
Oracle® Endeca Information Discovery
Integrator

Integrator Acquisition System API Guide

Version 3.1.0 • October 2013

Copyright and disclaimer
Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Table of Contents

Copyright and disclaimer ..2

Preface..5
About this guide ..5
Who should use this guide...5
Conventions used in this guide..5
Contacting Oracle Customer Support ...6

Chapter 1: Introduction to the IAS APIs ..7
The IAS APIs ..7
Generating client stubs for the IAS Web services ..8

Chapter 2: IAS Server API...10
IAS Server core operations ...10
Connecting to the IAS Server..11
Creating crawls ..11

About the source properties for crawls ...12
File system source properties and example13
Source properties for a custom data source15
Source properties for a manipulator ...17
Setting text extraction options ...19

Filtering files and folders ...20
Creating wildcard filters ..21
Creating regular expression filters ..22
Creating date filters ...23
Creating long filters ...25

About the output properties for crawls..26
Record Store output properties and example27
File system output properties and example28

Listing crawls ...30
Starting a crawl ..30
Stopping a crawl ...31
Deleting crawls ..32
Listing modules available to a crawl ...33
Retrieving crawl configurations...34
Updating crawl configurations..35
Getting crawl metrics..36
Getting the status of a crawl...37
Retrieving IAS Server information...38

Chapter 3: Component Instance Manager API..39
Component Instance Manager client utility classes39

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Table of Contents 4

Component Instance Manager core operations ...39
Creating a component ...40
Deleting a component ...40
Listing component instances ..41
Listing component types ...42

Chapter 4: Record Store API ..43
Record Store client utility classes ...43
Record Store core operations..44

Getting and setting a Record Store instance configuration45
Running a baseline read of the last-committed generation46
Running a delta read ..47
Maintaining client read state in the Record Store....................................48
Performing an incremental write..50
Performing a baseline write ...51

Sample Writer client example..52
Sample Reader client example...54

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Preface
Oracle® Endeca Information Discovery Integrator is a powerful visual data integration environment that
includes:

The Information Acquisition System (IAS) for gathering content from delimited files, file systems, JDBC
databases, and Web sites.

Integrator ETL, an out-of-the-box ETL purpose-built for incorporating data from a wide array of sources,
including Oracle BI Server.

In addition, Oracle Endeca Web Acquisition Toolkit is a Web-based graphical ETL tool, sold as an add-on
module. Text Enrichment and Text Enrichment with Sentiment Analysis are also sold as add-on modules.
Connectivity to data is also available through Oracle Data Integrator (ODI).

About this guide
This guide describes how to programmatically configure and run IAS crawls using the IAS Server API, the
Component Instance Manager API, and the Record Store API.

The guide assumes that you are familiar with the concepts of the Integrator Acquisition System, including how
file systems, delimited files, JDBC databases, and custom data sources are crawled by IAS.

Who should use this guide
This guide is intended for data developers who are using the Integrator Acquisition System APIs to crawl
source data and incorporate that data into an Endeca data domain.

Conventions used in this guide
The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typographic conventions

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sample This formatting is used for sample code phrases within a paragraph.

<Variable Name> This formatting is used for variable values, such as <install path>.

File Path This formatting is used for file names and paths.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Preface 6

Symbol conventions

The following table describes symbol conventions used in this document.

Symbol conventions

Symbol Description Example Meaning

> The right angle bracket, File > New > Project From the File menu,
or greater-than sign, choose New, then from
indicates menu item the New submenu,
selections in a graphic choose Project.
user interface.

Contacting Oracle Customer Support
Oracle Customer Support provides registered users with important information regarding Oracle software,
implementation questions, product and solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

https://support.oracle.com

Chapter 1

Introduction to the IAS APIs

This section introduces each API in the Integrator Acquisition System.

The IAS APIs

Generating client stubs for the IAS Web services

The IAS APIs
The Integrator Acquisition System includes the following APIs:

• IAS Server API — A WSDL-based API that controls crawling operations against a variety of file systems,
delimited files, JDBC databases, and custom data sources.

• Component Instance Manager API — A WSDL-based API that creates, lists, and deletes Record Store
instances.

• Record Store API — A WSDL-based API that modifies and controls a variety of reading, writing, and utility
operations against Record Store instances.

• IAS Extension API — A Java-based API to build extensions to the Integrator Acquisition System such as
data sources and manipulators. This API is for plugin developers and it is documented in the Integrator
Acquisition System Extension API Guide.

The rest of this guide documents the WSDL-based APIs. Each WSDL-based API in the Integrator Acquisition
System can be used with any programming language that has Web services support, and developers can
write crawl functions in their preferred language (Java, .NET, etc.) as a Web service.

Name and location of the WSDL files
You can find the following WSDL files in <install path>\IAS\<version>\doc\wsdl :

• IAS Server API — IasCrawlerService.wsdl.

• Component Instance Manager API — ComponentInstanceManager.wsdl.

• Record Store API — RecordStore.wsdl.

Java convenience classes
For convenience, Java versions of each API are included in <install path>\IAS\<version>\lib :

• IAS Server API — ias-api\eidi-api-3.1.0.jar.

• Component Instance Manager API — component-manager-api\component-manager-api-
3.1.0.jar.

• Record Store API — recordstore-api\recordstore-api-3.1.0.jar.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Introduction to the IAS APIs 8

Each API also includes utility (helper) classes in its JAR file.

If desired, you can use the Java version of the API rather than generate client stubs from the WSDL files. The
Java versions were generated using Apache CXF. For other languages (such as .NET), you must generate
the client stubs in your programming language.

Java examples in the guide

Examples in this guide use the Java versions of the APIs mentioned above. This convention has an important
implication in the code examples:

Most types of identifiers are set in the constructor rather than in a setter method. For example:

ModuleId moduleId = new ModuleId("File System");

Acquisition System API Guide

If you are generating client stubs, most types of identifiers are set using a setter method. For example:

ModuleId moduleId = new ModuleId();
moduleId.setId("File System");

The specific setter usage depends on the application you use to generate client stubs. For example, setter
usage varies in stubs generate with Apache Axis and Apache CXF.

Reference documentation (Javadoc) for the IAS APIs

The Javadoc provides reference documentation for both the core and utility classes. You can find the Javadoc
in <install path>\IAS\<version>\doc:

• IAS Server API Reference — ias-server-javadoc

• Component Instance Manager API Reference — component-manager-javadoc

• Record Store API Reference — recordstore-javadoc

Generating client stubs for the IAS Web services
To create a client application that consumes any of the IAS Web services, you need the particular Web
service's WSDL file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a programmatic
fashion. Typically, a client developer uses a tool that parses the WSDL file and generates client-side stubs
(also called proxy classes) and value types. These generated files include all the code necessary to serialize
and deserialize SOAP messages and make the SOAP layer transparent to the client developer. The IAS
WSDL files can be used with any language that has Web services support.

Among the tools that generate client stub code from the WSDLs are the following:

• Apache CXF 2.2 or later

• Java Web Services Developer Pack (Java WSDP), version 1.4 or later

• Web Services Description Language Tool (wsdl.exe), available as part of the Microsoft .NET Framework
SDK

Specify the appropriate choice below as the package name when you generate stubs for a particular Web
service:

• com.endeca.eidi.ias.api

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Introduction to the IAS APIs 9

• com.endeca.eidi.component.manager

• com.endeca.eidi.recordstore

For example, the CXF wsdl2java utility takes the WSDL file and generates fully annotated Java code with
one of the following commands:

• wsdl2java -p com.endeca.eidi.ias.api -client IasCrawlerService.wsdl

• wsdl2java -p com.endeca.eidi.component.manager -client
ComponentInstanceManager.wsdl

• wsdl2java -p com.endeca.eidi.recordstore -client RecordStore.wsdl

For details on using a WSDL code-generation utility, refer to the utility's documentation.

Keep in mind that the exact syntax of a class member depends on the output of the WSDL tool that you are
using. Therefore, check the client stub classes that are generated by your WSDL tool for the exact syntax of
the class members.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Chapter 2

IAS Server API

This section describes the IAS Server API.

IAS Server core operations

Connecting to the IAS Server

Creating crawls

Listing crawls

Starting a crawl

Stopping a crawl

Deleting crawls

Listing modules available to a crawl

Retrieving crawl configurations

Updating crawl configurations

Getting crawl metrics

Getting the status of a crawl

Retrieving IAS Server information

IAS Server core operations
This topic describes the IAS Server API core methods.

The following methods are provided by the API:

• createCrawl creates and stores a new crawl.

• startCrawl starts a crawl.

• listCrawls lists all the crawls that have been created.

• stopCrawl stops a crawl that is currently running.

• deleteCrawl deletes an existing crawl.

• getStatus returns the status of a specified crawl.

• getMetrics retrieves crawl statistics for a specified crawl.

• getCrawlConfig gets the configuration settings of a specified crawl.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

IAS Server API 11

• listModules returns a list of the available module IDs for data sources or manipulators. Module IDs may
include any custom data source extensions or custom manipulator extensions that you installed using the
IAS Extension API.

• updateCrawl updates the configuration settings for an existing crawl.

• getServerInfo returns a list of the IAS Server properties.

Note: The syntax descriptions for these operations use Java conventions. The examples in this guide
use client stubs generated with Apache CXF 2.2. However, the exact syntax of a class member
depends on the output of the WSDL tool that you are using.

Connecting to the IAS Server
Call the IasCrawlerLocator.create() method to connect to the IAS Server.

The IasCrawlerLocator class establishes a connection with the IAS Server. In particular, the
IasCrawlerLocator.getService() method is the call that makes the connection. The ServiceAddress

stores connection information including the host, and port, and context path of the IAS Server.

To create a connection to the IAS Server:

1. Create a ServiceAddress object and specify the host and port of the server running the IAS Server
and also specify the contextPath of WebLogic. If you are installing into Jetty, not WebLogic, the
contextPath can be set to an empty string.

2. Create an IasCrawlerLocator by calling create() and specifying the ServiceAddress object. For
example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
IasCrawlerLocator locator = IasCrawlerLocator.create(address);

Acquisition System API Guide

3. Create an IasCrawler object and call getService() to establish a connection to the server and the
Endeca IAS Service. For example:

IasCrawler crawler = locator.getService();

You now have a connection to the IAS Server that can perform crawling operations.

Creating crawls
Use the IasCrawler.createCrawl() method to create a new crawl of any type (for example, file system,
delimited file, or custom data source).

The syntax of the method is:

IasCrawler.createCrawl(CrawlConfig crawlConfig)

The crawlConfig parameter is a CrawlConfig object that has the configuration settings of the crawl.

To create a new crawl:

1. Make sure that you have created a connection to the IAS Server.

2. Instantiate a CrawlId object and set the Id for the crawl in the constructor.

You can create an ID with alphanumeric characters, underscores, dashes, and periods. All other
characters are invalid for an ID.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 12

For example:

// Create a new crawl ID with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Acquisition System API Guide

3. Instantiate a CrawlConfig object and pass in the CrawlId object .

For example:

// Create a crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

4. Instantiate a SourceConfig object

For example:

// Create source configuration.
SourceConfig sourceConfig = new SourceConfig();

5. Set the source properties and seeds in the SourceConfig object. Detailed information on source
properties is provided in other topics.

6. Set the SourceConfig on the CrawlConfig.

For example:

// Set source configuration.
crawlConfig.setSourceConfig(sourceConfig);

7. Optionally, you can set configuration options for such features as document conversion, logging, and
filters for files and directories. Detailed information on these options is provided in other topics.

8. Create the crawl by calling IasCrawler.createCrawl() and passing the CrawlConfig (the
configuration) object:

For example:

crawler.createCrawl(crawlConfig);

If the IasCrawler.createCrawl() method fails, it throws an exception:

• CrawlAlreadyExistsException occurs if a crawl of the same name already exists.

• InvalidCrawlConfigException occurs if the configuration is invalid. You can call
getCrawlValidationFailures() to return the list of crawl validation errors.

To catch these exceptions, use a try block when you issue the method.

If the new crawl is successfully created, it can be started with the IasCrawler.startCrawl() method.

About the source properties for crawls
The SourceConfig class allows a client to specify information about the data source that is being crawled.
The SourceConfig class uses two methods to set data source properties: setModuleId() and
setModuleProperties().

Module ID
The setModuleId() method sets the module ID of the data source for this crawl. A module ID is a ModuleId

object.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 13

The string File System is the module ID for a file system crawl (whose source is a file system). You must
specify this module ID when you create a file system crawl.

Each crawl type has its own unique module ID. Use the IasCrawler.listModules() method to find out the
module IDs that are available to the IAS Server.

A plug-in developer specifies the ModuleId for a custom data source. An IAS data developer can determine
the ModuleId for a custom data source by running the listModules and task in the IAS Server Command-
line Utility.

Module Properties
Each ModuleProperty is a key/value pair or a key/multi-value pair that provides configuration information
about this data source. You specify a ModuleProperty by calling setKey() to specify a string representing the
key and by calling setValues() to set one or more corresponding values.

You then set each ModuleProperty on the SourceConfig object by calling addModuleProperty().

File system source properties and example

The SourceConfig object for a file system crawl requires a ModuleId that specifies "File System", a
ModuleProperty to specify the seeds, and additional ModuleProperty objects for any optional source
properties.

Table 2.1: Module Properties for file system data sources

File System Module Property Key Key Value

seeds The seeds property is a key/multi-value pair. The key is seeds
and the multi-value pair is one or more strings to a file or folder.
File paths used as seeds must be absolute paths. Required.

gatherNativeFileProperties The gatherNativeFileProperties property (if set to true)
enables the crawl to gather operating system-level properties,
such as Windows ACL properties (e.g.,
Endeca.FileSystem.ACL.AllowRead) or UNIX owner,
group, and readable properties (e.g.,
Endeca.FileSystem.IsOwnerReadable). The default is
false.
Optional.

expandArchives The expandArchives property (if set to true) enables the
crawl to expand archived entries. Enabling this property creates
an Endeca record for each archived entry and populates its
properties. Enabling the document conversion option extracts
text. Note that the crawl does not gather native file properties for
archived entries even if that option is enabled. The default is
false. Optional.

Here is an example of the source properties for a file system crawl.

// Connect to the IAS Server.

Acquisition System API Guide
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 14

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
IasCrawlerLocator locator = IasCrawlerLocator.create(address);
IasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a file system module ID.
ModuleId moduleId = new ModuleId("File System");

// Set the module ID in the source config.
sourceConfig.setModuleId(moduleId);

// Create a module property object for the seeds.
ModuleProperty seeds = new ModuleProperty();
// Set the key for seeds.
seeds.setKey("seeds");
// Set multiple values for seeds.
seeds.setValues("C:\\tmp\\iasdocset","C:\\tmp\\etldocset");

// Set the seeds module property on the source config.
sourceConfig.addModuleProperty(seeds);

// Create a module property for gathering native file props.
ModuleProperty nativeFileProps = new ModuleProperty();
// Set the key for gathering native file properties.
nativeFileProps.setKey("gatherNativeFileProperties");
// Set the value to enable gathering native file properties.
nativeFileProps.setValues("true");

// Set the nativeFileProps module property on the source config.
sourceConfig.addModuleProperty(nativeFileProps);

// Create a module property object for expanding archives.
ModuleProperty extractArchives = new ModuleProperty();
// Set the key for extracting archive files.
extractArchives.setKey("expandArchives");
// Set the value to enable expanding archives.
extractArchives.setValues("true");

// Set the extractArchives module property on the source config.
sourceConfig.addModuleProperty(extractArchives);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Acquisition System API Guide

Note that if you retrieve a SourceConfig object from a configured crawl, you can call the getModuleId()

method to get the module ID and the getModuleProperties() method to retrieve the list of module
properties.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 15

Source properties for a custom data source

The SourceConfig for a custom data source crawl contains a mandatory ModuleId and ModuleProperty

objects that define the custom data source to crawl and any other optional properties that are necessary for a
custom data source.

Module ID for a custom data source
A plug-in developer specifies the ModuleId for a custom data source. An IAS data developer can determine
the ModuleId for a custom data source by running the listModules and task in the IAS Server Command-
line Utility:

1. Start a command prompt and navigate to <install path>\IAS\<version>\bin.

2. Type ias-cmd and specify the listModules task with the module type (-t) option and specify and
argument of SOURCE. For example:

ias-cmd.bat listModules -t SOURCE
Sample Data Source
*Id: Sample Data Source
*Type: SOURCE
*Description: Sample Data Source for Testing

...

Acquisition System API Guide

3. In the list of data sources returned by listModules, locate the custom data source and Id value.

Module Properties for a custom data source

Custom data sources can use any number of module properties. A plugin developer determines what module
properties are necessary for a custom data source and whether the module properties are required or
optional.

An IAS data developer can check the available module properties for a custom data source by running the
getModuleSpec task of the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\IAS\<version>\bin.

2. Type ias-cmd and specify the getModuleSpec task with the ID of the module whose source properties
you want to see. For example:

ias-cmd.bat getModuleSpec -id "Sample Data Source"
Sample Data Source
=================
[Module Information]
*Id: Sample Data Source
*Type: SOURCE
*Description: Sample Data Source for Testing

[Sample Data Source Configuration Properties]
Group: Basic Settings

User name:
*Name: username
*Type: {http://www.w3.org/2001/XMLSchema}string
*Required: true
*Max Length: 256
*Description: The name of the user used to log on to the repository
*Multiple Values: false
*Multiple Lines: false
*Password: false
*Always Show: true

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 16

Password:
*Name: password
*Type: {http://www.w3.org/2001/XMLSchema}string
*Required: true
*Max Length: 256
*Description: The password used to log on to the repository
*Multiple Values: false
*Multiple Lines: false
*Password: true
*Always Show: true

...

Acquisition System API Guide

Here is an example of the source properties for a custom data source crawl.

// Connect to the IAS Server.
ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
IasCrawlerLocator locator = IasCrawlerLocator.create(address);
IasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create the source configuration.
SourceConfig sourceConfig = new SourceConfig();

// Create a module ID for a Sample Data Source repository.
// Set the module ID in the constructor.
ModuleId moduleId = new ModuleId("Sample Data Source");

// Create a list for the module property objects.
List<ModuleProperty> cmsPropsList = new ArrayList<ModuleProperty>();

// Create a module property for username.
// Set key/values of the module property as strings in the constructor.
ModuleProperty uname = new ModuleProperty("username", "SALES\\username");

// Set the module property in the module property list.
cmsPropsList.add(uname);

// Create a module property for password.
// Set key/values of the module property as strings in the constructor.
ModuleProperty upass = new ModuleProperty("password", "endeca");

// Set the module property in the module property list.
cmsPropsList.add(upass);

// Set the module property list in the source configuration.
sourceConfig.setModuleProperties(cmsPropsList);

// Set the source configuration in the crawl configuration.
crawlConfig.setSourceConfig(SourceConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 17

Source properties for a manipulator

The ManipulatorConfig for a manipulator contains a mandatory ModuleId and ModuleProperty objects that
define the manipulator to run and any other optional properties that are necessary for a manipulator.

Module ID for a manipulator
A plugin developer specifies the ModuleId for a manipulator. An IAS data developer can determine the
ModuleId for a manipulator by running the listModules and task in the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\IAS\<version>\bin.

2. Type ias-cmd and specify the listModules task with the module type (-t) option and specify and
argument of MANIPULATOR. For example:

ias-cmd listModules -t MANIPULATOR
Substring Manipulator
*Id: com.endeca.ias.extension.sample.manipulator.substring.SubstringManipulator

*Type: MANIPULATOR
*Description: Generates a new property that is a substring of another property

value

Acquisition System API Guide

3. In the list of manipulators returned by listModules, locate the manipulator and its ID value. That
becomes the ModuleId.

Module Properties for a manipulator

Manipulators can use any number of module properties. A plugin developer determines what module
properties are necessary for a manipulator and whether the module properties are required or optional.

An IAS data developer can check the available module properties for a manipulator by running the
getModuleSpec task of the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <install path>\IAS\<version>\bin.

2. Type ias-cmd and specify the getModuleSpec task with the ID of the module whose source properties
you want to see. For example:

ias-cmd getModuleSpec -id
com.endeca.ias.extension.sample.manipulator.substring.SubstringManipulator
Substring Manipulator
=====================
[Module Information]
*Id: com.endeca.ias.extension.sample.manipulator.substring.SubstringManipulator

*Type: MANIPULATOR
*Description: Generates a new property that is a substring of another property

value

[Substring Manipulator Configuration Properties]
Group:

Source Property:
*Name: sourceProperty
*Type: {http://www.w3.org/2001/XMLSchema}string
*Required: true
*Default Value:
*Max Length: 255
*Description:
*Multiple Values: false
*Multiple Lines: false
*Password: false

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 18

*Always Show: false

Target Property:
*Name: targetProperty
*Type: {http://www.w3.org/2001/XMLSchema}string
*Required: true
*Default Value:
*Max Length: 255
*Description:
*Multiple Values: false
*Multiple Lines: false
*Password: false
*Always Show: false

Substring Length:
*Name: length
*Type: {http://www.w3.org/2001/XMLSchema}integer
*Required: true
*Default Value: 2147483647
*Min Value: -2147483648
*Max Value: 2147483647
*Description: Substring length
*Multiple Values: false
*Multiple Lines: false
*Password: false
*Always Show: false

Substring Start Index:
*Name: startIndex
*Type: {http://www.w3.org/2001/XMLSchema}integer
*Required: false
*Default Value: 0
*Min Value: -2147483648
*Max Value: 2147483647
*Description: Substring start index (zero based)
*Multiple Values: false
*Multiple Lines: false
*Password: false
*Always Show: false

Acquisition System API Guide

Here is an example of the source properties for a crawl that includes the manipulator in the above example.

// Connect to the IAS Server.
ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
IasCrawlerLocator locator = IasCrawlerLocator.create(address);
IasCrawler crawler = locator.getService();

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

// Create the crawl configuration.
CrawlConfig crawlConfig = new CrawlConfig(crawlId);

// Create a list for manipulator configurations, even if
// there is only one.
List<ManipulatorConfig> manipulatorList = new ArrayList<ManipulatorConfig>();

// Create a module ID for a Substring Manipulator.
// Set the module ID in the constructor.
ModuleId moduleId
= new ModuleId("com.endeca.ias.extension.sample.manipulator.substring.SubstringManipulator");

// Create a manipulator configuration.
ManipulatorConfig manipulator = new ManipulatorConfig(moduleId);

// Create a list for the module property objects.
List<ModuleProperty> manipulatorPropsList = new ArrayList<ModuleProperty>();

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 19

// Create a module property for sourceProperty.
// Set key/values of the module property as strings in the constructor.
ModuleProperty sp = new ModuleProperty("sourceProperty", "Endeca.Document.Text");

// Set the module property in the module property list.
manipulatorPropsList.add(sp);

// Create a module property for targetProperty.
// Set key/values of the module property as strings in the constructor.
ModuleProperty tp = new ModuleProperty("targetProperty", "Truncated.Text");

// Set the module property in the module property list.
manipulatorPropsList.add(tp);

// Create a module property for length.
// Set key/values of the module property as strings in the constructor.
ModuleProperty length = new ModuleProperty("length", "20");

// Set the module property in the module property list.
manipulatorPropsList.add(length);

// Set the module property list in the manipulator configuration.
manipulator.setModuleProperties(manipulatorPropsList);
manipulatorList.add(manipulator);

// Set the list of manipulator configurations in the crawl configuration.
crawlConfig.setManipulatorConfigs(manipulatorList);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Acquisition System API Guide

Setting text extraction options

The TextExtractionConfig class specifies document conversion parameters to override default values.

Note: The phrases text extraction and document conversion mean the same thing.

The TextExtractionConfig class has methods to set these document conversion options:

• Whether document conversion should be performed. The default for file system crawls is true. The
default for custom data source extensions defaults to false unless the extension developer implements
an interface that supports binary content. If set to true, the next options can be used.

• Whether to use local file copies to perform the text extraction (file system crawls only).

• The time that IAS Server waits for text extraction results from the IAS Document Conversion Module
before retrying.

To set the text-extraction options:

1. Make sure that you have already created a SourceConfig, a CrawlConfig, and set the name and the
seeds (if required for the source type) for the crawl.

2. Instantiate an empty TextExtractionConfig object

For example:

TextExtractionConfig textOptions = new TextExtractionConfig();

3. Call the setEnabled() method to set a Boolean value to enable text extraction:

// Enable text extraction for this crawl.
textOptions.setEnabled(true);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 20

4. For file system crawls, you can use the setMakeLocalCopy() method to set a Boolean indicating
whether files should be copied to a local temporary directory before text is extracted from them. The
default for setMakeLocalCopy() is false. Custom data source extensions may also make local
copies if the extension developer implemented the BinaryContentFileProvider interface of the IAS
Extension API.

// Enable use of local file copying.
textOptions.setMakeLocalCopy(true);

Acquisition System API Guide

5. If desired, call the setTimeout() method and specify an integer to set amount of time (in seconds)
IAS waits for text extraction on a document to finish before attempting again. The default is 90
seconds.

// Set timeout to 120 seconds.
textOptions.setTimeout(120);

6. Call the CrawlConfig.setTextExtractionConfig() method to set the populated
TextExtractionConfig object in the CrawlConfig object:

// Set the text extraction options in the configuration
crawlConfig.setTextExtractionConfig(textOptions);

7. Create the file system crawl:

crawler.createCrawl(crawlConfig);

Note that if you retrieve a TextExtractionConfig object from a configured crawl, each of the set methods
has a corresponding get method, such as the getTimeout() method.

Filtering files and folders

The API provides classes to specify inclusion and exclusion filters for files and folders.

You add include and exclude filters to the crawl configuration to ensure that the IAS Server processes the
proper files and folders when running a crawl.

Note: Custom data sources built using the IAS Extension API do not support filters.

Keep in mind that if you use both include and exclude filters, the exclude filters take precedence. For
additional detailed information about how filters interact with each other and Endeca properties, see the
"About filters" topic in the Integrator Acquisition System Developer's Guide.

The filter classes are the following:

• WildcardFilter for filtering based on a wildcard value.

• RegexFilter for filtering based on a regular expression value.

• DateFilter for filtering based on a datetime value.

• LongFilter for filtering based on a long value.

For all filters, you must specify a property against which the filter is applied. The property is typically a
standard property generated by IAS (such as the Endeca.FileSystem.Name property), but it can also be a
custom property.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 21

Some of the classes used for creating filters are the following:

• ComparisonOperator provides comparison operators, such as EQUAL, NOT_EQUAL, LESS, and
GREATER.

• Filter is the base type for all filters, providing for an optional filter scope property.

• FilterScope provides enumerations for the FILE and DIRECTORY filter scopes.

After you create a filter, you must set it in a SourceConfig object, which in turn is set in the CrawlConfig

configuration object.

Creating wildcard filters

The WildcardFilter class specifies a wildcard as an inclusion or exclusion filter.

A WildcardFilter is a filter that applies a wildcard to a particular property. The wildcard matcher uses the
question-mark (?) character to represent a single wildcard character and the asterisk (*) to represent multiple
wildcard characters. Matching is case insensitive: this is not configurable (If case sensitivity is required,
consider using a regular expression). In the example below, the filter applies to the
Endeca.FileSystem.Name property.

To create a wildcard filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

2. Instantiate a new, empty WildcardFilter object:

WildcardFilter filter = new WildcardFilter();

Acquisition System API Guide

3. Call the setPropertyName() method (inherited from the Filter class) to set the name of the property
against which the filter is applied:

// filter on the file name
filter.setPropertyName("Endeca.FileSystem.Name");

4. Use the setWildcard() method to set the wildcard:

// exclude Word files
filter.setWildcard("*.doc");

5. Use the setScope() method (inherited from the Filter class) to set the filter scope. You can set the
scope to files (as in the following example), or to folders (FilterScope.DIRECTORY).

// set the scope of the filter for only files
filter.setScope(FilterScope.FILE);

6. Create a list of Filter objects and use the add() method (inherited from the List interface) to add
the wildcard filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

7. Use the SourceConfig.setExcludeFilters() method to set the populated list in the SourceConfig

configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

8. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in the main
CrawlConfig configuration object.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 22

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Acquisition System API Guide

Note that the WildcardFilter class has a getWildcard() method to retrieve a wildcard value. In addition,
the SourceConfig class has the getExcludeFilters() and getIncludeFilters() methods to retrieve the
filters from the source configuration.

Creating regular expression filters

The RegexFilter class specifies a regular expression as an inclusion or exclusion filter.

A RegexFilter is a filter that applies a regular expression to a particular record property. Matching is case
sensitive by default (this is not configurable through the API). In the example below, the filter applies to the
Endeca.FileSystem.Name property.

IAS implements Sun’s java.util.regex package to parse and match the pattern of the regular expression.
Therefore, the supported regular-expression constructs are the same as those in the documentation page for
the java.util.regex.Pattern class:

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

This means that you can use any of the following constructs:

• Escape characters, such \t for the tab character.

• Character classes (simple, negation, range, intersection, subtraction). For example, [^abc] means match
any character except a, b, or c, while [a-zA-Z] means match any upper- or lower-case letter.

• Predefined character classes, such as \d for a digit or \s for a whitespace character.

• POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum} for
an alphanumeric character, and \p{Punct} for punctuation.

• Boundary matchers, such as ^ for the beginning of a line, $ for the end of a line, and \b for a word
boundary.

• Logical operators, such as X|Y for either X or Y.

For a full list of valid constructs, see the Pattern class documentation page referenced above.

To create a regex filter:

1. Make sure that you have created a SourceConfig (see the following example) and a CrawlConfig.

SourceConfig sourceConfig = new SourceConfig();

2. Instantiate a new, empty RegexFilter object:

RegexFilter filter = new RegexFilter();

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the property
against which the filter will be applied:

For example:

// Filter on the file name.
filter.setPropertyName("Endeca.FileSystem.Name");

4. Call the setRegex() method to set the regular expression:

For example:

// Exclude executable and help files.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

IAS Server API 23

filter.setRegex(".*\.(exe|bin|dll|hlp)$");

Acquisition System API Guide

5. Use the setScope() method (inherited from the Filter class) to set the filter scope. You can set the
scope to files (as in the following example), or to directories (FilterScope.DIRECTORY).

For example:

// Set the scope of the filter for only files.
filter.setScope(FilterScope.FILE);

6. Create a list of Filter objects and add the regex filter to it.

For example:

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

7. Use the SourceConfig.setExcludeFilters() method to set the populated list in the SourceConfig

configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

For example:

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

8. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in the main
CrawlConfig configuration object.

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Note that the RegexFilter class has a getRegex() method to retrieve a regex value. In addition, the
SourceConfig class has the getExcludeFilters() and getIncludeFilters() methods to retrieve the filters
from the source configuration.

Creating date filters

The DateFilter class specifies a date against which files and folders can be filtered.

A DateFilter uses a datetime value to filter temporal-based properties, such as the
Endeca.FileSystem.ModificationDate property (used in the example below).
The filter also uses a comparison operator that specifies how the operands are compared, using the
enumerations:

• BEFORE

• AFTER

For example, if you create a date exclude filter that performs a BEFORE comparison against the
Endeca.FileSystem.ModificationDate property, then files that have been modified before the date
reference are excluded.

To create a date filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

For example:

SourceConfig sourceConfig = new SourceConfig();

2. Instantiate a new, empty DateFilter object:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 24

DateFilter filter = new DateFilter();

Acquisition System API Guide

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the property
against which the filter will be applied:

// Filter on the last-modified date.
filter.setPropertyName("Endeca.FileSystem.ModificationDate");

4. Use the setReferenceValue() method to set the date/time value. Note that the Java API takes a
Date object as its parameter and the WSDL-generated classes take a XMLGregorianCalendar object:

For example:

// Create a Date object.
Date date = new Date();
// set the time to noon on May 1, 2009
date.setYear(2009);
date.setMonth(5);
date.setDay(1);
date.setTime(12,0,0);
filter.setReferenceValue(date);

5. Call the setOperator() method to specify that the filter will exclude files that have an earlier
modification date:

For example:

// Exclude files with an earlier modification date.
filter.setOperator(DateComparisonOperator.BEFORE);

6. Call the setScope() method (inherited from the Filter class) to set the filter scope. You can set the
scope to files or to directories (FilterScope.DIRECTORY).

For example:

// Set the scope of the filter for only files.
filter.setScope(FilterScope.FILE);

7. Create a list of Filter objects and use the add() method to add the date filter.

For example:

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

8. Use the SourceConfig.setExcludeFilters() method to set the populated list in the SourceConfig

configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

For example:

// Set the filter in the source configuration.
sourceConfig.setExcludeFilters(filterList);

9. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in the main
CrawlConfig configuration object.

For example:

// Set the source config in the crawl configuration.
crawlConfig.setSourceConfig(sourceConfig);

Note that the DateFilter class has a getReferenceValue() method to retrieve the XMLGregorianCalendar

object. In addition, the SourceConfig class has the getExcludeFilters() and getIncludeFilters()

methods to retrieve the filters from the source configuration.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 25

Creating long filters

The LongFilter class specifies a long value against which files can be filtered. LongFilter extends the
ComparableValueFilter class.

A LongFilter is a comparison filter that specifies a value (as a long) to be compared against a numerical
property, such as the Endeca.File.Size property (used in the example below).The filter uses a comparison
operator that specifies how the operands are compared, using the enumerations:

• EQUAL

• GREATER

• GREATER_EQUAL

• LESS

• LESS_EQUAL

• NOT_EQUAL

For example, if you create a long exclusion filter that performs a GREATER comparison against the
Endeca.File.Size property, then files whose size is greater than the reference value are excluded.

To create a long filter:

1. Make sure that you have created a SourceConfig and a CrawlConfig.

For example:

SourceConfig sourceConfig = new SourceConfig();

Acquisition System API Guide

2. Instantiate a new, empty LongFilter object:

LongFilter filter = new LongFilter();

3. Use the setPropertyName() method (inherited from the Filter class) to set the name of the property
against which the filter will be applied:

// filter on the file size, which is in bytes
filter.setPropertyName("Endeca.File.Size");

4. Use the setReferenceValue() method to set the long value to compare against the property:

// exclude files larger than ~1GB
filter.setReferenceValue(1000000000);

5. Call the setOperator() method (inherited from the ComparableValueFilter class) to specify that the
filter will apply only to files that have a size greater than the reference value:

// exclude files with a size larger than the reference value
filter.setOperator(ComparisonOperator.GREATER);

6. Call the setScope() method (inherited from the Filter class) to set the filter scope. You can set the
scope to files or to directories (FilterScope.DIRECTORY).

For example:

// set the scope of the filter for only files
filter.setScope(FilterScope.FILE);

7. Create a list of Filter objects and use the add() method to add the filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 26

8. Use the SourceConfig.setExcludeFilters() method to set the populated list in the SourceConfig

configuration object. If this were an inclusion filter, you would use the
SourceConfig.setIncludeFilters() method instead.

// set the filter in the source config
sourceConfig.setExcludeFilters(filterList);

Acquisition System API Guide

9. Use the CrawlConfig.setSourceConfig() method to set the populated SourceConfig in the main
CrawlConfig configuration object.

// set the source config in the main config
crawlConfig.setSourceConfig(sourceConfig);

Note that the LongFilter class has a getReferenceValue() method to retrieve the long value and a
getPropertyName() method to retrieve the Endeca property. In addition, the SourceConfig class has the
getExcludeFilters() and getIncludeFilters() methods to retrieve the filters from the source
configuration.

About the output properties for crawls
The OutputConfig class specifies whether the output from a crawl is stored in a Record Store instance or an
output file.

The OutputConfig class uses two methods to set the properties: setModuleId() and
setModuleProperties().

Module ID
The setModuleId() method sets the module ID of the output type. You specify a string value to indicate the
type of output. You can set the string to File System if you want the crawl output to go to a file system or set
it to Record Store if you want the output to go to a Record Store instance.

You can set one output option per crawl configuration.

Module Properties
Each ModuleProperty is a key/value pair or a key/multi-value pair that provides configuration information
about this an output type.

You specify a ModuleProperty by calling setKey() to specify a string representing the key and by calling
setValues() to set one or more corresponding values.

You then set eachModuleProperty on the SourceConfig object by calling addModuleProperty().

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 27

Record Store output properties and example

The OutputConfig class configures a crawl to write crawl output to a Record Store instance.

Table 2.2: Module Properties for Record Store output

Record Store Property Key Name Key Value

host The name of the host on which the Record Store is running. The
default is localhost.

port The port number on which the Record Store is listening. The
default is 8510.

contextPath The WebLogic context path of the service location. This path is
required for IAS installed into WebLogic. The path should be an
empty string for IAS installed into Jetty. The default is an empty
string.

isPortSsl Specify how to interpret the port setting.

A value of true means that port is an SSL port and the API
uses HTTPS for connections.

A value of false means that port is a non-SSL port and the
API uses HTTP for connections. The default is false.

Specify false if you enabled HTTPS redirects.

instanceName The name of the Record Store instance that you want to write
output to. The default is <crawlID>.

isManaged A Boolean value that indicates whether the Record Store
instance is managed or not. Management ties a Record Store
instance to its corresponding crawl configuration. Specifying
true indicates that a Record Store instance is created if you
run a crawl and a Record Store instance does not already exist.
Specifying true also indicates that a Record Store instance is
deleted if you delete the corresponding crawl configuration. The
default is true (is managed).

Here is an example of the output properties for a crawl writing to a Record Store instance.

// Create the output configuration.
OutputConfig outputConfig = new OutputConfig();

// Create a Record Store module ID.
ModuleId moduleId = new ModuleId("Record Store");

// Set the module ID in the output configuration.
outputConfig.setModuleId(moduleId);

// Create a module property object.
ModuleProperty host = new ModuleProperty();
// Set the key for specifying the host name.
host.setKey("host");

Acquisition System API Guide
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 28

host.setValues("localhost");

// Create a module property object.
ModuleProperty port = new ModuleProperty();
// Set the key for specifying the port number.
port.setKey("port");
port.setValues("8401");

// Create a module property object.
ModuleProperty contextPath =new ModuleProperty();
contextPath.setKey("contextPath");
contextPath.setValues("");

// Create a module property object.
ModuleProperty instanceName = new ModuleProperty();
// Set the key for specifying the instance name of the Record Store.
instanceName.setKey("instanceName");
instanceName.setValues("RS1");

// Create a module property object.
ModuleProperty isManaged = new ModuleProperty();
// Set the key for specifying whether the Record Store is managed.
isManaged.setKey("isManaged");
isManaged.setValues("true");

// Create a list for the module property objects.
List<ModuleProperty> outputPropsList = new ArrayList<ModuleProperty>();

// Set the module property objects in the list.
outputPropsList.add(host);
outputPropsList.add(port);
outputPropsList.add(contextPath);
outputPropsList.add(instanceName);
outputPropsList.add(isManaged);

// Set the module property in the output config (if not already done).
outputConfig.setModuleProperties(outputPropsList);

// Set the output configuration in the main crawl configuration.
crawlConfig.setOutputConfig(outputConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Acquisition System API Guide

File system output properties and example

The OutputConfig class configures a crawl to write output to a record output file.

Table 2.3: Module Properties for record output files

File System Property Key Name Key Value

outputPrefix The prefix of the output file (CrawlerOutput is the default
prefix). Optional.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 29

File System Property Key Name Key Value

outputDirectory The name and path of the output directory under the IAS
Server's workspace directory. The default name of
outputDirectory is output and the default name of
<crawlID> is used to create a subdirectory for each crawl. This
ensures each crawl has a unique subdirectory for its output. For
example, if you use the default value for outputDirectory
and have a <crawlID> of FileSystemCrawl, the resulting
directory structure is
IAS\workspace\output\FileSystemCrawl\.

outputXml A Boolean value that sets the output format to either XML or
binary. Specifying true sets the output to XML. Specifying
false sets the output to binary. The default is false.

outputCompressed A Boolean value that indicates whether the output file should be
compressed. Specifying true compresses the output. The
default is false (not compressed). Optional.

Here is an example of the output properties for a file system crawl.

// Create the output configuration.
OutputConfig outputConfig = new OutputConfig();

// Create a file system module ID.
ModuleId moduleId = new ModuleId("File System");

// Set the module ID in the output configuration.
outputConfig.setModuleId(moduleId);

// Create a module property object.
ModuleProperty outputPrefix = new ModuleProperty();
// set the key for the output prefix
outputPrefix.setKey("outputPrefix");
outputPrefix.getValues().add("newPrefix");

// Set the outputPrefix module property on the output config.
outputConfig.addModuleProperty(outputPrefix);

// Create a module property object.
ModuleProperty outputDirectory = new ModuleProperty();
// Set the key for the output directory.
outputDirectory.setKey("outputDirectory");
outputDirectory.setValues("output");

// Set the outputDirectory module property on the output config.
outputConfig.addModuleProperty(outputDirectory);

// Create a module property object.
ModuleProperty outputXml = new ModuleProperty();
// Set the key for specifying whether output is in XML format.
outputXml.setKey("outputXml");
outputXml.setValues("true");

// Set the outputXml module property on the output config.
outputConfig.addModuleProperty(outputXml);

// Create a module property object.
ModuleProperty outputCompressed = new ModuleProperty();
// Set the key for specifying whether output is compressed.

Acquisition System API Guide
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 30

outputCompressed.setKey("outputCompressed");
outputCompressed.setValues("true");

// Set the outputCompressed module property on the output config.
outputConfig.addModuleProperty(outputCompressed);

// Set the output config in the main crawl configuration.
crawlConfig.setOutputConfig(outputConfig);

// Create the crawl.
crawler.createCrawl(crawlConfig);

Acquisition System API Guide

Listing crawls
Call the IasCrawler.listCrawls() method to list the existing crawls.

The syntax of the method is:

IasCrawler.listCrawls()

The method returns a List<CrawlId> object, which has zero or more CrawlId objects. Each CrawlId has the
name of a crawl.

To list the set of existing crawls:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Use the IasCrawler.listCrawls() method to return a list of crawl names.

For example:

List<CrawlId> crawlList = crawler.listCrawls();

3. Call the CrawlId.getId() method to get the actual name (as a string) of each crawl.

You can also use the following to print out the number of crawls:

System.out.println("There are " + crawler.listCrawls().size() + " crawls configured");

The IasCrawler.listCrawls() method does not throw an exception if it fails.

Starting a crawl
Call the IasCrawler.startCrawl() method to start a crawl.

The syntax of the method is:

IasCrawler.startCrawl(CrawlId crawlId, CrawlMode crawlMode)

The crawlId parameter is a CrawlId object that has the crawl ID set. The crawlMode parameter is one of
the following CrawlMode data types:

• CrawlMode.FULL_CRAWL performs a full crawl and creates a crawl history.

• CrawlMode.INCREMENTAL_CRAWL performs an incremental crawl and updates the crawl history. There are
several cases in which the CrawlMode automatically switches over from INCREMENTAL_CRAWL to run a
FULL_CRAWL. A full crawl runs in the following cases:

• If a crawl has not been run before.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 31

• If the document conversion option has changed - either by being enabled or disabled.

• If the repository properties have changed.

• If any filters have been modified, added, or removed.

• If any seeds have been removed.

• If you are writing records to a Record Store instance that contains no generations.

This method does not return a value.

To start a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Instantiate a CrawlId object and then set its ID in the constructor.

For example:

// Create a new crawl ID with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Acquisition System API Guide

3. Call the IasCrawler.startCrawl() method with the crawl ID and the appropriate crawl mode. To
catch exceptions, use a try block with the appropriate catch clauses.

For example:

try {
crawler.startCrawl(crawlId, CrawlMode.INCREMENTAL_CRAWL);

}
catch (CrawlNotFoundException e) {

System.out.println(e.getLocalizedMessage());
}

If the IasCrawler.startCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the IAS Server is already running the specified crawl.

• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not exist or is
otherwise not found.

• InvalidCrawlConfigException occurs if the configuration is invalid. You can call
getCrawlValidationFailures() to return the list of crawl validation errors.

• EidiException occurs if other problems prevent the crawl from running.

Stopping a crawl
Call the IasCrawler.stopCrawl() method to stop a crawl.

The syntax of the method is:

IasCrawler.stopCrawl(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl to stop.

To stop a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 32

2. Set the name for the crawl to stop by first instantiating a CrawlId object and then its ID.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Acquisition System API Guide

3. Call the IasCrawler.stopCrawl() method with the crawl ID. To catch an exception, use a try block
with the appropriate catch clause.

For example:

try {
crawler.stopCrawl(crawlId);

}
catch (CrawlNotFoundException e) {

System.out.println(e.getLocalizedMessage());
}

The IasCrawler.stopCrawl() method throws a CrawlNotFoundException if the specified crawl (the
crawlId parameter) does not exist or is otherwise not found.

When the stop request is issued, the crawl first goes into a STOPPING state and then (when it finally stops) into
a NOT_RUNNING state.

Note: Stopping a crawl means that:

• The IAS Server produces no record output for the stopped crawl (and all Record Store
transactions roll back).

• Crawl history returns to its previous state before the crawl started.

• Metrics do not roll back to their state before the crawl started.

Deleting crawls
Call the IasCrawler.deleteCrawl() method to delete an existing crawl.

The syntax of the method is:

IasCrawler.deleteCrawl(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl to be deleted.

Note: You cannot delete a crawl that is running.

To delete a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl to be deleted by first instantiating a CrawlId object and then setting Id in
the constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 33

3. Call the IasCrawler.deleteCrawl() method with the CrawlId object. To catch exceptions, use a
try block with the appropriate catch clauses, as in this example:

try {
crawler.deleteCrawl(crawlId);

}
catch (CrawlNotFoundException e) {

System.out.println(e.getLocalizedMessage());
}

Acquisition System API Guide

If the IasCrawler.deleteCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the crawl is running.

• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not exist or is
otherwise not found.

• EidiException occurs if a problem is encountered that prevents the crawl from being deleted.

Listing modules available to a crawl
Call the IasCrawler.listModules() method to return a list of modules you can include in a crawl. Modules
include the default crawl types provided by IAS and any data source extensions and manipulator extensions
you may have created using the IAS Extension API.

The syntax of the method is:

IasCrawler.listModules(ModuleType moduleType)

where moduleType is an enumeration value of either:

• SOURCE to return data sources

• MANIPULATOR to return manipulators

The method returns a List<ModuleInfo> object, which has zero or more ModuleInfo objects. Each
ModuleInfo has the name and ID of a data source or manipulator.

To list the modules available to a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Call the IasCrawler.listModules() method and specify an enumeration value to return either data
sources or manipulators.

For example:

List<ModuleInfo> modules = crawler.listModules(ModuleType.SOURCE);

3. For each ModuleInfo object:

(a) Call the ModuleInfo.getModuleId() method to get the ID of the module (the data source or
manipulator).

(b) Call the ModuleInfo.getModuleType() method to get the type of the module (the data source or
manipulator).

(c) Call the ModuleInfo.getDescription() method to get the description of the module (the data
source or manipulator).

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 34

(d) Call the ModuleInfo.getDisplayName() method to get the display name of the module (the data
source or manipulator).

For example:

List<ModuleInfo> moduleInfoList = modules.getModuleInfo();
for (ModuleInfo moduleInfo : moduleInfoList) {

System.out.println(moduleInfo.getDisplayName());
System.out.println(" *Id: "+ moduleInfo.getModuleId().getId());
System.out.println(" *Type: "+ moduleInfo.getModuleType());
System.out.println(" *Description: " + moduleInfo.getDescription());
System.out.println();

}

Acquisition System API Guide

The IasCrawler.listModules() method does not throw checked exceptions if it fails.

Retrieving crawl configurations
Call the IasCrawler.getCrawlConfig() method to retrieve the configuration settings of a crawl.

The syntax of the method is:

IasCrawler.getCrawlConfig(CrawlId crawlId, Boolean fillInDefaults)

Where:

• crawlId is a CrawlId object that contains the name of the crawl for which the configuration is to be
returned.

• fillInDefaults is a Boolean flag that, if set to true, fills in the default value for any setting that has
not been specified. If a setting is a password, true returns the name but not the value. If the flag is set to
false, it does not modify the value for any setting.

If you retrieve a crawl configuration that contains a ModuleProperty for a password property, the crawl
configuration retrieves the value as a zero length list.

The method returns a CrawlConfig object, which contains the following:

• sourceConfig - a SourceConfig object that contains the seeds, filters, and specific information about
the systems from which content is fetched or whether file properties from the native file system should be
gathered for file system crawls.

• manipulatorConfig - a list of ManipulatorConfig objects. Each ManipulatorConfig specifies a
manipulation that is performed in a particular crawl.

• textExtractionConfig - a TextExtractionConfig object that contains the text extraction options,
such as whether text extraction should be enabled and the number of retry attempts.

• outputConfig - an OutputConfig object that contains the output options, such as whether the records
are written to a Record Store instance or a record output file, the path of the output directory and the
output format (binary or XML).

• crawlthreads - a property indicating the number of threads per crawl.

• loggingLevel - a property indicating the logging level.

To get the configuration settings of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 35

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its Id.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

Acquisition System API Guide

3. Call the IasCrawler.getCrawlConfig() method with the crawl ID and the default settings Boolean
flag.

For example:

CrawlConfig crawlConfig = crawler.getCrawlConfig(crawlId, true);

4. Process the returned CrawlConfig according to the requirements of your application.

The IasCrawler.getCrawlConfig() method throws a CrawlNotFoundException if the specified crawl (the
crawlId parameter) does not exist or is otherwise not found. To catch an exception, use a try block with the
appropriate catch clause.

Updating crawl configurations
Call the IasCrawler.updateCrawl() method to change the configuration settings for an existing crawl.

The syntax of the method is:

IasCrawler.updateCrawl(CrawlConfig crawlConfig)

The crawlConfig parameter is a CrawlConfig object that has the configuration settings of the crawl.

If you update a crawl configuration and specify an empty ModuleProperty for a password property, the
crawl configuration reuses the password stored on IAS Server.

Note: You cannot change the configuration if the crawl is running.

To update the configuration settings of an existing crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl to be modified by first instantiating a CrawlId object and then setting its ID
in the constructor.

For example:

// Create a new crawl Id with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the IasCrawler.getCrawlConfig() method to retrieve the current configuration.

For example:

CrawlConfig crawlConfig = crawler.getCrawlConfig(crawlId, false);

4. Change the configuration settings as desired.

5. Update the file system crawl by using the IasCrawler.updateCrawl() method with the previously
created crawlConfig.

For example:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 36

crawler.updateCrawl(crawlConfig);

Acquisition System API Guide

If the IasCrawler.updateCrawl() method fails, it throws an exception:

• CrawlInProgressException occurs if the crawl is running.

• CrawlNotFoundException occurs if the specified crawl (the crawlId parameter) does not exist or is
otherwise not found.

• InvalidCrawlConfigException occurs if the configuration is invalid.

To catch these exceptions, use a try block when you call the method.

Getting crawl metrics
Call the IasCrawler.getMetrics() method to return the metrics of a crawl. Metrics can be returned for a
running crawl or (if the crawl is not running) for the last complete crawl.

The syntax of the method is:

IasCrawler.getMetrics(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl for which metrics are to be
returned.

The method returns a List<Metric> object, which (if not empty) will have one or more Metric objects. A
Metric is a key-value pair that holds the value of a particular metric. The keys are the metric's ID (a MetricId

enum class). See the IAS Server API Reference (Javadoc) for the list of MetricId enumerations.

The CRAWL_STOP_CAUSE MetricId has one of the following values:

• COMPLETED

• FAILED

• ABORTED

If a crawl fails, the CRAWL_FAILURE_REASON MetricId provides a message from the IAS Server explaining the
failure.

Your application can print out all or some of the metric values.

To get the metrics of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its ID.

For example:

// Create a new crawl ID with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Call the IasCrawler.getMetrics() method with the crawl ID.

For example:

List<Metric> metricList = crawler.getMetrics(crawlId);

4. Print the metrics by retrieving the values from the Metric objects. For example, if you want to print the
number of records that have been processed so far by a running crawl, the code would be:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 37

if (crawler.getStatus(demoCrawlId).getState().equals(CrawlerState.RUNNING)) {
List<Metric> metricList = crawler.getMetrics(crawlId);
for (Metric metric : metricList) {

MetricId id = metric.getMetricId();
if (id.equals(MetricId.TOTAL_RECORDS)) {

System.out.println("Total records: " + metric.toString());
}

}
}

Acquisition System API Guide

The IasCrawler.getMetrics() method throws a CrawlNotFoundException if the specified crawl (the
crawlId parameter) does not exist or is otherwise not found.

Getting the status of a crawl
Call the IasCrawler.getStatus() method to retrieve the status of a crawl.

The syntax of the method is:

IasCrawler.getStatus(CrawlId crawlId)

The crawlId parameter is a CrawlId object that contains the name of the crawl for which status is to be
returned.

The method returns a Status object, which will have the status of the crawl as a CrawlerState simple data
type:

• NOT_RUNNING

• STOPPING

• RUNNING

To get the status of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Set the name for the crawl by first instantiating a CrawlId object and then setting its ID in the
constructor.

For example:

// Create a new crawl ID with the name set to Demo.
CrawlId crawlId = new CrawlId("Demo");

3. Declare a CrawlerState variable and initialize it by calling the IasCrawler.getStatus() method with
the crawl ID. Note that the status is actually returned by the State.getState() method.

For example:

CrawlerState state;
state = crawler.getStatus(crawlId).getState();

4. Print the status.

For example:

System.out.println("Crawl status: " + state);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

IAS Server API 38

The IasCrawler.getStatus() method throws a CrawlNotFoundException if the specified crawl (the
crawlId parameter) does not exist or is otherwise not found. To catch an exception, use a try block with the
appropriate catch clause.

Retrieving IAS Server information
Call the Ias.getServerInfo() method to get the server properties of the IAS Server.

The syntax of the method is:

IasCrawler.getServerInfo()

Acquisition System API Guide

The method returns a List<Property> object, which contains Property objects with host machine and IAS
Server information.

To retrieve information about the IAS Server:

1. Make sure that you have created a connection to the IAS Server. (An IasCrawler object named
crawler is used in this example.)

2. Use the IasCrawler.getServerInfo() method to return the server information.

For example:

List<Property> serverInfo = crawler.getServerInfo();

3. Call the Property.getKey() and Property.getValue() methods to get the property key-value pairs.

The returned server properties (Property objects) contain the following key-value information:

Property key Property value

eidi.version The version of the IAS Server.

eidi.workspace The path of the IAS Server workspace directory

os.arch The hardware architecture on which the operating system is running (such as
amd64), as specified in the IAS Server's JVM.

os.name The operating system of the machine on which the IAS Server is running (such
as Windows 2003), as specified in the IAS Server's JVM.

os.version The version of the operating system of the machine on which the IAS Server is
running (such as 5.2), as specified in the IAS Server's JVM.

The Ias.getServerInfo() method does not throw an exception if it fails.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Chapter 3

Component Instance Manager API

This section documents the Component Instance Manager (CIM) API.

Component Instance Manager client utility classes

Component Instance Manager core operations

Component Instance Manager client utility classes
The Component Instance Manager API provides client utility classes for the manipulation of objects.

ComponentInstanceManagerLocator class
The ComponentInstanceManagerLocator class creates a connection to a Component Instance Manager
server. The steps to create a connection are:

1. Create a ServiceAddress object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the contextPath. If you installed
IAS into Jetty, set the contextPath to an empty string.

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
ComponentInstanceManagerLocator locator = ComponentInstanceManagerLocator.create(address);

Acquisition System API Guide

3. Call the getService() method to make a connection to the Component Instance Manager service on that
server:

ComponentInstanceManager cim = locator.getService();

Component Instance Manager core operations
The Component Instance Manager API has a ComponentInstanceManager interface, which is used to create,
list, and delete Record Store instances. In this release, Record Store components are the only supported
component type.

The following Component Instance Manager core operations are provided by methods in the
ComponentInstanceManager interface:

• createComponentInstance() creates a component instance of the given type with the given ID.

• deleteComponentInstance() deletes the given component instance.

• listComponentInstances() lists all component instances defined in the system.

• listComponentTypes() lists all component types defined in the system.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Component Instance Manager API 40

Note: The syntax descriptions for these operations use Java conventions. The exact syntax of a class
member depends on the output of the WSDL tool that you are using.

Creating a component
Call the ComponentInstanceManager.createComponentInstance() method to create a component instance
of the given type (a RecordStore) with the given ID (a Record Store instance name).

The syntax of the method is:

ComponentInstanceManager.createComponentInstance(ComponentTypeId componentTypeId,
ComponentInstanceId componentInstanceId)

Acquisition System API Guide

The componentTypeId parameter is a ComponentTypeId that should be set to "RecordStore".

The componentInstanceId parameter is a ComponentInstanceId that is the Record Store instance name.

To create a component:

1. Create a ServiceAddress object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the contextPath. If you
installed IAS into Jetty, set the contextPath to an empty string.

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
ComponentInstanceManagerLocator locator = ComponentInstanceManagerLocator.create(address);

3. Create a ComponentInstanceManager object and call getService() to establish a connection to the
server and the Component Instance Manager service. For example:

ComponentInstanceManager cim = locator.getService();

4. Create a Record Store instance by calling createComponentInstance() and specifying
RecordStore and a Record Store instance name. For example:

cim.createComponentInstance(new ComponentTypeId("RecordStore"),
new ComponentInstanceId("rs1"));

Deleting a component
Call the ComponentInstanceManager.deleteComponentInstance() method to delete a specified component
instance (a Record Store).

The syntax of the method is:

ComponentInstanceManager.deleteComponentInstance(ComponentInstanceId componentInstanceId)

The componentInstanceId parameter is a ComponentInstanceId that is the Record Store instance name
that you want to delete.

To delete a component:

1. Create a ServiceAddress object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the contextPath. If you
installed IAS into Jetty, set the contextPath to an empty string.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Component Instance Manager API 41

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
ComponentInstanceManagerLocator locator = ComponentInstanceManagerLocator.create(address);

Acquisition System API Guide

3. Create a ComponentInstanceManager object and call getService() to establish a connection to the
server and the Component Instance Manager service. For example:

ComponentInstanceManager cim = locator.getService();

4. Delete a Record Store instance by calling deleteComponentInstance() and specifying a Record
Store instance name. For example:

cim.deleteComponentInstance(new ComponentInstanceId("rs1");

If the ComponentInstanceManager.deleteComponentInstance() method fails, it will throw an exception:

• ComponentInstanceNotFoundException is thrown if the Component Instance Manager does not contain
the component instance.

• ComponentManagerException is thrown if there was an error stopping the component instance.

To catch these exceptions, use a try block when you call the method.

Listing component instances
Call the ComponentInstanceManager.listComponentInstances() method to list all component instances in
the Endeca IAS Service. In this release, components are Record Store instances that are running in the
Endeca IAS Service.

The syntax of the method is:

ComponentInstanceManager.listComponentInstances()

The method returns a list of ComponentInstanceDescriptor objects. Each ComponentInstanceDescriptor

object represents a single component (that is, a Record Store instance) and is made up of the following:

• TypeId object. This is the component type. For example, in this release, it is always RecordStore.

• InstanceId object. This is the user-specified name of an instance.

• InstanceStatus object. This is the status of a Record Store instance. This value can be one of the
following constants: RUNNING, FAILED, or STOPPED.

To list component instances:

1. Create a ServiceAddress object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the contextPath. If you
installed IAS into Jetty, set the contextPath to an empty string.

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
ComponentInstanceManagerLocator locator = ComponentInstanceManagerLocator.create(address);

3. Create a ComponentInstanceManager object and call getService() to establish a connection to the
server and the Component Instance Manager service. For example:

ComponentInstanceManager cim = locator.getService();

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Component Instance Manager API 42

4. Call listComponentInstances() and then create a for loop to loop over all component instances.
Inside the loop, get the TypeId, InstanceId, and InstanceStatus and print them to system out (or
elsewhere). For example:

for (ComponentInstanceDescriptor desc : cim.listComponentInstances()) {
System.out.println(desc.getInstanceId() + " of type " + desc.getTypeId()

+ " has status " + desc.getInstanceStatus());
}

Acquisition System API Guide

Listing component types
Call the ComponentInstanceManager.listComponentTypes() method to list all component types in the
Endeca IAS Service. In this release, there are only components of type RecordStore.

The syntax of the method is:

ComponentInstanceManager.listComponentTypes()

The method returns a list of ComponentTypeDescriptor objects. Each ComponentTypeDescriptor object is
made up of a TypeId object and an InstallPath object.

Each TypeId has the component type, for example, RecordStore. Each InstallPath is a string
representing the absolute path to the WAR file implementing the component itself, for example,
C:\Oracle\Endeca\IAS\<version>\components\RecordStore.war.

To list component types:

1. Create a ServiceAddress object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the contextPath. If you
installed IAS into Jetty, set the contextPath to an empty string.

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
ComponentInstanceManagerLocator locator = ComponentInstanceManagerLocator.create(address);

3. Create a ComponentInstanceManager object and call getService() to establish a connection to the
server and the Component Instance Manager service. For example:

ComponentInstanceManager cim = locator.getService();

4. Call listComponentTypes() and then create a for loop to loop over all component types in the
system. Inside the loop, get the TypeId and InstallPath and print them to system out (or
elsewhere). For example:

for (ComponentTypeDescriptor desc : cim.listComponentTypes()) {
System.out.println(desc.getTypeId() + " installed at " + desc.getInstallPath());

}

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Chapter 4

Record Store API

This section documents the Record Store API.

Record Store client utility classes

Record Store core operations

Sample Writer client example

Sample Reader client example

Record Store client utility classes
The Record Store API provides client utility classes to manage a Record Store and perform read/write
operations.

The Record Store API includes a set of client utility classes that are useful for working with objects, such as
the creation of record collections. Java versions of these classes are included in the recordstore-api-
3.1.0.jar library.

A brief overview of these classes is given below. For details on the signatures and arguments, refer to the
Record Store API Reference (Javadoc).

RecordStoreLocator class
The RecordStoreLocator class creates a connection to a Record Store server. The steps for obtaining a
connection are:

1. Create a ServiceAddress object and specify the host and port of the server running the Record Store,
and if you installed IAS into WebLogic, also specify the contextPath. If you installed IAS into Jetty, set
the contextPath to an empty string.

2. Call the create() method on ComponentInstanceManagerLocator and pass in the ServiceAddress

object. For example:

ServiceAddress address = new ServiceAddress("localhost", 8401, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, "MyCrawl");

Acquisition System API Guide

3. Call the ServiceLocator.getService() method to make a connection to the Record Store service on
that server:

RecordStore rs = locator.getService();

The class also has other getter and setter methods for configuring communication with a Record Store
instance.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 44

RecordStoreWriter class
The RecordStoreWriter class provides methods for writing records to a Record Store instance.

The class has two write() methods that allow you to write one record at a time or a list of records all at once.

You can create a baseline writer with this method:

RecordStoreWriter writer = RecordStoreWriter.createWriter(
recordStore, tId, 100);

Acquisition System API Guide

RecordStoreReader class
The RecordStoreReader class provides methods for reading baseline and delta records from a Record Store
instance.

The RecordStoreReader class does not have a reader for reading individual records by their ID. To perform
this type of read, use the RecordStore.readRecordsById() method from the WSDL (core operations).

You can create a reader with this method:

RecordStoreReader reader = RecordStoreReader.createBaselineReader(
recordStore, tId, gId, 100);

The RecordStoreWriter and RecordStoreReader classes are useful because they handle batching and un-
batching of records.

Record Store core operations
This topic presents an overview of the Record Store API core methods.

The Record Store API has a RecordStore interface, which is used to make calls to a Record Store instance.

The following Record Store core operations are provided by methods in the RecordStore interface:

• startTransaction() starts a transaction of type READ or READ_WRITE and returns the transaction ID.

• startBaselineRead() creates a read cursor for reading a baseline generation from a Record Store
instance.

• startDeltaRead() creates a read cursor for an incremental read from a Record Store instance.

• readRecords() performs the actual read operation for a read cursor set up by either the
startBaselineRead() or the startDeltaRead() method.

• endRead() ends a baseline or incremental read operation performed by a readRecords() method.

• readRecordsById() reads specific records from a Record Store instance, based on a list of their record
IDs.

• writeRecords() writes a set of records to a Record Store instance. The method returns an integer that
indicates how many records were actually written.

• commitTransaction() commits an active (uncommitted) transaction.

• rollbackTransaction() rolls back an active (uncommitted) transaction.

• listActiveTransactions() returns a List of TransactionInfos that contain the ID, type, status, and
generation ID of each active transaction.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 45

• listGenerations() returns a List of GenerationInfos for each record generation currently in the
Record Store.

• getLastCommittedGenerationId() gets the ID of the last-committed record generation.

• getWriteGenerationId() gets the ID of the current generation.

• setLastReadGenerationId() sets state for a specific client by setting the ID of the last generation read
by the client.

• getLastReadGenerationId() gets the ID of the last-read generation that was set for a specific client.

• listClientStates() returns a List of ClientStateInfos for each client. Each ClientStateInfo object
contains a client ID, a transaction ID, a generation ID of the last read generation, and a Boolean to
indicate if the state is committed.

• getConfiguration() returns the configuration settings of a specified Record Store instance.

• setConfiguration() sets the configuration settings of a specified Record Store instance.

• clean() runs the Record Store Cleaner, which removes all records that are no longer necessary. This
method allows cleaning to occur on an external schedule.

Note: The examples in this guide use client stubs generated with Apache CXF 2.2. However, the
exact syntax of a class member depends on the output of the WSDL tool that you are using.

Getting and setting a Record Store instance configuration
Use the getConfiguration() and setConfiguration() methods to get a Record Store instance
configuration and configure settings for the Record Store instance.

To get and set a Record Store instance configuration:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

Acquisition System API Guide

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Return the config object for the new Record Store instance by calling the getConfiguration()

method:

RecordStoreConfiguration config = recordStore.getConfiguration(false);

4. Enable compression by calling the setRecordCompressionEnabled() method:

config.setRecordCompressionEnabled(true);

5. Set the modified configuration for the Record Store instance by calling the setConfiguration()

method:

recordStore.setConfiguration(config);

Example of getting and setting a Record Store instance configuration

ServiceAddress address = new ServiceAddress(host, port, contextPath);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 46

RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();

RecordStoreConfiguration config = recordStore.getConfiguration(false);

config.setRecordCompressionEnabled(true);

recordStore.setConfiguration(config);

Acquisition System API Guide

Running a baseline read of the last-committed generation
Call the startBaselineRead() method to create a cursor for a baseline read to be consumed by the
readRecords() method.

To run a baseline read of the last-committed generation:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

4. Return a ReadCursorId object by calling the startBaselineRead() method:

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId, null);

5. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

6. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

7. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of running a baseline read

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 47

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId, null);

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.commitTransaction(transactionId);

Acquisition System API Guide

Running a delta read
Call the startDeltaRead() method to create a cursor for a delta (incremental) read to be consumed by the
readRecords() method.

To run a delta read:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

4. Create a ReadCursorId object by calling the startDeltaRead() method:

ReadCursorId readCursorId
= recordStore.startDeltaRead(transactionId, startGeneration, endGeneration);

5. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

6. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

7. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 48

Example of running a delta read

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

ReadCursorId readCursorId = recordStore.startDeltaRead(transactionId, startGeneration, endGeneration)
;

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.commitTransaction(transactionId);

Acquisition System API Guide

Maintaining client read state in the Record Store
Use the getLastCommittedGenerationId() and setLastReadGenerationId() methods to store the
GenerationId that the client last read.

To maintain client read state in the Record Store:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

4. Get the last-committed generation by calling the getLastCommittedGenerationId() method:

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

5. Return a ReadCursorId object by calling the startBaselineRead() method:

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId, gid);

6. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);
// do something with the records

} while (!records.isEmpty());

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 49

7. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

Acquisition System API Guide

8. Set the last-read generation ID by calling the setLastReadGenerationId() method:

recordStore.setLastReadGenerationId(transactionId, clientId, gid);

9. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

10. At a later point, start a new READ transaction for an incremental read by calling the
startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

11. Get the last-committed generation by calling the getLastCommittedGenerationId() method:

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

12. Create a ReadCursorId object by calling the startDeltaRead() method:

ReadCursorId readCursorId
= recordStore.startDeltaRead(transactionId, startGeneration, endGeneration);

13. Loop over the records returned by readRecords() until all records from the read cursor are read:

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

14. End the READ transaction by calling the endRead() method:

recordStore.endRead(readCursorId);

15. Set client state by calling the setLastReadGenerationId() method:

recordStore.setLastReadGenerationId(transactionId, clientId, endGenerationId);

16. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of maintaining client read state in the Record Store

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();
// Run a baseline read

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

GenerationId gid = recordStore.getLastCommittedGenerationId(transactionId);

ReadCursorId readCursorId = recordStore.startBaselineRead(transactionId, gid);

List<Record> records;

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 50

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.setLastReadGenerationId(transactionId, clientId, gid);

recordStore.commitTransaction(transactionId);

...

// Run a delta read at a later point

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ);

GenerationId startGenerationId = recordStore.getLastReadGenerationId(transactionId, clientId);

GenerationId endGenerationId = recordStore.getLastCommittedGenerationId(transactionId);

ReadCursorId readCursorId
= recordStore.startDeltaRead(transactionId, startGenerationId, endGenerationId);

List<Record> records;

do {

records = recordStore.readRecords(readCursorId, numRecordsPerFetch);

// do something with the records

} while (!records.isEmpty());

recordStore.endRead(readCursorId);

recordStore.setLastReadGenerationId(transactionId, clientId, endGenerationId);

recordStore.commitTransaction(transactionId);

Acquisition System API Guide

Performing an incremental write
Use the writeRecords() method to write an incremental set of records to the Record Store.

To perform an incremental write:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ_WRITE transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ_WRITE);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 51

4. Write a batch of records by calling the writeRecords() method:

recordStore.writeRecords(recordBatch1);

Acquisition System API Guide

Repeat this step to write other batches of records to the Record Store.

5. Commit the transaction by calling the commitTransaction() method:

recordStore.commitTransaction(transactionId);

Example of performing an incremental write

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ_WRITE);

recordStore.writeRecords(recordBatch1);

recordStore.writeRecords(recordBatch2);

recordStore.commitTransaction(transactionId);

Performing a baseline write
Create a deleteAllRecord, then use the writeRecords() method to write a baseline set of records to the
Record Store.

To perform a baseline write:

1. Create a connection to a Record Store server by calling the create() method and passing in a
ServiceAddress object and a Record Store Instance name:

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

2. Create a Record Store instance by calling the getService() method:

RecordStore recordStore = locator.getService();

3. Start a READ_WRITE transaction by calling the startTransaction() method:

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ_WRITE);

4. Create a new record called deleteAllRecord with a property value of DELETE:

Record deleteAllRecord = new Record();

deleteAllRecord.addPropertyValue(new PropertyValue("Endeca.Action", "DELETE"));

5. Add deleteAllRecord as the first record in a record batch:

recordBatch1.addFirst(deleteAllRecord);

6. Write the first batch of records by calling the writeRecords() method:

recordStore.writeRecords(recordBatch1);

Repeat this step to write other batches of records to the Record Store.

7. Commit the transaction by calling the commitTransaction() method:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 52

recordStore.commitTransaction(transactionId);

Acquisition System API Guide

Example of performing a baseline write

ServiceAddress address = new ServiceAddress(host, port, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, instanceName);

RecordStore recordStore = locator.getService();

TransactionId transactionId = recordStore.startTransaction(TransactionType.READ_WRITE);

Record deleteAllRecord = new Record();

deleteAllRecord.addPropertyValue(new PropertyValue("Endeca.Action", "DELETE"));

recordBatch1.addFirst(deleteAllRecord);

recordStore.writeRecords(recordBatch1);

recordStore.writeRecords(recordBatch2);

recordStore.commitTransaction(transactionId);

Sample Writer client example
This sample program shows how to write records to the Record Store.

The SampleWriter.java class is an example of how to use the core and client utility classes to write records.
The sample Java program creates one record and writes it to the Record Store.

The code works as follows:

1. The PROPERTY_ID variable uses the setting of the Record Store instance idPropertyName
configuration property, which is used to identify the records.

public static final String PROPERTY_ID = "Endeca.FileSystem.Path";

2. A sample record is created with the Record class and added to the records Collection.

Collection<Record> records = new LinkedList<Record>();
Record record = new Record();
record.addPropertyValue(new PropertyValue(PROPERTY_ID, "id1"));
record.addPropertyValue(new PropertyValue("property.name", "property.value"));
records.add(record);

3. Using the RecordStoreLocator utility class, a connection is made to the Record Store Server.

ServiceAddress address = new ServiceAddress(iasHost, iasPort, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, "rs1");
RecordStore recordStore = locator.getService();

4. In a try block, a READ_WRITE transaction was created by the RecordStore.startTransaction()

core method and the RecordStoreWriter.createWriter() method is used to create a writer. This
example writer writes a maximum of 100 records per transfer.

try {
System.out.println("Setting record store configuration ...");
recordStore.setConfiguration(config);

System.out.println("Starting a new transaction ...");
tId = recordStore.startTransaction(TransactionType.READ_WRITE);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 53

RecordStoreWriter writer = RecordStoreWriter.createWriter(recordStore, tId, 100);
...

Acquisition System API Guide

5. The writer first writes a "Delete All" record, then writes the sample record, and finally closes the writer.
Note that the record is written twice (the first time as part of a collection and the second as an
individual record), in order to demonstrate both methods.

System.out.println("Writing records ...");
writer.deleteAll();
writer.write(records);
writer.close();

6. The client program uses the RecordStore.commitTransaction() core method to commit the write
transaction.

System.out.println("Committing transaction ...");
recordStore.commitTransaction(tId);

System.out.println("DONE");

After the transaction is committed, the Record Store contains a new record generation.

SampleWriter.java
package com.endeca.eidi.recordstore.sample;

import com.endeca.eidi.EidiConstants;
import com.endeca.eidi.record.PropertyValue;
import com.endeca.eidi.record.Record;
import com.endeca.eidi.recordstore.RecordStore;
import com.endeca.eidi.recordstore.RecordStoreException;
import com.endeca.eidi.recordstore.RecordStoreLocator;
import com.endeca.eidi.recordstore.RecordStoreWriter;
import com.endeca.eidi.recordstore.TransactionId;
import com.endeca.eidi.recordstore.TransactionType;
import com.endeca.eidi.service.ServiceAddress;

/**
* SampleWriter is an example of how to use the Record Store core and client
* utility classes to write records. It creates records and writes them to the
* Record Store.
*/

public class SampleWriter {

// This should match the idPropertyName in your record store configuration.
public static final String ID_PROPERTY_NAME = "Endeca.Id";

public static void main(String[] args) {
if (args.length != 2 && args.length != 3) {

System.out.println("Usage: <ias host> <ias port> [ias context path]");
System.exit(-1);

}

String iasHost = args[0];
int iasPort = Integer.parseInt(args[1]);
String contextPath = (args.length == 3) ? args[2] : EidiConstants.DEFAULT_CONTEXT_PATH;

ServiceAddress address = new ServiceAddress(iasHost, iasPort, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, "rs1");
RecordStore recordStore = locator.getService();

TransactionId transactionId = null;
try {

System.out.println("Starting a new transaction ...");
transactionId = recordStore.startTransaction(TransactionType.READ_WRITE);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 54

RecordStoreWriter writer = RecordStoreWriter.createWriter(recordStore, transactionId);

System.out.println("Writing records ...");

// Start by deleting all records in the new Record Store generation.
// This should be done when doing a baseline write to the Record Store.
// It should not be done when doing an incremental import into the Record
// Store.
writer.deleteAll();

// Write a record to the Record Store
writer.write(createRecord(

ID_PROPERTY_NAME, "record1",
"fruit", "apple",
"color", "red"));

// Write another record to the Record Store
writer.write(createRecord(

ID_PROPERTY_NAME, "record2",
"fruit", "banana",
"color", "yellow"));

// Close the RecordStoreWriter. This will flush the client
// side record buffer.
writer.close();

System.out.println("Committing transaction ...");
recordStore.commitTransaction(transactionId);

System.out.println("DONE");
} catch (RecordStoreException exception) {

exception.printStackTrace();
if (transactionId != null) {

try {
recordStore.rollbackTransaction(transactionId);

} catch (RecordStoreException anotherException) {
System.out.println("Failed to roll back transaction.");
anotherException.printStackTrace();

}
}

}
}

private static Record createRecord(String... nameValuePairs) {
if (nameValuePairs.length % 2 != 0) {

throw new IllegalArgumentException("Missing property value for property " +
nameValuePairs[nameValuePairs.length-1]);

}
Record record = new Record();
for (int i = 0; i < nameValuePairs.length; i = i + 2) {

record.addPropertyValue(new PropertyValue(nameValuePairs[i], nameValuePairs[i + 1]));
}
return record;

}
}

Acquisition System API Guide

Sample Reader client example
This sample program shows how to read records from the Record Store.

The SampleReader.java class is an example of how to use the core and client utility classes to read
records. The sample program gets the ID of the last-committed generation and reads its records from the
Record Store.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 55

The code works as follows:

1. Using the RecordStoreLocator utility class, a connection is made to the Record Store Server.

ServiceAddress address = new ServiceAddress(iasHost, iasPort, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, "rs1");
RecordStore recordStore = locator.getService();

Acquisition System API Guide

2. In a try block, the RecordStore.startTransaction() core method creates a READ transaction and
then the RecordStore.getLastCommittedGenerationId() core method gets the ID of the last
generation that was committed to the Record Store.

TransactionId tId = null;
try {
System.out.println("Starting a new transaction ...");
tId = recordStore.startTransaction(TransactionType.READ);

System.out.println("Getting the last committed generation ...");
GenerationId gId = recordStore.getLastCommittedGenerationId(tId);

3. The RecordStoreReader.createBaselineReader() utility method is used to create a baseline
reader. The reader transfers a maximum of 100 records per transfer.

System.out.println("Reading records ...");
RecordStoreReader reader

= RecordStoreReader.createBaselineReader(recordStore, tId, gId, 100);
int count = 0;

4. In a while loop, the hasNext() method tests whether the reader has another record to read. If true,
the next() method retrieves the record, the record is written out, and the record-read count is
increased by one. When there are no more records to read, the close() method closes the reader,
and the number of records is printed out.

while (reader.hasNext()) {
Record record = reader.next();
System.out.println(" RECORD: " + record);
count++;
}

reader.close();
System.out.println(count + " record(s) read");

5. The client program uses the RecordStore.commitTransaction() core method to commit the read
transaction.

System.out.println("Committing transaction ...");
recordStore.commitTransaction(tId);

System.out.println("DONE");

SampleReader.java
package com.endeca.eidi.recordstore.sample;

import com.endeca.eidi.EidiConstants;
import com.endeca.eidi.record.Record;
import com.endeca.eidi.recordstore.GenerationId;
import com.endeca.eidi.recordstore.RecordStore;
import com.endeca.eidi.recordstore.RecordStoreException;
import com.endeca.eidi.recordstore.RecordStoreLocator;
import com.endeca.eidi.recordstore.RecordStoreReader;
import com.endeca.eidi.recordstore.TransactionId;
import com.endeca.eidi.recordstore.TransactionType;
import com.endeca.eidi.service.ServiceAddress;

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Record Store API 56

/**
* SampleReader is an example of how to use the Record Store core and client
* utility classes to read records. It gets the ID of the last-committed
* generation and reads its records from the Record Store.
*/

public class SampleReader {

public static void main(String[] args) {
if (args.length != 2 && args.length != 3) {

System.out.println("Usage: <ias host> <ias port> [ias context path]");
System.exit(-1);

}

String iasHost = args[0];
int iasPort = Integer.parseInt(args[1]);
String contextPath = (args.length == 3) ? args[2] : EidiConstants.DEFAULT_CONTEXT_PATH;

ServiceAddress address = new ServiceAddress(iasHost, iasPort, contextPath);
RecordStoreLocator locator = RecordStoreLocator.create(address, "rs1");
RecordStore recordStore = locator.getService();

TransactionId transactionId = null;
try {

System.out.println("Starting a new transaction ...");
transactionId = recordStore.startTransaction(TransactionType.READ);

System.out.println("Getting the last committed generation ...");
GenerationId gId = recordStore.getLastCommittedGenerationId(transactionId);

System.out.println("Reading records ...");
RecordStoreReader reader

= RecordStoreReader.createBaselineReader(recordStore, transactionId,
gId);

int count = 0;
while (reader.hasNext()) {

Record record = reader.next();
System.out.println(" RECORD: " + record);
count++;

}
reader.close();
System.out.println(count + " record(s) read");

System.out.println("Committing transaction ...");
recordStore.commitTransaction(transactionId);

System.out.println("DONE");
} catch (RecordStoreException exception) {

exception.printStackTrace();
if (transactionId != null) {

try {
recordStore.rollbackTransaction(transactionId);

} catch (RecordStoreException anotherException) {
System.out.println("Failed to roll back transaction.");
anotherException.printStackTrace();

}
}

}
}

}

Acquisition System API Guide
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013

Index

gathering native file properties 13A
filtersarchives, enabling expansion of 13

date 23
long 25

B overview 20
regular expression 22baseline records
wildcard 21reading with API 46

HC
helper classes, API 43CIM

deleting Record Store 40
listing components 41 I

client utility classes of the API 43 IAS Component Instance Manager API
Component Instance Manager API generating client stubs 8

supported operations 40 IAS Record Store API
components generating client stubs 8

listing existing 41 IAS Server
content sources connecting to 11

custom 15 creating crawls 11
module IDs for 13 deleting crawls 32

getting crawl configuration 34core operations of the API 44
getting crawl metrics 36

crawls getting crawl status 37
connecting to IAS Server 11 listing crawls 30
creating 11 retrieving version information Server 38
date filters 23 starting a crawl 31
deleting 32 stopping a crawl 31
getting metrics 36 updating crawl configuration 35
getting status 37

IAS Server APIlisting existing 30
generating client stubs 8long filters 25
overview 7module properties for crawls 12, 26

regex filters 22 include filters, adding 20
retrieving configuration 34
setting text extraction options 19 Lstarting 31

listingstopping 31
content sources 33updating configuration 35
existing crawls 30wildcard filters 21
manipulators 33

long filters, adding 25D
date filters, adding 23

Mdeleting crawls 32, 40
manipulators

listing 33E
manipulators, module properties for 17

exclude filters, adding 20
methods

expanding archives, enabling 13 createCrawl() 11
deleteComponentInstance() 40
deleteCrawl() 32F
getCrawlConfig() 34

file system crawls getMetrics() 36
expanding archives 13

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

Index 58

getServerInfo() 38 deleting 40
getStatus() 37 regular expression filters, adding 22
listCrawls() 30

retrieving crawl configuration 34listModules() 33
overview of available 10
startCrawl() 31 S
stopCrawl() 31 starting a crawl 31updateCrawl() 35

status of crawls, getting 37metrics for crawls, getting 36
stopping a crawl 31module ID, getting available 33

module properties for crawls 12, 26 T
text extraction options, setting 19N

native file properties, gathering 13 U
updating crawl configurations 35O
utility classes, client 43output types

module IDs for 26
V

version of IAS Server, displaying 38R
Record Store API

client utility classes 43 W
core operations 39, 44 wildcard filters, adding 21
getting configuration 45

WSDL filesetting configuration 45
generating client stubs 8supported operations 44
location of 7

Record Stores

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.1.0 • October 2013
Acquisition System API Guide

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the IAS APIs
	The IAS APIs
	Generating client stubs for the IAS Web services

	Chapter 2: IAS Server API
	IAS Server core operations
	Connecting to the IAS Server
	Creating crawls
	About the source properties for crawls
	File system source properties and example
	Source properties for a custom data source
	Source properties for a manipulator
	Setting text extraction options

	Filtering files and folders
	Creating wildcard filters
	Creating regular expression filters
	Creating date filters
	Creating long filters

	About the output properties for crawls
	Record Store output properties and example
	File system output properties and example

	Listing crawls
	Starting a crawl
	Stopping a crawl
	Deleting crawls
	Listing modules available to a crawl
	Retrieving crawl configurations
	Updating crawl configurations
	Getting crawl metrics
	Getting the status of a crawl
	Retrieving IAS Server information

	Chapter 3: Component Instance Manager API
	Component Instance Manager client utility classes
	Component Instance Manager core operations
	Creating a component
	Deleting a component
	Listing component instances
	Listing component types

	Chapter 4: Record Store API
	Record Store client utility classes
	Record Store core operations
	Getting and setting a Record Store instance configuration
	Running a baseline read of the last-committed generation
	Running a delta read
	Maintaining client read state in the Record Store
	Performing an incremental write
	Performing a baseline write

	Sample Writer client example
	Sample Reader client example

	Index

