For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Send feedback on this documentation to: epmdoc_ww@oracle.com
Follow EPM Information Development on these social media sites:
LinkedIn - http://www.linkedin.com/groups?gid=3127051&goback=.gmp_3127051
Twitter - http://twitter.com/hyperionepminfo
Facebook - http://www.facebook.com/pages/Hyperion-EPM-Info/102682103112642
Google+ - https://plus.google.com/106915048672979407731/#106915048672979407731/posts
YouTube - http://www.youtube.com/user/OracleEPMWebcasts
Release 11.1.2.3
Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.
Updated: February 2014
Authors: EPM Information Development Team
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS:
Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle Essbase Technical Reference describes commands, functions, and configuration aspects of Oracle Essbase. This reference is intended for advanced users who need detailed information and examples about Essbase elements.
For other information about Essbase, see the Oracle Essbase Database Administrator's Guide .
To use this document, you need the following:
This document provides examples based on the Sample and Demo applications provided with Essbase. The Sample application contains three databases: Basic, Interntl, and Xchgrate. The Demo application contains one database: Basic. If, when you connect to the Essbase Server, any of the following problems occur, contact your administrator.
This document uses several formatting styles to indicate actions you should take or types of information you need.
Syntax	Purpose	Example
UPPERCASE	Command or function names in syntax.	BEGINARCHIVE
italic	Terms, such as parameters, that you replace with a value	ESSGETSTRING (hCtx, pString); \ directorypath \ filename The dimList argument...
" "	Double quotation marks enclose text parameters or single parameters that include a space	" appName " SETDEFAULTCALC " CALC ALL ";
!	Report Writer: The report output character (bang) signals the start of report processing; this character must be on its own line	... // commands <DESC MARKET !
()	Parentheses are used in a couple of ways:	
ESSGETSTRING (hCtx, pString); (a + b) * c		
//	Comment markers in report scripts. Double slashes (//) indicate text from // to end of line should be ignored in processing.	// Get results
/* ... */	Comment markers in calculation scripts. The /* ... */ comment markers indicate the enclosed text should be ignored in processing.	/* Get results */
;	Statement terminator	EXIT ;
[]	Brackets enclose optional parameters in syntax . Used with OR symbol	if there is more than one optional parameter. Do not type brackets or the OR symbol
[, numeric] [, " text "]	Indicates an optional numeric (no quotes) or character (quoted) parameter and the comma which must precede the optional parameter. Do not type the brackets.	[, year] [, " columnName "]
{}	Braces group statements for processing, enclose alternatives, one of which you must choose Report Writer: Enclose report formatting commands	HELP { ?
	Syntax: OR. Separates alternatives from which you choose only one. Do not type the OR symbol.	SET AGGMISSG ON
< | Report Writer: Angle bracket precedes layout and member selection commands. | <PAGE |
@ | Essbase calculation functions: Precedes many function names | @ABS |
-> | Essbase calculation functions: Cross-dimensional operator (a hyphen followed by a greater-than sign) points to data values of specific member combinations -> (cross-dimensional operator) | Price -> West = AVGRANGE |
This topic explains how the elements discussed in the Oracle Essbase Technical Reference apply to aggregate storage databases.
Consider using the aggregate storage storage model if the following is true for your database:
Note the applicability of the following elements for aggregate storage databases:
For more information about aggregate storage storage, see the Oracle Essbase Database Administrator's Guide .
Essbase provides a suite of functions and calculation operators to facilitate the definition and application of complex member formulas. Both the Outline Editor and the Calculation Script Editor provide dialog boxes containing functions and operators that you can paste into member formulas and calc scripts. For more information, see the Oracle Essbase Database Administrator's Guide .
The topics for individual functions in this section provide examples that are based on an application and database provided with the Essbase Server software, called Sample Basic. If you do not have access to Sample Basic, contact your administrator.
Many Essbase functions identify a member in the database by its position in the database outline. The outline structure represents a hierarchical tree; every dimension represents a subsection of the database tree. Generations and levels provide position references for all database members within the tree. Position references are required because many applications must be able to determine the location of members within the database structure.
The terms "generation" and "level" denote the distance from either the "root" or the "leaves" of the dimension. Thus, you can determine the location of any member within a database tree. You can also specify relationships between groups of related members.
Generations specify the distance of members from the root of their dimension. All members in a database that are the same number of branches from their root have the same generation number. The dimension is generation 1, its children are generation 2, and so on.
Levels measure the number of branches between a member and the lowest member below it, that is, the number of branches between a member and the "leaf" of its hierarchy within the database structure. Level 0 specifies the bottom-most members of a dimension and thus provides ready access to the raw data stored in a database. Leaf members are level 0, then their parents are level 1, and so on up the hierarchy.
You might note that when all sibling members have the same generation number but not necessarily the same level number.
For example, the members in this hierarchy:
have the following generation and level numbers:
Function abbreviations are not supported. Use the full function name to obtain expected behavior.
The individual topics for each function include the required syntax for that function. Function names appear in bold ; required parameters appear in italics ; and optional parameters appear in brackets [] and italics . Individual topics also discuss the defaults that are used when optional parameters are not specified. For detailed descriptions of each function, along with examples of usage, please refer to the individual topic.
For information about how Essbase checks for and responds to syntax errors in formulas and calculation scripts, or for information on how to use semicolons in formulas and calculation scripts, see the Oracle Essbase Database Administrator's Guide .
The following table provides a brief description of some of the common parameters used in various functions.
Note: | Member names that are also keywords, such as IF, THEN, ELSE, and RETURN, must be enclosed in quotation marks. It is recommended practice to always enclose member names in quotation marks. |
Parameter | Description |
---|---|
attDimName | A single attribute dimension name specification. @WITHATTR(Ounces,"<",16) |
attMbrName | A single attribute member name specification. @ATTRIBUTE(Can) @ATTRIBUTEVAL(Ounces) @WITHATTR("Pkg Type","= =",Can) |
dimName | A single dimension name specification. @CURLEV(Accounts) @CURGEN(Year) @PARENT(Measures,Sales) |
expList | A comma-delimited list of member names, variable names, functions, and numeric expressions, all of which return numeric values. @MAX(Jan,Feb,100,Apr-May) @MIN(Oct:Dec) @COUNT(SKIPNONE,@RANGE(Sales,@CHILDREN(Product))) |
expression | Any mathematical or numeric expression that is valid within Essbase and that, when calculated, returns a numeric value. This definition of expression also includes parameters such as numDigits , generation , and level , and other similar parameters for the financial group of functions, such as rateMbrConst and lifeMbrConst. @ABS(Actual-Budget) @ROUND(Sales / 10.0 + 100) |
genLevName | Generation or level name specification. @DESCENDANTS(Market,Regions) @RELATIVE(Qtr1,Month) |
genLevNum | An integer value that defines the number of a generation or level. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. @ANCESTORS(Sales,-2) @SANCESTVAL(Product,2,Sales) |
mbrList | A comma-delimited list of members. @ISMBR(New_York,Boston,Chicago) |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. This definition also includes similar parameters, such as balanceMbrName , costMbr , and cashflowMbr , for the financial group of functions. @GEN(Actual) @CHILDREN(Product) @MAXRANGE(@ANCESTORS(Qtr4),Jan:Dec) |
n | A positive or negative integer value. @NEXT(2,Jan:Dec) @SHIFT(3) |
rangeList | A valid member name, a comma-delimited list of member names, member set functions, and range functions from the same dimension. If rangeList is optional and is not specified, Essbase uses the level 0 members from the dimension tagged as Time. If no dimension is tagged as Time and this parameter is omitted, Essbase reports a syntax error. This definition of rangeList also includes mbrList . @ACCUM(Q189:Q491) @MAXRANGE(Sales,@CHILDREN(Qtr1)) |
tag | Any valid account tag defined in the current database including First, Last, Average, Expense, and Two-Pass. @ISACCTYPE("EXPENSE") To ensure that the tag is resolved as a string rather than a member name, it is recommended to enclose it in quotation marks. |
Calculation operators (mathematical, conditional and logical, and cross-dimensional) define equations for member formulas and calc scripts.
Mathematical operators perform common arithmetic operations.
Operator | Description |
---|---|
+ | Adds. |
- | Subtracts. |
* | Multiplies. |
/ | Divides. |
% | Evaluates percentage. For example, Member1 % Member2 evaluates Member1 as a percentage of Member2 . |
() | Controls the order of calculations and nests equations and formulas. |
Conditional operators build logical condition into calculations.
Operator | Description |
---|---|
IF | ELSE | ELSEIF | ENDIF | Tests conditions and calculates a formula based on the success or failure of the test. |
> | Data value is greater than. |
>= | Data value is greater than or equal to. |
< | Data value is less than. |
<= | Data value is less than or equal to. |
= = | Data value is equal to. |
< > or != | Data value is not equal to. |
AND | Logical AND linking operator for multiple value tests. Result is TRUE if both conditions are TRUE. Otherwise the result is FALSE.* |
OR | Logical OR linking operator for multiple value tests. Result is TRUE if either condition is TRUE. Otherwise the result is FALSE.* |
NOT | Logical NOT operator. Result is TRUE if condition is FALSE. Result is FALSE if condition is TRUE.* |
* The logical constants TRUE and FALSE are interpreted as 1 (TRUE) and 0 (FALSE) where appropriate.
The cross-dimensional operator (->) points to data values of specific member combinations.
The cross-dimensional operator is created with a hyphen (-) and a right angle bracket (>), with no space between them
If a data value does not exist for a unique combination of members, Essbase gives the combination a value of #MISSING . A #MISSING value is different from a zero (0) value. Therefore, Essbase treats #MISSING values differently from 0 values.
The following tables shows how Essbase calculates #MISSING values. In this table, X represents any number.
Calculation/Operation | Result |
---|---|
X + #MISSING | X |
X – #MISSING #MISSING – X | X -X |
X * #MISSING | #MISSING |
X / #MISSING #MISSING / X X / 0 | #MISSING #MISSING #MISSING |
X % #MISSING #MISSING % X X % 0 | #MISSING #MISSING #MISSING |
X == #MISSING | False, unless X is #MISSING |
X != #MISSING X <> #MISSING | True, unless X is #MISSING True, unless X is #MISSING |
(X <= #MISSING) | (X <=0) |
(X >= #MISSING) | (X >=0) or (X == #MISSING) |
(X > #MISSING) | (X > 0) |
(X < #MISSING) | (X < 0) |
X AND #MISSING : 1 AND #MISSING * 0 AND #MISSING #MISSING AND #MISSING | #MISSING 0 #MISSING |
X OR #MISSING : 1 OR #MISSING [1] 0 OR #MISSING #MISSING OR #MISSING | 1 #MISSING #MISSING |
IF (#MISSING) | IF (0) |
f (#MISSING) | #MISSING for any Essbase function of one variable |
f (X) | #MISSING for any X not in the domain of f, and any Essbase function of more than one variable (except where specifically noted) |
For information on how Essbase aggregates #MISSING values, see the Oracle Essbase Database Administrator's Guide .
This section lists all of the Essbase calculation functions, grouped by function type.
A Boolean function returns TRUE or FALSE (1 or 0, respectively). Boolean functions are generally used in conjunction with the IF command to provide a conditional test. Because they generate a numeric value, however, Boolean functions can also be used as part of a member formula.
Boolean functions are useful because they can determine which formula to apply based on characteristics of the current member combination. For example, you may want to restrict a calculation to those members in a dimension that contain input data. In this case, you preface the calculation with an IF test that is based on @ISLEV (dimName , 0).
If one of the function parameters is a cross-dimensional member; for example, @@ISMBR (Sales->Budget), all parts of the cross-dimensional member must match all parts of the current cell to return a value of TRUE.
In the following quick-reference table, "the current member" means the member that is currently being calculated by the function. Words in italics, such as member , loosely indicate information you supply to the function. For details, see the individual function topics.
Function | Condition Tested |
---|---|
@ISACCTYPE | Whether the current member has a particular accounts tag . |
@ISANCEST | Whether the current member is an ancestor of member . |
@ISCHILD | Whether the current member is a child of member . |
@ISDESC | Whether the current member is a descendant of member . |
@ISGEN | Whether the current member of dimension is in generation . |
@ISIANCEST | Whether the current member is the same member or an ancestor of member . |
@ISICHILD | Whether the current member is the same member or a child of member . |
@ISIDESC | Whether the current member is the same member or a descendant of member . |
@ISIPARENT | Whether the current member is the same member or the parent of member . |
@ISISIBLING | Whether the current member is the same member or a sibling of member . |
@ISLEV | Whether the current member of dimension is in level . |
@ISMBR | Whether the current member is member , or is found in member list , or is found in a range returned by another function. |
@ISMBRUDA | Whether the specified user-defined attribute string exists for the specified member . |
@ISPARENT | Whether the current member is the parent of member . |
@ISRANGENONEMPTY | Whether data values exist for a specified range. |
@ISSAMEGEN | Whether the current member is in the same generation as member . |
@ISSAMELEV | Whether the current member is in the same level as member . |
@ISSIBLING | Whether the current member is a sibling of member . |
@ISUDA | Whether the current member of dimension has a particular user-defined attribute string . |
Relationship functions look up specific values within the database based on current cell location and a series of parameters. You can use these functions to refer to another value in a data series. Relationship functions have an implicit current member argument; that is, these functions are dependent on the current member's position.
In the following quick-reference table, words in italics loosely represent information you supply to the function. For details, see the individual function topics.
Function | Return Value |
---|---|
@ANCESTVAL | Ancestor values of a specified one-dimensional member combination . |
@ATTRIBUTEBVAL | Associated attribute value from a Boolean attribute dimension . |
@ATTRIBUTESVAL | Associated attribute value from a text attribute dimension . |
@ATTRIBUTEVAL | Associated attribute value from a numeric or date attribute dimension . |
@CURGEN | Generation number of the current member in dimension . |
@CURLEV | Level number of the current member in dimension . |
@GEN | Generation number of member . |
@LEV | Level number of member . |
@MDANCESTVAL | Ancestor values for any number of multidimensional member combinations . |
@MDPARENTVAL | Parent values for any number of multidimensional member combinations . |
@PARENTVAL | Parent values for member in dimension . |
@SANCESTVAL | Ancestor values for shared members at a certain depth under root member . |
@SPARENTVAL | Parent values for shared members under root member . |
@XREF | Values from a different database than the one being calculated. |
@XWRITE | Writes values to a different database than the one being calculated. |
These functions perform specific mathematical calculations. Mathematical functions define and return values that are based on selected member expressions. These functions cover many basic statistical functions and return numeric results that are based on supplied member values. Advanced statistical functions are included in the statistical functions category.
In the following quick-reference table, words in italics loosely represent information you supply to the function. For details, see the individual function topics.
Function | Return Value |
---|---|
@ABS | Absolute value of expression . |
@AVG | Average of all values in expList . |
@EXP | e (base of natural logarithms) raised to the power of expression . |
@FACTORIAL | Factorial of expression . |
@INT | Next lowest integer value of expression . |
@LN | e (base of natural logarithms) of expression . |
@LOG | Any base logarithm of expression . |
@LOG10 | Base-10 logarithm of expression . |
@MAX | Maximum value found in cells of expression list . |
@MAXS | Maximum value found in cells of expression list , optionally skipping empty values. |
@MIN | Minimum value found in cells of expression list . |
@MINS | Minimum value found in cells of expression list , optionally skipping empty values. |
@MOD | Modulus of a division operation between two members . |
@POWER | Expression raised to power . |
@REMAINDER | Remainder value of expression . |
@ROUND | Expression rounded to numDigits . |
@SUM | Sum of values found in cells of expression list . |
@TRUNCATE | Expression with fractional part removed, returning an integer. |
@VAR | Variance between two members . |
@VARPER | Percent variance between two members . |
Member set functions return a list of members. This list is based on the member specified and the function used. You can use operators to specify Generation and Level Range Operators for Member Set Functions with member set functions.
When a member set function is called as part of a formula, the list of members is generated before the calculation begins. The list never varies because it is based on the specified member and is independent of the current member.
If a member set function (for example, @CHILDREN or @SIBLINGS) is used to specify the list of members to calculate in a calculation script, Essbase bypasses the calculation of any Dynamic Calc or Dynamic Calc and Store members in the resulting list.
Only the @ATTRIBUTE and @WITHATTR functions can use attribute members or members of the Attribute Calculations dimension as parameters in member set functions.
You can use cross-dimension expressions such as ("1998":"2001" -> @Levmbrs (Year, 0)). The cross-dimensional operator is associative (x -> y) -> z=x -> (y -> z), but not commutative because x -> y = y -> x is a set, but the order of elements is different.
Function | Return Value |
---|---|
@ALLANCESTORS | All ancestors of member , including ancestors of shared member . |
@ANCEST | Ancestor at distance from the current member or an explicitly specified member . |
@ANCESTORS | All ancestors of member , or those ancestors up to a specified distance . |
@ATTRIBUTE | All base members associated with attribute member name . |
@BETWEEN | All members whose name string value fall between, and are inclusive of, two specified string tokens. |
@CHILDREN | Children of member . |
@CURRMBR | Member currently being calculated in the specified dimension . |
@DESCENDANTS | All descendants of member , or those descendants down to a specified distance . |
@EQUAL | Member names that match the specified token name. |
@EXPAND | Expands a member search by calling a member set function for each member in a member list. |
@GENMBRS | Members of dimension that are at generation . |
@IALLANCESTORS | Member and ancestors of member , including ancestors of shared member . |
@IANCESTORS | Member , and either all member ancestors or those ancestors up to a specified distance . |
@ICHILDREN | Member and its children. |
@IDESCENDANTS | Member , and either all member descendants or those descendants down to a specified distance . |
@ILANCESTORS | Members of the specified list of members, and either all ancestors of the specified list of members or those ancestors up to a specified distance . |
@ILDESCENDANTS | Members of the specified list of members, and either all descendants of the specified list of members or those descendants down to a specified distance . |
@ILSIBLINGS | Member and its left siblings. |
@INTERSECT | Members that are at the intersection of two specified lists of members. |
@IRSIBLINGS | Member and its right siblings. |
@IRDESCENDANTS | Member and all its descendants, or those descendants down to a specified distance , including descendants of shared member . |
@ISIBLINGS | Member and its siblings. |
@LANCESTORS | All ancestors of the specified list of members , or those ancestors up to a specified distance . |
@LDESCENDANTS | All descendants of the specified list of members , or those descendants down to a specified distance . |
@LEVMBRS | Members of dimension that are at level . |
@LIST | A single list compiled from arguments , and can be used for functions requiring an expression list, a member list, or a range list. |
@LSIBLINGS | Left siblings of member . |
@MATCH | Members that match a pattern search performed over a generation , a level , or a member and its descendants. |
@MBRCOMPARE | Member names that match the comparison criteria. |
@MBRPARENT | Parent of the specified member. |
@MEMBER | Member with name string . |
@MEMBERAT | Member at the specified location in a list . |
@MERGE | Merged list from two lists . |
@NEXTSIBLING | Next, or right-most, sibling of member . |
@NOTEQUAL | Member names that do not match the specified token name. |
@PARENT | Parent of the current member being calculated in dimension , optionally crossed with another member . |
@PREVSIBLING | Previous, or left-most, sibling of member . |
@RANGE | Member list that crosses a member from one dimension with a range from another dimension. |
@RDESCENDANTS | All descendants of member , or those down to a specified distance , including descendants of shared member . |
@RELATIVE | All members that are at distance from member . |
@REMOVE | List1 , with anything that is also in list2 removed. |
@RSIBLINGS | Right siblings of member . |
@SHIFTSIBLING | Sibling at specified distance from member . |
@SIBLINGS | Siblings of member . |
@UDA | Members of dimension that have UDA . |
@WITHATTR | Base members from dimension that are associated with an attribute meeting a condition . |
@XRANGE | Range of members between (and inclusive of) two members at the same level. |
Generation and Level Range Operators for Member Set Functions
The operators : and :: can be used with member set functions, which return a list of members. The : operator returns level-based ranges and the :: operator returns generation-based ranges. For example, Jan:Dec and Jan::Dec both return all members between and inclusive of Jan and Dec.
The difference is that Jan:Dec returns all members at the same level and Jan::Dec returns all members at the same generation.
For example, if we have the outline:
The function @MOVAVG(Sales, 3, Jan:Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar, Apr, May, Jun, Q3, Oct, Nov, Dec).
The function @MOVAVG(Sales, 3, Jan::Dec) computes @MOVAVG(Sales, 3, Jan, Feb, Mar, Apr, May, Jun, Oct, Nov, Dec).
Range functions take a range of members as an argument. Rather than return a single value, these functions calculate a series of values internally based on the range specified.
Financial functions execute specialized financial calculations.
Function | Return Value |
---|---|
@ACCUM | The sum of values of a specified member across a range |
@AVGRANGE | The average of values of a specified member across a range |
@COMPOUND | The compound interest of values of a specified member across a range, calculated at a specified rate |
@COMPOUNDGROWTH | A series of values that represent the compound growth of the specified member across a range of members, calculated at a specified rate |
@CURRMBRRANGE | A range of members that is based on the relative position of the member combination Essbase is currently calculating |
@DECLINE | Depreciation of a member over a specified period, calculated using the declining balance method |
@DISCOUNT | Discounted values of a specified member, calculated at a specified rate, across a range of values from the time dimension |
@GROWTH | A series of values that represents the linear growth of the specified value |
@INTEREST | A series of values that represent the linear growth of a specified member, calculated at a specified rate, across a range of members from the time dimension |
@IRR | The Internal Rate of Return on a cash flow that is calculated across the time dimension or a specified range of members and must contain at least one investment (negative) and one income (positive). Includes an initial guess of 0.07 (the initial guess cannot be configured). |
@IRREX | The Internal Rate of Return on a cash flow that is calculated across the time dimension or a specified range of members and must contain at least one investment (negative) and one income (positive). Includes functionality to configure the initial guess and the number of iterations the algorithm can make. |
@MAXRANGE | The maximum value of a member across a range of members |
@MAXSRANGE | The maximum value of a member across a range of members, with the ability to skip zero and #MISSING values |
@MDSHIFT | The next or n th member in a range of members, retaining all other members identical to the current member across multiple dimensions |
@MINRANGE | The minimum value of a member across a range of members |
@MINSRANGE | The minimum value of a member across a range of members, with the ability to skip zero and #MISSING values |
@NEXT | The next or n th member in a range of members |
@NEXTS | The next or n th member in a range of members, with the option to skip #MISSING, zero, or both values |
@NPV | The Net Present Value of an investment based on a series of payments and income values |
@PTD | The period-to-date values of members in the time dimension |
@PRIOR | A list of the previous or n th previous members in a range of members |
@PRIORS | A list of the previous or n th previous members in a range of members, with the option to skip #MISSING, zero, or both values |
@RANGE | A member list that crosses the specified member from one dimension with the specified member range from another dimension |
@RANGEFIRSTVAL | The first value in a range (with options for how to handle zero and #MISSING). |
@RANGELASTVAL | The last value in a range (with options for how to handle zero and #MISSING). |
A list of the next or n th members in a range of members, retaining all other members identical to the current member and in the specified dimension | |
@SLN | Depreciation amounts, across a range period, that an asset in the current period may be depreciated, calculated using the straight-line depreciation method |
@SUMRANGE | A list of summarized values of all specified members across a range of members |
@SYD | Depreciation amounts, across a range of periods, of an asset in the current period, calculated using the sum of the year's digits depreciation method |
@XRANGE | A list of a range of members between specified members at the same level |
Some range and forecasting functions recognize the optional parameter rangeList or XrangeList as the last parameter. rangeList is a range of members from one dimension; XrangeList is a range of members from one or more dimensions.
If rangeList or XrangeList is not given, the level 0 (leaf) members from the dimension tagged as Time become the default range. If no dimension is tagged as Time and the last parameter is not given, Essbase reports a syntax error.
The following table provides examples of valid values for rangeList or XrangeList .
Example | Description |
---|---|
Mar99 | A single member |
Mar99, Apr99, May99 | A comma-delimited list of members. |
Jan99 : Dec99 | A level range. A level range includes all members on the same level between and including the members defining the range. |
Q1_99 :: Q4_2000 | A generation range. A generation range includes the members defining the range and all members that are within the range and of the same generation. |
Q1_99 :: Q4_2000, FY98, FY99, FY2000 | A generation range and a comma-delimited list |
@SIBLINGS(Dept01), Dept65 : Dept73, Total_Dept | A member set function and one or more range lists |
The following table provides examples of valid values for XrangeList .
Example | Description |
---|---|
Jan->Actual->Sales, Dec->Actual->Sales | A comma-delimited list of members from one or more dimensions. |
Actual->Jan, @XRANGE(Actual->December, Budget->Mar); | A comma-delimited list and a range. |
@XRANGE(Jan->Actual,Dec->Budget); | A @XRANGE function. |
@CHILDREN("Colas"),@CHILDREN("West") | A member set function as part of a range list. |
Financial functions never return a value; rather, they internally calculate a series of values based on the range specified and write the results to a range of cells. Thus, you cannot apply any operator directly to the function.
These functions allocate values that are input at the parent level. The values are allocated across child members in one or more dimensions, based on specified criteria. These functions consolidate the common tasks that are required to perform allocations in Essbase.
Function | Allocation Type |
---|---|
@ALLOCATE | Allocates values to lower-level members in one level. |
@MDALLOCATE | Allocates values to lower-level members in multiple dimensions. |
Forecasting functions manipulate data for the purpose of smoothing, interpolating, or calculating future values. Forecasting functions are often used in planning, analysis, and modeling applications. Some forecasting functions recognize the optional Range List Parameters rangeList or XrangeList).
Function | Data Manipulation |
---|---|
@MOVAVG | Applies a moving average to a data set, replacing each term in the list with a trailing average. This function modifies the data set for smoothing purposes. |
@MOVMAX | Applies a moving maximum to a data set, replacing each term in the list with a trailing maximum. This function modifies the data set for smoothing purposes. |
@MOVMED | Applies a moving median to a data set, replacing each term in the list with a trailing median. This function modifies the data set for smoothing purposes. |
@MOVMIN | Applies a moving minimum to a data set, replacing each term in the list with a trailing minimum. This function modifies the data set for smoothing purposes. |
@MOVSUM | Applies a moving sum to a data set. This function modifies the data set for smoothing purposes. |
@MOVSUMX | Applies a moving sum to a data set, enabling specification of values for trailing members. This function modifies the data set for smoothing purposes. |
@SPLINE | Applies a smoothing spline to a set of data points. A spline is a mathematical curve that is used to smooth or interpolate data. |
@TREND | Calculates future values, basing the calculation on curve-fitting to historical values |
Statistical functions calculate advanced statistical values, such as correlation or variance. These functions are often used in sales and marketing applications.
Function | Return Value |
---|---|
@CORRELATION | The correlation coefficient between two parallel data sets |
@COUNT | The number of data values in the specified data set |
@MEDIAN | The median (middle value) of the specified data set |
@MODE | The mode (the most frequently occurring value) in the specified data set |
@RANK | The rank (position in the sorted data set) of the specified members or the specified value among the values in the specified data set. |
@STDEV | The standard deviation of the specified data set |
@STDEVP | The standard deviation of the specified data set, calculated over the entire population |
@STDEVRANGE | The standard deviation of all values of the specified member across the specified data set. The specified mbrName is crossed with a range list to obtain the sample across which the standard deviation is calculated. |
@VARIANCE | The statistical variance of the specified data set (expList), based upon a sample of a population |
@VARIANCEP | The statistical variance of the specified data set (expList), based upon the entire population |
The date function, @TODATE , converts date strings to numbers that can be used in calculation formulas.
This custom-defined group is a category of functions that you develop for calculation operations that are not enabled by the built-in Essbase functions. Custom-defined functions are written in the Java programming language and registered on the server. The Essbase calculator framework calls custom-defined functions as external functions. For more details, see Create Macro and Create Function in MaxL.
Consult the Contents pane for a categorical list of calculation functions.
Returns the absolute value of expression . The absolute value of a number is that number less its sign. A negative number becomes positive, while a positive number remains positive.
Syntax
Parameter | Description |
---|---|
expression | Member name or mathematical expression that generates a numeric value. |
Example
The following example is based on the Demo Basic database. In this example, Variance needs to be presented as a positive number. The @ABS function is used because otherwise some combinations of Actual - Budget would return negative values.
This example produces the following report:
See Also
Accumulates the values of mbrName within rangeList , up to the current member in the dimension of which rangeList is a part.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination (or a function that returns a single member or member combination) whose value is to be accumulated. |
rangeList | Optional comma-delimited list of members, member set functions, or range functions, across which the accumulation occurs. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Example
In this example, Accum Asset is calculated using the following formula:
This example produces the following report. This report shows that the values for Asset are accumulated starting with FY1997 and the yearly accumulation value is placed in Accum Asset for FY1997 through FY2002:
The value of Accum Asset is #MISSING for FY1997 because that is the starting year. The value of Accum Asset is #MISSING for FY1998 because there was no accumulation that year. For FY1999, the value of the asset grew by 1,000, so Accum Asset has a value of 1000.
Returns all ancestors of the specified member, including ancestors of any occurrences of the specified member as a shared member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
Example
The following example is based on the Sample Basic database. Sample Basic has a shared level of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100 (Colas) and is a shared member descendant of Diet:
The following calculation script increases by 5% the Budget->Sales values of all ancestors of 100-20, including Diet.
This example produces the following report. This report shows that the Budget->Sales values for 100, Diet, and Product (the ancestors of 100-20) have been increased by 5%. The original values were 8980, 8260, and 28480, respectively.
See Also
Takes a string as an argument and returns an alias name to the function that calls @ALIAS.
Syntax
Notes
Because functions that take strings as arguments may not function correctly if the string matches a member alias, use the function @ALIAS to pass member alias names as strings, for example when passing alias names as strings to functions such as @ISUDA, @UDA, @CONCATENATE, @SUBSTRING, @MATCH, or @NAME.
Example
For example, if the value "US$" is both an alias and a user-defined attribute, pass the string using @ALIAS:
Allocates values from a member, from a cross-dimensional member, or from a value across a member list. The allocation is based on a variety of criteria.
This function allocates values that are input at an upper level to lower-level members. The allocation is based upon a specified share or spread of another variable. For example, you can allocate values loaded to a parent member to all of that member's children. You can specify a rounding parameter for allocated values and account for rounding errors.
Syntax
Parameter | Description |
---|---|
amount | A value, member, or cross-dimensional member that contains the value to be allocated into allocationRange . The value may also be a constant.
If the amount parameter is a loaded value, it cannot be a Dynamic Calc member. |
allocationRange | A comma-delimited list of members, member set functions, or range functions, into which value(s) from amount are allocated. allocationRange should be from only one level (for example, @CHILDREN(Total Expenses) rather than from multiple levels (for example, @DESCENDANTS(Product)). |
basisMbr | A value, member, or cross-dimensional member that contains the values that provide the basis for the allocation. The method you specify determines how the basis data is used. |
roundMbr | Optional. The member or cross-dimensional member to which rounding errors are added. The member (or at least one member of a cross-dimensional member) must be included in allocationRange . |
method | The expression that determines how values are allocated. One of the following:
|
round | Optional. One of the following:
|
numDigits | An integer that represents the number of decimal places to round to. You must specify numDigits if you specify roundAmt .
If you specify roundAmt , you also can specify a roundErr parameter. |
roundErr | Optional. An expression that specifies where rounding errors should be placed. You must specify roundAmt in order to specify roundErr . If you do not specify roundErr , rounding errors are discarded. To specify roundErr , choose from one of the following:
|
Notes
Example
Consider the following example from the Sample Basic database. The example assumes that the Scenario dimension contains an additional member, PY Actual, for the prior year's actual expenses. Data values of 7000 and 8000 are loaded into Budget->Total Expenses for Jan and Feb, respectively. (For this example, assume that Total Expenses is not a Dynamic Calc member.)
You need to allocate values to each expense category (to each child of Total Expenses). The allocation for each of child of Total Expenses is based on the child's share of actual expenses for the prior year (PY Actual).:
This example produces the following report:
See Also
Returns the ancestor at the specified generation or level of the current member being calculated in the specified dimension. If you specify the optional mbrName , that ancestor is combined with the specified member.
This member set function can be used as a parameter of another function, where that parameter is a member or list of members.
Syntax
Parameter | Description |
---|---|
dimName | Single dimension name specification. |
genLevNum | An integer value that defines the generation or level number from which the ancestor value is returned. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination, that is crossed with the ancestor returned. |
Notes
Example
In the Sample Basic database:
See Also
Returns all ancestors of the specified member (mbrName) or those up to a specified generation or level. You can use this member set function as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination (or a function that returns a single member or member combination). |
genLevNum | Optional. An integer value that defines the absolute generation or level number up to which to select the members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. Level name or generation name up to which to select the members. |
Notes
Example
In the Sample Basic database:
returns East, Market (in that order).
returns Year.
returns 100, Product (in that order).
returns Margin, Profit (in that order).
See Also
Returns the ancestor values of a specified member combination.
Syntax
Parameter | Description |
---|---|
dimName | A single dimension name that defines the focus dimension of ancestor values. |
genLevNum | Integer value that defines the generation or level number from which the ancestor values are to be returned. A positive integer defines a generation reference. A negative number or value of 0 defines a level reference. |
mbrName | Optional. Any valid single member name or member combination (or a function that returns a single member or member combination). |
Example
In this example, SKU Share is derived by taking Sales in each SKU as a percentage of its product family. Families are at generation 2; therefore, each descendant of family is calculated as a percentage its respective ancestor. Consolidated results must be calculated for Sales by Product before the SKU Share calculation occurs.
This example produces the following report:
See Also
Lists all base members that are associated with the specified attribute member (attmbrName). This member set function can be used as a parameter of another function, where that parameter is a member or list of members.
Syntax
Parameter | Description |
---|---|
attMbrName | Single attribute member name. |
Notes
When @ATTRIBUTE is used with a non-level 0 member of an attribute dimension, Essbase returns all base members that are associated with the children of the attribute member. For example, in the Sample Basic database, @ATTRIBUTE(Large) returns all base members that fall into one of the population ranges for the attribute parent Large.
If you specify the name of a Boolean attribute dimension (for example, Caffeinated), Essbase returns all base members that are associated with either Caffeinated member (for example, True or False). To return only one, specify the member name (for example, @ATTRIBUTE(Caffeinated_True)).
You may have duplicate Boolean, date, and numeric attribute member names in your outline. For example, 12 can be the attribute value for the size (in ounces) of a product as well as the value for the number of packing units for a product. To distinguish duplicate member names, specify the full attribute member name (for example, @ATTRIBUTE(Ounces_12)).
The generated list of members is sorted in ascending order from the database outline. This order is important to consider when you use the @ATTRIBUTE member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database,
returns all base members with the Can attribute: Cola, Diet Cola, and Diet Cream.
Consider the following two calculation scripts, which are based on the Sample Basic database:
See Also
Returns, for the current member being calculated, the associated attribute value from the specified Boolean attribute dimension.
Syntax
Parameter | Description |
---|---|
attDimName | The name of a Boolean attribute dimension. |
Notes
Example
This example is based on the Sample Basic database.
The Product dimension is associated with the Caffeinated Boolean attribute dimension, as shown in the following example:
For the current member of the base dimension Product, the function @ATTRIBUTEBVAL(Caffeinated) returns the associated attribute value from the Boolean attribute dimension, Caffeinated. The following table shows the value that would be returned.
Current Member | Return Value |
---|---|
100-10 | True |
100-20 | True |
100-30 | False |
100 | #MISSING |
200-10 | True |
200-20 | True |
200-30 | False |
200-40 | False |
200 | #MISSING |
Product | #MISSING |
For any any member that does not have an associated attribute, #MISSING is returned. Only one value is returned at a time.
See Also
Returns, for the current member being calculated, the associated attribute value from the specified text attribute dimension.
Syntax
Parameter | Description |
---|---|
attDimName | The name of a text attribute dimension. |
Notes
Example
This example is based on the Sample Basic database.
The Product dimension is associated with the Pkg Type text attribute dimension, as shown in the following example:
For the current member of the base dimension, Product, the function
@ATTRIBUTESVAL("Pkg Type")
returns the associated attribute value from the text attribute dimension, Pkg Type. The following table shows the value that would be returned:
Current Member | Return Value |
---|---|
100-10 | Can |
100-20 | Can |
100-30 | Bottle |
100 | (empty string) |
200-10 | Bottle |
200-20 | Bottle |
200-30 | Bottle |
200-40 | Bottle |
200 | (empty string) |
Product | (empty string) |
For any member that does not have an associated attribute, an empty string is returned.
See Also
Returns, for the current member being calculated, the associated attribute value from the specified numeric or date attribute dimension.
Syntax
Parameter | Description |
---|---|
attDimName | Single dimension specification for a numeric or date attribute dimension. |
Notes
Example
Example 1
The following example is based on the Sample Basic database:
In this formula, for the current member being calculated, @ATTRIBUTEVAL returns the associated attribute from the Ounces numeric attribute dimension. For example, if the member being calculated is Cola and if the Ounces attribute value associated with Cola is 12, @ATTRIBUTEVAL returns 12. The value returned is then divided into Profit to yield Profit Per Ounce.
Note: | The @NAME function is required to process the string “Ounces” before passing it to the @ATTRIBUTEVAL function. |
This example produces the following report:
Example 2
The following MaxL execute calculation statement applies a formula to members that are 16 Oz products:
See Also
Returns the average of all values in expList .
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in the average operation regardless of their content. |
SKIPMISSING | Excludes all values that are #MISSING in the average operation. |
SKIPZERO | Excludes values of zero from the average calculation. |
SKIPBOTH | Excludes all values of zero or #MISSING from the average calculation. |
expList | Comma-delimited list of member names, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the average is calculated. |
Example
The following example is based on the Sample Basic database. The calculation averages the values for the individual states making up the western region and places the results in West:
This example produces the following report:
See Also
Returns the average value of the specified member (mbrName) across the specified range (XrangeList).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in the average operation regardless of their content. |
SKIPMISSING | Excludes all values that are #MISSING in the average operation. |
SKIPZERO | Excludes values of zero from the average calculation. |
SKIPBOTH | Excludes all values of zero or #MISSING from the average calculation. |
mbrName | Any valid single member or member combination. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
The @AVGRANGE function accepts the @ATTRIBUTE member set function as a member range.
Example
The following example is based on the Sample Basic database. The calculation script determines the average sales of Colas in the West.
This example produces the following report:
See Also
Returns a member set of all members whose name string value fall between, and are inclusive of, the two specified string tokens. Member names are evaluated alphanumerically.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
firstToken | First token string value with which to compare to members in the outline, starting with the member specified in topMbr . |
secondToken | Second token string value with which to compare to members in the outline, starting with the member specified in topMbr . |
topMbrInHierarchy | A fully qualified name of a member in the outline on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search. To search the entire outline, provide an empty string ("") for this parameter. For example, @BETWEEN("200-10","200-20", "") . |
Example
The following example is based on the following duplicate-name outline:
Returns the members [200].[200-10], [200].[200-20], [Diet].[200-10], and [Bottle].[200-10].
See Also
Enables the choice of an execution mode of a formula. @CALCMODE can control two types of modes:
Understanding Block Calculation and Cell Calculation Modes
Using block calculation mode, Essbase groups the cells within a block and simultaneously calculates the cells in each group. Block calculation mode is fast, but you must carefully consider data dependencies within the block to ensure that the resulting data is accurate.
Using cell calculation mode, Essbase calculates each cell sequentially, following the calculation order, which is based on the order of the dense dimensions in the outline. For more information on calculation order, see the Oracle Essbase Database Administrator's Guide .
Understanding Bottom-Up and Top-Down Calculation Modes
Essbase uses one of two methods to do a full calculation of an outline: bottom-up calculation (the default) or top-down calculation. If the outline contains a complex member formula, Essbase performs a top-down calculation for that member. When a formula is compiled, if the formula is to be calculated top-down, Essbase logs a message in the application log file.
For a bottom-up calculation, Essbase determines which existing data blocks need to be calculated before it calculates the database. Essbase then calculates only the blocks that need to be calculated during the full database calculation. The calculation begins with the lowest existing block number and works up through each subsequent block until the last existing block is reached.
In contrast, a top-down calculation calculates the formula on all potential datablocks with the member. A top-down calculation may be less efficient than a bottom-up calculation because more blocks may be calculated than is necessary. Although a top-down calculation is less efficient than a bottom-up calculation, in some cases top-down calculations are necessary to ensure that calculation results are correct. See Example 4 .
For more information about bottom-up and top-down calculation modes, see the Oracle Essbase Database Administrator's Guide .
Syntax
Parameter | Description |
---|---|
CELL | Turns on the cell calculation mode |
BLOCK | Turns on the block calculation mode |
TOPDOWN | Turns on the top-down calculation mode |
BOTTOMUP | Turns on the bottom-up calculation mode |
Notes
Cell and block modes are mutually exclusive. Top-down and bottom-up modes are mutually exclusive. Within one @CALCMODE specification, you can specify only one option. To specify both types of modes, perform the instruction twice; for example:
Knowing When Essbase uses Cell or Block Mode and Top-down or Bottom-up Mode
For all other formulas, Essbase uses block calculation mode by default.
You can also set CALCMODE BLOCK or CALCMODE BOTTOMUP at the Essbase server, application, or database level using the configuration setting CALCMODE.Understanding Data Dependency Issues With Block Calculation Mode
Data dependency occurs if the accurate calculation of one or more members depends on another member or other on members being calculated previously. Most data dependency issues with block calculation mode occur when a formula contains IF ELSE or IF ELSEIF conditions. However, data dependencies can occur in other formulas; for example, when using the @PRIOR function.
Data Dependency Issues With IF ELSE and IF ELSEIF
When Essbase uses block calculation mode to calculate a formula that contains IF ELSE or IF ELSEIF conditions, it separates the members being calculated into two groups. The first group contains the members that satisfy the IF condition. The second group contains the members that satisfy the ELSE or ELSEIF conditions.
Essbase simultaneously calculates the members in the first group before simultaneously calculating the members in the second group. See Example 1 .
If a formula contains data dependencies, ensure that the following conditions are met:
If an IF condition has multiple ELSEIF conditions, Essbase evaluates each ELSEIF condition, placing the members that satisfy the ELSEIF condition in the first group and the members that satisfy subsequent ELSEIF or ELSE conditions in the second group. See Example 2 .
Understanding Other Data Dependency Issues
Data dependencies can occur in formulas that do not contain IF ELSE conditions. See Example 3 for an example of data dependency in a formula containing the @PRIOR function.
You can also set CALCMODE BLOCK or CALCMODE BOTTOMUP at the Essbase server, application, or database level using the configuration setting CALCMODE.
Example
Example 1, Example 2, and Example 3 illustrate use of the BLOCK and CELL options of the @CALCMODE function. Example 4 illustrates use of the BOTTOMUP and TOPDOWN options.
Consider a database with two dense dimensions, Time and Accounts. The following formula is placed on the Budget Sales member of the Accounts dimension. Because this is a formula containing @ISMBR applied to a dense member (Budget Sales), by default Essbase uses cell calculation mode. Use the @CALCMODE (BLOCK) function to specify block calculation mode for this formula.
According to the above formula, we expect that if the member being calculated is Feb, the Budget Sales value is 100. If the member being calculated is not Feb, the Budget Sales value is 100+10 (the value for Feb + 10).
Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb and Mar, as follows:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Budget Sales | 10 | 20 | 30 |
Using block calculation mode, Essbase calculates the members satisfying the IF condition first. In this example, Feb is the only member that satisfies the IF condition. After calculating Feb, Essbase calculates the members Jan and Mar. In this example, the results are as expected:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Budget Sales | 110 | 100 | 110 |
Now consider the same database as in Example 1, but we place the following formula on the Budget Sales member of the Accounts dimension. As in Example 1, because this is a formula containing @ISMBR applied to a dense dimension member (Budget Sales), by default Essbase uses cell calculation mode. However, we use the @CALCMODE (BLOCK) function to specify the block calculation mode for this formula.
According to this formula, we want the Jan and Mar Budget Sales values to be calculated based on the Feb Budget Sales value, which is 100. We want to see the following results:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Budget Sales | 110 | 100 | 120 |
Assume that we load the values 10, 20, and 30 into the Budget Sales data block for Jan, Feb, and Mar, as follows:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Budget Sales | 10 | 20 | 30 |
Using block calculation mode, Essbase calculates the members satisfying the IF condition first, followed by the members satisfying the ELSEIF condition, followed by the members satisfying the ELSE condition. In this example, Essbase calculates the members in the following order: Mar, Jan, Feb. The results are not what we want, because the calculation of Jan and Mar is dependent on the calculation of Feb and Feb is calculated after Jan and Mar. The inaccurate results are as follows:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Budget Sales | 30 | 100 | 40 |
To achieve the desired results, use the @CALCMODE (CELL) function.
The following formula calculates the members Opening Inventory and Ending Inventory using the @PRIOR function. There is a data dependency between Opening Inventory and Ending Inventory. The formula is placed on the Opening Inventory member. The example shows the results for January, February, and March.
Before the calculation, there is no data for these members (the data is #MISSING or #MI):
(axis) | Jan | Feb | Mar |
---|---|---|---|
Opening Inventory | #MI | #MI | #MI |
Ending Inventory | #MI | #MI | #MI |
Using block calculation mode, Essbase calculates the members simultaneously, taking the previous month's Ending Inventory #MISSING value as 0 for all member combinations and adding 10. This is not the desired result.
(axis) | Jan | Feb | Mar |
---|---|---|---|
Opening Inventory | 10 | 10 | 10 |
Ending Inventory | 10 | 10 | 10 |
The following formula on the Opening Inventory member causes Essbase to use cell calculation mode (the default for formulas containing the @PRIOR function):
The results are as follows:
(axis) | Jan | Feb | Mar |
---|---|---|---|
Opening Inventory | 10 | 20 | 30 |
Ending Inventory | 10 | 20 | 30 |
Depending on the formula and the structure of the data, calculating a formula top-down versus bottom-up may involve two issues: performance (reflecting the number of calculations that must be made) and accuracy. This example compares calculation results to illustrate both of these issues.
Before the calculation, assume that Actual and Budget are members of a dense dimension and they contain the following data:
(axis) | Cola | New York Sales |
---|---|---|
(axis) | Actual | Budget |
Jan | #MISSING | 50 |
Feb | 200 | #MISSING |
Mar | 400 | 450 |
The following formula is calculated bottom-up.
In a bottom-up calculation, Essbase executes formulas only from existing data blocks. Therefore, only two values—Jan and Mar—are calculated, based on existing combinations of Budget.
(axis) | Cola | New York Sales | (Comment) |
---|---|---|---|
(axis) | Actual | Budget | |
Jan | #MISSING | #MISSING | (#MISSING*1.10) |
Feb | 200 | #MISSING | (No calculation is performed) |
Mar | 400 | 440 | (400*1.10) |
The following formula is calculated top-down.
In a top-down calculation, Essbase materializes every potential data block that is relevant to the calculation, and executes formulas in those blocks. Therefore, all three values—Jan, Feb, and Mar—are calculated, based on all potential combinations of Budget. The results are:
(axis) | Cola | New York Sales | (Comment) |
---|---|---|---|
(axis) | Actual | Budget | |
Jan | #MISSING | #MISSING | (#MISSING*1.10) |
Feb | 200 | 220 | (200*1.10) |
Mar | 400 | 440 | (400*1.10) |
See Also
Returns all children of the specified member, excluding the specified member. This member set function can be used as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
Essbase sorts the child members in ascending order. Using Sample Basic as an example, if you specify 100 for mbrName , Essbase returns 100-10, 100-20, 100-30 (in that order). This order is important to consider when you use the @CHILDREN member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
returns East, West, South, and Central (in that order).
returns Sales and COGS (in that order).
See Also
Compiles the proceeds of a compound interest calculation. The calculation is based on the balances of the specified member at the specified rate across the specified range.
Syntax
Parameter | Description |
---|---|
balanceMbr | Single member specification representing the beginning balance across a range of periods. The input can be either one deposit or a series of deposits. If balanceMbr is a constant, then Essbase assumes balanceMbr to be a single deposit in the first member of rangeList . This is equivalent to entering the constant value in the first member in the rangeList followed by zeros. The function keeps track of each deposit separately, but returns a composite value. If balanceMbr is a member, or a range, then it is assumed to be a series of deposits. |
rateMbrConst | Single member specification, variable name, or numeric expression in decimal form. This represents the interest rate per time period specified in the rangeList . If your interest is compounded monthly, this value would be the annual interest rate divided by 12. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. rangeList represents the range over which the interest is compounded. The last value in the range is the total compounded interest for that range. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
The following example determines the compound interest of a series of deposits, based on a credit rate of 0.0525, across a series of fiscal years:
This example produces the following report:
See Also
Calculates a series of values that represents a compound growth of values (the first nonzero value in the specified member across the specified range of members) across time.
The growth factor is calculated by multiplying the growth rate in the current time period by the previous period's result, yielding a compounded value. You can change the growth rate from period to period by placing a nonzero value in the current period's rateMbrConst cell.
Syntax
Parameter | Description |
---|---|
principalMbr | Member specification representing the initial value to be compounded. The input line must be a single deposit. |
rateMbrConst | Single member specification, variable name, or expression which provides a constant value. This value can change across rangeList , making the new value be the new compound rate. If the value in the current period is zero, the compound rate is equal to zero, and the principal does not change. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
The following example determines the compound growth of Principal Amount based on Growth Rate across a series of fiscal years.
This example produces the following report:
See Also
Returns one character string that is the result of appending one character string (String2) to the end of another character string (String1).
The @CONCATENATE function can be nested to concatenate more than two strings (See Example 2 (@CONCATENATE)).
Syntax
Parameter | Description |
---|---|
String1 | A string or a function that returns a string |
String2 | A string or a function that returns a string |
Notes
Example
The following examples are based on the Sample Basic database:
Example 1 (@CONCATENATE)
The following function statement puts the string Item in front of the name of the member currently being processed in the Product dimension; for example, if the current member being calculated is 100-10, the result is Item100-10:
To concatenate more than two strings, you can nest multiple instances of the @CONCATENATE function. The following function statement returns string values starting with the current member of the Year dimension, followed by an underscore, followed by the current member of the Measures dimension; for example, if the current members being calculated are Qtr1 and Sales, the result is Qtr1_Sales:
See Also
Returns the correlation coefficient between two parallel data sets (expList1 and expList2). The correlation coefficient determines the relationship between two data sets.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList1 and expList2 , regardless of their content, during calculation of the correlation coefficient. |
SKIPMISSING | Excludes all #MISSING values from expList1 and expList2 during calculation of the correlation coefficient. |
SKIPZERO | Excludes all zero (0) values from expList1 and expList2 during calculation of the correlation coefficient. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList1 and expList2 during calculation of the correlation coefficient. |
expList1 | The first list of member specifications, variable names, functions, or other numeric expressions. |
expList2 | The second list of member specifications, variable names, functions, or other numeric expressions. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Sales Correl. The calculation script calculates the correlation coefficient for a set of members (Sales for the children of Qtr1 and Qtr2). Because the calculation script fixes on Jun, the results are placed in Sales Correl->Jun.
This example uses the @RANGE function to generate expList1 and expList2 :
This example produces the following report:
See Also
Returns the number of data values in the specified data set (expList).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the count. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the count. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the count. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the count. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. |
Notes
The @COUNT function always returns an integer greater than or equal to 0.
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Prod Count. This example calculates the count of all products for which a data value exists and uses the @RANGE function to generate expList :
This example produces the following report. Since SKIPMISSING is specified in the calculation script, the #MI values for Diet Drinks are skipped during the product count.
See Also
Creates a block or blocks for a sparse member name or a sparse member combination, and sets dense values in the newly created block to #MISSING.
Sometimes, new blocks are not desired; for example, when they contain no other values. In large databases, creation and processing of unneeded blocks can increase processing time and storage requirements.
This advanced-level function can help you use bottom-up calculation to achieve faster performance. It is useful for generating empty target blocks that can then be traversed during bottom-up processing, and populated with data at that time. It is most useful in those situations where blocks are not automatically created by the calculator; for example, during processing of a dense formula where the target blocks are from a different, sparse dimension.
Whereas the allocation functions (@ALLOCATE and @MDALLOCATE) also create the necessary target blocks, those functions are intended specifically for allocating values. The purpose of @CREATEBLOCK is only to enable rapid block creation, without reading or writing data.
Note: | The DATACOPY calculation command also creates blocks on demand. |
Syntax
Parameter | Description |
---|---|
mbrName | Any single, sparse member name or a sparse member combination or a function that returns a single member, member list or member combination. For example:
|
Notes
Example
The following calculation script example uses the Sample.Basic database, but assumes that only the 100-10 and New York block is loaded. The member formula for Sales is @CREATEBLOCK("100").
The script creates all possible sparse blocks matching the FIX…ENDFIX statement. In this case, only the block "100"->"New York" is created.
In the following calculation script example, @CREATEBLOCK is not used in any member formula, so it must be assigned in the script using Member =.
The existing value for Budget member in the current processing block is unchanged, because @CREATEBLOCK does not return a value (see first Note).
See Also
Returns the generation number of the current member combination for the specified dimension. This number represents the number of members separating the current member from the top-most member of the dimension.
Syntax
Parameter | Description |
---|---|
dimName | Single dimension name specification. dimName must be the name of the top-most member of the dimension. It cannot be another member name from within the dimension. |
Notes
Example
Given the following database structure:
@CURGEN provides the following results for the members shown:
See Also
Returns the level number of the current member combination for the specified dimension. This number represents the number of members that separates the current member from its bottom-most descendant.
Syntax
Parameter | Description |
---|---|
dimName | Single dimension name specification. dimName must be the name of the top-most member of the dimension. It cannot be another member name from within the dimension. |
Notes
Example
Given the following database structure:
@CURLEV provides the following results for the members shown:
See Also
Returns the member that is currently being calculated in the specified dimension (dimName). This function can be used as a parameter of another function, where that parameter is a single member or a list of members.
Syntax
Parameter | Description |
---|---|
dimName | A single dimension name. |
Notes
Example
In the Sample Basic database,
returns Jan if the current member of Year being calculated is Jan.
As a more complex example, consider the following formula in the context of the Sample Basic database. Assume that the Measures dimension contains an additional member, Average Sales.
This formula populates each upper-level member of the Product dimension (100, 200) at Average Sales. To calculate Average Sales, the Sales values for the level 0 members of Product are averaged and placed in their respective parent members. The Average Sales values for the level 0 Product members are the same as the Sales values, as specified by the IF statement in the calculation script.
This example produces the following report:
See Also
Generates a member list that is based on the relative position of the current member being calculated.
Syntax
Parameter | Description |
---|---|
dimName | Name of the dimension for which you want to return the range list. |
GEN|LEV | Defines whether the range list to be returned is based on a generation or a level within the dimension. |
genLevNum | Integer value that defines the absolute generation or level number of the range list to be returned. |
startOffset | Defines the first member in the range to be returned.
|
endOffset | Defines the last member in the range to be returned.
|
Notes
Example
Example 1
Average Inventory is calculated by summing opening inventories from the first month of the year to the current period plus one period, and dividing the result by the number of periods to date plus one period. This calculation is accomplished by defining the @CURRMBRRANGE function within the rangeList parameter of the @AVGRANGE function.
This example produces the following result:
Since a null value is specified for startOffset , the average operations always begin at the first member of the range list, Jan. The endOffset parameter, 1, specifies that the member after the current member being calculated is included in each average operation. So, for Average Inventory->Jan, the values for Jan and Feb are averaged; for <Average Inventory->Feb, the values for Jan, Feb, and Mar are averaged; and so on. The values for Nov and Dec are the same since there is no member after Dec in the range list.
Example 2
Inventory Turnover is calculated by summing period-to-date Sales and dividing the result by the Average Inventory.
which produces the following result:
Example 3
Consider the following formula:
The full range list contains the members of the Year dimension at a particular level. The level is determined by taking the level of the current member being calculated. For example, if the current member being calculated is Jan, the full range list contains all level 0 members of Year dimension (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). The startOffset and endOffset parameters reduce this list to (Jan, Feb). As there is no member prior to Jan in the full range list, only two members are returned: Jan and Feb. If the current member being calculated is Feb, the subset list includes three members: Jan, Feb, Mar.
Note: | The usage demonstrated by this example would require RTDEPCALCOPTIMIZE to be set to FALSE. |
See Also
Returns the difference (number) between two input dates in terms of the specified date-parts, following a standard Gregorian calendar.
Syntax
Parameter | Description |
---|---|
date1 | A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following functions: @TODAY, @TODATEEX, @DATEROLL. Date-time attribute properties of a member can also be used to retrieve this number. For example, @AttributeVal("Intro Date"); returns the product introduction date for the current product in context. |
date2 | A second input date. See date1 . |
date_part | Defined using the following rule: date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY | DP_DAYOFYEAR | DP_WEEKDAY Defined time components as per the standard calendar:
|
Notes
Based on the input date_part , the difference between the two input dates is counted in terms of time component specified.
Example: For input dates June 14, 2005 and Oct 10, 2006,
Example
Assume the outline has two date type members, MyDate1 and MyDate2.
See Also
This function returns the Year/Quarter/Month/Week/Day/DayOfYear/Weekday as a number, given the input date and a date part, following the standard Gregorian calendar.
Syntax
Parameter | Description |
---|---|
date | A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following functions: @TODAY, @TODATEEX, @DATEROLL. Date-time attribute properties of a member can also be used to retrieve this number. For example, @AttributeVal("Intro Date"); returns the product introduction date for the current product in context. |
date_part_ex | Defined using the following rule: date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY | DP_DAYOFYEAR | DP_WEEKDAY Defined time components as per the standard calendar:
|
Notes
Based on the requested time component, the output is as follows:
Example: For June 14, 2005,
DP_YEAR returns 2005 (the year member, in yyyy format).
DP_QUARTER returns 2 (Second quarter of the year)
DP_MONTH returns 6 (Sixth month of the year)
DP_WEEK returns 24 (24th week of the year)
DP_WEEKDAY returns 4 (for Wednesday. Sunday = 1)
DP_DAYOFYEAR returns 165 (165th day of the year)
DP_DAY returns 14 (14th day of the month)
Example
Assume the outline has two date type members, MyDate1 and MyDate2.
See Also
To the given date, rolls (adds or subtracts) a number of specific time intervals, returning another date. This function assumes a standard Gregorian calendar.
Syntax
Parameter | Description |
---|---|
date | A number representing the date between January 1, 1970 and Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use either of the following functions: @TODAY, @TODATEEX. Date-time attribute properties of a member can also be used to retrieve this number. For example, @AttributeVal("Intro Date"); returns the product introduction date for the current product in context. |
date_part | Defined using the following rule: date_part_ex ::= DP_YEAR | DP_QUARTER |DP_MONTH | DP_WEEK | DP_DAY | DP_DAYOFYEAR | DP_WEEKDAY Defined time components as per the standard calendar:
|
number | Number of time intervals to add or subtract. |
Notes
Based on input date_part and dateroll number , the date is moved forward or backward in time.
Example: For input date June 14, 2005 and input dateroll number 5,
Example
Assume the outline has two date type members, MyDate1 and MyDate2.
See Also
Calculates the depreciation of an asset for the specified period using the declining balance method. The factor by which the declining balance depreciates the assets is specified using factorMbrConst . For example, to calculate a double declining balance, set factorMbrConst to 2.
Syntax
Parameter | Description |
---|---|
costMbr | Single member specification representing the starting values of the assets. More than one asset can be input and depreciated across the specified range. The function calculates each asset separately. |
salvageMbrConst | Single member specification, variable name, or numeric expression that provides a constant value. This value represents the value of the asset at the end of the depreciation. |
lifeMbrConst | Single member specification, variable name, or numeric expression that provides a constant value. The value represents the number of periods over which the asset is depreciated. |
factorMbrConst | Single member specification, variable name, or numeric expression that provides a constant value. The value represents the factor by which the asset is depreciated. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. The range represents the periods over which the function is calculated. More than one asset can be depreciated. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
The following example calculates the depreciation of Asset for the specified series of fiscal years.
This example produces the following report:
See Also
Returns all descendants of the specified member, or those down to the specified generation or level. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
genLevNum | Optional. An integer value that defines the absolute generation or level number down to which to select the members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. Level name or generation name down to which to select the members. |
Notes
Example
In the Sample Basic database:
@DESCENDANTS(East)
returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order).
@DESCENDANTS(Profit)
returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order).
@DESCENDANTS(Market,2)
returns East, West, South, and Central (in that order).
@DESCENDANTS(Diet,0)
returns 100-20, 200-20, and 300-30 (in that order).
See Also
Calculates a value discounted by the specified rate, from the first period of the range to the period in which the amount to discount is found. The answer is returned in the same period. More than one value can be discounted simultaneously in this manner.
Syntax
Parameter | Description |
---|---|
cashMbr | Member specification representing the value you want to discount from the last period in rangeList to the current period. |
rateMbrConst | Member specification, variable name, or numeric expression which provides a constant value. The value represents the rate per period which cashMbr is discounted. It is a decimal value, not a percent. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
The following example discounts the values in Cash by the rates in Credit Rate and places the results in Discount Amount for each fiscal year.
This example produces the following report:
Returns the internal numeric value for a text value in a text list.
Syntax
Parameter | Description |
---|---|
enum_string | String of the format text_list_name . char_string_literal , where:
|
Example
The following example is based on a variation of ASOSamp.Sample. Assume there is a text list named CustSatRatings, in which text values are mapped to numeric IDs as follows: Good=1, Average=2, Poor=3.
returns 1 .
Returns a member set of member names that match the specified token name.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
tokenName | Token string value, representing the name of a member, with which to compare to members in the outline, starting with member specified in topMbrinHierarchy . The specified token name must not be qualified for duplicate members. |
topMbrinHierarchy | A fully qualified name of a member in the outline on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search. To search the entire outline, provide an empty string ("") for this parameter. For example, @EQUAL("100-10", "") . |
Example
The following examples are based on the following duplicate-name outline:
Returns the members [Diet].[100-10] and [100].[100-10].
Returns the member [Diet].[100-10].
See Also
Returns the exponent of a specified expression; that is, the value of e (the base of natural logarithms) raised to the power of the specified expression.
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, function, or other numeric expression. If less than -700 or greater than 700, Essbase returns #MISSING . |
Example
The following example is based on a variation of Sample Basic:
This example produces the following result:
See Also
Expands a member search by calling a member set function for each member in a member list. The members returned by the @EXPAND function are added to the existing member set. Duplicate members are not removed from the member set.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
mbrSetFunction | One of the following member set functions, which return a list of members:
|
mbrList | A comma-delimited list of members grouped together using @LIST or a member set function (such as @DESCENDANTS) that returns a list of members. |
genLevNum | Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS, @DESCENDANTS, or @IDESCENDANTS for mbrSetFunction . The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
LAYERONLY | Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS, @DESCENDANTS, or @IDESCENDANTS for mbrSetFunction . Returns only those members at the specified generation or level (genLevNum) that match the selection criteria. If you specify this argument, you must specify genLevNum . |
ALL | Optional: This argument applies only if you specify @ANCESTORS, @IANCESTORS, @DESCENDANTS, or @IDESCENDANTS for mbrSetFunction . Returns all of the members that match the member selection criteria, starting with the specified top member (topMbrinHierarchy). If you specify this argument, you must specify topMbrinHierarchy . |
topMbrinHierarchy | Optional: This argument applies only if you specify @EQUAL for mbrSetFunction . A fully qualified member name on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search. If you specify @EQUAL for mbrSetFunction , and you do not specify topMbrinHierarchy , Essbase searches the entire outline. |
Example
The following examples are based on the following duplicate-name outline:
Returns all of the members under the Product dimension that are at level 1, which are [100].[100-10], [Product].[200], [Product].[300], [Diet].[100-10], and [Product].[Bottle].
Essbase first executes the inner @EXPAND function— @EXPAND("@CHILDREN", @LIST("[product].[100]", "[product].[200]")) —which expands the member list to include all of the children of members 100 and 200 (a total of six members). Then Essbase executes the outer @EXPAND function, which searches the Product hierarchy for a match with any of the six members.
See Also
Returns the factorial of expression . The factorial of a number is equal to 1*2*3*...* number.
Syntax
Parameter | Description |
---|---|
expression | Single member specification or numeric expression. |
Notes
Example
See Also
Returns a formatted date-string.
Syntax
Parameter | Description |
---|---|
<date> | A number representing the input date between January 1, 1970 and Dec 31, 2037. The number is the number of seconds elapsed since midnight, January 1, 1970. To retrieve this number, use any of the following functions: @TODAY, @TODATEEX, @DATEROLL. Date-time attribute properties of a member can also be used to retrieve this number. For example, @AttributeVal("Intro Date"); returns the product introduction date for the current product in context. |
date_format_string | One of the following literal strings (excluding ordered-list numbers and parenthetical examples) indicating a supported date format.
|
Notes
Example
Assume the outline has a date type member MyDate1.
See Also
Returns the generation number of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns 1 .
Returns 2 .
See Also
Returns all members with the specified generation number or generation name in the specified dimension.
Syntax
Parameter | Description |
---|---|
dimName | A single dimension name specification. |
genName|genNum | Generation name or generation number from dimName . A positive integer defines a generation number. |
Notes
Example
In the Sample Basic database:
both return the following members since generation 3 of the Year dimension is named Month:
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec (in that order).
The following example restricts the calculation to members with the combination Budget and one of the members of the Market dimension with a generation name of State.
See Also
Calculates a series of values that represent a linear growth of the first nonzero value encountered in principalMbr across the specified rangeList . Growth is calculated by multiplying the growth rate in rateMbrConst by the original principalMbr . This value is then added to the previous time period's result, yielding the new value.
Syntax
Parameter | Description |
---|---|
principalMbr | Single member specification that represents the initial value of the value to grow. The first nonzero value encountered is the initial value. Other principalMbr values after the first are ignored. |
rateMbrConst | Single member specification, variable name, or numeric expression providing a constant value that represents the decimal growth rate to be applied (for example, 10% = .1). |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
The following example calculates the growth of Principal Amount, using the rate found in Growth Rate for each fiscal year. The results are placed in Growth Amount.
This example produces the following report:
See Also
Returns the specified member and all the ancestors of that member, including ancestors of any occurrences of the specified member as a shared member. You can use this member set function as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | A valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
Essbase sorts the generated list of members in ascending order of the member number in the outline. Using Sample Basic as an example, if you specify 100-20 for mbrName , Essbase returns 100-20, 100, Diet, Product (in that order). However, the order in which shared ancestors are returned is not guaranteed. This order is important to consider when you use the @IALLANCESTORS member set function with certain forecasting and statistical functions.
Example
The following example is based on the Sample Basic database. Sample Basic has a shared level of diet drinks, which includes 100-20 (Diet Cola). So 100-20 (Diet Cola) is a descendant of 100 (Colas) and is a shared member descendant of Diet:
The following calculation script increases by 5% the Budget Sales values of 100-20 and all its ancestors, including Diet:
This example produces the following report. This report shows that the Budget->Sales values for 100-20, 100, Diet, and Product (100-20 and its ancestors) have been increased by 5%. The original values were 2610, 8980, 8260, and 28480, respectively.
See Also
Returns the specified member and either all ancestors of the member or all ancestors up to the specified generation or level.
Essbase sorts the generated list of members—starting with the specified member, followed by the nearest ancestor of the member, followed by the next nearest ancestor of the member, and so on. In the Sample.Basic database, if you specify @IANCESTORS(200-30) , Essbase returns 200-30, 200, Product (in that order). When using the @IANCESTORS function with certain forecasting and statistical functions, you must consider order.
You can use the @IANCESTORS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member-name combination or a function that returns one member or member combination. |
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. The level or generation name up to which to select members. |
Example
All examples are from the Sample.Basic database.
@IANCESTORS("New York")
Returns New York, East, Market (in that order).
@IANCESTORS(Qtr4)
Returns Qtr4, Year (in that order).
@IANCESTORS(Sales,-2)
Returns Sales, Margin, Profit (in that order). Members higher than level 2 are not returned.
@IANCESTORS("100-10",1)
Returns 100-10, 100, Product (in that order). All ancestors are returned up to generation 1.
See Also
Returns the specified member and all of its children. This member set function can be used as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
Essbase sorts the generated list of members starting with the specified member, followed by its children in ascending order. Using Sample Basic as an example, if you specify 100 for mbrName , Essbase returns 100, 100-10, 100-20, 100-30 (in that order). This order is important to consider when you use the @ICHILDREN member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
Returns Market, East, West, South, and Central (in that order).
Returns Margin, Sales, and COGS (in that order).
See Also
Returns the specified member and either all descendants of the member or all descendants down to the specified generation or level.
Essbase sorts the generated list of members—starting with the specified member, followed by the nearest descendant of the member, followed by the next nearest descendant of the member, and so on. In the Sample.Basic database, if you specify @IDESCENDANTS(100) , Essbase returns 100, 100-10, 100-20, 100-30 (in that order). When using the @IDESCENDANTS function with certain forecasting and statistical functions, you must consider order.
You can use the @IDESCENDANTS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member-name combination or a function that returns one member or member combination. |
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. The level or generation name up to which to select members. |
Example
All examples are from the Sample.Basic database.
@IDESCENDANTS(East)
Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order).
@IDESCENDANTS(Profit)
Returns Profit, Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order).
@IDESCENDANTS(Market,2)
Returns Market, East, West, South, and Central (in that order).
@IDESCENDANTS(South,-1)
Returns South.
See Also
Returns the members of the specified member list and either all ancestors of the members or all ancestors up to the specified generation or level.
You can use the @ILANCESTORS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description | ||
---|---|---|---|
memberSetFunction | A member set function that returns a list of members. How the @ILANCESTORS function is used determines which member set functions are allowed. Follow these guidelines:
| ||
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
Example
All examples are from the Sample.Basic database.
Returns 100-10 (a specified member); 100 and Product (the ancestors of 100-10); 200-20 (a specified member); and 200 (the ancestor of 200–20). The result does not contain duplicate members.
Returns 100 and 100-10 (the specified members); and Product (the ancestor of 100 and 100-10). The result does not contain duplicate members.
Returns 100, Product, and 200 (the specified members). The result does not contain duplicate members.
Returns Nevada (a member that is assigned the New Market UDA) and West (the ancestor to generation 2 for Nevada); Louisiana (a member that is assigned the New Market UDA) and South (the ancestor to generation 2 for Louisiana); and Colorado (a member that is assigned the New Market UDA) and Central (the ancestor to generation 2 for Colorado).
Returns 100-10, 100-20, 200-10, and 300-30 (caffeinated, 12-ounce drinks); and 200-40 (the specified member), and 100, 200, 300, and Product (the ancestors of the members).
See Also
Returns the members of the specified member list and either all descendants of the members or all descendents down to the specified generation or level.
You can use the @ILDESCENDANTS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description | ||
---|---|---|---|
memberSetFunction | A member set function that returns a list of members. How the @ILDESCENDANTS function is used determines which member set functions are allowed. Follow these guidelines:
| ||
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
Example
All examples are from the Sample.Basic database.
Returns 100 (a specified member); 100-10, 100-20, 100-30 (the descendants of 100); 200 (a specified member); and 200-10, 200-20, 200-30, and 200-40 (the descendants of 200); 300 (a specified member); and 300-10, 300-20, 300-30 (the descendants of 300).
Returns Market (the specified member); and East, West, South, and Central (the descendants of Market to level 1).
Returns East (a specified member); New York, Massachusetts, Florida, Connecticut, and New Hampshire (the descendants of East); Central (a specified member); Illinois, Ohio, Wisconsin, Missouri, Iowa, and Colorado (the descendants of Central); California and Texas (specified members, which do not have descendants).
Returns 100-10, 100-20, 200-10, 300-30 (caffeinated, 12-ounce drinks); and 200-40 (a specified member). None of these members have descendants.
See Also
Returns the specified member and its left siblings.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
This function returns the specified member and all of the left siblings of the member. Left siblings are children that share the same parent as the member and that precede the member in the database outline.
This member set function can be used as a parameter of another function, where that parameter is a list of members.
Essbase sorts the generated list of members starting with the left siblings of the member (that is, siblings appearing above the member in the database outline) in ascending order. Using Sample Basic as an example, if you specify 200-30 for mbrName , Essbase returns 200-10, 200-20, 200-30 (in that order). This order is important to consider when you use the @ILSIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
Returns New York, Massachusetts, and Florida (in that order). New York and Massachusetts appear above Florida in the Sample Basic outline.
Returns Qtr1, Qtr2, and Qtr3 (in that order). Qtr1 and Qtr2 appear above Qtr3 in the Sample Basic outline.
See Also
Returns the next lowest integer value of expression .
Syntax
Parameter | Description |
---|---|
expression | Member specification or mathematical expression that generates a numeric value. |
Example
The following example is based on the Sample Basic database. Assume that the Profit % member is not tagged as Dynamic Calc.
The following formula rounds the values for West down to the nearest integer.
This example produces the following report:
See Also
Calculates the simple interest in balanceMbr at the rate specified by creditrateMbrConst if the value specified by balanceMbr is positive, or at the rate specified by borrowrateMbrConst if balanceMbr is negative. The interest is calculated for each time period specified by rangeList .
Syntax
Parameter | Description |
---|---|
balanceMbr | Single member specification representing the balance at the time the interest is calculated. |
creditrateMbrConst | Single member specification, variable name, or numeric expression providing a constant value. The value must be a decimal number that corresponds to a percentage. The value represents the per-period interest rate. |
borrowrateMbrConst | Single member specification, variable name, or numeric expression providing a constant value. The value must be a decimal number corresponding to a percentage value. The value represents the per-period interest rate. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
This example calculates the interest for Balance, using Credit Rate for positive balances and using Borrow Rate for negative balances. The results are placed in Interest Amount for each fiscal year.
This example produces the following report:
See Also
Returns the intersection of members that appear in two specified lists of members.
Syntax
Parameter | Description |
---|---|
list1 | The first list of members. |
list2 | The second list of members. |
Notes
This function treats shared members as distinct from their base members; therefore, they do not intersect.
Example
The following examples use the Sample.Basic database.
@INTERSECT(@CHILDREN("100"), @ATTRIBUTE(Can)) returns 100-10 and 100-20 .
@INTERSECT(@CHILDREN("Colas"), @CHILDREN("Diet Drinks"); returns an empty set, because shared members are considered distinct from their base members.
@INTERSECT expression evaluates to an empty set; therefore, the FIX statement sets all the values of Sales to 500.
See Also
Returns the specified member and all its descendants, or all descendants down to a specified generation or level, including descendants of any occurrences of the specified member as a shared member.
You can use this member set function as a parameter of another function, where that parameter is a list of members. In the absence of shared members, @IRDESCENDANTS and @IDESCENDANTS have identical behavior.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination |
genLevNum | Optional. An integer value that defines the absolute generation or level number down to which to select the members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. Level name or generation name down to which to select the members. |
Notes
Example
Example 1
Assume a variation of the Sample Basic database such that the Product dimension includes the following members:
Diet has two children "100" and "200" instead of "100-10", "200-20" and "300-30". The members "100" and "200" are shared members.
@IRDESCENDANTS(Diet)
Returns the members: Diet, 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40 (in that order).
Example 2
@IRDESCENDANTS(East)
Returns East, New York, Massachusetts, Florida, Connecticut, and New Hampshire (in that order) and is exactly the same as @IDESCENDANTS(East).
See Also
Calculates the Internal Rate of Return on a cash flow that must contain at least one investment (negative) and one income (positive) value.
Also see @IRREX .
Syntax
Parameter | Description |
---|---|
cashflowMbr | Single member specification. |
discountFlag | Member specification, variable name, or numeric expression providing a constant value of either 1 or 0. discountFlag indicates whether the function should discount from the first period. 1 means do not discount from the first period. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Example
This example calculates the Internal Rate of Return (Return) on a cash flow (Cash).
This example produces the following report:
Calculates the Internal Rate of Return on a cash flow that must contain at least one investment (negative) and one income (positive) value. Includes functionality to configure the initial guess and the number of iterations the algorithm can make.
@IRREX is an extension of @IRR , in which the initial guess of 0.07 cannot be changed.
Syntax
Parameter | Description |
---|---|
cashflowMbr | Single member specification. |
discountFlag | Member specification, variable name, or numeric expression providing a constant value of either 1 or 0. Indicates whether the function should discount from the first period. 0 means discount from the first period, and 1 means do not discount from the first period. |
guess | Optional. The starting guess for estimated IRR. If not specified, the default guess of 0.07 is used. |
number_of_iteration | Optional. The number of iterations the Newton Raphson algorithm will loop through. (Newton Raphson is the mathematical method used for finding the IRR using the IRREX function.) The default value is 300. |
STORECALCVALUE | STOREMISSING | Optional. STORECALCVALUE tells Essbase to always store the calculated value even when the IRR calculation returns ‘false’ results. This is the default. Optional. STOREMISSING tells Essbase to store #MISSING value when the IRR calculation returns false results after the specified number of iterations. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Example
The starting guess is 0.02 (2%). @IRREX iterates 500 times, and stores #MISSING if the solution does not converge.
The starting guess and iteration values are omitted (NULL). Note: The commas (,) are required even when passing null arguments.
Returns the specified member and its right siblings.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
This function returns the specified member and all of the right siblings of the specified member. Right siblings are children that share the same parent as the member and that follow the member in the database outline.
This member set function can be used as a parameter of another function, where that parameter is a list of members.
Essbase sorts the generated list of members starting with the specified member, followed by the right siblings of the member (that is, siblings appearing below the member in the database outline) in ascending order. Using Sample Basic as an example, if you specify 200-20 for mbrName , Essbase returns 200-20, 200-30, 200-40 (in that order). This order is important to consider when you use the @IRSIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
Returns Florida, Connecticut, and New Hampshire (in that order). Connecticut and New Hampshire appear below Florida in the Sample Basic outline.
Returns Qtr3 and Qtr4 (in that order). Qtr4 appears below Qtr3 in the Sample Basic outline.
See Also
Returns TRUE if the current member has the associated accounts tag.
Syntax
Parameter | Description |
---|---|
tag | Valid account tag defined in the current database. Any of these values may be used: First, Last, Average, Expense, and Twopass. To ensure that the tag is resolved as a string rather than a member name, it is recommended to enclose it in quotation marks. |
Example
The following example is based on the Sample Basic database. For members with the Expense accounts tag, the formula uses the @ABS function to calculate Budget as the absolute value of Budget.
Returns TRUE if the current member is an ancestor of the specified member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Market, West
Returns FALSE for California, West, East
See Also
Returns TRUE if the current member under calculation matches the attribute or varying attribute name specified in attmbrName .
Syntax
Parameter | Description |
---|---|
attMbrName | Single attribute member name or member combination. |
Notes
Example
Consider the following calculation script, based on the Sample Basic database:
See Also
Returns TRUE if the current member is a child of the specified member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for New York, Florida, Connecticut
Returns FALSE for Measures, Profit, Margin
See Also
Returns TRUE if the current member is a descendant of the specified member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for West, California, Oregon, Washington, Utah, Nevada
Returns FALSE for Measures, Profit, Profit %
Returns TRUE if the current member of the specified dimension is in the specified generation.
Syntax
Parameter | Description |
---|---|
dimName | The name of a dimension. |
genName or genNum | Generation name specification, or a non-negative number that defines the number of a generation. |
Example
In the Sample Basic database:
Returns TRUE if the current member is Margin, Total Inventory, or Margin %, because these members are all in generation 3 of the Measures dimension.
Returns FALSE if the current member is New York or Market, because these members are not in generation 2 of the Market dimension.
See Also
Returns TRUE if the current member is the specified member or an ancestor of the specified member. This function includes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Market, West, and California. California is the specified member, and West and Market are ancestors of California.
Returns FALSE for Jan, Feb, Mar, Qtr2. None of these members is the specified member (Qtr1) or an ancestor of Qtr1.
See Also
Returns the specified member and all siblings of that member. This member set function can be used as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
Essbase sorts the generated list of members in ascending order. Using Sample Basic as an example, if you specify 200-30 for mbrName , Essbase returns 200-10, 200-20, 200-30, 200-40 (in that order). This order is important to consider when you use the @ISIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
returns California, Oregon, Washington, Utah, and Nevada (in that order), because these members are siblings of California.
returns Qtr1, Qtr2, Qtr3, and Qtr4 (in that order), because these members are siblings of Qtr2.
See Also
Returns TRUE if the current member is the specified member or a child of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South
Returns FALSE for Measures, Sales
See Also
Returns TRUE if the current member is the specified member or a descendant of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Texas, Oklahoma, Louisiana, New Mexico, South
Returns FALSE for Market, East, South, and Central
See Also
Returns TRUE if the current member is the specified member or the parent of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Year, Qtr1.
Returns FALSE for Measures, Sales.
See Also
Returns TRUE if the current member is the specified member or a sibling of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Qtr1, Qtr2, Qtr3, and Qtr4.
Returns FALSE for Scenario.
See Also
Returns TRUE if the current member of the specified dimension is in the specified level.
Syntax
Parameter | Description |
---|---|
dimName | Name of a dimension. |
levName | levNum | A level name or an integer value that defines the number of a level. A value of 0 or a negative integer defines a level number. |
Example
In the Sample Basic database:
Returns TRUE if the current member of Market is New York, California, Texas, or Illinois.
Returns FALSE if the current member of Year is Jan, Feb, or Mar.
See Also
Returns TRUE if the current member matches any one of the specified members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
rangeList | A valid member name, a comma-delimited list of member names, member set functions, and range functions. |
mbrList | A comma-delimited list of members. |
Notes
If a cross-dimensional (->) member is included, that term evaluates as TRUE only if all the components of the cross-dimensional member match the current member list.
If any term returns TRUE, the @ISMBR function returns TRUE.
Example
In the Sample Basic database:
Returns TRUE for Florida.
Returns FALSE for Qtr2, Year.
Returns TRUE if the specified user-defined attribute (UDA) exists for the specified member at calculation time.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member combination, or a function that returns a member or member combination. |
UDAStr | User-defined attribute (UDA) name string. |
Notes
If a nonexistent member name is specified, calculation script verification fails with an error code.
Example
The following examples use the Sample.Basic database.
@ISMBRUDA ("New York", "Major Market") and @ISMBRUDA([Market].[New York], "Major Market") both return true.
@ISMBRUDA("New York", "Small Market") AND @ISCHILD("Market")
Because “New York” is not a small market, the first condition returns false.
IF(@ISMBRUDA("New York")
Because UDAStr is omitted, the verification fails.
Returns TRUE if the current member belongs to the list of base members that are associated with an attribute that satisfies the conditions you specify.
Syntax
Parameter | Description |
---|---|
dimName | Single varying attribute dimension name. |
operator | Operator specification, which must be enclosed in quotation marks (""). |
value | A value that, in combination with the operator, defines the condition that must be met. The value can be a varying attribute member specification, a constant, or a date-format function (that is, @TODATE). |
Notes
Operator | Description |
---|---|
> | Greater than |
>= | Greater than or equal to |
< | Less than |
<= | Less than or equal to |
= = | Equal to |
<> or != | Not equal to |
IN | In |
When using Boolean attributes with @ISMBRWITHATTR, use only the actual Boolean attribute member name, or use 1 (for True or Yes) or 0 (for False or No). You cannot use True/Yes and False/No interchangeably.
See Also
Returns TRUE if the current member is the parent of the specified member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for East.
Returns FALSE for Margin.
See Also
Tests for the existence of data values to improve performance of complex dense processing. If this function returns true, values exist for the specified range. If it returns false, the range is empty.
Syntax
Parameter | Description |
---|---|
ZEROASDATA | Zero (0) values are treated as data. |
ZEROASMISSG | Zero (0) values are treated as #MISSING. |
mbrList | A valid member name, a comma-delimited list of member names, or a member set function that returns a list of members from the same dimension. If you use the range operator or a function, the order of mbrList is dictated by the database outline order. |
Notes
The definition of “emptiness” depends on your use of the first parameter, which describes how zero (0) values are treated.
Example
The following examples use the Sample.Basic database.
Example 1
Because the intersection of Cola and Sales contains non-#MISSING values, the condition returns TRUE.
Example 2
If there is any value except #MISSING in the range Jan:Mar in the database, the script returns TRUE, and all the Sales->Budget values In the database are changed to 500.
Returns TRUE if the current member is the same generation as the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for East.
Returns FALSE for California.
See Also
Returns TRUE if the current member is the same level as the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns FALSE for Total Expenses.
Returns TRUE for Apr, Jul, Oct.
See Also
Returns TRUE if the current member is a sibling of the specified member. This function excludes the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Returns TRUE for Florida, New Hampshire.
Returns FALSE for Margin.
See Also
Returns TRUE if the specified user-defined attribute (UDA) exists for the current member of the specified dimension at the time of the calculation.
Syntax
Parameter | Description |
---|---|
dimName | Dimension name specification that contains the member you are checking. |
UDAStr | user-defined attribute (UDA) name string. |
Notes
Example
The following example is based on the Sample Basic database. The Market dimension has members that indicate a geographic location. Some members represent major markets. The example below calculates the database and stores a budget amount for the upcoming year based on the actual amount from this year. A different sales growth rate is applied to major markets than to small markets.
The preceding example tests to see if the current member of Market has a UDA called "Major Market". If it does, the Budget -> Sales value is set to 120% of Actual -> Sales. If it does not, the Budget -> Sales value is set to 110% of Actual -> Sales.
See Also
Returns all ancestors of the members in the specified member list or all ancestors up to a specified generation or level. This function excludes the specified members.
You can use the @LANCESTORS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description | ||
---|---|---|---|
memberSetFunction | A member set function that returns a list of members. How the @LANCESTORS function is used determines which member set functions are allowed. Follow these guidelines:
| ||
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
Example
All examples are from the Sample.Basic database.
Returns 100 (the ancestor of 100-10); and 200 (the ancestor of 200-20). Excludes Product because it is at generation 1.
Returns Product (the ancestor of 100); and 100 (the ancestor of 100-10). The result does not contain duplicate members.
Returns Product (the ancestor of 100 and 200). The result does not contain duplicate members.
Returns West, South, and Central (the ancestors, to generation 2, for the members in the Market dimension that are associated with the New Market attribute).
Returns 100, 200, 300, and Product (the ancestors of 100-10, 100-20, 200-10, 300-30—caffeinated, 12-ounce drinks, and 200-40).
See Also
Returns all descendants of the members in the specified member list or all descendents down to the specified generation or level. This function excludes the specified members.
You can use the @LDESCENDANTS function as a parameter of another function, where the function requires a list of members.
Syntax
Parameter | Description | ||
---|---|---|---|
memberSetFunction | A member set function that returns a list of members. How the @LDESCENDANTS function is used determines which member set functions are allowed. Follow these guidelines:
| ||
genLevNum | Optional. The integer value that defines the absolute generation or level number up to which to select members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
Example
All examples are from the Sample.Basic database.
Returns 100-10, 100-20, 100-30 (the descendants of 100); 200-10, 200-20, 200-30, 200-40 (the descendants of 200); and 300-10, 300-20, 300-30 (the descendants of 300).
Returns East, West, South, and Central (the descendants of the specified member Market to level 1).
Returns New York, Massachusetts, Florida, Connecticut, and New Hampshire (the descendants of the specified member East); and Illinois, Ohio, Wisconsin, Missouri, Iowa, and Colorado (the descendants of the specified member Central). California and Texas (specified members) are excluded because they do not have descendants.
Returns an empty list as none of the specified members (100-10, 100-20, 200-10, 300-30, which are caffeinated, 12-ounce drinks, and 200-40) have descendants.
See Also
Returns the level number of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
In the Sample Basic database:
Function | Level Returned |
---|---|
@LEV(Margin) | 1 |
@LEV("New York") | 0 |
See Also
Returns all members with the specified level number or level name in the specified dimension.
Syntax
Parameter | Description |
---|---|
dimName | Dimension name specification. |
levName|levNum | A level name or an integer value that defines the number of a level. The integer value must be 0 or a positive integer. |
Notes
Example
In the Sample Basic database:
both return the following members if level 0 of the Measures dimension is named Profit and Loss:
Sales, COGS, Marketing, Payroll, Misc, Opening Inventory, Additions, Ending Inventory, Margin %, Profit %, and Profit per Ounce (in that order).
Returns Actual, Budget, Variance, and Variance %.
The following example restricts the calculation to members with the combination Budget and one of the members of the Market dimension with a level name of "State".
See Also
Returns a member set of member names that match the specified pattern.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
pattern | The character pattern with which to compare to members in the outline, including a single wildcard character:
|
topMbrinHierarchy | A fully qualified member name on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search. To search the entire outline, provide an empty string ("") for this parameter. For example, @LIKE("100%", "") . |
escChar | Optional: A one-byte-length escape character to use if the wildcard character exists in member names. If you do not specify an escape character, a backslash (\) is assumed. |
Example
The following examples are based on the following duplicate-name outline:
Returns members 100, 100-10, 100-20, and 100-30.
Returns member 300.
If member 200 has children named 200_10 (note the underscore, _), 200-20 (note the dash, -), 200_30 and 200-40, returns those members whose name contains an underscore: 200_10 and 200_30.
See Also
Creates and distinguishes lists that are processed by functions that require list arguments. @LIST can be used to create expLists , member lists, or rangeLists . @LIST treats a collection of parameters as one entity.
Syntax
Parameter | Description |
---|---|
argument1, argument2, ..., argumentN | The list of arguments that are collected and treated as one argument so they can be processed by the parent function. Arguments can be member names, member combinations, member set functions, range functions, and numeric expressions. |
Notes
@LIST does not check for or eliminate duplicates.
Example
The following example is based on the Sample Basic database. Assume that the Year dimension contains an additional member, Sales Correl. @LIST is used with the @CORRELATION function to determine the sales relationship between a product's two peak periods (Jan through Mar and Apr through May):
This example produces the following report:
Returns the natural logarithm (base e) of the specified expression.
Syntax
Parameter | Description |
---|---|
expression | Single member specification, member combination, or other numeric expression. If less than or equal to 0, Essbase returns #MISSING . |
Example
The following example is based on a variation of Sample Basic:
This example produces the following result:
See Also
Returns the result of a logarithm calculation where you can specify both the base to use and the expression to calculate.
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, function, or other numeric expression. If less than or equal to 0, Essbase returns #MISSING . |
base | Optional. Single member specification, member combination, or numeric expression.
|
Notes
The @LOG function returns the logarithm of expression calculated using the specified base . @LOG (x,b) is equivalent to log b (x).
Example
The following example is based on a variation of Sample Basic:
This example produces the following result:
See Also
Returns the base-10 logarithm of the specified expression.
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, function, or other numeric expression. If less than or equal to 0, Essbase returns #MISSING . |
Example
The following example is based on a variation of Sample Basic:
This example produces the following result:
See Also
Returns the left siblings of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
This function returns the left siblings of the specified member. Left siblings are children that share the same parent as the member and that precede the member in the database outline. This function excludes the specified member.
This member set function can be used as a parameter of another function, where that parameter is a list of members.
Essbase sorts the generated list of left siblings in descending order. Using Sample Basic as an example, if you specify 200-30 for mbrName , Essbase returns 200-20, 200-10 (in that order). This order is important to consider when you use the @LSIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
Returns Qtr3, Qtr2, and Qtr1 (in that order). These members appear above Qtr4 in the Sample Basic outline.
Returns Washington, Oregon, and California (in that order). These members appear above Utah in the Sample Basic outline.
See Also
Performs wildcard member selections.
Syntax
Parameter | Description |
---|---|
mbrName | The default or user-defined name of the member on which to base the search. Essbase searches the member names and alias names of the specified member and its descendants. |
genName | The default or user-defined name of the generation to search. Essbase searches all member names and member alias names in the generation. |
levName | The default or user-defined name of the level to search. Essbase searches all member names and member alias names in the level. |
"pattern" | The character pattern to search for, including a wildcard character (* or ?). ? substitutes one occurrence of any character. You can use ? anywhere in the pattern. * substitutes any number of characters. You can use * only at the end of the pattern. To include spaces in the character pattern, enclose the pattern in double quotation marks (""). |
Notes
This function performs a trailing-wildcard member selection. Essbase searches for member names and alias names that match the pattern you specify and returns the member and alias names it finds.
If the members names in the database you are searching are case-sensitive, the search is case-sensitive. Otherwise, the search is not case-sensitive. To define database member names as case-sensitive, use Outline Editor in Oracle Essbase Administration Services. See the Oracle Essbase Administration Services Online Help .
You can use more than one @MATCH function in a calculation script.
If Essbase does not find any members that match the chosen character pattern, it returns no member names and continues with the other calculation commands in the calculation script.
Example
In the Sample Basic database:
Returns 100-10, 200-10, 300-10, and 400-10
Returns Jan, Jun, Jul
Returns 100 (Colas), 100-10 (Cola), 100-30 (Caffeine Free Cola), 300 (Cream Soda)
Returns the maximum value among the results of the expressions in the specified member list.
Syntax
Parameter | Description |
---|---|
expList | Comma-delimited list of members, variable names, functions, and numeric expressions, all of which return numeric values. |
Notes
Depending on the values in the list, @MAX may return a zero(0) or #MISSING value. For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use the @MAXS function instead of the @MAX function.
Example
This example is based on the Sample Basic database:
This example produces the following report:
See Also
Returns the maximum value of the specified member across the specified range of members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
XrangeList | A valid member name, a comma-delimited list of member names, cross-dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Depending on the values in the list, @MAXRANGE may return a zero(0) or #MISSING value. For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use @MAXSRANGE instead of @MAXRANGE.
Example
In the Sample Basic database:
produces the following report:
See Also
Returns the maximum value among the results of the expressions in the specified member list, with options to skip missing or zero values (in contrast with the @MAX function, which cannot ignore these values).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList in the operation, regardless of their content |
SKIPMISSING | Ignores all #MISSING values |
SKIPZERO | Ignores all 0 values |
SKIPBOTH | Ignores all 0 and #MISSING values |
expList | Comma-delimited list of members, variable names, functions, or numeric expressions, all of which return numeric values |
Notes
Example
For both examples, assume a database similar to Sample Basic. The Measures dimension includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and expenses). The data can include 0 and #MISSING values.
Example 1
This example ignores #MISSING and 0 values for all members of the Measures dimension. This example produces the following results:
Example 2
This example includes #MISSING and 0 values in the calculation, for all members of the Measures dimension. This example produces the following results:
See Also
Returns the maximum value of the specified member across the specified range of members, with options to skip missing or zero values (in contrast with the @MAXRANGE function, which cannot ignore these values).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList in the operation, regardless of their content |
SKIPMISSING | Ignores all #MISSING values |
SKIPZERO | Ignores all 0 values |
SKIPBOTH | Ignores all 0 and #MISSING values |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination |
XrangeList | A valid member name, a comma-delimited list of member names, cross-dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
For both examples, assume a database similar to Sample Basic. The Measures dimension includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and expenses). The data can include 0 and #MISSING values. For both members of the Measures dimension, the result is the same--the maximum value for the OtherInc_Exp member across the specified range.
Example 1
This example ignores #MISSING and 0 values and produces the following results:
Example 2
Using the same data as Example 1, Example 2 demonstrates what happens if you do not skip 0 and #MISSING values in the data. Example 2 produces the following report:
See Also
Returns a member set of member names that match the comparison criteria. Member names are evaluated alphanumerically.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description | ||
---|---|---|---|
compOperator | One of the following strings: < (less than), <= (less than or equal to), > (greater than), >= (greater than or equal to), == (equals), != (not equal to), or CDF (for a custom-defined function).
| ||
tokenString | Token string value with which to compare to members in the outline, starting with the member specified in topMbrinHierarchy . | ||
topMbrinHierarchy | A fully qualified name of a member in the outline on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search.
To search the entire outline, provide an empty string ("") for this parameter. For example, @MBRCOMPARE("<=" , "100-10", "") . | ||
cdfName | Optional: This argument applies only if CDF is specified for compOperator . Name of a custom-defined function. The custom-defined function must take the tokenString and topMbrinHierarchy arguments and return a Boolean value. (When compiling @MBRCOMPARE, Essbase rejects custom-defined functions that do not meet these requirements.) If the function returns a value of TRUE, the member is added to the member set returned by @MBRCOMPARE. |
Notes
The following example of a custom-defined function returns results similar to using the >= (greater than or equal to) comparison operator:
You must register the custom-defined function before you can use it in the @MBRCOMPARE function.
To register the custom-defined function:
Example
The following examples are based on the following duplicate-name outline:
Returns the members 100, [100].[100-10], and [Diet].[100-10].
Returns the members [Diet].[100-10] and [100].[100-10].
Uses the @JAVACOMPARE custom-defined function to return a member set.
See Also
Returns the parent of the specified member.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
mbrName | Name of a member in the outline. |
Example
The following examples are based on the following duplicate-name outline:
Returns the member 100.
Returns the member [Diet].[100-10].
See Also
Allocates values from a member, from a cross-dimensional member, or from a value across multiple dimensions. The allocation is based on a variety of criteria.
This function allocates values that are input at an upper level to lower-level members in multiple dimensions. The allocation is based upon a specified share or spread of another variable. You can specify a rounding parameter for allocated values and account for rounding errors.
Syntax
Parameter | Description |
---|---|
amount | A value, member, or cross-dimensional member that contains the value to be allocated into each allocationRange . The value may also be a constant.
If the amount parameter is a loaded value, it cannot be a Dynamic Calc member. |
Ndim | The number of dimensions across which values are allocated. |
allocationRange1 ... allocationRangeN | Comma-delimited lists of members, member set functions, or range functions from the multiple dimensions into which values from amount are allocated. |
basisMbr | A value, member, or cross-dimensional member that contains the values that are used as the basis for the allocation. The method you specify determines how the basis data is used. |
roundMbr | Optional. The member or cross-dimensional member to which rounding errors are added. This member (or at least one member of a cross-dimensional member) must be included in an allocationRange . |
method | The expression that determines how values are allocated. One of the following:
|
round | Optional. One of the following:
|
numDigits | An integer that represents the number of decimal places to round to. You must specify numDigits if you specify roundAmt .
If you specify roundAmt , you also can specify a roundErr parameter. |
roundErr | Optional. An expression that specifies where rounding errors should be placed. You must specify roundAmt in order to specify roundErr . If you do not specify roundErr , Essbase discards rounding errors. To specify roundErr , choose from one of the following:
|
Notes
Example
Consider the following example from the Sample Basic database. A data value of 500 is loaded to Budget->Total Expenses->East for Jan and Colas. (For this example, assume that Total Expenses is not a Dynamic Calc member.)
You need to allocate the amount across each expense category for each child of East. The allocation for each child of East is based on the child's share of Total Expenses->Actual:
This example produces the following report:
See Also
Returns ancestor-level data from multiple dimensions based on the current member being calculated.
Syntax
Parameter | Description |
---|---|
dimCount | Integer value that defines the number of dimensions from which ancestor values are being returned. |
dimName1, . . . dimNameX | Defines the dimension names from which the ancestor values are to be returned. You must specify a genLevNum for every dimName . |
genLevNum, . . . genLevNumX | Integer value that defines the absolute generation or level number from which the ancestor values are to be returned. A positive integer defines a generation reference. A negative number or value of 0 defines a level reference. You must specify a dimName for every genLevNum . |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination, from which the ancestor values are to be returned. |
Example
Marketing expenses are captured at the Product Family and Region level in a product planning application. The Marketing Expense data must be allocated down to each Product code and State level based on Sales contribution. Data is captured as follows:
The Marketing Expense value of 200 at East and Product code 100 is allocated down to each Product code and State with the following formula:
which produces the following result:
The Marketing expenses can then be reconsolidated across Products and Markets.
See Also
Returns parent-level data from multiple dimensions based on the current member being calculated.
Syntax
Parameter | Description |
---|---|
numDim | Integer value that defines the number of dimensions from which parent values are being returned. |
dimName1, . . . dimNameX | Defines the dimension names from which the parent values are to be returned. |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination, from which the parent values are to be returned. |
Example
Marketing expenses are captured at the Product Family and Region level in a product planning application. The Marketing Expense data must be allocated down to each Product code and State level based on Sales contribution.
Data is captured as follows:
The Marketing Expense value of 200 at East and Product code 100 is allocated down to each Product code and State with the following formula:
which produces the following result:
The Marketing expenses can then be reconsolidated across Products and Markets.
See Also
Shifts a series of data values across multiple dimension ranges.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination, from which the values are to be shifted. |
shiftCnt1...shiftCntX | Integer that defines the number of member positions to shift. |
dimName1, . . . dimNameX | Defines the dimension names in which the shift is to occur. |
range1|(range1) . . . rangeX|(rangeX) | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension specified with the dimName parameter. If the range list is comma delimited, then the list must be enclosed in parentheses. |
Example
The Budget figures for Ending Inventory need to be calculated by taking Prior Year->Opening Inventory results as a starting point:
The following calculation script assumes that the Scenario dimension is as follows:
In this example, range1 is not specified, so Essbase defaults to the level 0 members of the Year dimension, which was specified as the dimName1 parameter. Since range2 is also not specified, Essbase defaults to the level 0 members of the Scenario dimension, which was specified as the dimName2 parameter. This example produces the following result:
See Also
Returns the median (the middle number) of the specified data set (expList). Half the numbers in the data set are larger than the median, and half are smaller.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the median. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the median. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the median. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the median. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the median is calculated. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Median. This example calculates the median sales values for all products and uses the @RANGE function to generate expList :
This example produces the following report:
Because SKIPBOTH is specified in the calculation script, the #MI values for Diet Drinks are skipped. The remaining four products create an even-numbered data set. So, to calculate Median->Product->Actual, the two middle numbers in the set (587 and 663) are averaged to create the median (625). To calculate Median->Product->Budget, the two middle numbers in the set (530 and 620) are averaged to create the median (575).
See Also
Returns the member with the name that is provided as a character string.
Syntax
Parameter | Description |
---|---|
String | A string (enclosed in double quotation marks) or a function that returns a string |
Example
Typically, the @MEMBER function is used in combination with string functions that are used to manipulate character strings to form the name of a member. In the following example, the member name QTR1 is appended to the character string 2000_ to form the string 2000_QTR1. The @MEMBER function returns the member 2000_QTR1 and QTD is set to the value of this member.
See Also
Returns the specified member in a list of members.
Syntax
Parameter | Description |
---|---|
mbrList | Member list or function that returns a member list. |
mbrIndex | Nonzero integer. If positive, enumerates from start of the list (for example, 1 returns the first member in the list). If negative, enumerates from the end of the list (for example, -1 returns the last member in the list). |
Notes
If mbrIndex is 0 or out of bounds, the script or member formula fails during verification or runtime and returns an error.
Example
The following examples use the Sample.Basic database.
@MEMBERAT(@CHILDREN("Colas"), 1); returns 100-20 (Diet Cola) .
The value of the member Misc is assigned to Sales, because Misc is the last child of Total Expenses, and the mbrIndex of -1 causes this function to select the last member in the list.
Because @CHILDREN("100-10") is an empty list, returns an error.
See Also
Merges two member lists that are processed by another function. Duplicates (values found in both lists) are included only once in the merged list.
Syntax
Parameter | Description |
---|---|
list1 | The first list of member specifications to be merged. |
list2 | The second list of member specifications to be merged. |
Notes
Example
Example 1
In the Sample Basic database,
returns Cola, Diet Cola, Caffeine Free Cola, Diet Root Beer, and Diet Cream Soda.
Diet Cola appears only once in the merged list, even though it is a child of both Colas and Diet Drinks.
Example 2
In this example, the @MERGE function is used with the @ISMBR function to increase the marketing budget for major markets and for western markets.
This example produces the following report, which shows only the major markets in the East and all western markets:
The values prior to running the calculation script were:
See Also
Returns the minimum value among the results of the expressions in expList .
Syntax
Parameter | Description |
---|---|
expList | Comma-delimited list of members, variable names, functions, and numeric expressions, all of which return numeric values. |
Notes
Depending on the values in the list, @MIN may return a zero(0) or #MISSING value. For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use the @MINS function instead of the @MIN function.
Example
In the Sample Basic database:
produces the following report:
See Also
Returns the minimum value of mbrName across XrangeList .
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Depending on the values in the list, @MINRANGE may return a zero(0) or #MISSING value. For full control over skipping or inclusion of zero(0) and #MISSING values, it is recommended to use the @MINSRANGE function instead of the @MINRANGE function.
Example
In the Sample Basic database:
produces the following report:
See Also
Returns the minimum value across the results of the expressions in expList , with options to skip missing or zero values.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes in the operation all cells specified in expList regardless of their content |
SKIPMISSING | Ignores all #MISSING values |
SKIPZERO | Ignores all 0 values |
SKIPBOTH | Ignores all 0 and #MISSING values |
expList | Comma-delimited list of member names, variable names, functions, or numeric expressions. expList provides a list of numeric values for which Essbase determines the minimum value. |
Notes
Example
For both examples, assume a database similar to Sample Basic. The Measures dimension includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and expenses). The data can include 0 and #MISSING values.
Example 1
This example ignores #MISSING and 0 values for all members of the Measures dimension. This example produces the following results:
Example 2
For all members of the Measures dimension, this example includes #MISSING and 0 values and produces the following results:
See Also
Returns the minimum value of mbrName across XrangeList , with options to skip missing or zero values.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes in the operation all specified cells regardless of their content |
SKIPMISSING | Ignores all #MISSING values |
SKIPZERO | Ignores all 0 values |
SKIPBOTH | Ignores all 0 and #MISSING values |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
For both examples, assume a database similar to Sample Basic. The Measures dimension includes two members: COGS (cost of goods sold) and OtherInc_Exp (miscellaneous income and expenses). The data can include 0 and #MISSING values. For both members of the Measures dimension, the result is the same--the minimum value for the OtherInc_Exp member across the specified range.
Example 1
This example ignores the 0 value for Mar and produces the following results:
Example 2
This example does not ignore the 0 value in the calculation. This example produces the following results:
See Also
Calculates the modulus of a division operation.
Syntax
Parameter | Description |
---|---|
mbrName1 and mbrName2 | Members from the same dimension whose modulus is to be calculated. |
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Factor. The modulus between Profit % and Margin % is calculated with the following formula:
This example produces the following report:
Returns the mode (the most frequently occurring value) in the specified data set (expList).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the mode. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the mode. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the mode. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the mode. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the mode is calculated. |
Notes
Example
The following example calculates the mode of the units sold for the Central region and uses the @RANGE function to generate expList :
This example produces the following report:
See Also
Applies a moving n -term average (mean) to an input data set. Each term in the set is replaced by a trailing mean of n terms, and the first terms (the n -1 terms) are copies of the input data. @MOVAVG modifies a data set for smoothing purposes.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values to average. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Mov Avg.
In this example, the @MOVAVG function smooths sales data for the first six months of the year (Jan through Jun). The results of @MOVAVG can be used with the @TREND function to forecast average sales data for a holiday season (for example, October - December).
This example produces the following report:
In this example, Essbase averages three values at a time for the moving average. The first two values (Jan,Feb) for Mov Avg and the first two values for Sales are the same. The value for Mar represents the trailing average of Jan, Feb, and Mar. The value for Apr represents the trailing average of Feb, Mar, and Apr. The remaining values represent the trailing average for each group of three values.
See Also
Applies a moving n -term maximum (highest number) to an input data set. Each term in the set is replaced by a trailing maximum of n terms, and the first terms (the n -1 terms) are copies of the input data. @MOVMAX modifies a data set for smoothing purposes.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values that are used to calculate the moving maximum. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Mov Max.
In this example, the @MOVMAX function smooths sales data for the first six months of the year (Jan through Jun). The results of @MOVMAX can be used with the @TREND function to forecast maximum sales data for a holiday season (for example, October - December).
This example produces the following report:
In this example, Essbase uses three values at a time to calculate the moving maximum. The first two values (Jan,Feb) for Mov Max and the first two values for Sales are the same. The value for Mar represents the trailing maximum of Jan, Feb, and Mar. The value for Apr represents the trailing maximum of Feb, Mar, and Apr. The remaining values represent the trailing maximum for each group of three values.
See Also
Applies a moving n -term median (middle number) to an input data set. Each term in the list is replaced by a trailing median of n terms, and the first terms (the n -1 terms) are copies of the input data. @MOVMED modifies a data set for smoothing purposes.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values that are used to calculate the moving median. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Mov Med.
In this example, the @MOVMED function smooths sales data for the first six months of the year (Jan through Jun). The results of @MOVMED could be used with the @TREND function to forecast sales data for a holiday season (for example, October - December).
This example produces the following report:
In this example, Essbase uses three values at a time to calculate the moving median. The first two values (Jan,Feb) for Mov Med are the same as the first two values for Sales. The value for Mar represents the trailing median of Jan, Feb, and Mar. The value for Apr represents the trailing median of Feb, Mar, and Apr. The remaining values represent the trailing median of each group of three values.
See Also
Applies a moving n -term minimum (lowest number) to an input data set. Each term in the list is replaced by a trailing minimum of n terms, and the first terms (the n -1 terms) are copies of the input data. @MOVMIN modifies a data set for smoothing purposes.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values that are used to calculate the moving minimum. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Mov Min.
In this example, the @MOVMIN function smooths sales data for the first six months of the year (Jan through Jun). The results of @MOVMIN can be used with the @TREND function to forecast minimum sales data for the holiday season (for example, October - December).
This example produces the following report:
In this example, Essbase uses three values at a time to calculate the moving minimum. The first two values (Jan,Feb) for Mov Min and the first two values for Sales are the same. The value for Mar represents the trailing minimum of Jan, Feb, and Mar. The value for Apr represents the trailing mimimum of Feb, Mar, and Apr. The remaining values represent the trailing minimum for each group of three values.
See Also
Applies a moving sum to the specified number of values in an input data set. @MOVSUM modifies a data set for smoothing purposes.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values to sum. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Mov Sum.
In this example, @MOVSUM smooths sales data for the first six months of the year (Jan through Jun). The results of @MOVSUM can be used with the @TREND function to forecast average sales data for a holiday season (for example, October through December).
This example produces the following report:
See Also
Applies a moving sum to the specified number of values in an input data set. @MOVSUMX modifies a data set for smoothing purposes.
Unlike @MOVSUM, @MOVSUMX allows you to specify the values assigned to trailing members. For example, if you specify three members of the Time dimension in the Sample Basic database, @MOVSUMX at Mar is the sum of the values for Jan, Feb, and Mar; @MOVSUMX at Apr is the sum of the values for Feb, Mar, and Apr. However, Jan and Feb have no @MOVSUMX value, and are called trailing members .
Syntax
Parameter | Description |
---|---|
COPYFORWARD | Copies the input value into the trailing members. This behavior is the same as the @MOVSUM function. |
TRAILMISSING | Sets the value of the trailing members to #MISSING . |
TRAILSUM | Sums the trailing values. |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional. A positive integer value that represents the number of values that are used to calculate the moving maximum. The default is 3. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following examples are based on the Sample Basic database. Assume that the Measures dimension contains an additional member, "Last 3 Months of Sales," and that the original Sales values are as shown.
or:
or:
These examples produce the following reports:
See Also
Passes the enclosed string, or list of member or dimension names, as a list of strings to another function.
Syntax
Parameter | Description |
---|---|
mbrName | A list of member names, dimension names, or strings. |
UNIQUE | Tells @NAME to return a unique member name (using shortcut qualified name format) for mbrName , if mbrName is a duplicate name. If mbrName is not a duplicate name or if duplicate member names is not enabled, UNIQUE is ignored, and only the member name is returned. Notes:
|
Example
Example 1
The following example is based on the Sample Basic database. A user-defined function is used to retrieve the price from the table below. The user defined function (J_GetPrice) takes two string parameters, time and product name, to return the price for each product.
MonthName | ProductId | Price |
---|---|---|
Jan | 100-10 | 1.90 |
Feb | 100-10 | 1.95 |
Mar | 100-10 | 1.98 |
Jan | 100-20 | 1.95 |
Feb | 100-20 | 2.00 |
Mar | 100-20 | 2.05 |
The following report illustrates the above example:
Example 2
The following example is based on the Sample Basic database:
The @NAME function processes the string “Ounces” before passing it to the @ATTRIBUTEVAL function. This example produces the following report:
Example 3
For the following example, assume an outline that has duplicate member names enabled, and there are two members named New York in the Market dimension:
The qualified member names for the New York members are [State].[New York] and [City].[New York].
The following example captures a qualified member name from the current calculation context:
If the current member of Market being calculated is the New York State member, the qualified member name, [State].[New York], is passed to the @MEMBER function, effectively differentiating it from the New York City member.
See Also
Returns the n th cell value in the sequence rangeList from mbrName , retaining all other members identical to the current member. @NEXT cannot operate outside the given range.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. If you do not specify n , then the default is set to 1, which provides the next member in the range. Using a negative value for n has the same effect as using the matching positive value in the @PRIOR function. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Example
In this example, Next Cash for each month is derived by taking the Cash value for the following month. Since n is not specified, the default is 1, which provides the next member in the range. Since rangeList is not specified, the level 0 members from the dimension tagged as Time are used (Jan,Feb,Mar, ...).
This example produces the following report:
See Also
Returns the nth cell value in the sequence rangeList from the mbrName . Provides the option to skip #MISSING , zero, or both #MISSING and zero values. Works within a designated range and retains all other members identical to the current member.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in the rangeList operation, regardless of their content. |
SKIPMISSING | Ignores all #MISSING values in the rangeList operation. |
SKIPZERO | Ignores all 0 in the rangeList operation. |
SKIPBOTH | Ignores all #MISSING and 0 values in the rangeList operation. |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. Using a negative value for n has the same effect as using the matching positive value in @PRIORS . If you do not specify n , then a default value of 1 is assumed, which returns the next prior member from the lowest level of the dimension set as Time in the database outline. |
rangeList | Optional. A valid member, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension set as Time. |
Example
In this example, Next Cash for each month is derived by taking the Cash value for the following month and ignoring both #MISSING and zero values. Because n is not specified, the default is 1, which provides the next member in the range. Also, because rangeList is not specified, the level 0 members from the dimension set as Time are used (Jan,Feb,Mar, ...).
The following report illustrates the above example:
See Also
Returns the next sibling (the sibling to the immediate right) of the specified member. This function excludes the specified member. If the specified member is the last sibling, Essbase returns an empty string.
This function returns the next sibling as a string. To pass the @NEXTSIBLING function as a parameter of another function, where the function requires a list of members, you must wrap the output of @NEXTSIBLING with the @MEMBER function.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member-name combination or a function that returns one member or member combination. |
Example
All examples are from the Sample.Basic database.
Returns 100-30 (the next sibling of 100-20).
Returns 300 (the next sibling of 200). The @NEXTSIBLING and the @SHIFTSIBLING (“200”,1) function return the same results.
Returns 100-30 (the next sibling of 100-20).
Returns all children of West.
See Also
Returns a member set of member names that do not match the specified token name.
This function can be used on unique and duplicate-name outlines.
Syntax
Parameter | Description |
---|---|
tokenName | Token string value, representing the name of a member, with which to compare to members in the outline, starting with member specified in topMbrinHierarchy . The specified token name must not be qualified for duplicate members. |
topMbrinHierarchy | A fully qualified name of a member in the outline on which to base the member search. The specified member and its aliases, and all of its descendants, are included in the search. To search the entire outline, provide an empty string ("") for this parameter. For example, @NOTEQUAL("300-30", "") . |
Example
The following examples are based on the following duplicate-name outline:
Returns all of the members under the Product dimension, except for the members [Bottle].[200-10], [Diet].[200-10], and [200].[200-10].
Returns the members Diet, [Diet].[100-10], [Diet].[100-10].[100-10-10], and [Diet].[300-10].
See Also
Calculates the Net Present Value of an investment based on the series of payments (negative values) and income (positive values).
Syntax
Parameter | Description |
---|---|
cashflowMbr | Member specification providing a series of numeric values. |
rateMbrConst | Single member specification, variable name, or numeric expression, providing a constant value. |
discountFlag | Single member specification, variable name, or numeric expression set to 0 or 1 to indicate whether the function should discount from the first period. 1 means do not discount from the first period. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
In this example, Value is calculated with the following formula:
This example produces the following report:
See Also
Returns the parent of the current member being calculated in the specified dimension. If you specify the optional mbrName , that parent is combined with the specified member.
This member set function can be used as a parameter of another function, where that parameter is a member or list of members.
Syntax
Parameter | Description |
---|---|
dimName | Single dimension name specification. |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination, that is combined with the parent returned. |
Notes
Example
In the Sample Basic database:
returns Central->Sales, if the current member of Market being calculated is Colorado.
returns Profit, if the current member of Measures being calculated is Margin.
See Also
Returns the parent values of the member being calculated in the specified dimension.
Syntax
Parameter | Description |
---|---|
dimName | Single dimension name specification that defines the focus dimension of parent values. |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination. |
Example
This example is based on the Sample Basic database. The formula calculates Market Share for each state by taking each state's Sales value as a percentage of Sales for East (its parent) as a whole. Market Share->East is calculated as East's percentage of its parent, Market.
This example produces the following report:
Adding the "Market Share" member and formula to the outline would produce the same result as above.
See Also
Returns the value of the specified member or expression raised to power .
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, function, or other numeric expression. |
power | Single member specification, variable name, function, or other numeric expression. |
Notes
Example
Usage | Return Value |
---|---|
@POWER(14,3) | 2744 |
@POWER(2,8) | 256 |
See Also
Returns the previous sibling (the sibling to the immediate left) of the specified member. This function excludes the specified member. If the specified member is the first sibling, Essbase returns an empty string.
This function returns the next sibling as a string. To pass the @PREVSIBLING function as a parameter of another function, where the function requires a list of members, you must wrap the output of @PREVSIBLING with the @MEMBER function.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member-name combination or a function that returns one member or member combination. |
Example
All examples are from the Sample.Basic database.
Returns 100-10 (the previous sibling of 100-20). The @PREVSIBLING(“100–20”) function and the @SHIFTSIBLING(“100-20”,-1 function return the same results.
Returns 100 (the previous sibling of 200).
Returns an empty list as 100-10 does not have a previous sibling.
Returns an empty list as there is no previous sibling of East at the same level.
See Also
Returns the n th previous cell member from mbrName in rangeList . All other dimensions assume the same members as the current member. @PRIOR works only within the designated range, and with level 0 members.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. Using a negative value for n has the same effect as using the matching positive value in the @NEXT function. If you do not specify n , then a default value of 1 is assumed, which returns the next prior member from the lowest level of the dimension tagged as Time in the database outline. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Example
In this example, Prev Inventory for each month is derived by taking the Inventory value from the previous month. Since n is not specified, the default is 1, which provides the next prior member in the range. Since rangeList is not specified, the level 0 members from the dimension tagged as Time are used (Jan,Feb,Mar,...).
This example produces the following report:
See Also
Returns the n th previous cell member from mbrName in the rangeList . @PRIORS provides options to skip #MISSING , zero, or both #MISSING and zero values. All other dimensions assume the same members as the current member. @PRIORS works within the designated range.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in the rangeList operation regardless of their content. |
SKIPMISSING | Ignores all #MISSING values in the rangeList operation. |
SKIPZERO | Ignores all zero values in the rangeList operation. |
SKIPBOTH | Ignores all #MISSING and zero values in the rangeList . |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. Using a negative value for n has the same effect as using the matching positive value in the @NEXTS function. If you do not specify n , then a default value of 1 is assumed, which returns the next prior member from the lowest level of the dimension set as Time in the database outline. |
rangeList | Optional. A valid member, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension set as Time. |
Example
In this example, Prev Inventory for each month is derived by taking the Inventory value from the previous month and ignoring #MISSING and zero values. Because n is not specified, the default is 1, which provides the next prior member in the range. Also, because rangeList is not specified, the level 0 members from the dimension are set as Time used as (Jan,Feb,Mar,...).
The following report illustrates this example:
See Also
Calculates the period-to-date values of members in the dimension tagged as Time. By default, data is summed unless Accounts are tagged as "First" or "Last".
Syntax
Parameter | Description |
---|---|
timePeriodList | Range of members from the dimension tagged as Time. |
Notes
Example
In this example, assume that the Year dimension in the Sample Basic database outline contains two additional members, YTD and QTD. Using a calculation script, the YTD and QTD members are calculated as follows:
In this example Opening Inventory is tagged with a time balance of First, and Ending Inventory is tagged with a time balance of Last.
This example produces the following report:
See Also
Returns a member list that crosses the specified member from one dimension (mbrName) with the specified member range from another dimension (rangeList). @RANGE can be combined with non-range functions, such as @AVG, which replaces an existing range function, such as @AVGRANGE.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Calculator function @RANGE and the cross-dimensional operator (->) cannot be used inside a FIX/ENDFIX statement.
Example
Example 1
The following example is based on the Sample Basic database. The @RANGE function is used with the @AVG function to determine the average sales for Colas in the West.
Since the calculation script fixes on Sales, only the Sales value for West are the average of the values for western states; COGS values for West are the sum of the western states. This example produces the following report:
Example 2
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Prod Count. The @RANGE function is used with the @COUNT function to calculate the count of all products for which a data value exists:
This example produces the following report. Since SKIPMISSING is specified in the formula, the #MI value for Sales->Diet Drinks is not counted as a data value:
See Also
Returns the first value, in a range of the specified mbrList , that satisfies the criterion specified in the first function parameter.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Every cell value is considered as data. |
SKIPMISSING | #MISSING values are not considered as data. |
SKIPZERO | Zero (0) values are not considered as data. |
SKIPBOTH | Zero (0) and #MISSING values are not considered as data. |
mbrList | A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function that returns a list of members from the same dimension. If you use the range operator or a function, the order of mbrList is dictated by the database outline order. |
Notes
The function returns #MISSING when mbrList does not contain any value matching the criterion specified in the first argument.
Example
Example 1
The following examples use the Sample.Basic database.
or
or
The previous statements return the first non-#MISSING value found when sequentially looking up the values of members Jan, Feb, and Mar.
Example 2
Because member Jan does not have children, returns #MISSING.
Example 3
Returns the first non- #MISSING and nonzero Actual value from Qtr1, using the outline order. All months have data, so the value for Jan is returned.
Example 4
Returns the first non- #MISSING and nonzero Actual value from the given list of months, using the order given in mbrList . All months have data, so the value for Feb is returned.
See Also
Returns the last value, in a range of the specified mbrList , that satisfies the criterion specified in the first function parameter.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Every cell value is considered as data. |
SKIPMISSING | #MISSING values are not considered as data. |
SKIPZERO | Zero (0) values are not considered as data. |
SKIPBOTH | Zero (0) and #MISSING values are not considered as data. |
mbrList | A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function that returns a list of members from the same dimension. If you use the range operator or a function, the order of mbrList is dictated by the database outline order. |
Notes
The function returns #MISSING when mbrList does not contain any value matching the criterion specified in the first argument.
Example
Example 1
In the following example, @RANGELASTVAL sets Jan's budget sales of Diet Cola to the last actual sales of Qtr1.
As indicated by the SKIPBOTH parameter, @RANGELASTVAL skips zero and #MISSING. The mbrList parameter is provided by the @CHILDREN expression.
The following examples use the Sample.Basic database.
Example 2
or
or
The previous statements return the last non-#MISSING value found when sequentially looking up the values of members Jan, Feb, and Mar.
Example 3
Because member Jan does not have any children, it returns #MISSING.
See Also
Returns the rank of the specified members or the specified value among the values in the specified data set. The rank of a value is equivalent to its position (its rank) in the sorted data set.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the rank. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the rank. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the rank. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the rank. |
value | (1) The member or member combination for which the rank is calculated, or (2) a constant value for which the rank is calculated. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the rank is calculated. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Sales Rank. Essbase ranks the sales values for a set of products:
This example produces the following report. Since SKIPBOTH is specified in the formula, the #MI value for Sales->Diet Drinks is not included in the ranked list:
Returns all descendants of the specified member, or those down to the specified generation or level, including shared members. This function excludes the specified member.
You can use this member set function as a parameter of another function, where that parameter is a list of members.
In the absence of shared members, @RDESCENDANTS and @DESCENDANTS return the same result.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination |
genLevNum | Optional. An integer value that defines the absolute generation or level number down to which to select the members. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Optional. Level name or generation name down to which to select the members. |
Notes
Example
Example 1
Assume a variation of the Sample Basic database such that the Product dimension includes the following members:
Diet has two children "100" and "200". The members "100" and "200" are shared members.
returns the members: 100, 100-10, 100-20, 100-30, 200, 200-10, 200-20, 200-30, 200-40 (in that order).
Example 2
returns Margin, Sales, COGS, Total Expenses, Marketing, Payroll, and Misc (in that order) and is identical to @DESCENDANTS(Profit).
See Also
Returns all members at the specified generation or level that are above or below the specified member in the database outline.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
genLevNum | An integer value that defines the number of a generation or level. A positive integer defines a generation number. A value of 0 or a negative integer defines a level number. |
genLevName | Generation or level name specification. |
Notes
This function returns all members at the specified generation or level that are above or below the specified member in the database outline.
Essbase sorts the generated list of members in ascending order. Using Sample Basic as an example, @RELATIVE(200,0) , returns 200-10, 200-20, 200-30, 200-40 (in that order). This order is important to consider when you use the @RELATIVE member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
both return the three members that are at generation 3 (or level 0) and that are below Qtr1 in the Sample Basic outline: Jan, Feb, and Mar (in that order).
returns the two members that are at level 1 and that are below Profit: Margin and Total Expenses (in that order).
Returns the remainder value of expression .
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, or other numeric expression. |
Example
This example produces the following report:
See Also
Removes values or members in one list from another list.
Syntax
Parameter | Description |
---|---|
list1 | A list of member specifications, from which the members specified in list2 are removed. |
list2 | A list of member specifications to be removed from list1 . |
Example
Example 1
In the Sample Basic database,
returns Massachusetts, Florida, New Hampshire.
Example 2
The following example is based on the Sample Basic database. Assume that the Market dimension contains an additional member, Non-West.
A special analysis requires a sum of the actual sales values of a particular product family for non-western states. In this example, the @REMOVE function is used with the @SUMRANGE function to perform this analysis. The @LIST function is used to group the last two arguments of the @REMOVE function (the children of West plus two additional members, Texas and New Mexico).
This example produces the following report:
See Also
Exits the calculation immediately under specified logical conditions. You can use the IF... ELSEIF calculation command block to specify the logical error conditions, and use the @RETURN function to exit the calculation with customized error messages and levels.
Syntax
Parameter | Description |
---|---|
ErrorMessage | An error message string, or any expression that returns a string. |
INFO|ERROR|WARNING | An error message priority setting, where INFO, ERROR, and WARNING are priority levels:
|
Notes
Example
The following example stops the calculation and returns a custom warning message if maximum values specified in the IF statement are empty:
Rounds expression to numDigits .
Syntax
Parameter | Description |
---|---|
expression | Single member specification, variable name, or other numeric expression. |
numDigits | Single member specification, variable name, or other numeric expression that provides an integer value. If numDigits is 0 or a positive number, expression is rounded to the number of decimal places specified by numDigits . If numDigits is a negative value, expression is rounded to the nearest 10 to the power of the absolute value of numDigits . For example: @ROUND 1234, -2) = 1200 The default value for numDigits is 0. |
Example
The following example is based on the Sample Basic database:
This example produces the following report:
See Also
Returns the right siblings of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
This function returns all of the right siblings of the specified member. Right siblings are children that share the same parent as the member and that follow the member in the database outline. This function excludes the specified member.
This member set function can be used as a parameter of another function, where that parameter is a list of members.
Essbase sorts the right siblings in ascending order. Using Sample Basic as an example, if you specify 200-10 for mbrName , Essbase returns 200-20, 200-30, 200-40 (in that order). This order is important to consider when you use the @RSIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
returns Connecticut and New Hampshire (in that order). These members appear below Florida in the Sample Basic outline.
returns COGS because this member appears below Sales in the Sample Basic outline.
See Also
Returns ancestor-level data based on the shared ancestor value of the current member being calculated.
Syntax
Parameter | Description |
---|---|
rootMbr | Defines a member that is used to search for the nearest occurrence of an ancestor of a shared member. |
genLevNum | Integer value that defines the absolute generation or level number from which the ancestor values are to be returned. A positive integer defines a generation reference. A negative number or value of 0 defines a level reference. |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination, for which the ancestor values are to be returned. |
Notes
Example
Marketing expenses are captured at the Product Category levels in a product planning application. The Product categories are defined as ancestors that contain shared members as children. The Marketing Expense data must be allocated down to each Product code based on Sales contribution.
The following Product hierarchy is defined:
The Marketing Expense value is allocated down to each Product code with the following formula:
which produces the following result:
The Marketing expenses can then be reconsolidated across Products and Markets.
See Also
Checks each member from rangeList to see if it has a shared member and returns a list of the shared members it has found.
Syntax
Parameter | Description |
---|---|
rangeList | A comma-delimited list of members, functions that return members, and ranges of members. All the members in rangeList must be from the same dimension. |
Notes
Other member-set functions return actual members, not the shared members. You can use @SHARE within the memberList , rangeList , expList or list parameters of other functions to provide shared members instead.
Example
The following examples are based on Sample Basic.
To remove all shared members from the Product dimension:
To remove a specific member from the Product dimension, you can use @SHARE specifying the shared member to be removed:
See Also
Returns either the prior or next n th cell value in the sequence rangeList from mbrName , retaining all other members identical to the current member.
The direction of @SHIFT is wholly based on n , with positive n values producing an effect equivalent to @NEXT and negative values of n producing an equivalent effect to @PRIOR .
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. Using a negative value for n has the same effect as using a positive value in the @PRIOR function. n must be a numeric value, not a reference, such as a member name. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
@SHIFT is provided as a more appropriate, self-documenting name than @NEXT or @PRIOR when the value for n is a variable and may change from positive to negative, depending on the database state when the call occurs (that is, when the usage is likely to be NEXT and/or PRIOR).
Example
In this example, Prev Asset for each month is derived by taking the Asset value from the previous month because -1 is specified as the n parameter. Next Avl Asset for each month is derived by taking the Asset value from two months following the current month because 2 is specified as the n parameter. Since rangeList is not specified for either formula, the level 0 members from the dimension tagged as Time are used.
This example produces the following report:
See Also
Can be used in place of the @SHIFT() function, the @PRIOR() function, or the @NEXT() function to improve performance if the formula meets the following criteria:
If these criteria are met, consider rewriting your formula using @SHIFTMINUS() instead. @SHIFTMINUS() runs the formula in block mode, improving performance.
Syntax
Parameter | Description |
---|---|
mbrName1mbrName2 | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. n must be a numeric value, not a reference, such as a member name. If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n . If you are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n . Default value is +1. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Example
The following example shows a formula using @SHIFT().
Here is the formula using @SHIFTMINUS() to improve performance:
See Also
Can be used in place of the @SHIFT() function, the @PRIOR() function, or the @NEXT() function to improve performance if the formula meets the following criteria:
If these criteria are met, consider rewriting your formula using @SHIFTPLUS() instead. @SHIFTPLUS() runs the formula in block mode, improving performance.
Syntax
Parameter | Description |
---|---|
mbrName1mbrName2 | Any valid single member name or member combination, or a function that returns a single member or member combination. |
n | Optional signed integer. n must be a numeric value, not a reference, such as a member name. If you are using @SHIFTPLUS to replace the @NEXT function, use 1 as the value for n . If you are using @SHIFTPLUS to replace the @PRIOR function, use -1 as the value for n . Default value is +1. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Example
The following example shows a formula using @SHIFT().
Here is the formula using @SHIFTPLUS() to improve performance:
See Also
Returns the specified member or the n th sibling of the member. @SHIFTSIBLING traverses members that are at the same level and of the same parent. If the specified relative position moves beyond the first or last sibling, Essbase returns an empty string.
This function returns the next sibling as a string. To pass the @SHIFTSIBLING function as a parameter of another function, where the function requires a list of members, you must wrap the output of @SHIFTSIBLING with the @MEMBER function.
Syntax
Parameter | Description |
---|---|
mbrName | Valid member name or member-name combination or a function that returns one member or member combination. |
relativePosition | Optional. The integer that defines the position relative to the specified member. Valid values:
|
Example
All examples are from the Sample.Basic database.
Returns 100-20 (the specified member).
Returns 300 (the next sibling of 200). The @SHIFTSIBLING(“200”,1) function and the @NEXTSIBLING(“200”) function return the same results.
Returns 400 (the second-next sibling of 200).
Returns 100-10 (the previous sibling of 100-20). The @SHIFTSIBLING(“100–20”,–1) function and the @PREVSIBLING(“100–20”) function return the same results.
Returns an empty string, as 100-10 does not have a ninth sibling.
Returns all children of East. Because no shift position is specified, the default shift position is 0, which means the current member.
See Also
Returns all siblings of the specified member.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
This function returns all siblings of the specified member. This function excludes the specified member.
This function can be used as a parameter of another function, where that parameter is a list of members.
Essbase sorts the generated list of members as follows:
Using Sample Basic as an example, if you specify 200-30 for mbrName , Essbase returns 200-20, 200-10, 200-40 (in that order). This order is important to consider when you use the @SIBLINGS member set function with certain forecasting and statistical functions.
Example
In the Sample Basic database:
Returns Oregon, California, Utah, and Nevada (in that order).
Returns West, South, and Central (in that order).
See Also
Calculates the periodic amount that an asset in the current period may be depreciated, calculated across a range of periods. The depreciation method used is straight-line depreciation:
The SLN method assumes that the asset depreciates by the same amount each period.
More than one asset may be depreciated over the range. The value is depreciated from its entry period to the last period in the range. The resulting value represents the sum of all the per-period depreciation values of each asset being depreciated.
Syntax
Parameter | Description |
---|---|
costMbr | Single member specification representing an input asset for the current period. |
salvageMbrConst | Single member specification, variable name, or numeric expression, providing a constant numeric value. This value represents the value of the asset in the current period at the end of the useful life of the asset. |
lifeMbrConst | Single member specification, variable name, or numeric expression representing the useful life of the asset. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. rangeList represents the range over which the function accepts input and returns depreciation values. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
In this example, the depreciation for each year is calculated by taking into account the initial asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).
This example produces the following report:
See Also
Returns parent-level data based on the shared parent value of the current member being calculated.
Syntax
Parameter | Description |
---|---|
RootMbr | Defines a member that is used to search for the nearest occurrence of a parent of a shared member. |
mbrName | Optional. Any valid single member name or member combination, or a function that returns a single member or member combination, from which the parent values are returned. |
Notes
Example
Marketing expenses are captured at the Product Category levels in a product planning application. The Product categories are defined as parents that contain shared members as children. The Marketing Expense data must be allocated down to each Product code based on Sales contribution.
The following Product hierarchy is defined:
The Marketing Expense value is allocated down to each Product code with the following formula:
which produces the following result:
The Marketing expenses can then be reconsolidated across Products and Markets.
See Also
Applies a smoothing spline to a set of data points. A spline is a mathematical curve that smoothes or interpolates data.
Syntax
Parameter | Description |
---|---|
YmbrName | A valid single member name that contains the dependent variable values used (when crossed with rangeList) to construct the spline. |
s | Optional. A zero (0) or positive value that determines the smoothness parameter. The default value is 1.0. |
XmbrName | Optional. A valid single member name that contains the independent variable values used (when crossed with rangeList) to construct the spline. The default independent variable values are 0,1,2,3, and so on. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Sales Spline. The formula calculates the spline of Sales values for Jan through Jun, based on a smoothness parameter of 2.
This example produces the following report:
See Also
Calculates the standard deviation of the specified data set (expList). The calculation is based upon a sample of a population. Standard deviation is a measure of how widely values are dispersed from their mean (average).
This function assumes that expList represents a sample of a population. If you want expList to represent the entire population, use @STDEVP . For large samples, the functions return similar values.
@STDEV is calculated using the "nonbiased" or " n -1" method.
@STDEV uses the following formula:
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the standard deviation. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the standard deviation. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the standard deviation. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the standard deviation. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the standard deviation is calculated. |
Notes
The @STDEV function replaces the @STDDEV function. The only difference between the functions is the SKIP parameter in the @STDEV function. Although the old @STDDEV function is supported for migration purposes, you can no longer select it in the Calculation Script Editor or Formula Editor.
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Std Deviation. This example calculates the standard deviation (based on a sample of a population) of the sales values for all products and uses the @RANGE function to generate expList .
This example produces the following report:
See Also
Calculates the standard deviation of the specified data set (expList).
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the standard deviation. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the standard deviation. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the standard deviation. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the standard deviation. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the standard deviation is calculated. |
Notes
@STDEVP calculates the standard deviation of the specified data set (expList). The calculation is based upon the entire population. Standard deviation is a measure of how widely values are dispersed from their mean (average).
This function assumes that expList represents the entire population. If you want expList to represent a sample of a population, use @STDEV. For large samples, the functions return similar values.
@STDEVP is calculated using the "biased" or " n " method.
@STDEVP uses the following formula:
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Std Deviation. This example calculates the standard deviation (based on the entire population) of the sales values for all products and uses the @RANGE function to generate expList .
This example produces the following report:
See Also
Calculates the standard deviation of all values of the specified member (mbrName) across the specified data set (XrangeList). The calculation is based upon a sample of a population. Standard deviation is a measure of how widely values are dispersed from their mean (average).
This function is calculated using the "unbiased" or " n -1" method. See @STDEV for the formula used.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the standard deviation. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the standard deviation. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the standard deviation. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the standard deviation. |
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Notes
The @STDEVRANGE function replaces the @STDDEVRANGE function. The only difference between the functions is the SKIP parameter in the @STDEVRANGE function. Although the old @STDDEVRANGE function is supported for migration purposes, you can no longer select it in the Calculation Script Editor or Formula Editor.
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Std Deviation. This example calculates the standard deviation (based on a sample of a population) of the sales values for all products.
This example produces the following report:
See Also
Returns the requested string of characters from an existing source string. The source string can be a text string or a member name, or it can result from a specified function that returns a text string or a single member name.
Syntax
Parameter | Description |
---|---|
String | A string or a function that returns a string or a single member name (For example, @ATTRIBUTESVAL, @CONCATENATE, and @NAME return strings.) |
StartPosition | Beginning character position within String to include in the substring. An integer greater than or equal to 0, where 0 corresponds to the first character in String , 1 corresponds to the second character, and so on. |
EndPosition | Optional. An integer greater than or equal to 1, where 1 corresponds to the first character in String , 2 corresponds to the second character, and so on. If EndPosition is not specified or is less than StartPosition , Essbase returns all remaining characters from the source string. Note that this is a different numbering scheme that the start position uses. |
Example
The following examples are based on the Sample Basic database:
Function Statement | Result |
---|---|
@SUBSTRING ("100-10",1) | "00-10" |
@SUBSTRING ("200-21",0,2) | "20" |
@SUBSTRING (@Name(@Parent(Jan)),3) (The parent of Jan is Qtr1.) | "1" |
See Also
Returns the summation of all the values in expList .
Syntax
Parameter | Description |
---|---|
expList | Comma-delimited list of member specifications, variable names, or numeric expressions, all of which provide numeric values. |
Example
In the Sample Basic database:
Since the calculation script fixes on Total Expenses, the value for Total Expenses->West is equal to the sum of the value for East and the values for the states making up the West. For Sales, West and East are simply the sum of the states making up each region (that is, Sales->West is not equal to the sum of East and West). This example produces the following report:
See Also
Returns the summation of all the values of the specified member (mbrName) across the specified range (XrangeList).
Syntax
Parameter | Description | ||
---|---|---|---|
mbrName | Any valid single member name, or a function that returns a single member.
| ||
XrangeList | Optional. A valid member name, a comma-delimited list of member names, cross dimension members, or a member set function or range function (including @XRANGE) that returns a list of members from the same dimension. If XrangeList is not specified, Essbase uses the level 0 members from the dimension tagged as time. |
Example
The following example is based on the Sample Basic database. Assume that the Year dimension contains an additional member, Partial Year. The formula for Partial Year sums the values for New York across the range of Jan through Jun. The calculation script fixes on Sales, so this formula is applied only to Sales values.
See Also
Calculates the periodic amount (usually annual) that an asset in the current period may be depreciated, across a range of periods. The depreciation method used is sum of the year's digits.
The SYD method assumes that depreciation amounts are higher at the earlier stages of the asset's life. Thus, rangeList can be used to specify a period to calculate.
More than one asset may be depreciated over the range. The value is depreciated from its entry period to the last period in the range. The resulting value represents the sum of all per-period depreciation values of each asset.
Syntax
Parameter | Description |
---|---|
costMbr | Single member specification representing an input asset for the current period. |
salvageMbrConst | Single member specification, variable name, or numeric expression, providing a constant numeric value. This value is the value of the asset in the current period after the useful life of the asset. |
lifeMbrConst | Single member specification, variable name, or numeric expression representing the useful life of the asset. |
rangeList | Optional. A valid member name, a comma-delimited list of member names, member set functions, and range functions from the dimension tagged as Time. rangeList represents the range over which the function accepts input and returns depreciation values. If rangeList is not specified, Essbase uses the level 0 members from the dimension tagged as Time. |
Notes
Financial functions never return a value; rather, they calculate a series of values internally based on the range specified.
Example
In this example, the depreciation for each year is calculated by taking into account the initial asset (Asset), the salvage value of the asset (Residual), and the life of the asset (Life).
This example produces the following report:
See Also
Converts date strings to numbers that can be used in calculation formulas. @TODATE converts date strings into the number of seconds elapsed since midnight, January 1, 1970.
Syntax
Parameter | Description |
---|---|
formatString | The format of the date string, either "mm-dd-yyyy" or "dd-mm-yyyy" (must be in lower case). |
dateString | The date string. |
Notes
Example
The following example is based on the Sample Basic database.
This formula searches for members with an Intro Date attribute member that is later than 6-30-96 and decreases Marketing for those members by 10 percent. In order to process the formula, Essbase converts the date strings to numbers before it calculates.
This example produces the following report:
See Also
Returns the numeric date value from input date-string according to the date-format specified. The date returned is the number of seconds elapsed since midnight, January 1, 1970.
If the date or the date format strings are invalid, an error is returned.
Syntax
Parameter | Description |
---|---|
date_format_string | One of the following literal strings (excluding ordered-list numbers and parenthetical examples) indicating a supported date format.
|
string | A date string following the rules of internal-date-format . The following examples correspond to the above listed internal date formats.
|
Notes
See Also
Returns a number representing the current date on the Essbase computer. The number is the number of seconds elapsed since midnight, January 1, 1970.
Syntax
Notes
The date returned can be used as input to other functions listed in the See Also section.
See Also
Calculates future values based on curve-fitting to historical values. The @TREND procedure considers a number of observations; constructs a mathematical model of the process based on these observations (that is, fits a curve); and predicts values for a future observation. You can use weights to assign credibility coefficients to particular observations, report errors of the curve fitting, choose the forecasting method to be used (for example, linear regression), and specify certain data filters.
Syntax
Parameter | Description |
---|---|
Ylist | An expression list that contains known observations; for example, sales figures over a period of time. |
Xlist | Optional. An expression list that contains underlying variable values. For example, for each sales figure in Ylist , Xlist may contain a value for associated time periods. If you do not specify Xlist , the default variable values are 1,2,3, and so on, up to the number of values in Ylist . |
weightList | Optional. An expression list that contains weights for the data points in Ylist , for the linear regression method only. If values in weightList are #MISSING , the default is 1. Weights for methods other than linear regression are ignored. Negative weights are replaced with their absolute values. |
errorList | Optional. Member list that represents the differences between the data points in Ylist and the data points on the line or curve (as specified for method). |
XforecastList | Optional. Expression list that contains the underlying variable values for which the forecasting is sought. If you do not specify XforecastList , the values are assumed to be as follows: {(last value in Xlist + 1), (last value in Xlist + 2), ...}up to (last value in Xlist + the number of values in YforecastList) If you forecast consecutively from where Ylist stops, you do not need to specify XforecastList . If you want to move the forecasting period forward, specify the new period with XforecastList . |
YforecastList | A member list into which the forecast values are placed. |
method | A choice among LR (linear regression), SES (single exponential smoothing), DES (double exponential smoothing), and TES (triple exponential smoothing). Method parameters must be numeric values, not member names. Method parameters may be any of the following:
|
Xfilter1 ... XfilterN | Optional. Use one or more of the following filter methods to scale Xlist :
|
Yfilter1 ... YfilterN | Optional. Use one or more of the following filter methods to scale Ylist :
|
Notes
Algorithm for Linear Regression
Algorithm for Linear Regression with Seasonal Adjustment
Algorithm for Single Exponential Smoothing (SES)
Algorithm for Double Exponential Smoothing (DES)
Algorithm for Triple Exponential Smoothing (TES)
Example
The following example is based on the Sample Basic database. It forecasts sales data for May through December, based on the trend of the same sales data from January through April. The method used is linear regression with no seasonal adjustment.
This example produces the following report:
See Also
Removes the fractional part of expression , returning the integer.
Syntax
Parameter | Description |
---|---|
expression | Single member specification, function, variable name, or other numeric expression, which returns a numeric value. |
Example
In the following example, Total Sales is calculated by (1) taking the sum of the values for Direct Sales and Other Sales and (2) truncating the summed values.
This example produces the following report:
See Also
Returns members based on a common attribute, which you have defined as a user-defined attribute (UDA) on the Essbase Server.
Syntax
Parameter | Description |
---|---|
dimName | Name of the dimension with which the uda is associated. |
uda | Name of the user-defined attribute as it appears in the database outline. |
Notes
You must type the UDA string exactly as it appears in the database outline.
Example
In the Sample Basic database:
Returns a list of members with the UDA of New Mkt .
See Also
Calculates the variance (difference) between two members. The variance calculation recognizes the difference between accounts that are tagged in the database outline as "Expense" or "No Expense" and calculates the variance accordingly.
Syntax
Parameter | Description |
---|---|
mbrName1andmbrName2 | Members from the same dimension whose variance results are to be calculated. The variance is derived by subtracting mbrName2 values from mbrName1 , unless an account is tagged as "Expense", in which case mbrName1 values are subtracted from mbrName2 . |
Example
The following example is based on the Sample Basic database. The variance between Actual and Budget is calculated as follows:
Sales is defined as "No Expense", whereas COGS is tagged as "Expense". This example produces the following report:
See Also
Calculates the percent variance (difference) between two members. The variance calculation recognizes the difference between accounts that are tagged in the database outline as "Expense" or "No Expense" and calculates the variance accordingly.
Syntax
Parameter | Description |
---|---|
mbrName1andmbrName2 | Members from the same dimension whose variance results are to be calculated. The percent variance is derived by taking the percent variance of mbrName2 values from mbrName1 , unless an account is tagged as "Expense", in which case mbrName1 values are taken as a percent variance of mbrName2 . |
Example
The following example is based on the Sample Basic database. The percent variance between Actual and Budget is calculated as follows:
In this example Sales is defined as "No Expense", whereas COGS is tagged as "Expense". This example produces the following report:
See Also
Calculates the statistical variance of the specified data set (expList). The calculation is based upon a sample of a population. Variance is a measure of the dispersion of a set of data points around their mean (average) value.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the variance. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the variance. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the variance. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the variance. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the variance is calculated. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Sales Var. This example uses the @RANGE function to generate expList , and calculates the variance of the sales values for a product family.
This example produces the following report:
See Also
The @VARIANCEP() function calculates the statistical variance of the specified data set (expList). The calculation is based upon the entire population. Variance is a measure of the dispersion of a set of data points around their mean (average) value.
Syntax
Parameter | Description |
---|---|
SKIPNONE | Includes all cells specified in expList , regardless of their content, during calculation of the variance. |
SKIPMISSING | Excludes all #MISSING values from expList during calculation of the variance. |
SKIPZERO | Excludes all zero (0) values from expList during calculation of the variance. |
SKIPBOTH | Excludes all zero (0) values and #MISSING values from expList during calculation of the variance. |
expList | Comma-delimited list of member specifications, variable names, functions, or numeric expressions. expList provides a list of numeric values across which the variance is calculated. |
Notes
Example
The following example is based on the Sample Basic database. Assume that the Measures dimension contains an additional member, Sales Var. This example uses the @RANGE function to generate expList and calculates the variance of the sales values for a product family.
This example produces the following report:
See Also
Returns all base members that are associated with an attribute or varying attribute that satisfies the conditions you specify. You can use operators such as >, <, =, and IN to specify conditions that must be met. @WITHATTR can be used as a parameter of another function, where that parameter is a list of members.
Syntax
Parameter | Description |
---|---|
dimName | Single attribute dimension name or varying attribute dimension name. |
operator | Operator specification, which must be enclosed in quotation marks (""). |
value | A value that, in combination with the operator, defines the condition that must be met. The value can be an attribute member specification, a constant, or a date-format function (that is, @TODATE). |
Notes
Operator | Description |
---|---|
> | Greater than |
>= | Greater than or equal to |
< | Less than |
<= | Less than or equal to |
= = | Equal to |
<> or != | Not equal to |
IN | In |
Example
The following table shows examples, based on the Sample Basic database, for each type of operator:
Operator | Example | Result |
---|---|---|
> | @WITHATTR(Population,">","18000000") | Returns New York, California, and Texas |
>= | @WITHATTR(Population,">=",10000000) where 10,000,000 is not a numeric attribute member, but a constant | Returns New York, Florida, California, Texas, Illinois, and Ohio |
< | @WITHATTR(Ounces,"<","16") | Returns Cola, Diet Cola, Old Fashioned, Sasparilla, and Diet Cream |
<= | @WITHATTR("Intro Date","<=",@TODATE("mm-dd-yyyy", "04-01-2002")) | Returns Cola, Diet Cola, Caffeine Free Cola, and Old Fashioned |
= = | @WITHATTR("Pkg Type","= =",Can) | Returns Cola, Diet Cola, and Diet Cream |
<> or != | @WITHATTR(Caffeinated,"<>",True) | Returns Caffeine Free Cola, Sasparilla, Birch Beer, Grape, Orange Strawberry |
IN | @WITHATTR("Population","IN",Medium) | Returns Massachusetts, Florida, Illinois, and Ohio |
The following two examples show @WITHATTR used in a calculation script, based on the Sample Basic database:
See Also
Returns the range of members between (and inclusive of) two specified single or cross-dimensional members at the same level.
For example, when you work with the Time and Scenario dimensions, you can use @XRANGE to return a member set combination of Time and Scenario instead of creating a dimension that combines the two (which creates many more individual members than necessary).
@XRANGE is a member set function. Member set functions return a list of members. @XRANGE can appear anywhere in a formula where a range can normally appear.
Syntax
Parameter | Description |
---|---|
mbrName1 | Any valid member name, member combination, or function that returns a single member. |
mbrName2 | Any valid member name, member combination, or function that returns a single member. If mbrName1 is a cross-dimensional member (such as Actual->Jan), then mbrName2 must be also, and the dimension order must match the order used in mbrName1 . |
Notes
Example
The following examples are based on the Sample Basic database.
Example 1
Here is a very simple example using simple members to return the range between Jan and Mar.
This example returns the following members:
Example 2
Here is a very simple example using cross dimensional members to return the range between Actual, Jan and Budget, Mar:
This example returns the following members:
Example 3
This example is not based on the Sample Basic database. It is based on database that contains a dimension called Year that contains members for each year, from 2001 to 2003.
The following formula computes the average sales for all months between Mar of 2000 and Jan of 2001.
This example returns the following members:
See Also
Enables a database calculation to incorporate values from another Essbase database.
The following terminology is used to describe the @XREF function:
The @XREF function retrieves values from a data source to be used in a calculation on a data target. @XREF does not impose member and dimension mapping restrictions, which means that the data source and data target outlines can be different.
As arguments, this function takes a location alias, an implied list of members that represents the current point of view, and an optional list of members to qualify the @XREF query on the data source. The second argument (the members making up the current point of view) is implied; that is, these members are not specified as an @XREF parameter. An @XREF query that omits the third argument indicates that a given data point in the data target will be set to the same data point in the data source.
Syntax
Parameter | Description |
---|---|
locationAlias | A location alias for the data source. A location alias is a descriptor that identifies the data source. The location alias must be set on the database on which the calculation script will be run. The location alias is set by the database administrator and specifies a server, application, database, username, and password for the data source. |
mbrList | Optional. A comma-delimited list of member names that qualify the @XREF query. The members you specify for mbrList are sent to the data source in addition to the members in the current point of view in the data target. The data source then constructs a member combination, using in order of precedence:
The mbrList parameter (1) modifies the point of view on the data target or (2) defines a specific point of view on the data source. For example, the following formula modifies the point of view on the data target: 2003(2003->Jan->Inventory = @XREF(sourceDB,Dec);) If the cube on the data source (sourceDB) contains data only from 2002, this formula sets Inventory for Jan in 2003 to the Inventory value for Dec from 2002. The following formula defines a specific point of view on the data target: Jan = @XREF(sourceDB,January); Assume that the data target contains the member Jan, while the data source (sourceDB) contains the member January. This formula simply maps the member in the data target (Jan) with its corresponding member in the data source (January), and pulls January from sourceDB . See Notes for more information about the mbrList parameter. |
Notes
Example
For this example, consider the following two databases:
Main Database
Inflation Rates Database
The following formula is associated with the Main Database:
Where InflatDB is the location alias for the Inflation Rates Database and Inflation is the member for which a data value is retrieved from InflatDB .
In this example, Essbase calculates the following member combinations:
Units->Qtr1->100-10->East->Budget = Units->Qtr1->100-10->East->Budget * Inflation->Qtr1->US
Units->Qtr2->100-10->East->Budget = Units->Qtr2->100-10->East->Budget * Inflation->Qtr2->US and so on.
See Also
Enables a database calculation to write values to another Essbase database, or to the same database.
The following terminology is used to describe the @XWRITE function:
The @XWRITE function writes to data blocks, either in the same database or in a remote database, while calculating a block in the current database. @XWRITE does not impose member and dimension mapping restrictions, which means that the data source and data target outlines can be different.
As arguments, this function takes a location alias, an implied list of members that represents the current point of view, and an optional list of members to qualify @XWRITE on the data target. The second argument (the members making up the current point of view) is implied; that is, these members are not specified as an @XWRITE parameter. An @XWRITE that omits the third argument indicates that a given data point in the data source will be set to the same data point in the data target.
Syntax
Parameter | Description |
---|---|
expression | A single member specification, variable name, or other numeric expression corresponding to the value to be stored. |
locationAlias | A location alias for the data target. The location alias must be set on the database on which the calculation script will be run. The location alias is set by the database administrator and specifies a server, application, database, username, and password for the data target. The same location alias can be used by both @XREF and @XWRITE. For @XREF, it represents the data source, and for @XWRITE it represents the data target. For @XWRITE only, a reserved keyword @LOOPBACK can be used to write to the same database. |
mbrList | Optional. A comma-delimited list of member names that qualify the @XWRITE operation. The members you specify for mbrList , in addition to the members in the current point of view in the data source, determine what is written to the data target. The data target is written to using the following calculation logic (in order of precedence):
Therefore, the remote member list is calculated and written using members from current point of view, overridden with members from the mbrList specified to @XWRITE, and if some dimensions are still absent at the data target, the top most dimension of the data target is used. See Notes for more information about the mbrList parameter. |
Notes
Example
The following Sample Basic formula writes the 100-30 values into 100-20 on the same database.
The following Sample Basic formula writes the 100-30 values into 100-20 on a remote database, Sample2 Basic, using the location alias "sam2basic" defined from Sample Basic to Sample2 Basic.
See Also
To get you started in creating custom-defined functions for the Essbase calculator, a set of example statistical functions is provided with this release. These examples are compiled and included in the essbase.jar file, located in the ESSBASEPATH\java\ directory.
For information about creating custom-defined functions, see the MaxL DDL Create Function statement. For more information about custom-defined functions, see the Oracle Essbase Database Administrator's Guide .
The Java code for examples of custom-defined functions is provided in the file statisti.jav , copied below. For more information about the classes, methods, and constants in the statisti.jav file, see the Oracle Essbase Statistics Java Package.
The code contained in the statisti.jav file is implemented in the ESSBASEPATH\java\essbase.jar file. The examples in the statisti.jav file use constants which are defined in the essbase.jar file. To use the constants defined in these examples, you must import the Calculator class constants defined in the essbase.jar file.
Statisti.jav
Sample scripts for registering and dropping the example custom-defined functions are provided in the following files, located in the following directory of this documentation: samples\cdf\examples :
The sample files can be viewed or modified in any text editor. For more information about registering custom-defined functions, see the Oracle Essbase Database Administrator's Guide .
Custom-defined macros enable you to combine Essbase calculation functions into a single function, called a macro. Custom-defined macros can also include special directives , variables, and other macros. After you create macros, they can be used in formulas and calculation scripts just like native Essbase calculation functions.
Note: | Custom-defined macros cannot include calculation commands . |
Topics that discuss custom-defined macros:
For information about creating custom-defined macros, see the MaxL DDL Create Macro statement. For more information about custom-defined macros, see the Oracle Essbase Database Administrator's Guide .
When creating a macro, you can define how many and what kind of arguments are passed into the macro. Specifying the argument set (also known as the signature) for a macro is optional, but specifying it can make the macro easier to use and prevent usage errors.
The argument set is specified as part of the macro name when you create a macro with the Create Macro MaxL statement. In the following macro name, the argument set is enclosed in parentheses:
The preceding macro signature indicates that this macro requires two arguments: single , which represents one input parameter, and group , which represents a list of input parameters. These macro arguments do not represent a specific data type (such as a boolean, double, or string); instead, they only indicate how many arguments are accepted by the macro.
Arguments are specified in a comma-delimited list (argument1 , argument2 , ... argumentX) as part of the macro name when the macro is created. Arguments can be specified using the following keywords, which tell the macro processor how to check the arguments for a macro:
Argument | Description |
---|---|
SINGLE | A single argument |
GROUP | A list of arguments. Any argument following GROUP is ignored. |
OPTIONAL | A single argument that is not required |
OPTIONAL_GROUP | A list of arguments that is not required. Any argument following OPTIONAL_GROUP is ignored. |
ANY | No checking of arguments. Any argument following ANY is ignored. |
In the macro presented previously, the following sets of arguments are valid:
The following table shows examples of how the macro processor interprets arguments for macros with different signatures given different input parameters. The definition of the example macro is:
Macro with Signature of SUM3(signature) | Result when given input of SUM3(X,Y) | Result when given input of SUM3(X,Y,Z) | Result when given input of SUM3(X,Y,Z,T) |
---|---|---|---|
SUM3(SINGLE, SINGLE, SINGLE) | Error (wrong number of arguments) | X+Y+Z | Error (wrong number of arguments) |
SUM3(SINGLE, SINGLE, GROUP) | Error (wrong number of arguments) | X+Y+Z | X+Y+@LIST(Z,T) |
SUM3(SINGLE, SINGLE, OPTIONAL_GROUP) | X+Y+@_NULL | X+Y+Z | X+Y+@LIST(Z,T) |
SUM3(SINGLE, SINGLE, OPTIONAL) | X+Y+@_NULL | X+Y+Z | Error (wrong number of arguments) |
SUM3(SINGLE, SINGLE, ANY) | X+Y+@_NULL | X+Y+Z | X+Y+Z |
SUM3(SINGLE, ANY) | X+Y+ | X+Y+Z | X+Y+Z |
SUM3(SINGLE, GROUP) | X+Y+ | X+@LIST(Y,Z)+ | X+@LIST(Y,Z,T)+ |
SUM3(ANY) | X+Y+ | X+Y+Z | X+Y+Z |
As noted previously, specification of arguments in the macro name only restricts the number of arguments that are accepted by the macro and does not restrict the data types that may be passed into the macro. Arguments in the Essbase calculator language can represent any of the following data types:
Data Type | Description |
---|---|
Number | A single, double precision, floating point type number, which can have a special value, #MISSING, or an array of these numbers |
Boolean | A single three-valued variable with the possible values, TRUE, FALSE, and #MISSING, or an array of these variables |
Member | A single database outline member, cross-member combination, or an array of members |
String | A string variable type, or an array of these strings |
When developing macros, you should consider the types of data that can be passed into macros to avoid errors in calculation.
Specifying an argument set for a custom-defined macro is only part of creating a macro. You must use the argument values in the macro expansion, which defines what functions the macro performs. Two types of argument variables can be used in a macro definition: numbered argument variables and argument variable shortcuts.
Using Numbered Argument Variables
In a macro definition, argument variables can be referenced by the order in which they appear in the macro signature. Consider the following example macro signature with three argument variables:
To use the input from this function in the macro definition, you reference the arguments using the argument variables @@1 for the first input parameter, @@2 for the second input parameter, and @@3 for the third input parameter. Thus, using the macro in the preceding example and providing the following input,
results in the macro variables being set to the following values:
Use of the optional argument in the macro signature has no effect on which macro variable represents which incoming argument; for example, the input,
results in the macro variables being set to the following values:
Using Argument Variable Shortcuts
You can represent sets of arguments with the variable shortcuts @@S and @@SH x . These shortcuts enable you to specify a set of arguments with one variable, rather than listing a set of numbered variables. Using input from the preceding example, the @@S variable would be set to the following value:
Argument variables and shortcuts for custom-defined macros can be used in any order within a macro definition and can be repeated in a macro.
Custom-defined macros can include calculation functions , but cannot include calculation commands .
In addition to the calculation functions, custom-defined macros can include special directives that are available only for macros. These directives are categorized as follows:
Variable handling
Error handling
Conditionals
The following topics describe the directives.
The @@ x statement is a variable representing an input argument for a macro. The number x is the number of the argument in the signature of the macro. So, @@1 represents the first input argument, @@2 represents the second input argument, and so on.
Syntax
Where x is the number of an argument in the signature of the macro.
Notes
Example
The following example shows a create statement for a macro with three input arguments that are added.
See Also
The @@S statement is a variable representing all input arguments for a macro.
Syntax
Notes
Example
The following example shows a macro that divides the sum of all arguments by the sum of the first two arguments.
See Also
The @@SH x statement represents a subset of all arguments starting with position x and including the rest of the arguments for the macro.
Syntax
@@S x
Where x is the number of an argument in the signature of the macro, with 0 representing the first position, 1 representing the second position, and so on.
Notes
Example
The following example shows a macro that multiplies the first arguments together and adds them to the sum of the remaining arguments.
See Also
The @@ERROR command forces the macro processor to stop and report an error.
Syntax
Where:
Notes
The @@L x command can be used as the first parameter of an @@ERROR statement to identify a line number in a calculation script or formula where the macro is used.
Example
The following example function checks the first input argument for valid values (SKIPNONE, SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns an error, specifying a line number in a calculation script or formula where the macro is used.
See Also
The @@L x command returns a number representing the line in a calculation script or formula where a macro argument occurs, or the line where the macro name occurs.
Syntax
Where x is a number specifying a macro input argument number (1 , 2, ... n), or the macro name, if zero (0) is specified.
Notes
The @@L x command can be used only as the first parameter of an @@ERROR statement to identify a line number for an error in a calculation script or formula.
Example
The following example macro checks the first input argument for valid values (SKIPNONE, SKIPMISSING, SKIPZERO, SKIPBOTH). If none of these values is found, the macro returns an error, specifying a line number in a calculation script or formula where the macro is used. The line number is specified using the @@L1 statement, which returns 2, the number of the line in the calculation script or formula where the first parameter of the macro occurs.
See Also
The @@IFSTRCMP command compares a macro input parameter to a string. If the input parameters match, the macro statements following the command are processed. Otherwise, the statements following @@ELSE are processed.
Syntax
Where:
Notes
The @@IFSTRCMP statement block must use the @@ELSE statement as part of its decision syntax. You do not have to include a statement after @@ELSE.
Example
This test checks to see if the second macro argument is blank. If it is, then only the first argument is used. If the second argument is not blank, then the two arguments are added.
See Also
The @@ELSE command designates a conditional action to be performed in an @@IFSTRCMP statement. All actions placed after the @@ELSE in an @@IFSTRCMP statement are performed only if the strings compared in the @@IFSTRCMP statement do not match.
Syntax
Where statement is operations to be performed depending on the results of the test.
Notes
Example
This test checks to see if the second macro argument is blank. If it is, then only the first argument is used. If the second argument is not blank, then the two arguments are added.
See Also
The @@ENDIF command marks the end of an @@IFSTRCMP command sequence. The @@ENDIF command can be used only in conjunction with the @@IFSTRCMP statement.
Syntax
Notes
Example
This test checks to see if the second macro argument is blank. If it is, then only the first argument is used. If the second argument is not blank, then the two arguments are added.
See Also
You use calculation scripts to create calculations that differ from those defined in the database outline. Calculation scripts enable development of custom operations to supplement the built-in calculation of the database outline.
Calculation commands are the elements of calculation scripts that instruct Essbase in the calculation rules to be used. You create calculation scripts using the Calculation Script Editor. Within the Calculation Script Editor, a dialog box is available that allows you to paste functions while you develop formulas. For more information, see the Oracle Essbase Administration Services Online Help .
When a database is created, a default calculation script is set to “ calculate all ”, which means that it will calculate all dimensions based on the database outline's hierarchical relationships and formulas.
You can override this default script by using a custom script. You can use the custom script(s) temporarily or permanently, without altering the default script. In the custom script, you can refer to calculation rules defined in the database outline or you can specify custom formulas, calculation formats, and calculation orders.
A calculation script contains a series of calculation commands. The order of the commands defines the execution order of the calculation.
Calculation operators (mathematical, conditional and logical, and cross-dimensional) define equations for member formulas and calc scripts.
Mathematical operators perform common arithmetic operations.
Operator | Description |
---|---|
+ | Adds |
- | Subtracts |
* | Multiplies |
/ | Divides |
% | Evaluates percentage, for example: Member1 % Member2 evaluates Member1 as a percentage of Member2 . |
() | Controls the order of calculations and nests equations and formulas |
Conditional operators build logical condition into calculations.
Operator | Description |
---|---|
IF | ELSE | ELSEIF | ENDIF | Tests conditions and calculates a formula based on the success or failure of the test |
> | Data value is greater than |
>= | Data value is greater than or equal to |
< | Data value is less than |
<= | Data value is less than or equal to |
= = | If data value is equal to |
< > or != | Data value is not equal to |
AND | Logical AND linking operator for multiple value tests. Result is TRUE if both conditions are TRUE. Otherwise the result is FALSE. [1] |
OR | Logical OR linking operator for multiple value tests. Result is TRUE if either condition is TRUE. Otherwise the result is FALSE. [2] |
NOT | Logical NOT operator. Result is TRUE if condition is FALSE. Result is FALSE if condition is TRUE. [3] |
The cross-dimensional operator points to data values of specific member combinations. It is created with a hyphen (-) and a right angle bracket (>), with no space between them: ->
This section lists calculation commands grouped by type:
Conditional commands control the flow of events in formulas. You can control which formulas are executed within a calculation, test conditions, and calculate a formula based on the result of the test.
When you use an IF statement as part of a member formula in a calc script, you need to:
For example:
Essbase cycles through the database, performing the following calculations:
The entire IF fixend.htm ENDIF statement is enclosed in parentheses and associated with the Profit member, Profit (IF(fixend.htm)fixend.htm) .
Control Flow commands are used to iterate a set of commands or to restrict the commands' effect to a subset (partition) database. They control the flow of a calculation script. The FIX…ENDFIX and EXCLUDE…ENDEXCLUDE commands restrict calculations to specified members. The LOOP...ENDLOOP command enables repetition.
These commands are used to declare and set the initial values of temporary variables. The values stored in a variable are not returned in queries, because they only exist while the calculation script is being processed. If you want to report these values, you need to create members within the database outline, or assign the values from the variables into existing members.
Functional commands are used to perform operations such as calculation, data copying, exporting data, clearing data, and Currency Conversion.
Member Formulas are used to calculate the default outline format on a custom formula within the script. As with formulas in the database outline, a formula in a calculation script defines mathematical relationships between database members. For example, the following expressions are valid within a calculation script:
Specifying a member name with a formula defined in the outline calculates the member using its formula.
The above formula expresses a simple mathematical relationship, which is used in place of the database outline formula on the Expenses member.
Interdependent Member Formulas
Essbase optimizes calculation performance by calculating formulas for a range of members in the same dimension. However, some formulas require values from members of the same dimension. A good example is that of cash flow, in which the opening inventory is dependent on the closing inventory from the previous month.
For examples of interdependent formulas, see the Oracle Essbase Database Administrator's Guide .
When you use an interdependent formula in a calc script, the same rules apply as for the IF statement. You need to:
If you place the following interdependent formula in a calc script, you construct it as follows:
The entire formula is enclosed in parentheses and associated with the Opening Inventory member, "Opening Inventory" (IF(fixend.htm)…).
Consult the Contents pane for a categorical list of calculation commands.
Prefaces a substitution variable in a calculation script.
Syntax
Parameter | Description |
---|---|
variableName | The name of the substitution variable set on the database. |
Notes
Essbase treats strings beginning with & as substitution variables, replacing them with values before parsing the calculation script.
Example
becomes
if substitution variable &CurQtr has the value "Qtr1".
Consolidates database values. This command ignores all member formulas, consolidating only parent/child relationships.
The AGG command performs a limited set of high-speed consolidations. Although AGG is faster than the CALC commands when calculating sparse dimensions, it cannot calculate formulas; it can only perform aggregations based on the database structure. AGG aggregates a list of sparse dimensions based on the hierarchy defined in the database outline. If a member has a formula, it is ignored, and the result does not match the relationship defined by the database outline.
If you want to aggregate a dimension that contains formulas:
Syntax
Parameter | Description |
---|---|
dimList | Name of a dimension or comma-separated list of dimensions. |
Notes
Example
See Also
Declares one-dimensional array variables.
Syntax
Parameter | Description |
---|---|
arrayVariableName | Comma-delimited list of one or more array variable names. |
dimName | Dimension whose size determines the size of the array variable. Surround dimName with brackets []. |
constList | Optional list of data values used to initialize the array variable(s). If no initialization is performed, the array variables are set to #MISSING . The order of the values corresponds to the order of the members in the dimension used to define the array. |
Notes
Example
yields an array of 4 entries, with the values 1 through 4 entered in those four entries.
yields two arrays:
See Also
Calculates and aggregates the entire database based on the database outline.
Syntax
Parameter | Description |
---|---|
EXCEPT | Defines an exception list of dimensions or members to be excluded from calculation. |
DIM | Single-dimension specification. |
dimList | Optional comma-delimited list of dimensions. |
MBR | Single-member specification. |
mbrList | Optional comma-delimited list of members, member set functions, or range functions. |
Notes
The order in which dimensions are processed depends on their characteristics in the outline. For more information, see "Defining Calculation Order" in the Oracle Essbase Database Administrator's Guide .
Example
See Also
Calculates members tagged as time balance Average or Average Non-Missing. All other member calculations are ignored.
Syntax
Notes
This command calculates based on the Accounts dimension; it does not do a Time Series calculation on the Time dimension.
Example
See Also
Calculates formulas and aggregations for each member of the specified dimensions.
Syntax
Parameter | Description |
---|---|
dimList | Dimension or comma-delimited list of dimensions to be calculated. |
Notes
The order in which dimensions are calculated depends on whether they are dense or sparse. Dense dimensions are calculated first, in the order of dimList . The sparse dimensions are then calculated in a similar order.
Example
In the above example, the calculation order is: Dense1, Dense2, Sparse1, Sparse2. If your dimensions need to be calculated in a particular order, use separate CALC DIM commands:
See Also
Calculates all members tagged in the database outline as time balance First.
Note: | Only members tagged as time balance First are calculated using this command. Other members are ignored. |
Syntax
Notes
This command calculates based on the Accounts dimension; it does not do a Time Series calculation on the Time dimension.
Example
See Also
Calculates all members tagged in the database outline as time balance Last.
Note: | Only members tagged as time balance Last are calculated using this command. Other members are ignored. |
Syntax
Notes
This command calculates based on the Accounts dimension; it does not do a Time Series calculation on the Time dimension.
Example
See Also
Calculates all members tagged in the database outline as two-pass. These members must be on a dimension tagged as Accounts.
Syntax
Notes
Member formulas are applied at each consolidated level of the database. All non two-pass members are ignored during this process.
Example
Calculates currency conversions. This command is available only if your company has purchased the Currency Conversion option.
Syntax
Parameter | Description |
---|---|
currExchMbr | Currency name containing the required exchange rate. This is a member from the currency database. |
TOLOCALRATE | Converts a converted currency back to the original, local rate. |
curType | Currency type. This is a member from the CurType dimension in the currency database. |
Notes
You convert data values from a local to a common, converted currency using the CCONV currExchMbr command. For example, you might convert data from a European currency into US$. You can then convert the data values back to the local currency using the CCONV TOLOCALRATE curType command.
Note: | The CCTRACK setting in the essbase.cfg file must be set to TRUE (the default) to enable the CCONV TOLOCALRATE command. |
You can convert all or part of the main database using the rates defined in the currency database. You can keep both the local and converted values in the main database, or you can overwrite the local values with the converted values.
If you want to overwrite local values with converted values:
You do not need to create a CURPARTITION dimension in the main database. Use the CCONV command in a calculation script to convert all the data in the database.
Note: | You cannot use the FIX command if the CCTRACK setting is set to TRUE (the default) in the essbase.cfg file and you are not using a CURPARTITION dimension. |
If you want to keep both local and converted values:
In the main database, define the members that store the local and converted values. You do this by creating a CURPARTITION dimension. The CURPARTITION dimension has two partitions, one for local values and one for converted values.
To convert data:
To convert currencies, you must create a currency database and define specific dimensions in the main database. For more information, see the Oracle Essbase Database Administrator's Guide .
Example
converts the data values from local currency values to Japanese Yen using the YEN exchange rate from the currency database.
converts the data values back to the local currencies using the Act xchg currency type from the currency database.
converts the data values from local currencies to US$ using the Actual, US$ exchange rate from the currency database.
converts the data in the Act currency partition back to the local currencies using the Act xchg currency type from the currency database.
copies Actual data values from the local currency partition to the converted currency partition. Fixes on the Actual data (in the converted partition) and converts it using the Act xchg, US$ rate from the currency database. Recalculates the database.
See Also
Sets cell values to #MISSING , and if all the cells are empty or #MISSING , removes the block. This command is useful when you need to clear old data values across blocks before loading new values.
CLEARBLOCK helps optimize database calculation speed. For example, if an initial calculation creates numerous consolidated level blocks, subsequent recalculations take longer, because Essbase must pass through the additional blocks. CLEARBLOCK clears blocks before a calculation occurs.
Another example: if a database to be copied contains a lot of empty blocks, copying the database also copies the empty blocks, resulting in a many more empty blocks. Using CLEARBBLK EMPTY first makes the copy process more efficient.
If you use CLEARBLOCK within a FIX command, Essbase clears only the cells within the fixed range, and not the entire block.
Syntax
Parameter | Description |
---|---|
ALL | Clears and removes all blocks. |
UPPER | Clears consolidated level blocks. |
NONINPUT | Clears blocks containing derived values. Applies to blocks that are completely created by a calculation operation. Cannot be a block into which any values were loaded. |
DYNAMIC | Clears blocks containing values derived from Dynamic Calc and Store member combinations. |
EMPTY | Removes empty blocks (blocks where all values are #MISSING). |
Notes
Example
See Also
Clears the internal exchange rate tables created by the CCTRACK setting.
Syntax
Notes
Use this command after a data load, to reset the exchange rate tables before rerunning a currency conversion. You can use this command inside a FIX statement to clear the exchange rates for a currency partition.
Example
Clears the Actual data, fixes on the Actual data (in the converted partition) and clears the internal exchange rate tables for the Actual data.
See Also
Clears data values from the database and sets them to #MISSING .
This command is useful when you need to clear existing data values before loading new values into a database. CLEARDATA can only clear a section of a database. It cannot clear the entire database. To clear the entire database:
CLEARDATA does not clear blocks, even if all data values in a block are #MISSING. Use CLEARBLOCK if you wish to clear blocks from the database, which can improve performance.
Syntax
Parameter | Description |
---|---|
mbrName | Any valid single member name or member combination, or a function that returns a single member or member combination. |
Notes
CLEARDATA does not work if placed in an IF statement.
Example
clears all Budget data.
clears only Budget data for the Colas product family.
See Also
Copies a range of data cells to another range within the database.
This command is useful when you must maintain an original set of data values and perform changes on the copied data set.
DATACOPY is commonly used as part of the Currency Conversion process. DATACOPY is also useful when you need to define multiple iterations of plan data.
To reduce typing, if any dimension(s) represented by the members in mbrName1 are not represented in mbrName2 , then by default the same member or members from mbrName1 are assumed to exist in mbrName2 to complete the range. The reverse is not true. Any dimension explicitly represented in mbrName2 MUST be represented by another member of the same dimension in mbrName1 .
The ranges specified by both mbrName1 and mbrName2 must be of the same size. The same dimensions represented by the members that make up mbrName1 must also be present in mbrName2 .
Syntax
Parameter | Description |
---|---|
mbrName1 and mbrName2 | Any valid single member name or member combination. |
Notes
Example
See Also
Writes data to a text file, binary file, or as direct input to a relational file using ODBC.
Syntax
For a text output file:
For a binary output file:
Note that DATAEXPORT to binary files is not supported across Essbase releases or between 32-bit and 64-bit operating systems.
For direct export to a relational database using ODBC:
Parameter | Description |
---|---|
"File""Binfile""DSN" | Required keyword for the type of output file. Specify the appropriate keyword, then use the associated syntax. |
"delimiter" | Required for "File" exports The character that separates fields; for example, "," Do not use with "Binfile" or "DSN" exports |
"fileName" | Required for "File" and "Binfile" exports Full path name for the export file. Do not use with "DSN" exports. |
"missingChar" | Optional for output type "File"
Do not use with "Binfile" or "DSN" exports, or in combination with the SET DATAEXPORTRELATIONALFILE command. |
"dsnName" | Required for output type "DSN" The DSN name used to communicate with the SQL database. A substitution variable can be used. Do not use with output type "File" or "Binfile." |
"tableName" | Required for "DSN" exports Name of the table where the exported data is to be inserted. The table must exist, and table and column names cannot contain spaces. Do not use with "File" or "Binfile" exports. |
"userName" | Required for "DSN" exports The user name that is used when communicating with the database. A substitution variable can be used. Do not use with "File" or "Binfile" exports. |
"password" | Required for "DSN" exports The password that is used when communicating with the database. A substitution variable can be used. Do not use with "File" or "Binfile" exports. |
Notes
Note: | 64-bit Essbase does not support using the DATAEXPORT batch-insert method to export data directly into a SQL data source. |
Note: | Anytime you make changes to odbc.ini , you must restart Essbase. |
Description
The DATAEXPORT calculation command writes data into a text or binary output file, or connects directly to an existing relational database wherein the selected exported data is inserted.
Whereas both the MaxL Export Data statement and the ESSCMD EXPORT command can export all, level 0, or input data from the entire database as text data, the DATAEXPORT calculation command also enables you to:
Using Report Writer to create an "export" file also provides extensive flexibility in selecting and formatting the data; however, using DATAEXPORT outputs the data more quickly. For information about using Report Writer to export data, see the Oracle Essbase Database Administrator's Guide .
Example
Text Output File Example 1
Specifies a level 0 data export level, limits output to data only with 1000 or greater Sales, fixes the data slice, then exports to a text file located at b:\exports\jan.txt , using comma (,) delimiters and specifying #MI for missing data values.
Text Output File Example 2
Specifies the same export content as Example 1; however, the output file is formatted for input to a relational database. Notice the missingChar parameter is intentionally excluded.
Binary Example 1: Export
Exports all New York blocks. Binary exports can be fixed only on sparse dimensions. Essbase uses the same bitmap compression technique to create the file as is used by Essbase Kernel.
Binary Example 2: Import
Imports the previously exported file. The timestamp must match. The data is imported to the database on which the calculation script is executed. Because only data was exported, to recreate a database after using DATAIMPORT to read in the data, you must recalculate the data.
Direct Input to Relational Database Example
Inserts the selected records directly to the table named newyork. By default, Essbase inserts exported data row-by-row. If the DATAEXPORTENABLEBATCHINSERT configuration setting is set to TRUE in essbase.cfg , records are batch inserted. To control the number of rows that are batch inserted at a time, use the DEXPSQLROWSIZE configuration setting in conjunction with DATAEXPORTENABLEBATCHINSERT set to TRUE.
See Also
Specifies value conditions that select export records to be included or marked as "#NoValue" in the export output file.
Syntax
Parameter | Description |
---|---|
conditionExpression | One or more conditions separated by a logical AND or OR. Each condition specifies a member name the value of which is equal to (=), greater than (>), greater than or equal (>=). less than (<), or less than or equal (<=) to a specified value or the value of another member; for example, "Sales" > 500 AND "Ending Inventory" < 0. The condition list is processed from left to right. Thus the result of cond1 is calculated first, then the operator (AND or OR) is calculated against cond2, and so on. While processing conditions, if a resultant condition is found to be false, the entire record is omitted from the output file |
ReplaceAll | The keyword that indicates whether exported records are to be excluded from the initial export set of records, or included but marked as "#NoValue". The intial export set of records is determined by the region defined by the FIX command and SET commands that apply to the data export.
|
Notes
Use DATAEXPORTCOND to specify conditions that identify records to be exported based on field values. Whether a condition can specify a member compared to a numeric value or compared to another member depends the member being a row or column element of the output. In order to represent multidimensional data within a two-dimension file, the members of one dense dimension become columns. The combinations of the members of the other dense dimensions and the sparse dimensions create rows. (You can use the DataExportColHeader option of the SET DATAEXPORTOPTIONS calculation command to specify which dimension defines the columns.)
Example
Not Using ReplaceAll
Sets the contents of the initial export file through the DataExportLevel option of the SET DATAEXPORTOPTIONS command and FIX…ENDFIX command. The DATAEXPORTCOND command specifies the records to be included when the Actual value is greater than or equal to 2 and Sales are greater than 2000, or when the Actual value is greater than or equal to 2 and COGS is greater than 600. The conditions are specified on the column Actual, the column Sales, and the column COGS. The exported data includes only records that meet the conditions. Sample output:
Using ReplaceAll
Using the same conditions as the prior example, but including "ReplaceAll" in the DATAEXPORT command, the exported data includes all records specified by the FIX command. #NoValue is inserted for fields that do not meet the specified conditions. Sample output:
See Also
Imports the binary output file previously exported with the DATAEXPORT "Binfile" calculation command.
You can use DATAIMPORTBIN to import previously exported binary files. For example, you can use DATAEXPORT "Binfile" and DATAIMPORTBIN as a method for data backup and recovery.
Note: | DATAIMPORTBIN is not supported across Essbase releases or between 32-bit and 64-bit operating systems. |
Syntax
Parameter | Description |
---|---|
fileName | Full path name for the binary input file to be imported. |
Notes
Example
Specifies the binary file e:\january\sales.bin is to be imported to the database for which the calculation script is being run.
See Also
The ELSE command designates a conditional action to be performed in an IF statement. All actions placed after the ELSE in an IF statement are performed only if the test in the IF statement generates a value of FALSE.
Syntax
Parameter | Description |
---|---|
statement | Those operations that are to be performed in the event that the IF test including the ELSE command produces a FALSE, or 0, result. |
Notes
Example
The following example is based on the Sample Basic database. This calculation script tests to see if the current member in the Market dimension is a descendant of West or East. If so, Essbase multiplies the value for Marketing by 1.5. If the current member is not a descendant of West or East, Essbase multiplies the value for Marketing by 1.1.
See Also
Designates a conditional test and conditions that are performed if the preceding IF test generates a value of FALSE. For this reason, multiple ELSEIF commands are allowed following a single IF.
Syntax
Parameter | Description |
---|---|
condition | Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero value). |
statement | Those operations that are to be performed in the event that the IF test (including the ELSE command) produces a FALSE, or 0, result. |
Notes
Example
The following example is based on the Sample Basic database. This calculation script tests to see if the current member in the Market dimension is a descendant of West or East. If so, Essbase multiplies the value for Marketing by 1.5. The calculation script then tests to see if the current member is a descendant of South. If so, Essbase multiplies the value for Marketing by .9. If the current member is not a descendant of West, East, or South, Essbase multiplies the value for Marketing by 1.1.
See Also
Marks the end of an IF command sequence. The ENDIF command can be used only in conjunction with IF or IF ... ELSEIF statements.
Syntax
Notes
Example
The following example is based on the Sample Basic database. This calculation script tests to see if the current member in the Market dimension is a descendant of West or East. If so, Essbase multiplies the value for Marketing by 1.5. The calculation script then tests to see if the current member is a descendant of South. If so, Essbase multiplies the value for Marketing by .9. If the current member is not a descendant of West, East, or South, Essbase multiplies the value for Marketing by 1.1.
See Also
The EXCLUDE command allows you to define a fixed range of members which are not affected by the associated commands. The ENDEXCLUDE command ends an EXCLUDE command block.
As shown in the example, you call ENDEXCLUDE after all of the commands in the EXCLUDE command block have been called, and before the next element of the calculation script.
Specifying members that should not be calculated in an EXCLUDE..ENDEXCLUDE command may be simpler than specifying a complex combination of member names in a FIX…ENDFIX command.
Syntax
Parameter | Description |
---|---|
Mbrs | A member name or list of members from any number of database dimensions. Mbrs can also contain:
|
COMMANDS | The commands to be executed for the duration of the EXCLUDE. |
Notes
Example
The following example excludes calculations on the children of Qtr4, enabling calculation of other quarters in the Year dimension.
See Also
The FIX…ENDFIX command block restricts database calculations to a subset of the database. All commands nested between the FIX and ENDFIX statements are restricted to the specified database subset.
This command is useful because it allows you to calculate separate portions of the database using different formulas, if necessary. It also allows you to calculate the sub-section much faster than you would otherwise.
The ENDFIX command ends a FIX command block. As shown in the example, you call ENDFIX after all of the commands in the FIX command block have been called, and before the next element of the calculation script.
Syntax
Parameter | Description |
---|---|
fixMbrs | A member name or list of members from any number of database dimensions. fixMbrs can also contain:
|
COMMANDS | The commands you want to be executed for the duration of the FIX. |
Notes
Example
The following example fixes on the children of East and the Market dimension members with the UDA "New Mkt".
The following example fixes on the children of East with the UDA "New Mkt" and Market dimension members with the UDA "Big Mkt".
See Also
Performs conditional tests within a formula. Using the IF statement, you can define a Boolean test, as well as formulas to be calculated if the test returns either a TRUE or FALSE value.
Syntax
Parameter | Description |
---|---|
condition | Formula or function that returns a Boolean value of TRUE (a nonzero value) or FALSE (a zero value). |
statement | Operations to be performed depending on the results of the test. |
Notes
Example
Example 1
This test checks to see if the current cell includes a member that is a descendant of either the Europe or Asia members. If it does, the formula calculates the taxes for the member based on the foreign tax rate. If the current cell does not include a member from one of those groups, then the domestic tax rate is used for the tax calculation.
Example 2
When you use an IF statement as part of a member formula in a calculation script, you need to perform both of the following tasks:
A sample IF statement is illustrated in the following example:
Essbase cycles through the database and performs the following calculations:
The whole of the IF ... ENDIF statement is enclosed in parentheses and associated with the Profit member, Profit (IF(...)...).
See Also
The LOOP...ENDLOOP command block specifies the number of times to iterate calculations. All commands between the LOOP and ENDLOOP statements are performed the number of times that you specify.
Syntax
Parameter | Description |
---|---|
integer | The integer constant that indicates the number of times to execute the commands contained in the loop block. |
break | Optional parameter used to break the iterative process of a loop. break must be the name of a temporary variable (VAR). Setting the value of the variable to 1 during the execution of the loop causes the loop to break at the beginning of its next iteration. |
COMMANDS | Those commands that you want to be executed for the duration of the LOOP. |
Notes
LOOP is a block command that defines a block of commands for repeated execution. As with the FIX command, you can nest LOOP statements if necessary.
The ENDLOOP command ends a LOOP command block. It terminates the LOOP block and occurs after the commands in the LOOP block, but before any other commands.
Example
In this example, the LOOP command finds a solution for Profit and Commission. This operation is done as a loop because Profit and Commission are interdependent: Profit is needed to evaluate Commission, and Commission is needed to calculate Profit. This example thus provides a model for solving simultaneous formulas.
See Also
SET commands in a calculation script are procedural. The first occurrence of a SET command in a calculation script stays in effect until the next occurrence of the same SET command.
Example
In the following example, Essbase displays messages at the DETAIL level when calculating the Year dimension. However, when calculating the Measures dimension, Essbase displays messages at the SUMMARY level.
In the following example, Essbase calculates member combinations for Qtr1 with the SET AGGMISSG setting turned on. Essbase then does a second calculation pass through the database and calculates member combinations for East with the AGGMISSG setting turned off. For more information on calculation passes, see the Oracle Essbase Database Administrator's Guide .
Specifies whether Essbase consolidates #MISSING values in the database.
The default behavior of SET AGGMISSG is determined by the global setting for the database, as described in the Oracle Essbase Database Administrator's Guide .
Syntax
Notes
SET AGGMISSG commands apply to calculating sparse dimensions.
Example
See Also
Specifies the size of the calculator cache.
Syntax
Parameter | Description |
---|---|
HIGH, DEFAULT, and LOW | Levels defining the size of the calculator cache. You set the values of HIGH, DEFAULT and LOW in the essbase.cfg file. If you do not set the value of DEFAULT in the essbase.cfg file, Essbase uses a default value of 200,000 bytes. The maximum calculator cache size that you can specify is 200,000,000 bytes. |
OFF | Essbase does not use a calculator cache. |
ALL | Essbase uses a calculator cache, even when you do not calculate at least one full sparse dimension. |
Notes
Essbase uses the calculator cache to create and track data blocks during calculation. Using the calculator cache significantly improves your calculation performance. The size of the performance improvement depends on the configuration of your database.
You can choose one of three levels. The size of the calculator cache at each level is defined using the CALCCACHE {HIGH | DEFAULT | LOW} settings in the essbase.cfg file.
The level you choose depends on the amount of memory your system has available and the configuration of your database.
For detailed information on setting the size of your calculator cache, see the Oracle Essbase Database Administrator's Guide .
You can specify whether, by default, Essbase uses a calculator cache using the CALCCACHE TRUE | FALSE setting in the essbase.cfg file. By default, CALCCACHE is set to TRUE.
Essbase uses the calculator cache providing that:
You can use this command more than once within a calculation script.
You can display the calculator cache setting using the SET MSG command.
Example
If the essbase.cfg file contains the following settings:
Then:
Sets a calculator cache of up to 1,000,000 bytes for the duration of the calculation script.
Ssets a calculator cache of up to 300,000 bytes for the duration of the calculation script.
Sets a calculator cache of up to 200,000 bytes for the duration of the calculation script.
Sets a calculator cache of 200,000 bytes to be used even when you do not calculate at least one, full sparse dimension.
Specifies that Essbase does not use a calculator cache.
See Also
Enables parallel calculation in place of the default serial calculation.
Essbase analyzes each pass of a calculation to determine whether parallel calculation is possible. If it is not, Essbase uses serial calculation even if CALCPARALLEL is set.
Syntax
Parameter | Description | ||
---|---|---|---|
n | A required parameter, an integer from 1 to 64 on 32-bit platforms or from 1 to 128 on 64-bit platforms, specifying the number of threads to be made available for parallel calculation. The default value specifies serial calculation: no parallel calculation takes place. Values 1 to 64 (1 to 128 on 64-bit) specify parallel calculation with 1 to 64 (or 1 to 128) threads. Values of 0 specify serial calculation. Values less than 0 return an error. Values greater than the maximum are interpreted as the maximum (64 or 128).
|
Notes
Example
Enables up to three threads to be used to perform calculation tasks at the same time.
See Also
Specifies the number of sparse dimensions included in the identification of tasks for parallel calculation.
Syntax
Parameter | Description | ||
---|---|---|---|
n | A required parameter, an integer specifying the number of sparse dimensions to be included when Essbase identifies tasks that can be performed at the same time. The default value, 1, indicates that only the last sparse dimension in the outline will be used to identify tasks. A value of 2, for example, indicates that the last and second-to-last sparse dimensions in the outline are used. Because each unique combination of members from the selected sparse dimensions is a potential task, the potential number of parallel tasks is the product of the number of members of the selected dimensions. The maximum value is the number of sparse dimensions in the outline. Essbase issues an error if the value is less than 1. A value greater than the number of sparse dimensions in the outline is interpreted as the largest valid value. Using the calculator bitmap cache can affect this value. See the Oracle Essbase Database Administrator's Guide discussion of parallel calculation for more information.
|
Notes
Example
Specifies that the last two sparse dimensions in the outline will be used to identify potential tasks to be performed at the same time during a calculation pass.
See Also
Specifies whether Essbase checks the flags set by the CCTRACK setting to determine if the currency data has already been converted.
By default CCTRACK is turned on. Essbase tracks which currency partitions have been converted and which have not. The tracking is done at the currency partition level: a database with two partitions would have two flags that could be either "converted" or "unconverted." Essbase does not store a flag for member combinations within a partition.
When you load or clear data in a currency partition, Essbase does not reset the CCTRACK flag to "uncoverted". You can use the SET CCTRACKCALC OFF command to force the conversion of the reloaded data, ignoring the CCTRACK flag.
Syntax
Parameter | Description |
---|---|
ON | Uses the flags set by the CCTRACK setting to determine whether the data needs to be converted. The default value is ON. |
OFF | Always converts the data, regardless of whether CCTRACK has flagged the data as already-converted. Note that during the conversion CCTRACK is still active and tracks the exchange rates used during the conversion. |
Notes
The SET CCTRACKCALC command is valid only when CCTRACK is set to TRUE (the default).
Example
Fixes on the the Actual currency partition and forces the conversion of the Actual data regardless of whether Essbase has flagged the data as already being converted, converting the data using the XchR, US$ rate from the currency database. Recalculates the database.
See Also
Specifies when Essbase marks data blocks as clean. This clean status is used during Intelligent Calculation.
Syntax
Parameter | Description |
---|---|
AFTER | Essbase marks calculated data blocks as clean, even if you are calculating a subset of your database. |
ONLY | Essbase marks the specified data blocks as clean but does not actually calculate the data blocks. This does the same as AFTER, but disables calculation. |
OFF | Essbase does not mark the calculated data blocks as clean. Data blocks are not marked as clean, even on a default calculation (CALC ALL;) of your database. The existing clean or dirty status of the calculated data blocks remains unchanged. |
Notes
SET CLEARUPDATESTATUS specifies when Essbase marks data blocks as clean.
The data blocks in your database have a calculation status of either clean or dirty. When Essbase does a full calculation of your database, it marks the calculated data blocks as clean. When a data block is clean, Essbase will not recalculate the data block on subsequent calculations, provided that Intelligent Calculation is turned on.
To ensure the accuracy of your calculation results, consider carefully the effect of the SET CLEARUPDATESTATUS AFTER command on your calculation. .
If you do not use SET CLEARUPDATESTATUS, Essbase does not mark calculated data blocks as clean when you calculate a subset of your database. Essbase marks data blocks as clean only on a full calculation (CALC ALL;) or when Essbase calculates all members in a single calculation pass through your database.
If you calculate a subset of your database, you may want to use the SET CLEARUPDATESTATUS AFTER command to ensure that the calculated blocks are marked as clean. However, consider carefully the effect of this command on your calculation to ensure that your calculation results are correct.
Warnings
When you use the SET CLEARUPDATESTATUS command to mark calculated data blocks as clean, consider carefully the following questions:
Which data blocks are calculated?
Only calculated data blocks are marked as clean.
Are concurrent calculations going to affect the same data blocks?
Do not use the SET CLEARUPDATESTATUS AFTER command with concurrent calculations unless you are certain that the different calculations do not need to calculate the same data block or blocks. If concurrent calculations attempt to calculate the same data blocks, with Intelligent Calculation turned on, Essbase may not recalculate the data blocks, because they are already marked as clean.
Are the same data blocks to be recalculated on a second calculation pass through the database?
If you calculate data blocks on a first calculation pass through your database, Essbase marks them as clean. If you then attempt to calculate the same data blocks on a subsequent pass with Intelligent Calculation turned on, Essbase does not recalculate the data blocks, because they are already marked as clean.
Example
The following examples are based on the Sample Basic database. They assume that Intelligent Calculation is turned on (the default). For information on turning Intelligent Calculation on and off, see the SET UPDATECALC command.
Example 1
New York is a member on the sparse Market dimension. Essbase searches for dirty parent data blocks for New York (for example "New York"->Colas in which Colas is a parent member). It calculates these dirty blocks based on the Product dimension and marks them as clean. Essbase does not mark the child, Input blocks as clean, because they are not calculated.
Example 2
Essbase searches for all the dirty blocks in the database and marks them as clean. It does not calculate the blocks, even though a CALC ALL ; command is used.
Example 3
New York is a member on the sparse Market dimension. Essbase searches for dirty parent data blocks for New York (for example "New York"->Colas in which Colas is a parent member). It marks them as clean. It does not calculate the data blocks. It does not mark the child blocks as clean because they are not calculated. For example, if
is dirty, it remains dirty.
Example 4
Essbase calculates all the dirty data blocks in the database. The calculated data blocks remain dirty; Essbase does not mark them as clean. Essbase then calculates those members tagged as Two-Pass on the dimension tagged as Accounts. Again, it does not mark the calculated data blocks as clean.
See Also
Sets whether the DATACOPY calculation command creates #MISSING blocks during the copy of data from a dense dimension.
This setting does not apply to aggregate storage databases.
SET COPYMISSINGBLOCK allows DATACOPY to avoid creating #MISSING blocks during the copy of data from a dense dimension.
Using DATACOPY on a dense dimension can create blocks populated with #MISSING. This is done deliberately in some instances, because most batch calculations operate only on existing data blocks. Therefore, DATACOPY can be used to ensure that all necessary data blocks are created prior to batch calculation.
But if the creation of #MISSING blocks is not required, you may want to avoid the increase in database size, and the possibly slower performance that results when, for example, a default calculation visits every #MISSING block.
Syntax
Parameter | Description |
---|---|
ON | This is the default value. Allows missing blocks to be created during a data copy. |
OFF | Suppresses the creation of missing blocks during a data copy. |
Notes
Example
The following log message indicates that SET COPYMISSINGBLOCK is OFF:
See Also
Controls whether potential blocks are created in memory for calculation purposes, and whether #MISSING blocks are stored. It affects the results of calculations on sparse and dense dimensions.
By default, Essbase applies dense-member formulas only to existing data blocks. SET CREATENONMISSINGBLK ON enables Essbase to create potential blocks in memory where the dense-member formulas are performed. Of these potential blocks, Essbase writes to the database only blocks that contain values; blocks resulting in only #MISSING are not written to the database.
The creation of #MISSING blocks resulting from sparse-member formulas is governed by the Create Block on Equations setting. (See SET CREATEBLOCKONEQ .) The SET CREATENONMISSINGBLK ON command ensures that only non-empty blocks are created, regardless of the Create Block on Equations setting.
In order to create new blocks, setting SET CREATENONMISSINGBLK to ON requires Essbase to anticipate the blocks that will be created. Working with potential blocks can affect calculation performance. Consider the following situations carefully:
Syntax
Parameter | Description |
---|---|
ON | Calculations are performed on potential blocks as well as existing blocks. If the result of the calculation is not #MISSING, the block is stored. The Create Blocks on Equations setting is ignored. |
OFF | Calculations are performed only on existing blocks. This is the default setting. |
Notes
Example
The following example is based on a variation of Sample Basic. Assume that the Scenario dimension, of which Actual is a member, is sparse. "Jan Rolling YTD Est" is a member of the dense time dimension, Year.
See Also
Controls, within a calculation script, whether new blocks are created when a calculation formula assigns anything other than a constant to a member of a sparse dimension. SET CREATEBLOCKONEQ overrides the Create Block on Equation setting for the database.
Syntax
Parameter | Description |
---|---|
ON | When a formula assigns a non-constant value to a sparse dimension member for which no block exists, Essbase creates a block. |
OFF | When a formula assigns a non-constant value to a sparse dimension member for which no block exists, Essbase does not create a block. |
Notes
If calculations result in a value for a sparse dimension member for which no block exists, Essbase creates a block. Sometimes, new blocks are not desired; for example, when they contain no other values. In large databases, creation and processing of unneeded blocks can increase processing time and storage requirements.
The Create Blocks on Equation setting is designed for situations when blocks would be created as a result of assigning something other than a constant to a member of a sparse dimension. For example, when Create Blocks on Equation is ON and West is assigned a value where it did not have a value before, new blocks are created. When this setting is OFF, blocks are not created.
Create Blocks on Equation setting is a database property. Its initial value is OFF; no blocks are created when something other than a constant is assigned to a sparse dimension member. Use Administration Services or MaxL to turn the setting ON at the database-level. For more information about enabling Create Blocks on Equation, see the MaxL documentation in the Oracle Essbase Technical Reference or the Oracle Essbase Administration Services Online Help .
For more specific control, you can use the SET CREATEBLOCKONEQ calculation command within a calculation script to control creation of blocks at the time the command is encountered in the script. Use of SET CREATEBLOCKONEQ has the following characteristics:
When the Create Blocks on Equation setting is ON, Essbase uses the top-down calculation method to calculate each sparse member.
The Create Blocks on Equation setting is not consulted when Essbase assigns constants to members of sparse dimensions. The following table shows examples of sparse member calculations where constants or non-constants are assigned to them.
Assigned Value | Sparse Member Formula Example | New Block Created? |
---|---|---|
Constant | West = 350 | Yes |
Non-constant | West = California + 120 | Yes, if the Create Blocks on Equation setting is ON. Otherwise, no. |
Non-constant | West = California * 1.05 | Yes, if the Create Blocks on Equation setting is ON. Otherwise, no. |
For a tip on controlling creation of blocks when you work with non-constants and sparse dimensions, in the Oracle Essbase Database Administrator's Guide check for information about improving performance for non-constants assigned to members in sparse dimensions.
Example
The following example is based on Sample.Basic. West and East are members of the sparse Markets dimension.
Because of the preceding SET CREATEBLOCKONEQ OFF command, Essbase does not create blocks for new values of West. Because the setting has been reversed to ON in the next command, Essbase creates blocks for new values of East.
See Also
Specifies options for data export operations.
Syntax
Notes
Each SET DATAEXPORTOPTIONS command specifies a set of option values that are in place until the next SET DATAEXPORTOPTIONS command is encountered. At that time, option values are reset to default and newly specified option values are set.
The option list must start with a left brace ({) and end with a right brace followed by a semicolon (};). Each option ends with a semicolon (;). The options can be listed in any order. When an option is not specified, the default value is assumed.
The options are described here in three categories:
DataExportLevel ALL | LEVEL0 | INPUT
In specifying the value for the DataExportLevel option, use these guidelines:
Description
Specifies the amount of data to export.
DataExportDynamicCalc ON | OFF
Description
Specifies whether a text data export excludes dynamically calculated data.
Notes:
DataExportNonExistingBlocks ON | OFF
Description
Specifies whether to export data from all possible data blocks. For large outlines with a large number of members in sparse dimensions, the number of potential data blocks can be very high. Exporting Dynamic Calc members from all possible blocks can significantly impact performance.
n (Optional; default 16)—A value that specifies the number of positions in exported numeric data. If n < 0, 16-position precision is used.
Description
Specifies that the DATAEXPORT calculation command will output numeric data with emphasis on precision (accuracy). Depending on the size of a data value and number of decimal positions, some numeric fields may be written in exponential format; for example, 678123e+008. You may consider using DataExportPrecision for export files intended as backup or when data ranges from very large to very small values. The output files typically are smaller and data values more accurate. For output data to be read by people or some external programs, you may consider specifying the DataExportDecimal option instead.
Notes:
Example
Initial Data Load Values
Exported Data Format
Where n is a value between 0 and 16.
If no value is provided, the number of decimal positions of the data to be exported is used, up to 16 positions, or a value determined by the DataExportPrecision option if that is specified.
Description
Specifies that the DATAEXPORT calculation command will output numeric data with emphasis on legibility; output data is in straight text format. Regardless of the number of decimal positions in the data, the specified number is output. It is possible the data can lose accuracy, particularly if the data ranges from very large values to very small values, above and below the decimal point.
Notes:
Example
Initial Data Load Values
Exported Data Format
Description
Specifies if data is output in columnar format. Columnar format displays a member name from every dimension; names can be repeated from row to row, enabling use by applications other than Essbase tools. In non-columnar format, sparse members identifying a data block are included only once for the block. Non-columnar export files are smaller, enabling faster loading to an Essbase database.
Notes
Example
DataExportColHeader dimensionName
Description
Specifies the name of the dense dimension that is the column header (the focus) around which other data is referenced in the export file. Use the DataExportColHeader option only when you export data to a text file. For example, if from Sample Basic the Year dimension is specified, the output data starts with data associated with the first member of the Year dimension: Year. After all data for Year is output, it continues with the second member: Qtr1, and so on.
Notes
Example
Specifies Scenario as the page header in the export file. The Scenario dimension contains three members: Scenario, Actual, and Budget. All Scenario data is shown first, followed by all Actual data, then all Budget data.
Description
Use the DataExportDimHeader option to insert the optional header record at the beginning of the export data file. The header record contains all dimension names in the order as they are used in the file. Specifying this command always writes the data in "column format".
Example
Specifying the DataExporttDimHeader ON option while exporting Sample Basic writes the data in column format, with common members repeated in each row. The data begins with a dimension header, as shown in the first two rows of the example file below:
DataExportRelationalFile ON | OFF
Description
Using the DataExportRelationalFile option with DATAEXPORT enables you to format the text export file to be used directly as an input file for a relational database.
Example
DataExportOverwriteFile ON | OFF
Description
Manages whether an existing file with the same name and location is replaced.
DataExportDryRun ON | OFF
Description
Enables running the calculation script data export commands to see information about the coded export, without exporting the data. When the DataExportDryRun option value is ON, the following information is written to the output file specified in the DATAEXPORT command:
Notes
Example
Creates the file "E:\temp\log.txt" containing the following information:
See Also
Specifies whether to ignore the outline timestamp captured at the time the data was exported.
Syntax
Parameter | Description |
---|---|
ON | Ignore the outline timestamp. |
OFF | Default. Check the outline timestamp. |
Notes
The DATAEXPORT "Binfile" command captures the outline timestamp when it creates a binary export file. By default, when the file is imported, Essbase checks the import file timestamp against the existing outine timestamp to ensure the correct import file is read. You can use SET DATAIMPORTIGNORETIMESTAMP to bypass checking the timestamp.
Caution! | Bypassing the check enables potentially importing the wrong file. |
Example
Specifies to ignore comparing the outline timestamp with the timestamp on the import tile, and to import the binary export file to the database on which the calculation script is running.
See Also
EMPTYMEMBERSETS stops the calculation within a FIX…ENDFIX command if the FIX evaluates to an empty member set.
Syntax
Parameter | Description |
---|---|
ON | Calculation within FIX command stops if FIX evaluates to an empty member set. |
OFF | Entire database is calculated, even if FIX evaluates to an empty member set. |
Notes
If EMPTYMEMBERSETS is ON, and a FIX command evaluates to a empty member set, the calculation within the FIX command stops and the following information message is displayed: "FIX statement evaluates to an empty set. Please refer to SET EMPTYMEMBERSETS command." The calculation resumes after the FIX command. If a calculation script contains nested FIX commands, the nested FIX commands are not evaluated.
Example
The following calculation script does not calculate Calc Dim(Year) within the FIX command. 100-10 has no children and therefore the FIX statement evaluates to an empty member set.
The following calculation script has nested FIX commands. Calc Dim(Product) is not calculated because FIX(@CHILDREN("100-10")) evaluates to empty member set. Calc Dim(Year) is not calculated even though the nested FIX("New York") does not evaluate to an empty member set.
Optimizes the calculation of complex formulas on sparse dimensions in large database outlines. This command tells Essbase to perform a bottom-up calculation on formulas that would otherwise require a top-down calculation.
You might want to turn on this setting when using the CALC ALL and CALC DIM commands to calculate the database.
Syntax
Parameter | Description |
---|---|
ON | Turns on the bottom-up sparse formula calculation method. |
OFF | Turns off the bottom-up sparse formula calculation method. The default setting is OFF. You can change this setting by using CALCOPTFRMLBOTTOMUP TRUE in the essbase.cfg file. |
Notes
Example
See Also
Enables you to turn off calculation of all dense Dynamic Calc members during batch calculation if runtime dependent functions are included in formulas on stored members. (The preprocessing phase of a calculation script cannot determine if an outline contains dense Dynamic Calc members.)
This command improves batch calculation performance by removing the overhead of calculating all Dynamic Calc members.
The SET FRMLRTDYNAMIC command can be applied to an entire calculation script segment, as shown in the example below.
Syntax
Parameter | Description |
---|---|
ON | Calculation of Dynamic Calc members is performed. The default value is ON. |
OFF | Calculation of Dynamic Calc members is not performed. |
Notes
Example
The following example turns off all dense Dynamic Calc members:
Specifies the maximum number of blocks that Essbase can get addressability to concurrently when calculating a sparse member formula.
You can choose one of three levels. The number of blocks that Essbase can get addressability to at each level is defined using the CALCLOCKBLOCK setting in the essbase.cfg file.
Syntax
Parameter | Description |
---|---|
HIGH, DEFAULT, and LOW | Levels defining the number of blocks that Essbase can get addressability to concurrently. |
Notes
When a block is calculated, Essbase locks (gets addressability to) the block along with the blocks containing its children. Essbase calculates the block and then releases it along with the blocks containing its children.
By default, Essbase allows up to 100 blocks to be locked (addressable) concurrently when calculating a block. This is sufficient for most database calculations.
However, you may want to set a number higher than 100 if you are consolidating very large numbers of children in a formula calculation. This setting ensures that Essbase can get addressability to all the required blocks when calculating a data block and that performance will not be impaired.
For more information on data blocks, see the Oracle Essbase Database Administrator's Guide .
Example
If the essbase.cfg file contains the following settings:
then:
means that Essbase can get addressability to up to 500 data blocks when calculating one block.
means that Essbase can get addressability to up to 200 data blocks when calculating one block.
means that Essbase can get addressability to up to 50 data blocks when calculating one block.
See Also
Sets the level of messaging you want returned about calculations, and enables simulated calculations.
The SET MSG command applies only to the calculation script in which it is used.
Syntax
Parameter | Description | ||
---|---|---|---|
SUMMARY | Displays calculation settings and provides statistics on the number of:
| ||
DETAIL | Provides the same information as SUMMARY. In addition, it displays a detailed information message every time Essbase calculates a data block. | ||
ERROR | Displays only error messages. | ||
INFO | Displays information and error messages. | ||
NONE | Displays no messages during the life of the calculation script. However, because error messages may contain vital information, they are still displayed. | ||
ONLY | Instructs Essbase to perform a simulated calculation only. You may disregard any error message during validation that indicates Essbase does not recognize a command.
We recommend using SET MSG ONLY with the calculation script commands SET NOTICE HIGH and CALC ALL. For more information, see the Oracle Essbase Database Administrator's Guide sections on optimizing calculations. SET MSG ONLY does not generate a completion notice. |
Notes
SET MSG SUMMARY and SET MSG DETAIL tell you:
In addition, the SET MSG DETAIL command provides an information message every time Essbase calculates a data block. It is useful for testing your database's consolidation path. Because it causes a high processing overhead, it should be used during test calculations only.
SET MSG SUMMARY causes a processing overhead of approximately 1% to 5%, depending on the database size.
Example
Displays only the error messages.
Produces the following sample output:
Produces the following sample output:
See Also
Monitors the progress of your calculation by providing completion notices at intervals during the calculation. The number of notices depends on the level you specify.
Syntax
Parameter | Description |
---|---|
HIGH, DEFAULT, and LOW | Levels defining the frequency and number of completion notices. You can set the values of HIGH, DEFAULT, and LOW using the CALCNOTICE setting in the essbase.cfg file. If you do not set the value of DEFAULT in the essbase.cfg file, Essbase uses a default value of 10, which provides 10 completion messages at 10% intervals during the calculation. |
Notes
Example
If the essbase.cfg file contains the following settings:
then:
displays 50 completion notices at 2% intervals.
displays 20 completion notices at 5% intervals.
displays 5 completion notices at 20% intervals.
might produce the following sample output:
See Also
For applications with transparent partitions, turns remote calculation to the source on or off.
Syntax
Parameter | Description |
---|---|
ON | Default. Essbase connects to the source partition enabling remote calculations. |
OFF | Essbase does not connect to the source partition. Use this option only when absolutely sure the calculation script does not involve access to remote data. |
Notes
Example
See Also
Declares runtime substitution variables that are used in a calculation script.
Every runtime substitution variable used in a calculation script must be declared in the SET RUNTIMESUBVARS command. The name of a runtime substitution variable is required. Specifying a default value for the runtime substitution variable is optional. Also optional is a description of the runtime substitution variable's data type and data input limit, which is a string in the <RTSV_HINT> rtsv_description </RTSV_HINT> tag.
Syntax
Parameter | Description |
---|---|
runtime_substitution_variable | Name of a runtime substitution variable |
value | (Optional) Default value of the named runtime substitution variable. The value can be expressed as a string, a constant, a member name, or a member combination. Default values specified in the SET RUNTIMESUBVARS command can be overwritten at runtime. See “ Using Runtime Substitution Variables in Calculation Scripts ” in the Oracle Essbase Database Administrator's Guide . |
<RTSV_HINT>rtsv_description</RTSV_HINT> | (Optional) A string that describes the data type and data input limit (for example, an integer not greater than 100) of the named runtime substitution variable. This string is not used in the calculation. The EssGetRuntimeSubVars API retrieves all of the information (name, value, and description) that is specified in the runtime substitution variable declaration. The <RTSV_HINT> string can then be used to prompt a user to input a value at runtime or to validate input data before passing the value to the calculation script. |
Notes
Example
In the following example, three runtime substitution variables are defined with a name and a default value; for example, the runtime substitution variable named myMarket has a value of “ New York. ”
In the following example, the runtime substitution variables do not include default values. The EssGetRuntimeSubVars API can be implemented to retrieve all of the information (name, value, and description) about the runtime substitution variable. The <RTSV_HINT> string can then be used to prompt a user to input a value at runtime or to validate input data before passing the value to the calculation script.
See Also
Sets the perspective for varying attribute calculations.
Syntax
Parameter | Description |
---|---|
mbrName1 [,...] on Attribute_Dimension | Any valid single member name, or list of member names, on the specified varying attribute dimension. |
OFF | Turn off the perspective setting for the calculation block. |
Notes
Example
Once the perspective is specified using this command, @WITHATTR can be used on a varying attribute inside a FIX statement. In the following example, the SET SCAPERSPECTIVE statements indicate that for attribute dimensions TYPE and TITLE, the subsequent FIX statement with @WithATTR will use their attribute association as defined at time FY03 and Jan.
See Also
Turns Intelligent Calculation on or off.
Syntax
Parameter | Description |
---|---|
ON | Essbase calculates only blocks marked as dirty (see Description). Dirty blocks include updated blocks and their dependent parents (see Notes). The default setting is ON. You can change this default using the UPDATECALC TRUE | FALSE setting in the essbase.cfg file. |
OFF | Essbase calculates all data blocks, regardless of whether they have been updated. |
Notes
Example
See Also
Restricts consolidations to those parents with the same defined currency. The default is OFF.
For example, all cities in Switzerland use the Swiss franc (CHF) as the unit of currency. Therefore, all children of Switzerland, such as the cities Geneva, Zurich, and Lucerne, consolidate to Switzerland. Consolidation stops at this level, however, because Europe also contains countries that use other currencies. The following database outline example illustrates this situation:
If you want to consolidate values above this level, you must use CCONV to convert the values to a master rate before consolidating.
Syntax
Notes
SET UPTOLOCAL ON has no effect on databases with no currency definitions.
Example
See Also
Declares a temporary variable that contains a single value.
Note: | You can also use a single VAR command to declare multiple variables by supplying a comma-delimited list of variable names. |
Syntax
Parameter | Description |
---|---|
varName | Name of the temporary variable. |
value | Optional parameter that declares the data value. |
Notes
Example
See Also
With the essbase.cfg configuration file, you can customize your Essbase Server configuration. Settings specified in the essbase.cfg file usually apply to the entire Essbase Server. These settings override the Essbase defaults and apply to all databases within all applications on the Essbase Server.
You can create one essbase.cfg file for server settings, and another for client settings. Assume settings are for the server unless otherwise noted.
Note: | The Oracle Hyperion Enterprise Performance Management System Configurator may add entries to essbase.cfg during Essbase Server configuration, cluster configuration, ODBC driver configuration, and JVM setup. For more information, see Oracle Enterprise Performance Management System Installation and Configuration Guide . |
A default essbase.cfg file exists in the Essbase bin directory.
To edit the essbase.cfg configuration file:
Notes
All other configuration settings are intended for the server essbase.cfg file only.
Example
The following is an example of essbase.cfg server file entries:
See the Oracle Essbase Database Administrator's Guide .
This section lists all of the Essbase.CFG settings, grouped categorically. Some may appear in more than one category.
See Also
See also Query Logging Configuration, which you can enable by means of a separate configuration file.
See the Oracle Hyperion Enterprise Performance Management System Security Administration Guide .
The following settings apply to aggregate storage databases and to block storage databases.
The following settings apply only to aggregate storage databases.
The following settings apply only to block storage databases.
Consult the Contents pane for a categorical list of configuration settings.
Specifies the number of seconds an Agent thread waits for a resource to become available so it can perform a specific action. If the resource is still unavailable when the specified value for AGENTDELAY is completely used, the agent times out and does not complete the transaction.
Syntax
n : Specifies the number of seconds an Agent thread waits before performing an action. The value must be an integer, and must be 5 or higher.
The default value is 20.
Notes
A higher value of AGENTTHREADS produces a greater contention for resources. Therefore, set the value for AGENTDELAY as high as possible.
Example
See Also
When the Configuration Utility is used to register an Essbase Server Agent as a Windows service, the text entered in the Service Name Identifier field is stored as AGENTDESC in the Essbase configuration file (essbase.cfg).
Syntax
Where description is the unique description provided for an Essbase Agent Windows service when it was registered through the Configuration Utility.
See Also
Specifies the message types (level of messages) that are displayed in the Essbase Server window.
The Essbase Server log (essbase.log) is not affected by this setting.
Syntax
Where ERROR, WARNING, INFO, and DEBUG are levels:
Notes
This setting affects only the messages displayed in the Essbase Server window. To set the level of messages written to the Essbase Server log (essbase.log), use AGENTLOGMESSAGELEVEL .
To set the same level for both the Essbase Server window and log, use both settings.
Example
Sets the message level at WARNING. Only warning and error messages are displayed in the Essbase Server window.
See Also
Sets the maximum amount of time that Essbase Agent can own a lease before the lease is terminated.
Syntax
Where n is an integer specifying the number of seconds before a lease expires. The default value is 20.
Example
See Also
Specifies the number of times that Essbase Agent attempts to acquire or renew a lease. If the attempts are unsuccessful, the agent terminates itself.
Syntax
Where n is an integer. The default value is 5.
Example
See Also
Specifies the time interval, in seconds, after which Essbase Agent attempts to renew a lease. This value must be less than the value of AGENTLEASEEXPIRATIONTIME.
Syntax
Where n is an integer specifying the number of seconds to reestablish ownership after a lease expires. The default value is 10.
Example
See Also
Specifies the message types (level of messages) that are written to the Essbase Server log (essbase.log).
This setting does not affect the Essbase Server window.
Syntax
Where ERROR, WARNING, INFO, and DEBUG are levels:
Notes
To control the messages displayed in the Agent window, use AGENTDISPLAYMESSAGELEVEL .
To set the same level for both the window and the log, use both settings.
Example
Sets the message level at WARNING. Only warning and error messages are written to the Essbase Server log.
See Also
Specifies the port that the Agent uses.
Syntax
Where n is the port number for the Agent. This port number should not be in use by any other process. The default value is 1423.
Description
AGENTPORT specifies the port that the Agent uses.
You may wish to change the default for many reasons. These are two common reasons:
Caution! | Do not use more than one Agent per computer in production systems. |
Notes
Example
This example produces these results:
See Also
Specifies the port that the agent uses for secure communication using Secure Socket Layer (SSL).
Syntax
Where n is the port number for the agent. This port number should not be in use by any other process. The default value is 6423.
Description
AGENTSECUREPORT specifies the port that the agent uses for secure communication using SSL.
Example
See Also
For information on implementing SSL, see the Oracle Hyperion Enterprise Performance Management System Security Administration Guide .
Specifies the maximum number of threads that the Agent process (ESSBASE) can spawn. Agent threads are used for logging in and out of Essbase Server, starting and stopping an application, etc.
One agent thread is used in conjunction with a thread spawned by the AGTSVRCONNECTIONS configuration setting to allow the initial login through the Agent and to establish the first connection to an application and database. When a connection is requested, the Agent assigns a thread to the request and releases the thread when the connection is made.
The rest of the agent threads are used for other Agent tasks unrelated to AGTSVRCONNECTIONS. Once connected, AGTSVRCONNECTIONS threads are no longer used. Client requests are managed by threads spawned by the application process (ESSSVR).
Syntax
n : Specifies the number of threads that the Agent process (ESSBASE) can spawn.
The default value is 5.
Notes
Example
See Also
Improves batch calculation time for block storage outlines.
This setting does not apply to aggregate storage databases.
Syntax
Description
When there are dense Dynamic Calc members in the outline, a batch calculation with formulas uses blocks that contain data cells for all dense Dynamic Calc members. Setting AggressiveBlkOptimization to TRUE makes batch calculation work on kernel blocks (smaller blocks) directly, which may improve performance. Use this setting only if there is no formula dependency on dense Dynamic Calc members; otherwise, the calculation may produce incorrect results.
Example
Improves calculation performance for outlines in which there is no formula dependency on dense Dynamic Calc members.
Sets the maximum size of the Essbase Server log file.
Syntax
Where n is the file size in bytes:
Description
This parameter enables the user to specify the maximum size for the Essbase Server log file.
For the location of essbase.log , see the Oracle Essbase Database Administrator's Guide .
The current log file is always essbase.log . When maximum log file size is reached, the file is renamed essbase.log. n (for example, essbase.log.0 , essbase.log.1 , and so on), and a new essbase.log file is created.
Example
Sets the maximum Agent log file size to 1500000 bytes.
Specifies the maximum number of threads that Essbase can spawn to allow the first connection to an application and database, negotiated between the Agent process (ESSBASE) and application process (ESSSVR). AGTSVRCONNECTIONS threads make the Agent process (ESSBASE) communicate with the application process (ESSSVR).
Each AGTSVRCONNECTIONS thread uses one Agent process (ESSBASE) thread only while logging in and connecting to an application and database. Once connected, client requests are managed by threads spawned by the application process (ESSSVR).
Syntax
n : Specifies the maximum number of AGTSVRCONNECTIONS threads that Essbase can spawn.
Caution! | Oracle recommends a maximum value of 10. |
Notes
Example
Sets the maximum number of AGTSVRCONNECTIONS threads that Essbase can spawn to 7.
See Also
Sets the maximum size of application log files (appname .log).
Syntax
n : Specifies the file size in bytes.
Description
This parameter enables the user to specify the maximum size for application log files.
Application log files are located in MIDDLEWARE_HOME /user_projects/epmsystem1/diagnostics/logs/essbase/essbase_0/app/ appname / appname or in ARBORPATH /app/ appname , depending on the value of the DEFAULTLOGLOCATION configuration setting.
The current log file is appname .log . When maximum log file size is reached, the file is renamed appname .log. n (for example, appname .log.0 , appname .log.1 , and so on), and a new appname .log file is created.
Example
Sets the maximum Agent log file size to 1,500,000 bytes.
Specifies the Oracle Hyperion Provider Services server to use for name resolution, which enables connections to be made using logical Essbase cluster names.
Syntax
Where APSurl is the URL to a Provider Services server, in this format:
Description
This configuration setting enables the use of logical Essbase cluster names instead of the Essbase URL (for example, http [s] :// host:port /aps/Essbase?ClusterName= logicalName &Secure= yesORno) during the login process.
When logging in to an Essbase Server, if the server name specified is not a URL, the Essbase client treats the name as a logical name. The Provider Services server specified in APSRESOLVER then resolves the logical name to a physical host.
Notes
Examples
Specifies the maximum amount of time (in seconds) Essbase waits for aggregate storage cache resources to become available in order to process load buffer operations. If cache resources do not become available within the specified amount of time, Essbase aborts the load buffer operation.
This setting applies to the creation of aggregate storage data load buffers with the wait_for_resources option, and applies to allocations, custom calculations, and lock and send operations.
This setting applies only to aggregate storage databases.
Syntax
For changes to the configuration file to take effect, you must restart Essbase Server.
Example
Sets 20 seconds as the maximum wait time for cache resources to become available on the ASOSamp.Sample database.
See Also
Alter Database (Aggregate Storage) MaxL statement
Specifies the number of cells sampled from the input-level data. The sampled data is used to estimate the size of aggregate views. Larger sample sizes enable Essbase to make increasingly accurate estimates of average view sizes. View selection using a larger sample size enables Essbase to more closely meet the stop size.
Sample sizes are specified as a percentage of input-level data.
Syntax
Note: | For databases that have 1 million or more cells, if the percentage specified results in a sample size of fewer than 1 million cells, the setting is ignored and Essbase uses 1 million cells. For databases that have fewer than 1 million cells, the sample size is the same size as the database. |
Performance Impact
Estimates using larger sample sizes take longer to complete, which may have a significant performance impact on view selection. The recommendation for a database with more than 1 billion input-level cells is to start with a small setting such as 0.1 (meaning 0.1%). Slowly increase this setting until the preferred trade-off between view selection performance and accuracy is reached. The optimal setting for a database with more than 1 billion cells will probably be less than 3%. See “ Performance Improvement When Building Aggregate Views on Aggregate Storage Databases ” in the Oracle Essbase Database Administrator's Guide .
To gauge the accuracy of view size estimates for aggregate views that have been built, use the following MaxL command:
Compare the values in the columns named size_ratio_estimate and size_ratio_actual. The accuracy of each view size estimate differs for each aggregate view.
Example
Enables Essbase to use the Oracle Hyperion Shared Services security platform for external authentication.
When you run Oracle Hyperion Enterprise Performance Management System Configurator, Essbase is automatically registered with Shared Services (unless you select the option to deploy Essbase in standalone mode) and this setting is automatically added to essbase.cfg .
Syntax
Notes
Specifies whether Essbase uses a calculator cache when calculating the database.
This setting does not apply to aggregate storage databases.
Syntax
Description
Essbase uses the calculator cache to create and track data blocks during calculation. Using the calculator cache significantly improves your calculation performance. The size of the performance improvement depends on your database configuration.
If required during a calculation, you can override this default setting using the SET CACHE command in a calculation script.
You can specify the size of the calculator cache using the SETCACHE command in a calculation script and the CALCCACHE {HIGH | DEFAULT | LOW} settings in the essbase.cfg file.
When the CALCCACHE setting is set to TRUE, Essbase uses the calculator cache providing that:
Notes
For detailed information on setting the size of your calculator cache, see the Oracle Essbase Database Administrator's Guide .
Example
Note: | In essbase.cfg , the parameter is not followed by a semicolon; in a calculation script, the parameter must be followed by a semicolon. |
See Also
SET CACHE (calculation script)
Sets the high value for the calculation script SET CACHE command.
This setting does not apply to aggregate storage databases.
Syntax
CALCCACHEHIGH is the level and n is the maximum calculator cache size, in bytes, that a user can choose to use during calculation. The maximum calculator cache size that you can specify is 200,000,000 bytes.
Description
Essbase uses the calculator cache to create and track data blocks during calculation. Using the calculator cache significantly improves your calculation performance. The size of the performance improvement depends on your database configuration.
For detailed information on setting the size of your calculator cache, see the Oracle Essbase Database Administrator's Guide .
You can specify whether Essbase uses a calculator cache by default using the CALCCACHE TRUE | FALSE command in the essbase.cfg file. If required during a calculation, override this default setting using the SET CACHE command in a calculation script.
Notes
Example
Assume the essbase.cfg file contains these settings:
You could use the following SET CACHE calculator commands in a calculation script:
Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.
Sets a calculator cache of 300,000 bytes for the duration of the calculation script.
Sets a calculator cache of 200,000 bytes for the duration of the calculation script.
See Also
SET CACHE (calculation script command)
Sets default value for the calculation script SET CACHE command.
This setting does not apply to aggregate storage databases.
Syntax
CALCCACHEDEFAULT is the level and n is the size for the level, default in this example, the default calculator cache size, in bytes.
If you do not set the value of DEFAULT, Essbase uses a default value of 200,000 bytes.
Description
Essbase uses the calculator cache to create and track data blocks during calculation. Using the calculator cache significantly improves your calculation performance. The size of the performance improvement depends on your database configuration.
For detailed information on setting the size of your calculator cache, see the Oracle Essbase Database Administrator's Guide .
You can specify whether Essbase uses a calculator cache by default using the CALCCACHE setting in the essbase.cfg file. If required during a calculation, override this default setting using the SET CACHE command in a calculation script.
Notes
Example
Assume the essbase.cfg file contains these settings:
You could then use the following SET CACHE commands in a calculation script:
Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.
Sets a calculator cache of 300,000 bytes for the duration of the calculation script.
Sets a calculator cache of 200,000 bytes for the duration of the calculation script.
See Also
SET CACHE (calculation script command)
Sets the HIGH, DEFAULT, and LOW values for the calculation script SET CACHE command.
This setting does not apply to aggregate storage databases.
Syntax
CALCCACHELOW is the level and n is the minimum calculator cache size, in bytes, that a user can choose to use during calculation.
Description
Essbase uses the calculator cache to create and track data blocks during calculation. Using the calculator cache significantly improves your calculation performance. The size of the performance improvement depends on your database configuration.
For detailed information on setting the size of your calculator cache, see the Oracle Essbase Database Administrator's Guide .
You can specify whether Essbase uses a calculator cache by default using the CALCCACHE setting in the essbase.cfg file. If required during a calculation, override this default setting using the SET CACHE command in a calculation script.
Notes
Example
Assume the essbase.cfg file contains these settings:
You could then use the following SET CACHE commands in a calculation script:
Sets a calculator cache of 1,000,000 bytes for the duration of the calculation script.
Sets a calculator cache of 300,000 bytes for the duration of the calculation script.
Sets a calculator cache of 200,000 bytes for the duration of the calculation script.
See Also
SET CACHE (calculation script command)
When set to true, prevents the server from going beyond 31 formula execution levels.
Syntax
Description
CALCLIMITFORMULARECURSION limits the number of execution levels of Essbase formulas. If a calculation involves formulas referencing one or more members from sparse dimensions and there are formulas along dense dimension members, the formula execution may be recursive (have multiple execution levels). By default, Essbase does not limit the number of formula execution levels. However, formulas with excessive execution levels may crash the server. Setting CALCLIMITFORMULARECURSION to TRUE prevents excessive execution levels from crashing the Essbase Server.
If a formula reaches 31 execution levels and CALCLIMITFORMULARECURSION is set to TRUE, Essbase stops processing that formula and writes error messages in the application log. If a formula reaches 31 execution levels and CALCLIMITFORMULARECURSION is set to FALSE, Essbase continues processing that formula and writes an information message in the application log.
Note
Example
If you added a member named "Payroll Share In Similar Markets" to Sample Basic and used the following formula to calculate it, you would get a recursion error.
Sets the HIGH, DEFAULT, and LOW values for the calculation script SET LOCKBLOCK command, which specifies the maximum number of blocks that Essbase can fix (get addressability to) when calculating one block.
This setting does not apply to aggregate storage databases.
Syntax
Where HIGH , DEFAULT , and LOW are levels:
Description
CALCLOCKBLOCK specifies the number of blocks that can be fixed at each level of the SET LOCKBLOCK HIGH | DEFAULT | LOW calculation script command.
When a block is calculated, Essbase fixes (gets addressability to) the block along with the blocks containing its children. Essbase calculates the block and then releases it along with the blocks containing its children. By default, Essbase allows up to 100 blocks to be fixed concurrently when calculating a block. This is sufficient for most database calculations. However, you may want to set a number higher than 100 if you are consolidating very large numbers of children in a formula calculation. This ensures that Essbase can fix all the required blocks when calculating a data block and that performance will not be impaired.
Notes
Example
If the essbase.cfg file contains the following settings:
Then you can use the following SET LOCKBLOCK setting commands in a calculation script:
Essbase can fix up to 500 data blocks when calculating one block.
Essbase can fix up to 200 data blocks when calculating one block.
Essbase can fix up to 50 data blocks when calculating one block.
Note: | In essbase.cfg , a parameter is not followed by a semicolon; in a calculation script, a parameter must be followed by a semicolon. |
See Also
SET LOCKBLOCK (calculation script command)
Enables global setting of formula execution mode.
This setting does not apply to aggregate storage databases.
Syntax
Description
CALCMODE allows you to set the calculation mode at the server, application, or database level instead if indicating it in a calculation script using @CALCMODE. For more information, see the calculator command entry for @CALCMODE in the Oracle Essbase Technical Reference
Example
Turns on block calculation mode for all databases and applications in the server.
See Also
@CALCMODE function
Sets the HIGH, DEFAULT, and LOW values for the SET NOTICE calculation command, which displays completion notices about the progress of the calculation.
This setting does not apply to aggregate storage databases.
Syntax
where HIGH, DEFAULT, and LOW are levels.
Description
CALCNOTICE defines the values for each of the three levels of the SET NOTICE calculation command.
SET NOTICE HIGH | DEFAULT | LOW provides completion notices during a calculation. The frequency and number of completion notices depends on the level specified.
The interval between notices is approximate. Essbase measures the interval by taking the number of data blocks already calculated as a percentage of the total number of possible data blocks in your database.
For partial calculations and calculations with multiple passes through your database, the interval between completion notices is approximate.
Notes
Example
If you use the following settings in the essbase.cfg file:
Then SET NOTICE commands in a script produce the following results:
Displays 50 completion notices at 2% intervals.
Displays 20 completion notices at 5% intervals.
Displays 5 completion notices at 20% intervals.
Note: | In essbase.cfg , a parameter is not followed by a semicolon; in a script, a parameter must be followed by a semicolon. |
See Also
SET NOTICE (calculation command)
Specifies whether Essbase optimizes the calculation of complex formulas on sparse dimensions in large database outlines. If enabled, Essbase performs a bottom-up calculation on formulas that would otherwise require a top-down calculation.
This setting does not apply to aggregate storage databases.
Syntax
Description
This setting tells Essbase whether to optimize the calculation of formulas on sparse dimensions in large database outlines, so that you can efficiently use CALC ALL and CALC DIM commands to calculate the database.
You can override the CALCOPTFRMLBOTTOMUP essbase.cfg setting by using the SET FRMLBOTTOMUP command in a calculation script.
Notes
Example
See Also
SET FRMLBOTTOMUP (calculation command)
SET CREATENONMISSINGBLK (calculation command)
Controls whether dynamically calculated values are re-used during retrievals.
This setting does not apply to aggregate storage databases.
Syntax
Description
By default, Essbase re-uses dynamically calculated values during retrievals. This can speed up retrievals that involve a large number of dynamically calculated blocks that are each required to compute several other blocks, such as when there is a large hierarchy of sparse Dynamic Calc members. However, a large dynamic calculator cache size or a large value for the CALCLOCKBLOCK may adversely affect the retrieval performance when this method is used. In such cases, CalcReuseDynCalcBlocks should be set to FALSE.
Example
Enables parallel calculation, defining the number of processing threads.
Syntax
A value less than 1 is interpreted as the default size. A value greater than the maximum size is interpreted as the maximum size.
You must restart Essbase Server to initialize any change to the configuration file.
Description
This setting enables parallel calculation. For block storage databases, Essbase analyzes each pass of a calculation to determine whether parallel calculation would optimize the calculation. If it would not, Essbase uses serial calculation even if CALCPARALLEL is set to a number greater than 1.
Notes
Example
Enables up to three threads to perform calculation tasks at the same time.
See Also
SET CALCPARALLEL calculation command
SET CALCTASKDIMS calculation command
Specifies the number of sparse dimensions included in the identification of tasks for parallel calculation.
This setting does not apply to aggregate storage databases.
Syntax
Note: | Values less than 0 treated differently than SET CALCTASKDIMS configuration setting. |
You must restart Essbase Server to initialize any change to the configuration file.
Description
CALCTASKDIMS specifies how many of the sparse dimensions in an outline are used to identify potential tasks that can be run in parallel.
Notes
Example
Specifies that for application Sample and database Basic, the last two sparse dimensions in an outline will be used to identify potential tasks to perform at the same time during a calculation pass.
See Also
SET CALCPARALLEL calculation command
SET CALCTASKDIMS calculation command
Controls whether exchange rates are tracked as Essbase calculates currency conversions.
This setting does not apply to aggregate storage databases.
Syntax
Description
CCTRACK controls whether exchange rates are tracked while Essbase calculates currency conversions. Tracking exchange rates has the following advantages:
After loading data, you can clear the tracked exchange rates for the new data using the CLEARCCTRACK command. During a calculation, you can enable or disable CCTRACK using the SET CCTRACKCALC calculation command.
Notes
Example
See Also
CCONV (calculation command)
SET CCTRACKCALC (calculation command)
CLEARCCTRACK (calculation command)
Determines whether the Essbase Server and application logs are overwritten.
Syntax
Description
CLEARLOGFILE determines whether the Essbase Server log (essbase.log) is overwritten whenever Essbase Server is restarted and whether the application log (application_name .log) is overwritten whenever the application is restarted.
Notes
This setting affects both the application and Essbase Server logs. Essbase logs the error to the appropriate files automatically.
Examples
Example 1
If Essbase logs an application message and this setting is in effect:
Essbase logs the message in the application_name.log file in the application directory: ARBORPATH \app\ application_name , where application_name is the name of the current application. The contents of this log are replaced with new entries each time the application is started.
Example 2
If Essbase logs a server message and this setting is in effect:
Essbase logs the message in the essbase.log file in the directory pointed to by ARBORPATH , appending the existing file.
See Also
Enables SSL connectivity to Essbase.
Syntax
Description
This setting determines whether Essbase allows only SSL connectivity. It applies only to clients.
Example
See Also
For information on implementing SSL, see the Oracle Hyperion Enterprise Performance Management System Security Administration Guide .
Sets whether Essbase saves a core dump to a file when an abnormal termination of an agent or server process occurs. UNIX only.
Syntax
Description
CRASHDUMP helps diagnose abnormal program terminations. For each agent crash, when CRASHDUMP is set to TRUE, Essbase creates a file named core . It places the core file in an ESSBASE. abc directory under ESSBASEPATH , where abc displays the date and time. For example:
In each instance of a server crash, when CRASHDUMP is set to TRUE, Essbase creates the core file in a directory under ARBORPATH /app/ appname , where appname is the name of the application. The name of the new directory is ESSSVR . abc , where abc displays the date and time. For example:
If the an agent or server process is automatically shut down, the core file contains a core dump of that moment. If an agent or server process is shut down manually, the core file may be empty.
Look for the core file any time you experience abnormal Essbase program terminations. If the file is not empty, provide it to Support and then remove it and its directory from the computer. If the core file is empty, remove it and its directory from the computer.
In normal operations without abnormal terminations, core files are not created.
Example
Defines the initial value for the data cache size for any new databases that are created after Essbase is restarted. The data cache is a buffer in memory that holds data blocks. Essbase allocates this memory during data load, calculation, and retrieval operations, as needed.
This setting does not apply to aggregate storage databases.
Syntax
Where n is an integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G):
If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.
The qualifier can be in upper or lowercase and can be entered adjacent to the value (10M) or separated by a space (10 M).
Description
DATACACHESIZE specifies, in bytes, kilobytes, megabytes, or gigabytes, the size of the data cache for new databases on the server. The specified value takes effect for all new databases that are created after the server is started. To set or change the data cache size for an individual database, use Administration Services or MaxL. For more information, see the online help or HTML documentation for those components.
Example
Sets the data cache size of all newly created or migrated databases as 90 megabytes.
See Also
Determines the number of records that can be written to an error log during a data load operation.
Syntax
Where n is the number of records, per data load or dimension build, that can be written to the error log, dataload.err . Default: 1000. Maximum: 65,000.
Description
DATAERRORLIMIT determines the number of records that can be written to the error log during data load or dimension build operations.
After the specified number of errors have been recorded, Essbase fails the operation and issues an error message.
Notes
Example
See Also
Specifies whether to use the batch-insert method, instead of the default row-insert method, when the DATAEXPORT calculation command is used to export Essbase data for direct insertion into a relational database.
The DATAEXPORTENABLEBATCHINSERT and DEXPSQLROWSIZE configuration settings apply to block storage databases only.
Description
When DATAEXPORTENABLEBATCHINSERT is set to TRUE, Essbase determines whether the relational database and the ODBC driver permit batch insert. If they do, Essbase uses the batch-insert method, and, thus, performance is optimized.
Essbase determines the batch size; however, you can control the number of rows (from 2 to 1000) that are inserted at one time by using the DEXPSQLROWSIZE configuration setting.
If Essbase cannot determine whether the relational database and the ODBC driver support batch insert, it uses the row-insert method, and DEXPSQLROWSIZE (if set) is ignored.
When DATAEXPORTENABLEBATCHINSERT is set to FALSE, an INSERT command is called for each row of exported data, and, thus, performance is slowed.
Notes
See Also
DATAEXPORT calculation command
DEXPSQLROWSIZE configuration setting
Defines the initial value for the data file cache size for all new databases that are created or migrated. The data file cache is a buffer in memory that holds data files. Essbase allocates this memory during data load, calculation, and retrieval operations, as needed.
This setting does not apply to aggregate storage databases.
Syntax
Where n is an integer expressed in bytes (B), kilobytes (K), megabytes (M), or gigabytes (G)
If a value is given without a B, K, M, or G qualifier, it is assumed the value is in bytes.
The qualifier can be in upper or lowercase and can be entered adjacent to the value (10M) or separated by a space (10 M).
Description
DATAFILECACHESIZE specifies, in bytes, kilobytes, megabytes, or gigabytes, the size of the data file cache for new databases on the server. The specified value takes effect for all new databases that are created after the server is started. To set or change the data file cache size for an individual database, use Administration Services or MaxL. For more information, see the online help or HTML documentation for those components.
Notes
If this setting is added to the essbase.cfg file while Essbase is running, the effect begins after a restart.
Example
Defines the data file cache size of all subsequently created databases as 800 megabytes.
See Also
Sets the location of application log files
Syntax
Description
The DEFAULTLOGLOCATION setting sets the location of application files. TRUE is the default value.
Example
Determines whether Essbase delays free space recovery after an application crashes or terminates abnormally.
This setting does not apply to aggregate storage databases.
Syntax
Description
This setting controls whether Essbase delays freespace recovery.
Database recovery takes place any time you load an application that has just crashed or terminated abnormally. Essbase does not perform free space recovery automatically because it is the most expensive part of database recovery. You must either trigger freespace recovery explicitly or change the default setting so that Essbase will recover free space automatically.
Example
Essbase delays freespace recovery.
See Also
Alter Database <DBS-NAME> recover freespace, which is the statement you use to explicitly recover freespace.
Separate fields when writing log files, using the default (~) character.
Syntax
Description
DELIMITEDMSG specifies whether Essbase Server and application logs are delimited in Essbase. If set to TRUE, and no value for DELIMITER is supplied, the default tilde (~) is used to delimit fields. If set to FALSE, any value specified in DELIMITER is ignored, and no special delimiter is used for logs.
Example
Essbase produces logs that use the asterisk (*) symbol as a delimiter between fields in a log.
See Also
Delimits Essbase Server and application logs using one of five allowed symbols.
Syntax
Description
DELIMITER specifies which of five symbols that Essbase will use to delimit fields in logs. DELIMITER is ignored unless DELIMITEDMSG TRUE is also present in the configuration file.
Example
Essbase produces logs that use the asterisk (*) symbol as a delimiter between fields in a log.
See Also
When the DATAEXPORT calculation command is used to export data directly into a relational database and when the batch-insert method is used, the DEXPSQLROWSIZE configuration setting allows you to specify the number of rows to be inserted at one time.
To enable batch insert, set the DATAEXPORTENABLEBATCHINSERT configuration setting to TRUE. Essbase determines whether the relational database and the ODBC driver permit batch insert. If they do, Essbase determines the batch size unless you set DEXPSQLROWSIZE. If Essbase cannot determine whether the relational database and the ODBC driver support batch insert, it uses the row-insert method, and DEXPSQLROWSIZE (if set) is ignored.
The DEXPSQLROWSIZE and DATAEXPORTENABLEBATCHINSERT configuration settings apply to block storage databases only.
Notes
Example
Specifies a 300-record batch size for data exported from Sample.Basic to a relational database using DATAEXPORT.
Specifies a 500-record batch size for data exported from any database within the Sample application to a relational database using DATAEXPORT.
See Also
Determines the number of records that can be written to an error log during a dimension build operation.
Syntax
Where n is the number of records, per dimension build, that can be written to the error log, dimbuild.err . Default: 20,000. Maximum: 65,000.
Description
DIMBUILDERRORLIMIT determines the number of records that can be written to the error log during dimension build operations.
After the specified number of errors have been recorded, Essbase no longer records any more errors, but continues the dimension build process.
Notes
Example
See Also
When performing a cube deployment operation in Oracle Essbase Studio, DIMBUILDSTATSINTERVAL specifies the number of records to process before reporting on dimension build progress. Progress information is displayed in the Essbase application window.
Load status information is written to the Essbase log file.
The default value is 20000, meaning that dimension build progress information is updated in the build status window after each 20000 records is processed.
Syntax
n—Required. An integer specifying the number of records to process before updating the dimension build progress information in the Essbase application window.
Example
If there are 50000 records to process in the data source, and DIMBUILDSTATSINTERVAL is defined at 20000, Essbase shows the dimension build progress in the Essbase application window after processing 20000 records, and then 40000 records.
Sets the file access mode to direct I/O instead of the default buffered I/O. Applies only to new databases or to databases migrated from Release 6.2 or earlier.
This setting does not apply to aggregate storage databases.
Syntax
Description
For each database, a security file setting tells Essbase whether to use buffered or direct I/O when it accesses the database. By default, when Essbase creates a new database or migrates one from release 6.2 or earlier, it sets this I/O access mode setting to buffered I/O. You can specify the DIRECTIO TRUE configuration setting to change the default setting for new or migrated databases to be direct I/O.
To alter the I/O access mode setting for a database thereafter, use Administration Services or MaxL.
Notes
Example
When Essbase is restarted, the file access mode is set to direct I/O for new databases and databases migrated from release 6.2 or earlier.
Instructs Essbase not to replicate #MISSING values to the target partition, thus improving performance, potentially with less accurate data.
You can specify DISABLEREPLMISSINGDATA for individual databases, all databases within an application, or for all applications and databases on the server.
Syntax
Notes
This setting applies only to replicated partitions on block storage databases.
When #MISSING data is not replicated a warning message is logged in the application log file.
Example
Assume a partition exists from Sample1.Basic (source) to Sample2.Basic (target). To prevent replication of #MISSING data, add the following settings to essbase.cfg .
Defines the volumes that can be used to store multiple index and data files, and the amount of space that those volumes can occupy.
For new files, disk volume settings become effective after the database is restarted. Previously existing files and volumes are not affected.
This setting does not apply to aggregate storage databases.
Syntax
On UNIX, volume_name is a UNIX file path that you must specify up to the directory that you are using for Essbase. Do not specify the /app directory; Essbase appends /app automatically.
Note: | Use only valid volume types. Do not use NFS, floppy, CD-ROM, or network drives. |
If you enter a value with a qualifier (K, M, or G), the acceptable value range per volume is 0 to 2 terabytes. Do not exceed this amount by specifying, for example, 50000G.
If you specify volume_name without specifying disk_space , all the disk space on that volume is used, as needed. If you do not specify volume_name , Essbase uses the volume where the ARBORPATH directory resides.DISKVOLUMES, with its values, can be up to 2 kilobytes long. You can specify 64 items per line; for example, DISKVOLUMES D 5M E 2M C 5G contains 7 items.
Notes
Example
On Windows, the following setting causes index and data files to be stored as follows:
On Windows, the following UNC-style setting causes index and data files to be stored as follows:
On UNIX platforms the following setting causes index and data files to be stored as follows::
See Also
Sets the level of messages displayed in the application window. To set the level of messages written to the application log , use LOGMESSAGELEVEL.
Syntax
Where INFO, WARNING, and ERROR are priority levels:
Notes
This setting affects only the messages displayed in the application window. To control the messages written to the application log, use LOGMESSAGELEVEL . To set the same level for both the window and the log, use both settings.
Example
Sets the window message level to Warning. Only Warning and Error messages are displayed in the application window.
See Also
Instructs Essbase to load data using a single thread per processing stage, or to use the thread values specified in the DLTHREADSPREPARE and DLTHREADSWRITE configuration settings. By working with these three configuration settings, you may be able to test and improve data load performance.
You can specify this setting for individual databases, for all databases within an application, or for all applications and databases on the server.
Syntax
Description
This setting, and related settings DLTHREADSPREPARE and DLTHREADSWRITE , are related to parallel data load processing. Data load processing is divided up into stages that are performed by Essbase using separate processing threads for each stage. By default, a single thread is used for each stage. Taking advantage of the multithreading capabilities of the server machine, the separate single-thread stages can be performed in parallel.
To improve data load performance by maximizing use of processor resource for your situation, you can use these settings to enable additional multiple-thread processing within the preparation and write stages of data load processing. For more information about parallel thread processing in data loads, see the "Optimizing Data Loads" chapter in the Oracle Essbase Database Administrator's Guide .
Notes
Examples
Example 1
Essbase ignores any values specified by DLTHREADSPREPARE and DLTHREADSWRITE while loading data to the Sample Basic application and database. As a result, Essbase uses single threads in each stage.
Example 2
Based on the first setting, Essbase uses the number of threads specified by the DLTHREADSPREPARE and DLTHREADSWRITE configuration settings for all data bases on the server. The settings on the second and third lines specify use of 3 processing threads for the preparation stages and 4 processing threads for the write stages when loading the Sample Basic application and database. Assuming that there are no further related settings, the default value 1 (one) is assumed for all other applications and databases on the server.
Example 3
In this example Essbase uses the number of threads specified by the DLTHREADSPREPARE and DLTHREADSWRITE configuration settings for all databases within the application named Sample. To enable usage of different numbers of threads for the write stage for the two different databases, two DLTHREADSWRITE settings are included with different thread values for each specific database. Because no DLTHREADSPREPARE setting is specified, the preparation stage is single-threaded.
See Also
Specifies how many threads Essbase may use during the data load preparation stage, which organizes the source data in memory in preparation for storing the data into blocks. Multiple threads, processing in parallel, may improve data load performance.
You can specify this setting for individual databases, for all databases within an application, or for all applications and databases on the server.
In order for Essbase to use the value specified for this setting, the DLSINGLETHREADPERSTAGE setting must be set to FALSE.
Syntax
Description
This setting, and related settings DLTHREADSWRITE and DLSINGLETHREADPERSTAGE , are related to parallel data load processing. Data load processing is divided up into stages that are performed by Essbase using separate processing threads for each stage. By default, a single thread is used for each stage. Taking advantage of the multithreading capabilities of the server machine, the separate single-thread stages can be performed in parallel.
To improve data load performance by maximizing use of processor resource for your situation, you can use these settings to enable additional multiple-thread processing within the preparation and write stages of data load processing. For more information about parallel thread processing in data loads, see the "Optimizing Data Loads" chapter in the Oracle Essbase Database Administrator's Guide .
Notes
Example
Because DLSINGLETHREADPERSTAGE is set to FALSE for the Sample Basic application and database, Essbase uses 3 parallel threads during the preparation stage when loading data to Sample Basic.
See Also
Specifies how many threads Essbase may use during the stage of the data load process that writes blocks on the disk. Multiple threads, processing in parallel, may improve data load performance.
Since Essbase uses a single thread during the write stage of the aggregate storage data load process, this setting does not apply to aggregate storage databases.
Syntax
See Notes below.
Description
This setting, and related settings DLTHREADSPREPARE and DLSINGLETHREADPERSTAGE , are related to parallel data load processing. Data load processing is divided up into stages that are performed by Essbase using separate processing threads for each stage. By default, a single thread is used for each stage. Taking advantage of the multithreading capabilities of the server machine, the separate single-thread stages can be performed in parallel.
To improve data load performance by maximizing use of processor resource for your situation, you can use these settings to enable additional multiple-thread processing within the preparation and write stages of data load processing.
You can specify DLTHREADSWRITE for individual databases, all databases within an application, or for all applications and databases on the server.
In order for Essbase to use the value specified for DLTHREADSWRITE, the configuration setting DLSINGLETHREADPERSTAGE must be set to FALSE.
For more information about parallel thread processing in data loads, see the "Optimizing Data Loads" chapter in the Oracle Essbase Database Administrator's Guide .
Notes
Example
Because DLSINGLETHREADPERSTAGE is set to FALSE for the Sample Basic application and database, Essbase uses 3 parallel threads during the write stage when loading data to Sample Basic.
See Also
Enables Essbase to create a temporary buffer for dynamic calculations in cases where the wait for space in the dynamic calculator cache has exceeded the specified wait time.
This setting does not apply to aggregate storage databases.
Syntax
Description
Use this setting to tell Essbase to make room available in the dynamic calculator cache, if needed, by compressing inactive blocks from that cache and attempting to temporarily store them in a separate, compressed-block buffer.
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using the dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations. The size of the improvement depends on your database configuration.
Notes
The following sequence of events must occur and settings must be defined before Essbase releases space in the dynamic calculator cache:
Example
Essbase makes needed space available in the dynamic calculator cache by compressing inactive blocks and temporarily storing them in a dynamic calculator cache compressed-block buffer.
See Also
Specifies maximum time to wait for free space in the dynamic calculator cache.
This setting does not apply to aggregate storage databases.
Syntax
Description
Use this setting to specify the maximum number of seconds that Essbase should wait for space in the dynamic calculator cache in order to perform the requested calculation there. If Essbase waits the entire number of seconds specified in this setting, it then checks the DYNCALCCACHEBLKRELEASE setting to determine what to do next:
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using the dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations. The size of the improvement depends on your database configuration.
Notes
Example
Essbase waits up to 20 seconds for space in the dynamic calculator cache before checking the DYNCALCCACHEBLKRELEASE setting to determine the next step to take before performing the requested calculation.
See Also
Specifies the size of a temporary buffer for storing compressed blocks in order to make more space in the dynamic calculator cache.
This setting does not apply to aggregate storage databases.
Syntax
Description
In order to make space available in the dynamic calculator cache, Essbase uses the value specified by the DYNCALCCACHECOMPRBLKBUFSIZE configuration setting to size the dynamic calculator cache compressed-block buffer. Essbase temporarily stores compressed blocks from the dynamic calculator cache into this buffer under the following circumstances:
The dynamic calculator cache compressed-block buffer is an area in memory where Essbase compresses and temporarily stores blocks from the dynamic calculator cache to free space for other blocks for other calculations. When space is again available, Essbase decompresses blocks stored in the compressed-block buffer and returns them to the dynamic calculator cache.
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using the dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations. The size of the improvement depends on your database configuration.
Notes
Essbase uses the temporary compressed-block buffer only when the DYNCALCCACHEBLKRELEASE configuration parameter is set to TRUE and the DYNCALCCACHECOMPRBLKBUFSIZE setting is greater than 0.
Example
Sets 1,000,000 (one million) bytes as the size for the dynamic calculator cache compressed-block buffer.
See Also
Specifies the maximum amount of memory allocated for the dynamic calculator cache.
This setting does not apply to aggregate storage databases.
Syntax
Description
This setting specifies, in bytes, kilobytes, megabytes, or gigabytes, the maximum amount of memory that Essbase can allocate for the dynamic calculator cache for each database. The specified value takes effect for all databases that are opened after the server is started.
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations.
When the DYNCALCCACHEMAXSIZE setting is not equal to 0, you should also consider the following settings that affect how Essbase uses dynamic calculator cache:
Notes
Example
Sets 30 megabytes as the maximum size for the dynamic calculator cache.
See Also
Oracle Essbase Database Administrator's Guide
Specifies whether dynamic calculations can use memory outside the dynamic calculator cache in the case that it is full.
This setting does not apply to aggregate storage databases.
Syntax
Description
When no room is available in the dynamic calculator cache, the DYNCALCCACHEWAITFORBLK and DYNCALCCACHECOMPRBLKBUFSIZE configuration settings provide options that could result in Essbase using memory outside the dynamic calculator cache to store blocks that contain dynamically calculated members. If you are experiencing a severe memory shortage, you can use the DYNCALCCACHEONLY setting to disallow the use of memory outside the dynamic calculator cache. If DYNCALCCACHEONLY is set to TRUE, instead of using memory outside the dynamic calculator cache, Essbase generates the error message, "Allocation outside the dynamic calculator cache is disallowed."
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using the dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations. The size of the improvement depends on your database configuration.
Notes
The default value of this setting is FALSE. Only set this value to TRUE for one or more of the following circumstances:
Example
Specifies that the dynamic calculator cache is the only memory area that Essbase may use to store blocks that contain dynamically calculated blocks. If a retrieval requires space that is not available in the dynamic calculator cache, the execution of the retrieval is aborted. The user sees an error message that is also posted to the application log.
See Also
Specifies whether Essbase should wait for memory to be freed in the dynamic calculator cache, or use outside memory.
This setting does not apply to aggregate storage databases.
Syntax
Description
Use this setting to set or change how Essbase handles the situation when it needs additional memory to store blocks in the dynamic calculator cache for the database.
When the setting is TRUE, Essbase waits to store and calculate data blocks in the dynamic-calculator-cache area that is currently in use by other queries.
When the setting is FALSE, if the DYNCALCCACHEONLY setting is also FALSE, instead of waiting for area in the dynamic calculator cache, Essbase attempts to store and calculate data blocks for the current query in memory outside the dynamic calculator cache. If the DYNCALCCACHEONLY setting is TRUE, Essbase generates an error message instead of using memory outside the dynamic calculator cache.
The dynamic calculator cache is a memory buffer that holds data blocks that are expanded to include dynamically calculated members. Essbase allocates memory in the dynamic calculator cache to store these blocks during retrievals or calculations that involve dynamically calculated members.
Using the dynamic calculator cache may improve retrieval performance by reducing the number of calls to the operating system to do memory allocations. The size of the improvement depends on your database configuration.
Notes
Use the DYNCALCCACHEBLKTIMEOUT setting to specify the maximum number of seconds that Essbase waits for space in the dynamic calculator cache.
Example
Essbase attempts to perform the block calculation in memory outside the dynamic calculator cache, instead of waiting for space to become available in the dynamic calculator cache.
See Also
Specifies whether to log transaction response times for requests sent from a data source to a transparent partition target. The target can be either a block storage or aggregate storage database. Logging these diagnostic messages is helpful when troubleshooting response times that are too slow.
Syntax
You must restart Essbase Server to initialize any change to the configuration file.
Description
When logging is enabled, Essbase writes messages to the source and target database log files during querying.
For every partial response sent to the target from the source, Essbase logs these messages:
For every partial grid received from the source, Essbase logs the following message about the density of the grid to the target database log file:
When an aggregate storage database is the target of a transparent partition, you can set the request and response grid size.
Example
Enables logging of transaction response times for all databases associated with the ASOSamp application.
See Also
MAX_REQUEST_GRID_SIZE configuration setting
MAX_RESPONSE_GRID_SIZE configuration setting
Determines whether Essbase allows SSL connectivity. This setting applies only to Essbase Agent and applications.
Syntax
Example
See Also
For information on implementing SSL, see the Oracle Hyperion Enterprise Performance Management System Security Administration Guide .
Determines whether Essbase logs runtime substitution variables that are used in a calculation script.
Runtime substitution variable log entries are written to the application log file.
Syntax
Example
See Also
SET RUNTIMESUBVARS calculation command
Allows Secure Socket Layer (SSL) connectivity to Essbase. This setting applies only to Essbase Agent and applications.
Syntax
Example
See Also
For information on implementing SSL, see the Oracle Hyperion Enterprise Performance Management System Security Administration Guide .
Specifies whether to load the latest, valid backup security file (essbase_ timestamp .bak) at startup if the essbase.sec file is invalid.
Syntax
The default value is FALSE.
Note: | You can configure the number of backup security files that Essbase creates and maintains, and the interval in which Essbase creates backup security files. |
Example
See Also
Sets the trace level for messages written to the Lease Manager log files.
Syntax
Where USER and ADMIN are priority levels:
Example
Sets the trace level to ADMIN which writes the messages Lease manager has a current lease and Lease Manager successfully acquired/renewed its lease to the Lease Manager log files every time a lease is renewed.
See Also
Specifies the computer host name to which Essbase Agent and Essbase Server bind and where an Essbase application process runs.
Syntax
Where host_name is the name of the host where your Essbase application process runs. ESSBASESERVERHOSTNAME uses the current server by default.
Description
ESSBASESERVERHOSTNAME identifies the host where your Essbase application process runs. The value must be a valid host name and must map to an IP address assigned to the computer. If ESSBASESERVERHOSTNAME is not specified in essbase.cfg , Essbase and the applications listen on all interfaces (IP_ANY).
Notes
Example
Identifies the host name "HypeR".
Specifies, in millions, the estimated number of member name and alias name strings that are loaded into memory for optimal performance of name lookup and name insertion during dimension build and outline editing.
This configuration setting allows you to configure a new hashtable implementation, which has an increased memory footprint. The value that you set for this configuration setting affects the amount of memory used when editing an outline. If you set the value to a number that is lower than the estimated number of strings, dimension build performance might be impacted.
Set this configuration setting in the essbase.cfg file on Essbase Server.
Syntax