ITM, DRQJ, MSGT, MSGA, HCLD, TRQT, MMCU

F3462LA ITM, MCU, PDDJ

F3462LB ITM, PDDJ

JD Edwards World A7.3 Programmer’s Guide 18

Distribution System Changes

This chapter describes changes made to the distribution system.

Obsolete Item Processing

An item can now be marked as obsolete. This is done using the Stocking Type
field (STKT) in the Item Branch Master file (F4102). The values of ‘O’ for
Obsolete and ‘U’ for Obsolete - Use Up are now hard-coded in the appropriate
distribution and manufacturing programs.

Receipt File Modification (F43121)

The voucher match program has been modified to update the receiver file
differently for a 2-way match. During the 3-way match process, the ‘1’ match
type receipt record (PRMATC = ‘1’) was created during receipts, and the ‘2’
match type receipt record (PRMATC = ‘2’) was created during voucher match.
For the 2-way match process, both ‘1’ and ‘2’ match type receipt records were
created during voucher match. The 2-way match process has been modified to
no longer create ‘1’ match type receipt records during voucher match.

If you have ‘custom’ programs that use this type ‘1’ 2-way match record, you
can identify where the match type ‘1’ records came from by using the Written
By Program (PRRTBY) field. This field will contain a BLANK if the record was
written by the receipts program for a 3-way match. This field will contain a ‘02’
if the record was written by the match program for a 2-way match.

If you do not have ‘custom’ programs using this record, then no conversion will
be necessary. The information in the records will be updated correctly as you
perform the matching process.

Exclude Cash from Open Order Amount

The order process has been enhanced so that the customer open order amount
will NOT include amounts from orders that are COD or for which cash has
been or will be paid.

This requires modifications to all programs that update the open order amount
in the customer master record based on an amount accumulated from an order
detail line. This is accomplished by using the payment instrument (RYIN). A ‘1’
in the first position of the special handling code of the UDC table 00/PY
indicates this payment instrument is cash.

JD Edwards World A7.3 Programmer’s Guide 19

All programs calling X0301 to update the open order amount must be changed
to exclude the cash amount. The open order amount sent to the X0301 is the
difference between the total amount and the cash amount. Programs were
changed to update the customer order total with a value that is kept separate
from the value that is updated to order header.

For example: A 3-line order is entered:

Line #1 50.00 (credit)
Line #2 50.00 (credit)
Line #3 50.00 (cash)

Total stored in the order header is 150.00. Customer open order total (F0301) is
increased by only 100.00.

Sales Detail Tag File

The F49211 sales detail tag file is currently used by ECS. This file was changed
to a system 40/40 and in A7.3 is also used by the base sales system. The base
sales system will only write a record to the F49211 if the client is using the new
inter-branch invoicing or invoice cycle. For ECS clients, a F49211 record will
exist for every sales detail line as it does in A7.1. Code was added to check for
the existence of the F49211 record in specific programs (see below).

Inter-Branch Processing

Inter-branch processing was enhanced to create an inter-branch invoice from
the shipping branch to the selling branch. In A7.1, the price from the shipping
branch to the selling branch was derived by the cost from the shipping branch
and applying a markup. In A7.3, the client now has an option to use the base
price instead of the cost plus markup.

In A7.1, the field SDSO01 was set to a ‘1’ to indicate the order was an inter-
branch order. Programs checked this field equal to a ‘1’ or not equal to a ‘1’.

 SDSO01 IFEQ ‘1’ or SDSO001 IFNE ‘1’

The values of SDSO01 were expanded to include a 2, 3, and 4. If the field is
non-blank, the order is classified as an inter-branch order. This field is now
used to indicate what type of processing this order will go through. The
meaning of the values are as follows:

blank Order is NOT an inter-branch order
1 No inter-branch invoicing/cost plus markup
2 Inter-branch invoicing/cost plus markup (F49211 record written)
3 No inter-branch invoicing/price
4 Inter-branch invoicing/price (F49211 record written)

JD Edwards World A7.3 Programmer’s Guide 20

Programs updating the cost by calling XF4105 will need to be changed to check
if the SDSO01 flag is set to ‘1’ or ‘2’.

 SDSO01 IFEQ ’1’
 SDSO01 OREQ ’2’
 CALL S005T (subroutine which calls the XF4105)
 ---- ------
 ENDIF

In specific cases, programs were altered to retrieve/add the Sales Detail tag file
(F49211). These programs were P42565, P42800, P42997, P4205, P42950, and
order entry programs. If you need to use a field in the file for purposes of inter-
branch sales, the F49211 file must be retrieved by checking that the SDSO01
flag is set to ‘2’ or ‘4’.

Invoice Cycle

The invoice cycle enhancement allows the invoice frequency to be specified at
an item, customer, or customer/item level. When the invoice cycle program
(P49700) runs, a sales detail tag file (F49211) is written if it does not exist. The
SDSO12 flag is used to indicate if deferred entries were written and,
subsequently, a F49211 record. If you need to use a field in the file for purposes
of invoice cycle, the F49211 file must be retrieved by checking that the
SDSO12 flag is set to a ‘1’.

The following example is to retrieve the F49211 record:

 SDSO01 IFEQ ’2’
 SDSO01 OREQ ’4’
 SDSO12 OREQ ’1’

 $49211 IFEQ ’ ’
 OPEN F49211 81
 *IN81 IFEQ *OFF
 MOVE ’1’ $49211 1
 END
 END

Pricing Security - Audit Log

The price files F4070, F4071, F4072, F4075, F4076, and F4106 now have a
corresponding audit file (F4070A, F4072A, and so on) that is written to,
whenever a record in these files is changed. A record is written to the audit file
before the change, and then a record is written to the audit file with new data.
Programs updating any of these files are changed to write to the audit file if the
Pricing Audit (Y/N) flag is set to ‘Y’. This flag is located on the pricing
constants window.

JD Edwards World A7.3 Programmer’s Guide 21

Sales Order/Purchase Order Integrity

Currently there is no way to ensure the integrity of related sales and purchase
orders created during the Transfer Order procedure. This procedure creates
related sales and purchase orders. However, changes to these orders in their
respective systems do not affect the related order. Changes to the related order
have to be done manually, creating duplication of labor and adding to the
possibility of keying errors.

The programs to be modified for sales order/purchase order integrity will be:

 Transfer Order Entry (P4242)

 Enter Sales Order (P4211)

 Enter Sales Order - Line Mode (P4201A)

 Inventory Availability/Commitment (P42997)

 Ship Confirm (P4205)

For Transfer Order Entry (P4242), a flag will be set in the purchase order and
the sales order detail records to identify inventory detail lines that are generated
by this procedure. These flags will be used as a trigger in the Sales Order System
to update the related purchase order.

To update a sales order generated by Transfer Order Entry (P4211), a server
will be called to update the related purchase order.

To update a sales order detail line generated by Transfer Order Entry (P4201A),
a server will be called to update the related purchase order detail line.

For Inventory Availability/Commitment (P42997), for any sales order
generated by Transfer Order Entry, a server will be called to update the related
purchase order for any changes, including the splitting of detail lines.

To confirm a sales order generated by Transfer Order Entry (P4205), a server
will be called to update the related purchase order with the information entered
in the confirmation process.

Conceptual Approach

For sales and purchase orders generated by Transfer Order Entry, a flag will be
set in both detail records to mark these records as being generated from these
procedures. Also, any procedure in the Sales Order System that updates these
sales orders will call a server to update the related purchase order. The fields to
be updated include branch plant, quantities, cost amounts, lot numbers, serial
numbers, unit of measures, and prices.

JD Edwards World A7.3 Programmer’s Guide 22

The following logic flow describes the Enter Sales Order procedure.

1. The client goes into the Enter Sales Order procedure and updates the
sales order.

2. After the sales order has been updated, a server is called and the related
Purchase Order is updated.

The following logic flow describes the Enter Sales Order - Line Mode
procedure.

3. The client goes into the Enter Sales Order - Line Mode procedure and
updates a detail line.

4. After the sales order detail line has been updated, a server is called and
the related purchase order detail line is updated.

The following logic flow describes the Ship Confirm procedure.

5. The client goes into the Ship Confirm procedure and follows the normal
confirmation process.

6. After the sales order has been updated, a server is called and the related
purchase order is updated, including the mirroring of any split detail lines
on the sales order.

Database Specifications

The use of field PDPS01 in the Purchase Order detail file (F4311) and field
SDSO11 in the Sales Order detail file (F4211) will be updated for line items
generated by the Sales Transfer Order procedure. These flags will enable the
update programs in the Sales Order System to identify which sales orders have
related purchase orders to be updated.

Program Specifications

Program Menu Line Title Status

P4242 Enter Orders (Transfer) Changed

P4211 Enter Sales Order Changed

P4201A Enter Sales Order - Line
Mode

Changed

P42997 Inventory
Availability/Commitment

Changed

P4205 Ship Confirm Changed

X4250 Update Related Purchase
Order

New

JD Edwards World A7.3 Programmer’s Guide 23

Special Logic

This is a new server to be called when a sales order generated by the Transfer
Order procedure is updated. This server will update the related purchase order
with the changes to the inventory detail lines of the sales order. This is
determined by flag SDSO11 in the sales order detail record being set to ‘1’.

Summary Matching/Re-Costing

There are two issues that some companies encounter when processing invoices.

The first issue is the receiving of an adjustment invoice for product that was
already invoiced. This may occur due to a price change that affected the
product shipped to the company. This also may be a correction amount for the
initial invoice that was billed in error. In either case, the company needs to
adjust the previous voucher to reflect the new cost.

The second issue is that some companies process large volumes of transactions
in a given period. They may, however, receive summarized invoices for
numerous transactions. Matching these individual receipts to the summarized
line on the invoice is a slow and error-prone task.

Objectives

The objective of this program is to provide the following functions:

 To provide the ability to create an adjustment invoice for a receipt
that has already been vouchered. This need normally arises from
the company receiving an adjustment invoice from a vendor after
the original invoice was received.

 To provide a program that allows the user to summarize receipt
lines into a single line when there is a high-transaction rate over
periods of time. These are companies who process large volumes
of transactions and receive summarized invoices that are extremely
difficult to match against detail receipt records.

Scope

This issue will require the following new programs as well as modifications to
existing programs:

Program Title Status

JD Edwards World A7.3 Programmer’s Guide 24

P4315 Summary Voucher Match New Program

J4315 Summary Voucher Match CL New Program

DTAQBV Summary Batch Voucher Data Queue New Object

F43800 Summary Match Work File New File

J43800Q Summary Voucher Match CL New Program

See the detail designs for each of the following programs for specific impact.

Program Title Status

P43800 EDI File Feeder program Modification

P470412 EDI Voucher Match Modification

P4314 Detail Voucher Match Modification

Conceptual Approach

Display

The information may be displayed in a summary or detail format. In detail display
mode, each receipt or voucher is displayed as an individual subfile line. In
summary display mode, the receipts are summarized by item, company,
currency code, unit of measure, subledger, and subledger type into one subfile
line.

Process (Match) Type

The receipts displayed can be receipts that have not been vouchered or receipts
that have already been vouchered. The receipts that have not been vouchered
(type 1) will be matched with the invoice and closed. The receipts that have
been vouchered will create an adjustment voucher that is associated with the
original receipt.

Matching (Vouchering)

Once the information displayed is verified, then the subfile lines may be matched
in detail or summary mode. In detail mode, the program would simply call the
P4314 (Detail Voucher Match) program for each receipt or voucher that exists
for the subfile line to be processed. If the display mode is summary, then the
program will call the P4314 program for every receipt record that was
summarized into the subfile line.

JD Edwards World A7.3 Programmer’s Guide 25

In summary mode, the program would first flag each receipt summarized in the
subfile record with a processed flag (ILOG) of ‘P’ and write the new cost
information to the work file (F43800).

An entry that contains the version of program P43800 to call will be written to
a data queue (D43800). The data queue will activate the sleeper program
J43800Q, which will call P43800.

The P43800 program will then read the receipts file for all records flagged with
‘P’ in the processed field. It will then chain to the F43800 file to retrieve the
new cost information for that receipt. Once the new information is received,
records will be written to the EDI files F47041 and F47042 to represent the
voucher.

Once all records are processed, the P43800 program will call the P470411
program to match the receipts.

Database Specifications

Existing Files

File File Name

F43121 Purchase Order Receiver File

F43121LD Purchase Order Receiver File - Logical File - Match Type,
Document Number, Document Type, Document Company, Business Unit

F43121LF Purchase Order Receiver File - Logical File - Match Type, Supplier Number,
Item Number, Business Unit, Receipt Date

New Files

File File Name

F43121LJ Purchase Order Receiver File - Logical File - Match Type, Supplier Number,
Contract Number, Contract Number, Item Number

F43121LK Purchase Order Receiver File - Logical File - Match Type, Supplier Number,
Supplier Remark, Item Number

F43800 Voucher Match Workfile

JD Edwards World A7.3 Programmer’s Guide 26

Serial Number Processing

With the continually increasing levels of regulation, consumer liability, and
quality assurance demands, a growing number of companies are requiring the
ability to identify and trace serialized components and assemblies throughout
the manufacturing and distribution process.

The approach of the enhancement is to build on the existing lot number
functionality. Serial numbers will be processed as lots with a quantity of one,
which is considered the lowest trackable unit. Tracing and tracking the serial
number throughout the system and beyond will be done through the current lot
trace/track program. New fields will be added to enable serialized items to be
under lot control also.

Term Definitions

Term Definition

LSN The item’s lot/serial number. This is the lowest trackable unit. Throughout
the Programmer’s Guide, we will use this term to refer to the lot or serial
number.

Lot Number
(LOTN)

A number assigned to a group of items for identification.

Serialized
Tracked Item

This implies that the item has an LSN and has been set up so that the
quantity for the item may not exceed one.

Lot-Tracked
Item

This implies that the item has an LSN and has been set up so that the
quantity for the item may exceed one.

Non-Tracked
Item

An item that does not have an LSN.

Memo Lot 1 A higher classification or grouping of serialized items. For example, a group
of items will have unique serial numbers but the same lot number.

Memo Lot 2 A higher classification or grouping of memo lot 1.

Memo Lot 3 A higher classification or grouping of memo lot 1 and memo lot 2.

JD Edwards World A7.3 Programmer’s Guide 27

Term Definition

Supplier Lot A lot number the supplier assigned to this item.

Lot Process
Type (SRCE)

A code to indicate whether lot assignment is to be used and the method to
assign to the lot number. The current allowed values are 0-3. Values of 4-7
will be added for this project.

0 LSN optional; quantity can be greater than one
1 LSN generated in YYMMDD format; quantity can be greater than

one
2 LSN generated by next numbers; quantity can be greater than one
3 LSN required, must be manually assigned; quantity can be greater

than one
4 LSN optional; required during shipment confirmation, but optional

throughout the rest of the system; quantity must not exceed one
(only when an LSN is entered)

5 LSN generated in YYMMDD format; quantity cannot be greater
than one

6 LSN generated by next numbers; quantity cannot be greater than
one

7 LSN required, must be manually assigned; quantity cannot be
greater than one

Option 4 will enforce quantity restrictions if the LSN is entered. If the LSN
is not entered, the information will be processed as if the SRCE value is ‘0’.

Serial Number
Required
(SRNR)

This field, in the current J.D. Edwards system, controls whether an item
requires a serial number to be entered during shipment confirmation. These
values will remain the same to provide consistency with the current J.D.
Edwards system and will be referred to as basic serial number processing.
This design document will only address the new advanced serial number
processing. Three new values will be added to this data item to control
memo and supplier lot functionality for the advanced serial number
processing.

3 Supplier lot number required (Purchasing only).
4 Supplier lot number required (Purchasing only). Lot 1 required

(Purchasing, Sales Order Processing, Manufacturing, and
Inventory).

5 Supplier lot number required (Purchasing only). Memo Lot 1
required (Purchasing, Sales Order Processing, Inventory, and Shop
Floor Control). Memo Lot 2 required (Purchasing, Sales Order
Processing, Inventory, and Shop Floor Control).

N No serial number processing.
Y Basic serial number processing.

JD Edwards World A7.3 Programmer’s Guide 28

Information Structure

Purchasing

Purchase Order Receiver File (F43121)

There are no changes to this file. It will contain a record for each item with a
serial number attached to it. The quantity will be restricted to no more than one
when the rules dictate it.

Purchase Order Detail (F4311)

There are no changes to this file.

Inventory Management

File File Name Table Description

F4101 Item Master There are no changes to this file. The LSN designation
can be made here to default into the Item Branch
records. This applies to the Lot Process Type and
Serial Number Required fields also.

F4102 Item Branch There are no changes to this file, but the Lot Process
Type and Serial Number Required fields will be
looked at here by all appropriate programs for LSN
processing.

F41021 Item Location There are no changes to this file. It will contain a
record for each item with a serial number attached to
it. The quantity will be restricted to no more than one
when the rules are set accordingly.

F4108 Lot Master Three new fields were added to maintain related lot
information for serial number items. The three new
fields are Memo Lot 1, 2 and 3 and were added in the
A7.1 release. All three of these fields will be
maintainable using the Lot Master Revisions program
(P4108). Memo Lot 1 or Memo Lot 1 and 2 may be
required throughout the transaction programs,
depending on the Serial Number Required field
(SRNR) for the item.

JD Edwards World A7.3 Programmer’s Guide 29

F4111 Item Ledger There are no changes to this file. Each time an
inventory transaction takes place for an item assigned
a serial number a record will be written to this file.

Shop Floor Control

Work Order LSN (F3105)

A new file will be added that contains fields to identify work order assemblies
with LSN’s.

Sales Order Processing

Sales Order Detail (F4211)

There are no changes to this file. It will contain a record for each item with a
serial number attached to it.

Issues and Assumptions

The Lot Number (LOTN) field will be used for both serial and lot numbers
depending on tracking required for individual items.

We will display only 12 characters of the LOTN field for allowing entry of
either the serial number or lot number.

We will only display and use the Memo Lot 1 and Memo Lot 2 fields. The
exception to this will be on the Lot Master maintenance video where all three
will be displayed and maintained. Memo Lot 3 will be retained for future use.

All current lot processing functions (such as lot expiration date, lot status code,
duplicate lots allowed, and so on) will continue to function over the LSN. This
will require an expiration date for all LSN-controlled items.

Sales Order Processing/Purchasing

The original serial number processing for purchase order and sales order
processing will continue to exist and will be referred to as basic serial number
processing. You cannot do both the basic and advanced serial number
processing simultaneously on an item.

During sales order entry, if an item is serialized, the transaction unit of measure
must be in primary.

JD Edwards World A7.3 Programmer’s Guide 30

A Sales Order Detail file record will exist for every serial number sold.

The on-hand flag will determine when time a serial number must be entered.
This means that a serial number must be attached to a transaction before the
process can be moved to on-hand. However, in receipt routing, the serial
number can be assigned during any step in the process.

In the purchasing system, an item can be entered into the system as you can
currently do today, but when an item is received, whether through receipt
routing or not, the receipt must be entered by using the Primary Unit of Measure
field when the item allows serial numbers.

In purchasing, when processing a serial number required item with multiple
quantities, the receipt program and movement/disposition program will require
the user to split the lines into single-quantity lines when either assigning a serial
number or moving the quantity to on-hand.

A purchase order receiver record will exist for every serial number moved to an
on-hand status by using the receipts program or the receipts routing process.

Inventory

An item should not be serial-number controlled in one branch/plant or
warehouse and lot controlled in another branch/plant or warehouse. Within the
inventory management transaction programs, the client will be forced to enter a
transaction line for each serialized number they desire activity on.

Shop Floor Control

LSNs can be assigned to specific assemblies at any time before work order
completion by using the Assign Work Order LSN program. Assembly LSNs
can also be assigned at the time of work order completions by using the
Associate Issued Item LSNs program.

Work orders for serialized assemblies must be entered in their respective
primary unit of measure to allow for assignment of serial numbers.

Serialized components of an assembly can be associated to a specific assembly
LSN either at inventory issues or work order completion time. Serialized
components must be issued in their respective primary unit of measure to allow
for association.

Although changes were made to many programs, only programs commonly
called are listed below.

JD Edwards World A7.3 Programmer’s Guide 31

XT4102Z1 - Item Balance Functional Server (Changed)

Program Purpose

This server will be modified to process the LSN based on the new SRCE values
and perform the additional edits. The item’s SRCE value will be checked when
processing an item. If the item’s SRCE value is a 4, 5, 6, or 7, this program will
ensure that the resulting quantity of the transaction being performed does not
exceed one. This quantity check should occur across all locations and branch
plants (see X41QTY).

Nature of Change

All current edits being performed over the LOTN field based on the current
SRCE values should include the new SRCE values.

All editing for SRCE value 0 should include SRCE 4.
All editing for SRCE value 1 should include SRCE 5.
All editing for SRCE value 2 should include SRCE 6.
All editing for SRCE value 3 should include SRCE 7.

When processing an item with a SRCE value of 5-7, or when the item’s SRCE
value is 4 and a value has been entered in the LOTN field, the X41QTY server
should be called. The item number, MCU, and transaction quantity should be
passed to this server. This sever will then determine if the quantity for the
transaction will result in a quantity for the item’s LSN to be greater than one.
Both this and the X41QTY server must ensure that inventory transfers are
processed properly. The appropriate error message should be issued.

The following list represents all programs calling this server. These programs
will be affected by the server changes but will not need to be changed:

P4112 Simple Issues
P4113 Transfers
P4114 Adjustments
P4116 Reclassification

X41QTY - LSN Quantity Check (New)

Purpose of Program

This server will be used to check item locations that are under LSN control to
ensure that transactions manipulating inventory quantities do not result in a
quantity for the item that exceeds one (1). This server will check the existing
quantity for an item’s LSN across all branch plant locations marked as quantity
restricted. This program will ensure that the quantity in the system, plus the
quantity of the transaction for the LSN, cannot exceed one (1).

JD Edwards World A7.3 Programmer’s Guide 32

A flag will be returned to the calling program to indicate if the LSN being
processed already exists in the system for this item. This flag can be used in the
manufacturing, purchasing and the warehouse management systems to ensure
that a depleted LSN under quantity restriction does not get replenished.

Program Type

Server routine.

Special Logic

When calling this program, two errors parameters are returned. The first should
be a hard error that indicates that a quantity restrictions attempt violation. The
second error should be considered a ‘soft’ error. Some programs have
processing options (indicating restrictions on item replenishment) that will
indicate if this additional error parameter should be checked. If a program does
not contain this processing option, this error parameter should be ignored.

Significant File Usage

F41021 Item Location file

X4108- LSN Master Update (Changed)

Program Purpose

This server will be modified to update the new Memo Lot fields in the Lot
Master file from the calling programs. All programs that are used by this server
will need the Memo Lot fields added to the data structures. If a program allows
entry of memo lot information, those values will need to be moved into the
program data structure so that this routine can create the LSN Master records
with the correct information. This functionality will only be available for the
creation of the LSN master records.

Nature of Change

The following programs call this server and will need to be changed to pass in
the new Memo Lot fields in the data structure:

Program Name

JD Edwards World A7.3 Programmer’s Guide 33

P31113
P31114
P31115
P31123
P3114
P31143
P31420
P41082
P41280
P41413
P4141
P41021W
P41024
P4108
P4108S
XT4102Z1
P41602
P41610
P4205
P42800
P4312
P43250
P48013
P49800

Work Order Inventory Issues
Work Order Inventory Completion
Co/By Product Completion Window
Super Backflush
Rate Schedule Workbench
Rate Base Inventory Issues
Work Order Automatic Batch Issue
Hold Expired Lots
Lot Availability
Update Cycle Count
Cycle Count Entry
Primary Location Window
Item Location Information
Lot Master Revisions
Location Lot Status Revisions Window
Item Balance Server
Tag Inventory Count Entry
Tag Inventory Update
Shipment Confirmation
Sales Update
Receipts by PO/Item/Account
Routing Movement
Manufacturing Work Order Entry
Sale Update - ECS Version

X41LOT - LSN Assignment (Changed)

Program Purpose

This program will generate LSNs for new balance records based on the SRCE
value for the item. This routine will be enhanced to generate the LSN based on
the new SRCE values being added to the system.

Nature of Change

The program currently processes with A5 logic for the SRCE field, and uses the
values ‘6’ and ‘7’ for SRCE. This code will be removed from the program.

The program currently generates an LSN based on the SRCE value of ‘1’ or ‘2’.
This routine will be modified to include the new SRCE values (SRCE = ‘5’ and
‘6’). All processing for SRCE ‘1’ and ‘2’ will be performed for SRCE ‘5’ and ‘6’
respectively.

JD Edwards World A7.3 Programmer’s Guide 34

 P42053 - Multiple Location Window (Changed)

Program Purpose

This program currently contains two formats. One format is used during the
sales cycle and the second is used during the purchasing cycle. The new Memo
Lot 1 and 2 fields and the Vendor Lot field will also be added to both formats.
The LSN expiration date and status code will also be added to the sales format.

When called from the purchasing programs, the calling programs should ensure
proper editing is performed to ensure that the item’s LSNs, Vendor Lot, and
Memo Lot 1 information are entered (if required). This editing information will
be retrieved from the item’s SRCE and SRNR values.

When called from ship confirmation, this program will allow the user to record
the LSN, vendor lot, and Memo lot 1 and 2 values for the first time for items
containing a SRCE value of four (4 - LSN optional with a quantity restriction)
and/or an SRNR value of 1 through 3.

Nature of Change

 Add the Memo Lot 1 and 2 and Vendor Lot fields to both formats.
Add the LSN expiration date and status code to the second format.
For the purchasing format, the lot fields will be in the header and
will default to the subfile lines in which no lot field information has
been entered.

 The following logic should be performed for inventory receipts.
When entering an item’s LSN, the new SRCE values should be
included for the edit checks.

All editing for SRCE value 0 should include SRCE 4.
All editing for SRCE value 1 should include SRCE 5.
All editing for SRCE value 2 should include SRCE 6.
All editing for SRCE value 3 should include SRCE 7.

When processing an item with a SRCE value of 5-7, or when the
item’s SRCE value is 4 and a value has been entered in the LOTN
field, the X41QTY server should be called. The item number,
MCU, and transaction quantity should be passed to this server.
This server will then determine if the quantity for this transaction
will result in a quantity for the item’s LSN to be greater than one.
The appropriate error message should be issued from this
program.

The item’s SRNR value should be checked and based on its value
required by the Vendor Lot and Memo Lot 1 and 2 values.

JD Edwards World A7.3 Programmer’s Guide 35

Currently a value is passed to this program from the calling
program to indicate what the calling program is (purchasing, sales,
manufacturing, and so on). The multi-locations program will
process data with a slight variation based on this value. A new
value has been added (‘D’) to the purchasing system. This value
should have all the same functionality as the purchasing value (‘P’).
In addition, the total quantity of the item to be selected in the
multi-location window must equal the actual quantity selected.
Currently a ‘P’ allows under-selection. This new functionality will
only be called during the routing cycle when the user is attempting
to assign an LSN.

 The following logic should be performed for ship confirmation:

When processing items with a SRCE = 4, in addition to the
current functionality, allow entry of non-existent LSNs for existing
branch plant locations of the item. The item’s SRCE value must be
a ‘4’ to allow this processing. This will allow entry of LSNs during
the shipment cycle. This functionality is similar to what occurs at
inventory receipts time. This program should require entry for the
Vendor and Memo Lot fields when applicable.

 The following programs need to be modified (extend the user
index size) so that the multi-location window can continue to work
with them:

Program Name

P3111
P31113
P31114
P3114
P31143
P4205
P4312
P43250

Work Order Parts List Revisions
Work Order Inventory Issues
Work Order Inventory Completion
Rate Schedule Work Bench
Rate Base Inventory Issues
Shipment Confirmation
Receipts by PO/Item/Account
Routing Movement

 By way of a function key, a selection criteria window can be called.

The selection window will display memo lot 1 and 2, vendor lot,
LSN range, and lot status (inventory). This enables the user to
narrow the scope of the LSNs displayed in the multi-location
window.

Function Keys/Option Selections

Function Key 6 = Selection Criteria Window

JD Edwards World A7.3 Programmer’s Guide 36

P40SEL - Selection Criteria (New)

This window will display: memo lot 1 and 2, vendor lot, LSN range, and lot
status (inventory only). A parameter is passed to this program to indicate if the
calling program is a purchasing, sales, inventory, manufacturing, or warehouse
program. The program will pass back any values entered in the window to be
used by the calling program to display only the LSNs that pass the criteria.

The following programs will access this window:

Multi-Location (P42053)
Item Summary (P41202)

P40ITM2 - Item Selection Window with Quantity (Changed)

Purpose of Program

This program is used to select items from multiple locations and return the
quantities selected to the calling program. Some additional fields will be added
to allow the user to vary the way items are viewed/selected. This window
program is called from a number of applications. These applications must have
their processing options set to enable this program.

Nature of Change

The video will have the following new fields added to it. These fields will allow
the user to view/select items by using different search criteria.

Fields Description

Item Number Display all locations for an item. The search window will also call
P40SEL through a function key for the additional search criteria.

Memo Lot 1 Display only those LSNs for this Memo Lot 1 value (LSN mode only).

Memo Lot 2 Display only those LSNs for this Memo Lot 2 value (LSN mode only).

LSN Selection Range of LSNs to be selected (LSN mode only).

JD Edwards World A7.3 Programmer’s Guide 37

Stock Valuation

Stock Valuation provides the tools for companies to effectively determine their
stock values for reporting and evaluating their profit margins. Stock valuation is
calculated monthly, quarterly, or yearly.

Objectives

The objectives of this module are to provide the following functions:

 Measure and manage stock levels and related cash flow.

 Comply with accounting standards that require a company to provide a
true and fair value of the company’s financial performance and capitol
employed.

Scope

These objectives require the following new programs:

Program Title

P39001
J39001
V39001

Item/Pool Inquiry
Item/Pool Inquiry CL
Item/Pool Inquiry Video

P3901
J3901
V3901

Item/Pool Valuation Maintenance
Item/Pool Valuation Maintenance CL
Item/Pool Valuation Maintenance Video

P3902
J3902
V3902

Valuation Method Master
Valuation Method Master CL
Valuation Method Master Video

P3902W
V3902W

Valuation Method Window
Valuation Method Window Video

P3905W
J3905W
V3905W

Period Additional Quantities
Period Additional Quantities CL
Period Additional Quantities Video

P39050
J39050
V39050

Valuation Summary Review
Valuation Summary Review CL
Valuation Summary Review Video

JD Edwards World A7.3 Programmer’s Guide 38

P39051
J39051
V39051

Valuation Period Review
Valuation Period Review CL
Valuation Period Review Video

P39052
J39052
V39052

Valuation Layers Review
Valuation Layers Review CL
Valuation Layers Review Video

Program Title

P39053
J39053
V39053

Period Summary Review
Period Summary Review CL
Period Summary Review Video

P3906
J3906
V3906

Document Summary Review
Document Summary Review CL
Document Summary Review Video

P39120
P391201
J39120
R39120

Valuation Period Extraction - Workfile Build
Valuation Period Extraction
Valuation Period Extraction CL
Valuation Period Extraction Print File

P39130
J39130
R39130

Valuation - G/L Update
Valuation - G/L Update CL
Valuation - G/L Update Print File

P39200
J39200
V39200

Valuation Method Comparison
Valuation Method Comparison CL
Valuation Method Comparison Video

P39400
J39400
R39400

Stock Valuation Detail Report
Stock Valuation Detail Report CL
Stock Valuation Detail Report Print File

P39500
J39500
R39500

Valuation Summary Report
Valuation Summary Report CL
Valuation Summary Report Print File

P39510
J39510
R39510

Valuation G/L Update Summary
Valuation G/L Update Summary CL
Valuation G/L Update Summary Print File

JD Edwards World A7.3 Programmer’s Guide 39

P39540
J39540
R39540

Unit Cost Period Report
Unit Cost Period Report CL
Unit Cost Period Report Print File

P39900
J39900
R39900

Valuation File Purge
Valuation File Purge CL
Valuation File Purge Print File

Database Specifications

New files

File File Name Prefix

F3901
F39011
F3902
F39051
F390519
F29052
F39053
F390539
F3906
F39069
F3911

Item/Pool Valuation Master
Company G/L Update Method
Valuation Method Master
Valuation Period
Valuation Period - Purged Records
Valuation Layer
Period Additional Quantities
Period Additional Quantities - Purged Records
Valuation Document Summary
Valuation Document Summary - Purge Records
Item Ledger Tag

PL
SC
SV
SO
SO
ST
SU
SU
DS
DS
SL

New Logical Files

File Key Fields

F3901LA
F3901LB

CO, IPTK, ITM, SVVM
SVVM, CO, ITPL, ITM

F39051LA
F39051LB
F39051LC
F39051LD
F39051LE
F39051LF

SVVM, ITPL, ITM, CO, MCU, FY, PNC
CO, MCU, SVVM, FY, PNC, ITPL, ITM
FY, PNC, SVVM, CO, ITM, ITPL, MCU
FY, PNC, CO
SVVM, ITPL, ITM, MCU, FY, PNC
CO, ITPL, ITM

JD Edwards World A7.3 Programmer’s Guide 40

F39052LA
F39052LB
F39052LC
F39052LD
F39052LE

SVVM, FY, PNC, ITPL, ITM, CO, MCU, RCPD, RCSQ
FY, PNC, CO
SVVM, ITPL, ITM, CO, MCU, RCPD, RCSQ
SVVM, ITPL, ITM, CO, RCPD, RCSQ
FY, PNC, CO

F39053LA FY, PNC, CO

F3906LA
F3906LB

FY, PNC, CO
FY, PNC, DCT, ITPL, ITM, CO, MCU

F3911JA F4111/F3911

Container Management

Container Management is used to manage the inventory of containers as they
are exchanged between the customer and the supplying company.

The sale of products in containers have a unique inventory process that requires
an enhanced inventory management system compared to the standard
Distribution industry systems. The containers are not sold to the customers,
only the product in the containers are sold. Hence, the container is only loaned
to the customer for the storage of the product sold. A customer may have one
or more containers in their possession based on their need and application and
will periodically return the empty containers to the company in exchange for
full containers.

Objectives

The objectives of this module are to provide the following functions:

 Allow the company to account for the containers that they own. This is
imperative, since the containers are of high value to the company,
ranging from three to four times the cost of the product sold in them.

 Track and manage the deposits and rental fees per container as charged
for each customer.

Scope

These objectives require the following new programs:

JD Edwards World A7.3 Programmer’s Guide 41

Program Title

P4118
J4118
V4118

Container Deposit Inquiry
Container Deposit Inquiry CL
Container Deposit Inquiry Video

P41180
J41180
R41180

Container Billing
Container Billing CL
Container Billing Print File

P41181
J41181
V41181

Container Transaction Inquiry
Container Transaction Inquiry CL
Container Transaction Inquiry Video

P41182
J41182
R41182

Customer/Distributor Balance
Customer/Distributor Balance CL
Customer/Distributor Balance Print File

P41185
J41185
R41185

Container Reconciliation
Container Reconciliation CL
Container Reconciliation Print File

P41189
J41189
R41189

Container Extraction Server
Container Extraction Server CL
Container Extraction Server Print File

Database Specifications

New files

File File Name Prefix

F4118
F41181
F411819
F41185
F41189

Container Deposit
Container Transaction
Container Transaction History
Container Reconciliation
Container Deposit History

CN
CM
CM
CT
CN

New Logical Files

File Key Fields

JD Edwards World A7.3 Programmer’s Guide 42

F4118LA
F41181LA
F41181LB
F41181LC
F41181LD

AN8, RORN, RCTO, RKCO, RLLN, ITM
AN8, ITM, DOCO, DCTO, KCOO, LNID
AN8, ITM, LNTY, SIDT
ITM, MCU, RCFL
AN8, RORN, RCTO, RKCO, RLLN, ITM

Load/Delivery and Agreement Management Systems

Database Changes

New files

File File Name File Contents Prefix

F38001 Agreement Management
Constants

Agreement Management
Constants

DC

F38010 Agreement Master Agreement Master DN

F38011 Agreement Quantities Agreement Quantities DF

F38012 Product Source/Destination
Master

Product Source/Destination
Master

DP

F38013 Agreement Quantities
Schedule

Agreement Quantities Schedule DQ

F38014 Agreement Formulas and
Factors

Agreement Formulas and Factors DR

F38111 Agreement Transaction
Ledger

Agreement Transaction Ledger DZ

F38112 Agreement Committed
Quantities

Agreement Committed
Quantities

DX

F49110 Actual Trip Detail Actual Trip Detail TA

T49551 Manual Document
Temporary Workfile

Manual Document Temporary
Workfile

TK

JD Edwards World A7.3 Programmer’s Guide 43

New Logical Files

File Key Fields

F38010LA
F38010LB
F38010LC
F38010LD
F38010LE
F38010LF
F38010LG
F38010LH
F38010LI
F38010LJ
F38011LA
F38011LC
F38012LC
F38012LD
F38012LE
F38111LA
F49110LA
F49511LH
F49511LD
F49511LF
F49511LG

DL01, DMCT, DMCS
DMTC, DMCT, DMCS
DMSC, DMCT, DMCS
AN8, DMCT, DMCS
AN8, DMCT, DMCS
ZD02, DMCT, DMCS
ZD03, DMCT, DMCS
ZD04, DMCT, DMCS
PANM, DMCT, DMCS
PAGM, PAGS, DMCT, DMCS
DMCT, DMCS, DTO, ITM, DES, DESY, EFTJ
ITM, DMCT, DMCS
ITM, DTO, PSR, PSRY, DES, DESY, EFTJ
PSR, PSRY, DMCT, DMCS, SEQ
DES, DESY, DMCT, SEQ, PSR, PSRY
DMCT, DMCS, SEQ, PSR, PSRY, TRDJ
VMCU, TRP, DOCO, DCTO, KCOO, LNID
VMCU, TRP, LCMP, ITM, TRRD
VMCU, TRP, ITM, DOCO, DCTO, ITM, TRRD
VMCU, TRP, TRRD, DOCO, DCTO, ITM
VMCU, TRP, ITM, TRRD, DOCO, DCTO, KCO, CMPN

Fields Added

File Names Field Description Field Name

T49510 Ambient Volume
Standard Volume
Volume UOM
Weight Result
Weight UOM
Number of Order Lines

AMBR
STOK
BUM3
WGTR
BUM5
NLIN

JD Edwards World A7.3 Programmer’s Guide 44

T49710 Ambient Volume
Standard Volume
Volume UOM
Weight Result
Weight UOM
Number of Order Lines
Unit of Measure
Volume Correction Factor

AMBR
STOK
BUM3
WGTR
BUM5
NLIN
UOM
VCF

File Names Field Description Field Name

T49715 Load Item Type
Order Number
Order Type
Line Number
Order Company
Business Unit
Disposition Code
Promised Delivery
Unit Cost

LDIT
DOCO
DCTO
LNID
KCOO
MCU
DSCD
PDDJ
UNCS

F41011 Minimum Volume Correction
Factor
Maximum Volume Correction
Factor

MNVC

MXVC

F49021 Volume Correction Factor VCF

F4912 Volume Correction Factor VCF

JD Edwards World A7.3 Programmer’s Guide 45

F49211, F49211Z Foreign or Domestic
Port
Aircraft/Marine Registration
Number (for example, tail
number)
Gate Number/Bay Number
/Dock Number /Berth
Authorization Name
Ships Name
Meter Ticket Number 1
Beginning Meter Reading 1
Closing Meter Reading 1
Meter Ticket Number 2
Beginning Meter Reading 2
Closing Meter Reading 2
Meter Ticket Number 3
Beginning Meter Reading 3
Closing Meter Reading 3
Expected Arrival Date
Expected Arrival Time
Expected Departure Date
Expected Departure Time
Date Fueling Started
Time Fueling Started
Date Fueling Ended
Time Fueling Ended

FRDM
FUPT
RINO

GLOC

AUTA
ALPH
MET1
OPN1
PNR1
MET2
OPN2
PNR2
MET3
OPN3
PNR3
ARDT
ARTM
DPDT
DETM
DSTJ
STM
END
ETM

Data Dictionary

Fields Changed

Data Item Name Description Change

DSNN Destination Added UDC. Field has been in the database
for some time. The base package software will
be using these fields for the first time in A7.3.
While the fields are longer than 3 positions,
only 3 positions will be displayed and printed.

SORG Origin Added UDC. Field has been in the database
for some time. The base package software will
be using these fields for the first time in A7.3.
While the fields are longer than 3 positions,
only 3 positions will be displayed and printed.

JD Edwards World A7.3 Programmer’s Guide 46

DATY Allowed Values Allowed Values include W, V, and S.

File Servers

X3811 - Agreement Search/Edit Server (New)

Purpose of Program

This program will perform two major functions within the Agreement
Management system. In search mode, it will perform a contract search based on
the parameters passed from the calling program. In edit mode, it will edit the
agreement and contract supplement.

Parameters

The following parameters will be used to receive data from and send data to the
calling program. Note that the bulk of the parameters will be defined within a
200-byte data structure to better allow for additional parameters being added at
a later date.

Parameter Field
Size
(Type)

Description

PSPID 10 (A) Program ID (X3811)

PSVERS 10 (A) Program version

PSMODE 1 (A) Program mode; possible values are 1 (search mode) and 2 (edit mode)

PSPARM 200 (A) Data structure containing the following fields

PSDTO 1 (A) Due To to be used for the contract search/edit

PSITM 8,0 (S) Item (short format)

PSSRC1 12 (A) Source 1

PSSRT1 2 (A) Source type 1

PSSRC2 12 (A) Source 2

PSSRT2 2 (A) Source type 2

PSDES1 12 (A) Destination 1

PSDST1 2 (A) Destination type 1

PSDES2 12 (A) Destination 2

PSDST2 2 (A) Destination type 2

PSDTE 6,0 (S) Date (Julian) to be used for contract search/edit

JD Edwards World A7.3 Programmer’s Guide 47

PSQTY1 15,0 (S) Quantity to be used for contract search/edit

PSUOM 2 (A) Unit of measure of QTY1

PSSRCH 1 (A) Contract search processing option

PSDMCT 12 (A) Contact number

PSDMCS 3,0 (S) Contract supplement

PSSEQ 6,0 (S) Sequence

PSUPRC 15,0 (S) Override price

PSASN 8 (A) Price schedule

PSUPGL 1 (A) Update G/L

PSPRAS 1 (A) Update at ambient/standard/weight

PSERR 4 (A) Error message ID

Parameter Field
Size
(Type)

Description

PSDOCO 8,0 (S) Order number

PSDCT 2 (A) Order type

PSKCOO 5 (A) Order company

PSLNID 3,0 (S) Line number

XT38111 - Agreement Transaction Server (New)

Purpose of Program

The purpose of this program is to perform all updates in the Agreement
Management system related to agreement balances and contract transactions.
This program will be called by the Sales Order Entry, Purchase Order
Entry/Receipts, Load Confirmation, and General Stock Movement programs.

Parameters

The following parameters will be used to receive data from and send data to the
calling program. Note that the bulk of the parameters will be defined within a
200-byte data structure to better allow for additional parameters being added at
a later date.

Parameter Field
Size
(Type)

Description

PSPID 10 (A) Program ID (X38111)

JD Edwards World A7.3 Programmer’s Guide 48

PSVERS 10 (A) Program version

PSMODE 2 (A) Program mode; a code that represents the function to be performed

PSERR1 4 (A) Error message ID

PSERR2 4 (A) Error message ID

PSPARM 200 (A) Data structure that contains the following fields

The next five fields represent the unique key to a F38012 record for purposes
of updating commitment quantities.

Parameter Field
Size
(Type)

Description

PSDMCT 12 (A) Contact number

PSDMCS 3,0 (S) Contract supplement

PSSEQ 6,0 (S) Sequence

PSSRC1 12 (A) Source 1

PSSRT1 2 (A) Source type 1

PSDTO 1 (A) Due To to be used for the contract search/edit

The next three fields represent the item, quantity (with UOM) to be committed.

Parameter Field
Size
(Type)

Description

PSITM 8,0 (S) Item (short format)

PSQTY1 15,0 (S) Quantity to be used for contract search/edit

PSUOM 2 (A) Unit of measure of QTY1

The next four fields represent the order line keys to be used if a committed
quantity needs to be added or reversed.

Parameter Field
Size
(Type)

Description

PSDOCO 8,0 (S) Order number

PSDCT 2 (A) Order type

PSKCOO 5 (A) Order company

PSLNID 3,0 (S) Line number

JD Edwards World A7.3 Programmer’s Guide 49

P38111 365 (A) Data structure that contains the fields to be used when creating agreement
transaction ledger records. Note that this parameter is not passed when
only quantity commitment needs to be performed. If it is passed, it will be
loaded with the appropriate values by the calling program.

Conversion Programs

P38010AX - Agreement Management file conversion (New)

P49110X - Actual Trip Detail Conversion (New)

Purpose of Program

The Actual Trip Detail Conversion program is a DREAM Writer program that
will create Actual Trip Detail (F49110) records from the Trip Detail File
(F4911) for trips that have not been delivery-confirmed.

Processing Options

Enter the load confirmation trip status.

Unit of Measure Conversion Server

The UOM conversion server is used to retrieve conversion factors from the
primary unit of measure for an item. It can also be used to convert any given
unit of measure to any other unit of measure, as long as both units are in either
the Item Specific conversion table (F41002) or the Standard conversion table
(F41003).

Although there were several changes internal to the UOM conversion server,
only two could affect other programs:

 There is a field on the Item Master file (F4101) called Temporary
Flash Message (TFLA). This field was added in A7.1 but not used.
It will now be used to indicate whether an item will have item-
specific units of measure. A ‘1’ indicates only standard units of
measure should be searched when calling the server. The field will
now be called Standard UOM Conversion.

This modification could affect program testing because the flag
may be indicating to bypass item-specific units of measure.

JD Edwards World A7.3 Programmer’s Guide 50

For integrity reasons, this may become a system-maintained field in
the future.

 There is a set of flags in the parameters that are used to determine
which conversion factors are required. These parameters already
existed, but were never implemented. Every time the server was
called, all conversions were performed.

The flags now can be used to specify which conversions should be
performed by moving a ‘1’ to the appropriate flag(s). The
exception to this is when all flags are blank, which will still perform
all conversions. This exception will allow us to implement the new
flags when convenient, rather than performing a mass effort for all
calling programs. However, even without the modification for the
flags, the UOM conversion server will still perform its function
quicker.

The following is a table of the conversion factors and/or quantities that are
loaded when a particular input flag is set:

Input Flag Flag Description Conv Factor Qty

#0PQT #UOM (from) to #UOM1 (to) #CNV #QTY

#0SQT Secondary #SQT

#0SQT Secondary #SQT

#0UQT Purchasing #UQT

#0RQT Pricing #RQT

#0HQT Shipping #HQT

#0LBS Weight (Pounds) #LBS

#0CLB Weight (Hundred Pounds) #CLB

#0VL1 Volume 1 (Dry) #VL1

#0CNVQ #UOM (from) to Primary UOM #CNVQ #PQT

#0CNVP #UOM1 (to) to Primary UOM #CNVP

JD Edwards World A7.3 Programmer’s Guide 51

The following parameters are output from the server:

Output Field Field Description

#QTY Quantity in #UOM1 (to) UOM

#PQT Quantity in Primary UOM

#SQT Quantity in Secondary UOM

#UAT Quantity in Purchasing UOM

#RQT Quantity in Pricing UOM

#HQT Quantity in Shipping UOM

#LBS Weight (Pounds)

#CLB Weight (Hundred Pounds)

#VL1 Volume 1 (Dry)

#CNV Conversion Factor Used from #UOM (from) to #UOM1
(to)

#CNVQ Conversion Factor Used from #UOM (from) to Primary
UOM

Here is an example of a call to convert one unit of measure (SFUM) to another
($UOM):

 CSR MOVE LFIVI #IVI
 CSR MOVE SFUM #UOM
 CSR MOVE $UOM #UOM1
 CSR Z-ADD$QTY #QTY
 CSR MOVE $MCU #MCU
 CSR MOVE *BLANKS #ERTST
 CSR MOVE ’1’ #0PQT
 C*
 CSR CALL ’X41002 ’ 81
 C* ---- ----------
 CSR PARM DS4101
 CSR PARM DS@UOM
 C*
 CSR #ERTST IFNE ’1’
 CSR Z-ADD#QTY $QTY
 CSR $XQTY MULT #CNV $YQTY
 CSR END

Here is the same call that also converts the quantity ($QTY) to the purchasing
(#UQT) and shipping (#HQT) units of measure:

 CSR MOVE LFIVI #IVI
 CSR MOVE SFUM #UOM
 CSR MOVE $UOM #UOM1
 CSR Z-ADD$QTY #QTY
 CSR MOVE $MCU #MCU
 CSR MOVE *BLANKS #ERTST
 CSR MOVE ’1’ #0PQT
 CSR MOVE ’1’ #0UQT
 CSR MOVE ’1’ #0HQT
 *
 CSR CALL ’X41002 ’ 81
 C* ---- ----------

JD Edwards World A7.3 Programmer’s Guide 52

 CSR PARM DS4101
 CSR PARM DS@UOM
 C*
 CSR #ERTST IFNE ’1’
 CSR Z-ADD#QTY $QTY
 CSR Z-ADD#UQT $PURQ
 CSR Z-ADD#HQTY $SHIPQ
 CSR END

Manufacturing System Changes

This chapter describes changes made to the manufacturing system.

Configurator Enhancements

Modularization

The existing processing for the configurator was broken into manageable units
based on functionality. This structural change was necessary both to simplify
implementing current and future enhancements as well as to provide a means of
calling certain parts of the configurator through batch programs. The programs
that were modularized are Configured Item Specifications (P3294), formerly
known as ATO Coded Specification Entry, and the Sales Order Detail Server
(X3294). What follows are descriptions of the configured Item Specifications
program and the Sales Order Detail Server as they currently exist and
descriptions of new programs created.

P3294 - Configured Item Specifications

The Configured Item Specifications program was changed to remove all rule
processing. The program includes the calling of the Configurator window, the
handling of function keys attached to the window, and the simple edits derived
from entering values by using Configured Item Segments (P3291). Even these
edits were placed in a copy module executed by the Configured Item
Specifications program. The copy module is C3294, Configured Item Segment
Editing. This module will process the edits for the UDC tables, numeric yes/no
fields, and upper and lower segment values.

The more complicated rule processing that is handled by the configurator is
now in Process Assembly Inclusion Rules (P32943). This program will handle
both Cross Segment Editing and Assembly Inclusion Rules. Process Assembly
Inclusion Rules will be called interactively by Configured Item Specifications
and in batch mode by Process Work Orders, (P31410). Interactively, ‘C’ rules or
calculated segments will be processed along with ‘P’ rules. In batch mode, ‘Q’
and ‘R’ rules will be processed.

JD Edwards World A7.3 Programmer’s Guide 53

X3294 - Sales Order Detail Server

Prior to the A7.3 enhancement, the Sales Order Detail Server was called once
for each sales line item that would be written by the configurator. P3294 and
X3294 were changed so that the Sales Order Server will only be called once to
update a configured item. In order to implement this change, the structure of
X3294 was modified. Rather than being organized to process one sales line at a
time, the program will now loop through the existing logic a number of times
equal to the number of records read from the sales detail user index. Following
the write of the detail records, the parent record will be written.

The Detail Server is called interactively by Configured Item Specifications
(P3294) and in batch mode by Process Work Orders (P31410). When called
interactively, the program functions the same as it did prior to the
enhancement. All updates that are necessary for a configured sales order are
completed. When called from Process Work Orders (P31410), the server is
called to write parts lists and create routings. Routings will be created as they
were in the past, in the called server Create Configured Routings (X3112).

Rule Processing in Process Work Orders (P31410)

In order to improve the interactive performance of the configurator as well as
provide consistency for processing parts of the work order, routing rules or ‘R’
type rules will now be interpreted during the run of Process Work Orders rather
than interactively. This modification causes parts list and routings to be created
at the same time. To accommodate clients that want routings and parts written
soon after the creation of the sales order and work order, a subsystem
processing mode is now offered. You can start the subsystem by accessing the
Subsystem Control programs. These programs were added to the Configurator
Advances Functions menu. To activate the subsystem, choose Start Subsystem
from the menu. After this step completes, a field with configurator constants is
set to process parts lists and routings using the subsystem.

In addition to processing ‘R’ and ‘P’ rule types, Process Work Orders (P31410)
will also process the new ‘Q’ rules. This rule type was also implemented to
improve interactive performance. Parts that do not need to be included as a line
item on the sales order can be ‘Q’ rather than ‘P’ rules. The part will still appear
on the parts list but will not be processed interactively and placed on the sales
order. ‘Q’ rules are processed only interactively when the kit pricing method
chosen is price by components. To calculate an accurate price or cost for the
configured item, ‘Q’ rules are interpreted. However, the ‘Q’ parts rules are only
used as far as determining price or cost, and when the Configurator Constant
option ‘Cost Quotes’ is set to ‘Y’. Updates to the sales order will not take place.

JD Edwards World A7.3 Programmer’s Guide 54

Storing Configured Strings

Two new files were created to facilitate the implementation of stocking
configured items. The files are:

Configured String Master (F32941)

A new file was created that contains a “string” of information for each
configuration. This string will be composed of segment values for all
levels of the configuration, including respective configured items for
multi-level configured items. Each occurrence in this file will be unique
by configured string identifier per item.

Configured String Segments (F32942)

This file contains the same information as the Configured String Master
file except that each segment and its respective value will be stored in a
separate record.

In addition to being used for keeping track of the different
configurations that can be stocked, these files were also found to be
useful when interpreting rules from Process Work Orders (P31410).
Assembly Inclusion Rules can be based on values input at any level of a
configuration. Prior to the creation of these files, the configured string
was pulled apart, separated, and each piece of the string was read until
the necessary portion was located. Through the use of the string files,
batch processing can be accelerated by finding a value with a single read
to the Configured String Detail.

The configured string within Configured String History (F3294) has been
increased from 360 bytes to 500 bytes. This represents the maximum
length of a string for each configured component, at each level, as well as
the configured parent. The Configured String Master (F32941) has a
1000-byte field used to store a concatenation of configured strings at all
levels of a configuration. The 1000-byte field is used to search for a
matching string to reuse configured string ID numbers. Although the
optimal situation would be a concatenated string that is less than 1000
bytes, the F32941 file also contains a sequence number used for
overflow. Processing overflow records will not perform as quickly as the
direct approach of searching on the first 1000 bytes.

Sequence Number

Sequence number is used by configurator to determine the level at which the
configured item is being processed. This field was increased in size from 15 to
23 bytes. Prior to this change, configurations were limited to five levels. Each
level could possibly have 99 sales order lines. Because of the increased size of
this field, clients can now process as many as 10 levels for a configured item.

JD Edwards World A7.3 Programmer’s Guide 55

External Program Parameters

The parameter list used when an external program is called was changed for
version A7.3. Prior to this release, the call using the external program field that
is available in Assembly Inclusion Rules was coded as follows:

60.00 CSR CALL KYPID
61.00 C* ---- -----
62.00 CSR PARM PSITM 80
63.00 CSR PARM PSMCU 12
64.00 CSR PARM PSAN8E 80
65.00 CSR PARM PSEXVR 30
66.00 C*
67.00 CSR MOVEAPSEXVR @IC

Today the parameter list appears as:

49.00 C*
50.00 CSR CALL KYEPGM
51.00 C* ---- ------
52.00 CSR PARM PSITM 80
53.00 CSR PARM PSMCU 12
54.00 CSR PARM DSKITP Sales info
55.00 CSR PARM PSEXVR 30
56.00 C*

The difference between the two calls is that the third parameter is a data
structure that holds all of the information passed in by Sales Order Entry. This
gives clients access to the sales order header information, detail line

JD Edwards World A7.3 Programmer’s Guide 56

information, and processing option values that are all passed to Configured
Item Specifications (P3294) from Sales Order Entry (P4211).

Configurator Constants

Configurator Constants (F3209)

A new file was added that contains fields to control configurator
processing at the branch/plant level. Some of the fields were removed
from the Inventory Constants display file, other fields replaced existing
Sales Order Entry processing options, and several new fields were added.
The contents of the file are as follows:

 Branch/Plant (VDMCU)

 Segment Delimiter (VDSECD) - Defaults to ‘/’

 Method of Processing (VDAPLR) - Defaults to ‘1’; batch

 Check Availability (VDCAVL) - Defaults to ‘Y’

 In Stock Line Type (VDSVL) - Defaults to ‘S’

 Sales Quote Document Type (VDDCTO) - No default; UDC table

 Cost Sales Quotes (VDCCSQ) - Defaults to ‘Y’

 Work Order Change Status (VDWOCS) - No default

 Display Calculated Segments (VDCSEG) - Defaults to ‘N’

Configured Model Text

Configured Model Text (F3214)

This file was created as a tag file to Sales Order/Purchasing text file
F4314. The Configured Model Text file contains the sequence number
for all levels of the configuration. When text is placed on a work order,
this file is used to quickly determine which text lines match up with
specific levels of the configuration.

Configurator Table Processing

A new feature was created to enable rule processing to perform a lookup from a
pre-defined table based on segment values selected in the configuration process.
A field was added to Assembly Inclusion Rules to provide for entry of the name
of the table to be accessed. This new feature will include programs to create and
maintain tables, as well as a retrieval program.

JD Edwards World A7.3 Programmer’s Guide 57

To provide enough flexibility in table usage, tables may be one of three types:
prices, part numbers, or calculated segments. Prices are always numeric, part
numbers are always alphanumeric, and calculated segments may be either, as
defined in the Configured Item Segments. Numeric calculated segment values
will be rounded to the number of decimals specified in the segment’s definition.
Calculated segment and part tables will have the capability of returning multiple
values. When defining tables, users may specify up to ten dimensions. Files
created for rules-table processing are as follows:

Rules Table Definition (F3281)

A file was added for defining tables including description, table type,
number of segments required to look up a value, and whether the lookup
will return multiple values.

Configured Item/Rules Table Cross-Reference (F3282)

A file was added to define which segment values to use in table lookups
for each configured item. Segments may be defined at different levels of
the configuration. For tables with multiple values, the number of values
are defined in this file.

Rules Table Value Definition (F32821)

A file was added for tables which will return multiple values to calculated
segments. This file holds the segments that will be populated with the
returned values. Segments can be populated at any level of the
configuration.

Table Detail (F3283)

A file was added to store the actual table values for each combination of
segment values defined for the table.

Forecast Consumption Logic

A new planning rule (Rule H) was added to allow the use of forecast
consumption logic. This logic will prevent the problem of demand being
duplicated because a sales order does not fall on the same date as a forecast.
Forecast consumption logic allows MRP to “consume” the forecast with sales
orders and shipped quantities within user-defined forecast consumption
periods.

Forecast consumption periods are defined by a new program (P3405) and are
stored in new file F3405.

JD Edwards World A7.3 Programmer’s Guide 58

When forecast consumption logic is being used, changes are made to the bucket
date array depending on the number of past due periods requested in the MRP
(P3482/P3483). If two past-due periods are requested, the second element in
the Bucket Date Array references the beginning date of the current Forecast
Consumption Period (FCP). The first element in the Bucket Date Array
references the date prior to the ending date of the previous FCP. If only one
past-due period is requested, the first element of the Bucket Date array
references the beginning date of the current FCP. If no past-due buckets are
requested, the first element of the Bucket Date array references the generation
date.

Server XF3462

This server is used to provide access to the forecast shipment summary file.
This server is currently used by P4205 (Shipment Confirmation), P42800 (Sales
Update), and P49700 (Cycle Billing).

An example of the use of this server follows:

 C* Write/update the Forecast Summary record for planning
 C* if planning time fence rule = H (Consumption Periods)
 C*
 CSR IBMPSP IFEQ ’H’
 C*
 C* Check Doc Type against UDC 40/CF
 C*
 CSR CLEARI0005U
 CSR MOVEL’40’ #USY
 CSR MOVEL’CF’ #URT
 CSR MOVE SDDCTO #UKY
 CSR CALL ’X0005’ 83
 C* ---- -------
 CSR PARM I0005U
 C*
 CSR #UERR IFEQ ’0’
 C*
 C*
 CSR Z-ADDSDITM MBITM
 CSR MOVE SDMCU MBMCU
 CSR Z-ADDSDPDDJ MBPDDJ
 C*
 CSR MOVEL’A73 ’ @@FMT
 CSR MOVE ’K’ @@ACCS
 CSR MOVEL’MBKY01’ @@KLST
 CSR MOVE ’Y’ @@LOCK
 CSR MOVEL’CHAIN’ @@OPER
 CSR Z-ADD3 @@KNUM
 CSR CALL ’XF3462’
 C* ---- --------
 CSR PARM PS@@1
 CSR PARM I3462
 C*
 CSR @@IOR IFNE ’ERR’
 C*
 CSR @@IOR IFEQ ’NF ’
 C*
 CSR Z-ADDSDITM MBITM
 CSR MOVE SDLITM MBLITM
 CSR MOVE SDAITM MBAITM
 CSR MOVE SDMCU MBMCU
 CSR MOVE SDCO MBCO
 CSR Z-ADD$WK150 MBUORG
 CSR Z-ADDSDPDDJ MBPDDJ
 CSR MOVE ##JOBN MBJOBN

JD Edwards World A7.3 Programmer’s Guide 59

 CSR MOVE ##PROG MBPID
 CSR Z-ADD$#UPMJ MBUPMJ
 CSR Z-ADD$TDAY MBTDAY
 CSR Z-ADD$TDAY MBTDAY
 CSR MOVE ##USER MBUSER
 C*
 CSR MOVEL’WRITE’ @@OPER
 CSR MOVEL’MBKY01’ @@KLST
 CSR CALL ’XF3462 ’
 C* ---- -------
 CSR PARM PS@@1
 CSR PARM I3462
 C*
 CSR ELSE
 C*
 CSR ADD $WK150 MBUORG
 CSR MOVE ##JOBN MBJOBN
 CSR MOVE ##PROG MBPID
 CSR MOVE $#UPMJ MBUPMJ
 CSR MOVE $TDAY MBTDAY
 CSR MOVE $TDAY MBTDAY
 CSR MOVE ##USER MBUSER
 C*
 CSR MOVEL’A73 ’@@FMT
 CSR MOVE ’K’ @@ACCS
 CSR MOVEL’UPDAT’ @@OPER
 CSR MOVEL’MBKY01’ @@KLST
 CSR Z-ADD3 @@KNUM
 CSR CALL ’XF3462 ’
 C* ---- -------
 CSR PARM PS@@1
 CSR PARM I3462
 C*
 CSR ENDIF
 C*
 CSR ENDIF

Summarized Manufacturing J/Es

Manufacturing processing has been enhanced to provide the following:

 Ability to summarize Material Issue J/Es within a work order

 Ability to summarize J/Es across work orders

 Option to print a summarized Accounting Transaction Report

Summarization is defined by way of the processing options, and impacts
P31802, P31804, and P31842.

A new file (F3108) has been created to store the link between summarized work
order number and the individual work orders that were summarized. A
corresponding inquiry screen was created to view the new file.

Multiple Supplier Split Percentages

Supplier Release Scheduling (SRS) has been enhanced to allow generation of
multiple supplier schedules for a single item. Additionally, a pre-determined
split percentage between suppliers can be defined.

JD Edwards World A7.3 Programmer’s Guide 60

 Previously, a blanket order was in effect through its expiration
(request) date. It is now further defined as being effective from the
order date through the expiration date.

 A new file (F43211) has been created to store the respective
supplier percentages and corresponding effectively dates.

 If an item has been split among suppliers, the SRS Schedule
Revision program (P34301) was modified to invoke a window to
allow selection of the desired supplier/blanket order.

Warehouse Management Picking Interface

The Warehouse Management Picking Interface project objectives are:

 Provide clients with the flexibility to decide whether or not the
pick requests will be generated at the time a parts list is created

 Enhance manufacturing parts list generation programs to call the
WM Pick Request server

 Add a check for availability of parts attached to work center
locations

 Update the Pick Request, Pick Confirmation, and Request
Cancellation programs to recognize requests originating in
manufacturing

 Change warehouse programs to update the appropriate fields in the
Parts List file rather than the Sales Order Detail file when a request
originates in manufacturing

There were no database changes required to implement the interface. However,
new codes were added to the Material Status UDC table (31/MS). In addition,
the glossary for the data item OCDE was changed to include ‘WO’ as a new
origin code type.

Engineering Change Order Enhancements

The enhancement to the existing ECO functionality consisted primarily of the
following new features:

 Ability to create work orders against prior ECO revision levels

 Provide automatic assignment of the next revision level during
ECO entry through control of a processing option

 Allow updates of all single-level parent revision levels whenever a
component within its structure changes

JD Edwards World A7.3 Programmer’s Guide 61

 Allow approval routing assignment for an individual ECO order

To implement the enhancement, the following technical changes were made:

User Defined Codes (F0005)

A new entry was added to the UDC table to contain pre-assigned
revision levels. This table will be used during ECO entry to
determine the next revision level to assign.

ECO Parts List (F3013)

To facilitate bill of material maintenance, Issue Type Code (ITC)
was added.

Last Drawing Revision Level (RVNO), which was not utilized
previously, was included on ECO Parts List Maintenance (P3013).

Order Approval Routing Logical (F4818LB)

To provide approval routing at the ECO level, a new logical file
was created to sequence the records by ECO order, then approval
group. This permits releasing different routing groups during the
approval process.

ECO Parts List Logical (F3013LE)

To enable Revision window to provide Skip To functionality, a
logical view of the ECO parts list by Parent Item and Swap to
Revision was added.

ECO Parts List Logical (F3013LF)

To enable Revision window to provide Skip To functionality, a
logical view of the ECO parts list by Item Number and To
Revision was added.

Human Resources and Payroll Systems

This section provides database changes for the human resources and payroll
systems.

JD Edwards World A7.3 Programmer’s Guide 62

Database Changes

Several database changes have been made to the Payroll and HRM systems to
accomodate enhancements made for public services clients. The areas affected
the most by these changes involve the ability for employees to have more than
one position/job, and enhancements to position budgeting and control.

In addition to public services, enhancements have been made to the HRM and
Payroll systems for Canadian Employment Equity Federal requirements.

Files Common to Payroll and HR - System 05

F060116 - Employee Master - YA

Description Size Type Data Item Status Conversion Value

Pay Grade Step 4 A PGRS Add Blank

Salary Forecast
Change Date

6 P DTSF Add Zero

Num Pay
Periods/Year

6 P SMOY Add Zero

Std Days/Year 5 S SDYY Add Zero

Hours - Standard
Per Day

5 S STDD Change Change from Size 5, File
Decimals 1, to Size 5, File
Decimals 0, Display
Decimals 2.

Hours - Standard
Per Payperiod

5 S STDH Change Change from Size 5, File
Decimals 1, to Size 5, File
Decimals 0, Display
Decimals 2.

F060118 - Employee Multiple Job - YE - New File

Description Size Type Data Item Status Conversion Value

Employee
Address No

8 S AN8 Add From F060116

Home Business Unit 12 A HMCU Add From F060116

Job Type 6 A JBCD Add From F060116

Job Step 4 A JBST Add From F060116

JD Edwards World A7.3 Programmer’s Guide 63

Position ID 8 A POS Add From F060116

Primary Job Flag 1 A EJPF Add ‘P’

Pay Starts Date 6 S PSDT Add From F060116

Pay Stops Date 6 S PTDT Add From F060116

Union Code 6 A UN Add From F060116

Annual Salary 11 P SAL Add From F060116

Hourly Rate 11 P PHRT Add From F060116

Auto Pay Type 3 A ATPY Add From F060116

Locality 8 A SLOC Add From F060116

Shift Code 1 A SHFT Add From F060116

Worker’s Comp Code 4 A WCMP Add From F060116

Worker’s Comp Class 1 A WET Add From F060116

Pay Grade 6 A PGRD Add From F060116

Pay Step 4 A PGRS Add From F060116

FLSA 1 A FLSA Add From F060116

EEO Category Code 3 A EEOJ Add From F060116

Supervisor 8 A ANPA Add From F060116

Pay Class 1 A SALY Add From F060116

Employment
Status

1 A EST Add From F060116

Compa Ratio 3 A CMPA Add From F060116

Description Size Type Data Item Status Conversion Value

Next Review Date 6 S NRVW Add From F060116

Type Review 1 A TINC Add From F060116

10 Category Codes 3 A P001-10 Add From F060116

10 User Defined Dates 6 S ED01-10 Add From F060116

FTE 9 P FTE Add From F060116

Number of Periods Paid
per Year

5 P SMOY Add From F060116

Standard Hours Worked
per Year

7 P IH Add From F060116

Standard Hours Worked
per Day

5 S STDD Add From F060116

Standard Days Worked
per Year

5 S SDYY Add From F060116

Pay on Standard Units 5 S STDH Add From F060116

JD Edwards World A7.3 Programmer’s Guide 64

Salary Forecast Change
Date

6 S DTSF Add From F060116

Change Reason 3 A TRS Add From F060116

Effective Date 6 S EFTO Add From F060116

User ID 10 A USER Add From F060116

Program ID 10 A PID Add From F060116

Date - Updated 6 S UPMJ Add From F060116

Work Station ID 10 A JOBN Add From F060116

F060119 - Employee Multiple Job History - YE - New File

Same as F060118 except file is keyed as non-unique.

Conversion - Copy records from F060118 into F060119.

F06106 - Employee Pay Instructions - YM

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add From F060116

Home Business
Unit

12 A HMCU Add From F060116

F06116 - Employee Transaction Detail - YM

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add From F060116

F0618 - Employee Transaction Detail History - YT

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add Blank

F0618RT - Payroll Transaction History Workfile - YT

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add None

JD Edwards World A7.3 Programmer’s Guide 65

F0618WF - Payroll Transaction History Workfile - YT

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add None

F0618WK - Payroll Transaction History Workfile - QW

Description Size Type Data Item Status Conversion Value

Position ID 8 A POS Add None

F08001 - Job Master - JM

Description Size Type Data Item Status Conversion Value

Pay Grade Step 4 A PGRS Add Blank

Status Change
Reason

3 A STCR Add Blank

Canadian NOC
Code

4 A CENC Add Blank

F08040 - HR Constants - JT

Description Size Type Data Item Status Conversion Value

Use Assignment
Window

1 A YORN Add ‘N’

Pay Rate Source 1 A PRSR Add ‘3’

Description Size Type Data Item Status Conversion Value

Step Progression
Rate Source

1 A SPRS Add ‘2’

Flag - Position
Budget Edit 1

1 A PBF1 Add Blank

Flag - Position
Budget Edit 2

1 A PBF2 Add Blank

Flag - Position
Budget Edit 3

1 A PBF3 Add Blank

Flag - Position
Budget Edit 4

1 A PBF4 Add Blank

JD Edwards World A7.3 Programmer’s Guide 66

Flag - Pay Range
Edit

1 A PRF1 Add Blank

Salary Increases in
Projections

1 A SIP Add ‘N’

Salary Default
Source

1 A SDFS Add Blank

Salary Display 1 A SALD Add ‘A’

F08101 - Position Master - HP

Description Size Type Data Item Status Conversion Value

Position Status 1 A PSST Add Blank

Budget Status Date 6 S PBSD Add Zero

Position Status
Date

6 S PSSD Add Zero

Locality 8 A SLOC Add Blank

Position Budget
Amount -
Effective

15 P EFFB Add Calculate from CURB
using Percentage of Year
server - X081011

Position Budget
Hours - Effective

11 P EFHR Add Calculate from HRB using
Percentage of Year server
- X081011

Position Budget
FTE - Effective

9 P FTEE Add Calculate from BFTE
using Percentage of Year
server - X081011

Position Budget
Headcount

9 P HDCT Add Zero

F081012 - Position Account - HC - New File

Description Size Type Data Item Status Conversion Value

FY 2 S FY Add

FY 2 S FY Add

Home Business
Unit

12 A HMCU Add

Position ID 8 A POS Add

Subledger 8 A SBL Add

Subledger Type 1 A SBLT Add

JD Edwards World A7.3 Programmer’s Guide 67

Account Number 8 A AID Add

Percentage 15 P PAPC Add

F08102 - Requisition Master - HN

Description Size Type Data Item Status Conversion Value

Headcount 9 P HDCT Add Zero

Pay Grade Step 4 A PGRS Add Blank

Filled By Date 6 S FBDT Add Zero

F08105 - Requisition Activity - HM

Description Size Type Data Item Status Conversion Value

Candidate
Requisition Status

2 A CRST Add Blank

Candidate
Requisition Status
Date

6 s CRSD Add Zero

F082001 - Pay Grade/Salary Range Table - HS

Description Size Type Data Item Status Conversion Value

Pay Grade Step 4 A PGRS Add Blank

Pay Grade Step
Rate

15 P PGSR Add Zero

Union Code 6 A UN Add Blank

Next Pay Grade 6 A NPGD Add Blank

Next Pay Grade
Step

4 A NPGS Add Blank

Description Size Type Data Item Status Conversion Value

Std Hrs/Day 5 S STDD Add Zero

Std Days/Yr 5 S SDYY Add Zero

F08201 - Salary Review Work File- HR

Description Size Type Data Item Status Conversion Value

JD Edwards World A7.3 Programmer’s Guide 68

Union Code 6 A UN Add Blank

HR Files - System 08

T082003 - Grade Step Progression Workfile- YW - New File

Description Size Type Data Item Status Conversion Value

Review Group ID 6 A SRVW Add

Employee Address
No

8 S AN8 Add

Home Business
Unit

12 A HMCU Add

Job Type 6 A JBCD Add

Job Step 4 A JBST Add

Primary Job Flag 1 A EJPF Add

Pay Stops Date 6 S PTDT Add

Union Code 6 A UN Add

Locality 8 A SLOC Add

Pay Grade 6 A PGRD Add

Pay Step 4 A PGRS Add

Annual Salary 11 P SAL Add

Hourly Rate 11 P PHRT Add

FTE 9 P FTE Add

Review Group
Creation Date

6 S RGCD Add

New Annual Salary 11 P SALN Add

New Hourly Rate 11 P NHRT Add

New Pay Stops
Date

6 S NTDT Add

Description Size Type Data Item Status Conversion Value

New Pay Starts
Date

6 S NSDT Add

New Pay Grade 6 A NPGD Add

New Pay Grade
Step

4 A NPGS Add

Name 40 O ALPH Add

JD Edwards World A7.3 Programmer’s Guide 69

Review Group
Desc

30 O DL01 Add

Architecture/Engineering/Construction Systems

This section provides database changes for the following systems:

 Fixed assets

 Property management

 Work orders

 Contract management

 Homebuilder management

 Service billing

 Contract billing

 Job cost

 Equipment management

Database Changes

This chapter lists database changes for fixed assets, property management, work
orders, contract management, homebuilder management, service billing,
contract billing, job cost, and equipment management systems.

Fixed Assets

New Files

File File Name File Contents Prefix

F1201JD Item Master / Item Balance
Joined Logical File

This is a joined logical file over the Item
Master File (F1201) and the Item
Balance File (F1202).

FA, FL

JD Edwards World A7.3 Programmer’s Guide 70

F12021 Item Balance File
Prior Year A/D Balance File

This file is a tag file to the F1202 that is
used to carry the portion of a current
year balance that pertains to a prior year
balance that has arisen as the result of a
transfer or split. Particularly where a
subledger is used and a transfer occurs,
the current year portion transferred to a
new subledger reflects the entire
balance. This allows tracking of the
prior year component for depreciation
calculation purposes.

The file is OPTIONAL, pending
existence of fixed assets.

L1

F12022 Item Balance File
Forecast File

This file is a tag file to the F1202 used
(at present) for calculating future year
depreciation for incorporation into
depreciation projections.

The file is OPTIONAL, pending
existence of fixed assets.

L2

File File Name File Contents Prefix

F12851 Depreciation Rule Header
(User Defined Depreciation)

This file contains the elements necessary
to define a depreciation rule, and the
conventions and rules that are applicable
to all years that the rule is in effect. This
file will contain J.D. Edwards rules and
may also contain rules constructed by a
client. J.D. Edwards rules are
characterized by NUMERIC
depreciation methods; client rules are
characterized by ALPHA depreciation
methods.

The file is OPTIONAL, pending
existence of fixed assets. If user-defined
depreciation is not used, the file may be
cleared.

LU

JD Edwards World A7.3 Programmer’s Guide 71

F12852 Annual Depreciation Rule This file contains references to all of the
formula elements necessary to calculate
depreciation for a year or range of years
for a particular rule. The rule is
subdivisible to the “Placed In Service”
month if necessary. The file is a
subsidiary to the Depreciation Rule
Header (F12851), and will share the key
to that file, with the additional key of life
year and placed in service period. This
file will contain J.D. Edwards rules and
may also contain rules constructed by a
client. J.D. Edwards rules are
characterized by NUMERIC
depreciation methods; client rules are
characterized by ALPHA depreciation
methods.

The file is OPTIONAL, pending
existence of fixed assets. If user-defined
depreciation is not used, the file may be
deleted.

LV

File File Name File Contents Prefix

F12853 Depreciation Formulas This file contains the formula rules that
are referenced by the annual
depreciation rules for various elements
of the depreciation equation. They are
keyed by a formula ID

This file will contain J.D. Edwards rules
and may also contain rules constructed
by a client. J.D. Edwards rules are
characterized by a NUMERIC formula
ID; client rules are characterized by
ALPHA IDs.

The file is OPTIONAL, pending
existence of fixed assets. If user-defined
depreciation is not used, the file may be
deleted.

LW

F12854 Depreciation Spread
Patterns

This file contains a series of percentages
corresponding to fiscal periods. The
percentages are applied to an annual
depreciation amount calculated by an
annual rule resulting in the depreciation
allocated to individual fiscal periods.

The file is OPTIONAL, pending
existence of fixed assets. If user-defined
depreciation is not used, the file may be
deleted.

LZ

JD Edwards World A7.3 Programmer’s Guide 72

New Logical Files

File Key Fields

F12851LA
F12852LA
F12852LB
F12853LA

ADM, ADLM, ITAC, DIR1, DTFR, EFTB
ADM, ADLM, ITAC, DIR1, DTFR, EFTB, LYFR, PSIP, SPCN=‘1’
ADM, ADLM, ITAC, DIR1, DTFR, EFTB, LYFR, PSIP, SPCN=‘2’
DC20

Other Database Changes

File File Name File Changes

F1202 Item Balance File Balance Character Code - The Balance Character
Code was implemented with A7.3. This code identifies
the “Character” of the balance as to whether it is a
cost, an accumulated depreciation, a depreciation
expense, or a disposal account dependant upon
automatic accounting instructions.

It is IMPORTANT that if you use F1202, you must initialize this field to
BLANK if the field is NOT one of the above categories. Consult the glossary
for the element CHCD for valid values.

Property Management

No database changes have been made to the property management product
between A7.1 and A7.3.

Work Orders

No database changes have been made to the work order product between A7.1
and A7.3.

Contract Management

No database changes have been made to the contract management product
between A7.1 and A7.3.

JD Edwards World A7.3 Programmer’s Guide 73

Homebuilder Management

The homebuilder management product is new for A7.3. For database
information, refer to the Homebuilder Reference Guide.

Service Billing

New Physical Files

File File Name File Contents

F48221 Service Billing Retention
Release Cross-Reference File

This file is designed to provide a cross-reference
capability between the invoice created to release
retention and the invoices on which the retention
was originally calculated.

Fields Added

File File Name Fields Added

F4812 Service Billing Workfile RSBF Restatement Basis Flag
ITM Item Number
PAID Price Amount
SUBA Alternate Cost Code
ERDB Exchange Rate Date Basis
BCTK Batch Control Key
IDGJ Invoice G/L Date
FEA Foreign Price

F4812H Service Billing Workfile History RSBF Restatement Basis Flag
ITM Item Number
PAID Price Amount
SUBA Alternate Cost Code
ERDB Exchange Rate Date Basis
BCTK Batch Control Key
IDGJ Invoice G/L Date
FEA Foreign Price

File File Name Fields Added

JD Edwards World A7.3 Programmer’s Guide 74

F4822 Invoice Summary File SMRP Stored Materials Retainage -
 Prior Amount
SMPF Stored Materials Retainage -
 Prior Amount -
Foreign
RTHP Restated Billing Amount
RSBF Restatement Basis Flag
PTAM Prior Tax Amount
FPTA Prior Tax Amount - Foreign
RGLC Retention Offset
PRET Retention Percent
FUP Unit Price - Foreign
SBL Subledger
SBLT Subledger Type

F48011 Batch Control File BCTK Batch Control Key
BCTC Batch Control

F48091 Service Billing System Contstants ERDB Exchange Rate Date Basis
MBGC Multiple Batch Generation
 Control
DTAI Data Item
BCT1 Batch Control Flag 1
BCT2 Batch Control Flag 2
BCT3 Batch Control Flag 3

F48096 Cost Plus Markup Table CTF1 Control Flag 1
CTF2 Control Flag 2

The position of the Currency Code field
(WQCRCD) changed from the first key
of this keyed physical file to the fourth
key. This will improve performance when
this module is fully enabled for multi-
currency.

Other Database Changes

File File Name File Changes

F48096
F48096LB
F48096LC
F48096LD
F48096LE
F48096LF
F48096LG

Cost Plus Markup Table The position of the Currency Code field
(WQCRCD) changed from the first key
of this keyed physical file to the fourth
key. This will improve performance when
this module is fully enabled for multi-
currency.

File File Name File Changes

JD Edwards World A7.3 Programmer’s Guide 75

F4860 Component Table Master The position of the currency code field
(AFCRCD) changed from the first key of
this keyed physical file to the second key.
This will improve performance when this
module is fully enabled for multi-
currency.

F4861
F4861LA
F4861LB

Component Table Detail The position of the currency code field
(AFCRCD) changed from the first key of
this keyed physical file to the second key.
This will improve performance when this
module is fully enabled for multi-
currency.

F4862
F4862LA
F4862LB

Component Cross Reference The position of the currency code field
(AFCRCD) changed from the first key of
this keyed physical file to the second key.
This will improve performance when this
module is fully enabled for multi-
currency.

Contract Billing

Fields Added

File File Name Fields Added

F5201 Contract Master File RSBF Restatement Basis Flag
RNTE Restated Guarantee Maximum
 Amount
RGLC Retainage G/L Offset
CRRD Exchange Rate For Guaranteed
 Maximum
Amount
ERDB Exchange Rate Date Basis
BCTK Batch Control Key
PYWP Pay When Paid Flag
AI11 Contract Category Code #11
AI12 Contract Category Code #12
AI13 Contract Category Code #13
AI14 Contract Category Code #14
AI15 Contract Category Code #15

JD Edwards World A7.3 Programmer’s Guide 76

F5202 Owner Pay Item Header RSBF Restatement Basis Flag
RGLC Retainage G/L Offset
FSOF Schedule Of Values - Foreign
FUP Unit Price - Foreign
RSOF Schedule Of Values - Restated
RUP Unit Price - Restated
RNTO Not To Exceed Amount - Re
 stated
RRRA Unit Price - Restated
RNTE Not To Exceed Amount - Line
 Level - Restated
CRRD Exchange Rate for Recurring
 Amount and
Not To Exceed -
 Line Level
FNTE Note To Exceed - Line Level -
 Foreign
FNTO Not To Exceed Amount -
 Foreign
FRBA Recurring Amount - Foreign
PYWP Pay When Paid Flag
ERDB Exchange Rate Data Basis

Other Database Changes

File File Name File Changes

F5201E Contract Master File - Compile
Purposes Only

Reflect the same changes as F5201

F5202E Owner Pay Item Header - Compile
Purposes Only

Reflect the same changes as F5202

Job Cost

Fields Added

File File Name Fields Added

F5144 Profit Recognition File VER Version (Historical)

JD Edwards World A7.3 Programmer’s Guide 77

Equipment Management

Fields Added

File File Name Fields Added

F1207
F1207E

F1300
F1300E

Item PM File

Equipment Constants

UKID Unique Key ID
TOLU Upper Tolerance Limit
TOLL Lower Tolerance Limit
HLDD Hold Date
SPHR Specific Hours
SPWK Specific Weeks
SPMN Specific Months
WK Week Number
SPDW Week Day
TYPR Record Type

Fields Changed

File File Name Field Changes Field Size

F1307 Status History File BEGT Beginning Time Size Changed to 6.0

F1307E ENDT Ending Time Size Changed to 6.0

New Files

File File Name File Contents Prefix

F1215 Specification Cross
Reference

This new file contains the specification
data cross reference information that
allows you to completely customize your
equipment specification data. For each
type of equipment, it defines which
fields in the Specification Data file
(F1216) are valid, the size of the field,
the type of field it is, how it is displayed,
and how it is edited.

GV

JD Edwards World A7.3 Programmer’s Guide 78

F1216 Specification Data File This new file contains the equipment
specification data that could be
nameplate information about the piece
of equipment or specification sheet
information from the manufacturer of
the piece of equipment. The
information in this file is completely
user-defined based on the specification
cross reference and could include such
things as model, number, power
requirements, operation instructions,
dimensions, and so on.

GZ

F12161 Specification File Edit This new file contains all of the possible
sizes of fields for the Specification Data
File, but does not actually contain any
data. It is used to edit a particular
specification data field against the
specified file from the specification
cross-reference based on the size of the
field defined in the Specification Cross
Reference File.

GZ

F1308 Maintenance Loops This new file contains all of the pieces
of equipment that will be part of a
maintenance loop defined as one PM
task for the “parent” piece of
equipment. When the “parent” PM task
comes due, all of the other pieces of
equipment defined in the maintenance
loop will also be attached to the work
order. This allows the same PM task to
be done to multiple pieces of similar
equipment at the same time under one
work order instead of one work order
for every piece of equipment.

F0

New Joined Files

File File Name Prefix

F1201JC -
F1201/F1216

Item Master/Specification Data - Joined Logical File FA/GZ

F1201JE -
F1201/F4801

Item Master/Work Order Master - Joined Logical File FA/W
A

JD Edwards World A7.3 Programmer’s Guide 79

New Logical Files

File File Name Key Fields

F1207LE LF - Assigned WO, Item Number WONA, NUMB

F1207LF LF - Unique Key ID UKID

F12161JA LF - Alpha 21 AA21

F12161JB LF - Alpha 22 AA22

F12161JC LF - Alpha 23 AA23

F12161JD LF - Alpha 24 AA24

F12161JE LF - Alpha 25 AA25

F12161LA LF - Alpha 01 AA01

F12161LB LF - Alpha 02 AA02

F12161LC LF - Alpha 03 AA03

F12161LD LF - Alpha 04 AA04

F12161LE LF - Alpha 05 AA05

F12161LF LF - Alpha 06 AA06

F12161LG LF - Alpha 07 AA07

F12161LH LF - Alpha 08 AA08

F12161LI LF - Alpha 09 AA09

F12161LJ LF - Alpha 10 AA10

F12161LK LF - Alpha 11 AA11

F12161LL LF - Alpha 12 AA12

File File Name Key Fields

F12161LM LF - Alpha 13 AA13

F12161LN LF - Alpha 14 AA14

F12161LO LF - Alpha 15 AA15

F12161LP LF - Alpha 16 AA16

F12161LQ LF - Alpha 17 AA17

F12161LR LF - Alpha 18 AA18

F12161LS LF - Alpha 19 AA19

F12161LT LF - Alpha 20 AA20

F12161LU LF - Numeric 01 IA01

F12161LV LF - Numeric 02 IA02

F12161LW LF - Numeric 03 IA03

JD Edwards World A7.3 Programmer’s Guide 80

F12161LX LF - Numeric 04 IA04

F12161LY LF - Numeric 05 IA05

F12161LZ LF - Numeric 06 IA06

F12161L1 LF - Numeric 07 IA07

F12161L2 LF - Numeric 08 IA08

F12161L3 LF - Numeric 09 IA09

F12161L4 LF - Numeric 10 IA10

F12161L5 LF - Numeric 11 IA11

F12161L6 LF - Numeric 12 IA12

F12161L7 LF - Numeric 13 IA13

F12161L8 LF - Numeric 14 IA14

F12161L9 LF - Numeric 15 IA15

F1308LA LF - Item Number, Service Type, Parent Number NUMB, SRVT,
AAID

F1308LB LF - Parent Number, Document Number AAID, DOCO

F1308LC LF - Document Number, Parent Number DOCO, AAID

Programmer’s Tools and Considerations

This section provides the following:

 Re-engineering modules and conversion tools

 Performance considerations for programmers

 National language support

Re-Engineering Modules and Conversion Tools

The purpose of the re-engineering modules is to assist in the upgrade of custom
source from A5 to A6 or A7. These modules may not work in all cases for a
given customer, but the module source gives a good starting point or model
that customers can adjust to their individual circumstances.

Customers must review the source for these re-engineering modules to make
sure they work at their site. For example, source in a customer library can have

JD Edwards World A7.3 Programmer’s Guide 81

a different name than the library in the shipped program. Also, the modules are
written specifically for A5 to A6 or A7 conversions, and the customer may be
converting from A4.3 to A6 or A7.

Source code is available to be used only as a model, with customization to be
performed at customer sites. The modules are not to be used “as is.”

Re-engineering modules are available to perform the following functions:

 Change data dictionary access to a server call

 Change user defined codes access to a new server call

 Change DREAM Writer version length

 Change length of install system (SY) and reporting system (SYR)

NOTE: The Data Dictionary Server Space program (X98SRV) is obsolete in
version A6.1 and forward. Any references to this program in custom programs
MUST be changed to call the new Data Dictionary Server (X9800E).

Recompiling Source Supplied by J.D. Edwards

Members shipped for use in upgrading your custom source code include:

Member Description

J89501
P89501X
J89501B
P89501
R89501

A6/A7 Source Conversion Error Report
A6/A7 Source Conversion CL
A6/A7 Source Conversion Driver
A6/A7 Source Conversion RPG
A6/A7 Source Conversion Error Report

Member Description

J89502
P89502
P89502C
P89502E
P89502O

DREAM Writer/Language Preference Conversion CL
DREAM Writer/Language Preference Conversion RPG
DREAM Writer/Language Preference Conversion CLP
DREAM Writer/Language Pref Conversion Error Report
DREAM Writer/Language Preference Conversion CL

J89510
J89510B
P89510
R89510

DDS Fold Area Conversion CL
DDS Fold Area Conversion Driver
DDS Fold Area Conversion
DDS Fold Area Conversion Error Report

JD Edwards World A7.3 Programmer’s Guide 82

J89511
J89511B
P89511
R89510

DDS Fold Area Key Word Conversion CL
DDS Fold Area Key Word Conversion Driver
DDS Fold Area Key Word Conversion
DDS Fold Area Key Word Conversion Error Report

All members except P89502C must be recompiled before processing. DREAM
Writer versions have been provided, (forms P89501, P89510, and P89511).

Specific Functions - What They Do

RPG Changes

 Change all CHAINs to F9800 and F0005 to use a server.

F9800 uses X9800E
F0005 uses X0005

 Delete file specs for F9800 and F0005 if open for input only, and
there are only CHAINs to the file.

 Delete key lists for F9800 and F0005 if the file specification is
deleted. The comments before the key list are also deleted.

 Delete OPEN and CLOSE operations to F9800 and F0005 if the
file specification is being deleted.

 Change length of system code field in subroutine S998 to four
characters.

 Change user defined codes server XS0005 to new server X0005.

 Change any MOVEs to a system code field to a MOVEL. System
code fields are identified as:

xxSY xxSYR
$SY $SYR
#SY #SYR

 Print a warning message where hard-coded values are being moved
to a system code field.

 Print a message that identifies where other “potential” system code
fields exist.

 Add the value “A6WRN” to the first five positions in the source
line for those lines that have a warning message. Scan on this value
to identify those areas.

 Changes parameter lists with VERS and a length of three
characters to a length of ten characters.

JD Edwards World A7.3 Programmer’s Guide 83

 Prints suspicious references to fields containing “VER” or
“VERS” on the report but does not change the source. This is
because indirect references cannot be traced. For example, if a field
named $#911 is three characters long, and it is moved into $VERS,
the fact that $#911 is three characters long cannot be known.

 Change MOVE operations to fields that are xxVERS and length
three characters to a length of ten characters, and prints them on
the report.

 Change a move of a literal ‘001’ to a version field to ‘ZJDE0001’.
Prints a message on the report to inform you of this change.

 Most MOVE operations into a version field should be changed to
MOVEL. These are NOT changed, but identified on the report.
You need to review these items manually to determine what
operation is appropriate.

 A user defined code table (89/PG) is available to identify any
programs which should not be converted at all.

 Change user defined code field names as follows:

DRSY will be #USY
DRRT #URT
DRKY #UKY
DRDL01 #UDL01
DRDL02 #UDL02

Server fields:

D1@@ will be #UDL01
D2@@ #UDL02

CL Program Changes

 Looks for the following conditions on DCL (declare) statements:

Variable name containing the string VERS

TYPE(*CHAR)
Length of 3

The length is changed to 10 if it meets the criteria.

 A new section of code is inserted (for batch jobs only) following
the global MONMSG, which will perform the operations necessary
to override the QJDEMSG file for language preference. A new
field is added in the DCL (declare) section for this function. The
Function Use code in the software versions repository is used to
determine if the program is batch or interactive.

JD Edwards World A7.3 Programmer’s Guide 84

Exceptions to Specific Functions - What They Don’t Do

 Change system code fields in the I (input) specifications. An
attempt is made to identify them and a message prints on the
report if they are found.

 Convert UPDAT, DELET, SETLL, or READx statements to
F9800 and F0005.

 Convert any programs with CAP Status equal to “Y”.

 Convert any reference to OLD Data Dictionary server XS9800.
These are identified on the report.

 Convert any reference to Data Dictionary Server Space program
X98SRV. These are NOT identified on the report.

 Convert moves to user defined code key fields which are outside
the section of code doing the chain or call to the server.

 The language preference override in CL is not added if a global
MONMSG is not found. A warning message is printed.

 The “A6WRN” inserted on some lines of source should be
blanked out after the code is reviewed.

Specific Functions - Reports

General Messages

 CAP Gen Status Invalid-pgm not converted

The CAP status is “Y”. It must be changed to “N” before the
program can be converted.

 ** Program Bypassed **

The program is in the user defined code table (89/PG) of
programs to be bypassed. Delete it from the table if you want to
run the conversions.

 Questionable Deletions

Any deleted comment lines are printed here. Verify that they are
no longer needed and should be deleted. If OPEN or CLOSE
statements existed for F9800 or F0005, these will be deleted and
printed here.

 Source member not found in “from” library

JD Edwards World A7.3 Programmer’s Guide 85

The member does not exist in the library specified as the “from”
library. Correct the software versions repository record, and
submit the conversion program again.

 F9800 not referenced/File Spec Deleted

The F9800 file was not used in the program. No server
replacement was performed.

 F9800 open for update/S998 converted

The conversion program changed any CHAINs to F9800 in
subroutine S998 ONLY to use the server. The program must be
changed manually to access the new data dictionary file.

 Non-standard access to F9800/partial conversion

The conversion program changed any CHAINs to F9800 to use
the server. However, SETLL, READx, UPDAT, or DELET
statements were found and were not changed. The program must
be changed manually to access the new data dictionary file.

 Call XS9800 must be converted manually

This program is calling an obsolete version of the data dictionary
server. Remove these calls, and change to the new X9800E server.

 F0005 open for update/file not deleted

The conversion program changed any CHAINs to F0005 to use
the server. The program may need to be changed manually to
update the new fields in the UDC file.

 UDC access changed to server

Message for information only.

 Non-standard access to F0005/partial conversion

The conversion program changed CHAINs to F0005 to use the
server. However, SETLL, READx, UPDAT, or DELET
statements were found and were not changed. The program may
need to be changed manually to access a different UDC I/O
server.

 Hard-Coded Literals to System Code Exist

The program is moving literal values to a system code field. This
message is provided for information only. It may or may not
require a change to the program. You may scan on A6WRN to
find the occurrences.

 Incorrect field being moved to UDC key

JD Edwards World A7.3 Programmer’s Guide 86

One of the UDC key fields is being loaded with information too
large for the field. Scan on A6WRN to find the source line in error
and correct the information.

 UDC key fields not loaded

The conversion routine was unable to load the UDC key fields
properly. Scan on A6WRN to find the section in question and
modify the program to load the key fields.

 Questionable system code field

The source line is printed that contains a field that may be a system
code field. Verify the line in question and make manual changes as
required.

 Version Conversion Exceptions Occurred

Questionable DREAM Writer version fields were encountered.
These lines are printed on the report. These should be reviewed to
determine if manual changes are necesary.

 No Global MONMSG

A global MONMSG was not found for this CL program.
Therefore, the section of code to perform the override to the
QJDEMSG file according to language preference must be added
manually. Copy this section of code from a CL that has already
been converted.

DREAM Writer Version Issues

Naming Convention Issues - Beginning with the A6.1 release, DREAM Writer
versions have a new naming convention:

Version Description

XJDExxxxx The versions that J.D. Edwards ship as DEMO versions, owned by
J.D. Edwards, follow the naming convention of XJDExxxx (where
xxxx is a version number). These versions are replaced by merges and
do not require ASIs.

ZJDExxxxx The versions that the client owns for “default” (hard-coded) versions
follow the naming convention of ZJDExxxx (where xxxx is a version
number). The ZJDE versions are not overlaid by merges and require
ASIs.

JD Edwards World A7.3 Programmer’s Guide 87

Specific DREAM Writer Conversion

Version Description

XJDE All “DEMO” versions that do not have hard-coded references must be
changed to “XJDExxxx” where xxxx is the version number.

ZJDE Any hard-coded DREAM Writer version references should be changed
from the old naming convention to the new convention. You should
create ZJDE versions only when a hard-coded reference exists, or a
direct reference exists in a program or on a menu (such as a blind
DREAM Writer execution from a menu). For example, “001” should
be changed to “ZJDE0001”.

Processing Option
Text

Processing option text references to versions should be changed to the
new naming convention. Such references normally need to be
converted to a ZJDE version. If the value of the processing option is
a DREAM Writer version, it must be changed to a ZJDE version
number. ASIs are necessary for changes to processing option values.

Concatenation
issues

The logic associated with concatenations of a DREAM Writer version
and another value should be modified to expect a new length.

NOTE: IBM names are limited to 10 characters.

Re-Engineering Modules for New DDS Keywords

A re-engineering module is available to add new keywords to display file DDS.
One of the primary functions of these keywords is to enable the program to
control the display of the fold area. The use of these keywords eliminates the
need for program X96DROP.

X96DROP is an MI program that is called when doing any cursor-sensitive
help processing. It is used to determine whether a subfile is folded or truncated.
This program does not function properly when the AS/400 system is set to run
under IBM security level 40. Therefore, if your site is set at security level 40,
you MUST perform this conversion on any custom code for interactive
programs. If you are not at security level 40, this conversion is optional.

Source code is available to be used as a model only. We assume that you will
customize. They are not to be used “as is.”

JD Edwards World A7.3 Programmer’s Guide 88

What the Conversion Will Do

 For subfile screens, adds the following keywords:

SFLFOLD (conditioned on indicator 04)
SFLMODE
SFLCSRRRN

 Changes the SFLDROP keyword to be conditioned on indicator
condition “N04”.

 Adds RTNCSRLOC keyword for all display files.

 Changes the RPG for interactive programs as follows:

Cursor Sensitive Help program X96CCF changes to X96CCX

Additional PARM inserted - I00MDE

 Writes to subfile screens (control records) changes to set
SFLDROP/SFLFOLD indicator.

Financial Systems Source Search Report - P98330C

Purpose

This search program is DREAM Writer driven. It can be used on a program-by-
program basis. A report that results from this source scan reveals individual
source lines that may need modification, along with messages that indicates
possible source modification. The processing options will allow you to:

 Specify a library for your source search.

 Specify a full source print or only the source lines with warning
messages.

What the Source Search Will Do

 Scan for A6WRN messages generated from Tech REAM. You
should investigate these messages and/or remove them.

 Scan for XS9800. You should replace all uses of this server with
the new server X9800E.

 Scan for data items that have new lengths. You should make
adjustments to data items, work fields, and data structures in the
program.

 Scan for company ‘000’ (hard-coded). You should change hard-
coded references to company to five digits (‘00000’).

JD Edwards World A7.3 Programmer’s Guide 89

 Scan for externally-defined data structures over files that have file
servers. You should remove these data structures and replace them
with I/O server file format copy modules.

 Scan for files that should go through I/O servers (F0006, F0901,
and F0101). You must implement I/O servers for these files.

 Scan for X09031. You must change the parameters for this routine
if X09031 already exists in your code.

 Scan for copy module C0903, which is being replaced by external
program X09031.

 Scan for calls to X091101. These calls can optionally be changed to
a WRITE to the F0911 file.

 Scan for cost center being scrubbed using C0042 instead of X0006.

 Scan video and report (DDS) files for fields that are different than
their data dictionary sizes.

What the Search Will Not Do

 Data items that have been added to files must be added to the
program and possibly to the display/report file.

 Data structures defined in the program should be checked. If such
a structure exists, and the file has changed, you may need to
redefine the structure.

CASE-Generated Programs

The following topics review the programs provided to convert all existing
CASE-generated programs. These programs are used for source that still have
CAP status equal to ‘Y’. The most significant change is the use of file servers
for the data dictionary and the cost center master, as well as the use of a new
file server for user defined codes.

Migrating CASE Generated Programs

Theoretically, when migrating CASE-generated programs from one release to
the next, the procedures should be:

1. Change field sizes on the printer/display file.

2. Regenerate the source from the specifications.

3. Recompile all members.

For release A7, a conversion program is available to update the file
specifications for new server technology. This conversion allows you to

JD Edwards World A7.3 Programmer’s Guide 90

automate the inclusion of all supported server technology without removing
specifications from each individual program.

CASE Conversion Process

To convert CASE-generated programs from A5 to A6 or A7:

1. Convert CASE specification files from A5 to A6 or A7.

The CASE specification files (F93101, F93102, and so on.) are converted
by the reinstallation process. If you need to transfer specifications
manually, the Parameter Copy/Move program found on Menu A9361,
Selection 14, allows the transfer of CASE specifications for a single
program from an A5 library to an A6 or A7 library. You must use an A6
or A7 library list for this feature to work between environments.

2. Update the program types and logic modules.

The bill of materials for program types and the master source for logic
modules must be updated. The merge of these changes can be found on
menu A9366, or as a selection from menu A97U1.

3. Convert the DDS for display files.

All display files for CASE-generated programs must be converted to
include the new DDS keywords. This conversion can be accomplished by
using DREAM Writer version P89511. After converting the display files,
they must be recompiled.

4. Convert CASE specifications.

Because of the use of file servers for the data dictionary and the cost
center master, references to F9800 and F0006 must be removed from the
CASE specifications. The CASE conversion program removes all
references to F9800, and references to F0006 when used for input only.

The DREAM Writer version for the conversion of CASE specifications
is P93995. The “Based on” File for DREAM Writer selection is F93102.
The processing option allows for processing in proof or update mode.

5. Regenerate source and recompile.

After completing the conversion, regenerate the source for each program
and recompile the members. Use software version repository selections
15 (source generation) and 14 (compiling), or use the Global Program
Regeneration selection found on menu A9361, and the Compile Multiple
Objects selection found on menu A9362.

6. Convert the Source for CL Programs.

There is new logic in the CL programs for language preference. This
logic can be added by using the conversion programs for non-CASE
software. The DREAM Writer version for conversion of CL programs is

JD Edwards World A7.3 Programmer’s Guide 91

P89501. The DREAM Writer selection should be the CL program name.
After converting the source, recompile each member.

Accessing CASE Conversion Programs

You can find the CASE conversion program on menu A97U1. This conversion
removes the specifications for files processed by servers from F93102 and
F93103. It also removes the key field definitions from F93105.

You can also find CASE merge programs for logic modules and program types
on menu A97U1. These merges update the F93000, F93001, and F93108 files
for changes in master source.

Double-Byte Enablement

Double Byte Truncation Routine - C9822

All fields that can contain text material were redefined as “open” fields for
Release A6 and forward by changing the field-type attribute to “O” in the data
dictionary. Technically, a field defined as “open” allows for the entry of single-
byte data, double-byte data, or a combination of both. The basic technical
requirement is whenever a string of double-byte characters is entered into a text
field, the double-byte character string must be bracketed with special characters.
These special characters, called shift-out and shift-in characters, tell the system
where the double-byte character string begins and ends. Without these
delimiting characters, the system cannot resolve the correct meaning of the bits
and bytes contained in a character string, and an AS/400 system error results.
Program modifications must be made to process all field truncations of “open”
fields through a special subroutine (C9822).

The C9822 subroutine checks the process of truncating a field containing
double-byte data, making sure a double-byte character is not divided in half or
cuts off one of the special shift-out or shift-in characters. If the subroutine
detects such a condition, the truncated character string is adjusted to contain
the last whole double-byte character, and a shift-in character is inserted.

How to Know When a Program Is Affected

Implementation of this subroutine is required.

All programs must be checked for any truncated open fields. If any such field
truncations occur, those fields must be edited by using C9822.

Procedure

1. Insert copy module for E9822.

JD Edwards World A7.3 Programmer’s Guide 92

 E**
 E*
 E* Copy Composite Member for Common Subroutine - C9822
 E*
 E/COPY JDECPY,E9822
 E**

2. Insert copy module for C9822.
 C**
 C*
 C* Copy Common Subroutine - Double Byte Truncation Routine.
 C*
 C/COPY JDECPY,C9822
 C**

3. Modify field MOVEs for all fields being truncated as shown below:
 H/TITLE PMODELDBCS - MODEL - Execute Text Truncation
 H*---
 C*
 C* Move Field xxx to Field zzz for Output. Execute C9822
 C*
 CSR CLEAR@UA
 CSR MOVEA xxx @UA
 CSR Z-ADD yyy #OUTLG
 CSR EXSR C9822
 C* ---- -----
 CSR MOVEA@UB zzz C*
 C*---

Explanation of variables:

@UA = Input processing array
@UB = Output processing array
xxx = Field name that contains text to be truncated
yyy = Length of output field. (numeric value)
zzz = Display field

Performance Considerations for Programmers

What Makes an Application Run Slowly

The way programs use computer resources profoundly affects response time (or
batch run time). If a program does many expensive instructions for each
transaction, it uses a large part of the CPU and the response time is poor. If a
program does many input/output (I/O) operations, it spends a large amount of
time waiting for data to be transferred between the disk and the CPU, and
response time is slow.

Sometimes it is hard to judge what will turn out to be “a lot of I/O” when the
program runs at a customer site. Customers run our software against thousands
or millions as many records as we have in our test data files. Customers set up
their operation such that they incur many expensive instructions for each
transaction record processed. They often run our software on computers much
slower than our development machine.

JD Edwards World A7.3 Programmer’s Guide 93

We need to be aware of how we can make programs run faster and minimize
the use of expensive resources. Because our software architecture is very
modular (this is a popular concept in the software industry under the buzzword
“object-oriented”), we can cause a lot of work to be done inadvertently that
should be fairly simple processing.

Program Calls/Initialization

We use program calls extensively in our software. Some heavily-used programs
are:

X0028 Date Conversion

X0005 UDC Server

XF0901 Account Master File Server

X09031 Compute Period Number

Some common subroutines perform program calls (for example C00161 and
C0000). On the AS/400, calling a program is relatively expensive. If the
program being called is a CL program, it is even more expensive. The best way
to minimize this expense is to check whether we really need to call the program
(again). For example, if the transaction date hasn’t changed, don’t convert it
again. Just use the results of the previous conversion. This is called
“conditioning” the calls.

If you are writing a file server or application server, make it as inexpensive as
possible. A call to RPG is less expensive than a call to CL. Within the RPG
program, end it by setting on RT instead of LR. If you set on LR, next time the
program is called, it will go through program initialization again. If you set on
RT, the program stays in an initialized state.

NOTE: The variables within the program do not clear automatically. For
example, if Indicator 83 was on, it will still be on. You may need to add code to
initialize some fields that the code currently assumes will contain zeroes and
blanks the first time around. Any files that were open when the program last
ended will still be open.

JD Edwards World A7.3 Programmer’s Guide 94

Common Subroutines

Some of the common subroutines can be expensive as well. The following
subroutines show up in many measurements as “hot spots”, which are areas of
code in the programs that use up more CPU time.

Subroutine Name Explanation

C0012 Right Justify Numeric Fields This is a general-purpose subroutine, that does
scrubbing for many different situations. It moves
your input field to a 22-entry array and scrubs
that array. It looks for decimal points and date
separators. Obviously, these functions are
unnecessary and expensive if what you are
scrubbing is a two-byte subfile option field.
Even more unnecessary is to scrub an input
parameter coming from another program where
the other program is reading a numeric field
from the data base and passing it to this
program.

The subroutine formats the field in three
different ways: as a 29P9 field (#NUMR); as a
15P9 field (#NUMR9); and as a 15P2 field
(#NUMR2). Look at the definition of your
output field to decide which of the formatted
fields you should use. If your output field is
11P2, for example, and you move #NUMR9
into it, you will lose three significant digits.
#NUMR9 only has six significant digits. Use
#NUMR instead.

If the field does not originate from a user typing
it on a screen, it probably doesn’t need to be put
through C0012.

C9822/3 Double-Byte Truncation This subroutine moves your alpha input field
into an 80-entry array and scrubs it. The
subroutine should only do the scrubbing if the
program is running on a double-byte system, but
sometimes it executes unnecessarily. It tests a
flag field #DBL, which is loaded from the QJDF
data area. If the option in the data area is set to
‘0’, the subroutine will do the scrubbing. (It tests
for ‘ ‘). This subroutine has been changed in
A7.3 to test for ‘0’ or ‘ ‘.

Subroutine Name Explanation

JD Edwards World A7.3 Programmer’s Guide 95

C0042/3 Right Adjust Alpha Field This subroutine moves your input field to an 80-
entry array, and painstakingly right-adjusts it. It is
used every time a business unit field is typed in
on a screen. (The business unit field is 12
characters.) Make sure you ‘condition’ the
execution of this subroutine so that it executes
only if the business unit field changes.

C00161 Format Numeric Fields for
Output

This subroutine calls an Assembler program that
will examine and edit your output (inserting
decimal points). There are programs that execute
this subroutine for alpha fields. It will not harm
the alpha fields, but it is an unnecessary expense.
We also recommend that if a field is unlikely to
change during a batch run (for example, check
date), check whether it has changed before
formatting it again.

Database Read/Write

Database requests usually show up as the most expensive thing our programs
do. The most effective way to reduce cost is to reduce the number of requests.

For batch, use sequential I/O where possible. Add record blocking for
sequential I/O. We changed one batch program that did a lot of writes to use
sequential-blocked writes. It reduced the run time by two thirds. See Sequential
I/O for further discussion.

Don’t Read Records Again

For example, if company number has not changed since the last transaction,
there is no need to re-read the company file. See Caching Control Files for further
discussion.

In a subfile program from which a user may select a particular record to see
more detail, store the extra fields for the detail as hidden fields in the subfile. In
this way, the detail code does not have to re-read the record. If necessary, the
information can be passed to another program in a data structure.

Don’t Read Records Unnecessarily

Don’t “scan” the database. If we allow users to type record selection criteria in
a subfile program, we should have supporting logical files so that we can read
only the records they are interested in. We should not read 200 records,
discarding 185 of them to present 15 records to the user. The problem with

JD Edwards World A7.3 Programmer’s Guide 96

adding additional logical files is that the system has to maintain them. This puts
an extra load on the system.

If there are multiple subfiles defined for a program, and the user can pick and
choose the ones to look at (this is usually controlled by a processing option),
don’t fill all the subfiles ahead of time. Fill the subfile only if the user asks for it.
Customer/Vendor Ledger Inquiry programs now have this logic in place.

Where a file has been normalized (for example, the F0101 Address Book file
was split into eight files in A7.1), don’t assume that all the new file information
is needed. Don’t just replace CHAIN I0101 with CHAIN I0101, CHAIN
I0112, CHAIN I0113, CHAIN 10114, CHAIN I0115, CHAIN I0116, CHAIN
I0301, CHAIN I0401. Look at the fields that are needed, and only CHAIN to
the formats that contain those fields. This is especially important for file server
programs.

Avoid Setting On the ‘Fail’ Indicator.

If you normally expect a record not to be there, don’t CHAIN every time to
find it. An example is when you use next numbers to allocate a key for your file.
Next numbers usually should come up with a key that does not exist in your
file. If your file is defined as having a unique key, it is much less expensive to
WRITE the new record with an error indicator on the WRITE (usually the
write will succeed) than to CHAIN with the new key first (usually the CHAIN
will fail).

Even more expensive is using SETLL where the SETLL positions past the end
of the file. This forces an FEOD (RPG-abbreviated CLOSE and OPEN of the
file).

For example, a control file has company as the major key. The customer has set
up their control data for company 00000. The transaction records are for
company 12345. For every transaction record, we do a SETLL to the control
file with a key of company 12345. This causes an FEOD because no records
exist with a key higher than 00000. We don’t find an eligible record, so we do
the SETLL again with company 00000.

Because we encourage customers to do generic set up with company 00000, we
could check the control file at the beginning of the program to see if there are
ANY records with a key greater than company 00000. See Caching Control Files
for further discussion.

JD Edwards World A7.3 Programmer’s Guide 97

Sequential I/O

If the program reads through a file that has the record selection and sequencing
done through DREAM Writer, you should be able to use sequential processing
with that file. RPG allows the file to be opened for sequential-only processing if
one of the following statements is true:

 The only OPCODE against that file in the program is a READ

 The only OPCODE against that file is a WRITE **

If the program does a SETLL, CHAIN, READE, UPDAT, or DELET against
that file, it will not be opened for sequential-only processing. Check your RPG
compile listing for the message “RPG will block/unblock file xxxxx” to see
whether you have achieved sequential-only processing for that file. Sequential-
only processing saves substantially on both CPU and I/O.

If you are reading through a file, and only every tenth or twentieth record is
updated (or deleted), it would be best to open the file twice. (For example, open
the physical for the READ, and open the logical for the update). Read through
the physical. When you get to the record that needs updating, retrieve and
update it through the logical.

To get the record-blocking, you must add an override in the CL program:

OVRDBF Fnnnnnn SEQONLY(*YES xxxx)

Where xxxx is the number of records to block. To calculate this number, divide
the record length into 32767 (32K) and round down. The AS/400 defaults to a
block size of 4096 (4K) for sequential.

NOTE: If there already is an override for that file in the CL, you must change
the existing override by adding the extra parameters to it.

If you can’t achieve true sequential processing for a file, you still can get some
benefit from blocking the file with a different override:

OVRDBF Fnnnnn NBRRCDS(xxxx)

NOTE: Even if the only OPCODE against a file is WRITE, the operating
system database will not allow sequential-only processing if there is a unique key
against that file.

For example, you read through a master file, and for each master record you do
SETLL and READE in a transaction file. You will not get sequential-only
processing on the transaction file, but you can still block it. If you read through
the master file in employee sequence, and access the transaction file by

JD Edwards World A7.3 Programmer’s Guide 98

employee number (that is, you process both files in a similar key sequence),
calculate the blocking factor as above.

If the key sequence of the two files is different, block the transaction file with
something closer to the average number of records per master file record.

NOTE: If you use a much-larger blocking factor than the number of records
you are reading sequentially at a time, the job will run slower than a job with no
blocking added.

Expert Cache

The customer can do something to provide record-blocking without changing
any code. If the customer separates the batch jobs into their own shared pool
(for example, by changing the QBATCH subsystem description to use
*SHRPOOL1), they can turn on “expert cache” in that pool. This is an
operating system function that dynamically looks at the way jobs are reading or
writing data, and does its own blocking where appropriate. This can have the
same effect on batch run times as adding the OVRDBF .. NBRRCDS(nn) CL
statement. It does not reduce CPU usage like SEQONLY processing.

To change to “expert cache”, do a WRKSHRPOOL and change the paging
option column to *CALC.

The operating system will ignore this paging option if it determines that there
aren’t enough memory or CPU cycles to use it.

Caching Control Files

Programs often access multiple control files for each transaction record
processed. In order to cut down on reads to the control files, many programs
have caching logic for them. Most of the file servers also have caching logic.
This usually consists of an array of 100 or more entries in which valid codes are
stored. For example, to validate a deduction type in Payroll, the program first
will do a LOKUP in the deduction-type array. If it doesn’t find the deduction
type there, it will CHAIN to the deduction-type file. If it finds the deduction
type in the file, it will add it to the array.

Caching can be the single most-significant improvement to a program to reduce
database reads and speed up the program. It also can go spectacularly wrong. In
the worst case, for every transaction record, a program may search a 250-entry
array (3 x 250 machine instructions), and then still have to CHAIN to the
control file.

JD Edwards World A7.3 Programmer’s Guide 99

We have customers who stripped the caching logic out of a program and see
significant improvement. We also have customers who added their own caching
logic to a program that had none, and see significant improvement.

What Goes Wrong?

The biggest problem we face is that customers set up and use a variable number
of control records. If we knew that every customer set up no more than 100
pay types, for example, the caching would work fine. Customers who set up
more than 100 types may get no benefit from a cache with 100 entries. If we
increase the size of the array to more than 100, it is no longer efficient. If we
start trying to use “smart” logic to keep the 100 types most recently used in the
cache, we end up spending more time managing the cache than we would have
by just CHAINing to the control file each time.

The second problem is that customers tend to set up control files as generically
as possible. For example, if they can get away with setting up a sales tax rate for
company 00000 for the USA, they will. If not, they will set it up by state for
company 00000. If that isn’t specific enough, they will set it up by county for
company 00000. Only as a last resort, they will set it up for each company
separately. Because we don’t know how granular their definition is, our
programs look for the most specific value first, then gradually work down to the
most general value as each CHAIN or SETLL fails.

A program may do more than ten failed CHAINs or failed SETLLs to find the
applicable control code for one field in a transaction record. If the program has
caching for this file, and it stores the answer as it found it in the database (that
is, the sales tax rate for company 00000 for Jefferson County is .034), we will go
through a cache search followed by all the failed CHAINs all over again for
each transaction record. We need to store the answer in the cache the way the
question was asked. We started out looking for the sales tax rate for company
12345 for Jefferson County. We found the answer as company 00000 for
Jefferson County. Put Company 12345/Jefferson County/3.4% in the cache.

Also try to set flags as you go along that tell you what to look for. For example,
test the sales tax rate file in S999 to see if there are ANY records for companies
greater than 00000.

User indexes

Some programs use user indexes instead of arrays to cache control records.
These have the advantage of being able to grow as needed (unlike arrays). If we
can populate the array correctly (for example, if we store the answers in the
array the way the question gets asked), a user index READ performs about the
same as a successful LOKUP on a 1000-entry array. If we have a higher failure
rate on the array LOKUP, the user index starts looking attractive for a smaller
number of codes (about 250).

JD Edwards World A7.3 Programmer’s Guide 100

Pre-Loading Arrays

We can tell the number of records in a control file by looking in the file
information data structure when we open the file. (See copy book I00INFDS -
field FIRCNT). If we are using a 100-entry array cache, and there are 100
records or less in the control file, we can load all entries in S999 into a sorted
array. This will speed up every LOKUP to the array. The downside to this
technique is that we will have to define two arrays: one sorted and one not
sorted. If you define the array as a sorted array, but the contents are not in the
correct sequence, the LOKUP will fail.

 * SORTED ARRAY
 E A 100 3 A
 * UNSORTED ARRAY
 E B 100 3

Expensive Instructions

There are some instructions in RPG which are surprisingly expensive. You need
to be cautious when you use these instructions in the subroutines that are
executed repetitively. For example, be particularly careful with subroutines S004
and S005, which execute the body of instructions for each transaction record.

Array Handling

Anything to do with array processing can be expensive because the machine
executes instructions over and over again for each array entry. If you are
keeping running totals in arrays, and you initialize the arrays each time you read
a new master record, pay attention to how you initialize the arrays.

Using MOVE or Z-ADD is the most expensive way to initialize an array.
MOVEA is better than MOVE/Z-ADD. RESET is most efficient for a
numeric array. CLEAR is most efficient for an alpha array.

Searching large arrays is expensive. If the array has to be larger than 250 entries,
consider a user index instead. Whenever possible, define arrays as sorted. This
speeds up the search greatly. Although LOKUP can be expensive, doing it
yourself is even more expensive. For example:

 Z-ADD 1 #A
 #A DOWLE 100
 SRCH IFEQ ARR,#A
 GOTO T66
 ELSE
 ADD 1 #A
 ENDIF
 ENDDO
 T66 TAG

The following code runs much faster than the above:

 Z-ADD 1 #A
 SRCH LOKUPARR,#A

JD Edwards World A7.3 Programmer’s Guide 101

Try to make your search argument the same length and type as the array
element definition. If the array is defined as packed, define your search field for
the LOKUP as packed, not zoned. Otherwise, the computer has to convert the
field for each comparison it does.

When you need to refer to a particular entry in an array multiple times, it is
more efficient to move that element into a work field and refer to the work field
multiple times. Each time you refer to an element of an array, the system
calculates the actual offset of the beginning of that field in the array. For
example:

 SRCH LOKUP ARR,#A 30
 *IN30 IFEQ ‘1’
 ADD ARR,#A TOT
 ARR,#A MULT PCT RATE
 ARR,#A DIV FACT TAX

will perform poorly compared to:

 SRCH LOKUP ARR,#A 30
 *IN30 IFEQ ‘1’
 Z-ADD ARR,#A WRK
 ADD WRK TOT
 WRK MULT PCT RATE
 WRK DIV FACT TAX

The XFOOT OPCODE sums all the entries in an array. If you have sized your
array for many more entries than it usually contains, any arithmetic operation
that runs against the whole array will run slower than necessary. For example,
you have given two arrays 250 entries. Most customers only use 50 entries. You
add the arrays together. The system will do 250 ADDs, even though 200 of the
entries in each array contain zero.

 E A 250 150
 E B 250 150
 E C 250 150
 C A ADD B C

It is important to size your arrays carefully.

Data Structures

If you are initializing data structures repetitively, pay attention to using the most
efficient method. For a large data structure with many subfields, the CLEAR
opcode will generate individual instructions to move blanks to the entire data
structure, then move BLANKS and ZEROES to each individual field. RESET
is a less expensive instruction to use, because it overlays the data structure with
a saved copy of the initialized version (only executing one instruction). If the
data structure has only a few numeric fields, consider moving BLANKS to the
data structure name followed by individual Z-ADD *ZERO instructions for the
numeric sub-fields.

 IEXAMP IDS
 I 1 100NUM1
 I 11 40 ALPH1
 I P 41 430PKD1
 I 44 73 ALPH2
 I 74 810NUM2

JD Edwards World A7.3 Programmer’s Guide 102

 C CLEAREXAMP

 vs

 C RESETEXAMP

NOTE: If you will be using RESET, and the data structure contains numeric
fields, you must initialize the data structure with ‘I’ on the DS statement.

Multiple-occurrence data structures are more efficient than storing related fields
in multiple arrays. For example, if you are caching the UDC codes and
descriptions in four arrays:

 E KEY 150 16 Current Values
 E D1 150 30 Current Descr.
 E D2 150 30 Current Descr2
 E SP 150 10 Special Hand.
 E*
 I***
 I* PROGRAM INPUT SPECIFICATIONS AND DATA STRUCTURES
 I* --
 I*
 IDRDS DS
 I 1 4 DRSY
 I 5 6 DRRT
 I 7 16 DRKY
 I*
 C DRDS LOKUPKEY,#B 66
 C *IN66 IFEQ ’1’
 C MOVELD1,#A SFDL01
 C MOVELD2,#A SFDL02
 C MOVELSP,#A SFSPHD

In handling the relevant entries for each of the arrays, the system has to
calculate where the entry is in each array. If we use a multiple-occurrence data
structure instead, the system finds the start of the relevant entry once. The
more related arrays there are, the more significant this becomes.

 E KEY 150 16 Current Values
 I*
 IDRDS DS
 I 1 4 DRSY
 I 5 6 DRRT
 I 7 16 DRKY
 I*
 IDRDESC DS 150
 I 1 30 DRDL01
 I 31 60 DRDL02
 I 61 70 DRSPHD
 *
 C DRDS LOKUPKEY,#A 66
 C *IN66 IFEQ ’1’
 C #A OCUR DSDESC
 C MOVE DRDL01 SFDL01
 C MOVE DRDL02 SFDL02
 C MOVELDRSPHD SFSPHD

Arithmetic

Multiplication and division are more expensive than addition and subtraction.
You can make these even more expensive by causing an overflow condition.
This provokes system error handling. Error handling is always expensive. Older
versions of X0028 (date conversion) had a deliberate overflow as part of the
code that determines whether the year was a leap year:

JD Edwards World A7.3 Programmer’s Guide 103

 C $FMTYR DIV 4 $NBRV9 99
 C $NBRV9 IFEQ .000000000
 C MOVE ’1’ $LEAP

The division operation stored the result in a field with no integers defined. For
example, 1985 divided by 4 equals 496.3, but this would be stored in the
program as .3 because $NBRV9 was defined with no leading numbers. This is
an overflow condition. The result field is too small to hold the calculated result.

Removing the overflow improved the performance of X0028 by 46%.
Replacing the division operation with other operation codes resulted in an
additional 10% improvement in performance. Removing the TESTN opcode
(also expensive) resulted in yet another 10% improvement.

An example of using multiplication operation excessively is in the CLONE-
generated code for S998:

 CSR MOVE F@AD #A
 CSR DO #A
 CSR MULT 10 #@AD
 CSR END

It would be more efficient to do the following:

 CSR MOVE F@AD #A
 C SELEC
 C #A WHEQ 1
 CSR Z-ADD10 #@AD
 C #A WHEQ 2
 CSR Z-ADD100 #@AD
 C #A WHEQ 3
 :
 :
 C #A WHEQ 9
 CSR Z-ADD1000000000#@AD
 C ENDSL

Luckily, S998 is only executed once, but be aware of how you do your
arithmetic in the code which is executed over and over again.

Error Handling

We need to have error-handling logic in our programs. We must be careful not
to make the error-handling logic “main stream”. For example, a CL program
creates a work environment for a batch job. It checks to see if the work library
is there. If not, it creates it. It checks to see if the work versions of 20 files are
in the library. If not, it creates them.

 CHKOBJ ABC *LIB
 MONMSG CPF9801 EXEC(DO)
 CRTLIB ABC
 ENDDO

 CHKOBJ ABC/DEF *FILE
 MONMSG CPF9801 EXEC(DO)
 CRTDUPOBJ DEF PRODLIB *FILE ABC
 ENDDO

If the normal course of events is that the batch program creates the
environment and then uses it, the above logic is back to front. It is provoking
error-handling logic every time it runs instead of provoking it only when there

JD Edwards World A7.3 Programmer’s Guide 104

is an error. The program instead should go ahead and create the new library and
objects, checking for errors if they exist already.

 CRTLIB ABC
 MONMSG CPF2111
 CRTDUPOBJ DEF PRODLIB *FILE ABC
 MONMSG CPF5813

Printing

If your application requires much printing throughout the day (for example,
printing pick slips), printing can be expensive. Our Order Entry application
offers customers their choice of whether they want to print picking slips
interactively (by pressing a function key), print in batch by submitting a job for
each picking slip, or print in a subsystem. The third option is the best for
performance.

The problem with printing interactively is that your program ties up precious
resources while it prints.

Printing in batch is very expensive if the customer has a large volume of print
requests. Job initiation is expensive. If we see a print job being submitted every
5 minutes, we know the job initiation is using a significant amount of CPU
resources.

Printing in a subsystem allows one job to run all day. The job usually starts
when the dedicated subsystem starts. The online program communicates with
the subsystem job by way of a data queue. It puts print requests onto the data
queue. The subsystem job waits on the data queue. It “sleeps” between print
requests. It wakes up when a request arrives on the data queue, and produces
the picking slip.

Display Files (Videos)

Many of our customers have remote locations. Subtle changes in the way we
define display files can have a big impact on response time.

Display files created before A5.2 all had the PUTOVR/OVRDTA keywords as
a standard. This requires the use of the RSTDSP(*YES) option when creating
the display file. The old-style windows that we used in A5.2 required the use of
RSTDSP(*YES) as well. RSTDSP(*YES) can slow down response time for
remote users. It also impacts local users when there are remote users on the
same system. With RSTDSP(*YES), the system saves a copy of everything on
the screen before it puts out a new display file on that screen.

For example, the user is looking at a sales order. P4211 writes the V4211 display
file to the screen. The user positions the cursor in the customer number field,
and presses HELP. Our program calls the Customer Name Search program
(P01NS), which writes V01NS to the screen.

JD Edwards World A7.3 Programmer’s Guide 105

If these display files are defined with RSTDSP(*YES), the system places the
contents of the V4211 screen (data and constants) into a save area on the CPU
before sending the V01NS image to the screen. Then when the user selects a
customer and returns to P4211, the system places the contents of the screen
into another save area before re-displaying (“restoring”) the V4211 image that it
saved previously.

If this is a remote user, the save action creates a lot of extra traffic on the
communications line. A larger problem for everyone is that while the save and
restore actions are going on, the user’s job stays in memory, using an activity
level. This means that other users potentially cannot get memory to do their
work. Now this user’s wait for the save/restore action to complete could get
added to other users’ response time, because they have to wait for it to
complete before they get a shot at the CPU. If the user is on a 9600-baud line,
the save/restore could take a relatively long time to complete.

This scenario shows up in performance tool reports as high Short Wait/Short
Wait Extended time.

It appears that many of our display files are defined with RSTDSP(*YES)
unnecessarily. The only time we need RSTDSP(*YES) is if we have
PUTOVR/OVRDTA keywords in the display file DDS, or if we have an old-
style window (does not use WINDOW keyword). Unfortunately,
RSTDSP(*YES) is the default on the SVR record. If we don’t type anything in
the MAINT/RSTDSP field, it will compile the display file with
RSTDSP(*YES).

Changing the RSTDSP attribute during testing is very easy. Use the CHGDSPF
command with the RSTDSP(*NO) parameter. If you need the RSTDSP(*YES)
attribute, the screen gets corrupted when you take a subfile option or press a
function key that displays a different screen. It is easy to fix the problem by
changing the display file back (CHGDSPF ... RSTDSP(*YES)). You must set
this attribute correctly in the SVR record, because it can be very expensive for
our customers if we specify RSTDSP(*YES) unnecessarily.

General Batch Considerations

All of the preceding techniques for speeding up your application (except for
display file considerations) also apply to batch jobs. There are some additional
techniques that are unique to batch.

Batch Window

The batch window is usually the off-shift time when most of the employees are
home. The customer wants to get all batch jobs done before business opens for
the day. This could be 6p.m. to 7a.m., or a shorter time. One of the ways we

JD Edwards World A7.3 Programmer’s Guide 106

can help the customer get through the batch work is to design for multi-
threading. We should try to design our batch jobs so that the customer can run
two or more of them at once. Removing unnecessary dependencies allows
multi-threading. (For example, we may need to have a copy of a data area in
QTEMP instead of JDFOBJ if changes to that data area only affect this job.)

Consider using SORT to speed up batch processing. The discussion on
Sequential I/O describes how to use blocking. To see a benefit from blocking
sequential input, we need the data physically on the disk in the sequence in
which we are reading it. SORT would be appropriate for a work file that is, for
example, created by this batch job, and that does not have many logical files
over it.

If you are creating and updating summary records in a database file as part of
the batch run, consider processing the input file in the correct sequence to do
“level break” logic. For example, you want to create a summary record by
salesman in a territory. If you read the input records in that same sequence, you
can accumulate totals for the salesman until the salesman changes. Then you
would write out the summary record for that salesman, and so on. If you
process the data in a different sequence, you will have to repetitively retrieve
and update the summary record for the salesman. This is expensive. See
Database Read/Write.

Look for opportunities to combine job steps to reduce passes through the data.
If there are two reports that read the data in the same sequence, you could
combine them into one program. Read through the data once to produce both
reports.

Logical Files

In general, you should not set up a logical file solely to accommodate batch
requirements. Use DREAM Writer or OPNQRYF to sequence and select the
data for your program (or use SORT or RGZPFM).

Sort

The CL command to run a sort is:

 FMTDTA INFILE((F0311))
 OUTFILE(F0311WRK)
 SRCFILE(QFMTSRC)
 SRCMBR(GENMBR)

Sort can both select and sequence data for you. You need SORT control
statements in a source member before you run the SORT. If these statements
will not change, type them into a source member. You can prompt to get the
format when you are editing the source member by using prompt types RH,
RR, RF, or RC (for example, type IPRH in the sequence number field). If the

JD Edwards World A7.3 Programmer’s Guide 107

selection/sequence varies, your program can write out the correct SORT
statements. SORT can sort in place (the INFILE and OUTFILE can have the
same name).

The following are some of the SORT control statements created by P062904.
The first line is the header (prompt type RH). It defines the total length of sort
fields, whether the sort is ascending or descending, and whether the sort fields
should be included in the output record (an X means leave them out).

 HFILE 88A X

The next group of statements defines the sort fields (prompt type RF). The N
in the second position means that it is a sort control field. It must be sorted
according to the Header statement. An O would specify a sort control field to
be sorted OPPOSITE to the Header statement. This way you can have some
fields that sort in an ascending way and some that sort in a descending way. The
third position defines the field type (character, packed, or zoned). The start and
end positions are the start and end positions of this field in the input record.

 FNC 3 7 CO
 FNC 10 21 MCU
 FNC 22 27 OBJ
 FNC 28 35 SUB
 FNU 61 62 FY
 FNU 63 64 PN
 FNU 65 70 DGJ
 FNP 128 130 PDBA
 FNU 71 78 AN8

The last statement also is a field definition (prompt type RF). It redefines the
entire input record as one character field and specifies it must be written to the
output file (the D in position two means that it is a data field).

 FDC 1 164 * * OUTPUT COMPLETE RECORD * *

Reorganize

The CL command to reorganize a file is:

 RGZPFM FILE(F0311)
 KEYFILE(*LIBL/F0311LA F0311LA)

Reorganizing requires an existing access path over the data in the sequence you
require. Reorganizing will not select data for you.

Be wary of using MAINT(*REBLD) or MAINT(*DLY). With
MAINT(*REBLD), the entire access path will be rebuilt every time. It can slow
down your testing. With MAINT(*DLY), the system monitors the percentage
of records changed and dynamically changes the file to MAINT(*REBLD) if
you change more than 20%. Consider removing the logical file member instead
of MAINT(*REBLD). It is more efficient.

 RMVM FILE(F0101LA) MBR(F0101LA)
 CALL UPDPGM
 ADDLFM FILE(F0101LA) MBR(F0101LA)

JD Edwards World A7.3 Programmer’s Guide 108

National Language Support

Beginning with A7.3, J.D. Edwards complies with IBM’s V3R1 National
Language Support features. A7.3 users now can take advantage of IBM’s
Character Data Representation Architecture (CDRA), which is not supported
by prior J.D. Edwards releases. This chapter discusses the aspects of CDRA
that are relevant to J.D. Edwards software, the J.D. Edwards approach to
compliance, and guidelines for A7.3 programmers. For a thorough introduction
to CDRA, refer to IBM’s AS/400 National Language Support for V3R1.

CDRA Overview

CDRA is IBM’s method of achieving “consistent representation, processing,
and interchange of coded characters (data) in AS/400 business computing
systems and across IBM systems” (AS/400 National Language Support, section
2.2). This is accomplished by tagging all character data with a coded character-
set identifier (CCSID). Because character data is represented internally by
hexadecimal code points, the data’s CCSID tells the system how to interpret the
hex values to arrive at its correct character representation. Therefore, if data
coded to one CCSID is read by a job coded with a different CCSID, the
integrity of the character data is preserved as CDRA handles the conversions of
hex code points under the covers.

The invariant character set (see Invariant Character Set in this chapter) is a special set
of characters that are mapped to the same code points in virtually all code
pages. Therefore, their hex values never change even if they are transmitted
across different CCSIDs. We refer to characters outside of this set as chameleons
because their hex code points will change to adapt to different CCSIDs in order
to retain the same graphic character representation. Chameleons common to
the US code page are ‘$’, ‘#’, ‘@’, ‘!’, and ‘¢’.

J.D. Edwards Implementation

The J.D. Edwards approach to tagging file data is to distinguish between textual
data and non-textual data at the field level. Those fields that contain text
(marked with an open data type in the data dictionary) are tagged with CCSID
00037, which is the CCSID of our development AS/400. This CCSID is
generally used by North American AS/400s. Those character fields that are not
used to store descriptive text (marked with an alpha data type in the data
dictionary) are tagged with CCSID 65535. This CCSID indicates that the data is
to be treated as hexadecimal data rather than coded graphic character data. In
this way, we preserve the graphic character integrity of our textual data while
also preserving the hexadecimal integrity of our non-textual character data.

JD Edwards World A7.3 Programmer’s Guide 109

Initially, we are inserting CCSID keywords in the DDS for all non-numeric
fields in physical files. The File Design Aid has been enhanced to automatically
insert these keywords when exiting so that the programmer does not need to be
concerned about it. When IBM incorporates the CCSID parameter into the
field reference file, we will delete the keywords from the file DDS and insert
them into the field reference files instead.

In addition, we changed the create option (14) in the software versions
repository to submit the creation with a job CCSID of 00037. This will cause all
source data for non-ILE programs, and constant data for display and printer
files, to be interpreted through a 00037 lens. ILE program source data will be
interpreted according to the CCSID of the source file. Our source files are
tagged as 00037. Incidentally, the IBM compilers for non-ILE programs
interpret data in source files through a 00037 lens. “Most compilers expect
syntactical operators and the naming convention for the source code to be in
code page 00037; therefore, undesired mapping will occur if the source is
compiled with a CCSID other than 00037 or 65535”(AS/400 National Language
Support Planning Guide section 3.4.10).

We also changed the display and printer file create commands to include the
*JOBCCSID value for the CHRID parameter (default is *DEVD). This will
preserve character data integrity for display and printer files where the user’s job
CCSID is different from the user’s device description CHRID.

Programming Guidelines

Follow these guidelines when you modify J.D. Edwards objects, or when you
create objects by using the J.D. Edwards FDA, RDA, SDA, or CASE tool.

 Do not change any file CCSIDs either at the file or the field level.

 If you create a source file to use for J.D. Edwards programs or
with J.D. Edwards programming utilities, be sure to tag it with a
CCSID of 00037. A source file CCSID defaults to the CCSID of
the job that created it.

 If you modify a source member through PDM:

 For physical file DDS, do not change the CCSID keyword
values. Otherwise, you can easily destroy data integrity. If you want
to add a field, use File Design Aid, which will automatically insert
the appropriate CCSID attribute for you.

 When you create an object through PDM, be sure your job
CCSID is 00037. A user’s job CCSID defaults to the user profile
CCSID. To change it, enter CHGJOB CCSID(00037).

JD Edwards World A7.3 Programmer’s Guide 110

 When you create a display file or printer file through PDM, be
sure the CHRID keyword has value *JOBCCSID. This is not the
default value.

 When you create interactive programs, never require the user to
enter a chameleon character in order to perform a particular
function. Because the program looks for a specific hex value, the
graphic character to enter will vary according to the user’s job
CCSID. Therefore, this feature cannot be documented. Hints as to
the location of any existing cases can be found in vocabulary
overrides and processing options. (Example to avoid: “Enter ‘@’
to view all types”.)

 Do not embed data dictionary item names in text (for example,
glossary and processing option text) if they contain chameleon
characters. (Example to avoid: “Default value from #CYR in data
dictionary”.)

 Do not assign chameleon characters to data dictionary default or
allowed values, or to processing options default values.

 Do not use chameleons as or within literals in source code.
(Example to avoid: FLDA IFEQ ‘$AB’.)

Invariant Character Set

The following characters are included in the invariant character set:

 26 unaccented uppercase letters ‘A’ through ‘Z’

 26 unaccented lowercase letters ‘a’ through ‘z’

 Ten digits ‘0’ through ‘9’

 Plus sign

 Less-than sign

 Equal sign

 Greater-than sign

 Percent sign

 Ampersand

 Asterisk

 Straight double quote

 Straight single quote

 Left parenthesis

JD Edwards World A7.3 Programmer’s Guide 111

 Right parenthesis

 Comma

 Underscore

 Hyphen

 Period

 Slash right

 Colon

 Semicolon

 Question mark

A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z a

b c d e f g h i j

k l m n o p q r s

t u v w x y z 0 1

2 3 4 5 6 7 8 9 +

t + u % & * (

) , _ - . / : ; ?

