
Oracle® Endeca Server

Data Loading Guide

Version 7.6.1 • December 2013

Copyright and disclaimer
Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Table of Contents

Copyright and disclaimer ..2

Preface..5
About this guide ..5
Who should use this guide...5
Conventions used in this guide..5
Contacting Oracle Customer Support ...6

Chapter 1: Introduction ..7
Overview of the Data Ingest Web Service..7
Diagram of the operations in the WSDL ...9
Important usage note..10
Data Ingest logging ...11
Generating client stubs ..12

Chapter 2: Prerequisite Information ..13
Namespaces and version for the Data Ingest Web Service13
Property types for Dgraph records ..15

string property...16
numeric properties..16
geocode property ..17
boolean property ...18
dateTime property ..18
time property..20
duration property...21

Default values for new attributes ...22
NCName format for attributes..24
Interaction with the Transaction Web Service ..25
Troubleshooting connection timeouts ..25

Chapter 3: Adding New Records ...26
About adding PDRs and DDRs...26
Adding managed attribute values ...28
About the primary keys for data records ..31
Adding primary-key attributes..33
Adding new records...35
Initial loading of records..37
Adding managed attribute value assignments to records39
Adding records after the initial load..40

Chapter 4: Updating Records..42
About updates...42

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Table of Contents 4

Identifying records with EQL ..44
Adding record assignments ...46
Removing record assignments ...47
Replacing record assignments ...50
Changing the name of a standard attribute ..51

Chapter 5: Deleting or Replacing Records...54
Deleting records ...54
Replacing records ..55

Chapter 6: Resetting the Data Domain and Updating Spelling Dictionaries57
Resetting the Data Domain ...57

Removing all records from the data domain58
Provisioning the data domain ..59

Updating spelling dictionaries for the data domain.......................................60

Chapter 7: Bulk Load API ...62
About the Bulk Load API ...62
Bulk Load sample program ...64
Records, assignments, and data types ...66
Sending records to the data domain ...68

Appendix A: The Deprecated ingestManagedAttributeValues Operation71
ingestManagedAttributeValues operation ...71
ingestManagedAttributeValues responses...73

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Preface
Oracle® Endeca Server is a hybrid search-analytical engine that organizes complex and varied data from
disparate sources. At the core of Endeca Information Discovery, the unique NoSQL-like data model and in-
memory architecture of the Endeca Server create an extremely agile framework for handling complex data
combinations, eliminating the need for complex up-front modeling and offering extreme performance at scale.
Endeca Server also supports 35 distinct languages.

About this guide
This guide describes the Data Ingest Web Service of the Oracle Endeca Server, which enables loading and
deleting records in an Endeca data domain, as well as resetting the data domain. The Data Ingest Web
Service is used by Integrator ETL. It can also be used by any other ETL tool for loading and managing records
in the data domain.

This guide also describes the Bulk Load Interface, which can load data source records only.

The guide assumes that you are familiar with Oracle Endeca Server concepts and the front-end application
development for the Oracle Endeca Server, as well as the specifics of your ETL tool.

Who should use this guide
This guide is intended for developers who are responsible for using ETL utilities to load source data into the
Oracle Endeca Server.

Conventions used in this guide
The following conventions are used in this document.

Typographic conventions

This table describes the typographic conventions used when formatting text in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code phrases within a paragraph.

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Variable.

File Path This formatting is used for file names and paths.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Preface 6

Symbol conventions

This table describes the symbol conventions used in this document.

Symbol Description Example Meaning

> The right angle bracket, File > New > Project From the File menu,
or greater-than sign, choose New, then from
indicates menu item the New submenu,
selections in a graphic choose Project.
user interface.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable Meaning

$MW_HOME Indicates the absolute path to your Oracle Middleware home directory,
which is the root directory for your WebLogic installation.

$DOMAIN_HOME Indicates the absolute path to your WebLogic domain home directory. For
example, if endeca_server_domain is the name of your WebLogic
domain, then the $DOMAIN_HOME value would be the
$MW_HOME/user_projects/domains/endeca_server_domain
directory.

$ENDECA_HOME Indicates the absolute path to your Oracle Endeca Server home directory,
which is the root directory for your Endeca Server installation.

Contacting Oracle Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

https://support.oracle.com

Chapter 1

Introduction

This section provides an overview to the Data Ingest Web Service of the Oracle Endeca Server and lists its
operations.

Overview of the Data Ingest Web Service

Diagram of the operations in the WSDL

Important usage note

Data Ingest logging

Generating client stubs

Overview of the Data Ingest Web Service
The Data Ingest Web Service loads data into a running data domain on the Oracle Endeca Server and can
also update existing records.

The Data Ingest Web Service therefore allows you to use a data integration platform, such as Integrator ETL,
to load data into an application.

You can access the Data Ingest Web Service WSDL at the following URL:

http://localhost:<port>/endeca-server/ws/ingest/<dataDomain>?wsdl

Version 7.6.1 • December 2013

where the localhost and port are the host and port of the running Oracle Endeca Server, endeca-
server is the default context root for the Endeca Server Java application running in the WebLogic Server,
and dataDomain is the name of the Endeca data domain.

The Data Ingest Web Service enables performing these tasks:

• Provision the schema records for an initial data domain configuration.

• Reset the data domain by removing its records and schema.

• Update the spelling dictionaries for the data domain.

• Add new records to a running data domain. The service accepts batches of records to add. The number of
records in each batch is set by the client program. The records can be added to an empty data domain
(this operation is called an initial load) or to one that already has records.

• Add managed attribute values to a running data domain. If the managed values belong to a managed
attribute that is not currently in the data domain, the service will also create the managed attribute.

• Modify existing records in a running data domain. You can add, remove or replace standard attribute
values and managed values from already added records.

• Replace or delete records or record data from a running data domain.

• Change the names of the standard attributes in the running data domain.

Oracle® Endeca Server: Data Loading Guide

Introduction 8

The Data Ingest Web Service can modify a record multiple times in a single transaction (any combination of
create, add assignments, delete assignments, and delete record). Operations within this transaction are
processed in order.

The service returns a response indicating the number of records, standard attributes, or managed attribute
values that were added or removed as a result of the request. In addition, error messages are returned via a
fault mechanism.

The data is sent by an ETL client (such as Integrator ETL) via a program that is running on the client.
Typically, ETL client programs written by users use stubs generated from the Data Ingest WSDL and calls
from the ETL tool's SDK.

Interaction with transactions
Any request to the Data Ingest Web Service can contain an optional element OuterTransactionId that
specifies the ID of an outer transaction (if it has been started by the Transaction Web Service).

Specify this element with the value of the outer transaction ID as the first element in the request only if a
request made by the Data Ingest Web Service is started after a request to start an outer transaction has been
made by the Transaction Web Service.

Do not specify this element, or leave the value of it empty, if no outer transactions have been started. If the
value is empty, the request ignores the element and interprets it as not specified.

About Integrator ETL

Integrator ETL is a high-performance data integration platform that lets you extract source records from a
variety of source types (from flat files to databases) and send those records to either the Data Ingest Web
Service or the Bulk Load Interface, both of which in turn load the records into the data domain.

The records are loaded into the data domain via one of the four custom connectors that communicate with the
Data Ingest Web Service or a connector that uses the Bulk Load Interface.

For details on Integrator ETL, see the Oracle Endeca Information Discovery Integrator ETL User's Guide.

Data Ingest API

The Data Ingest API is a framework that provides ETL developers with a flexible mechanism to load records
from an ETL data source to a running data domain. Because it is defined by WSDL and XSD documents, the
Data Ingest API is language-agnostic. That is, it can be used with any programming language that has Web
services support. Thus, the API lets developers choose their favorite development environment (Java, Visual
Studio .NET, etc.) on which to write their components.

The Oracle Endeca Server API References are generated from the WSDL and XSD files that describe each
Web service. They provide API-level information about Web services that are packaged with the Oracle
Endeca Server. The Oracle Endeca API References are located in the doc directory of the Oracle Endeca
Server installation.

About the Bulk Load Interface

Besides the Data Ingest API, the Bulk Load Interface is available to ingest records into an Endeca data
domain. The Bulk Load API exists in the form of a collection of Java classes in a single
endeca_bulk_load.jar file, which is shipped in the Endeca Server's apis directory. For information on the
Bulk Load API, see Bulk Load API on page 61.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Introduction 9

Diagram of the operations in the WSDL
This topic provides a diagram and lists the operations available in the Data Ingest Web Service.

Diagram of the Data Ingest Web Service WSDL

The following diagram provides a visual representation of the tree of operations in the Data Ingest Web
Service WSDL.

Note: The structure of this guide does not follow the structure of the WSDL for this web service. In the
WSDL, one of the operations — ingestChanges — contains many sub-operations, used for various
different tasks. By comparison, this guide is broken into sections for adding records, updating records,
deleting and replacing records, and adding managed attributes. When reading this guide, use the
diagram in this section to locate a particular operation in the WSDL of the Data Ingest Web Service.

This diagram illustrates the Data Ingest Web Service structure:

• The Data Ingest Web Service contains five major operations: ingestChanges,
ingestManagedAttributeValues, clearDataStore, provisionDataStore, and
updateSpellingDictionaries.

• Inside ingestChanges, the following elements represent sub-operations: addRecords, updateRecords,
addOrUpdateRecords, deleteRecords, and replaceRecords. Note that unlike ingestChanges, which
contains many sub-elements, other top-level operations do not contain sub-elements representing
operations.

• Further, inside the updateRecods element, the following elements are included, each of which also
represents an operation of this web service: addAssignments, deleteAssignments,
wildcardDeleteAssignments, and replaceAssignments.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Introduction 10

To summarize, the operations in the Data Ingest Web Service are the following:

Ingest operation Description

ingestChanges Performs these functions via its five sub-operations:

• addRecords only creates new records.

• addOrUpdateRecords either creates new records (if the
specified record specifier does not exist) or adds
assignments to an existing records (if the specified record
specifier does exist in the index for the data domain).

• updateRecords updates existing records by adding,
deleting, wildcard-deleting, and replacing value assignments
on attributes. Can rename a standard attribute.

• replaceRecords replaces existing records.

• deleteRecords deletes existing records.

ingestManagedAttributeValues Adds and updates assignment values for managed attributes.

clearDataStore Deletes the data records and schema records from the data
domain, indicating the number of records deleted. This
operation must be followed by the provisionDataStore

operation.

provisionDataStore Provisions the primordial schema records in the data domain.
This operation (which is typically run after the clearDataStore

operation) adds the system records (such as PDRs and DDRs),
and resets these records to their default values.

updateSpellingDictionaries Updates the spelling dictionaries in the index for the data
domain with the specified name. This operation enables spelling
correction and lets you rebuild the dictionaries for spelling
correction from the current index.

Important usage note
This topic discusses operations in the data domain you can perform using the Data Ingest Web Service. It also
lists several operations that are not recommended.

Recommended data domain operations

You can use the Data Ingest Web Service to perform the following actions in the data domain (the following
list includes those operations that are recommended to perform and is not a full list of all supported
operations):

• Add new individual records to the data domain

• Add key-value assignments on the existing records in the data domain

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Introduction 11

• Delete or replace specified record assignments

• Delete individual records, or replace them

• Change the name of a standard attribute in the running data domain

• Remove all data records from the data domain

• Provision the data domain (by creating the schema records, such as PDRs and DDRs, and resetting these
records to their default values).

Operations that are not recommended

While the actions listed below can be done with the Data Ingest Web Service, it is not recommended to use
the Data Ingest Web Service for them.

The Data Ingest Web Service does not perform reference checks, so it is possible to render your data domain
invalid or unusable by performing certain operations using this Web service. Here is a list of operations to use
with caution:

• Removal of system (or schema) records — these are records that define your schema (such as PDR,
DDR, or other system records). For example, removing a PDR may invalidate an attribute group or a
search interface to which the attribute defined by this PDR belongs. As a workaround, you can remove all
records and schema and then provision the data domain using the Reset Data Domain connector in
Integrator ETL. For more information on custom connectors available in Integrator ETL, see the Oracle
Endeca Information Discovery Integrator ETL User's Guide.

• Creation of records that define groups or entities (used for views in Studio). It is recommended to use
either the Configuration Web Service or Studio for these actions. For information on the Configuration
Web Service, see the Oracle Endeca Server Developer's Guide. For information on Studio, see the Oracle
Endeca Information Discovery Studio User's Guide.

• Renaming of individual standard attributes that belong to attribute groups, search interfaces, or entities
(used for views in Studio). If you rename the attribute without removing it from the groups, search
interfaces, or entities, you will invalidate them. Remove the standard attribute from groups, search
interfaces, or entities before renaming it.

Data Ingest logging
The Data Ingest Web Service writes its output to the Dgraph logs for the data domain.

By default, each SOAP request for the Data Ingest Web Service is written to the Dgraph request log.

The SOAP response provides fault and summary information. If verbose logging is turned on for the Dgraph
processes of the data domain, this information, as well as the entire SOAP request, is written to the data
domain's standard-out log. (You can set verbose logging in the data domain profile with the endeca-cmd --
put-dd-profile --args -v command.)

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Introduction 12

Generating client stubs
To create a client application that consumes the Data Ingest Web Service, you need the Web service's WSDL
file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a programmatic
fashion. Typically, a client developer uses a tool that parses the WSDL file and generates client-side stubs
(also called proxy classes) and value types. These generated files include all the code necessary to serialize
and deserialize SOAP messages and make the SOAP layer transparent to the client developer. The Data
Ingest WSDL files can be used with any language that has Web services support.

A variety of tools exist that allow you to generate client stub code from the WSDLs. For details on using a
WSDL code-generation utility, refer to the utility's documentation. Keep in mind that the exact syntax of a class
member depends on the output of the WSDL tool that you are using. Therefore, check the client stub classes
that are generated by your WSDL tool for the exact syntax of the class members.

Obtaining the WSDL from the deployed service

The Data Ingest Web Service has a unique URL associated with it. If you append ?wsdl to the service
endpoint URL, and specify the name of the data domain, the service will automatically generate a service
description for the deployed service and return it as XML in your browser, as in this example URL for the
"books" data domain:

http://localhost:7001/endeca-server/ws/ingest/books?wsdl

Version 7.6.1 • December 2013

You can also use this URL in your WSDL tool to generate the stubs, as in this Apache Axis2 example:

wsdl2java -uri http://localhost:7001/endeca-server/ws/ingest/books
?wsdl -d xmlbeans -s -p com.endeca.dataingest.axis2.addrecords

You can insert the wsdl2java command in a batch or shell script, or in a build file.

Oracle® Endeca Server: Data Loading Guide

Chapter 2

Prerequisite Information

This section provides overview information you need to know before using the Data Ingest Web Service.

Namespaces and version for the Data Ingest Web Service

Property types for Dgraph records

Default values for new attributes

NCName format for attributes

Interaction with the Transaction Web Service

Troubleshooting connection timeouts

Namespaces and version for the Data Ingest Web Service
This topic describes the two namespaces used for data ingest operations and the version of the Data Ingest
Web Service.

XML namespaces provide a method for qualifying element and attribute names used in Extensible Markup
Language documents by associating them with namespaces identified by URI references. The Data Ingest
Web Service uses two namespaces: "ingest" namespace and "mdex" namespace.

The xmlns attribute specifies these namespaces, as in this example, which also shows the Web service's
version, where ns is the "ingest" namespace, and ns1 is the "mdex" namespace:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

Version 7.6.1 • December 2013

The "ingest" namespace

The "ingest" namespace for the Data Ingest Web Service (DIWS) is:

http://www.endeca.com/MDEX/ingest/3/0

This namespace also reflects the version of the Data Ingest Web Service. This namespace is included in the
WSDL document for the Web service.

After this declaration, all DIWS elements will use the same prefix, which will be associated with the same
namespace, as in this abbreviated example that uses the variable ns for this namespace:

<ns:ingestChanges>
<ns:deleteRecords>
<ns:recordSpecifier>?</ns:recordSpecifier>
</ns:deleteRecords>

</ns:ingestChanges>

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 14

You can use a prefix of your own choosing, but it must be bound to the DIWS namespace listed above. In this
guide, the prefix ns will be used for this namespace in many examples.

The "mdex" namespace
The namespace for mdex elements is:

http://www.endeca.com/MDEX/XQuery/2009/09

Version 7.6.1 • December 2013

It is also shown here, as xmlns:ns1:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

The important elements from the mdex namespace used in data loading are mdex:record, for records, and the
nine property types, such as the mdex:string property type. You must also use the xmlns attribute to set the
mdex namespace in your XML documents.

In this guide, the prefix ns1 will be used for this namespace in the examples.

The version of the Data Ingest Web Service

The "index" namespace declaration in the Data Ingest Web Service request displays the version of this Web
service:

xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"

In this example, the string /3/0 indicates the version as 3.0, where 3 is the major version, and 0 is the minor
version. Note that the version in the service that you have installed may not match this example.

Changes to minor versions are backward-compatible. If any backward-compatible versions exist, additional
namespaces are included in the WSDL, listing them. You can use any backward-compatible minor version that
is listed. For example, if both 3.0 and 3.1 versions are listed in the WSDL, you can use either of them.

Changes to major versions are not backward-compatible, thus previous major versions are not listed in the
WSDL namespaces.

Important: After you upgrade the Oracle Endeca Server, verify the versions of the Web services you
have been using against the installed versions, to avoid version mismatch. It is recommended to use
the Web service versions that match the ones installed with the Oracle Endeca Server.

In particular:

• If the minor version of the Web service on your client does not match the version installed with the
Oracle Endeca Server, you can still use this version if it is listed in the WSDL namespaces,
although it is recommended to upgrade.

• If the major version of the Web service on your client does not match the version of the Web
service installed with the Oracle Endeca Server, you must upgrade to the most recent major
version of the Web service (this may include upgrading client code to use client stubs generated
from the most recent versions).

For more information on Web service versions, see the Oracle Endeca Server Developer's Guide.

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 15

Property types for Dgraph records
This topic describes the format of the property types supported by the Dgraph process of the Oracle Endeca
Server and the Data Ingest Web Service.

The following table lists the property types that are used by the Dgraph process of the Oracle Endeca Server
to create standard attributes:

Dgraph property name Property type

mdex:string Represents XML-valid character strings.

mdex:int Represents a 32-bit signed integer.

mdex:long Represents a 64-bit signed integer.

mdex:double Represents a floating point.

mdex:boolean Represents a Boolean.

mdex:time Represents the time of day to a resolution of milliseconds.

mdex:dateTime Represents the date and time to a resolution of milliseconds.

mdex:duration Represents a length of time with a resolution of milliseconds.

mdex:geocode Represents latitude and longitude pairs.

The type for properties is specified in the type XML attribute of a record element. The default type of created
standard attributes is mdex:string if not otherwise specified. Assignments for an existing standard attribute
that specify a type different from that of the associated standard attribute will succeed or fail as per the
underlying put-record functionality.

The type is only checked by the Endeca Server when you initially create the attribute. If the attribute already
exists, the Endeca Server ignores the type if it is specified, and does not perform any additional type checking
to ensure that the type matches the type that exists in the Endeca Server for this attribute.

Errors from incorrect property values and types

You must ensure that you specify the appropriate value type for each property type. For example, attempting
to assign a double value (such as 19.99) to an mdex:int property will return an ingestFault indication a
parsing error, as in this example:

Error applying updates: Unable to parse property value "19.99" for property "NumInStock"
with type "mdex:int" on record FactSalesID:569

Version 7.6.1 • December 2013

The Unable to parse property value error should be returned for any mismatched attribute value,
including using an incorrect case for Boolean values (for example, specifying "FALSE" instead of "false").

Likewise, a type mismatch is caught whenever an assignment with the wrong type is added. When a type
mismatch is encountered during a bulk load, the Dgraph will produce the following error and send it back over
the response channel to the bulk load client:

Expected an assignment of type <type> for property <propertyName>, but got type <type> instead.

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 16

Change your schemas so that the type for this property is the same for your ingest pipeline and the
dgraph.

Version 7.6.1 • December 2013

This error causes the bulk load to fail (which should be apparent from the Dgraph log), and the above
message should be received by the client.

string property

numeric properties

geocode property

boolean property

dateTime property

time property

duration property

string property
mdex:string properties represent character strings.

An mdex:string property represents variable-length character strings. The characters should conform to the
specification for valid XML characters, as described in the W3C XML document at this URL:
http://www.w3.org/TR/REC-xml/#charsets

Keep in mind that mdex:string is the default property data type. That is, if you do not explicitly specify the
property type when creating a standard attribute, then mdex:string will be used as the property type of the
Dgraph record for that attribute.

Example of ingesting string properties

This example shows how to use string property types for record assignments:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='568'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="Description" type="mdex:string">winter tights</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

numeric properties

The Dgraph records can have three numeric properties.

The three numeric properties are:

• mdex:int

• mdex:long

• mdex:double

Oracle® Endeca Server: Data Loading Guide

http://www.w3.org/TR/REC-xml/#charsets

Prerequisite Information 17

int properties
An mdex:int property represents a 32-bit signed integer. It has a minimum value of -2147483648 and a
maximum value of 2147483647 (inclusive).

long properties
An mdex:long property represents a 64-bit signed integer. It has a minimum value of -9223372036854775808
and a maximum value of 9223372036854775807 (inclusive).

double properties
An mdex:double property represents a floating point value. Values can be specified in a decimal-point format
(such as 20.0) or in a scientific notation format using "e" or "E" (such as 2.0E1).

Example of ingesting numeric properties

This example shows how to use the numeric property types for record assignments:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='568'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="Price" type="mdex:double">19.99</ns1:attribute>
<ns1:attribute name="NumInStock" type="mdex:int">45</ns1:attribute>
<ns1:attribute name="TotalSold" type="mdex:long">92233720</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

Version 7.6.1 • December 2013

geocode property
mdex:geocode properties represent latitude and longitude pairs.

mdex:geocode properties use the format:

latvalue lonvalue

where each is a double-precision floating-point value:

• latvalue is the latitude of the location in whole and fractional degrees. Positive values indicate north
latitude, and negative values indicate south latitude.

• lonvalue is the longitude of the location in whole and fractional degrees. Positive values indicate east
longitude, and negative values indicate west longitude.

The latitude and longitude numbers may be separated by arbitrary white space or tab characters. Values are
always re-serialized with a single space character regardless of the form of the parsed string.

For example, the following request updates Record 778 with a Location geocode property:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='778'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="Location" type="mdex:geocode">42.365615 -71.075647</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 18

The value of the geocode property specifies a location at 42.365615 north latitude, 71.075647 west longitude.

boolean property
mdex:boolean property values are useful for tracking true/false conditions.

The valid Boolean values for the mdex:boolean property type are:

• true or 1 (i.e., 1 is a synonym for true)

• false or 0 (i.e., 0 is a synonym for false)

Note that true and false are case sensitive and must be specified in lower case.

For example, the following request updates Record 492 with two Boolean properties:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='492'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="IsInStock" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="IsActive" type="mdex:boolean">1</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

Version 7.6.1 • December 2013

In the example, both properties (isInStock and isActive) are set to true.

dateTime property
mdex:dateTime properties represents a single point in time.

The mdex:dateTime property represents the year, month, day, hour, minute, and seconds of a time point, with
the optional specification of fractional seconds. You can specify a dateTime value as either a universal (UTC)
date time or as a local time plus a UTC time zone offset. Note that specifying just a local time is not
supported.

format for universal dateTime
The mdex:dateTime format for a UTC date time is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} Z

where:

• yyyy represents a four-digit year. The year value may not be negative, which means that specifying a year
prior to 1 BCE is not supported. Year 0000 is not a valid year.

• The first mm is a two-digit numeral that represents the month. Numerals representing the first nine months
must have a leading zero, such as 07 for July.

• dd is a two-digit numeral that represents the day of the month, such as 03 for the third day of the month or
30 for the thirtieth day.

• T is a literal separator indicating that time-of-day follows.

• hh is a two-digit numeral that represents the hour. Note that specifying 24 is not permitted (to represent
24, use all zeros for the time portion).

• The second mm is a two-digit numeral that represents the minute.

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 19

• ss is a two-digit numeral that represents the whole seconds.

• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is only
precise to the millisecond, which means that a specification of four or more digits is truncated to three
digits.

• Z (added to the time without a space) is a literal indicator that this date time is Coordinated Universal Time
(UTC, sometimes called Greenwich Mean Time). Z is the zone designator for the zero UTC offset.

Note that a hyphen ('-') is the separator between parts of the date portion, a colon (':') is the separator
between parts of the time-of-day portion, and a period ('.') is the separator for fractional seconds.

For example, to indicate noon on November 18, 2011 in New York City, you would specify:

2011-11-18T17:00:00Z

Version 7.6.1 • December 2013

format for local time plus UTC offset
Alternatively, you can specify the value for an mdex:dateTime property as a local time plus a UTC offset. The
format for this representation is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} zzzzzz

The meanings of the date and time portions are the same as the universal dateTime format. zzzzzz represents
the time zone. Time zones are durations of hours and minutes. Time zones may be specified as positive or
negative durations.

The format for a time zone is:

('+' | '-') hh ':' mm

where:

• hh is a two-digit numeral (with leading zeros as required) that represents the hours. The value for hh
cannot be greater than 14.

• mm is a two-digit numeral that represents the minutes. The value for mm cannot be greater than 59.
However, if hh is 14, then mm must be 00.

• '+' indicates a non-negative duration.

• '-' indicates a non-positive duration.

For example, to indicate noon on November 18, 2011 in New York City, you would specify:

2011-11-18T12:00:00+05:00

Note that this time represented in this example is the same as the "2011-11-18T17:00:00Z" time in the
universal dateTime format.

Example of ingesting dateTime properties

The following request updates Record 506 with two dateTime properties:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='506'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="dT1" type="mdex:dateTime">2011-10-18T17:00:00Z</ns1:attribute>
<ns1:attribute name="dT2" type="mdex:dateTime">2011-11-18T12:00:00+05:00</ns1:attribute>
</ns:addAssignments>
</ns:updateRecords>

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 20

</ns:ingestChanges>

Version 7.6.1 • December 2013

The dT1 property uses the universal dateTime format, while the dT2 property specifies the dateTime as a local
time plus a UTC offset.

time property
mdex:time properties represent an instant of time that recurs every day.

The mdex:time property represents the hour and minutes of an instance of time, with the optional specification
of fractional seconds. You can specify a time value as either a universal (UTC) time or as a local time plus a
UTC time zone offset. Note that specifying just a local time is not supported.

format for universal time
The mdex:time format for a UTC time is:

hh ':' mm ':' ss {'.' s+} Z

where:

• hh is a two-digit numeral that represents the hour. Note that specifying 24 is not permitted (to represent
24, use all zeros for the time portion).

• mm is a two-digit numeral that represents the minute.

• ss is a two-digit numeral that represents the whole seconds.

• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is only
precise to the millisecond, which means that a specification of four or more digits is truncated to three
digits.

• Z (added to the time without a space) is a literal indicator that this time is Coordinated Universal Time
(UTC, sometimes called Greenwich Mean Time). Z is the zone designator for the zero UTC offset.

A colon (':') is the separator between hours, minutes, and whole seconds, while a period ('.') is the separator
for fractional seconds. Be sure to use a leading zero for single-digit hours, minutes, and whole seconds.

For example, to indicate 1:30 p.m. in New York City, you would specify:

18:30:00Z

format for local time plus UTC offset
Alternatively, you can specify the value for an mdex:time property as a local time plus a UTC offset. The
format for this representation is:

hh ':' mm ':' ss {'.' s+} zzzzzz

The meanings of the hours, minutes, and seconds specifiers are the same as the universal time format.
zzzzzz represents the time zone. Time zones are durations of hours and minutes. Time zones may be
specified as positive or negative durations.

The format for a time zone is:

('+' | '-') hh ':' mm

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 21

where:

• hh is a two-digit numeral (with leading zeros as required) that represents the hours. The value for hh
cannot be greater than 14.

• mm is a two-digit numeral that represents the minutes. The value for mm cannot be greater than 59.
However, if hh is 14, then mm must be 00.

• '+' indicates a non-negative duration.

• '-' indicates a non-positive duration.

For example, to indicate 1:30 p.m. in New York City, you would specify:

13:30:00+05:00

Version 7.6.1 • December 2013

Example of ingesting time properties

The following request updates Record 624 with two time properties:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='624'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="time1" type="mdex:time">13:25:43.261Z</ns1:attribute>
<ns1:attribute name="time2" type="mdex:time">09:00:00+05:00</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

Note that the time2 property uses a leading zero (i.e., "09") to specify the hour. Omitting the leading zero will
cause the operation to fail.

duration property
mdex:duration properties represent a duration of time.

An mdex:duration property represents a duration of the days, hours, and minutes of an instance of time. A
time zone is not allowed as part of the time representation.

The mdex:duration format is:

'P' {d 'D'} 'T' {h 'H'} {m 'M'} {s {'.' s+} 'S'}

where:

• P is a mandatory literal that indicates that this is a period of time.

• For the d'D' parameter, d specifies the number of days, while the literal D indicates that this is the days
field.

• T is a literal date/time separator that must be present if (and only if) any time fields are specified.

• For the h'H' parameter, h specifies the number of hours, while the literal H indicates that this is the hours
field.

• For the m'M' parameter, m specifies the number of minutes, while the literal M indicates that this is the
minutes field.

• For the s'S' parameter, s specifies the number of whole seconds, while the literal S indicates that this is
the seconds field. '.' s+ is optional and, if present, represents the fractional seconds. The internal

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 22

representation is only precise to the millisecond, which means that a specification of four or more digits is
truncated to three digits.

All time durations are optional, but at least one must be present. An optional preceding minus sign ('-') is
allowed to indicate a negative duration.

duration format examples

This example specifies a duration of 429 days, 1 hour, 2 minutes, and 3 seconds:

P429DT1H2M3S

Version 7.6.1 • December 2013

This example specifies a duration of 429 days:

P429D

This example specifies a duration of 429 days, 2 minutes, and 3.25 seconds:

P429DT2M3.25S

This example specifies a 1 hour and 2 minutes:

PT1H2M

This example specifies a negative duration of 429 days and 3 seconds:

-P429DT3S

Example of ingesting duration properties

The following request updates Record 344 with five duration properties:

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>FactSalesID='344'</ns:recordSpecifier>
<ns:addAssignments>
<ns1:attribute name="duration1" type="mdex:duration">P429DT1H2M3S</ns1:attribute>
<ns1:attribute name="duration2" type="mdex:duration">P429D</ns1:attribute>
<ns1:attribute name="duration3" type="mdex:duration">P429DT2M3.25S</ns1:attribute>
<ns1:attribute name="duration4" type="mdex:duration">PT1H2M</ns1:attribute>
<ns1:attribute name="duration5" type="mdex:duration">-P429DT3S</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>

Note that the duration5 property has a negative duration value.

Default values for new attributes
New standard attributes and managed attributes created during an ingest are given a set of default values.

During any data ingest operation, if a non-existent standard attribute is specified for a record, the specified
standard attribute is automatically created by the Data Ingest Web Service. Likewise, non-existent managed
attributes specified for a record are also automatically created. Note that you cannot disable this automatic
creation of attributes.

Oracle® Endeca Server: Data Loading Guide

Prerequisite Information 23

Default values for standard attributes

The PDR for a standard attribute that is automatically created will use the system default settings, which are:

PDR property Default setting

mdex-property_Key Set to the standard attribute name specified in the
request.

mdex-property_Type Set to the Dgraph property type specified in the
request. If no property type was specified, defaults to
an mdex:string type.

mdex-property_Language Sets the language of the attribute's data. See the
"Global PDR language ID" section below for
information on the default setting for the language ID.

mdex-property_IsPropertyValueSearchable true (the standard attribute will be enabled for value
search)

mdex-property_IsSingleAssign true (a record may have only one value assignment
for the standard attribute)

mdex-property_IsTextSearchable false (the standard attribute will be disabled for
record search)

mdex-property_IsUnique false (more than one record may have the same
value of this standard attribute)

mdex-property_TextSearchAllowsWildcards false (wildcard search is disabled for this standard
attribute)

system-navigation_Select single (allows selecting only one refinement from
this standard attribute)

system-navigation_ShowRecordCounts true (record counts will be shown for a refinement)

system-navigation_Sorting record-count (refinements are sorted in
descending order, by the number of records available
for each refinement)

Default values for managed attributes

A managed attribute that is automatically created will have both a PDR and a DDR created by the Data Ingest
Web Service. The default values for the PDR are the same as listed in the table above, except that mdex-
property_IsPropertyValueSearchable will be false (i.e., the managed attribute will be disabled for value
search).

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Prerequisite Information 24

The DDR will use the system default settings, which are:

DDR property Default setting

mdex-dimension_Key Set to the managed attribute name specified in the
request.

mdex-dimension_EnableRefinements true (refinements will be displayed)

mdex- false (hierarchical search is disabled during value
dimension_IsDimensionSearchHierarchical searches)

mdex-dimension_IsRecordSearchHierarchical false (hierarchical search is disabled during record
searches)

Global PDR language ID
A PDR's mdex-property_Language property specifies the language of that standard attribute, via a language
ID (such as en for English or de for German). If a standard attribute is automatically created (by the Data
Ingest Web Service or by the Bulk Load Interface), or if you do not specify a language ID when creating your
attribute schema, then the value of the mdex-property_Language property for a PDR will be set to the system
language ID value.

The value of the global PDR language ID is unknown by default. However, you can use the Configuration
Web Service's setPropertyDefaultLanguage operation to change it to a value of your choice. The setting
of this value is stored on disk in the index files for the specific Endeca data domain, so that it is available
across restarts of that data domain. See the Oracle Endeca Server Developer's Guide for a list of the
supported language IDs.

Note that the global PDR language ID (as set by the setPropertyDefaultLanguage operation) serves a
different purpose than the Language element of the ingestChanges complex type. This Language element
lets you set the language in which EQL error messages are returned and is described in Identifying records
with EQL on page 44.

NCName format for attributes
The names of standard attributes and managed attributes in the data domain must be in an NCName format.

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

As defined in the W3C document, an NCName must start with either a letter or an underscore (but keep in
mind that the W3C definition of Letter includes many non-Latin characters). If the name has more than one
character, it must be followed by any combination of letters, digits, periods, dashes, underscores, combining
characters, and extenders. (See the W3C document for definitions of combining characters and extenders.)
The NCName cannot have colons or white space.

After creating the Endeca attribute, you can use the mdex-property_DisplayName property on the PDR to
specify a display name. The display name, which can use a non-NCName format, is intended to serve as an
easy-to-understand name for the attribute when it is displayed in the application's front end (such as in
Studio's Results Table component).

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

http://www.w3.org/TR/REC-xml-names/#NT-NCName

Prerequisite Information 25

Interaction with the Transaction Web Service
All requests made with the Data Ingest Web Service can optionally specify the outer transaction ID.

If you submit any request to the Data Ingest Web Service after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no transactions have been started,
the ID attribute must be omitted in the request.

The outer transaction ID is issued by the Transaction Web Service, once a request is sent to it to start an
outer transaction. From that point on, all requests issued to the Oracle Endeca Server's data domain must
reference this ID, until the outer transaction is committed.

If an outer transaction is in progress and you don't know the ID, you can obtain it using the
listOuterTransaction operation on the Transaction Web Service.

The format of the request that has an outer transaction ID specified may be similar to the following (top-level
namespaces are omitted in this example):

<ingest:clearDataStore>
<OuterTransactionId>MyID</OuterTransactionID>

</ingest>

Version 7.6.1 • December 2013

Note: The OuterTransactionId element must be the first element in the request.

Troubleshooting connection timeouts
To help prevent timeout issues during data ingest operations, use the --net-timeout flag for the data
domain profile's configuration.

At least one Dgraph process of the Oracle Endeca Server starts for each data domain. It has a default request
timeout of 30 seconds. This setting determines the maximum number of seconds that the Dgraph process
waits for the client to download data from queries across the network. The client can be an end user sending a
query to the Oracle Endeca Server, or for data ingest operations, an ETL client program that is loading
records into the data domain.

If the client opens a connection with the server, the server will wait (for the length of the timeout period) for the
receipt of client data on that socket. If the client does not send data within the timeout limit, then the server will
drop the connection and log an HTTP 408 error in the Dgraph log.

For the data loading operations, this timeout limit may pose problems if you have a Data Ingest Web Service
client that takes longer to send data. If the timeout limit is exceeded, the ingest request fails (because the
server closes the connection), and the record batch is not loaded into the data domain.

If you continually see HTTP 408 errors in the logs, first verify that your ETL client is working properly. For
example, make sure that the program is not spending an unusual amount of time in an operation that would
cause it to exceed the timeout limit.

If you believe that the ETL client is executing as expected, but needs a longer request timeout period, then
you can try increasing the request timeout setting. Use the --net-timeout flag to set the request timeout to
a number that works for the ETL client. You will probably have to experiment with several settings to find the
one that is optimal for your needs. The following command for the data domain profile sets this timeout:
endeca-cmd --put-dd-profile --net-timeout <value>.

Oracle® Endeca Server: Data Loading Guide

Chapter 3

Adding New Records

This section describes how to initially load non-data records (such as PDRs, DDRs and managed attribute
values), and data records into the data domain. It also describes how to ingest additional new records, and
how to add managed attribute value assignments to records.

You can add new records by using either of these ingestChanges operations:

• The addRecords operation can only add new records. It is typically used during the initial loading of
records into the data domain.

• The addOrUpdateRecords operation can either add a new record, or (if the specified primary key already
exists) update an existing record. Although it can be used for initial loading of records, it is typically used
to load new records after the initial load.

About adding PDRs and DDRs

Adding managed attribute values

About the primary keys for data records

Adding primary-key attributes

Adding new records

Initial loading of records

Adding managed attribute value assignments to records

Adding records after the initial load

About adding PDRs and DDRs
PDRs and DDRs represent the non-data records. They are records that define the schema for your data
records. Adding PDRs and DDRs allows you to define the characteristics of attributes on your data records.

A PDR defines a standard attribute. For example, for a standard attribute "Type", you can define whether it
should allow multiple assignments, or be a single-assign attribute (allowing one value from each record). You
can also define a spec for the standard attribute "Type", which is used when making assignments from this
attribute on data records.

Similarly, a PDR and a DDR together define characteristics of a managed attribute. For example, each
managed attribute, such as "location", has a name ("Location"), and the Spec attribute. The Spec attribute of
the managed attribute is used when managed attribute values are added to the managed attribute. Other
characteristics of a managed attribute specify how searching should behave on values from this attribute.

Since PDR and DDR are records (although they represent non-data records and define the schema for data
records), you can add PDRs and DDRs as records, using the same addRecords sub-operation of the
ingestChanges in the Data Ingest Web Service as is used for adding data records. It is important to add
PDRs and DDRs before adding any data records.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Adding New Records 27

For information on how to add any records (data or non-data), see Adding new records on page 35.

There is one important difference between adding data records and adding PDRs and DDrs. When you add
data records, you can define for them any attributes you want. When you add a PDR and a DDR, it is
important to know which attributes you should add. This is because the attributes on the PDR and the DDR
records are defined by primordial records that exist in the index before any source data records are loaded. An
easy way to determine the format for PDR and DDR records is to use putProperties and PutDimensions

requests of the Configuration Web Service WSDL.

For example, the structure of putProperties request has this configuration:

<ns:putProperties>
<!--Zero or more repetitions:-->
<ns1:record>

<!--Optional:-->
<mdex-property_DisplayName>?</mdex-property_DisplayName>
<mdex-property_IsSingleAssign>?</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable>?</mdex-property_IsTextSearchable>
<mdex-property_IsUnique>?</mdex-property_IsUnique>
<mdex-property_IsPropertyValueSearchable>?</mdex-property_IsPropertyValueSearchable>
<mdex-property_Key>?</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>?</mdex-property_TextSearchAllowsWildcards>
<mdex-property_Type>?</mdex-property_Type>
<mdex-property_Language>?</mdex-property_Language>
<system-navigation_Select>?</system-navigation_Select>
<system-navigation_ShowRecordCounts>?</system-navigation_ShowRecordCounts>
<system-navigation_Sorting>?</system-navigation_Sorting>
<!--You may enter ANY elements at this point-->

</ns1:record>
</ns:putProperties>

Version 7.6.1 • December 2013

This structure indicates which attributes you should add when adding a new PDR, including which of these
attributes are required and which are optional. For example, for adding a PDR "location", you can add a record
with these characteristics:

<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-property_DisplayName" type="mdex:string">Location</ns1:attribute>
<ns1:attribute name="mdex-property_IsPropertyValueSearchable" type="mdex:boolean">true<

/ns1:attribute>
<ns1:attribute name="mdex-property_IsSingleAssign" type="mdex:boolean">false</ns1:attribute>
<ns1:attribute name="mdex-property_IsTextSearchable" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="mdex-property_IsUnique" type="mdex:boolean">false</ns1:attribute>
<ns1:attribute name="mdex-property_Key" type="mdex:string">location</ns1:attribute>
<ns1:attribute name="mdex-property_Language" type="mdex:string">en</ns1:attribute>
<ns1:attribute name="mdex-property_TextSearchAllowsWildcards" type="mdex:boolean">true<

/ns1:attribute>
<ns1:attribute name="mdex-property_Type" type="mdex:string">mdex:string</ns1:attribute>
<ns1:attribute name="system-navigation_Select" type="mdex:string">single</ns1:attribute>
<ns1:attribute name="system-navigation_ShowRecordCounts" type="mdex:boolean">true<

/ns1:attribute>
<ns1:attribute name="system-navigation_Sorting" type="mdex:string">record-count</ns1:attribute>
<ns1:attribute name="system-property_GroupMembership" type="mdex:string">system_properties<

/ns1:attribute>
</ns:record>

</ns:addRecords>
</ns:ingestChanges>

Similarly, to check which attributes should be present when you need to add a DDR (since both a PDR and a
DDR define each managed attribute), use the putDimensions structure, from the Configuration Web Service:

<ns:putDimensions>
<!--Zero or more repetitions:-->
<ns1:record>

<mdex-dimension_Key>?</mdex-dimension_Key>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 28

<mdex-dimension_EnableRefinements>?</mdex-dimension_EnableRefinements>
<!--Optional:-->
<mdex-dimension-value_Spec>?</mdex-dimension-value_Spec>
<!--Optional:-->
<mdex-dimension-value_Parent>?</mdex-dimension-value_Parent>
<mdex-dimension_IsDimensionSearchHierarchical>?<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical>?<

/mdex-dimension_IsRecordSearchHierarchical>
<!--You may enter ANY elements at this point-->

</ns1:record>
</ns:putDimensions>

Version 7.6.1 • December 2013

This structure indicates which attributes you should add when adding a new DDR, after a corresponding PDR
has already been added. For example, for adding a DDR "location", you can add:

<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-dimension_Key" type="mdex:string">location</ns1:attribute>
<ns1:attribute name="mdex-dimension_EnableRefinements" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="mdex-dimension-value_Spec" type="mdex:string">loc_spec</ns1:attribute>
<ns1:attribute name="mdex-dimension-value_Parent" type="mdex:string">loc_parent</ns1:attribute>

</ns:record>
</ns:addRecords>

</ns:ingestChanges>

Note that mdex-dimension-value_Spec and mdex-dimension-value_Parent attributes are optional. If
you specify them, as in this example, you can provide values for them. (You then use these values of Spec
and Parent when adding managed attribute values.) However, if you omit the attributes from the request that
adds a DDR, then they are added automatically, and assigned values according to this structure: mdex-
dimension_value_Spec and mdex-dimension_value_Parent, where value is the name of the
managed attribute. Such as, for the managed attribute value "location", the Spec would be named mdex-
dimension_location_Spec, and the Parent would be named mdex-dimension_location_Parent.

For detailed information on properties in the PDRs and DDRs and their meanings, see the Oracle Endeca
Server Developer's Guide.

Adding managed attribute values
Managed attribute values represent assignments on managed attributes. Once you add them to the index of
the Endeca data domain, managed attribute values are represented as records. You can add managed
attribute values to an empty data domain before adding any data records.

You add managed attribute values similar to how you add data records. Specifically, to load managed attribute
values, you can issue one or more ingestChanges requests with addRecords sub-operations of the Data
Ingest Web Service, specifying one or more record elements.

<ns:record>
<!--Zero or more repetitions:-->
<ns1:attribute name="?" type="?">?</ns1:attribute>

</ns:record>

Each record element should specify the following attributes:

• The key of the managed attribute for which you are adding a managed attribute value. The managed
attribute must already exist, or its PDR and DDR can be added in the same request.

• The spec of the new managed attribute value record you are adding.

Oracle® Endeca Server: Data Loading Guide

Adding New Records 29

• The spec of the parent managed attribute value record. This parent managed attribute value must already
exist, or it can be added in the same request.

For example, the following request assumes that the location managed attribute already exists (and thus,
its PDR and DDR are already loaded), and that the parent managed attribute value, whose spec is US, has
already been added. (If you have not added PDRs and DDRs, see About adding PDRs and DDRs on page
26.) This request adds a new managed attribute value record, with the spec VT. The request specifies:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0" xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009
/09">

<soapenv:Header/>
<soapenv:Body>
<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-dimension_location_Parent" type="mdex:string">US</ns1:attribute>
<ns1:attribute name="mdex-dimension_location_Spec" type="mdex:string">VT</ns1:attribute>
<ns1:attribute name="mdex-dimension-value_Dimension" type="mdex:string">location<

/ns1:attribute>
</ns:record>

</ns:addRecords>
</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

In this request, these attributes are specified:

• For the attribute mdex-dimension-value_Dimension, (which is the primordial property that defines a
managed attribute key), — the key of the managed attribute, location.

• For the attribute mdex-dimension_location_Parent, (which is the name of the parent managed
attribute value, as specified on the DDR), — the key of the parent managed attribute value, US.

• For the attribute mdex-dimension_location_Spec, (which is the name of the spec for the new
managed attribute value record you are adding), — the spec of the managed attribute value record, VT.

Note: To obtain the attribute names of the managed attribute value spec (mdex-
dimension_location_Spec in this example) and managed attribute value parent (mdex-
dimension_location_Parent), issue a getDimensions Configuration Web Service request,
specifying the managed attribute's key, for which you need this information. For example, issue a
request for the managed attribute location.

The managed attribute values that you are adding are considered totally new records in the Endeca data
domain. This means that if a managed attribute value record with the same value as the spec already exists in
the data domain, the addRecords request will fail.

To load a managed attribute value record:

1. Make sure that you have created an Endeca data domain with the endeca-cmd commands of the
Oracle Endeca Server, and that the data domain has been started. It is also assumed that you have
not added any data records at this point.

2. Obtain the names of the managed attribute value spec and parent (if the managed attribute exists), by
issuing the Configuration Web Service request for the managed attribute. For example, this request
obtains information about the managed attribute location (the omitted namespace is
ns="http://www.endeca.com/MDEX/config/services/types/3/0":

<ns:configTransaction>
<ns:getDimensions>

<mdex-dimension_Key>location</mdex-dimension_Key>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 30

</ns:getDimensions>
</ns:configTransaction>

Version 7.6.1 • December 2013

This request returns the following information:

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/3
/0">

<dimensions xmlns="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<record>

<mdex-dimension-value_Parent type="mdex:string" xmlns
="">mdex-dimension_location_Parent</mdex-dimension-value_Parent>

<mdex-dimension-value_Spec type="mdex:string" xmlns="">mdex-dimension_location_Spec<
/mdex-dimension-value_Spec>

<mdex-dimension_EnableRefinements type="mdex:boolean" xmlns="">true<
/mdex-dimension_EnableRefinements>

<mdex-dimension_IsDimensionSearchHierarchical type="mdex:boolean" xmlns="">true<
/mdex-dimension_IsDimensionSearchHierarchical>

<mdex-dimension_IsRecordSearchHierarchical type="mdex:boolean" xmlns="">true<
/mdex-dimension_IsRecordSearchHierarchical>

<mdex-dimension_Key type="mdex:string" xmlns="">location</mdex-dimension_Key>
</record>

</dimensions>
</config-types:results>

where:

• mdex-dimension-value_Spec has the value of the spec attribute name for managed attribute
values. In this example, the value of this spec is mdex-dimension_location_Spec. Note that
this value does not have to follow this format. When you add the managed attribute itself, you can
choose any name. For example, if an attribute already exists that you want to use for this purpose,
it must be of type string, unique, single-assign and have no assignments. You can also omit
specifying the spec for the managed attribute values when creating the managed attribute (as in
this example), because this attribute on the DDR is optional. If you don't specify it, an attribute is
created and the spec's value assumes the format as in our example. For more information on
managed attribute values, see the Oracle Endeca Server Developer's Guide.

• mdex-dimension-location_Parent defines the value for the parent managed attribute value.
The naming convention is the same as for the spec: if the name was not specified when the DDR
for the managed attribute was created, the format is the same as in our example, mdex-
dimension_location_Parent. Alternatively, you can choose any name. For example, if an
attribute already exists that you want to use for this purpose, it must be of type string, single-
assign and have no assignments.

You use these attributes and their values in the subsequent addRecords request of the Data Ingest
Web Service, which adds the managed attribute value.

3. Create an ingest:ingestChanges request, as in the following example, and send the request to the
Data Ingest Web Service. In this request, specify the Spec for the new managed attribute value record
you are adding (in our case, it is VT), the spec of the Parent managed attribute value (it is US), and
the name of the associated managed attribute (location):

<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-dimension_location_Parent" type="mdex:string">US<

/ns1:attribute>
<ns1:attribute name="mdex-dimension_location_Spec" type="mdex:string">VT</ns1:attribute>
<ns1:attribute name="mdex-dimension-value_Dimension" type="mdex:string">location<

/ns1:attribute>
<ns1:attribute name="mdex-dimension-value_name" type="mdex:string">Vermont<

/ns1:attribute>
<ns1:attribute name="mdex-dimension-value_synonyms" type

="mdex:string">The Green Mountain State</ns1:attribute>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 31

<ns1:attribute name="mdex-dimension-value_synonyms" type="mdex:string">The Ski State<
/ns1:attribute>

<ns1:attribute name="mdex-dimension-value_rank" type="mdex:string">3</ns1:attribute>
</ns:record>

</ns:addRecords>
</ns:ingestChanges>

Version 7.6.1 • December 2013

The request is typically created and managed by an ETL client, or you can use soapUI.

Note that in this example, in addition to adding the managed attribute value spec (VT) and its other
required characteristics (Parent and associated managed attribute), additional, optional parameters
are also specified, such as the name of the managed attribute value (Vermont), which can be
different from its Spec, the synonym of this value (you can specify one or more), and its static rank
within this managed attribute.

4. After the request is made, check the ingestChangesResponse to determine whether the request was
successful.

A successful ingestChangesResponse returned from the above sample request should look like this:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Note: When you use the ingestChanges operation of the Data Ingest Web Service for adding
managed attribute values, it does not resolve ranking conflicts and lets you add any ranking
values, even if they conflict with previously added values. If you would like the Endeca Server
to automatically re-rank existing values and resolve ranking ties, use the
putManagedAttributeValues operation of the Configuration Web Service for adding
managed attribute values.

In addition to adding managed attribute values, you can also use updateRecords sub-operation of the Data
Ingest Web Service to update assignments on the managed attribute values. However, you can update only
values on the mdex-dimension-value_name and mdex-dimension-value_rank attributes, after adding
the managed attribute value.

About the primary keys for data records
In the Oracle Endeca Server data model, the primary-key attribute (also known as the record specifier) is used
to uniquely identify data records in the Endeca data domain.

Each data record in the Endeca data domain is uniquely identified by a unique value pair, which is a
combination of a unique standard attribute and a value that appears only on that record (that is, no other
record in the data set has the same key-value pair that is on this record). This unique standard attribute is
called a primary-key attribute. The primary-key attribute and a value assigned to a data record becomes the
primary key (record specifier) of the record.

Each data record added to the Endeca data domain must have a unique assignment from exactly one primary
key, so that the Oracle Endeca Server can uniquely identify it. This requirement is enforced when you are
adding records to an empty data domain that does not yet have a schema (system records) defined in it.

You can use any attribute as a primary key as long as this attribute is guaranteed to be unique. An attribute is
unique when no two records in a single Endeca data domain have the same value for it. (Note that by default,

Oracle® Endeca Server: Data Loading Guide

Adding New Records 32

a standard attribute is not unique. To make a standard attribute unique, you must update the standard
attribute configuration in its PDR, before loading any records.)

The primary-key attribute type can be of any supported Dgraph property types. The name of the primary-key
attribute must be in an NCName format. Typically, you would use the mdex:string or mdex:int types for the
primary-key attribute.

The PDR (Property Description Record) for the primary-key attribute must have the mdex-property_IsUnique

attribute set to true. This means that a value may be assigned to at most one record.

For example, assume that the name of a primary-key attribute is partID. The value partID=P123 can be
assigned to only one record in the data set and is the primary key for that record. No other record can have
this key-value pair. As a result, this primary key uniquely identifies this data record in the Endeca data domain.

Each data domain must have at least one primary key standard attribute, although this primary key attribute
could be different for different types of your data records. This allows the Oracle Endeca Server to handle
different record types, each of which can have a meaningful identifying standard attribute. For example, a
store that carries multiple types of items might identify book records by a bookID primary key attribute, and
apparel records by an apparelID attribute.

Note that a data record can have only one assignment from a unique attribute. The Data Ingest Web Service
will throw an error if you attempt to add two or more unique attributes to the same record. For example:

<ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:errorDetail>Error applying updates: Assignment bookID: "5544" is second

unique assignment on record Record:
apparelID: "4455"
bookID: "5544"</ingest:errorDetail>

</ingest:ingestFault>

Version 7.6.1 • December 2013

As the example shows, the second unique assignment (bookID) will cause the error.

Collection spec

If you are using collections, each collection is created with its own collection spec (also called a unique
property key). This collection spec follows the rules for primary keys, as it is the primary key for that collection.
During ingest, this collection spec also serves as the primary key for the records in that collection. For
information on creating collections, see the Oracle Endeca Server Developer's Guide.

Note that at least one collection (which is called a data set in Studio) must be present in an Endeca data
domain before a Studio application can be configured to connect to that data domain. For this reason, it is
recommended that you always ingest your source data into one or more collections.

Managed attribute value spec

If you are using managed attributes, each managed attribute value spec has its own primary key. These specs
are used to uniquely identify managed attribute values in the index of the Endeca data domain. For
information on how to work with managed attribute values, see the Oracle Endeca Server Developer's Guide
(although you can also use the Data Ingest Web Service to add managed attribute values).

Oracle® Endeca Server: Data Loading Guide

Adding New Records 33

Adding primary-key attributes
Before you add a new record, a record must have a unique assignment from a primary-key attribute.

Adding a PDR for the primary-key attribute

When you add a new record with the Data Ingest Web Service, the service checks that the primary-key
attribute already exists in the Endeca data domain. Therefore, if you have an empty data domain, before
adding any records, you need to identify which attribute in your records is going to serve as the primary-key
attribute, and add its PDR to the data domain.

The following example shows how to add a PDR for the primary-key attribute named partID. Notice that the
mdex-property_IsUnique attribute for this PDR is set to true, which identifies the attribute partID as
the primary-key attribute. The mdex-property_IsSingle attribute is set to false to ensure that only one
assignment from that attribute is set on a record:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>
<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-property_Key" type="mdex:string">partID</ns1:attribute>
<ns1:attribute name="mdex-property_DisplayName" type="mdex:string">Part ID</ns1:attribute>
<ns1:attribute name="mdex-property_Type" type="mdex:string">mdex:string</ns1:attribute>
<ns1:attribute name="mdex-property_Language" type="mdex:string">en</ns1:attribute>
<ns1:attribute name="mdex-property_IsSingleAssign" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="mdex-property_IsUnique" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="mdex-property_IsTextSearchable" type="mdex:boolean">false</ns1:attribute>
<ns1:attribute name="mdex-property_TextSearchAllowsWildcards" type="mdex:boolean">

false</ns1:attribute>
<ns1:attribute name="mdex-property_IsPropertyValueSearchable" type="mdex:boolean">

true</ns1:attribute>
<ns1:attribute name="system-navigation_Select" type="mdex:string">single</ns1:attribute>
<ns1:attribute name="system-navigation_Sorting" type="mdex:string">record-count</ns1:attribute>
<ns1:attribute name="system-navigation_ShowRecordCounts" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="system-property_GroupMembership" type="mdex:string">

system_properties</ns1:attribute>
</ns:record>

</ns:addRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Now that the primary-key attribute partID is created in the data domain, the following example shows how to
create a new record whose assignment on the primary-key attribute will be partID=P123. This example uses
the ingestChanges operation of the Data Ingest Web Service with the addRecords element:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:addRecords>

<ns:record>
<ns1:attribute name="partID" type="mdex:string">P123</ns1:attribute>

</ns:record>
</ns:addRecords>

</ns:ingestChanges>
</soapenv:Body>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 34

</soapenv:Envelope>

Version 7.6.1 • December 2013

Values for primary-key attributes

If you specify a non-existent attribute as the primary key, the standard attribute is automatically created by the
Data Ingest Web Service.

The following table shows the settings you should use for the primary-key attribute. Except for mdex-
property_IsUnique which must be set to true, all other attributes of the primary-key attribute can use the
system default settings for PDRs. If you have not yet added records to the data domain, you can change all
settings on the PDR for the primary-key attribute, except for the mdex-property_IsUnique which must be
always set to true:

PDR property Default setting

mdex-property_Key Set to the name specified in the request.

mdex-property_Type Set to the Dgraph property type specified in the
request. If no property type was specified, defaults to
an mdex:string type.

mdex-property_Language Set to a supported language ID. Defaults to either
unknown or to the language ID set by the
Configuration Web Service's
setPropertyDefaultLanguage operation.

mdex-property_IsPropertyValueSearchable true (the attribute is enabled for value search)

mdex-property_IsSingleAssign false (a record may have more than one value for
the attribute)

mdex-property_IsTextSearchable false (the attribute is disabled for record search)

mdex-property_IsUnique true (a value may be assigned to at most one
record)

mdex-property_TextSearchAllowsWildcards false (wildcard search is disabled for this attribute)

system-navigation_Select single (allows selecting only one refinement from
this attribute)

system-navigation_ShowRecordCounts true (record counts are shown for a refinement)

system-navigation_Sorting record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

Oracle® Endeca Server: Data Loading Guide

Adding New Records 35

Adding new records
The addRecords sub-operation allows you to add new records to an Endeca data domain.

The addRecords sub-operation (of the ingestChanges operation) can only add new records; that is, it cannot
update existing records.

The records to be added are considered totally new records in the Endeca data domain. This means that if a
record with the same value as the specified primary key already exists in the data domain, the addRecords

request will fail with an error message similar to this example:

<ingest:errorDetail>Error applying updates: Attempt to add a second identical assignment
to a unique property: partID="1234"</ingest:errorDetail>

Version 7.6.1 • December 2013

In the example, a record with a primary key of "partID=1234" is to be added. However, a record with that
primary key-value pair already exists, and (as the error says) you cannot add another identical value to a
unique attribute.

Note: To extend (update) existing records, use either the addOrUpdateRecords sub-operation
(described in Adding records after the initial load on page 40) or the updateRecords sub-operation
(described in Updating Records on page 41).

addRecords request
An addRecords request uses the ingestChanges operation with the addRecords element. The record to be
added can have key-value pair assignments as needed. One (and only one) of those assignments must be
from a unique attribute.

Records that are being added are not available for other operations in the same request.

Note: If you submit the addRecords request after a Transaction Web Service request that starts an
outer transaction, the request must specify the outer transaction ID. If no outer transactions have been
started, the ID attribute must be omitted in the request.

The basic addRecords request format is:

<ns:ingestChanges>
<!--Optional:-->
<ns:OuterTransactionId>?</ns:OuterTransactionId>
<!--Optional:-->
<ns:Language>en</ns:Language>
<!--Zero or more repetitions:-->
<ns:addRecords>

<ns:record>
<!--Zero or more repetitions:-->
<ns1:attribute name="?" type="?">?</ns1:attribute>

</ns:record>
</ns:addRecords>

</ns:ingestChanges>

For example, this request adds one record, whose partID is P567, color is blue, and price is 19.99, to the data
domain:

<ns:ingestChanges>
<ns:addRecords>
<ns:record>

<ns1:attribute name="partID" type="mdex:string">P567</ns1:attribute>
<ns1:attribute name="color" type="mdex:string">blue</ns1:attribute>
<ns1:attribute name="price" type="mdex:double">19.99</ns1:attribute>

</ns:record>
</ns:addRecords>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 36

</ns:ingestChanges>

Version 7.6.1 • December 2013

The assignment for the partID attribute is added. This attribute has a unique assignment on a record. The
request also creates the color and price attributes.

Note: When you create new standard attributes, specifying their type in the request is optional. If you
do not specify the type, the standard attributes are created with the type mdex:string, which is the
PDR default. However, if you want to create a standard attribute of a particular type, such as
mdex:double in this example, you must explicitly specify this type when creating a new attribute.

Success response
An ingestChangesResponse for a successful addRecords request looks like this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>
</soapenv:Body>

</soapenv:Envelope>

The sample response shows that one record was created and that two attributes (the color and price
attributes) were also created. The partID attribute was not created because it already existed in the data
domain.

Failure response
On failure, a SOAP fault is returned. The ingestFault and errorDetail elements should contain the error
that caused the failure.

For example, assume that a record with a primary key P567 had already been added to the data domain, and
you specify it again inside an addRecords request :

<ns1:attribute name="partID">P567</ns1:attribute>

The response would return an error similar to this:

<detail>
<ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:errorDetail>Error applying updates: Attempt to add a second
identical assignment to a unique property: partID="P567"</ingest:errorDetail>

</ingest:ingestFault>
</detail>

In this example, the reason for the error is that the record with the primary key P567 already exists in the data
domain.

State of the data ingest process on failure

The Data Ingest Web Service uses an all-or-nothing insertion strategy for each batch of records. This means
that if at least one record in a batch is considered invalid by the Dgraph process of the Oracle Endeca Server,
then all of the records are rejected. For example, if a batch of 1000 records contains 999 valid records and 1
invalid record, then the 999 valid records (and the invalid record) are not loaded into the data domain.

Oracle® Endeca Server: Data Loading Guide

Adding New Records 37

If the data ingest process is interrupted (for example, by the ETL client or the Dgraph process crashing), then
the current batch (i.e., the batch that was being processed when the interruption occurred) is not loaded into
the data domain. However, all previous valid batches have been loaded into the data domain. For example, if
5000 batches are to be loaded and an interruption occurs during batch 3500, then batch 3500 is not loaded
into the data domain, but the previous 3499 batches will be present in the data domain.

It is recommended to use outer transactions for data loading operations.

Standard attribute assignments and creations

When adding standard attributes, the operation works as follows for the new attribute (i.e., the attribute to be
added):

• If the new attribute already exists in the data domain but with a different type, an error is thrown and the
new attribute is not added.

• If the new attribute already exists in the data domain and is of the same type, no error is thrown and
nothing is done.

Standard attribute names must use an NCName format. The standard attribute name is used as the element
name for the assignment, in this format:

<ns1:attribute name="?" type="?">?</ns1:attribute>

Version 7.6.1 • December 2013

For example, assigning a standard attribute named ItemID would look like this:

<ns1:attribute name="ItemID" type="mdex:int">247</ns1:attribute>

Standard attributes are created as needed when non-existent attributes are specified for a record. The PDR
for the attribute will use the system default settings. Note that you cannot disable this automatic creation of
attributes.

Initial loading of records
The use case for the initial load of records assumes that you are loading records into an empty data domain
that has been created in the Oracle Endeca Server.

The initial data load is performed via one or more invocations of the Data Ingest Web Service ingestChanges

operation with addRecords, specifying one or more record elements.

Note: The initially-created data domain contains no primary key attribute, and no assignments on
primary-key attributes. Therefore, the primary key and assignments on it must be created.

To summarize, the following actions take place during the initial load of records:

• A PDR for the primary key attribute must be added to the data domain.

• Some or all of your source records are loaded into the data domain.

• Assignments on the primary-key attribute are created by using the attribute element inside the
record element of the addRecords operation:

<attribute name="pKey" type="mdex:string">pKeyValue</attribute>

where pKey is the name of the primary-key attribute (such as partID) and pKeyValue is the value of
the primary key for the record that you are adding (such as P775).

An example of a full request is:

Oracle® Endeca Server: Data Loading Guide

Adding New Records 38

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>
<ns:ingestChanges>
<ns:addRecords>
<ns:record>
<ns1:attribute name="mdex-property_Key" type="mdex:string">partID</ns1:attribute>
<ns1:attribute name="mdex-property_DisplayName" type="mdex:string">Part ID</ns1:attribute>
<ns1:attribute name="mdex-property_Type" type="mdex:string">mdex:string</ns1:attribute>
<ns1:attribute name="mdex-property_Language" type="mdex:string">en</ns1:attribute>
<ns1:attribute name="mdex-property_IsSingleAssign" type="mdex:boolean">false</ns1:attribute>
<ns1:attribute name="mdex-property_IsUnique" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="mdex-property_IsTextSearchable" type="mdex:boolean">false</ns1:attribute>
<ns1:attribute name="mdex-property_TextSearchAllowsWildcards" type="mdex:boolean">
false</ns1:attribute>

<ns1:attribute name="mdex-property_IsPropertyValueSearchable" type="mdex:boolean">
true</ns1:attribute>

<ns1:attribute name="system-navigation_Select" type="mdex:string">single</ns1:attribute>
<ns1:attribute name="system-navigation_Sorting" type="mdex:string">lexical</ns1:attribute>
<ns1:attribute name="system-navigation_ShowRecordCounts" type="mdex:boolean">true</ns1:attribute>
<ns1:attribute name="system-property_GroupMembership" type="mdex:string">
system_properties</ns1:attribute>
</ns:record>

<ns:record>
<ns1:attribute name="partID" type="mdex:string">P789</ns1:attribute>
<ns1:attribute name="modelNum" type="mdex:int">2562</ns1:attribute>
<ns1:attribute name="location" type="mdex:geocode">42.365615 -71.075647</ns1:attribute>

</ns:record>
</ns:addRecords>

</ns:ingestChanges></soapenv:Body></soapenv:Envelope>

Version 7.6.1 • December 2013

The request first creates the partID primary-key attribute, and then adds one new record to the data domain
with the primary key partID=P789. The request also creates two standard attributes (modelNum and
location), because they do not exist in the data domain.

Note: If you submit the ingestChanges request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request. The example above does not specify the
ID and assumes that no outer transactions have been started.

To load records into an empty data domain:

1. Make sure that you have created an Endeca data domain with the Oracle Endeca Server endeca-
cmd commands, and that the data domain has been started.

2. Create an ingest:ingestChanges request, similar to the example above, and send the request to the
Data Ingest Web Service.

The request is typically created and managed by a ETL client, or you can use soapUI.

3. After the request is made, check the ingestChangesResponse to determine whether the request was
successful.

A successful ingestChangesResponse returned from the above sample request should look like this:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 39

Adding managed attribute value assignments to records
Managed attribute values are assigned to records similar to standard attributes.

The addRecords sub-operation can add managed attribute values to records. Likewise, the updateRecords

and addOrUpdateRecords sub-operations (when used with a list of addAssignments elements) can add also
add managed attribute values to records.

The syntax for adding the managed attribute value is:

<attribute name="maName">maValueSpec</attribute>

Version 7.6.1 • December 2013

where:

• maName is the name of the managed attribute (such as "Component" in the example below).

• maValueSpec is the Spec, or the unique string identifier for the managed attribute value, as set by the
value of the mdex-dimension_value_Spec attribute for the specific managed attribute value.

Note that like standard attribute assignments, assignments from managed attribute values on records can be
updated, replaced, and deleted by ingestChanges operations.

Example
This example assumes that the PDR for the Component managed attribute has a multi-assign setting, and the
Derailleur, Tire, and Michelin managed attribute values have been created. The Color standard
attribute is also assumed to exist:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:addRecords>

<ns:record>
<ns1:attribute name="partID">8344</ns1:attribute>
<ns1:attribute name="Component">Derailleur</ns1:attribute>
<ns1:attribute name="Component">Tire</ns1:attribute>
<ns1:attribute name="Component">Michelin</ns1:attribute>
<ns1:attribute name="Color">blue</ns1:attribute>

</ns:record>
</ns:addRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

A query for this record should return the following results:

<cs:RecordListEntry>
<cs:Record>

<cs:attribute name="Color" type="mdex:string">blue</cs:attribute>
<cs:attribute name="Component" type="mdex:string" displayName="derailleur gears">Derailleur<

/cs:attribute>
<cs:attribute name="Component" type="mdex:string" displayName="Michelin brand">Michelin<

/cs:attribute>
<cs:attribute name="Component" type="mdex:string" displayName="bicycle tires">Tire<

/cs:attribute>
<cs:attribute name="partID" type="mdex:int">8344</cs:attribute>

</cs:Record>
<cs:ComputedProperties/>

</cs:RecordListEntry>
<cs:DimensionHierarchy>

<cs:DimensionValueWithPath>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 40

<cs:DimensionValue DimensionName="Component" Spec="Derailleur">derailleur gears<
/cs:DimensionValue>

<cs:DimensionValue DimensionName="Component" Spec="/">Parts</cs:DimensionValue>
</cs:DimensionValueWithPath>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="Component" Spec="Michelin">Michelin brand</cs:DimensionValue>
<cs:DimensionValue DimensionName="Component" Spec="Tire">bicycle tires</cs:DimensionValue>
<cs:DimensionValue DimensionName="Component" Spec="/">Parts</cs:DimensionValue>

</cs:DimensionValueWithPath>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="Component" Spec="Tire">bicycle tires</cs:DimensionValue>
<cs:DimensionValue DimensionName="Component" Spec="/">Parts</cs:DimensionValue>

</cs:DimensionValueWithPath>
</cs:DimensionHierarchy>

Version 7.6.1 • December 2013

Adding records after the initial load
This topic describes the addOrUpdateRecords sub-operation.

The addOrUpdateRecords sub-operation allows you to add more records to the data domain at any time after
the initial loading of records is complete. addOrUpdateRecords works as follows:

• If the specified primary key (record specifier) does not exist in the current data set, the record is added
with the primary key and the specified assignments. This mode is like the addRecords sub-operation.

• If the specified primary key already exists in the current data set, the record is updated with the new
assignments. This mode is like the updateRecords sub-operation.

Adding more records after the data domain is created and its Dgraph process is up and running with the
initially-loaded record set is very similar to the initial-load scenario, which means:

• You use the ingestChanges operation with either the addRecords sub-operation (described earlier in this
chapter) or the addOrUpdateRecords sub-operation (described in this topic).

• You identify new records by adding assignments on their primary-key attribute.

• As with an initial load operation, standard attributes are created as needed when non-existent attributes
are specified for a new record. The PDR for the standard attribute will use the system default settings.

• If a standard attribute is configured as multi-assign, a record can have multiple assignments of that
attribute.

• You can add multiple records with the same request.

• You can update other, existing records with the same ingestChanges request, by using the
updateRecords sub-operation.

• Records that are being added are not available for other operations in the same request.

• You can delete other records in the same request, by using the deleteRecords sub-operation.

addOrUpdateRecords request
The addOrUpdateRecords basic syntax is:

<ingestChanges>
<addOrUpdateRecords>

<recordSpecifier>
<attribute name="?" type="?">?</attribute>

</recordSpecifier>
<addAssignments>

Oracle® Endeca Server: Data Loading Guide

Adding New Records 41

<attribute name="?" type="?">?</attribute>
</ns:addAssignments>

</addOrUpdateRecords>
</ingestChanges>

Version 7.6.1 • December 2013

where:

• The recordSpecifier element contains the name and value of the primary-key attribute. Note that the
primary-key attribute must already exist.

• The addAssignments> element contains the names and values of the attributes to be assigned to the
record. If a specified attribute does not exist, it is created with default system values.

For example, this request adds one record with two assignments to the data domain:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:addOrUpdateRecords>
<ns:recordSpecifier>

<ns1:attribute name="partID">8345</ns1:attribute>
</ns:recordSpecifier>
<ns:addAssignments>

<ns1:attribute name="color">blue</ns1:attribute>
<ns1:attribute name="price">29.99</ns1:attribute>

</ns:addAssignments>
</ns:addOrUpdateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Note that none of the key-value assignments specify an attribute type (such as the type for the price
attribute, which is mdex:double). This is because all the attributes already exist in the data domain and
therefore already have a type that was assigned when they were initially created (unless specified, the default
string type was used). The type of the assignment attribute value must match the type of the attribute.

Note: If you submit the ingestChanges request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

Oracle® Endeca Server: Data Loading Guide

Chapter 4

Updating Records

This section describes how you can incrementally modify the Endeca data domain by updating and deleting
records.

About updates

Identifying records with EQL

Adding record assignments

Removing record assignments

Replacing record assignments

Changing the name of a standard attribute

About updates
This topic will describe how you can incrementally update the records in an Endeca data domain.

Using the updateRecords sub-operation of ingestChanges, you can perform the following types of
incremental updates:

• Update an existing record by adding standard attribute and/or managed attribute value assignments.

• Update an existing record by replacing or removing standard attribute and/or managed attribute value
assignments.

Note that the addOrUpdateRecords sub-operation, which can also update an existing record with new
assignments, is described in Adding records after the initial load on page 40.

How updates are applied

When adding standard attributes, the operation works as follows for the new standard attribute (i.e., the
standard attribute to be added):

• If the new standard attribute already exists in the data domain but with a different type, an error is thrown
and the new standard attribute is not added.

• If the new standard attribute already exists in the data domain and is of the same type, no error is thrown
and nothing is done.

• If the new standard attribute is a primary-key attribute and a managed attribute already exists with the
same name, an error is thrown and the new standard attribute is not added.

Note that updating a record can cause it to change place in the default order. That is, if you have records
ordered A, B, C, D, and you update record B, records A, C, and D remain ordered. However, record B may
move as a result of the update, which means the resulting order might end up as B,A,C,D or A,C,B,D or
another order.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Updating Records 43

If an attribute is single-assign, that is, a standard attribute whose PDR has the mdex-
property_IsSingleAssign set to true, you cannot add a second value to it. In the color example, if
color were a single-assign attribute and the record already had one color assignment, then an attempt to
add a second color assignment would fail.

Order of update operations
An ingestChanges request can contain all types of updates (delete records, delete assignments, wildcard
delete assignments, and add assignments). Before any such request is performed, some operations are
broken down into their component operations:

• Record updates are broken down into assignment additions, deletions, wildcard deletions, and
replacements.

• Record replacements are broken down into a record deletion and record addition.

• Assignment replacements are broken down into a wildcard deletion and assignment addition.

Once these operations are broken down, all of the remaining operations are sorted into groups by type, and
each group is processed in the following order:

1. deleteRecords requests

2. deleteAssignments requests

3. wildcardDeleteAssignments requests

4. addAssignments requests

5. addRecords requests.

If a record attribute or attribute assignment is specified in the wildcardDeleteAssignments or
deleteAssignments list and is specified again in the addAssignments list, then the attribute assignment is
deleted and added again in the same transaction.

If identical records, standard attributes, or assignments are specified in any of the elements, the redundant
entries are ignored.

If you are renaming a standard attribute, you can include only this operation inside updateRecords in
ingestChanges. (Additional updateRecords are allowed in the same request, and can contain other updates,
but not for the attribute that is being renamed.)

Affected records with update operations
The numRecordsAffected element in the ingestChangesResponse lists how many records were affected (i.e.,
modified) by an ingestChanges operation.

However, it is possible that an affected record may not actually be changed by the operation. Any operation
that results in the output record being the same as the input record will mark the record as affected but will
leave it unchanged. These types of unaffected operations are adding an assignment that already exists,
deleting an assignment that does not exist, performing a wildcard delete on a record property that has no
assignments, and deleting an assignment and then adding the same assignment.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Updating Records 44

Identifying records with EQL
To identify one or more records you want to update or delete, you use EQL expressions.

About the record set specifier
Several ingestChanges operations that update or delete existing records require a record set specifier to
determine the set of records to operate on. The record set specifier is evaluated from an EQL expression
inside the recordSpecifier element of the operation.

The EQL expressions use one or more record attributes that identify a set of records that will be updated or
deleted by the operation. The record attributes specified in the EQL expression can be any attribute on a
record, including the record's primary-key attribute.

Note, however, that the primary-key attribute does have to be used in the EQL expression. For example,
assume that your records have an attribute named "color" with values such as "red", "blue", and so on. You
can then use an EQL expression that specifies that all records that have a "color=red" assignment will be
deleted.

Keep in mind that an EQL expression can also be evaluated to identify zero records, in which case the
operation will be performed but no updates or deletes will be actually be done. In this case, the
numRecordsAffected element in the ingestChangesResponse will show that 0 (zero) records were affected.

For full information on EQL syntax, see the Oracle Endeca Server EQL Guide.

Identifying a single record with EQL
This example contains a recordSpecifier element with the EQL syntax that identifies a single record. In
this data set, the primary-key attribute is the attribute named partID of type string. The following expression
identifies a record with the primary key P123:

<recordSpecifier>"partID" = 'P123'</recordSpecifier>

Version 7.6.1 • December 2013

where

"partID" ='P123'

is an EQL expression on a string value.

Similarly, if the primary-key attribute is the attribute named modelNum of type integer, then the EQL
expression for identifying a record with the primary key 45 is:

<recordSpecifier>"modelNum" = 45</recordSpecifier>

Note: While these examples illustrate how to utilize a primary-key attribute in EQL, you can use an
EQL expression on any attribute in your data set when updating or deleting records. When adding
new records, you identify them by the EQL expression that specifies the values for the primary-key
attribute and not any other attribute.

Identifying multiple records with EQL
This example identifies all records for which the value of the integer attribute Num is greater than 45:

<recordSpecifier>"Num" > 45</recordSpecifier>

The following example identifies those records for which the value of the attribute price (of type double) is
greater than 19.99 and less than 49.99, non-inclusive:

Oracle® Endeca Server: Data Loading Guide

Updating Records 45

<recordSpecifier>("price" > 19.99) AND ("price" < 49.99)</recordSpecifier>

Version 7.6.1 • December 2013

Note: The greater than and less than signs in this example are escaped to ensure that the XML
syntax of this request can be successfully parsed.

In this example, the EQL expression identifies those records for which assignment values exist on the attribute
tag:

<recordSpecifier>"tag" IS NOT NULL</recordSpecifier>

The examples above assume that the attribute to be compared is a single-assign attribute. For multi-assign
attributes, make sure you use the functions and operators that work with sets, as in this example:

<recordSpecifier>SOME i IN NumRevs SATISFIES (i > 45)</recordSpecifier>

For more information on using multi-assign attributes with EQL, see the Oracle Endeca Server EQL Guide.

Setting a language ID for EQL error messages

If the syntax of an EQL expression is incorrect, the Data Ingest Web Service returns an EQL syntax error
message. The ingestChanges complex type has an optional Language element that lets you set the
language in which EQL error messages are returned. The element looks like this:

<ns:ingestChanges>
<!--Optional:-->
<ns:OuterTransactionId>?</ns:OuterTransactionId>
<!--Optional:-->
<ns:Language>en</ns:Language>
<!--Zero or more repetitions:-->
<ns:updateRecords>
...
</ns:updateRecords>
...

</ns:ingestChanges>

The supported languages and their corresponding language IDs are:

• Chinese (simplified): zh_CN

• Chinese (traditional): zh_TW

• English: en

• French: fr

• German: de

• Italian: it

• Japanese: ja

• Korean : ko

• Portuguese: pt

• Spanish: es

The en (English) language ID is the default.

Oracle® Endeca Server: Data Loading Guide

Updating Records 46

Adding record assignments
Records in the data domain can be updated with one or more new assignments for standard attributes and
managed values.

The updateRecords sub-operation, when used with a list of addAssignments elements, allows you to update
existing records in the data domain by adding standard attribute values and/or managed values. The element
can also create a standard or managed attribute if the attribute to be added does not exist. In this case, it is
added with the default values for PDRs.

Because the Dgraph process performs type-checking when adding standard attributes, keep the following in
mind:

• When adding a value for a pre-existing standard attribute, make sure that the new value is of the proper
type. An error will occur for type mismatches (for example, if you attempt to assign the string "red" to an
integer standard attribute).

• When creating and adding a new standard attribute, you should specify the attribute type.

• Any standard attribute that is not specifically typed will be treated by default as a string type.

You can assign multiple values from a given standard attribute only if the attribute is configured as a multi-
assign standard attribute. That means that the PDR for the standard attribute has the mdex-
property_IsSingleAssign property set to true. If the addAssignments list attempts to assign multiple
values to a standard attribute that does not accept multiple values, an error is signaled.

Managed values can be added to records even if the managed attribute to which they belong does not exist in
the data domain. In this case, the Data Ingest Web Service automatically creates the managed attribute.

Update sub-operation types
For update scenarios, the ingestChanges operation has two update sub-operations that support the
addAssignments element. Which one you use depends on your needs:

• The updateRecords sub-operation can only update existing records, but cannot add new records. That is,
if the specified primary key is not found, then the operation does nothing.

• The addOrUpdateRecords sub-operation will first attempt to update existing records, just like the
updateRecords sub-operation. But if the specified primary key is not found, then the operation's fallback
behavior is to act like the addRecords sub-operation and create new records based on the values of the
specified primary keys and added assignment values.

This chapter will document the updateRecords sub-operation. For a description of addOrUpdateRecords, see
Adding records after the initial load on page 40.

updateRecords request
You use the addAssignments element in an updateRecords request to add key-value pairs to an existing
record. The request must specify the primary key of the record to be updated, using this request format:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>?</ns:recordSpecifier>

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

Updating Records 47

<ns:addAssignments>
<ns1:attribute name="?">?</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

For example, this updateRecords request updates a record (with the primary key P123) with one standard
attribute modelNum of type integer:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>"partID" = 'P123'</ns:recordSpecifier>

<ns:addAssignments>
<ns1:attribute name="modelNum" type="mdex:int">2562</ns1:attribute>

</ns:addAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Note that the attribute type of the modelNum standard attribute is specified, because the standard attribute
does not exist and therefore will be created as part of the request.

Note: If you submit the ingestChanges request after a Transaction Web Service request that starts
an outer transaction, the request must specify the outer transaction ID. If no outer transactions have
been started, the ID attribute must be omitted in the request.

Removing record assignments
You can update records in a running data domain by removing standard attribute and managed value
assignments.

The updateRecords sub-operation of ingestChanges includes two elements that delete assignments from
records in the data domain:

• deleteAssignments

• wildcardDeleteAssignments

Both elements can delete standard attribute assignments as well as managed value assignments. Note that
the standard attributes or managed values are not removed from the data domain; they are removed only from
the specified records.

You can use both elements in the same updateRecords operation. In this case, the
wildcardDeleteAssignments request is processed before the deleteAssignments request.

Both elements are case sensitive, including the standard attribute and managed value names and their
assignment values.

Assignment deletion cannot be combined in the same request with any operation that would modify the
assignments to be deleted.

Oracle® Endeca Server: Data Loading Guide

Updating Records 48

Note: If you submit the ingestChanges request after a Transaction Web Service request that starts
an transaction, the request must specify the outer transaction ID. If no outer transactions have been
started, the ID attribute must be omitted in the request.

deleteAssignments request
The deleteAssignments element of the updateRecords sub-operation removes individual standard attribute
and/or managed value assignments from the records in your data domain, but does not otherwise affect the
record. You can remove one or more assignments in the same request.

To remove individual assignments:

• Indicate which records should be affected by including the EQL filter inside the recordSpecifier
element in your request.

• Specify the attributes from which assignment values should be deleted for these records.

The deleteAssignments request format is:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>?</ns:recordSpecifier>
<ns:deleteAssignments>

<ns1:attribute name="?">?</ns1:attribute>
</ns:deleteAssignments>

</ns:updateRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

where the string that you add to a recordSpecifier element is an EQL expression identifying records.

The following example illustrates this request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>"price" > 45</ns:recordSpecifier>
<ns:deleteAssignments>

<ns1:attribute name="color">purple</ns1:attribute>
</ns:deleteAssignments>

</ns:updateRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

The example removes one value, purple, of the color standard attribute assignment for all records whose
values for the price attribute are higher than 45.

A successful ingestChangesResponse returned from the above sample request should look like this:

<ingest:ingestChangesResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>4</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

Oracle® Endeca Server: Data Loading Guide

Updating Records 49

</ingest:ingestChangesResponse>

Version 7.6.1 • December 2013

The numRecordsAffected element in the response shows that four records were successfully modified.

wildcardDeleteAssignments request
The wildcardDeleteAssignments element of the updateRecords element in the ingestChanges operation
removes all assignments from the same standard attribute or managed value at once. This operation, similar
to assignment deletion, cannot be combined with any operation that modifies the assignments to be deleted.

The request must use EQL statement inside the recordSpecifier element to identify the record to be
updated, and also list the attribute name from which all assignments must be deleted. The
wildcardDeleteAssignments request format is:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>?</ns:recordSpecifier>

<ns:wildcardDeleteAssignments>
<ns1:attribute name="?"/>

</ns:wildcardDeleteAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

To remove all assignments on one record from a specific standard attribute or managed value, use a single
tag with the attribute, as in this example that removes all assignments from the color standard attribute for
the record whose partID is P4000:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>"partID" = 'P4000'</ns:recordSpecifier>

<ns:wildcardDeleteAssignments>
<ns1:attribute name="color"/>

</ns:wildcardDeleteAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

In the example, if record P4000 had six assignments from the color standard attribute, then all six
assignments would be removed.

If successful, the operation returns the following ingestChangesResponse, indicating that one record was
affected:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Oracle® Endeca Server: Data Loading Guide

Updating Records 50

Replacing record assignments
You can update records in a running data domain by replacing standard attribute and managed value
assignments.

The updateRecords sub-operation of ingestChanges includes the replaceAssignments element that
replaces assignments from records in the data domain.

This element replaces standard attribute assignments as well as managed value assignments. Similar to
record replacement, if there are no assignments already in the data domain that match the new assignments,
the assignment is still added.

Assignment replacement cannot be combined with any other operation that would modify the assignments to
be replaced.

The updateRecords operation allows you to have only one recordSpecifier element. This element is
expected to contain an EQL expression identifying one or more records. Therefore, if you combine more than
one updating element inside an updateRecords operation, it is worth remembering that all updating operations
(additions, deletions, and replacements) will run only on records identified by the EQL expression inside
recordSpecifier.

Because the Dgraph process of the Oracle Endeca Server performs type-checking when adding standard
attributes, keep the following in mind:

• When adding a value for a pre-existing standard attribute, make sure that the new value is of the proper
type. An error will occur for type mismatches (for example, if you attempt to assign the string "red" to an
integer standard attribute).

• When creating and adding a new standard attribute, you should specify the attribute type.

• Any standard attribute that is not specifically typed will be treated by default as a string type.

If an attribute is multi-select and has more than one assignment value on some of the records, the
replaceAssignments element deletes all of these assignments and adds the one assignment that you
specify.

The replaceAssignments request can also rename an attribute in your data domain. For information, see
Changing the name of a standard attribute on page 51.

Important: Do not to use replaceAssignments to modify the system-created attributes in the data
domain. For example, do not use it to set the system mdex-property_IsSingleAssign property
to false for all attributes. Doing so may have some undesired effect on your application, such as not
being able to create views correctly in Studio.

If you submit the ingestChanges request after a Transaction Web Service request that starts an transaction,
the request must specify the outer transaction ID. If no outer transactions have been started, the ID attribute
must be omitted in the request.

replaceAssignments request
The replaceAssignments element of the updateRecords sub-operation removes individual standard attribute
and/or managed value assignments from the specified records in your data domain, and replaces them with
new assignment values. You can replace one or more assignments in the same request.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Updating Records 51

To replace individual assignments:

• Indicate which records should be affected by including the EQL filter inside the recordSpecifier
element in your request.

• Specify the attributes for which assignment values should be replaced for these records.

The replaceAssignments request format is:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>?</ns:recordSpecifier>
<ns:replaceAssignments>

<ns1:attribute name="?">?</ns1:attribute>
</ns:replaceAssignments>

</ns:updateRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

where the string that you add to a recordSpecifier element is an EQL expression identifying records.

The following example illustrates this request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>"price" > 5</ns:recordSpecifier>
<ns:replaceAssignments>

<ns1:attribute name="color">black</ns1:attribute>
</ns:replaceAssignments>

</ns:updateRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

The example replaces all values of the color standard attribute assignment for all records whose values for
the price attribute are higher than 5 with the value black.

A successful ingestChangesResponse returned from the above sample request should look like this:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>7</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

The numRecordsAffected element in the response shows that seven records were successfully modified.

Changing the name of a standard attribute
The Data Ingest Web Service allows you to rename a standard attribute on records in a running data domain.

You use the replaceAssignments element in an updateRecords to rename attributes.

Oracle® Endeca Server: Data Loading Guide

Updating Records 52

When you rename an attribute, the Data Ingest Web Service removes the name of the attribute that was
previously specified in the mdex-property_Key of the PDR of this attribute, and replaces it with the new
name. All records retain assignments on this attribute, and the Dgraph process of the Oracle Endeca Server
continues to run.

Important: Before renaming a standard attribute, remove it from groups or entities (used for views in
Studio). If you rename the attribute without removing it from groups or entities, you will invalidate
these groups or entities.

You can rename any standard attribute on the records in your data domain. You cannot rename a managed
attribute (except by renaming the associated standard attribute). You also cannot rename an attribute on any
system record, such as PDRs, DDRs, or system attributes that define groups.

You cannot include any other updates inside the updateRecords request for renaming an attribute. Also, if the
entire ingestChanges request contains additional updateRecords elements, they cannot be run on the same
attribute that is being renamed.

The request must specify the EQL expression that correctly identifies the name of the attribute to be replaced,
using this request format:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/><soapenv:Body>
<ns:ingestChanges>
<ns:updateRecords>
<ns:recordSpecifier>"mdex-property_Key"='oldName'</ns:recordSpecifier>
<ns:replaceAssignments>
<ns1:attribute name="mdex-property_Key">newName</ns1:attribute>

</ns:replaceAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

where:

• "mdex-property_Key"='oldName' is the EQL expression that locates the PDR of your attribute, and
identifies the current assignment value, oldName, on the mdex-property_Key of the PDR.

• newName is the new name for the attribute.

If you submit the ingestChanges request after a Transaction Web Service request that starts an outer
transaction, the request must specify the outer transaction ID. If no outer transactions have been started, the
ID attribute must be omitted in the request.

To rename an attribute:

1. Ensure that both the data domain's Dgraph process and the Data Ingest Web Service are running.

2. Create an updateRecords request, similar to the example below that renames an attribute partID
with an attribute SKU, and send the request to the Data Ingest Web Service.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:updateRecords>

<ns:recordSpecifier>"mdex-property_Key"='partID'</ns:recordSpecifier>
<ns:replaceAssignments>

<ns1:attribute name="mdex-property_Key">SKU</ns1:attribute>

Oracle® Endeca Server: Data Loading Guide

Updating Records 53

</ns:replaceAssignments>
</ns:updateRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

3. After the request is made, check the ingestChangesResponse to determine if the request transaction
was successful.

A successful ingestChangesResponse returned from the above sample request should look like this,
indicating that one record has been affected:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Oracle® Endeca Server: Data Loading Guide

Chapter 5

Deleting or Replacing Records

This section describes how to delete or replace records in the Endeca data domain.

You can remove or replace existing records by using these ingestChanges operations:

• deleteRecords operation

• addRecords operation

Note that both operations use a record set specifier to determine the set of records to operate on. The record
set specifier is evaluated from an EQL expression in the recordSpecifier element of the operation. For more
information on the record set specifier, see Identifying records with EQL on page 44.

Deleting records

Replacing records

Deleting records
The Data Ingest Web Service allows you to delete records from a running data domain.

The deleteRecords operation of ingestChanges allows you to create a request to delete a record. The
request must specify the EQL expression that correctly identifies one or more records to be deleted, using this
request format:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:deleteRecords>

<ns:recordSpecifier>?</ns:recordSpecifier>
</ns:deleteRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

Multiple records can be deleted in the same request. A records deletion operation cannot be combined in the
same request with any operation that would try to modify the records to be deleted.

If you submit the ingestChanges request after a Transaction Web Service request that starts an outer
transaction, the request must specify the outer transaction ID. If no outer transactions have been started, the
ID attribute must be omitted in the request.

To delete a record from the data domain:

1. Make certain that both the data domain's Dgraph process and the Data Ingest service are running.

2. Create a deleteRecords request, similar to the example below that deletes one record, and send the
request to the Data Ingest service.

Oracle® Endeca Server: Data Loading Guide

Deleting or Replacing Records 55

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:deleteRecords>

<ns:recordSpecifier>"partID" = 'P123'</ns:recordSpecifier>
</ns:deleteRecords>

</ns:ingestChanges>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013

3. After the request is made, check the ingestChangesResponse to determine if the request transaction
was successful.

A successful ingestChangesResponse returned from the above sample request should look like this:

<ingest:ingestChangesResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>0</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>1</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Note that when specifying a record with an invalid or missing primary key, the deleteRecords sub-operation
will not fail, but instead will ignore the record. In this case, the numRecordsDeleted element in the response
will have a value of 0 (zero):

<ingest:ingestChangesResponse ...>
...
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Replacing records
The Data Ingest Web Service allows you to replace records in a running data domain.

The updateRecords operation of ingestChanges includes the replaceRecords element to replace records.

When you replace a record, the Data Ingest Web Service first deletes the record (along with all of its
assignments on all attributes) and then adds a new record with the attribute assignments that you specify for
the record, including a required assignment on a primary-key attribute.

The request must specify the EQL expression that correctly identifies one or more records to be replaced,
using this request format:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:replaceRecords>
<ns:recordSpecifier>?</ns:recordSpecifier>
<ns:record>

<ns1:attribute name="?" type="mdex:string">?</ns1:attribute>
</ns:record>

</ns:replaceRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

Oracle® Endeca Server: Data Loading Guide

Deleting or Replacing Records 56

Record replacement, since it is the combination of a deletion and an addition, cannot be combined in the
same request with any operation that would modify the records to be deleted. Similarly, the record to be added
is not available for any operations in the same request.

If you submit the ingestChanges request after a Transaction Web Service request that starts an outer
transaction, the request must specify the outer transaction ID. If no outer transactions have been started, the
ID attribute must be omitted in the request.

To replace a record in the data domain:

1. Ensure that both the data domain's Dgraph process and the Data Ingest Web Service are running.

2. Create a replaceRecords request, similar to the example below that replaces one record, and send
the request to the Data Ingest service.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0"
xmlns:ns1="http://www.endeca.com/MDEX/XQuery/2009/09">

<soapenv:Header/>
<soapenv:Body>

<ns:ingestChanges>
<ns:replaceRecords>

<ns:recordSpecifier>"partID" = 'P345'</ns:recordSpecifier>
<ns:record>
<ns1:attribute name="partID">P345</ns1:attribute>
<ns1:attribute name="color" type="mdex:string">green</ns1:attribute>

<ns1:attribute name="price">100</ns1:attribute>
</ns:record>

</ns:replaceRecords>
</ns:ingestChanges>

</soapenv:Body>
</soapenv:Envelope>

Version 7.6.1 • December 2013

Note: When you are replacing records, you are first deleting a record and all its assignments
on all attributes (including an assignment on a primary-key attribute, which is required), and
then adding assignments on those attributes that are listed inside the record element.
Therefore, to ensure that an update operation succeeds, always include the primary-key
attribute in the description of the record that is being updated. In this example, the primary-key
attribute is partID, and even though its assignment for this record is not being replaced, this
attribute must be included in the record's description to make the update operation valid.

3. After the request is made, check the ingestChangesResponse to determine if the request transaction
was successful.

A successful ingestChangesResponse returned from the above sample request should look like this,
indicating that one record has been affected:

<ingest:ingestChangesResponse xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>1</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>1</ingest:numRecordsDeleted>

</ingest:ingestChangesResponse>

Note that if you incorrectly identify records, the replaceRecords request will not fail, but instead will delete
zero records and add one record (if using the example above). In this case, the numRecordsDeleted
element in the response will have a value of 0, and numRecordsAffected will have a value of 1.

Oracle® Endeca Server: Data Loading Guide

Chapter 6

Resetting the Data Domain and Updating
Spelling Dictionaries

This section describes how to reset the data domain and update its spelling dictionaries.

Resetting the Data Domain

Updating spelling dictionaries for the data domain

Resetting the Data Domain
The clearDataStore and provisionDataStore operations of the Data Ingest Web Service are intended
to be used together for removing the data and configuration from the data domain while keeping the Dgraph
process of the data domain running on the Oracle Endeca Server.

Running these operations implies that you have exported the configuration and will import it, after clearing and
provisioning the data domain.

Note: Clearing the data domain without provisioning it again leaves the data domain in an invalid
state, preventing all further operations, including importing the configuration.

In a typical scenario, clearDataStore is run as part of updating an existing data domain without having to
stop the Dgraph process or remove the configuration. This scenario implies that you export your configuration,
remove all data and configuration records with clearDataStore, provision the data domain with
provisionDataStore, and import the configuration.

While you can send these operations directly to the data domain, both of these operations are utilized by the
Reset Data Domain connector in Integrator ETL. The connector is used for removing the records and the
configuration from the data domain and provisioning the data domain while keeping the Dgraph process for
the data domain running. For more information on the connector, see the Oracle Endeca Information
Discovery Integrator ETL User's Guide.

It is recommended to run clearDataStore and provisionDataStore in conjunction, using the Reset
Data Domain connector in Integrator. In addition, it is recommended to run these operations within an outer
transaction. You can start an outer transaction through the Transaction RunGraph connector in Integrator
ETL.

Removing all records from the data domain

Provisioning the data domain

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Resetting the Data Domain and Updating Spelling Dictionaries 58

Removing all records from the data domain
Use the clearDataStore operation in the Data Ingest Web Service to remove all data records and also the
schema records that define the data domain configuration.

Before using this operation, ensure that you export the configuration. Also, it is assumed that you intend to
remove all data records by using this operation (for example, with the intent to populate the data domain with
a new set of records).

To remove all data and schema records, use the clearDataStore element in a Data Ingest Web Service
request. The request should use this format:

<ingest:clearDataStore/>

Version 7.6.1 • December 2013

Note: If you submit this request after a Transaction Web Service request that starts an outer
transaction, the clearDataStore request must specify the outer transaction ID element as the first
element in the request. If no transactions have been started, the ID element must be omitted or its
value should be empty.

To remove all records from the Oracle Endeca Server:

1. Create a clearDataStore request, similar to the example below, and send the request to the Data
Ingest Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<soapenv:Header/>

<soapenv:Body>
<ingest:clearDataStore>

<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
</ingest:clearDataStore>

</soapenv:Body>
</soapenv:Envelope>

This request removes the data records and the schema records in the data domain.

A successful clearDataStoreResponse returned from the above sample request should return the number
of records deleted, and look like this:

<ingest:clearDataStoreResponse>
<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
<ingest:numRecordsDeleted>175</ingest:numRecordsDeleted>

</ingest:clearDataStoreResponse>

Note that if you specify an outer transaction ID that does not match the ID of the currently running transaction,
the clearDataStore operation fails, notifying you of the transaction ID that is in progress. In addition, if no
outer transactions have been started with the Transaction Web Service, but you still specify an element with
the value for an ID, this request also fails.

After you have removed all the data and schema records from the data domain, you want to provision it again
with the default configuration settings. To provision the data domain, run provisionDataStore.

Note: Clearing the data domain without provisioning it again leaves the data domain in an invalid
state, preventing all further operations, including importing the configuration.

Oracle® Endeca Server: Data Loading Guide

Resetting the Data Domain and Updating Spelling Dictionaries 59

Provisioning the data domain
To provision the data domain, use the provisionDataStore operation in the Data Ingest Web Service. This
operation creates the primordial records (such as PDRs and DDRs), and resets these records to their default
values.

It is assumed that you run this operation after running clearDataStore. It is also assumed that you have
previously exported your configuration defined in the schema records, and will import it after you run the
provisionDataStore operation.

To provision the data domain and create PDRs and DDRs with their default values, use the
provisionDataStore element in a Data Ingest Web Service request. The request should use this format:

<ingest:provisionDataStore/>

Version 7.6.1 • December 2013

Note: If you submit the provision request after a Transaction Web Service request that starts an outer
transaction, the provision request must specify the outer transaction ID as the first element. If no outer
transactions have been started, the ID element must be omitted in the request, or its value must be
empty.

To provision the data domain:

1. Create a provisionDataStore request, similar to the example below and send the request to the
Data Ingest Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<soapenv:Header/>

<soapenv:Body>
<ingest:provisionDataStore>

<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
</ingest:provisionDataStore>

</soapenv:Body>
</soapenv:Envelope>

This request adds the primordial schema records in the data domain and sets these schema records
to their defaults.

A successful provisionDataStoreResponse returned from the above sample request should look similar
to this example:

<ingest:provisionDataStoreResponse>
<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
<ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
<ingest:numRecordsAffected>2</ingest:numRecordsAffected>
<ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>

</ingest:provisionDataStoreResponse>

After you have run the provisionDataStore operation, you can import your configuration and run the
Endeca Server update-spelling-dictionaries command to update the spelling dictionary.

If you use Reset Data Domain in Integrator for running clearDataStore and provisionDataStore
operations, then this connector also updates the spelling dictionary.

Oracle® Endeca Server: Data Loading Guide

Resetting the Data Domain and Updating Spelling Dictionaries 60

Updating spelling dictionaries for the data domain
Use the updateSpellingDictionaries operation of the Data Ingest Web Service to update the spelling
dictionaries in the data domain. Run this operation after you have added data records to the data domain, to
enable spelling correction in the Dgraph.

This operation rebuilds the spelling dictionaries for spelling correction from the data corpus while the Endeca
Server continues to run. The Endeca Server can continue processing end-user queries and updates to the
data domain's index, without stopping and restarting the Dgraph nodes.

Run this operation after you have added data records to the data domain, to enable spelling correction in the
Dgraph processes for this data domain.

Additionally, during the data ingest process, you can run the request with the
updateSpellingDictionaries operation periodically to update the spelling dictionary the data domain for
one of the Endeca Server features known as Automatic Spelling Correction and DYM (Did You Mean?).

In a cluster of Dgraph nodes (a data domain running on multiple hosting Endeca Server machines), this
request is routed to the leader node, because it is an updating operation.

The request performs the following actions:

• Crawls the text search portion of the index for the data domain for all terms that meet the constraint
settings.

The constraint settings include minimum word occurrences and maximum and minimum number of
characters, for records and attribute values. The Dgraph nodes in the data domain use these constraints
to update the spelling dictionaries. You can change them in the Global Configuration Record.

• Updates the spelling dictionaries stored in the Dgraph for processing of all queries arriving after this
update to the index files. The Dgraph uses these updated dictionaries when processing all future queries.
For detailed information on spelling dictionaries, see the Oracle Endeca Server Developer's Guide.

The Dgraph process applies the updated settings while continuing to run queries and without needing to
restart.

To update the spelling dictionaries for the data domain:

1. Access the Data Ingest Web Service for the data domain:

http://localhost:<port>/endeca-server/ws/ingest/<dataDomain>?wsdl

Version 7.6.1 • December 2013

where the localhost and port are the host and port of the running Oracle Endeca Server,
endeca-server is the default context root for the Endeca Server Java application running in the
WebLogic Server, and dataDomain is the name of the Endeca data domain.

2. Use the updateSpellingDictionaries operation in the request, as in this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<soapenv:Header/>

<soapenv:Body>
<ingest:updateSpellingDictionaries>

<ingest:OuterTransactionId>txId</ingest:OuterTransactionId>
</ingest:updateSpellingDictionaries>

</soapenv:Body>
</soapenv:Envelope>

where txId is the ID of an outer transaction (if one is running).

Oracle® Endeca Server: Data Loading Guide

Resetting the Data Domain and Updating Spelling Dictionaries 61

Note: If you submit this request after a Transaction Web Service request that starts an outer
transaction, the request must specify the outer transaction ID element. If no transactions have
been started, the ID element must be omitted or its value should be empty.

If the data domain exists and is enabled, the operation completes successfully, returning an empty web
service success response (updateSpellingDictionariesResponse). This means that the spelling
dictionaries have been updated successfully.

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Chapter 7

Bulk Load API

This section describes how to use the Bulk Load API.

About the Bulk Load API

Bulk Load sample program

Records, assignments, and data types

Sending records to the data domain

About the Bulk Load API
Data records can be added or replaced via the Dgraph's Bulk Load Interface.

Besides the Data Ingest API, the Bulk Load Interface is available to ingest records into an Endeca data
domain. The Bulk Load API exists in the form of a collection of Java classes in a single
endeca_bulk_load.jar file, which is shipped in the Endeca Server's apis directory. The Javadoc for the
Bulk Load API is located in the apis/doc/bulk_load directory.

Bulk Load characteristics

The characteristics of the interface are:

• The API can load data source records only. It cannot load PDRs, DDRs, managed attribute values, the
GCR, or the Dgraph configuration documents.

• Existing records in the Endeca data domain are replaced, not updated. That is, the replace operation is
not additive. Therefore, the key-value pair list of the incoming record will completely replace the key-value
pair list of the existing record.

• A primary-key attribute (also called the record spec) is required for each record to be added or replaced.

• If an assignment is for a standard attribute (property) that does not exist in the Endeca data domain, the
new standard attribute is automatically created with system default values for the PDR. For these default
values, see Default values for new attributes on page 22.

• There is a limit of 128MB on the maximum size of a source record. An attempt to ingest a source record
larger than 128MB will fail and an error will be returned (with the record spec of the rejected record), but
the bulk load ingest will continue after that rejected record.

The interface rejects non-XML 1.0 characters upon ingest. That is, a valid character for ingest must be a
character according to production 2 of the XML 1.0 specification. If an invalid character is detected, an
exception is thrown with this error message:

Character <c> is not legal in XML 1.0

Version 7.6.1 • December 2013

The record with the invalid character is rejected.

Oracle® Endeca Server: Data Loading Guide

Bulk Load API 63

Implementing Logging
The BulkIngester class is the primary entry point for the client-side Bulk Load Interface for loading data into
an Endeca data domain. BulkIngester uses the java.util.logging package to output some logging for
debugging purposes. (Clients see the debugging messages through Callback classes and Exception
messages.)

To implement logging for your program, you can use other logging libraries, such as Apache Commons
logging, Simple Logging Facade for Java (SLF4J), and so on. For details, see the documentation that is
provided with those logging components.

Implementing SSL connections
The BulkIngester constructor's socketFactory parameter takes in a socket factory that is used to create
sockets for the bulk ingest operations. Clients can therefore specify their own pre-configured SocketFactory.
This is especially useful in the case of SSL, so that you can use this parameter to specify an
SSLSocketFactory for SSL connections.

The sample program imports two Java socket classes and then sets the socketFactory parameter as follows:

import javax.net.SocketFactory;
import javax.net.ssl.SSLSocketFactory;
...
public BulkLoad(String host, int port, boolean ssl) throws IOException {

_host = host;
_port = port;
BulkLoadCallback blcb = new BulkLoadCallback();

SocketFactory sf = ssl ? SSLSocketFactory.getDefault() : SocketFactory.getDefault();
...

Version 7.6.1 • December 2013

If the value of the incoming ssl Boolean parameter is true, then sf is set to a copy of the environment's
default SSL socket factory, otherwise it is set to a copy of the default non-SSL socket factory.

Post-ingest behavior

There are two operations that must occur at some time after each bulk-load ingest:

• A merge of the ingested records to a single generation, which re-indexes the database to optimize query
performance.

• A rebuild of the aspell spelling dictionary, so that the newly-added data will be available for spelling DYM
and autocorrect.

The BulkIngester constructor's doFinalMerge parameter allows you to set when the post-ingest merge
occurs:

• If set to true, the merge is forced immediately after ingest. This behavior is intended to maximize query
performance at the end of a single, large, homogenous data update that would occur during a regularly
scheduled update window.

• If set to false, a merge is not forced at the end of an update, but instead relies on the regular
background merge process to keep the generations in order over time. This behavior is more suitable for
parallel heterogeneous data updates where low overall update latency is paramount.

The BulkIngester constructor's doUpdateDictionary parameter lets you specify when the spelling
dictionaries are updated:

• A setting of true means a dictionary update is forced immediately after the ingest.

Oracle® Endeca Server: Data Loading Guide

Bulk Load API 64

• A setting of false means the dictionary update is disabled. You can later update the dictionaries. For
information, see Updating spelling dictionaries for the data domain on page 60.

If you are doing multiple, consecutive bulk-load operations, you can set both properties to false on all except
the last one.

Bulk Load sample program
The following sample program will be used to illustrate the Bulk Load classes and methods.

The source file is BulkLoad.java and is located in the $ENDECA_HOME/aps/examples directory.

package com.oracle.endeca.server.examples.ops;

import java.io.IOException;
import java.util.concurrent.TimeUnit;

import javax.net.SocketFactory;
import javax.net.ssl.SSLSocketFactory;

import com.endeca.BulkLoad.AbortCallback;
import com.endeca.BulkLoad.BulkIngester;
import com.endeca.BulkLoad.ErrorCallback;
import com.endeca.BulkLoad.FinishedCallback;
import com.endeca.BulkLoad.StatusCallback;
import com.endeca.BulkLoad.Msg.Data;
import com.endeca.BulkLoad.Msg.Data.Record;

/**
* This class provides an example of working with the bulk loading interface.
*/

public class BulkLoad {

/**
* This callback is provided to the bulk loader for providing feedback to the client process.
*/

public static class BulkLoadCallback implements AbortCallback, ErrorCallback, FinishedCallback,
StatusCallback

{
@Override
public void handleAbort(String reason) {

System.out.println("Abort: " + reason);
}

@Override
public void handleError(String reason, Record reject) {

System.out.println("Error: " + reason);
}

@Override
public void handleStatus(long recordsAdded, long recordsQueued, long recordsRejected, String

state) {
System.out.println("Status: " + recordsAdded);

}

@Override
public void handleFinish() {

System.out.println("Finished!");
}

}

/**
* Set up a basic bulk ingest connection.
*/

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

Bulk Load API 65

public BulkLoad(String host, int port, boolean ssl) throws IOException {
_host = host;
_port = port;
BulkLoadCallback blcb = new BulkLoadCallback();

SocketFactory sf = ssl ? SSLSocketFactory.getDefault() : SocketFactory.getDefault();
boolean doFinalMerge = false;
boolean doUpdateSpellingDictionary = false;
long socketTimeout = TimeUnit.SECONDS.toMillis(90);
String transactionId = null;

// don't do a final merge after finishing ingest or update the spelling dictionary
; timeout after 90s

_bi
= new BulkIngester(_host, _port, sf, transactionId, doFinalMerge, doUpdateSpellingDictionary,
socketTimeout, blcb, blcb, blcb, blcb);

_bi.begin();
}

/**
* Add a new record with a handful of given assignments.
*/

public void addRecord(int val, String words, boolean square, boolean prime) throws IOException {
Data.Record.Builder recordBuilder = Data.Record.newBuilder();
Data.Assignment.Builder assignmentBuilder = Data.Assignment.newBuilder();

assignmentBuilder.clear();

assignmentBuilder.setName("Value").setDataType(Data.Assignment.DataType.INT).setInt32Value(val);
recordBuilder.setSpec(assignmentBuilder.build());

assignmentBuilder.clear();

assignmentBuilder.setName("Words").setDataType(Data.Assignment.DataType.STRING).setStringValue(words)
;

recordBuilder.addAssignments(assignmentBuilder.build());

assignmentBuilder.clear();

assignmentBuilder.setName("Square").setDataType(Data.Assignment.DataType.BOOLEAN).setBoolValue(square
);

recordBuilder.addAssignments(assignmentBuilder.build());

assignmentBuilder.clear();

assignmentBuilder.setName("Prime").setDataType(Data.Assignment.DataType.BOOLEAN).setBoolValue(prime);
recordBuilder.addAssignments(assignmentBuilder.build());

Data.Record r = recordBuilder.build();
_bi.sendRecord(r);

}

public void done() throws IOException, InterruptedException {
_bi.endIngest();

}

private String _host;
private int _port;
private BulkIngester _bi;

}

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

Bulk Load API 66

Records, assignments, and data types
A Data.Record is the fundamental data type for loading data into an Endeca data domain.

Records and assignments

Client programs using the Bulk Load API to load data into an Endeca data domain must convert the source
data records from their native format into a Record object. Conceptually, a Record is a named set of key-value
pairs. A key-value pair is a Data.Assignment. The key is a String, and the value can be any of the
supported data types listed below.

The name of the Record is also an Assignment, and can therefore also be any of these types; for this reason
it is known as the Spec. The Spec serves as the primary key of the data record, and each Record must have
one.

The Spec is set on the Record with the setSpec() method of the Data.Record.Builder class, as shown in
this snippet from the sample program:

Data.Record.Builder recordBuilder = Data.Record.newBuilder();
Data.Assignment.Builder assignmentBuilder = Data.Assignment.newBuilder();

assignmentBuilder.clear();
assignmentBuilder.setName("Value").setDataType(Data.Assignment.DataType.INT).setInt32Value(val);
recordBuilder.setSpec(assignmentBuilder.build());

Version 7.6.1 • December 2013

In this example, the name of the Spec is "Value" and it has an integer value ("val") that is input to the
program.

Non-Spec key/value assignments are set with the addAssignments() method of the same
Data.Record.Builder class:

assignmentBuilder.clear();
assignmentBuilder.setName("Words").setDataType(Data.Assignment.DataType.STRING).setStringValue(words)
;
recordBuilder.addAssignments(assignmentBuilder.build());

The sample program creates one record with three non-Spec attributes (the String "Words" and the two
Boolean "Square" and "Prime").

Builders
Data and Record objects are created via an associated Builder type:

• The Data.Record.Builder has setSpec() methods for the Spec and setAssignments() methods for
the Assignment objects.

• The Data.Assignment.Builder has the setName() method for its key and various setters for its
supported data types.

All of the setter functions in the Builder classes return the object they were invoked on, so they can be strung
together. This makes it possible, if desired, to build the entire thing on one line:

Data.Assignment.newBuilder().setName("SKU").setString("AB1234").setDataType(Data.Assignment.DataType.
STRING).build();

Oracle® Endeca Server: Data Loading Guide

Bulk Load API 67

Data types
The Data.Assignment.DataType enum contains entries for each of the data types supported by the Dgraph
process. These correspond to the Data.Assignment.Builder class's setter methods as follows:

Enum DataType Data.Assignment.Builder setter Dgraph data type

BOOLEAN setBoolValue() mdex:boolean

DOUBLE setDoubleValue() mdex:double

DATETIME setStringValue() mdex:dateTime

DURATION setStringValue() mdex:duration

GEOCODE setStringValue() mdex:geocode

INT setInt32Value() mdex:int

INT64 setInt64Value() mdex:long

STRING setStringValue() mdex:string

TIME setStringValue() mdex:time

The setDataType() method tells the Dgraph what the Assignment data type is. For example, if you call
setStringValue("foo") and setDataType(Data.Assignment.DataType.DOUBLE), and include the resulting
Assignment in a Record that you send to the server, the server will attempt to extract the DOUBLE value and
get back nothing. If you do not specify a data type, the Assignment is invalid.

Examples of setting the data types are as follows:

// BOOLEAN example:
assignmentBuilder.setBoolValue(false);
assignmentBuilder.setDataType(Assignment.DataType.BOOLEAN);

// DOUBLE example:
assignmentBuilder.setDoubleValue(99.95);
assignmentBuilder.setDataType(Assignment.DataType.DOUBLE);

// DATETIME example:
assignmentBuilder.setStringValue("2010-11-18T17:00:00Z");
assignmentBuilder.setDataType(Assignment.DataType.DATETIME);

// DURATION example:
assignmentBuilder.setStringValue("P429DT1H2M3S");
assignmentBuilder.setDataType(Assignment.DataType.DURATION);

// GEOCODE example:
assignmentBuilder.setStringValue("42.365615 -71.075647");
assignmentBuilder.setDataType(Assignment.DataType.GEOCODE);

// INT example:
assignmentBuilder.setInt32Value(128);
assignmentBuilder.setDataType(Assignment.DataType.INT);

// INT64 example:
assignmentBuilder.setInt64Value(92233720);
assignmentBuilder.setDataType(Assignment.DataType.INT64);

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

Bulk Load API 68

// STRING example:
assignmentBuilder.setStringValue("Road Bikes");
assignmentBuilder.setDataType(Assignment.DataType.STRING);

// TIME example:
assignmentBuilder.setStringValue("09:14:52");
assignmentBuilder.setDataType(Assignment.DataType.TIME);

Version 7.6.1 • December 2013

Sending records to the data domain
The BulkIngester class is the primary entry point for the client-side Bulk Load Interface for loading data into
an Endeca data domain.

BulkIngester makes a socket connection to the Dgraph of an Endeca data domain and spawns a thread to
handle replies. Its sendRecord() method sends the provided record over the wire to the Dgraph.

Clients to this interface must:

1. Define classes that implement the four callback interfaces (ErrorCallback, FinishedCallback,
AbortCallback, and StatusCallback), and perform the appropriate action when their handler methods
are called (which happens in the response thread).

2. Instantiate a BulkIngester object with the appropriate parameters required by the constructor.

3. Call the begin() method to start the response thread. If this is not called, an IOException will be thrown.

4. Call sendRecord() repeatedly to send Record objects to the Dgraph.

5. When finished sending records, call endIngest() to terminate the response thread and close the socket.

Note that periodically you may want to call the requestStatusUpdate() method to poll the Dgraph on its
current status.

Defining callback interfaces
The BulkIngester constructor requires the four callback interfaces as parameters:

• ErrorCallback handles error conditions. The handleError() method is called when errors occur during
the ingest operation.

• FinishedCallback is called when the Dgraph reports that it has finished with the ingestion. No further
records will be accepted without calling begin() again.

• AbortCallback handles abort conditions. An abort condition can happen either in BulkIngester or on the
Dgraph.

• StatusCallback handles status updates, including the number of successfully ingested records and the
number of rejected records.

ErrorCallback is especially useful, as it reports the reason that a record was rejected. An example of
defining this callback is:

ErrorCallback errorCallback = new ErrorCallback() {
void handleError(String reason, Record reject) {

System.out.println("Record "
+ reject.getSpec().getName()
+ " rejected: " + reason);

}
};

Oracle® Endeca Server: Data Loading Guide

Bulk Load API 69

Instantiating a BulkIngester object
The BulkIngester constructor requires eleven parameters, in this order:

Parameter Meaning

host The name (a String) of the machine on which the Dgraph is running. The
machine name can be obtained by using the allocateBulkLoadPort
operation of the Manage Web Service.

port The bulk load port (an int) of the Dgraph. The port can be obtained by using
the allocateBulkLoadPort operation of the Manage Web Service.

socketFactory A SocketFactory to create sockets for the bulk ingest operations. The sample
program uses SocketFactory.getDefault() for non-SSL connections or
SSLSocketFactory.getDefault() for SSL connections. Both methods are
from the imported javax.net.SocketFactory and
javax.net.ssl.SSLSocketFactory classes.

transactionId The ID (a String) of an outer transaction (if one has been started by the
Transaction Web Service). Use null if an outer transaction is not being used.

doFinalMerge A boolean that specifies whether a merge is forced immediately after ingest.
Setting it to true degrades ingest performance. Therefore, if you are
performing multiple bulk load ingests, you should set this to false for all but
the last ingest job.

doUpdateDictionary A boolean that specifies whether the aspell dictionary is updated immediately
after ingest. Setting it to true degrades ingest performance. Therefore, if you
are performing multiple bulk load ingests, you should set this to false for all
but the last ingest job.

socketTimeoutMillis The timeout in milliseconds (an int) for a connection to the Dgraph.

errorCallback The ErrorCallback object.

finishedCallback The FinishedCallback object.

abortCallback The AbortCallback object.

statusCallback The StatusCallback object.

The sample program constructs the BulkIngester parameters follows:

_host = host;
_port = port;
BulkLoadCallback blcb = new BulkLoadCallback();

SocketFactory sf = ssl ? SocketFactory.getDefault() : SSLSocketFactory.getDefault();
boolean doFinalMerge = false;
boolean doUpdateSpellingDictionary = false;
long socketTimeout = TimeUnit.SECONDS.toMillis(90);
String transactionId = null;

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

Bulk Load API 70

The call to set up a connection to the Dgraph is:

_bi = new BulkIngester(_host,
_port,
sf,
transactionId,
doFinalMerge,
doUpdateSpellingDictionary,
socketTimeout,
blcb,
blcb,
blcb,
blcb);

Version 7.6.1 • December 2013

Beginning and ending the ingest

After the client program has made a connection to the Endeca data domain, the ingest process requires the
use of these BulkIngester methods in this order:

1. The begin() method starts the ingest process.

2. A series of sendRecord() calls actually sends the Record objects to the data domain.

3. The endIngest() method terminates the ingest process.

The sample program, which ingests only one record, is coded as follows:

public BulkLoad(String host, int port, boolean ssl) throws IOException {
...
_bi

= new BulkIngester(_host, _port, sf, transactionId, doFinalMerge, doUpdateSpellingDictionary,
socketTimeout, blcb, blcb, blcb, blcb);
_bi.begin();

}

public void addRecord(int val, String words, boolean square, boolean prime) throws IOException {
Data.Record.Builder recordBuilder = Data.Record.newBuilder();
Data.Assignment.Builder assignmentBuilder = Data.Assignment.newBuilder();

...
Data.Record r = recordBuilder.build();
_bi.sendRecord(r);

}

public void done() throws IOException, InterruptedException {
_bi.endIngest();

}

Although not used in the sample program, the requestStatusUpdate() method can be used to retrieve the
status of the ingest operation.

Oracle® Endeca Server: Data Loading Guide

Appendix A

The Deprecated
ingestManagedAttributeValues Operation

This section describes how to add managed attribute values to the Endeca data domain using the deprecated
operation ingestManagedAttributeValues.

ingestManagedAttributeValues operation

ingestManagedAttributeValues responses

ingestManagedAttributeValues operation
The ingestManagedAttributeValues operation for adding managed attribute values has been deprecated as
of Endeca Server version 7.6.0.

Attention! The ingestManagedAttributeValues operation is supported in this release for backward
compatibility (and, for this reason, is described in this section). However, Oracle recommends that you
migrate away from using this operation. Instead of using this operation, use the
putManagedAttributeValues operation of the Configuration Web Service. This is the preferred way
to add managed attribute values.

Within the ingestManagedAttributeValues structure, the ingestManagedAttributeValue element specifies
the managed attribute to which each managed value belongs. If the managed attribute does not exist in the
data domain, the service automatically creates the managed attribute.

You can use the ingestManagedAttributeValues operation to load an externally managed taxonomy (EMT)
into the data domain. When loaded, externally managed taxonomies are added as managed attributes and
managed values.

ingestManagedAttributeValues request syntax
An ingestManagedAttributesValues operation request uses this format:

<ingestManagedAttributeValues>
<managedAttributeValue displayName="dName" spec="maValueSpec"

parentSpec="pSpec" managedAttribute="maName">
<synonym>synName</synonym>
<properties>

<propName type="mdex:string">propValue</propName>
</properties>

</managedAttributeValue>
</ingestManagedAttributeValues>

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

The Deprecated ingestManagedAttributeValues Operation 72

Each ManagedAttributeValue element defines one managed value. The meanings of the attributes and sub-
elements are:

Element/Attribute Purpose

managedAttribute The name of the managed attribute to which the managed value
belongs. The name must use the NCName format.

displayName A name for the managed value that can be used for user interface
display purposes. The name does not have to use the NCName format.

parentSpec Specifies the parent ID (managed attribute spec) for this managed
value. If this is a root managed value, use a forward slash (/) as the ID.
If this is a child managed value, specify the unique ID of the parent
managed value.

spec A unique string identifier for the managed value. It is the responsibility
of the client to provide the identifier for the request.

synonym Optionally defines the name of a synonym. You can add synonyms to a
managed value so that users can search for other text strings and still
get the same records as a search for the original managed value name.
Synonyms can be added to both root and child managed values.

properties Optionally defines a property for a managed value. Managed value
properties provide descriptive information about a given managed value
and are intended to be used for display purposes by the application.

Example of adding managed attribute values
Assuming that the Component managed attribute exists, the following example adds three managed values
(Derailleur, Tire, and Michelin) to it:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/ingest/3/0">
<soapenv:Header/>
<soapenv:Body>
<ns:ingestManagedAttributeValues>
<ns:managedAttributeValue displayName="derailleur gears" spec="Derailleur" parentSpec="/"

managedAttribute="Component">
<ns:synonym>Chain</ns:synonym>
<ns:synonym>Gear</ns:synonym>

</ns:managedAttributeValue>
<ns:managedAttributeValue displayName="bicycle tires" spec="Tire" parentSpec="/"

managedAttribute="Component">
<ns:properties>

<myStrProp type="mdex:string">source:CAS</myStrProp>
</ns:properties>

</ns:managedAttributeValue>
<ns:managedAttributeValue displayName="Michelin brand" spec="Michelin"

parentSpec="Tire" managedAttribute="Component">
</ns:managedAttributeValue>

</ns:ingestManagedAttributeValues>
</soapenv:Body>

</soapenv:Envelope>

Version 7.6.1 • December 2013Oracle® Endeca Server: Data Loading Guide

The Deprecated ingestManagedAttributeValues Operation 73

In the example, the Derailleur and Tire managed values are at the root of the Component managed
attribute, while the Michelin managed value is a child of the Tire managed value. Note also that two
synonyms were created for the Derailleur managed value and a string property (named myStrProp) was
created for the Tire managed values.

Note that if the Component managed attribute did not previously exist, the request would create it with default
settings for its PDR and DDR.

ingestManagedAttributeValues responses
The ingestManagedAttributeValues operation has success and failure responses.

Success response
An ingestManagedAttributeValuesResponse for a successful operation would look like this example:

<ingest:ingestManagedAttributeValuesResponse
xmlns:ingest="http://www.endeca.com/MDEX/ingest/3/0">
<ingest:numManagedAttributesCreated>1</ingest:numManagedAttributesCreated>
<ingest:numManagedAttributeValuesCreated>3</ingest:numManagedAttributeValuesCreated>

</ingest:ingestManagedAttributeValuesResponse>

Version 7.6.1 • December 2013

In the sample response, the numManagedAttributesCreated element shows that one managed attribute was
created, while the numManagedAttributeValuesCreated element shows that three managed values were
created.

Failure response
On failure, a SOAP fault is returned. The ingest:ingestFault and ingest:errorDetail elements
should contain the error that caused the failure.

For example, assume that the following request was made to create the Saddle child managed value:

<ns:ingestManagedAttributeValues>
<ns:managedAttributeValue
displayName="bicycle saddles" spec="Saddle" parentSpec="Parts" managedAttribute="Component">
</ns:managedAttributeValue>

</ns:ingestManagedAttributeValues>

The ingest:errorDetail element would return an error similar to this:

<ingest:errorDetail>
Error applying updates: Managed attribute value put refers to
parent spec "Parts", which does not exist in managed attribute "Component"
</ingest:errorDetail>

In this example, the reason for the error is that the request refers to a non-existent parent managed value (58
in the example).

Oracle® Endeca Server: Data Loading Guide

Index

version 13A
dateTime property type 18adding primordial schema records 59
DDRassignments

structure 26adding with Bulk Load API 66
DDR default values 24adding with Data Ingest API 46

removing 47 deleting records 54
replacing 50 Dgraph process property types

attributes boolean 18
renaming 51 dateTime 18
standard 51 double 17
unique 31 duration 21

geocode 17
inclusive list of 15B
int 17

boolean property type 18 long 17
Bulk Load API string 16

creating records 66 time 20
data types 67 double property type 17
default logger 63

duration property type 21overview 62
post-ingest behavior 63
SSL connections 63 E

EQL expressions for identifying records 44
C externally managed taxonomies, loading 71

client stubs, generating 12
collections for partitioning data 32 G

geocode property type 17
D

data domain I
updating spelling dictionaries 60 incremental updates, performing 42

data domain recommended DIWS operations 10 Ingest Web Service
Data Ingest See Data Ingest

adding key-value pairs to records 46 initial loading of records 37adding new records 35
Integrator ETL, about 8addRecords request 35

deleting all data records and schema int property type 17
records 58
deleting records 54, 55 Kfailure response 36
generating client stubs 12 key-value pairs, adding 46
initial record loading 37
logging 11 Lmanaged attribute value loading 28

languageoverview 7
setting default for PDRs 24provisioning the data domain 59
setting for EQL errors 46removing properties 47, 50

renaming standard attributes 51 loading managed attribute values 28
resetting data domain 57 logging for Data Ingest requests 11

Data Ingest Web Service long property type 17list of Web service operations 9
not recommended data domain operations 11
recommended data domain operations 10

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

Index 75

records and schema, deleting 58M
record set specifiers, using 44managed attributes
record spec 31default values 24

NCName format 24 recordSpecifier identification with EQL
expressions 44managed values

assigning to records 39, 46 renaming standard attributes 51
loading 71 replacing records 55

rules for standard attribute creation 37N
namespaces for data ingest 13 S
NCName format for attribute names 24 standard attributes
network connection timeouts, troubleshooting 25 default values 23

NCName format 24new records
primary key 34adding with Bulk Load API 66
removing from records 47adding with Data Ingest API 35
replacing on records 50
rules for creation and assignments 37O

string property type 16
outer transaction ID 25

TP
time property type 20

PDR
troubleshooting network connection timeouts 25structure 26

PDR default values 23
Uprimary key 31

unique attributes 31properties
updating spelling dictionaries for data domains 60See standard attributes

provisioning the data domain 59
V

version of Data Ingest Web Service 13R
records

adding with Data Ingest API 35 W
creating with Bulk Load API 66 WSDL file, generating client stubs from 12deleting 54
identifying with EQL 44
replacing 55

Oracle® Endeca Server: Data Loading Guide Version 7.6.1 • December 2013

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction
	Overview of the Data Ingest Web Service
	Diagram of the operations in the WSDL
	Important usage note
	Data Ingest logging
	Generating client stubs

	Chapter 2: Prerequisite Information
	Namespaces and version for the Data Ingest Web Service
	Property types for Dgraph records
	string property
	numeric properties
	geocode property
	boolean property
	dateTime property
	time property
	duration property

	Default values for new attributes
	NCName format for attributes
	Interaction with the Transaction Web Service
	Troubleshooting connection timeouts

	Chapter 3: Adding New Records
	About adding PDRs and DDRs
	Adding managed attribute values
	About the primary keys for data records
	Adding primary-key attributes
	Adding new records
	Initial loading of records
	Adding managed attribute value assignments to records
	Adding records after the initial load

	Chapter 4: Updating Records
	About updates
	Identifying records with EQL
	Adding record assignments
	Removing record assignments
	Replacing record assignments
	Changing the name of a standard attribute

	Chapter 5: Deleting or Replacing Records
	Deleting records
	Replacing records

	Chapter 6: Resetting the Data Domain and Updating Spelling Dictionaries
	Resetting the Data Domain
	Removing all records from the data domain
	Provisioning the data domain

	Updating spelling dictionaries for the data domain

	Chapter 7: Bulk Load API
	About the Bulk Load API
	Bulk Load sample program
	Records, assignments, and data types
	Sending records to the data domain

	Appendix A: The Deprecated ingestManagedAttributeValues Operation
	ingestManagedAttributeValues operation
	ingestManagedAttributeValues responses

	Index

