
Oracle® Endeca Information Discovery
Integrator

Integrator ETL Designer Guide

Version 3.1.0 • October 2013

Copyright and disclaimer
Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Information Discovery Integrator : Integrator ETL Version 3.1.0 • October 2013
Designer Guide

CloverETL Designer
User's Guide
Release 3.4

CloverETL Designer: User's Guide
This User's Guide refers to CloverETL Designer 3.4.x release.

Authors: Tomas Waller, Miroslav Stys et al.

Release 3.4

Copyright © 2013 Javlin, a.s. All rights reserved.

Published January 2013

Javlin

www.cloveretl.com

www.javlininc.com

Feedback welcome:

If you have any comments or suggestions for this documentation, please send them by email to
docs@cloveretl.com.

http://www.cloveretl.com
http://www.javlininc.com

iii

Table of Contents
I. CloverETL Overview ... 1

1. Family of CloverETL Products .. 2
CloverETL Designer .. 2
CloverETL Engine .. 2
CloverETL Server ... 2
Getting Additional Information .. 3

2. Integrating CloverETL Designer with CloverETL Server .. 4
Creating CloverETL Server project (Basic Principles) .. 4
Opening CloverETL Server Projects ... 5
Connecting via HTTP .. 6
Connecting via HTTPS .. 6

Designer has its Own Certificate ... 6
Designer does not have its Own Certificate ... 7

Connecting via proxy server ... 8
II. Installation Instructions .. 10

3. System Requirements for CloverETL Designer ... 11
Related Links ... 11

4. Downloading CloverETL .. 13
CloverETL Desktop Edition .. 13
CloverETL Desktop Trial Edition .. 13
CloverETL Community Edition ... 14

5. Starting CloverETL Designer ... 15
6. Installing Designer as Eclipse plugin ... 17

III. Getting Started .. 18
7. License Manager ... 19

CloverETL License dialog .. 19
CloverETL License wizard ... 20

Activation using License key ... 21
Activation online ... 23

8. Creating CloverETL Projects ... 26
CloverETL Project .. 26
CloverETL Server Project ... 27
CloverETL Examples Project .. 30

9. Structure of CloverETL Projects ... 31
Standard Structure of All CloverETL Projects .. 32
Workspace.prm File ... 33
Opening the CloverETL Perspective ... 34

10. Appearance of CloverETL Perspective ... 36
CloverETL Designer Panes ... 36

Graph Editor with Palette of Components .. 37
Navigator Pane ... 41
Outline Pane ... 41
Tabs Pane .. 43

11. Creating CloverETL Graphs ... 47
Creating Empty Graphs .. 47
Creating a Simple Graph in a Few Simple Steps ... 51

12. Running CloverETL Graphs ... 61
Successful Graph Execution .. 62
Using the Run Configurations Dialog ... 64

IV. Working with CloverETL Designer ... 65
13. Using Cheat Sheets .. 66
14. Common Dialogs ... 69

URL File Dialog ... 69
Edit Value Dialog ... 70
Open Type Dialog ... 71

CloverETL Designer

iv

15. Import .. 72
Import CloverETL Projects ... 73
Import from CloverETL Server Sandbox ... 74
Import Graphs .. 75
Import Metadata .. 76

Metadata from XSD .. 76
Metadata from DDL .. 77

16. Export .. 78
Export Graphs .. 78
Export Graphs to HTML .. 79
Export Metadata to XSD .. 80
Export to CloverETL Server Sandbox ... 81
Export Image .. 82

17. Graph tracking .. 83
18. Advanced Topics ... 85

Program and VM Arguments ... 85
Example of Setting Up Memory Size .. 87

Changing Default CloverETL Settings .. 88
Enlarging the Font of Displayed Numbers ... 91
Setting and Configuring Java .. 92

Setting Java Runtime Environment ... 92
Installing Java Development Kit .. 94

V. Graph Elements, Structures and Tools .. 96
19. Components .. 97
20. Edges ... 99

What Are the Edges? ... 99
Connecting Components by the Edges .. 99
Types of Edges ... 100
Assigning Metadata to the Edges .. 101
Propagating Metadata through the Edges ... 102
Colors of the Edges ... 102
Debugging the Edges ... 103

Enabling Debug .. 103
Selecting Debug Data ... 104
Viewing Debug Data .. 106
Turning Off Debug .. 108

Edge Memory Allocation .. 108
21. Metadata ... 110

Data Types and Record Types ... 111
Data Types in Metadata .. 111
Record Types .. 112

Data Formats .. 113
Date and Time Format ... 113
Numeric Format .. 120
Boolean Format ... 124
String Format .. 125

Locale and Locale Sensitivity .. 126
Locale ... 126
Locale Sensitivity .. 130

Autofilling Functions ... 131
Internal Metadata ... 133

Creating Internal Metadata .. 133
Externalizing Internal Metadata .. 134
Exporting Internal Metadata .. 135

External (Shared) Metadata ... 136
Creating External (Shared) Metadata ... 136
Linking External (Shared) Metadata .. 136
Internalizing External (Shared) Metadata ... 137

CloverETL Designer

v

Creating Metadata .. 138
Extracting Metadata from a Flat File ... 138

Extracting Metadata from Delimited Files .. 140
Extracting Metadata from Fixed Length Files ... 142

Extracting Metadata from an XLS(X) File ... 143
Extracting Metadata from a Database .. 145
Extracting Metadata from a DBase File ... 149
Creating Metadata by User .. 149
Extracting Metadata from Lotus Notes .. 149
Merging existing metadata .. 151
Dynamic Metadata ... 152
Reading Metadata from Special Sources .. 153
Creating Database Table from Metadata and Database Connection 154
Metadata Editor ... 156

Basics of Metadata Editor ... 157
Record Pane ... 159
Field Name vs. Label vs. Description .. 160
Details Pane ... 160

Changing and Defining Delimiters .. 163
Changing Record Delimiter ... 165
Changing Default Delimiter ... 166
Defining Non-Default Delimiter for a Field .. 166

Editing Metadata in the Source Code .. 167
Multivalue Fields ... 167

Lists and Maps Support in Components ... 168
Joininig on Lists and Maps (Comparison Rules) .. 169

22. Database Connections ... 171
Internal Database Connections ... 171

Creating Internal Database Connections ... 171
Externalizing Internal Database Connections ... 172
Exporting Internal Database Connections ... 173

External (Shared) Database Connections .. 174
Creating External (Shared) Database Connections .. 174
Linking External (Shared) Database Connections ... 174
Internalizing External (Shared) Database Connections .. 174

Database Connection Wizard ... 175
Encrypting the Access Password .. 179
Browsing Database and Extracting Metadata from Database Tables 180
Windows Authentication on Microsoft SQL Server .. 180

Getting the Native Library .. 181
Installation .. 181

Hive Connection .. 182
23. JMS Connections ... 184

Internal JMS Connections ... 184
Creating Internal JMS Connections ... 184
Externalizing Internal JMS Connections ... 184
Exporting Internal JMS Connections ... 185

External (Shared) JMS Connections .. 186
Creating External (Shared) JMS Connections .. 186
Linking External (Shared) JMS Connection .. 186
Internalizing External (Shared) JMS Connections .. 186

Edit JMS Connection Wizard .. 187
Encrypting the Authentication Password .. 188

24. QuickBase Connections ... 189
25. Lotus Connections .. 190
26. Hadoop connection ... 191
27. Lookup Tables ... 194

LookupTables in CloverETL Cluster environment ... 194

CloverETL Designer

vi

Internal Lookup Tables ... 196
Creating Internal Lookup Tables .. 196
Externalizing Internal Lookup Tables .. 196
Exporting Internal Lookup Tables ... 198

External (Shared) Lookup Tables ... 199
Creating External (Shared) Lookup Tables ... 199
Linking External (Shared) Lookup Tables .. 199
Internalizing External (Shared) Lookup Tables .. 200

Types of Lookup Tables ... 201
Simple Lookup Table ... 201
Database Lookup Table .. 204
Range Lookup Table .. 205
Persistent Lookup Table ... 207
Aspell Lookup Table .. 208

28. Sequences ... 210
Internal Sequences ... 211

Creating Internal Sequences ... 211
Externalizing Internal Sequences .. 211
Exporting Internal Sequences ... 212

External (Shared) Sequences .. 213
Creating External (Shared) Sequences ... 213
Linking External (Shared) Sequences .. 213
Internalizing External (Shared) Sequences .. 213

Editing a Sequence .. 214
29. Parameters .. 216

Internal Parameters .. 216
Creating Internal Parameters .. 216
Externalizing Internal Parameters ... 217
Exporting Internal Parameters .. 218

External (Shared) Parameters ... 219
Creating External (Shared) Parameters ... 219
Linking External (Shared) Parameters ... 219
Internalizing External (Shared) Parameters ... 219

Parameters Wizard ... 221
Parameters with CTL Expressions .. 222
Environment Variables ... 222
Canonizing File Paths ... 222
Using Parameters ... 224

30. Internal/External Graph Elements .. 225
Internal Graph Elements ... 225
External (Shared) Graph Elements .. 225
Working with Graph Elements ... 225
Advantages of External (Shared) Graph Elements .. 225
Advantages of Internal Graph Elements ... 225
Changes of the Form of Graph Elements ... 225

31. Dictionary ... 227
Creating a Dictionary ... 227
Using the Dictionary in a Graph ... 229

32. Notes in the Graphs .. 231
33. Search Functionality ... 235
34. Transformations ... 237
35. Fact table loader .. 238

Launching Fact Table Loader Wizard .. 238
Wizard with project parameters file enabled ... 238
Wizard with the project parameter file disabled ... 240

Working with Fact Table Loader Wizard ... 240
Created graph ... 246

VI. Jobflow .. 248

CloverETL Designer

vii

36. Jobflow Overview .. 249
Introduction .. 249
Important concepts ... 250
Advanced Concepts .. 254

37. Jobflow Design Patterns .. 256
VII. Components Overview ... 259

38. Introduction to Components ... 260
39. Palette of Components .. 261
40. Find / Add Components ... 263

Finding Components .. 263
Adding Components ... 263

41. Common Properties of All Components ... 265
Edit Component Dialog .. 266
Component Name .. 269
Phases ... 270
Enable/Disable Component .. 271
PassThrough Mode .. 272
Component Allocation .. 272

42. Common Properties of Most Components ... 274
Metadata Templates ... 274
Time Intervals ... 274
Group Key ... 275
Sort Key .. 276
Defining Transformations .. 278

Return Values of Transformations .. 282
Error Actions and Error Log (deprecated since 3.0) .. 284
Transform Editor ... 285
Common Java Interfaces ... 294

43. Common Properties of Readers ... 295
Supported File URL Formats for Readers .. 296
Viewing Data on Readers ... 300
Input Port Reading ... 302
Incremental Reading .. 303
Selecting Input Records .. 304
Data Policy ... 305
XML Features ... 306
CTL Templates for Readers ... 306
Java Interfaces for Readers .. 306

44. Common Properties of Writers ... 308
Supported File URL Formats for Writers ... 309
Viewing Data on Writers .. 313
Output Port Writing ... 315
How and Where Data Should Be Written ... 315
Selecting Output Records .. 316
Partitioning Output into Different Output Files .. 317
Java Interfaces for Writers .. 318

45. Common Properties of Transformers .. 319
CTL Templates for Transformers ... 320
Java Interfaces for Transformers ... 321

46. Common Properties of Joiners .. 322
Join Types .. 323
Slave Duplicates .. 323
CTL Templates for Joiners .. 324
Java Interfaces for Joiners ... 327

47. Common Properties of Cluster Components .. 329
48. Common Properties of Others ... 330
49. Common Properties of Data Quality .. 331
50. Common Properties of Job Control .. 332

CloverETL Designer

viii

51. Common Properties of File Operations ... 333
Supported URL Formats for File Operations ... 334

52. Custom Components ... 336
VIII. Component Reference ... 337

53. Readers .. 338
CloverDataReader .. 340
ComplexDataReader ... 342
DataGenerator ... 350
DBFDataReader .. 358
DBInputTable ... 360
EmailReader ... 364
JavaBeanReader .. 367
HadoopReader ... 373
JMSReader ... 375
JSONReader ... 378
LDAPReader .. 384
LotusReader .. 387
MultiLevelReader .. 389
ParallelReader ... 393
QuickBaseRecordReader ... 396
QuickBaseQueryReader .. 398
SpreadsheetDataReader ... 400
UniversalDataReader .. 410
XLSDataReader ... 415
XMLExtract .. 419
XMLReader .. 437
XMLXPathReader ... 445

54. Writers ... 452
CloverDataWriter ... 454
DB2DataWriter ... 456
DBFDataWriter ... 462
DBOutputTable ... 465
EmailSender ... 473
HadoopWriter ... 477
InfobrightDataWriter .. 479
InformixDataWriter .. 481
JavaBeanWriter ... 484
JavaMapWriter .. 488
JMSWriter .. 493
JSONWriter .. 496
LDAPWriter ... 501
LotusWriter .. 503
MSSQLDataWriter .. 505
MySQLDataWriter ... 508
OracleDataWriter ... 511
PostgreSQLDataWriter ... 515
QuickBaseImportCSV .. 518
QuickBaseRecordWriter .. 520
SpreadsheetDataWriter .. 522
StructuredDataWriter .. 536
Trash ... 540
UniversalDataWriter ... 542
XLSDataWriter ... 545
XMLWriter .. 548

55. Transformers ... 566
Aggregate ... 568
Concatenate .. 571
DataIntersection ... 572

CloverETL Designer

ix

DataSampler ... 575
Dedup .. 577
Denormalizer .. 579
ExtFilter ... 588
ExtSort .. 591
FastSort ... 593
Merge .. 597
MetaPivot ... 599
Normalizer ... 602
Partition ... 609
LoadBalancingPartition ... 616
Pivot ... 618
Reformat .. 622
Rollup ... 625
SimpleCopy .. 637
SimpleGather .. 638
SortWithinGroups .. 639
XSLTransformer .. 641

56. Joiners .. 643
ApproximativeJoin ... 644
Combine .. 652
DBJoin .. 654
ExtHashJoin .. 657
ExtMergeJoin .. 663
LookupJoin ... 668
RelationalJoin ... 671

57. Job Control ... 675
Barrier ... 676
Condition ... 679
ExecuteGraph ... 682
ExecuteJobflow ... 689
ExecuteMapReduce .. 691
ExecuteProfilerJob ... 700

Input mapping ... 702
Output mapping .. 702

ExecuteScript .. 704
Fail ... 710
GetJobInput .. 713
KillGraph ... 715
KillJobflow ... 719
MonitorGraph ... 721
MonitorJobflow ... 725
SetJobOutput .. 727
Success .. 729
TokenGather ... 731

58. File Operations .. 733
CopyFiles ... 734
CreateFiles ... 738
DeleteFiles ... 741
ListFiles ... 744
MoveFiles .. 747

59. Cluster Components .. 750
ClusterPartition ... 751
ClusterLoadBalancingPartition ... 753
ClusterSimpleCopy .. 755
ClusterSimpleGather .. 757
ClusterMerge .. 759
ClusterRepartition .. 761

CloverETL Designer

x

60. Data Quality .. 763
Address Doctor 5 .. 764
EmailFilter ... 768
ProfilerProbe ... 773

61. Others .. 779
CheckForeignKey .. 780
DBExecute ... 784
HTTPConnector .. 788
JavaExecute .. 793
LookupTableReaderWriter ... 795
RunGraph ... 797
SequenceChecker ... 801
SpeedLimiter .. 803
SystemExecute .. 805
WebServiceClient .. 808

IX. CTL - CloverETL Transformation Language ... 813
62. Overview .. 814
63. CTL1 vs. CTL2 Comparison .. 816

Typed Language .. 816
Arbitrary Order of Code Parts .. 816
Compiled Mode .. 816
Access to Graph Elements (Lookups, Sequences, ...) .. 816
Metadata .. 816

64. Migrating CTL1 to CTL2 .. 820
65. CTL1 ... 830

Language Reference ... 831
Program Structure .. 832
Comments .. 832
Import ... 832
Data Types in CTL .. 833
Literals .. 835
Variables .. 837
Operators ... 838
Simple Statement and Block of Statements ... 843
Control Statements ... 843
Error Handling .. 847
Functions ... 848
Eval .. 849
Conditional Fail Expression ... 850
Accessing Data Records and Fields ... 851
Mapping .. 854
Parameters .. 860

Functions Reference ... 861
Conversion Functions ... 862
Date Functions .. 867
Mathematical Functions .. 870
String Functions .. 874
Container Functions ... 882
Miscellaneous Functions ... 884
Dictionary Functions .. 886
Lookup Table Functions ... 887
Sequence Functions .. 889
Custom CTL Functions ... 890

66. CTL2 ... 891
Language Reference ... 892

Program Structure .. 893
Comments .. 893
Import ... 893

CloverETL Designer

xi

Data Types in CTL2 .. 894
Literals .. 897
Variables .. 899
Dictionary in CTL2 ... 900
Operators ... 901
Simple Statement and Block of Statements ... 907
Control Statements ... 907
Error Handling .. 911
Functions ... 912
Conditional Fail Expression ... 913
Accessing Data Records and Fields ... 914
Mapping .. 916
Parameters .. 920

Functions Reference ... 921
Conversion Functions ... 923
Date Functions .. 930
Mathematical Functions .. 932
String Functions .. 936
Container Functions ... 945
Record functions (dynamic field access) .. 949
Miscellaneous Functions ... 953
Lookup Table Functions ... 957
Sequence Functions .. 960
Custom CTL Functions ... 961
CTL2 Appendix - List of National-specific Characters .. 962

67. Regular Expressions .. 964
List of Figures .. 965
List of Tables ... 972
List of Examples ... 973

Part I. CloverETL Overview

2

Chapter 1. Family of CloverETL Products
This chapter is an overview of the following three products of our CloverETL software: CloverETL Designer,
CloverETL Engine and CloverETL Server.

Figure 1.1. Family of CloverETL Products

CloverETL Designer
CloverETL Designer is a member of the family of CloverETL software products developed by Javlin. It is a
powerful Java-based standalone application for data extraction, transformation and loading.

CloverETL Designer builds upon extensible Eclipse platform. See www.eclipse.org.

Working with CloverETL Designer is much simpler than writing code for data parsing. Its graphical user interface
makes creating and running graphs easier and comfortable.

CloverETL Designer also allows you to work easily with CloverETL Server. These two products are fully
integrated. You can use CloverETL Designer to connect to and communicate with CloverETL Server, create
projects, graphs, and all other resources on CloverETL Server in the same way as if you were working with
CloverETL Designer only locally.

See Chapter 2, Integrating CloverETL Designer with CloverETL Server (p. 4) for more information.

CloverETL Engine
CloverETL Engine is a base member of the family of CloverETL software products developed by Javlin.
CloverETL Engine is a run-time layer that executes transformation graphs created in CloverETL Designer.

Transformation graphs are created in CloverETL Designer from graph elements and executed by CloverETL
Engine.

CloverETL Engine is a Java library that can be embedded into other Java applications.

CloverETL Server
CloverETL Server is the last and newest member of CloverETL software products developed by Javlin.
CloverETL Server is also based on Java.

http://www.eclipse.org

Chapter 1. Family of
CloverETL Products

3

CloverETL Designer can be used to work with CloverETL Server. These two products are fully integrated.
You can use CloverETL Designer to connect to and communicate with CloverETL Server, create projects,
graphs and all other resources on CloverETL Server in the same way as if you were working with the standard
CloverETL Designer only locally.

See Chapter 2, Integrating CloverETL Designer with CloverETL Server (p. 4) for more information.

CloverETL Server allows to achieve:

• Centralized ETL job management

• Integration into enterprise workflows

• Multi-user environment

• Parallel execution of graphs

• Tracking of executions of graphs

• Scheduling tasks

• Clustering and distributed execution of graphs

• Launch services

• Load balancing and failover

Getting Additional Information

In addition to this User's Guide, you can find additional information on the following sites:

• Quick Start Guide explaing briefly the basics of CloverETL Designer usage.

www.cloveretl.com/documentation/quickstart

• FAQ concerning various areas of CloverETL products.

www.cloveretl.com/faq

• Forum about detailes of CloverETL features.

http://forum.cloveretl.com

• Blog describing interesting solutions based on CloverETL products.

http://blog.cloveretl.com

• Wiki page containing the information about CloverETL tools.

http://wiki.cloveretl.com

Support

In addition to the sites mentioned above, Javlin offers a full range of support options. This Technical Support
is designed to save you time and ensure you achieve the highest levels of performance, reliability, and uptime.
CloverCare is intended primarily for the US and Europe.

www.cloveretl.com/services/clovercare-support

http://www.cloveretl.com/documentation/quickstart
http://www.cloveretl.com/faq
http://forum.cloveretl.com
http://blog.cloveretl.com
http://wiki.cloveretl.com
http://www.cloveretl.com/services/clovercare-support

4

Chapter 2. Integrating CloverETL Designer with
CloverETL Server
With CloverETL Designer and CloverETL Server now fully integrated, you can access Server sandboxes
directly from the Designer without having to copy them back and forth manually.

Designer takes care of all the data transfers for you - you can directly edit graphs, run them on the server, edit
data files, metadata, etc. You can even view live tracking of a graph execution as it runs on the Server.

Important

Please note that this feature works only on Eclipse 3.5+ and Java 1.6.4+.

Rember also that version 3.0 of CloverETL Designer can only work with version 3.0 of CloverETL
Server, and vice versa.

You can connect to your CloverETL Server by creating a CloverETL Server Project in CloverETL Designer.
See CloverETL Server Project (p. 27) for detailed information.

To learn how you can interchange graphs, metadata, etc. between a CloverETL Server sandbox and a standard
CloverETL project, see the following links:

• Import from CloverETL Server Sandbox (p. 74)

• Export to CloverETL Server Sandbox (p. 81)

The User's Guide of CloverETL Server can be found here: http://server-demo-ec2.cloveretl.com/clover/docs/
index.html

Creating CloverETL Server project (Basic Principles)

1. As the first step, a sandbox must exist on CloverETL Server. To each CloverETL Server sandbox, only
one CloverETL Server project can be created within the same workspace. If you want to create more than
one CloverETL Server projects to a single CloverETL Server sandbox, each of these projects must be in
different workspace.

2. In one workspace, you can have more CloverETL Server projects created using your Designer.

Each of these CloverETL Server projects can even be linked to different CloverETL Server.

3. CloverETL Designer uses the HTTP/HTTPS protocols to connect CloverETL Server. These protocols work
well with complex network setups and firewalls. Remember that each connection to any CloverETL Server
is saved in your workspace. For this reason, you can use only one protocol in one workspace. You have your
login name, password and some specified user rights and/or keys.

4. Remember that if multiple users are accessing the same sandbox (via Designer), they must cooperate to not
overwrite their changes made to the same resources (e.g. graphs). If anyone changes the graph or any other
resource on CloverETL Server, the other users may overwrite such resources on Server. However, a warning
is displayed and each user must decide whether he or she really wants to overwrite such resource on CloverETL
Server. The remote resources are not locked and user must decide what should be done in case of such conflict.

5. When you restart CloverETL Designer, all CloverETL Server projects are displayed, but all of them are
closed. In order to open them, you have two possibilities:

• Double-click the project.

• Right-click the project and select Open project from the context menu.

See Opening CloverETL Server Projects (p. 5) for more information.

http://server-demo-ec2.cloveretl.com/clover/docs/index.html
http://server-demo-ec2.cloveretl.com/clover/docs/index.html

Chapter 2. Integrating CloverETL
Designer with CloverETL Server

5

Opening CloverETL Server Projects

When you start your CloverETL Designer, you will see something like this:

Figure 2.1. CloverETL Server Project Displayed after Opening CloverETL Designer

Note that the URL of the Server and the ID of the sandbox separated by hash are displayed beside the CloverETL
Server project name. The CloverETL Server projects will be closed. To open these projects, do what is desribed
above: Either double-click them or select Open project from the context menu.

You may be prompted to insert your User ID and Password, choose also whether Password should be saved.

Figure 2.2. Prompt to Open CloverETL Server Project

After that, click OK and the CloverETLServer project.

Figure 2.3. Opening CloverETL Server Project

Chapter 2. Integrating CloverETL
Designer with CloverETL Server

6

Should you have some problem with your antivirus application, add the exceptions to your settings of the HTTP/
HTTPS connections. For example, you can use *clover* as a mask to allow the connections to CloverETL
Servers or CloverETL web pages.

Connecting via HTTP

To connect via http, for example, you can install CloverETL Server using Tomcat.

To do that, copy the clover.war and clover_license.war files of CloverETL Server to the webapps
subdirectory of Tomcat and run Server by executing the startup script located in the bin subdirectory of
Tomcat. Once Tomcat starts, the two files are expanded inside its webapps subdirectory.

With the HTTP connection, you do not need configure CloverETL Designer. Simply start your CloverETL
Designer. With this Designer, you can create your CloverETL Server projects using the following default
connection to Server: http://localhost:8080/clover where both login name and password are
clover.

Connecting via HTTPS

To connect via https, for example, you can install CloverETL Server using Tomcat.

As the first step, copy the clover.war and clover_license.war files of CloverETL Server to the
webapps subdirectory of Tomcat and run Server by executing the startup script located in the bin
subdirectory of Tomcat. Once Tomcat starts, the two files are expanded inside its webapps subdirectory.

You need to configure both Server and Designer (in case of Designer with its own certificate) or Server alone
(in case of Designer without a certificate).

Designer has its Own Certificate

In order to connect to CloverETL Server via https when Designer must have its own certificate, create client
and server keystores/truststores.

To generate these keys, execute the following script (version for Unix) in the bin subdirectory of JDK or JRE
where keytool is located:

SERVER
create server key-store with private-public keys
keytool -genkeypair -alias server -keyalg RSA -keystore ./serverKS.jks \
 -keypass semafor -storepass semafor -validity 900 \
 -dname "cn=localhost, ou=ETL, o=Javlin, c=CR"
exports public key to separated file
keytool -exportcert -alias server -keystore serverKS.jks \
 -storepass semafor -file server.cer

CLIENT
create client key-store with private-public keys
keytool -genkeypair -alias client -keyalg RSA -keystore ./clientKS.jks \
 -keypass chodnik -storepass chodnik -validity 900 \
 -dname "cn=Key Owner, ou=ETL, o=Javlin, c=CR"
exports public key to separated file
keytool -exportcert -alias client -keystore clientKS.jks \
 -storepass chodnik -file client.cer

trust stores

imports server cert to client trust-store
keytool -import -alias server -keystore clientTS.jks \
 -storepass chodnik -file server.cer

imports client cert to server trust-store
keytool -import -alias client -keystore serverTS.jks \

Chapter 2. Integrating CloverETL
Designer with CloverETL Server

7

 -storepass semafor -file client.cer

(In these commands, localhost is the default name of your CloverETL Server, if you want any other Server
name, replace the localhost name in these commands by any other hostname.)

After that, copy the serverKS.jks and serverTS.jks files to the conf subdirectory of Tomcat.

Then, copy the following code to the server.xml file in this conf subdirectory:

<Listener className="org.apache.catalina.core.AprLifecycleListener"
 SSLEngine="off" />

 <Connector port="8443" maxHttpHeaderSize="7192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="true" sslProtocol="TLS"
 SSLEnabled="true"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 keystoreFile="pathToTomcatDirectory/conf/serverKS.jks"
 keystorePass="semafor"
 truststoreFile="pathToTomcatDirectory/conf/serverTS.jks"
 truststorePass="semafor"
 />

Now you can run CloverETL Server by executing the startup script located in the bin subdirectory of
Tomcat.

Configuring CloverETL Designer

Now you need to copy the clientKS.jks and clientTS.jks files to any location.

After that, copy the following code to the end of the eclipse.ini file, which is stored in the eclipse
directory:

-Djavax.net.ssl.keyStore=locationOfClientFiles/clientKS.jks
-Djavax.net.ssl.keyStorePassword=chodnik
-Djavax.net.ssl.trustStore=locationOfClientFiles/clientTS.jks
-Djavax.net.ssl.trustStorePassword=chodnik

Now, when you start your CloverETL Designer, you will be able to create your CloverETL Server projects
using the following default connection to Server: https://localhost:8443/clover where both login
name and password are clover.

Designer does not have its Own Certificate

In order to connect to CloverETL Server via https when Designer does not need to have its own certificate,
you only need to create a server keystore.

To generate this key, execute the following script (version for Unix) in the bin subdirectory of JDK or JRE where
keytool is located:

keytool -genkeypair -alias server -keyalg RSA -keystore ./serverKS.jks \
 -keypass semafor -storepass semafor -validity 900 \
 -dname "cn=localhost, ou=ETL, o=Javlin, c=CR"

(In these commands, localhost is the default name of your CloverETL Server, if you want any other Server
name, replace the localhost name in these commands by any other hostname.)

After that, copy the serverKS.jks file to the conf subdirectory of Tomcat.

Chapter 2. Integrating CloverETL
Designer with CloverETL Server

8

Then, copy the following code to the server.xml file in this conf subdirectory:

<Listener className="org.apache.catalina.core.AprLifecycleListener"
 SSLEngine="off" />

 <Connector port="8443" maxHttpHeaderSize="7192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="false" sslProtocol="SSL"
 SSLEnabled="true"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 keystoreFile="pathToTomcatDirectory/conf/serverKS.jks"
 keystorePass="semafor"
 />

Now you can run CloverETL Server by executing the startup script located in the bin subdirectory of
Tomcat.

And, when you start your CloverETL Designer, you will be able to create your CloverETL Server projects
using the following default connection to Server: https://localhost:8443/clover where both login
name and password are clover.

You will be prompted to accept the Server certificate. After which, you are allowed to create a CloverETL Server
project.

Connecting via proxy server

You can make use of your proxy server to connect to Clover Server, too.

Important

The proxy server has to support HTTP 1.1. Otherwise all connection attempts will fail.

To manage the connection, navigate to Window →Preferences →General →Network Connections

Figure 2.4. Network connections window

Chapter 2. Integrating CloverETL
Designer with CloverETL Server

9

For more information on handling proxy settings, go to the Eclipse website.

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-net-preferences.htm

Part II. Installation Instructions

11

Chapter 3. System Requirements for CloverETL
Designer
CloverETL Designer is distributed in three different forms:

1. Full installation, which is recommended, includes all the necessary environments and applications, i.e., no
prerequisites are required.

2. Online plugin fits if all prerequisites described below reside in your computer; CloverETL Designer will be
installed online using the corresponding CloverETL update site.

3. Offline plugin is applicable under the same conditions as the online plugin but this time CloverETL Designer
will be installed offline by executing of the previously downloaded archived file.

The following requirements must be fulfilled in order for CloverETL to run:

• supported OS are Microsoft Windows 32 bit, Microsoft Windows 64 bit, Linux 32 bit, Linux 64bit, and Mac
OS X Cocoa

• at least 512MB of RAM

Full installation

• Software requirements:

• Microsoft Windows - none, the installer includes Eclipse Platform 3.6.2 for Java developers with RSE + GEF
+ Eclipse Web Tools Platform.

• Mac OS X, Linux - Java 6 Runtime Environment or newer (Java 7 Development Kit is recommended)

Plugin installation

• Software requirements:

• Minimum: Eclipse Platform 3.6.2 + GEF. Java 6 Runtime Enviroment.

• Recommended: Eclipse Platform 3.6.2 with RSE + GEF + Eclipse Web Tools Platform. Java 7 Development
Kit

• Eclipse 3.7 is fully supported.

Important

For Mac OS users:

Please make sure your default Java system is set to 1.7 or newer. Go to Finder →Applications

→Utilities →Java →Java preferences and reorder the available Java installations so that Java 7
is at the top of the list.

Related Links

• Eclipse Classic download page - choose a proper version for your OS

http://www.eclipse.org/downloads

http://www.eclipse.org/downloads

Chapter 3. System Requirements
for CloverETL Designer

12

• JDK download page - Clover supports Java 1.6+

http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Useful links for understanding the difference between Java Development Kit (JDK) and Java SE Runtime
Environment (JRE)

http://docs.oracle.com/javase/7/docs/

http://www.oracle.com/technetwork/java/javase/webnotes-136672.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/
http://www.oracle.com/technetwork/java/javase/webnotes-136672.html

13

Chapter 4. Downloading CloverETL
There are possible two ways how to download CloverETL Designer Edition:

1. From your user or customer account after signing in at www.cloveretl.com/user

This is the recommended way of installing it.

2. Using the direct http download link for your platform.

• The full installation links are unique with respect to the operating system

• The plugin installation links (both online and offline) are common for all the supported operating systems
within the particular edition

CloverETL Desktop Edition

To log into your customer account use the login data (email address + password) you have received along with
the license credentials. Later on, you will be oblidged to enter the licence number and the password to invoke
the download. For more information about the installation from your customer profile see www.cloveretl.com/
resources/installation-guide

Now, let's go through the list of direct download http links presented in tables below.

Get the Full Installation

OS Download Site

Windows 32 bit designer.cloveretl.com/update/cloveretl-designer-win32.exe

Windows 64 bit designer.cloveretl.com/update/cloveretl-designer-win32-x86_64.exe

Linux 32 bit designer.cloveretl.com/update/cloveretl-designer-linux-gtk.tar.gz

Linux 64 bit designer.cloveretl.com/update/cloveretl-designer-linux-gtk-x86_64.tar.gz

Mac OS Cocoa designer.cloveretl.com/update/cloveretl-designer-macosx-cocoa-x86_64.dmg.zip

Get the Eclipse Plugin

Plugin Download Site

online designer.cloveretl.com/update

offline designer.cloveretl.com/update/cloveretl-designer.zip

For the plugin installation instructions go to Chapter 6, Installing Designer as Eclipse plugin (p. 17).

CloverETL Desktop Trial Edition

To get the trial version, create your user account at the company site www.cloveretl.com/user/registration. After
receiving your login name with password and confirming the registration, your user account will be granted a time-
limited access to the CloverETL Desktop Trial Edition download. Detailed information about the installation
can be found at www.cloveretl.com/resources/installation-guide.

Get the Full Installation

http://www.cloveretl.com/user
http://www.cloveretl.com/resources/installation-guide
http://www.cloveretl.com/resources/installation-guide
http://designer.cloveretl.com/update/cloveretl-designer-win32.exe
http://designer.cloveretl.com/update/cloveretl-designer-win32-x86_64.exe
http://designer.cloveretl.com/update/cloveretl-designer-linux-gtk.tar.gz
http://designer.cloveretl.com/update/cloveretl-designer-linux-gtk-x86_64.tar.gz
http://designer.cloveretl.com/update/cloveretl-designer-macosx-cocoa-x86_64.dmg.zip
http://designer.cloveretl.com/update
http://designer.cloveretl.com/update/cloveretl-designer.zip
http://www.cloveretl.com/user/registration
http://www.cloveretl.com/resources/installation-guide

Chapter 4. Downloading CloverETL

14

OS Download Site

Windows 32bit designer.cloveretl.com/eval-update/cloveretl-designer-eval-win32.exe

Windows 64 bit designer.cloveretl.com/eval-update/cloveretl-designer-eval-win32-x86_64.exe

Linux 32bit designer.cloveretl.com/eval-update/cloveretl-designer-eval-linux-gtk.tar.gz

Linux 64bit designer.cloveretl.com/eval-update/cloveretl-designer-eval-linux-gtk-x86_64.tar.gz

Mac OS Cocoa designer.cloveretl.com/eval-update/cloveretl-designer-eval-macosx-cocoa-x86_64.dmg.zip

Get the Eclipse Plugin

Plugin Download Site

online designer.cloveretl.com/eval-update

offline designer.cloveretl.com/eval-update/cloveretl-designer-eval.zip

See Chapter 6, Installing Designer as Eclipse plugin (p. 17) for more information about installing CloverETL
Designer using Eclipse software update site mechanism.

CloverETL Community Edition

If you wish to get the CloverETL Community Edition, visit www.cloveretl.com/user/registration to create your
user account at. The login name and password, sent by return, will authorize the download and the installation.

Get the Full Installation

OS Download Site

Windows 32bit designer.cloveretl.com/community-update/cloveretl-designer-community-win32.exe

Windows 64 bit designer.cloveretl.com/community-update/cloveretl-designer-community-win32-x86_64.exe

Linux 32bit designer.cloveretl.com/community-update/cloveretl-designer-community-linux-gtk.tar.gz

Linux 64bit designer.cloveretl.com/community-update/cloveretl-designer-community-linux-gtk-
x86_64.tar.gz

Mac OS Cocoa designer.cloveretl.com/community-update/cloveretl-designer-community-macosx-cocoa-
x86_64.dmg.zip

Get the Eclipse Plugin

Plugin Download Site

online designer.cloveretl.com/community-update

offline designer.cloveretl.com/community-update/cloveretl-designer-community.zip

The plugin installation is described in Chapter 6, Installing Designer as Eclipse plugin (p. 17).

http://designer.cloveretl.com/eval-update/cloveretl-designer-eval-win32.exe
http://designer.cloveretl.com/eval-update/cloveretl-designer-eval-win32-x86_64.exe
http://designer.cloveretl.com/eval-update/cloveretl-designer-linux-eval-gtk.tar.gz
http://designer.cloveretl.com/eval-update/cloveretl-designer-linux-gtk-x86_64.tar.gz
http://designer.cloveretl.com/eval-update/cloveretl-designer-eval-macosx-cocoa-x86_64.dmg.zip
http://designer.cloveretl.com/eval-update
http://designer.cloveretl.com/eval-update/cloveretl-designer-eval.zip
http://www.cloveretl.com/user/registration
http://designer.cloveretl.com/community-update/cloveretl-designer-community-win32.exe
http://designer.cloveretl.com/community-update/cloveretl-designer-community-win32-x86_64.exe
http://designer.cloveretl.com/community-update/cloveretl-designer-community-linux-gtk.tar.gz
http://designer.cloveretl.com/community-update/cloveretl-designer-community-linux-gtk-x86_64.tar.gz
http://designer.cloveretl.com/community-update/cloveretl-designer-community-linux-gtk-x86_64.tar.gz
http://designer.cloveretl.com/community-update/cloveretl-designer-community-macosx-cocoa-x86_64.dmg.zip
http://designer.cloveretl.com/community-update/cloveretl-designer-community-macosx-cocoa-x86_64.dmg.zip
http://designer.cloveretl.com/community-update
http://designer.cloveretl.com/community-update/cloveretl-designer-community.zip

15

Chapter 5. Starting CloverETL Designer
When you start CloverETL Designer,you will see the following screen:

Figure 5.1. CloverETL Designer Splash Screen

The first thing you will be prompted to define after the CloverETL Designer launches, is the workspace
folder. It is a place your projects will be stored at; usually a folder in the user's home directory (e.g., C:\Users
\your_name\workspace or /home/your_name/CloverETL/workspace)

Figure 5.2. Workspace Selection Dialog

Note that the workspace can be located anywhere. Thus, make sure you have proper permissions to the location.
If non-existing folder is specified, it will be created.

When the workspace is set, the welcome screen is displayed.

Chapter 5. Starting
CloverETL Designer

16

Figure 5.3. CloverETL Designer Introductory Screen

The first steps with CloverETL Designer are described in Chapter 8, Creating CloverETL Projects (p. 26).

Sooner or later, you might want to get access to product resources online or to manage your Clover licenses. The
easiest way is to navigate to help menu as implied on the figure below:

Figure 5.4. CloverETL Help

17

Chapter 6. Installing Designer as Eclipse plugin
Eclipse allows you to install CloverETL Designer plugin directly into it. All required plugins will be installed
during the installation of the CloverETL Designer plugin. You do not need to install them separately, you only
need to download and install CloverETL Designer.

Installing the CloverETL Designer plugin into Eclipse release is considered installing new software. The Help

→Install New Software... wizard displays the list of software sites and items available for installation.

Figure 6.1. Available Software

The Add... button allows you to type the plugin location. The summary of CloverETL Designer online plugin
update sites will then be provided in the table below.

Table 6.1. Sites with CloverETL

CloverETL Product Update Site

CloverETL Desktop Edition designer.cloveretl.com/update

CloverETL Desktop Trial Edition designer.cloveretl.com/eval-update

CloverETL Community Edition designer.cloveretl.com/community-update

To get the access to the CloverETL plugin installation, you will be prompted to enter your username and password.
If you are installing CloverETL Desktop Edition, enter the license number for username. If you are installing
any other version, use your user account login, i.e., your email address.

After checking the CloverETL item and accepting the terms of the license agreements in the next screen, click
Finish to allow the downloading and installing to proceed. Later on, click Yes when asked to restart Eclipse SDK
for the changes to take effect.

To verify that the installation had finished successfully, go to Help →About Eclipse SDK. The CloverETL logo

 should be displayed.

http://designer.cloveretl.com/update
http://designer.cloveretl.com/eval-update
http://designer.cloveretl.com/community-update

Part III. Getting Started

19

Chapter 7. License Manager
This chapter describes how you can add or remove licenses at CloverETL Designer.

License Manager is designed to easily add new licenses and remove or view existing licenses. The manager is

accessible in the main menu - select Help →CloverETL →License Manager .

Important

License Manager is not accessible in CloverETL Designer Community.

Figure 7.1. License Manager showing installed licenses.

License manager allows you to:

• Browse all available licenses and it's details:

• License number - number of installed license.

• Company

• Products - list of licensed products.

• Expiration - expiration date of the license.

• Open CloverETL License dialog (p. 19) to view all available information about the license.

• Check available license sources. The license sources are shown after clicking on License Manager Info.

• Open CloverETL License wizard (p. 20). New license can be added with the help of this wizard. Click Add
New License button to start the process of license activation.

• Delete existing license. Remove button is shown if it is possible to remove activated license. Confirmation is
required when deleting license.

CloverETL License dialog

CloverETL License dialog shows all available information about the license. License terms are available from
this place. It can be opened from License Manager (Chapter 7, License Manager (p. 19))

Chapter 7. License Manager

20

Figure 7.2. CloverETL License dialog

Note

License Terms needn't to be accessible for some licenses.

CloverETL License wizard

CloverETL License wizard guides you through the process of license activation.

Chapter 7. License Manager

21

Figure 7.3. CloverETL License wizard

There are two ways how to activate new license:

• Activation using License key (p. 21)

Offline activation if you have license key.

• Activation online (p. 23)

Online activation if you have license number and password.

Activation using License key

The license can be activated using license key. Internet connection isn't necessary for this choice. Following
pictures illustrates the process of new license activation:

Chapter 7. License Manager

22

Figure 7.4. Select Activate using license key radio button and click Next.

Figure 7.5. Enter the path to the license file or copy and paste the license text.

Chapter 7. License Manager

23

Figure 7.6. Confirm you accept the license agreement and click Finish button.

Affter these steps the information dialog about successful license activation is shown. Confirm dialog by pressing
OK button to finish the process of activation.

Note

The process of new license activation can be terminated whenever before pressing Finish button.
Already activated license can be deleted with the help of License Manager.

Activation online

License number and password can be used for online activation of new license. Internet connection is necessary
in this case. Following pictures illustrates the process of new license activation:

Chapter 7. License Manager

24

Figure 7.7. Select Activate online radio button, enter your license number and password and click Next.

Note

Error message is shown if entered password or license number is not correct.

Figure 7.8. Confirm you accept the license agreement and click Finish button.

Affter these steps the information dialog about successful license activation is shown. Confirm dialog by pressing
OK button to finish the process of activation.

Chapter 7. License Manager

25

Note

The process of new license activation can be terminated whenever before pressing Finish button.
Already activated license can be deleted with the help of License Manager.

26

Chapter 8. Creating CloverETL Projects
This chapter describes how you can create CloverETL projects.

CloverETL Designer allows you to create three kinds of CloverETL projects:

• CloverETL Project (p. 26)

It is a local CloverETL project. The whole project structure is on your local computer.

• CloverETL Server Project (p. 27)

It is a CloverETL project corresponding to a CloverETL Server sandbox. The whole project structure is on
CloverETL Server.

• CloverETL Examples Project (p. 30)

In addition to the two mentioned kinds of projects, CloverETL Designer also allows you to create a set of
prepared local CloverETL projects containing examples. These examples demonstrate the functionality of
CloverETL.

We will explain how you need to create the mentioned projects from CloverETL perspective.

If you have installed CloverETL Designer as a full installation, you are already in this perspective.

If you have installed CloverETL Designer as a plugin into Eclipse, you need to change the perpsective. To do it,
click the button at the top right corner and select from the menu Others, then choose CloverETL.

CloverETL Project

From the CloverETL perspective, select File →New →CloverETL Project.

Following wizard will open and you will be asked to give a name to your project:

Figure 8.1. Giving a Name to a CloverETL Project

After clicking Finish, the selected local CloverETL project with the specified name will be created.

Chapter 8. Creating
CloverETL Projects

27

CloverETL Server Project

From the CloverETL perspective, select File →New →CloverETL Server Project.

Following wizard will open allowing to specify CloverETL project properties in three steps:

Figure 8.2. CloverETL Server Project Wizard - Server Connection

The first step is to create working connection to the CloverETL Server. Fill the diplayed text fields: CloverETL
Server URL, User, and Password.

Then click Test Connection to verify validity of connection parameters. You can decide here whether the
password will stored in your PC by checking the Remember password check box. Once connection to the
CloverETL Server is established you can proceed to the next step by clicking on the Next button. You can also
hit Return key to validate settings and go to the next step at once.

Figure 8.3. CloverETL Server Project Wizard - Sandbox Selection

Chapter 8. Creating
CloverETL Projects

28

The next step of the wizard is to select or create a CloverETL Server sandbox that will correspond to the project.
Note that one sandbox can be connected to single workspace project only. In case you decide to create new sandbox,
the form is similar to the one present in CloverETL Server web interface. Refer to the CloverETL Server manual
for for further description of sandbox properties. The wizard will create new sandbox when Next button is clicked.

Figure 8.4. CloverETL Server Project Wizard - Clustered Sandbox Creation

When using CloverETL Server deployed in cluster, the form for sandbox creation is different (see Figure 8.4,
“CloverETL Server Project Wizard - Clustered Sandbox Creation” (p. 28)). Again, refer to the CloverETL
Server manual for description of sandbox types and their specific properties.

Note
In clustered environment, the shared sandbox type is the proper one to be bound to CloverETL
Designer project, allowing user to define and execute data transformations. Sandboxes of other types
can be connected to workspace projects, too, but their purpose should be data access and distribution
to the cluster.

The last step is to specify name of the new CloverETL Server project. Keep the other values (Location, and
File system) unchanged.

Chapter 8. Creating
CloverETL Projects

29

Figure 8.5. Giving a Name to the New CloverETL Server Project

After clicking the Finish, CloverETL Server project will be created.

Important

In fact, any CloverETL Server project is only a link to an existing CloverETL Server sandbox.

However, it can be seen in the Navigator pane of CloverETL Designer in the same way as any
other local projects, graphs can be created in this CloverETL Designer as if they are created locally,
but they exist in the mentioned sandbox. They can also be run from this Designer.

If you want to create graphs within some CloverETL Server project, you must have the permission
to write into the sandbox.

Chapter 8. Creating
CloverETL Projects

30

CloverETL Examples Project

If you want to create some of the prepared example projects, select File →New →Others..., expand the
CloverETL category and choose CloverETL Examples Project.

You will be presented with the following wizard:

Figure 8.6. CloverETL Examples Project Wizard

You can select any of the CloverETL example projects by checking its checkbox.

After clicking Finish, the selected local CloverETL Exaples projects will be created.

Important

Remember that if you already have these project installed, you can click Next and rename them
before installing. After that, you can click Finish.

Figure 8.7. Renaming CloverETL Examples Projects

31

Chapter 9. Structure of CloverETL Projects
In this chapter we present only a brief overview of what happens when you are creating any CloverETL project.

This applies not only for local CloverETL Project (p. 26) and CloverETL Examples Project (p. 30), but also for
CloverETL Server Project (p. 27).

1. Standard Structure of All CloverETL Projects (p. 32)

Each of your CloverETL Projects has the standard project structure (unless you have changed it while creating
the project).

2. Workspace.prm File (p. 33)

Each of your local or remote (server) CloverETL projects contains the workspace.prm file (in the project
folder) with basic information about the project.

3. Opening the CloverETL Perspective (p. 34)

• If you installed CloverETL Designer as a full-installation and started the Designer, the CloverETL
perspective opened by default.

• If you installed CloverETL Designer as a plugin into Eclipse and started the Designer, the basic Eclipse
perspective opened. You need to switch it to the CloverETL perspective.

Chapter 9. Structure
of CloverETL Projects

32

Standard Structure of All CloverETL Projects

In the CloverETL perspective, there is a Navigator pane on the left side of the window. In this pane, you can
expand the project folder. After that, you will be presented with the folder structure. There are subfolders for:

Table 9.1. Standard Folders and Parameters

Purpose Standard folder Standard parameter Parameter usage 1)

all connections conn CONN_DIR ${CONN_DIR}

input data data-in DATAIN_DIR ${DATAIN_DIR}

output data data-out DATAOUT_DIR ${DATAOUT_DIR}

temporary data data-tmp DATATMP_DIR ${DATATMP_DIR}

graphs graph GRAPH_DIR ${GRAPH_DIR}

jobflows (*.jbf) jobflow JOBFLOW_DIR ${JOBFLOW_DIR}

lookup tables lookup LOOKUP_DIR ${LOOKUP_DIR}

metadata meta META_DIR ${META_DIR}

profiling jobs (*.cpj) profile PROFILE_DIR ${PROFILE_DIR}

sequences seq SEQ_DIR ${SEQ_DIR}

transformation definitions
(both source files and
classes)

trans TRANS_DIR ${TRANS_DIR}

Legend:

1): For more information about parameters, see Chapter 29, Parameters (p. 216), and about their usage, see
Using Parameters (p. 224).

Important

Remember that using parameters in CloverETL ensures that such a graph, metadata or any other
graph element can be used in any place without necessity of its renaming.

Figure 9.1. Project Folder Structure inside Navigator Pane

Chapter 9. Structure
of CloverETL Projects

33

Workspace.prm File
You can look at the workspace.prm file by clicking this item in the Navigator pane, by right-clicking and

choosing Open With →Text Editor from the context menu.

Figure 9.2. Opening the Workspace.prm File

You can see the parameters of your new project.

Note

The parameters of imported projects may differ from the default parameters of a new project.

Figure 9.3. Workspace.prm File

Chapter 9. Structure
of CloverETL Projects

34

Opening the CloverETL Perspective

As has been already said, if you installed CloverETL Designer as a plugin, you need to switch to the CloverETL
perspective.

After closing the Eclipse welcome scren, in order to switch the perspective, click the button next to the Java label
at the top right side of the window over the Outline pane and select Other....

Figure 9.4. Basic Eclipse Perspective

After that, select the CloverETL item from the list and click OK.

Figure 9.5. Selecting CloverETL Perspective

Chapter 9. Structure
of CloverETL Projects

35

CloverETL perspective will open:

Figure 9.6. CloverETL Perspective

36

Chapter 10. Appearance of CloverETL Perspective
The CloverETL perspective consists of 4 panes:

Figure 10.1. CloverETL Perspective

• Graph Editor with Palette of Components is in the upper right part of the window.

In this pane you can create your graphs. Palette of Components serves to select components, move them
into the Graph Editor, connect them by edges. This pane has two tabs. (See Graph Editor with Palette of
Components (p. 37).)

• Navigator pane is in the upper left part of the window.

There are folders and files of your projects in this pane. You can expand or collapse them and open any graph
by double-clicking its item. (See Navigator Pane (p. 41).)

• Outline pane is in the lower left part of the window.

There are all of the parts of the graph that is opened in the Graph Editor. (See Outline Pane (p. 41).)

• Tabs pane is in the lower right part of the window.

You can see the data parsing process in these tabs. (See Tabs Pane (p. 43).)

CloverETL Designer Panes

Now we will present you a more detailed description of each pane.

The panes of CloverETL Designer are as follows:

• Graph Editor with Palette of Components (p. 37)

• Navigator Pane (p. 41)

Chapter 10. Appearance
of CloverETL Perspective

37

• Outline Pane (p. 41)

• Tabs Pane (p. 43)

Graph Editor with Palette of Components

The most important pane is the Graph Editor with Palette of Components.

To create a graph, you need to work with the Palette tool. It is either opened after CloverETL Designer has been
started or you can open it by clicking the arrow which is located above the Palette label or by holding the cursor
on the Palette label. You can close the Palette again by clicking the same arrow or even by simple moving the
cursor outside the Palette tool. You can even change the shape of the Palette by shifting its border in the Graph
Editor and/or move it to the left side of the Graph Editor by clicking the label and moving it to this location.

The name of the user that has created the graph and the name of its last modifier are saved to the Source tab
automatically.

It is the Palette tool from which you can select a component and paste it to the Graph Editor. To paste the
component, you only need to click the component label, move the cursor to the Graph Editor and click again.
After that, the component appears in the Graph Editor. You can do the same with the other components.

Once you have selected and pasted more components to the Graph Editor, you need to connect them by edges
taken from the same Palette tool. To connect two components by an edge, you must click the edge label in the
Palette tool, move the cursor to the first component, connect the edge to the output port of the component by
clicking and move the cursor to the input of another component and click again. This way the two components
will be connected. Once you have terminated your work with edges, you must click the Select item in the Palette
window.

After creating or modifying a graph, you must save it by selecting the Save item from the context menu or by
clicking the Save button in the main menu. The graph becomes a part of the project in which it has been created.
A new graph name appears in the Navigator pane. All components and properties of the graph can be seen in the
Outline pane when the graph is opened in the Graph Editor.

Figure 10.2. Graph Editor with an Opened Palette of Components

If you want to close any of the graphs that are opened in the Graph Editor, you can click the cross at the right side
of the tab, but if you want to close more tabs at once, right-click any of the tabs and select a corresponding item
from the context menu. There you have the items: Close, Close other, Close All and some other ones. See below:

Chapter 10. Appearance
of CloverETL Perspective

38

Figure 10.3. Closing the Graphs

From the main menu, you can select the CloverETL item (but only when the Graph Editor is highlighted) and
you can turn on the Rulers option from the menu items.

After that, as you click anywhere in the horizontal or vertical rulers, there appear vertical or horizontal lines,
respectively. Then, you can push any component to some of the lines and once the component is pushed to it by
any of its sides, you can move the component by moving the line. When you click any line in the ruler, it can be
moved throughout the Graph Editor pane. This way, you can align the components.

Figure 10.4. Rulers in the Graph Editor

From the main menu, you can also select the CloverETL item (but only when the Graph Editor is highlighted)
and you can display a grid in the Graph Editor by selecting the Grid item from the main menu.

Chapter 10. Appearance
of CloverETL Perspective

39

After that, you can use the grid to align the components as well. As you move them, the components are pushed
to the lines of the grid by their upper and left sides. This way, you can align the components too.

Figure 10.5. Grid in the Graph Editor

By clicking the Graph auto-layout item, you can change the layout of the graph. You can see how it changes
when you select the Graph auto-layout item in case you have opened the graphAggregateUnsorted.grf.
Before selecting this item, the graph looks like this:

Figure 10.6. A Graph before Selecting Auto-Layout.

Once you have selected the mentioned item, graph could look like this:

Chapter 10. Appearance
of CloverETL Perspective

40

Figure 10.7. A Graph after Selecting Auto-Layout.

Another possibility of what you can do with the Graph Editor is the following:

When you push and hold down the left mouse button somewhere inside the Graph Editor, drag the mouse
throughout the pane, a rectangle is created. When you create this rectangle in such a way so as to surround some
of the graph components and finally release the mouse button, you can see that these components have become
highlighted. (The first and second ones on the left in the graph below.) After that, six buttons (Align Left, Align
Center, Align Right, Align Top, Align Middle and Align Bottom) appear highlighted in the tool bar above the
Graph Editor or Navigator panes. (With their help, you can change the position of the selected components.)
See below:

Figure 10.8. Six New Buttons in the Tool Bar Appear Highlighted (Align Middle is shown)

Chapter 10. Appearance
of CloverETL Perspective

41

You can do the same by right-clicking inside the Graph Editor and selecting the Alignments item from the
context menu. Then, a submenu appears with the same items as mentioned above.

Figure 10.9. Alignments from the Context Menu

Remember that you can copy any highlighted part of any graph by pressing Ctrl+C and subsequently Ctrl+V
after opening some other graph.

Navigator Pane

In the Navigator pane, there is a list of your projects, their subfolders and files. You can expand or collaps them,
view them and open.

All graphs of the project are situated in this pane. You can open any of them in the Graph Editor by double-
clicking the graph item.

Figure 10.10. Navigator Pane

Outline Pane

In the Outline pane, there are shown all components of the selected graph. There you can create or edit
all properties of the graph components, edges metadata, database connections or JMS connections, lookups,

Chapter 10. Appearance
of CloverETL Perspective

42

parameters, sequences, and notes. You can both create internal properties and link external (shared) ones. Internal
properties are contained in the graph and are visible there. You can externalize the internal properties and/or
internalize the external (shared) properties. You can also export the internal metadata. If you select any item in
the Outline pane (component, connection, metadata, etc.) and press Enter, its editor will open.

Tip

Activate the Link with Editor yellow icon in the top right corner and every time you select a
component in the graph editor Clover will select it in the Outline as well. Although this is convenient
for smaller graphs, turn this off for complex graphs to prevent the outline from expanding the big
list of components again and again when as you are working in the graph.

Figure 10.11. Outline Pane

Note that the two buttons in the upper right part of the Outline pane have the following properties:

By default you can see the tree of components, metadata, connections, parameters, sequences, lookups and notes
in the Outline pane. But, when you click the button that is the second from the left in the upper right part of the
Outline pane, you will be switched to another representation of the pane. It will look like this:

Figure 10.12. Another Representation of the Outline Pane

You can see a part of some of the example graphs in the Graph Editor and you can see the same graph structure
in the Outline pane. In addition to it, there is a light-blue rectangle in the Outline pane. You can see exactly the
same part of the graph as you can see in the Graph Editor within the light-blue rectangle in the Outline pane.

Chapter 10. Appearance
of CloverETL Perspective

43

By moving this rectangle within the space of the Outline pane, you can see the corresponding part of the graph in
the Graph Editor as it moves along with the rectangle. Both the light blue-rectangle and the graph in the Graph
Editor move equally.

You can do the same with the help of the scroll bars on the right and bottom sides of the Graph Editor.

To switch to the tree representation of the Outline pane, you only need to click the button that is the first from
the left in the upper right part of the Outline pane.

Locking Elements

In Outline, you can lock any of the shared graph elements. A lock is just a flag (with an optional text message)
that you deliberately assign to an element so that others attempting to modify the element know it might not be
a good idea. These graph elements can be locked:

• Metadata

• Connections

• Parameters - only external

• Sequences

• Lookups

To lock any of these elements, right click it in Outline and click Lock.

Note

Locks are by no means a security tool - anyone can perform unlock and locks are not owned by users.

In various places (such as the Transform Editor (p. 285)), you are warned if you are accessing a locked element,
e.g. modifying locked metadata.

Figure 10.13. Accessing a locked graph element - you can add any text you like to describe the lock.

Tabs Pane

In the lower right part of the window, there is a series of tabs.

Note

If you want to extend any of the tabs of some pane, you only need to double-click such a tab. After
that, the pane will extend to the size of the whole window. When you double-click it again, it will
return to its original size.

• Properties tab

In this tab, you can view and/or edit the component properties. When you click a component, properties
(attributes) of the selected component appear in this tab.

Chapter 10. Appearance
of CloverETL Perspective

44

Figure 10.14. Properties Tab

• Console tab

In this tab, process of reading, unloading, transforming, joining, writing, and loading data can be seen.

By default, Console opens whenever CloverETL writes to stdout or stderr to it.

If you want to change it, you can uncheck any of the two checkboxes that can be found when selecting Window

→Preferences, expanding the Run/Debug category and opening the Console item.

Two checkboxes that control the behavior of Console are the following:

• Show when program writes to standard out

• Show when program writes to standard error

Note that you can also control the buffer of the characters stored in Console:

There is another checkbox (Limit console output) and two text fields for the buffer of stored characters and
the tab width.

Figure 10.15. Console Tab

Chapter 10. Appearance
of CloverETL Perspective

45

• Problems tab

In this tab, you can see error messages, warnings, etc. When you expand any of the items, you can see their
resources (name of the graph), their paths (path to the graph), their location (name of the component).

Figure 10.16. Problems Tab

• Clover - Regex Tester tab

In this tab, you can work with regular expressions (p. 964). You can paste or type any regular expression into
the Regular expression text area. Content assist can be called out by pressing Ctrl+Space in this area. You
need paste or type the desired text into the pane below the Regular expression text area. After that, you can
compare the expression with the text. You can either evaluate the expression on the fly while you are changing
the expression, or you can uncheck the Evaluate on the fly checkbox and compare the expression with the text
upon clicking the Go button. The result will be displayed in the pane on the right. Some options are checked by
default. You can also select if you want to Find the expression in the text, or you want to Split the text according
the expression or you want to know whether the text Matches the regular expression completely. You have at
your disposal a set of checkboxes. More information about regular expressions and provided options can be
found at the following site: http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Figure 10.17. Clover - Regex Tester Tab

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Chapter 10. Appearance
of CloverETL Perspective

46

• Clover - Graph tracking tab

In this tab, you can see a brief description of the graph that run successfully. The names of the components,
grouped by phases (with their using time in seconds, their using capacity in percents), status of all components,
CPU Time that has been used for them (in seconds), CPU load that has been used for them (in percents), Byte
flow and Byte flow peak (in Bytes per second), Record flow and Record flow peak (in records per second),
Total bytes processed (in Bytes, Kilobytes, etc.), Total records processed (in records). These properties are
displayed in the tab by default.

In addition to them, also User time, Peak CPU, Waiting records, Average waiting records and Used memory

can be displayed. These should be added to those already mentioned by selecting Window →Preferences. Then
you need to expand the CloverETL group and select the Tracking item. In the pane, you can see a list of log
columns. You can add or remove some of them by clicking the Next... or Remove buttons, respectively. You
can also reorder the columns within the Graph tracking tab by clicking the Up or Down buttons, respectively.

You can also turn off the tracking of graphs by unchecking the Show tracking during graph run checkbox.

Figure 10.18. Clover - Graph Tracking Tab

• Clover - Log tab

In this tab, you can see the entire log from the process of data parsing that is created after running a graph. There
can be a set of logs from more runs of graphs.

Figure 10.19. Clover - Log Tab

47

Chapter 11. Creating CloverETL Graphs
Within any CloverETL project, you need to create CloverETL graph. In the following sections we are going to
describe how you can create your graphs:

1. As the first step, you must create an empty graph in a project. See Creating Empty Graphs (p. 47).

2. As the second step, you must create the transformation graph by using graph components, elements and others
tools. See Creating a Simple Graph in a Few Simple Steps (p. 51) for an example in which we want to
show you an example of the transformation graph creation.

Note

Remember that once you have already some CloverETL project in you workspace and have opened
the CloverETL perspective, you can create your next CloverETL projects in a slightly different
way:

• You can create directly a new CloverETL project from the main menu by selecting File →New

→CloverETL Project or select File →New →Project... and do what has been described above.

• You can also right-click inside the Navigator pane and select either directly New →CloverETL

Project or New →Project... from the context menu and do what has been described above.

When creating a pure ETL graph, mind these two options in the File →New menu:

• Jobflow - creates a *.jbf file similar to an ETL graph. You can fill it with Job Control (p. 675) components.
These are meant for executing, monitoring and aborting other graphs and complex workflows. Further reading
also at Chapter 50, Common Properties of Job Control (p. 332).

• Profiler Job - creates a new *.cpj file that lets you perform statistical analyses of your data. See the
ProfilerProbe (p. 773) component.

Creating Empty Graphs

After that, you can create CloverETL graphs for any of your CloverETL projects. For example, you can create a

graph for the Project_01 by choosing File →New →ETL Graph. You can also right-click the desired project

in the Navigator pane and select New →ETL Graph from the context menu.

Note

Creating a new Jobflow works in a similar way. For Profiler Job, see ProfilerProbe (p. 773).

Chapter 11. Creating
CloverETL Graphs

48

Figure 11.1. Creating a New Graph

After clicking the item, you will be asked to give a name to the graph. For example, the name can be
Project_01 too. But, in most cases your project will contain more graphs and you can give them names such
as Project_01_###, for example. Or any other names which would describe what these graphs should do.

Figure 11.2. Giving a Name to a New CloverETL Graph

Remember that you can decide what parameters file should be included to this project along with the graph. This
selection can be done in the text area at the bottom of this window. You can locate some other file by clicking
the Browse... button and searching for the right one. Or, you can even uncheck the checkbox leaving the graph
without a parameters file included.

We decided to have the workspace.prm file included.

At the end, you can click the Next button. After that, the extension .grf will be added to the selected name
automatically.

Chapter 11. Creating
CloverETL Graphs

49

Figure 11.3. Selecting the Parent Folder for the Graph

By clicking Finish, you save the graph in the graph subfolder. Then, an item Project_01_001.grf appears
in the Navigator pane and a tab named Project_01_001.grf appears on the window.

Figure 11.4. CloverETL Perspective with Highlighted Graph Editor

You can see that there is a palette of components on the right side of the graph. This palette can be opened and
closed by clicking the Triangle button. If you want to know what components are, see Part VII, Components
Overview (p. 259) for information.

Chapter 11. Creating
CloverETL Graphs

50

Figure 11.5. Graph Editor with a New Graph and the Palette of Components

Chapter 11. Creating
CloverETL Graphs

51

Creating a Simple Graph in a Few Simple Steps

After creating a new CloverETL graph, it is an empty pane. In order to create a non-empty graph, you must fill
the empty graph with components and other graph elements. You need to select graph components, set up their
properties (attributes), connect these components by edges, select data files and/or database tables that should be
read or unloaded from, written or loaded to, create metadata describing data, assign them to edges, create database
connections or JMS connections, create lookup tables and/or create sequences and parameters. Once all of it is
done, you can run the graph.

If you want to know what edges, metadata, connections, lookup tables, sequences or parameters are, see Part V,
Graph Elements, Structures and Tools (p. 96) for information.

Now we will present you a simple example of how CloverETL transformation graphs can be created using
CloverETL Designer. We will try to make the explanation as clear as possible.

First, you need to select components from the Palette of Components.

To select any component, click the triangle on the upper right corner of the Graph Editor pane. The Palette
of Components will open. Select the components you want by clicking and then drag-and-dropping them to the
Graph Editor pane.

For our demonstration purposes, select UniversalDataReader from the Readers category of the Palette. Select
also the ExtSort component from the Transformers category and UniversalDataWriter from the Writers
category.

Figure 11.6. Components Selected from the Palette

Once you have inserted the components to the Graph Editor pane, you need to connect them by edges. Select
the Edge tool on the Palette and click the output port of one component and connect it with the input port of
another by clicking again. Do the same with all selected components. The newly connected edges are still dashed.
Close the Palette by clicking the triangle at its upper right corner. (See Chapter 20, Edges (p. 99) for more
information about Edges.)

Chapter 11. Creating
CloverETL Graphs

52

Figure 11.7. Components are Connected by Edges

Now you need to prepare some input file. Move to the Navigator pane, which is on the left side of Eclipse window.

Right-click the data-in folder of your project and select New →File.

Figure 11.8. Creating an Input File

Once the new window appears, select the name of your input file in this window. For example, its name can be
input.txt. Click Finish. The file will open in the Eclipse window.

Type some data in this file, for example, you can type pairs of firstname and surname like this: John|Brown.
Type more rows whose form should be similar. Do not forget to create also a new empty row at the end. The rows
(records) will look like this:

Chapter 11. Creating
CloverETL Graphs

53

Figure 11.9. Creating the Contents of the Input File

You need to save the file by pressing Ctrl+S.

After that, double-click the first edge from the left and select Create metadata from the menu that appears beside
the edge. In the Metadata editor, click the green Plus sign button. Another (second) field appears. You can click
any of the two fields and rename them. By clicking any of them, it turns blue, you can rename it and press Enter.
(See Chapter 21, Metadata (p. 110) for more information about creating Metadata.)

Figure 11.10. Metadata Editor with Default Names of the Fields

After doing that, the names of the two fields will be Firstname and Surname, respectively.

Chapter 11. Creating
CloverETL Graphs

54

Figure 11.11. Metadata Editor with New Names of the Fields

After clicking Finish, metadata is created and assigned to the edge. The edge is solid now.

Figure 11.12. Edge Has Been Assigned Metadata

Now right-click the first edge and select Propagate metadata from the context menu. The second edge also
becomes solid.

Chapter 11. Creating
CloverETL Graphs

55

Figure 11.13. Metadata Have Been Propagated through the Component

Now, double-click UniversalDataReader, click the File URL attribute row and click the button that appears in
this File URL attribute row.

(You can see UniversalDataReader (p. 410) for more information about UniversalDataReader.)

Figure 11.14. Opening the Attribute Row

After that, URL File Dialog (p. 69) will open. Double-click the data-in folder and double-click the
input.txt file inside this folder. The file name appears in the right pane.

Chapter 11. Creating
CloverETL Graphs

56

Figure 11.15. Selecting the Input File

Then click OK. The File URL attribute row will look like this:

Figure 11.16. Input File URL Attribute Has Been Set

Click OK to close the UniversalDataReader editor.

Then, double click UniversalDataWriter.

(You can see UniversalDataWriter (p. 542) for more information about UniversalDataWriter.)

Click the File URL attribute row and click the button that appears in this File URL attribute row. After that, URL
File Dialog (p. 69) will open. Double-click data-out folder. Then click OK. The File URL attribute row
will look like this:

Chapter 11. Creating
CloverETL Graphs

57

Figure 11.17. Output File URL without a File

Click twice the File URL attribute row and type /output.txt there. The result will be as follows:

Figure 11.18. Output File URL with a File

Click OK to close the UniversalDataWriter editor.

Now you only need to set up the ExtSort component.

(You can see ExtSort (p. 591) for more information about ExtSort.)

Double-click the component and its Sort key attribute row. After that, move the two metadata fields from the left
pane (Fields) to the right pane (Key parts). Move Surname first, then move Firstname.

Chapter 11. Creating
CloverETL Graphs

58

Figure 11.19. Defining a Sort Key

When you click OK, you will see the Sort key attribute row as follows:

Figure 11.20. Sort Key Has Been Defined

Click OK to close the ExtSort editor and save the graph by pressing Ctrl+S.

Now right-click in any place of the Graph Editor (outside any component or edge) and select Run As

→CloverETL graph.

(Ways how graphs can be run are described in Chapter 12, Running CloverETL Graphs (p. 61).)

Chapter 11. Creating
CloverETL Graphs

59

Figure 11.21. Running the Graph

Once graph runs successfully, blue circles are displayed on the components and numbers of parsed records can
be seen below the edges:

Figure 11.22. Result of Successful Run of the Graph

When you expand the data-out folder in the Navigator pane and open the output file, you can see the following
contents of the file:

Chapter 11. Creating
CloverETL Graphs

60

Figure 11.23. Contents of the Output File

You can see that all persons have been sorted alphabetically. Surnames first, firstnames last. This way, you have
built and run your first graph.

61

Chapter 12. Running CloverETL Graphs
As was already mentioned, in addition to the context menu from which you can run graphs, you can run them
from other places:

When you have already created or imported graphs into your projects, you can run them in various ways

There are four simpliest ways of running a graph:

• You can select Run →Run as →CloverETL graph from the main menu.

• Or you can right-click in the Graph editor, then select Run as in the context menu and click the CloverETL
graph item.

• Or you can click the green circle with white triangle in the tool bar located in the upper part of the window.

Tip

To execute a Jobflow (p. 675), follow the same instructions and choose CloverETL Jobflow
as the final step. Note that for some job control components, you need to be in the Clover Server
environment. Thus, exporting your project to a server sandbox (p. 81) might be necessary.

Figure 12.1. Running a Graph from the Main Menu

Chapter 12. Running
CloverETL Graphs

62

Figure 12.2. Running a Graph from the Context Menu

Figure 12.3. Running a Graph from the Upper Tool Bar

Successful Graph Execution

After running any graph, the process of the graph execution can be seen in the Console and the other tabs. (See
Tabs Pane (p. 43) for detailed information.)

Chapter 12. Running
CloverETL Graphs

63

Figure 12.4. Successful Graph Execution

Figure 12.5. Console Tab with an Overview of the Graph Execution

And, below the edges, counts of processed data should appear:

Chapter 12. Running
CloverETL Graphs

64

Figure 12.6. Counting Parsed Data

Using the Run Configurations Dialog

In addition to the options mentioned above, you can also open the Run Configurations dialog, fill in the project
name, the graph name and set up program and vm arguments, parameters, etc. and click the Run button.

Figure 12.7. Run Configurations Dialog

More details about using the Run Configurations dialog can be found in Chapter 18, Advanced Topics (p. 85).

Part IV. Working with
CloverETL Designer

66

Chapter 13. Using Cheat Sheets
Cheat Sheets are interactive tools for learning to use CloverETL Designer or other applications and for
performing prepared tasks and creating newer ones.

CloverETL Designer includes two cheat sheets. You can view them by selecting Help →Cheat Sheets... from
the main menu.

Figure 13.1. Selecting Cheat Sheets

After that, the following window will open:

Figure 13.2. The Cheat Sheet Selection Wizard

The two cheat sheets of CloverETL Designer are as follows:

Chapter 13. Using Cheat Sheets

67

• Clover and standard Eclipse commands reference

• Clover reference cheat sheet

The first of them describes and teaches useful standard Eclipse commands with respect to CloverETL Designer.

The second one presents a guide of how CloverETL Designer cheat sheets can be written.

Figure 13.3. CloverETL and Standard Eclipse Commands (Collapsed)

When you expand the items, you can see an overview of CloverETL and/or Eclipse commands:

Figure 13.4. CloverETL and Standard Eclipse Commands (Expanded)

Chapter 13. Using Cheat Sheets

68

The second cheat sheet can teach you how to work with CloverETL Designer. You can follow the instructions
and create a new project, a new graph, etc.:

Figure 13.5. CloverETL Designer Reference Cheat Sheet

The basis of these two mentioned cheat sheets are two .xml files. They are included in
the com.cloveretl.gui.cheatsheet_2.9.0.jar file located in the plugins directory of
CloverETL Designer and situated within the cheatsheets subdirectory of this .jar file. They are
EclipseReference.xml and Reference.xml files.

In addition to the prepared cheat sheets, you can write another cheat sheet of your own using these two files as a
pattern. Once you have written your custom cheat sheet, you only need to switch on the Select a cheat sheet from
a file radio button. Then you can browse your disk and locate the custom cheat sheet .xml file. After clicking
OK, your cheat sheet will appear in the same way as any of the two prepared cheat sheets on the right side of
CloverETL Designer window.

Figure 13.6. Locating a Custom Cheat Sheet

69

Chapter 14. Common Dialogs
Here we provide the list of the most common dialogs:

• URL File Dialog (p. 69)

• Edit Value Dialog (p. 70)

• Open Type Dialog (p. 71)

URL File Dialog

In most of the components you must also specify URL of some files. These files can serve to locate the sources
of data that should be read, the sources to which data should be written or the files that must be used to transform
data flowing through a component and some other file URL. To specify such a file URL, you can use the URL
File Dialog.

When you open the URL File Dialog, you can see tabs on it.

Figure 14.1. URL File Dialog

• Workspace view

Serves to locate files in a workspace of local CloverETL project.

• Local files

Serves to locate files on localhost. Combo contains disks and parameters. Can be used to specify both
CloverETL projects and any other local files.

• Clover Server

Serves to locate files of all opened CloverETL Server projects. Available only for CloverETL Server
projects.

• Remote files

Serves to locate files on a remote computer or on the Internet. You can specify properties of connection, proxy
settings, and http properties.

• Port

Serves to specify fields and processing type for port reading or writing. Opens only in those component that
allow such data source or target.

Chapter 14. Common Dialogs

70

• Dictionary

Serves to specify dictionary key value and processing type for dictionary reading or writing. Opens only in
those component that allow such data source or target.

Important

To ensure graph portability, forward slashes are used for defining the path in URLs (even on
Microsoft Windows).

Note

New Directory action is available at the toolbar of Workspace View and Local Files tab. F7 key
can be used as a shortcut for the action. Newly created directory is selected at the dialog and it's
name can be edited in-line. F2 key can be used to rename directory and DEL key to delete it.

More detailed information of URLs for each of the tabs described above is provided in sections

• Supported File URL Formats for Readers (p. 296)

• Supported File URL Formats for Writers (p. 309)

Edit Value Dialog

The Edit Value dialog contains a simple text area where you can write the transformation code in JMSReader,
JMSWriter and JavaExecute components.

Figure 14.2. Edit Value Dialog

When you click the Navigate button at the upper left corner, you will be presented with the list of possible options.
You can select either Find or Go to line.

Figure 14.3. Find Wizard

If you click the Find item, you will be presented with another wizard. In it you can type the expression you want
to find (Find text area), decide whether you want to find the whole word only (Whole word), whether the cases
should match or not (Match case), and the Direction in which the word will be searched - downwards (Forward)
or upwards (Backward). These options must be selected by checking the presented checkboxes or radio buttons.

Chapter 14. Common Dialogs

71

If you click the Go to line item, a new wizard opens in which you must type the number of the line you want
to go to.

Figure 14.4. Go to Line Wizard

Open Type Dialog

This dialog serves to select some class (Transform class, Denormalize class, etc.) that defines the desired
transformation. When you open it, you only need to type the beginning of the class name. By typing the beginning,
the classes satisfying to the written letters appear in this wizard and you can select the right one.

Figure 14.5. Open Type Dialog

72

Chapter 15. Import
CloverETL Designer allows you to import already prepared CloverETL projects, graphs and/or metadata. If you

want to import something, select File →Import... from the main menu.

Figure 15.1. Import (Main Menu)

Or right-click in the Navigator pane and select Item... from the context menu.

Figure 15.2. Import (Context Menu)

After that, the following window opens. When you expand the Clover ETL category, the window will look like
this:

Chapter 15. Import

73

Figure 15.3. Import Options

Import CloverETL Projects

If you select the Import external CloverETL projects item, you can click the Next button and you will see the
following window:

Figure 15.4. Import Projects

You can find some directory or compressed archive file (the right option must be selected by switching the radio
buttons). If you locate the directory, you can also decide whether you want to copy or link the project to your
workspace. If you want the project be linked only, you can leave the Copy projects into workspace checkbox
unchecked. Otherwise, it will be copied. Linked projects are contained in more workspaces. If you select some
archive file, the list of projects contained in the archive will appear in the Projects area. You can select some or
all of them by checking the checkboxes that appear along with them.

Chapter 15. Import

74

Import from CloverETL Server Sandbox

CloverETL Designer now allows you to import any part of CloverETL Server sandboxes. To import, select the
Import from CloverETL Server Sandbox option. After that, the following wizard will open:

Figure 15.5. Import from CloverETL Server Sandbox Wizard (Connect to CloverETL Server)

Specify the following three items: CloverETL Server URL, your username and password. Then click Reload.
After that, a list of sandboxes will be available in the Sandbox menu. Select any of them and click Next. A new
wizard will open:

Figure 15.6. Import from CloverETL Server Sandbox Wizard (List of Files)

Select the files and/or directories that should be imported, select the folder into which they should be imported
and decide whether the files and/or directories with identical names should be overwritten without warning or
whether overwriting should be confirmed or whether the files and/or directories with identical names should not be
overwritten at all. Then click Finish. Selected files and/or directories will be imported from CloverETL Server
sandbox.

Chapter 15. Import

75

Import Graphs

If you select the Import graphs - version conversion item, you can click the Next button and you will see the
following window:

Figure 15.7. Import Graphs

You must select the right graph(s) and specify from which directory into which folder the selected graph(s) should
be copied. By switching the radio buttons, you decide whether complete folder structure or only selected folders
should be created. You can also order to overwrite the existing sources without warning.

Note

You can also convert older graphs from 1.x.x to 2.x.x version of CloverETL Designer and from
2.x.x to 2.6.x version of CloverETL Engine.

Chapter 15. Import

76

Import Metadata

You can also import metadata from XSD or DDL.

If you want to know what metadata is and how it can be created, see Chapter 21, Metadata (p. 110) for more
information.

Metadata from XSD

If you select the Import metadata from XSD item, you can click the Next button and you will see the following
window:

Figure 15.8. Import Metadata from XSD

You must select the right metadata and specify from which directory into which folder the selected metadata
should be copied. By switching the radio buttons, you decide whether complete folder structure or only selected
folders should be created. You can also order to overwrite existing sources without warning. You can specify the
delimiters or default field size.

Chapter 15. Import

77

Metadata from DDL

If you select the Import metadata - transform from DDL item, you can click the Next button and you will see
the following window:

Figure 15.9. Import Metadata from DDL

You must select the right metadata and specify from which directory into which folder the selected metadata
should be copied. By switching the radio buttons, you decide whether complete folder structure or only selected
folders should be created. You can also order to overwrite existing sources without warning. You need to specify
the delimiters.

78

Chapter 16. Export
CloverETL Designer allows you to export your own CloverETL graphs and/or metadata. If you want to export

something, select File →Export... from the main menu. Or right-click in the Navigator pane and select Item...
from the context menu. After that, the following window opens. When you expand the CloverETL category, the
window will look like this:

Figure 16.1. Export Options

Export Graphs

If you select the Export graphs item, you can click the Next button and you will see the following window:

Figure 16.2. Export Graphs

Chapter 16. Export

79

Check the graph(s) to be exported in the right-hand pane. You have to locate the output directory as well. In addition
to that, you can select whether external (shared) metadata, connections, parameters, sequences and lookups should
be internalized and inserted into graph(s). This has to be done by checking corresponding checkboxes. You can
also remove gui tags from the output file by checking the Strip gui tags checkbox.

Export Graphs to HTML

If you select the Export graphs to HTML item, you can click the Next button and you will see the following
window:

Figure 16.3. Export Graphs to HTML

You must select the graph(s) and specify to which output directory the selected graph(s) should be exported. You
can also generate index file of the exported pages and corresponding graphs and/or images of the selected graphs.
By switching the radio buttons, you are selecting either the scale of the output images, or the width and the height
of the images. You can decide whether antialiasing should be used.

Chapter 16. Export

80

Export Metadata to XSD

If you select the Export metadata to XSD item, you can click the Next button and you will see the following
window:

If you want to know what metadata are and how they can be created, see Chapter 21, Metadata (p. 110) for
more information.

Figure 16.4. Export metadata to XSD

You must select the metadata and specify to which output directory the selected metadata should be exported.

Chapter 16. Export

81

Export to CloverETL Server Sandbox

CloverETL Designer now allows you to export any part of your projects to CloverETL Server sanboxes. To
export, select the Export to CloverETL Server sandbox option. After that, the following wizard will open:

Figure 16.5. Export to CloverETL Server Sandbox

Select the files and/or directories that should be exported and decide whether the files and/directories with identical
names should be overwritten without warning or whether overwriting should be confirmed or whether the files
and/or directories with identical names should not be overwritten at all and also decide whether sandbox should
be cleaned before export.

Specify the following three items: CloverETL Server URL, your username and password. Then click Reload.
After that, a list of sandboxes will be available in the Sandbox menu.

Select a sandbox. Then click Finish. Selected files and/or directories will be exported to the selected CloverETL
Server sandbox.

Note

Exporting to a partitioned sandbox is not supported. You will get errors because the sandbox
location to be affected is not known.

Chapter 16. Export

82

Export Image

If you select the Export image item, you can click the Next button and you will see the following window:

Figure 16.6. Export Image

This option allows you to export images of the selected graphs only. You must select the graph(s) and specify to
which output directory the selected graph(s) images should be exported. You can also specify the format of output
files - bmp, jpeg or png. By switching the radio buttons, you are selecting either the scale of the output images,
or the width and the height of the images. You can decide whether antialiasing should be used.

83

Chapter 17. Graph tracking
The CloverETL engine provides various tracking information about running graphs. The most important
information is used to populate the Tracking view, located on bottom of the CloverETL perspective (see the
designer's tabs (p. 43)).

The same source of data is used for displaying decorations on graph elements. The number of transferred records
appears the along edges of a running graph. The phase edges have two numbers, the left end of the edge shows the
number of data records sent to the edge, and the right end of the edge shows the number of data records already
read from the phase edge.

Figure 17.1. Edge tracking example

In case the graph is running in the CloverETL Cluster environment with a multi-worker allocation, the in-
graph tracking information can go into even more detail. Each component displays the number of instances of
the component - i.e. parallel executions. Tracking information on edges is available in three levels of detail - low,
medium and high. The level can be changed in Window/Preference/CloverETL/Tracking page. Or press 'D' to
iterate over all levels of tracking details directly in the graph editor.

• The low level of tracking detail shows the total number of transferred records over all workers/partitions.

• The medium level shows the total number of transferred records as well as additional drill down information
- the number of passed records and skew for each processing partition.

Figure 17.2. An example of a medium level of tracking information

The example above shows a simple clustered graph with a medium level of tracking information. The
DataGenerator and ClusterPartition components are executed on a single worker so the interconnecting edge
is decorated only by the total number of transferred records. On the output side of ClusterPartition component
there is a partitioned edge, since the SimpleCopy component is executed three times. The label above this edge
shows that 30% of the data records are sent to one instance of SimpleCopy and 34% to the other two instances.

• The high level shows the most detailed information - the number of transferred records and cluster node names
where the partition is running (for example 'node1: 250 123'). Partitions where the edge is remote, the source
cluster node and target cluster node are shown (for example 'node1~node2: 250 123')

Figure 17.3. An example of a high level tracking information

The example above shows a simple clustered graph with a high level of tracking information. The
ClusterPartition component sends data to three different instances of the SimpleCopy component. The first
instance runs on the same worker as the ClusterPartition component, so no remote edge is necessary (34,477
records have been transferred locally). The second and third instance run on different workers (and even

Chapter 17. Graph tracking

84

different cluster nodes). So 34,646 records have been moved from node1 to node2 and 30,877 records have
been transferred to node3.

85

Chapter 18. Advanced Topics
As was already described in Using the Run Configurations Dialog (p. 64), you know that you can use the Run
Configurations dialog to set more advanced options in order to run the graphs.

You can set there:

• Program and VM Arguments (p. 85)

• Changing Default CloverETL Settings (p. 88)

You can also change the size of displayed numbers of processed records:

• Enlarging the Font of Displayed Numbers (p. 91)

Another advanced option is using Java. In the following sections you can see how JRE and/or JDK can be set:

• Setting and Configuring Java (p. 92)

• Setting Java Runtime Environment (p. 92)

• Installing Java Development Kit (p. 94)

Program and VM Arguments

If you want to specify some arguments during run of the graph, select Run Configurations from the context menu
and set up some options in the Main tab.

You can enter the following three Program arguments in the tab:

• Program file (-cfg <filename>)

In the specified file, more parameter values can be defined. Instead of a sequence of expressions like the
following: -P:parameter1=value1 -P:parameter2=value2 ... P:parameterN=valueN
(see below), you can define these values of these parameters in a single file. Each row should define one
parameter as follows: parameterK=valueK. Then you only need to specify the name of the file in the
expression above.

• Priorities

The parameters specified in this tab have higher priority than the parameters specified in the Arguments tab,
those linked to the graph (external parameters) or specified in the graph itself (internal parameters) and they
can also overwrite any environment variable. Remember also that if you specify any parameter twice in the
file, only the last one will be applied.

• Tracking [s] (-tracking <filename>)

Sets the frequency of printing the graph processing status.

• Password (-pass)

Enters a password for decrypting the encrypted connection(s). Must be identical for all linked connections.

• Checkconfig (-checkconfig)

Only checks the graph configuration without running the graph.

You can also check some checkboxes that define the following Program arguments:

• Logging (-loghost)

Chapter 18. Advanced Topics

86

Defines host and port for socket appender of log4j. The log4j library is required. For example,
localhost:4445.

You can specify the port when selecting Windows →Preferences, choosing the Logging item within the
CloverETL category and setting the port.

• Verbose (-v)

Switches on verbose mode of running the graph.

• Info (-info)

Prints out the information about Clover library version.

• Turn off JMX (-noJMX)

Turns off sending tracking information through JMX bean, which can make the performance better.

• Log level (-loglevel <option>)

Defines one of the following: ALL | TRACE | DEBUG | INFO | WARN | ERROR | FATAL | OFF.

Default Log level is INFO for CloverETL Designer, but DEBUG for CloverETL Engine.

• Skip checkConfig (-skipcheckconfig)

Skips checking the graph configuration before running the graph.

• Delete obsolete temp files

NOTE: Jobflow (p. 675) only.

Before your jobflow is executed, tmp files from older jobflow runs on Clover Server will be deleted. When
you execute a graph/jobflow from Designer, the DEBUG mode is always invoked, which is why the temp files
are kept on server.

Two checkboxes define VM arguments:

• Server mode (-server)

The client system (default) is optimal for applications which need fast start-up times or small footprints.
Switching to server mode is advantageous to long-running applications, for which reaching the maximum
program execution speed is generally more important than having the fastest possible start-up time. To run the
server system, Java Development Kit (JDK) needs to be downloaded.

• Java memory size, MB (-Xmx)

Specifies the maximum size of the memory allocation pool (memory available during the graph run). Default
value of Java heap space is 68MB.

All of these arguments can also be specified using the expressions in the parentheses shown above when typing
them in the Program arguments pane or VM arguments of the Arguments tab.

In addition to the arguments mentioned above, you can also switch to the Arguments tab and type in the Program
arguments pane:

• -P:<parameter>=<value>

Specifies the value of a parameter. White spaces must not be used in this expression.

Priorities

Chapter 18. Advanced Topics

87

• More of these expressions can be used for the graph run. They have higher priority than the parameters linked
to the graph (external parameters), those specified in the graph itself (internal parameters) and they can also
overwrite any environment variable. However, they have less priority than the same parameters specified in
the Maintab. Remember also that if you specify any parameter twice in the Arguments tab, only the last
one will be applied.

• -config <filename>

Loads the default CloverETL Engine properties from the specified file. Overwrites the same properties
definitions contained in the defaultProperties file. The name of the file can be selected arbitrarily and
the file can only redefine selected default properties.

• -logcfg <filename>

Loads log4j properties from the specified file. If not specified, log4j.properties should be in the
classpath.

Sensitive data - such as usernames and passwords when reading/writing via (S)FTP - are not printed to the log
by default. If you need to switch this kind of logging on for a reason, supply a custom log4j file which enables
log4j.logger.sensitive.

Example of Setting Up Memory Size

In the Run Configurations dialog, you can set the Java memory size in Megabytes. It is important to define
some memory size because Java Virtual Machine needs this memory capacity to run the graphs. You must define
maximum memory size for JVM by selecting the proper value:

Figure 18.1. Setting Up Memory Size

Chapter 18. Advanced Topics

88

Changing Default CloverETL Settings

CloverETL internal settings (defaults) are stored in defaultProperties file located in the CloverETL
engine (plugins/com.cloveretl.gui/lib/lib/cloveretl.engine.jar) in its org/jetel/
data subfolder. This source file contains various parameters that are loaded at run-time and used during the
transformation execution.

If you modify the values right in the defaultProperties file, such change will be applied for all graph runs.

To change the values just for the current graph(s), create a local file with only those properties you need to override.
Place the file in the project directory. To instruct CloverETL to retrieve the properties from this local file, use the
-config switch. Go to Run Configurations..., to the Arguments tab and type the following in the Program
arguments pane: use -config <file_with_overriden_properties> switch.

Figure 18.2. Custom Clover Settings

Here we present some of the properties and their values as they are presented in the defaultProperties file:

• Record.RECORD_LIMIT_SIZE = 32 MB

It limits the maximum size of a record. Theoretically, the limit is tens of MBs, but you should keep it as low
as possible for an easier error detecion. See Edge Memory Allocation (p. 108) for more details on memory
demands.

• Record.FIELD_LIMIT_SIZE = 64 kB

It limits the maximum size of one field within a record. See Edge Memory Allocation (p. 108) for more
details on memory demands.

• Record.RECORD_INITIAL_SIZE

Sets the initial amount of memory allocated to each record. The memory can grow dynamically up to
Record.RECORD_LIMIT_SIZE, depending on how memory-greedy an edge is. See Edge Memory
Allocation (p. 108).

• Record.FIELD_INITIAL_SIZE

Chapter 18. Advanced Topics

89

Sets the initial amount of memory allocated to each field within a record. The memory can grow dynamically
up to Record.FIELD_LIMIT_SIZE, depending on how memory-greedy an edge is. See Edge Memory
Allocation (p. 108).

• Record.DEFAULT_COMPRESSION_LEVEL=5

This sets the compression level for compressed data fields (cbyte).

• DEFAULT_INTERNAL_IO_BUFFER_SIZE = 32768

It determines the internal buffer size the components allocate for I/O operations. Increasing this value affects
performance negligibly.

• USE_DIRECT_MEMORY = true

The clover engine intensively uses direct memory for data records manipulation. For example underlying
memory of CloverBuffer (container for serialised data records) is allocated outside of the Java heap space in
direct memory. This attribute is by default true in order to better performance. However, direct memory is out
of control java virtual machine, so try to turn off usage of direct memory in case an OutOfMemory exception
occurs.

• DEFAULT_DATE_FORMAT = yyyy-MM-dd

• DEFAULT_TIME_FORMAT = HH:mm:ss

• DEFAULT_DATETIME_FORMAT = yyyy-MM-dd HH:mm:ss

• DEFAULT_REGEXP_TRUE_STRING = true|T|TRUE|YES|Y|t|1|yes|y

• DEFAULT_REGEXP_FALSE_STRING = false|F|FALSE|NO|N|f|0|no|n

• DataParser.DEFAULT_CHARSET_DECODER = ISO-8859-1

• DataFormatter.DEFAULT_CHARSET_ENCODER = ISO-8859-1

• Lookup.LOOKUP_INITIAL_CAPACITY = 512

The initial capacity of a lookup table when created without specifying the size.

• DataFieldMetadata.DECIMAL_LENGTH = 12

It determines the default maximum precision of decimal data field metadata. Precision is the number of digits
in a number, e.g., the number 123.45 has a precision of 5.

• DataFieldMetadata.DECIMAL_SCALE = 2

It determines the default scale of decimal data field metadata. Scale is the number of digits to the right of the
decimal point in a number, e.g., the number 123.45 has a scale of 2.

• Record.MAX_RECORD_SIZE = 32 MB

Note

This is a deprecated property. Nowadays, you should use Record.RECORD_LIMIT_SIZE.

It limits the maximum size of a record. Theoretically, the limit is tens of MBs, but you should keep it as low
as possible for an easier error detecion.

Important

Among many other properties, there is also another one that allows to define locale that should be
used as the default one.

Chapter 18. Advanced Topics

90

The setting is the following:

DEFAULT_LOCALE = en.US

By default, system locale is used by CloverETL. If you uncomment this row you can set
the DEFAULT_LOCALE property to any locale supported by CloverETL, see the List of all
Locale (p. 126)

Chapter 18. Advanced Topics

91

Enlarging the Font of Displayed Numbers

If you want, you can enlarge the font of the numbers that appear along edges to tell you how many records went

along them. To do that, select Window →Preferences...

Figure 18.3. Enlarging the Font of Numbers

Then, expand the CloverETL item, select Tracking and select the desired font size in the Record number font
size area. By default, it is set to 7.

Figure 18.4. Setting the Font Size

Chapter 18. Advanced Topics

92

Setting and Configuring Java

If you want to set up JRE or add JDK libraries, you can do it as shown here.

Note

Remember that you should use Java 1.6+!

• For detailed information about setting JRE see Setting Java Runtime Environment (p. 92).

• For detailed information about installing JDK see Installing Java Development Kit (p. 94).

Setting Java Runtime Environment

If you want to set the JRE, you can do it by selecting Window →Preferences.

Figure 18.5. Setting The Java Runtime Environment

After clicking the option, you see the following window:

Chapter 18. Advanced Topics

93

Figure 18.6. Preferences Wizard

Now you must expand the Java item and select the Installed JREs item as shown above. If you have installed
JRE 1.6 already, you will see the following window:

Figure 18.7. Installed JREs Wizard

Chapter 18. Advanced Topics

94

Installing Java Development Kit

If you want to write and compile transformations in Java, you can install a JDK and add it to the project by selecting
the project, right-clicking it and selecting the Properties item in the context menu. We suggest once again that
you use JDK 1.6+.

Figure 18.8. Adding a Java Development Kit

Then you select the Java Build Path item and its Libraries tab. You the click the Add External JARs... button.

Important

For Mac users: navigate to this menu directly after the installation. Then search a correct Java version
(1.6 or higher) and select it. This has to be done on Mac because of a known issue when obsolete
Java versions were selected by default after the installation.

Chapter 18. Advanced Topics

95

Figure 18.9. Searching for JDK Jars

You can add all .jar files contained in the selected jdk folder into the Libraries tab.

After confirming the selection, the .jar files will be added to the project as shown below.

Figure 18.10. Adding JDK Jars

Part V. Graph Elements,
Structures and Tools

97

Chapter 19. Components
The most important graph elements are components (nodes). They all serve to process data. Most of them have
ports through which they can receive data and/or send the processed data out. Most components work only when
edges are connected to these ports. Each edge in a graph connected to some port must have metadata assigned to
it. Metadata describes the structure of data flowing through the edge from one component to another.

All components can be divided into five groups:

• Readers (p. 338)

These components are usually the initial nodes of a graph. They read data from input files (either local or remote),
receive it from a connected input port, read it from a dictionary, or generate data. Such nodes are called Readers.

• Writers (p. 452)

Other components are the terminal nodes of a graph. They receive data through their input port(s) and write
it to files (either local or remote), send it out through a connected output port, send e-mails, write data to a
dictionary, or discard the received data. Such nodes are called Writers.

• Transformers (p. 566)

These components are intermediate nodes of a graph. They receive data and copy it to all output ports,
deduplicate, filter or sort data, concatenate, gather, or merge received data through many ports and send it out
through a single output port, distribute records among many connected output ports, intersect data received
through two input ports, aggregate data to get new information or transform data in a more complicated way.
Such nodes are called Transformers.

• Joiners (p. 643)

Joiners are also intermediate nodes of a graph. They receive data from two or more sources, join them according
to a specified key, and send the joined data out through the output ports.

• Job Control (p. 675)

Job control is a group of components focused on execution and monitoring of various job types. These
components allow running ETL graphs, jobflows and any interpreted scripts. Graphs and jobflows can be
monitored and optionally aborted.

Tip

Note if you cannot see this component category, navigate to Window →Preferences

→CloverETL →Components in Palette and tick both checkboxes next to Job Control.

• File Operations (p. 733)

File Operations are components meant for manipulating files on the file system - either local or remote (via
FTP). They can also access files in Clover Server sandboxes.

Tip

Note if you cannot see this component category, navigate to Window →Preferences

→CloverETL →Components in Palette and tick both checkboxes next to File Operations.

• Cluster Components (p. 750)

The two Cluster Components serve to distribute data records among various nodes of a Cluster of CloverETL
Server instances, or to gather these records together.

Chapter 19. Components

98

Such graphs run in parallel in a Cluster.

• Data Quality (p. 763)

The Data Quality is a group of components performing various tasks related to quality of your data -
determining information about the data, finding and fixing problems etc.

• Others (p. 779)

The Others group is a heterogeneous group of components. They can perform different tasks - execute system,
Java, or DB commands; run CloverETL graphs, or send HTTP requests to a server. Other components of this
group can read from or write to lookup tables, check the key of some data and replace it with another one, check
the sort order of a sequence, or slow down processing of data flowing through the component.

• Some properties are common to all components.

Common Properties of All Components (p. 265)

• Some are common to most of them.

Common Properties of Most Components (p. 274)

• Other properties are common to each of the groups:

• Common Properties of Readers (p. 295)

• Common Properties of Writers (p. 308)

• Common Properties of Transformers (p. 319)

• Common Properties of Joiners (p. 322)

• Common Properties of Cluster Components (p. 329)

• Common Properties of Others (p. 330)

• Common Properties of Data Quality (p. 331)

For information about these common properties see Part VII, Components Overview (p. 259).

For information about individual components see Part VIII, Component Reference (p. 337).

99

Chapter 20. Edges
This chapter presents an overview of the edges. It describes what they are, how they can be connected to the
components of a graph, how metadata can be assigned to them and propagated through them, how the edges can
be debugged and how the data flowing through the edges can be seen.

What Are the Edges?

Edges represent data flowing from one component to another.

The following are properties of edges:

• Connecting Components by the Edges (p. 99)

Each edge must connect two components.

• Types of Edges (p. 100)

Each edge is of one of the four types.

• Assigning Metadata to the Edges (p. 101)

Metadata must be assigned to each edge, describing the data flowing through the edge.

• Propagating Metadata through the Edges (p. 102)

Metadata can be propagated through some components from their input port to their output ports.

• Colors of the Edges (p. 102)

Each edge changes its color upon metadata assignment, edge selection, etc.

• Debugging the Edges (p. 103)

Each edge can be debugged.

• Edge Memory Allocation (p. 108)

Some edges are more memory-greedy than others. This section contains the explanation.

Connecting Components by the Edges

When you have selected and pasted at least two components to the Graph Editor, you must connect them by
edges taken from the Palette tool. Data will flow from one component to the other in this edge. For this reason,
each edge must have assigned some metadata describing the structure of data records flowing in the edge.

There are two ways to create an edge between two components, you can click the edge label in the Palette tool,
then move the cursor over the source component, the one you want the edge to start from, then left-click to start
the edge creation. Then, move the cursor over to the target component, the one you want the edge to end at and
click again. This creates the edge. The second way short-cuts the tool selection. You can simply mouse over the
output ports of any component, and Clover will automatically switch to the edge tool if you have the selection
tool currently selected. You can then click to start the edge creation process, which will work as above.

Some components only receive data from their input port(s) and write it to some data sources (Writers, including
Trash), other components read data from data sources or generate data and send it out through their output
port(s) (Readers, including DataGenerator), and other components both receive data and send it to other
components (Transformers and Joiners). And the last group of components either must be connected to some
edges (non-executing components such as CheckForeignKey, LookupTableReaderWriter, SequenceChecker,
SpeedLimiter) or can be connected (the Executing Components).

Chapter 20. Edges

100

When pasting an edge to the graph, as described, it always bounds to a component port. The number of ports of
some components is strictly specified, while in others the number of ports is unlimited. If the number of ports is
unlimited, a new port is created by connecting a new edge. Once you have terminated your work with edges, you
must click the Select item in the Palette tool or click Esc on the keyboard.

If you have already connected two components by an edge, you can move this edge to any other component. To
do that, you can highlight the edge by clicking, then move to the port to which the edge is connected (input or
output) until the arrow mouse cursor turns to a cross. Once the cross appears, you can drag the edge to some of the
other free ports of any component. If you mouse over the port with the selecton tool, it will automatically select
the edge for you, so you can simply click and drag. Remember that you can only replace output port by another
output port and input port by another input port.

Edge Auto-routing or Manual Routing

When two components are connected by an edge, sometimes the edge might overlap with other elements, like
other components, notes, etc. In this case you may want to switch from default auto-routing to manual routing of
the edge - in this mode you have control over where the edge is displayed. To achieve this, right-click the edge
and uncheck the Edge Autorouting from the context menu.

After that, a point will appear in the middle of each straight part of the edge.

When you move the cursor over such point, the cursor will be replaced with either horizontal or vertical resize
cursor, and you will be able to drag the corresponding edge section horizontally or vertically.

This way you can move the edges away from problematic areas.

You can also select an edge and then press Ctrl+R which toggles between edge auto-routing and manual mode.

Types of Edges

There are four types of edges, three of which have some internal buffer. You can select among edges by right
clicking on an edge, then clicking the Select edge item and clicking one of the presented types.

Figure 20.1. Selecting the Edge Type

Edges can be set to any of the following types:

Chapter 20. Edges

101

• Direct edge: This type of edge has a buffer in memory, which helps data flow faster. This is the default edge
type for ETL graphs.

• Buffered edge: This type of edge has also a buffer in memory, but, if necessary, it can store data on disk as
well. Thus the buffer size is unlimited. It has two buffers, one for reading and one for writing.

• Direct fast propagate edge. This is an alternative implementation of the Direct edge. This edge type has no
buffer but it still provides a fast data flow. It sends each data record to the target of this edge as soon as it
receives it. This is the default edge type for jobflows.

• Phase connection edge. This edge type cannot be selected, it is created automatically between two components
with different phase numbers.

If you do not want to specify an explicit edge type, you can let Clover decide by selecting the option Detect default.

Assigning Metadata to the Edges

Metadata are structures that describe data. At first, each edge will appear as a dashed line. Only after a metadata
has been created and assigned to the edge, will the line becomes continuous.

You can create metadata as shown in corresponding sections below, however, you can also double-click the empty
(dashed) edge and select Create metadata from the menu, or link some existing external metadata file by selecting
Link shared metadata.

Figure 20.2. Creating Metadata on an empty Edge

You can also assign metadata to an edge by right-clicking the edge, choosing the Select metadata item from
the context menu and selecting the desired metadata from the list. This can also be accomplished by dragging a
metadata's entry from the Outline onto an edge.

Chapter 20. Edges

102

Figure 20.3. Assigning Metadata to an Edge

You can also select a metadata to be be automatically applied to edges as you create them. You choose this by
right-clicking on the edge tool in the Palette and then selecting the metadata you want, or none if you want to
remove the selection.

Propagating Metadata through the Edges

When you have already assigned metadata to the edge, you need to propagate the assigned metadata to other edges
through a component.

To propagate metadata, you must also open the context menu by right-clicking the edge, then select the Propagate
metadata item. The metadata will be propagated until it reaches a component in which metadata can be changed
(for example: Reformat, Joiners, etc.).

For the other edges, you must define another metadata and propagate it again if desired.

Colors of the Edges

• When you connect two components by an edge, it is gray and dashed.

• After assigning metadata to the edge, it becomes solid, but still remains gray.

• When you click any metadata item in the Outline pane, all edges with the selected metadata become blue.

• If you click an edge in the Graph Editor, the selected edge becomes black and all of the other edges with the
same metadata become blue. (In this case, metadata are shown in the edge tooltip as well.)

Chapter 20. Edges

103

Figure 20.4. Metadata in the Tooltip

Debugging the Edges

If you obtain incorrect or unexpected results when running some of your graphs and you want to know what errors
occur and where, you can debug the graph. You need to guess where the problem may arise from and, sometimes,
you also need to specify what records should be saved to debug files. If you are not processing large numbers of
records, you should not need to limit the number that should be saved to debug files, however, in case you are
processing large numbers of records, this option may be useful.

To debug an edge, you can:

1. Enable debug. See Enabling Debug (p. 103).

2. Select debug data. See Selecting Debug Data (p. 104),

3. View debug data. See Viewing Debug Data (p. 106).

4. Turn off the debug. See Turning Off Debug (p. 108).

Enabling Debug

• To debug the graph, right-click the edges that are under suspicion and select the Enable debug option from
the context menu. After that, a bug icon appears on the edge meaning that a debugging will be performed upon
the graph execution.

• The same can be done if you click the edge and switch to the Properties tab of the Tabs pane. There you only
need to set the Debug mode attribute to true. By default, it is set to false. Again, a bug icon appears on
the edge.

When you run the graph, for each debug edge, one debug file will be created. After that, you only need to view
and study the data records from these debug files (.dbg extension).

Chapter 20. Edges

104

Selecting Debug Data

If you do not do anything else than select the edges that should be debugged, all data records that will go through
such edges will be saved to debug files.

Nevertheless, as has been mentioned above, you can restrict those data records that should be saved to debug files.

This can be done in the Properties tab of any debug edge or by selecting Debug properties from the context
menu after right-clicking the debug edge.

You can set any of the following four edge attributes either in the Properties tab or in the Debug properties
wizard.

Figure 20.5. Properties of an Edge

• Debug filter expression

If you specify some filter expression for an edge, data records that satisfy the specified filter expression will be
saved to the debug file. The others that do not satisfy the expression will be ignored.

Remember also that if a filter expression is defined, either all records that satisfy the expression (Debug sample
data is set to false) or only a sample of them (Debug sample data is set to true) will be saved.

Figure 20.6. Filter Editor Wizard

Chapter 20. Edges

105

This wizard consists of three panes. The left one displays the list of record fields, their names and data types. You
can select any of them by double-clicking or dragging and dropping. Then the field name appears in the bottom
area with the port number preceded by dollar sign that are before that name. (For example, $0.employee.)
You can also use the functions selected from the right pane of the window. Below this pane, there are both
comparison signs and logical connections. You can select any of the names, functions, signs and connections by
double-clicking. After that, they appear in the bottom area. You can work with them in this area and complete
the creation of the filter expression. You can validate the expression, exit the creation by clicking Cancel or
confirm the expression by clicking OK.

Important

You can use either CTL1, or CTL2 in Filter Editor.

The following two options are equivalent:

1. For CTL1

is_integer($0.field1)

2. For CTL2

//#CTL2
isInteger($0.field1)

• Debug last records

If you set the Debug last records property to false, data records from the beginning will be saved to the debug
file. By default, the records from the end are saved to debug files. Default value of Debug last records is true.

Remember that if you set the Debug last records attribute to false, data records will be selected from the
beginning with greater frequency than from the end. And, if you set the Debug last records attribute to true
or leave it unchanged, they will be selected more frequently from the end than from the beginning.

• Debug max. records

You can also define a limit of how many data records should be saved to a debug file at most. These data records
will be taken from either the beginning (Debug last records is set to false) or the end (Debug last records
has the default value or it is set to true explicitly).

• Debug sample data

If you set the Debug sample data attribute to true, the Debug max. records attribute value will only be the
threshold that would limit how many data records could be saved to a debug file. Data records will be saved at
random, some of them will be omitted, others will be saved to the debug file. In this case, the number of data
records saved to a debug file will be less than or equal to this limit.

If you do not set any value of Debug sample data or if you set it to false explicitly, the number of records
saved to the debug file will be equal to the Debug max. records attribute value (if more records than Debug
max. records go through the debug edge).

The same properties can also be defined using the context menu by selecting the Debug properties option. After
that, the following wizard will open:

Chapter 20. Edges

106

Figure 20.7. Debug Properties Wizard

Viewing Debug Data

In order to view the records that have gone through the edge and met the filter expression and have been saved,
you must open the context menu by right-clicking. Then you must click the View data item. After that, a View
data dialog opens. Note, that you can create a filter expression here in the same way as described above.

You must select the number of records that should be displayed and confirm it by clicking OK.

Figure 20.8. View Data Dialog

CloverETL Designer remembers the selected count and after the View data dialog is opened again, the same
count is offered.

The records are shown in another View data dialog. This dialog has grid mode. You can sort the records in
any of its columns in ascending or descending order by simply clicking its header. You can view data on more
edges at the same time. To differ between dialogs window title provides info about viewing edge in format
GRAPH.name:COMPONENT.name[out: PORT.id].

Figure 20.9. Viewing Data on Debugged Edge

Chapter 20. Edges

107

Note

If records are too big, you will see the [...] mark indicating some data could not be displayed.

If there are too many records, you will see the Load more... blue text below the grid. Clicking
it, a new chunk of records is added behind the currently displayed ones. This is especially useful
when observing records while your graph is still running - they are loaded on your click as they are
produced by graph's transformations.

Above the grid, there are three labels: Edit, View, Hide/Show columns.

By clicking the Hide/Show columns label, you can select which columns should be displayed: all, none, only
selected. You can select any option by clicking.

Figure 20.10. Hide/Show Columns when Viewing Data

By clicking the View label, you are presented with two options: You can decide whether you want to view the
unprintable characters, or not. You can also decide whether you want to view only one record separately. Such a
record appears in the View record dialog. At the bottom of this dialog, you can see some arrow buttons. They allow
user to browse the records and view them in sequence. Note that by clicking the button most on the right, you can
see the last record of the displayed records, but it does not necessarily display the record that is the last processed.

Figure 20.11. View Record Dialog

By clicking the Edit label, you are presented with four options.

• You can select the number of record or line you want to see. Such a record will be highlighted after typing its
number and clicking OK.

Chapter 20. Edges

108

• Another option opens the Find dialog. First of all, this wizard contains a text area you can type an expression
into. Then, if you check the Match case checkbox, the search will be case sensitive. If you check the Entire
cells checkbox, only the cells that meet the expression completely will be highlighted. If you check the
Regular expression checkbox, the expression you have typed into the text area will be used as a regular
expression (p. 964). You can also decide whether you want to search some expression in the direction of
rows or columns. You can also select what column it will be searched in: all, only visible, one column from
the list. And, as the last option, you can select whether you want to find all cells that meet some criterion or
only one of the cells.

Figure 20.12. Find Dialog

• As the last option, you can copy some of your records or a part of a record. You need to select whether you want
to copy either the entire record (either to string, or as a record - in this last case you can select the delimiter as
well) or only some of the record fields. The selected option is enabled, the other one is disabled. After clicking
the OK button, you only need to choose the location where it shall be copied into and past it there.

Figure 20.13. Copy Dialog

Turning Off Debug

If you want to turn off debugging, you can click the Graph editor in any place outside the components and the
edges, switch to the Properties tab and set the Debug mode attribute to false. This way you can turn off all
debugging at a time.

Also, if you have not defined the Debug max. records attribute, you could specify it in this Properties tab (if
Debug mode is empty or set to true) for all debug edges at a time. But remember that if any edge has its own
Debug max. records attribute value defined, the global value of this attribute will be ignored and that of the edge
will be applied.

Edge Memory Allocation

Manipulating large volumes of data in a single record is always an issue. In CloverETL Designer, sending big
data along graph edges means this:

• Whenever there is a need to carry many MBs of data between two components in a single record, the edge
connecting them expands its capacity. This is referred to as dynamic memory allocation.

• If you have a complicated ETL scenario with some sections transferring huge data then only the edges in these
sections will use dynamic memory allocation. The other edges retain low memory requirements.

Chapter 20. Edges

109

• An edge which has carried a big record before and allocated more memory for itself will not 'shrink' back again.
It consumes bigger amount of memory till your graph execution is finished.

By default, the maximum size of a record sent along an edge is 32 MB. This value can be increased, theoretically,
up to tens of MBs by setting the Record.RECORD_LIMIT_SIZE property (Changing Default CloverETL
Settings (p. 88)). Record.FIELD_LIMIT_SIZE can also be 32 MB by default. Naturally, all fields in total
cannot use more memory than Record.RECORD_LIMIT_SIZE.

There is no harm in increasing Record.RECORD_LIMIT_SIZE to whatever size you want. The only reason
for keeping it smaller is an early error detection. For instance, if you start appending to a string field and forget
to reset record (after each record), the field size can break the limits.

Note

Let us look a little deeper into what happens in the memory. Initially, a record starts with 64k of
memory allocated to it. If there is a need to transfer huge data, its size can dynamically grow up to
the value of Record.RECORD_LIMIT_SIZE. If you ever wondered how much memory a record
could consume, then the answer is <64k; Record.RECORD_LIMIT_SIZE>.

In your ETL graph, edges which are more 'memory greedy' look like regular edges. They have no special visual
effects.

Measuring and Estimating Edge Memory Demands

You can turn on a real-time overview of how much memory your edges and even components consume while

a graph is running. To do this, navigate to Window →Preferences. Then you need to expand CloverETL and
select Tracking. In the pane, click New..., select Used Memory and confirm. You will get a new column of the
Clover - Graph Tracking tab, see Figure 10.18, Clover - Graph Tracking Tab (p. 46).

To estimate how memory-greedy your graph is even before executing it, consult the table below (note:
computations are simplified). In general, a graph's memory demands depend on the input data, components used
and edge types. In this place, we contribute to understanding the last one. See how much memory approx. your
graph takes before its execution and to what extent memory demands can rise:

Table 20.1. Memory Demands per Edge Type

Edge type Initial Maximum

Direct 576 kB 9 RIS 96 MB 3 RLS

Buffered 1344 kB 21 RIS 96 MB 3 RLS

Phase 128 kB 2 RIS 64 MB 2 RLS

Direct Fast Propagate 256 kB 4 RIS * 128 MB 4 RLS

* ... 4 is the number of buffers and it can be changed. In general, buffers' memory can rise up to RLS * (number
of buffers)

Legend:

RIS = Record.RECORD_INITIAL_SIZE = 64 kB (by default)

RLS = Record.RECORD_LIMIT_SIZE = 32 MB (by default)

110

Chapter 21. Metadata
Every edge of a graph carries some data. This data must be described using metadata. These metadata can be either
internal, or external (shared).

For information about data types and record types that can be used in metadata see Data Types and Record
Types (p. 111).

When working with various data types, the formatting or locale can also be specified. See:

• Date and Time Format (p. 113)

• Numeric Format (p. 120)

• Locale (p. 126)

Some of the components may also use the Autofilling functionality in Metadata.

See Autofilling Functions (p. 131).

Each metadata can be created as:

• Internal: See Internal Metadata (p. 133).

Internal metadata can be:

• Externalized: See Externalizing Internal Metadata (p. 134).

• Exported: See Exporting Internal Metadata (p. 135).

• External (shared): See External (Shared) Metadata (p. 136).

External (shared) metadata can be:

• Linked to the graph: See Linking External (Shared) Metadata (p. 136).

• Internalized: See Internalizing External (Shared) Metadata (p. 137).

Metadata can be created from:

• Flat file: See Extracting Metadata from a Flat File (p. 138).

• XLS(X) file: See Extracting Metadata from an XLS(X) File (p. 143).

• DBase file: See Extracting Metadata from a DBase File (p. 149).

• Database: See Extracting Metadata from a Database (p. 145).

• By user: See Creating Metadata by User (p. 149).

• Lotus Notes: See Extracting Metadata from Lotus Notes (p. 149).

• Cobol Copybook

• Merging existing metadata: See the section called “Merging existing metadata” (p. 151).

Metadata can also be created dynamically or read from remote sources:

• Dynamic metadata: See Dynamic Metadata (p. 152).

• Read from special sources: See Reading Metadata from Special Sources (p. 153).

Chapter 21. Metadata

111

Metadata editor is described in Metadata Editor (p. 156).

For detailed information about changing or defining delimiters in delimited or mixed record types see
Changing and Defining Delimiters (p. 163).

Metadata can also be edited in its source code. See Editing Metadata in the Source Code (p. 167).

Metadata can serve as a source for creating a database table. See Create Database Table from Metadata (p. 154).

Data Types and Record Types

Data flowing through the edges must be described using metadata. Metadata describes both the record as a whole
and all its fields.

Clover data types are described in following sections:

• Data Types in Metadata (p. 111)

• Data Types in CTL (p. 833) for CTL1

• Data Types in CTL2 (p. 894) for CTL2

Data Types in Metadata

Following are the types of record fields used in metadata:

Table 21.1. Data Types in Metadata

Data type Size 5) Range or values Default value

boolean Represents 1 bit. Its size is not
precisely defined.

true | false | 1 | 0 false | 0

byte Depends on the actual data length. from -128 to 127 null

cbyte Depends on the actual data length
and success of compression.

from -128 to 127 null

date 64 bits 1) Starts January 1, 1970, 00:00:00 GMT and
is incremented by 1 ms.

current date and
time

decimal Depends on Length and Scale.
(The former is the maximum
number of all digits, the latter is
the maximum number of digits
after the decimal dot. Default
values are 12 and 2, respectively.)
2), 3)

decimal(6,2) (They can have values
from -9999.99 to 9999.99, length and
scale can only be defined in CTL1)

0.00

integer 32 bits 2) From Integer.MIN_VALUE to
Integer.MAX_VALUE (according to
the Java integer data type): From -231

to 231-1. Integer.MIN_VALUE is
interpreted as null.

0

long 64 bits 2) From Long.MIN_VALUE to
Long.MAX_VALUE (according to the
Java long data type): From -263 to
263-1. Long.MIN_VALUE is interpreted
as null.

0

Chapter 21. Metadata

112

Data type Size 5) Range or values Default value

number 64 bits 2) Negative values are from -(2-2-52).21023

to -2-1074, another value is 0, and positive
values are from 2-1074 to (2-2-52).21023.
Three special values: NaN, -Infinity,
and Infinity are defined.

0.0

string Depends on the actual data length.
Each character is stored in 16 bits.

Obviously you cannot have infinite
strings. Instead of limiting how many
characters each string can consist of
(theoretically up to 64K), think about
memory requirements. A string takes
(number of characters) * 2 bytes of
memory. At the same time, no record
can take more than MAX_RECORD_SIZE
of bytes, see Chapter 18, Advanced
Topics (p. 85).

null 4)

Legend:

1): Any date can be parsed and formatted using date and time format pattern. See Date and Time Format (p. 113).
Parsing and formatting can also be influenced by locale. See Locale (p. 126).

2): Any numeric data type can be parsed and formatted using numeric format pattern. See Numeric
Format (p. 120). Parsing and formatting may also be influenced by locale. See Locale (p. 126).

3): The default length and scale of a decimal are 12 and 2, respectively.
These default values of DECIMAL_LENGTH and DECIMAL_SCALE are contained in the
org.jetel.data.defaultProperties file and can be changed to other values.

4): By default, if a field which is of the string data type of any metadata is an empty string, such field value is
converted to null instead of an empty string ("") unless you set the Null value property of the field to any
other value.

5): This column may look like an implementation detail but it is not so true. Size lets you estimate how much
memory your records are going to need. To do that, take a look at how many fields your record has, which data
types they are and then compare the result to the MAX_RECORD_SIZE property (the maximum size of a record
in bytes, see Chapter 18, Advanced Topics (p. 85)). If your records are likely to have more bytes than that, simply
raise the value (otherwise buffer overflow will occur).

For other information about these data types and other data types used in Clover transformation language (CTL)
see Data Types in CTL (p. 833) for CTL1 or Data Types in CTL2 (p. 894) for CTL2.

Record Types

Each record is of one of the following three types:

• Delimited. This is the type of records in which every two adjacent fields are separated from each other by a
delimiter and the whole record is terminated by record delimiter as well.

• Fixed. This is the type of records in which every field has some specified length (size). It is counted in numbers
of characters.

• Mixed. This is the type of records in which fields can be separated from each other by a delimiter and also have
some specified length (size). The size is counted in number of characters. This record type is the mixture of the
two cases above. Each individual field may have different properties. Some fields may only have a delimiter,
others may have specified size, the rest of them may have both delimiter and size.

Chapter 21. Metadata

113

Data Formats

Sometimes Format may be defined for parsing and formatting data values.

1. Any date can be parsed and/or formatted using date and time format pattern. See Date and Time
Format (p. 113).

Parsing and formatting can also be influenced by locale (names of months, order of day or month information,
etc.). See Locale (p. 126).

2. Any numeric data type (decimal, integer, long, number) can be parsed and/or formatted using numeric
format pattern. See Numeric Format (p. 120).

Parsing and formatting can also be influenced by locale (e.g., decimal dot or decimal comma, etc.). See
Locale (p. 126).

3. Any boolean data type can be parsed and formatted using boolean format pattern. See Boolean
Format (p. 124).

4. Any string data type can be parsed using string format pattern. See String Format (p. 125).

Note

Remember that both date and time formats and numeric formats are displayed using system Locale
value or the Locale specified in the defaultProperties file, unless another Locale is explicitly
specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Date and Time Format

A formatting string describes how a date/time values should be read and written from(to) string representation
(flat files, human readable output, etc.).

A format can also specify an engine which CloverETL will use by specifying a prefix (see below). There are two
built-in date engines available: standard Java and third-party Joda (http://joda-time.sourceforge.net).

Table 21.2. Available date engines

Date
engine

Prefix Default Description Example

Java java: yes - when
no prefix is
given

Standard Java date implementation.
Provides lenient, error-prone and full-
featured parsing and writing. It has
moderate speed and is generally a good
choice unless you need to work with
large quantities of date/time fields. For
advanced study please refer to Java
SimpleDateFormat documentation.

java:yyyy-MM-dd
HH:mm:ss

http://joda-time.sourceforge.net/
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Chapter 21. Metadata

114

Date
engine

Prefix Default Description Example

Joda joda: An improved third-party date library.
Joda is more strict on input data
accuracy when parsing and does not
work well with time zones. It does,
however, provide a 20-30% speed
increase compared to standard Java. For
further reading please visit the project
site at http://joda-time.sourceforge.net).

Joda may be convenient for AS/400
machines.

On the other hand, Joda is unable to read
time zone expressed with any number of
z letters and/or at least three Z letters in
a pattern.

joda:yyyy-MM-dd
HH:mm:ss

Please note, that actual format strings for Java and Joda are almost 100% compatible with each other - see tables
below.

Important

The format patterns described in this section are used both in metadata as the Format property and
in CTL.

At first, we provide the list of pattern syntax, the rules and the examples of its usage for Java:

Table 21.3. Date Format Pattern Syntax (Java)

Letter Date or Time
Component

Presentation Examples

G Era designator Text AD

Y Year Year 1996; 96

M Month in year Month July; Jul; VII; 07; 7

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 970

http://joda-time.sourceforge.net/

Chapter 21. Metadata

115

Letter Date or Time
Component

Presentation Examples

z Time zone General time zone Pacific Standard Time;
PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

' Escape for text/id Delimiter (none)

'' Single quote Literal '

The number of symbol letters you specify also determines the format. For example, if the "zz" pattern results in
"PDT", then the "zzzz" pattern generates "Pacific Daylight Time". The following table summarizes these rules:

Table 21.4. Rules for Date Format Usage (Java)

Presentation Processing Number of
Pattern Letters

Form

Text Formatting 1 - 3 short or abbreviated form,
if one exists

Text Formatting >= 4 full form

Text Parsing >= 1 both forms

Year Formatting 2 truncated to 2 digits

Year Formatting 1 or >= 3 interpreted as Number.

Year Parsing 1 intepreted literally

Year Parsing 2 interpreted relative to
the century within 80
years before or 20 years
after the time when the
SimpleDateFormat
instance is created

Year Parsing >= 3 intepreted literally

Month Both 1-2 interpreted as a Number

Month Parsing >= 3 interpreted as Text
(using Roman numbers,
abbreviated month name
- if exists, or full month
name)

Month Formatting 3 interpreted as Text (using
Roman numbers, or
abbreviated month name -
if exists)

Month Formatting >= 4 interpreted as Text (full
month name)

Number Formatting minimum number of
required digits

shorter numbers are
padded with zeros

Number Parsing number of pattern letters
is ignored (unless needed
to separate two adjacent
fields)

any form

Chapter 21. Metadata

116

Presentation Processing Number of
Pattern Letters

Form

General time zone Both 1-3 short or abbreviated
form, if has a
name. Otherwise, GMT
offset value (GMT[sign]
[[0]0-23]:[00-59])

General time zone Both >= 4 full form, , if has a
name. Otherwise, GMT
offset value (GMT[sign]
[[0]0-23]:[00-59])

General time zone Parsing >= 1 RFC 822 time zone form is
allowed

RFC 822 time zone Both >= 1 RFC 822 4-digit time
zone format is used ([sign]
[0-23][00-59])

RFC 822 time zone Parsing >= 1 General time zone form is
allowed

Examples of date format patterns and resulting dates follow:

Table 21.5. Date and Time Format Patterns and Results (Java)

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

The described format patterns are used both in metadata as the Format property and in CTL.

Chapter 21. Metadata

117

Now the list of format pattern syntax for Joda follows:

Table 21.6. Date Format Pattern Syntax (Joda)

Symbol Meaning Presentation Examples

G Era designator Text AD

C Century of era (>=0) Number 20

Y Year of era (>=0) Year 1996

y Year Year 1996

x Week of weekyear Year 1996

M Month of year Month July; Jul; 07

w Week of year Number 27

D Day of year Number 189

d Day of month Number 10

e Day of week Number 2

E Day of week Text Tuesday; Tue

a Halfday of day Text PM

H Hour of day (0-23) Number 0

k Clockhour of day (1-24) Number 24

K Hour of halfday (0-11) Number 0

h Clockhour of halfday
(1-12)

Number 12

m Minute of hour Number 30

s Second of minute Number 55

S Fraction of second Number 970

z Time zone Text Pacific Standard Time;
PST

Z Time zone offset/id Zone -0800; -08:00; America/
Los_Angeles

' Escape for text/id Delimiter (none)

'' Single quote Literal '

The number of symbol letters you specify also determines the format. The following table summarizes these rules:

Table 21.7. Rules for Date Format Usage (Joda)

Presentation Processing Number of
Pattern Letters

Form

Text Formatting 1 - 3 short or abbreviated form,
if one exists

Text Formatting >= 4 full form

Text Parsing >= 1 both forms

Year Formatting 2 truncated to 2 digits

Year Formatting 1 or >= 3 interpreted as Number.

Year Parsing >= 1 intepreted literally

Chapter 21. Metadata

118

Presentation Processing Number of
Pattern Letters

Form

Month Both 1-2 interpreted as a Number

Month Parsing >= 3 interpreted as Text
(using Roman numbers,
abbreviated month name
- if exists, or full month
name)

Month Formatting 3 interpreted as Text (using
Roman numbers, or
abbreviated month name -
if exists)

Month Formatting >= 4 interpreted as Text (full
month name)

Number Formatting minimum number of
required digits

shorter numbers are
padded with zeros

Number Parsing >= 1 any form

Zone name Formatting 1-3 short or abbreviated form

Zone name Formatting >= 4 full form

Time zone offset/id Formatting 1 Offset without a colon
between hours and minutes

Time zone offset/id Formatting 2 Offset with a colon
between hours and minutes

Time zone offset/id Formatting >= 3 Full textual form like this:
"Continent/City"

Time zone offset/id Parsing 1 Offset without a colon
between hours and minutes

Time zone offset/id Parsing 2 Offset with a colon
between hours and minutes

Important

Remember that parsing with any number of "z" letters is not allowed. And neither parsing with the
number of "Z" letters greater than or equal to 3 is allowed.

See information about data types in metadata and CTL1 and CTL2:

• Data Types and Record Types (p. 111)

• For CTL1:

Data Types in CTL (p. 833)

• For CTL2:

Data Types in CTL2 (p. 894)

They are also used in CTL1 and CTL2 functions. See:

For CTL1:

• Conversion Functions (p. 862)

• Date Functions (p. 867)

Chapter 21. Metadata

119

• String Functions (p. 874)

For CTL2:

• Conversion Functions (p. 923)

• Date Functions (p. 930)

• String Functions (p. 936)

Chapter 21. Metadata

120

Numeric Format

When a text is parsed as any numeric data type or any numeric data type should be formatted to a text, format
pattern must be specified.

Parsing and formatting is locale sensitive.

In CloverETL, Java decimal format is used.

Table 21.8. Numeric Format Pattern Syntax

Symbol Location Localized? Meaning

Number Yes Digit, zero shows as absent

0 Number Yes Digit

. Number Yes Decimal separator or
monetary decimal
separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes Separates mantissa and
exponent in scientific
notation. Need not be
quoted in prefix or suffix.

; Subpattern boundary Yes Separates positive and
negative subpatterns

% Prefix or suffix Yes Multiply by 100 and show
as percentage

‰ (\u2030) Prefix or suffix Yes Multiply by 1000 and show
as per mille value

¤ (\u00A4) Prefix or suffix No Currency sign, replaced
by currency symbol.
If doubled, replaced
by international currency
symbol. If present in
a pattern, the monetary
decimal separator is used
instead of the decimal
separator.

' Prefix or suffix No Used to quote special
characters in a prefix or
suffix, for example, "'#'#"
formats 123 to "#123". To
create a single quote itself,
use two in a row: "#
o''clock".

• Both prefix and suffix are Unicode characters from \u0000 to \uFFFD, including the margins, but excluding
special characters.

Format pattern composes of subpatterns, prefixes, suffixes, etc. in the way shown in the following table:

Chapter 21. Metadata

121

Table 21.9. BNF Diagram

Format Components

pattern subpattern{;subpattern}

subpattern {prefix}integer{.fraction}{suffix}

prefix '\\u0000'..'\\uFFFD' - specialCharacters

suffix '\\u0000'..'\\uFFFD' - specialCharacters

integer '#'* '0'* '0'

fraction '0'* '#'*

Explanation of these symbols follow:

Table 21.10. Used Notation

Notation Description

X* 0 or more instances of X

(X | Y) either X or Y

X..Y any character from X up to Y, inclusive

S - T characters in S, except those in T

{X} X is optional

Important

The grouping separator is commonly used for thousands, but in some countries it separates ten-
thousands. The grouping size is a constant number of digits between the grouping characters, such
as 3 for 100,000,000 or 4 for 1,0000,0000. If you supply a pattern with multiple grouping characters,
the interval between the last one and the end of the integer is the one that is used. So "#,##,###,####"
== "######,####" == "##,####,####".

Remember also that formatting is locale senistive. See the following table in which results are different for different
locales:

Table 21.11. Locale-Sensitive Formatting

Pattern Locale Result

###,###.### en.US 123,456.789

###,###.### de.DE 123.456,789

###,###.### fr.FR 123 456,789

Note

For a deeper look on handling numbers, consult the official Java documentation.

http://download.oracle.com/javase/6/docs/api/java/text/NumberFormat.html

Chapter 21. Metadata

122

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten.

For example, 1234 can be expressed as 1.234 x 103.

The mantissa is often in the range 1.0 <= x < 10.0, but it need not be.

Numeric data types can be instructed to format and parse scientific notation only via a pattern. In a pattern, the
exponent character immediately followed by one or more digit characters indicates scientific notation.

Example: "0.###E0" formats the number 1234 as "1.234E3".

Examples of numeric pattern and results follow:

Table 21.12. Numeric Format Patterns and Results

Value Pattern Result

1234 0.###E0 1.234E3

12345 ##0.#####E01) 12.345E3

123456 ##0.#####E01) 123.456E3

1234567 ##0.#####E01) 1.234567E6

12345 #0.#####E02) 1.2345E4

123456 #0.#####E02) 12.3456E4

1234567 #0.#####E02) 1.234567E6

0.00123 00.###E03) 12.3E-4

123456 ##0.##E04) 12.346E3

Legend:

1): Maximum number of integer digits is 3, minimum number of integer digits is 1, maximum is greater than
minimum, thus exponent will be a multiplicate of three (maximum number of integer digits) in each of the cases.

2): Maximum number of integer digits is 2, minimum number of integer digits is 1, maximum is greater than
minimum, thus exponent will be a multiplicate of two (maximum number of integer digits) in each of the cases.

3): Maximum number of integer digits is 2, minimum number of integer digits is 2, maximum is equal to minimum,
minimum number of integer digits will be achieved by adjusting the exponent.

4): Maximum number of integer digits is 3, maximum number of fraction digits is 2, number of significant digits is
sum of maximum number of integer digits and maximum number of fraction digits, thus, the number of significant
digits is as shown (5 digits).

Chapter 21. Metadata

123

Binary Formats

The table below presents a list of available formats:

Table 21.13. Available Binary Formats

Type Name Format Length

BIG_ENDIAN two's-complement,
big-endian

LITTLE_ENDIAN two's-complement,
little-endian

integer

PACKED_DECIMAL packed decimal

variable

DOUBLE_BIG_ENDIAN IEEE 754, big-endian

DOUBLE_LITTLE_ENDIAN IEEE 754, little-endian

8 bytes

FLOAT_BIG_ENDIAN IEEE 754, big-endian

floating-point

FLOAT_LITTLE_ENDIAN IEEE 754, little-endian

4 bytes

The floating-point formats can be used with numeric and decimal datatypes. The integer formats can be used
with integer and long datatypes. The exception to the rule is the decimal datatype, which also supports
integer formats (BIG_ENDIAN, LITTLE_ENDIAN and PACKED_DECIMAL). When an integer format is used
with the decimal datatype, implicit decimal point is set according to the Scale attribute. For example, if the
stored value is 123456789 and Scale is set to 3, the value of the field will be 123456.789.

To use a binary format, create a metadata field with one of the supported datatypes and set the Format attribute to
the name of the format prefixed with "BINARY:", e.g. to use the PACKED_DECIMAL format, create a decimal
field and set its Format to "BINARY:PACKED_DECIMAL" by choosing it from the list of available formats.

For the fixed-length formats (double and float) also the Size attribute must be set accordingly.

Currently, binary data formats can only be handled by ComplexDataReader (p. 342) and the deprecated
FixLenDataReader.

http://www.simotime.com/datapk01.htm

Chapter 21. Metadata

124

Boolean Format

Format for boolean data type specified in Metadata consists of up to four parts separated from each other by the
same delimiter.

This delimiter must also be at the beginning and the end of the Format string. On the other hand, the delimiter
must not be contained in the values of the boolean field.

Important

If you do not use the same character at the beginning and the end of the Format string, the whole
string will serve as the regular expression for the true value. The default values (false|F|
FALSE|NO|N|f|0|no|n) will be the only ones that will be interpreted as false.

Values that match neither the Format regular expression (interpreted as true only) nor the
mentioned default values for false will be interpreted as error. In such a case, graph would fail.

If we symbolically display the format as:

/A/B/C/D/

th meaning of each part is as follows:

1. If the value of the boolean field matches the pattern of the first part (A) and does not match the second part
(B), it is interpreted as true.

2. If the value of the boolean field does not match the pattern of the first part (A), but matches the second part
(B), it is interpreted as false.

3. If the value of the boolean field matches both the pattern of the first part (A) and, at the same time, the pattern
of the second part (B), it is interpreted as true.

4. If the value of the boolean field matches neither the pattern of the first part (A), nor the pattern of the second
part (B), it is interpreted as error. In such a case, the graph would fail.

All parts are optional, however, if any of them is omitted, all of the others that are at its right side must also be
omitted.

If the second part (B) is omitted, the following default values are the only ones that are parsed as boolean false:

false|F|FALSE|NO|N|f|0|no|n

If there is not any Format, the following default values are the only ones that are parsed as boolean true:

true|T|TRUE|YES|Y|t|1|yes|y

• The third part (C) is a formatting string used to express boolean true for all matched strings. If the third
part is omitted, either the true word is used (if the first part (A) is complicated regular expression), or the
first substring from the first part is used (if the first part is a serie of simple substrings separated by pipe, e.g.:
Iagree|sure|yes|ok - all these values would be formatted as Iagree).

• The fourth part (D) is a formatting string used to express boolean false for all matched strings. If the fourth
part is omitted, either the false word is used (if the second part (B) is complicated regular expression), or the
first substring from the second part is used (if the second part is a serie of simple substrings separated by pipe,
e.g.: Idisagree|nope|no - all these values would be formatted as Idisagree).

Chapter 21. Metadata

125

String Format

Such string pattern is a regular expression (p. 964) that allows or prohibits parsing of a string.

Example 21.1. String Format

If an input file contains a string field and Format property is \\w{4} for this field, only the string whose length
is 4 will be parsed.

Thus, when a Format property is specified for a string, Data policy may cause fail of the graph (if Data policy
is Strict).

If Data policy is set to Controlled or Lenient, the records in which this string value matches the specified
Format property are read, the others are skipped (either sent to Console or to the rejected port).

Chapter 21. Metadata

126

Locale and Locale Sensitivity
Various data types (date and time, any numeric values, strings) can be displayed, parsed, or formatted in different
ways according to the Locale property. See Locale (p. 126) for more information.

Strings can also be influenced by Locale sensitivity. See Locale Sensitivity (p. 130).

Locale

Locale represents a specific geographical, political, or cultural region. An operation that requires a locale to
perform its task is called locale-sensitive and uses the locale to tailor information for the user. For example,
displaying a number is a locale-sensitive operation as the number should be formatted according to the customs/
conventions of the native country, region, or culture of the user.

Each locale code consists of the language code and country arguments.

The language argument is a valid ISO Language Code. These codes are the lower-case, two-letter codes as
defined by ISO-639.

The country argument is a valid ISO Country Code. These codes are the upper-case, two-letter codes as
defined by ISO-3166.

Instead of specifying the format parameter (or together with it), you can specify the locale parameter.

• In strings, instead of setting a format for the whole date field, specify e.g. the German locale. Clover will then
automatically choose the proper date format used in Germany. If the locale is not specified at all, Clover will
choose the default one which is given by your system. In order to learn how to change the default locale, refer
to Changing Default CloverETL Settings (p. 88)

• In numbers, on the other hand, there are cases when both the format and locale parameters are meaningful. In
case of specifying the format of decimal numbers, you define the format/pattern with a decimal separator and
the locale determines whether the separator is a comma or a dot. If neither the locale or format is specified,
the number is converted to string using a universal technique (without checking defaultProperties). If only the
format parameter is given, the default locale is used.

Example 21.2. Examples of Locale

en.US or en.GB

To get more examples of other formatting that is affected when the locale is changed see Locale-Sensitive
Formatting (p. 121).

Dates, too, can have different formats in different locales (even with different countries of the same language).
For instance, March 2, 2009 (in the USA) vs. 2 March 2009 (in the UK).

List of all Locale

A complete list of the locale supported by CloverETL can be found in a separate table below. The locale format
as described above is always "language.COUNTRY".

Table 21.14. List of all Locale

Locale code Meaning

[system default] Locale determined by your OS

ar Arabic language

ar.AE Arabic - United Arab Emirates

ar.BH Arabic - Bahrain

ar.DZ Arabic - Algeria

Chapter 21. Metadata

127

Locale code Meaning

ar.EG Arabic - Egypt

ar.IQ Arabic - Iraq

ar.JO Arabic - Jordan

ar.KW Arabic - Kuwait

ar.LB Arabic - Lebanon

ar.LY Arabic - Lybia

ar.MA Arabic - Morocco

ar.OM Arabic - Oman

ar.QA Arabic - Qatar

ar.SA Arabic - Saudi Arabia

ar.SD Arabic - Sudan

ar.SY Arabic - Syrian Arab Republic

ar.TN Arabic - Tunisia

ar.YE Arabic - Yemen

be Byelorussian language

be.BY Byelorussian - Belarus

bg Bulgarian language

bg.BG Bulgarian - Bulgaria

ca Catalan language

ca.ES Catalan - Spain

cs Czech language

cs.CZ Czech - Czech Republic

da Danish language

da.DK Danish - Denmark

de German language

de.AT German - Austria

de.CH German - Switzerland

de.DE German - Germany

de.LU German - Luxembourg

el Greek language

el.CY Greek - Cyprus

el.GR Greek - Greece

en English language

en.AU English - Australia

en.CA English - Canada

en.GB English - Great Britain

en.IE English - Ireland

en.IN English - India

en.MT English - Malta

en.NZ English - New Zealand

Chapter 21. Metadata

128

Locale code Meaning

en.PH English - Philippines

en.SG English - Singapore

en.US English - United States

en.ZA English - South Africa

es Spanish language

es.AR Spanish - Argentina

es.BO Spanish - Bolivia

es.CL Spanish - Chile

es.CO Spanish - Colombia

es.CR Spanish - Costa Rica

es.DO Spanish - Dominican Republic

es.EC Spanish - Ecuador

es.ES Spanish - Spain

es.GT Spanish - Guatemala

es.HN Spanish - Honduras

es.MX Spanish - Mexico

es.NI Spanish - Nicaragua

es.PA Spanish - Panama

es.PR Spanish - Puerto Rico

es.PY Spanish - Paraguay

es.US Spanish - United States

es.UY Spanish - Uruguay

es.VE Spanish - Venezuela

et Estonian language

et.EE Estonian - Estonia

fi Finnish language

fi.FI Finnish - Finland

fr French language

fr.BE French - Belgium

fr.CA French - Canada

fr.CH French - Switzerland

fr.FR French - France

fr.LU French - Luxembourg

ga Irish language

ga.IE Irish - Ireland

he Hebrew language

he.IL Hebrew - Israel

hi.IN Hindi - India

hr Croatian language

hr.HR Croatian - Croatia

Chapter 21. Metadata

129

Locale code Meaning

id Indonesian language

id.ID Indonesian - Indonesia

is Icelandic language

is.IS Icelandic - Iceland

it Italian language

it.CH Italian - Switzerland

it.IT Italian - Italy

iw Hebrew language

iw.IL Hebrew - Israel

ja Japanese language

ja.JP Japanese - Japan

ko Korean languate

ko.KR Korean - Republic of Korea

lt Lithuanian language

lt.LT Lithuanian language - Lithuania

lv Latvian language

lv.LV Latvian language - Latvia

mk Macedonian language

mk.MK Macedonian - The Former Yugoslav Republic of Macedonia

ms Malay language

ms.MY Malay - Burmese

mt Maltese language

mt.MT Maltese - Malta

nl Dutch language

nl.BE Dutch - Belgium

nl.NL Dutch - Netherlands

no Norwegian language

no.NO Norwegian - Norway

pl Polish language

pl.PL Polish - Poland

pt Portuguese language

pt.BR Portuguese - Brazil

pt.PT Portuguese - Portugal

ro Romanian language

ro.RO Romanian - Romany

ru Russian language

ru.RU Russian - Russian Federation

sk Slovak language

sk.SK Slovak - Slovakia

sl Slovenian language

Chapter 21. Metadata

130

Locale code Meaning

sl.SI Slovenian - Slovenia

sq Albanian language

sq.AL Albanian - Albania

sr Serbian language

sr.BA Serbian - Bosnia and Herzegowina

sr.CS Serbian - Serbia and Montenegro

sr.ME Serbian - Serbia (Cyrillic, Montenegro)

sr.RS Serbian - Serbia (Latin, Serbia)

sv Swedish language

sv.SE Swedish - Sweden

th Thai language

th.TH Thai - Thailand

tr Turkish language

tr.TR Turkish - Turkey

uk Ukrainian language

uk.UA Ukrainian - Ukraine

vi.VN Vietnamese - Vietnam

zh Chinese language

zh.CN Chinese - China

zh.HK Chinese - Hong Kong

zh.SG Chinese - Singapore

zh.TW Chinese - Taiwan

Locale Sensitivity

Locale sensitivity can be applied to the string data type only. What is more, the Locale has to be specified
either for the field or the whole record.

Field settings override the Locale sensitivity specified for the whole record.

Values of Locale sensitivity are the following:

• base_letter_sensitivity

Does not distinguish different cases of letters nor letters with diacritical marks.

• accent_sensitivity

Does not distinguish different cases of letters. It distinguishes letters with diacritical marks.

• case_sensitivity

Distinguishes different cases of letters and letters with diacritical marks. It does not distinguish the letter
encoding ("\u00C0" equals to "A\u0300")

• identical_sensitivity

Distinguishes the letter encoding ("\u00C0" equals to "A\u0300")

Chapter 21. Metadata

131

Autofilling Functions

There is a set of functions you can use to fill records with some special, pre-defined values (e.g. name of the file

you are reading, size of the data source etc.). These functions are available in Metadata editor →Details pane

→Advanced properties

The following functions are supported by most Readers, except ParallelReader, QuickBaseRecordReader, and
QuickBaseQueryReader.

The ErrCode and ErrText functions can be used only in the following components: DBExecute,
DBOutputTable, XMLExtract.

Note a special case of true autofilling value in MultiLevelReader component.

• default_value - value of corresponding data type specified as the Default property is set if no value is
read by the Reader.

• global_row_count. This function counts the records of all sources that are read by one Reader. It fills
the specified field of any numeric data type in the edge(s) with integer numbers sequentially. The records are
numbered in the same order they are sent out through the output port(s). The numbering starts at 0. However,
if data records are read from more data sources, the numbering goes continuously throughout all data sources.
If some edge does not include such field (in XMLExtract, e.g.), corresponding numbers are skipped. And the
numbering continues.

• source_row_count. This function counts the records of each source, read by one Reader, separately. It
fills the specified field of any numeric data type in the edge(s) with integer numbers sequentially. The records
are numbered in the same order they are sent out through the output port(s). The records of each source file
are numbered independently on the other sources. The numbering starts at 0 for each data source. If some edge
does not include such field (in XMLExtract, e.g.), corresponding numbers are skipped. And the numbering
continues.

• metadata_row_count. This function counts the records of all sources that are both read by one Reader
and sent to edges with the same metadata assigned. It fills the specified field of any numeric data type in the
edge(s) with integer numbers sequentially. The records are numbered in the same order they are sent out through
the output port(s). The numbering starts at 0. However, if data records are read from more data sources, the
numbering goes continuously throughout all data sources.

• metadata_source_row_count. This function counts the records of each source that are both read by one
Reader and sent to edges with the same metadata assigned. It fills the specified field of any numeric data type
in the edge(s) with integer numbers sequentially. The records are numbered in the same order they are sent out
through the output port(s). The records of each source file are numbered independently on the other sources.
The numbering starts at 0 for each data source.

• source_name. This function fills the specified record fields of string data type with the name of data source
from which records are read.

• source_timestamp. This function fills the specified record fields of date data type with the timestamp
corresponding to the data source from which records are read. This function cannot be used in DBInputTable.

• source_size. This function fills the specified record fields of any numeric data type with the size of data
source from which records are read. This function cannot be used in DBInputTable.

• row_timestamp. This function fills the specified record fields of date data type with the time when individual
records are read.

• reader_timestamp. This function fills the specified record fields of date data type with the time when the
reader starts reading. The value is the same for all records read by the reader.

Chapter 21. Metadata

132

• ErrCode. This function fills the specified record fields of integer data type with error codes returned by
component. It can be used by DBOutputTable and DBExecute components only.

• ErrText. This function fills the specified record fields of string data type with error messages returned by
component. It can be used by DBOutputTable and DBExecute components only.

• sheet_name. This function fills the specified record fields of string data type with name of the sheet of input
XLS(X) file from which data records are read. It can be used by SpreadsheetDataReader and XLSDataReader
components only.

Chapter 21. Metadata

133

Internal Metadata

As mentioned above, internal metadata are part of a graph, they are contained in it and can be seen in its source tab.

Creating Internal Metadata

Internal metadata can be created in the following ways:

• Outline

In the Outline pane, you can select the Metadata item and open the context menu by right-clicking and select
the New metadata item there.

• Graph Editor — Edge

In the Graph Editor, you must open the context menu by right-clicking any of the edges. There you can see
the New metadata item.

• Graph Editor — Component

To create metadata using a component, first fill in the required properties. After that, right click on the
component and select Extract metadata.

Creating Internal Metadata: Outline or Edge

In both cases, after selecting the New metadata item, a new submenu appears. There you can select the way how
to define metadata.

Now you have three possibilities for either case mentioned above: If you want to define metadata yourself, you
must select the User defined item or, if you want to extract metadata from a file, you must select the Extract
from flat file or Extract from xls(x) file items, if you want to extract metadata from a database, you must select
the Extract from database item. This way, you can only create internal metadata.

If you define metadata using the context menu, they are assigned to the edge as soon as they have been created.

Figure 21.1. Creating Internal Metadata in the Outline Pane

Chapter 21. Metadata

134

Figure 21.2. Creating Internal Metadata on the Edge

Creating Internal Metadata: Component

Many readers and writers allow to extract metadata with the use of the components' properties. Based on a type
of the component, the metadata are extracted from a file, database table, or other sources.

Supported components: UniversalDataReader, ParallelReader, DBInputTable, XLSDataReader, DBFDataReader,
LotusReader, UniversalDataWriter, DBOutputTable, XLSDataWriter, DBFDataWriter, LotusWriter,
DB2DataWriter, InfobrightDataWriter, InformixDataWriter, MSSQLDataWriter, MysqlDataWriter,
OracleDataWriter, PostgreSQLDataWriter.

The Extract metadata context menu is available only if the required file, connection or database properties are
set on the component.

Externalizing Internal Metadata

After you have created internal metadata as a part of a graph, you may want to convert them to external (shared)
metadata. In such a case, you would be able to use the same metadata in other graphs (other graphs would share
them).

You can externalize any internal metadata item into external (shared) file by right-clicking an internal metadata
item in the Outline pane and selecting Externalize metadata from the context menu. After doing that, a new
wizard will open in which the meta folder of your project is offered as the location for this new external (shared)
metadata file and then you can click OK. If you want you can rename the offered metadata filename.

After that, the internal metadata item disappears from the Outline pane Metadata group, but, at the same location,
already linked, the newly created external (shared) metadata file appears. The same metadata file appears in the
meta subfolder of the project and it can be seen in the Navigator pane.

You can even externalize multiple internal metadata items at once. To do this, select them in the Outline pane
and, after right-click, select Externalize metadata from the context menu. After doing that, a new wizard will
open in which the meta folder of your project will be offered as the location for the first of the selected internal
metadata items and then you can click OK. The same wizard will open for each the selected metadata items until
they are all externalized. If you want (a file with the same name may already exist), you can change the offered
metadata filename.

Chapter 21. Metadata

135

You can choose adjacent metadata items when you press Shift and move the Down Cursor or the Up Cursor
key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired metadata items instead.

Exporting Internal Metadata

This case is somewhat similar to that of externalizing metadata. Now you create a metadata file that is outside the
graph in the same way as that of externalized file, but such a file is not linked to the original graph. Only a metadata
file is being created. Subsequently you can use such a file for more graphs as an external (shared) metadata file
as mentioned in the previous sections.

You can export internal metadata into external (shared) one by right-clicking some of the internal metadata items
in the Outline pane, clicking Export metadata from the context menu, selecting the project you want to add
metadata into, expanding that project, selecting the meta folder, renaming the metadata file, if necessary, and
clicking Finish.

After that, the Outline pane metadata folder remains the same, but in the meta folder in the Navigator pane the
newly created metadata file appears.

Figure 21.3. Externalizing and/or Exporting Internal Metadata

Figure 21.4. Selecting a Location for a New Externalized and/or Exported Internal Metadata

Chapter 21. Metadata

136

External (Shared) Metadata

As mentioned above, external (shared) metadata are metadata that serve for more graphs than only one. They are
located outside the graph and can be shared across multiple graphs.

Creating External (Shared) Metadata

If you want to create shared metadata, you can do it in two ways:

• You can do it by selecting File →New →Other in the main menu.

To create external (shared) metadata, after clicking the Other item, you must select the CloverETL item,
expand it and decide whether you want to define metadata yourself (User defined), extract them from a file
(Extract from flat file or Extract from XLS file), or extract them from a database (Extract from database).

• You can do it in the Navigator pane.

To create external (shared) metadata, you can open the context menu by right-clicking, select New →Others
from it, and after opening the list of wizards you must select the CloverETL item, expand it and decide whether
you want to define metadata yourself (User defined), extract them from a file (Extract from flat file or Extract
from XLS file), or extract them from a database (Extract from database).

Figure 21.5. Creating External (Shared) Metadata in the Main Menu and/or in the Navigator Pane

Linking External (Shared) Metadata

After their creation (see previous sections), external (shared) metadata must be linked to each graph in which they
are to be used. You need to right-click either the Metadata group or any of its items and select New metadata

→Link shared definition from the context menu. After that, a File selection wizard displaying the project content
will open. You must expand the meta folder in this wizard and select the desired metadata file from all the files
contained in this wizard.

You can even link multiple external (shared) metadata files at once. To do this, right-click either the Metadata

group or any of its items and select New metadata →Link shared definition from the context menu. After that,

Chapter 21. Metadata

137

a File selection wizard displaying the project content will open. You must expand the meta folder in this wizard
and select the desired metadata files from all the files contained in this wizard. You can select adjacent file items
when you press Shift and move the Down Cursor or the Up Cursor key. If you want to select non-adjacent items,
use Ctrl+Click at each of the desired file items instead.

Internalizing External (Shared) Metadata

Once you have created and linked external (shared) metadata, in case you want to put them into the graph, you
need to convert them to internal metadata. In such a case you would see their structure in the graph itself.

You can internalize any linked external (shared) metadata file by right-clicking the linked external (shared)
metadata item in the Outline pane and clicking Internalize metadata from the context menu.

You can even internalize multiple linked external (shared) metadata files at once. To do this, select the desired
external (shared) metadata items in the Outline pane. You can select adjacent items when you press Shift and
move the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at each
of the desired items instead.

After that, the selected linked external (shared) metadata items disappear from the Outline pane Metadata group,
but, at the same location, newly created internal metadata items appear.

The original external (shared) metadata files still exist in the meta subfolder and can be seen in the Navigator
pane.

Figure 21.6. Internalizing External (Shared) Metadata

Chapter 21. Metadata

138

Creating Metadata

As mentioned above, metadata describe the structure of data.

Data itself can be contained in flat files, XLS files, DBF files, XML files, or database tables. You need to extract
or create metadata in a different way for each of these data sources. You can also create metadata by hand.

Each description below is valid for both internal and external (shared) metadata.

Extracting Metadata from a Flat File

When you want to create metadata by extracting them from a flat file, start by clicking Extract from flat file.
After that the Flat file wizard opens.

In the wizard, type the file name or locate it with the help of the Browse... button. Once you have selected the
file, you can specify the Encoding and Record type options as well. The default Encoding is ISO-8859-1 and
the default Record type is delimited.

If the fields of records are separated from each other by some delimiters, you may agree with the default Delimited
as the Record type option. If the fields are of some defined sizes, you need to switch to the Fixed Length option.

After selecting the file, its contents will be displayed in the Input file pane. See below:

Figure 21.7. Extracting Metadata from Delimited Flat File

Chapter 21. Metadata

139

Figure 21.8. Extracting Metadata from Fixed Length Flat File

After clicking Next, you can see more detailed information about the content of the input file and the delimiters in
the Metadata dialog. It consists of four panes. The first two are at the upper part of the window, the third is at the
middle, the fourth is at the bottom. Each pane can be expanded to the whole window by clicking the corresponding
symbol in its upper right corner.

The first two panes at the top are the panes described in Metadata Editor (p. 156). If you want to set up the
metadata, you can do it in the way explained in more details in the mentioned section. You can click the symbol
in the upper right corner of the pane after which the two panes expand to the whole window. The left and the
right panes can be called the Record and the Details panes, respectively. In the Record pane, there are displayed
either Delimiters (for delimited metadata), or Sizes (for fixed length metadata) of the fields or both (for mixed
metadata only).

After clicking any of the fields in the Record pane, detailed information about the selected field or the whole
record will be displayed in the Details pane.

Some Properties have default values, whereas others have not.

In this pane, you can see Basic properties (Name of the field, Type of the field, Delimiter after the field, Size of the
field, Nullable, Default value of the field, Skip source rows, Description) and Advanced properties (Format,
Locale, Autofilling, Shift, EOF as delimiter). For more details on how you can change the metadata structure
see Metadata Editor (p. 156).

You can change some metadata settings in the third pane. You can specify whether the first line of the file contains
the names of the record fields. If so, you need to check the Extract names checkbox. If you want, you can also
click some column header and decide whether you want to change the name of the field (Rename) or the data
type of the field (Retype). If there are no field names in the file, CloverETL Designer gives them the names
Field# as the default names of the fields. By default, the type of all record fields is set to string. You can
change this data type for any other type by selecting the right option from the presented list. These options are as
follows: boolean, byte, cbyte, date, decimal, integer, long, number, string. For more detailed
description see Data Types and Record Types (p. 111).

This third pane is different between Delimited and Fixed Length files. See:

Chapter 21. Metadata

140

• Extracting Metadata from Delimited Files (p. 140)

• Extracting Metadata from Fixed Length Files (p. 142)

At the bottom of the wizard, the fourth pane displays the contents of the file.

In case you are creating internal metadata, you only need to click the Finish button. If you are creating external
(shared) metadata, you must click the offered Next button, then select the folder (meta) and name of metadata
and click Finish. The extension .fmt will be added to the metadata file automatically.

Extracting Metadata from Delimited Files

If you expand the pane in the middle to the whole wizard window, you will see the following:

Figure 21.9. Setting Up Delimited Metadata

You may need to specify which delimiter is used in the file (Delimiter). The delimiter can be a comma, colon,
semicolon, space, tabulator, or a sequence of characters. You need to select the right option.

Finally, click the Reparse button after which you will see the file as it has been parsed in the pane below.

The Normalize names option allows you to ged rid of invalid characters in fields. They will be replaced with the
underscore character, i.e. _. This is available only with Extract names checked.

Alternatively, use the Quote char combo box to select which kind of quotation marks should be removed from
string fields. Do not forget to click Reparse after you select one of the options: " or ' or Both " and '. Quotation
marks have to form a pair and selecting one kind of Quote char results in ignoring the other one (e.g. if you
select " then they will be removed from each field while all ' characters are treated as common strings). If you
need to retain the actual quote character in the field, it has to be escaped, e.g. "" - this will be extracted as a single
". Delimiters (selected in Delimiter) surrounded by quotes are ignored. What is more, you can enter your own
delimiter into the combo box as a single character, e.g. the pipe - type only | (no quotes around).

Chapter 21. Metadata

141

Examples:

"person" - will be extracted as person (Quote char set to " or Both " and ')

"address"1 - will not be extracted and the field will show an error; the reason is the delimiter is expected right
after the quotes ("address"; would be fine with ; as the delimiter)

first"Name" - will be extracted as first"Name" - if there is no quotation mark at the beginning of the field,
the whole field is regarded as a common string

"'doubleQuotes'" (Quote char set to " or Both " and ') - will be extracted as 'doubleQuotes' as only
the outer quotation marks are always removed and the rest of the field is left untouched

"unpaired - will not be extracted as quotation marks have be in pair; this would be an error

'delimiter;' (with Quote char set to ' or Both " and ' and Delimiter set to ;) - will be extracted as
delimiter; as the delimiter inside quotation marks is ignored

Chapter 21. Metadata

142

Extracting Metadata from Fixed Length Files

If you expand the pane in the middle to the whole wizard window, you will see the following:

Figure 21.10. Setting Up Fixed Length Metadata

You must specify the sizes of each field (Resize). You may also want to split any column, merge columsn, add
one or more columns, remove columns. You can change the sizes by moving the borders of the columns.

Chapter 21. Metadata

143

Extracting Metadata from an XLS(X) File

If you want to extract metadata from an XLS(X) file, right-click Metadata (in Outline) and select New →Extract
from XLS(X) file .

Tip

Equally, you can drag an XLS file from the Navigator area and drop it on Metadata in the Outline.
This will also bring the extracting wizard described below.

Figure 21.11. Extract Metadata from Excel Spreadsheet Wizard

In this wizard:

• Browse for the desired XLS file and click OK.

• Decide about the orientation of the source data. In Properties →Global →Orientation you can switch between
Vertical processing (row by row) or Horizontal processing (column by column).

• Select cells representing the header of your data. You can do that by clicking a whole Excel row/column, clicking
and drawing a selection area, Ctrl-clicking or Shift-clicking cells just like you would do in Excel. By default,
the first row is selected.

• Click Mark selection as fields. Cells you have selected will change colour and will be considered metadata
fields from now on. If you change your mind, click a selected cell and click Clear to not extract metadata from it.

• For each field, you need to specify a cell providing a sample value. The wizard then derives the corresponding
metadata type from it. By default, a cell just underneath a marked cell is selected (notice its dashed border),
see below. In the figure, 'Percent' will become the field name while '10,00%' determines the field type (which
would be long in this case). To change the area where sample values are taken from, adjust Data offest (more

on that below).

As for colours: orange cells form the header, yellow ones indicate the beginning of the area data is taken from.

Optional tasks you can do in this dialog:

Chapter 21. Metadata

144

• Type in Encrpytion password if the source file is locked. Be sure to type the password exactly as it should be,
including correct letter case or special characters.

• Data contains headers - cells marked for field extraction will be considered headers. Data type and format is
extracted from cells below the marked ones - with respect to the current Data offset.

• Extract formats - for each field, its Format property will get populated with a pattern corresponding to the

sample data. This format pattern will appear in the next step of the wizard, in Property →Advanced →Format
as e.g. #0.00%. See Numeric Format (p. 120) for more information.

Figure 21.12. Format Extracted from Spreadsheet Cell

Caution

The format extracted from metadata has nothing to do with Format field in the section called
“SpreadsheetDataReader” (p. 400). Format field is an extra metadata field holding the Excel
format of a particular cell (as a string).

• Adjust Data offset (in the right-hand Properties pane, Selected cells tab). In metadata, data offset determines
where data types are guessed from. Basically, its value represents 'a number of rows (in vertical mode) or
columns (in horizontal mode) to be omitted'. By default, data offset is 1 ('data beginning in the following
row'). Click the spinner in the Value field to adjust data offset smoothly. Notice how modifying data offet is
visualised in the sheet preview - you can see the 'omitted' rows change colour.

As a final step, click either OK (when creating internal metadata), or Next, select location (meta, by default)
and type a name (when creating external/shared metadata). The .fmt extension will be added to the metadata
name automatically.

Chapter 21. Metadata

145

Extracting Metadata from a Database

If you want to extract metadata from a database (when you select the Extract from database option), you must
have some database connection defined prior to extracting metadata.

In addition to this, if you want to extract internal metadata from a database, you can also right-click any connection

item in the Outline pane and select New metadata →Extract from database.

Figure 21.13. Extracting Internal Metadata from a Database

After each of these three options, a Database Connection wizard opens.

Chapter 21. Metadata

146

Figure 21.14. Database Connection Wizard

In order to extract metadata, you must first select database connection from the existing ones (using the Connection
menu) or load a database connection using the Load from file button or create a new connection as shown in
corresponding section. Once it has been defined, Name, User, Password, URL and/or JNDI fields become filled
in the Database Connection wizard.

Then you must click Next. After that, you can see a database schema.

Figure 21.15. Selecting Columns for Metadata

Chapter 21. Metadata

147

Now you have two possibilities:

Either you write a query directly, or you generate the query by selecting individual columns of database tables.

If you want to generate the query, hold Ctrl on the keyboard, highlight individual columns from individual tables
by clicking the mouse button and click the Generate button. The query will be generated automatically.

See following window:

Figure 21.16. Generating a Query

If you check the Prefix table names with schema checkbox, it will have the following form:
schema.table.column. If you check the Quote identifiers checkbox, it will look like one of this:
"schema"."table"."column" (Prefix table names with schema is checked) or "table"."column"
only (the mentioned checkbox is not checked). This query is also generated using the default (Generic) JDBC
specific. Only it does not include quotes.

Remember that Sybase has another type of query which is prefixed by schema. It looks like this:

"schema"."dbowner"."table"."column"

Important

Remember that quoted identifiers may differ for different databases. They are:

• double quotes

DB2, Informix (for Informix, the DELIMIDENT variable must be set to yes otherwise no quoted
identifiers will be used), Oracle, PostgreSQL, SQLite, Sybase

• back quotes

Infobright

• backslash with back quotes

Chapter 21. Metadata

148

MySQL (backquote is used as inline CTL special character)

• square brackets

MSSQL 2008, MSSQL 2000-2005

• without quotes

When the default (Generic) JDBC specific or Derby specific are selected for corresponding
database, the generated query will not be quoted at all.

Once you have written or generated the query, you can check its validity by clicking the Validate button.

Then you must click Next. After that, Metadata Editor opens. In it, you must finish the extraction of metadata.
If you wish to store the original database field length constraints (especially for strings/varchars), choose
the fixed length or mixed record type. Such metadata provide the exact database field definition when used for
creating (generating) table in a database, see Create Database Table from Metadata (p. 154)

• By clicking the Finish button (in case of internal metadata), you will get internal metadata in the Outline pane.

• On the other hand, if you wanted to extract external (shared) metadata, you must click the Next button first, after
which you will be prompted to decide which project and which subfolder should contain your future metadata
file. After expanding the project, selecting the meta subfolder, specifying the name of the metadata file and
clicking Finish, it is saved into the selected location.

Chapter 21. Metadata

149

Extracting Metadata from a DBase File

When you want to extract metadata from a DBase file, you must select the Extract from DBF file option.

Locate the file from which you want to extract metadata. The file will open in the following editor:

Figure 21.17. DBF Metadata Editor

DBF type, DBF Code Page will be selected automatically. If they do not correspond to what you want, change
their values.

When you click Next, the Metadata Editor with extracted metadata will open. You can keep the default metadata
values and types and click Finish.

Creating Metadata by User

If you want to create metadata yourself (User defined), you must do it in the following manner:

After opening the Metadata Editor, you must add a desired number of fields by clicking the plus sign, set up
their names, their data types, their delimiters, their sizes, formats and all that has been described above.

For more detailed information see Metadata Editor (p. 156).

Once you have done all of that, you must click either OK for internal metadata, or Next for external (shared)
metadata. In the last case, you only need to select the location (meta, by default) and a name for metadata
file. When you click OK, your metadata file will be saved and the extension .fmt will be added to the file
automatically.

Extracting Metadata from Lotus Notes

For Lotus Notes components (see LotusReader (p. 387), LotusWriter (p. 503) for further info) it is required
to provide metadata for Lotus data you will be working with. The LotusReader component needs metadata to
properly read data from Lotus views. Metadata describes how many columns there is in a view and assigns names
and types to the columns. The LotusWriter component uses metadata to determine the types of written data fields.

Metadata can be obtained from Lotus views either as internal or external metadata. See sections Internal
Metadata (p. 133) and External (Shared) Metadata (p. 136) to learn how to create internal and external metadata.

Chapter 21. Metadata

150

Figure 21.18. Specifying Lotus Notes connection for metadata extraction

On the first page of Lotus Notes metadata extraction Wizard, you are asked to provide details of connection to
Lotus Notes or Lotus Domino server. You can either select an existing Lotus connection, load external connection
by using the Load from file button, or define new connection by selecting <custom> from the connection menu.

See Chapter 25, Lotus Connections (p. 190) for description of connection details.

Finally, to be able to extract metadata, you need to specify the View from which the metadata will be extracted.

The extraction process prepares metadata with the same amount of fields as is the amount of columns in the
selected View. It will also assign names to the fields based on the names of the View columns. All columns in Lotus
views have internal (programmatic) names. Some columns can have user-defined names for better readability. The
extraction wizard will use user-defined names where possible, in the latter case it will use the internal programmatic
name of the column.

The metadata extraction process will set types of all fields to String. This is because Lotus View columns do
not have types assigned to them. The value in a column can contain arbitrary type, for example based on certain
condition or result of complex calculation.

Chapter 21. Metadata

151

Figure 21.19. Lotus Notes metadata extraction wizard, page 2

The second page of Lotus Notes metadata extraction Wizard is separated into two parts. In the upper part there
is standard Metadata editor available to customize the result of metadata extraction. In the lower part there is a
preview of the data contained in the View.

On this page you can for example change the names of fields or change the types of fields from default String
type to something specific. In such case, you must be sure you can guarantee the incoming data will be
convertible to selected data type. The LotusReader component will always succeed converting Lotus data to
strings. However, it may fail if invalid conversion is attempted. For example attemt to convert Integer to Date data
type would result in a data conversion exception and the whole reading process would fail.

If you are extracting internal metadata, this was the last page of the Lotus Notes metadata extraction wizard.
Clicking Finish will add internal metadata to the currently opened graph. In case you were extracting external
metadata, on the following page you will be asked to specify the location to store the extracted metadata.

Merging existing metadata

You can create new metadata by combining two or more existing metadata into one new metadata object. Fields
and their settings are copied from the selected sources into the new metadata.

Conflicting field names are resolved either:

• automatically - two options: only the first field is taken; or duplicates are renamed (in a way like field_1,
field_2 etc.)

• manually, which is the second step of this wizard

The Merge metadata dialog lets you choose which metadata and which fields will go into the result. You can
invoke the dialog:

1. In Outline, right-click two or more existing metadata.

OR

Metadata →New Metadata →Merge existing

Chapter 21. Metadata

152

OR

Right click an edge and click New metadata.

2. Click Merge metadata... (Merge existing)

3. You will continue in a two-step wizard. In its first step, you manage all fields of the metadata you have selected.
Select only those you want to include in the final merger (they are highlighted in bold):

Figure 21.20. Merging two metadata - conflicts can be resolved in one of the three ways (notice radio
buttons at the bottom).

4. Click Next to review merged metadata or Finish to create it instantly.

Dynamic Metadata

In addition to the metadata created or extracted using CloverETL Designer, you can also write metadata definition
in the Source tab of the Graph Editor pane. Unlike the metadata defined in CloverETL Designer, such metadata
written in the Source tab cannot be edited in CloverETL Designer.

To define the metadata in the Source tab, open this tab and write there the following:

<Metadata id="YourMetadataId" connection="YourConnectionToDB"
sqlQuery="YourQuery"/>

Specify a unique expression for YourMetadataId (e.g. DynamicMetadata1) and an id of a previously created
DB connection that should be used to connect to DB as YourConnectionToDB. Type the query that will be
used to extract meta data from DB as YourQuery (e.g. select * from myTable).

In order to speed up the metadata extraction, add the clause "where 1=0" or "and 1=0" to the query. The
former one should be added to a query with no where condition and the latter clause should be added to the query
which already contains "where ..." expression. This way only metadata are extracted and no data will be read.

Chapter 21. Metadata

153

Remember that such metadata are generated dynamically at runtime only. Its fields cannot be viewed or modified
in metadata editor in CloverETL Designer.

Note

It is highly recommended you skip the checkConfig method whenever dynamic metadata is
used. To do that, add -skipcheckconfig among program arguments. See Program and VM
Arguments (p. 85).

Reading Metadata from Special Sources

In the similar way like the dynamic metadata mentioned in the previous section, another metadata definitions can
also be used in the Source tab of the Graph Editor pane.

Remember that neither these metadata can be edited in CloverETL Designer.

In addition to the simplest form that defines external (shared) metadata (fileURL="${META_DIR}/
metadatafile.fmt") in the source code of the graph, you can use more complicated URLs which also define
paths to other external (shared) metadata in the Source tab.

For example:

<Metadata fileURL="zip:(${META_DIR}\delimited.zip)#delimited/employees.fmt"
id="Metadata0"/>

or:

<Metadata fileURL="ftp://guest:guest@localhost:21/employees.fmt"
id="Metadata0"/>

Such expressions can specify the sources from which the external (shared) metadata should be loaded and linked
to the graph.

Chapter 21. Metadata

154

Creating Database Table from Metadata and Database
Connection

As the last option, you can also create a database table on the basis of metadata (both internal and external).

When you select the Create database table item from each of the two context menus (called out from the Outline
pane and/or Graph Editor), a wizard with a SQL query that can create database table opens.

Figure 21.21. Creating Database Table from Metadata and Database Connection

You can edit the contents of this window if you want.

When you select some connection to a database. For more details see Chapter 22, Database
Connections (p. 171). Such database table will be created.

Note

If multiple SQL types are listed, actual syntax depends on particular metadata (size for fixed-length
field, length, scale, etc.).

Chapter 21. Metadata

155

Table 21.15. CloverETL-to-SQL Data Types Transformation Table (Part I)

DB type DB2 & Derby Firebird Hive Informix MSAccess

Clover type

boolean SMALLINT CHAR(1) BOOLEAN BOOLEAN BIT

VARCHAR(80)
FOR BIT DATA

CHAR(80) BINARYa BYTE VARBINARY(80)

byte
CHAR(n) FOR
BIT DATA

CHAR(n) BINARY(n)

VARCHAR(80)
FOR BIT DATA

CHAR(80) BINARYa BYTE VARBINARY(80)

cbyte
CHAR(n) FOR
BIT DATA

CHAR(n) BINARY(n)

TIMESTAMP TIMESTAMP TIMESTAMPa DATETIME
YEAR TO
SECOND

DATETIME

DATE DATE DATE

TIME DATETIME
HOUR TO
SECOND

TIME
date

DECIMAL DECIMAL DECIMALb DECIMAL DECIMAL

DECIMAL(p) DECIMAL(p) DECIMAL(p) DECIMAL(p)decimal

DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

integer INTEGER INTEGER INT INTEGER INT

long BIGINT BIGINT BIGINT INT8 BIGINT

number DOUBLE FLOAT DOUBLE FLOAT FLOAT

VARCHAR(80) VARCHAR(80) STRING VARCHAR(80) VARCHAR(80)
string

CHAR(n) CHAR(n) CHAR(n) CHAR(n)
aAvailable from version 0.8.0 of Hive
bAvailable from version 0.11.0 of Hive

Table 21.16. CloverETL-to-SQL Data Types Transformation Table (Part II)

DB type MSSQL MSSQL MySQL Oracle Pervasive

Clover type 2000-2005 2008

boolean BIT BIT TINYINT(1) SMALLINT BIT

VARBINARY(80)VARBINARY(80)VARBINARY(80)RAW(80) LONGVARBINARY(80)
byte

BINARY(n) BINARY(n) BINARY(n) RAW(n) BINARY(n)

VARBINARY(80)VARBINARY(80)VARBINARY(80)RAW(80) LONGVARBINARY(80)
cbyte

BINARY(n) BINARY(n) BINARY(n) RAW(n) BINARY(n)

DATETIME DATETIME DATETIME TIMESTAMP TIMESTAMP

DATE YEAR DATE DATE

TIME DATE TIME
date

TIME

Chapter 21. Metadata

156

DB type MSSQL MSSQL MySQL Oracle Pervasive

Clover type 2000-2005 2008

DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL

DECIMAL(p) DECIMAL(p) DECIMAL(p) DECIMAL(p) DECIMAL(p)decimal

DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

integer INT INT INT INTEGER INTEGER

long BIGINT BIGINT BIGINT NUMBER(11,0) BIGINT

number FLOAT FLOAT DOUBLE FLOAT DOUBLE

VARCHAR(80) VARCHAR(80) VARCHAR(80) VARCHAR2(80) VARCHAR2(80)
string

CHAR(n) CHAR(n) CHAR(n) CHAR(n) CHAR(n)

Table 21.17. CloverETL-to-SQL Data Types Transformation Table (Part III)

DB type PostgreSQL SQLite Sybase Generic

Clover type

boolean BOOLEAN BOOLEAN BIT BOOLEAN

BYTEA VARBINARY(80) VARBINARY(80) VARBINARY(80)
byte

VARBINARY(80) BINARY(n) BINARY(n)

BYTEA VARBINARY(80) VARBINARY(80) VARBINARY(80)
cbyte

BINARY(n) BINARY(n) BINARY(n)

TIMESTAMP TIMESTAMP DATETIME TIMESTAMP

DATE DATE DATE DATE

TIME TIME TIME TIME
date

NUMERIC DECIMAL DECIMAL DECIMAL

NUMERIC(p) DECIMAL(p) DECIMAL(p) DECIMAL(p)decimal

NUMERIC(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

integer INTEGER INTEGER INT INTEGER

long BIGINT BIGINT BIGINT BIGINT

number REAL NUMERIC FLOAT FLOAT

VARCHAR(80) VARCHAR(80) VARCHAR(80) VARCHAR(80)
string

CHAR(n) CHAR(n) CHAR(n) CHAR(n)

Revised: 2013-02-18

Metadata Editor

Metadata editor is a visual tool for editing metadata.

Opening Metadata Editor

Metadata Editor opens during creation of metadata from flat file (the two upper panes), database or when you
create metadata by hand.

You can also open Metadata Editor to edit any existing metadata.

Chapter 21. Metadata

157

• If you want to edit any metadata assigned to an edge (both internal and external), you can do it in the Graph
Editor pane in one of the following ways:

• Double-click the edge.

• Select the edge and press Enter.

• Right-click the edge and select Edit from the context menu.

• If you want to edit any metadata (both internal and external), you can do it after expanding the Metadata
category in the Outline pane:

• Double-click the metadata item.

• Select the metadata item and press Enter.

• Right-click the metadata item and select Edit from the context menu.

• If you want to edit any external (shared) metadata from any project, you can do it after expanding the meta
subfolder in the Navigator pane:

• Double-click the metadata file.

• Select the metadata file and press Enter.

• Right-click the metadata file and select Open With →CloverETL Metadata Editor from the context menu.

Basics of Metadata Editor

We assume that you already know how to open Metadata Editor. For information you can see Opening Metadata
Editor (p. 156).

Here we will describe the appearance of Metadata Editor.

In this editor you can see buttons on the left, two panes and one filter text area:

• On the left side of the dialog, there are six buttons (down from the top) - for adding or removing fields, for
moving one or more fields to top, up, down or bottom. Above these buttons, there are two arrows (for undoing
and redoing, from left to right).

• The pane on the left will be called the Record pane.

See Record Pane (p. 159) for more detailed information.

• That on the right will be called the Details pane.

See Details Pane (p. 160) for more detailed information.

• In the Filter text area, you can type any expression you want to search among the fields of the Record pane.
Note that this is case sensitive.

In the Record pane, you can see an overview of information about the record as a whole and also the list of its
fields with delimiters, sizes or both.

The contents of the Details pane changes in accordance with the row selected in the Record pane:

• If the first row is selected, details about the record are displayed in the Details pane.

See Record Details (p. 161) for more detailed information.

Chapter 21. Metadata

158

• If another row is selected, details about selected field are displayed in the Details pane.

See Field Details (p. 162) for more detailed information.

Note

Default values of some properties are printed in gray text.

Below you can see an example of delimited metadata and another one of fixed length metadata. Mixed metadata
would be a combination of both cases. For some field names delimiter would be defined and no size would be
specified, whereas for others size would be defined and no delimiter would be specified or both would be defined.
To create such a metadata, you must do it by hand.

Figure 21.22. Metadata Editor for a Delimited File

Chapter 21. Metadata

159

Figure 21.23. Metadata Editor for a Fixed Length File

Trackable Fields Selection

In a Jobflow (p. 249), the values of selected fields can be tracked (p. 250). The fields can be selected using
the Log field with token button, as show below:

Figure 21.24. Trackable Fields Selection in Metadata Editor

Record Pane

This pane displays an overview of the record as a whole and all its fields:

• The first row presents an overview of the whole record:

It consists of the following columns:

Chapter 21. Metadata

160

• The name of the record is displayed in the second column and can be changed there.

• The type of the record is displayed in the third column and can be selected as delimited, fixed or mixed.

• The other columns may display respectively: the default delimiter separating each field from the following
one (except for the last one) or the size of the whole record (in fixed-length metadata).

• The last column is always the label. It is similar to the field name, but there are no restrictions relating to it.
See Field Name vs. Label vs. Description (p. 160).

• The other rows except the last one present the list of the record fields:

• The first column displays the number of the field. Fields are numbered starting from 1.

• The second column displays the name of the field. It can be changed there. We suggest you only use the
following characters for the field names: [a-zA-Z0-9_].

• The third column displays the data type of the field. One of the data types for metadata can be selected. See
Data Types and Record Types (p. 111) for more information.

• The other columns display the delimiter which follows the field displayed in the row, the size of the field
or both the delimiter and size. If the delimiter is displayed greyish, it is the default delimiter, if it is black,
it is non-default delimiter.

• The last row presents the last field:

• The first three columns are the same as those in other field rows.

• The other columns display record delimiter which follows the last field (if it is displayed greyish) or the non-
default delimiter which follows the last field and precedes the record delimiter (if it is displayed black), the
size of the field or both the delimiter and size.

For detailed information about delimiters see Changing and Defining Delimiters (p. 163).

Field Name vs. Label vs. Description

The section should help you understand these basic differences.

Field name is an internal Clover denotation used when e.g. metadata are extracted from a file. Field names are
not arbitrary - you cannot use spaces, diacritics nor accents in them.

Field label is automatically copied from the field name and you can change it without any restrictions - accents,
diacritics etc. are all allowed. What is more, labels inside one record can be duplicate. Normally, when extracting
metadata from e.g. a CSV file, you will get field names in a "machine" format. You can then change them to neat
labels using any characters you want. At last, writing to an Excel file, you let those labels become spreadsheet
headers. (Write field names attribute in some writers, see Chapter 54, Writers (p. 452))

Description is a pure comment. Using it, you give advice to yourself or other users who are going to work with
your metadata. It produces no outputs.

Details Pane

The contents of the Details pane changes in accordance with the row selected in the Record pane.

• If you select the first row, details about the whole record are displayed.

See Record Details (p. 161).

• If you select another row, details about the selected field are displayed.

Chapter 21. Metadata

161

See Field Details (p. 162).

Note

Default values of some properties are printed in gray text.

Record Details

When the Details pane presents information about the record as a whole, there are displayed its properties.

Basic properties are the following:

• Name. This is the name of the record. It can be changed there.

• Type. This is the type of the record. One of the following three can be selected: delimited, fixed, mixed.
See Record Types (p. 112) for more information.

• Record delimiter. This is the delimiter following the last field meaning the end of the record. It can be changed
there. If the delimiter in the last row of the Record pane in its Delimiter column is displayed greyish, it is this
record delimiter. If it is black, it is other, non-default delimiter defined for the last field which follows it and
precedes the record delimiter.

See Changing and Defining Delimiters (p. 163) for more detailed information.

• Record size. Displayed for fixed or mixed record type only. This is the length of the record counted in
number of characters. It can be changed there.

• Default delimiter. Displayed for delimited or mixed record type only. This is the delimiter following by
default each field of the record except the last one. It can be changed there. This delimiter is displayed in each
other row (except the last one) of the Record pane in its Delimiter column if it is greyish. If it is black, it is
other, non-default delimiter defined for such a field which overrides the default one and is used instead of it.

See Changing and Defining Delimiters (p. 163) for more detailed information.

• Skip source rows. This is the number of records that will be skipped for each input file. If an edge with this
attribute is connected to a Reader, this value overrides the default value of the Number of skipped records
per source attribute, which is 0. If the Number of skipped records per source attribute is not specified, this
number of records are skipped from each input file. If the attribute in the Reader is set to any value, it overrides
this property value. Remember that these two values are not summed.

• Description. This property describes the meaning of the record.

Advanced properties are the following:

• Quoted strings - fields containing a special character (comma, newline, or double quote) have to be enclosed
in quotes. Only single/double quote is accepted as the quote character. If Quoted strings is true, special
characters are are not treated as delimiters and are:

• removed - when reading input by a Reader

• written out - output fields will be enclosed in Quoted strings (see UniversalDataWriter Attributes (p. 543))

If a component has this attribute (e.g. ParallelReader, ComplexDataReader, UniversalDataReader,
UniversalDataWriter), its value is set according to the settings of Quoted strings in metadata on input/output
port. The true/false value in a component, however, has a higher priority than the one in metadata - you can
override it.

Example (e.g. for ParallelReader): To read input data "25"|"John", switch Quoted strings to true and
set Quote character to ". This will produce two fields: 25|John.

Chapter 21. Metadata

162

• Quote character - specifies which kind of quotes will be used in Quoted strings. If a component has this
attribute (e.g. ParallelReader, ComplexDataReader, UniversalDataReader, UniversalDataWriter), its value is
set according to the settings of Quote character in metadata on input/output port. The value in a component,
however, has a higher priority than the one in metadata - you can override it.

• Locale. This is the locale that is used for the whole record. This property can be useful for date formats or for
decimal separator, for example. It can be overriden by the Locale specified for individual field.

See Locale (p. 126) for detailed information.

• Locale sensitivity. Applied for the whole record. It can be overriden by the Locale sensitivity specified for
individual field (of string data type).

See Locale Sensitivity (p. 130) for detailed information.

• Null value. This property is set for the whole record. It is used to specify what values of fields should be
processed as null. By default, empty field or empty string ("") are processed as null. You can set this
property value to any string of characters that should be interpreted as null. All of the other string values
remain unchanged. If you set this property to any non-empty string, empty string or empty field value will
remain to be empty string ("").

It can be overriden by the value of Null value property of individual field.

• Preview attachment. This is the file URL of the file attached to the metadata. It can be changed there or located
using the Browse... button.

• Preview Charset. This is the charset of the file attached to the metadata. It can be changed there or by selecting
from the combobox.

• Preview Attachment Metadata Row. This is the number of the row of the attached file where record field
names are located.

• Preview Attachment Sample Data Row. This is the number of the row of the attached file from where field
data types are guessed.

Also Custom properties can be defined by clicking the Plus sign button. For example, these properties can be
the following:

• charset. This is the charset of the record. For example, when metadata are extracted from dBase files, these
properties may be displayed.

• dataOffset. Displayed for fixed or mixed record type only.

Field Details

When the Details pane presents information about a field, there are displayed its properties.

Basic properties are the following:

• Name. This is the same field name as in the Record pane.

• Type. This is the same data type as in the Record pane.

See Data Types and Record Types (p. 111) for more detailed information.

• Container type - determines whether a field can store multiple values (of the same type). There are two options:
list and map. Switching back to single makes it a common single-value field again.

For more information, see the section called “Multivalue Fields” (p. 167).

• Delimiter. This is the non-default field delimiter as in the Record pane. If it is empty, default delimiter is used
instead.

Chapter 21. Metadata

163

See Changing and Defining Delimiters (p. 163) for more detailed information.

• Size. This is the same size as in the Record pane.

• Nullable. This can be true or false. The default value is true. In such a case, the field value can be null.
Otherwise, null values are prohibited and graph fails if null is met.

• Default. This is the default value of the field. It is used if you set the Autofilling property to default_value.

See Autofilling Functions (p. 131) for more detailed information.

• Length. Displayed for decimal data type only. For decimal data types you can optionally define its length.
It is the maximum number of digits in this number. The default value is 12.

See Data Types and Record Types (p. 111) for more detailed information.

• Scale. Displayed for decimal data type only. For decimal data types you can optionally define scale. It is
the maximum number of digits following the decimal dot. The default value is 2.

See Data Types and Record Types (p. 111) for more detailed information.

• Description. This property describes the meaning of the selected field.

Advanced properties are the following:

• Format. Format defining the parsing and/or the formatting of a boolean, date, decimal, integer, long,
number, and string data field.

See Data Formats (p. 113) for more information.

• Locale. This property can be useful for date formats or for decimal separator, for example. It overrides the
Locale specified for the whole record.

See Locale (p. 126) for detailed information.

• Locale sensitivity. Displayed for string data type only. Is applied only if Locale is specified for the field or
the whole record. It overrides the Locale sensitivity specified for the whole record.

See Locale Sensitivity (p. 130) for detailed information.

• Null value. This property can be set up to specify what values of fields should be processed as null. By
default, empty field or empty string ("") are processed as null. You can set this property value to any string
of characters that should be interpreted as null. All of the other string values remain unchanged. If you set
this property to any non-empty string, empty string or empty field value will remain to be empty string ("").

It overrides the value of Null value property of the whole record.

• Autofilling. If defined, field marked as autofilling is filled with a value by one of the functions listed in
the Autofilling Functions (p. 131) section.

• Shift. This is the gap between the end of one field and the start of the next one when the fields are part of fixed
or mixed record and their sizes are set to some value.

• EOF as delimiter. This can be set to true or false according to whether EOF character is used as delimiter. It can
be useful when your file does not end with any other delimiter. If you did not set this property to true, run of the
graph with such data file would fail (by default it is false). Displayed in delimited or mixed data records only.

Changing and Defining Delimiters

You can see the numbers in the first column of the Record pane of the Metadata Editor. These are the numbers
of individual record fields. The field names corresponding to these numbers are displayed in the second column

Chapter 21. Metadata

164

(Name column). The delimiters corresponding to these fields are displayed in the fourth column (Delimiter
column) of the Record pane.

If the delimiter in this Delimiter column of the Record pane is greyish, this means that the default delimiter is
used. If you look at the Delimiter row in the Details pane on the right side from the Record pane, you will see
that this row is empty.

Note

Remember that the first row of the Record pane displays the information about the record as a
whole instead of about its fields. Field numbers, field names, their types, delimiters and/or sizes are
displayed starting from the second row. For this reason, if you click the first row of the Record
pane, information about the whole record instead of any individual field will be displayed in the
Details pane.

You can do the following:

• change record delimiter

See Changing Record Delimiter (p. 165) for more information.

• change default delimiter

See Changing Default Delimiter (p. 166) for more information.

• define other, non-default delimiter

See Defining Non-Default Delimiter for a Field (p. 166) for more information.

Chapter 21. Metadata

165

Important

• Multiple delimiters

If you have records with multiple delimiters (for example: John;Smith\30000,London|
Baker Street), you can specify default delimiter as follows:

Type all these delimiters as a sequence separated by \\|. The sequence does not contain white
spaces.

For the example above there would be ,\\|;\\||\\|\\ as the default delimiter. Note that
double backslashes stand for single backslash as delimiter.

The same can be used for any other delimiter, also for record delimiter and/or non-default
delimiter.

For example, record delimiter can be the following:

\n\\|\r\n

Remember also that you can have delimiter as a part of field value of flat files if you set the
Quoted string attribute of UniversalDataReader to true and surround the field containing such
delimiter by quotes. For example, if you have records with comma as field delimiter, you can
process the following as one field:

"John,Smith"

• CTL expression delimiters

If you need to use any non-printable delimiter, you can write it down as a CTL expression. For
example, you can type the following sequence as the delimiter in your metadata:

\u0014

Such expressions consist of the unicode \uxxxx code with no quotation marks around. Please
note that each backslash character '\' contained in the input data will actually be doubled when
viewed. Thus, you will see "\\" in your metadata.

Important

Java-style Unicode expressions

Remember that (since version 3.0 of CloverETL) you can also use the Java-style Unicode
expressions anyway in CloverETL (except in URL attributes).

You may use one or more Java-style Unicode expressions (for example, like this one): \u0014.

Such expressions consist of series of the \uxxxx codes of characters.

They may also serve as delimiter (like CTL expression shown above, without any quotes):

\u0014

Changing Record Delimiter

If you want to change the record delimiter for any other value, you can do it in the following way:

• Click the first row in the Record pane of the Metadata Editor.

Chapter 21. Metadata

166

After that, there will appear record properties in the Details pane. Among them, there will be the Record
delimiter property. Change this delimiter for any other value.

Such new value of record delimiter will appear in the last row of the Record pane instead of the previous value
of record delimiter. It will again be displayed greyish.

Important

Remember that if you tried to change the record delimiter by changing the value displayed in the
last row of the Record pane, you would not change the record delimiter. This way, you would only
define other delimiter following the last field and preceding the record delimiter!

Changing Default Delimiter

If you want to change the default delimiter for any other value, you can do it in one of the following two ways:

• Click any column of the first row in the Record pane of the Metadata Editor. After that, there will appear
record properties in the Details pane. Among them, there will be the Default delimiter property. Change this
delimiter for any other value.

Such new value of default delimiter will appear in the rows of the Record pane where default delimiter has
been used instead of the previous value of default delimiter. These values will again be displayed greyish.

• Click the Delimiter column of the first row in the Record pane of the Metadata Editor. After that, you only
need to replace the value of this cell by any other value.

Change this delimiter for any other value.

Such new value will appear both in the Default delimiter row of the Details pane and in the rows of the Record
pane where default delimiter has been used instead of the previous value of such default delimiter. These values
will again be displayed greyish.

Defining Non-Default Delimiter for a Field

If you want to replace the default delimiter value by any other value for any of the record fields, you can do it
in one of the following two ways:

• Click any column of the row of such field in the Record pane of the Metadata Editor. After that, there will
appear the properties of such field in the Details pane. Among them, there will be the Delimiter property. It
will be empty if default delimiter has been used. Type there any value of this property.

Such new character(s) will override the default delimiter and will be used as the delimiter between the field in
the same row and the field in the following row.

• Click the Delimiter column of the row of such field in the Record pane and replace it by any other character(s).

Such new character(s) will override the default delimiter and will be used as the delimiter between the field
in the same row and the field in the following row. Such non-default delimiter will also be displayed in the
Delimiter row of the Details pane, which was empty if default delimiter had been used.

Important

Remember that if you defined any other delimiter for the last field in any of the two ways described
now, such non-default delimiter would not override the record delimiter. It would only append its
value to the last field of the record and would be located between the last field and before the record
delimiter.

Chapter 21. Metadata

167

Editing Metadata in the Source Code

You can also edit metadata in the source code:

• If you want to edit internal metadata, their definition can be displayed in the Source tab of the Graph Editor
pane.

• If you want to edit external metadata, right-click the metadata file item in the Navigator pane and select Open

With →Text Editor from the context menu. The file contents will open in the Graph Editor pane.

Multivalue Fields

Each metadata field commonly stores only one value (e.g. one integer, one string, one date). However, you can
also set one field to carry more values of the same type.

Note

Multivalue fields is a new feature avialable as of Clover v. 3.3.

Example 21.3. Example situations when you could take advantage of multivalue fields

• A record containing an employee's ID, Name and Address. Since employees move from time to time, you
might need to keep track of all their addresses, both current and past. Instead of creating new metadata fields
each time an employee moves to a new house, you can store a list of all addreses into one field.

• You are processing an input stream of CSV files, each containing a different column count. Normally, that
would imply creating new metadata for each file (each column count). Instead, you can define a generic map
in metadata and append fields to it each time they occur.

As implied above, there are two types of structures:

list - is a set containing elements of a given data type (any you want). In source code, lists are marked by the []
brackets. Example:

integer[] list1 = [1, 367, -1, 20, 5, 0, -79]; // a list of integer elements
boolean[] list2 = [true, false, randomBoolean()]; // a list of three boolean elements
string[] list3; // a just-declared empty list to be filled by strings

map - is a pair of keys and their values. A key is always a string while a value can be any data type - but you
cannot mix them (remember a map holds values of the same type). Example:

map[string,date] dateMap; // declaration

// filling the map with values
dateMap["a"] = 2011-01-01;
dateMap["b"] = 2012-12-31;
dateMap["c"] = randomDate(2011-01-01,2012-12-31);

You will find out more about maps and lists if you go to Data Types in CTL2 (p. 894).

Important

To change a field from single-value to multi-value:

Chapter 21. Metadata

168

1. Go to Metadata Editor.

2. Click a field or create a new one.

3. In Property →Basic, switch Container Type either to list or map. (You will see an icon appears
next to the field Type in the left hand record pane.)

Lists and Maps Support in Components

A list of components which you can use multivalue fields in:

Component List Map

Denormalizer (p. 579)

 (map is not
a part of key)

ExtFilter (p. 588)

ExtSort (p. 591)

 (map is not
a part of key)

Merge (p. 597)

 (map is not
a part of key)

Normalizer (p. 602)

 (map is not
a part of key)

Partition (p. 609) (Ranges)

 (Partition key)

 (Partition class)

Reformat (p. 622)

Rollup (p. 625) (sorted input)

 (sorted input,
map not part of key)

 (unsorted input)

SimpleCopy (p. 637)

SimpleGather (p. 638)

CloverDataReader (p. 340)

CloverDataWriter (p. 454)

DataGenerator (p. 350)

JavaBeanReader

JavaBeanWriter

JSONReader

JSONWriter

Chapter 21. Metadata

169

Component List Map

XMLReader

XMLWriter (p. 548)

JavaMapWriter

Concatenate (p. 571)

DataIntersection (p. 572)

 (map is not
a part of key)

Dedup (p. 577)

 (map is not
a part of key)

SortWithinGroups (p. 639)

ApproximativeJoin (p. 644)

 (map is not
a part of key)

DBJoin (p. 654)
(map is not a part of key)

ExtHashJoin (p. 657)

 (map is not
a part of key)

ExtMergeJoin (p. 663)
(map is not a part of key)

LookupJoin (p. 668)

RelationalJoin (p. 671)
(map is not a part of key)

ClusterSimpleGather (p. 757) (Round robin)

 (Merge by key)

 (Simple gather)

ClusterPartition (p. 751) (Ranges)

 (Partition key)

 (Partition class)

LookupTableReaderWriter (p. 795)

SequenceChecker (p. 801)

 (map is not
a part of key)

SpeedLimiter (p. 803)

At the moment, neither map nor list structures can be extracted as metadata from flat files.

Joininig on Lists and Maps (Comparison Rules)

You can specify fields that are lists or maps as Join keys (see Join Types (p. 323)) just like any other fields.
The only question is when two maps (lists) equal.

Chapter 21. Metadata

170

First of all, let us clarify this. A list/map can:

• be null - it is not specified

 map[string,date] myMap; // a just-declared map - no keys, no values

• contain empty elements

 string[] myList = ["hello", ""]; // a list whose second element is empty

• contain n elements - an ordinary case described e.g. in Example 21.3, “Example situations when you could take
advantage of multivalue fields” (p. 167)

Two maps (lists) are equal if both of them are not null, they have the same data type, element count and all
element values (keys-values in maps) are equal.

Two maps (lists) are not equal if either of them is null.

Important

When comparing two lists, the order of their elements has to match, too. In maps, there is no 'order'
of elements and therefore you cannot use them in Sort key.

Example 21.4. Integer lists which are (not) equal - symoblic notation

[1,2] == [1,2]
[null] != [1,2]
[1] != [1,2]
null != null // two unspecified lists
[null] == [null] // an extra case: lists which are not empty but whose elements are null

Note: Maps are implemented as LinkedHashMap and thus their properties derive from it.

171

Chapter 22. Database Connections
If you want to parse data, you need to have some sources of data. Sometimes you get data from files, in other
cases from databases or other data sources.

Now we will describe how you can work with the resources that are not files. In order to work with them, you
need to make a connection to such data sources. By now we will describe only how to work with databases, some
of the more advanced data sources using connections will be described later.

When you want to work with databases, you can do it in two following ways: Either you have a client on your
computer that connects with a database located on some server by means of some client utility . The other way is
to use a JDBC driver. Now we will describe the database connections that use some JDBC drivers. The other way
(client-server architecture) will be described later when we are talking about components.

Note

When using database connections in a CloverETL Server project, all database connectivity is
performed server-side. One of the benefits is that database servers accessible from CloverETL
Server can be also used from within CloverETL Designer.

As in the case of metadata, database connections can be internal or external (shared). You can create them in
two ways.

Each database connection can be created as:

• Internal: See Internal Database Connections (p. 171).

Internal database connection can be:

• Externalized: See Externalizing Internal Database Connections (p. 172).

• Exported: See Exporting Internal Database Connections (p. 173).

• External (shared): See External (Shared) Database Connections (p. 174).

External (shared) database connection can be:

• Linked to the graph: See Linking External (Shared) Database Connections (p. 174).

• Internalized: See Internalizing External (Shared) Database Connections (p. 174).

Database Connection Wizard is described in Database Connection Wizard (p. 175).

Access password can be encrypted. See Encrypting the Access Password (p. 179).

Database connection can serve as resource for creating metadata. See Browsing Database and Extracting Metadata
from Database Tables (p. 180).

Remember that you can also create database table directly from metadata. See Create Database Table from
Metadata (p. 154).

Internal Database Connections
As mentioned above about metadata, also internal database connections are part of a graph, they are contained in
it and can be seen in its source tab. This property is common for all internal structures.

Creating Internal Database Connections

If you want to create an internal database connection, you must do it in the Outline pane by selecting the

Connections item, right-clicking this item, selecting Connections →Create DB connection.

Chapter 22. Database Connections

172

Figure 22.1. Creating Internal Database Connection

A Database connection wizard opens. (You can also open this wizard when selecting some DB connection item
in the Outline pane and pressing Enter.)

See Database Connection Wizard (p. 175) for detailed information about how database connection should be
created.

When all attributes of the connection has been set, you can validate your connection by clicking the Validate
connection button.

After clicking Finish, your internal database connection has been created.

Externalizing Internal Database Connections

After you have created internal database connection as a part of a graph, you have it in your graph. Once it is
contained and visible in the graph, you may want to convert it into external (shared) database connection. Thus,
you would be able to use the same database connection for more graphs (more graphs would share the connection).

You can externalize any internal connection item into external (shared) file by right-clicking an internal connection
item in the Outline pane and selecting Externalize connection from the context menu. After doing that, a new
wizard will open in which the conn folder of your project is offered as the location for this new external (shared)
connection configuration file and then you can click OK. If you want (the file with the same name may already
exist), you can change the offered name of the connection configuration file.

After that, the internal connection item disappears from the Outline pane Connections group, but, at the same
location, there appears already linked the newly created external (shared) connection configuration file. The same
configuration file appears in the conn subfolder of the project and it can be seen in the Navigator pane.

You can even externalize multiple internal connection items at once. To do this, select them in the Outline pane
and, after right-click, select Externalize connection from the context menu. After doing that, a new wizard will
open in which the conn folder of your project will be offered as the location for the first of the selected internal
connection items and then you can click OK. The same wizard will open for each the selected connection items
until they are all externalized. If you want (the file with the same name may already exist), you can change the
offered name of any connection configuration file.

Chapter 22. Database Connections

173

You can choose adjacent connection items when you press Shift and move the Down Cursor or the Up Cursor
key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired connection items instead.

The same is valid for both database and JMS connections.

Figure 22.2. Externalizing Internal Database Connection

After that, the internal file disappears from the Outline pane connections folder, but, at the same location, a newly
created configuration file appears.

The same configuration file appears in the conn subfolder in the Navigator pane.

Exporting Internal Database Connections

This case is somewhat similar to that of externalizing internal database connection. You create a connection
configuration file that is outside the graph in the same way as an externalized connection, but such a file is no
longer linked to the original graph. Subsequently you can use such a file in other graphs as an external (shared)
connection configuration file as mentioned in the previous sections.

You can export an internal database connection into an external (shared) one by right-clicking one of the internal
database connection items in the Outline pane and selecting Export connection from the context menu. The
conn folder of the corresponding project will be offered for the newly created external file. You can also give the
file any other name than the offered and you create the file by clicking Finish.

After that, the Outline pane connection folder remains the same, but in the conn folder in the Navigator pane
the newly created connection configuration file appears.

You can even export more selected internal database connections in a similar way as it is described in the previous
section about externalizing.

Chapter 22. Database Connections

174

External (Shared) Database Connections

As mentioned above, external (shared) database connections are connections that can be used in multiple graphs.
They are stored outside the graphs and that is why graphs can share them.

Creating External (Shared) Database Connections

If you want to create an external (shared) database connection, you must select File →New →Other... from the
main menu, expand the CloverETL category and either click the Database Connection item and then Next, or
double-click the Database Connection item. The Database Connection Wizard will then open.

Then you must specify the properties of the external (shared) database connection in the same way as in the
case of internal one. See Database Connection Wizard (p. 175) for detailed information about how database
connections should be created.

When all properties of the connection has been set, you can validate your connection by clicking the Validate
connection button.

After clicking Next, you will select the project, its conn subfolder, choose the name for your external database
connection file, and click Finish.

Linking External (Shared) Database Connections

After their creation (see previous section and Database Connection Wizard (p. 175)) external (shared) database
connections can be linked to each graph in which they should be used. You need to right-click either the

Connections group or any of its items and select Connections →Link DB connection from the context menu.
After that, a File selection wizard displaying the project content will open. You must expand the conn folder in
this wizard and select the desired connection configuration file from all the files contained in this wizard.

You can even link multiple external (shared) connection configuration files at once. To do this, right-click either

the Connections group or any of its items and select Connections →Link DB connection from the context menu.
After that, a File selection wizard displaying the project content will open. You must expand the conn folder in
this wizard and select the desired connection configuration files from all the files contained in this wizard. You
can select adjacent file items when you press Shift and move the Down Cursor or the Up Cursor key. If you
want to select non-adjacent items, use Ctrl+Click at each of the desired file items instead.

The same is valid for both database and JMS connections.

Internalizing External (Shared) Database Connections

Once you have created and linked an external (shared) connection, if you want to put it into the graph, you need
to convert it to an internal connection. In such a case you would see the connection structure in the graph itself.

You can convert any external (shared) connection configuration file into internal connection by right-clicking
the linked external (shared) connection item in the Outline pane and clicking Internalize connection from the
context menu.

You can even internalize multiple linked external (shared) connection configuration files at once. To do this, select
the desired linked external (shared) connection items in the Outline pane. You can select adjacent items when
you press Shift and move the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use
Ctrl+Click at each of the desired items instead.

After that, the selected linked external (shared) connection items disappear from the Outline pane Connections
group, but, at the same location, newly created internal connection items appear.

Chapter 22. Database Connections

175

However, the original external (shared) connection configuration files still remain in the conn subfolder what
can be seen in the Navigator pane.

The same is valid for both database and JMS connections.

Figure 22.3. Internalizing External (Shared) Database Connection

Database Connection Wizard

This wizard consists of two tabs: Basic properties and Advanced properties

In the Basic properties tab of the Database connection wizard, you must specify the name of the connection,
type your User name, your access Password and URL of the database connection (hostname, database name or
other properties) or JNDI. You can also decide whether you want to encrypt the access password by checking the
checkbox. You need to set the JDBC specific property; you can use the default one, however, it may not do all
that you want. By setting JDBC specific you can slightly change the behaviors of the connection such as different
data type conversion, getting auto-generated keys, etc.

Database connection is optimized due to this attribute. JDBC specific adjusts the connection for the best co-
operation with the given type of database.

You can also select some built-in connections. Now the following connections are built in CloverETL:
Derby, Firebird, Microsoft SQL Server (for Microsoft SQL Server 2008 or Microsoft SQL Server
2000-2005 specific), MySQL, Oracle, PostgreSQL, Sybase, and SQLite. After selecting one of
them, you can see in the connection code one of the following expressions: database="DERBY",
database="FIREBIRD", database="MSSQL", database="MYSQL", database="ORACLE",
database="POSTGRE", database="SYBASE", or database="SQLITE", respectively.

Important

If you need to connect to ODBC resources, use the Generic ODBC driver. Choose it, however, only
if other direct JDBC drivers do not work. Moreover, mind using a proper ODBC version which suits
your Clover - either 32 or 64 bit.

When creating a new database connection, you can choose to use an existing one (either internal and external)
that is already linked to the graph by selecting it from the Connection list menu. You can also load some external
(non-linked) connection from connection configuration file by clicking the Load from file button.

Chapter 22. Database Connections

176

Figure 22.4. Database Connection Wizard

All attributes will be changed in a corresponding way.

If you want to use some other driver (that is not built-in), you can use one of the Available drivers. If the desired
JDBC driver is not in the list, you can add it by clicking the Plus sign located on the right side of the wizard ("Load
driver from JAR"). Then you can to locate the driver and confirm its selection. The result can look as follows:

Figure 22.5. Adding a New JDBC Driver into the List of Available Drivers

Chapter 22. Database Connections

177

If necessary, you can also add another JAR to the driver classpath (Add JAR to driver classpath). For example,
some databases may need their license be added as well as the driver.

You can also add some property (Add user-defined property).

Note that you can also remove a driver from the list (Remove selected) by clicking the Minus sign.

As was mentioned already, CloverETL already provides following built-in JDBC drivers that are displayed in the
list of available drivers. They are the JDBC drivers for Derby, Firebird, Microsoft SQL Server 2008, MySQL,
Oracle, PostgreSQL, SQLite, and Sybase databases.

You can choose any JDBC driver from the list of available drivers. By clicking any of them, a connection string
hint appears in the URL text area. You only need to modify the connection. You can also specify JNDI.

Important

Remember that CloverETL supports JDBC 3 drivers and higher.

Once you have selected the driver from the list, you only need to type your username and password for connecting
to the database. You also need to change the "hostname" to its correct name. You must also type the right database
name instead of the "database" filler word. Some other drivers provide different URLs that must be changed in
a different way. You can also load an existing connection from one of the existing configuration files. You can
set up the JDBC specific property, or use the default one, however, it may not do all that you want. By setting
JDBC specific you can slightly change the selected connection behavior such as different data type conversion,
getting auto-generated keys, etc.

Database connections are optimized based on this attribute. JDBC specific adjusts the connection for the best co-
operation with the given type of database.

Generic ODBC

The driver serves for reading data sources which are not directly listed in Available drivers, e.g. DBF. To connect
to ODBC resources:

• Click the Generic ODBC driver.

• URL - specify the dsn_source. In Windows, this is what you can see in ODBC Data Source Administrator

→User DSN as Name.

• User and Password - leave these blank.

Notes on using Generic ODBC driver:

• In DBOutputTable (p. 465), mapping of metadata fields to SQL fields cannot be checked. It is up to you to
design the mapping correctly. If your mapping is invalid, the graph fails.

• You cannot set any transaction isolation level (a warning about it is written to the log).

Important

Choose Generic ODBC only if other direct JDBC drivers do not work. Even if the ODBC driver
exists it does not necessarily have to work in Clover (which was successfully tested with MySQL
ODBC driver). Moreover, mind using a proper ODBC version which suits your Clover - either 32
or 64 bit.

MS Access

The driver supposes you have default MS Access drivers installed (check if there is MS Access Database in

ODBC Data Source Administrator →User DSN). Next steps:

Chapter 22. Database Connections

178

• Click Microsoft Access in Available drivers.

• URL - replace database_file with absolute path to your MDB file.

Notes on using MS Access driver:

• In DBOutputTable (p. 465), long and decimal types cannot be used in input metadata. Consider using
Reformat (p. 622) in your graph to convert these to other metadata types.

• In DBOutputTable (p. 465), mapping of metadata fields to SQL fields cannot be checked. It is up to you to
design the mapping correctly. If your mapping is invalid, the graph fails.

• You cannot set any transaction isolation level (a warning about it is written to the log).

• boolean fields that are null will be actually written as false (null value is not supported)

• binary fields - you cannot write null into them either

Advanced Properties

In addition to the Basic properties tab desribed above, the Database connection wizard also offers the Advanced
properties tab. If you switch to this tab, you can specify some other properties of the selected connection:

• threadSafeConnection

By default, it is set to true. In this default setting, each thread gets its own connection so as to prevent problems
when more components converse with DB through the same connection object which is not thread safe.

• transactionIsolation

Allows to specify certain transaction isolation level. More details can be found here: http://docs.oracle.com/
javase/6/docs/api/java/sql/Connection.html. Possible values of this attribute are the following numbers:

• 0 (TRANSACTION_NONE).

A constant indicating that transactions are not supported.

• 1 (TRANSACTION_READ_UNCOMMITTED).

A constant indicating that dirty reads, non-repeatable reads and phantom reads can occur. This level allows
a row changed by one transaction to be read by another transaction before any changes in that row have been
committed (a "dirty read"). If any of the changes are rolled back, the second transaction will have retrieved
an invalid row.

This is the default value for DB2, Derby, Informix, MySQL, MS SQL Server 2008, MS SQL Server
2000-2005, PostgreSQL, and SQLite specifics.

This value is also used as default when JDBC specific called Generic is used.

• 2 (TRANSACTION_READ_COMMITTED).

A constant indicating that dirty reads are prevented; non-repeatable reads and phantom reads can occur. This
level only prohibits a transaction from reading a row with uncommitted changes in it.

This is the default value for Oracle and Sybase specifics.

• 4 (TRANSACTION_REPEATABLE_READ).

A constant indicating that dirty reads and non-repeatable reads are prevented; phantom reads can occur. This
level prohibits a transaction from reading a row with uncommitted changes in it, and it also prohibits the
situation where one transaction reads a row, a second transaction alters the row, and the first transaction
rereads the row, getting different values the second time (a "non-repeatable read").

http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html

Chapter 22. Database Connections

179

• 8 (TRANSACTION_SERIALIZABLE).

A constant indicating that dirty reads, non-repeatable reads and phantom reads are prevented. This level
includes the prohibitions in TRANSACTION_REPEATABLE_READ and further prohibits the situation where
one transaction reads all rows that satisfy a "where" condition, a second transaction inserts a row that satisfies
that "where" condition, and the first transaction rereads for the same condition, retrieving the additional
"phantom" row in the second read.

• holdability

Allows to specify holdability of ResultSet objects created using the Connection. More details can
be found here: http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html. Possible options are the
following:

• 1 (HOLD_CURSORS_OVER_COMMIT).

The constant indicating that ResultSet objects should not be closed when the method
Connection.commit is called

This is the default value for Informix and MS SQL Server 2008 specifics.

• 2 (CLOSE_CURSORS_AT_COMMIT).

The constant indicating that ResultSet objects should be closed when the method
Connection.commit is called.

This is the default value for DB2, Derby, MS SQL Server 2000-2005, MySQL, Oracle, PostgreSQL,
SQLite, and Sybase specifics.

This value is also used as default when JDBC specific called Generic is used.

Encrypting the Access Password

If you do not encrypt your access password, it remains stored and visible in the configuration file (shared
connection) or in the graph itself (internal connection). Thus, the access password can be visable in either of these
two locations.

Of course, this would not present any problem if you were the only one who had access to your graph and computer.
But if this is not the case then it would be wise to encrypt it, since the password allows access to the database
in question.

So, in case you want and need to give someone any of your graphs, you need not give him or her the access
password to the whole database. This is why it is possible to encrypt your access password. Without this option,
you would be at great risk of some intrusion into your database or of some other damage from whoever who could
get this access password.

Thus, it is important and possible that you give him or her the graph with the access password encrypted. This
way, they would not be able to simply extract your password.

In order to hide your access password, you must select the Encrypt password checkbox in the Database
connection wizard, typing a new (encrypting) password to encrypt the original (now encrypted) access password
and finally clicking the Finish button.

This setting will prevent you from running the graph by choosing Run as →CloverETL graph. To run the graph,
you must use the Run Configurations wizard. There, in the Main tab, you must type or find by browsing, the
name of the project, the graph name, and parameter file. Then, type in the Password text area the encrypting
password. The access password cannot be read now, it has been already encrypted and cannot be seen either in
the configuration file or the graph.

http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html

Chapter 22. Database Connections

180

Figure 22.6. Running a Graph with the Password Encrypted

If you should want to return to your access password, you can do it by typing the encrypting password into the
Database connection wizard and clicking Finish.

Browsing Database and Extracting Metadata from Database
Tables

As you could see above (see Externalizing Internal Database Connections (p. 172) and Internalizing External
(Shared) Database Connections (p. 174)), in both of these cases the context menu contains two interesting items:
the Browse database and New metadata items. These give you the opportunity to browse a database (if your
connection is valid) and/or extract metadata from some selected database table. Such metadata will be internal
only, but you can later externalize and/or export them.

Important

Remember that you can also create a database table directly from metadata. See Create Database
Table from Metadata (p. 154).

Windows Authentication on Microsoft SQL Server

Windows authentication means creating a database connection to Microsoft SQL Server while leaving User and
Password blank (see figure below). Accessing the MS SQL database, the JTDS driver uses your Windows account
to log in. To enable this all, follow the steps described in this section.

Chapter 22. Database Connections

181

Figure 22.7. Connecting to MS SQL with Windows authentication. Setting-up a database connection
like this is not sufficient. Additional steps explained below this figure need to be performed.

Clover comes with a JDBC driver from JDTS. However, it does not provide native libraries which are required
for JDTS to work with Windows authentication on Mircrosoft SQL Server. Thus, it is necessary to download that
native dll (ntlmauth.dll) and perform some additional settings.

Getting the Native Library

Clover supports JTDS v. 1.2.4. The download instructions are:

1. Get the dist package.

2. Extract the contents and go to folder x64\SSO, or x86\SSO.

3. ntlmauth.dll is located there. Copy the file (for 64b or 32b version of Clover, respectively) to a folder,
e.g. C:\jtds_dll

Installation

Now there are two ways how to make the dll work. The first one involves changing Windows PATH variables. If
you do not want to do that, go for the second option.

1. Add the absolute path to the dll file (C:\jtds_dll) to the Windows PATH variable. Alternatively, you can
put the dll file to some folder which is already included in PATH, e.g C:\WINDOWS\system32.

2. Modify the java.library.path property for all members of the CloverETL Family of products:

• Designer

Modify CloverETLDesigner.ini and add a new line setting the java library path to the location of
the dll:

-Djava.library.path=C:\jtds_dll

http://sourceforge.net/projects/jtds/files/jtds/1.2.4/

Chapter 22. Database Connections

182

Next, modify Program and VM Arguments (p. 85) in the graph's Run Configurations screen (see figure
below). Add this line to VM arguments:

-Djava.library.path=C:\jtds_dll

Note

It is required you modify VM arguments for every graph whose components want to use
Windows authentication.

Figure 22.8. Adding path to the native dll to VM arguments.

• Clover Server

In the script that starts Tomcat, add the -Djava.library.path=C:\jtds_dll option to JAVA_OPT.
For example, add the following line at the beginning of catalina.bat:

set JAVA_OPTS=%JAVA_OPTS% -Djava.library.path=C:\jtds_dll

3. MS SQL Server - make sure you have:

• TCP/IP Enabled in SQL Server Network Configuration →Protocols

• TCP Port set to 1433 in TCP/IP Properties →IP Adresses →IPAll

Hive Connection

Connection to the Apache Hive can be created exactly the same way as any other DB Connection (p. 171). Here
we make just a few Hive specific remarks you may find useful.

Hive JDBC Driver

The JDBC drive is part of the Hive release. But the library and its dependencies are scattered among other Hive
libraries. Moreover, the driver depends on one more library from the Hadoop distribution: hadoop-core-
.jar or hadoop-common-.jar, depending on version of your Hadoop, there's always only one of them.

Chapter 22. Database Connections

183

For Hive version 0.8.1, here is a minimal list of libraries you need for the Hive DB connection JDBC driver:

 hadoop-core-0.20.205.jar
 hive-exec-0.8.1.jar
 hive-jdbc-0.8.1.jar
 hive-metastore-0.8.1.jar
 hive-service-0.8.1.jar
 libfb303-0.7.0.jar
 slf4j-api-1.6.1.jar
 slf4j-log4j12-1.6.1.jar

You can put all of the Hive distribution libraries + the one Hadoop lib on the JDBC driver classpath. But some
of the Hive distribution libraries may already be included in Clover which may result in class loading conflicts.
Typically, no commons-logging* and log4j* libraries should be included, otherwise (harmless) warnings
will appear in a graph run log.

Using Hive in Clover Transformation Graphs

Remember that Hive is not an ordinary SQL relational database, it has its own SQL-like query language, called
QL. Great resource about the Hive QL and Hive in general is the Apache Hive Wiki.

One of the consequences is that it makes no sense to use the DBOutputTable (p. 465) component, because
INSERT INTO statement can insert only results of a SELECT query. Even though it's still possible to work around
this, each Clover data record inserted using such INSERT statement will results in a heavy-weigh MapReduce
job, which renders the component painfully slow. Use LOAD DATA Hive QL statement instead.

In the DBExecute (p. 784) component, always set the Transaction set attribute to One statement. The reason
is that the Hive JDBC driver doesn't support transactions, and attempt do use them would result in an error saying
that the AutoCommit mode cannot be disabled.

Note that the append file operation is fully supported only since version 0.21.0 of HDFS. Consequently, if you
run Hive on top of older HDFS, you cannot append data to existing tables (use of the OVERWRITE keyword
becomes mandatory).

https://cwiki.apache.org/confluence/display/Hive/Home

184

Chapter 23. JMS Connections
For receiving JMS messages you need JMS connections. Like metadata, parameters and database connections,
these can also be internal or external (shared).

Each JMS connection can be created as:

• Internal: See Internal JMS Connections (p. 184).

Internal JMS connection can be:

• Externalized: See Externalizing Internal JMS Connections (p. 184).

• Exported: See Exporting Internal JMS Connections (p. 185).

• External (shared): See External (Shared) JMS Connections (p. 186).

External (shared) JMS connection can be:

• Linked to the graph: See Linking External (Shared) JMS Connection (p. 186).

• Internalized: See Internalizing External (Shared) JMS Connections (p. 186).

Edit JMS Connection Wizard is described in Edit JMS Connection Wizard (p. 187).

Authentication password can be encrypted. See Encrypting the Authentication Password (p. 188).

Internal JMS Connections

As mentioned above in case for other tools (metadata, database connections and parameters), also internal JMS
connections are part of a graph, they are contained in it and can be seen in its source tab. This property is common
for all internal structures.

Creating Internal JMS Connections

If you want to create an internal JMS connection, you must do it in the Outline pane by selecting the Connections

item, right-clicking this item, selecting Connections →Create JMS connection. An Edit JMS connection wizard
opens. You can define the JMS connection in this wizard. Its appearance and the way how you must set up the
connection are described in Edit JMS Connection Wizard (p. 187).

Externalizing Internal JMS Connections

Once you have created internal JMS connection as a part of a graph, you may want to convert it into external
(shared) JMS connection. This gives you the ability to use the same JMS connection across multiple graphs.

You can externalize any internal connection item into an external (shared) file by right-clicking an internal
connection item in the Outline pane and selecting Externalize connection from the context menu. After doing
that, a new wizard will open in which the conn folder of your project is offered as the location for this new
external (shared) connection configuration file and then you can click OK. If you want (a file with the same name
may already exist), you can change the suggested name of the connection configuration file.

After that, the internal connection item disappears from the Outline pane Connections group, but, at the same
location, there appears, already linked, the newly created external (shared) connection. The same configuration
file appears in the conn subfolder of the project and it can be seen in the Navigator pane.

You can even externalize multiple internal connection items at once. To do this, select them in the Outline pane
and, after right-click, select Externalize connection from the context menu. After doing that, a new wizard will

Chapter 23. JMS Connections

185

open in which the conn folder of your project will be offered as the location for the first of the selected internal
connection items and then you can click OK. The same wizard will open for each of the selected connection items
until they are all externalized. If you want (a file with the same name may already exist), you can change the
suggested name of any connection configuration file.

You can choose adjacent connection items when you press Shift and move the Down Cursor or the Up Cursor
key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired connection items instead.

The same is valid for both database and JMS connections.

Exporting Internal JMS Connections

This case is somewhat similar to that of externalizing internal JMS connection. But, while you create a connection
configuration file that is outside the graph in the same way as externalizing, the file is not linked to the original
graph. Only the connection configuration file is being created. Subsequently you can use such a file for more
graphs as an external (shared) connection configuration file as mentioned in the previous sections.

You can export internal JMS connection into external (shared) one by right-clicking one of the internal JMS
connection items in the Outline pane and clicking Export connection from the context menu. The conn folder
of the corresponding project will be offered for the newly created external file. You can also give the file any other
name than the offered and you create the file by clicking Finish.

After that, the Outline pane connection folder remains the same, but in the conn folder in the Navigator pane
the newly created connection configuration file appears.

You can export multiple selected internal JMS connections in a similar way to how it is described in the previous
section about externalizing.

Chapter 23. JMS Connections

186

External (Shared) JMS Connections

As mentioned above, external (shared) JMS connections are connections that are usable across multiple graphs.
They are stored outside the graph and that is why they can be shared.

Creating External (Shared) JMS Connections

If you want to create an external (shared) JMS connection, you must select File →New →Other..., expand the
CloverETL item and either click the JMS connection item and then Next, or double-click the JMS Connection
item. An Edit JMS connection wizard opens. See Edit JMS Connection Wizard (p. 187).

When all properties of the connection has been set, you can validate your connection by clicking the Validate
connection button.

After clicking Next, you will select the project, its conn subfolder, choose the name for your external JMS
connection file, and click Finish.

Linking External (Shared) JMS Connection

After their creation (see previous section and Edit JMS Connection Wizard (p. 187)), external (shared)
connections can be linked to any graph that you want them to be used in. You simply need to right-click either the

Connections group or any of its items and select Connections →Link JMS connection from the context menu.
After that, a File selection wizard, displaying the project content, will open. You must expand the conn folder
in this wizard and select the desired connection configuration file.

You can link multiple external (shared) connection configuration files at once. To do this, right-click either the

Connections group or any of its items and select Connections →Link JMS connection from the context menu.
After that, a File selection wizard displaying the project content will open. You must expand the conn folder in
this wizard and select the desired connection configuration files. You can select adjacent file items when you press
Shift and press the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click
at each of the desired file items instead.

The same is valid for both database and JMS connections.

Internalizing External (Shared) JMS Connections

Once you have created and linked external (shared) connection, in case you want to put it into the graph, you need
to convert it to an internal connection. In such a case you would see the connection structure in the graph itself.

You can internalize any external (shared) connection configuration file into internal connection by right-clicking
such linked external (shared) connection item in the Outline pane and clicking Internalize connection from the
context menu.

You can even internalize multiple linked external (shared) connection configuration files at once. To do this, select
the desired linked external (shared) connection items in the Outline pane. You can select adjacent items when
you press Shift and then the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use
Ctrl+Click at each of the desired items instead.

After that, the selected linked external (shared) connection items disappear from the Outline pane Connections
group, but, at the same location, newly created internal connection items appear.

However, the original external (shared) connection configuration files still remain to exist in the conn subfolder
what can be seen in the Navigator pane.

The same is valid for both database and JMS connections.

Chapter 23. JMS Connections

187

Edit JMS Connection Wizard

As you can see, the Edit JMS connection wizard contains eight text areas that must be filled by: Name, Initial
context factory class (fully qualified name of the factory class creating the initial context), Libraries, URL,
Connection factory JNDI name (implements javax.jms.ConnectionFactory interface), Destination
JNDI (implements javax.jms.Destination interface), User, Password (password to receive and/or
produce the messages).

(You can also open this wizard when selecting some JMS connection item in the Outline pane and pressing Enter.)

Figure 23.1. Edit JMS Connection Wizard

In the Edit JMS connection wizard, you must specify the name of the connection, select necessary libraries
(you can add them by clicking the plus button), specify Initial context factory class (fully qualified
name of the factory class creating the initial context), URL of the connection, Connection factory JNDI
name (implements javax.jms.ConnectionFactory interface), Destination JNDI name (implements
javax.jms.Destination interface), your authentication username (User) and your authentication password
(Password). You can also decide whether you want to encrypt this authentication password. This can be done by
checking the Encrypt password checkbox. If you are creating the external (shared) JMS connection, you must
select a filename for this external (shared) JMS connection and its location.

Chapter 23. JMS Connections

188

Encrypting the Authentication Password

If you do not encrypt your authentication password, it remains stored and visible in the configuration file (shared
connection) or in the graph itself (internal connection). Thus, the authentication password could be seen in one
of these two locations.

Of course, this would not present any problem if you were the only one who had access to your graph or computer.
But if this is not the case then you would be wise to encrypt your password since it provides access to your database.

So, in case you want or need to give someone any of your graphs, you likely rather not give him or her the
authentication password. This is the reason why it is important to encrypt your authentication password. Without
doing so, you would be at great risk of some intrusion actions or other damage from whoever who could get this
authentication password.

Thus, it is important and possible that you give him or her the graph with the authentication password encrypted.
This way, no person would be able to receive and/or produce the messages without your permission.

In order to hide your authentication password, you must select Encrypt password by checking the checkbox in
the Edit JMS connection wizard, typing a new (encrypting) password to encrypt the original (now encrypted)
authentication password and clicking the Finish button.

You will no longer be able to run the graph by choosing Run as →CloverETL graph if you encrypt the password.
Instead, to run the graph, you must use the Run Configurations wizard. There, in the Main tab, you must type
or find by browsing the name of the project, its graph name, its parameter file and, most importantly, type the
encrypting password in the Password text area. The authentication password cannot be read now, it has been
already encrypted and cannot be seen either in the configuration file or the graph.

If you should want to return to your authentication password, you can do it by typing the encrypting password
into the JMS connection wizard and clicking Finish.

189

Chapter 24. QuickBase Connections
To work with a QuickBase database, use the QuickBase connection wizard to define connection parameters first.

Figure 24.1. QuickBase Connection Dialog

Give a name to the connection (Connection name) and select the proper URL. Defaultly, your QuickBase database
allows only SSL access via API.

As the Username fill in the Email Address or the Screen Name of your QuickBase User Profile. The required
Password relates to the user account.

Application token is a string of characters that can be created and assigned to the database. Tokens make it all
but impossible for an unauthorized person to connect to your database.

190

Chapter 25. Lotus Connections
To work with Lotus databases a Lotus Domino connection needs to be specified first. Lotus Domino connections
can be created as both internal and external. See sections Creating Internal Database Connections (p. 171) and
Creating External (Shared) Database Connections (p. 174) to learn how to create them. The process for Lotus
Domino connections is very similar to other Database connections.

Figure 25.1. Lotus Notes Connection Dialog

Give a name to the connection (Connection name) and select the connection Kind. Currently the only Kind
supported is to a Remote Lotus Domino Server.

When you are connecting to a remote Lotus server, you need to specify its location in the server field. This can
be either an IP address or the network name of the server.

Connections to any kind of server require a username to be specified. The user name must match a Person
document in the Domino Directory for the server.

You also have to fill in the password for the selected user. Access password can be encrypted. See Encrypting
the Access Password (p. 179).

For a connection to be established, you are required to provide Lotus libraries for connecting to Lotus Notes.

To connect to remote Lotus Domino server, the Notes.jar library can be used. It can be found in the program
directory of any Notes/Domino installation. For example: c:\lotus\domino\Notes.jar A light-weight version of
Notes.jar can be provided instead. This version contains only support for remote connections and is stored in a file
called NCSO.jar. This file can be found in the Lotus Domino server installation. For example: c:\lotus\domino
\data\domino\java\NCSO.jar

To select a database to read/write data from/to, you can enter the file name of the database in the database field.
Another option is to enter the Replica ID number of the desired database.

191

Chapter 26. Hadoop Connections
To work with Hadoop, a Hadoop connection needs to be defined first. Hadoop connection enables Clover to
interact with the Hadoop distributed file system (HDFS), and to run MapReduce jobs on a Hadoop cluster.
Hadoop connections can be created as both internal and external. See sections Creating Internal Database
Connections (p. 171) and Creating External (Shared) Database Connections (p. 174) to learn how to create them.
Definition process for Hadoop connections is very similar to other connections in Clover, just select Create
Hadoop connection instead of Create DB connection.

Figure 26.1. Hadoop Connection Dialog

From the Hadoop connection properties, Connection Name and HDFS NameNode Host are mandatory. Also
Libraries are almost always required.

Connection Name In this field, type in a name you want for this Hadoop connection. Note that
if you are creating a new connection, the connection name you enter here
will be used to generate an ID of the connection. Whereas the connection
name is just an informational label, the connection ID is used to reference
this connection from various graph components (e.g. in file URL, as noted
in the section called “Reading of Remote Files” (p. 298)). Once the
connection is created, the ID cannot be changed using this dialog to avoid
accidental breaking of references (if you really want to change the ID of
already created connection, you can do so in the Properties view).

HDFS NameNode Host & Port Specify hostname or IP address of your HDFS NameNode into the HDFS
NameNode Host field.

If you leave HDFS NameNode Port field empty, default port number 8020
will be used.

MapReduce JobTracker Host &
Port

Specify hostname or IP address of your JobTracker into the MapReduce
JobTracker Host field. This field is optional. If you leave it empty, Clover
won't be able to execute MapReduce (p. 691) jobs using this connection
(access to HDFS will still work fine though).

If you don't fill in the MapReduce JobTracker Port field, default port
number 8021 will be used.

Username This is a name of a user under which you want to perform file operations
on the HDFS and execute MapReduce jobs.

• HDFS works in a similar way as usual Unix file systems (file ownership,
access permissions). But unless your Hadoop cluster has Kerberos
security enabled, these names serve rather as labels and avoidance for
accidental data loss; everyone can impersonate anyone with no effort.

Chapter 26. Hadoop Connections

192

• MapReduce jobs, however, cannot be easily executed as user other then
the one which runs Clover graph. If you need to execute MapReduce
jobs, leave this field empty.

Default Username is OS account name under which a Clover
transformation graph runs. So it can be, for instance, your Windows login,
and Linux running the HDFS NameNode doesn't need to have a user with
the same name defined at all.

Libraries Here you have to specify paths to Hadoop libraries needed to communicate
with your Hadoop NameNode server and (optionally) JobTracker server.
There's quite a few incompatible versions of Hadoop out there, so you have
to pick those that match version of your Hadoop cluster.

For example, the screen shot above depicts libraries needed to use
Cloudera 3 update 5 version of Hadoop distribution and are available
for download from Cloudera's web site. The two libraries guava-r09-
jarjar.jar and hadoop-core-0.20.2-cdh3u5.jar alone are
enough for HDFS usage, but 2 more libraries – jackson-core-
asl-1.5.2.jar and jackson-mapper-asl-1.5.2.jar – are
needed if you want to execute MapReduce jobs too.

If you omit some required library, you'll typically end up with
java.lang.NoClassDefFoundError.

If an attempt is made to connect to a Hadoop server of one version using
libraries of different version, error like the following will usually appear:
org.apache.hadoop.ipc.RemoteException: Server IPC
version 7 cannot communicate with client version 4.

The paths to the libraries can be absolute or project relative. Graph
parameters can be used as well.

Java versions

Hadoop is guaranteed to run only on Oracle Java 1.6+, but
Hadoop developers do make an effort to remove any Oracle/
Sun-specific code. See Hadoop Java Versions on Hadoop
Wiki.

Notably, Cloudera 3 distribution of Hadoop does work only
with Oracle Java.

Usage on the Clover Server

Libraries do not need to be specified if they are present on the
classpath of the application server where the Clover Server is
deployed. For example in case you use Tomcat app server and
the Hadoop libraries are present in the $CATALINA_HOME/
lib directory.

If you do define the libraries paths, note that absolute paths
are absolute paths on the application server. Relative paths are
sandbox (project) relative and will work only if the libraries
are located in a shared sandbox.

Hadoop Parameters In this simple text field, specify various parameters to fine-tune HDFS
operations. Usually, leaving this field empty is just fine. You can find
a list of available properties with default values in documentation of

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://hadoop.apache.org/

Chapter 26. Hadoop Connections

193

core-default.xml and hdfs-default.xml files for your version
of Hadoop. They are a bit difficult to find in the documentation, so here are
few example links: hdfs-default.xml of latest release and hdfs-default.xml
for v.0.20.2. Only some of the properties listed there will have an effect on
Hadoop clients, most are exclusively server-side configuration.

Text you enter here has to take the format of standard Java properties file.
Hover mouse pointer above the question mark icon to get a hint.

Once you've finished setting up your Hadoop connection, click the Validate connection button to quickly see that
the parameters you entered can be used to successfully establish a connection to your Hadoop HDFS NameNode.
Note that connection validation is unfortunately not available if the libraries are located in (remote) Clover Server
sandbox.

Note

HDFS fully supports the append file operation since Hadoop version 0.21.0

Connecting to YARN (aka MapReduce 2.0, or MRv2)

If you run YARN instead of first generation of MapReduce framework on your Hadoop cluster, the following are
the steps required to configure the Clover Hadoop connection:

1. Write arbitrary value into the MapReduce JobTracker Host field. This value won't be used, but will ensure
that MapReduce job execution is enabled for this Hadoop connection.

2. Add this key-value pair to the Hadoop Parameters: mapreduce.framework.name=yarn

3. In the Hadoop Parameters, add key yarn.resourcemanager.address with value
in form of colon separated hostname and port of your YARN ResourceManager, e.g.
yarn.resourcemanager.address=my-resourcemanager.example.com:8032

You will probably have to specify the yarn.application.classpath parameter too, if the
default value from yarn-default.xml isn't working. In this case you would probably find some
java.lang.NoClassDefFoundError in log of failed YARN application container.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml
http://hadoop.apache.org/docs/r0.20.2/hdfs-default.html
http://hadoop.apache.org/docs/r0.20.2/hdfs-default.html

194

Chapter 27. Lookup Tables
When you are working with CloverETL Designer, you can also create and use Lookup Tables. These tables are
data structures that allow fast access to data stored using a known key or SQL query. This way you can reduce
the need to browse database or data files.

Warning

Remember that you should not use lookup tables in the init(), preExecute(), or
postExecute() functions of CTL template and the same methods of Java interfaces.

All data records stored in any lookup table are kept in files, in databases or cached in memory.

As in the case of metadata an database connections, also lookup tables can be internal or external (shared). You
can create them in two ways.

Each lookup table can be created as:

• Internal: See Internal Lookup Tables (p. 196).

Internal lookup tables can be:

• Externalized: See Externalizing Internal Lookup Tables (p. 196).

• Exported: See Exporting Internal Lookup Tables (p. 198).

• External (shared): See External (Shared) Lookup Tables (p. 199).

External (shared) lookup tables can be:

• Linked to the graph: See Linking External (Shared) Lookup Tables (p. 199).

• Internalized: See Internalizing External (Shared) Lookup Tables (p. 200).

Types of lookup tables are the following:

• Simple lookup table: See Simple Lookup Table (p. 201).

• Database lookup table: See Database Lookup Table (p. 204).

• Range lookup table: See Range Lookup Table (p. 205).

• Persistent lookup table: See Persistent Lookup Table (p. 207).

• Aspell lookup table: See Aspell Lookup Table (p. 208).

LookupTables in CloverETL Cluster environment

To understand how lookup tables work in cluster environment is necessary to understand how clustered graphs
are processed, how clustered graphs are split into several separate graphs and distributed among cluster nodes.
Description of these details is available in CloverETL Server documentation in chapter "Parallel Data Processing".
In short, clustered graph is executed in several instances according transformation plan - let's call them worker
graphs. Transformation plan is result of a transformation analysis, where component allocation, usage of
partitioned sandbox and occurrences of clustered components are taken into consideration. Transformation plan
says how many instances of the graph, on which cluster nodes will be executed. Moreover, transformation plan
says how the worker graphs should be updated for clustered run, which components actually will be running in
particular worker and which will be removed.

CloverETL Server cluster environment does not provide any special support for lookup tables. Each clustered
graph instance creates its own set of lookup tables. The lookup tables instances does not cooperate with each

Chapter 27. Lookup Tables

195

other. So for example in case usage of SimpleLookupTable, each instance of clustered graph has its own
SimpleLookupTable instance, which loads data from specified data file separately. So data file is read by each
clustered graph and each instance has separate set of cached records. DBLookupTable works seamlessly in cluster
environment, of course internal cache for databases responses is managed by each worker graph separately.

Be aware of writing data records into a lookup table using LookupTableReaderWriterComponent. Here it is really
necessary to consider, which worker does the writing, since the lookup table update is performed only locally. So
ensure the LookupTableReaderWriter component runs on all workers, where the update lookup will be necessary.

Chapter 27. Lookup Tables

196

Internal Lookup Tables

Internal lookup tables are part of a graph, they are contained in the graph and can be seen in its source tab.

Creating Internal Lookup Tables

If you want to create an internal lookup table, you must do it in the Outline pane by selecting the Lookups item,

right-clicking this item, selecting Lookup tables →Create lookup table. A Lookup table wizard opens. See
Types of Lookup Tables (p. 201). After selecting the lookup table type and clicking Next, you can specify the
properties of the selected lookup table. More details about lookup tables and types of lookup tables can be found
in corresponding sections below.

Figure 27.1. Creating Internal Lookup Table

Externalizing Internal Lookup Tables

After you have created an internal lookup table as a part of a graph, you may want to convert it to an external
(shared) lookup table. So that you would be able to use the same lookup table for other graphs.

If you want to externalize internal lookup table into external (shared) file, do the following: Right-click the desired
internal lookup table item in the Outline pane within Lookups group, then click Externalize lookup table from
the context menu. If your lookup table contains internal metadata, you will see the following wizard.

Chapter 27. Lookup Tables

197

Figure 27.2. Externalizing Wizard

In this wizard, you will be offered the meta subfolder of your project as well as a filename of the new external
(shared) metadata file to which the internal metadata assigned to the selected lookup table should be externalized.
If you want (a file with the same name may already exist), you can change the suggested name of the external
(shared) metadata file. After clicking Next, a similar wizard for externalizing database connection will be open.
Do the same as for metadata. Finally, the wizard for lookup tables will open. In it, you will be presented with
the lookup folder of your project as the location for this new external (shared) lookup table file and then you
can click OK. If you want (a file with the same name may already exist), you can change the suggested name
of the lookup table file.

After that, the internal metadata (and internal connection) and lookup table items disappear from the Outline pane
Metadata (and Connections) and Lookups group, respectively, but, at the same location, new entries appear,
already linked the newly created external (shared) metadata (and connection configuration file) and lookup table
files within the corresponding groups. The same files appear in the meta, conn, and lookup subfolders of the
project, respectively, and can be seen in the Navigator pane.

If your lookup table contains only external (shared) metadata (and external database connection), only the last
wizard (for externalizing lookup tables) will open. In it, you will be presented with the lookup folder of your
project as the location for this new external (shared) lookup table file and then you will click OK. If you want (the
file with the same name may already exist), you can rename the offered name of the lookup table file.

After the internal lookup table has been externalized, the internal item disappears from the Outline pane Lookups
group, but, at the same location, there appears, already linked, the new lookup table file item. The same file appears
in the lookup subfolder of the project and can be seen in the Navigator pane.

You can even externalize multiple internal lookup table items at once. To do this, select them in the Outline pane
and, after right-click, select Externalize lookup table from the context menu. The process described above will be
repeated again and again until all the selected lookup tables (along with the metadata and/or connection assigned
to them, if needed) are externalized.

You can choose adjacent lookup table items when you press Shift and then press the Down Cursor or the Up
Cursor key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired connection items
instead.

Chapter 27. Lookup Tables

198

Exporting Internal Lookup Tables

This case is somewhat similar to that of externalizing internal lookup tables, except while you create a lookup
table file that is outside the graph in the same way as that of an externalized file, the file is not linked to the original
graph. Only an external lookup table file (maybe also metadata and/or connection) is created. Subsequently you
can use such a file in other graphs as an external (shared) lookup table file as mentioned in the previous sections.

You can export internal lookup table into external (shared) one by right-clicking some of the internal lookup tables
items in the Outline pane and clicking Export lookup table from the context menu. The lookup folder of the
corresponding project will be offered for the newly created external file. You can also give the file any other name
than the suggested and you create the file by clicking Finish.

After that, the Outline pane lookups folder remains the same, but in the lookup folder in the Navigator pane
the newly created lookup table file appears.

You can export multiple selected internal lookup tables in a similar way as it is described in the previous section
about externalizing.

Chapter 27. Lookup Tables

199

External (Shared) Lookup Tables

As mentioned previously, external (shared) lookup tables are able to be shared across multiple graphs. This allows
easy access, but removes them from a graph's source

Creating External (Shared) Lookup Tables

In order to create an external (shared) lookup table, select File →New →Other...

Then you must expand the CloverETL item and either click the Lookup table item and Next, or double-click
the Lookup table item.

Figure 27.3. Selecting Lookup Table Item

After that, the New lookup table wizard opens. See Types of Lookup Tables (p. 201). In this wizard, you need to
select the desired lookup table type, define it and confirm. You also need to select the file name of the lookup table
within the lookup folder. After clicking Finish, your external (shared) database connection has been created.

Linking External (Shared) Lookup Tables

After their creation (see previous sections), external (shared) lookup tables can be linked to multiple graphs. You

need to right-click either the Lookups group or any of its items and select Lookup tables →Link shared lookup
table from the context menu. After that, a File selection wizard displaying the project content will open. You
must expand the lookup folder in this wizard and select the desired lookup table file from all the files contained
in this wizard.

You can even link multiple external (shared) lookup table files at once. To do this, right-click either the Lookups

group or any of its items and select Lookup tables →Link shared lookup table from the context menu. After
that, a File selection wizard displaying the project content will open. You must expand the lookup folder in this
wizard and select the desired lookup table files from all the files contained in this wizard. You can select adjacent
file items when you press Shift and press the Down Cursor or the Up Cursor key. If you want to select non-
adjacent items, use Ctrl+Click at each of the desired file items instead.

Chapter 27. Lookup Tables

200

Internalizing External (Shared) Lookup Tables

Once you have created and linked external (shared) lookup table file, in case you want to put this lookup table into
the graph, you need to convert it into internal lookup table. Thus, you could see its structure in the graph itself.

You can internalize any linked external (shared) lookup table file into internal lookup table by right-clicking such
external (shared) lookup table items in the Outline pane and clicking Internalize connection from the context
menu.

After doing that, the following wizard opens that allows you to decide whether you also want to internalize
metadata assigned to the lookup table and/or its DB connection (in case of Database lookup table).

Figure 27.4. Lookup Table Internalization Wizard

When you check the checkboxes or leave them unchecked, click OK.

After that, the selected linked external (shared) lookup table items disappear from the Outline pane Lookups
group, but, at the same location, newly created internal lookup table items appear. If you have also decided to
internalize the linked external (shared) metadata assigned to the lookup table, their item is converted to internal
metadata item what can be seen in the Metadata group of the Outline pane.

However, the original external (shared) lookup table file still remains to exist in the lookup subfolder. You can
see it in this folder in the Navigator pane.

You can even internalize multiple linked external (shared) lookup table files at once. To do this, select the desired
linked external (shared) lookup table items in the Outline pane. After that, you only need to repeat the process
described above for each selected lookup table. You can select adjacent items when you press Shift and press
the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at each of
the desired items instead.

Chapter 27. Lookup Tables

201

Types of Lookup Tables

After opening the New lookup table wizard, you need to select the desired lookup table type. After selecting the
radio button and clicking Next, the corresponding wizard opens.

Figure 27.5. Lookup Table Wizard

Simple Lookup Table

All data records stored in this lookup table are kept in memory. For this reason, to store all data records from the
lookup table, sufficient memory must be available. If data records are loaded to a simple lookup table from a data
file, the size of the available memory should be approximately at least 6 times bigger than that of the data file.
However, this multiplier is different for different types of data records stored in the data file.

In the Simple lookup table wizard, you must set up the demanded properties:

In the Table definition tab, you must give a Name to the lookup table, select the corresponding Metadata
and the Key that should be used to look up data records from the table. You can select a Charset and the
Initial size of the lookup table (512 by default) as wll. You can change the default value by changing the
Lookup.LOOKUP_INITIAL_CAPACITY value in defaultProperties.

Figure 27.6. Simple Lookup Table Wizard

Chapter 27. Lookup Tables

202

After clicking the button on the right side from the Key area, you will be presented with the Edit key wizard
which helps you select the Key.

Figure 27.7. Edit Key Wizard

By highlighting some of the field names in the Field pane and clicking the Right arrow button you can move
the field name into the Key parts pane. You can keep moving more fields into the Key parts pane. You can also
change the position of any of them in the list of the Key parts by clicking the Up or Down buttons. The key parts
that are higher in the list have higher priority. When you have finished, you only need to click OK. (You can also
remove any of them by highlighting it and clicking the Left arrow button.)

In the Data source tab, you can either locate the file URL or fill in the grid after clicking the Edit data button.
After clicking OK, the data will appear in the Data text area.

Figure 27.8. Simple Lookup Table Wizard with File URL

Chapter 27. Lookup Tables

203

Figure 27.9. Simple Lookup Table Wizard with Data

You can set or edit the data after clicking the Edit data button.

Figure 27.10. Changing Data

After all has been done, you can click OK and then Finish.

Simple lookup table are allowed to contain data specified directly in the grid, data in the file or data that can be
read using LookupTableReaderWriter.

Important

Remember that you can also check the Allow key duplicates checkbox. This way, you are allowing
multiple data records with the same key value (duplicate records).

If you want that only one record per each key value is contained in Simple lookup table, leave
the mentioned checkbox unchecked (the default setting). If only one record is selected, new records
overwrite the older ones. In such a case, the last record is the only one that is included in Simple
lookup table.

Chapter 27. Lookup Tables

204

Database Lookup Table

This type of lookup table works with databases and unloads data from them by using SQL query. Database lookup
table reads data from the specified database table. The key which serves to search records from this lookup table
is the "where fieldName = ? [and ...]" part of the query. Data records unloaded from database can
be cached in memory keeping the LRU order (the least recently used items are discarded first). To cache them,
you must specify the number of such records (Max cached records). In case no record can be found in database
under some key value, this response can be saved if you check the Store negative key response checkbox. Then,
lookup table will not search through the database table when the same key value is given again. Remember that
Database lookup table allows to work with duplicate records (multiple records with the same key value).

When creating or editing a Database lookup table, you must check the Database lookup radio button and click
Next. (See Figure 27.5, Lookup Table Wizard (p. 201).)

Figure 27.11. Database Lookup Table Wizard

Then, in the Database lookup table wizard, you must give a Name to the selected lookup table, specify some
Metadata and DB connection.

Remember that Metadata definition is not required for transformations written in Java. In them, you can simply
select the no metadata option. However, with CTL it is indispensable to specify Metadata.

You must also type or edit some SQL query that serves to look up data records from database. When you want
to edit the query, you must click the Edit button and, if your database connection is valid and working, you will
be presented with the Query wizard, where you can browse the database, generate some query, validate it and
view the resulting data.

Important

To specify a lookup table key, add a "where fieldName = ? [and ...]" statement at
the end of the query, fieldName being e.g. "EMPLOYEE_ID". Records matching the given key
'replace the question mark character in the query.

Then, you can click OK and then Finish. See Extracting Metadata from a Database (p. 145) for more details about
extracting metadata from a database.

Chapter 27. Lookup Tables

205

Range Lookup Table

You can create a Range lookup table only if some fields of the records create ranges. That means the fields are
of the same data type and they can be assigned both start and end. You can see this in the following example:

Figure 27.12. Appropriate Data for Range Lookup Table

When you create a Range lookup table, you must check the Range lookup radio button and click Next. (See
Figure 27.5, Lookup Table Wizard (p. 201).)

Figure 27.13. Range Lookup Table Wizard

Then, in the Range lookup table wizard, you must give a Name to the selected lookup table, and specify
Metadata.

You can select Charset and decide whether Internationalization and what Locale should be used.

By clicking the buttons at the right side, you can add either of the items, or move them up or down.

You must also select whether any start or end field should be included in these ranges or not. You can do it by
selecting any of them in the corresponding column of the wizard and clicking.

When you switch to the Data source tab, you can specify the file or directly type the data in the grid. You can
also write data to lookup table using LookupTableReaderWriter.

Chapter 27. Lookup Tables

206

By clicking the Edit button, you can edit the data contained in the lookup table. At the end, you only need to
click OK and then Finish.

Important

Remember that Range lookup table includes only the first record with identical key value.

Chapter 27. Lookup Tables

207

Persistent Lookup Table

Commercial Lookup Table

This lookup table is commercial and can only be used with the commercial license of CloverETL Designer.

This type of lookup table serves a greater number of data records. Unlike the Simple lookup table, data is
stored in a file specified in the wizard of Persistent lookup table. These files are in jdbm format (http://
jdbm.sourceforge.net).

In the Persistent lookup table wizard, you set up the demanded properties. You must give a Name to the lookup
table, select the corresponding Metadata, specify the File where the data records of the lookup table will be stored
and the Key that should be used to look up data records from the table.

Remember that this file has some internal format which should be create first and then used. When you specify
some file, two files will be created and filled with data (with db and lg extensions). Upon each writing to this
table, new records with the same key values may follow into this file. If you want older records to be overwritten
by newer ones, you need to check the Replace checkbox.

You can also decide whether transactions should be disabled (Disable transactions). If you want to increase graph
performance this can be desirable, however, it can cause data loss.

You can select some Advanced properties: Commit interval, Page size and Cache size. Commit interval
defines the number of records that are committed at once. By specifying Page size, you are defining the number
of entries per node. Cache size specifies the maximum number of records in cache.

Important

Remember that Persistent lookup table does not contain multiple records with identical value of
the key. Such duplicates are not allowed.

If the Replace checkbox is checked, the last record from all those with the same key value is the
only one that is included in the lookup table. On the other hand, if the checkbox is left unchecked,
the first record is the only one that is included in it.

At the end, you only need to click OK and then Finish.

Figure 27.14. Persistent Lookup Table Wizard

http://jdbm.sourceforge.net
http://jdbm.sourceforge.net

Chapter 27. Lookup Tables

208

Aspell Lookup Table

Commercial Lookup Table

This lookup table is commercial and can only be used with the commercial license of CloverETL Designer.

All data records stored in this lookup table are kept in memory. For this reason, to store all data records from
the lookup table, sufficient memory must be available. If data records are loaded to aspell lookup table from a
data file, the size of available memory should be approximately at least 7 times bigger than that of the data file.
However, this multiplier is different for different types of data records stored in the data file.

If you are working with data records that are similar but not fully identical, you should use this type of lookup
table. For example, you can use Aspell lookup table for addresses.

In the Aspell lookup table wizard, you set up the required properties. You must give a Name to the lookup table,
select the corresponding Metadata, select the Lookup key field that should be used to look up data records from
the table (must be of string data type).

You can also specify the Data file URL where the data records of the lookup table will be stored and the charset
of data file (Data file charset) The default charset is ISO-8859-1.

You can set the threshold that should be used by the lookup table (Spelling threshold). It must be higher than
0. The higher the threshold, the more tolerant is the component to spelling errors. Its default value is 230. It is
the edit_distance value from the query to the results. Words with this value higher that the specified limit
are not included in the results.

You can also change the default costs of individual operations (Edit costs):

• Case cost

Used when the case of one character is changed.

• Transpose cost

Used when one character is transposed with another in the string.

• Delete cost

Used when one character is deleted from the string.

• Insert cost

Used when one character is inserted to the string.

• Replace cost

Used when one character is replaced by another one.

You need to decide whether the letters with diacritical marks are considered identical with those without these
marks. To do that, you need to set the value of Remove diacritical marks attribute. If you want diacritical marks
to be removed before computing the edit_distance value, you need to set this value to true. This way,
letters with diacritical marks are considered equal to their latin equivalents. (Default value is false. By default,
letters with diacritical marks are considered different from those without.)

If you want best guesses to be included in the results, set the Include best guesses to true. Default value is
false. Best guesses are the words whose edit_distance value is higher than the Spelling threshold, for
which there is no other better counterpart.

At the end, you only need to click OK and then Finish.

Chapter 27. Lookup Tables

209

Figure 27.15. Aspell Lookup Table Wizard

Important

If you want to know what is the distance between lookup table and edge values, you must add another
field of numeric type to lookup table metadata. Set this field to Autofilling (default_value).

Select this field in the Edit distance field combo.

When you are using Aspell lookup table in LookupJoin, you can map this lookup table field to
corresponding field on the output port 0.

This way, values that will be stored in the specified Edit distance field of lookup table will be sent
to the output to another specified field.

210

Chapter 28. Sequences
CloverETL Designer contains a tool designed to create sequences of numbers that can be used, for example, for
numbering records. In records, a new field is created and filled by numbers taken from the sequence.

Warning

Remember that you should not use sequences in the init(), preExecute(), or
postExecute() functions of CTL template and the same methods of Java interfaces.

Each sequence can be created as:

• Internal: See Internal Sequences (p. 211).

Internal sequences can be:

• Externalized: See Externalizing Internal Sequences (p. 211).

• Exported: See Exporting Internal Sequences (p. 212).

• External (shared): See External (Shared) Sequences (p. 213).

External (shared) sequences can be:

• Linked to the graph: See Linking External (Shared) Sequences (p. 213).

• Internalized: See Internalizing External (Shared) Sequences (p. 213).

Editing Sequence Wizard is described in Editing a Sequence (p. 214).

Chapter 28. Sequences

211

Internal Sequences

Internal sequences are stored in the graph (except the file in which its data are stored), they can be seen there. If
you want to use one sequence for multiple graphs, it is better to use an external (shared) sequence. If you want
to give someone your graph, it is better to have internal sequences. It is the same as with metadata, connections
and parameters.

Creating Internal Sequences

If you want to create an internal sequence, you must right-click the Sequence item in the Outline pane and

choose Sequence →Create sequence from the context menu. After that, a Sequence wizard appears. See Editing
a Sequence (p. 214).

Figure 28.1. Creating a Sequence

Externalizing Internal Sequences

Once you have created an internal sequence as a part of a graph, you have it in your graph, but you may want
to convert it into external (shared) sequence. Thus, you would be able to use the same sequence for more graphs
(when more graphs share it).

You can externalize any internal sequence item into an external (shared) file by right-clicking an internal sequence
item in the Outline pane and selecting Externalize sequence from the context menu. After doing that, a new
wizard will open in which a list of projects of your workspace can be seen and the seq folder of the corresponding
project will be offered as the location for this new external (shared) sequence file. If you want (a file with the same
name may already exist), you can change the suggested name of the sequence file. Then you can click OK.

After that, the internal sequence item disappears from the Outline pane Sequences group, but, at the same location,
there appears, already linked, the newly created external (shared) sequence file. The same sequence file appears
in the seq folder of the selected project and it can be seen in the Navigator pane.

You can even externalize multiple internal sequence items at once. To do this, select them in the Outline pane
and, after right-click, select Externalize sequence from the context menu. After doing that, a new wizard will

Chapter 28. Sequences

212

open in which a seq folder of the corresponding projects of your workspace can be seen and it will be offered
as the location for this new external (shared) sequence file. If you want (a file with the same name may already
exist), you can change the suggested name of the sequence file. Then you can to click OK.

After that, the selected internal sequence items disappear from the Outline pane's' Sequences group, but, at the
same location, there appears, already linked, the newly created external (shared) sequence file. The same sequence
file appears in the selected project and it can be seen in the Navigator pane.

You can choose adjacent sequence items when you press Shift and press the Down Cursor or the Up Cursor
key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired sequence items instead.

Exporting Internal Sequences

This case is somewhat similar to that of externalizing internal sequences. But, while you create a sequence file
that is outside the graph in the same way as that of externalized file, the a file is not linked to the original graph.
Only an external sequence file is being created. Subsequently you can use such a file in other graphs as an external
(shared) sequence file as mentioned in the previous sections.

You can export an internal sequence into an external (shared) one by right-clicking one of the internal sequence
items in the Outline pane and then clicking Export sequence from the context menu. The seq folder of the
corresponding project will be offered for the newly created external file. You can also give the file any other name
than the offered and then create the file by clicking Finish.

After that, the Outline pane's sequences folder remains the same, but in the Navigator pane the newly created
sequence file appears.

You can even export multiple selected internal sequences in a similar way to how it is described in the previous
section about externalizing.

Chapter 28. Sequences

213

External (Shared) Sequences

External (shared) sequences are stored outside the graph, they are stored in a separate file within the project folder.
If you want to share the sequence among more graphs, it is better to have external (shared) sequence. But, if you
want to give someone your graph, it is better to have internal sequence. It is the same as with metadata, connections,
lookup tables and parameters.

Creating External (Shared) Sequences

If you want to create external (shared) sequences, you must select File →New →Other from the main menu
and expand the CloverETL category and either click the Sequence item and the Next button or double-click the
Sequence item. Sequence wizard will open. See Editing a Sequence (p. 214).

You will create the external (shared) sequence and save the created sequence definition file to the selected project.

Linking External (Shared) Sequences

After their creation (see previous section and Editing a Sequence (p. 214)), external (shared) sequences must be
linked to each graph in which they would be used. You need to right-click either the Sequences group or any of its

items and select Sequences →Link shared sequence from the context menu. After that, a File selection wizard
displaying the project content will open. You must locate the desired sequence file from all the files contained in
the project (sequence files have the .cfg extension).

You can even link multiple external (shared) sequence files at once. To do this, right-click either the Sequences

group or any of its items and select Sequences →Link shared sequence from the context menu. After that, a
File selection wizard displaying the project content will open. You must locate the desired sequence files from
all the files contained in the project. You can select adjacent file items when you press Shift and press the Down
Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at each of the desired
file items instead.

Internalizing External (Shared) Sequences

Once you have created and linked external (shared) sequence file, in case you want to put it into the graph, you
need to convert it into internal sequence. In such a case you would see it in the graph itself.

You can internalize any linked external (shared) sequence file into internal sequence by right-clicking some of the
external (shared) sequence items in the Outline pane and clicking Internalize sequence from the context menu.

You can even internalize multiple linked external (shared) sequence files at once. To do this, select the desired
linked external (shared) sequence items in the Outline pane. You can select adjacent items when you press Shift
and press the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at
each of the desired items instead.

After that, the linked external (shared) sequence items disappear from the Outline pane Sequences group, but, at
the same location, the newly created internal sequence items appear.

However, the original external (shared) sequence files still remain to exist in the seq folder of the corresponding
project what can be seen in the Navigator pane (sequence files have the .cfg extensions).

Chapter 28. Sequences

214

Editing a Sequence

In this wizard, you must type the name of the sequence, select the value of its first number, the incrementing step (in
other words, the difference between every pair of adjacent numbers), the number of precomputed values that you
want to be cached and, optionally, the name of the sequence file where the numbers should be stored. If no sequence
file is specified, the sequence will not be persistent and the value will be reset with every run of the graph. The name
can be, for example, ${SEQ_DIR}/sequencefile.seq or ${SEQ_DIR}/anyothername. Note that we
are using here the SEQ_DIR parameter defined in the workspace.prm file, whose value is ${PROJECT}/
seq. And PROJECT is another parameter defining the path to your project located in workspace.

When you want to edit some of the existing sequences, you must select the sequence name in the Outline pane,
open the context menu by right-clicking this name and select the Edit item. A Sequence wizard appears. (You
can also open this wizard when selecting some sequence item in the Outline pane and pressing Enter.)

Now it differs from that mentioned above by a new text area with the current value of the sequence number. The
value has been taken from a file. If you want, you can change all of the sequence properties and you can reset the
current value to its original value by clicking the button.

Figure 28.2. Editing a Sequence

And when the graph has been run once again, the same sequence started from 1001:

Figure 28.3. A New Run of the Graph with the Previous Start Value of the Sequence

Chapter 28. Sequences

215

You can also see how the sequence numbers fill one of the record fields.

216

Chapter 29. Parameters
When working with graphs, it may be necessary to create parameters. Like metadata and connections, parameters
can be both internal and external (shared). The reason for creating parameters is the following: when using
parameters, you can simplify graph management. Every value, number, path, filename, attribute, etc. can be set up
or changed with the help of parameters. Parameters are similar to named constants. They are stored in one place
and after the value of any of them is changed, this new value is used in the program.

Priorities

• These parameters have less priority than those specified in the Main tab or Arguments tab of Run
Configurations.... In other words, both the internal and the external parameters can be overwritten by those
specified in Run Configurations.... However, both the external and the internal parameters have higher priority
than all environment variables and can overwrite them. Remember also that the external parameters can
overwrite the internal ones.

If you use parameters in CTL, you should type them as '${MyParameter}'. Be careful when working with
them, you can also use escape sequences for specifying some characters.

Each parameter can be created as:

• Internal: See Internal Parameters (p. 216).

Internal parameters can be:

• Externalized: See Externalizing Internal Parameters (p. 217).

• Exported: See Exporting Internal Parameters (p. 218).

• External (shared): See External (Shared) Parameters (p. 219).

External (shared) parameters can be:

• Linked to the graph: See Linking External (Shared) Parameters (p. 219).

• Internalized: See Internalizing External (Shared) Parameters (p. 219).

Parameters Wizard is described in Parameters Wizard (p. 221).

Internal Parameters

Internal parameters are stored in the graph, and thus are present in the source. If you want to change the value of
some parameter, it is better to have external (shared) parameters. If you want to give someone your graph, it is
better to have internal parameters. It is the same as with metadata and connections.

Creating Internal Parameters

If you want to create internal parameters, you must do it in the Outline pane by selecting the Parameters

item, right-clicking this item, selecting Parameters →Create internal parameter. A Graph parameters wizard
appears. See Parameters Wizard (p. 221).

Chapter 29. Parameters

217

Figure 29.1. Creating Internal Parameters

Externalizing Internal Parameters

Once you have created internal parameters as a part of a graph, you have them in your graph, but you may want to
convert them into external (shared) parameters. Thus, you would be able to use the same parameters for multiple
graphs.

You can externalize any internal parameter item into external (shared) file by right-clicking an internal parameter
item in the Outline pane and selecting Externalize parameters from the context menu. After doing that, a new
wizard will open in which a list of projects of your workspace can be seen and the corresponding project will be
offered as the location for this new external (shared) parameter file. If you want (the file with the same name may
already exist), you can change the suggested name of the parameter file. Then you click OK.

After that, the internal parameter item disappears from the Outline pane Parameters group, but, at the same
location, there appears, already linked, the newly created external (shared) parameter file. The same parameter
file appears in the selected project and it can be seen in the Navigator pane.

You can even externalize multiple internal parameter items at once. This way, they will be externalized into
one external (shared) parameter file. To do this, select them in the Outline pane and, after right-click, select
Externalize parameters from the context menu. After doing that, a new wizard will open in which a list of projects
of your workspace can be seen and the corresponding project will be offered as the location for this new external
(shared) parameter file. If you want (a file with the same name may already exist), you can change the suggested
name of the parameter file. Then you click OK.

After that, the selected internal parameter items disappear from the Outline pane Parameters group, but, at the
same location, there appears already linked the newly created external (shared) parameter file. The same parameter
file appears in the selected project and it can be seen in the Navigator pane. This file contain the definition of
all selected parameters.

You can choose adjacent parameter items when you press Shift and press the Down Cursor or the Up Cursor
key. If you want to choose non-adjacent items, use Ctrl+Click at each of the desired parameter items instead.

Chapter 29. Parameters

218

Figure 29.2. Externalizing Internal Parameters

Exporting Internal Parameters

This case is somewhat similar to that of externalizing internal parameters. While you create a parameter file that
is outside the graph in the same way as that of externalized file, the file is not linked to the original graph. Only
an external parameter file is being created. Subsequently you can use such a file in multiple graphs as an external
(shared) parameter file as mentioned in the previous sections.

You can export internal parameter into external (shared) one by right-clicking some of the internal parameter items
in the Outline pane and clicking Export parameter from the context menu. The corresponding project will be
offered for the newly created external file. You can also give the file any other name than the offered and you
create the file by clicking Finish.

After that, the Outline pane parameters folder remains the same, but in the Navigator pane the newly created
parameters file appears.

You can even export multiple selected internal parameters in a similar way as it is described in the previous section
about externalizing.

Chapter 29. Parameters

219

External (Shared) Parameters

External (shared) parameters are stored outside the graph, they are stored in a separate file within the project folder.
If you want to change the value of some of the parameters, it is better to have external (shared) parameters. But,
if you want to give someone your graph, it is better to have internal parameters. It is the same as with metadata
and connections.

Creating External (Shared) Parameters

If you want to create external (shared) parameters, right click Parameters in Outline and select Parameters

→Graph parameter file .

Graph parameters wizard opens. See Parameters Wizard (p. 221). In this wizard you will create names and
values of parameters.

Linking External (Shared) Parameters

After their creation (see previous section and Parameters Wizard (p. 221)), external (shared) parameters can be
linked to each graph in which they should be used. You need to right-click either the Parameters group or any of

its items and select Parameters →Link parameter file from the context menu. After that, a File selection wizard
displaying the project content will open. You must locate the desired parameter file from all the files contained
in the project (parameter files have the .prm extension).

You can even link more external (shared) parameter files at once. To do this, right-click either the Parameters

group or any of its items and select Parameters →Link parameter file from the context menu. After that, a File
selection wizard displaying the project content will open. You must locate the desired parameter files from all
the files contained in the project. You can select adjacent file items when you press Shift and press the Down
Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at each of the desired
file items instead.

Internalizing External (Shared) Parameters

Once you have created and linked external (shared) parameter file, in case you want to put it into the graph, you
need to convert it into internal parameters. In such a case you would see them in the graph itself. Remember that
one parameter file with more parameters will create more internal parameters.

You can internalize any linked external (shared) parameter file into internal parameters by right-clicking some of
the external (shared) parameters items in the Outline pane and clicking Internalize parameters from the context
menu.

You can even internalize multiple linked external (shared) parameter files at once. To do this, select the desired
linked external (shared) parameter items in the Outline pane. You can select adjacent items when you press Shift
and press the Down Cursor or the Up Cursor key. If you want to select non-adjacent items, use Ctrl+Click at
each of the desired items instead.

After that, the linked external (shared) parameters items disappear from the Outline pane Parameters group, but,
at the same location, the newly created internal parameter items appear.

However, the original external (shared) parameter files still remain to exist in the project what can be seen in the
Navigator pane (parameter files have the .prm extensions).

Chapter 29. Parameters

220

Figure 29.3. Internalizing External (Shared) Parameter

Chapter 29. Parameters

221

Parameters Wizard

(You can also open this wizard when selecting some parameters item in the Outline pane and pressing Enter.)

By clicking the plus button on the right side, a pair of words "name" and "value" appear in the wizard. After each
clicking the Plus button, a new line with name and value labels appears and you must set up both names and
values. You can do it when highlight any of them by clicking and change it to whatever you want and need. When
you select all names and set up all values you want, you can click the Finish button (for internal parameters) or the
Next button and type the name of the parameter file. The extension .prm will be added to the file automatically.

You also need to select the location for the parameter file in the project folder. Then you can click the Finish
button. After that, the file will be saved.

Figure 29.4. Example of a Parameter-Value Pairs

Note

Note two kinds of icons next to parameter names. One of them mark parameters that are able
to canonicalize paths (those with _DIR suffix and the PROJECT parameter), the others do not
canonicalize paths. See Canonizing File Paths (p. 222) for detailed information.

Note

Moreover, note the usage of following parameters:

1. TODAY

This parameter uses a CTL1 expression. See Parameters with CTL Expressions (p. 222) for
details.

2. java.io.tmdir, MyPATH

These parameters resolve to environment variables. See Environment Variables (p. 222) for
details.

3. database, db_table

Chapter 29. Parameters

222

These are standard parametrs.

If you want to see the value to which parameter resolves, click the button that is the most below on
the right side of the dialog.

Parameters with CTL Expressions

Since the version 2.8.0 of CloverETL, you can also use CTL expressions in parameters and other places of
CloverETL. Such CTL expressions can use any possibilities of CTL language. However, these CTL expressions
must be surrounded by back quotes.

For example, if you define a parameter TODAY="`today()`" and use it in your CTL codes, such ${TODAY}
expression will be resolved to the current day.

If you want to display a back quote as is, you must use this back quote preceded by back slash as follows: \`.

Important

CTL1 version is used in such expressions.

Environment Variables

Environment variables are parameters that are not defined in CloverETL, they are defined in the operating system.

You can get the values of these environment variables using the same expression that can be used for all other
parameters.

• To get the value of environment variable called PATH, use the following expression:

'${PATH}'

Important

Use single quotes when referring to path environment variables, especially on Windows. This is
necessary to avoid conflicts between double quotes delimiting the string value of the variable, and
possible double quotes contained within the value itself.

• To get the value of a variable whose name contains dots (e.g, java.io.tmpdir), replace each dot with
underscore character and type:

'${java_io_tmpdir} '

Note that the terminal single quote must be preceded by a white space since java.io.tmpdir itself ends with
a backslash and we do not want to get an escape sequence (\'). With this white space we will get \ ' at the end.

Important

Use single quotes to avoid escape sequences in Windows paths.

Canonizing File Paths

All parameters can be divided into two groups:

1. The PROJECT parameter and any other parameter with _DIR used as suffix (DATAIN_DIR, CONN_DIR,
MY_PARAM_DIR, etc.).

2. All the other parameters.

Chapter 29. Parameters

223

Either group is distinguished with corresponding icon in the Parameter Wizard.

The parameters of the first group serve to automatically canonicalize file paths displayed in the URL File dialog
and in the Outline pane in the following way:

1. If any of these parameters matches the beginning of a path, corresponding part of the beginning of the path
is replaced with this parameter.

2. If multiple parameters match different parts of the beginning of the same path, parameter expressing the longest
part of the path is selected.

Example 29.1. Canonizing File Paths

• If you have two parameters:

MY_PARAM1_DIR and MY_PARAM2_DIR

Their values are:

MY_PARAM1_DIR = "mypath/to" and MY_PARAM2_DIR = "mypath/to/some"

If the path is:

mypath/to/some/directory/with/the/file.txt

The path is displayed as follows:

${MY_PARAM2_DIR}/directory/with/the/file.txt

• If you had two parameters:

MY_PARAM1_DIR and MY_PARAM3_DIR

With the values:

MY_PARAM1_DIR = "mypath/to" and MY_PARAM3_DIR = "some"

With the same path as above:

mypath/to/some/directory/with/the/file.txt

The path would be displayed as follows:

${MY_PARAM1_DIR}/some/directory/with/the/file.txt

• If you had a parameter:

MY_PARAM1

With the value:

MY_PARAM1 = "mypath/to"

With the same path as above:

mypath/to/some/directory/with/the/file.txt

The path would not be canonicalized at all!

Although the same string mypath/to at the beginning of the path can be expressed using the parameter called
MY_PARAM1, such parameter does not belong to the group of parameters that are able to canonicalize the paths.
For this reason, the path would not be canonicalized with this parameter and the full path would be displayed
as is.

Chapter 29. Parameters

224

Important

Remember that the following paths would not be displayed in URL File dialog and Outline pane:

${MY_PARAM1_DIR}/${MY_PARAM3_DIR}/directory/with/the/file.txt

${MY_PARAM1}/some/directory/with/the/file.txt

mypath/to/${MY_PARAM2_DIR}/directory/with/the/file.txt

Using Parameters

When you have defined, for example, a db_table (parameter) which means a database table named employee
(its value) (as above), you can only use ${db_table} instead of employee wherever you are using this
database table.

Note

Remember that since the version 2.8.0 of CloverETL, you can also use CTL expressions in
parameters. Such CTL expressions can use any possibilities of CTL language. However, these CTL
expressions must be surrounded by back quotes.

For example, if you define a parameter TODAY="`today()`" and use it in your CTL codes, such
${TODAY} expression will be resolved to the date of this day.

If you want to display a back quote as is, you must use this back quote preceded by back slash as
follows: \`.

Important

CTL1 version is used in such expressions.

As was mentioned above, all can be expressed using a parameter.

225

Chapter 30. Internal/External Graph Elements
This chapter applies for Metadata (p. 110), Database Connections (p. 171), JMS Connections (p. 184), QuickBase
Connections (p. 189), Lookup Tables (p. 194), Sequences (p. 210), and Parameters (p. 216).

There are some properties which are common for all of the mentioned graph elements.

They all can be internal or external (shared).

Internal Graph Elements

If they are internal, they are part of the graph. They are contained in the graph and you can see them when you
look at the Source tab in the Graph Editor.

External (Shared) Graph Elements

If they are external (shared), they are located outside the graph in some external file (in the meta, conn, lookup,
seq subfolders, or in the project itself, by default).

If you look at the Source tab, you can only see a link to such external file. It is in that file these elements are
described.

Working with Graph Elements

Let us suppose that you have multiple graphs that use the same data files or the same database tables or any other
data resource. For each such graph you can have the same metadata, connection, lookup tables, sequences, or
parameters. These can be defined either in each of these graphs separately, or all of the graphs can share them.

In addition to metadata, the same is valid for connections (database connections, JMS connections, and QuickBase
connections), lookup tables, sequences, and parameters. Also connections, sequences and parameters can be
internal and external (shared).

Advantages of External (Shared) Graph Elements

It is more convenient and simple to have one external (shared) definition for multiple graphs in one location, i.e.
to have one external file (shared by all of these graphs) that is linked to these various graphs that use the same
resources.

It would be very difficult if you worked with these shared elements across multiple graphs separately in case you
wanted to make some changes to all of them. In such a case you should have to change the same characteristics in
each of the graphs. As you can see, it is much better to be able to change the desired property in only one location
- in an external (shared) definition file.

You can create external (shared) graph elements directly, or you can also export or externalize those internal.

Advantages of Internal Graph Elements

On the other hand, if you want to give someone any of your graphs, you must give them not only the graph, but
also all linked information. In this case, it is much simpler to have these elements contained in your graph.

You can create internal graph elements directly, or you can internalized those external (shared) elements after they
have been linked to the graph.

Changes of the Form of Graph Elements

CloverETL Designer helps you to solve this problem of when to have internal or external (shared) elements:

Chapter 30. Internal/
External Graph Elements

226

• Linking External Graph Elements to the Graph

If you have some elements defined in some file or multiple files outside a graph, you can link them to it. You
can see these links in the Source tab of the Graph Editor pane.

• Internalizing External Graph Elements into the Graph

If you have some elements defined in some file or multiple files outside the graph but linked to the graph, you
can internalize them. The files still exist, but new internal graph elements appear in the graph.

• Externalizing Internal Graph Elements in the Graph

If you have some elements defined in the graph, you can externalize them. They will be converted to the files
in corresponding subdirectories and only links to these files will appear in the graph instead of the original
internal graph elements.

• Exporting Internal Graph Elements outside the Graph

If you have some elements defined in the graph, you can export them. New files outside the graph will be created
(non-linked to the graph) and the original internal graph elements will remain in the graph.

227

Chapter 31. Dictionary
Dictionary is a data storage object associated with each run of a graph in CloverETL. Its purpose is to provide
simple and type-safe storage of the various parameters required by the graph.

It is not limited to storing only input or output parameters but can also be used as a way of sharing data between
various components of a single graph.

When a graph is loaded from its XML definition file, the dictionary is initialized based on its definition in the
graph specification. Each value is initialized to its default value (if any default value is set) or it must be set by
an external source (e.g., Launch Service, etc.).

Important

Two versions of Clover Transformation Language differ on whether dictionary must be defined
before it is used, or not.

• CTL1

CTL1 allows the user to create dictionary entries without their previous definitions using a set of
dictionary functions.

See Dictionary Functions (p. 886)

• CTL2

Unlike in CTL1, in CTL2 dictionary entries must always be defined first before they are used. The
user needs to use standard CTL2 syntax for working with dictionaries. No dictionary functions
are available in CTL2.

See Dictionary in CTL2 (p. 900)

Between two subsequent runs of any graph, the dictionary is reset to the initial or default settings so that all
dictionary runtime changes are destroyed. For this reason, dictionary cannot be used to pass values between
different runs of the same graph.

In this chapter we will describe how a dictionary should be created and how it should be used:

• Creating a Dictionary (p. 227)

• Using the Dictionary in a Graph (p. 229)

Creating a Dictionary

The dictionary specification provides so called "interface" of the graph and is always required, even, for example,
when the graph is used with Launch Service.

In the source code, the entries of the dictionary are specified inside the <Dictionary> element.

To create a dictionary, right-click the Dictionary item in the Outline pane and choose Edit from the context menu.
The Dictionary editor will open.

Chapter 31. Dictionary

228

Figure 31.1. Dictionary Dialog with Defined Entries

Click the Plus sign button on the left to create a new dictionary entry.

After that, specify its Name (Names are case-sensitive, must be unique within the dictionary and should be legal
java identifiers.). You must also specify other properties of the entry:

1. Name

Specifies the name of the dictionary entry. Names are case-sensitive, must be unique within the dictionary and
should be legal java identifiers.

2. As Input

Specifies whether the dictionary entry can be used as input or not. Its value can be true or false.

3. As Output

Specifies whether the dictionary entry can be used as output or not. Its value can be true or false.

4. Type

Specifies the type of the dictionary entry.

Dictionary types are the following primitive Clover data types:

• boolean, byte, date, decimal, integer, long, number, and string.

Any of these can also be accessed in CTL2. See Dictionary in CTL2 (p. 900) for detailed information.

There are three other data types of dictionary entry (available in Java):

• object - CloverETL data type available with CloverETL Engine.

• readable.channel - the input will be read directly from the entry by the Reader according to the
configuration of the Reader. Therefore, the entry must contain data in valid format.

• writable.channel - the output will be written directly to this entry in the format given by the output
Writer (e.g., text file, XLS file, etc.)

5. Content Type

This specifies the content type of the output entry. This content type will be used, for example, when the graph
is launched via Launch Service to send the results back to user.

6. Initial Value

Chapter 31. Dictionary

229

Default value of an entry - useful when executing your graph without actually populating the dictionary with
external data. Note that not you cannot edit this field for all data types (e.g. object). As you set a new Initial
Value, a corresponding name-value pair is created in the right-hand Properties pane. Initial value is therefore
the same as the first value you have created in that pane.

Each entry can have some properties (name and value). To specify them, click corresponding button on the right
and specify the following two properties:

• Name

Specifies the name of the value of corresponding entry.

• Value

Specifies the value of the name corresponding to an entry.

Using the Dictionary in a Graph

The dictionary can be accessed in multiple ways by various components in the graph. It can be accessed from:

Readers and Writers. Both of them support dictionaries as their data source or data target via their File URL
attribute.

The dictionary can also be accessed with CTL or Java source code in any component that defines a transformation
(all Joiners, Reformat, Normalizer, etc).

Accessing the Dictionary from Readers and Writers

To reference the dictionary parameter in the File URL attribute of a graph component, this attribute must have the
following form: dict:<Parameter name>[:processingType]. Depending on the type of the parameter
in the dictionary and the processingType, the value can be used either as a name of the input or output file
or it can be used directly as data source or data target (in other words, the data will be read from or written to
the parameter directly).

Processing types are the following:

1. For Readers

• discrete

This is the default processing type, needs not be specified.

• source

See also Reading from Dictionary (p. 299) for information about URL in Readers.

2. For Writers

• source

This processing type is preselect by default.

• stream

If no processing type is specified, stream is used.

• discrete

See also Writing to Dictionary (p. 312) for information about URL in Writers.

Chapter 31. Dictionary

230

For example, dict:mountains.csv can be used as either input or output in a Reader or a Writer, respectively
(in this case, the property type is writable.channel).

Accessing the Dictionary with Java

To access the values from the Java code embedded in the components of a graph, methods of the
org.jetel.graph.Dictionary class must be used.

For example, to get the value of the heightMin property, you can use a code similar to the following snippet:

getGraph().getDictionary().getValue("heightMin")

In the snippet above, you can see that we need an instance of TransformationGraph, which is usually
available via the getGraph() method in any place where you can put your own code. The current dictionary
is then retrieved via the getDictionary() method and finally the value of the property is read by calling the
getValue(String) method.

Note

For further information check out the JavaDoc documentation.

Accessing the Dictionary with CTL2

If the dictionary entries should be used in CTL2, they must be defined in the graph. Working with the entries uses
standard CTL2 syntax. No dictionary functions are available in CTL2.

For more information see Dictionary in CTL2 (p. 900).

Accessing the Dictionary with CTL1

Dictionary can be accessed from CTL1 using a set of functions for entries of string data type.

Even if the dictionary entries should be used in CTL1, they do not need to be defined in the graph.

For more information see Dictionary Functions (p. 886).

231

Chapter 32. Notes in the Graphs
The mentioned Palette of Components contains also a Note icon. When you are creating any graph, you can paste
one or more notes in the Graph Editor pane. To do that, click this Note icon in the Palette, move to the Graph
Editor and click again. After that, a new Note will appear there. It bears a New note label on it.

Figure 32.1. Pasting a Note to the Graph Editor Pane

You can also enlarge the Note by clicking it and by dragging any of its margins that have been highlighted after
this click.

Figure 32.2. Enlarging the Note

Chapter 32. Notes in the Graphs

232

At the end, click anywhere outside the Note so that the highlighting disappears.

Figure 32.3. Highlighted Margins of the Note Have Disappeared

When you want to write some description in the Note of what the graph should do, click inside the Note two times.
After the first click, the margins are highlighted, after the second one, a white rectangular space appears in the
Note. If you make this click on the New note label, this label appears in the rectangle and you can change it.

Figure 32.4. Changing the Note Label

If you make this click outside the New note label, a new rectangle space appears and you can write any description
of the graph in it. You can also enlarge the space and write more of the text in it.

Chapter 32. Notes in the Graphs

233

Figure 32.5. Writing a New Description in the Note

The resulting Note can be as follows:

Figure 32.6. A New Note with a New Description

This way, you can paste more Notes in one graph.

Remember that if you type any parameter in a Note, not the parameter, but its value will be displayed!

Also must be mentioned that each component lying in a Note will be moved together with the Note if you move
the Note.

You can also fold any Note by selecting the Fold item from the context menu. From the resulting Note only the
label will be visible and it will look like this:

Chapter 32. Notes in the Graphs

234

Figure 32.7. Folding the Note

You can also set up many properties of any Note when you click the Note and switch to the Properties tab. You
can see both Text and Title of the Note there. Each of them can be changed in this tab. You can also decide
whether the Text should be aligned to the Left, Center or Right. Title is aligned to the center by default. Both
Text and Title can have some specified colors, you can select one from the combo list. They both are black and
the background has the color of tooltip background by default. Any of these properties can be set here. The default
font sizes are also displayed in this tab and can be changed as well. If you want to fold the Note, set the Folded
attribute to true. Each Note has an ID like any other graph component.

Figure 32.8. Properties of a Note

235

Chapter 33. Search Functionality

If you select Search →Search... from the main menu of CloverETL Designer, a window with following tabs
opens:

Figure 33.1. CloverETL Search Tab

In the CloverETL search tab, you need to specify what you wish to find.

First, you can specify whether searching should be case sensitive, or not. And whether the string typed in the
Search string text area should be considered to be a regular expression (p. 964) or not.

Second, you need to specify what should be searched: Components, Connections, Lookups, Metadata,
Sequences, Notes, Parameters or All.

Third, you should decide in which characteristics of objects mentioned above searching should be done: Id,
Names, Fields, Attributes, Values or Type. (If you check the Type checkbox, you will be able to select from
all available data types.)

Fourth, decide in which files searching should be done: Graphs (*.grf), Metadata (*.fmt) or Properties
(files defining parameters: *.prm). You can even choose your own files by typing or by clicking the button and
choosing from the list of file extensions.

Remember that, for example, if you search metadata in graphs, both internal and external metadata are searched,
including fields, attributes and values. The same is valid for internal and external connections and parameters.

As the last step, you need to decide whether searching should regard whole workspace, only selected resources
(selection should be done using Ctrl+Click), or the projects enclosing the selected resources (enclosing projects).
You can also define your working set and customize your searching options.

When you click the Search button, a new tab containing the results of search appears in the Tabs pane. If you
expand the categories and double-click any inner item, it opens in text editor, metadata wizard, etc.

If you expand the Search tab, you can see the search results:

Chapter 33. Search Functionality

236

Figure 33.2. Search Results

237

Chapter 34. Transformations
Each transformation graph consists of components. All components process data during the graph run. Some of
all components process data using so called transformation.

Transformation is a piece of code that defines how data on the input is transformed into that on the output on its
way through the component.

Note

Remember that transformation graph and transformation itself are different notions. Transformation
graph consists of components, edges, metadata, connections, lookup tables, sequences, parameters,
and notes whereas transformation is defined as an attribute of a component and is used by the
component. Unlike transformation graph, transformation is a piece of code that is executed during
graph execution.

Any transformation can be defined by defining one of the following three attributes:

• Each transformation is defined using one of the three attributes of a component:

• Transform, Denormalize, Normalize, etc.

• Transform URL, Denormalize URL, Normalize URL, etc.

• When any of these attributes is defined, you can also specify its encoding: Transform source charset,
Denormalize source charset, Normalize source charset, etc.

• Transform class, Denormalize class, Normalize class, etc.

• In some transforming components, transformation is required, in others, it is only optional.

For a table overview of components that allow or require a transformation see Transformations
Overview (p. 281).

• Each transformation can always be written in Java, mostly transformation can also be written in Clover
Transformation Language.

Since version 3.0 of CloverETL, Clover Transformation Language (CTL) exists in two versions: CTL1 and
CTL2.

See Part IX, CTL - CloverETL Transformation Language (p. 813) for details about Clover Transformation
Language and each of its versions.

See Defining Transformations (p. 278) for more detailed information about transformations.

238

Chapter 35. Fact table loader
The Fact Table Loader (FTL) is designed to reduce time, when a user needs to create a new data transformation
for creating and inserting a new fact into the fact table of the data warehouse.

Example 35.1. Example of usage

Let's assume, that the user has some input data from a production database saved in a text file. From this data
he needs to create a fact which is then inserted into a fact table of the data warehouse. In the process of creating
mentioned fact, user has to use some of the dimensional tables of the same data warehouse to find a dimension
key for the row where the field from the text file equals the field of the selected column. Using CloverETL this
can be done by using the ExtHashJoin and DBLookup components. More, let's assume the user has to process 4
or more dimensional tables. To create a data transformation (graph) which has this functionality the user needs to
use 10 or more components and set all the required options. It takes some time. For this there is the FTL tool.

FTL is a wizard integrated into CloverETL Designer. In the wizard the user inputs relevant information and the
wizard creates a new CloverETL graph with the requested data transformation.

In the following sections we will show the following:

1. How Fact Table Loader wizard should be launched. See Launching Fact Table Loader Wizard (p. 238).

2. How should be worked with Fact Table Loader wizard. See Working with Fact Table Loader
Wizard (p. 240).

3. How a created graph looks like. See Created graph (p. 246).

Launching Fact Table Loader Wizard

In this section two ways will be shown how to launch the FTL wizard and difference between them will be
discussed. The difference is in the first way, the wizard is enabled to use a graph parameter file and in the second
it is disabled. Project parameters are used to parameterize paths to files.

See:

• Wizard with project parameters file enabled (p. 238)

• Wizard with the project parameter file disabled (p. 240)

Wizard with project parameters file enabled

To enable the wizard to use the graph parameter file the user needs to select an existing CloverETL Project or
any subdirectory or file in it.

Chapter 35. Fact table loader

239

Figure 35.1. Valid selections

When the selection is chosen using right-click and selecting New →Other... from the context menu or File →New

→Other... from the main menu or simply by Ctrl+N.

Figure 35.2. How to select the FTL wizard

From options in the displayed window select Fact Table Load.

Chapter 35. Fact table loader

240

Figure 35.3. Select a wizard (new wizard selection window)

Wizard with the project parameter file disabled

To make the wizard not use the project parameters the user needs to uncheck all of the selected directories,
subdirectories or files in the project. This can be done by holding the Crtl button and clicking on the selected items.

Figure 35.4. Deselection

When nothing is selected: File →New →Other... or simply press Ctrl+N and follow the steps in Wizard with
project parameters file enabled (p. 238).

Working with Fact Table Loader Wizard

Right after the Next button, in the new wizard selection window, is pressed a new FTL wizard is launched. This
case covers the wizard launched with an associated project.

Chapter 35. Fact table loader

241

Figure 35.5. New Graph Name Page

In this page the user has to enter the graph name and can check or uncheck the checkbox which determines whether
the wizard is able to use the project parameters.

Figure 35.6. Output Page

After clicking on the Next button the wizard displays the Output Page. In this page the user can choose the
directory in which the created graph will be saved.

Chapter 35. Fact table loader

242

Figure 35.7. File Selection Page

In this window the user has to enter paths to the needed files.

1. The first row contains the path to the file with the input data.

2. The second row contains the path to the file with the metadata definition for the input file (.fmt file)

3. The third row contains the path to the directory where the reject file with the data rejected by the reader will
be stored. This is optional - if this row is empty no reject file will be created.

4. The forth row contains the path to the directory where the reject file with the data rejected by the database
writer will be stored, this also optional.

If the user clicks on the Browse button they can browse the project using the special dialog.

Figure 35.8. URL Dialog

Chapter 35. Fact table loader

243

In this dialog the user can browse the project or the whole filesystem. The dialog returns the path to the file in
parameter form, after the user clicks the OK button (if the project is associated).

Figure 35.9. Database Connection Page

The database connection page is displayed, after the user clicks on the Next button in the File selection page. In
this page, the user provides the requested information needed to establish a connection to a database. Only one
connection is created, so the fact table and the dimension tables of the data warehouse have to be in the same
database.

Figure 35.10. Fact Table Selection Page

The user has to select one table from the database which will be used as the fact table. Only one table can be
selected. The created fact will be inserted into this table.

Chapter 35. Fact table loader

244

Figure 35.11. Dimension Table Selection Page

The user has to select one or more tables from the database in this window. These tables will be considered the
dimension tables of the data warehouse.

Figure 35.12. Order Table Page

In this window the user is able to see selected dimension tables and databes, select joiner which will be used for
mapping and change the order of the dimension tables shown in this window. This is useful if the dimension key
of one of the dimension tables is needed for searching within another dimension table.

Chapter 35. Fact table loader

245

Figure 35.13. Mapping Page

The user maps the available fields onto fields of the dimension table using drag-and-drop. The user can also choose
which field of the dimension table will be considered the dimension key and will be added to the fact. This can be
done by setting the boolean value of the column Is dimension key to true. In this window the SQL condition
can be also created. The user can create a where condition from which are the other DBJoin attributes
generated. If the user creates where condition for the dimension table and he selected the ExtHashJoin or
ExtMergeJoin, DBJoin will be used in a graph instead. A Mapping Page is shown for every dimension table.

Figure 35.14. Fact Mapping Page

The user maps the created fact to the fact table in this window. The editor uses an auto-rule which matches fields
by name if the names are equal.

Chapter 35. Fact table loader

246

Figure 35.15. Summary Page

The last page of the wizard gives the user the information from the wizard. It also informs the user about new
parameters which will be created in the CloverETL graph. The last three parameters are not created if the user
did not enter a path for an output directory for rejected files. The user is also warned if DBJoin is used insted
of user selected joiner.

Created graph

After clicking on the Finish button the wizard generates a new CloverETL graph. The user just has to save this
graph and then it is ready to run.

Figure 35.16. Created Graph

This graph also contains created parameters.

Chapter 35. Fact table loader

247

Figure 35.17. Graph Parameters

Part VI. Jobflow

249

Chapter 36. Jobflow Overview

Introduction

What is CloverETL Jobflow?

CloverETL Jobflow module allows combining ETL graphs together with other activities into complex processes
- providing orchestration, conditional job execution, and error handling. Actions that can participate in jobflow
include:

• CloverETL ETL graphs

• Native OS applications and scripts

• Web services (REST/SOAP) calls

• Operations with local and remote files

Besides the above mentioned actions available as dedicated jobflow components, the jobflow may also include
ETL components. This allows additional flexibility in composing the jobflow logic and presents additional options
for passing configuration to jobflow from outer environment.

Tip

You can use DBInputTable ETL component in jobflow to read a list of jobs and their parameters
from a database, then use ExecuteGraph, a jobflow component, to execute each job on the list with
desired parameters. Finally, the EmailSender component can be attached to the flow to notify about
any errors in execution.

When editing jobflow, there are some visual modifications to the editor: components have different background
colour, rounded shapes and above all Palette content changes. To change which components you can drag from

Palette, go to Window →Preferences →CloverETL →Components in Palette

Design and execution

Execution of jobflow requires CloverETL Server environment. It is, however, possible to design the jobflow
offline using a standalone CloverETL Designer. Developers can compose, deploy, and execute jobflows on the
Server interactively using Server Integration module available in CloverETL Designer. To automate execution of
jobflow processes in the Server environment, the jobflows are fully integrated with existing automation, such as
the Scheduler or File Triggers, and with Server API including SOAP and REST services.

Anatomy of the Jobflow module

The CloverETL Designer contains the design-time functional elements of the Jobflow module while the
CloverETL Server contains the necessary runtime support and automation features.

Jobflow elements in CloverETL Designer:

• Jobflow editors: Dedicated UI for designing jobflows (*.jbf). Open visual editor, there are some visual
modifications to the editor. Components have different background colour, rounded shapes and above all Palette
content changes.

• Jobflow components in palette: The jobflow-related components are available under sections Chapter 57, Job
Control (p. 675) and Chapter 58, File Operations (p. 733). Additional ETL components can be used include
WebServiceClient and HTTPConnector from Chapter 61, Others (p. 779) category. Some of the Chapter 57,
Job Control (p. 675) components are also available in the ETL perspective.

Chapter 36. Jobflow Overview

250

• ProfilerProbe component: Available in the „Data Quality“ palette category; this component allows execution
of CloverETL Profiler jobs as part of ETL graph or jobflow.

• Predefined metadata: Designer contains predefined metadata templates describing expected inputs or outputs
provided by jobflow components. The templates generate metadata instances in which developers may decide
to modify. The templates are available from edge context menu in graph editor; „New metadata from template“.

• Trackable fields: Metadata editor in jobflow perspective allows flagging selected fields (p. 254) in token
metadata as „trackable“. Values of trackable fields are automatically logged by jobflow components at runtime
(see description of token-centric logging below). The aim is to simplify tracking of the execution flow during
debugging or post-mortem job analysis.

• CTL functions: A set of CTL functions allowing interaction with outer environment - access to environment
variables (getEnvironmentVariables()), graph parameters (getParamValues()) and Java system
properties (getJavaProperties()).

• Log console: Console view contains execution logs in the jobflow as well as any errors.

Jobflow elements in CloverETL Server:

• Execution history: Hierarchical view of overall execution as well as individual steps in the jobflow together
with their parent-child relationships. Includes status, performance statistics as well as listing of actual parameter
and dictionary values passed between jobflow steps.

• Automated Logging: Token-centric logging can track a „token“ that triggers execution of particular steps.
Tokens are uniquely ordered for easy identification; however, developers may opt to log additional information
(e.g. file name, message identification or session identifiers) together with the default numeric token identifier.

• Integration with automation modules: All CloverETL Server modules include Scheduler, Triggers, and
SOAP API to allow launching of jobflows and passing user-defined parameters for individual executions.

Important concepts

Dynamic attribute setting

Besides static configuration of component’ attributes, the jobflow components (as well as WebServiceClient and
HTTPConnector components) allow dynamic attribute configuration during runtime from a connected input port.

Values are read from incoming tokens from connected input port and mapped to component’ attributes
via mapping defined by “Input Mapping” property. Dynamically set attributes are merged with any static
component configuration; in case of a conflict, the dynamic setting overrides static configuration. The combined
configurations of a component are finally used for execution triggered by token.

Tip

The dynamic configuration can be used for implementation of a “for-loop” by having a static
configuration job in ExecuteGraph/ExecuteJobflow/ExecuteProfilerJob while passing the job
parameters dynamically via “Input Mapping”.

The dynamic setting of parameters can also be used with HTTPConnector or WebServiceClient to dynamically
construct the target URL, include HTTP GET parameters into URL or redirect the connection.

Parameter passing

The ExecuteGraph and ExecuteJobflow components allow passing of graph parameters and dictionary values from
parent to child. With dictionary it is also possible for a parent to retrieve values from a child’s dictionary. This is
only possible AFTER a child has finished its execution.

Chapter 36. Jobflow Overview

251

In order to pass dictionary between two steps in jobflow, it is necessary to:

1. Declare desired dictionary entries in child’s dictionary

2. Tag the entry as “input” (entry value is set by parent) or “output” (parent to retrieve value from a child)

3. Define mapping for each entry in parent’s ExecuteGraph/ExecuteJobflow/ExecuteProfilerJob component’s
“Input Mapping” or “Output Mapping” properties.

4. For a child to pass an entry to the parent, value can be set during child execution using the Success, Fail, or
SetJobOutput component, but it is also possible via CTL code.

5. Parameters declared in the child graph (local or from parametric file) can be set in the “Input Mapping” of
ExecuteGraph/ExecuteJobflow in the parent graph. It is NOT possible for the child to change the parameter
value during its runtime or the parent to retrieve parameter value from a child.

Both parameters and any input/output dictionary entries declared in the child graph are automatically displayed in
the “Input Mapping” or “Output Mapping” of ExecuteGraph/ExecuteJobflow accordingly.

When to use parameters vs dictionary:

• Parameters: for configuration of the child graph (changing component settings, graph layout etc)

• Dictionary: for passing data (or values) to be processed by the child, to return values to the parent

Tip

Parameters can appear anywhere in component attributes and as textual macros expanded before
graph execution; they can be used to significantly change the runtime graph layout. Use them to create
reusable logic by disabling processing branches in graphs, routing output to particular destination,
or passing dataset restrictions/filter (e.g. business day, product type, active user). They can also be
used to pass environment information in a centralized fashion.

Use dictionary to pass result “variables” back to parent or for a child to receive initial “variable” values from parent.
You can highlight the process of “receiving’ or “setting” the dictionary entries with GetJobInput and SetJobOutput
components.

Pass-through mapping

Any field can be passed through the jobflow components. The “Output mapping” property can be used in mapping
the incoming token fields to output combining with other component output values.

Tip

With webservices, the pass-through mapping can be used to perform login operation only once then
pass a session token through multiple HTTPConnector or WebServiceClient components.

Execution status reporting

The jobflow components report the success or failure of the executed activity via two standardized output ports.
The “success” output port (0 - zero) by default carries information about all successful executions while the output
“error” port (1 - one) carries information about all failed executions.

Developers may choose to redirect even failed executions to the success-output using the “Redirect error output”
attribute available in all jobflow components.

Error handling

Chapter 36. Jobflow Overview

252

The ExecuteGraph, ExecuteScript, ExecuteJobflow, ExecuteProfilerJob, and file operations components behave as
natural Java try/catch block. If the executed activity finishes successfully, the result is routed to the 0-th “success”
port – this case is analogous to situation where no exception was thrown.

When activity started by the component fails, the error is routed to the 1-st “error” port where a compensating
logic can be attached. This behavior resembles the exception being handled by a “catch” block in code.

In case there is no edge connected to the “error” port, the component throws a regular Java exception and terminates
its processing. In case the job in error was started by a parent job, the exception causes a failure in parent’s Execute
in which it may choose to handle or throw the exception further.

Tip

Using the “try/catch” approach, you may construct logic handling of particular errors in processing
while deliberately leaving errors requiring human interaction unhandled. Uncaught errors will abort
the processing and show the job as failed in Server Execution History and can be handled by
production support teams.

You can use the Fail component in jobflow or ETL graph to highlight that an error is being “thrown”; it can be
used to compose a meaningful error message from input data or to set dictionary values indicating error status
to the parent job.

Jobflow execution model: Single token

Activities in the jobflow are by default executed sequentially in the order of edge direction. The first component
(having no input) in the flow starts executing, and after the action finishes, it produces an output token that is
passed to the next connected component in the flow. The token serves as a triggering event for the next component
and the next job is started.

This is different to ETL graph execution where the first component produces data records for the second component
but both run together in parallel.

In case where a jobflow component output is forked (e.g. via SimpleCopy) and connected to input of two other
jobflow components, the token triggers both of these components to start executing in parallel and at the same time.

The concept of phases available in ETL graphs can also be used in jobflow.

Tip

Use the branching to “fork” the processing into multiple parallel branches of execution. If you need
to “join” the branches after execution, use Combiner, Barrier, or TokenGather component; the
selection depends on how you want to process the execution results.

Jobflow execution model: Multiple tokens

In a basic scenario, only one token passes through the jobflow; this means each action in the jobflow is started
exactly once or not started at all. A more advanced use of jobflows involves multiple tokens entering the jobflow
to trigger execution of certain actions repeatedly.

The concept of multiple tokens allows developers to implement for-loop iterations, and more specifically, to
support CloverETL Jobflow parallel for-loop pattern.

In the parallel for-loop pattern, as opposed to a traditional for-loop, each new iteration of the loop is started
independently in parallel with any previous iterations. In jobflow terms, this means when two tokens enter the
jobflow, actions triggered by the first token may potentially execute together with actions triggered by the second
token arriving later.

As the parallel execution might be undesirable at times, it is important to understand how to enforce sequential
execution of the loop body or actions immediately following the “loop”:

Chapter 36. Jobflow Overview

253

• Sequence the loop body: force the sequential execution of multiple steps forming the loop body, essentially
means converting the parallel for loop into a traditional for loop.

To sequence the loop body and make it behave as a traditional for loop, wrap actions in the loop body into an
ExecuteJobflow component running in synchronous execution mode. This causes the component to wait for the
completion of the underlying logic before starting a new “iteration”.

Tip

Imagine a data warehousing scenario where we receive two files with data to be loaded
into a dimension table and a fact table respectively (e.g. every day we receive two files -
dim-20120801.txt and fact-20120801.txt). The data must be first inserted into a dimension table,
only then the fact table can be loaded (so that the dimension keys are found). Additionally, the
data from previous day must be loaded before loading data (dimension+fact) for the current day.
This is necessary as a data warehouse keeps track of changes of data over time.

To implement this using jobflow, we would use a DataGenerator component to generate a week’s worth of data
and feed that to ExecuteJobflow implementing the body of the loop – loading of the warehouse for a single
day. Specifically, the ExecuteJobflow would contain two ExecuteGraph components: LoadDimensionForDay
and LoadFactTableForDay.

• Sequence the execution of actions following the loop: instead of having actions immediately following the
loop being triggered by each new iteration, we want the actions to be triggered only once – after all iterations
have completed.

To have the actions following the loop execute once all iterations have finished, prefix the actions with
Barrier component with “All tokens form one group” option enabled. In this mode, the Barrier first collects all
incoming tokens (waits for all iterations), then produces a single output token (control flow is passed to actions
immediately following the for loop).

Tip

After loading a week’s worth of data into the data warehouse from previous example, we need to
rebuild/enable indexes. This can only happen after all files have been processed. In order to do
that, we can add a Barrier component followed by another ExecuteGraph into the joflow.

The Barrier would cause all loading to finished and only then the final ExecuteGraph step would launch one or
more DBExecute components with necessary SQL statements to create the indexes.

Stopping on error

When multiple tokens trigger a single ExecuteGraph/ExecuteJobflow/ExecuteProfilerJob component and an
unhandled error occurs in the underlying job, the default behavior of the component is not to process any further
tokens to avoid starting new jobs while an exception is being thrown.

If there is a desire to continue processing regardless of failures, the component’s behavior can be changed using
the “Stop processing on fail” attribute on ExecuteGraph/ExecuteJobflow/ExecuteProfilerJob.

Synchronous vs. asynchronous execution

ExecuteGraph, ExecuteJobflow and ExecuteProfilerJob by default execute their child jobs synchronously; this
means that they wait for the underlying job to finish. Only then they produce an output token to trigger the next
component in line. While the component is waiting for its job to finish, it does not start new jobs even if more
triggering tokens are available on the input.

For advanced use cases, the components also support asynchronous execution; this is controlled by the “Execution
type” property. In asynchronous mode of execution, the component starts the child job as soon as a new input
token is available and does not wait for the child job to finish. In such case, the ExecuteGraph/ExecuteJobflow/
ExecuteProfilerJob components only output job run id as job statistics might not be available.

Chapter 36. Jobflow Overview

254

Developers can use the MonitorGraph or MonitorJobflow component to wait for asynchronously started graphs
or jobflows.

Tip

The asynchronous execution mode is useful to start jobs in parallel when the total number of jobs
is unknown.

Logging

Log messages produced by jobflow components are token-centric. A token represents basic triggering mechanism
in jobflow and one or multiple tokens can be present in a single running jobflow instance. To allow easy
identification of the activities triggered by token, the tokens are automatically numbered.

Example 36.1. Example jobflow log - token starting a subgraph

2012-08-21 15:27:36,922 INFO 1310734 [EXECUTE_GRAPH0_1310734] Token [#3]
started etlGraph:1310735:sandbox://scenarios/jobflow/SubGraphFast.grf on
node node01.

Format of the log is obvious: date time RunID [COMPONENT_NAME] Token [#number] message.

Every jobflow component automatically logs information on token lifecycle. The important token lifecycle
messages are:

• Token created: a new token entered jobflow

• Token finalized: a token lifecycle finished in a component; either in a terminating component (e.g. Fail,
Success) or when multiple tokens resulted from the terminating one (e.g. in SimpleCopy)

• Token sent: a token was sent through a connected output port to the next following component

• Token link: logs relationships between incoming (terminating) tokens and new tokens being created as a result
(e.g. in Barrier, Combine)

• Token received: a token was read from a connected input port from the previous component

• Job started: token triggered an execution of job in ExecuteGraph/ExecuteJobflow/ExecuteScript.

• Job finished: a child job finished execution and the component will continue processing the next one

• Token message: component produced a (user-defined) log message triggered by the token

Metadata fields tracking

Additionally, the developers may enable logging of additional information stored in token fields through the
concept of trackable fields (p. 159). The tracked field will be displayed in the log like this (example for field
fileName):

2012-10-08 14:00:29,948 INFO 28 [EXECUTE_JOBFLOW0_28] Token [#1 (fileURL=
${DATA_IN_DIR}/inputData.txt)] received from input port 0.

Tip

File names, directories, and session/user ids serve as useful trackable fields as they are often iterated
upon.

Advanced Concepts

Chapter 36. Jobflow Overview

255

Daemon jobs

CloverETL Jobflow allows child jobs to out live their parents. By default, this behavior is disabled meaning when
the parent job finishes processing or is aborted, all its child jobs are terminated as well. The behavior can be
changed by the ExecuteGraph/ExecuteJobflow/ExecuteProfilerJob property “Execute as daemon”.

Killing jobs

While using the try/catch to control job behavior on errors, the jobflows also allow developers to forcibly terminate
jobs using the KillGraph and KillJobflow components. A job execution can be killed by using its unique run id;
for mass termination of jobs, the concept of execution group can be used. A job can be tagged in an execution
group using the “Execution group” property in ExecuteGraph/ExecuteJoblow components.

256

Chapter 37. Jobflow Design Patterns

Try/Catch block

All execution components simply allow to react to success and failure. In case of job success, token is send to the
first output port. In case of job failure, token is send to the second output port.

Try/Finally block

All execution components allow to redirect the error token to the first output port. Use 'Redirect error output'
attribute for uniform reaction to job success and failure.

Sequential execution

Sequential jobs execution is performed by simple execution components chaining. Failure of any job causes
jobflow termination.

Sequential execution with error handling

Sequential jobs execution can be extended by common job failure handling. Component TokenGather is suitable
for gathering all tokens representing job failures.

Parallel execution

Parallel jobs execution is simply allowed by set of independent executors. Reaction to success and failure is
available for each individual job.

Parallel execution with common success/error handling

Chapter 37. Jobflow Design Patterns

257

Barrier component allows to react to success or failure of parallel running jobs. By default, group of parallel
running jobs is considered successful if all jobs finished successfully. Barrier component has various settings to
satisfy all your needs in this manner.

Conditional processing

Conditional processing is allowed by token routing. Based on results of Job A you can decide using Condition
component which branch of processing will be used afterwards.

Dictionary driven jobflow

Parent jobflow can pass some data to child job using input dictionary entries, these job parameters can be read by
GetJobInput component and can be used in further processing. On the other side jobflow results can be written to
output dictionary entries using SetJobOutput component. These results are available in parent jobflow.

Fail control

You can intentionally stop processing of jobflow using Fail component. User-specified message can be reported
by Fail component.

Asynchronous graphs execution

Parallel processing of variable number of jobs is allowed using asynchronous job processing. The example bellow
shows how to process all csv files in parallel way. First, all file names are listed by ListFiles component. Single
graph for each file name is asynchronously executed by ExecuteGraph component. Graph run identifications
(runId) are sent to MonitorGraph component which waits for all graph results.

Asynchronous execution is available only for graphs and jobflows.

Chapter 37. Jobflow Design Patterns

258

File operations

Jobflow provides set of file operations component - list files, create, copy, move and delete files. This use-case
shows how to use file operation components to process set of remote files. The files are downloaded from remote
FTP server, each file is processed by a job, results are copied to a final destination and possible temporary files
are deleted.

Aborting Graphs

Graphs and jobflows can be explicitly aborted by KillGraph respectively by KillJobflow components. The example
bellow shows how to process a list of tasks in parallel way and jobs which reached user-specified timeout are
automatically aborted.

Part VII. Components Overview

260

Chapter 38. Introduction to Components
For basic information about components see Chapter 19, Components (p. 97).

In the palette of components of the Graph Editor, all components are divided into following
groups: Readers (p. 338), Writers (p. 452), Transformers (p. 566), Joiners (p. 643), Cluster
Components (p. 750), and Others (p. 779). We will describe each group step by step.

One more category is called Deprecated. It should not be used any more and we will not describe them.

So far we have talked about how to paste components to graphs. We will now discuss the properties of components
and the manner of configuring them. You can configure the properties of any graph component in the following
way:

• You can simply double-click the component in the Graph Editor.

• You can do it by clicking the component and/or its item in the Outline pane and editing the items in the
Properties tab.

• You can select the component item in the Outline pane and press Enter.

• You can also open the context menu by right-clicking the component in the Graph Editor and/or in the Outline
pane. Then you can select the Edit item from the context menu and edit the items in the Edit component wizard.

261

Chapter 39. Palette of Components
CloverETL Designer provides all components in the Palette of Components. However, you can choose which
should be included in the Palette and which not. If you want to choose only some components, select Window

→Preferences... from the main menu.

Figure 39.1. Selecting Components

After that, you must expand the CloverETL item and choose Components in Palette.

Figure 39.2. Components in Palette

In the window, you can see the categories of components. Expand the category you want and uncheck the
checkboxes of the components you want to remove from the palette.

Chapter 39. Palette of Components

262

Figure 39.3. Removing Components from the Palette

Then you only need to close and open graph and the components will be removed from the Palette.

263

Chapter 40. Find / Add Components
Besides Palette (p. 261), you can use smart dialogs to find/add components.

Finding Components

If you built a complex graph and cannot find components easily, press Ctrl+O. That opens the Find component
dialog:

Figure 40.1. Find Components dialog - the searched text is higlighted both in component names and
description.

As you type, the components are searched by their:

• name - i.e. if you rename e.g. UniversalDataReader to 'read customers from text file', you can search the
component by typing 'customers', 'text file' etc.

• description - again, both the default description or a custom one you added to a component yourself

1. Click a component in the search results.

2. Press Enter

3. The component will be selected and focused in your graph layout.

Adding Components

If you need to quickly add a component without navigating to Palette OR you do not know which component you
should use, press Shift Space. This brings the Add component dialog.

A great feature: components are searched by their name and description (p. 263) again.

Chapter 40. Find / Add Components

264

Example 40.1. Finding a sort component

You need to sort your data, but CloverETL offers so many sort components. A quick solution: press Shift+Space
and type 'sort'. You will see all available sorters (with a description).

Figure 40.2. Add Components dialog - finding a sorter.

Note

Recently searched/added components get cummulated at the top of the dialog for a quicker access
to them.

265

Chapter 41. Common Properties of All Components
Some properties are common for all components. They are the following:

• Any time, you can choose which components should be displayed in the Palette of Components and which
should be removed from there (Chapter 39, Palette of Components (p. 261)).

• Each component can be set up using Edit Component Dialog (Edit Component Dialog (p. 266)).

•

Figure 41.1. Edit Component Dialog (Properties Tab)

•

Figure 41.2. Edit Component Dialog (Ports Tab)

Chapter 41. Common
Properties of All Components

266

Among the properties that can be set in this Edit Component Dialog, the following are described in more detail:

• Each component bears a label with Component name (Component Name (p. 269)).

• Each graph can be processed in phases (Phases (p. 270)).

• Components can be disabled (Enable/Disable Component (p. 271)).

• Components can be switched to PassThrough mode (PassThrough Mode (p. 272)).

• Components can have specified on which cluster nodes will be executed (Component Allocation (p. 272)).

Edit Component Dialog

The Edit component dialog allows you to edit component attributes in each component. You can access the dialog
by double-clicking the component that has been pasted in the Graph Editor pane.

This dialog consists of two tabs: Properties tab and Ports tab.

• Properties tab presents an overview of component attributes that can be set.

• Ports tab presents an overview of both input and output ports and their metadata.

Properties Tab

In the Properties dialog, all attributes of the components are divided into 5 groups: Basic, Advanced, Deprecated,
Visual and Common.

Only the last two groups (Visual and Common) can be set in all of them.

The others groups (Basic, Advanced, and Deprecated) differ in different components.

However, some of them may be common for most of them or, at least, for some category of components (Readers,
Writers, Transformers, Joiners, or Others).

• Basic. These are the basic attributes of the components. The components differ by them. They can be either
required, or optional.

May be specific for an individual component, for a category of components, or for most of the components.

• Required. Required attributes are marked by warning sign. Some of them can be expressed in two or more
ways, two or more attributes can serve to the same purpose.

• Optional. They are displayed without any warning sign.

• Advanced. These attributes serve to more complicated (advanced) settings of the components. They differ in
different components.

May be specific for an individual component, for a category of components, or for most of the components.

• Deprecated. These attributes were used in older releases of CloverETL Designer and they still remain here
and can be used even now. However, we suggest you do not use them unless necessary.

May be specific for an individual component, for a category of components, or for most of the components.

• Visual. These are the attributes that can be seen in the graph.

These attributes are common for all components.

• Component name. Component name is a label visible on each component. It should signify what the
component should do. You can set it in the Edit component dialog or by double-clicking the component and
replacing the default component name.

Chapter 41. Common
Properties of All Components

267

See Component Name (p. 269) for more detailed information.

• Description. You can write some description in this attribute. It will be displayed as a hint when the cursor
appears on the component. It can describe what this instance of the component will do.

• Common.

Also these attributes are common for all components.

• ID. ID identifies the component among all other components of the same type. If you check Generate

component ID from its name in Window →Preferences →CloverETL and your component is called e.g.
'Write employees to XML', then it automatically gets this ID: 'WRITE_EMPLOYEES_TO_XML'. While the
option is checked, the ID changes every time you rename the component.

• Component type. This describes the type of the component. By adding a number to this component type,
you can get a component ID. We will not describe it in more detail.

• Specification. This is the description of what this component type can do. It cannot be changed. We will
not describe it in more detail.

• Phase. This is an integer number of the phase to which the component belongs. All components with the same
phase number run in parallel. And all phase numbers follow each other. Each phase starts after the previous
one has terminated successfully, otherwise, data parsing stops.

See Phases (p. 270) for more detailed description.

• Enabled. This attribute can serve to specify whether the component should be enabled, disabled or whether
it should run in a passThrough mode. This can also be set in the Properties tab or in the context menu
(except the passThrough mode).

See Enable/Disable Component (p. 271) for a more detailed description.

• Pass Through Input port. If the component runs in the passTrough mode, you should specify which input
port should receive the data records and which output port should send the data records out. This attribute
serves to select the input port from the combo list of all input ports.

See PassThrough Mode (p. 272) for more detailed description.

• Pass Through Output port. If the component runs in the passTrough mode, you should specify which input
port should receive the data records and which output port should send the data records out. This attribute
serves to select the output port from the combo list of all output ports.

See PassThrough Mode (p. 272) for more detailed description.

• Allocation. If the graph is executed by a Cluster of CloverETL Servers, this attribute must be specified
in the graph.

See Component Allocation (p. 272) for more detailed description.

Ports Tab

In this tab, you can see the list of all ports of the component. You can expand any of the two items (Input ports,
Output ports) and view the metadata assigned to each of these ports.

This tab is common for all components.

Important

Java-style Unicode expressions

Chapter 41. Common
Properties of All Components

268

Remember that (since version 3.0 of CloverETL) you can also use the Java-style Unicode
expressions anyway in CloverETL (except in URL attributes).

You may use one or more Java-style Unicode expressions (for example, like this one): \u0014.

Such expressions consist of series of the \uxxxx codes of characters.

They may also serve as delimiter (like CTL expression shown above, without any quotes):

\u0014

Chapter 41. Common
Properties of All Components

269

Component Name

Each component has a label on it which can be changed for another one. As you may have many components in
your graph and they may have some specified functions, you can give them names according to what they do.
Otherwise you would have many different components with identical names in your graph.

You can rename any component in one of the following four ways:

• You can rename the component in the Edit component dialog by specifying the Component name attribute.

• You can rename the component in the Properties tab by specifying the Component name attribute.

• You can rename the component by highlighting and clicking it.

If you highlight any component (by clicking the component itself or by clicking its item in the Outline pane),
a hint appears showing the name of the component. After that, when you click the highlighted component, a
rectangle appears below the component, showing the Component name on a blue background. You can change
the name shown in this rectangle and then you only need to press Enter. The Component name has been
changed and it can be seen on the component.

Figure 41.3. Simple Renaming Components

• You can right-click the component and select Rename from the context menu. After that, the same rectangle as
mentioned above appears below the component. You can rename the component in the way described above.

Chapter 41. Common
Properties of All Components

270

Phases

Each graph can be divided into some amount of phases by setting the phase numbers on components. You can see
this phase number in the upper left corner of every component.

The meaning of a phase is that each graph runs in parallel within the same phase number. That means that each
component and each edge that have the same phase number run simultaneously. If the process stops within some
phase, higher phases do not start. Only after all processes within one phase terminate successfully, will the next
phase start.

That is why the phases must remain the same while the graph is running. They cannot descend.

So, when you increase some phase number on any of the graph components, all components with the same phase
number (unlike those with higher phase numbers) lying further along the graph change their phase to this new
value automatically.

Figure 41.4. Running a Graph with Various Phases

You can select more components and set their phase number(s). Either you set the same phase number for all
selected components or you can choose the step by which the phase number of each individual component should
be incremented or decremented.

To do that, use the following Phase setting wizard:

Figure 41.5. Setting the Phases for More Components

Chapter 41. Common
Properties of All Components

271

Enable/Disable Component

By default all components are enabled. Once configured, they can parse data. However, you can turn off any group
of components of any graph. Each component can be disabled. When you disable some component, it becomes
greyish and does not parse data when the process starts. Also, neither the components that lie further along the
graph parse data. Only if there is another enabled component that enter the branch further along the graph, data
can flow into the branch through that enabled component. But, if some component from which data flows to the
disabled component or to which data flows from the disabled component cannot parse data without the disabled
component, graph terminates with error. Data that are parsed by some component must be sent to other components
and if it is not possible, parsing is impossible as well. Disabling can be done in the context menu or Properties
tab. You can see the following example of when parsing is possible even with some component disabled:

Figure 41.6. Running a Graph with Disabled Component

You can see that data records from the disabled component are not necessary for the Concatenate component
and for this reason parsing is possible. Nevertheless, if you disable the Concatenate component, readers before
this component would not have at their disposal any component to which they could send their data records and
graph would terminate with error.

Chapter 41. Common
Properties of All Components

272

PassThrough Mode

As described in the previous section (Enable/Disable Component (p. 271)), if you want to process the graph with
some component turned off (as if it did not exist in the graph), you can achieve it by setting the component to
the passThrough mode. Thus, data records will pass through the component from input to output ports and the
component will not change them. This mode can also be selected from the context menu or the Properties tab.

Figure 41.7. Running a Graph with Component in PassThrough Mode

Note

Remember that in some components (with more input and/or output ports) you must specify which
of them should be used for input and/or output data, respectively. In them, you must set up the Pass
Through Input port and/or Pass Through Output port as described in Properties Tab (p. 266).

Component Allocation

This attribute is taken into account only on CloverETL Cluster environment.

Allocation attribute is common for all ETL components. This attribute is used for cluster graph processing to plan
how many instances of the component will be executed and on which cluster nodes will be executed. Allocation
is our basic concept for parallelisation of data processing and inter-cluster-node data routing.

Allocation can be specified in three different ways:

• allocation based on number of workers - component will be executed in requested instances on some cluster
nodes, which are preferred by CloverETL Cluster

• allocation based on reference on a partitioned sandbox - component will be executed on all cluster nodes where
the partitioned sandbox has a location

Note

This allocation type is transparently used as a default for most of data readers and data writers
which refers to a file in a partitioned sandbox.

Chapter 41. Common
Properties of All Components

273

• allocation defined by list of cluster node identifiers (a cluster node can be used more times)

Figure 41.8. Component allocation dialog

Allocation is automatically inherited from neighbour components. So, continuous graph can have only single
component with an allocation and this allocation is used by all other components as well. All components of
clustered graphs are decorates by number of instances (x3) in which the component will be finally executed - so
called allocation cardinality. This annotations are updated on graph save operation. Allocation cardinality derived
from neighbours are drawn with gray italic font and the cardinality derived from allocation defined right on the
component is printed out with a solid font.

Figure 41.9. Allocation cardinality decorator

Two interconnected components have to have compatible allocations - number of specified workers has to
be equal. Only exception from this rule are cluster components, which are dedicated just to change level of
parallelism. Cluster partitioners change single-worker allocation to multi-worker allocation. On the other side
cluster gathers change multi-worker allocation to single-worker allocation.

Mode details about clustered graph processing is available in documentation for CloverETL Cluster.

274

Chapter 42. Common Properties of Most
Components
Here we present a brief overview of properties that are common for various groups of components.

Links to corresponding sections follow:

• When you need to specify some file in a component, you need to use URL File Dialog (p. 69).

• Some components use a specific metadata structure on their ports. The connected edges can be easily assigned
metadata from predefined templates. See Metadata Templates (p. 274).

• Some components can be configured with a time interval (usually a delay or a timeout). See Time
Intervals (p. 274) for an overview of the syntax of time interval specification.

• In some of the components, records must be grouped according the values of a group key. In this key, neither
the order of key fields nor the sort order are of importance. See Group Key (p. 275).

• In some of the components, records must be grouped and sorted according the values of a sort key. In this key,
both the order of key fields and the sort order are of importance. See Sort Key (p. 276).

• In many components from different groups of components, a transformation can be or must be defined. See
Defining Transformations (p. 278).

Metadata Templates

Some components require metadata on their ports have a specific structure. For example, see Error Metadata for
UniversalDataReader (p. 411). For some other components, such as Chapter 58, File Operations (p. 733),
the metadata structure is not required, but recommended. In both those cases, it is possible to make use of pre-
defined metadata templates.

In order to create a new metadata with the recommended structure, right-click an edge connected to a port which
has a template defined, select New metadata from template from the context menu and then pick a template
from the submenu.

Figure 42.1. Creating Metadata from a Template

Time Intervals

The following time units may be used when specifying time intervals:

w week (7 days)
d day (24 hours)
h hour (60 minutes)

Chapter 42. Common
Properties of Most Components

275

m minute (60 seconds)
s second (1000 milliseconds)
ms millisecond

The units may be arbitrarily combined, but their order must be from the largest to the smallest one.

Example 42.1. Time Interval Specification

1w 2d 5h 30m 5s 100ms = 797405100 milliseconds

1h 30m = 5400000 milliseconds

120s = 120000 milliseconds

When no time unit is specified, the number is assumed to denote the default unit, which is component-specific
(usually milliseconds).

Group Key

Sometimes you need to select fields that will create a grouping key. This can be done in the Edit key dialog. After
opening the dialog, you need to select the fields that should create the group key.

Select the fields you want and drag and drop each of the selected key fields to the Key parts pane on the right.
(You can also use the Arrow buttons.)

Figure 42.2. Defining Group Key

After selecting the fields, you can click the OK button and the selected field names will turn to a sequence of the
same field names separated by semicolon. This sequence can be seen in the corresponding attribute row.

The resulting group key is a sequence of field names separated by semicolon. It looks like this:
FieldM;...FieldN.

In this kind of key, no sort order is shown unlike in Sort key. By default, the order is ascending for all fields and
priority of these fiels descends down from top in the dialog pane and to the right from the left in the attribute row.
See Sort Key (p. 276) for more detailed information.

When a key is defined and used in a component, input records are gathered together into a group of the records
with equal key values.

Group key is used in the following components:

• Group key in SortWithinGroups (p. 639)

• Merge key in Merge (p. 597)

Chapter 42. Common
Properties of Most Components

276

• Partition key in Partition (p. 609), and ClusterPartition (p. 751)

• Aggregate key in Aggregate (p. 568)

• Key in Denormalizer (p. 579)

• Group key in Rollup (p. 625)

• Matching key in ApproximativeJoin (p. 644)

• Also Partition key that serves for distributing data records among different output ports (or Cluster nodes in
case of clusterpartition) is of this type. See Partitioning Output into Different Output Files (p. 317)

Sort Key

In some of the components you need to define a sort key. Like a group key, this sort key can also be defined by
selecting key fields using the Edit key dialog. There you can also choose what sort order should be used for each
of the selected fields.

Figure 42.3. Defining Sort Key and Sort Order

In the Edit key dialog, select the fields you want and drag and drop each of the selected key fields to the Key
column of the Key parts pane on the right. (You can also use the Arrow buttons.)

Unlike in the case of a group key, in any sort key the order in which the fields are selected is of importance.

In every sort key, the field at the top has the highest sorting priority. Then the sorting priority descends down from
top. The field at the bottom has the lowest sorting priority.

When you click the OK button, the selected fields will turn to a sequence of the same field names and an a or a
d letter in parentheses (with the meaning: ascending or descending, respectively) separated by semicolon.

It can look like this: FieldM(a);...FieldN(d).

This sequence can be seen in the corresponding attribute row. (The highest sorting priority has the first field in
the sequence. The priority descends towards the end of the sequence.)

As you can see, in this kind of key, the sort order is expressed separately for each key field (either Ascending or
Descending). Default sort order is Ascending. The default sort order can also be changed in the Order column
of the Key parts pane.

Important

ASCIIbetical vs. alphabetical order

Chapter 42. Common
Properties of Most Components

277

Remember that string data fields are sorted in ASCII order (0,1,11,12,2,21,22 ... A,B,C,D ...
a,b,c,d,e,f ...) while the other data type fields in the alphabetical order (0,1,2,11,12,21,22 ...
A,a,B,b,C,c,D,d ...)

Example 42.2. Sorting

If your sort key is the following: Salary(d);LastName(a);FirstName(a). The records will be sorted
according to the Salary values in descending order, then the records will be sorted according to LastName
within the same Salary value and they will be sorted according to FirstName within the same LastName
and the same Salary (both in ascending order) value.

Thus, any person with Salary of 25000 will be processed after any other person with salary of 28000. And,
within the same Salary, any Brown will be processed before any Smith. And again, within the same salary,
any John Smith will be processed before any Peter Smith. The highest priority is Salary, the lowest
is FirstName.

Sort key is used in the following cases:

• Sort key in ExtSort (p. 591)

• Sort key in FastSort (p. 593)

• Sort key in SortWithinGroups (p. 639)

• Dedup key in Dedup (p. 577)

• Sort key in SequenceChecker (p. 801)

Chapter 42. Common
Properties of Most Components

278

Defining Transformations

For basic information about transformations see Chapter 34, Transformations (p. 237).

Here we will explain how you should create transformations that change the data flowing through some
components.

For brief table overview of transformations see Transformations Overview (p. 281).

Below we can learn the following:

1. What components allow transformations.

Components Allowing Transformation (p. 278)

2. What language can be used to write transformations.

Java or CTL (p. 279)

3. Whether definition can be internal or external.

Internal or External Definition (p. 279)

4. What the return values of transformations are.

Return Values of Transformations (p. 282)

5. What can be done when error occurs.

Error Actions and Error Log (deprecated since 3.0) (p. 284)

6. The Transform editor and how to work with it.

Transform Editor (p. 285)

7. What interfaces are common for many of the transformation-allowing components.

Common Java Interfaces (p. 294)

Components Allowing Transformation

The transformations can be defined in the following components:

• DataGenerator, Reformat, and Rollup

These components require a transformation.

You can define the transformation in Java or Clover transformation language.

In these components, different data records can be sent out through different output ports using return values
of the transformation.

In order to send different records to different output ports, you must both create some mapping of the record to
the corresponding output port and return the corresponding integer value.

• Partition, or ClusterPartition

In the Partition, or ClusterPartition component, transformation is optional. It is required only if neither the
Ranges nor the Partition key attributes are defined.

Chapter 42. Common
Properties of Most Components

279

You can define the transformation in Java or Clover transformation language.

In Partition, different data records can be sent out through different output ports using return values of the
transformation.

In ClusterPartition, different data records can also be sent out to different Cluster nodes (through virtual output
ports) using return values of the transformation.

In order to send different records to different output ports or Cluster nodes, you must return corresponding
integer value. But no mapping need to be written in this component since all of the records are sent out
automatically.

• DataIntersection, Denormalizer, Normalizer, Pivot, ApproximativeJoin, ExtHashJoin, ExtMergeJoin,
LookupJoin, DBJoin, and RelationalJoin

These components require a transformation.

You can define the transformation in Java or Clover transformation language.

In Pivot, transformation can be defined setting one of the Key or Group size attributes. Writing it in Java or
CTL is still possible.

• MultiLevelReader and JavaExecute

These components require a transformation.

You can only write it in Java.

• JMSReader and JMSWriter

In these components, transformation is optional.

If any is defined, it must be written in Java.

Java or CTL

Transformations can be written in Java or Clover transformation language (CTL):

• Java can be used in all components.

Transformations executed in Java are faster than those written in CTL. Transformation can always be written
in Java.

• CTL cannot be used in JMSReader, JMSWriter, JavaExecute, and MultiLevelReader.

Nevertheless, CTL is very simple scripting language that can be used in most of the transforming components.
Even people who do not know Java are able to use CTL. CTL does not require any Java knowledge.

Internal or External Definition

Each transformation can be defined as internal or external:

• Internal transformation:

An attribute like Transform, Denormalize, etc. must be defined.

In such a case, the piece of code is written directly in the graph and can be seen in it.

• External transformation:

Chapter 42. Common
Properties of Most Components

280

One of the following two kinds of attributes may be defined:

• Transform URL, Denormalize URL, etc., for both Java and CTL

The code is written in an external file. Also charset of such external file can be specified (Transform source
charset, Denormalize source charset, etc.).

For transformations written in Java, folder with transformation source code need to be specified as source for
Java compiler so that the transformation may be executed successfully.

• Transform class, Denormalize class, etc.

It is a compiled Java class.

The class must be in classpath so that the transformation may be executed successfully.

Here we provide a brief overview:

• Transform, Denormalize, etc.

To define a transformation in the graph itself, you must use the Transform editor (or the Edit value dialog
in case of JMSReader, JMSWriter and JavaExecute components). In them you can define a transformation
located and visible in the graph itself. The languages which can be used for writing transformation have been
mentioned above (Java or CTL).

For more detailed information about the editor or the dialog see Transform Editor (p. 285) or Edit Value
Dialog (p. 70).

• Transform URL, Denormalize URL, etc.

You can also use a transformation defined in some source file outside the graph. To locate the transformation
source file, use the URL File Dialog (p. 69). Each of the mentioned components can use this transformation
definition. This file must contain the definition of the transformation written in either Java or CTL. In this case,
transformation is located outside the graph.

For more detailed information see URL File Dialog (p. 69).

• Transform class, Denormalize class, etc.

In all transforming components, you can use some compiled transformation class. To do that, use the Open
Type wizard. In this case, transformation is located outside the graph.

See Open Type Dialog (p. 71) for more detailed information.

More details about how you should define the transformations can be found in the sections concerning
corresponding components. Both transformation functions (required and optional) of CTL templates and Java
interfaces are described there.

Here we present a brief table with an overview of transformation-allowing components:

Chapter 42. Common
Properties of Most Components

281

Table 42.1. Transformations Overview

Component

T
ra

ns
fo

rm
at

io
n

re
qu

ir
ed

Ja
va

C
T

L

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

C
T

L
 t

em
pl

at
e

Ja
va

 in
te

rf
ac

e

Readers

DataGenerator (p. 350) (p. 353) (p. 356)

JMSReader (p. 375) - (p. 377)

MultiLevelReader (p. 389) - (p. 391)

Writers

JMSWriter (p. 493) - - - (p. 495)

Transformers

Partition (p. 609) (p. 611) (p. 615)

DataIntersection (p. 572) - - (p. 574) (p. 574)

Reformat (p. 622) (p. 623) (p. 624)

Denormalizer (p. 579) - - (p. 581) (p. 587)

Pivot (p. 618) - - (p. 621) (p. 621)

Normalizer (p. 602) - - (p. 603) (p. 608)

MetaPivot (p. 599) - - - -

Rollup (p. 625) (p. 627) (p. 635)

DataSampler (p. 575) - - - -

Joiners

ApproximativeJoin (p. 644) - - (p. 324) (p. 327)

ExtHashJoin (p. 657) - - (p. 324) (p. 327)

ExtMergeJoin (p. 663) - - (p. 324) (p. 327)

LookupJoin (p. 668) - - (p. 324) (p. 327)

DBJoin (p. 654) - - (p. 324) (p. 327)

RelationalJoin (p. 671) - - (p. 324) (p. 327)

Cluster Components

ClusterPartition (p. 751) ??? ???

Others

JavaExecute (p. 793) - - - (p. 794)

Legend

1): If this is yes, each data record is always sent out through all connected output ports.

2): If this is yes, each data record can be sent out through the connected output port whose number is returned by
the transformation. See Return Values of Transformations (p. 282) for more information.

Chapter 42. Common
Properties of Most Components

282

Return Values of Transformations

In those components in which a transformations are defined, some return values can also be defined. They are
integer numbers greater than, equal to or less than 0.

Note

Remember that DBExecute can also return integer values less than 0 in form of SQLExceptions.

• Positive or zero return values

• ALL = Integer.MAX_VALUE

In this case, the record is sent out through all output ports. Remember that this variable does not
need to be declared before it is used. In CTL, ALL equals to 2147483647, in other words, it is
Integer.MAX_VALUE. Both ALL and 2147483647 can be used.

• OK = 0

In this case, the record is sent out through single output port or output port 0 (if component may have multiple
output ports, e.g. Reformat, Rollup, etc. Remember that this variable does not need to be declared before
it is used.

• Any other integer number greater than or equal to 0

In this case, the record is sent out through the output port whose number equals to this return value. These
values can be called Mapping codes.

• Negative return values

• SKIP = - 1

This value serves to define that error has occurred but the incorrect record would be skipped and process
would continue. Remember that this variable does not need to be declared before it is used. Both SKIP and
-1 can be used.

This return value has the same meaning as setting of CONTINUE in the Error actions attribute (which is
deprecated release 3.0 of CloverETL).

• STOP = - 2

This value serves to define that error has occurred but the processing should be stopped. Remember that this
variable does not need to be declared before it is used. Both STOP and -2 can be used.

This return value has the same meaning as setting of STOP in the Error actions attribute (which is deprecated
since release 3.0 of CloverETL).

Important

The same return value is ERROR in CTL1. STOP can be used in CTL2.

• Any integer number less than or equal to -1

These values should be defined by user as described below. Their meaning is fatal error. These values can
be called Error codes. They can be used for defining Error actions (p. 284) in some components (This
attribute along with Error log is deprecated since release 3.0 of CloverETL).

Chapter 42. Common
Properties of Most Components

283

Important

1. Values greater than or equal to 0

Remember that all return value that are greater than or equal to 0 allow to send the same data record
to the specified output ports only in case of DataGenerator, Partition, Reformat, and Rollup.
Do not forget to define the mapping for each such connected output port in DataGenerator,
Reformat, and Rollup. In Partition (and clusterpartition), mapping is performed automatically.
In the other components, this has no meaning. They have either unique output port or their
output ports are strictly defined for explicit outputs. On the other hand, CloverDataReader,
XLSDataReader, and DBFDataReader always send each data record to all of the connected
output ports.

2. Values less than -1

Remember that you do not call corresponding optional OnError() function of CTL template
using these return values. To call any optional <required function>OnError(), you
may use, for example, the following function:

raiseError(string Arg)

It throws an exception which is able to call such <required function>OnError(),
e.g. transformOnError(), etc. Any other exception thrown by any <required
function>() function calls corresponding <required function>OnError(), if this
is defined.

3. Values less than or equal to -2

Remember that if any of the functions that return integer values, returns any value less than
or equal to -2 (including STOP), the getMessage() function is called (if it is defined).

Thus, to allow calling this function, you must add return statement(s) with values less than
or equal to -2 to the functions that return integer. For example, if any of the functions like
transform(), append(), or count(), etc. returns -2, getMessage() is called and the
message is written to Console.

Important

You should also remember that if graph fails with an exception or with returning any negative value
less then -1, no record will be written to the output file.

If you want that previously processed records are written to the output, you need to return SKIP
(-1). This way, such records will be skipped, graph will not fail and at least some records will be
written to the output.

Chapter 42. Common
Properties of Most Components

284

Error Actions and Error Log (deprecated since 3.0)

Important

Since release 3.0 of CloverETL, these attributes are deprecated. They should be replaced with either
SKIP, or STOP return values, if processing should either continue, or stop, respectively.

The Error codes can be used in some components to define the following two attributes:

• Error actions

Any of these values means that a fatal error occurred and the user decides if the process should stop or continue.
To define what should be done with the record, click the Error actions attribute row, click the button that
appears and specify the actions in the following dialog. By clicking the Plus sign button, you add rows to this
dialog pane. Select STOP or CONTINUE in the Error action column. Type an integer number to the Error
code column. Leaving MIN_INT value in the left column means that the action will be applied to all other
integer values that have not been specified explicitly in this dialog.

Figure 42.4. Define Error Actions Dialog

The Error actions attribute has the form of a sequence of assignments (errorCode=someAction)
separated by semicolon from each other.

• The left side can be MIN_INT or any integer number less than 0 specified as some return value in the
transformation definition.

If errorCode is MIN_INT, this means that the specified action will be performed for all values that have
not been specified in the sequence.

• The right side of assignments can be STOP and/or CONTINUE.

If someAction is STOP, when its corresponding errorCode is returned, TransformExceptions is
thrown and graph stops.

If someAction is CONTINUE, when its corresponding errorCode is returned, error message is written
to Console or to the file specified by the Error log attribute and graph continues with the next record.

Example 42.3. Example of the Error Actions Attribute

-1=CONTINUE;-3=CONTINUE;MIN_INT=STOP. In this case, if the transformation returns -1 or -3,
process continues, if it returns any other negative value (including -2), process stops.

• Error log

In this attribute, you can specify whether the error messages should be written on Console or in a specified file.
The file should be defined using URL File Dialog (p. 69).

Chapter 42. Common
Properties of Most Components

285

Transform Editor

Some of the components provide the Transform editor in which you can define the transformation.

When you open the Transform editor, you can see the following tabs: Transformations Source and Regex
tester.

Transformations

The Transformations tab can look like this:

Figure 42.5. Transformations Tab of the Transform Editor

In the Transformations tab, you can define the transformation using a simple mapping of inputs to outputs. First,
you must have both input and output metadata defined and assigned. Only after that can you define the desired
mapping.

After opening the Transform editor, you can see some panes and tabs in it. You can see input fields of all input
ports and their data types in the left pane. Output fields of all output ports and their data types display in the right
pane. You can see the following tabs in the middle bottom area: Functions,Variables, Sequences, Parameters.

If you want to define the mapping, you must select some of the input fields, push down the left mouse button on
it, hold the button, drag to the Transformations pane in the middle and release the button. After that, the selected
field name appears in the Transformations pane. Transformations defined here can be adjusted by a left mouse
click drag and drop or via toolbar buttons in the upper left hand corner.

The following will be the resulting form of the expression: $portnumber.fieldname.

After that, you can do the same with some of the other input fields. If you want to concatenate the values of various
fields (even from different input ports, in case of Joiners and the DataIntersection component), you can transfer
all of the selected fields to the same row in the Transformations pane after which there will appear the expression
that can look like this: $portnumber1.fieldnameA+$portnumber2.fieldnameB.

The port numbers can be the same or different. The portnumber1 and portnumber2 can be 0 or 1 or any
other integer number. (In all components both input and output ports are numbered starting from 0.) This way you
have defined some part of the transformation. You only need to assign these expressions to the output fields.

Chapter 42. Common
Properties of Most Components

286

In order to assign these expressions to the output, you must select any item in the Transformations pane in the
middle, push the left mouse button on it, hold the button, drag to the desired field in right pane and release the
button. The

For metadata with large number of fields, you can use filters to easily find field to use.
output field in the right pane becomes bold.

Tip

To design the transformation in a much easier way, you can simply drag fields from the left hand
pane to the right hand pane. The transformation stub in the central pane will be prepared for you
automatically. Be careful when dropping the field, though. If you drop it onto an output field, you
will create a mapping. If you drop it into a blank space of the right hand pane (between two fields),
you will just copy input metadata to the output. Metadata copying is a feature which works only
within a single port.

Another point, you can see empty little circles on the left from each of these expressions (still in the
Transformations pane). Whenever some mapping is made, the corresponding circle is filled in with blue. This way
you must map all of the expressions in the Transformations pane to the output fields until all of the expressions
in the Transformations pane becomes blue. At that moment, the transformation has been defined.

You can also copy any input field to the output by right-clicking the input item in the left pane and selecting Copy
fields to... and the name of the output metadata:

Figure 42.6. Copying the Input Field to the Output

Remember that if you have not defined the output metadata before defining the transformation, you can define
them even here by copying and renaming the output fields using right-click. However, it is much more simple to
define new metadata prior to defining the transformation. If you defined the output metadata using this Transform
editor, you would be informed that output records are not known and you would have to confirm the transformation
with this error and (after that) specify the delimiters in metadata editor.

Note

Fields of output metadata can be rearranged by a simple drag and drop with the left mouse button.

The resulting simple mapping can look like this:

Chapter 42. Common
Properties of Most Components

287

Figure 42.7. Transformation Definition in CTL (Transformations Tab)

If you select any item in the left, middle or right pane, corresponding items will be connected by lines. See example
below:

Figure 42.8. Mapping of Inputs to Outputs (Connecting Lines)

You can write the desired transformation:

• Into individual rows of the Transformations pane - optionally, drag any function you need from the bottom
Functions tab (the same counts for Variables, Sequences or Parameters) and drop them into the pane. Use
Filter to quickly jump to the function you are looking for.

• By clicking the '...' button which appears after selecting a row inside the Transformations pane. This opens
an editor for defining the transformation. It contains a list of fields, functions and operators and also provides
hints. See below:

Chapter 42. Common
Properties of Most Components

288

Figure 42.9. Editor with Fields and Functions

Transform editor supports wildcards in mapping. If you right click a record or one of its fields, click Map record
to and select a record, you will produce a transformation like this (as observed in the Source tab): $out.0.*
= $in.1.*;, meaning "all output fields of record no 0 are mapped to all input fields of record no 1". In
Transformations, wildcard mapping looks like this:

Figure 42.10. Input Record Mapped to Output Record Using Wildcards

Source

Some of your transformations may be too complicated to define in the Transformations tab. You can use the
Source tab instead.

(Source tabs of individual components are shown in corresponding sections describing these components.)

Below you can see the Source tab with the transformation defined above. It is written in Clover transformation
language (Chapter 66, CTL2 (p. 891)).

Chapter 42. Common
Properties of Most Components

289

Figure 42.11. Transformation Definition in CTL (Source Tab)

In the upper right corner of either tab, there are three buttons: for launching a wizard to create a new Java transform
class (Java Transform Wizard button), for creating a new tab in Graph Editor (Open tab button), and for
converting the defined transformation to Java (Convert to Java button).

If you want to create a new Java transform class, press the Java Transform Wizard button. The following dialog
will open:

Figure 42.12. Java Transform Wizard Dialog

The Source folder field will be mapped to the project ${TRANS_DIR}, for example SimpleExamples/
trans. The value of the Superclass field depends on the target component. It will be set to a suitable abstract
class implementing the required interface. For additional information, see Transformations Overview (p. 281). A
new transform class can be created by entering the Name of the class and, optionally, the containing Package and
pressing the Finish button. The newly created class will be located in the Source folder.

Chapter 42. Common
Properties of Most Components

290

If you click the second button in the upper right corner of the Transform editor, the Open tab button, a new
tab with the CTL source code of the transformation will be opened in the Graph Editor. It will be confirmed
by the following message:

Figure 42.13. Confirmation Message

The tab can look like this:

Figure 42.14. Transformation Definition in CTL (Transform Tab of the Graph Editor)

If you switch to this tab, you can view the declared variables and functions in the Outline pane. (The tab can be
closed by clicking the red cross in the upper right corner of the tab.)

Chapter 42. Common
Properties of Most Components

291

The Outline pane can look like this:

Figure 42.15. Outline Pane Displaying Variables and Functions

Note that you can also use some content assist by pressing Ctrl+Space.

If you press these two keys inside any of the expressions, the help advises what should be written to define the
transformation.

Figure 42.16. Content Assist (Record and Field Names)

If you press these two keys outside any of the expressions, the help gives a list of functions that can be used to
define the transformation.

Chapter 42. Common
Properties of Most Components

292

Figure 42.17. Content Assist (List of CTL Functions)

Tip

Press Shift+Space to bring the Available CTL functions dialog.

If you have some error in your definition, the line will be highlighted by red circle with a white cross in it and at
the lower left corner there will be a more detailed information about it.

Figure 42.18. Error in Transformation

If you want to convert the transformation code into the Java language, click the Convert to Java button and select
whether you want to use clover preprocessor macros or not.

Figure 42.19. Converting Transformation to Java

After selecting and clicking OK, the transformation converts into the following form:

Chapter 42. Common
Properties of Most Components

293

Figure 42.20. Transformation Definition in Java

Remember also that you can define your own error messages by defining the last function: getMessage(). It
returns strings that are written to console. More details about transformations in each component can be found in
the sections in which these components are desribed.

Important

Remember that the getMessage() function is only called from within functions that return
integer data type.

To allow calling this function, you must add return statement(s) with values less than or equal to
-2 to the functions that return integer. For example, if any of the functions like transform(),
append(), or count(), etc. returns -2, getMessage() is called and the message is written
to Console.

Regex Tester

This is the last tab of the Transform Editor and it is described here: Tabs Pane (p. 43).

Chapter 42. Common
Properties of Most Components

294

Common Java Interfaces

Following are the methods of the common Transform interface:

• void setNode(Node node)

Associates a graph Node with this transform.

• Node getNode()

return a graph Node associated with this transform, or null if no graph node is associated

• TransformationGraph getGraph()

Returns a TransformationGraph associated with this transform, or null if no graph is associated.

• void preExecute()

Called during each graph run before the transform is executed. May be used to allocate and initialize
resources required by the transform. All resources allocated within this method should be released by the
postExecute() method.

• void postExecute(TransactionMethod transactionMethod)

Called during each graph run after the entire transform was executed. Should be used to free any resources
allocated within the preExecute() method.

• String getMessage()

Called to report any user-defined error message if an error occurred during the transform and the transform
returned value less than or equal to -2. It is called when either append(), count(), generate(),
getOutputPort(), transform(), or updateTansform() or any of their OnError() counterparts
returns value less than or equal to -2.

• void finished() (deprecated)

Called at the end of the transform after all input data records were processed.

• void reset() (deprecated)

Resets the transform to the initial state (for another execution). This method may be called only if the transform
was successfully initialized before.

295

Chapter 43. Common Properties of Readers
Readers are the initial components of graphs. They read data from data sources and send it to other graph
components. This is the reason why each reader must have at least one output port through which the data flows out.
Readers can read data from files or databases located on disk. They can also receive data through some connection
using FTP, LDAP, or JMS. Some Readers can log the information about errors. Among the readers, there is also
the Data Generator component that generates data according to some specified pattern. And, some Readers have
an optional input port through which they can also receive data. They can also read data from dictionary.

Remember that you can see some part of input data when you right-click a reader and select the View data option.
After that, you will be prompted with the same View data dialog as when debugging the edges. For more details
see Viewing Debug Data (p. 106). This dialog allows you to view the read data (it can even be used before graph
has been run).

Here we present a brief overview of links to these options:

• Some examples of the File URL attribute for reading from local and remote files, through proxy, from console,
input port and dictionary:

Supported File URL Formats for Readers (p. 296)

• Viewing Data on Readers (p. 300)

• Input Port Reading (p. 302)

• Incremental Reading (p. 303)

• Selecting Input Records (p. 304)

• Data Policy (p. 305)

• XML Features (p. 306)

• As has been shown in Defining Transformations (p. 278), some Readers allow that a transformation can be
or must be defined in them. We also provide some examples of attributes for reading from local and remote
files, through proxy, from console, input port and dictionary. For information about transformation templates
for transformations written in CTL see:

CTL Templates for Readers (p. 306)

• As has been shown in Defining Transformations (p. 278), some Readers allow that a transformation can be or
must be defined in them. We also provide some examples of attribute for reading from local and remote files,
through proxy, from console, input port and dictionary. For information about transformation interfaces that
must be implemented in transformations written in Java see:

Java Interfaces for Readers (p. 306)

Here we present an overview of all Readers:

Chapter 43. Common
Properties of Readers

296

Table 43.1. Readers Comparison

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

DataGenerator (p. 350) none 0 1-n yes3)

UniversalDataReader (p. 410) flat file 0-1 1-2

ParallelReader (p. 393) flat file 0 1

CloverDataReader (p. 340) clover
binary
file

0 1-n

SpreadsheetDataReader (p. 400) XLS(X)
file

0-1 1-2

XLSDataReader (p. 415) XLS(X)
file

0-1 1-n

DBFDataReader (p. 358) dBase file 0-1 1-n

DBInputTable (p. 360) database 0 1-n

XMLExtract (p. 419) XML file 0-1 1-n

XMLXPathReader (p. 445) XML file 0-1 1-n

JMSReader (p. 375) jms
messages

0 1 - -

EmailReader (p. 364) email
messages

0 1 - -

LDAPReader (p. 384) LDAP
directory
tree

0 1-n

MultiLevelReader (p. 389) flat file 1 1-n

ComplexDataReader (p. 342) flat file 1 1-n

QuickBaseRecordReader (p. 396) QuickBase0-1 1-2

QuickBaseQueryReader (p. 398) QuickBase0 1

LotusReader (p. 387) Lotus
Notes

0 1

HadoopReader (p. 373) Hadoop
sequence
file

0 1

Legend

1) Component sends each data record to all of the connected output ports.

2) Component sends different data records to different output ports using return values of the transformation
(DataGenerator and MultiLevelReader). See Return Values of Transformations (p. 282) for more information.
XMLExtract and XMLXPathReader send data to ports as defined in their Mapping or Mapping URL attribute.

Supported File URL Formats for Readers
The File URL attribute may be defined using the URL File Dialog (p. 69).

Chapter 43. Common
Properties of Readers

297

Important

To ensure graph portability, forward slashes must be used when defining the path in URLs (even
on Microsoft Windows).

Here we present some examples of possible URL for Readers:

Reading of Local Files

• /path/filename.txt

Reads specified file.

• /path1/filename1.txt;/path2/filename2.txt

Reads two specified files.

• /path/filename?.txt

Reads all files satisfying the mask.

• /path/*

Reads all files in specified directory.

• zip:(/path/file.zip)

Reads the first file compressed in the file.zip file.

• zip:(/path/file.zip)#innerfolder/filename.txt

Reads specified file compressed in the file.zip file.

• gzip:(/path/file.gz)

Reads the first file compressed in the file.gz file.

• tar:(/path/file.tar)#innerfolder/filename.txt

Reads specified file archived in the file.tar file.

• zip:(/path/file??.zip)#innerfolder?/filename.*

Reads all files from the compressed zipped file(s) that satisfy the specified mask. Wild cards (? and *) may be
used in the compressed file names, inner folder and inner file names.

• tar:(/path/file????.tar)#innerfolder??/filename*.txt

Reads all files from the archive file(s) that satisfy the specified mask. Wild cards (? and *) may be used in the
compressed file names, inner folder and inner file names.

• gzip:(/path/file*.gz)

Reads all files each of them has been gzipped into the file that satisfy the specified mask. Wild cards may be
used in the compressed file names.

• tar:(gzip:/path/file.tar.gz)#innerfolder/filename.txt

Reads specified file compressed in the file.tar.gz file. Note that although CloverETL can read data from
.tar file, writing to .tar files is not supported.

• tar:(gzip:/path/file??.tar.gz)#innerfolder?/filename*.txt

Chapter 43. Common
Properties of Readers

298

Reads all files from the gzipped tar archive file(s) that satisfy the specified mask. Wild cards (? and *) may
be used in the compressed file names, inner folder and inner file names.

• zip:(zip:(/path/name?.zip)#innerfolder/file.zip)#innermostfolder?/
filename*.txt

Reads all files satisfying the file mask from all paths satisfying the path mask from all compressed files satisfying
the specified zip mask. Wild cards (? and *) may be used in the outer compressed files, innermost folder and
innermost file names. They cannot be used in the inner folder and inner zip file names.

Reading of Remote Files

• ftp://username:password@server/path/filename.txt

Reads specified filename.txt file on remote server connected via ftp protocol using username and
password.

• sftp://username:password@server/path/filename.txt

Reads specified filename.txt file on remote server connected via ftp protocol using username and
password.

• http://server/path/filename.txt

Reads specified filename.txt file on remote server connected via http protocol.

• https://server/path/filename.txt

Reads specified filename.txt file on remote server connected via https protocol.

• zip:(ftp://username:password@server/path/file.zip)#innerfolder/
filename.txt

Reads specified filename.txt file compressed in the file.zip file on remote server connected via ftp
protocol using username and password.

• zip:(http://server/path/file.zip)#innerfolder/filename.txt

Reads specified filename.txt file compressed in the file.zip file on remote server connected via http
protocol.

• tar:(ftp://username:password@server/path/file.tar)#innerfolder/
filename.txt

Reads specified filename.txt file archived in the file.tar file on remote server connected via ftp
protocol using username and password.

• zip:(zip:(ftp://username:password@server/path/name.zip)#innerfolder/
file.zip)#innermostfolder/filename.txt

Reads specified filename.txt file compressed in the file.zip file that is also compressed in the
name.zip file on remote server connected via ftp protocol using username and password.

• gzip:(http://server/path/file.gz)

Reads the first file compressed in the file.gz file on remote server connected via http protocol.

• http://server/filename*.dat

Reads all files from WebDAV server which satisfy specified mask (only * is supported.)

Chapter 43. Common
Properties of Readers

299

• http://access_key_id:secret_access_key@bucketname.s3.amazonaws.com/
filename*.out

Reads all files which satisfy specified mask (only * is supported) from Amazon S3 web storage service from
given bucket using access key ID and secret access key.

• hdfs://CONN_ID/path/filename.dat

Reads a file from the Hadoop distributed file system (HDFS). To which HDFS NameNode to connect to is
defined in a Hadoop connection (p. 191) with ID CONN_ID. This example file URL reads a file with /path/
filename.dat absolute HDFS path.

Reading from Input Port

• port:$0.FieldName:discrete

Data from each record field selected for input port reading are read as a single input file.

• port:$0.FieldName:source

URL addresses, i.e., values of field selected for input port reading, are loaded in and parsed.

• port:$0.FieldName:stream

Input port field values are concatenated and processed as an input file(s); null values are replaced by the eof.

Reading from Console

• -

Reads data from stdin after start of the graph. When you want to stop reading, press Ctrl+Z.

Using Proxy in Readers

• http:(direct:)//seznam.cz

Without proxy.

• http:(proxy://user:password@212.93.193.82:443)//seznam.cz

Proxy setting for http protocol.

• ftp:(proxy://user:password@proxyserver:1234)//seznam.cz

Proxy setting for ftp protocol.

• sftp:(proxy://66.11.122.193:443)//user:password@server/path/file.dat

Proxy setting for sftp protocol.

Reading from Dictionary

• dict:keyName:discrete1)

Reads data from dictionary.

• dict:keyName:source1)

Chapter 43. Common
Properties of Readers

300

Reads data from dictionary in the same way like the discrete processing type, but expects that the dictionary
values are input file URLs. The data from this input passes to the Reader.

Legend:

1): Reader finds out the type of source value from the dictionary and creates
readable channel for the parser. Reader supports following type of sources: InputStream,
byte[], ReadableByteChannel, CharSequence, CharSequence[], List<CharSequence>,
List<byte[]>, ByteArrayOutputStream.

Sandbox Resource as Data Source

A sandbox resource, whether it is a shared, local or partitioned sandbox, is specified in the graph under the fileURL
attributes as a so called sandbox URL like this:

sandbox://data/path/to/file/file.dat

where "data" is code for sandbox and "path/to/file/file.dat" is the path to the resource from the sandbox root. URL
is evaluated by CloverETL Server during graph execution and a component (reader or writer) obtains the opened
stream from the server. This may be a stream to a local file or to some other remote resource. Thus, a graph does
not have to run on the node which has local access to the resource. There may be more sandbox resources used in
the graph and each of them may be on a different node. In such cases, CloverETL Server would choose the node
with the most local resources to minimalize remote streams.

The sandbox URL has a specific use for parallel data processing. When the sandbox URL with the resource
in a partitioned sandbox is used, that part of the graph/phase runs in parallel, according to the node allocation
specified by the list of partitioned sandbox locations. Thus, each worker has its own local sandbox resource.
CloverETL Server evaluates the sandbox URL on each worker and provides an open stream to a local resource
to the component.

Viewing Data on Readers

You can view data on Readers using the context menu. To do that, right-click the desired component and select
View data from the context menu.

Figure 43.1. Viewing Data in Components

Chapter 43. Common
Properties of Readers

301

After that, you can choose whether you want to see data as a plain text or grid (a preview of parsed data). If you
select the Plain text option, you can select Charset, but you cannot select any filter expression. You can view
data from components at the same time. To differ between results window title provides info about viewing edge
in format GRAPH.name:COMPONENT.name.

Figure 43.2. Viewing Data as Plain Text

On the other hand, if you select the Grid option, you can select Filter expression, but no Charset.

Figure 43.3. Viewing Data as Grid

The result can be seen as follows in Plain text mode:

Figure 43.4. Plain Text Data Viewing

Or in the Grid mode, it can be like the following:

Chapter 43. Common
Properties of Readers

302

Figure 43.5. Grid Data Viewing

Note

If there are too many records to be displayed, you will see the Load more... blue text below the
view. Clicking it, a new chunk of records is added behind the currently displayed ones. In Plain
View, you can also scroll down to the bottom of the view (alternatively, by pressing Page Down)
to have the records loaded.

The same can be done in some of the Writers. See Viewing Data on Writers (p. 313). However, only after
the output file has been created.

Input Port Reading

Some Readers allow to read data from the optional input port.

Input port reading is supported by the following Readers:

• UniversalDataReader

• XLSDataReader

• SpreadsheetDataReader

• DBFDataReader

• XMLExtract

• XMLXPathReader

• MultiLevelReader (Commercial Component)

Important

Remember that port reading can also be used by DBExecute for receiving SQL commands. Query
URL will be as follows: port:$0.fieldName:discrete. Also SQL command can be read from a file.
Its name, including path, is then passed to DBExecute from input port and the Query URL attribute
should be the following: port:$0.fieldName:source.

If you connect the optional input port of any of these Readers to an edge, you must also connect the other side
of this edge to some data source. To define the protocol for field mapping, a field from where you want to read

Chapter 43. Common
Properties of Readers

303

data must be set in the File URL attribute of the Reader. The type of the FieldName input field can only be
string, byte, or cbyte as defined in input edge metadata.

The protocol has the syntax port:$0.FieldName[:processingType].

Here processingType is optional and defines if the data is processed as plain data or url addresses. It can be
source, discrete, or stream. If not set explicitly, discrete is applied by default.

To define the attributes of input port reading, URL File Dialog (p. 69) can be used.

When graph runs, data is read from the original data source (according to the metadata of the edge connected to
the optional input port of the Readers) and received by the Reader through its optional input port. Each record
is read independently of the other records. The specified field of each one is processed by the Reader according
to the output metadata.

• discrete

Each data record field from input port represents one particular data source.

• source

Each data record field from input port represents an URL to be load in and parsed.

• stream

All data fields from input port are concatenated and processed as one input file. If the null value of this field is
met, it is replaced by the eof. Following data record fields are parsed as another input file in the same way, i.e.,
until the null value is met. The Reader starts parsing data as soon as first bytes come by the port and process
it progressively until eof comes. See Output Port Writing (p. 315) for more information about writing with
stream processing type.

Incremental Reading

Some Readers allow to use so called incremental reading. If the graph reads the same input file or a collection of
files several times, it may be interested only in those records or files, that have been added since the last graph run.

In the following four Readers, you can set the Incremental file and Incremental key attributes. The Incremental
key is a string that holds the information about read records/files. This key is stored in the Incremental file. This
way, the component reads only those records or files that have not been marked in the Incremental file.

The Readers allowing incremental reading are as follows:

• UniversalDataReader

• XLSDataReader

• DBFDataReader

The component which reads data from databases performs this incremental reading in a different way.

• DBInputTable

Unlike the other incremental readers, in this database component, more database columns can be evaluated and
used as key fields. Incremental key is a sequence of the following individual expression separated by semicolon:
keyname=FUNCTIONNAME(db_field)[!InitialValue]. For example, you can have the following
Incremental key: key01=MAX(EmployeeID);key02=FIRST(CustomerID)!20. The functions that
can be selected are the following four: FIRST, LAST, MIN, MAX. At the same time, when you define an
Incremental key, you also need to add these key parts to the Query. In the query, a part of the "where" sentence
will appear, for example, something like this: where db_field1 > #key01 and db_field2 < #key02
. This way, you can limit which records will be read next time. It depends on the values of their db_field1

Chapter 43. Common
Properties of Readers

304

and db_field2 fields. Only the records that satisfy the condition specified by the query will be read. These
key fields values are stored in the Incremental file. To define Incremental key, click this attribute row and, by
clicking the Plus or Minus buttons in the Define incremental key dialog, add or remove key names, and select
db field names and function names. Each one of the last two is to be selected from combo list of possible values.

Note

Since the version 2.8.1 of CloverETL Designer, you can also define Initial value for each
key. This way, non existing Incremental file can be created with the specified values.

Selecting Input Records

When you set up Readers, you may want to limit the records that should be read.

Some Readers allow to read more files at the same time. In these Readers, you can define the records that should
be read for each input file separately and for all of the input files in total.

In these Readers, you can define the Number of skipped records and/or Max number of records attributes.
The former attribute specifies how many records should be skipped, the latter defines how many records should be
read. Remember that these records are skipped and/or read continuously throughout all input files. These records
are skipped and/or read independently on the values of the two similar attributes mentioned below.

In these components you can also specify how many records should be skipped and/or read from each input file.
To do this, set up the following two attributes: Number of skipped records per source and/or Max number of
records per source.

Thus, total number of records that are skipped equals to Number of skipped records per source multiplicated
by the number of source files plus Number of skipped records.

And total number of records that are read equals to Max number of records per source multiplicated by the
number of source files plus Max number of records.

The Readers that allow limiting the records for both individual input file and all input files in total are the
following:

• UniversalDataReader

• XLSDataReader

• SpreadsheetDataReader

• DBFDataReader

• MultiLevelReader (Commercial Component)

Unlike the components mentioned above, CloverDataReader only allows you to limit the total number of records
from all input files:

• CloverDataReader only allows you to limit the total number of records by using the Number of skipped
records and/or Max number of records attributes as shown in previous components.

The following two Readers allow you to limit the total number of records by using the Number of skipped
mappings and/or Max number of mappings attributes. What is called mapping here, is a subtree which should
be mapped and sent out through the output ports.

• XMLExtract. In addition to the mentioned above, this component also allows to use the skipRows and/or
the numRecords attributes of individual XML elements.

• XMLXPathReader. In addition to the mentioned above, this component allows to use XPath language to limit
the number of mapped XML structures.

Chapter 43. Common
Properties of Readers

305

The following Readers allow limiting the numbers in a different way:

• JMSReader allows you to limit the number of messages that are received and processed by using the Max msg
count attribute and/or the false return value of endOfInput() method of the component interface.

• QuickBaseRecordReader (Commercial Component). This component uses the Records list attribute to
specify the records that should be read.

• QuickBaseQueryReader (Commercial Component). This component can use the Query or the Options
attributes to limit the number of records.

• DBInputTable. Also this component can use the SQL query or the Query URL attribute to limit the number
of records.

The following Readers do not allow limiting the number of records that should be read (they read them all):

• LDAPReader

• ParallelReader (Commercial Component)

Data Policy

Data policy can be set in some Readers. Here we provide their list:

• UniversalDataReader

• ParallelReader (Commercial Component)

• XLSDataReader

• DBFDataReader

• DBInputTable

• XMLXPathReader

• MultiLevelReader (Commercial Component)

• SpreadsheetDataReader (Commercial Component)

When you want to configure these components, you must first decide what should be done when incorrect or
incomplete records are parsed. This can be specified with the help of this Data Policy attribute. You have three
options according to what data policy you want to select:

• Strict. This data policy is set by default. It means that data parsing stops if a record field with an incorrect value
or format is read. Next processing is aborted.

• Controlled. This data policy means that every error is logged, but incorrect records are skipped and
data parsing continues. Generally, incorrect records with error information are logged into stdout. Only
UniversalDataReader and SpreadsheetDataReader enable to sent them out through the optional second port.

Important

If you set the Data policy attribute to controlled in UniversalDataReader, you need to select
the components that should process the information or maybe you only want to write it. You must
select an edge and connect the error port of the UniversalDataReader (in which the data policy
attribute is set to controlled) with the input port of the selected writer if you only want to write
it or with the input port other processing component. And you must assign metadata to this edge.
The metadata must be created by hand. They consist of 4 fields: number of incorrect
record, number of incorrect field, incorrect record, error message. The

Chapter 43. Common
Properties of Readers

306

first two fields are of integer data type, the other two are strings. See Creating Metadata
by User (p. 149) for detailed information about how metadata should be created by user.

See SpreadsheetDataReader documentation for its format of error port metadata.

• Lenient. This data policy means that incorrect records are only skipped and data parsing continues.

XML Features

In XMLExtract (p. 419) and XMLXPathReader (p. 445) you can configure the validation your input XML
files by specifying the Xml features attribute. The Xml features configure validation of the XML in more detail by
enabling or disabling specific checks, see Parser Features. It is expressed as a sequence of individual expressions
of one of the following form: nameM:=true or nameN:=false, where each nameM is an XML feature that
should be validated. These expressions are separated from each other by semicolon.

The options for validation are the following:

• Custom parser setting

• Default parser setting

• No validations

• All validations

You can define this attribute using the following dialog:

Figure 43.6. XML Features Dialog

In this dialog, you can add features with the help of Plus button, select their true or false values, etc.

CTL Templates for Readers

• DataGenerator (p. 350) requires a transformation which can be written in both CTL and Java.

See CTL Templates for DataGenerator (p. 353) for more information about the transformation template.

Remember that this component allows to send each record through the connected output port whose number
equals the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must
be defined for such port.

Java Interfaces for Readers

• DataGenerator (p. 350) requires a transformation which can be written in both CTL and Java.

http://xerces.apache.org/xerces2-j/features.html

Chapter 43. Common
Properties of Readers

307

See Java Interfaces for DataGenerator (p. 356) for more information about the interface.

Remember that this component allows sending of each record through the connected output port whose number
equals the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must
be defined for such port.

• JMSReader (p. 375) allows optionally a transformation which can be written in Java only.

See Java Interfaces for JMSReader (p. 377) for more information about the interface.

Remember that this component sends each record through all of the connected output ports. Mapping does not
need to be defined.

• MultiLevelReader (p. 389) requires a transformation which can only be written in Java.

See Java Interfaces for MultiLevelReader (p. 391) for more information.

308

Chapter 44. Common Properties of Writers
Writers are the final components of the transformation graph. Each writer must have at least one input port through
which the data flows to this graph component from some of the others. The writers serve to write data to files or
database tables located on disk or to send data using some FTP, LDAP or JMS connection. Among the writers,
there is also the Trash component which discards all of the records it receives (unless it is set to store them in
a debug file).

In all writers it is important to decide whether you want either to append data to the existing file or sheet or database
table (Append attribute for files, for example), or to replace the existing file or sheet or database table by a new
one. The Append attribute is set to false by default. That means "do not append data, replace it".

It is important to know that you can also write data to one file or one database table by more writers of the same
graph, but in such a case you should write data by different writers in different phases.

Remember that (in case of most writers) you can see some part of resulting data when you right-click a writer and
select the View data option. After that, you will be prompted with the same View data dialog as when debugging
the edges. For more details see Viewing Debug Data (p. 106). This dialog allows you to view the written data (it
can only be used after graph has already been run).

Here we present a brief overview of links to these options:

• Some examples of File URL attribute for writing to local and remote files, through proxy, to console, output
port and dictionary.

Supported File URL Formats for Writers (p. 309)

• Viewing Data on Writers (p. 313)

• Output Port Writing (p. 315)

• How and Where Data Should Be Written (p. 315)

• Selecting Output Records (p. 316)

• Partitioning Output into Different Output Files (p. 317)

• As has been shown in Defining Transformations (p. 278), some Writers allow that a transformation may
be or must be defined in them. For information about transformation interfaces that must be implemented in
transformations written in Java see:

Java Interfaces for Writers (p. 318)

Here we present an overview of all Writers:

Chapter 44. Common
Properties of Writers

309

Table 44.1. Writers Comparison

Component

D
at

a
ou

tp
ut

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

Trash (p. 540) none 1 0

UniversalDataWriter (p. 542) flat file 1 0-1

CloverDataWriter (p. 454) Clover
binary file

1 0

SpreadsheetDataWriter (p. 522) XLS(X) file 1 0-1

XLSDataWriter (p. 545) XLS(X) file 1 0-1

StructuredDataWriter (p. 536) structured
flat file

1-3 0-1

EmailSender (p. 473) e-mails 1 0-2

DBOutputTable (p. 465) database 1 0-2

DB2DataWriter (p. 456) database 0-1 0-1

InfobrightDataWriter (p. 479) database 1 0-1

InformixDataWriter (p. 481) database 0-1 0-1

MSSQLDataWriter (p. 505) database 0-1 0-1

MySQLDataWriter (p. 508) database 0-1 0-1

OracleDataWriter (p. 511) database 0-1 0-1

PostgreSQLDataWriter (p. 515) database 0-1 0

XMLWriter (p. 548) XML file 1-n 0-1

JMSWriter (p. 493) jms
messages

1 0

LDAPWriter (p. 501) LDAP
directory tree

1 0-1

QuickBaseRecordWriter (p. 520) QuickBase 1 0-1

QuickBaseImportCSV (p. 518) QuickBase 1 0-2

LotusWriter (p. 503) Lotus Notes 1 0-1

DBFDataWriter (p. 462) .dbf file 1 0

HadoopWriter (p. 477) Hadoop
sequence file

1 0

Supported File URL Formats for Writers

The File URL attribute may be defined using the URL File Dialog (p. 69).

The URL shown below can also contain placeholders – dollar sign or hash sign.

Important

You need to differentiate between dollar sign and hash sign usage.

Chapter 44. Common
Properties of Writers

310

• Dollar sign should be used when each of multiple output files contains only a specified number
of records based on the Records per file attribute.

• Hash sign should be used when each of multiple output files only contains records correspoding
to the value of specified Partition key.

Note

Hash signs in URL examples in this section serve to separate a compressed file (zip,
gz) from its contents. These are not placeholders!

Important

To ensure graph portability, forward slashes must be used when defining the path in URLs (even
on Microsoft Windows).

Here we present some examples of possible URL for Writers:

Writing to Local Files

• /path/filename.out

Writes specified file on disk.

• /path1/filename1.out;/path2/filename2.out

Writes two specified files on disk.

• /path/filename$.out

Writes some number of files on disk. The dollar sign represents one digit. Thus, the output files can have the
names from filename0.out to filename9.out. The dollar sign is used when Records per file is set.

• /path/filename$$.out

Writes some number of files on disk. Two dollar signs represent two digits. Thus, the output files can have the
names from filename00.out to filename99.out. The dollar sign is used when Records per file is set.

• zip:(/path/file$.zip)

Writes some number of compressed files on disk. The dollar sign represents one digit. Thus, the compressed
output files can have the names from file0.zip to file9.zip. The dollar sign is used when Records
per file is set.

• zip:(/path/file$.zip)#innerfolder/filename.out

Writes specified file inside the compressed files on disk. The dollar sign represents one digit. Thus, the
compressed output files containing the specified filename.out file can have the names from file0.zip to
file9.zip. The dollar sign is used when Records per file is set.

• gzip:(/path/file$.gz)

Writes some number of compressed files on disk. The dollar sign represents one digit. Thus, the compressed
output files can have the names from file0.gz to file9.gz. The dollar sign is used when Records per
file is set.

Note

Although CloverETL can read data from a .tar file, writing to a .tar file is not supported.

Chapter 44. Common
Properties of Writers

311

Writing to Remote Files

• ftp://user:password@server/path/filename.out

Writes specified filename.out file on remote server connected via ftp protocol using username and
password.

• sftp://user:password@server/path/filename.out

Writes specified filename.out file on remote server connected via sftp protocol using username and
password.

• zip:(ftp://username:password@server/path/file.zip)#innerfolder/
filename.txt

Writes specified filename.txt file compressed in the file.zip file on remote server connected via ftp
protocol using username and password.

• zip:(ftp://username:password@server/path/file.zip)#innerfolder/
filename.txt

Writes specified filename.txt file compressed in the file.zip file on remote server connected via ftp
protocol.

• zip:(zip:(ftp://username:password@server/path/name.zip)#innerfolder/
file.zip)#innermostfolder/filename.txt

Writes specified filename.txt file compressed in the file.zip file that is also compressed in the
name.zip file on remote server connected via ftp protocol using username and password.

• gzip:(ftp://username:password@server/path/file.gz)

Writes the first file compressed in the file.gz file on remote server connected via ftp protocol.

• http://username:password@server/filename.out

Writes specified filename.out file on remote server connected via WebDAV protocol using username and
password.

• http://access_key_id:secret_access_key@bucketname.s3.amazonaws.com/
filename.out

Writes specified filename.out file on Amazon S3 web storage service to the bucket bucketname using
the access_key_id as the of ID of access key and secret_access_key as the personal access key.

• hdfs://CONN_ID/path/filename.dat

Writes a file on the Hadoop distributed file system (HDFS). To which HDFS NameNode to connect to is
defined in a Hadoop connection (p. 191) with ID CONN_ID. This example file URL writes a file with /path/
filename.dat absolute HDFS path.

Writing to Output Port

• port:$0.FieldName:discrete

If this URL is used, output port of the Writer must be connected to another component. Output metadata must
contain a FieldName of one of the following data types: string, byte or cbyte. Each data record that
is received by the Writer through the input port is processed according to the input metadata, sent out through
the optional output port, and written as the value of the specified field of the metadata of the output edge. Next
records are parsed in the same way as described here.

Chapter 44. Common
Properties of Writers

312

Writing to Console

• -

Writes data to stdout.

Using Proxy in Writers

• http:(direct:)//seznam.cz

Without proxy.

• http:(proxy://user:password@212.93.193.82:443)//seznam.cz

Proxy setting for http protocol.

• ftp:(proxy://user:password@proxyserver:1234)//seznam.cz

Proxy setting for ftp protocol.

• ftp:(proxy://proxyserver:443)//server/path/file.dat

Proxy setting for ftp protocol.

• sftp:(proxy://66.11.122.193:443)//user:password@server/path/file.dat

Proxy setting for sftp protocol.

Writing to Dictionary

• dict:keyName:source

Writes data to a file URL specified in dictionary. Target file URL is retrieved from specified dictionary entry.

• dict:keyName:discrete1)

Writes data to dictionary. Creates ArrayList<byte[]>

• dict:keyName:stream2)

Writes data to dictionary. Creates WritableByteChannel

Legend:

1): The discrete processing type uses byte array for storing data.

2): The stream processing type uses an output stream that must be created before running a graph (from Java
code).

Sandbox Resource as Data Source

A sandbox resource, whether it is a shared, local or partitioned sandbox, is specified in the graph under the fileURL
attributes as a so called sandbox URL like this:

sandbox://data/path/to/file/file.dat

where "data" is code for sandbox and "path/to/file/file.dat" is the path to the resource from the sandbox root. URL
is evaluated by CloverETL Server during graph execution and a component (reader or writer) obtains the opened

Chapter 44. Common
Properties of Writers

313

stream from the server. This may be a stream to a local file or to some other remote resource. Thus, a graph does
not have to run on the node which has local access to the resource. There may be more sandbox resources used in
the graph and each of them may be on a different node. In such cases, CloverETL Server would choose the node
with the most local resources to minimalize remote streams.

The sandbox URL has a specific use for parallel data processing. When the sandbox URL with the resource
in a partitioned sandbox is used, that part of the graph/phase runs in parallel, according to the node allocation
specified by the list of partitioned sandbox locations. Thus, each worker has its own local sandbox resource.
CloverETL Server evaluates the sandbox URL on each worker and provides an open stream to a local resource
to the component.

Viewing Data on Writers

After an output file has been created, you can view its data on Writers using the context menu. To do that, right-
click the desired component and select View data from the context menu.

Figure 44.1. Viewing Data on Components

Now you need to choose whether you want to see data as plain text or grid. If you select the Plain
text option, you can select Charset, but you cannot select any filter expression. You can view data from
components at the same time. To differ between results window title provides info about viewing edge in format
GRAPH.name:COMPONENT.name.

Figure 44.2. Viewing Data as Plain Text

Chapter 44. Common
Properties of Writers

314

On the other hand, if you select the Grid option, you can select Filter expression, but no Charset.

Figure 44.3. Viewing Data as Grid

The result can be as follows in the Plain text mode:

Figure 44.4. Plain Text Data Viewing

Or in the Grid mode, it can be like the following:

Figure 44.5. Grid Data Viewing

Note

If there are too many records to be displayed, you will see the Load more... blue text below the
view. Clicking it, a new chunk of records is added behind the currently displayed ones. In Plain

Chapter 44. Common
Properties of Writers

315

View, you can also scroll down to the bottom of the view (alternatively, by pressing Page Down)
to have the records loaded.

The same can be done in some of the Readers. See Viewing Data on Readers (p. 300).

Output Port Writing

Some Writers allow to write data to the optional output port.

Here we provide the list of Writers allowing output port writing:

• UniversalDataWriter

• XLSDataWriter

• XMLWriter

• StructuredDataWriter

The attributes for the output port writing in these components may be defined using the URL File Dialog (p. 69).

If you connect the optional output port of any of these Writers to an edge, you must also connect the other side
of this edge to another component. Metadata of this edge must contain the specified FieldName of string,
byte or cbyte data type.

Then you must set the File URL attribute of such Writer to port:$0.FieldName[:processingType].

Here processingType is optional and can be set to one of the following: discrete or stream. If it is not
set explicitly, it is discrete by default.

When a graph runs, data is read through the input according to the input metadata, processed by the Writer
according to the specified processing type and sent subsequently to the other component through the optional
output port of the Writer.

• discrete

Each data record that is received through the input port is processed according to the input metadata, sent out
through the optional output port, and written as the value of the specified field of the metadata of the output
edge. Next records are parsed in the same way as described here.

• stream

Each data record that is received through the input port is processed in the same way as in case of discrete
processing type, but another field containing null value is added to the end of the output. Such null values
mean eof when multiple files are read again from input port using stream processing type. See Input Port
Reading (p. 302) for more information about reading with stream processing type.

How and Where Data Should Be Written

When you specify some File URL, you also need to decide how the following attributes should be set:

• Append

It is very important to decide whether the records should be appended to the existing file (Append) or whether
the file should be replaced. This attribute is set to false by default ("do not append, replace the file").

You can also append data to files in local (non-remote) zip archives. In server environment this means
use_local_context_url has to be set to true.

This attribute is available in the following Writers:

http://doc.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.server.docs/docs/graph-config-properties.html

Chapter 44. Common
Properties of Writers

316

• Trash (the Debug append attribute)

• UniversalDataWriter

• CloverDataWriter

• XLSDataWriter (the Append to the sheet attribute)

• StructuredDataWriter

• XMLWriter

• Create directories

If you specify some directory in the File URL that still does not exist, you must set the Create directories
attribute to true. Such directory will be created. Otherwise, the graph would fail. Remember that the default
value of Create directories is false!

This attribute is available in the following Writers:

• Trash

• UniversalDataWriter

• CloverDataWriter

• XLSDataWriter

• StructuredDataWriter

• XMLWriter

• Exclude fields

You can use this attribute to exclude the values of some fields from writing. This attribute should be created
using a key wizard and it is used to specify the fields that should not be written to the output. Its form is a
sequence of field names separated by semicolon. For example, if you part your output into more files using
Partition key, you can specify the same fields whose values would not be written to the output files.

• UniversalDataWriter

• XLSDataWriter

Selecting Output Records

When you set up Writers, you may want to limit the records that should be written.

The following Writers allow you to limit the number of written records by using the Number of skipped records
and/or Max number of records attributes. What is called mapping below, is a subtree which should be mapped
from input ports and written to the output file.

• UniversalDataWriter

• CloverDataWriter

• XLSDataWriter

• StructuredDataWriter

• XMLWriter (the Number of skipped mappings and Max number of mappings attributes)

Chapter 44. Common
Properties of Writers

317

Partitioning Output into Different Output Files

Three components allow you to part the incoming data flow and distribute the records among different output files.
These components are the following: UniversalDataWriter, XLSDataWriter and StructuredDataWriter.

If you want to part the data flow and write the records into different output files depending on a key value, you
must specify the key for such a partition (Partition key). It has the form of a sequence of incoming record field
names separated by semicolon.

In addition to this, you can also select only some incoming records. This can be done by using a lookup table
(Partition lookup table). The records whose Partition key equals the values of lookup table key are saved to
the specified output files, those whose key values do not equal to lookup table key values are either saved to the
file specified in the Partition unassigned file name attribute or discarded (if no Partition unassigned file name
is specified).

Remember that if all incoming records are assigned to the values of lookup table, the file for unassigned records
will be empty (even if it is defined).

Such lookup table will also serve to group together selected data records into different output files and give them
the names. The Partition output fields attribute must be specified. It is a sequence of lookup table fields separated
by semicolon.

The File URL value will only serve as the base name for the output file names. Such base name is concatenated
with distinguishing names or numbers. If some partitioning is specified (if Partition key is defined), hash signs
can be used in File URL as placeholder(s) for distinguishing names or numbers. These hash signs must only be
used in the file name part of File URL.

Important

You need to differentiate between hash sign and dollar sign usage.

• Hash sign

Hash sigh should be used when each of multiple output files only contains records correspoding
to the value of specified Partition key.

• Dollar sign

Dollar sigh should be used when each of multiple output files contains only a specified number
of records based on the Records per file attribute.

The hash(es) can be located in any place of this file part of File URL, even in its middle. For example: path/
output#.xls (in case of the output XLS file). If no hash is contained in File URL, distinguishing names or
numbers will be appended to the end of the file base name.

If Partition file tag is set to Number file tag, output files are numbered and the count of hashes used in
File URL means the count of digits for these distinguishing numbers. This is the default value of Partition file
tag. Thus, ### can go from 000 to 999.

If Partition file tag is set to Key file tag, single hash must be used in File URL.at most. Distinguishing
names are used.

These distinguishing names will be created as follows:

If the Partition key attribute (or the Partition output fields attribute) is of the following
form: field1;field2;...;fieldN and the values of these fields are the following:
valueofthefield1, valueofthefield2, ..., valueofthefieldN, all the values of the fields
are converted to strings and concatenated. The resulting strings will have the following form:
valueofthefield1valueofthefield2...valueofthefieldN. Such resulting strings are used as

Chapter 44. Common
Properties of Writers

318

distinguishing names and each of them is inserted to the File URL into the place marked with hash. Or appended
to the end of File URL if no hash is used in File URL.

For example, if firstname;lastname is the Partition key (or Partition output fields), you can have the
output files as follows:

• path/outjohnsmith.xls, path/outmarksmith.xls, path/outmichaelgordon.xls, etc. (if
File URL is path/out#.xls and Partition file tag is set to Key file tag).

• Or path/out01.xls, path/out02.xls. etc. (if File URL is path/out##.xls and Partition file tag
is set to Number file tag).

In XLSDataWriter and UniversalDataWriter, there is another attribute: Exclude fields.

It is a sequence of field names separated by semicolon that should not be written to the output. It can be used when
the same fields serve as a part of Partition key.

If you are partitioning data using any of these two writers and Partition file tag is set to Key file tag, values
of Partition key are written to the names of these files. At the same time, the same values should be written to
corresponding output file.

In order to avoid the files whose names would contain the same values as those written in them, you can select the
fields that will be excluded when writing to these files. You need to choose the Exclude fields attribute.

These fields will only be part of file or sheet names, but will not be written to the contents of these files.

Subsequently, when you will read these files, you will be able to use an autofilling function (source_name
for UniversalaDataReader or XLSDataReader, or sheet_name for XLSDataReader) to get such value from
either file name or sheet name (when you have previously set Sheet name to $<field name>).

In other words, when you have files created using Partition key set to City and the output files are London.txt,
Stockholm.txt, etc., you can get these values (London, Stockholm, etc.) from these names. The City
field values do not need to be contained in these files.

Note

If you want to use the value of a field as the path to an existing file, type the following as the File
URL attribute in Writer:

//#

This way, if the value of the field used for partitioning is path/to/my/file/filename.txt,
it will be assigned to the output file as its name. For this reason, the output file will be located in
path/to/my/file and its name will be filename.txt.

Java Interfaces for Writers

• JMSWriter (p. 493) allows optionally a transformation, which can only be written in Java.

See Java Interfaces for JMSWriter (p. 495) for more information about the interface.

319

Chapter 45. Common Properties of Transformers
These components have both input and output ports. They can put together more data flows with the same metadata
(Concatenate, SimpleGather, and Merge), remove duplicate records (Dedup), filter data records (ExtFilter
and EmailFilter), create samples from input records (DataSampler), sort data records (ExtSort, FastSort, and
SortWithinGroups), multiplicate existing data flow (SimpleCopy) split one data flow into more data flows
(Partition at all, but optionally also Dedup, ExtFilter, also Reformat), intersect two data flows (even with
different metadata on inputs) (DataIntersection), aggregate data information (Aggregate), and perform much
more complicated transformations of data flows (Reformat, Denormalizer, Pivot, Normalizer, MetaPivot,
Rollup, and XLSTransformer).

Metadata can be propagated through some of these transformers, whereas the same is not possible in such
components that transform data flows in a more complicated manner. You must have the output metadata defined
prior to configuring these components.

Some of these transformers use transformations that have been described above. See Defining
Transformations (p. 278) for detailed information about how transformation should be defined.

• Some Transformers can have a transformation attribute defined, it may be optional or required. For information
about transformation templates for transformations written in CTL see:

CTL Templates for Transformers (p. 320)

• Some Transformers can have a transformation attribute defined, it may be optional or required. For information
about transformation interfaces that must be implemented in transformations written in Java see:

Java Interfaces for Transformers (p. 321)

Here we present an overview of all Transformers:

Table 45.1. Transformers Comparison

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

SimpleCopy (p. 637) - 1 1-n - -

ExtSort (p. 591) - 1 1-n - -

FastSort (p. 593) - 1 1-n - -

SortWithinGroups (p. 639) - 1 1-n - -

Dedup (p. 577) - 1 1-2 - -

ExtFilter (p. 588) - 1 1-2 - -

Concatenate (p. 571) 1-n 1 - -

SimpleGather (p. 638) 1-n 1 - -

Merge (p. 597) 2-n 1 - -

Partition (p. 609) - 1 1-n yes/no1) yes/no1)

LoadBalancingPartition (p. 616) - 1 1-n - -

DataIntersection (p. 572) 2 3

Aggregate (p. 568) - 1 1 - -

Reformat (p. 622) - 1 1-n

Denormalizer (p. 579) - 1 1

Chapter 45. Common
Properties of Transformers

320

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Pivot (p. 618) - 1 1

Normalizer (p. 602) - 1 1

MetaPivot (p. 599) - 1 1 - -

Rollup (p. 625) - 1 1-n

DataSampler (p. 575) - 1 n - -

XSLTransformer (p. 641) - 1 1 - -

Legend

1) Partition can use either the transformation or two other attributes (Ranges or Partition key). A transformation
must be defined unless one of these is specified.

CTL Templates for Transformers

• Partition (p. 609) requires a transformation (which can be written in both CTL and Java) unless Partition
key or Ranges is defined.

See Java Interfaces for Partition (and clusterpartition) (p. 615) for more information about the transformation
template.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping does not need
to be done, records are mapped automatically.

• DataIntersection (p. 572) requires a transformation which can be written in both CTL and Java.

See CTL Templates for DataIntersection (p. 574) for more information about the transformation template.

• Reformat (p. 622) requires a transformation which can be written in both CTL and Java.

See CTL Templates for Reformat (p. 623) for more information about the transformation template.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must be defined
for such port.

• Denormalizer (p. 579) requires a transformation which can be written in both CTL and Java.

See CTL Templates for Denormalizer (p. 581) for more information about the transformation template.

• Normalizer (p. 602) requires a transformation which can be written in both CTL and Java.

See CTL Templates for Normalizer (p. 603) for more information about the transformation template.

• Rollup (p. 625) requires a transformation which can be written in both CTL and Java.

See CTL Templates for Rollup (p. 627) for more information about the transformation template.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must be defined
for such port.

Chapter 45. Common
Properties of Transformers

321

Java Interfaces for Transformers

• Partition (p. 609) requires a transformation (which can be written in both CTL and Java) unless Partition
key or Ranges is defined.

See Java Interfaces for Partition (and clusterpartition) (p. 615) for more information about the interface.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping does not need
to be done, records are mapped automatically.

• DataIntersection (p. 572) requires a transformation which can be written in both CTL and Java.

See Java Interfaces for DataIntersection (p. 574) for more information about the interface.

• Reformat (p. 622) requires a transformation which can be written in both CTL and Java.

See Java Interfaces for Reformat (p. 624) for more information about the interface.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must be defined
for such port.

• Denormalizer (p. 579) requires a transformation which can be written in both CTL and Java.

See Java Interfaces for Denormalizer (p. 587) for more information about the interface.

• Normalizer (p. 602) requires a transformation which can be written in both CTL and Java.

See Java Interfaces for Normalizer (p. 608) for more information about the interface.

• Rollup (p. 625) requires a transformation which can be written in both CTL and Java.

See Java Interfaces for Rollup (p. 635) for more information about the interface.

Remember that this component sends each record through the connected output port whose number is equal to
the value returned by the transformation (Return Values of Transformations (p. 282)). Mapping must be defined
for such port.

322

Chapter 46. Common Properties of Joiners
These components have both input and output ports. They serve to put together the records with potentially
different metadata according to the specified key and the specified transformation.

The first input port is called master (driver), the other(s) are called slave(s).

They can join the records incoming through two input ports (ApproximativeJoin), or at least two input ports
(ExtHashJoin, ExtMergeJoin, and RelationalJoin). The others can also join the records incoming through a
single input port with those from lookup table (LookupJoin) or database table (DBJoin). In them, their slave data
records are considered to be incoming through a virtual second input port.

Three of these Joiners require that incoming data are sorted: ApproximativeJoin, ExtMergeJoin, and
RelationalJoin.

Unlike all of the other Joiners, RelationalJoin joins data records based on the non-equality conditions. All the
others require that key fields on which they are joined have the same values so that these records may be joined.

ApproximativeJoin, DBJoin, and LookupJoin have optional output ports also for nonmatched master data
records. ApproximativeJoin has optional output ports for nonmatched both master and slave data records.

Metadata cannot be propagated through these components. You must first select the right metadata or create them
by hand according to the desired result. Only then you can define the transformation. For some of the output edges
you can also select the metadata on the input, but neither these metadata can be propagated through the component.

These components use a transformations that are described in the section concerning transformers. See Defining
Transformations (p. 278) for detailed information about how transformation should be defined. All of the
transformations in Joiners use common transformation template (CTL Templates for Joiners (p. 324)) and
common Java interface (Java Interfaces for Joiners (p. 327)).

Here we present a brief overview of links to these options:

• Join Types (p. 323)

• Slave Duplicates (p. 323)

• CTL Templates for Joiners (p. 324)

• Java Interfaces for Joiners (p. 327)

Here we present an overview of all Joiners:

Table 46.1. Joiners Comparison

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

ApproximativeJoin (p. 644) 1 2-4

ExtHashJoin (p. 657) 1-n 1

ExtMergeJoin (p. 663) 1-n 1

LookupJoin (p. 668) 1 (virtual) 1-2

DBJoin (p. 654) 1 (virtual) 1-2

Chapter 46. Common
Properties of Joiners

323

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

RelationalJoin (p. 671) 1 1

Join Types

These components can work under the following three processing modes:

• Inner Join

In this processing mode, only the master records in which the values of Join key fields equal to the values of
their slave counterparts are processed and sent out through the output port for joined records.

For ApproximativeJoin, the name of this attribute is Matching key.

The unmatched master records can be sent out through the optional output port for master records without a
slave (in ApproximativeJoin, LookupJoin or DBJoin only).

The unmatched slave records can be sent out through the optional output port for slave records without a master
(in ApproximativeJoin only).

• Left Outer Join

In this processing mode, only the master records in which the values of Join key fields do not equal to the values
of their slave counterparts are processed and sent out through the output port for joined records.

For ApproximativeJoin, the name of this attribute is Matching key.

The unmatched slave records can be sent out through the optional output port for slave records without a master
(in ApproximativeJoin only).

• Full Outer Join

In this processing mode, all records, both the masters and the slaves, regardless of whether the values of Join
key fields are equal to the values of their slave counterparts or not, are processed and sent out through the output
port for joined records.

For ApproximativeJoin, the name of this attribute is Matching key.

Important

Full outer join mode is not allowed in LookupJoin and DBJoin.

Note

Remember that Joiners parse each pair of records (master and slave) in which the same fields of the
Join key attribute have null values as if these nulls were different. Thus, these records do not
match one another in such fields and are not joined.

Slave Duplicates

In Joiners, sometimes more slave records have the same values of corresponding fields of Join key (or Matching
key, in ApproximativeJoin). These slaves are called duplicates. If such duplicate slave records are allowed, all

Chapter 46. Common
Properties of Joiners

324

of them are parsed and joined with the master record if they match any. If the duplicates are not allowed, only one
of them or at least some of them is/are parsed (if they match any master record) and the others are discarded.

Different Joiners allow to process slave duplicates in a different way. Here we present a brief overview of how
these duplicates are parsed and what can be set in these components or other tools:

• ApproximativeJoin

All records with duplicate slaves (the same values of Matching key) are always processed.

• Allow slave duplicates attribute is included in the following Joiners (It can be set to true or false.):

• ExtHashJoin

Default is false. Only the first record is processed, the others are discarded.

• ExtMergeJoin

Default is true. If switched to false, only the last record is processed, the others are discarded.

• RelationalJoin

Default is false. Only the first record is processed, the others are discarded.

• SQL query attribute is included in DBJoin. SQL query allows to specify the exact number of slave duplicates
explicitly.

• LookupJoin parses slave duplicates according to the setting of used lookup table in the following way:

• Simple lookup table has also the Allow key duplicate attribute. Its default value is true. If you uncheck
the checkbox, only the last record is processed, the others are discarded.

• DB lookup table allows to specify the exact number of slave duplicates explicitly.

• Range lookup table does not allow slave duplicates. Only the first slave record is used, the others are
discarded.

• Persistent lookup table does not allow slave duplicates. Nevertheless, it has the Replace attribute. By
default, new slave records overwrite the old ones, which are discarded. By default, the last slave record
remains, the others are discarded. If you uncheck the checkbox, the first remains and the others are discarded.

• Aspell lookup table allows that all slave duplicates are used. No limitation of the number of duplicates is
possible.

CTL Templates for Joiners

This transformation template is used in every Joiner and also in Reformat and DataIntersection.

Here is an example of how the Source tab for defining the transformation in CTL looks.

Chapter 46. Common
Properties of Joiners

325

Figure 46.1. Source Tab of the Transform Editor in Joiners

Table 46.2. Functions in Joiners, DataIntersection, and Reformat

CTL Template Functions

boolean init()

Required No

Description Initialize the component, setup the environment, global variables

Invocation Called before processing the first record

Returns true | false (in case of false graph fails)

integer transform()

Required yes

Input Parameters none

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly for each set of joined or intersected input
records (Joiners and DataIntersection), and for each input record
(Reformat).

Chapter 46. Common
Properties of Joiners

326

CTL Template Functions

Description Allows you to map input fields to the output fields using a
script. If any part of the transform() function for some
output record causes fail of the transform() function, and
if user has defined another function (transformOnError()),
processing continues in this transformOnError() at the
place where transform() failed. If transform() fails and
user has not defined any transformOnError(), the whole
graph will fail. The transformOnError() function gets
the information gathered by transform() that was get from
previously successfully processed code. Also error message and
stack trace are passed to transformOnError().

Example function integer transform() {
 $0.name = $0.name;
 $0.address = $city + $0.street + $0.zip;
 $0.country = toUpper($0.country);
 return ALL;
}

integer transformOnError(string errorMessage, string stackTrace, integer idx)

Required no

string errorMessageInput Parameters

string stackTrace

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if transform() throws an exception.

Description It creates output records. If any part of the transform()
function for some output record causes fail of the
transform() function, and if user has defined another
function (transformOnError()), processing continues in this
transformOnError() at the place where transform()
failed. If transform() fails and user has not defined
any transformOnError(), the whole graph will fail. The
transformOnError() function gets the information gathered
by transform() that was get from previously successfully
processed code. Also error message and stack trace are passed to
transformOnError().

Example function integer transformOnError(
 string errorMessage,
 string stackTrace) {
 $0.name = $0.name;
 $0.address = $city + $0.street + $0.zip;
 $0.country = "country was empty";
 printErr(stackTrace);
 return ALL;
}

string getMessage()

Required No

Description Prints error message specified and invocated by user

Invocation Called in any time specified by user (called only when
transform() returns value less than or equal to -2).

Returns string

Chapter 46. Common
Properties of Joiners

327

CTL Template Functions

void preExecute()

Required No

Input parameters None

Returns void

Description May be used to allocate and initialize resources required by the
transform. All resources allocated within this function should be
released by the postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Invocation Called during each graph run after the entire transform was
executed.

Important

• Input records or fields and output records or fields

Both inputs and outputs are accessible within the transform() and transformOnError()
functions only.

• All of the other CTL template functions allow to access neither inputs nor outputs.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Java Interfaces for Joiners

This is used in every Joiner and also in Reformat and DataIntersection.

The transformation implements methods of the RecordTransform interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of the RecordTransform interface:

• boolean init(Properties parameters, DataRecordMetadata[] sourcesMetadata,
DataRecordMetadata[] targetMetadata)

Initializes reformat class/function. This method is called only once at the beginning of transformation process.
Any object allocation/initialization should happen here.

• int transform(DataRecord[] sources, DataRecord[] target)

Performs reformat of source records to target records. This method is called as one step in transforming flow of
records. See Return Values of Transformations (p. 282) for detailed information about return values and their
meaning.

• int transformOnError(Exception exception, DataRecord[] sources,
DataRecord[] target)

Chapter 46. Common
Properties of Joiners

328

Performs reformat of source records to target records. This method is called as one step in transforming flow of
records. See Return Values of Transformations (p. 282) for detailed information about return values and their
meaning. Called only if transform(DataRecord[], DataRecord[]) throws an exception.

• void signal(Object signalObject)

Method which can be used for signalling into transformation that something outside happened. (For example
in aggregation component key changed.)

• Object getSemiResult()

Method which can be used for getting intermediate results out of transformation. May or may not be
implemented.

329

Chapter 47. Common Properties of Cluster
Components
These components are dedicated for data flow management in CloverETL Cluster environment.

Here we present an overview of the Chapter 59, Cluster Components (p. 750):

Table 47.1. Cluster Components Comparison

Component
Sa

m
e

in
pu

t
m

et
ad

at
a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterPartition (p. 751) 1 11) yes/no2) yes/no2)

ClusterLoadBalancingPartition (p. 753) 1 11) no no

ClusterSimpleGather (p. 757) 13) 1 no no

ClusterMerge (p. 759) 13) 1 no no

ClusterRepartition (p. 761) 13) 11) yes/no2) yes/no2)

Legend

1) The single output port represents multiple virtual output ports.

2) ClusterPartition and ClusterRepartition can use either the transformation or two other attributes (Ranges or
Partition key). A transformation must be defined unless one of these is specified.

3) The single input port represents multiple virtual input ports.

330

Chapter 48. Common Properties of Others
These components serve to fulfil some tasks that have not been mentioned already. We will describe them now.
They have no common properties as they are heterogeneous group.

Only JavaExecute (p. 793) requires that a transformation is defined in this component. It must implement the
following interface:

Java Interfaces for JavaExecute (p. 794)

Below we will present an overview of all Others:

Table 48.1. Others Comparison

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

SystemExecute (p. 805) - 0-1 0-1 -

JavaExecute (p. 793) - - 0 0 -

DBExecute (p. 784) - 0-1 0-2 -

RunGraph (p. 797) - 0-1 1-2 -

HTTPConnector (p. 788) - 0-1 0-1 -

WebServiceClient (p. 808) - 0-1 0-N no2)

CheckForeignKey (p. 780) 2 1-2 -

SequenceChecker (p. 801) - 1 1-n

LookupTableReaderWriter (p. 795) - 0-1 0-n

SpeedLimiter (p. 803) - 1 1-n

Legend

1) Component sends each data record to all connected output ports.

2) Component sends processed data records to the connected output ports as specified by mapping.

Go now to Chapter 61, Others (p. 779).

331

Chapter 49. Common Properties of Data Quality
The Data Quality is a group of components performing various tasks related to quality of your data - determining
information about the data, finding and fixing problems etc. These components have no common properties as
they perform a wide range of tasks.

Below we will present an overview of all Data Quality components:

Table 49.1. Data Quality Comparison

Component
Sa

m
e

in
pu

t
m

et
ad

at
a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

Address Doctor 5 (p. 764) - 1 1-2 - -

EmailFilter (p. 768) - 1 0-2 - -

ProfilerProbe (p. 773) - 1 1-n

Legend

1) Component sends each data record to all connected output ports.

Go now to Chapter 60, Data Quality (p. 763).

332

Chapter 50. Common Properties of Job Control
The Job Control is a group of components managing various job types - executing, monitoring and optionally
aborting ETL graphs, jobflows and interpreted scripts. Most of these components are tightly bound with
jobflow (p. 249).

All execution components ExecuteGraph, ExecuteJobflow, ExecuteProfilerJob, ExecuteScript and few other
Job Control components has similar approach to job execution management. Each of them has an optional input
port. Each incoming token from this port is interpreted by an execution component and a respective job is started.
Default execution settings is specified directly in various component attributes. This default settings can be
overridden by values from incoming token - Input mapping attribute specifies the override. Results of successful
jobs are sent to the first output port and unsuccessful job runs are sent to the second output port. Content of these
output tokens is defined in Output mapping and Error mapping.

In case no input port is attached, only single job is started with execution settings specified directly in component
attributes. In case the first output port is not connected, job results are printed out to log. And finally in case the
second output port is not connected, first unsuccessful job causes failure of whole jobflow.

Redirect error output attribute can be used to route all successful and even unsuccessful job results to the first
output port - Output mapping is used for all job executions.

Below we will present an overview of all Job control components:

Table 50.1. Job control Comparison

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L
Barrier (p. 676) 1-n 1-n - -

Condition (p. 679) - 1 1-2 - -

ExecuteGraph (p. 682) - 0-1 0-2

ExecuteJobflow (p. 689) - 0-1 0-2

ExecuteProfilerJob (p. 700) - 0-1 0-2

ExecuteScript (p. 704) - 0-1 0-2

Fail (p. 710) - 0-1 0

GetJobInput (p. 713) - 0 1

KillGraph (p. 715) - 0-1 0-1

KillJobflow (p. 719) - 0-1 0-1

MonitorGraph (p. 721) - 0-1 0-2

MonitorJobflow (p. 725) - 0-1 0-2

SetJobOutput (p. 727) - 1 0

Success (p. 729) 0-n 0 - -

TokenGather (p. 731) 1-n 1-n - -

Go now to Chapter 57, Job Control (p. 675).

333

Chapter 51. Common Properties of File Operations
The File Operation components manipulate with files and directories.

An overview of all File Operation components is presented below:

Table 51.1. File Operations Comparison

Component

In
pu

ts

O
ut

pu
ts

CopyFiles (p. 734) 0-1 0-2

CreateFiles (p. 738) 0-1 0-2

DeleteFiles (p. 741) 0-1 0-2

MoveFiles (p. 747) 0-1 0-2

ListFiles (p. 744) 0-1 1-2

Legend

1) Component sends each data record to all connected output ports.

Common atttributes of File Operation components

For an overview of URL formats supported by File Operations, see Supported URL Formats for File
Operations (p. 334).

Attribute Req Description Possible
values

Input mapping 1) defines mapping of input records to component attributes

Output mapping 1) defines mapping of results to standard output port

Error mapping 1) defines mapping of errors to error output port

Redirect error output no if enabled, errors will be sent to the output port instead of the
error port

false (default) |
true

Legend

1) If the mapping is omitted, default mapping based on identical names will be used.

Input Mapping

The operation will be executed for each input record. If the input edge is not connected, the operation will be
performed exactly once.

The attributes of the components may be overridden by the values read from the input port, as specified by the
Input mapping.

Output Mapping

It is essential to understand the meaning of records on the left-hand side of the Output mapping and Error
mapping editor. There may be one or two records displayed.

Chapter 51. Common
Properties of File Operations

334

The first record is only displayed if the component has an input edge connected, because it is the real input record
which has been read from the edge. This record has Port 0 displayed in the Type column.

The other record on the left-hand side named Result is displayed always and is the result record generated by
the component.

Error Handling

By default, the component will cause the graph to fail if it fails to perform the operation. This can be prevented
by connecting the error port. If the error port is connected, the failures will be send to the error port and the
component will continue. The standard output port may be also be used for error handling, if the Redirect error
output option is enabled.

In case of a failure, the component will not execute subsequent operations unless the Stop processing on fail
option is disabled. The information about skipped operations will be sent to the error output port.

Go now to Chapter 58, File Operations (p. 733).

Supported URL Formats for File Operations

The URL attributes may be defined using the URL File Dialog (p. 69).

Unless explicitly stated otherwise, URL attributes of File Operation components accept multiple URLs separated
with a semicolon (';').

Important

To ensure graph portability, forward slashes must be used when defining the path in URLs (even
on Microsoft Windows).

Most protocols support wildcards: ? (question mark) matches one arbitrary character; * (asterisk) matches any
number of arbitrary characters. Note that wildcard support and their syntax is protocol-dependent.

Here we present some examples of possible URL for File Operations:

Local Files

• /path/filename.txt

One specified file.

• /path1/filename1.txt;/path2/filename2.txt

Two specified files.

• /path/filename?.txt

All files satisfying the mask.

• /path/*

All files in the specified directory.

• /path?/*.txt

All .txt files in directories that satisfy the path? mask.

Remote Files

Chapter 51. Common
Properties of File Operations

335

• ftp://username:password@server/path/filename.txt

Denotes filename.txt file on remote server connected via ftp protocol using username and password.

• ftp://username:password@server/dir/*.txt

Denotes all files satisfying the mask on remote server connected via ftp protocol using username and password.

• sftp://username:password@server/path/filename.txt

Denotes filename.txt file on remote server connected via sftp protocol using username and password.

• sftp://username:password@server/path?/filename.txt

Denotes all files filename.txt in directories satisfying the mask on remote server connected via sftp
protocol using username and password.

• http://server/path/filename.txt

Denotes filename.txt file on remote server connected via http protocol.

• https://server/path/filename.txt

Denotes filename.txt file on remote server connected via https protocol.

• hdfs://CONNECTION_ID/path/filename.txt

Denotes filename.txt file on Hadoop HDFS. The "CONNECTION_ID" stands for the ID of a Hadoop
connection defined in the graph.

Sandbox Resources

A sandbox resource, whether it is a shared, local or partitioned sandbox, is specified in the graph under the fileURL
attributes as a so called sandbox URL like this:

sandbox://data/path/to/file/file.dat

where "data" is code for sandbox and "path/to/file/file.dat" is the path to the resource from the sandbox root. A
graph does not have to run on the node which has local access to the resource.

336

Chapter 52. Custom Components
Apart from components provided by CloverETL defaultly, you can write your own components. For the step-by-
step instructions go to Creating a Custom Component document located at our documentation page.

http://www.cloveretl.com/documentation/UserGuide/index.jsp?topic=/com.cloveretl.gui.docs/docs_custom_component/creating-custom-component-for-engine.html

Part VIII. Component Reference

338

Chapter 53. Readers
We assume that you already know what components are. See Chapter 19, Components (p. 97) for an overview.

Only some of the components in a graph are initial nodes. These are called Readers.

Readers can read data from input files (both local and remote), receive it from the connected optional input port,
or read it from a dictionary. One component only generates data. Since it is also an initial node, we will describe
it here.

Components can have different properties. But they also can have some in common. Some properties are common
for all of them, others are common for most of the components, or they are common for Readers only. You should
learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

We can distinguish Readers according to what they can read:

• One component only generates data:

• DataGenerator (p. 350) generates data.

Other Readers read data from files.

• Flat files:

• UniversalDataReader (p. 410) reads data from flat files (delimited or fixed length).

• ParallelReader (p. 393) reads data from delimited flat files using more threads.

• ComplexDataReader (p. 342) reads data from really ugly flat files whose structure is heterogeneous or
mutually dependent and it uses a neat GUI to achieve that.

• MultiLevelReader (p. 389) reads data from flat files with a heterogeneous structure.

• Other files:

• CloverDataReader (p. 340) reads data from files in Clover binary format.

• SpreadsheetDataReader (p. 400) reads data from XLS or XLSX files.

• XLSDataReader (p. 415) reads data from XLS or XLSX files.

• DBFDataReader (p. 358) reads data from dBase files.

• XMLExtract (p. 419) reads data from XML files using SAX technology.

• XMLXPathReader (p. 445) reads data from XML files using XPath queries.

• HadoopReader (p. 373) reads data from Hadoop sequence files.

Other Readers unload data from databases.

• Databases:

• DBInputTable (p. 360) unloads data from database using JDBC driver.

• QuickBaseRecordWriter (p. 520) reads data from the QuickBase online database.

Chapter 53. Readers

339

• QuickBaseImportCSV (p. 518) reads data from the QuickBase online database using queries.

• LotusReader (p. 387) reads data from Lotus Notes or Lotus Domino database.

Other Readers receive JMS messages or read directory structure.

• JMS messages:

• JMSReader (p. 375) converts JMS messages into data records.

• Directory structure:

• LDAPReader (p. 384) converts directory structure into data records.

• Email messages:

• EmailReader (p. 364) Reads email messages.

Chapter 53. Readers

340

CloverDataReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

CloverDataReader reads data stored in our internal binary Clover data format files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

CloverDataReader clover binary file 0 1-n yes no no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

CloverDataReader reads data stored in our internal binary Clover data format files. It can also read data from
compressed files, console, or dictionary.

Note

Since 2.9 version of CloverETL CloverDataWriter writes also a header to output files with the
version number. For this reason, CloverDataReader expects that files in Clover binary format
contain such a header with the version number. CloverDataReader 2.9 cannot read files written by
older versions of CloverETL nor these older versions can read data written by CloverDataWriter
2.9.

Icon

Chapter 53. Readers

341

Ports

Port type Number Required Description Metadata

0 yes For correct data records Any1)Output

1-n no For correct data records Output 0

Legend:

1): Metadata can use Autofilling Functions (p. 131).

CloverDataReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying what data source(s) will be read (flat
file, console, input port, dictionary). See Supported File URL
Formats for Readers (p. 296).

Index file URL1) Name of the index file, including path. See Supported File
URL Formats for Readers (p. 296). See also Output File
Structure (p. 455) for more information about index file
names.

Advanced

Number of skipped
records

Number of records to be skipped. See Selecting Input
Records (p. 304).

0-N

Max number of
records

Maximum number of records to be read. See Selecting Input
Records (p. 304).

0-N

Deprecated

Start record Has exclusive meaning: Last record before the first that is
already read. Has lower priority than Number of skipped
records.

0 (default) | 1-n

Final record Has inclusive meaning: Last record to be read. Has lower
priority than Max number of records.

all (default) | 1-
n

Legend:

1) Please note this is a deprecated attribute. If it is not specified, all records must be read.

Chapter 53. Readers

342

ComplexDataReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purpose, see Readers Comparison (p. 296).

Short Summary

ComplexDataReader reads non-homogeneous data from files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

ComplexDataReader flat file 1 1-n no yes yes yes yes yes

Abstract

ComplexDataReader reads non-homogeneous data from files containing multiple metadata, using the concept
of states and transitions and optional lookahead (selector).

The user-defined states and their transitions impose the order of metadata used for parsing the file - presumably
following the file's structure.

The component uses the Data policy attribute as described in Data Policy (p. 305).

Icon

Chapter 53. Readers

343

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

0 yes For correct data records Any (Out0)1)Output

1-N no For correct data records Any (Out1-OutN)

Legend:

1): Metadata on output ports can use Autofilling Functions (p. 131). Note: source_timestamp and
source_size functions work only when reading from a file directly (if the file is an archive or it is stored in
a remote location, timestamp will be empty and size will be 0).

ComplexDataReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes The data source(s) which ComplexDataReader should read
from. The source can be a flat file, the console, an input
port or a dictionary. See Supported File URL Formats for
Readers (p. 296).

Transform The definition of the state machine that carries out the reading.
The settings dialog opens in a separate window that is described
in Advanced Description (p. 344).

Charset The encoding of records that are read. ISO-8859-1
(default) | <any
encoding>

Data policy Determines steps that are done when an error occurs. See Data
Policy (p. 305) for details. Unlike other Readers, Controlled
Data Policy is not implemented. Lenient allows you to skip
redundant columns in metadata with a record delimiter (but not
incorrect lines).

Strict (default) |
Lenient

Trim strings Specifies whether leading and trailing whitespaces should be
removed from strings before inserting them to data fields. See
Trimming Data (p. 412).

false (default) |
true

Quoted strings Fields containing a special character (comma, newline, or
double quote) have to be enclosed in quotes. Only single/
double quote is accepted as the quote character. If true, special
characters are removed when read by the component (they are
not treated as delimiters).

Example: To read input data "25"|"John", switch Quoted
strings to true and set Quote character to ". This will produce
two fields: 25|John.

By default, the value of this attribute is inherited from metadata
on output port 0. See also Record Details (p. 161).

false | true

Quote character Specifies which kind of quotes will be permitted in Quoted
strings. By default, the value of this attribute is inherited from
metadata on output port 0. See also Record Details (p. 161).

both | " | '

Advanced

Chapter 53. Readers

344

Attribute Req Description Possible
values

Skip leading blanks Specifies whether leading whitespace characters (spaces etc.)
will be skipped before inserting input strings to data fields. If
you leave it default, the value of Trim strings is used. See
Trimming Data (p. 412).

false (default) |
true

Skip trailing blanks Specifies whether trailing whitespace characters (spaces etc.)
will be skipped before inserting input strings to data fields. If
you leave it default, the value of Trim strings is used. See
Trimming Data (p. 412).

false (default) |
true

Max error count The maximum number of tolerated error records on the input.
The attribute is applicable only if Controlled Data Policy
is being used.

0 (default) - N

Treat multiple
delimiters as one

If a field is delimited by a multiplied delimiter character, it will
be interpreted as a single delimiter if this attribute is true.

false (default) |
true

Verbose By default, not so complex error notification is provided and the
performance is fairly high. However, if switched to true, more
detailed information with lower performance will be provided.

false (default) |
true

Selector code 1) If you decide to use a selector, here you can write its code in
Java. A selector is only an optional feature in the transformation.
It supports decision-making when you need to look ahead at the
data file. See Selector (p. 348).

Selector URL 1) The name and path to an external file containing a selector code
written in Java. To learn more about the Selector, see Advanced
Description (p. 344).

Selector class 1) The name of an external class containing the Selector. To learn
more about the Selector, see Advanced Description (p. 344).

Transform URL The path to an external file which defines state transitions in the
state machine.

Transform class The name of a Java class that defines state transitions in the state
machine.

Selector properties Allows you to instantly edit the current Selector in the State
transitions window.

State metadata Allows you to instantly edit the metadata and states assigned to
them in the State transitions window.

Legend:

1): If you do not define any of these three attributes, the default Selector class
(PrefixInputMetadataSelector) will be used.

Advanced Description

Reading heterogeneous data is generally not an easy task. The data may mix various data formats, delimiters,
fields and record types. On top of that, records and their semantics can be dependent on eachother. For example, a
record of type address can mean a person's address if the preceding record is a person, or company's address
in the case where our address follows a company.

MultiLevelReader and ComplexDataReader are very similar components in terms of what they can
achieve. In MultiLevelReader you needed to program the whole logic as a Java transform (in the form
of AbstractMultiLevelSelector extension) but, in ComplexDataReader even the trickiest data structures can
be configured using the powerful GUI. A new concept of states and transitions has been introduced in
ComplexDataReader, and the parsing logic is implemented as a simple CTL2 script.

Chapter 53. Readers

345

Transitions between states can either be given explicitly - for example, state 3 always follows 2, computed in
CTL - for example, by counting the number of entries in a group, or you can "consult" the helping tool to choose
the transition. The tool is called Selector and it can be understood as a magnifying glass that looks ahead at the
upcoming data without actually parsing it.

You can either custom-implement the selector in Java or just use the default one. The default selector uses a table
of prefixes and their corresponding transitions. Once it encounters a particular prefix it evaluates all transitions
and returns the first matching target state.

Now let us look a little bit closer on what happens in a state (see picture below). As soon as we enter a state, its
Actions are performed. Available actions are:

• Reset counter - resets a counter which stores how many times the state has been accessed

• Reset record - reset the number of records located in internal storages. Thus, it ensures that various data read
do not mix with each other.

Next, Parsing of the input data is done. This reads a record in from the file and stores it in the state's internal input.

After that comes Output, which involves mapping the internal inputs to the component's output ports. This is the
only step in which data is sent out of the component.

Finally, there is Transition which defines how the machine changes to the next state.

Chapter 53. Readers

346

Last but not least, writing the whole reading logics in CTL is possible as well. See CTL in
ComplexDataReader (p. 347) for reference.

Video - How to Work with ComplexDataReader

Instead of reading tons of material, why not take a look at a video walkthrough. After watching it, you should have
a clear notion of how to use and configure the ComplexDataReader component.

See ComplexDataReader example video:

http://www.cloveretl.com/resources/repository/complexdatareader-shipments

Designing State Machine

To start designing the machine, edit the Transform attribute. A new window opens offering these tabs:
States, Overview, Selector, Source and other tabs representing states labeled $stateNo stateLabel, e.g. "$0
myFirstState".

On the left hand side of the States tab, you can see a pane with all the Available metadata your graph works with.
In this tab, you design new states by dragging metadata to the right hand side's States pane. At the bottom, you
can set the Initial state (the first state) and the Final state (the machine switches to it shortly before terminating
its execution or if you call Flush and finish). The final state can serve mapping data to the output before the
automaton terminates (especially handy for treating the last records of your input). Finally, in the centre there is
the Expression editor pane, which supports Ctrl+Space content assist and lets you directly edit the code.

In the Overview tab, the machine is graphically visualised. Here you can Export Image to an external file or
Cycle View Modes to see other graphical representations of the same machine. If you click Undock, the whole
view will open in a separate window that is regularly refreshed.

In state tabs (e.g. "$0 firstState") you define the outputs in the Output ports pane. What you see in Output field
is in fact the (fixed) output metadata. Next, you define Actions and work with the Transition table at the bottom
pane in the tab. Inside the table, there are Conditions which are evaluated top-down and Target states assigned
to them. These are these values for Target states:

• Let selector decide - the selector determines which state to go to next

• Flush and finish - this causes a regular ending of the machine's work

• Fail - the machine fails and stops its execution. (e.g it comes across an invalid record)

• A particular state the machine changes to.

The Selector tab allows you to implement your own selector or supply it in an external file/Java class.

http://www.cloveretl.com/resources/repository/complexdatareader-shipments

Chapter 53. Readers

347

Finally, the Source tab shows the code the machine performs. For more information, see CTL in
ComplexDataReader (p. 347)

CTL in ComplexDataReader

The machine can be specified in three ways. First, you can design it as a whole through the GUI. Second, you
can create a Java class that describes it. Third, you can write its code in CTL inside the GUI by switching to the
Source tab in Transform, where you can see the source code the machine performs.

Important

Please note you do not have to handle the source code at all. The machine can be configured entirely
in the other graphical tabs of this window.

Changes made in Source take effect in remaining tabs if you click Refresh states. If you want to synchronise the
source code with states configuration, click Refresh source.

Let us now outline significant elements of the code:

Counters

There are the counterStateNo variables which store the number of times a state has been accessed. There is
one such variable for each state and their numbering starts with 0. So e.g. counter2 stores how many times state
$2 was accessed. The counter can be reset in Actions.

Initial State Function

integer initialState() - determines which state of the automaton is the first one initiated. If you return
ALL, it means Let selector decide, i.e. it passes the current state to the selector that determines which state will
be next (if it cannot do that, the machine fails)

Final State Function

integer finalState(integer lastState) - specifies the last state of the automaton. If you return
STOP, it means the final state is not defined.

Functions In Every State

Each state has two major functions describing it:

• nextState

• nextOutput

integer nextState_stateNo() returns a number saying which state follows the current state (stateNo).
If you return ALL, it means Let selector decide. If you return STOP, it means Flush and finish.

Example 53.1. Example State Function

nextState_0() {
 if(counter0 > 5) {
 return 1; // if state 0 has been accessed more than five times since
 // the last counter reset, go to state 1
 }
 return 0; // otherwise stay in state 0
}

nextOutput_stateNo(integer seq) - the main output function for a particular state (stateNo). It calls
the individual nextOutput_stateNo_seq() service functions according to the value of seq. The seq is a

Chapter 53. Readers

348

counter which stores how many times the nextOutput_stateNo function has been called so far. At last, it calls
nextOutput_stateNo_default(integer seq) which typically returns STOP meaning everything has
been sent to the output and the automaton can change to the next state.

integer nextOutput_stateNo_seq() - maps data to output ports. In particular, the function can look
like e.g. integer nextOutput_1_0() meaning it defines mapping for state $1 and seq equal to 0 (i.e. this
is the first time the function has been called). The function returns a number. The number says which port has
been served by this function.

Global Next State Function

integer nextState(integer state)) - calls individual nextState() functions according to the
current state

Global Next Output Function

integer nextOutput(integer state, integer seq) - calls individual nextOutput() functions
according to the current state and the value of seq.

Selector

By default, the selector takes the initial part of the data being read (a prefix) to decide about the next state of the
state machine. This is implemented as PrefixInputMetadataSelector.

Figure 53.1. Configuring prefix selector in ComplexDataReader. Rules are defined in the Selector
properties pane. Notice the two extra attributes for regular expressions.

The selector can be configured by creating a list of rules. Every rule consists of:

1. a state in which it is applied (From state)

2. specification of Prefix and its Type. A prefix may be specified as a plain text, a sequence of bytes written in
hexadecimal code, or using a regular expression. These are the Types of the rules. The prefix can be empty
meaning the rule will be always applied no matter the input.

3. the next state of the automaton (Go to state)

As the selector is invoked, it goes through the list of rules (top to bottom) and searches for the first applicable rule.
If successful, the automaton switches to the target state of the selected rule.

Chapter 53. Readers

349

Caution

Be very careful: the remaining rules are not checked at all. Therefore you have to think thoroughly
over the order of rules. If a rule with an empty prefix appears in the list, the selector will not get to the
rules below it. Generally, the least specific rules should be at the end of the list. See example below.

Example 53.2.

Let us have two rules and assume both are applicable in any state:

• .{1,3}PATH (a regular expression)

• APATHY

If rules are defined in this exact order, the latter will never be applied because the regular expression also matches
the first five letters of "APATHY".

Note

Because some regular expressions can match sequences of characters of arbitrary length, two new
attributes were introduced to prevent PrefixInputMetadataSelector from reading the
whole input. These attributes are optional, but it is strongly recommended to use at least one of
them, otherwise the selector always reads the whole input whenever there is a rule with a regular
expression. The two attributes: Maximum prefix length and Record delimiter. When matching
regular expressions, the selector reads ahead at most Maximum prefix length of characters (0
meaning "unlimited"). The reading is also terminated if a Record delimiter is encountered.

Chapter 53. Readers

350

DataGenerator

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

DataGenerator generates data.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

DataGenerator generated 0 1-N no yes yes 1) yes yes

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

DataGenerator generates data according to some pattern instead of reading data from file, database, or any
other data source. To generate data, a generate transformation may be defined. It uses a CTL template for
DataGenerator or implements a RecordGenerate interface. Its methods are listed below. Component can
send different records to different output ports using Return Values of Transformations (p. 282).

Icon

Ports

Port type Number Required Description Metadata

0 yes For generated data records Any1)Output

1-N no For generated data records Output 0

Legend:

1): Metadata on all output ports can use Autofilling Functions (p. 131).

DataGenerator Attributes

Chapter 53. Readers

351

Attribute Req Description Possible
values

Basic

Generator 1) Definition of records should be generated written in the graph
in CTL or Java.

Generator URL 1) Name of external file, including path, containing the definition
of the way how records should be generated written in CTL or
Java.

Generator class 1) Name of external class defining the way how records should be
generated.

Number of records to
generate

yes Number of records to be generated. A negative number indicates
that the number is unknown at design time. See Generating
Variable Number of Records (p. 357).

Deprecated

Record pattern 2) String consisting of all fields of generated records that are
constant. It does not contain values of random or sequence
fields. See Record Pattern (p. 352) for more information.
User should define random and sequence fields first. See
Random Fields (p. 353) and Sequence Fields (p. 352) for
more information.

Random fields 2) Sequence of individual field ranges separated by semicolon.
Individual ranges are defined by their minimum and maximum
values. Minimum value is included in the range, maximum
value is excluded from the range. Numeric data types represent
numbers generated at random that are greater than or equal
to the minimum value and less than the maximum value. If
they are defined by the same value for both minimum and
maximum, these fields will equal to such specified value. Fields
of string and byte data type are defined by specifying their
minimum and maximum length. See Random Fields (p. 353)
for more information. Example of one individual field range:
$salary:=random("0","20000").

Sequence fields 2) Fields generated by sequence. They are defined
as the sequence of individual field mappings
($field:=IdOfTheSequence) separated by semicolon.
The same sequence ID can be repeated and used for more fields
at the same time. See Sequence Fields (p. 352) for more
information.

Random seed 2) Sets the seed of this random number generator using a single
long seed. Assures that values of all fields remain stable on
each graph run.

0-N

Legend:

1): One of these transformation attributes should be specified instead of the deprecated attributes marked by
number 2. However, these new attributes are optional. Any of these transformation attributes must use a CTL
template for DataGenerator or implement a RecordGenerate interface.

See CTL Scripting Specifics (p. 353) or Java Interfaces for DataGenerator (p. 356) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

2): These attributes are deprecated now. Define one of the transformation attributes marked by number 1 instead.

Advanced Description

Chapter 53. Readers

352

DataGenerator Deprecated Attributes

If you do not define any of these three attributes, you must instead define the fields which should be generated
at random (Random fields) and which by sequence (Sequence fields) and the others that are constant (Record
pattern).

• Record Pattern

Record pattern is a string containing all constant fields (all except random and sequential fields) of the generated
records in the form of delimited (with delimiters defined in metadata on the output port) or fixed length (with
sizes defined in metadata on the output port) record.

• Sequence Fields

Sequence fields can be defined in the dialog that opens after clicking the Sequence fields attribute. The
Sequences dialog looks like this:

Figure 53.2. Sequences Dialog

This dialog consists of two panes. There are all of the graph sequences on the left and all clover fields (names
of the fields in metadata) on the right. Choose the desired sequence on the left and drag and drop it to the right
pane to the desired field.

Figure 53.3. A Sequence Assigned

Chapter 53. Readers

353

Remember that it is not necessary to assign the same sequence to different clover fields. But, of course, it is
possible. It depends only on your decision. This dialog contains two buttons on its right side. For cancelling
any selected assigned mapping or all assigned mappings.

• Random Fields

This attribute defines the values of all fields whose values are generated at random. For each of the fields
you can define its ranges. (Its minimum and maximum values.) These values are of the corresponding data
types according to metadata. You can assign random fields in the Edit key dialog that opens after clicking the
Random fields attribute.

Figure 53.4. Edit Key Dialog

There are the Fields pane on the left, the Random fields on the right and the Random ranges pane at the
bottom. In the last pane, you can specify the ranges of the selected random field. There you can type specific
values. You can move fields between the Fields and Random fields panes as was described above - by clicking
the Left arrow and Right arrow buttons.

CTL Scripting Specifics

When you define any of the three new, transformation attributes, you must specify a transformation that assigns
values to output fields. This can be done using the Transformations tab of the Transform Editor. However, you
may find that you are unable to specify more advanced transformations using the easist approach. This is when
you need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

DataGenerator uses the following transformation template:

CTL Templates for DataGenerator

This transformation template is used only in DataGenerator.

Once you have written your transformation in CTL, you can also convert it to Java language code by clicking
corresponding button at the upper right corner of the tab.

Chapter 53. Readers

354

Figure 53.5. Source Tab of the Transform Editor in DataGenerator

Table 53.1. Functions in DataGenerator

CTL Template Functions

boolean init()

Required No

Description Initialize the component, setup the environment, global variables

Invocation Called before processing the first record

Returns true | false (in case of false graph fails)

integer generate()

Required yes

Input Parameters none

Returns Integer numbers. See Return Values of Transformations (p. 282) for
detailed information. Note that when Generating Variable Number
of Records (p. 357), STOP is NOT used to indicate an error, but
to finish the generation successfully.

Invocation Called repeatedly for each output record

Chapter 53. Readers

355

CTL Template Functions

Description Defines the structure and values of all fields of output record.
If any part of the generate() function for some output
record causes fail of the generate() function, and if user has
defined another function (generateOnError()), processing
continues in this generateOnError() at the place where
generate() failed. If generate() fails and user has not
defined any generateOnError(), the whole graph will
fail. The generateOnError() function gets the information
gathered by generate() that was get from previously
successfully processed code. Also error message and stack trace are
passed to generateOnError().

Example function integer generate() {
 myTestString = iif(randomBool(),"1","abc");
 $0.name = randomString(3,5) + " " randomString(5,7);
 $0.salary = randomInteger(20000,40000);
 $0.testValue = str2integer(myTestString);
 return ALL;
}

integer generateOnError(string errorMessage, string stackTrace)

Required no

string errorMessageInput Parameters

string stackTrace

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if generate() throws an exception.

Description Defines the structure and values of all fields of output record.
If any part of the generate() function for some output
record causes fail of the generate() function, and if user has
defined another function (generateOnError()), processing
continues in this generateOnError() at the place where
generate() failed. If generate() fails and user has not
defined any generateOnError(), the whole graph will
fail. The generateOnError() function gets the information
gathered by generate() that was get from previously
successfully processed code. Also error message and stack trace are
passed to generateOnError().

Example function integer generateOnError(
 string errorMessage,
 string stackTrace) {
 $0.name = randomString(3,5) + " " randomString(5,7);
 $0.salary = randomInteger(20000,40000);
 $0.stringTestValue = "myTestString is abc";
 return ALL;
}

string getMessage()

Required No

Description Prints error message specified and invocated by user (called only
when either generate() or generateOnError() returns
value less than or equal to -2).

Invocation Called in any time specified by user

Returns string

void preExecute()

Required No

Chapter 53. Readers

356

CTL Template Functions

Input parameters None

Returns void

Description May be used to allocate and initialize resources required by the
generate. All resources allocated within this function should be
released by the postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Invocation Called during each graph run after the entire transform was
executed.

Important

• Output records or fields

Output records or fields are accessible within the generate() and generateOnError()
functions only.

• All of the other CTL template functions do not allow to access outputs.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Java Interfaces for DataGenerator

The transformation implements methods of the RecordGenerate interface and inherits other common methods
from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of RecordGenerate interface:

• boolean init(Properties parameters, DataRecordMetadata[] targetMetadata)

Initializes generate class/function. This method is called only once at the beginning of generate process. Any
object allocation/initialization should happen here.

• int generate(DataRecord[] target)

Performs generator of target records. This method is called as one step in generate flow of records.

Note

This method allows to distribute different records to different connected output ports according to
the value returned for them. See Return Values of Transformations (p. 282) for more information
about return values and their meaning.

• int generateOnError(Exception exception, DataRecord[] target)

Performs generator of target records. This method is called as one step in generate flow of records. Called only
if generate(DataRecord[]) throws an exception.

Chapter 53. Readers

357

• void signal(Object signalObject)

Method which can be used for signaling into generator that something outside happened.

• Object getSemiResult()

Method which can be used for getting intermediate results out of generation. May or may not be implemented.

Generating Variable Number of Records

Sometimes the number of records to be generated is not known at design time. In such case, set the value of the
Number of records to generate attribute to a negative number. The component will then generate records until the
generate() function returns STOP (in this case, it is not considered an error). This works for transformations
defined both in Java and CTL.

Warning

Note that in the last iteration when STOP is returned, no records will be sent to any of the output ports.

Example 53.3. Generating Variable Number of Records in CTL

 integer total = randomInteger(1, 100);
 integer counter = 0;

 // Generates output record.
 function integer generate() {
 counter++;

 if (counter > total) {
 printLog(info, "Terminating");
 return STOP;
 }

 if ((counter % 10) == 0) {
 printLog(info, "Skipping record # " + counter);
 return SKIP;
 }

 $out.0.value = "Record # " + counter;

 return OK;
 }

Chapter 53. Readers

358

DBFDataReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

DBFDataReader reads data from fixed-length dbase files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

DBFDataReader dBase file 0-1 1-n yes no no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

DBFDataReader reads data from fixed-length dbase files (local or remote). It can also read data from compressed
files, console, input port, or dictionary.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

0 yes For correct data records Any1)Output

1-n no For correct data records Output 0

Chapter 53. Readers

359

Legend:

1): Metadata on output ports can use Autofilling Functions (p. 131). Note: source_timestamp and
source_size functions only work when reading from a file directly (if the file is an archive or it is stored in
a remote location, timestamp will be empty and size will be 0).

DBFDataReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying what data source(s) will be read (dbase
file, console, input port, dictionary). See Supported File URL
Formats for Readers (p. 296).

Charset Encoding of records that are read. IBM850
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Advanced

Number of skipped
records

Number of records to be skipped continuously throughout all
source files. See Selecting Input Records (p. 304).

0-N

Max number of
records

Maximum number of records to be read continuously
throughout all source files. See Selecting Input Records (p. 304).

0-N

Number of skipped
records per source

Number of records to be skipped from each source file. See
Selecting Input Records (p. 304).

Same as in
Metadata
(default) | 0-N

Max number of
records per source

Maximum number of records to be read from each source file.
See Selecting Input Records (p. 304).

0-N

Incremental file 1) Name of the file storing the incremental key, including path. See
Incremental Reading (p. 303).

Incremental key 1) Variable storing the position of the last read record. See
Incremental Reading (p. 303).

Legend:

1) Either both or neither of these attributes must be specified.

Chapter 53. Readers

360

DBInputTable

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

DBInputTable unloads data from database using JDBC driver.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s 1

)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s 2
)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

DBInputTable database 0-1 1-n
1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

DBInputTable unloads data from a database table using an SQL query or by specifying a database table and
defining a mapping of database columns to Clover fields. It can send unloaded records to all connected output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0-1 Incoming queries to be used in the SQL query attribute.
When the input port is connected, Query URL should be
specified as e.g. port:$0.fieldName:discrete. See
Reading from Input Port (p. 299).

0 for correct data recordsOutput

1-n for correct data records

equal
metadata 1)

1) Output metadata can use Autofilling Functions (p. 131)

DBInputTable Attributes

Chapter 53. Readers

361

Attribute Req Description Possible
values

Basic

DB connection ID of the database connection to be used to access the database

Query URL 1) Name of external file, including path, defining SQL query.

SQL query 1) SQL query defined in the graph. See SQL Query
Editor (p. 362) for detailed information.

Query source charset Encoding of external file defining SQL query. ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Advanced

Fetch size Specifies the number of records that should be fetched from the
database at once.

20 | 1-N

Incremental file 2) Name of the file storing the incremental key, including path. See
Incremental Reading (p. 303).

Incremental key 2) Variable storing the position of the last read record. See
Incremental Reading (p. 303).

Auto commit By default, your SQL queries are committed immediately. If you
need to perform more operations inside one transaction, switch
this attribute to false.

true (default) |
false

1) At least one of these attributes must be specified. If both are defined, only Query URL is applied.
2) Either both or neither of these attributes must be specified.

Advanced Description

Defining Query Attributes

• Query Statement without Mapping

When order of CloverETL metadata fields and database columns in select statement is same and data types
are compatible, implicit mapping can be used which performs positional mapping. Standard SQL query syntax
should be used:

• select * from table [where dbfieldJ = ? and dbfieldK = somevalue]

• select column3, column1, column2, ... from table [where dbfieldJ = ? and
dbfieldK = somevalue]

See SQL Query Editor (p. 362) for information about how SQL query can be defined.

• Query Statement with Mapping

If you want to map database fields to clover fields even for multiple tables, the query will look like this:

select $cloverfieldA:=table1.dbfieldP,
$cloverfieldC:=table1.dbfieldS, ... , $cloverfieldM:=table2.dbfieldU,
$cloverfieldM:=table3.dbfieldV from table1, table2, table3 [where
table1.dbfieldJ = ? and table2.dbfieldU = somevalue]

See SQL Query Editor (p. 362) for information about how SQL query can be defined.

Chapter 53. Readers

362

Dollar Sign in DB Table Name

• Remember that if any database table contains a dollar sign in its name, it will be transformed to double dollar
signs in the generated query. Thus, each query must contain even numbers of dollar signs in the db table
(consisting of adjacent pairs of dollars). Single dollar signs contained in the name of db table are replaced by
double dollar sign in the query in the name of the db table.

Important

Remember also, when connecting to MS SQL Server, it is recommended to use jTDS http://
jtds.sourceforge.net driver. It is an open source 100% pure Java JDBC driver for Microsoft SQL
Server and Sybase. It is faster than Microsoft's driver.

SQL Query Editor

For defining the SQL query attribute, SQL query editor can be used.

The editor opens after clicking the SQL query attribute row:

On the left side, there is the Database schema pane containing information about schemas, tables, columns, and
data types of these columns.

Displayed schemas, tables, and columns can be filtered using the values in the ALL combo, the Filter in view
textarea, the Filter, and Reset buttons, etc.

You can select any columns by expanding schemas, tables and clicking Ctrl+Click on desired columns.

Adjacent columns can also be selected by clicking Shift+Click on the first and the list item.

Then you need to click Generate after which a query will appear in the Query pane.

Figure 53.6. Generated Query with Question Marks

The query may contain question marks if any db columns differ from output metadata fields. Output metadata are
visible in the Output metadata pane on the right side.

http://jtds.sourceforge.net
http://jtds.sourceforge.net

Chapter 53. Readers

363

Drag and drop the fields from the Output metadata pane to the corresponding places in the Query pane and then
manually remove the "$:=" characters. See following figure:

Figure 53.7. Generated Query with Output Fields

You can also type a where statement to the query.

Two buttons underneath allow you to validate the query (Validate) or view data in the table (View).

Chapter 53. Readers

364

EmailReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296) .

Short Summary

EmailReader reads a store of email messages, either locally from a delimited flat file, or on an external server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

EmailReader 1 2 - -

Abstract

EmailReader is a component that enables reading of online or local email messages.

This component parses email messages and writes their attributes out to two attached output ports. The first port,
the content port, outputs relevant information about the email and body. The second port, the attachment port,
writes information relevant to any attachments that the email contains.

The content port will write one record per email message. The attachment port can write multiple records per email
message; one record for each attachment it encounters.

Icon

Ports

When looking at ports, it is necessary that use-case scenarios be understood. This component has the ability to
read data from a local source, or an external server. The component decides which case to use based on whether
there is an edge connected to the single input port.

Case One: If an edge is attached to the input port, the component assumes that it will be reading data locally.
In many cases, this edge will come from a UniversalDataReader. In this case, a file can contain multiple
email message bodies, separated by a chosen delimeter, and each message will be passed one by one into the
EmailReader for parsing and processing.

Chapter 53. Readers

365

Case Two: If an edge is not connected to the input port, the component assumes that messages will be read from an
external server. In this case, the user must enter related attributes, such as the server host and protocol parameters,
as well as any relevant username and/or password.

Port type Number Required Description Metadata

Input 0 For inputting email messages from a flat file String field

0 The content port AnyOutput

1 The attachment port Any

EmailReader Attributes

Whether many of the attributes are required or not depends solely on the configuration of the component. See
Ports (p. 364): in Case Two, where an edge is not connected to the input port, many attributes are required in
order to connect to the external server. The user at minimum must choose a protocol and enter a hostname for the
server. Usually a username and password will also be required.

Attribute Req Description Possible
values

Basic

Server Type Protocol utilized to connect to a mail server. Options are POP3
and IMAP. In most cases, IMAP should be selected if possible,
as it is an improvement over POP3.

POP3, IMAP

Server Name The hostname of the server. e.g.
imap.google.com

Server Port Specifies the port used to connect to an external server. If left
blank, a default port will be used.

Integers

Security Specifies the security protocol used to connect to the server. NONE,SSL,STARTTLS,
SSL
+STARTTLS

User Name Username to connect to the server (if authorization is required)

Password Password to connect to server (if authorization is required)

Fetch Messages Filters messages based on their status. The option ALL will read
every message located on the server, regardless of its status.
NEW fetches only messages that have not been read.

NEW,ALL

Field Mapping Yes Defines how parts of the email (standard and user-defined) will
be mapped to Clover fields. See Mapping Fields (p. 366).

Advanced

POP3 Cache File Specifies the URL of a file used to keep track of which messages
have been read. POP3 servers by default have no way of keeping
track of read/unread messages. If one wishes to fetch only
unread messages, they must download all of the messages IDs
from the server, and then compare them with a list of message
IDs that have already been read. Using this method, only the
messages that do not appear in this list are actually downloaded,
thus saving bandwidth. This file is simply a delimited text file,
storing the unique message IDs of messages that have already
been read. Even if ALL messages is chosen, the user should still
provide a cache file, as it will be populated by the messages read.
Note: the pop cache file is universal; it can be shared amongst
many inboxes, or the user can choose to maintain a separate
cache for different mailboxes.

Chapter 53. Readers

366

Advanced Description

Mapping Fields

 If you edit the Field Mapping attribute, you will get the following simple dialog:

Figure 53.8. Mapping to Clover fields in EmailReader

In its two tabs - Message and Attachments - you map incoming email fields to Clover fields by a simple drag
and drop. Notice the buttons on the right hand side allowing you to Cancel all mappings. Auto mapping is
automatically performed when you first open this window. Finally, remember you will only see metadata fields
in Attachments if you are using the second output port (see Ports (p. 364) to learn why).

Note

User-defined Fields let you handle all fields that can occur besides the Standard ones. Example:
custom fields in the email header.

Tips&Tricks

• Be sure you have dedicated enough memory to your Java Virtual Machine (JVM). Depending on the size of
your message attachments (if you choose to read them), you may need to allocate up to 512M to CloverETL
so that it may effectively process the data.

Performance Bottlenecks

• Quantity of messages to process from an external server EmailReader must connect to an external server,
therefore one may reach bandwidth limitations. Processing a large amount of messages which contain large
attachments may bottleneck the application, waiting for the content to be downloaded. Use the NEW option
whenever possible, and maintain a POP3 cache if using the POP3 protocol.

Chapter 53. Readers

367

JavaBeanReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

JavaBeanReader reads a JavaBeans hierarchical structure which is stored in a dictionary. That allows dynamic
data interchange between Clover graphs and external environment, such as cloud. The dictionary you are reading
to serves as an interface between the outer (e.g. cloud) and inner worlds (Clover).

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

JavaBeanReader dictionary 0 1-n no yes no no no no

Abstract

JavaBeanReader reads data from JavaBeans through a dictionary. It maps Java attributes / collection elements
to output records based on a mapping you define. You do not have to map the whole input file - you use XPath
expressions to select only the data you need. The component sends data to different connected output records as
defined by your mapping.

The mapping process is similar to the one in XMLXpathReader (p. 445).

Icon

Ports

Port type Number Required Description Metadata

0 yes Successfuly read records. AnyOutput

1-n Connect
other
output
ports
if your
mapping
requires
that.

Successfuly read records. Any. Each port can have different
metadata.

http://en.wikipedia.org/wiki/Java_Bean

Chapter 53. Readers

368

JavaBeanReader Attributes

Attribute Req Description Possible
values

Basic

Dictionary source yes The dictionary you want to read JavaBeans from. Name of a
dictionary you
have
previously
defined.

Data policy Determines what should be done when an error on reading
occurs. See Data Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Mapping 1) Mapping the input JavaBeans structure to output ports. See
JavaBeanReader Mapping Definition (p. 369) for more
information.

Mapping URL 1) External text file containing the mapping definition.

Implicit mapping By default, you have to manually map input elements
even to Clover fields of the same name. If you switch to
true, JSON-to-Clover mapping on matching names will be
performed automatically. That can save you a lot of effort in
long and well-structured JSON files. See JSON Mapping -
Specifics (p. 380).

false (default) |
true

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has a higher priority.

Chapter 53. Readers

369

Advanced Description

JavaBeanReader Mapping Definition

1. Every Mapping definition consists of <Context> tags which contain also some attributes and allow mapping
of element names to Clover fields. Nested structure of <Context> tags is similar to the nested structure of
elements in input JavaBeans.

2. Each <Context> tag can surround a serie of nested <Mapping> tags. These allow to rename JavaBeans
elements to Clover fields. However, Mapping does not need to copy the whole input structure, it can start at
an arbitrary depth in the tree.

3. Each of these <Context> and <Mapping> tags contains some JavaBeanReader Context Tag
Attributes (p. 370) and JavaBeanReader Mapping Tag Attributes (p. 371), respectively.

Example 53.4. Example Mapping in JavaBeanReader

 <Context xpath="/employees" outPort="0" sequenceId="empSeq" sequenceField="id">
 <Mapping xpath="firstName" cloverField="firstName"/>
 <Mapping xpath="lastName" cloverField="lastName"/>
 <Mapping xpath="salary" cloverField="salary"/>
 <Mapping xpath="jobTitle" cloverField="jobTitle"/>
 <Context xpath="children" outPort="1" parentKey="id" generatedKey="empID">
 <Mapping xpath="name" cloverField="chname"/>
 <Mapping xpath="age" cloverField="age"/>
 </Context>
 <Context xpath="benefits" outPort="2" parentKey="id" generatedKey="empID">
 <Mapping xpath="car" cloverField="car"/>
 <Mapping xpath="cellPhone" cloverField="mobilephone"/>
 <Mapping xpath="monthlyBonus" cloverField="monthlyBonus"/>
 <Mapping xpath="yearlyBonus" cloverField="yearlyBonus"/>
 </Context>
 <Context xpath="projects" outPort="3" parentKey="id" generatedKey="empID">
 <Mapping xpath="name" cloverField="projName"/>
 <Mapping xpath="manager" cloverField="projManager"/>
 <Mapping xpath="start" cloverField="Start"/>
 <Mapping xpath="end" cloverField="End"/>
 <Mapping xpath="customers" cloverField="customers"/>
 </Context>
 </Context>

Important

If you switch Implicit mapping to true, elements (e.g. salary) will be automatically mapped
onto fields of the same name (salary) and you do not have to write:

 <Mapping xpath="salary" cloverField="salary"/>

and you map explicitly only to populate fields with data from distinct elements.

4. JavaBeanReader Context Tags and Mapping Tags

• Empty Context Tag (Without a Child)

<Context xpath="xpathexpression" JavaBeanReader Context Tag Attributes (p. 370) />

Chapter 53. Readers

370

• Non-Empty Context Tag (Parent with a Child)

<Context xpath="xpathexpression" JavaBeanReader Context Tag Attributes (p. 370) >

(nested Context and Mapping elements (only children, parents with one
or more children, etc.)

</Context>

• Empty Mapping Tag (Renaming Tag)

• xpath is used:

<Mapping xpath="xpathexpression" JavaBeanReader Mapping Tag Attributes (p. 371) />

• nodeName is used:

<Mapping nodeName="elementname" JavaBeanReader Mapping Tag Attributes (p. 371) />

5. JavaBeanReader Context Tag and Mapping Tag Attributes

1) JavaBeanReader Context Tag Attributes

• xpath

Required

The xpath expression can be any XPath query.

Example: xpath="/tagA/.../tagJ"

• outPort

Optional

Number of output port to which data is sent. If not defined, no data from this level of Mapping is sent out
using such level of Mapping.

Example: outPort="2"

• parentKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the next parent level separated by semicolon, colon, or pipe. Number and
data types of all these fields must be the same in the generatedKey attribute or all values are concatenated
to create a unique string value. In such a case, key has only one field.

Example: parentKey="first_name;last_name"

Equal values of these attributes assure that such records can be joined in the future.

• generatedKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the specified level separated by semicolon, colon, or pipe. Number and data
types of all these fields must be the same in the parentKey attribute or all values are concatenated to create
a unique string value. In such a case, key has only one field.

Example: generatedKey="f_name;l_name"

Chapter 53. Readers

371

Equal values of these attributes assure that such records can be joined in the future.

• sequenceId

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

Id of the sequence.

Example: sequenceId="Sequence0"

• sequenceField

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

A metadata field on the specified level in which the sequence values are written. Can serve as parentKey
for the next nested level.

Example: sequenceField="sequenceKey"

2) JavaBeanReader Mapping Tag Attributes

• xpath

Either xpath or nodeName must be specified in <Mapping> tag.

XPath query.

Example: xpath="tagA/.../salary"

• nodeName

Either xpath or nodeName must be specified in <Mapping> tag. Using nodeName is faster than using
xpath.

JavaBeans node that should be mapped to Clover field.

Example: nodeName="salary"

• cloverField

Required

Clover field to which JavaBeans node should be mapped.

Name of the field in the corresponding level.

Example: cloverFields="SALARY"

Reading Mutlivalue Fields

As of Clover 3.3, reading multivalue fields is supported - you can read only lists, however (see Multivalue
Fields (p. 167)).

Note

Reading maps is handled as reading pure string (for all data types as map's values).

Chapter 53. Readers

372

Example 53.5. Reading lists with JavaBeanReader

An example input file containing e.g. a list of three elements: John, Vicky, Brian

can be read back by the component with this mapping:

 <Mapping xpath="attendees" cloverField="attendanceList"/>

where attendanceList is a field of your metadata. The metadata has to be assigned to the component's output
edge. After you run the graph, the field will get populated by data like this (that what you will see in View data):

[John,Vicky,Brian]

Chapter 53. Readers

373

HadoopReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

HadoopReader reads Hadoop sequence files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s

 1
)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s
 2

)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

HadoopReader Hadoop
Sequence File

0–1 1

1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

HadoopReader reads data from special Hadoop sequence file
(org.apache.hadoop.io.SequenceFile). These files contain key-value pairs and are used in
MapReduce jobs as input/output file formats. The component can read a single file as well as a collection of files
which have to be located on HDFS or local file system.

Icon

Ports

Port type Number Required Description Metadata

Input 0 For Input Port Reading (p. 302).
Only source mode is supported.

Any

Output 0 For read data records. Any

HadoopReader Attributes

Chapter 53. Readers

374

Attribute Req Description Possible
values

Basic

Hadoop connection Hadoop connection (p. 191) with Hadoop libraries containing
Hadoop sequence file parser implementation. If Hadoop
connection ID is specified in a hdfs:// URL in the File URL
attribute, value of this attribute is ignored.

Hadoop
connection ID

File URL URL to a file on HDFS or local file system.

URLs without protocol (i.e. absolute or relative path actually)
or with the file:// protocol are considered to be located on
the local file system.

If file to be read is located on the HDFS, use URL
in this form: hdfs://ConnID/path/to/file, where
ConnID is ID of a Hadoop connection (p. 191) (Hadoop
connection component attribute will be ignored), and /path/
to/myfile is absolute path on corresponding HDFS to file
with name myfile.

Key field Name of an output edge record field, where key of each key-
value pair will be stored.

Value field Name of an output edge record field, where value of each key-
value pair will be stored.

Advanced Description

Exact version of file format supported by the HadoopReader component depends on Hadoop libraries which you
supply in Hadoop connection referenced from the File URL attribute. In general, sequence files created by one
version of Hadoop may not be readable by different version.

Hadoop sequence files may contain compressed data. HadoopReader automatically detects this and decompresses
the data. Which compression codecs are supported, again, depends on libraries you specify in the Hadoop
connection.

For technical details about Hadoop sequence files, have a look at Apache Hadoop Wiki.

http://wiki.apache.org/hadoop/SequenceFile

Chapter 53. Readers

375

JMSReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

JMSReader converts JMS messages into Clover data records.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

JMSReader jms messages 0 1 yes no yes no yes no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

JMSReader receives JMS messages, converts them into Clover data records and sends these records to the
connected output port. Component uses a processor transformation which implements a JmsMsg2DataRecord
interface or inherits from a JmsMsg2DataRecordBase superclass. Methods of JmsMsg2DataRecord
interface are described below.

Icon

Ports

Port type Number Required Description Metadata

Output 0 yes For correct data records Any1)

Chapter 53. Readers

376

Legend:

1): Metadata on the output port may contain a field specified in the Message body field attribute. Metadata can
also use Autofilling Functions (p. 131).

JMSReader Attributes

Attribute Req Description Possible values

Basic

JMS connection yes ID of the JMS connection to be used.

Processor code 1) Transformation of JMS messages to records
written in the graph in Java.

Processor URL 1) Name of external file, including path,
containing the transformation of JMS
messages to records written in Java.

Processor class 1) Name of external class defining the
transformation of JMS messages to
records. The default processor value
is sufficient for most cases. It can
process both javax.jms.TextMessage
and javax.jms.BytesMessage.

JmsMsg2DataRecordProperties
(default) | other class

JMS message selector Standard JMX "query" used to filter the JMS
messages that should be processed. In effect,
it is a string query using message properties
and syntax that is a subset of SQL expressions.
See http://docs.oracle.com/javaee/1.4/api/
javax/jms/Message.html for more information.

Processor source
charset

Encoding of external file containing the
transformation in Java.

ISO-8859-1 (default) | other
encoding

Message charset Encoding of JMS messages contents.
This attribute is also used by
the default processor implementation
(JmsMsg2DataRecordProperties).
And it is used for
javax.jms.BytesMessage only.

ISO-8859-1 (default) | other
encoding

Advanced

Max msg count Maximum number of messages to be received.
0 means without limitation. See Limit of
Run (p. 377) for more information.

0 (default) | 1-N

Timeout Maximum time to receive messages in
milliseconds. 0 means without limitation. See
Limit of Run (p. 377) for more information.

0 (default) | 1-N

Message body field Name of the field to which message body
should be written. This attribute is used
by the default processor implementation
(JmsMsg2DataRecordProperties). If
no Message body field is specified, the field
whose name is bodyField will be filled with
the body of the message. If no field for the
body of the message is contained in metadata,
the body will not be written to any field.

bodyField (default) | other name

Legend:

http://docs.oracle.com/javaee/1.4/api/javax/jms/Message.html
http://docs.oracle.com/javaee/1.4/api/javax/jms/Message.html

Chapter 53. Readers

377

1) One of these may be set. Any of these transformation attributes implements a JmsMsg2DataRecord
interface.

See Java Interfaces for JMSReader (p. 377) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

Limit of Run

It is also important to decide whether you want to limit the number of received messages and/or time of processing.
This can be done by using the following setting:

• Limited Run

If you specify the maximum number of messages (Max msg count), the timeout (Timeout) or both, the
processing will be limited by number of messages, or time of processing, or both of these attributes. They need
to be set to positive values.

When the specified number of messages is received, or when the process lasts some defined time, the process
stops. Whichever of them will be achieved first, such attribute will be applied.

Note

Remember that you can also limit the graph run by using the endOfInput() method of
JmsMsg2DataReader interface. It returns a boolean value and can also limit the run of the
graph. Whenever it returns false, the processing stops.

• Unlimited Run

On the other hand, if you do not specify either of these two attributes, the processing will never stop. Each of
them is set to 0 by default. Thus, the processing is limited by neither the number of messages nor the elapsed
time. This is the default setting of JMSReader.

Java Interfaces for JMSReader

The transformation implements methods of the JmsMsg2DataRecord interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of JmsMsg2DataRecord interface:

• void init(DataRecordMetadata metadata, Properties props)

Initializes the processor.

• boolean endOfInput()

May be used to end processing of input JMS messages when it returns false. See Limit of Run (p. 377)
for more information.

• DataRecord extractRecord(Message msg)

Transforms JMS message to data record. null indicates that the message is not accepted by the processor.

• String getErrorMsg()

Returns error message.

Chapter 53. Readers

378

JSONReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

JSONReader reads data in the Java Script Object Notation - JSON format, typically stored in a *.json file.
JSON is a hierarchical text format where values you want to read are stored either in name-value pairs or arrays.
Arrays are just the caveat in mapping - see Handling arrays (p. 382). JSON objects are often repeated - that is
why you usually map to more than one output port.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L
JSONReader JSON file 0-1 1-n no yes no no no no

Abstract

JSONReader takes the input JSON and internally converts it to DOM. Afterwards, you use XPath expressions to
traverse the DOM tree and select which JSON data structures will be mapped to Clover records.

DOM contains elements only, not attributes. As a consequence, remember that you XPath expressions will never
contain @.

Note that the whole input is stored in memory and therefore the component can be memory-greedy.

Icon

Ports

http://www.json.org/

Chapter 53. Readers

379

Port type Number Required Description Metadata

Input 0 no Optional. For port reading. Only one field (byte or cbyte or
string) is used. The field name is
used in File URL to govern how the
input records are processed - one of
these modes: discrete, source
or stream. See Reading from Input
Port (p. 299).

0 yes Successfuly read records. Any.Output

1-n no
(connect
additional
output
ports
if your
mapping
requires
that)

Successfuly read records. Any. Each output port can have
different metadata.

JSONReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Specifies which data source(s) will be read (a JSON file,
dictionary or port). See Supported File URL Formats for
Readers (p. 296) and Notes and Limitations (p. 383) .

Charset Encoding of records that are read. JSON automatically
recognizes the family of UTF-* encodings (Auto). If your
input uses another charset, explicitly specify it in this attribute
yourself.

Auto (default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Mapping URL 1) External text file containing the mapping definition.

Mapping 1) Mapping the input JSON structure to output ports. See
Advanced Description (p. 380).

Implicit mapping By default, you have to manually map JSON elements
even to Clover fields of the same name. If you switch to
true, JSON-to-Clover mapping on matching names will be
performed automatically. That can save you a lot of effort in
long and well-structured JSON files. See JSON Mapping -
Specifics (p. 380).

false (default) |
true

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has a higher priority.

Chapter 53. Readers

380

Advanced Description

JSON is a representation for tree data as every JSON object can contain other nested JSON objects. Thus, the way
you create JSONReader mapping is similar to reading XML and other tree formats. JSONReader configuration
resembles XMLXPathReader (p. 445) configuration. The basics of mapping are:

• <Context> element chooses elements in the JSON structure you want to map.

• <Mapping> element maps those JSON elements (selected by <Context>) to Clover fields.

• Both use XPath expressions (p. 381) .

You will see mapping instructions and examples when you edit the Mapping attribute for the first time.

JSON Mapping - Specifics

• Important

The first <Context> element of your mapping has a fixed format. There are only two ways how
to set its xpath for the component to work properly:

xpath="/root/object" (if root in JSON structure is an object)

xpath="/root/array" (if root in JSON structure is an array)

Example JSON:

 [
 { "value" : 1},
 { "value" : 2}
]

JSONReader mapping:

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <Context outPort="0" xpath="/root/array">
 <Mapping cloverField="cloverValue" xpath="value"/>
 </Context>

(considering cloverValue is a field in metadata assigned to the output edge)

• To read data from regular name-value pairs, first remember to set your position in the JSON structure to a
correct depth - e.g. <Context xpath="zoo/animals/tiger">.

Optionally, you can map the subtree of <Context> to the output port - e.g. <Context
xpath="childObjects" outPort="2">.

Do the <Mapping>: select a name-value pair in xpath. Next, send the value to Clover using cloverField;
e.g.: <Mapping cloverField="id" xpath="nestedObject">.

Example JSON:

Chapter 53. Readers

381

 {
 "property" : 1,
 "innerObject" : {
 "property" : 2
 }
 }

JSONReader mapping:

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <Context outPort="0" xpath="/root/object">
 <Mapping cloverField="property" xpath="property"/>
 <Context xpath="innerObject">
 <Mapping cloverField="propertyOfInnerObject" xpath="property"/>
 </Context>
 </Context>

• XPath expressions - remember that you do not use the @ symbol to access 'attributes' as there are none. In order
to select objects with specific values you will write mapping in a way like:

 <Context xpath="//website[uri='http://www.w3.org/']" outPort="1">
 <Mapping cloverField="dateUpdated" xpath="dateUpdated" />
 <Mapping cloverField="title" xpath="title"/>
 </Context>

The XPath in the example selects all elements website (no matter how deep in the JSON they are) whose uri
matches the given string. Next, it sends its two elements (dateUpdated and title) to respective metadata
fields on port 1.

As has already been mentioned, JSON is internally converted into a XML DOM. Since not all JSON names are
valid XML element names, the names are encoded. Invalid characters are replaced with with escape sequences
of the form _xHHHH where HHHH is a hexadecimal Unicode code point. These sequences must therefore also
be used in JSONReader's XPath expressions.

The XPath name() function can be used to read the names of properties of JSON objects (for a description
of XPath functions on nodes, see http://www.w3schools.com/xpath/xpath_functions.asp#node). However, the
names may contain escape sequences, as described above. JSONReader offers two functions to deal with them,
the functions are available from http://www.cloveretl.com/ns/TagNameEncoder namespace
which has to be declared using the namespacePaths attribute, as will be shown below. These functions are
the decode(string) function, which can be used to decode _xHHHH escape sequences, and its counterpart,
the encode(string) function, which escapes invalid characters.

For example, let's try to process the following structure:

 {"map" : { "0" : 2 , "7" : 1 , "16" : 1 , "26" : 3 , "38" : 1 }}

Chapter 53. Readers

382

A suitable mapping could look like this:

 <Context xpath="/root/object/map/*" outPort="0" namespacePaths='tag="http://www.cloveretl.com/ns/TagNameEncoder"'>
 <Mapping cloverField="key" xpath="tag:decode(name())" />
 <Mapping cloverField="value" xpath="." />
 </Context>

The mapping maps the names of properties of "map" ("0", "7", "16", "26" and "38") to the field "key" and their
values (2, 1, 1, 3 and 1, resp.) to the field "value".

• Implicit mapping - if you switch the component's attribute to true, you can save a lot of space because
mapping of JSON structures to fields of the same name:

 <Mapping cloverField="salary" xpath="salary"/>

will be performed automatically (i.e. you do not write the mapping code above).

Handling arrays

• Once again, remember that JSON structures are wrapped either by objects or arrays. Thus, your mapping has
to start in one of the two ways (see JSON Mapping - Specifics (p. 380)):

 <Context xpath="/root/object">

 <Context xpath="/root/array">

• Nested arrays - if you have two or more arrays inside each other, you can reach values of the inner ones by
repeatedly using a single name (of the array on the very top). Therefore in XPath, you will write constructs like:
arrayName/arrayName/.../arrayName depending on how many arrays are nested. Example:

JSON:

 {
 "commonArray" : ["hello" , "hi" , "howdy"],
 "arrayOfArrays" : [["val1", "val2", "val3"] , [""], ["val5", "val6"]]
 }

JSONReader mapping:

Chapter 53. Readers

383

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <Context xpath="root/object">

 <Context xpath="commonArray" outPort="0">
 <Mapping xpath="." cloverField="field1"/>
 </Context>

 <Context xpath="arrayOfArrays/arrayOfArrays" outPort="1">
 <Mapping xpath="." cloverField="field2"/>
 </Context>

 </Context>

Notice the usage of dot in mapping (p. 430). This is the only mapping which produces results you expect,
i.e. on port 1:

Figure 53.9. Example mapping of nested arrays - the result.

• Null and empty elements in arrays - in Figure 53.9, “Example mapping of nested arrays - the result.” (p. 383),
you could notice that an empty string inside an array (i.e. [""]) populates a field with an empty string (record
4 in the figure).

Null values (i.e. []), on the other hand, are completely skipped. JSONReader treats them as if they were not
in the source.

Notes and Limitations

• JSONReader reads data from JSON contained in a file, dictionary or port. If you are reading from a port or
dictionary, always set Charset explicitly (otherwise you will get errors). There is no autodetection.

• If your metadata contains the underscore '_', you will be warned. Underscore is an illegal character in
JSONReader mapping. You should either:

a) Remove the character.

b) Replace it e.g. by the dash '-'.

c) Replace the underscore by its Unicode representation: _x005f.

Chapter 53. Readers

384

LDAPReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

LDAPReader reads information from an LDAP directory.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

LDAPReader LDAP directory tree 0 1-n no no no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

LDAPReader reads information from an LDAP directory and converting it to Clover data records. It provides the
logic for extracting the results of a search and converts them into Clover data records. The results of the search
must have the same objectClass.

Only string and byte Clover data fields are supported. String is compatible with most of ldap usual types, byte is
necessary, for example, for userPassword ldap type reading.

Icon

Ports

Port type Number Required Description Metadata

0 yes For correct data records Any1)Output

1-n no For correct data records Output 0

Chapter 53. Readers

385

Legend:

1): Metadata on the output must precisely describe the structure of the read object. Metadata can use Autofilling
Functions (p. 131).

LDAPReader Attributes

Attribute Req Description Possible values

Basic

LDAP URL yes LDAP URL of the directory. ldap://host:port/

Base DN yes Base Distinguished Name (the root of your
LDAP tree). It is a comma separated
list of attribute=value pairs reffering to
any location with the directory, e.g.,
if ou=Humans,dc=example,dc=com is
the root of the subtree to be search,
entries representing people from example.com
domain are to be found.

Filter yes attribute=value pairs as a filtering condition
for the search. All entries matching the filter
will be returned, e.g., mail=* returns every
entry which has an email address, while
objectclass=* is the standard method for
returning all entries matching a given base
and scope because all entries have values for
objectclass.

Scope Scope of the search request. By default, only
one object is searched. If onelevel, the
level immediately below the distinguished
name, if subtree, the whole subtree below
the distinguished name is searched.

object (default) | onelevel |
subtree

User User DN to be used when connecting to the
LDAP directory. Similar to the following:
cn=john.smith,dc=example,dc=com.

Password Password to be used when connecting to the
LDAP directory.

Advanced

Multi-value separator LDAPReader can handle keys with multiple
values. These are delimited by this string
or character. <none> is special escape value
which turns off this functionality, then only the
first value is read. This attribute can only be
used for string data type. When byte type is
used, the first value is the only one that is read.

"|" (default) | other character or
string

Alias handling to control how aliases (leaf entries pointing
to another object in the namespace) are
dereferenced

always | never | finding
(default)| searching

Referral handling By default, links to other servers are ignored.
If follow, the referrals are processed.

ignore (default) | follow

Advanced Description

• Alias Handling

Chapter 53. Readers

386

Searching the entry an alias entry points to is known as dereferencing an alias. Setting the Alias handling
attribute, you can control the extent to which entries are searched:

• always: Always dereference aliases.

• never: Never dereference aliases.

• finding: Dereference aliases in locating the base of the search but not in searching subordinates of the base.

• searching: Dereference aliases in searching subordinates of the base but not in locating the base

Tips & Tricks

• Improving search performance: If there are no alias entries in the LDAP directory that require dereferencing,
choose Alias handling never option.

Chapter 53. Readers

387

LotusReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Chapter 53, Readers (p. 338).

Short Summary

LotusReader reads data from a Lotus Domino server. Data is read from Views, where each view entry is read
as a single data record.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s

 1
)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s
 2

)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

LotusReader Lotus Domino 0 1
1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

LotusReader is a component which can read data records from Lotus databases. The reading is done by connection
to a database stored on a Lotus Domino server.

The data is read from what is in Lotus called a View. Views provide tabular structure to the data in Lotus databases.
Each row of a view is read by the LotusReader component as a single data record.

The user of this component needs to provide the Java library for connecting to Lotus. The libary can be found
in the installations of Lotus Notes and Lotus Domino. The LotusReader component is not able to communicate
with Lotus unless the path to this library is provided or the library is placed on the user's classpath. The path to
the library can be specified in the details of Lotus connection (see Chapter 25, Lotus Connections (p. 190)).

Icon

Ports

Port type Number Required Description Metadata

Output 0 for read data records

Chapter 53. Readers

388

LotusReader Attributes

Attribute Req Description Possible
values

Basic

Domino connection ID of the connection to the Lotus Domino database.

View The name of the View in Lotus database from which the data
records will be read.

Advanced

Multi-value read
mode

Reading strategy that will be used for reading Lotus multi-value
fields. Either only the first field of the multi-value will be read
or all values will be read and then separated by user-specified
separator.

Read all values
(default) | Read
first value only

Multi-value separator A string that will be used to separate values from multi-value
Lotus fields.

";" (default) |
"," | ":" | "|" | "\t"
| other character
or string

Chapter 53. Readers

389

MultiLevelReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

MultiLevelReader reads data from flat files with a heterogeneous structure.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

MultiLevelReader flat file 1 1-n no yes yes yes yes no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

MultiLevelReader reads information from flat files with a heterogeneous and complicated structure (local or
remote which are delimited, fixed-length, or mixed). It can also read data from compressed flat files, console,
input port, or dictionary.

Unlike UniversalDataReader or the two deprecated readers (DelimitedDataReader and FixLenDataReader),
MultiLevelReader can read data from flat files whose structure contains different structures including both
delimited and fixed length data records even with different numbers of fields and different data types. It can
separate different types of data records and send them through different connected output ports. Input files can
also contain non-record data.

Component also uses the Data policy option. See Data Policy (p. 305) for more detailed information.

Icon

Chapter 53. Readers

390

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

0 yes For correct data records Any(Out0)1)Output

1-N no For correct data records Any(Out1-OutN)1)

Legend:

1) Metadata on all output ports can use Autofilling Functions (p. 131). Note: source_timestamp and
source_size functions work only when reading from a file directly (if the file is an archive or it is stored in
a remote location, timestamp will be empty and size will be 0).

MultiLevelReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying what data source(s) will be read (flat
file, console, input port, dictionary). See Supported File URL
Formats for Readers (p. 296).

Charset Encoding of records that are read. ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default) |
Lenient

Selector code 1) Transformation of rows of input data file to data records written
in the graph in Java.

Selector URL 1) Name of external file, including path, defining the
transformation of rows of input data file to data records written
in Java.

Selector class 1) Name of external class defining the transformation of rows of
input data file to data records.

PrefixMultiLevelSelector
(default) | other
class

Selector properties List of the key=value expressions separated by semicolon
when the whole is surrounded by flower brackets. Each value
is the number of the port through which data records should be
sent out. Each key is a serie of characters from the beginning of
the row contained in the flat file that enable differentiate groups
of records.

Advanced

Number of skipped
records

Number of records to be skipped continuously throughout all
source files. See Selecting Input Records (p. 304).

0-N

Max number of
records

Maximum number of records to be read continuously
throughout all source files. See Selecting Input Records (p. 304).

0-N

Number of skipped
records per source

Number of records to be skipped from each source file. See
Selecting Input Records (p. 304).

Same as in
Metadata
(default) | 0-N

Chapter 53. Readers

391

Attribute Req Description Possible
values

Max number of
records per source

Maximum number of records to be read from each source file.
See Selecting Input Records (p. 304).

0-N

Legend:

1): If you do not define any of these three attributes, the default Selector class
(PrefixMultiLevelSelector) will be used.

PrefixMultiLevelSelector class implements MultiLevelSelector interface. The interface
methods can be found below.

See Java Interfaces for MultiLevelReader (p. 391) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

Selector Properties

You also need to set some series of parameters that should be used (Selector properties). They map individual
types of data records to output ports. All of the properties must have the form of a list of the key=value
expressions separated by semicolon. The whole sequence is in curly brackets. To specify these Selector
properties, you can use the dialog that opens after clicking the button in this attribute row. By clicking the Plus
button in this dialog, you can add new key-value pairs. Then you only need to change both the default name and
the default value. Each value must be the number of the port through which data records should be sent out. Each
key is a series of characters from the beginning of the row contained in the flat file that enable differentiate groups
of records.

Java Interfaces for MultiLevelReader

Following are the methods of the MultiLevelSelector interface:

• int choose(CharBuffer data, DataRecord[] lastParsedRecords)

A method that peeks into CharBuffer and reads characters until it can either determine metadata of the record
which it reads, and thus return an index to metadata pool specified in init() method, or runs out of data
returning MultiLevelSelector.MORE_DATA.

• void finished()

Called at the end of selector processing after all input data records were processed.

• void init(DataRecordMetadata[] metadata, Properties properties)

Initializes this selector.

• int lookAheadCharacters()

Returns the number of characters needed to decide (next) record type. Usually it can be any fixed number
of characters, but dynamic lookahead size, depending on previous record type, is supported and encouraged
whenever possible.

• int nextRecordOffset()

Each call to choose() can instrument the parent to skip certain number of characters before attempting to
parse a record according to metadata returned in choose() method.

• void postProcess(int metadataIndex, DataRecord[] records)

Chapter 53. Readers

392

In this method the selector can modify the parsed record before it is sent to corresponding output port.

• int recoverToNextRecord(CharBuffer data)

This method instruments the selector to find the offset of next record which is possibly parseable.

• void reset()

Resets this selector completely. This method is called once, before each run of the graph.

• void resetRecord()

Resets the internal state of the selector (if any). This method is called each time a new choice needs to be made.

Chapter 53. Readers

393

ParallelReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

ParallelReader reads data from flat files using multiple threads.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s 1

)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s 2
)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

ParallelReader flat file 0 1-2
1) Component sends each data record to all connected output ports.
2) Component sends different data records to different output ports using return values of the transformation. See Return Values of
Transformations (p. 282) for more information.

Abstract

ParallelReader reads delimited flat files like CSV, tab delimited, etc., fixed-length, or mixed text files. Reading
goes in several parallel threads, which improves the reading speed. Input file is divided into set of chunks and
each reading thread parses just records from this part of file. The component can read a single file as well as a
collection of files placed on a local disk or remotely. Remote files are accessible via FTP protocol.

According to the component settings and the data structure, either the fast simplistic parser
(SimpleDataParser) or the robust (CharByteDataParser) one is used.

Parsed data records are sent to the first output port. The component has an optional output logging port for getting
detailed information about incorrect records. Only if Data Policy (p. 305) is set to controlled and a proper
Writer (Trash or UniversalDataWriter) is connected to port 1, all incorrect records together with the information
about the incorrect value, its location and the error message are sent out through this error port.

Icon

Ports

Chapter 53. Readers

394

Port type Number Required Description Metadata

0 for correct data records any 1)Output

1 for incorrect data records specific structure, see table bellow
1) Metadata on output port can use Autofilling Functions (p. 131)

Table 53.2. Error Metadata for Parallel Reader

Field
Number

Field
Content

Data Type Description

0 record
number

integer position of the erroneous record in the dataset (record numbering
starts at 1)

1 field number integer position of the erroneous field in the record (1 stands for the first
field, i.e., that of index 0)

2 raw record string erroneous record in raw form (including delimiters)

3 error
message

string error message - detailed information about this error

4 first record
offset

long indicates the initial file offset of the parsing thread

ParallelReader Attributes

Attribute Req Description Possible
values

Basic

File URL Attribute specifying what data source(s) will be read. See
Supported File URL Formats for Readers (p. 296).

Charset Encoding of records that are read in. ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Trim strings specifies whether leading and trailing whitespace should be
removed from strings before setting them to data fields, see
Trimming Data (p. 412). If true, the use of the robust parser
is forced.

false (default) |
true

Quoted strings Fields containing a special character (comma, newline, or
double quote) have to be enclosed in quotes. Only single/
double quote is accepted as the quote character. If true, special
characters are removed when read by the component (they are
not treated as delimiters).

Example: To read input data "25"|"John", switch Quoted
strings to true and set Quote character to ". This will produce
two fields: 25|John.

By default, the value of this attribute is inherited from metadata
on output port 0. See also Record Details (p. 161).

false | true

Quote character Specifies which kind of quotes will be permitted in Quoted
strings. By default, the value of this attribute is inherited from
metadata on output port 0. See also Record Details (p. 161).

both | " | '

Chapter 53. Readers

395

Attribute Req Description Possible
values

Advanced

Skip leading blanks specifies whether to skip leading whitespace (blanks e.g.) before
setting input strings to data fields. If not explicitly set (i.e.,
having the default value), the value of Trim strings attribute is
used. See Trimming Data (p. 412). If true, the use of the
robust parser is enforced.

false (default) |
true

Skip trailing blanks specifies whether to skip trailing whitespace (blanks e.g.) before
setting input strings to data fields. If not explicitly set (i.e.,
having the default value), the value of Trim strings attribute is
used. See Trimming Data (p. 412). If true, the use of the
robust parser is enforced.

false (default) |
true

Max error count maximum number of tolerated error records in input file(s);
applicable only if Controlled Data Policy is set

0 (default) - N

Treat multiple
delimiters as one

If a field is delimited by a multiplied delimiter char, it will be
interpreted as a single delimiter when setting to true.

false (default) |
true

Verbose By default, less comprehensive error notification is provided
and the performance is slightly higher. However, if switched
to true, more detailed information with less performance is
provided.

false (default) |
true

Level of parallelism Number of threads used to read input data files. The order of
records is not preserved if it is 2 or higher. If the file is too small,
this value will be switched to 1 automatically.

2 (default) | 1-n

Distributed file
segment reading

In case the component is running in a CloverETL Server
Cluster environment and a shared file is read, each component's
instance process the appropriate part of the file. The whole file is
divided into segments by CloverETL Server and each cluster
worker processes only one proper part of file. By default, this
option is turned off. This attribute is ignored for partitioned files.

false (default) |
true

Parser By default, the most appropriate parser is applied. Besides, the
parser for processing data may be set explicitly. If an improper
one is set, an exception is thrown and the graph fails. See Data
Parsers (p. 413)

auto (default) |
<other>

Advanced Description

• Quoted strings

The attribute considerably changes the way your data is parsed. If it is set to true, all field delimiters inside
quoted strings will be ignored (after the first Quote character is actually read). Quote characters will be removed
from the field.

Example input:

1;"lastname;firstname";gender

Output with Quoted strings == true:

{1}, {lastname;firstname}, {gender}

Output with Quoted strings == false:

{1}, {"lastname}, {firstname";gender}

Chapter 53. Readers

396

QuickBaseRecordReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

QuickBaseRecordReader reads data from QuickBase online database.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s

 1
)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s
 2

)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

QuickBaseRecordReader QuickBase 0-1 1-2
1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

QuickBaseRecordReader reads data from the QuickBase online database (http://quickbase.intuit.com). Records,
the IDs of which are specified in the Records list component attribute, are read first. Records with IDs specified
in input are read afterward.

The read records are sent through the connected first output port. If the record is erroneous (not present in the
database table, e.g.) it can can be sent out through the optional second port if it is connected.

This component wrapps the API_GetRecordInfo HTTP interaction (http://www.quickbase.com/api-guide/
getrecordinfo.html).

Icon

http://quickbase.intuit.com
http://www.quickbase.com/api-guide/getrecordinfo.html
http://www.quickbase.com/api-guide/getrecordinfo.html

Chapter 53. Readers

397

Ports

Port type Number Required Description Metadata

Input 0 for getting application table record
IDs to be read

first field: integer | long

0 for correct data records data types and positions of fields
must fit the table field types 1

Output

1 information about rejected records Error Metadata for
QuickBaseRecordReader (p. 397)2

1 Only source_row_count autofilling function returning the record ID can be used.
2 Error metadata cannot use Autofilling Functions (p. 131).

Table 53.3. Error Metadata for QuickBaseRecordReader

Field
number

Field name Data type Description

0 <any_name1> integer | long ID of the erroneous record

1 <any_name2> integer | long error code

2 <any_name3> string error message

QuickBaseRecordReader Attributes

Attribute Req Description Possible
values

Basic

QuickBase connection ID of the connection to the QuickBase online database, see
Chapter 24, QuickBase Connections (p. 189)

Table ID ID of the table in the QuickBase application data records are to
be read from (see the application_stats for getting the
table ID)

Records list List of record IDs (separated by the semicolon) to be read from
the specified database table. These records are read first, before
the records specified in the input data.

Chapter 53. Readers

398

QuickBaseQueryReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

QuickBaseQueryReader gets records fullfilling given conditions from the QuickBase online database table.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s

 1
)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s
 2

)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

QuickBaseQueryReader QuickBase 0-1 1-2
1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

QuickBaseQueryReader gets records from the QuickBase online database (http://quickbase.intuit.com). You
can use the component attributes to define which columns will be returned, how many records will be returned
and how they will be sorted, and whether the QuickBase should return structured data. Records that meet the
requirements are sent out through the connected output port.

This component wrapps the API_DoQuery HTTP interaction (http://www.quickbase.com/api-guide/
do_query.html).

Icon

Ports

Port type Number Required Description Metadata

Output 0 for correct data records any 1

1 Metadata cannot use Autofilling Functions (p. 131)

QuickBaseQueryReader Attributes

http://quickbase.intuit.com
http://www.quickbase.com/api-guide/do_query.html
http://www.quickbase.com/api-guide/do_query.html

Chapter 53. Readers

399

Attribute Req Description Possible
values

Basic

QuickBase connection ID of the connection to the QuickBase online database, see
Chapter 24, QuickBase Connections (p. 189)

Table ID ID of the table in the QuickBase application data records are
to be get from (see the application_stats for getting the
table ID)

Query Determines which records are returned (all, by default) using
the form {<field_id>.<operator>.'<matching_value>'}

CList The column list specifies which columns will be included in
each returned record and how they are ordered in the returned
record aggregate. Use field_ids separated by a period.

SList The sort list determines the order in which the returned records
are displayed. Use field_id separated by a period.

Options Options used for data records that are read. See
Options (p. 399) for more information.

Advanced Description

Options

Options attributes can be as follows:

• skp-n

Specifies n records from the beginning that should be skipped.

• num-n

Specifies n records that should be read.

• sortorder-A

Specifies the order of sorting as ascending.

• sortorder-D

Specifes the order of sorting as descending.

• onlynew

This parameter cannot be used by anonymous user. The component reads only new records. The results can
be different for different users.

Chapter 53. Readers

400

SpreadsheetDataReader

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purposes, see Readers Comparison (p. 296) .

Short Summary

SpreadsheetDataReader reads data from Excel spreadsheets (XLS or XLSX files). SpreadsheetDataReader
supersedes the original XLSDataReader with a lot more new features, read modes and improved performance.
(XLSDataReader is still available for backwards compatibility and in the Community edition)

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

SpreadsheetDataReader XLS(X) file 0–1 1–2 no yes no no no no

Abstract

SpreadsheetDataReader reads data from a specified sheet(s) of XLS or XLSX files. Complex data mapping is
possible (forms, tables, multirow records, etc.). All standard input options are available as in other readers: local
and remote files, zip archives, an input port or a dictionary.

Supported file formats:

• XLS: only Excel 97/2003 XLS files are supported (BIFF8)

• XLSX: Open Document Format, Microsoft Excel 2007 and newer

In XLSX, even files with more than 1,048,576 rows can be read although the XLSX format does not officially
support it (Excel will show no more than 2^20 rows).

Icon

Ports

Chapter 53. Readers

401

Port type Number Required Description Metadata

Input 0 no For optional port reading. See
Reading from Input Port (p. 299) .

One field (byte, cbyte,
string).

0 yes Successfully read records Any1)Output

1 no Error records Fixed default fields + optional fields
from port 0 2)

This component has Metadata Templates (p. 274) available.

Legend

1) Metadata can use Autofilling Functions (p. 131). Note: source_timestamp and source_size functions
work only when reading from a file directly (if the file is an archive or it is stored in a remote location, timestamp
will be empty and size will be 0).

2) Records which could not be read correctly are sent to output port 1 if Data Policy (p. 305) is set to Controlled
and the port has an edge connected (without the edge, messages are logged to the console). There is a fixed set of
fields describing the reason and position of the error which caused the record to fail. Additionally, you can map
any field from port 0 as well. Please note: for each error in the input there is one error record generated.
That is for multiple errors in one record you get multiple error records – you can group them e.g. by the
very first integer field.

Table 53.4. Error Port Metadata - first ten fields have mandatory types, names can be arbitrary

Field
number

Field name Data type Description

0 recordNo integer index of the incorrectly read record (record numbering starts
at 1)

1 fileName string name of the file (if available) the error ocurred in

2 sheetName string name of the sheet the error ocurred in

3 fieldNo integer index (zero-based) of the field data could not be read into

4 fieldName string name of the field data could not be read into; example:
"CustomerID"

5 cellCoords string coordinates of the cell in the source spreadsheet which
caused errors on reading; example: "D7"

6 cellValue string value of the cell which caused errors on reading, example:
"-5.12"

7 cellType string Excel type of the cell which caused reading errors, example:
"String"

8 cellFormat string Excel format string of the cell which caused reading errors,
example: "#,##0"

9 errMsg string error message in a human readable format, example:
"Cannot get Date value from cell of type String in C1"

SpreadsheetDataReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Specifies the data source(s) that will be read See Supported File
URL Formats for Readers (p. 296).

Chapter 53. Readers

402

Attribute Req Description Possible
values

Sheet Name or number (zero-based) of the sheet to be read. You can
specify multiple sheets separated by a semicolon ";". You can
also use the ? and * wildcards to specify multiple sheets. Sheets
are then read sequentially one after another using the same
mapping.

0 (read the first
sheet)

Mapping 1) Maps spreadsheet cells to Clover fields in a visual
mapping editor. See the section called “Advanced
Description” (p. 403).

Mapping URL 1) Path to an XML file containg your Mapping definition. Put your
mapping to an external file if you want to share a single mapping
among multiple graphs.

Data policy Determines what is done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Advanced

Read mode Determines how data is read from the input file. In-memory
mode stores the whole input file in memory allowing for faster
reading. Suitable for smaller files. In "streaming" mode the file
is being read directly without storing in memory. Streaming
should thus allow you to read bigger files without running out
of memory. Streaming supports both XLS and XLSX.

In memory
(default) |
Stream

Number of skipped
records

Total number of records throughout all source files that will be
skipped. See Selecting Input Records (p. 304) .

0–N

Max number of
records

Total number of records throughout all source files that will be
read. See Selecting Input Records (p. 304) .

0–N

Number of skipped
records per source

Number of records to be skipped in each source file. See
Selecting Input Records (p. 304) .

Same as in
Metadata
(default) | 0–N

Max number of
records per source

Maximum number of records to be read from each source file.
See Selecting Input Records (p. 304) .

0–N

Number of skipped
records per
spreadsheet

Number of records to be skipped in each Excel sheet.

Max number of
records per
spreadsheet

Maximum number of records to be read from each Excel sheet.

Max error count Maximum number of allowed errors before the graph fails.
Applies for the Controlled value of Data Policy.

0 (default) | 1–
N

Incremental file 2) Name of a file storing the incremental key (including path). See
Incremental Reading (p. 303) .

Incremental key 2) Stores the position of the last record read. See Incremental
Reading (p. 303) .

Encryption password If data are encrypted in the source spreadsheet, type password
in here. Mind typing all characters precisely, including the letter
case, special characters, accented letters etc.

Legend:

1) One of these two has to be specified to define the mapping.

Chapter 53. Readers

403

2) Either both or none of these attributes has to be specified.

Advanced Description

Introduction to Spreadsheet Mapping

A mapping is a universal pattern guiding the component how to read an Excel spreadsheet. The mapping editor
always previews spreadsheets of one file but the mapping can be applied to a whole group of similar files.

Each cell can be mapped to a Clover field in one of the following modes:

• Map by order is the simplest approach – spreadsheet cells are mapped one by one to output fields in the same
order as on the input. If you select another metadata, the cells will be remapped automatically to the new fields.

• Map by name – for each mapped leading cell, the component reads its contents (string) and tries to find a
matching field with the same name or label (see Field Name vs. Label vs. Description (p. 160)). Fields that
could not be mapped to the current file are marked as unresolved. You can either map these explicitly, unmap
them or modify output metadata. Note that unresolved cells are not a bad thing – you might read say a group
of similar input files, each containing just a subset of possible columns. Mappings with unresolved cells do not
result in your graph failing on execution.

Note

Both Mapy by order and Mapy by name modes try to automatically map the contents of the
input file to the output metadata. Thus these modes are useful in cases when you read multiple
source files and you want to design a single "one-fits-all" generic mapping.

• Explicit – at any time, you may decide to map a cell to a field of your preference. This way, you can have e.g. a
whole sheet mapped by order with only one cell, which does not fit the mapping, mapped explicitly to a correct
field. Simply go to Selected cells and fill in Field name or index with the target field. If a cell is not mapped
yet, you might need to switch Mapping mode to Explicit, first. You can also explicitly map a cell to a field
by dragging the field from metadata viewer onto the cell. Opposite direction also works (dragging a cell to a
field), but you have to first click the cell to select it, because only selected cell can be dragged. Note that you
can drag-and-drop more fields/cells at once.

• Implicit – special case if you leave all the Mapping component property completely blank. The component will
not fail but instead the first spreadsheet row will be whole mapped by name with data offset equal to 1. Another
type of implicit mapping is created when you map no cell in the mapping editor, but confirm the mapping by
clicking OK button. Then, only basic mapping properties will be stored in the Mapping attribute. This way you
can change default Rows per record or Data offset used by the basic implicit mapping mentioned above (if
default offset is set to 0, mapping by name is used instead of mapping by name). Alternatively, by switching
the reading Orientation property, the first column gets implicitly mapped instead of the first row.

Colours in spreadsheet mapping editor

• Orange cells are called leading cells and they form the header. They are a place where a number of mapping
settings can be made, see Advanced mapping options (p. 405).

• Yellow cells indicate the beginning of the first record.

• Cells in dashed border, which appear after a leading cell is selected, indicate the area data is taken from.

Mapping Editor

To start mapping, fill in the File URL and Sheet attributes with the file and sheet name containing data,
respectively. After that, edit Mapping to open a visual mapping editor. It will preview the sheet you have selected
like this:

Chapter 53. Readers

404

Figure 53.10. SpreadsheetDataReader Mapping Editor

As you can see, the editor consists of these elements:

• Toolbar – buttons controlling how you Map your Excel data (either by order, or by name) and global data
offset control (see Advanced mapping options (p. 405) for an explanation of data offsets).

• Sheet preview area – this is where you will do and see all the mapping of the source file.

• Output metadata – Clover fields you will map Excel cells to.

• Properties – either for the whole source file (Global) or just the ones concerning Selected cells

• Summary tab – a place where you can neatly review the whole spreadsheet-to-clover mapping you have made.

Metadata

Before you start reading a spreadsheet, you might need to extract its metadata as Clover fields (see Extracting
Metadata from an XLS(X) File (p. 143)). Note that the extracting wizard resembles the spreadsheet Mapping
editor introduced here and it uses the same principle.

Note

You can use the mapping editor to extract metadata right in place without needing to jump to the
metadata extract wizard (which is suitable if you need to get just the spreadsheet metadata).

Metadata assigned to the outgoing edge can be edited in the Output metadata area. You can create and manipulate
metadata right from the mapping editor, even if you have not connected an output edge (it is created automatically
once you create some fields). Available operations include:

• Select existing metadata in the graph using the Output metadata combo.

• Create new metadata using the <new metadata> option in the Output metadata combo.

• Double click a Field to rename it.

Chapter 53. Readers

405

• Change data Type via combo-boxes.

• For more operations on the output metadata use the Edit button.

• To create metadata, drag cells from the spreadhseet preview area and drop them between output metadata fields.

Basic Mapping Example

Typically, your Excel data contains headers in the first row and, thus, can be easily mapped. This section describes
how to do that.

• First, make sure you have set Vertical mode in Properties →Global →Orientation . This makes
SpreadsheetDataReader process the input by rows (opposite to Horizontal orientation, where reading advances
by columns).

• Optional (in case you have not extracted metadata as in Extracting Metadata from an XLS(X) File (p. 143)):
select the first row and drag its fields to the Output metadata pane. This will create fields for all cells in the
selection. Types will be guessed automatically, but it is worth checking them yourself afterwards.

• Select the whole first row (by clicking the "1" row header) and click either Map by order or Map by name
(for explanation, see Introduction to Spreadsheet Mapping (p. 403)).

Figure 53.11. Basic Mapping – notice leading cells and dashed borders marking the area data will
be taken from

Advanced mapping options

This section provides an explanation of some more concepts extending the Basic Mapping Example (p. 405)

• Data offsets (global) – determines where data is taken from. Basically, its value represents 'a number of rows
(in vertical mode) or columns (in horizontal mode) to be omitted - relative to the leading cell (the orange one)'.

Chapter 53. Readers

406

Click the arrow buttons in the top right corner to adjust data offsets for the whole spreadsheet. Additionaly,
you can click the spinner in the Selected cells area of each leading cell (the orange one) to adjust data offset
locally, i.e. for a particular column only. Notice how modifying data offet is visualised in the sheet preview –
the 'omitted' rows change colour. By following dashed cells, which appear when you click a leading cell, you
can quickly state where your record will start at.

Tip

The arrow buttons in Data offsets (global) only shift the data offset property of each cell either
up or down. So mixed offsets are retained, just shifted as desired. To set all data offsets to a single
value, enter the value into the number field of Data offsets (global). Note that if there are some
mixed offsets, the value is displayed in gray.

Figure 53.12. The difference between global data offsets set to 1 (default) and 3. In the right hand
figure, reading would start at row 4 (ignoring data in rows 2 and 3).

Figure 53.13. Global data offset is set to 1 to all columns. In the third column, it is locally changed to 3.

• Rows per record – a Global property specifying how many rows form one record. Best imagined if you look
at the figure below:

Figure 53.14. Rows per record is set to 4. This makes SpredsheetDataReader take 4 Excel rows
and create one record out of their cells. Cells actually becoming fields of a record are marked by a
dashed border, therefore the record is not populated by all data. Which cells populate a record is also
determined by the data offsets setting, see the following bullet point.

• Combination of Data offfets (global and local) and Rows per record – you can put the settings described in
preceding bullet points together. See example:

Chapter 53. Readers

407

Figure 53.15. Rows per record is set to 3. The first and third columns 'contribute' to the record by their
first row (because of the global data offset being 1). The second and fourth columns have (local) data
offsets 2 and 4, respectively. The first record will, thus, be formed by 'zig-zagged' cells (the yellow
ones – follow them to make sure you understand this concept clearly).

• Max number of records – a Global property which you can specify via component attributes, too (see
SpreadsheetDataReader Attributes (p. 401)). If you reduce it, you will notice the number of dashed cells in
the spreadsheet preview reduces as well (highlighting only the cells which will be mapped to records in fact).

• Format Field – Excel format (as in Excel's right-click menu – Format Cells) can be retrieved from read cells.
Select a leading cell and specify the Format Field property (in Selected cells) as a target field to which the
format patterns will be read. Keep in mind the target field has to be string. You can use this approach even
if read data cells have various formats (e.g. various currencies).

Note

If an Excel cell has the General format, which is a common case, the format cannot be transferred
to Clover due to an internal Excel formatting. Instead, the target field will bear a string "General".

Figure 53.16. Retreiving format from a date field. Format Field was set to the "Special" field as target.

Formats can also be extracted during the one-time metadata extraction process. In metadata, format is taken from
a single cell which you supply as a sample value to the metadata extraction wizard. See Extracting Metadata
from an XLS(X) File (p. 143).

If a cell has its format specified by the Excel format string (excel:), SpreadsheetDataReader can read
it back. Other readers would ignore it. For further reading on format strings, see Formatting cells (Format
Field) (p. 530).

• Multiple leading cells per column – in some spreadsheets, data in one column gets mixed, but you still need to
process it all into one record. For example, imagine a column containing first names in odd rows and surnames
in even rows one after another. In that case, you will create two leading cells above each other to be able to
read both the first names and surnames. Remember to set Rows per record to an appropriate value (2 in this
example) not to read same data in all leading cells. Also, mind raising Data offset in the upper leading cell to
start reading data where it truly begins. Look at the figure below:

Chapter 53. Readers

408

Figure 53.17. Reading mixed data using two leading cells per column. Rows per record is 2, Data
offset needed to be raised to 2 – looking at the first leading cell which has to start reading on the
third row.

Notes and Limitations

• Invalid mapping - It is possible to create invalid mapping using the mapping editor. Invalid mapping causes
SpredsheetDataReader to fail. Such a mapping arises when, for example, one metadata field is mapped to more
than one cell, or an autofilled field is mapped (see Autofilling Functions (p. 131)). Another invalid mapping
would be caused by an attempt to read a cell (at least one) into more than one metadata field.

When you change mapping in any way, the validation process is automatically run and you will see the warning
icon with cell(s) and/or matadata field(s) which cause the mapping to be invalid. When you mouse over such a
cell or field, a tooltip with information about the validation problem will be displayed. Also, one of the warning
validation messages is displayed at the top of the editor (the white header area).

Note that warnings caused by cells mapped by name/order will not necessarily lead to the copomonet's failure
(as mentioned earlier).

• Reading date as string - SpreadsheetDataReader cannot guarantee that dates read into string fields will be
displayed identically to how they appear in MS Excel. The reason is Clover interprets the format string stored
in a cell otherwise than Excel - it depends on your locale.

Important

It is recommend you read dates into date fields and convert them to string using a
CTL (p. 891) transformation.

Built-in Excel formats are interpreted according to the following table:

Table 53.5. Format strings

Format index stored in
Excel cell

Format string

0 "General"

1 "0"

2 "0.00"

3 "#,##0"

4 "#,##0.00"

5 "$#,##0_);($#,##0)"

6 "$#,##0_);[Red]($#,##0)"

7 "$#,##0.00);($#,##0.00)"

Chapter 53. Readers

409

Format index stored in
Excel cell

Format string

8 "$#,##0.00_);[Red]($#,##0.00)"

9 "0%"

0xa "0.00%"

0xb "0.00E+00"

0xc "# ?/?"

0xd "# ??/??"

0xe "m/d/yy"

0xf "d-mmm-yy"

0x10 "d-mmm"

0x11 "mmm-yy"

0x12 "h:mm AM/PM"

0x13 "h:mm:ss AM/PM"

0x14 "h:mm"

0x15 "h:mm:ss"

0x16 "m/d/yy h:mm"

0x25 "#,##0_);(#,##0)"

0x26 "#,##0_);[Red](#,##0)"

0x27 "#,##0.00_);(#,##0.00)"

0x28 "#,##0.00_);[Red](#,##0.00)"

0x29 "_(*#,##0_);_(*(#,##0);_(* \"-\"_);_(@_)"

0x2a "_($*#,##0_);_($*(#,##0);_($* \"-\"_);_(@_)"

0x2b "_(*#,##0.00_);_(*(#,##0.00);_(*\"-\"??_);_(@_)"

0x2c "_($*#,##0.00_);_($*(#,##0.00);_($*\"-\"??_);_(@_)"

0x2d "mm:ss"

0x2e "[h]:mm:ss"

0x2f "mm:ss.0"

0x30 "##0.0E+0"

0x31 "@" (this is text format)

Custom format strings are read as they are defined in Excel. Decimal point is modified according to your locale.
Special characters such as double quotes are not interpreted at all.

In both cases (built-in and custom formats), the result may vary from how Excel displays it.

Chapter 53. Readers

410

UniversalDataReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

UniversalDataReader reads data from flat files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s

 1
)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s
 2

)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

UniversalDataReader flat file 0-1 1-2
1) Sending each data record to every connected output port
2) Sending data records to output ports according to Return Values of Transformations (p. 282)

Abstract

UniversalDataReader reads data from flat files such as CSV (comma-separated values) file and delimited, fixed-
length, or mixed text files. The component can read a single file as well as a collection of files placed on a local
disk or remotely. Remote files are accessible via HTTP, HTTPS, FTP, or SFTP protocols. Using this component,
ZIP and TAR archives of flat files can be read. Also reading data from stdin (console), input port, or dictionary
is supported.

Parsed data records are sent to the first output port. The component has an optional output logging port for getting
detailed information about incorrect records. Only if Data Policy (p. 305) is set to controlled and a proper
Writer (Trash or UniversalDataWriter) is connected to port 1, all incorrect records together with the information
about the incorrect value, its location and the error message are sent out through this error port.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for Input Port Reading (p. 302) include specific byte/ cbyte/
string field

0 for correct data records any 1)Output

1 for incorrect data records specific structure, see table below
1) Metadata on output port 0 can use Autofilling Functions (p. 131) Note: source_timestamp and source_size functions work only
when reading from a file directly (if the file is an archive or it is stored in a remote location, timestamp will be empty and size will be 0).

Chapter 53. Readers

411

This component has Metadata Templates (p. 274) available.

The optional logging port for incorrect records has to define the following metadata structure - the record contains
exactly five fields (named arbitrarily) of given types in the following order:

Table 53.6. Error Metadata for UniversalDataReader

Field
number

Field name Data type Description

0 recordNo long position of the erroneous record in the dataset (record numbering
starts at 1)

1 fieldNo integer position of the erroneous field in the record (1 stands for the first
field, i.e., that of index 0)

2 originalData string | byte
| cbyte

erroneous record in raw form (including all field and record
delimiters)

3 errorMessage string | byte
| cbyte

error message - detailed information about this error

4 fileURL string source file in which the error occurred

UniversalDataReader Attributes

Attribute Req Description Possible
values

Basic

File URL path to data source (flat file, console, input port, dictionary)
to be read specified, see Supported File URL Formats for
Readers (p. 296).

Charset character encoding of input records (character encoding does
not apply on byte fields if the record type is fixed)

ISO-8859-1
(default) |
<other
encodings>

Data policy specifies how to handle misformatted or incorrect data, see Data
Policy (p. 305)

strict (default)
| controlled |
lenient

Trim strings specifies whether leading and trailing whitespace should be
removed from strings before setting them to data fields, see
Trimming Data (p. 412) below

default | true |
false

Quoted strings Fields containing a special character (comma, newline, or
double quote) have to be enclosed in quotes. Only single/
double quote is accepted as the quote character. If true, special
characters are removed when read by the component (they are
not treated as delimiters).

Example: To read input data "25"|"John", switch Quoted
strings to true and set Quote character to ". This will produce
two fields: 25|John.

By default, the value of this attribute is inherited from metadata
on output port 0. See also Record Details (p. 161).

false | true

Quote character Specifies which kind of quotes will be permitted in Quoted
strings. By default, the value of this attribute is inherited from
metadata on output port 0. See also Record Details (p. 161).

both | " | '

Advanced

Chapter 53. Readers

412

Attribute Req Description Possible
values

Skip leading blanks specifies whether to skip leading whitespace (blanks e.g.) before
setting input strings to data fields. If not explicitly set (i.e.,
having the default value), the value of Trim strings attribute is
used. See Trimming Data (p. 412).

default | true |
false

Skip trailing blanks specifies whether to skip trailing whitespace (blanks e.g.) before
setting input strings to data fields. If not explicitly set (i.e.,
having the default value), the value of Trim strings attribute is
used. See Trimming Data (p. 412).

default | true |
false

Number of skipped
records

how many records/rows to be skipped from the source file(s);
see Selecting Input Records (p. 304).

0 (default) - N

Max number of
records

how many records to be read from the source file(s) in
turn; all records are read by default; See Selecting Input
Records (p. 304).

1 - N

Number of skipped
records per source

how many records/rows to be skipped from each source file.
By default, the value of Skip source rows record property in
output port 0 metadata is used. In case the value in metadata
differs from the value of this attribute, the Number of skipped
records per source value is applied, having a higher priority.
See Selecting Input Records (p. 304).

0 (default)- N

Max number of
records per source

how many records/rows to be read from each source file; all
records from each file are read by default; See Selecting Input
Records (p. 304).

1 - N

Max error count maximum number of tolerated error records in input file(s);
applicable only if Controlled Data Policy is set

0 (default) - N

Treat multiple
delimiters as one

If a field is delimited by a multiplied delimiter char, it will be
interpreted as a single delimiter when setting to true.

false (default) |
true

Incremental file 1) Name of the file storing the incremental key, including path. See
Incremental Reading (p. 303).

Incremental key 1) Variable storing the position of the last read record. See
Incremental Reading (p. 303).

Verbose By default, less comprehensive error notification is provided
and the performance is slightly higher. However, if switched
to true, more detailed information with less performance is
provided.

false (default) |
true

Parser By default, the most appropriate parser is applied. Besides, the
parser for processing data may be set explicitly. If an improper
one is set, an exception is thrown and the graph fails. See Data
Parsers (p. 413)

auto (default) |
<other>

Deprecated

Skip first line By default, the first line is not skipped, if switched to true (if
it contains a header), the first line is skipped.

false (default) |
true

1) Either both or neither of these attributes must be specified

Advanced Description

• Trimming Data

1. Input strings are implicitly (i.e., the Trim strings attribute kept at the default value) processed before
converting to value according to the field data type as follows:

Chapter 53. Readers

413

• Whitespace is removed from both the start and the end in case of boolean, date, decimal, integer,
long, or number.

• Input string is set to a field including leading and trailing whitespace in case of byte, cbyte, or string.

2. If the Trim strings attribute is set to true, all leading and trailing whitespace characters are removed.
A field composed of only whitespaces is transformed to null (zero length string). The false value
implies preserving all leading and trailing whitespace characters. Remember that input string representing a
numerical data type or boolean can not be parsed including whitespace. Thus, use the false value carefully.

3. Both the Skip leading blanks and Skip trailing blanks attributes have higher priority than Trim strings. So,
the input strings trimming will be determined by the true or false values of these attributes, regardless
the Trim strings value.

• Data Parsers

1. org.jetel.data.parser.SimpleDataParser - is a very simple but fast parser with limited
validation, error handling, and functionality. The following attributes are not supported:

• Trim strings

• Skip leading blanks

• Skip trailling blanks

• Incremental reading

• Number of skipped records

• Max number of records

• Quoted strings

• Treat multiple delimiters as one

• Skip rows

• Verbose

On top of that, you cannot use metadata containing at least one field with one of these attributes:

• the field is fixed-length

• the field has no delimiter or, on the other hand, more of them

• Shift is not null (see Details Pane (p. 160))

• Autofilling set to true

• the field is byte-based

2. org.jetel.data.parser.DataParser - an all-round parser working with any reader settings

3. org.jetel.data.parser.CharByteDataParser - can be used whenever metadata contain byte-
based fields mixed with char-based ones. A byte-based field is a field of one of these types: byte, cbyte
or any other field whose format property starts with the "BINARY:" prefix. See Binary Formats (p. 123).

4. org.jetel.data.parser.FixLenByteDataParser - used for metadata with byte-based fields
only. It parses sequences of records consisting of a fixed number of bytes.

Chapter 53. Readers

414

Note

Choosing org.jetel.data.parser.SimpleDataParser while using Quoted strings will
cause the Quoted strings attribute to be ignored.

Tips & Tricks

• Handling records with large data fields: UniversalDataReader can process input strings of even
hundreds or thousands of characters when you adjust the field and record buffer sizes. Just increase
the following properties according to your needs: Record.MAX_RECORD_SIZE for record serialization,
DataParser.FIELD_BUFFER_LENGTH for parsing, and DataFormatter.FIELD_BUFFER_LENGTH for
formatting. Finally, don't forget to increase the DEFAULT_INTERNAL_IO_BUFFER_SIZE variable to be at
least 2*MAX_RECORD_SIZE. Go to Changing Default CloverETL Settings (p. 88) to get know how to change
these property variables.

General examples

• Processing files with headers:If the first rows of your input file do not represent real data but field labels instead,
set the Number of skipped records attribute. If a collection of input files with headers is read, set the Number
of skipped records per source

• Handling typist's error when creating the input file manually:If you wish to ignore accidental errors in delimiters
(such as two semicolons instead of a single one as defined in metadata when the input file is typed manually),
set the Treat multiple delimiters as one attribute to true. All redundant delimiter chars will be replaced by
the proper one.

Chapter 53. Readers

415

XLSDataReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

XLSDataReader reads data from XLS or XLSX files.

Important

Since Clover 3.3.0, there are new powerful components available for spreadsheet reading/
writing - SpreadsheetDataReader (p. 400) and SpreadsheetDataWriter (p. 522). The preceding
XLS components (XLSDataReader (p. 415) and XLSDataWriter (p. 545)) have remained
compatible, though.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L
XLSDataReader XLS(X) file 0-1 1-n yes no no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation. See
Return Values of Transformations (p. 282) for more information.

Abstract

XLSDataReader reads data from the specified sheet(s) of XLS or XLSX files (local or remote). It can also read
data from compressed files, console, input port, or dictionary.

Note

Remember that XLSDataReader stores all data in memory and has high memory requirements.

Icon

Chapter 53. Readers

416

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

0 yes For correct data records Any1)Output

1-n no For correct data records Output 0

Legend:

1) Metadata can use Autofilling Functions (p. 131). Note: source_timestamp and source_size functions
work only when reading from a file directly (if the file is an archive or it is stored in a remote location, timestamp
will be empty and size will be 0).

XLSDataReader Attributes

Attribute Req Description Possible
values

Basic

Type of parser Specifies the parser to be used. By default, component guesses
according the extension (XLS or XLSX).

Auto (default) |
XLS | XLSX

File URL yes Attribute specifying what data source(s) will be read (input
file, console, input port, dictionary). See Supported File URL
Formats for Readers (p. 296).

Sheet name 1) Name of the sheet to be read. Wild cards ? and * can be used
in the name.

Sheet number 1) Numbers of the sheet to be read. Numbering starts from 0.
Sequence of numbers separated by comma and/or got together
with a hyphen. Following patterns can be used: number,
minNumber-maxNumber, *-maxNumber, minNumber-
*. Example: *-5,9-11,17-*.

Charset Encoding of records that are read. ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Metadata row Number of the row containing the names of the columns. By
default, the header of the sheet is used as metadata row. See
Mapping and Metadata (p. 417) for more information.

0 (default) | 1-N

Field mapping Mapping of XLS fields to Clover fields. Expressed as a
sequence of individual mappings for Clover fields separated
from each other by semicolon. Each individual mapping
looks like this: $CloverField:=#XLSColumnCode or
$CloverField:=XLSColumnName. See Mapping and
Metadata (p. 417) for more information.

Advanced

Number of skipped
records

Number of records to be skipped continuously throughout all
source files. See Selecting Input Records (p. 304).

0-N

Chapter 53. Readers

417

Attribute Req Description Possible
values

Max number of
records

Maximum number of records to be read continuously
throughout all source files. See Selecting Input Records (p. 304).

0-N

Number of skipped
records per source

Number of records to be skipped from each source file. See
Selecting Input Records (p. 304).

Same as in
Metadata
(default) | 0-N

Max number of
records per source

Maximum number of records to be read from each source file.
See Selecting Input Records (p. 304).

0-N

Max error count Maximum number of allowed errors for the Controlled
value of Data Policy before the graph fails.

0 (default) | 1-N

Incremental file 2) Name of the file storing the incremental key, including path. See
Incremental Reading (p. 303).

Incremental key 2) Variable storing the position of the last read record. See
Incremental Reading (p. 303).

Deprecated

Start row Has inclusive meaning: First row that is read. Has lower priority
than Number of skipped records.

0 (default) | 1-n

Final row Has exclusive meaning: First row that is not already read
following the last row that still has been read. Has lower priority
than Max number of records.

all (default) | 1-
n

Legend:

1) One of these attributes must be specified. Sheet name has higher priority.

2) Either both or neither of these attributes must be specified.

Advanced Description

Mapping and Metadata

If you want to specify some mapping (Field mapping), click the row of this attribute. After that, a button appears
there and when you click this button, the following dialog will open:

Figure 53.18. XLS Mapping Dialog

This dialog consists of two panes: XLS fields on the left and Mappings on the right. At the right side of this dialog,
there are three buttons: for automatic mapping, canceling one selected mapping and canceling all mappings. You

Chapter 53. Readers

418

must select an xls field from the left pane, push the left mouse button, drag to the right pane (to the XLS fields
column) and release the button. This way, the selected xls field has been mapped to one of the output clover fields.
Repeat the same with the other xls fields too. (Or you can click the Auto mapping button.)

Figure 53.19. XLS Fields Mapped to Clover Fields

Note that xls fields are derived automatically from xls column names when extracting metadata from the XLS file.

When you confirm the mapping by clicking OK, the resulting Field mapping attribute will look like this (for
example): $OrderDate:=#D;$OrderID:=#A

On the other hand, if you check the Return value with xls names checkbox on the XLS mapping dialog, the
same mapping will look like this: $OrderDate:=ORDERDATE,D;$OrderID:=ORDERID,N,20,5

You can see that the Field mapping attribute is a sequence of single mappings separated from semicolon from
each other.

Each single mapping consists of an assignment of a clover field name and xls field. The Clover field is on the left
side of the assignment and it is preceded by dollar sign, the xls field is on the right side of the assignment and it
is either the code of xls column preceded by hash, or the xls field as shown in the Xls fields pane.

You must remember that you do not need to read and send out all xls columns, you can even read and only send
out some of them.

Example 53.6. Field Mapping in XLSDataReader

• Mapping with Column Codes

$first_name:=#B;$last_name:=#D;$country:=#E

• Mapping with Column Names (XLS Fields)

$first_name:=f_name;$last_name:=l_name;$country:=country

Chapter 53. Readers

419

XMLExtract

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the right Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

XMLExtract reads data from XML files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

XMLExtract XML file 0-1 1-n no yes no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation
(DataGenerator and MultiLevelReader). See Return Values of Transformations (p. 282) for more information.
XMLExtract and XMLXPathReader send data to ports as defined in their Mapping or Mapping URL attribute.

Abstract

XMLExtract reads data from XML files using SAX technology. It can also read data from compressed files,
console, input port, and dictionary. This component is faster than XMLXPathReader which can read XML files
too.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte, string)
for specify input of component.
Input fields can be mapped to
output. See XMLExtract Mapping
Definition (p. 422) for more
information.

Chapter 53. Readers

420

Port type Number Required Description Metadata

0 yes For correct data records Any1)Output

1-n 2) For correct data records Any1) (each port can have different
metadata)

Legend:

1): Metadata on each output port does not need to be the same. Each metadata can use Autofilling
Functions (p. 131).

2): Other output ports are required if mapping requires that.

XMLExtract Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying what data source(s) will be read (XML
file, console, input port, dictionary). See Supported File URL
Formats for Readers (p. 296).

Charset Encoding of records which are read. any encoding,
default system
one by default

Mapping 1) Mapping of the input XML structure to output ports.
See XMLExtract Mapping Definition (p. 422) for more
information.

Mapping URL 1) Name of an external file, including its path which defines
mapping of the input XML structure to output ports.
See XMLExtract Mapping Definition (p. 422) for more
information.

Namespace Bindings Allows using arbitrary namespace prefixes in Mapping. See
Namespaces (p. 434).

XML Schema URL of the file that should be used for creating the
Mapping definition. See XMLExtract Mapping Editor and
XSD Schema (p. 427) for more information.

Use nested nodes By default, nested elements are also mapped to output ports
automatically. If set to false, an explicit <Mapping> tag
must be created for each such nested element.

true (default) |
false

Trim strings By default, white spaces from the beginning and the end of
the elements values are removed. If set to false, they are not
removed.

true (default) |
false

Advanced

Validate Enables/disables validation of the XML (against a schema) true | false
(default)

XML features Sequence of individual expressions of one of the following
form: nameM:=true or nameN:=false, where each
nameM is an XML feature that should be validated. These
expressions are separated from each other by semicolon. See
XML Features (p. 306) for more information.

Number of skipped
mappings

Number of mappings to be skipped continuously throughout all
source files. See Selecting Input Records (p. 304).

0-N

Chapter 53. Readers

421

Attribute Req Description Possible
values

Max number of
mappings

Maximum number of records to be read continuously
throughout all source files. See Selecting Input Records (p. 304).

0-N

Legend:

1) One of these must be specified. If both are specified, Mapping URL has higher priority.

Chapter 53. Readers

422

Advanced Description

Example 53.7. Mapping in XMLExtract

<Mappings>
 <TypeOverride elementPath="/employee/child" overridingType="boy" />
 <Mapping element="employee" outPort="0" implicit="false" xmlFields="salary" cloverFields="basic_salary">
 <Mapping element="child" outPort="1" parentKey="empID" generatedKey="parentID"/>
 <Mapping element="benefits" outPort="2"
 parentKey="empID;jobID" generatedKey="empID;jobID"
 sequenceField="seqKey" sequenceId="Sequence0">
 <Mapping element="financial" outPort="3" parentKey="seqKey" generatedKey="seqKey"/>
 </Mapping>
 <Mapping element="project" outPort="4" parentKey="empID;jobID" generatedKey="empID;jobID">
 <Mapping element="customer" outPort="5"
 parentKey="projName;projManager;inProjectID;Start"
 generatedKey="joinedKey"/>
 </Mapping>
 </Mapping>
</Mappings>

XMLExtract Mapping Definition

1. Every Mapping definition (both the contents of the file specified in the Mapping URL attribute and the
Mapping attribute) consists of a pair of the start and the end <Mappings> tags. Both the start and the end
<Mappings> tag are empty, without any other attributes.

2. This pair of <Mappings> tags surrounds all of the nested <Mapping> and <TypeOverride> tags. Each of
these <Mapping> tags contains some XMLExtract Mapping Tag Attributes (p. 424). See also XMLExtract
Type Override Tags (p. 422) or XMLExtract Mapping Tags (p. 422) for more information.

3. XMLExtract Type Override Tags

The Type Override tag can be used to tell the mapping editor, that element on given path should be treated
as if it's type was actually the overridingType. This tag has no impact on actual processing of XML file
at runtime.

Example:

<TypeOverride elementPath="/employee/child" overridingType="boy" />

• elementPath

Required

Each type override tag must contain one elementPath attribute. The value of this element must be a path
from the root of an input XML structure to a node.

elementPath="/[prefix:]parent/.../[prefix]nodeName"

• overridingType

Required

Each type override tag must contain one overridingType attribute. The value of this element must be
a type in the referenced XML schema.

overridingType="[prefix:]typeName"

4. XMLExtract Mapping Tags

• Empty Mapping Tag (Without a Child)

Chapter 53. Readers

423

<Mapping element="[prefix:]nameOfElement" XMLExtract Mapping Tag
Attributes (p. 424) />

This corresponds to the following node of XML structure:

<[prefix:]nameOfElement>ValueOfTheElement</[prefix:]nameOfElement>

• Non-Empty Mapping Tags (Parent with a Child)

<Mapping element="[prefix:]nameOfElement" XMLExtract Mapping Tag
Attributes (p. 424) >

(nested Mapping elements (only children, parents with one or more
children, etc.)

</Mapping>

This corresponds to the following XML structure:

<[prefix:]nameOfElement elementAttributes>

(nested elements (only children, parents with one or more children, etc.)

</[prefix:]nameOfElement>

In addition to nested <Mapping> elements, the Mapping can contain <FieldMapping> elements to
map fields from input record to output record. See XMLExtract Field Mapping Tags (p. 423) for more
information.

5. XMLExtract Field Mapping Tags

Field Mapping tags allows to map fields from an input record to an output record of parent Mapping element.

Example:

<FieldMapping inputField="sessionID" outputField="sessionID" />

• inputField

Required

Specifies a field from an input record, that should be mapped to an output record.

inputField="fieldName"

• outputField

Required

Specifies a field to which a value from the input field should be stored.

outputField="fieldName"

6. Nested structure of <Mapping> tags copies the nested structure of XML elements in input XML files. See
example below.

Chapter 53. Readers

424

Example 53.8. From XML Structure to Mapping Structure

• If XML Structure Looks Like This:

<[prefix:]nameOfElement>
 <[prefix1:]nameOfElement1>ValueOfTheElement11</[prefix1:]nameOfElement1>
 ...
 <[prefixK:]nameOfElementM>ValueOfTheElementKM</[prefixK:]nameOfElementM>
 <[prefixL:]nameOfElementN>
 <[prefixA:]nameOfElementE>ValueOfTheElementAE</[prefixA:]nameOfElementE>
 ...
 <[prefixR:]nameOfElementG>ValueOfTheElementRG</[prefixR:]nameOfElementG>
 </[prefixK:]nameOfElementN>
</[prefix:]nameOfElement>

• Mapping Can Look Like This:

<Mappings>
 <Mapping element="[prefix:]nameOfElement" attributes>
 <Mapping element="[prefix1:]nameOfElement1" attributes11/>
 ...
 <Mapping element="[prefixK:]nameOfElementM" attributesKM/>
 <Mapping element="[prefixL:]nameOfElementN" attributesLN>
 <Mapping element="[prefixA:]nameOfElementE" attributesAE/>
 ...
 <Mapping element="[prefixR:]nameOfElementG" attributesRG/>
 </Mapping>
 </Mapping>
</Mappings>

However, Mapping does not need to copy all of the XML structure, it can start at the specified level inside the
XML file. In addition, if the default setting of the Use nested nodes attribute is used (true), it also allows
mapping of deeper nodes without needing to create separate child <Mapping> tags for them).

Important

Remember that mapping of nested nodes is possible only if their names are unique within their
parent and confusion is not possible.

7. XMLExtract Mapping Tag Attributes

• element

Required

Each mapping tag must contain one element attribute. The value of this element must be a node of the
input XML structure, eventually with a prefix (namespace).

element="[prefix:]name"

• outPort

Optional

Number of output port to which data is sent. If not defined, no data from this level of Mapping is sent out
using such level of Mapping.

If the <Mapping> tag does not contain any outPort attribute, it only serves to identify where the deeper
XML nodes are located.

Example: outPort="2"

Chapter 53. Readers

425

Important

The values from any level can also be sent out using a higher parent <Mapping> tag (when
default setting of Use nested nodes is used and their identification is unique so that confusion
is not possible).

• useParentRecord

Optional

If true the mapping will assign mapped values to the record generated by the nearest parent mapping
element with outPort specified. Default value of this attribute is false.

useParentRecord="false|true"

• implicit

Optional

If false the mapping will not automatically map XML fields to record fields with the same name. Default
value of this attribute is true.

implicit="false|true"

• parentKey

The parentKey attribute serves to identify the parent for a child.

Thus, parentKey is a sequence of metadata fields on the next parent level separated by semicolon, colon,
or pipe.

These fields are used in metadata on the port specified for such higher level element, they are filled with
corresponding values and this attribute (parentKey) only says what fields should be copied from parent
level to child level as the identification.

For this reason, the number of these metadata fields and their data types must be the same in the
generatedKey attribute or all values are concatenated to create a unique string value. In such a case, key
has only one field.

Example: parentKey="first_name;last_name"

The values of these parent clover fields are copied into clover fields specified in the generatedKey
attribute.

• generatedKey

The generatedKey attribute is filled with values taken from the parent element. It specifies the parent
of the child.

Thus, generatedKey is a sequence of metadata fields on the specified child level separated by semicolon,
colon, or pipe.

These metadata fields are used on the port specified for this child element, they are filled with values taken
from parent level, in which they are sent to those metadata fields of the parentKey attribute specified in
this child level. It only says what fields should be copied from parent level to child level as the identification.

For this reason, the number of these metadata fields and their data types must be the same in the parentKey
attribute or all values are concatenated to create a unique string value. In such a case, key has only one field.

Example: generatedKey="f_name;l_name"

Chapter 53. Readers

426

The values of these clover fields are taken from clover fields specified in the parentKey attribute.

• sequenceField

Sometimes a pair of parentKey and generatedKey does not ensure unique identification of records
(the parent-child relation) - this is the case when one parent has multiple children of the same element name.

In such a case, these children may be given numbers as the identification.

By default (if not defined otherwise by a created sequence), children are numbered by integer numbers
starting from 1 with step 1.

This attribute is the name of metadata field of the specified level in which the distinguishing numbers are
written.

It can serve as parentKey for the next nested level.

Example: sequenceField="sequenceKey"

• sequenceId

Optional

Sometimes a pair of parentKey and generatedKey does not ensure unique identification of records
(the parent-child relation) - this is the case when one parent has mupliple children of the same element name.

In such a case, these children may be given numbers as the identification.

If this sequence is defined, it can be used to give numbers to these child elements even with different starting
value and different step. It can also preserve values between subsequent runs of the graph.

Id of the sequence.

Example: sequenceId="Sequence0"

Important

Sometimes there may be a parent which has multiple children of the same element name.
In such a case, these children cannot be indentified using the parent information copied
from parentKey to generatedKey. Such information is not sufficient. For this reason, a
sequence may be defined to give distinguishing numbers to the mutliple child elements.

• xmlFields

If the names of XML nodes or attributes should be changed, it has to be done using a pair of xmlFields
and cloverFields attributes.

A sequence of element or attribute names on the specified level can be separated by semicolon, colon, or pipe.

The same number of these names has to be given in the cloverFields attribute.

Do not foget the values have to correspond to the specified data type.

Example: xmlFields="salary;spouse"

What is more, you can reach further than the current level of XML elements and their attributes. Use the "../"
string to reference "the parent of this element". See Source Tab (p. 429) for more information.

Chapter 53. Readers

427

Important

By default, XML names (element names and attribute names) are mapped to metadata fields
by their name.

• cloverFields

If the names of XML nodes or attributes should be changed, it must be done using a pair of xmlFields
and cloverFields attributes.

Sequence of metadata field names on the specified level are separated by a semicolon, colon, or pipe.

The number of these names must be the same in the xmlFields attribute.

Also the values must correspond to the specified data type.

Example: cloverFields="SALARY;SPOUSE"

Important

By default, XML names (element names and attribute names) are mapped to metadata fields
by their name.

• skipRows

Optional

Number of elements which must be skipped. By default, nothing is skipped.

Example: skipRows="5"

Important

Remember that also nested (child) elements are skipped when their parent is skipped.

• numRecords

Optional

Number of elements which should be read. By default, all are read.

Example: numRecords="100"

XMLExtract Mapping Editor and XSD Schema

In addition to writing the mapping code yourself, you can set the XML Schema attribute. It is the URL of a file
containing an XSD schema that can be used for creating the Mapping definition.

When using an XSD, the mapping can be performed visually in the Mapping dialog. It consists of two tabs: the
Mapping tab and the Source tab. The Mapping attribute can be defined in the Source tab, while in the Mapping
tab you can work with your XML Schema.

Note

If you do not possess a valid XSD schema for your source XML, you can switch to the Mapping tab
and click Genereate XML Schema which attempts to "guess" the XSD structure from the XML.

Chapter 53. Readers

428

Figure 53.20. The Mapping Dialog for XMLExtract

In the pane on the left hand side of the Mapping tab, you can see a tree structure of the XML. Every element
shows how many occurences it has in the source file (e.g. [0:n]). In this pane, you need to check the elements that
should be mapped to the output ports.

At the top, you specify Output for each selected element by choosing from a drop-down list. Possible values are:

• Not mapped - the mapping will not produce a record. By using such mapping elements, you can enforce that
any child mapping will be processed only if the parser encounters this element first.

Parent record - the mapping will not produce a record, but it will fill the mapped values to a parent record.

portNumber(metadata) - the mapping will generate a record and write it to a selected output port.

You can then choose from the list of metadata labeled portNumber(metadata), e.g. "3(customer)".

On the right hand side, you can see mapping Input and Output fields. You either map them to each other according
to their names (by checking the Map XML by name checkbox) or you map them yourself - explicitly. Please note
that in Input - XML fields, not only elements but also their parent elements are visible (as long as parents have
some fields) and can be mapped. In the picture above, the "pref:records" element is selected but we are allowed to
leap over its parent element "pref:result" whose field "size" is actually mapped. Consequently, that enables you to
create the whole mapping in a much easier way than if you used the Parent key and Generated key properties.

You can also map the input fields (Input fields section), fields from record produced by parent mapping (Parent
fields section) or generate a unique id for record by mapping a sequence from Sequences section to one of the
output fields.

Note

sequenceId and sequenceField is set if some sequence is mapped to output metadata field. However
it's possible to set just sequenceField. In this case new sequence is created and mapped to the
metadata field. The mapping is valid but Mapping Dialog shows warning that metadata field is
mapped to non existing sequence.

Chapter 53. Readers

429

Source Tab

Once you define all elements, specify output ports, mapping and other properties, you can switch to the Source
tab. The mapping code is displayed there. Its structure is the same as described in the preceding sections.

Note

If you do not possess a valid XSD schema for your source XML, you will not be able to map elements
visually and you have to do it here in Source.

Note

It's possible to map attribute or element missing at the schema. No validation warning is raised and
mapping is visualized at Mapping tab. Italic font is used when displaying mapped elements and
attributes missing at the schema.

If you want to map an element to XML fields of its parents, use the "../" string (like in the file system) before the
field name. Every "../" stands for "this element's parent", so "../../" would mean the element's parent's parent and
so on. Examine the example below. The "../../empID" is a field of "employee" as made available to the currently
selected element "customer".

Figure 53.21. Parent Elements

<Mapping element="employee">
 <Mapping element="project">
 <Mapping element="customer" outPort="0"
 xmlFields="name;../../empID"
 cloverFields="name;empId"/>
 </Mapping>
</Mapping>

There's one thing that one should keep in mind when referencing parent elements particularly if you rely on the
Use nested nodes property set to true: To reference one parent level using "../" actually means to reference
that ancestor element (over more parents) in the XML which is defined in the direct parent <Mapping> of
<Mapping> with the "../" parent reference.

An example is always a good thing so here it goes. Let us recall the mapping from last example. We will omit one
of its <Mapping> elements and notice how also the parent field reference had to be changed accordingly.

Chapter 53. Readers

430

<Mapping element="employee">
 <Mapping element="customer" outPort="0"
 xmlFields="name;../empID"
 cloverFields="name;empId"/>
</Mapping>

Usage of Dot In Mapping

It is possible to map the value of an element using the '.' dot syntax. The dot means 'the element itself' (its
name). Every other occurence of the element's name in mapping (as text, e.g. "customer") represents the element's
subelement or attribute. (Note: Availalbe since Clover v. 3.1.0)

The dot can be used in the xmlFields attribute just like any other XML element/attribute name. In the visual
mapping editor, the dot is represented in the XML Fields tree as the element's contents.

The following chunk of code maps the value of element customer on metadata field customerValue. Next,
project (i.e. customer's parent element, that is why ../.) is mapped on the projectValue field.

<Mapping element="project">
 <Mapping element="customer" outPort="0"
 xmlFields=".;../."
 cloverFields="customerValue;projectValue"/>
</Mapping>

The element value consists of the text enclosed between the element's start and end tag only if it has no child
elements. If the element has child element(s), then the element's value consists of the text between the element's
start tag and the start tag of its first child element.

Important

Remember that element values are mapped to Clover fields by their names. Thus, the <customer>
element mentioned above would be mapped to Clover field named customer automatically
(implicit mapping).

However, if you want to rename the <customer> element to a Clover field with another name
(explicit mapping), the following construct is necessary:

 <Mapping ... xmlFields="customer" cloverFields="newFieldName" />

Moreover, when you have an XML file containg an element and an attribute of the same name:

 <customer customer="JohnSmithComp">
 ...
 </customer>

you can map both the element and the attribute value to two different fields:

Chapter 53. Readers

431

<Mapping element="customer" outPort="2"
 xmlFields=".;customer"
 cloverFields="customerElement;customerAttribute"/>
</Mapping>

Remember the explicit mapping (renaming fields) shown in the examples has a higher priority
than the implicit mapping. The implicit mapping can be turned off by setting implicit
attribute of the corresponding Mapping element to false.

You could even come across a more complicated situation stemming from the example above - the element has
an attribute and a subelement all of the same name. The only thing to do is add another mapping at the end of
the construct. Notice you can optionally send the subelement to a different output port than its parent. The other
option is to leave the mapping blank, but you have to handle the subelement somehow:

<Mapping element="customer" outPort="2"
 xmlFields=".;customer"
 cloverFields="customerElement;customerAttribute"/>
 <Mapping element="customer" outPort="4" /> // customer's subelement called 'customer' as well
</Mapping>

Element content (text and chidren elements) mapping

It is possible to map content of element to field. Whole subtree of element is sent to output port in that case. To
map element content, use '+' or '-' character. The difference between '+' (plus) and '-' (minus) mapping is, that '+'
maps element's content and its enclosing element and '-' maps element's content, but not element itself.

If you have xml

 <customers>
 <customer>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
 <city>Smith</city>
 </customer>
 </customers>

and you will use '+' mapping on element 'customer', you will get

 <customer>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
 <city>Smith</city>
 </customer>

on output.

If you will use '-' mapping on 'customer' element, you will get

Chapter 53. Readers

432

 <firstname>John</firstname>
 <lastname>Smith</lastname>
 <city>Smith</city>

on output.

Important

Mapping of element content can prodce very large amount of data. It can have high impact on
processing speed.

Usage of useParentRecord attribute

If you want to map a value from nested element, but you do not want to create a separate record for the parent
and nested elements, you may consider using the useParentRecord attribute of the Mapping element. By
setting the attribute to true, the values mapped by the Mapping element will not be assigned to a new record,
but will be set to a parent record. (Note: Available since Clover v.3.3.0-M3)

The following chunk of code maps the value of element project on metadata field projectValue and value
of customer element on metadata field customerValue. The customerValue field is set in the same record
as the projectValue.

<Mapping element="project" outPort="0" xmlFields="." cloverFields="projectValue">
 <Mapping element="customer" useParentRecord="true" xmlFields="." cloverFields="customerValue" />
</Mapping>

Templates

Source tab is the only place where templates can be used. Templates are useful when reading a lot of nested
elements or recursive data in general.

A template consists of a declaration and a body. The body stretches from the declaration on (up to a potential
template reference, see below) and can contain arbitrary mapping. The declaration is an element containing the
templateId attribute. See example template declaration:

<Mapping element="category" templateId="myTemplate">
 <Mapping element="subCategory"
 xmlFields="name"
 cloverFields="subCategoryName"/>
</Mapping>

To use a template, fill in the templateRef attribute with an existing templateId. Obviously, you have to
declare a template first before referencing it. The effect of using a template is that the whole mapping starting with
the declaration is copied to the place where the template reference appears. The advantage is obvious: every time
you need to change a code that often repeats, you make the change on one place only - in the template. See a basic
example of how to reference a template in your mapping:

Chapter 53. Readers

433

<Mapping templateRef="myTemplate" />

Furthermore, a template reference can appear inside a template declaration. The reference should be placed as
the last element of the declaration. If you reference the same template that is being declared, you will create a
recursive template.

You should always keep in mind how the source XML looks like. Remember that if you have n levels of nested
data you should set the nestedDepth attribute to n. Look at the example:

<Mapping element="myElement" templateId="nestedTempl">

 <!-- ... some mapping ... -->

 <Mapping templateRef="nestedTempl" nestedDepth="3"/>

</Mapping> <!-- template declaration ends here -->

Note

The following chunk of code:

 <Mapping templateRef="unnestedTempl" nestedDepth="3" />

can be imagined as

 <Mapping templateRef="unnestedTempl">
 <Mapping templateRef="unnestedTempl">
 <Mapping templateRef="unnestedTempl">
 </Mapping>
 </Mapping>
 </Mapping>

and you can use both ways of nesting references. The latter one with three nested references can
produce unexpected results when inside a template declaration, though. As we step deeper and
deeper, each templateRef copies its template code. BUT when e.g. the 3rd reference is active, it
has to copy the code of the two references above it first, then it copies its own code. That way the depth
in the tree increases very quickly (exponentially). Luckily, to avoid confusion, you can always wrap
the declaration with an element and use nested references outside the declaration. See the example
below, where the "wrap" element is effectively used to separate the template from references. In that
case, 3 references do refer to 3 levels of nested data.

<Mapping element="wrap">
 <Mapping element="realElement" templateId="unnestedTempl"

 <!-- ... some mapping ... -->

 </Mapping> <!-- template declaration ends here -->
</Mapping> <!-- end of wrap -->

<Mapping templateRef="unnestedTempl">
 <Mapping templateRef="unnestedTempl">
 <Mapping templateRef="unnestedTempl">

Chapter 53. Readers

434

 </Mapping>
 </Mapping>
</Mapping>

In summary, working with nestedDepth instead of nested template references always grants transparent results.
Its use is recommended.

Namespaces

If you supply an XML Schema which has a namespace, the namespace is automatically extracted to Namespace
Bindings and given a Name. The Name does not have to exactly match the namespace prefix in the input schema,
though, as it is only a denotation. You can edit it anytime in the Namespace Bindings attribute as shown below:

Figure 53.22. Editing Namespace Bindings in XMLExtract

After you open Mapping, namespace prefixes will appear before element and attribute names. If Name was left
blank, you would see the namespace URI instead.

Note

If your XSD contains two or more namespaces, mapping elements to the output in the visual editor
is not supported. You have to switch to the Source tab and handle namespaces yourself. Use the
'Add' button in Namespace Bindings to pre-prepare a namespace. You will then use it in the source
code like this:

Name = myNs

Value = http://www.w3c.org/foo

lets you write

myNs:element1

instead of

{http://www.w3c.org/foo}element1

Selecting subtypes

Sometimes the schema defines an element to be of some generic type, but you know, what the actual specific type
of the element will be in the processed XML. If the subtypes of the generic type are also defined in the schema,
you may use the Select subtype action. This will open a dialog as shown below. When you choose a subtype, the
element in the schema tree will be treated as if it was of the selected type. This way, you will be able to define
the mapping of this element by using Mapping editor. The information will also be stored in the Mapping source
- see Type Override Tags (p. 422).

Chapter 53. Readers

435

Figure 53.23. Selecting subtype in XMLExtract

Notes

Consider following XML file

 <customer name="attribute_value">
 <name>element_value</name>
 </customer>

In this case element customer has attribute name and child element of same name. If both attribute name and
element name shall be mapped to output metadata, following mapping is incorrect.

 <Mappings>
 <Mapping element="customer" outPort="0"
 xmlFields="{}name"
 cloverFields="field1">
 <Mapping element="name" useParentRecord="true">
 </Mapping>
 </Mapping>
 </Mappings>

Result of this mapping is that both field1 and field2 contains value of element name. Following mapping
shall be used if we need to read value of attribute name to some output metadata field.

Chapter 53. Readers

436

 <Mappings>
 <Mapping element="customer" outPort="0"
 xmlFields="{}name"
 cloverFields="field2">
 <Mapping element="name" useParentRecord="true"
 xmlFields="../{}name"
 cloverFields="field1">
 </Mapping>
 </Mapping>
 </Mappings>

Chapter 53. Readers

437

XMLReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

XMLReader reads data from XML files. It is a powerful new component which supersedes the original
XMLXPathReader and XMLExtract.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

XMLReader XML file 0-1 1-n no yes no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation
(DataGenerator and MultiLevelReader). See Return Values of Transformations (p. 282) for more information.
XMLReader, XMLExtract and XMLXPathReader send data to ports as defined in their Mapping or Mapping
URL attribute.

Abstract

XMLReader reads data from XML files. It can also read data from compressed files, console, input port, and
dictionary. This component is slower than XMLExtract, which can read XML files too.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

Chapter 53. Readers

438

Port type Number Required Description Metadata

0 ... n-1 yes For correct data records. Connect
more than one output ports if your
mapping requires that.

Any1)Output

n no Error port Restricted format2)

Legend:

1) The metadata on each of the output ports does not need to be the same. Each of these metadata can use Autofilling
Functions (p. 131).

2) If you intend to use the last output port for error logging, metadata has to have a fixed format. Field names
are arbitrary, field types are these:

• integer - number of the output port where errors occurred

• integer - record number (per source and port)

• integer - field number

• string - field name

• string - value which caused the error

• string - error message

• optional field: string - source name

XMLReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Specifies which data source(s) will be read (XML file, console,
input port, dictionary). See Supported File URL Formats for
Readers (p. 296).

Charset Encoding of records that are read. When reading from files,
the charset is detected automatically (unless you specify it
yourself).

Important

If you are reading from a port or dictionary, always
set Charset explicitly (otherwise you will get
errors). There is no autodetection as in reading
from files.

ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Mapping URL 1) External text file containing the mapping definition. See
XMLReader Mapping Definition (p. 440) for more
information.

Mapping 1) Mapping the input XML structure to output ports. See
XMLReader Mapping Definition (p. 440) for more
information.

Chapter 53. Readers

439

Attribute Req Description Possible
values

Advanced

XML features Sequence of individual true/false expressions related to
XML features which should be validated. The expressions
are separated from each other by semicolon. See XML
Features (p. 306) for more information.

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has higher priority.

Chapter 53. Readers

440

Advanced Description

Example 53.9. Mapping in XMLReader

<Context xpath="/employees/employee" outPort="0">
 <Mapping nodeName="salary" cloverField="basic_salary"/>
 <Mapping xpath="name/firstname" cloverField="firstname"/>
 <Mapping xpath="name/surname" cloverField="surname"/>
 <Context xpath="child" outPort="1" parentKey="empID" generatedKey="parentID"/>
 <Context xpath="benefits" outPort="2" parentKey="empID;jobID" generatedKey="empID;jobID"
 sequenceField="seqKey" sequenceId="Sequence0">
 <Context xpath="financial" outPort="3" parentKey="seqKey" generatedKey="seqKey"/>
 </Context>
 <Context xpath="project" outPort="4" parentKey="empID;jobID" generatedKey="empID;jobID">
 <Context xpath="customer" outPort="5" parentKey="projName;projManager;inProjectID;Start"
 generatedKey="joinedKey"/>
 </Context>
</Context>

Note

Nested structure of <Context> tags is similar to the nested structure of XML elements in input
XML files.

However, Mapping attribute does not need to copy all XML structure, it can start at the specified
level inside the whole XML file.

XMLReader Mapping Definition

1. Every Mapping definition (both the contents of the file specified in the Mapping URL attribute and the
Mapping attribute) consists of <Context> tags which contain also some attributes and allow mapping of
element names to Clover fields.

2. Each <Context> tag can surround a serie of nested <Mapping> tags. These allow to rename XML elements
to Clover fields.

3. Each of these <Context> and <Mapping> tags contains some XMLReader Context Tag
Attributes (p. 441) and XMLReader Mapping Tag Attributes (p. 442), respectively.

Important

By default, mapping definition is implicit. Therefore elements (e.g. salary) are automatically
mapped onto fields of the same name (salary) and you do not have to write:

 <Mapping xpath="salary" cloverField="salary"/>

Thus, use explicit mapping only to populate fields with data from distinct elements.

4. XMLReader Context Tags and Mapping Tags

• Empty Context Tag (Without a Child)

<Context xpath="xpathexpression" XMLReader Context Tag Attributes (p. 441) />

• Non-Empty Context Tag (Parent with a Child)

<Context xpath="xpathexpression" XMLReader Context Tag Attributes (p. 441) >

Chapter 53. Readers

441

(nested Context and Mapping elements (only children, parents with one
or more children, etc.)

</Context>

• Empty Mapping Tag (Renaming Tag)

• xpath is used:

<Mapping xpath="xpathexpression" XMLReader Mapping Tag Attributes (p. 442) />

• nodeName is used:

<Mapping nodeName="elementname" XMLReader Mapping Tag Attributes (p. 442) />

5. XMLReader Context Tag and Mapping Tag Attributes

1) XMLReader Context Tag Attributes

• xpath

Required

The xpath expression can be any XPath query.

Example: xpath="/tagA/.../tagJ"

• outPort

Optional

Number of output port to which data is sent. If not defined, no data from this level of Mapping is sent out
using such level of Mapping.

Example: outPort="2"

• parentKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the next parent level separated by semicolon, colon, or pipe. Number and
data types of all these fields must be the same in the generatedKey attribute or all values are concatenated
to create a unique string value. In such a case, key has only one field.

Example: parentKey="first_name;last_name"

Equal values of these attributes assure that such records can be joined in the future.

• generatedKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the specified level separated by semicolon, colon, or pipe. Number and data
types of all these fields must be the same in the parentKey attribute or all values are concatenated to create
a unique string value. In such a case, key has only one field.

Example: generatedKey="f_name;l_name"

Equal values of these attributes assure that such records can be joined in the future.

• sequenceId

Chapter 53. Readers

442

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

Id of the sequence.

Example: sequenceId="Sequence0"

• sequenceField

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

A metadata field on the specified level in which the sequence values are written. Can serve as parentKey
for the next nested level.

Example: sequenceField="sequenceKey"

• namespacePaths

Optional

Default namespaces that should be used for the xpath attribute specified in the <Context> tag.

Pattern: namespacePaths='prefix1="URI1";...;prefixN="URIN"'

Example: namespacePaths='n1="http://www.w3.org/TR/html4/";n2="http://
ops.com/"'.

Note

Remember that if the input XML file contains a default namespace, this namespacePaths
must be specified in the corresponding place of the Mapping attribute. In addition,
namespacePaths is inherited from the <Context> element and used by the <Mapping>
elements.

2) XMLReader Mapping Tag Attributes

• xpath

Either xpath or nodeName must be specified in <Mapping> tag.

XPath query.

Example: xpath="tagA/.../salary"

• nodeName

Either xpath or nodeName must be specified in <Mapping> tag. Using nodeName is faster than using
xpath.

XML node that should be mapped to Clover field.

Example: nodeName="salary"

• cloverField

Required

Clover field to which XML node should be mapped.

Name of the field in the corresponding level.

Chapter 53. Readers

443

Example: cloverFields="SALARY"

• trim

Optional

Specifies whether leading and trailing white spaces should be removed. By default, it removes both leading
and trailing white spaces.

Example: trim="false" (white spaces will not be removed)

• namespacePaths.

Optional

Default namespaces that should be used for the xpath attribute specified in the <Mapping> tag.

Pattern: namespacePaths='prefix1="URI1";...;prefixN="URIN"'

Example: namespacePaths='n1="http://www.w3.org/TR/html4/";n2="http://
ops.com/"'.

Note

Remember that if the input XML file contains a default namespace, this namespacePaths
must be specified in the corresponding place of the Mapping attribute. In addition,
namespacePaths is inherited from the <Context> element and used by the <Mapping>
elements.

Reading Mutlivalue Fields

As of Clover 3.3, reading multivalue fields is supported - you can read only lists, however (see Multivalue
Fields (p. 167)).

Note

Reading maps is handled as reading pure string (for all data types as map's values).

Chapter 53. Readers

444

Example 53.10. Reading lists with XMLReader

An example input file containing these elements (just a code snippet):

 ...
 <attendees>John</attendees>
 <attendees>Vicky</attendees>
 <attendees>Brian</attendees>
 ...

can be read back by the component with this mapping:

 <Mapping xpath="attendees" cloverField="attendanceList"/>

where attendanceList is a field of your metadata. The metadata has to be assigned to the component's output
edge. After you run the graph, the field will get populated by XML data like this (that what you will see in View
data):

[John,Vicky,Brian]

Chapter 53. Readers

445

XMLXPathReader

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 43, Common Properties of Readers (p. 295)

If you want to find the appropriate Reader for your purposes, see Readers Comparison (p. 296).

Short Summary

XMLXPathReader reads data from XML files.

Component

D
at

a
so

ur
ce

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

 a
ll

ou
tp

ut
s1)

D
if

fe
re

nt
to

 d
if

fe
re

nt
ou

tp
ut

s2)

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

XMLXPathReader XML file 0-1 1-n no yes no no no no

Legend

1) Component sends each data record to all connected output ports.

2) Component sends different data records to different output ports using return values of the transformation
(DataGenerator and MultiLevelReader). See Return Values of Transformations (p. 282) for more information.
XMLExtract and XMLXPathReader send data to ports as defined in their Mapping or Mapping URL attribute.

Abstract

XMLXPathReader reads data from XML files (using the DOM parser). It can also read data from compressed files,
console, input port, and dictionary. This component is slower than XMLExtract, which can read XML files too.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For port reading. See Reading from
Input Port (p. 299).

One field (byte, cbyte,
string).

0 yes For correct data records Any1)Output

1-n 2) For correct data records Any1) (each port can have different
metadata)

Chapter 53. Readers

446

Legend:

1) Metadata on each output port does not need to be the same. Metadata can use Autofilling Functions (p. 131).
Note: source_timestamp and source_size functions work only when reading from a file directly (if the
file is an archive or it is stored in a remote location, timestamp will be empty and size will be 0).

2) Other output ports are required if mapping requires that.

XMLXPathReader Attributes

Attribute Req Description Possible
values

Basic

File URL yes Specifies which data source(s) will be read (XML file, console,
input port, dictionary). See Supported File URL Formats for
Readers (p. 296).

Charset Encoding of records that are read. ISO-8859-1
(default) |
<other
encodings>

Data policy Determines what should be done when an error occurs. See Data
Policy (p. 305) for more information.

Strict (default)
| Controlled |
Lenient

Mapping URL 1) External text file containing the mapping definition. See
XMLXPathReader Mapping Definition (p. 447) for more
information.

Mapping 1) Mapping the input XML structure to output ports. See
XMLXPathReader Mapping Definition (p. 447) for more
information.

Advanced

XML features Sequence of individual true/false expressions related to
XML features which should be validated. The expressions
are separated from each other by semicolon. See XML
Features (p. 306) for more information.

Number of skipped
mappings

Number of mappings to be skipped continuously throughout all
source files. See Selecting Input Records (p. 304).

0-N

Max number of
mappings

Maximum number of records to be read continuously
throughout all source files. See Selecting Input Records (p. 304).

0-N

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has higher priority.

Chapter 53. Readers

447

Advanced Description

Example 53.11. Mapping in XMLXPathReader

<Context xpath="/employees/employee" outPort="0">
 <Mapping nodeName="salary" cloverField="basic_salary"/>
 <Mapping xpath="name/firstname" cloverField="firstname"/>
 <Mapping xpath="name/surname" cloverField="surname"/>
 <Context xpath="child" outPort="1" parentKey="empID" generatedKey="parentID"/>
 <Context xpath="benefits" outPort="2" parentKey="empID;jobID" generatedKey="empID;jobID"
 sequenceField="seqKey" sequenceId="Sequence0">
 <Context xpath="financial" outPort="3" parentKey="seqKey" generatedKey="seqKey"/>
 </Context>
 <Context xpath="project" outPort="4" parentKey="empID;jobID" generatedKey="empID;jobID">
 <Context xpath="customer" outPort="5" parentKey="projName;projManager;inProjectID;Start"
 generatedKey="joinedKey"/>
 </Context>
</Context>

Note

Nested structure of <Context> tags is similar to the nested structure of XML elements in input
XML files.

However, Mapping attribute does not need to copy all XML structure, it can start at the specified
level inside the whole XML file.

XMLXPathReader Mapping Definition

1. Every Mapping definition (both the contents of the file specified in the Mapping URL attribute and the
Mapping attribute) consists of <Context> tags which contain also some attributes and allow mapping of
element names to Clover fields.

2. Each <Context> tag can surround a serie of nested <Mapping> tags. These allow to rename XML elements
to Clover fields.

3. Each of these <Context> and <Mapping> tags contains some XMLXPathReader Context Tag
Attributes (p. 448) and XMLXPathReader Mapping Tag Attributes (p. 449), respectively.

Important

By default, mapping definition is implicit. Therefore elements (e.g. salary) are automatically
mapped onto fields of the same name (salary) and you do not have to write:

 <Mapping xpath="salary" cloverField="salary"/>

Thus, use explicit mapping only to populate fields with data from distinct elements.

4. XMLXPathReader Context Tags and Mapping Tags

• Empty Context Tag (Without a Child)

<Context xpath="xpathexpression" XMLXPathReader Context Tag Attributes (p. 448) />

• Non-Empty Context Tag (Parent with a Child)

<Context xpath="xpathexpression" XMLXPathReader Context Tag Attributes (p. 448) >

Chapter 53. Readers

448

(nested Context and Mapping elements (only children, parents with one
or more children, etc.)

</Context>

• Empty Mapping Tag (Renaming Tag)

• xpath is used:

<Mapping xpath="xpathexpression" XMLXPathReader Mapping Tag Attributes (p. 449)
/>

• nodeName is used:

<Mapping nodeName="elementname" XMLXPathReader Mapping Tag Attributes (p. 449) />

5. XMLXPathReader Context Tag and Mapping Tag Attributes

1) XMLXPathReader Context Tag Attributes

• xpath

Required

The xpath expression can be any XPath query.

Example: xpath="/tagA/.../tagJ"

• outPort

Optional

Number of output port to which data is sent. If not defined, no data from this level of Mapping is sent out
using such level of Mapping.

Example: outPort="2"

• parentKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the next parent level separated by semicolon, colon, or pipe. Number and
data types of all these fields must be the same in the generatedKey attribute or all values are concatenated
to create a unique string value. In such a case, key has only one field.

Example: parentKey="first_name;last_name"

Equal values of these attributes assure that such records can be joined in the future.

• generatedKey

Both parentKey and generatedKey must be specified.

Sequence of metadata fields on the specified level separated by semicolon, colon, or pipe. Number and data
types of all these fields must be the same in the parentKey attribute or all values are concatenated to create
a unique string value. In such a case, key has only one field.

Example: generatedKey="f_name;l_name"

Equal values of these attributes assure that such records can be joined in the future.

Chapter 53. Readers

449

• sequenceId

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

Id of the sequence.

Example: sequenceId="Sequence0"

• sequenceField

When a pair of parentKey and generatedKey does not insure unique identification of records, a
sequence can be defined and used.

A metadata field on the specified level in which the sequence values are written. Can serve as parentKey
for the next nested level.

Example: sequenceField="sequenceKey"

• namespacePaths

Optional

Default namespaces that should be used for the xpath attribute specified in the <Context> tag.

Pattern: namespacePaths='prefix1="URI1";...;prefixN="URIN"'

Example: namespacePaths='n1="http://www.w3.org/TR/html4/";n2="http://
ops.com/"'.

Note

Remember that if the input XML file contains a default namespace, this namespacePaths
must be specified in the corresponding place of the Mapping attribute. In addition,
namespacePaths is inherited from the <Context> element and used by the <Mapping>
elements.

2) XMLXPathReader Mapping Tag Attributes

• xpath

Either xpath or nodeName must be specified in <Mapping> tag.

XPath query.

Example: xpath="tagA/.../salary"

• nodeName

Either xpath or nodeName must be specified in <Mapping> tag. Using nodeName is faster than using
xpath.

XML node that should be mapped to Clover field.

Example: nodeName="salary"

• cloverField

Required

Clover field to which XML node should be mapped.

Chapter 53. Readers

450

Name of the field in the corresponding level.

Example: cloverFields="SALARY"

• trim

Optional

Specifies whether leading and trailing white spaces should be removed. By default, it removes both leading
and trailing white spaces.

Example: trim="false" (white spaces will not be removed)

• namespacePaths.

Optional

Default namespaces that should be used for the xpath attribute specified in the <Mapping> tag.

Pattern: namespacePaths='prefix1="URI1";...;prefixN="URIN"'

Example: namespacePaths='n1="http://www.w3.org/TR/html4/";n2="http://
ops.com/"'.

Note

Remember that if the input XML file contains a default namespace, this namespacePaths
must be specified in the corresponding place of the Mapping attribute. In addition,
namespacePaths is inherited from the <Context> element and used by the <Mapping>
elements.

Reading Mutlivalue Fields

As of Clover 3.3, reading multivalue fields is supported - you can read only lists, however (see Multivalue
Fields (p. 167)).

Note

Reading maps is handled as reading pure string (for all data types as map's values).

Chapter 53. Readers

451

Example 53.12. Reading lists with XMLXpathReader

An example input file containing these elements (just a code snippet):

 ...
 <attendees>John</attendees>
 <attendees>Vicky</attendees>
 <attendees>Brian</attendees>
 ...

can be read back by the component with this mapping:

 <Mapping xpath="attendees" cloverField="attendanceList"/>

where attendanceList is a field of your metadata. The metadata has to be assigned to the component's output
edge. After you run the graph, the field will get populated by XML data like this (that what you will see in View
data):

[John,Vicky,Brian]

452

Chapter 54. Writers
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Only some of the components in a graph are terminal nodes. These are called Writers.

Writers can write data to output files (both local and remote), send it through the connected optional output port,
or write it to dictionary. One component only discards data. Since it is also a terminal node, we describe it here.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, others are common for most of the components, or they are common for Writers only.
You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

We can distinguish Writers according to what they can write:

• One component discards data:

• Trash (p. 540) discards data.

Other Writers write data to files.

• Flat files:

• UniversalDataWriter (p. 542) writes data to flat files (delimited or fixed length).

• Other files:

• CloverDataWriter (p. 454) writes data to files in Clover binary format.

• XLSDataWriter (p. 545) writes data to XLS or XLSX files.

• StructuredDataWriter (p. 536) writes data to files with user-defined structure.

• XMLWriter (p. 548) creates XML files from input data records.

• DBFDataWriter (p. 462) writes data to dbase file(s).

• HadoopWriter (p. 477) writes data into Hadoop sequence file(s).

Other Writers loads data into database.

• Databases Writers:

• DBOutputTable (p. 465) loads data into database using JDBC driver.

• QuickBaseRecordWriter (p. 520) writes data into the QuickBase online database.

• QuickBaseImportCSV (p. 518) writes data into the QuickBase online database.

• LotusWriter (p. 503) writes data into Lotus Notes and Lotus Domino databases.

• High-Speed Database Specific Writers (Bulk Loaders):

• DB2DataWriter (p. 456) loads data into DB2 database using DB2 client.

• InfobrightDataWriter (p. 479) loads data into Infobright database using Infobright client.

Chapter 54. Writers

453

• InformixDataWriter (p. 481) loads data into Informix database using Informix client.

• MSSQLDataWriter (p. 505) loads data into MSSQL database using MSSQL client.

• MySQLDataWriter (p. 508) loads data into MYSQL database using MYSQL client.

• OracleDataWriter (p. 511) loads data into Oracle database using Oracle client.

• PostgreSQLDataWriter (p. 515) loads data into PostgreSQL database using PostgreSQL client.

Other Writers send e-mails, JMS messages or write directory structure.

• E-mails:

• EmailSender (p. 473) converts data records into e-mails.

• JMS messages:

• JMSWriter (p. 493) converts data records into JMS messages.

• Directory structure:

• LDAPWriter (p. 501) converts data records into a directory structure.

Chapter 54. Writers

454

CloverDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

CloverDataWriter writes data to files in our internal binary Clover data format.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

CloverDataWriter Clover binary file 1 0 no no no no

Abstract

CloverDataWriter writes data to files (local or remote) in our internal binary Clover data format. It can also
compress output files, write data to console, or dictionary.

Note

Since 2.9 version of CloverETL CloverDataWriter writes also a header to output files with the
version number. For this reason, CloverDataReader expects that files in Clover binary format
contain such a header with the version number. CloverDataReader 2.9 cannot read files written by
older versions of CloverETL nor these older versions can read data written by CloverDataWriter
2.9.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For received data records Any

Chapter 54. Writers

455

CloverDataWriter Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying where received data will be written (Clover
data file, console, dictionary). See Supported File URL Formats
for Writers (p. 309). See also Output File Structure (p. 455)
for more information.

Append By default, new records overwrite the older ones. If set to true,
new records are appended to the older records stored in the
output file(s).

false (default) |
true

Save metadata By default, no file with metadata definition is saved. If set
to true, metadata is saved to metadata file. See Output File
Structure (p. 455) for more information.

false (default) |
true

Save index 1) By default, no file with indices of records is saved. If set to
true, the index of records is saved to an index file. See Output
File Structure (p. 455) for more information.

false (default) |
true

Advanced

Create directories By default, non-existing directories are not created. If set to
true, they are created.

false (default) |
true

Compress level Sets the compression level. By default, zip compression level is
used. Level 0 means archiving without compression.

-1 (default) |
0-9

Number of skipped
records

Number of records to be skipped. See Selecting Output
Records (p. 316).

0-N

Max number of
records

Maximum number of records to be written to the output file. See
Selecting Output Records (p. 316).

0-N

Legend:

1) Please note this is a deprecated attribute.

Advanced Description

Output File Structure

• Non-Archived Output File(s)

If you do not archive and/or compress the created file(s), the output file(s) will be saved separately with
the following name(s): filename (for the file with data), filename.idx (for the file with index) and
filename.fmt (for the file with metadata). In all of the created name(s), filename contains its extension
(if it has any) in all of these three created file(s) names.

• Archived Output File(s)

If the output file is archived and/or compressed (independently on the type of the file), it has the
following internal structure: DATA/filename, INDEX/filename.idx and META/filename.fmt.
Here, filename includes its extension (if it has any) in all of these three names.

Example 54.1. Internal Structure of Archived Output File(s)

DATA/employees.clv, INDEX/employees.clv.idx, META/employees.clv.fmt.

Chapter 54. Writers

456

DB2DataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

DB2DataWriter loads data into DB2 database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

DB2DataWriter database 0-1 0-1 no no no no

Abstract

DB2DataWriter loads data into database using DB2 database client. It can read data through the input port or
from an input file. If the input port is not connected to any other component, data must be contained in an input
file that should be specified in the component. If you connect some other component to the optional output port, it
can serve to log the information about errors. DB2 database client must be installed and configured on localhost.
Server and database must be cataloged as well.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the
database

Any

Output 0 no For information about incorrect
records

Error Metadata for
DB2DataWriter (p. 457)2)

Legend:

1): If no file containing data for loading (Loader input file) is specified, input port must be connected.

Chapter 54. Writers

457

2): Error Metadata cannot use Autofilling Functions (p. 131).

Table 54.1. Error Metadata for DB2DataWriter

Field
number

Field name Data type Description

0 <any_name1> integer Number of incorrect record (records are numbered starting from 1)

1 <any_name2> integer number of incorrect field (for delimited records), fields are numbered
starting from 1 | offset of incorrect field (for fixed-length records)

2 <any_name3> string Error message

DB2DataWriter Attributes

Attribute Req Description Possible
values

Basic

File metadata Metadata of external file. Must only be delimited. Each column
except the last one is followed by an identical, one char
delimiter. The last delimiter following the last column is \n.
Delimiter must not be a part of any field value.

Database yes Name of the database into which the records should be loaded.

Database table yes Name of the database table into which the records should be
loaded.

User name yes Database user.

Password yes Password for database user.

Load mode Mode of the action performed when loading data. See Load
mode (p. 460) for more information.

insert (default) |
replace | restart
| terminate

Field mapping 1) Sequence of individual mappings
($CloverField:=DBField) separated by semicolon,
colon, or pipe. See Mapping of Clover Fields to DB
Fields (p. 460) for more information.

Clover fields 1) Sequence of Clover fields separated by semicolon, colon, or
pipe. See Mapping of Clover Fields to DB Fields (p. 460) for
more information.

DB fields 1) Sequence of DB fields separated by semicolon, colon, or pipe.
See Mapping of Clover Fields to DB Fields (p. 460) for more
information.

Advanced

Loader input file 2) Name of input file to be loaded, including path. See Loader input
file (p. 461) for more information.

Parameters All parameters that can be used as parameters by load method.
These values are contained in a sequence of pairs of the
following form: key=value, or key only (if the key value
is the boolean true) separated from each other by semicolon,
colon, or pipe. If the value of any parameter contains the
delimiter as its part, such value must be double quoted.

Rejected records URL
(on server)

Name of the file, including path, on DB2 server where rejected
records will be saved. Must be located in the directory owned
by database user.

Chapter 54. Writers

458

Attribute Req Description Possible
values

Batch file URL URL of the file where the connect, load and disconnect
commands for db2 load utility are stored. Normally the batch
file is automatically generated, stored in current directory and
deleted after the load finishes. If the Batch file URL is specified,
component tries to use it as is (generates it only if it does not
exist or if its length is 0) and does not delete it after the load
finishes. (It is reasonable to use this attribute in connection with
the Loader input file attribute, because batch file contains the
name of temporary data file which is generated at random, if not
provided explicitly). Path must not contain white spaces.

DB2 command
interpreter

Interpreter that should execute script with DB2 commands
(connect, load, disconnect). Its form must be the
following: interpreterName [parameters] ${}
[parameters]. This ${} expression must be replaced by
the name of this script file.

Use pipe transfer By default, data from input port is written to a temporary file and
then it is read by the component. If set to true, on Unix data
records received through the input port are sent to pipe instead
of a temporary file.

false (default) |
true

Column delimiter The first one char field delimiter from File metadata or the
metadata on the input edge (if File metadata is not specified).
Character used as a delimiter for each column in data file.
Delimiter must not be contained as a part of a field value. The
same delimiter can be set by specifying the value of the coldel
parameter in the Parameters attribute. If Column delimiter is
set, coldel in Parameters is ignored.

Number of skipped
records

Number of records to be skipped. By default, no records are
skipped. This attribute is applied only if data is received through
the input port. Otherwise, it is ignored.

0 (default) | 1-N

Max number of
records

Maximum number of records to be loaded into database. The
same can be set by specifying the value of the rowcount
parameter in the Parameters attribute. If rowcount is set in
Parameters, the Max number of records attribute is ignored.

all (default) | 0-
N

Max error count Maximum number of records after which the load stops.
If some number is set explicitely and when it is reached,
process can continue in RESTART mode. In REPLACE mode,
process continues from the beginning. The same number can be
specified with the help of warningcount in the Parameters
attribute. If warningcount is specified, Max error count is
ignored.

all (default) | 0-
N

Max warning count Maximum number of printed error messages and/or warnings. 999 (default) |
0-N

Fail on warnings By default, the component fails on errors. Switching the
attribute to true, you can make the component fail on
warnings. Background: when an underlying bulk-loader utility
finishes with a warning, it is just logged to the console. This
behavior is sometimes undesirable as warnings from underlying
bulk-loaders may seriously impact further processing. For
example, 'Unable to extend table space' may result in not loading
all data records to a database; hence not completing the expected
task successfully.

false (default) |
true

Chapter 54. Writers

459

Legend:

1) See Mapping of Clover Fields to DB Fields (p. 460) for more information about their relation.

2) If input port is not connected, Loader input file must be specified and contain data. See Loader input
file (p. 461) for more information.

Chapter 54. Writers

460

Advanced Description

Mapping of Clover Fields to DB Fields

• Field Mapping is Defined

If a Field mapping is defined, the value of each Clover field specified in this attribute is inserted to such DB
field to whose name this Clover field is assigned in the Field mapping attribute.

• Both Clover Fields and DB Fields are Defined

If both Clover fields and DB fields are defined (but Field mapping is not), the value of each Clover field
specified in the Clover fields attribute is inserted to such DB field which lies on the same position in the DB
fields attribute.

Number of Clover fields and DB fields in both of these attributes must equal to each other. The number of either
part must equal to the number of DB fields that are not defined in any other way (by specifying clover fields
prefixed by dollar sign, db functions, or constants in the query).

Pattern of Clover fields:

CloverFieldA;...;CloverFieldM

Pattern of DB fields:

DBFieldA;...;DBFieldM

• Only Clover Fields are Defined

If only the Clover fields attribute is defined (but Field mapping and/or DB fields are not), the value of each
Clover field specified in the Clover fields attribute is inserted to such DB field whose position in DB table
is equal.

Number of Clover fields specified in the Clover fields attribute must equal to the number of DB fields in DB
table that are not defined in any other way (by specifying clover fields prefixed by dollar sign, db functions,
or constants in the query).

Pattern of Clover fields:

CloverFieldA;...;CloverFieldM

• Mapping is Performed Automatically

If neither Field mapping, Clover fields, nor DB fields are defined, the whole mapping is performed
automatically. The value of each Clover field of Metadata is inserted into the same position in DB table.

Number of all Clover fields must equal to the number of DB fields in DB table that are not defined in any other
way (by specifying clover fields prefixed by dollar sign, db functions, or constants in the query).

Load mode

• insert

Loaded data is added to the database table without deleting or changing existing table content.

• replace

All data existing in the database table is deleted and new loaded data is inserted to the table. Neither the table
definition nor the index definition are changed.

• restart

Chapter 54. Writers

461

Previously interrupted load operation is restarted. The load operation automatically continues from the last
consistency point in the load, build, or delete phase.

• terminate

Previously interrupted load operation is terminated and rolled back to the moment when it started even if
consistency points had been passed.

Loader input file

Loader input file is the name of input file with data to be loaded, including its path. Normally this file is a
temporary storage for data to be passed to dbload utility unless named pipe is used instead. Remember that
DB2 client must be installed and configured on localhost (see DB2 client setup overview). Server and database
must be cataloged as well.

• If it is not set, a loader file is created in Clover or OS temporary directory (on Windows) or named pipe is
used instead of temporary file (on Unix). The file is deleted after the load finishes.

• If it is set, specified file is created. It is not deleted after data is loaded and it is overwritten on each graph run.

• If input port is not connected, the file must exist, must be specified and must contain data that should be loaded
into database. It is not deleted nor overwritten.

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/c0023452.htm

Chapter 54. Writers

462

DBFDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309) .

Short Summary

DBFDataWriter writes data to dbase file(s). Handles Character/Number/Logical/Date dBase data
types. Input metadata has to be fixed-length as you are writing binary data.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

DBFDataWriter .dbf file 1 0

Abstract

DBFDataWriter writes data to dbase file(s).

The component can write a single file or a partitioned collection of files.

Important

Remember the output data can be stored only localy. Uploading via a remote transfer protocol and
writing ZIP and TAR archives is not supported.

Icon

Ports

Port type Number Required Description Metadata

Input 0 Incoming data records Fixed length

Chapter 54. Writers

463

DBFDataWriter Attributes

Attribute Req Description Possible
values

Basic

File URL Specifies where data will be written to (path to a .dbf file), see
Supported File URL Formats for Writers (p. 309) .

Charset Character encoding of records written to the output. ISO-8859-1
(default) |
other 8bit fixed
width encoding

Append If records are printed into a non-empty file, they replace the
previous content by default (false). If set to true, new
records are appended at the end of the existing output file(s).

false (default) |
true

DBF type Type of the created DBF file (determined by the first byte of
file header). If you are unsure which type to choose, leave the
attribute to default.

0x03
FoxBASE+
(default)
| Dbase III
plus, no
memo | other
dbf type byte

Advanced

Create directories When true, non-existing directories contained in the File URL
path are automatically created.

false
(default) |
true

Records per file Maximum number of records to be written to each output file.
If specified, the dollar sign(s) $ ('number of digits' placeholder)
must be a part of the file name mask, see Supported File URL
Formats for Writers (p. 309)

1 - N

Number of skipped
records

Number of records/rows to be skipped before writing the first
record to the output file, see Selecting Output Records (p. 316).

0 (default) - N

Max number of
records

Aggregate number of records/rows to be written to all output
files, see Selecting Output Records (p. 316).

0-N

Exclude fields Sequence of field names that will not be written to the output
(separated by semicolon). Can be used when the same fields
serve as a part of Partition key.

Partition key 2) Sequence of field names defining record distribution among
multiple output files - records with the same Partition key
are written to the same output file. Use semicolon ';' as field
names separator. Depending on selected Partition file tag use
appropriate placeholder ($ or #) in the file name mask, see
Partitioning Output into Different Output Files (p. 317)

Partition lookup table 1) ID of lookup table serving for selecting records that should be
written to output file(s). See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition file tag 2) 2) By default, partitioned output files are numbered. If this attribute
is set to Key file tag , output files are named according
to the values of Partition key or Partition output fields . See
Partitioning Output into Different Output Files (p. 317) for more
information.

Number
file tag
(default) | Key
file tag

Chapter 54. Writers

464

Attribute Req Description Possible
values

Partition output fields 1) 1) Fields of Partition lookup table whose values are used as
output file(s) names. See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition unassigned
file name

Name of the file which the unassigned records should be
written into (if there are any). Unless specified, data records
whose key values are not contained in Partition lookup table
are discarded. See Partitioning Output into Different Output
Files (p. 317) for more information.

2) Either both or neither of these two attributes must be specified.
1) Either both or neither of these two attributes must be specified.

Chapter 54. Writers

465

DBOutputTable

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

DBOutputTable loads data into database using JDBC driver.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

DBOutputTable database 1 0-2

Abstract

DBOutputTable loads data into database using JDBC driver. It can also send out rejected records and generate
autogenerated columns for some of the available databases.

Icon

Ports

Port type Number Required Description Metadata

Input 0 Records to be loaded into the database Any

0 For rejected records Based on
Input 01)

Output

1 For returned values Any2)

Legend:

1): Metadata on output port 0 may contain any number of fields from input (same names and types) along with up to
two additional fields for error information. Input metadata are mapped automatically according to their name(s) and

Chapter 54. Writers

466

type(s). The two error fields may have any names and must be set to the following Autofilling Functions (p. 131):
ErrCode and ErrText.

2): Metadata on output port 1 must include at least the fields returned by the returning statement specified
in the query (for example, returning $outField1:=$inFieldA,$outField2:=update_count,
$outField3:=$inFieldB). Remember that fields are not mapped by names automatically. A mapping must
always be specified in the returning statement. Number of returned records is equal to the the number of
incoming records.

DBOutputTable Attributes

Attribute Req Description Possible
values

Basic

DB connection ID of the DB connection to be used.

Query URL 1) Name of external file, including path, defining SQL query. See
Query or DB Table is Defined (p. 467) for more information.

SQL query 1) SQL query defined in the graph. See Query or DB Table is
Defined (p. 467) for more information. See also SQL Query
Editor (p. 470).

DB table 1) Name of DB table. See Query or DB Table is Defined (p. 467)
for more information.

Field mapping 2) Sequence of individual mappings
($CloverField:=DBField) separated by semicolon,
colon, or pipe. See Mapping of Clover Fields to DB
Fields (p. 468) for more information.

Clover fields 2) Sequence of Clover fields separated by semicolon, colon, or
pipe. See Mapping of Clover Fields to DB Fields (p. 468) for
more information.

DB fields 2) Sequence of DB fields separated by semicolon, colon, or pipe.
See Mapping of Clover Fields to DB Fields (p. 468) for more
information.

Query source charset Encoding of external file defining SQL query. ISO-8859-1
(default) |
<other
encodings>

Batch mode By default, batch mode is not used. If set to true, batch mode is
turned on. Supported by some databases only. See Batch Mode
and Batch Size (p. 469) for more information.

false (default) |
true

Advanced

Batch size Number of records that can be sent to database in one batch
update. See Batch Mode and Batch Size (p. 469) for more
information.

25 (default) | 1-
N

Commit Defines after how many records (without an error) commit is
performed. If set to MAX_INT, commit is never performed by
the component, i.e., not untill the connection is closed during
graph freeing. This attribute is ignored if Atomic SQL query
is defined.

100 (default) |
1-MAX_INT

Max error count Maximum number of allowed records. When this number is
exceeded, graph fails. By default, no error is allowed. If set
to -1, all errors are allowed. See Errors (p. 469) for more
information.

0 (default) | 1-N
| -1

Chapter 54. Writers

467

Attribute Req Description Possible
values

Action on error By default, when the number of errors exceeds Max error
count, correct records are commited into database. If set to
ROLLBACK, no commit of the current batch is performed. See
Errors (p. 469) for more information.

COMMIT
(default) |
ROLLBACK

Atomic SQL query Sets atomicity of executing SQL queries. If set to true, all
SQL queries for one record are executed as atomic operation,
but the value of the Commit attribute is ignored and commit is
performed after each record. See Atomic SQL Query (p. 470)
for more information.

false (default) |
true

1) One of these attributes must be specified. If more are defined, Query URL has the highest priority and DB table the lowest one. See Query
or DB Table is Defined (p. 467) for more information.
2)See Mapping of Clover Fields to DB Fields (p. 468) for more information about their relation.

Advanced Description

Query or DB Table is Defined

• A Query is Defined (SQL Query or Query URL)

• The Query Contains Clover Fields

Clover fields are inserted to the specified positions of DB table.

This is the most simple and explicit way of defining the mapping of Clover and DB fields. No other attributes
can be defined.

See also SQL Query Editor (p. 470).

• The Query Contains Question Marks

Question marks serve as placeholders for Clover field values in one of the ways shown below. See Mapping
of Clover Fields to DB Fields (p. 468) for more information.

See also SQL Query Editor (p. 470).

Example 54.2. Examples of Queries

Statement Form

Derby, Infobright, Informix, MSSQL2008, MSSQL2000-2005, MySQL1)

insert (with clover
fields)

insert into mytable [(dbf1,dbf2,...,dbfn)] values ($in0field1, constant1,
id_seq.nextvalue, $in0field2, ..., constantk, $in0fieldm) [returning $out1field1 :=
$in0field3[, $out1field2 := auto_generated][, $out1field3 := $in0field7]]

insert (with question
marks)

insert into mytable [(dbf1,dbf2,...,dbfn)] values (?, ?, id_seq.nextval, ?,
constant1, ?, ?, ?, ?, ?, constant2, ?, ?, ?, ?, ?) [returning $out1field1 := $in0field3[,
$out1field2 := auto_generated][, $out1field3 := $in0field7]]

DB2, Oracle2)

insert (with clover
fields)

insert into mytable [(dbf1,dbf2,...,dbfn)] values ($in0field1, constant1,
id_seq.nextvalue, $in0field2, ..., constantk, $in0fieldm) [returning $out1field1 := dbf3[,
$out1field3 := dbf7]]

insert (with question
marks)

insert into mytable [(dbf1,dbf2,...,dbfn)] values (?, ?, id_seq.nextval, ?,
constant1, ?, ?, ?, ?, ?, constant2, ?, ?, ?, ?, ?) [returning $out1field1 := dbf3[,
$out1field3 := dbf7]]

Chapter 54. Writers

468

Statement Form

PostgreSQL, SQLite, Sybase3)

insert (with clover
fields)

insert into mytable [(dbf1,dbf2,...,dbfn)] values ($in0field1, constant1,
id_seq.nextvalue, $in0field2, ..., constantk, $in0fieldm)

insert (with question
marks)

insert into mytable [(dbf1,dbf2,...,dbfn)] values (?, ?, id_seq.nextval, ?,
constant1, ?, ?, ?, ?, ?, constant2, ?, ?, ?, ?, ?)

All databases4)

update update mytable set dbf1 = $in0field1, ..., dbfn = $in0fieldn [returning $out1field1 :=
$in0field3[, $out1field2 := update_count][, $out1field3 := $in0field7]]

delete delete from mytable where dbf1 = $in0field1 and ... and dbfj = ? and dbfn = $in0fieldn

Legend:

1)These databasases generate a virtual field called auto_generated and map it to one of the output metadata
fields as specified in the insert statement.

2)These databases return multiple database fields and map them to the output metadata fields as specified in
the insert statement.

3)These databases do not return anything in the insert statement.

4) In the update statement, along with the value of the update_count virtual field, any number of input
metadata fields may be mapped to output metadata fields in all databases.

Important

Remember that the default (Generic) JDBC specific does not support auto-generated keys.

• A DB Table is Defined

The mapping of Clover fields to DB fields is defined as shown below. See Mapping of Clover Fields to DB
Fields (p. 468) for more information.

Dollar Sign in DB Table Name

• Remember that if any database table contains a dollar sign in its name, it will be transformed to double dollar
signs in the generated query. Thus, each query must contain even number of dollar signs in db table (consisting
of adjacent pairs of dollars). Single dollar sign contained in the name of db table is replaced by double dollar
sign in the query in the name of db table.

Table whose name is my$table$ is converted in the query to my$$table$$.

Mapping of Clover Fields to DB Fields

• Field Mapping is Defined

If a Field mapping is defined, the value of each Clover field specified in this attribute is inserted to such DB
field to whose name this Clover field is assigned in the Field mapping attribute.

Pattern of Field mapping:

$CloverFieldA:=DBFieldA;...;$CloverFieldM:=DBFieldM

• Both Clover Fields and DB Fields are Defined

If both Clover fields and DB fields are defined (but Field mapping is not), the value of each Clover field
specified in the Clover fields attribute is inserted to such DB field which lies on the same position in the DB
fields attribute.

Chapter 54. Writers

469

Number of Clover fields and DB fields in both of these attributes must equal to each other. The number of either
part must equal to the number of DB fields that are not defined in any other way (by specifying clover fields
prefixed by dollar sign, db functions, or constants in the query).

Pattern of Clover fields:

CloverFieldA;...;CloverFieldM

Pattern of DB fields:

DBFieldA;...;DBFieldM

• Only Clover Fields are Defined

If only the Clover fields attribute is defined (but Field mapping and/or DB fields are not), the value of each
Clover field specified in the Clover fields attribute is inserted to such DB field whose position in DB table
is equal.

Number of Clover fields specified in the Clover fields attribute must equal to the number of DB fields in DB
table that are not defined in any other way (by specifying clover fields prefixed by dollar sign, db functions,
or constants in the query).

Pattern of Clover fields:

CloverFieldA;...;CloverFieldM

• Mapping is Performed Automatically

If neither Field mapping, Clover fields, nor DB fields are defined, the whole mapping is performed
automatically. The value of each Clover field of Metadata is inserted into the same position in DB table.

Number of all Clover fields must equal to the number of DB fields in DB table that are not defined in any other
way (by specifying clover fields prefixed by dollar sign, db functions, or constants in the query).

Batch Mode and Batch Size

1. Batch Mode

Batch mode speeds up loading of data into database.

2. Batch Size

Remember that some databases return as rejected more records than would correspond to their real number.
These databases return even those records which have been loaded into database successfully and send them
out through the output port 0 (if connected).

Errors

1. Max error count

Specifies number of errors that are still allowed, but after which graph execution stops. After that, defined
Action on Error is performed.

2. Action on Error

COMMIT

By default, when maximum number of errors is exceeded, commit is performed for correct records only in
some databases. In others, rollback is performed instead. Then, graph stops.

ROLLBACK

Chapter 54. Writers

470

On the other hand, if maximum number of errors is exceeded, rollback is performed in all databases, however,
only for the last, non-commited records. Then, graph stops. All that has been comitted, cannot be rolled back
anymore.

Atomic SQL Query

• Atomic SQL query specifies the way how queries consisting of multiple subqueries conserning a single records
will be processed.

By default, each individual subquery is considered separately and in some of these fails, the previous are
commited or rolled back according to database.

If the Atomic SQL query attribute is set to true, either all subqueries or none of them are commited or rolled
back. This assures that all databases behave all in identical way.

Important

Remember also, when connecting to MS SQL Server, it is convenient to use jTDS http://
jtds.sourceforge.net driver. It is an open source 100% pure Java JDBC driver for Microsoft SQL
Server and Sybase. It is faster than Microsoft's driver.

SQL Query Editor

For defining the SQL query attribute, SQL query editor can be used.

The editor opens after clicking the SQL query attribute row:

On the left side, there is the Database schema pane containing information about schemas, tables, columns, and
data types of these columns.

Displayed schemas, tables, and columns can be filtered using the values in the ALL combo, the Filter in view
textarea, the Filter, and Reset buttons, etc.

You can select any columns by expanding schemas, tables and clicking Ctrl+Click on desired columns.

Adjacent columns can also be selected by clicking Shift+Click on the first and the list item.

Select one of the following statements from the combo: insert, update, delete.

Then you need to click Generate after which a query will appear in the Query pane.

http://jtds.sourceforge.net
http://jtds.sourceforge.net

Chapter 54. Writers

471

Figure 54.1. Generated Query with Question Marks

The query may contain question marks if any db columns differ from input metadata fields. Input metadata are
visible in the Input metadata pane on the right side.

Drag and drop the fields from the Input metadata pane to the corresponding places in the Query pane and
manually remove the "$?" characters. See following figure:

Figure 54.2. Generated Query with Input Fields

Chapter 54. Writers

472

If there is an edge connected to the second output port, autogenerated columns and returned fields can be returned.

Figure 54.3. Generated Query with Returned Fields

Two buttons allow you to validate the query (Validate) or view data in the table (View).

Chapter 54. Writers

473

EmailSender

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

EmailSender sends e-mails.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

EmailSender flat file 1 0-1 no no no no

Abstract

EmailSender converts data records into e-mails. It can use input data to create the e-mail sender and addressee,
e-mail subject, message body, and attachment(s).

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For data for e-mails Any

0 no For successfully sent e-mails. Input 0Output

1 no For rejected e-mails. Input 0 plus field named
errorMessage1)

Legend:

1): If a record is rejected and e-mail is not sent, an error message is created and sent to the errorMessage field
of metadata on the output 1 (if it contains such a field).

Chapter 54. Writers

474

EmailSender Attributes

Attribute Req Description Possible
values

Basic

SMTP server yes Name of SMTP server for outgoing e-mails.

SMTP user Name of the user for an authenticated SMTP server.

SMTP password Password of the user for an authenticated SMTP server.

Use TLS By default, TLS is not used. If set to true, TLS is turned on. false (default) |
true

Use SSL By default, SSL is not used. If set to true, SSL is turned on. false (default) |
true

Message yes Set of properties defining the message headers and body. See E-
Mail Message (p. 474) for more information.

Attachments Set of properties defining the message attachments. See E-Mail
Attachments (p. 475) for more information.

Advanced

SMTP port Number of the port used for connection to SMTP server. 25 (default) |
other port

Trust invalid SMTP
server certificate

By default, invalid SMTP server certificates are not accepted.
If set to true, invalid SMTP server certificate (with different
name, expired, etc) is accepted.

false (default) |
true

Ignore send fail By default, when an e-mail is not sussessfully sent, graph fails.
If set to true, graph execution stops even if no mail can be sent
successfully.

false (default) |
true

Advanced Description

• E-Mail Message

To define the Message attribute, you can use the following wizard:

Figure 54.4. EmailSender Message Wizard

In this wizard, you must copy the fields from the Fields pane on the left to the Value column of the Properties
pane on the right. Use the Right arrow button or drag and drop the selected field to the Value column. In

Chapter 54. Writers

475

addition, you can also specify alternative values of these attributes (Alternative column). In case some field is
empty or has null value, such Alternative is used instead of the field value.

The resulting value of the Message attribute will look like this:

From=$From|my@mail.com;Subject=$Subject|mySubject;To=$To|toWhom;MessageBody=$Message|myText

Tip

To send email to multiple recipients, separate their addresses by comma ','. If needed, use the same
delimiter in the Cc and Bcc fields.

• E-Mail Attachments

One of the possible attributes is Attachments. It can be specified as a sequence of individual attachments
separated by semicolon. Each individual attachment is either file name including its path, or this file
name (including path) can also be specified using the value of some input field. Individual attachment can
also be specified as a triplet of field name, file name of the attachment and its mime type. These can
be specified both explicitly ([$fieldName, FileName, MimeType]) or using the field values:
[$fieldNameWithFileContents, $fieldWithFileName, $fieldWithMimeType]. Each of
these three parts of the mentioned triplet can be specified also using a static expression. The attachments must
be added to the e-mail using the following Edit attachments wizard:

Figure 54.5. Edit Attachments Wizard

You adds the items by clicking the Plus sign button, remove by clicking the Minus sign button, input fields can
be dragged to the Attachment column of the Attachments pane or the Arrow button can be used. If you want
to edit any attachment definition, click the corresponding row in the Attachment column and the following
attribute will open:

Chapter 54. Writers

476

Figure 54.6. Attachment Wizard

In this wizard, you need to locate files, specify them using field names or the mentioned triplet. After clicking
OK, the attachment is defined.

Chapter 54. Writers

477

HadoopWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Chapter 54, Writers (p. 452).

Short Summary

HadoopWriter writes data into Hadoop sequence files.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

HadoopWriter Hadoop sequence file 1 0

Abstract

HadoopWriter writes data into special Hadoop sequence file (org.apache.hadoop.io.SequenceFile).
These files contain key-value pairs and are used in MapReduce jobs as input/output file formats. The component
can write single file as well as partitioned file which have to be located on HDFS or local file system.

Icon

Ports

Port type Number Required Description Metadata

Input 0 For input data records Any

Chapter 54. Writers

478

HadoopWriter Attributes

Attribute Req Description Possible
values

Basic

Hadoop connection Hadoop connection (p. 191) with Hadoop libraries containing
Hadoop sequence file writer implementation. If Hadoop
connection ID is specified in a hdfs:// URL in the File URL
attribute, value of this attribute is ignored.

Hadoop
connection ID

File URL URL to a output file on HDFS or local file system.

URLs without protocol (i.e. absolute or relative path actually)
or with the file:// protocol are considered to be located on
the local file system.

If the output file should be located on the HDFS, use
URL in form of hdfs://ConnID/path/to/file, where
ConnID is ID of a Hadoop connection (p. 191) (Hadoop
connection component attribute will be ignored), and /path/
to/myfile is absolute path on corresponding HDFS to file
with name myfile.

Key field Name of an input record field carrying key for each written key-
value pair.

Value field Name of an input record field carrying value for each written
key-value pair.

Advanced Description

Exact version of file format created by the HadoopWriter component depends on Hadoop libraries which you
supply in Hadoop connection referenced from the File URL attribute. In general, sequence files created by one
version of Hadoop may not be readable by different version.

Currently, writing compressed data is not supported.

If writing to local file system, additional .crc files are created if Hadoop connection with
default settings is used. That is because, by default, Hadoop interacts with local file system
using org.apache.hadoop.fs.LocalFileSystem which creates checksum files for each written
file. When reading such files, checksum is verified. You can disable checksum creation/verification
by adding this key-value pair in the Hadoop Parameters of the Hadoop connection (p. 191):
fs.file.impl=org.apache.hadoop.fs.RawLocalFileSystem

For technical details about Hadoop sequence files, have a look at Apache Hadoop Wiki.

http://wiki.apache.org/hadoop/SequenceFile

Chapter 54. Writers

479

InfobrightDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

InfobrightDataWriter loads data into Infobright database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

InfobrightDataWriter database 1 0-1 no no no no

Abstract

InfobrightDataWriter loads data into Infobright database. Only root user can insert data into database with this
component. To run this component on Windows, infobright_jni.dll must be present in the Java library
path. (Can be downloaded at www.infobright.org/downloads/contributions/infobright-core-2_7.zip.)

If the hostname is localhost or 127.0.0.1, the load will be done using a local pipe. Otherwise, it will use
a remote pipe. The external IP address of the server is not recognized as a local server.

For loading to a remote server you need to start the Infobright remote load agent on the server where Infobright is
running. This should be done by executing the java -jar infobright-core-3.0-remote.jar [-p
PortNumber] [-l all | debug | error | info] command. The output can be redirected to a log
file. By default, server is listening at port 5555. The infobright-core-3.0-remote.jar is distributed
with CloverETL or can be downloaded at the Infobright site: www.infobright.org.

By default, root is only allowed to connect from localhost. You need to add an additional user root@%
to connect from other hosts. It is recommended to create a different user (not root) for loading data. The user
requires the FILE privilege in order to be able to load data or use the connector:

grant FILE on *.* to 'user'@'%';

Icon

http://www.infobright.org/downloads/contributions/infobright-core-2_7.zip
http://www.infobright.org

Chapter 54. Writers

480

Ports

Port type Number Required Description Metadata

Input 0 yes Records to be loaded into the
database

Any

Output 0 no For records as they were loaded
into database

Corresponding part of metadata on
Input 01)

Legend:

1): Only mapped Clover field values can be sent out through the optional output port. Comma must be set as
delimiter for each field, System.getProperty("line.separator") ("\n" for Unix, "\r\n" for Windows)
must be set as record delimiter. Date fields must strictly have the yyyy-MM-dd format for dates and the yyyy-
MM-dd HH:mm:ss format for dates with time.

InfobrightDataWriter Attributes

Attribute Req Description Possible
values

Basic

DB connection yes ID of the DB connection object to access the database.

Database table yes Name of DB table where data will be loaded.

Charset Charset used for encoding string values to VAR, VARCHAR
column types.

ISO-8859-1
(default) | other
encoding

Data format bh_dataformat supported by Infobright. Options are:
txt_variable or binary (this is faster, but works with IEE
only).

Text (default) |
Binary

Advanced

Clover fields Sequence of Clover fields separated by semicolon. Only Clover
fields listed in this attribute will be loaded into database
columns. Position of both Clover field and database column
will be the same. Their number should equal to the number of
database columns.

Log file File for records loaded into database, including path. If this
attribute is specified, no data goes to the output port even if it
is connected.

Append data to log file By default, new record overwrite the older ones. If set to true,
new records are appended to the older ones.

false (default) |
true

Execution timeout Timeout for load command (in seconds). Has effect only on
Windows platform.

15 (default) | 1-
N

Check string's and
binary's sizes

By default, sizes are not checked before data is passed to
database. If set to true, sizes are check - should be set to true
if debugging is supported.

false (default) |
true

Remote agent port Port to be used when connecting to the server. 5555 (default) |
otherportnumber

Chapter 54. Writers

481

InformixDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

InformixDataWriter loads data into an Informix database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

InformixDataWriter database 0-1 0-1 no no no no

Abstract

InformixDataWriter loads data into a database using Informix database client (dbload utility) or the load2
free library.

It is very important to have the server with the database on the same computer as both the dbload database utility
and CloverETL and you must be logged in as the root user. The Informix server must be installed and configured
on the same machine where Clover runs and the user must be logged in as root. The Dbload command line tool
must also be available.

InformixDataWriter reads data from the input port or a file. If the input port is not connected to any other
component, data must be contained in another file that should be specified in the component.

If you connect a component to the optional output port, rejected records along with information about errors are
sent to it.

Another tool is the load2 free library instead of the dbload utility. The load2 free library can even be used
if the server is located on a remote computer.

Icon

Chapter 54. Writers

482

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the
database

Any

Output 0 no For information about incorrect
records

Input 0 (plus two Error Fields for
InformixDataWriter (p. 482)2))

Legend:

1): If no file containing data for loading (Loader input file) is specified, input port must be connected.

2): Metadata on the output port 0 contains two additional fields at their end: number of row, error message.

Table 54.2. Error Fields for InformixDataWriter

Field number Field name Data type Description

LastInputField + 1 <anyname1> integer Number of row

LastInputField + 2 <anyname2> string Error message

InformixDataWriter Attributes

Attribute Req Description Possible
values

Basic

Path to dbload utility yes Name of dbload utility, including path. Informix server must be
installed and configured on the same machine where Clover runs
and the user must be logged in as root. The dbload command
line tool must be available.

Host Host where database server is located.

Database yes Name of the database into which the records should be loaded.

Database table yes Name of the database table into which the records should be
loaded.

Advanced

Control script Control script to be used by the dbload utility. If it is not set,
the default control script is used instead. Is used only if the Use
load utility attribute is set to false.

Error log URL Name of the error log file, including path. If not set, default error
log file is used instead.

./error.log

Max error count Maximum number of allowed records. When this number is
exceeded, graph fails.

10 (default) | 0-
N

Ignore rows Number of rows to be skipped. Is used only if the Use load
utility attribute is set to true.

0 (default) | 1-N

Commit interval Commit interval in number of rows. 100 (default) |
1-N

Column delimiter One char delimiter used for each column in data. Field values
must not include this delimiter as their part. Is used only if the
Use load utility attribute is set to false.

"|" (default) |
other character

Chapter 54. Writers

483

Attribute Req Description Possible
values

Loader input file Name of input file to be loaded, including path. Normally this
file is a temporary storage for data to be passed to dbload utility
unless named pipe is used instead.

Use load utility By default, dbload utility is used to load data to database. If set to
true, load2 utility is used instead of dbload. The load2 utility
must be available.

false (default) |
true

User name Username to be used when connecting to the database. Is used
only if the Use load utility attribute is set to true.

Password Password to be used when connecting to the database. Is used
only if the Use load utility attribute is set to true.

Ignore unique key
violation

By default, unique key violation is not ignored. If key values
are not unique, graph fails. If set to true, unique key violation
is ignored. Is used only if the Use load utility attribute is set
to true.

false (default) |
true

Use insert cursor By default, insert cursor is used. Using insert cursor doubles
the transfer performance. Is used only if the Use load utility
attribute is set to true. It can be turned off by setting to false.

true (default) |
false

Advanced Description

Loader input file

Name of input file to be loaded, including path. Normally this file is a temporary storage for data to be passed to
dbload utility unless named pipe is used instead.

• If it is not set, a loader file is created in Clover or OS temporary directory. The file is deleted after the load
finishes.

• If it is set, specified file is created. It is not deleted after data is loaded and it is overwritten on each graph run.

• If input port is not connected, this file must exist, must be specified and must contain data that should be loaded
into database. It is not deleted or overwritten.

Chapter 54. Writers

484

JavaBeanWriter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the appropriate Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

JavaBeanWriter writes a hierarchical structure as JavaBeans into a dictionary. A number of classes is supported
for writing. That allows dynamic data interchange between Clover graphs and external environment, such as
cloud. Which JavaBean you choose defines the output to a certain extent - that is why you map inputs to a pre-
set but customizable tree structure. Also, you can write data to Java collections (Lists, Maps). When writing,
JavaBeanWriter consults your bean's classpath to decide which data types to write. That means it performs type
conversions between your metadata field types and JavaBeans types. If a conversion fails, you will experience
errors on writing.

If you are looking for a more flexible component which is less restrictive in terms of data types and requires no
external classpath, choose JavaMapWriter.

Component

D
at

a
ou

tp
ut

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

JavaBeanWriter dictionary 1-n 0 yes no no no no no

Abstract

JavaBeanWriter receives data through all connected input ports and converts Clover records to JavaBean
properties based on the mapping you define. At last, the resulting tree structure is written to a dictionary (p. 227)
(which is the only possible output). Remember the component cannot write to a file.

The logic of mapping is similar to XMLWriter (p. 550) - if you are familiar with its mapping editor, you will
have no problems designing the output tree in this component. The differences are:

• you cannot map input to output freely - the design of the tree structure you can see in the mapping editor is
determined by the JavaBean you are using

• JavaBeanWriter allows you to map to Beans, their properties or collections - Lists, Maps

• there are no attributes, wildcard attributes and wildcard elements as in XML

Icon

http://en.wikipedia.org/wiki/Java_Bean

Chapter 54. Writers

485

Ports

Port type Number Required Description Metadata

Input 0-N At least
one

Input records to be joined and
mapped to JavaBeans.

Any (each port can have different
metadata)

JavaBeanWriter Attributes

Attribute Req Description Possible
values

Basic

Dictionary target yes The dictionary you want to write JavaBeans to. Name of a
dictionary you
have
previously
defined.

Bean structure Click the '...' button to design the structure of your output
JavaBean consisting of custom classes, objects, collections or
maps.

See Defining
Bean
Structure (p. 485).

Mapping 1) Defines how input data is mapped to output JavaBeans. See Mapping
Editor (p. 486).

Mapping URL 1) External text file containing the mapping definition.

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has a higher priority.

Advanced Description

Defining Bean Structure

Before you can start mapping, you need to define contents of the output JavaBean. Start by editing the Bean
structure attribute which opens this dialog:

Figure 54.7. Defining bean structure - click the Select combo box to start.

• Java object - clicking it opens a dialog in which you can choose from Java classes. Important: if you intend
to use a custom JavaBeans class, place it into the trans folder. The class will then be available in this dialog.

Chapter 54. Writers

486

• Collection - adds a list consisting of other objects, maps or other collections.

• Map - adds a key-value map.

Mapping Editor

Having defined the bean structure, proceed to mapping input records to output JavaBeans. You perform that in
a manner which is very close to what you already know from XMLWriter (p. 550). Mapping editors in both
components have similar logic.

The very basics of mapping are:

• Edit the component's Mapping attribute. This will open the visual mapping editor:

Figure 54.8. Mapping editor in JavaBeanWriter after first open. Metadata on the input edge(s) are
displayed on the left hand side. The right hand pane is where you design the desired output tree -
it is pre-defined by your bean's structure (note: in the example, the bean contains employees and
projects they are working on). Mapping is then performed by dragging metadata from left to right (and
performing additional tasks described below).

• In the right hand pane, you can map input metadata to:

• Beans

• Bean properties

• Lists

• Maps

Click the green '+' sign to Add entry. This adds a new item into the tree - its type depends on context (the node
you have selected). Remember the button is not available every time as the output structure is determined by
bean structure (p. 485).

Chapter 54. Writers

487

• Connect input records to output nodes to create Binding (p. 558).

Example 54.3. Creating Binding

Figure 54.9. Example mapping in JavaBeanWriter - employees are joined with projects they work on.
Fields in bold (their content) will be printed to the output dictionary, i.e. they are used in the mapping.

• At any time, you can switch to the Source tab (p. 562) and write/check the mapping yourself in code.

• If the basic instructions found here were not satisfying, please consult XMLWriter's Advanced
Description (p. 550) where the whole mapping process is described profusely.

Chapter 54. Writers

488

JavaMapWriter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the appropriate Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

JavaMapWriter writes JavaBeans (represented as HashMaps) into a dictionary. That allows dynamic data
interchange between Clover graphs and external environment, such as cloud. The component is a specific
implementation of JavaBeanWriter which allows easier mapping. Maps are less restrictive than Beans: there are
no data types and type conversion is missing. This gives JavaMapWriter a greater flexibility - it always writes
data types into Maps just as they were defined in metadata. However, its lower overheads come at the cost of
accidental reading a different data type than desired (e.g. if you write string into a Map and then read it back
as integer with JavaBeanReader, the graph fails).

Component

D
at

a
ou

tp
ut

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L
JavaMapWriter dictionary 1-n 0 yes no no no no no

Abstract

JavaMapWriter component receives data through all connected input ports and converts data records to Java
HashMaps based on the mapping you define. At last, the component writes the resulting tree structure of elements
to Maps.

The logic of mapping is similar to XMLWriter (p. 550) - if you are familiar with its mapping editor, you will
have no problems designing the output tree in this component. The differences are:

• JavaMapWriter allows you to map arrays

• there are no attributes as in XML

Remember the component cannot write to a file - the only possible output is dictionary (p. 227).

Icon

http://en.wikipedia.org/wiki/Java_Bean

Chapter 54. Writers

489

Ports

Port type Number Required Description Metadata

Input 0-N At least
one

Input records to be joined and
mapped to Java Maps.

Any (each port can have different
metadata)

JavaMapWriter Attributes

Attribute Req Description Possible
values

Basic

Dictionary target yes The dictionary you want to write Java Maps to.

Mapping 1) Defines how input data is mapped onto output Java Maps. See
Advanced Description (p. 490).

Mapping URL 1) External text file containing the mapping definition.

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has a higher priority.

Chapter 54. Writers

490

Advanced Description

You map the input records to the output dictionary in a manner which is very close to what you already know from
XMLWriter (p. 550). Mapping editors in both components have similar logic. The very basics of mapping are:

• Connect input edges to JavaMapWriter and edit the component's Mapping attribute. This will open the visual
mapping editor:

Figure 54.10. Mapping editor in JavaMapWriter after first open. Metadata on the input edge(s) are
displayed on the left hand side. The right hand pane is where you design the desired output tree.
Mapping is then performed by dragging metadata from left to right (and performing additional tasks
described below).

• In the right hand pane, design your output tree structure consisting of

• Elements (p. 554)

Important

Unlike XMLWriter, you do not map metadata to any 'attributes'.

• Arrays - arrays are ordered sets of values. To learn how to map them in, see Example 54.5, “Writing
arrays” (p. 491).

• Wildcard elements (p. 556) - another option to mapping elements explicitly. You use the Include and
Exclude patterns to generate element names from respective metadata.

• Connect input records to output (wildcard) elements to create Binding (p. 558).

Example 54.4. Creating Binding

Chapter 54. Writers

491

Figure 54.11. Example mapping in JavaMapWriter - employees are joined with projects they work
on. Fields in bold (their content) will be printed to the output dictionary.

Note

If you extended your graph and had the output dictionary written to the console, you would get
a structure like this. This excerpt is just to demonstrate how Java Maps, mapped in the figure
above (p. 491), are stored internally:

 [{employees=[{projects=[{manager=John Major, start=01062005,
 name=Data warehouse, customers=[Hanuman, Weblea, SomeBank], end=31052006}],
 lastName=Fish, firstName=Mark}, {projects=[{manager=John Smith, start=06062006,
 name=JSP, customers=[Sunny, Weblea], end=in progress}, {manager=Raymond Brown,
 start=11052004, name=OLAP, customers=[Sunny], end=31012006}], lastName=Simson,
 firstName=Jane}, {projects=[{manager=John Major, start=01062005,
 name=Data warehouse, customers=[Hanuman, Weblea, SomeBank], end=31052006},
 {manager=Raymond Brown, start=11052004, name=OLAP, customers=[Sunny], end=31012006},
 {manager=Brandon Morrison, start=01032006, name=Javascripting,
 customers=[Nestele, Traincorp, AnotherBank, Intershop], end=in progress}],
 lastName=Morrison, firstName=Brandon}]}]

Example 54.5. Writing arrays

Let us have the following mapping of the input file which contains information about actors. For explanatory
reasons, we will part actors' personal data from their countries of origin. The summary of all countries will then
be written into an array:

Chapter 54. Writers

492

Figure 54.12. Mapping arrays in JavaMapWriter - notice the array contains a dummy element 'State'
which you bind the input field to.

The array will be written to Maps as e.g.:

 [...
 Summary={Countries=[USA, ESP, ENG]}}]

• At any time, you can switch to the Source tab (p. 562) and write/check the mapping yourself in code.

• If the basic instructions found here were not satisfying, please consult XMLWriter's Advanced
Description (p. 550) where the whole mapping process is described profusely.

Chapter 54. Writers

493

JMSWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

JMSWriter converts Clover data records into JMS messages.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

JMSWriter jms messages 1 0 yes no yes no

Abstract

JMSWriter receives Clover data records, converts them into JMS messages and sends these messages out.
Component uses a processor transformation which implements a DataRecord2JmsMsg interface or inherits
from a DataRecord2JmsMsgBase superclass. Methods of DataRecord2JmsMsg interface are described
below.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For data records Any1)

Legend:

1): Metadata on input port may contain a field specified in the Message body field attribute.

Chapter 54. Writers

494

JMSWriter Attributes

Attribute Req Description Possible values

Basic

JMS connection yes ID of the JMS connection to be used.

Processor code Transformation of records to JMS messages
written in the graph in Java.

Processor URL Name of external file, including path,
containing the transformation of records to
JMS messages written in Java.

Processor class Name of external class defining
the transformation of records to
JMS messages. The default processor
value (org.jetel.component.jms.
DataRecord2JmsMsgProperties) is
sufficient for most cases. It produces
javax.jms.TextMessage.

DataRecord2JmsMsgProperties
(default) | other class

Processor source
charset

Encoding of external file containing the
transformation in Java.

ISO-8859-1 (default) | other
encoding

Message charset Encoding of JMS messages contents.
This attribute is also used by
the default processor implementation
(JmsMsg2DataRecordProperties).
And it is used for
javax.jms.BytesMessage only.

ISO-8859-1 (default) | other
encoding

Advanced

Message body field Name of the field of metadata from
which the body of the message should be
get and sent out. This attribute is used
by the default processor implementation
(JmsMsg2DataRecordProperties). If
no Message body field is specified, the field
whose name is bodyField will be used as a
resource for the body of the message contents.
If no field for the body of the message is
contained in metadata (either the specified
explicitly or the default one), the processor
tries to set a field named bodyField, but it's
silently ignored if such field doesn't exist
in output record metadata. The other fields
from metadata serve as resources of message
properties with the same names as field names.

bodyField (default) | other name

Legend:

1) One of these may be set. Any of these transformation attributes implements a DataRecord2JmsMsg
interface.

See Java Interfaces for JMSWriter (p. 495) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Chapter 54. Writers

495

Java Interfaces for JMSWriter

The transformation implements methods of the DataRecord2JmsMsg interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of DataRecord2JmsMsg interface:

• void init(DataRecordMetadata metadata, Session session, Properties props)

Initializes the processor.

• void preExecute(Session session)

This is also initialization method, which is invoked before each separate graph run. Contrary the init() procedure
here should be allocated only resources for this graph run. All here allocated resources should be released in
the postExecute() method.

session may be used for creation of JMS messages. Each graph execution has its own session opened. Thus
the session set in the init() method is usable only during the first execution of graph instance.

• Message createMsg(DataRecord record)

Transforms data record to JMS message. Is called for all data records.

• Message createLastMsg()

This method is called after last record and is supposed to return message terminating JMS output. If it returns
null, no terminating message is sent. Since 2.8.

• String getErrorMsg()

Returns error message.

• Message createLastMsg(DataRecord record) (deprecated)

This method is not called explicitly since 2.8. Use createLastMsg() instead.

Chapter 54. Writers

496

JSONWriter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the appropriate Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

JSONWriter writes data in the JSON format.

Component

D
at

a
ou

tp
ut

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

E
ac

h
to

al
l o

ut
pu

ts

D
if

fe
re

nt
 t

o
di

ff
er

en
t

ou
tp

ut
s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

JSONWriter JSON file 1-n 0-1 yes no no no no no

Abstract

JSONWriter receives data from all connected input ports and converts records to JSON objects based on the
mapping you define. Finally, the component writes the resulting tree structure of elements to the output: a JSON
file, port or dictionary.

Icon

Ports

Port type Number Required Description Metadata

Input 0-N At least
one

Input records to be joined and
mapped into the JSON structure.

Any (each port can have different
metadata)

Output 0 no Optional. For port writing. Only one field (byte or cbyte or
string) is used. The field name is
used in File URL to govern how the
output records are processed - see
Writing to Output Port (p. 311)

JSONWriter Attributes

http://www.json.org/

Chapter 54. Writers

497

Attribute Req Description Possible
values

Basic

File URL yes The target file for the output JSON. See Supported File URL
Formats for Writers (p. 309).

Charset The encoding of an output file generated by JSONWriter. ISO-8859-1
(default) |
<other
encodings>

Mapping 1) Defines how input data is mapped onto an output JSON. See the
section called “Advanced Description” (p. 498).

Mapping URL 1) External text file containing the mapping definition.

Legend:

1) One of these has to be specified. If both are specified, Mapping URL has a higher priority.

Chapter 54. Writers

498

Advanced Description

Every JSON object can contain other nested JSON objects. Thus, the JSON format resembles XML and similar
tree formats.

As a consequence, you map the input records to the output file in a manner which is very close to what you already
know from XMLWriter (p. 550). Mapping editors in both components have similar logic. The very basics of
mapping are:

• Connect input edges to JSONWriter and edit the component's Mapping attribute. This will open the visual
mapping editor:

Figure 54.13. Mapping editor in JSONWriter after first open. Metadata on the input edge(s) are
displayed on the left hand side. The right hand pane is where you design the desired JSON tree.
Mapping is then performed by dragging metadata from left to right (and performing additional tasks
described below).

• In the right hand pane, design your JSON tree consisting of

• Elements (p. 554)

Important

Unlike XMLWriter, you do not map metadata to any 'attributes'.

• Arrays - arrays are ordered sets of values in JSON enclosed between the [and] brackets. To learn how to
map them in JSONWriter, see Example 54.7, “Writing arrays” (p. 500).

• Wildcard elements (p. 556) - another option to mapping elements explicitly. You use the Include and
Exclude patterns to generate element names from respective metadata.

• Connect input records to output (wildcard) elements to create Binding (p. 558).

Example 54.6. Creating Binding

Chapter 54. Writers

499

Figure 54.14. Example mapping in JSONWriter - employees are joined with projects they work on.
Fields in bold (their content) will be printed to the output file - see below.

Excerpt from the output file related to the figure above (p. 499) (example of one employee written as JSON):

 "employee" : {
 "firstName" : "Jane",
 "lastName" : "Simson",
 "projects" : {
 "project" : {
 "name" : "JSP",
 "manager" : "John Smith",
 "start" : "06062006",
 "end" : "in progress",
 "customers" : {
 "customer" : {
 "name" : "Sunny"
 },
 "customer" : {
 "name" : "Weblea"
 }
 }
 },
 "project" : {
 "name" : "OLAP",
 "manager" : "Raymond Brown",
 "start" : "11052004",
 "end" : "31012006",
 "customers" : {
 "customer" : {
 "name" : "Sunny"
 }
 }
 }
 }
 },

Chapter 54. Writers

500

Example 54.7. Writing arrays

Let us have the following mapping of the input file which contains information about actors. For explanatory
reasons, we will part actors' personal data from their countries of origin. The summary of all countries will then
be written into an array

Figure 54.15. Mapping arrays in JSONWriter - notice the array contains a dummy element 'State'
which you bind the input field to.

The output JSON:

 {
 "Actor" : {
 "Name" : "John Malkovich",
 "Sex" : true,
 "Age" : 50
 },
 "Actor" : {
 "Name" : "Liz Hurley",
 "Sex" : false,
 "Age" : 42
 },
 "Actor" : {
 "Name" : "Antonio Banderas",
 "Sex" : true,
 "Age" : 33
 },
 "Summary" : {
 "Countries" : ["USA", "ENG", "ESP"]
 }
 }

• At any time, you can switch to the Source tab (p. 562) and write/check the mapping yourself in code.

• If the basic instructions found here were not satisfying, please consult XMLWriter's Advanced
Description (p. 550) where the whole mapping process is described profusely.

Chapter 54. Writers

501

LDAPWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

LDAPWriter writes information to an LDAP directory.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

LDAPWriter LDAP directory tree 1 0-1 no no no no

Abstract

LDAPWriter writes information to an LDAP directory. It provides the logic to update information on an LDAP
directory. An update can be add/delete entries, add/replace/remove attributes. Metadata must match LDAP object
attribute name. "DN" metadata attribute is required.

String, byte and cbyte are the only metadata types supported. Most of the LDAP types are compatible with
clover string, however, for instance, the userPassword LDAP type is necessary to populate from byte data
field. LDAP rules are applied : to add an entry, required attributes (even object class) are required in metadata.

Note

LDAP attribute may be multivalued. The default value separator is "|" and is reasonable only for
string data fields.

Icon

Ports

Port type Number Required Description Metadata

Input 1 yes For correct data records Any1)

Output 0-1 no For rejected records Input 0

Chapter 54. Writers

502

Legend:

1): Metadata on the input must precisely match the LDAP object attribute name. The Distinguished Name metadata
attribute is required. As the LDAP attributes are multivalued, their values can be separated by pipe or specified
separator. String and byte are the only metadata types supported.

LDAPWriter Attributes

Attribute Req Description Possible values

Basic

LDAP URL yes LDAP URL of the directory. Can be a list of URLs
separated by pipe.

pattern: ldap://
host:port/

Action Defines the action to be performed with the entry. replace_attributes
(default) |
add_entry |
remove_entry |
remove_attributes

User User DN to be used when connecting to
the LDAP directory. Similar to the following:
cn=john.smith,dc=example,dc=com.

Password Password to be used when connecting to the LDAP
directory.

Advanced

Multi-value separator LDAPWriter can handle keys with multiple values. These
are delimited by this string or character. <none> is special
escape value which turns off this functionality, then only
first value is written. This attribute can only be used for
string data type. When byte type is used, first value is the
only one that is written.

"|" (default) | other
character or string

Chapter 54. Writers

503

LotusWriter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Chapter 54, Writers (p. 452).

Short Summary

LotusWriter writes data into Lotus Domino databases. Data records are stored as Lotus documents in the
database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

LotusWriter Lotus Notes 1 0-1

Abstract

LotusWriter is a component which can write data records to Lotus databases. The writing is be done by connecting
to a Lotus Domino server.

The data records are written to Lotus database as Documents. A document in Lotus is a list of key-value pairs.
Every field of written data record will produce one key-value pair, where key will be given by the field name and
value by the value of the field.

The user of this component needs to provide a Java library for connecting to Lotus. The libary can be found in
the installation of Lotus Notes or Lotus Domino. LotusWriter component is not able to communicate with Lotus
unless the path to this library is provided or the library is placed on the user's classpath. The path to the library can
be specified in the details of Lotus connection (see Chapter 25, Lotus Connections (p. 190)).

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records

Output 0 for invalid data records

Chapter 54. Writers

504

LotusWriter Attributes

Attribute Req Description Possible
values

Basic

Domino connection ID of the connection to the Lotus Domino database.

Mode Write mode. Insert mode always creates new documents in the
database. Update mode requires view to be specified. Update
operation first finds all documents in the view with same key
values as incoming data record. After that either all found
documents are updated, or only the first one is updated.

"insert" (default)
| "update"

View The name of the View in Lotus database within which the data
records will be updated.

Advanced

Mapping When no mapping is provided, new documents will get the
exact same set of fields as retrieved from the input port. With
mapping, it is possible to customize which fields will be written
to Lotus documents. Fields can be written with different names
and order, some can be skipped and some written multiple times
with different names. Often it is desirable to work with fields
from the Document Lotus form. Mapping of input port fields
onto Document form fields can be established in this attribute.

docFieldX :=
inFieldY; ...

Compute with form When enabled, computation will be launched on the newly
created document. The computation is typically defined in a
Document form. This form is used by the users of Lotus
Notes to create new documents. The computation may for
example fill-in empty fields with default values or perform data
conversions.

true (default) |
false

Skip invalid
documents

When enabled, documents marked by Lotus as invalid will not
be saved into the Lotus database. This setting requires Compute
with form attribute to be enabled, otherwise validation will
not be performed. Validation is performed by the computing
Document form action.

true | false
(default)

Update mode Toggles the usage of lazy update mode and behavior when
multiple documents are found for update. Lazy update mode
only updates the document when values get actually changed
- written value (after optional computation) is different from
the original value. When multiple documents are found to be
updated, either only first one can be updated, or all of them can
be updated.

"Lazy, first
match" (default)
| "Lazy, all
matches" |
"Eager, first
match" |
"Eager, all
matches"

Multi-value fields Denotes input fields which should be treated as multi-value
fields. Multi-value field will be split into multiple strings by
using the separator specified in the Multi-value separator
attribute. The resulting array of values will then be stored as a
multi-value vector into the Lotus database.

semi-colon
separated list of
input fields

Multi-value separator A string that will be used to separate values from multi-value
Lotus fields.

";" (default) |
"," | ":" | "|" | "\t"
| other character
or string

Chapter 54. Writers

505

MSSQLDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

MSSQLDataWriter loads data into MSSQL database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

MSSQLDataWriter database 0-1 0-1 no no no no

Abstract

MSSQLDataWriter loads data into a database using the MSSQL database client. It reads data through the input
port or from a file. If the input port is not connected to any other component, data must be contained in another
file that should be specified in the component.

If you connect some other component to the optional output port, it can serve to log the rejected records and
information about errors. Metadata on this error port must have the same metadata fields as the input records
plus three additional fields at its end: number of incorrect row (integer), number of incorrect
column (integer), error message (string).

SQL Server Client Connectivity Components must be installed and configured on the same machine where
CloverETL runs. The bcp command line tool must be available.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the
database

Any

Output 0 no For information about incorrect
records

Input 0 (plus three Error Fields for
MSSQLDataWriter (p. 506)2))

Chapter 54. Writers

506

Legend:

1): If no file containing data for loading (Loader input file) is specified, the input port must be connected.

2): Metadata on the output port 0 contain three additional fields at their end: number of incorrect row,
number of incorrect column, error message.

Table 54.3. Error Fields for MSSQLDataWriter

Field number Field name Data type Description

LastInputField + 1 <anyname1> integer Number of incorrect row

LastInputField + 2 <anyname2> integer Number of incorrect column

LastInputField + 3 <anyname3> string Error message

MSSQLDataWriter Attributes

Attribute Req Description Possible
values

Basic

Path to bcp utility yes Name of bcp utility, including path. SQL Server Client
Connectivity Components must be installed and configured on
the same machine where Clover runs. Bcp command line tool
must be available.

Database yes Name of the database where the destination table or view
resides.

Server name Name of the server to which bcp utility should connect. If
bcp utility connects to local named or remote named instance
of server, Server name should be set to serverName
\instanceName. If bcp utility connects to local default or
remote default instance of server, Server name should be set to
serverName. If it is not set, bcp connects to the local default
instance of server on localhost. The same meaning is true for
the serverName which can be set in Parameters. However,
if both Server name attribute and the serverName parameter
are set, serverName in Parameters is ignored.

Database table 1) Name of the destination table.

Database view 1) Name of the destination view. All columns of the view must
refer to the same table.

Database owner Owner of table or view. Does not need to be specified if the user
performing the operations is the owner. If it is not set and the
user is not the owner, SQL Server returns an error message and
the process is cancelled.

User name yes Login ID to be used when connecting to the server. The same
can be set by specifying the value of the userName parameter
in the Parameters attribute. If set, userName in Parameters
is ignored.

Password yes Password for the login ID to be used when connecting to
the server. The same can be set by specifying the value of
the password parameter in the Parameters attribute. If set,
password in Parameters is ignored.

Advanced

Chapter 54. Writers

507

Attribute Req Description Possible
values

Column delimiter Delimiter used for each column in data. Field values cannot
have the delimiter within them. The same can be set by
specifying the value of the fieldTerminator parameter
in the Parameters attribute. If set, fieldTerminator in
Parameters is ignored.

\t (default) | any
other character

Loader input file Name of input file to be loaded, including path. See Loader input
file (p. 507) for more information.

Parameters All parameters that can be used as parameters by the bcp
utility. These values are contained in a sequence of pairs of the
following form: key=value, or key only (if the key value is
the boolean true) separated from each other by semicolon. If
the value of any parameter contains semicolon as its part, such
value must be double quoted. See Parameters (p. 507) for
more information.

Legend:

1) One of these must be specified.

2) If input port is not connected, Loader input file must be specified and contain data. See Loader input
file (p. 507) for more information.

Advanced Description

Loader input file

You can or you must specify another attribute (Loader input file), dependent on an edge being connected to the
input port. It is the name of input file with data to be loaded, including its path.

• If it is not set, a loader file is created in Clover or OS temporary directory (on Windows) or named pipe is
used instead of temporary file (on Unix). The file is deleted after the load finishes.

• If it is set, specified file is created. It is not deleted after data is loaded and it is overwritten on each graph run.

• If an input port is not connected, the file must exist, must be specified and must contain data that should be
loaded. It is not deleted nor overwritten.

Parameters

You may also want to set some series of parameters that can be used when working with MSSQL (Parameters).
For example, you can set the number of the port, etc. All of the parameters must have the form of key=value
or key only (if its value is true). Individual parameters must be separated from each other by colon, semicolon
or pipe. Note that colon, semicolon or pipe can also be a part of some parameter value, but in this case the value
must be double quoted.

Among the optional parameters, you can also set userName, password or fieldTerminator for User
name, Password or Column delimiter attributes, respectively. If some of the three attributes (User name,
Password and Column delimiter) will be set, corresponding parameter value will be ignored.

If you also need to specify the server name, you should do it within parameters. The pattern is as follows:
serverName=[msServerHost]:[msServerPort]. For example, you can specify both server name and
user name in the following way: serverName=msDbServer:1433|userName=msUser.

Chapter 54. Writers

508

MySQLDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

MySQLDataWriter is a high-speed MySQL table loader. Uses MySQL native client.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

MySQLDataWriter database 0-1 0-1 no no no no

Abstract

MySQLDataWriter quickly loads data into a database table using native MySQL database client.

It reads data either from the input port or from an input file.

You can attach the optional output port and read records which have been reported as rejected.

Reading from input port (input port connected) dumps the data into a temporary file which is then used by
mysql utility. You can set the temporary file explicitly by setting the Loader input file attribute or leave it blank
to use default.

Reading from a file (no input connected) uses "Loader input file" attribute as a path to your data file. The attribute
is mandatory in this case. The file needs to be in a format recognized by mysql utility (see MySQL LOAD DATA).

This component executes MySQL native command-line client (bin/mysql or bin/mysql.exe). The client
must be installed on the same machine as the graph is running on.

Icon

http://dev.mysql.com/doc/refman/5.1/en/load-data.html

Chapter 54. Writers

509

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the
database

Any

Output 0 no For information about incorrect
records

Error Metadata for
MySQLDataWriter (p. 509)2)

Legend:

1): If no file containing data for loading (Loader input file) is specified, input port must be connected.

2): Error Metadata cannot use Autofilling Functions (p. 131).

Table 54.4. Error Metadata for MySQLDataWriter

Field
number

Field name Data type Description

0 <any_name1> integer Number of incorrect record (records are numbered starting from 1)

1 <any_name2> integer number of incorrect column

2 <any_name3> string Error message

MySQLDataWriter Attributes

Attribute Req Description Possible
values

Basic

Path to mysql utility yes Name of mysql utility, including path. Must be installed and
configured on the same machine where Clover runs. Mysql
command line tool must be available.

Host Host where database server is located. localhost
(default) | other
host

Database yes Name of the database into which the records should be loaded.

Database table yes Name of the database table into which the records should be
loaded.

User name yes Database user.

Password yes Password for database user.

Advanced

Path to control script Name of command file containing the LOAD DATA INFILE
statement, including path. See Path to Control Script (p. 510)
for more information.

Lock database table By default, database is not locked and multiuser access is
allowed. If set to true, database table is locked to ensure
exclusive access and possibly faster loading.

false (default) |
true

Ignore rows Number of rows of data file that should be skipped. By default,
no records are skipped. Valid only for input file with data.

0 (default) | 1-N

Column delimiter Delimiter used for each column in data. Field values must not
include this delimiter as their part. By default, tabulator is used.

\t (default) |
other character

Chapter 54. Writers

510

Attribute Req Description Possible
values

Loader input file 1) Name of input file to be loaded, including path. See Loader input
file (p. 510) for more information.

Parameters All parameters that can be used as parameters by load method.
These values are contained in a sequence of pairs of the
following form: key=value, or key only (if the key value
is the boolean true) separated from each other by semicolon,
colon, or pipe. If the value of any parameter contains the
delimiter as its part, such value must be double quoted.

Legend:

1) If input port is not connected, Loader input file must be specified and contain data. See Loader input
file (p. 510) for more information.

Advanced Description

Path to Control Script

Name of command file containing the LOAD DATA INFILE statement (See MySQL LOAD DATA), including
path.

• If it is not set, a command file is created in Clover temporary directory and it is deleted after the load finishes.

• If it is set, but the specified command file does not exist, temporary command file is created with the specified
name and path and it is not deleted after the load finishes.

• If it is set and the specified command file exists, this file is used instead of command file created by Clover.

Loader input file

Name of input file to be loaded, including path.

• If it is not set, a loader file is created in Clover or OS temporary directory (on Windows) or stdin is used instead
of temporary file (on Unix). The file is deleted after the load finishes.

• If it is set, specified file is created. It is not deleted after data is loaded and it is overwritten on each graph run.

• If input port is not connected, this file must be specified, must exist and must contain data that should be loaded
into database. The file is not deleted nor overwritten.

http://dev.mysql.com/doc/refman/5.1/en/load-data.html

Chapter 54. Writers

511

OracleDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

OracleDataWriter loads data into Oracle database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

OracleDataWriter database 0-1 0-1 no no no no

Abstract

OracleDataWriter loads data into database using Oracle database client. It can read data through the input port
or from an input file. If the input port is not connected to any other component, data must be contained in an input
file that should be specified in the component. If you connect some other component to the optional output port,
rejected records are sent to it. Oracle sqlldr database utility must be installed on the computer where CloverETL
runs.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the database Any

Output 0 no Rejected records Input 0

Chapter 54. Writers

512

Legend:

1): If no file containing data for loading (Loader input file) is specified, input port must be connected.

OracleDataWriter Attributes

Attribute Req Description Possible values

Basic

Path to sqlldr utility yes Name of sqlldr utility, including path.

TNS name yes TNS name identifier.

User name yes Username to be used when connecting to the Oracle
database.

Password yes Password to be used when connecting to the Oracle
database.

Oracle table yes Name of the database table into which the records
should be loaded.

Advanced

Control script Control script for the sqlldr utility. See Control
Script (p. 513) for more information.

Append Specifies what should be done with database table. See
Append Attribute (p. 513) for more information.

append (default) | insert
| replace | truncate

Log file name Name of the file where the process is logged. ${PROJECT}/
loaderinputfile.log

Bad file name Name of the file where the records causing errors is
written.

${PROJECT}/
loaderinputfile.bad

Discard file name Name of the file where the records not meeting selection
criteria is written.

${PROJECT}/
loaderinputfile.dis

DB column names Names of all columns in the database table.

Loader input file Name of input file to be loaded, including path. See
Loader Input File (p. 514) for more information.

Max error count Maximum number of allowed insert errors. When this
number is exceeded, graph fails. If no errors are to be
allowed, the attribute should be set to 0. To allow all
errors, set this attribute to a very high number.

50 (default) | 0-N

Max discard count Number of records that can be discarded before the
graph stops. If set to 1, even single discarded record
stops the graph run.

all (default) | 1-N

Ignore rows Number of rows of the data file that should be skipped
when loading data to database.

0 (default) | 1-N

Commit interval Conventional path loads only: Commit interval
specifies the number of rows in the bind array. Direct
path loads only: Commit interval identifies the number
of rows that should be read from the data file before the
data is saved. By default, all rows are read and data is
all saved at once, at the end of the load.

64 (default for
conventional path) | all
(default for direct path)
| 1-N

Chapter 54. Writers

513

Attribute Req Description Possible values

Use file for exchange By default, on Unix pipe transfer is used. If it is set
to true and Loader input file is not set, temporary
file is created and used as data source. By default, on
Windows temporary file is created and used as data
source. However, since some clients do not need a
temporary data file to be created, this attribute can be
set to false for such clients.

false (default on Unix)
| true (default on
Windows)

Parameters All parameters that can be used as parameters by the
sqlldr utility. These values are contained in a sequence
of pairs of the following form: key=value, or key
only (if the key value is the boolean true) separated
from each other by semicolon, colon, or pipe. If the
value of any parameter contains semicolon, colon, or
pipe as its part, such value must be double quoted.

Fail on warnings By default, the component fails on errors. Switching
the attribute to true, you can make the component
fail on warnings. Background: when an underlying
bulk-loader utility finishes with a warning, it is just
logged to the console. This behavior is sometimes
undesirable as warnings from underlying bulk-loaders
may seriously impact further processing. For example,
'Unable to extend table space' may result in not loading
all data records to a database; hence not completing the
expected task successfully.

false (default) | true

Advanced Description

Control Script

Control script for the sqlldr utility.

• If specified, both the Oracle table and the Append attributes are ignored. Must be specified if input port is not
connected. In such a case, Loader input file must also be defined.

• If Control script is not set, default control script is used.

Example 54.8. Example of a Control script

LOAD DATA
INFILE *
INTO TABLE test
append
(
 name TERMINATED BY ';',
 value TERMINATED BY '\n'
)

Append Attribute

• Append (default)

Specifies that data is simply appended to a table. Existing free space is not used.

• Insert

Chapter 54. Writers

514

Adds new rows to the table/view with the INSERT statement. The INSERT statement in Oracle is used to add
rows to a table, the base table of a view, a partition of a partitioned table or a subpartition of a composite-
partitioned table, or an object table or the base table of an object view.

An INSERT statement with a VALUES clause adds to the table a single row containing the values specified
in the VALUES clause.

An INSERT statement with a subquery instead of a VALUES clause adds to the table all rows returned by the
subquery. Oracle processes the subquery and inserts each returned row into the table. If the subquery selects no
rows, Oracle inserts no rows into the table. The subquery can refer to any table, view, or snapshot, including
the target table of the INSERT statement.

• Update

Changes existing values in a table or in a view's base table.

• Truncate

Removes all rows from a table or cluster and resets the STORAGE parameters to the values when the table or
cluster was created.

Loader Input File

Name of input file to be loaded, including path.

• If it is not set, a loader file is created in Clover or OS temporary directory (on Windows) (unless Use file for
exchange is set to false) or named pipe is used instead of temporary file (in Unix). The created file is
deleted after the load finishes.

• If it is set, specified file is created. The created file is not deleted after data is loaded and it is overwritten on
each graph run.

• If input port is not connected, this file must be specified, must exist and must contain data that should be loaded
into database. At the same time, Control script must be specified. The file is not deleted nor overwritten.

Chapter 54. Writers

515

PostgreSQLDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

PostgreSQLDataWriter loads data into PostgreSQL database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

PostgreSQLDataWriter database 0-1 0 no no no no

Abstract

PostgreSQLDataWriter loads data into database using PostgreSQL database client. It can read data through the
input port or from an input file. If the input port is not connected to any other component, data must be contained
in an input file that should be specified in the component. PostgreSQL client utility (psql) must be installed and
configured on the same machine where CloverETL runs.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) Records to be loaded into the database Any

Legend:

1): If no file containing data for loading (Loader input file) is specified, input port must be connected.

Chapter 54. Writers

516

PostgreSQLDataWriter Attributes

Attribute Req Description Possible
values

Basic

Path to psql utility yes Name of psql utility, including path. Must be installed and
configured on the same machine where CloverETL runs. Psql
command line tool must be available.

Host Host where database server is located. localhost
(default) | other
host

Database yes Name of the database into which the records should be loaded.

Database table Name of the database table into which the records should be
loaded.

User name PostgreSQL username to be used when connecting to the server.

Advanced

Fail on error By default, graph fails upon each error. If you want to have
the standard behavior of PostgreSQL database, you need to
switch this attribute to false. If set to false, graph will
run successfully even with some errors as it happens with
PostgreSQL database.

true (default) |
false

Path to control script Name of command file containing the \copy statement,
including path. See Path to Control Script (p. 516) for more
information.

Column delimiter Delimiter used for each column in data. Field values must not
include this delimiter as their part.

tabulator
character
(default in text
mode) | comma
(default in CVS
mode)

Loader input file Name of input file to be loaded, including path. See Loader Input
File (p. 517) for more information.

Parameters All parameters that can be used as parameters by the psql
utility or the \copy statement. These values are contained in a
sequence of pairs of the following form: key=value, or key
only (if the key value is the boolean true) separated from each
other by semicolon, colon, or pipe. If the value of any parameter
contains semicolon, colon, or pipe as its part, such value must
be double quoted.

Advanced Description

Path to Control Script

Name of command file containing the \copy statement, including path.

• If it is not set, command file is created in Clover temporary directory and it is deleted after the load finishes.

• If it is set, but the specified command file does not exist, temporary file is created with the specified name and
path and it is not deleted after the load finishes.

Chapter 54. Writers

517

• If it is set and the specified command file exists, this file is used instead of the file created by Clover. The file
is not deleted after the load finishes.

Loader Input File

Name of input file to be loaded, including path.

• If input port is connected and this file is not set, no temporary file is created. Data is read from the edge and
loaded into database directly.

• If it is set, specified file is created. It is not deleted after data is loaded and it is overwritten on each graph run.

• If input port is not connected, this file must exist and must contain data that should be loaded into database. It
is not deleted nor overwritten on another graph run.

Chapter 54. Writers

518

QuickBaseImportCSV

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

QuickBaseImportCSV adds and updates QuickBase online database table records.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

QuickBaseImportCSV QuickBase 1 0-2

Abstract

QuickBaseImportCSV receives data records through the input port and writes them into QuickBase online
database (http://quickbase.intuit.com). Generates record IDs for successfully written records and sends them out
through the first optional output port if connected. The first field on this output port must be of string data type.
Into this field, generated record IDs will be written. Information about rejected data records can be sent out through
the optional second port if connected.

This component wrapps the API_ImportFromCSV HTTP interaction (http://www.quickbase.com/api-guide/
importfromcsv.html).

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records any

Output 0 for accepted data records string field for the table Record ID#
field values of the imported records

Output 1 for rejected data records input metadata enriched by
up to three Error Fields for
QuickBaseImportCSV (p. 519)

http://quickbase.intuit.com
http://www.quickbase.com/api-guide/importfromcsv.html
http://www.quickbase.com/api-guide/importfromcsv.html

Chapter 54. Writers

519

Table 54.5. Error Fields for QuickBaseImportCSV

Field number Field name Data type Description

optional1 specified in the Error code output field integer | long error code

optional1 specified in the Error message output field string error message

optional1 specified in the Batch number output field integer | long index (starting
from 1) of the
failed batch

1 The error fields must be placed behind the input fields.

QuickBaseImportCSV Attributes

Attribute Req Description Possible
values

Basic

QuickBase connection ID of the connection to the QuickBase online database, see
Chapter 24, QuickBase Connections (p. 189)

Table ID ID of the table in the QuickBase application data records are to
be written into (see the application_stats for getting the
table ID)

Batch size The maximum number of records in one batch 100 (default) |
1-N

Clist A period-delimited list of table field_ids to which the input
data columns map. The order is preserved. Thus, enter a 0 for
columns not to be imported. If not specified, the database tries
to add unique records. It must be set if editing records. The input
data must include a column that contains the record ID for each
record that you are updating.

Error code output field name of the error metadata field for storing the error code, see
Error Fields for QuickBaseImportCSV (p. 519)

Error message output
field

name of the error metadata field for storing the error message,
see Error Fields for QuickBaseImportCSV (p. 519)

Batch number output
field

name of the error metadata field for storing the
index of the corrupted batch, see Error Fields for
QuickBaseImportCSV (p. 519)

Chapter 54. Writers

520

QuickBaseRecordWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

QuickBaseRecordWriter writes data into QuickBase online database.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

QuickBaseRecordWriter QuickBase 1 0-1

Abstract

QuickBaseRecordWriter receives data records through the input port and writes them to a QuickBase online
database (http://quickbase.intuit.com).

This component wraps the API_AddRecord HTTP interaction (http://www.quickbase.com/api-guide/
add_record.html).

If the optional output port is connected, rejected records along with the information about the error are sent out
through it.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records any

Output 0 for rejected data records input metadata enriched by
up to two Error Fields for
QuickBaseRecordWriter (p. 521)

http://quickbase.intuit.com
http://www.quickbase.com/api-guide/add_record.html
http://www.quickbase.com/api-guide/add_record.html

Chapter 54. Writers

521

Table 54.6. Error Fields for QuickBaseRecordWriter

Field number Field name Data type Description

optional1 specified in the error code output field integer | long Error code

optional1 specified in the error message output field string Error message
1 The error fields must be placed behind the input fields.

QuickBaseRecordWriter Attributes

Attribute Req Description Possible
values

Basic

QuickBase connection ID of the connection to the QuickBase online database, see
Chapter 24, QuickBase Connections (p. 189)

Table ID ID of the table in the QuickBase application data records are to
be written into (see the application_stats for getting the
table ID)

Mapping List of database table field_ids separated by a semicolon the
metadata field values are to be written to.

Error code output field Name of the field the error code will be stored in, see Error
Fields for QuickBaseRecordWriter (p. 521)

Error message output
field

Name of the field the error message will be stored in, see Error
Fields for QuickBaseRecordWriter (p. 521)

Chapter 54. Writers

522

SpreadsheetDataWriter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the appropriate Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

SpreadsheetDataWriter writes data to spreadsheets – XLS or XLSX files. SpreadsheetDataWriter supersedes
the original XLSDataWriter with a lot more new features, write modes and improved performance.
(XLSDataWriter is still available for backwards compatibility and in the Community edition)

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

SpreadsheetDataWriter XLS(X) file 1 0-1 no no no no

Abstract

SpreadsheetDataWriter writes data to XLS or XLSX files. It offers advanced features for creating spreadsheets:

• insert/overwrite/append modes

• powerful visual mapping for complex spreadsheets

• explicitly defined mapping or dynamic auto-mapping

• form writing

• multiline records

• vertical/horizontal writing

• cell formatting support

• streaming mode for performance and huge data loads

• dynamic file/sheet partitioning

Chapter 54. Writers

523

• template support

Supported file formats:

• XLS: only Excel 97/2003 XLS files (BIFF8)

• XLSX: Open Document Format, Microsoft Excel 2007 and newer

Supported outputs:

• local or remote (FTP, HTTP, CloverETL Server sandbox, etc. – see File URL in SpreadsheetDataWriter
Attributes (p. 523))

• output port

• console

• dictionary

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes Incoming records to be written out
to a spreadsheet.

Any

Output 0 no For port writing. See Writing to
Output Port (p. 311).

One field (byte, cbyte,
string).

SpreadsheetDataWriter Attributes

Attribute Req Description Possible
values

Basic

File URL yes Specifies where data will be written to: an XLS or XLSX file,
the console, an output port or a dictionary. See Supported File
URL Formats for Writers (p. 309).

Sheet A name or number (zero-based) of the sheet to write into. Unless
set, a sheet with a default name is created and inserted after
all existing sheets. You can specify multiple sheets separated
by a semicolon ";". For details on partitioning, see Writing
Techniques & Tips for Specific Use Cases (p. 532).

0-N

Mapping 1) A visual editor in which you define how input data is mapped to
the output spreadsheet(s). See Advanced Description (p. 525)
for more information.

Mapping URL 1) External file containing the mapping definition.

Chapter 54. Writers

524

Attribute Req Description Possible
values

Write mode Determines how data is written to the output spreadsheet.
Possible values:

• Overwrite in sheet (in-memory) – overwrites existing cells
if present

• Insert into sheet (in-memory) – inserts new data to the
mapped area, shifting existing cells down if present

• Append to sheet (in-memory) – appends data at the end of
an existing data column/row

• Create new file (streaming - XLSX only) – replaces existing
file with a newly created one making streaming mode
possible

• Create new file (in-memory) – replaces existing file and
work in the in-memory mode

In-memory writing modes store all values in memory allowing
for faster reading. Suitable for smaller files. In streaming mode
(available for XLSX only) the file is written out directly without
storing anything in memory. Streaming should thus allow you
to write bigger files without running out of memory.

see Description

Actions on existing
sheets

Defines what action is performed if the specified Sheet
already exists in the target spreadsheet. The attribute works in
accordance with Write mode. Available options:

• Do nothing, keep existing sheets and data – default option;
no operation is performed prior to writing; insert/overwrite/
append modes apply

• Clear target sheet(s) – specified Sheet(s) are cleared prior
to writing; Write mode setting is ignored

• Replace all existing sheets – all sheets are removed prior to
writing to the file; equivalent to Create new file option
in Write mode

see Description

Advanced

Template File URL A template spreadsheet file which is duplicated into the output
file and populated with data according to the defined mapping.
The template can be any spreadsheet, typically containing
the header, footer and data sections (one empty line to be
replicated during writing). If looking for more tips, see Writing
Techniques & Tips for Specific Use Cases (p. 532). It
is required that formats of the output file and the template
file match. Usage of XLTX files is limited (see Notes and
Limitations (p. 535)), rather than XLTX use XLSX files as
templates.

Create directories If set to true, non existing directories included in the File URL
path will be automatically created.

false (default) |
true

Records per file Maximum number of records that are written to a single file.
See Partitioning Output into Different Output Files (p. 317)

1-N

Chapter 54. Writers

525

Attribute Req Description Possible
values

Number of skipped
records

Total number of records throughout all output files that will be
skipped. See Selecting Input Records (p. 304) .

0-N

Max number of
records

Total number of records throughout all output files that will be
written out. See Selecting Input Records (p. 304) .

0-N

Partition key A key whose values control the distribution of records among
multiple output files. See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition lookup table 2) The ID of a lookup table. The table serves for selecting
records which should be written to the output file(s). See
Partitioning Output into Different Output Files (p. 317) for more
information.

Partition file tag By default, output files are numbered. If this attribute is set
to Key file tag, output files are named according
to values of Partition key or Partition output fields. See
Partitioning Output into Different Output Files (p. 317) for more
information.

Number file tag
(default) | Key
file tag

Partition output fields 2) Fields of Partition lookup table whose values serve for naming
output file(s). See Partitioning Output into Different Output
Files (p. 317) for more information.

Partition unassigned
file name

The name of a file unassigned records should be written into (if
there are any). Unless specified, data records whose key values
are not contained in Partition lookup table are discarded. See
Partitioning Output into Different Output Files (p. 317) for more
information.

Type of formatter Specifies the formatter to be used. By default, the component
guesses according to the output file extension – XLS or XLSX.

Auto (default) |
XLS | XLSX

Legend:

1) The two mapping attributes are mutually exclusive. You either specify the mapping yourself in Mapping, OR
supply it in an external file via Mapping URL. The third option is to leave all mapping blank.

2) Either both or neither of these attributes has to be specified.

Advanced Description

Introduction to Spreadsheet Mapping

A mapping tells the component how to write Clover records to a spreadsheet. Mapping defines where to put
metadata information, data, format, writing orientation etc.

In the mapping you define a binding between a Clover field and so called leading cell. Data for that field is written
into the spreadsheet beginning at the leading cell position either downwards (vertical orientation; default) or to
the right (horizontal).

Each leading cell-field binding is independent of each other. That can be used to create complex mappings (e.g.
one record can be mapped to multiple rows; see Rows per record global mapping property)

Each Clover field can be mapped to a spreadsheet cell in one of the following Mapping modes:

• Explicit – statically maps a field to a fixed leading cell of your preference. Typically the most used mapping
mode for the writer (see Basic Mapping Example (p. 527)). Explicit mode can be combined with other
mapping modes.

Chapter 54. Writers

526

Tip

To map a field (or a whole record) explicitly, simply drag the field (record) to the spreadsheet
preview area and drop it onto desired location. You can select multiple fields.

• Map by order - dynamic mapping mode; cells in 'by order' mode are filled in left-right-top-down direction
with input record fields by the order in which the fields appear in the input metadata. Only fields which are not
mapped explicitly and not mapped by name are taken into account.

• Map by name - this mode applies only to cases when you are writing to an already existing sheet(s). Cells
mapped "by name" are bound to input fields using 'late binding' on runtime according to their actual content,
which presumably is a 'header'. The component tries to match the cell's content with a field name or label (see
Field Name vs. Label vs. Description (p. 160)) from input metadata. If such a match could be found then the
mapped cell is bound to the corresponding input field. If there is no match for the cell (i.e. cell's content is not a
field name/label) then the cell is unresolved – no input field could be assigned. Note that unresolved cells are
not a bad thing – you might be writing into say a group of similar templates, each containing just a subset of
fields in the input metadata. Mappings with unresolved cells do not result in the graph failing on execution.

This mode comes in handy when you are writing using pre-defined templates (the Template file URL attribute) .
See Writing Techniques & Tips for Specific Use Cases (p. 532).

Note

Both Map by order and Map by name modes try to automatically map the contents of the
output file to the input metadata. Thus these modes are useful in cases when you write into
multiple files and you want to design a single 'one-fits-all' generic mapping, typically for mulitple
templates. Replacing input metadata with another does not require any change in the mapping –
it is recomputed accordingly to the mapping logic.

• Implicit – default case when the mapping is blank. The component will assume Write header to true and
map all input fields by order, starting in top left hand corner.

Spreadsheet Mapping Editor

Spreadsheet mapping editor is the place where you define your mapping and its properties. The mapping editor
previews sheets of the output file (if any; otherwise shows a blank spreadsheet). However, the same mapping is
applied to a whole group of output files/sheets (e.g. when partitioning into multiple sheets or files).

To start mapping, fill in the File URL and (optionally) Sheet attributes with the file (and sheet name) to write
into, respectively. After that, edit Mapping to open the spreadsheet mapping editor. When you write into a new
(empty) spreadsheet, the mapping editor will apear blank like this

Chapter 54. Writers

527

Figure 54.16. Spreadsheet Mapping Editor

In the editor, you map the input fields on the left hand to the spreadsheet on the right hand. Either use mouse
drag'n'drop or the Map by name, Map by order buttons to create leading cells in the spreadsheet.

You can see the following parts of the editor:

• Toolbar – buttons controlling how you Map Clover fields to spreadsheet data (either by order, or by name)
and global Data offsets control (see Advanced Mapping Options (p. 528) for an explanation of data offsets).

• Sheet preview area – this is where you create and modify all the mapping of the output file.

• Input metadata – Clover fields you can map to spreadsheet cells. This is the metadata assigned to the input
edge. (You cannot edit it.)

• Properties – controls properties of mapped cells and Global mapping attributes; can be applied to a single or
a group of cells at a time

• Summary tab – a place where you can neatly review the Clover-to-spreadsheet mapping you have made.

Colours in spreadsheet mapping editor

Cells in the preview area highlighted in various colours to identify whether and how they are mapped.

• Orange are the leading cells and they form the header. Properties can be adjusted on each orange cell to create
complex mappings; see Advanced Mapping Options (p. 528).

• Cells in dashed border, which appear only when a leading cell is selected, indicate the data area.

• Yellow cells demonstrate the first record which will be written.

Basic Mapping Example

A typical example of what you will want to do in SpreadsheetDataWriter is writing into an empty spreadsheet.
This section describes how to do that in a few easy steps.

• Open Spreadsheet Mapping Editor by editing the Mapping attribute.

• Click the whole record in Input metadata (excel_types_nocurrency in the example below) and drag
it to the spreadsheet preview area to cell A1 and drop. You will see that for each field of the input record

Chapter 54. Writers

528

a leading cell is created, producing a default explicit mapping (explained in Introduction to Spreadsheet
Mapping (p. 525)). See Figure 54.17, Explicit mapping of the whole record (p. 528)

• In Properties (bottom left hand corner), make sure Write header is set to true. This writes field names (labels
actually) to leading cells first, followed by actual data; use this whenever you want to output a header.

• Furthermore in Properties, notice that Orientation is Vertical. This makes the component produce output by
rows (opposite to Horizontal orientation, where writing advances by columns).

• Notice that Data offsets (global) is set to 1. That means that data will be writen 1 row below the leading cell,
making room for the header cell.

Note

Actually, you will achieve the same result if you leave the mapping blank (implicit mapping). In
that case the first row is mapped by order.

Figure 54.17. Explicit mapping of the whole record

Advanced Mapping Options

This section provides an explanation of some more advanced concepts building on top of the Basic Mapping
Example (p. 527)

• Data offsets – determines the position where data is written relative to the leading cell position.

Basically, its value represents 'a number of rows (in vertical mode) or columns (in horizontal mode) to be
skipped before the first record is written (relative to the leading cell)'.

Data offset 0 does not skip anything and data is written right at the leading cell position (Write header option
does not work for this setting).

Data offset 1 is typically used when header is to be written at the leading cell position – so you need to shift
the actual data by one row down (or column to the right).

Chapter 54. Writers

529

Click arrow buttons in the Data offsets (global) control to adjust data offsets for the whole spreadsheet.

Additionaly, you can use the spinner in Properties →Selected cells →Data offset of each leading cell
(orange) to adjust data offset locally, i.e. for a particular column only. Notice how modifying data offset is
visualised in the sheet preview – the 'omitted' rows change colour. By following dashed cells, which appear
when you click a leading cell, you can quickly check where your record will be written.

Tip

The arrow buttons in Data offsets (global) only shift the data offset property of each cell either
up or down. So mixed offsets are retained, just shifted as desired. To set all data offsets to a single
value, enter the value into the number field of Data offsets (global). Note that if there are some
mixed offsets, the value is displayed in gray.

Figure 54.18. The difference between global data offsets set to 1 (default) and 3. In the right hand
figure, writing would start at row 4 with no data written to rows 2 and 3.

Figure 54.19. Global data offsets is set to 1. In the last column, it is locally changed to 4. In the output
file, the initial rows of this column would be blank, data would start at D5.

• Rows per record – a Global property specifying a gap between rows. Default value is 1 (i.e. there is no gap).
Useful when mapping multiple cells above each other (for a single record) or when you need to print blank rows
in between your data. Best imagined if you look at the figure below:

Chapter 54. Writers

530

Figure 54.20. With Rows per record set to 2 in leading cells Name and Adress, the component
always writes one data row, skips one and then writes again. This way various data does not get
mixed (overwritten by the other one). For a successful output, make sure Data offsets is set to 2.

• Combination of Data offets (global and local) and Rows per record – you can put the settings described in
preceding bullet points together. See example:

Figure 54.21. Rows per record is set to 3. Data in the first and third column will start in their first row
(because of their data offsets being 1). The second and fourth columns have data offsets 2 and 4,
respectively. The output will, thus, be formed by 'zig-zagged' cells (the dashed ones – follow them to
make sure you understand this concept clearly).

• Max number of records – a Global property which you can specify via component attributes, too (see
SpreadsheetDataWriter Attributes (p. 523)). If you reduce it, you will notice the number of dashed cells in
the spreadsheet preview reduces as well (highlighting only the cells which will be written out in fact).

• Formatting cells (Format Field) - in a spreadsheet, every single cell can have its own format (in Excel, right-
click on a cell -> Format cells; Number tab). This format is represented by a format string (not Clover format
string, but Excel-specific format string). Since format in Clover is defined globally for a field in metadata, not
per record, writing formats to Excel can be tricky. SpreadsheetDataWriter offers two ways of writing Excel-
specific format to cells:

Case 1:

You can specify the format for a metadata field (its Format property in metadata). That means all values of
the field written to the sheet will have the specified format. You need to prefix the Format in metadata with
excel: (e.g. excel:0.000% for percents with three decimals) because the component ignores standard
format strings (as the Clover-to-Excel format conversion is not possible).

Case 2:

You provide two input fields for a single cell: one specifying the cell value and the other defining its format.

Chapter 54. Writers

531

Note

• This unleashes the full power of Excel where formats are set per-cell rather than per-column.

• You pass the format in the data as an extra 'string' value.

• Remember, the format is specified in Excel terms, not Clover.

• Use Format field in Properties →Selected cells of the leading (orange) cell to specify the
input field containing the format (string).

Which format is used if both are set?

• Do you have the format mapped by the Format field property? Yes – the component uses it.

• Is Format field not specified OR a value of that particular field is empty (null or empty string)? Yes – use
Format from the metadata field (if set with excel: prefix). See also Field Details (p. 162).

You can use excel:General format – either in Format field or in metadata Format – the output will be
set to general format (Excel terms).

Example 54.9. Writing Excel format

Let us have two fields: fieldValue (integer) and fieldFormat (string) mapped onto cell A1
(one as value, the other as Format field). Imagine these incoming records:

• (100, ”#00,0”)

• writes value 100 and format ”#00,0” into cell A1

• (100, “General”)

• writes value 100 into cell A1 and sets its format to General

• (100, ””) or (100, null)

• writes value 100 into cell A1 and since fieldFormat is empty it looks into the Format metadata
attribute of fieldValue (NOT fieldFormat!):

1. if there is no format, uses General

2. if there is the “excel:XYZ” format string, applies format XYZ to the cell

3. if there is another format (anything not prefixed by excel:), uses General (Clover-to-Excel format
converison is not performed)

Note

When Excel format is specified in Metadata →Format it MUST be prefixed by excel:
so that Clover can know that the format string is specific to Excel-only use. Example:
"excel:0.000%"

When Excel format is passed in data, as the aforementioned fieldFormat, it MUST NOT be
prefixed in any way. Example: "0.000%"

Note that the excel: format string matters when reading the output back with
spreadsheet readers - SpreadsheetDataReader or XLSDataReader. Common readers (such as
UniversalDataReader) completely ignore excel:. They consider it an empty format string.

Chapter 54. Writers

532

Writing Techniques & Tips for Specific Use Cases

• Writing using template

Sometimes you may want to prepare in advance a nicely formatted template in Excel, maybe including some
static headers, footer, etc. and use Clover to just fill in the data for you. And it might be that you will want to
reuse the template without overwriting it.

This is where SpreadsheetDataWriter template feature comes in handy. The component can take a previously
designed template Excel file (see Template File URL in SpreadsheetDataWriter Attributes (p. 523)), make
a copy of it into the designated output file (see File URL) and write data to it, retaining the rest of the template.

A template can be any Excel file, usually containing three sections: the header, one template row for data and
the rest as the footer.

Figure 54.22. Writing into a template. Its original content will not be affected, your data will be written
into Name, Surname and Age fields.

Notice the template row. It is a row like any other but in the mapping editor, it is designated as the first row
of mapped data. The component duplicates that row each time it writes a new data. This way you can assign
arbitrary formatting, colors etc. on this data row and it is applied to all written rows.

The template file is not changed or affected in any other way.

Important

There is only one reasonable setting when using templates, although all other modes work as
expected (they do not, however, produce results that you would want). The settings are:

• Sheet – select the sheet from the template (by number or name, do not create new sheet)

• Mapping – this is one of the cases where Map by name makes sense. Use the header of the
template where applicable. Of course, you can map fields as usual.

• Write mode – Insert

• Actions on existing sheets – Do nothing, keep existing sheets and data

• Filling forms – you can use the component to write into forms without affecting its original boxes. Use these
settings:

Send just one input record to the component's input containing all the form values. Set File URL to the form
file to be filled. Then map the input fields explicitly one by one into corresponding form cells using the preview
sheet.

Next, use these settings:

Chapter 54. Writers

533

• Write header – false

• Data offsets (global) – 0 (this ensures data will be written right into the leading cells you have mapped –
the orange ones)

• Charts and formulas – if you use Insert, Append or Overwrite modes, formulas and charts that work with the
data areas written in Clover will be properly updated when viewed in Excel.

Note

Generating formulas, charts or other Excel objects is not currently supported.

• Multiple write passes into one sheet

You can use multiple sequential writes into a single sheet to produce complex patterns. To do so, set up mutlitple
SpreadsheetDataWriter components writing the the same file/sheet and feed them various inputs.

Important

Do not forget to put multiple components writing to the same file into different phases. Otherwise
the graph will fail on write conflict.

Typically, you will use the Overwrite in sheet (in-memory) write mode for all components in the
sequence.

• Partitioning – a neat technique is partitioning into individual sheets according to values of a specified key
field (or more fields). Thus you can e.g. write data for different countries into different sheets. Simply choose
Country as the partitioning key. This is done by editing the Sheet attribute; switch to Partition data into
sheets by data fields and select a field (or more fields using Ctrl+click or Shift+click).

Figure 54.23. Partitioning by one data field

You can partiton according to more than one field. In that case, output sheet names will be a compound of
field names you have selected. Example: You have customer orders stored in one CSV file. You would like
to separate them into sheets according to e.g. a name of the shop and a city. Use SpreadsheetDataWriter in
create new file mode while partitioning according to the two fields. It will produce sheets like:

Pete's Grocery,New York

Hoboken Deli,New Jersey

Al's Hardware,New York

etc., each of them containing data just for one shop.

See also Partitioning Output into Different Output Files (p. 317).

• Writing huge files

Chapter 54. Writers

534

Although Excel format is not primarily designed for big data loads, its processing can easily grow to enormous
memory requirements.

The format itself has some limitations:

• Excel 97/2003 – XLS

• Maximum of 65,535 rows and 256 columns per sheet

• Maximum number of sheets – 255

• Excel 2007 and newer – XLSX

• Maximum number of rows: unlimited (but be aware that Excel itself works only with first 1,048,576 rows
the file contains). All the data and be read back by SpreadsheetDataReader or other tools that support
large files.

• Maximum number of columns: 16,384

• Maximum number of sheets: unlimited (as long as you have memory)

Tip

Working with larger spreadsheets is memory consuming and although the component does its best
to optimize its memory footprint, bear these few tips in mind:

• When mapping in the Spreadsheet mapping editor, memory consumption for the Designer might
temporarily ramp up over a gigabyte of memory – so be sure to set enough heap space for the
Designer itself (see Program and VM Arguments (p. 85)).

• Memory consumption is affected by how Excel organizes the file internally so two files with
the same amount of data in it can have significantly different memory requirements.

• Use streaming mode whenever possible. Switch to DEBUG mode in graph's Run
Configurations to detect whether streaming mode is on or off. To learn how to do that, see
Program and VM Arguments (p. 85).

Usually you would use the Create new file (streaming – XLSX only) write mode. Other write
modes do not support streaming.

• Reviewing your mapping

In complex mappings with many metadata fields, you might want to check if everything has been mapped
properly. Whenever during your work in Spreadsheet Mapping Editor, switch to the Summary tab and
observe an overview of leading cells and mappings like this one:

Chapter 54. Writers

535

Figure 54.24. Mapping summary

Notes and Limitations

• Encryption – writing of encrypted XLS or XLSX files is not supported (unlike SpreadsheetDataReader (p. 400)
which can read encrypted files)

• XLTX vs. XLSX templates – for technical reasons it is currently not possible to use an XLTX template
for XLSX output. Nevertheless, the difference between XLTX and XLSX files is minimal. Therefore, we
recommend you use XLSX as the format for both the template and output files. For XLS and XLT files, there
is no such limitation.

• Mapping editor on server files – a spreadsheet mapping editor on server files can operate as usual, except
for a case when File URL contains wildcard characters. In that case CloverETL Designer is not able to find
matching server files and the mapping editor shows no data in the spreadsheet preview. This is going to be
fixed in next releases.

• Error reporting – there is no error port on the component. By design, either the component configuration is
valid and will then succeed in writing records to a file, or it will fail with a fatal error (invalid configuration, no
space left on device, etc.). No errors per input record are generated.

• Width of columns – if the SpreadsheetDataWriter writes to newly created sheet, or to existing sheet which
is cleaned first (i.e. Actions on existing sheets is set to Clear target sheet(s)), the component automatically
adjusts width of columns so that it matches width of the most widest cell content in each particular column.
Column widths is not adjusted if a template is used or when writing into existing sheet (which is not cleaned
first). This means that column widths from template are preserved. Also column widths of already existing
sheets are kept when appending/inserting/overwriting data of that sheet.

Chapter 54. Writers

536

StructuredDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

StructuredDataWriter writes data to files with user-defined structure.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

StructuredDataWriter structured flat file 1-3 0-1 no no no no

Abstract

StructuredDataWriter writes data to files (local or remote, delimited, fixed-length, or mixed) with user-defined
structure. It can also compress output files, write data to console, output port, or dictionary.

Icon

Ports

Port type Number Required Description Metadata

0 yes Records for body Any

1 no Records for header Any

Input

2 no Records for footer Any

Output 0 no For port writing. See Writing to
Output Port (p. 311).

One field (byte, cbyte,
string).

Chapter 54. Writers

537

StructuredDataWriter Attributes

Attribute Req Description Possible
values

Basic

File URL yes Attribute specifying where received data will be written (flat
file, console, output port, dictionary). See Supported File URL
Formats for Writers (p. 309).

Charset Encoding of records written to the output. ISO-8859-1
(default) |
<other
encodings>

Append By default, new records overwrite the older ones. If set to true,
new records are appended to the older records stored in the
output file(s).

false (default) |
true

Body mask Mask used to write the body of the output file(s). It can be based
on the records received through the first input port. See Masks
and Output File Structure (p. 538) for more information about
definition of Body mask and resulting output structure.

Default Body
Structure (p. 539)
(default) | user-
defined

Header mask 1) Mask used to write the header of the output file(s). It can be
based on the records received through the second input port.
See Masks and Output File Structure (p. 538) for more
information about definition of Header mask and resulting
output structure.

empty (default)
| user-defined

Footer mask 2) Mask used to write the footer of the output file(s). It can be based
on the records received through the third input port. See Masks
and Output File Structure (p. 538) for more information about
definition of Footer mask and resulting output structure.

empty (default)
| user-defined

Advanced

Create directories By default, non-existing directories are not created. If set to
true, they are created.

false (default) |
true

Records per file Maximum number of records to be written to one output file. 1-N

Bytes per file Maximum size of one output file in bytes. 1-N

Number of skipped
records

Number of records to be skipped. See Selecting Output
Records (p. 316).

0-N

Max number of
records

Maximum number of records to be written to all output files.
See Selecting Output Records (p. 316).

0-N

Partition key Key whose values define the distribution of records among
multiple output files. See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition lookup table 1) ID of lookup table serving for selecting records that should be
written to output file(s). See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition file tag By default, output files are numbered. If it is set to Key file
tag, output files are named according to the values of Partition
key or Partition output fields. See Partitioning Output into
Different Output Files (p. 317) for more information.

Number file tag
(default) | Key
file tag

Partition output fields 1) Fields of Partition lookup table whose values serve to name
output file(s). See Partitioning Output into Different Output
Files (p. 317) for more information.

Chapter 54. Writers

538

Attribute Req Description Possible
values

Partition unassigned
file name

Name of the file into which the unassigned records should
be written if there are any. If not specified, data records
whose key values are not contained in Partition lookup table
are discarded. See Partitioning Output into Different Output
Files (p. 317) for more information.

Legend:

1) Must be specified if second input port is connected. However, does not need to be based on input data records.

2) Must be specified if third input port is connected. However, does not need to be based on input data records.

Advanced Description

Masks and Output File Structure

• Output File Structure

1. Output file consists of header, body, and footer, in this order.

2. Each of them is defined by specifying corrresponding mask.

3. After defining the mask, the mask content is written repeatedly, one mask is written for each incoming record.

4. However, if the Records per file attribute is defined, the output structure is distributed among various output
files, but this attribute applies for Body mask only. Header and footer are the same for all output files.

• Defining a Mask

Body mask, Header mask, and Footer mask can be defined in the Mask dialog. This dialog opens after
clicking corresponding attribute row. In its window, you can see the Metadata and Mask panes. At the bottom,
there is a Auto XML button.

You can define the mask either without field values or with field values.

Field values are expressed using field names preceded by dollar sign.

If you click the Auto XML button, a simple XML structure appears in the Mask pane.

Figure 54.25. Create Mask Dialog

You only need to remove the fields you do not want to save to the output file and you can also
rename the suggested left side of the matchings. These have the form of matchings like this: <sometag=

Chapter 54. Writers

539

$metadatafield/>. By default after clicking the Auto XML button, you will obtain the XML structure
containing expressions like this: <metadatafield=$metadatafield/>. Left side of these matchings can
be replaced by any other, but the right side must remain the same. You must not change the field names preceded
by a dollar sign on the right side of the matchings. They represent the values of fields.

Remember that you do not need to use any XML file as a mask. The mask can be of any other structure.

• Default Masks

1. Default Header mask is empty. But it must be defined if second input port is connected.

2. Default Footer mask is empty. But it must be defined if third input port is connected.

3. Default Body mask is empty. However, the resulting default body structure looks like the following:

< recordName field1name=field1value field2name=field2value ...
fieldNname=fieldNvalue />

This structure is written to the output file(s) for all records.

If Records per file is set, only the specified number of records are used for body in each output file at most.

Chapter 54. Writers

540

Trash

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

Trash discards data.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

Trash none 1–n 0 no no no no

Abstract

Trash discards data. For debugging purpose it can write its data to a file (local or remote), or console. Multiple
inputs can be connected for improved graph legibility.

Icon

Ports

Port type Number Required Description Metadata

Input 1-n yes For received data records Any

Trash Attributes

Attribute Req Description Possible
values

Basic

Debug print By default, all records are discarded. If set to true, all records
are written to the debug file (if specified), or console. You do
not need to switch Log level from its default value (INFO). This
mode is only supported when single input port is connected.

false (default) |
true

Chapter 54. Writers

541

Attribute Req Description Possible
values

Debug file URL Attribute specifying debug output file. See Supported File URL
Formats for Writers (p. 309). If path is not specified, the file is
saved to the ${PROJECT} directory. You do not need to switch
Log level from its default value (INFO).

Debug append By default, new records overwrite the older ones. If set to true,
new records are appended to the older records stored in the
output file(s).

false (default) |
true

Charset Encoding of debug output. ISO-8859-1
(default) |
<other
encodings>

Advanced

Print trash ID By default, trash ID is not written to debug output. If set to
true, ID of the Trash is written to debug file, or console. You
do not need to switch Log level from its default value (INFO).

false (default) |
true

Create directories By default, non-existing directories are not created. If set to
true, they are created.

false (default) |
true

Mode Trash can run in either Performace or Validate records modes. In
Performance mode the raw data is discarded, in Validate records
Trash simulates a writer - attempting to deserialize the inputs.

Performance
(default) |
Validate
records

Chapter 54. Writers

542

UniversalDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

UniversalDataWriter is a terminative component that writes data to flat files.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

UniversalDataWriter flat file 1 0-1

Abstract

UniversalDataWriter formats all records from the input port to delimited, fixed-length, or mixed form and writes
them to specified flat file(s), such as CSV (comma-separated values) or text file(s). The output data can be stored
localy or uploaded via a remote transfer protocol. Also writing ZIP and TAR archives is supported.

The component can write a single file or partitioned collection of files. The type of formatting is specified in
metadata for the input port data flow.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for received data records any

Output 0 for port writing. See Writing to
Output Port (p. 311).

include specific byte/ cbyte/
string field

Chapter 54. Writers

543

UniversalDataWriter Attributes

Attribute Req Description Possible
values

Basic

File URL where the received data to be written (flat file, console, output
port, dictionary) specified, see Supported File URL Formats for
Writers (p. 309).

Charset character encoding of records written to the output ISO-8859-1
(default) |
<other
encodings>

Append If records are printed into an existing non-empty file, they
replace the older ones by default (false). If set to true, new
records are appended to the end of the existing output file(s)
content.

false (default) |
true

Quoted strings When switched to true, all field values (except from byte and
cbyte) will be quoted. If you do not set this attribute, its value
is inherited from metatadata on the input port (and displayed in
faded grey text, see also Record Details (p. 161)).

false | true

Quote character Specifies which kind of quotes will enclose output fields.
Applies if Quoted strings is true only. By default, the value
of this attribute is inherited from metadata on input port. See
also Record Details (p. 161).

" | '

Advanced

Create directories if set to true, non-existing directories in the File URL attribute
path are created

false (default) |
true

Write field names Field labels are not written to the output file(s) by default. If set
to true, labels of individual fields are printed to the output.
Please note field labels differ from field names: labels can be
duplicate and you can use any character in them (e.g. accents,
diacritics). See Record Pane (p. 159).

false (default) |
true

Records per file Maximum number of records to be written to each output file.
If specified, the dollar sign(s) $ (number of digits placeholder)
must be part of the file name mask, see Supported File URL
Formats for Writers (p. 309)

1 - N

Bytes per file Maximum size of each output file in bytes. If specified, the
dollar sign(s) $ (number of digits placeholder) must be part
of the file name mask, see Supported File URL Formats for
Writers (p. 309) To avoid splitting a record into two files, max
size can be slightly overreached.

1 - N

Number of skipped
records

how many records/rows to be skipped before writting the first
record to the output file, see Selecting Output Records (p. 316).

0 (default) - N

Max number of
records

how many records/rows to be written to all output files, see
Selecting Output Records (p. 316).

0-N

Exclude fields Sequence of field names separated by semicolon that will not be
written to the output. Can be used when the same fields serve
as a part of Partition key.

Chapter 54. Writers

544

Attribute Req Description Possible
values

Partition key 2) sequence of field names separated by semicolon defining the
records distribution into different output files - records with
the same Partition key are written to the same output file.
According to the selected Partition file tag use the proper
placeholder ($ or #) in the file name mask, see Partitioning
Output into Different Output Files (p. 317)

Partition lookup table 1) ID of lookup table serving for selecting records that should be
written to output file(s). See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition file tag 2) 2) By default, output files are numbered. If it is set to Key file
tag, output files are named according to the values of Partition
key or Partition output fields. See Partitioning Output into
Different Output Files (p. 317) for more information.

Number file tag
(default) | Key
file tag

Partition output fields 1) 1) Fields of Partition lookup table whose values serve to name
output file(s). See Partitioning Output into Different Output
Files (p. 317) for more information.

Partition unassigned
file name

Name of the file into which the unassigned records should
be written if there are any. If not specified, data records
whose key values are not contained in Partition lookup table
are discarded. See Partitioning Output into Different Output
Files (p. 317) for more information.

2) Either both or neither of these attributes must be specified
1) Either both or neither of these attributes must be specified

Tips & Tricks

• Field size limitation 1: UniversalDataWriter can write fields of a size up to 4kB. To enable bigger fields to
be written into a file, increase the DataFormatter.FIELD_BUFFER_LENGTH property, see Changing Default
CloverETL Settings (p. 88). Enlarging this buffer does not cause any significant increase of the graph memory
consumption.

• Field size limitation 2: Another way how to solve the big-fields-to-be-written issue is the utilization of the
Normalizer (p. 602) component that can split large fields into several records.

Chapter 54. Writers

545

XLSDataWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the right Writer for your purposes, see Writers Comparison (p. 309).

Short Summary

XLSDataWriter writes data to XLS or XLSX files.

Important

Since Clover 3.3., there are new powerful components available for spreadsheet reading/writing
- SpreadsheetDataReader (p. 400) and SpreadsheetDataWriter (p. 522). The preceding XLS
components (XLSDataReader (p. 415) and XLSDataWriter (p. 545)) have remained compatible,
though.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L
XLSDataWriter XLS(X) file 1 0-1 no no no no

Abstract

XLSDataWriter writes data to XLS or XLSX files (local or remote). It can also compress output files, write data
to console, output port, or dictionary.

Note

Remember that XLSDataWriter has high memory requirements and may store data in the memory
(see the Disable temporary files (inMemory mode) attribute). When working with XLSX files, all
data are stored in the memory.

Icon

Ports

Chapter 54. Writers

546

Port type Number Required Description Metadata

Input 0 yes For received data records Any

Output 0 no For port writing. See Writing to
Output Port (p. 311).

One field (byte, cbyte,
string).

XLSDataWriter Attributes

Attribute Req Description Possible
values

Basic

Type of parser Specifies the formatter to be used. By default, component
guesses according the extension (XLS or XLSX).

Auto (default) |
XLS | XLSX

File URL yes Attribute specifying where received data will be written (XLS
or XLSX file, console, output port, dictionary). See Supported
File URL Formats for Writers (p. 309).

Sheet name 1) The name of the sheet to which records are written. If not set, a
sheet with default name is created and inserted as the last of all
sheets. Can also be a sequence of field names, each of them is
prefixed by dollar sign, separated by semicolon, colon, or pipe.
Thus, to different values of such sequence, different sheets are
created. For example, $Country;$City. This way, different
countries along with cities create different sheets. Remember
that the sheets are created in the order of record values. For this
reason, first you should sort records on this field and only then
write the records to the output XLS(X) file.

Sheet[0-9]+
(The number in
the name is
the number of
the last sheet
with the same
name structure:
Sheet[0-9]+.)

Sheet number 1) The number of the sheet to which records are written. If not set,
a sheet with default name is created and inserted as the last of
all sheets.

0-N

Charset Encoding of records written to the output. ISO-8859-1
(default) |
<other
encodings>

Append to the sheet By default, new records overwrite the older ones in one sheet.
If set to true, new records are appended to the older records
stored in the sheet(s).

false (default) |
true

Metadata row Number of the row to which the field names should be written.
By default, field names are written to the header of the sheet.

0 (default) | 1-N

Advanced

Create directories By default, non-existing directories are not created. If set to
true, they are created.

false (default) |
true

Disable temporary
files (inMemory
mode)

Temporary files, which are created during the writing, are stored
on the disk by default. If you set this attribute to true, you will
force storing those files in the memory. Note: it can be applied
to xls files only.

false

Start row Row of the sheet starting from which the records are written. By
default, records are written to the sheet starting from the first
row.

1 (default) | 2-N

Start column Column of the sheet starting from which the records are written.
By default, records are written to the sheet starting from the first
column.

A (default) | B-
*

Chapter 54. Writers

547

Attribute Req Description Possible
values

Records per file Maximum number of records to be written to one output file. 1-N

Number of skipped
records

Number of records to be skipped. See Selecting Output
Records (p. 316).

0-N

Max number of
records

Maximum number of records to be written to all output files.
See Selecting Output Records (p. 316).

0-N

Exclude fields Sequence of field names separated by semicolon that should not
be written to the output. Can be used when the same fields serve
as a part of Partition key or when the field(s) is(are) selected
as Sheet name as shown above.

Partition key Key whose values define the distribution of records among
multiple output files. See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition lookup table 2) ID of lookup table serving for selecting records that should be
written to output file(s). See Partitioning Output into Different
Output Files (p. 317) for more information.

Partition file tag By default, output files are numbered. If it is set to Key file
tag, output files are named according to the values of Partition
key or Partition output fields. See Partitioning Output into
Different Output Files (p. 317) for more information.

Number file tag
(default) | Key
file tag

Partition output fields 2) Fields of Partition lookup table whose values serve to name
output file(s). See Partitioning Output into Different Output
Files (p. 317) for more information.

Partition unassigned
file name

Name of the file into which the unassigned records should
be written if there are any. If not specified, data records
whose key values are not contained in Partition lookup table
are discarded. See Partitioning Output into Different Output
Files (p. 317) for more information.

Legend:

1) One of these attributes can be specified. Sheet name has higher priority. Before creation of output file, only
Sheet name can be set. If neither of these is specified, new sheet is created on each graph run.

2) Either both or neither of these attributes must be specified.

Important

Remember that if you want to write data into multiple sheets of the same file, you must write data
to each sheet in a separate phase!

Chapter 54. Writers

548

XMLWriter

We assume you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 44, Common Properties of Writers (p. 308)

If you want to find the appropriate Writer for your purpose, see Writers Comparison (p. 309).

Short Summary

XMLWriter formats records into XML files.

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

XMLWriter XML file 1-n 0-1 no no no no

Abstract

XMLWriter receives input data records, joins them and formats them into a user-defined XML structure. Even
complex mapping is possible and thus the component can create arbitrary nested XML structures.

XMLWriter combines streamed and cached data processing depending on the complexity of the XML structure.
This allows to produce XML files of arbitrary size in most cases. However, the output can be partitioned into
multiple chunks - i.e. large difficult-to-process XML files can be easily split into multiple smaller chunks.

Standard output options are available: files, compressed files, the console, an output port or a dictionary.

The component needs Eclipse v. 3.6 or higher to run.

Icon

Ports

Port type Port
number

Required Description Metadata

Input 0-N At least
one

Input records to be joined and
mapped into an XML file

Any (each port can have different
metadata)

Chapter 54. Writers

549

Port type Port
number

Required Description Metadata

Output 0 no For port writing, see Writing to
Output Port (p. 311).

One field (byte, cbyte,
string).

XMLWriter Attributes

Attribute Req Description Possible values

Basic

File URL yes The target file for the output XML. See Supported File URL
Formats for Writers (p. 309).

Charset The encoding of an output file generated by XMLWriter. ISO-8859-1
(default) | <other
encodings>

Mapping 1) Defines how input data is mapped onto an output XML. See
Advanced Description (p. 550) for more information.

Mapping URL 1) External text file containing the mapping definition.
See Creating the Mapping - Mapping Ports and
Fields (p. 558). and Creating the Mapping - Source
Tab (p. 562). for the mapping file format. Put your
mapping to an external file if you want to share a single
mapping among multiple graphs.

XML Schema The path to an XSD schema. If XML Schema is set, the
whole mapping can be automatically pre-generated from
the schema. To learn how to do it, see Creating the Mapping
- Using Existing XSD Schema (p. 561) . The schema has
to be placed in the meta folder.

none (default) | any
valid XSD schema

Advanced

Create directories If true, non existing directories included in the File URL
path will be automatically created.

false (default) | true

Omit new lines
wherever possible

By default, each element is written to a separate line. If set
to true, new lines are omitted when writing data to the
output XML structure. Thus, all XML tags are on one line
only.

false (default) | true

Cache size A size of of the database used when caching data from ports
to elements (the data is first processed then written). The
larger your data is, the larger cache is needed to maintain
fast processing.

default: auto | e.g.
300MB, 1GB etc.

Sorted input Tells XMLWriter whether the input data is sorted. Setting
the attribute to true declares you want to use the sort order
defined in Sort keys, see below.

false(default)|true

Sort keys Tells XMLWriter how the input data is sorted, thus
enabling streaming (see Creating the Mapping - Mapping
Ports and Fields (p. 558)). The sort order of fields can
be given for each port in a separate tab. Working with Sort
keys has been described in Sort Key (p. 276).

Records per file Maximum number of records that are written to a single file.
See Partitioning Output into Different Output Files (p. 317)

1-N

Max number of
records

Maximum number of records written to all output files. See
Selecting Output Records (p. 316).

0-N

Chapter 54. Writers

550

Attribute Req Description Possible values

Partition key A key whose values control the distribution of records
among multiple output files. See Partitioning Output into
Different Output Files (p. 317) for more information.

Partition lookup table The ID of a lookup table. The table serves for selecting
records which should be written to the output file(s). See
Partitioning Output into Different Output Files (p. 317) for
more information.

Partition file tag By default, output files are numbered. If this attribute is set
to Key file tag, output files are named according to
the values of Partition key or Partition output fields. See
Partitioning Output into Different Output Files (p. 317) for
more information.

Number file tag
(default) | Key file
tag

Partition output fields Fields of Partition lookup table whose values serve
for naming output file(s). See Partitioning Output into
Different Output Files (p. 317) for more information.

Partition unassigned
file name

The name of a file that the unassigned records should be
written into (if there are any). If it is not given, the data
records whose key values are not contained in Partition
lookup table are discarded. See Partitioning Output into
Different Output Files (p. 317) for more information.

Legend:

1) One of these attributes has to be specified. If both are defined, Mapping URL has a higher priority.

Advanced Description

XMLWriter's core part is the mapping editor that lets you visually map input data records onto an XML tree
structure (see Figure 54.26, “Mapping Editor” (p. 551)). By dragging the input ports or fields onto XML
elements and attributes you map them, effectively populating the XML structure with data.

What is more, the editor gives you direct access to the mapping source where you can virtually edit the output
XML file as text. You use special directives to populate the XML with CloverETL data there (see Figure 54.34,
Source tab in Mapping editor. (p. 562)).

The XML structure can be provided as an XSD Schema (see the XML Schema attribute) or you can define the
structure manually from scratch.

You can access the visual mapping editor clicking the "..." button of the Mapping attribute.

Chapter 54. Writers

551

Figure 54.26. Mapping Editor

When inside the editor, notice its two main tabs in the upper left corner of the window:

• Mapping - enables you to design the output XML in a visual environment

• Source - that is where you can directly edit the XML mapping source code

Changes made in the Mapping tab take immediate effect in the Source tab and vice versa. In other words, both
editor tabs allow making equal changes.

When you switch to the Mapping tab, you will notice there are three basic parts of the window:

1. Left hand part with Field and Type columns - represents ports of the input data. Ports are represented by their
symbolic names in the Field column. Besides the symbolic name, ports are numbered starting from $0 for
the first port in the list. Underneath each port, there is a list of all its fields and their data types. Please note
neither port names, field names nor their data types can be edited in this section. They all depend merely on
the metadata on the XMLWriter's input edge.

2. Right hand part with Node and Content columns - the place where you define the structure of output elements ,
attributes , wildcard elements or wildcard attributes and namespaces. In this section, data can be modified either
by double-clicking a cell in the Node or the Content column. The other option is to click a line and observe
its Property in the bottom part section of the window.

3. Bottom part with Property and Value columns - for each selected Node, this is where its properties are
displayed and modified.

Creating the Mapping - Designing New XML Structure

The mapping editor allows you to start from a completely blank mapping - first designing the output XML structure
and then mapping your input data to it. The other option is to use your own XSD schema, see Creating the Mapping
- Using Existing XSD Schema (p. 561).

Chapter 54. Writers

552

As you enter a blank mapping editor, you can see input ports on the left hand side and a root element on the
right hand side. The point of mapping is first to design the output XML structure on the right hand side (data
destination). Second, you need to connect port fields on the left hand side (data source) to those pre-prepared XML
nodes (see Creating the Mapping - Mapping Ports and Fields (p. 558)).

Let us now look on how to build a tree of nodes the input data will flow to. To add a node, right-click an element,
click Add Child or Add Property and select one of the available options:

Figure 54.27. Adding Child to Root Element.

Important

For a closer look on adding nodes, manipulating them and using smart drag and drop mouse
techniques, see Working with Nodes (p. 557).

Namespace

Adds a Namespace as a new xmlns:prefix attribute of the selected element. Declaring a Namespace allows
you to use your own XML tags. Each Namespace consists of a prefix and an URI. In case of XMLWriter mapping,
the root element has to declare the clover namespace, whose URI is http://www.cloveretl.com/ns/
xmlmapping. That grants you access to all special XML mapping tags. If you switch to the Source tab, you will
easily recognise those tags as they are distinct by starting with clover:, e.g. clover:inport="2". Keep in
mind that no XML tag beginning with the clover: prefix is actually written into the output XML.

Wildcard attribute

Adds a special directive to populate the element with attributes based on Include / Exclude wildcard patterns
instead of mapping these attributes explicitly. This feature is useful when you need to retain metadata
independence.

Attribute names are generated from field names of the respective metadata. Syntax: use $portNumber.field
or $portName.field to specify a field, use * in the field name for "any string". Use ; to specify multiple
patterns.

Example 54.10. Using Expressions in Ports and Fields

$0.* - all fields on port 0

$0.*;$1.* - all fields on ports 0 and 1 combined

$0.address* - all fields beginning with the "address" prefix, e.g. $0.addressState, $0.addressCity, etc.

$child.* - all fields on port child (the port is denoted by its name instead of an explicit number)

There are two main properties in a Wildcard attribute. At least one of them has to be always set:

• Include - defines the inclusion pattern, i.e. which fields should be included in the automatically generated list.
That is defined by an expression whose syntax is $port.field. A good use of expressions explained above
can be made here. Include can be left blank provided Exclude is set (and vice versa). If Include is blank,
XMLWriter lets you use all ports that are connected to nodes up above the current element (i.e. all its parents)
or to the element itself.

Chapter 54. Writers

553

• Exclude - lets you specify the fields that you explicitly do not want in the automatically generated list.
Expressions can be used here the same way as when working with Include.

Example 54.11. Include and Exclude property examples

1. Include = $0.i*

Exclude = $0.index

Include takes all fields from port $0 starting with the 'i' character. Exclude then removes the index field of
the same port.

2. Include = (blank)

Exclude = $1.*;$0.id

Include is not given so all ports connected to the node or up above are taken into consideration. Exclude then
removes all fields of port $1 and the id field of port $0. Condition: ports $0 and $1 are connected to the element
or its parents.

Figure 54.28. Wildcard attribute and its properties.

Attribute

Adds a single attribute to the selected element. Once done, the Attribute name can be changed either by double-
clicking it or editing Attribute name at the bottom. The attribute Value can either be a fixed string or a field value
that you map to it. You can even combine static text and multiple field mappings. See example below.

Example 54.12. Attribute value examples

Film - the attribute's value is set to the literal string "Film"

$1.category - the category field of port $1 becomes the attribute value

ID: '{$1.movie_id}' - produces "ID: '535'", "ID: '536'" for movie_id field values 535 and 536 on port
$1. Please note the curly brackets that can optionally delimit the field identifier.

Chapter 54. Writers

554

Figure 54.29. Attribute and its properties.

Path and Description are common properties for most nodes. They both provide a better overview for the node.
In Path, you can observe how deep in the XML tree a node is located.

Element

Adds an element as a basic part of the output XML tree.

Figure 54.30. Element and its properties.

Chapter 54. Writers

555

Depending on an element's location in the tree and ports connected to it, the element can have these properties:

• Element name - name of the element as it will appear in the output XML.

• Value - element value. You can map a field to an element and it will populate its value. If on the other hand
you map a port to an element, you will create a Binding (see Creating the Mapping - Mapping Ports and
Fields (p. 558)). If Value is not present, right-click the element and choose Add Child - Text node. The
element then gets a new field representing its text value. The newly created Text node cannot be left blank.

• Write null attribute - by default, attributes with values mapping to NULL will not be put to the output.
However, here you can explicitly list names of attributes that will always appear in the output.

Example 54.13. Writing null attribute

Let us say you have an element <date> and its attribute "time" that maps to input port 0, field time (i.e. <date
time="$0.time"/>). For records where the time field is empty (null), the default output would be:

 <date/>

Setting Write null attribute to time produces:

 <date time="" />

• Omit null attribute - in contrast to Write null attribute, this one specifies which of the current element's
attributes will NOT be written if their values are null. Obviously, such behaviour is default. The true purpose
of Omit null attribute lies in wildcard expressions in combination with Write null attribute.

Example 54.14. Omitting Null Attribute

Let us say you have an element with a Wildcard attribute. The element is connected to port 2 and its fields
are mapped to the wildcard attribute, i.e. Include=$2.*. You know that some of the fields contain no data. You
would like to write SOME of the empty ones, e.g. height and width. To achieve that, click the element
and set:

Write null attribute=$2.* - forces writing of all attributes although they are null

Omit null attribute=$2.height;$2.width - only these attributes will not be written

• Hide - in elements having a port connected, set Hide to true to force the following behaviour: the selected
element is not written to the output XML while all its children are. By default, the property is set to false.
Hidden elements are displayed with a grayish font in the Mapping editor.

Chapter 54. Writers

556

Example 54.15. Hide Element

Imagine an example XML:

<address>
 <city>Atlanta</city>
 <state>Georgia</state>
</address>
<address>
 <city>Los Angeles</city>
 <state>California</state>
</address>

Then hiding the address element produces:

<city>Atlanta</city>
<state>Georgia</state>
<city>Los Angeles</city>
<state>California</state>

• Partition - by default, partitioning is done according to the first and topmost element that has a port connected to
it. If you have more such elements, set Partition to true in one of them to distinguish which element governs
the partitioning. Please note partitioning can be set only once. That is if you set an element's Partition to true,
you should not set it in either of its subelements (otherwise the graph fails). For a closer look on partitioning,
see Partitioning Output into Different Output Files (p. 317).

Example 54.16. Partitioning According to Any Element

In the mapping snippet below, setting Partition to true on the <invoice> element produces the following
behaviour:

<person> will be repeated in every file

<invoice> will be divided (partitioned) into several files

<person clover:inPort="0">
 <firstname> </firstname>
 <surname> </surname>
</person>

<invoice clover:inPort="1" clover:partition="true""">
 <customer> </customer>
 <total> </total>
</invoice>

Wildcard element

Adds a set of elements. The Include and Exclude properties influence which elements are added and which not.
To learn how to make use of the $port.field syntax, please refer to Wildcard attribute (p. 552). Rules and
examples described there apply to Wildcard element as well. What is more, Wildcard element comes with two
additional properties, whose meaning is closely related to the one of Write null attribute and Omit null attribute:

• Write null element - use the $port.field syntax to determine which elements are written to the output
despite their having no content. By default, if an element has no value, it is not written. Write null element
does not have to be entered on condition that the Omit null element is given. Same as in Include and Exclude,
all ports connected to the element or up above are then available. See example below.

Chapter 54. Writers

557

• Omit null element - use the $port.field syntax to skip blank elements. Even though they are not written
by default, you might want to use Omit null element to skip the blank elements you previously forced to be
written in Write null element. Alternatively, using Omit null element only is also possible. That means you
exclude blank elements coming from all ports connected to the element or above.

Example 54.17. Writing and omitting blank elements

Say you aim to create an XML file like this:

<person>
 <firstname>William</firstname>
 <middlename>Makepeace</middlename>
 <surname>Thackeray</surname>
</person>

but you do not need to write the element representing the middle name for people without it. What you need
to do is to create a Wildcard element, connect it to a port containing data about people (e.g. port $0 with a
middle field), enter the Include property and finally set:

Write null element = $0.*

Omit null element = $0.middle

As a result, first names and surnames will always be written (even if blank). Middle name elements will not be
written if the middle field contains no data.

Text node

Adds content of the element. It is displayed at the very end of an uncollapsed element, i.e. always behind its
potential Binding, Wildcard attributes or Attributes. Once again, its value can either be a fixed string, a port's field
or their combination.

Comment

Adds a comment. This way you can comment on every node in the XML tree to make your mapping clear and
easy-to-read. Every comment you add is displayed in the Mapping editor only. What is more, you can have it
written to the output XML file setting the comment's Write to the output to true. Examine the Source tab to see
your comment there, for instance:

 <!-- clover:write This is my comment in the Source tab. It will be written to the output
 XML because I set its 'Write to output' to true. There is no need to worry about the
 "clover:write" directive at the beginning as no attribute/element starting with
 the "clover" prefix is put to the output.
 -->

Working with Nodes

Having added the first element, you will notice that every element except for the root provides other options than
just Add Child (and Add Property). Right-click an element to additionally choose from Add Sibling Before or
Add Sibling After. Using these, you can have siblings added either before or after the currently selected element.

Besides the right-click context menu, you can use toolbar icons located above the XML tree view.

Figure 54.31. Mapping editor toolbar.

The toolbar icons are active depending on the selected node in the tree. Actions you can do comprise:

Chapter 54. Writers

558

• Undo and Redo the last action performed.

• Add Child Element under the selected element.

• Add (child) Wildcard Element under the selected element.

• Add Sibling Element After the selected element.

• Add Child Attribute to the selected element

• Add Wildcard Attribute to the selected element.

• Remove the selected node

• More actions - besides other actions described above, you can especially Add Sibling Before or Add Sibling
After

When building the XML tree from scratch (see Creating the Mapping - Designing New XML Structure (p. 551)
) why not make use of these tips saving mouse clicks and speeding up your work:

• drag a port and drop it onto an element - you will create a Binding, see Creating the Mapping - Mapping Ports
and Fields (p. 558)

• drag a field and drop it onto an element - you will add a child element of the same name as the field

• drag an available field (or even more fields) onto an element - you will create a subelement whose name is the
field's name. Simultaneously, the element's content is set to $portNumber.fieldName.

• drag one or more available ports and drop it onto an element with a Binding - you will create a Wildcard
element whose Include will be set to $portNumber.*

• combination of the two above - drag a port and a field (even from another port) onto an element with a
Binding - the port will be turned to Wildcard element (Include=$portNumber.*), while the field becomes
a subelement whose content is $portNumber.fieldName

• drag an available port/field and drop it onto a Wildcard element/attribute - the port or field will be added to the
Include directive of the Wildcard element/attribute. If it is a port, it will be added as $0.* (example for port 0).
If it is a field, it will be added as $0.priceTotal (example for port 0, field priceTotal).

• drag a port/field and drop it onto a property such as Include or Exclude (or any other excluding Input in
Binding). That can be done either in the Content or Property panes - as a result, the property receives the
value of the port/field. Multiselecting fields and dragging them works, too. Morevoer, if you hold down Ctrl
while dragging, the port/field value will be added at the end of the property (not replacing it). Say your Include
property currently contains e.g. $0.*. Dragging field1 of port $1 and dropping it onto Include while
holding Ctrl will produce this content: $0.*;$1.field1.

Every node you add can later be moved in the tree by a simple drag and drop using the left mouse button. That
way you can re-arrange your XML tree any way you want. Actions you can do comprise:

• drag an (wildcard) element and drop it on another element - the (wildcard) element becomes a subelement

• drag an (wildcard) attribute and drop it on an element - the element now has the (wildcard) attribute

• drag a text node and drop it on an element - the element's value is now the text node

• drag a namespace and drop it on an element - the element now has the namespace

Removing nodes (such as elements or attributes) in the Mapping editor is also carried out by pressing Delete or
right-clicking the node and choosing Remove. To select more nodes at once, use Ctrl+click or Shift+click .

Any time during your work with the mapping editor, press Ctrl+Z to Undo the last action performed or Ctrl+Y
to Redo it.

Creating the Mapping - Mapping Ports and Fields

Chapter 54. Writers

559

In Creating the Mapping - Designing New XML Structure (p. 551) , you have learned how to design the output
XML structure your data will flow to. Step two in working with the Mapping editor is connecting the data source
to your elements and attributes. The data source is represented by ports and fields on the left hand side of the
Mapping editor window. Remember the Field and Type columns cannot be modified as they are dependent on
the metadata of the XMLWriter's input ports.

To connect a field to an XML node, click a field in the Field column, drag it to the right hand part of the window
and drop it on an XML node. The result of that action differs according to the node type:

• element - the field will supply data for the element value

• attribute - the field will supply data for the atrribute value

• text node - the field will supply data for the text node

• advanced drag and drop mouse techniques will be discussed below

A newly created connection is displayed as an arrow pointing from a port/field to a node.

To map a port, click a port in the left hand side of the Mapping editor and drag it to the right hand part of the
window. Unlike working with fields, a port can only be dropped on an element. Please note that dragging a port
on an element DOES NOT map its data but rather instructs the element to repeat itself with each incoming record
in that port. As a concequence, a new Binding pseudo-element is created, see picture below.

Note

Binding an input port to the root element has some limitations. The root can only be bound in this
way:

• You have to make sure there will only be one record coming to the input port. Then there is no
need to specify partitioning (a warning message will be displayed, though).

• If more than one record is coming to the input port, partitioning has to be specified. Otherwise
XMLWriter will generate an invalid XML file (with multiple root elements).

Figure 54.32. Binding of Port and Element.

Chapter 54. Writers

560

A Binding specifies mapping of an input port to an element. This binding drives the element to repeat itself with
every incoming record.

Mouse over a Binding to have a tooltip displayed. The tooltip informs you whether the port data is being cached
or streamed (affecting overall performance) and which port from. Moreover, in case of caching, you learn how
your data would have to be sorted to enable streaming.

Every Binding comes with a set of properties:

• Input port - the number of the port the data flows flows from. Obviously, you can always easily check which
port a node is connected to looking at the arrow next to it.

• Key and Parent key - the pair of keys determines how the incoming data are joined. In Key, enter names of the
current element's available fields. In Parent key, enter names of fields available to the element's direct parent.
Consequently, the data is joined when the incoming key values equal. Keep in mind that if you specify one of
the pair of keys, you have to enter the other one too. To learn which fields are at disposal, click the "..." button
located on the right hand side of the key value area. The Edit key window will open, enabling you to neatly
choose parts of the key by adding them to the Key parts list. Naturally, you have to have exactly as many keys
as parentKeys, otherwise errors occur.

If fields of key and parentKey have numerical values, they are compared regardless of their data type. Thus
e.g. 1.00 (double) is considered equal to 1 (integer) and these two fields would be joined.

Note

Keys are not mandatory properties. If you do not set them, the element will be repeated for every
record incoming from the port it is bound to. Use keys to actually select only some of those records.

• Filter - a CTL expression selecting which records are written to the output and which not. See Advanced
Description (p. 589) for reference.

To remove a Binding, click it and press Delete (alternatively, right-click and select Remove or find this option
in the toolbar).

Finally, a Binding can specify a JOIN between an input port and its parent node in the XML structure (meaning
the closest parent node that is bound to an input port). Note that you can join the input with itself, i.e. the element
and its parent being driven by the same port. That, however, implies caching and thus slower operation. See the
following example:

Chapter 54. Writers

561

Example 54.18. Binding that serves as JOIN

Let us have two input ports:

0 - customers (id, name, address)

1 - orders (order_id, customer_id, product, total)

We need some sort of this output:

<customer id="1">
 <name>John Smith</name>
 <address>35 Bowens Rd, Edenton, NC (North Carolina)</address>
 <order>
 <product>Towel</product>
 <total>3.99</total>
 </order>
 <order>
 <product>Pillow</product>
 <total>7.99</total>
 </order>
</customer>

<customer id="2">
 <name>Peter Jones</name>
 <address>332 Brixton Rd, Louisville, KY (Kentucky)</address>
 <order>
 <product>Rug</product>
 <total>10.99</total>
 </order>
</customer>
</programlisting>

You can see we need to join "orders" with "customer" on (orders.customer_id = customers.id). Port 0 (customers)
is bound to the <customer> element, port 1 (orders) is bound to <order> element. Now, this is very easy to setup
in the Binding pseudoattribute of the nested "order" element. Setting Key to "customer_id" and Parent key to
"id" does exactly the right job.

Multivalue Fields

As of Clover v. 3.3, XMLWriter supports mutlivalue fields in metadata. That includes mapping lists and maps to
the output XML. For mor information, see Multivalue Fields (p. 167) and Data Types in CTL2 (p. 894).

The only thing to mind in XMLWriter is how lists vs. maps look in the output file. A map is written to a single tag
(in between the curly { } brackets) while a list is separated to n tags where n is the list's element count. Example:

 <canadianMap>{ot=Ontario, bc=British_Colubmia, at=Alberta, nt=Northern_Territory}</canadianMap> <!-- map with four key-value pairs -->

 <valueList>-65.25</valueList> <!-- a three-element list -->
 <valueList>71.49</valueList>
 <valueList>-35.02</valueList>

Creating the Mapping - Using Existing XSD Schema

There is no need to create an XML structure from scratch if you already hold an XSD schema. In that case, you
can use the schema to pre-generate the the XML tree. The only thing that may remain is mapping ports to XML
nodes, see Creating the Mapping - Mapping Ports and Fields (p. 558).

Chapter 54. Writers

562

First of all, start by stating where your schema is. A full path to the XSD has to be set in the XML Schema
attribute. Second, open the Mapping editor by clicking Mapping. Third, when in the editor, choose a root element
from the XSD and finally click Change root element (see picture below). The XML tree is then automatically
generated. Remember you still have to use the clover namespace for the process to work properly.

Figure 54.33. Generating XML from XSD root element.

Creating the Mapping - Source Tab

In the Source tab of the Mapping editor you can directly edit the XML structure and data mapping. The concept
is very simple:

1) write down or paste the desired XML data

2) put data field placeholders (e.g. $0.field) into the source wherever you want to populate an element or
attribute with input data

3) create port binding and (join) relations - Input port, Key, Parent key

Figure 54.34. Source tab in Mapping editor.

Here you are the same code as in the figure above for your own experiments:

Chapter 54. Writers

563

<?xml version="1.0" encoding="UTF-8"?>
<actors xmlns:clover="http://www.cloveretl.com/ns/xmlmapping">
 <actor clover:inPort="0" clover:include="$0.*" clover:exclude="$0.movie_id">
 <movies>
 <movies clover:inPort="1" clover:key="actor_id" clover:parentKey="actor_id"
 clover:hide="true">
 <movie title="$1.title" category="$1.category" movie_id="$1.movie_id">
 <clover:elements clover:include="$1.*"
 clover:exclude="$1.movie_id;$1.title;$1.category;$1.actor_id"/>
 </movie>
 </movies>
 </movies>
 </actor>
</actors>

Changes made in either of the tabs take immediate effect in the other one. For instance, if you connect port $1
to an element called invoice in Mapping then switching to Source, you will see the element has changed to:
<invoice clover:inPort="1">.

Source tab supports drag and drop for both ports and fields located on the left hand side of the tab. Dragging a
port, e.g. $0 anywhere into the source code inserts the following: $0.*, meaning all its fields are used. Dragging
a field works the same way, e.g. if you drag field id of port $2, you will get this code: $2.id.

There are some useful keyboard shortcuts in the Source tab. Ctrl+F brings the Find/Replace dialog. Ctrl+L
jumps quickly to a line you type in. Furthermore, a highly interactive Ctrl+Space Content Assist is available. The
range of available options depends on the cursor position in the XML:

I. Inside an element tag - the Content Assist lets you automatically insert the code for Write attributes when null,
Omit attributes when null, Select input data, Exclude attributes, Filter input data, Hide this element,
Include attributes, Define key, Omit when null, Define parent key or Partition. On the picture below, please
notice you have to insert an extra space after the element name so that the Content Assist could work.

Figure 54.35. Content Assist inside element.

The inserted code corresponds to nodes and their properties as described in Creating the Mapping - Designing
New XML Structure (p. 551)

II. Inside the "" quotes - Content Assist lets you smoothly choose values of node properties (e.g. particular ports
and fields in Include and Exclude) and even add Delimiters. Use Delimiters to separate multiple expressions
from each other.

Chapter 54. Writers

564

III.In a free space in between two elements - apart from inserting a port or field of your choice, you can add
Wildcard element (as described in Creating the Mapping - Designing New XML Structure (p. 551)),
Insert template or Declare template - see below.

Example 54.19. Insert Wildcard attributes in Source tab

First, create an element. Next, click inside the element tag, press Space, then press Ctrl+Space choose Include
attributes. The following code is inserted: clover:include="". Afterwards, you have to determine which
port and fields the attributes will be received from (i.e. identical activity to setting the Include property in the
Mapping tab). Instead of manually typing e.g. $1.id, use the Content Assist again. Click inside the "" brackets,
press Ctrl+Space and you will get a list of all available ports. Choose one and press Ctrl+Space again.

Now that you are done with include press Space and then Ctrl+Space again. You will see the Content Assist
adapts to what you are doing and where you are. A new option has turned up: Exclude attributes. Choose it to
insert clover:exclude="". Specifying its value corresponds to entering the Exclude property in Mapping.

Figure 54.36. Content Assist for ports and fields.

One last thing about the Source tab. Sometimes, you might need to work with the $port.field syntax a little
more. Imagine you have port $0 and its price field. Your aim is to send those prices to an element called e.g.
subsidy. First, you establish a connection between the port and the element. Second, you realize you would
like to add the US dollar currency right after the price figure. To do so, you just edit the source code like this
(same changes can be done in Mapping):

<subsidy>$0.price USD</subsidy>

However, if you needed to have the "USD" string attached to the price for a reason, use the { } brackets to separate
the $port.field syntax from additional strings:

<subsidy>{$0.price}USD</subsidy>

If you ever needed to suppress the dollar placeholder, type it twice. For instance, if you want to print "$0.field"
as a string to the output, which would normally map field data coming from port 0, type "$$0.field". That way
you will get a sort of this output:

<element attribute="$0.field">

Templates and Recursion

A template is a piece of code that is used to insert another (larger) block of code. Templates can be inserted into
other templates, thus creating recursive templates.

Chapter 54. Writers

565

As mentioned above, the Source tab's Content Assist allows you to smoothly declare and use your own templates.
The option is available when pressing Ctrl+Space in a free space in between two elements. Afterwards, choose
either Declare template or Insert template.

The Declare template inserts the template header. First, you need to enter the template name. Second, you fill it
with your own code. Example template could look like this:

<clover:template clover:name="templCustomer">
<customer>
 <name>$0.name</name>
 <city>$0.city</city>
 <state>$0.state</state>
</customer>
</clover:template>

To insert this template under one of the elements, press Ctrl+Space and select Insert template. Finally, fill in
your template name:

<clover:insertTemplate clover:name="templCustomer"/>

In recursive templates, the insertTemplate tag appears inside the template after its potential data. When
creating recursive structures, it is crucial to define keys and parent keys. The recursion then continues as long as
there are matching key and parentKey pairs. In other words, the recursion depth is dependent on your input
data. Using filter can help to get rid of the records you do not need to be written.

566

Chapter 55. Transformers
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Some of the components are intermediate nodes of the graph. These are called Transformers or Joiners.

For information about Joiners see Chapter 56, Joiners (p. 643). Here we will describe Transformers.

Transformers receive data through the connected input port(s), process it in the user-specified way and send it
out through the connected output port(s).

Components can have different properties. But they also can have some in common. Some properties are common
for all of them, others are common for most of the components, or they are common for Transformers only.
You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

We can distinguish Transformers according to what they can do.

• One Transformer only copies each input data to all connected outputs.

• SimpleCopy (p. 637) copies each input data record to all connected output ports.

• One Transformer passes only some input records to the output.

• DataSampler (p. 575) passes some input records to the output based on one of the selected filtering
strategies.

• One Transformer removes duplicate data records.

• Dedup (p. 577) removes duplicate data. Duplicate data can be sent out through the optional second output
port.

• Other components filter data according to the user-defined conditions:

• ExtFilter (p. 588) compares data with the user-defined condition and sends out records matching this
condition. Data records not matching the condition can be sent out through the optional second output port.

• Other Transformer sort data each in different way:

• ExtSort (p. 591) sorts input data.

• FastSort (p. 593) sorts input data faster than ExtSort.

• SortWithinGroups (p. 639) sorts input data withing groups of sorted data.

• One Transformer is able to aggregate information about data:

• Aggregate (p. 568) aggregates information about input data records.

• One Transformer distributes input records among connected output ports:

• Partition (p. 609) distributes individual input data records among different connected output ports.

• LoadBalancingPartition (p. 616) distributes incoming input data records among different output ports
according workload of downstream components.

• One Transformer receives data through two input ports and sends it out through three output ports. Data
contained in the first port only, in both ports, or in the second port go to corresponding output port.

Chapter 55. Transformers

567

• DataIntersection (p. 572) intersects sorted data from two inputs and sends it out through three connected
output ports as defined by the intersection.

• Other Transformers can receive data records from multiple input ports and send them all through the unique
output port.

• Concatenate (p. 571) receives data records with the same metadata from one or more input ports, puts
them together, and sends them out through the unique output port. Data records from each input port are sent
out after all data records from previous input ports.

• SimpleGather (p. 638) receives data records with the same metadata from one or more input ports, puts
them together, and sends them out through the unique output port as fast as possible.

• Merge (p. 597) receives sorted data records with the same metadata from two or more input ports, sorts
them all, and sends them out through the unique output port.

• Other Transformers receive data through connected input port, process it in the user-defined way and send it
out through the connected output port(s).

• Denormalizer (p. 579) creates single output data record from a group of input data records.

• Pivot (p. 618) is a simple form of Denormalizer which creates a pivot table, summarizing input records.

• Normalizer (p. 602) creates one or more output data record(s) from a single input data record.

• MetaPivot (p. 599) works similarly to Normalizer, but it always performs the same transformation and the
output metadata is fixed to data types.

• Reformat (p. 622) processes input data in the user-defined way. Can distribute output data records among
different or all connected output ports in the user-defined way.

• Rollup (p. 625) processes input data in the user-defined way. Can create a number of output records from
another number of input records. Can distribute output data records among different or all connected output
ports in the user-defined way.

• DataSampler (p. 575) passes only some input records to the output. You can select from one of the available
filtering strategies that suits your needs.

• One Transformer can transform input data using stylesheets.

• XSLTransformer (p. 641) transforms input data using stylesheets.

Chapter 55. Transformers

568

Aggregate

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Aggregate computes statistical information about input data records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Aggregate - no 1 1-n no no

Abstract

Aggregate receives data records through single input port, computes statistical information about input data
records and sends them to all output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any1

Output 1-n yes For statistical information Any2

Chapter 55. Transformers

569

Aggregate Attributes

Attribute Req Description Possible
values

Basic

Aggregation mapping Sequence of individual mappings for output field names
separated from each other by semicolon. Each mapping
can have the following form: $outputField:=constant
or $outputField:=$inputField (this must be
a field name from the Aggregate key) or
$outputField:=somefunction($inputField).

Aggregate key Key according to which the records are grouped. See Group
Key (p. 275) for more information.

Charset Encoding of incoming data records. ISO-8859-1
(default) | other
encoding

Sorted input By default, input data records are supposed to be sorted
acoording to Aggregate key. If they are not sorted as specified,
switch this value to false.

true (default) |
false

Equal NULL By default, records with null values are considered to be
different. If set to true, records with null values are considered
to be equal.

false (default) |
true

Deprecated

Old aggregation
mapping

Mapping that was used in older versions of CloverETL, its use
is deprecated now.

Advanced Description

Aggregate Mapping

When you click the Aggregation mapping attribute row, an Aggregation mapping wizard opens. In it, you can
define both the mapping and the aggregation. The wizard consists of two panes. You can see the Input field pane
on the left and the Aggregation mapping pane on the right.

1. Select each field that should be mapped to output by clicking and drag and drop it to the Mapping column
in the right pane at the row of the desired output field name. After that, the selected input field appears in the
Mapping column. This way you can map all the desired input fields to the output fields.

2. In addition to it, for such fields that are not part of Aggregate key, you must also define some aggregation
function.

Fields of Aggregate key are the only ones that can be mapped to output fields without any function (or with
a function).

Thus, the following mapping can only be done for key fields: $outField=$keyField.

On the other hand, for fields that are not contained in the key, such mapping is not allowed. A function must
always be defined for them.

To define a function for a field (contained in the key or not-contained in it), click the row in the Function
column and select some function from the combo list. After you select the desired function, click Enter.

3. For each output field, a constant may also be assigned to it.

Chapter 55. Transformers

570

Example 55.1. Aggregation Mapping

$Count=count();$AvgWeight:=avg($weight);$OutFieldK:=$KeyFieldM;
$SomeDate:=2008-08-28

Here:

1. Among output fields are: Count, AvgWeight, OutFieldK, and SomeDate. Output metadata can also
have other fields.

2. Among input fields are also: weight, and KeyFieldM. Input metadata can also have other fields.

3. KeyFieldM must be a field from Aggregate key. This key may also consist of other fields.

weight is not a field from Aggregate key.

2008-08-28 is a constant date that is assigned to output date field.

count() and avg() are functions that can be applied to inputs. The first does not need any argument, the
second need one - which is the value of the weight field for each input record.

Chapter 55. Transformers

571

Concatenate

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Concatenate gathers data records from multiple inputs.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Concatenate yes no 1-n 1 - -

Abstract

Concatenate receives potentially unsorted data records through one or more input ports. (Metadata of all input
ports must be the same.) Concatenate gathers all the records in the order of input ports and sends them to the
single output port. It gathers input records starting with the first input port, continuing with the next one and ending
with the last port. Within each input port the records order is preserved.

Icon

Ports

Port type Number Required Description Metadata

0 yes For input data records AnyInput

1-n no For input data records Input 01)

Output 0 yes For gathered data records Input 01)

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

572

DataIntersection

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

DataIntersection intrersects data from two inputs.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

DataIntersection no yes 2 3 yes yes

Abstract

DataIntersection receives sorted data from two inputs, compares the Join key values in both of them and
processes the records in the following way:

Such input records that are on both input port 0 and input port 1 are processed according to the user-defined
transformation and the result is sent to the output port 1. Such input records that are only on input port 0 are
sent unchanged to the output port 0. Such input records that are only on input port 1 are sent unchanged to the
output port 2.

Records are considered to be on both ports if the values of all Join key fields are equal in both of them. Otherwise,
they are considered to be records on input 0 or 1 only.

A transformation must be defined. The transformation uses a CTL template for DataIntersection, implements a
RecordTransform interface or inherits from a DataRecordTransform superclass. The interface methods
are listed below.

Note

Note that this component is similar to Joiners: It does not need identical metadata on its inputs and
processes records whose Join key is equal. Also duplicate records can be sent to transformation or
not (Allow key duplicates).

Icon

Chapter 55. Transformers

573

Ports

Port type Number Required Description Metadata

0 yes For input data records (data flow A) Any(In0)1)Input

1 yes For input data records (data flow B) Any(In1)1)

0 yes For not-changed output data records (contained in flow A
only)

Input 02)

1 yes For changed output data records (contained in both input
flows)

Any(Out1)

Output

2 yes For not-changed output data records (contained in flow B
only)

Input 12)

Legend:

1): Part of them must be equivalent and comparable (Join key).

2): Metadata cannot be propagated through this component.

DataIntersection Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key that compares data records from input ports. Only those
pairs of records (one from each input) with equal value of this
attribute are sent to transformation. See Join key (p. 574) for
more information. Records should be sorted in ascending order
to get reasonable results.

Transform 1) Definition of the way how records should be intersected written
in the graph in CTL or Java.

Transform URL 1) Name of external file, including path, containing the definition
of the way how records should be intersected written in CTL
or Java.

Transform class 1) Name of external class defining the way how records should be
intersected.

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Equal NULL By default, records with null values of key fields are considered
to be equal. If set to false, they are considered to be different
from each other.

true (default) |
false

Advanced

Allow key duplicates By default, all duplicates on inputs are allowed. If switched to
false, records with duplicate key values are not allowed. If it
is false, only the first record is used for join.

true (default) |
false

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Chapter 55. Transformers

574

Attribute Req Description Possible
values

Slave override key Older form of Join key. Contains fields from the second input
port only. This attribute is deprecated now and we suggest you
use the current form of the Join key attribute.

Legend:

1): One of these must specified. Any of these transformation attributes uses a CTL template for DataIntersection
or implements a RecordTransform interface.

See CTL Scripting Specifics (p. 574) or Java Interfaces for DataIntersection (p. 574) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Join key

Expressed as a sequence of individual subexpressions separated from each other by semicolon. Each
subexpression is an assignment of a field name from the first input port (prefixed by dollar sign), on the left
side, and a field name from the second input port (prefixed by dollar sign), on the right side.

Example 55.2. Join Key for DataIntersection

$first_name=$fname;$last_name=$lname

In this Join key, first_name and last_name are fields of metadata on the first input port and fname and
lname are fields of metadata on the second input port.

Pairs of records containing the same value of this key on both input ports are transformed and sent to the second
output port. Records incoming through the first input port for which there is no counterpart on the second input
port are sent to the first output port without being changed. Records incoming through the second input port for
which there is no counterpart on the first input port are sent to the third output port without being changed.

CTL Scripting Specifics

When you define any of the three transformation attributes, you must specify a transformation that assigns a
number of output port to each input record.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

CTL Templates for DataIntersection

DataIntersection uses the same transformation teplate as Reformat and Joiners. See CTL Templates for
Joiners (p. 324) for more information.

Java Interfaces for DataIntersection

DataIntersection implements the same interface as Reformat and Joiners. See Java Interfaces for Joiners (p. 327)
for more information.

Chapter 55. Transformers

575

DataSampler

Commercial Component

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the appropriate Transformer for your purpose, see Transformers Comparison (p. 319).

Short Summary

DataSampler passes only some input records to the output. There is a range of filtering strategies you can select
from to control the transformation.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

DataSampler - no 1 1-N no no

Abstract

DataSampler receives data on its single input edge. It then filters input records and passes only some of them
to the output. You can control which input records are passed by selecting one of the filtering strategies called
Sampling methods. The input and output metadata have to match each other.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 Yes For sampled data records Input0

Chapter 55. Transformers

576

DataSampler Attributes

Attribute Req Description Possible
values

Basic

Sampling method yes The filtering strategy that determines which records will be
passed to the output. Individual strategies you can choose from
are described in Advanced Description (p. 576)

Simple|
Systematic|
Stratified|PPS

Required sample size yes The desired size of output data expressed as a fraction of the
input. If you want the output to be e.g. 15% (roughly) of the
input size, set this attribute to 0.15.

(0; 1)

Sampling key 1) A field name the Sampling method uses to define strata. Field
names can be chained in a sequence separated by a colon,
semicolon or pipe. Every field can be followed by an order
indicator in brackets (a for ascending, d for descending, i for
ignore and r for automatic estimate).

e.g.
Surname(a);
FirstName(i);
Salary(d)

Advanced

Random seed A long number that is used in the random generator. It assures
that results are random but remain identical on every graph run.

<0; N>

Legend:

1) The attribute is required in all sampling methods except for Simple.

Advanced Description

A typical use case for DataSamper can be imagined like this. You want to check whether your data transformation
works properly. In case you are processing millions of records, it might be useful to get only a few thousands and
observe. That is why you will use this component to create a data sample.

DataSampler offers four Sampling methods to create a representative sample of the whole data set:

• Simple - every record has equal chance of being selected. The filtering is based on a double value chosen
(approx. uniformly) from the <0.0d; 1.0d) interval. A record is selected if the drawn number is lower than
Required sample size.

• Systematic - has a random start. It then proceeds by selecting every k-th element of the ordered list. The first
element and interval derive from Required sample size. The method depends on the data set being arranged in
a sort order given by Sampling key (for the results to be representative). There are also cases you might need to
sample an unsorted input. Even though you always have to specify Sampling key, remember you can suppress
its sort order by setting the order indicator to i for "ignore". That ensures the data set's sort order will not be
regarded. Example key setting: "InvoiceNumber(i)".

• Stratified - if the data set contains a number of distinct categories, the set can be organised by these categories
into separate strata. Each stratum is then sampled as an independent sub-population out of which individual
elements are selected on a random basis. At least one record from each stratum is selected.

• PPS (Probability Proportional to Size Sampling) - probability for each record is set to proportional to its stratum
size up to a maximum of 1. Strata are defined by the value of the field you have chosen in Sampling key. The
method then uses Systematic sampling for each group of records.

Comparing the methods, Simple random sampling is the simplest and quickest one. It suffices in most cases.
Systematic sampling with no sorting order is as fast as Simple and produces a strongly representative data probe,
too. Stratified sampling is the trickiest one. It is useful only if the data set can be split into separate groups of
reasonable sizes. Otherwise the data probe is much bigger than requested. For a deeper insight into sampling
methods in statistics, see Wikipedia.

http://en.wikipedia.org/wiki/Sampling_%28statistics%29#Sampling_methods

Chapter 55. Transformers

577

Dedup

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Dedup removes duplicate records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

 1
)

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Dedup - 1 0-1 - -
1) Input records may be sorted only partially, i.e., the records with the same value of the Dedup key are grouped together but the groups
are not ordered

Abstract

Dedup reads data flow of records grouped by the same values of the Dedup key. The key is formed by field
name(s) from input records. If no key is specified, the component behaves like the Unix head or tail command.
The groups don't have to be ordered.

The component can select the specified number of the first or the last records from the group or from the whole
input. Only those records with no duplicates can be selected too.

The deduplicated records are sent to output port 0. The duplicate records may be sent through output port 1.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records any

0 for deduplicated data recordsOutput

1 for duplicate data records

equal input
metadata 1)

1) Metadata can be propagated through this component.

Chapter 55. Transformers

578

Dedup Attributes

Attribute Req Description Possible
values

Basic

Dedup key Key according to which the records are deduplicated. By
default, i.e., if the Dedup key is not set, the in Number
of duplicates attribute specified number of records from the
beginning or the end of all input records is preserved while
removing the others. If the Dedup key is set, only specified
number of records with the same values in fields specified as
the Dedup key is picked up. See Dedup key (p. 578).

Keep Defines which records will be preserved. If First, those from
the beginning. If Last, those from the end. Records are selected
from a group or the whole input. If Unique, only records with
no duplicates are selected.

First (default) |
Last | Unique

Equal NULL By default, records with null values of key fields are considered
to be equal. If false, they are considered to be different.

true (default) |
false

Number of duplicates Maximum number of duplicate records to be selected from each
group of adjacent records with equal key value or , if key not
set, maximum number of records from the beginning or the end
of all records. Ignored if Unique option selected.

1 (default) | 1-N

Advanced Description

• Dedup key

The component can process sorted input data as well as partially sorted ones. When setting the fields composing
the Dedup key, choose the proper Order attribute:

1. Ascending - if the groups of input records with the same key field value(s) are sorted in ascending order

2. Descending - if the groups of input records with the same key field value(s) are sorted in descending order

3. Auto - the sorting order of the groups of input records is guessed from the first two records with different
value in the key field, i.e., from the first records of the first two groups.

4. Ignore - if the groups of input records with the same key field value(s) are not sorted

Chapter 55. Transformers

579

Denormalizer

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Denormalizer creates single output record from one or more input records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Denormalizer - 1 1

Abstract

Denormalizer receives sorted data through single input port, checks Key values, creates one output record from
one or more adjacent input records with the same Key value.

A transformation must be defined. The transformation uses a CTL template for Denormalizer, implements a
RecordDenormalize interface or inherits from a DataRecordDenormalize superclass. The interface
methods are listed below.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records any

Output 0 for denormalized data records any

Denormalizer Attributes

Chapter 55. Transformers

580

Attribute Req Description Possible
values

Basic

Key 1) Key that creates groups of input data records according to its
value. Adjacent input records with the same value of Key are
considered to be members of one group. One output record is
composed from members of such group. See Key (p. 580) for
more information.

Group size 1) Group may be defined by exact number of its memebers. E.g.
each five records form a single group. The input record count
MUST me a multiple of group size. This is mutually
exclusive with key atribute.

a number

Denormalize 2) Definition of how to denormalize records, written in the graph
in CTL.

Denormalize URL 2) Name of external file, including path, containing the definition
of how to denormalize records, written in CTL or Java.

Denormalize class 2) Definition of how to denormalize records, written in the graph
in Java.

Sort order Order in which groups of input records are expected to be sorted.
See Sort order (p. 580)

Auto (default)
| Ascending |
Descending |
Ignore

Equal NULL By default, records with null values of key fields are considered
to be equal. If false, they are considered to be different.

true (default) |
false

Denormalize source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

1) group size has higher priority than key. If neither of these attributes is specified, all records will form a single group.
2) One of them must specified. Any of these transformation attributes uses the CTL template for Denormalizer or implements a
RecordDenormalize interface.

See CTL Scripting Specifics (p. 581) or Java Interfaces for Denormalizer (p. 587) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Key

Expressed as a sequence of field names separated from each other by semicolon, colon, or pipe.

Example 55.3. Key for Denormalizer

first_name;last_name

In this Key, first_name and last_name are fields of metadata on input port.

• Sort order

Chapter 55. Transformers

581

If the records are denormalized by the Key, i.e., not by the Group size, the input records must be grouped
according to the Key field value. Then, depending on the sorting order of the groups, select the proper Sort
order:

1. Auto - the sorting order of the groups of input records is guessed from the first two records with different
value in the key field, i.e., from the first records of the first two groups.

2. Ascending - if the groups of input records with the same key field value(s) are sorted in ascending order

3. Descending - if the groups of input records with the same key field value(s) are sorted in descending order

4. Ignore - if the groups of input records with the same key field value(s) are not sorted

CTL Scripting Specifics

When you define any of the three transformation attributes, you must specify the way how input should be
transformed into output.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

Once you have written your transformation, you can also convert it to Java language code by clicking
corresponding button at the upper right corner of the tab.

You can open the transformation definition as another tab of the graph (in addition to the Graph and Source tabs
of Graph Editor) by clicking corresponding button at the upper right corner of the tab.

CTL Templates for Denormalizer

Here is an example of how the Source tab for defining the transformation looks.

Chapter 55. Transformers

582

Figure 55.1. Source Tab of the Transform Editor in the Denormalizer Component (I)

Figure 55.2. Source Tab of the Transform Editor in the Denormalizer Component (II)

Table 55.1. Functions in Denormalizer

CTL Template Functions

boolean init()

Required No

Description Initialize the component, setup the environment, global variables

Chapter 55. Transformers

583

CTL Template Functions

Invocation Called before processing the first record

Returns true | false (in case of false graph fails)

integer append()

Required yes

Input Parameters none

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly, once for each input record

Description For the group of adjacent input records with the same Key
values it appends the information from which composes the
resulting output record. If any of the input records causes
fail of the append() function, and if user has defined
another function (appendOnError()), processing continues
in this appendOnError() at the place where append()
failed. If append() fails and user has not defined any
appendOnError(), the whole graph will fail. The append()
passes to appendOnError() error message and stack trace as
arguments.

Example function integer append() {
 CustomersInGroup++;
 myLength = length(errorCustomers);
 if(!isInteger($0.OneCustomer)) {
 errorCustomers = errorCustomers
 + iif(myLength > 0 ,"-","")
 + $0.OneCustomer;
 }
 customers = customers
 + iif(length(customers) > 0 ," - ","")
 + $0.OneCustomer;
 groupNo = $GroupNo;
 return CustomersInGroup;
}

integer transform()

Required yes

Input Parameters none

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly, once for each output record.

Description It creates output records. If any part of the transform()
function for some output record causes fail of the
transform() function, and if user has defined another
function (transformOnError()), processing continues in this
transformOnError() at the place where transform()
failed. If transform() fails and user has not defined
any transformOnError(), the whole graph will fail. The
transformOnError() function gets the information gathered
by transform() that was get from previously successfully
processed code. Also error message and stack trace are passed to
transformOnError().

Chapter 55. Transformers

584

CTL Template Functions

Example function integer transform() {
 $0.CustomersInGroup = CustomersInGroup;
 $0.CustomersOnError = errorCustomers;
 $0.Customers = customers;
 $0.GroupNo = groupNo;
 return OK;
}

void clean()

Required no

Input Parameters none

Returns void

Invocation Called repeatedly, once for each output record (after this has been
created by the transform() function).

Description Returns the component to the initial settings

Example function void clean(){
 customers = "";
 errorCustomers = "";
 groupNo = 0;
 CustomersInGroup = 0;
}

integer appendOnError(string errorMessage, string stackTrace)

Required no

string errorMessageInput Parameters

string stackTrace

Returns Integer numbers. Positive integer numers are ignored, meaning
of 0 and negative values is described in Return Values of
Transformations (p. 282)

Invocation Called if append() throws an exception. Called repeatedly for
the whole group of records with the same Key value.

Description For the group of adjacent input records with the same Key
values it appends the information from which it composes
the resulting output record. If any of the input records
causes fail of the append() function, and if user has
defined another function (appendOnError()), processing
continues in this appendOnError() at the place where
append() failed. If append() fails and user has not defined
any appendOnError(), the whole graph will fail. The
appendOnError() function gets the information gathered by
append() that was get from previously successfully processed
input records. Also error message and stack trace are passed to
appendOnError().

Example function integer appendOnError(
 string errorMessage,
 string stackTrace) {
 printErr(errorMessage);
 return CustomersInGroup;
}

integer transformOnError(Exception exception, stackTrace)

Required no

Chapter 55. Transformers

585

CTL Template Functions

string errorMessageInput Parameters

string stackTrace

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if transform() throws an exception.

Description It creates output records. If any part of the transform()
function for some output record causes fail of the
transform() function, and if user has defined another
function (transformOnError()), processing continues in this
transformOnError() at the place where transform()
failed. If transform() fails and user has not defined
any transformOnError(), the whole graph will fail. The
transformOnError() function gets the information gathered
by transform() that was get from previously successfully
processed code. Also error message and stack trace are passed to
transformOnError().

Example function integer transformOnError(
 string errorMessage,
 string stackTrace) {
 $0.CustomersInGroup = CustomersInGroup;
 $0.ErrorFieldForTransform = errorCustomers;
 $0.CustomersOnError = errorCustomers;
 $0.Customers = customers;
 $0.GroupNo = groupNo;
 return OK;
}

string getMessage()

Required No

Description Prints error message specified and invocated by user

Invocation Called in any time specified by user (called only when
either append(), transform(), appendOnError(), or
transformOnError() returns value less than or equal to -2).

Returns string

void preExecute()

Required No

Input parameters None

Returns void

Description May be used to allocate and initialize resources required by the
transform. All resources allocated within this function should be
released by the postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Chapter 55. Transformers

586

CTL Template Functions

Invocation Called during each graph run after the entire transform was
executed.

Chapter 55. Transformers

587

Important

• Input records or fields

Input records or fields are accessible within the append() and appendOnError() functions
only.

• Output records or fields

Output records or fields are accessible within the transform() and transformOnError()
functions only.

• All of the other CTL template functions allow to access neither inputs nor outputs.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Java Interfaces for Denormalizer

The transformation implements methods of the RecordDenormalize interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of the RecordDenormalize interface:

• boolean init(Properties parameters, DataRecordMetadata sourceMetadata,
DataRecordMetadata targetMetadata)

Initializes denormalize class/function. This method is called only once at the beginning of denormalization
process. Any object allocation/initialization should happen here.

• int append(DataRecord inRecord)

Passes one input record to the composing class.

• int appendOnError(Exception exception, DataRecord inRecord)

Passes one input record to the composing class. Called only if append(DataRecord) throws an exception.

• int transform(DataRecord outRecord)

Retrieves composed output record. See Return Values of Transformations (p. 282) for detailed information about
return values and their meaning. In Denormalizer, only ALL, 0, SKIP, and Error codes have some meaning.

• int transformOnError(Exception exception, DataRecord outRecord)

Retrieves composed output record. Called only if transform(DataRecord) throws an exception.

• void clean()

Finalizes current round/clean after current round - called after the transform method was called for the input
record.

Chapter 55. Transformers

588

ExtFilter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

ExtFilter filters input records according to the specified condition.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ExtFilter - no 1 1-2 - -

Abstract

ExtFilter receives data records through single input port, compares them with the specified filter expression and
sends those that are in conformity with this expression to the first output port. Rejected records are sent to the
optional second output port.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For allowed data records Input 01)Output

1 no For rejected data records Input 01)

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

589

ExtFilter Attributes

Attribute Req Description Possible
values

Basic

Filter expression 1) Expression according to which the records are filtered.
Expressed as the sequence of individual expressions for
individual input fields separated from each other by semicolon.

Advanced

Filter class 1) Name of external class defining which records pass the filter.

Legend:

1): One of these attributes must be specified. In case both Filter expression and Filter class is specified, the former
will be used. The Java class referenced by the Filter class attribute is expected to implement RecordFilter
interface.

Advanced Description

Filter Expression

When you select this component, you must specify the expression according to which the filtering should be
performed (Filter expression). The filtering expression consists of some number of subexpressions connected
with logical operators (logical and and logical or) and parentheses for expressing precedence. For these
subexpressions there exists a set of functions that can be used and set of comparison operators (greater than, greater
than or equal to, less than, less than or equal to, equal to, not equal to). The latter can be selected in the Filter
editor dialog as the mathematical comparison signs (>, >=, <, <=, ==, !=) or also their textual abbreviations can
be used (.gt., .ge., .lt., .le., .eq., .ne.). All of the record field values should be expressed by their
port numbers preceded by dollar sign, dot and their names. For example, $0.employeeid.

Note

You can also use the Partition (p. 609) component as a filter instead of ExtFilter. With the
Partition (p. 609) component you can define much more sofisticated filter expressions and
distribute data records among more output ports.

Or you can use the Reformat (p. 622) component as a filter.

Important

You can use either CTL1, or CTL2 in Filter Editor.

The following two options are equivalent:

1. For CTL1

is_integer($0.field1)

2. For CTL2

//#CTL2
isInteger($0.field1)

Java interface for ExtFilter

Chapter 55. Transformers

590

Beside filter expression it is possible to define filtering by Java class implementing
org.jetel.component.RecordFilter interface. The class is required to have default (no arguments)
constructor. The interface consists of following methods:

• void init()

Called before isValid() is used.

• void setTransformationGraph(TranformationGraph)

Associates transformation graph with the filter class instance.

• boolean isValid(DataRecord)

Is called for each incoming data record. The implementor shall answer true if the record passes the filter,
false otherwise.

Chapter 55. Transformers

591

ExtSort

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

ExtSort sorts input records according to a sort key.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ExtSort - 1 1-N - -

Abstract

ExtSort changes the order in which records flow through a graph. How to compare two records is specified by
a sorting key.

The Sort key is defined by one or more input fields and the sorting order (ascending or descending) for each field.
The resulting sequence depends also on the key field type: string fields are sorted in ASCIIbetical order while
the others alphabetically.

The component receives data records through the single input port, sorts them according to specified sort key and
copies each of them to all connected output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records

0 for sorted data recordsOutput

1-N for sorted data records

the same
input and
output
metadata 1)

1) As all output metadata must be same as the input metadata, they can be propagated through this component.

Chapter 55. Transformers

592

ExtSort Attributes

Attribute Req Description Possible
values

Basic

Sort key Key according to which the records are sorted. See Sort
Key (p. 276) for more information.

Advanced

Buffer capacity Maximum number of records parsed in memory. If there
are more input records than this number, external sorting is
performed.

8000 (default) |
1-N

Number of tapes Number of temporary files used to perform external sorting.
Even number higher than 2.

6 (default) |
2*(1-N)

Deprecated

Sort order Order of sorting (Ascending or Descending). Can be
denoted by the first letter (A or D) only. The same for all key
fields.

Ascending
(default) |
Descending

Sorting locale Locale that should be used for sorting. none (default) |
any locale

Case sensitive In the default setting of Case sensitive (true), upper-case and
lower-case characters are sorted as distinct characters. Lower-
cases precede corresponding upper-cases. If Case sensitive is
set to false, upper-case characters and lower-case characters
are sorted as if they were the identical.

true (default) |
false

Sorter initial capacity does the same as Buffer capacity 8000 (default) |
1-N

Advanced Description

Sorting Null Values

Remember that ExtSort processes the records in which the same fields of the Sort key attribute have null values
as if these nulls were equal.

Chapter 55. Transformers

593

FastSort

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

FastSort sorts input records using a sort key. FastSort is faster than ExtSort but requires more system resources.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

FastSort - 1 1-N - -

Abstract

FastSort is a high performance sort component reaching the optimal efficiency when enough system resources
are available. FastSort can be up to 2.5 times faster than ExtSort but consumes significantly more memory and
temporary disk space.

The component takes input records and sorts them using a sorting key - a single field or a set of fields. You can
specify sorting order for each field in the key separately. The sorted output is sent to all connected ports.

Pretty good results can be obtained with the default settings (just the sorting key needs to be specified). However,
to achieve the best performance, a number of parameters is available for tweaking.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records

0 for sorted data recordsOutput

1-N for sorted data records

the same
input and
output
metadata 1)

1) As all output metadata must be same as the input metadata, they can be propagated through this component.

Chapter 55. Transformers

594

FastSort Attributes

Attribute Req Description Possible
values

Basic

Sort key List of fields (separated by semicolon) the data records are to
be sorted by, including the sorting order for each data field
separately, see Sort Key (p. 276)

Estimated record
count

1) Estimated number of input records to be sorted. A rough guess
of the order of magnitude is sufficient, see Estimated Record
Count (p. 595).

auto (default) |
1-N

In memory only If true, internal sorting is forced and all attributes except Sort
key and Run size are ignored.

false (default) |
true

Advanced

Run size (records) 1) 2) Number of records sorted at once in memory. Largely affects
speed and memory requirements, see Run Size (p. 595)

auto from (if
set) Estimated
record count |
20,000 default |
1000 - N

Max open files Limits the number of temp files that can be created during the
sorting. Too low number (500 or less) significantly reduces the
performance, see Max Open Files (p. 595).

unlimited
(default) | 1-N

Concurrency (threads) Number of worker threads to do the job. The default value
ensures the optimal results while overriding the default may
even slow the graph run down, see Concurrency (p. 595).

auto (default) |
1-N

Number of read
buffers

2) How many chunks of data will be held in memory at a time, see
Number of Read Buffers (p. 596).

auto (default) |
1-N

Average record size
(bytes)

2) Guess on average byte size of records, see Average Record
Size (p. 596).

auto (default) |
1-N

Maximum memory
(MB, GB)

2) Rough estimate of maximum memory that can be used, see
Maximum Memory (p. 595).

auto (default) |
1-N

Tape buffer (bytes) Buffer used by a worker for filling the output. Affects the
performance slightly, see Tape Buffer (p. 596).

8192 (default) |
1-N

Compress temporary
files

If true, temporary files are compressed. For more information
see Compress Temporary Files (p. 596).

false (default) |
true

Deprecated

Sorting locale Locale used for correct sorting order none (default) |
any locale

Case sensitive By default (Sorting locale is none), upper-case characters are
sorted separately and precede lower-case characters that are
sorted separately too. If Sorting locale is set, upper- and lower-
case characters are sorted together - if Case sensitive is true,
a lower-case precedes corresponding upper-case while false
preservers the order, data strings appears in the input in.

false (default) |
true

1)Estimated record count is a helper attribute which is used for calculating (rather unnatural) Run size automatically as approximately
Estimated record count to the power 0.66. If Run size set explicitly, Estimated record count is ignored.
Reasonable Run sizes vary from 5,000 to 200,000 based on the record size and the total number of records.
2)These attributes affect automatic guess of Run size. Generally, the following formula must be true:
Number of read buffers * Average record size < Maximum memory

Chapter 55. Transformers

595

Advanced Description

Sorting Null Values

Remember that FastSort processes the records in which the same fields of the Sort key attribute have null
values as if these nulls were equal.

FastSort Tweaking

Basically, you do not need to set any of these attributes, however, sometimes you can increase performance by
setting them. You may have a limited memory or you need to sort agreat number of records, or these records are
too big. In similar cases, you can fit FastSort to your needs.

1. Estimated Record Count

Basic attribute which lets FastSort know a rough number of records it will have to deal with. The attribute is
complementary to Run size; you don't need to set it if Run size is specified. On the other hand, if you don't
want to play with attributes setting much, giving the rough number of records spares memory to be allocated
during the graph run. Based on this count, Maximum memory, records size, etc., Run size is determined.

2. Run Size

The core attribute for FastSort; determines how many records form a "run" (i.e., a bunch of sorted records
in temp files). The less Run size, the more temp files get created, less memory is used and greater speed is
achieved. On the other hand, higher values might cause memory issues. There is no rule of thumb as to whether
Run size should be high or low to get the best performance. Generally, the more records you are about to sort
the bigger Run size you might want. The rough formula for Run size is Estimated record count^0.66. Note
that memory consumption multiplies with Number of read buffers and Concurrency. So, higher Run sizes
result in much higher memory footprints.

3. Max Open Files

FastSort uses relatively large numbers of temporary files during its operation. In case you hit quota or OS-
specific limits, you can limit the maximum number of files to be created. The following table should give you
a better idea:

Dataset size Number of temp. files Default Run size Note

1,000,000 ~100 ~10,000

10,000,000 ~250 ~45,000

1,000,000,000 20,000 to 2,000 50,000 to 500,000 Depends on available
memory

Note that numbers in the table above are not exact and might be different on your system. However, sometimes
such large numbers of files might cause problems hitting user quotas or other runtime limitations, see
Performance Bottlenecks (p. 596) for a help how to solve such issues.

4. Concurrency

Tells FastSort how many runs (chunks) should be sorted at a time in parallel. By default, it is automatically set
to 1 or 2 based on the number of CPU cores in your system. Overriding this value makes sense if your system has
lots of CPU cores and you think your disk performance can handle working with so many parallel data streams.

5. Maximum Memory

You can set the maximum amount of memory dedicated to a single component. This is a guide for FastSort
when computing Run size, i.e., if Run size is set explicitly, this setting is ignored. A unit must be specified,
e.g., '200MB', '1gb', etc.

Chapter 55. Transformers

596

6. Average Record Size

You can set Average record size in bytes. If omitted, it will be computed as an average record size from the
first 1000 parsed records.

7. Number of Read Buffers

This setting corresponds tightly to the number of threads (Concurrency) - must be equal to or greater
than Concurrency. The more read buffers the less change the workers will block each other. Defaults to
Concurrency + 2

8. Compress Temporary Files

Along with Temporary files charset this option lets you reduce the space required for temporary files.
Compression can save a lot of space but affects performance by up to 30% down so be careful with this setting.

9. Tape Buffer

Size (in bytes) of a file output buffer. The default value is 8kB. Decreasing this value might avoid memory
exhaustion for large numbers of runs (e.g. when Run size is very small compared to the total number of records).
However, the impact of this setting is quite small.

Tips & Tricks

• Be sure you have dedicated enough memory to your Java Virtual Machine (JVM). Having plenty of memory
available, FastSort is capable of doing astonishing job. Remember that the default JVM heap space 64MB
can cause FastSort to crash. Don't hesitate to increase the memory value up to 2 GB (but still leaving some
memory for the operating system). It is well worth it. How to set the JVM is described in Program and VM
Arguments (p. 85) section.

Performance Bottlenecks

• Sorting big records (long string fields, tens or hundreds of fields, etc.): FastSort is greedy for both memory
and CPU cores. If the system does not have enough of either, FastSort can easily crash with out-of-memory.
In this case, use the ExtSort component instead.

• Utilizing more than 2 CPU cores: Unless you you are able to use really fast disk drives, overriding the default
value of Concurrency to more than 2 threads does not neccessarily help. It can even slow the process back
down a bit as extra memory is loaded for each additional thread.

• Coping with quotas and other runtime limitations: In complex graphs with several parallel sorts, even with
other graph components also having huge number of open files, Too many open files error and graph
execution failure may occur. There are two possible solutions to this issue:

1. increase the limit (quota)

This option is recommended for production systems since there is no speed sacrifice. Typically, setting limit
to higher number on Unix systems.

2. force FastSort to keep the number of temporary files below some limit

For regular users on large servers increasing the quota is not an option. Thus, Max open files must be set
to a reasonable value. FastSort then performs intermediate merges of temporary files to keep their number
below the limit. However, setting Max open files to values, for which such merges are inevitable, often
produces significant performance drop. So keep it at the highest possible value. If you are forced to limit
FastSort to less than a hundred temporary files, even for large datasets, consider using ExtSort instead
which is designed for performance with limited number of tapes.

Chapter 55. Transformers

597

Merge

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Merge merges and sorts data records from two or more inputs.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Merge yes yes 2-n 1 - -

Abstract

Merge receives sorted data records through two or more input ports. (Metadata of all input ports must be the
same.) It gathers all input records and sorts them in the same way on the output.

Important

Remember that all key fields must be sorted in ascending order!

Icon

Ports

Port type Number Required Description Metadata

0-1 yes For input data records AnyInput

2-n no For input data records Input 01)

Output 0 yes For merged data records Input 01)

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

598

Merge Attributes

Attribute Req Description Possible
values

Basic

Merge key yes Key according to which the sorted records are merged.
(Remember that all key fields must be sorted in ascending
order!) See Group Key (p. 275) for more information.1)

Equal NULL By default, records with null values of key fields are considered
to be different. If set to true, they are considered to be equal.

false (default) |
true

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

599

MetaPivot

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the appropriate Transformer for your purpose, see Transformers Comparison (p. 319).

Short Summary

MetaPivot converts every incoming record into several output records, each one representing a single field from
the input.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

MetaPivot - no 1 1 no no

Abstract

On its single input port, MetaPivot receives data that do not have to be sorted. Each field of the input record is
written as a new line on the output. The metadata represent data types and are restricted to a fixed format, see
Advanced Description (p. 600) All in all, MetaPivot can be used to effectively transform your records to a
neat data-dependent structure.

Unlike Normalizer (p. 602), which MetaPivot is derived from, no transofmation is defined. MetaPivot always
does the same tranformation: it takes the input records and "rotates them" thus turning input columns to output
rows.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any1

Output 0 yes For transformed data records Any2

Chapter 55. Transformers

600

MetaPivot Attributes

MetaPivot has no component-specific attributes.

Advanced Description

Important

When working with MetaPivot, you have to use a fixed format of the output metadata. The metadata
fields represent particular data types. Field names and data types have to be set exactly as follows
(otherwise unexpected BadDataFormatException will occur):

[recordNo long] - the serial number of a record (outputs can be later grouped by this) - fields of the same
record share the same number (notice in Figure 55.4, Example MetaPivot Output (p. 601))

[fieldNo integer] - the current field number: 0...n-1 where n is the number of fields in the input metadata

[fieldName string] - name of the field as it appeared on the input

[fieldType string] - the field type, e.g. "string", "date", "decimal"

[valueBoolean boolean] - the boolean value of the field

[valueByte byte] - the byte value of the field

[valueDate date] - the date value of the field

[valueDecimal decimal] - the decimal value of the field

[valueInteger integer] - the integer value of the field

[valueLong long] - the long value of the field

[valueNumber number] - the number value of the field

[valueString string] - the string value of the field

The total number of output records produced by MetaPivot equals to (number of input records) * (number of
input fields).

You may have noticed some of the fields only make the output look better arranged. That is true - if you needed to
omit them for whatever reasons, you can do it. The only three fields that do not have to be included in the output
metadata are: recordNo, fieldNo and fieldType.

Chapter 55. Transformers

601

Example 55.4. Example MetaPivot Transformation

Let us now look at what MetaPivot makes to your data. Say you have a delimited file containing data of various
data types. You have only two records:

Figure 55.3. Example MetaPivot Input

Sending these data to MetaPivot "classifies" the data to output fields corresponding to their data types:

Figure 55.4. Example MetaPivot Output

Thus e.g. "hello" is placed in the valueString field or "76.70" in valueDecimal. Since there were 2 records and
9 fields on the input, we have got 18 records on the output.

Chapter 55. Transformers

602

Normalizer

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Normalizer creates one or more output records from each single input record.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Normalizer - no 1 1 yes yes

Abstract

Normalizer receives potentially unsorted data through single input port, decomposes input data records and
composes one or more output records from each input record.

A transformation must be defined. The transformation uses a CTL template for Normalizer, implements a
RecordNormalize interface or inherits from a DataRecordNormalize superclass. The interface methods
are listed below.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any1

Output 0 yes For normalized data records Any2

Chapter 55. Transformers

603

Normalizer Attributes

Attribute Req Description Possible
values

Basic

Normalize 1) Definition of the way how records should be normalized written
in the graph in CTL or Java.

Normalize URL 1) Name of external file, including path, containing the definition
of the way how records should be normalized written in CTL
or Java.

Normalize class 1) Name of external class defining the way how records should be
normalized.

Normalize source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Legend:

1): One of these must specified. Any of these transformation attributes uses a CTL template for Normalizer or
implements a RecordNormalize interface.

See CTL Scripting Specifics (p. 603) or Java Interfaces for Normalizer (p. 608) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

CTL Scripting Specifics

When you define any of the three transformation attributes, you must specify the way how input should be
transformed into output.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

Once you have written your transformation, you can also convert it to Java language code by clicking
corresponding button at the upper right corner of the tab.

CTL Templates for Normalizer

The Source tab for defining the transformation looks like this:

Chapter 55. Transformers

604

Figure 55.5. Source Tab of the Transform Editor in the Normalizer Component (I)

Figure 55.6. Source Tab of the Transform Editor in the Normalizer Component (II)

Chapter 55. Transformers

605

Table 55.2. Functions in Normalizer

CTL Template Functions

boolean init()

Required No

Description Initialize the component, setup the environment, global variables

Invocation Called before processing the first record

Returns true | false (in case of false graph fails)

integer count()

Required yes

Input Parameters none

Returns For each input record returns one integer number greater than 0. The
returned number is equal to the the amount of new output records
that will be created by the transform() function.

Invocation Called repeatedly, once for each input record

Description For each input record it generates the number of output records
that will be created from this input. If any of the input records
causes fail of the count() function, and if user has defined
another function (countOnError()), processing continues in
this countOnError() at the place where count() failed. If
count() fails and user has not defined any countOnError(),
the whole graph will fail. The countOnError() function gets
the information gathered by count() that was get from previously
successfully processed input records. Also error message and stack
trace are passed to countOnError().

Example function integer count() {
 customers = split($0.customers,"-");
 return length(customers);
}

integer transform(integer idx)

Required yes

Input Parameters integer idx integer numbers from 0 to count-1 (Here
count is the number returned by the transform() function.)

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly, once for each output record

Description It creates output records. If any part of the transform()
function for some output record causes fail of the
transform() function, and if user has defined another
function (transformOnError()), processing continues in this
transformOnError() at the place where transform()
failed. If transform() fails and user has not defined
any transformOnError(), the whole graph will fail. The
transformOnError() function gets the information gathered
by transform() that was get from previously successfully
processed code. Also error message and stack trace are passed to
transformOnError().

Chapter 55. Transformers

606

CTL Template Functions

Example function integer transform(integer idx) {
 myString = customers[idx];
 $0.OneCustomer = str2integer(myString);
 $0.RecordNo = $0.recordNo;
 $0.OrderWithinRecord = idx;
 return OK;
}

void clean()

Required no

Input Parameters none

Returns void

Invocation Called repeatedly, once for each input record (after the last output
record has been created from the input record).

Description Returns the component to the initial settings

Example function void clean() {
 clear(customers);
}

integer countOnError(string errorMessage, string stackTrace)

Required no

string errorMessageInput Parameters

string stackTrace

Returns For each input record returns one integer number greater than 0. The
returned number is equal to the the amount of new output records
that will be created by the transform() function.

Invocation Called if count() throws an exception.

Description For each input record it generates the number of output records
that will be created from this input. If any of the input records
causes fail of the count() function, and if user has defined
another function (countOnError()), processing continues in
this countOnError() at the place where count() failed. If
count() fails and user has not defined any countOnError(),
the whole graph will fail. The countOnError() function gets
the information gathered by count() that was get from previously
successfully processed input records. Also error message and stack
trace are passed to countOnError().

Example function integer countOnError(
 string errorMessage,
 string stackTrace) {
 printErr(errorMessage);
 return 1;
}

integer transformOnError(string errorMessage, string stackTrace, integer idx)

Required no

string errorMessage

string stackTrace

Input Parameters

integer idx

Chapter 55. Transformers

607

CTL Template Functions

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if transform() throws an exception.

Description It creates output records. If any part of the transform()
function for some output record causes fail of the
transform() function, and if user has defined another
function (transformOnError()), processing continues in this
transformOnError() at the place where transform()
failed. If transform() fails and user has not defined
any transformOnError(), the whole graph will fail. The
transformOnError() function gets the information gathered
by transform() that was get from previously successfully
processed code. Also error message and stack trace are passed to
transformOnError().

Example function integer transformOnError(
 string errorMessage,
 string stackTrace,
 integer idx) {
 printErr(errorMessage);
 printErr(stackTrace);
 $0.OneCustomerOnError = customers[idx];
 $0.RecordNo = $recordNo;
 $0.OrderWithinRecord = idx;
 return OK;
}

string getMessage()

Required No

Description Prints error message specified and invocated by user

Invocation Called in any time specified by user (called only when
either count(), transform(), countOnError(), or
transformOnError() returns value less than or equal to -2).

Returns string

void preExecute()

Required No

Input parameters None

Returns void

Description May be used to allocate and initialize resources required by the
transform. All resources allocated within this function should be
released by the postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Chapter 55. Transformers

608

CTL Template Functions

Invocation Called during each graph run after the entire transform was
executed.

Important

• Input records or fields

Input records or fields are accessible within the count() and countOnError() functions
only.

• Output records or fields

Output records or fields are accessible within the transform() and transformOnError()
functions only.

• All of the other CTL template functions allow to access neither inputs nor outputs.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Java Interfaces for Normalizer

The transformation implements methods of the RecordNormalize interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of RecordNormalize interface:

• boolean init(Properties parameters, DataRecordMetadata sourceMetadata,
DataRecordMetadata targetMetadata)

Initializes normalize class/function. This method is called only once at the beginning of normalization process.
Any object allocation/initialization should happen here.

• int count(DataRecord source)

Returns the number of output records which will be created from specified input record.

• int countOnError(Exception exception, DataRecord source)

Called only if count(DataRecord) throws an exception.

• int transform(DataRecord source, DataRecord target, int idx)

idx is a sequential number of output record (starting from 0). See Return Values of Transformations (p. 282)
for detailed information about return values and their meaning. In Normalizer, only ALL, 0, SKIP, and Error
codes have some meaning.

• int transformOnError(Exception exception, DataRecord source, DataRecord
target, int idx)

Called only if transform(DataRecord, DataRecord, int) throws an exception.

• void clean()

Finalizes current round/clean after current round - called after the transform method was called for the input
record.

Chapter 55. Transformers

609

Partition

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Partition distributes individual input data records among different output ports.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Partition - no 1 1-n yes/no1) yes/no1)

Legend

1) Partition can use either a transformation or two other attributes (Ranges and/or Partition key). A
transformation must be defined unless at least one of the attributes is specified.

Abstract

Partition distributes individual input data records among different output ports.

To distribute data records, user-defined transformation, ranges of Partition key or RoundRobin algorithm may
be used. It uses a CTL template for Partition or implements a PartitionFunction interface. Its methods are
listed below. In this component no mapping may be defined since it does not change input data records. It only
distributes them unchanged among output ports.

Tip

Note that you can use the Partition component as a filter similarly to ExtFilter. With the Partition
component you can define much more sophisticated filter expressions and distribute input data
records among more outputs than 2.

Neither Partition nor ExtFilter allow to modify records.

Important

Partition is high-performance component, thus you cannot modify input and output records - it
would result in an error. If you need to do so, consider using Reformat instead.

Chapter 55. Transformers

610

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For output data records Input 01)Output

1-N no For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Partition Attributes

Attribute Req Description Possible
values

Basic

Partition 1) Definition of the way how records should be distributed among
output ports written in the graph in CTL or Java.

Partition URL 1) Name of external file, including path, containing the definition
of the way how records should be distributed among output ports
written in CTL or Java.

Partition class 1) Name of external class defining the way how records should be
distributed among output ports.

Ranges 1),2) Ranges expressed as a sequence of individual ranges
separated from each other by semicolon. Each individual
range is a sequence of intervals for some set of fields
that are adjacent to each other without any delimiter. It
is expressed also whether the minimum and maximum
margin is included to the interval or not by bracket
and parenthesis, respectively. Example of Ranges: <1,9)
(,31.12.2008);<1,9)<31.12.2008,);<9,)
(,31.12.2008); <9,)<31.12.2008).

Partition key 1),2) Key according to which input records are distributed among
different output ports. Expressed as the sequence of individual
input field names separated from each other by semicolon.
Example of Partition key: first_name;last_name.

Advanced

Partition source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default) | other
encoding

Deprecated

Chapter 55. Transformers

611

Attribute Req Description Possible
values

Locale Locale to be used when internationalization is set to true. By
default, system value is used unless value of Locale specified in
the defaultProperties file is uncommented and set to the
desired Locale. For more information on how Locale may be
changed in the defaultProperties see Changing Default
CloverETL Settings (p. 88).

system value
or specified
default value
(default) | other
locale

Use
internationalization

By default, no internationalization is used. If set to true,
sorting according national properties is performed.

false (default) |
true

Legend:

1): If one of these transformation attributes is specified, both Ranges and Partition key will be ignored since they
have less priority. Any of these transformation attributes must use a CTL template for Partition or implement a
PartitionFunction interface.

See CTL Scripting Specifics (p. 611) or Java Interfaces for Partition (and clusterpartition) (p. 615) for more
information.

See also Defining Transformations (p. 278) for detailed information about transformations.

2): If no transformation attribute is defined, Ranges and Partition key are used in one of the following three ways:

• Both Ranges and Partition key are set.

The records in which the values of the fields are inside the margins of specified range will be sent to the same
output port. The number of the output port corresponds to the order of the range within all values of the fields.

• Ranges are not defined. Only Partition key is set.

Records will be distributed among output ports in such a way that all records with the same values of Partition
key fields will be sent to the same port.

The output port number will be determined as the hash value computed from the key fields modulo the number
of output ports.

• Neither Ranges nor Partition key are defined.

RoundRobin algorithm will be used to distribute records among output ports.

CTL Scripting Specifics

When you define any of the three transformation attributes, which is optional, you must specify a transformation
that assigns a number of output port to each input record.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

Partition uses the following transformation teplate:

CTL Templates for Partition (or clusterpartition)

This transformation template is used in Partition, and clusterpartition.

Chapter 55. Transformers

612

Once you have written your transformation in CTL, you can also convert it to Java language code by clicking
corresponding button at the upper right corner of the tab.

Figure 55.7. Source Tab of the Transform Editor in the Partitioning Component

You can open the transformation definition as another tab of a graph (in addition to the Graph and Source tabs
of Graph Editor) by clicking corresponding button at the upper right corner of the tab.

Table 55.3. Functions in Partition (or clusterpartition)

CTL Template Functions

void init()

Required No

Description Initialize the component, setup the environment, global variables

Invocation Called before processing the first record

Returns void

integer getOutputPort()

Required yes

Input Parameters none

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly for each input record

Chapter 55. Transformers

613

CTL Template Functions

Description It does not transform the records, it does not change them nor
remove them, it only returns integer numbers. Each of these
returned numbers is a number of the output port to which
individual record should be sent. In clusterpartition, these
ports are virtual and mean Cluster nodes. If any part of the
getOutputPort() function for some output record causes fail
of the getOutputPort() function, and if user has defined
another function (getOutputPortOnError()), processing
continues in this getOutputPortOnError() at the place
where getOutputPort() failed. If getOutputPort() fails
and user has not defined any getOutputPortOnError(),
the whole graph will fail. The getOutputPortOnError()
function gets the information gathered by getOutputPort()
that was get from previously successfully processed code.
Also error message and stack trace are passed to
getOutputPortOnError().

Example function integer getOutputPort() {
 switch (expression) {
 case const0 : return 0; break;
 case const1 : return 1; break;
 ...
 case constN : return N; break;
 [default : return N+1;]
 }
}

integer getOutputPortOnError(string errorMessage, string stackTrace)

Required no

string errorMessageInput Parameters

string stackTrace

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if getOutputPort() throws an exception.

Description It does not transform the records, it does not change them nor
remove them, it only returns integer numbers. Each of these
returned numbers is a number of the output port to which
individual record should be sent. In clusterpartition, these
ports are virtual and mean Cluster nodes. If any part of the
getOutputPort() function for some output record causes fail
of the getOutputPort() function, and if user has defined
another function (getOutputPortOnError()), processing
continues in this getOutputPortOnError() at the place
where getOutputPort() failed. If getOutputPort() fails
and user has not defined any getOutputPortOnError(),
the whole graph will fail. The getOutputPortOnError()
function gets the information gathered by getOutputPort()
that was get from previously successfully processed code.
Also error message and stack trace are passed to
getOutputPortOnError().

Chapter 55. Transformers

614

CTL Template Functions

Example function integer getOutputPortOnError(
 string errorMessage,
 string stackTrace) {
 printErr(errorMessage);
 printErr(stackTrace);
}

string getMessage()

Required No

Description Prints error message specified and invocated by user

Invocation Called in any time specified by user (called only when either
getOutputPort() or getOutputPotOnError() returns
value less than or equal to -2).

Returns string

void preExecute()

Required No

Input parameters None

Returns void

Description May be used to allocate and initialize resources. All resources
allocated within this function should be released by the
postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Invocation Called during each graph run after the entire transform was
executed.

Important

• Input records or fields

Input records or fields are accessible within the getOutputPort() and
getOutputPortOnError() functions only.

• Output records or fields

Output records or fields are not accessible at all as records are mapped to the output without any
modification and mapping.

• All of the other CTL template functions allow to access neither inputs nor outputs.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Chapter 55. Transformers

615

Java Interfaces for Partition (and clusterpartition)

The transformation implements methods of the PartitionFunction interface and inherits other common
methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of PartitionFunction interface:

• void init(int numPartitions,RecordKey partitionKey)

Called before getOutputPort() is used. The numPartitions argument specifies how many partitions
should be created. The RecordKey argument is the set of fields composing key based on which the partition
should be determined.

• boolean supportsDirectRecord()

Indicates whether partition function supports operation on serialized records /aka direct. Returns true if
getOutputPort(ByteBuffer) method can be called.

• int getOutputPort(DataRecord record)

Returns port number which should be used for sending data out. See Return Values of Transformations (p. 282)
for more information about return values and their meaning.

• int getOutputPortOnError(Exception exception, DataRecord record)

Returns port number which should be used for sending data out. Called only if
getOutputPort(DataRecord) throws an exception.

• int getOutputPort(ByteBuffer directRecord)

Returns port number which should be used for sending data out. See Return Values of Transformations (p. 282)
for more information about return values and their meaning.

• int getOutputPortOnError(Exception exception, ByteBuffer directRecord)

Returns port number which should be used for sending data out. Called only if
getOutputPort(ByteBuffer) throws an exception.

Chapter 55. Transformers

616

LoadBalancingPartition

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

LoadBalancingPartition distributes incoming input data records among different output ports according
workload of downstream components.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

LoadBalancingPartition - no 1 1-n no no

Abstract

LoadBalancingPartition distributes incoming input data records among different output ports according
workload of all attached output components.

Each incoming record is sent to one of the attached output ports. The output port is chosen according speed of
the attached components. Actually, component just starts separate working threads for each output port, which
concurrently read incoming data records from single input port and send them to dedicated output port.

Consider different edge implementations and theirs consequences for the described algorithm. For example, direct
edge implementation has cache for hundreds or even thousands of records, so a transformation processing just
small amount of data records can send all incoming records to a single output branch. System thread scheduler
causes that all data are process by single thread. In general this component has sense only for big amount of data
records.

Chapter 55. Transformers

617

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For output data records Input 01)Output

1-N no For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 55. Transformers

618

Pivot

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the appropriate Transformer for your purpose, see Transformers Comparison (p. 319).

Short Summary

Pivot produces a pivot table. The component creates a data summarization record for every group of input records.
A group can be identified either by a key or its size.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Pivot - no 1 1 yes yes

Note: When using the key attribute, input records should be sorted, though. See Advanced Description (p. 619).

Abstract

The component reads input records and treats them as groups. A group is defined either by a key or a number of
records forming the group. Pivot then produces a single record from each group. In other words, the component
creates a pivot table.

Pivot has two principal attributes which instruct it to treat some input values as output field names and other inputs
as output values.

The component is a simple form of Denormalizer (p. 579).

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any1

Output 0 yes For summarization data records Any2

Chapter 55. Transformers

619

Pivot Attributes

Attribute Req Description Possible
values

Basic

Key 1) The key is a set of fields used to identify groups of input records
(more than one field can form a key). A group is formed by a
sequence of records with identical key values.

any input field

Group size 1) The number of input records forming one group. When using
Group size, the input data do not have to be sorted. Pivot then
reads a number of records and transforms them to one group.
The number is just the value of Group size.

<1; n>

Field defining output
field name

2) The input field whose value "maps" to a field name on the
output.

Field defining output
field value

2) The input field whose value "maps" to a field value on the
output.

Sort order Groups of input records are expected to be sorted in the order
defined here. The meaning is the same as in Denormalizer, see
Sort order (p. 580). Beware that in Pivot, setting this to Ignore
can produce unexpected results if input is not sorted.

Auto (default)
| Ascending |
Descending |
Ignore

Equal NULL Determines whether two fields containing null values are
considered equal.

true (default) |
false

Advanced

Pivot transformation 3) Using CTL or Java, you can write your own records
transformation here.

Pivot transformation
URL

3) The path to an external file which defines how to transform
records. The transformation can be written in CTL or Java.

Pivot transformation
class

3) The name of a class that is used for data transformation. It can
be written in Java.

Pivot transformation
source charset

The encoding of an external file defining the data
transformation.

ISO-8859-1
(default) | any

Deprecated

Error actions Defines actions that should be performed when the specified
transformation returns an Error code. See Return Values of
Transformations (p. 282).

Error log URL of the file which error messages should be written to.
These messages are generated during Error actions, see above.
If the attribute is not set, messages are written to Console.

Legend:

1): One of the Key or Group size attributes has to be always set.

2): These two values can either be given as an attribute or in your own transformation.

3): One of these attributes has to be set if you do not control the transformation by means of Field defining output
field name and Field defining output field value.

Advanced Description

You can define the data transformation in two ways:

Chapter 55. Transformers

620

1) Set the Key or Group size attributes. See Group Data by Setting Attributes (p. 620).

2) Write the transformation yourself in CTL/Java or provide it in an external file/Java class. See Define Your Own
Transformation - Java/CTL (p. 621).

Group Data by Setting Attributes

If you group data using the Key attribute your input should be sorted according to Key values. To tell the
component how your input is sorted, specify Sort order. If the Key fields appear in the output metadata as well,
Key values are copied automatically.

While when grouping with the Group size attribute, the component ignores the data itself and takes e.g. 3 records
(for Group size = 3) and treats them as one group. Naturally, you have to have an adequate number of input records
otherwise errors on reading will occur. The number has to be a multiple of Group size, e.g. 3, 6, 9 etc. for Group
size = 3.

Then there are the two major attributes which describe the "mapping". They say:

• which input field's value will designate the output field - Field defining output field name

• which input field's value will be used as a value for that field Field defining output field value

As for the output metadata, it is arbitrary but fixed to field names. If your input data has extra fields, they are
simply ignored (only fields defined as a value/name matter). Likewise output fields without any corresponding
input records will be null.

Example 55.5. Data Transformation with Pivot - Using Key

Let us have the following input txt file with comma-separated values:

Because we are going to group the data according to the groupID field, the input has to be sorted (mind the
ascending order of groupIDs). In the Pivot component, we will make the following settings:

Key = groupID (to group all input records with the same groupID)

Field defining output field name = fieldName (to say we want to take output fields' names from this input field)

Field defining output field value = fieldValue (to say we want to take output fields' values from this input
field)

Processing that data with Pivot produces the following output:

Chapter 55. Transformers

621

Notice the input recordNo field has been ignored. Similarly, the output comment had no corresponding fields
on the input, that is why it remains null. groupID makes part in the output metadata and thus was copied
automatically.

Note

If the input is not sorted (not like in the example), grouping records according to their count is
especially handy. Omit Key and set Group size instead to read sequences of records that have exactly
the number of records you need.

Define Your Own Transformation - Java/CTL

In Pivot, you can write the transformation function yourself. That can be done either in CTL or Java, see Advanced
attributes in Pivot Attributes (p. 619)

Before writing the transformation, you might want to refer to some of the sections touching the subject:

• Defining Transformations (p. 278)

• writing transformations in Denormalizer, the component Pivot is derived from: CTL Scripting
Specifics (p. 581) and Java Interfaces for Denormalizer (p. 587)

Java

Compared to Denormalizer, the Pivot component has new significant attributes:
nameField and valueField. These can be defined either as attributes (see
above) or by methods. If the transformation is not defined, the component uses
com.opensys.cloveretl.component.pivot.DataRecordPivotTransform which copies
values from valueField to nameField.

In Java, you can implement your own PivotTransform that overrides DataRecordPivotTransform.
However, you can override only one method, e.g. getOutputFieldValue, getOutputFieldIndex or
others from PivotTransform (that extends RecordDenormalize).

CTL

In CTL1/2, too, you can set one of the attributes and implement the other one with a method. So you can e.g.
set valueField and implement getOutputFieldIndex. Or you can set nameField and implement
getOutputFieldValue.

In the compiled mode, the getOutputFieldValue and getOutputFieldValueonError methods
cannot be overridden. When the transformation is written in CTL, the default append and transform methods
are always performed before the user defined ones.

For a better understanding, examine the methods' documentation directly in the Transform editor.

Chapter 55. Transformers

622

Reformat

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Reformat manipulates record’s structure or content.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Reformat - 1 1-N

Abstract

Reformat receives potentially unsorted data through single input port, transforms each of them in a user-specified
way and sents the resulting record to the port(s) specified by user. Return values of the transformation are numbers
of output port(s) to which data record will be sent.

A transformation must be defined. The transformation uses a CTL template for Reformat, implements a
RecordTransform interface or inherits from a DataRecordTransform superclass. The interface methods
are listed below.

Icon

Ports

Port type Number Required Description Metadata

Input 0 for input data records Any(In0)

0 for transformed data records Any(Out0)Output

1-n for transformed data records Any(OutPortNo)

Chapter 55. Transformers

623

Reformat Attributes

Attribute Req Description Possible
values

Basic

Transform 1) Definition of how records should be reformated. Written in the
graph source either in CTL or in Java.

Transform URL 1) Name of external file, including path, containing the definition
of the way how records should be reformated; written in CTL
or Java.

Transform class 1) Name of external class defining the way how records should be
reformated.

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Legend:

1): One of these must be specified. Any of these transformation attributes uses a CTL template for Reformat or
implements a RecordTransform interface.

See CTL Scripting Specifics (p. 623) or Java Interfaces for Reformat (p. 624) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Use Reformat To

• Drop unwanted fields

• Validate fields using functions or regular expressions (p. 964)

• Calculate new or modify existing fields

• Convert data types

CTL Scripting Specifics

When you define any of the three transformation attributes, you must specify a transformation that assigns a
number of output port to each input record.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

CTL Templates for Reformat

Reformat uses the same transformation teplate as DataIntersection and Joiners. See CTL Templates for
Joiners (p. 324) for more information.

Chapter 55. Transformers

624

Java Interfaces for Reformat

Reformat implements the same interface as DataIntersection and Joiners. See Java Interfaces for Joiners (p. 327)
for more information.

Chapter 55. Transformers

625

Rollup

Commercial Component

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

Rollup creates one or more output records from one or more input records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

Rollup - no 1 1-N yes yes

Abstract

Rollup receives potentially unsorted data through single input port, transforms them and creates one or more
output records from one or more input records.

Component can sent different records to different output ports as specified by user.

A transformation must be defined. The transformation uses a CTL template for Rollup, implements a
RecordRollup interface or inherits from a DataRecordRollup superclass. The interface methods are listed
below.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any(In0)

0 yes For output data records Any(Out0)Output

1-N no For output data records Any(Out1-
N)

Chapter 55. Transformers

626

Rollup Attributes

Attribute Req Description Possible
values

Basic

Group key Key according to which the records are considered to be
included into one group. Expressed as the sequence of
individual input field names separated from each other by
semicolon. See Group Key (p. 275) for more information. If not
specified, all records are considered to be members of a single
group.

Group accumulator ID of metadata that serve to create group accumulators.
Metadata serve to store values used for transformation of
individual groups of data records.

no metadata
(default) | any
metadata

Transform 1) Definition of the transformation written in the graph in CTL or
Java.

Transform URL 1) Name of external file, including path, containing the definition
of the transformation written in CTL or Java.

Transform class 1) Name of external class defining the transformation.

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Sorted input By default, records are considered to be sorted. Either in
ascending or descending order. Different fields may even have
different sort order. If your records are not sorted, switch this
attribute to false.

true (default) |
false

Equal NULL By default, records with null values of key fields are considered
to be equal. If set to false, they are considered to be different
from each other.

true (default) |
false

Legend:

1): One of these must specified. Any of these transformation attributes uses a CTL template for Rollup or
implements a RecordRollup interface.

See CTL Scripting Specifics (p. 626) or Java Interfaces for Rollup (p. 635) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

CTL Scripting Specifics

When you define any of the three transformation attributes, you must specify the way how input should be
transformed into output.

Transformations implement a RecordRollup interface or inherit from a DataRecordRollup superclass.
Below is the list of RecordRollup interface methods. See Java Interfaces for Rollup (p. 635) for detailed
information this interface.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom transformation using the simple CTL scripting language.

Once you have written your transformation, you can also convert it to Java language code by clicking
corresponding button at the upper right corner of the tab.

Chapter 55. Transformers

627

You can open the transformation definition as another tab of the graph (in addition to the Graph and Source tabs
of Graph Editor) by clicking corresponding button at the upper right corner of the tab.

CTL Templates for Rollup

Here is an example of how the Source tab for defining the transformation looks like:

Figure 55.8. Source Tab of the Transform Editor in the Rollup Component (I)

Figure 55.9. Source Tab of the Transform Editor in the Rollup Component (II)

Chapter 55. Transformers

628

Figure 55.10. Source Tab of the Transform Editor in the Rollup Component (III)

Table 55.4. Functions in Rollup

CTL Template Functions

void init()

Required No

Description Initialize the component, setup the environment, global variables

Invocation Called before processing the first record

Returns void

void initGroup(<metadata name> groupAccumulator)

Required yes

Input Parameters <metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns void

Invocation Called repeatedly, once for the first input record of each group.
Called before updateGroup(groupAccumulator).

Description Initializes information for specific group.

Example function void initGroup(
 companyCustomers groupAccumulator) {
 groupAccumulator.count = 0;
 groupAccumulator.totalFreight = 0;
}

Chapter 55. Transformers

629

CTL Template Functions

boolean updateGroup(<metadata name> groupAccumulator)

Required yes

Input Parameters <metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns false (updateTransform(counter,groupAccumulator) is not
called) | true (updateTransform(counter,groupAccumulator) is
called)

Invocation Called repeatedly (once for each input record of the
group, including the first and the last record) after the
initGroup(groupAccumulator) function has already been called
for the whole group.

Description Updates information for specific group. If any of the input
records causes fail of the updateGroup() function, and if
user has defined another function (updateGroupOnError()),
processing continues in this updateGroupOnError() at the
place where updateGroup() failed. If updateGroup()
fails and user has not defined any updateGroupOnError(),
the whole graph will fail. The updateGroup() passes to
updateGroupOnError() error message and stack trace as
arguments.

Example function boolean updateGroup(
 companyCustomers groupAccumulator) {
 groupAccumulator.count++;
 groupAccumulator.totalFreight =
 groupAccumulator.totalFreight
 + $0.Freight;
 return true;
}

boolean finishGroup(<metadata name> groupAccumulator)

Required yes

Input Parameters <metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns true (transform(counter,groupAccumulator) is called) | false
(transform(counter,groupAccumulator) is not called)

Invocation Called repeatedly, once for the last input record of each group.
Called after updateGroup(groupAccumulator) has already been
called for all input records of the group.

Description Finalizes the group information. If any of the input records
causes fail of the finishGroup() function, and if user
has defined another function (finishGroupOnError()),
processing continues in this finishGroupOnError() at the
place where finishGroup() failed. If finishGroup()
fails and user has not defined any finishGroupOnError(),
the whole graph will fail. The finishGroup() passes to
finishGroupOnError() error message and stack trace as
arguments.

Chapter 55. Transformers

630

CTL Template Functions

Example function boolean finishGroup(
 companyCustomers groupAccumulator) {
 groupAccumulator.avgFreight =
 groupAccumulator.totalFreight
 / groupAccumulator.count;
 return true;
}

integer updateTransform(integer counter, <metadata name> groupAccumulator)

Required yes

integer counter (starts from 0, specifies the number of
created records. should be terminated as shown in example below.
Function calls end when SKIP is returned.)

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly as specified by user. Called after
updateGroup(groupAccumulator) returns true. The function is
called until SKIP is returned.

Description It creates output records based on individual record information.
If any part of the transform() function for some output record
causes fail of the updateTransform() function, and if user has
defined another function (updateTransformOnError()),
processing continues in this updateTransformOnError()
at the place where updateTransform() failed. If
updateTransform() fails and user has not defined any
updateTransformOnError(), the whole graph will fail. The
updateTransformOnError() function gets the information
gathered by updateTransform() that was get from previously
successfully processed code. Also error message and stack trace are
passed to updateTransformOnError().

Example function integer updateTransform(
 integer counter,
 companyCustomers groupAccumulator) {
 if (counter >= Length) {
 clear(customers);
 return SKIP;
 }
 $0.customers = customers[counter];
 $0.EmployeeID = $0.EmployeeID;
 return ALL;
}

integer transform(integer counter, <metadata name> groupAccumulator)

Required yes

Chapter 55. Transformers

631

CTL Template Functions

integer counter (starts from 0, specifies the number of
created records. should be terminated as shown in example below.
Function calls end when SKIP is returned.)

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called repeatedly as specified by user. Called after
finishGroup(groupAccumulator) returns true. The function is
called until SKIP is returned.

Description It creates output records based on all of the records of the whole
group. If any part of the transform() function for some
output record causes fail of the transform() function, and
if user has defined another function (transformOnError()),
processing continues in this transformOnError() at the
place where transform() failed. If transform() fails and
user has not defined any transformOnError(), the whole
graph will fail. The transformOnError() function gets
the information gathered by transform() that was get from
previously successfully processed code. Also error message and
stack trace are passed to transformOnError().

Example function integer transform(
 integer counter,
 companyCustomers groupAccumulator) {
 if (counter > 0) return SKIP;
 $0.ShipCountry = $0.ShipCountry;
 $0.Count = groupAccumulator.count;
 $0.AvgFreight =
 groupAccumulator.avgFreight;
 return ALL;
}

void initGroupOnError(string errorMessage, string stackTrace, <metadata name> groupAccumulator)

Required no

string errorMessage

string stackTrace

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns void

Invocation Called if initGroup() throws an exception.

Description Initializes information for specific group.

Example function void initGroupOnError(
 string errorMessage,
 string stackTrace,
 companyCustomers groupAccumulator)
 printErr(errorMessage);
}

Chapter 55. Transformers

632

CTL Template Functions

boolean updateGroupOnError(string errorMessage,
string stackTrace, <metadata name> groupAccumulator)

Required no

string errorMessage

string stackTrace

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns false (updateTransform(counter,groupAccumulator) is not
called) | true (updateTransform(counter,groupAccumulator) is
called)

Invocation Called if updateGroup() throws an exception for a record of the
group. Called repeatedly (once for each of the other input records
of the group).

Description Updates information for specific group.

Example function boolean updateGroupOnError(
 string errorMessage,
 string stackTrace,
 companyCustomers groupAccumulator) {
 printErr(errorMessage);
 return true;
}

boolean finishGroupOnError(string errorMessage,
string stackTrace, <metadata name> groupAccumulator)

Required no

string errorMessage

string stackTrace

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns true (transform(counter,groupAccumulator) is called) | false
(transform(counter,groupAccumulator) is not called)

Invocation Called if finishGroup() throws an exception.

Description Finalizes the group information.

Example function boolean finishGroupOnError(
 string errorMessage,
 string stackTrace,
 companyCustomers groupAccumulator) {
 printErr(errorMessage);
 return true;
}

integer updateTransformOnError(string errorMessage, string
stackTrace, integer counter, <metadata name> groupAccumulator)

Required yes

Chapter 55. Transformers

633

CTL Template Functions

string errorMessage

string stackTrace

integer counter (starts from 0, specifies the number of
created records. should be terminated as shown in example below.
Function calls end when SKIP is returned.)

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if updateTransform() throws an exception.

Description It creates output records based on individual record information

Example function integer updateTransformOnError(
 string errorMessage,
 string stackTrace,
 integer counter,
 companyCustomers groupAccumulator) {
 if (counter >= 0) {
 return SKIP;
 }
 printErr(errorMessage);
 return ALL;
}

integer transformOnError(string errorMessage, string stackTrace,
integer counter, <metadata name> groupAccumulator)

Required no

string errorMessage

string stackTrace

integer counter (starts from 0, specifies the number of
created records. should be terminated as shown in example below.
Function calls end when SKIP is returned.)

Input Parameters

<metadata name> groupAccumulator (metadata
specified by user) If groupAccumulator is not defined,
VoidMetadata Accumulator is used in the function
signature.

Returns Integer numbers. See Return Values of Transformations (p. 282)
for detailed information.

Invocation Called if transform() throws an exception.

Description It creates output records based on all of the records of the whole
group.

Chapter 55. Transformers

634

CTL Template Functions

Example function integer transformOnError(
 string errorMessage,
 string stackTrace,
 integer counter,
 companyCustomers groupAccumulator) {
 if (counter >= 0) {
 return SKIP;
 }
 printErr(errorMessage);
 return ALL;
}

string getMessage()

Required No

Description Prints error message specified and invocated by user

Invocation Called in any time specified by user
(called only when either updateTransform(),
transform(), updateTransformOnError(), or
transformOnError() returns value less than or equal to -2).

Returns string

void preExecute()

Required No

Input parameters None

Returns void

Description May be used to allocate and initialize resources required by the
transform. All resources allocated within this function should be
released by the postExecute() function.

Invocation Called during each graph run before the transform is executed.

void postExecute()

Required No

Input parameters None

Returns void

Description Should be used to free any resources allocated within the
preExecute() function.

Invocation Called during each graph run after the entire transform was
executed.

Important

• Input records or fields

Input records or fields are accessible within the initGroup(), updateGroup(),
finishGroup(), initGroupOnError(), updateGroupOnError(), and
finishGroupOnError() functions.

They are also accessible within the updateTransform(), transform(),
updateTansformOnError(), and transformOnError() functions.

• Output records or fields

Chapter 55. Transformers

635

Output records or fields are accessible within the updateTransform(), transform(),
updateTansformOnError(), and transformOnError() functions.

• Group accumulator

Group accumulator is accessible within the initGroup(), updateGroup(),
finishGroup(), initGroupOnError(), updateGroupOnError(), and
finishGroupOnError() functions.

It is also accessible within the updateTransform(), transform(),
updateTansformOnError(), and transformOnError() functions.

• All of the other CTL template functions allow to access neither inputs nor outputs or
groupAccumulator.

Warning

Remember that if you do not hold these rules, NPE will be thrown!

Java Interfaces for Rollup

The transformation implements methods of the RecordRollup interface and inherits other common methods
from the Transform interface. See Common Java Interfaces (p. 294).

Following is the list of the RecordRollup interface methods:

• void init(Properties parameters, DataRecordMetadata inputMetadata,
DataRecordMetadata accumulatorMetadata, DataRecordMetadata[]
outputMetadata)

Initializes the rollup transform. This method is called only once at the beginning of the life-cycle of the rollup
transform. Any internal allocation/initialization code should be placed here.

• void initGroup(DataRecord inputRecord, DataRecord groupAccumulator)

This method is called for the first data record in a group. Any initialization of the group "accumulator" should
be placed here.

• void initGroupOnError(Exception exception, DataRecord inputRecord,
DataRecord groupAccumulator)

This method is called for the first data record in a group. Any initialization of the group "accumulator" should
be placed here. Called only if initGroup(DataRecord, DataRecord) throws an exception.

• boolean updateGroup(DataRecord inputRecord, DataRecord groupAccumulator)

This method is called for each data record (including the first one as well as the last one) in a group in order
to update the group "accumulator".

• boolean updateGroupOnError(Exception exception, DataRecord inputRecord,
DataRecord groupAccumulator)

This method is called for each data record (including the first one as well as the last one) in a group in order
to update the group "accumulator". Called only if updateGroup(DataRecord, DataRecord) throws
an exception.

• boolean finishGroup(DataRecord inputRecord, DataRecord groupAccumulator)

This method is called for the last data record in a group in order to finish the group processing.

Chapter 55. Transformers

636

• boolean finishGroupOnError(Exception exception, DataRecord inputRecord,
DataRecord groupAccumulator)

This method is called for the last data record in a group in order to finish the group processing. Called only if
finishGroup(DataRecord, DataRecord) throws an exception.

• int updateTransform(int counter, DataRecord inputRecord, DataRecord
groupAccumulator, DataRecord[] outputRecords)

This method is used to generate output data records based on the input data record and the contents of the group
"accumulator" (if it was requested). The output data record will be sent to the output when this method finishes.
This method is called whenever the boolean updateGroup(DataRecord, DataRecord) method
returns true. The counter argument is the number of previous calls to this method for the current group
update. See Return Values of Transformations (p. 282) for detailed information about return values and their
meaning.

• int updateTransformOnError(Exception exception, int counter, DataRecord
inputRecord, DataRecord groupAccumulator, DataRecord[] outputRecords)

This method is used to generate output data records based on the input data record and the contents of the
group "accumulator" (if it was requested). Called only if updateTransform(int, DataRecord,
DataRecord) throws an exception.

• int transform(int counter, DataRecord inputRecord, DataRecord
groupAccumulator, DataRecord[] outputRecords)

This method is used to generate output data records based on the input data record and the contents of the group
"accumulator" (if it was requested). The output data record will be sent to the output when this method finishes.
This method is called whenever the boolean finishGroup(DataRecord, DataRecord) method
returns true. The counter argument is the number of previous calls to this method for the current group.
See Return Values of Transformations (p. 282) for detailed information about return values and their meaning.

• int transformOnError(Exception exception, int counter, DataRecord
inputRecord, DataRecord groupAccumulator, DataRecord[] outputRecords)

This method is used to generate output data records based on the input data record and the contents of the group
"accumulator" (if it was requested). Called only if transform(int, DataRecord, DataRecord)
throws an exception.

Chapter 55. Transformers

637

SimpleCopy

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

SimpleCopy copies data to all connected output ports.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

SimpleCopy - no 1 1-n - -

Abstract

SimpleCopy receives data records through single input port and copies each of them to all connected output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For copied data records Input 01)Output

1-n no For copied data records Output 01)

Legend:

1): Metadata on the output port(s) can be fixed-length or mixed even when those on the input are delimited, and
vice versa. Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

638

SimpleGather

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

SimpleGather gathers data records from multiple inputs.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

SimpleGather yes no 1-n 1 - -

Abstract

SimpleGather receives data records through one or more input ports. SimpleGather the gathers (demultiplexes)
all the records as fast as possible and sends them all to the single output port. Metadata of all input and output
ports must be the same.

Icon

Ports

Port type Number Required Description Metadata

0 yes For input data records AnyInput

1-n no For input data records Input 01)

Output 0 yes For gathered data records Input 01)

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

639

SortWithinGroups

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

SortWithinGroups sorts input records within groups of records according to a sort key.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

SortWithinGroups - yes 1 1-n - -

Abstract

SortWithinGroups receives data records (that are grouped according to group key) through single input port,
sorts them according to sort key separately within each group of adjacent records and copies each record to all
connected output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For sorted data records Input 01)Output

1-n no For sorted data records Input 01)

Legend:

1): Metadata can be propagated through this component. All output metadata must be the same.

Chapter 55. Transformers

640

SortWithinGroups Attributes

Attribute Req Description Possible
values

Basic

Group key yes Key defining groups of records. Non-adjacent records with
the same key value are considered to be of different groups
and each of these different groups is processed separately and
independently on the others. See Group Key (p. 275) for more
information.

Sort key yes Key according to which the records are sorted within each group
of adjacent records. See Sort Key (p. 276) for more information.

Advanced

Buffer capacity Maximum number of records parsed in memory. If there
are more input records than this number, external sorting is
performed.

10485760
(default) | 1-N

Number of tapes Number of temporary files used to perform external sorting.
Even number higher than 2.

8 (default) |
2*(1-N)

Advanced Description

Sorting Null Values

Remember that SortWithinGroups processes the records in which the same fields of the Sort key attribute have
null values as if these nulls were equal.

Chapter 55. Transformers

641

XSLTransformer

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 45, Common Properties of Transformers (p. 319)

If you want to find the right Transformer for your purposes, see Transformers Comparison (p. 319).

Short Summary

XSLTransformer transforms input data records using an XSL transformation (XSLT 1.0 and XSLT 2.0 are
supported).

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

XSLTransformer - no 1 1 - -

Abstract

XSLTransformer component does XSL transformation of input and writes the transformation result to the output.
The input and output can be specified by file URL, dictionary or field. The XSL transformation can be loaded
from an external file or can be defined in the component.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For input data records Any1

Output 0 no For transformed data records Any2

XSLTransformer Attributes

Attribute Req Description Possible
values

Basic

XSLT file 1) External file defining the XSL transformation.

Chapter 55. Transformers

642

Attribute Req Description Possible
values

XSLT 1) XSL transformation defined in the graph.

Mapping 2) Sequence of individual mappings for output
fields separated from each other by semicolon.
Each individual mapping has the following
form: $outputField:=transform($inputField) (if
inputField should be transformed according to the XSL
transformation) or $outputField:=$inputField (if
inputField should not be transformed).

XML input file or field 2),3) URL of file, dictionary or field serving as input.

XML output file or
field

2),3) URL of file, dictionary or field serving as output.

Advanced

Output charset Character encoding of the output. UTF-8
(default) | other
encoding

Legend:

1): One of these attributes must be set. If both are set, XSLT file has higher priority.

2): One of these attributes must be set. If more are set, Mapping has the highest priority.

3): Either both or neither of them must be set. They are ignored if Mapping is defined.

Advanced Description

Mapping

Mapping can be defined using the following wizard.

Figure 55.11. XSLT Mapping

Assign the input fields from the Input fields pane on the left to the output fields by dragging and dropping them
in the Input field column of the right pane. Select which of them should be transformed by setting the Transform
data option to true. By default, fields are not transformed.

The resulting Mapping can look like this:

Figure 55.12. An Example of Mapping

Remember that you must set either the Mapping attribute, or a pair of the following two attributes: XML input file
or field and XML output file or field. These define input and output file, dictionary or field. If you set Mapping,
these two other attributes are ignored even if they are set.

643

Chapter 56. Joiners
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Some components are intermediate nodes of the graph. These are called Joiners or Transformers.

For information about Transformers see Chapter 55, Transformers (p. 566). Here we will describe Joiners.

Joiners serve to join data from more data sources according to the key values.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, others are common for most of the components, or they are common for Joiners only.
You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

We can distinguish Joiners according to how they process data. Most Joiners work using key values.

• Some Joiners read data from two or more input ports and join them according to the equality of key values.

• ExtHashJoin (p. 657) joins two or more data inputs according to the equality of key values.

• ExtMergeJoin (p. 663) joins two or more sorted data inputs according to the equality of key values.

• Other Joiners read data from one input port and another data source and join them according to the equality
of key values.

• DBJoin (p. 654) joins one input data source and a database according to the equality of key values.

• LookupJoin (p. 668) joins one input data source and a lookup table according to the equality of key values.

• One Joiner joins data according to the level of conformity of key values.

• ApproximativeJoin (p. 644) joins two sorted inputs according to the level of conformity of key values.

• One Joiner joins data according to the user-defined relation of key values.

• RelationalJoin (p. 671) joins two or more sorted data inputs according to the user-defined relation of key
values (!=, >, >=, <. <=).

• Combine (p. 652) joins data flows by tuples.

Chapter 56. Joiners

644

ApproximativeJoin

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

Short summary

ApproximativeJoin merges sorted data from two data sources on a common matching key. Afterwards, it
distributes records to the output based on a user-specified Conformity limit.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

ApproximativeJoin no yes 1 2-4 yes yes yes

Abstract

ApproximativeJoin is a fuzzy joiner that is usually used in quite special situations. It requires the input be sorted
and is very fast as it processes data in the memory. However, it should be avoided in case of large inputs as its
memory requirements may be proportional to the size of the input.

The data attached to the first input port is called master as in the other Joiners. The second input port is called slave.

Unlike other joiners, this component uses two keys for joining. First of all, the records are matched in a standard
way using Matching Key. Each pair of these matched records is then reviewed again and the conformity
(similarity) of these two records is computed using Join key and a user-defined algorithm. The conformity level is
then compared to Conformity limit and each record is sent either to the first (greater conformity) or to the second
output port (smaller conformity). The rest of the records is sent to the third and fourth output port.

Icon

Chapter 56. Joiners

645

Ports

ApproximativeJoin receives data through two input ports, each of which may have a different metadata structure.

The conformity is then computed for matched data records. The records with greater conformity are sent to the first
output port. Those with smaller conformity are sent to the second output port. The third output port can optionally
be used to capture unmatched master records. The fourth output port can optionally be used to capture unmatched
slave records.

Port type Number Required Description Metadata

0 yes Master input port AnyInput

1 yes Slave input port Any

0 yes Output port for the joined data with
greater conformity

Any, optionally including additional
fields: _total_conformity_
and _keyName_conformity_.
See Additional fields (p. 650).

1 yes Output port for the joined data with
smaller conformity

Any, optionally including additional
fields: _total_conformity_
and _keyName_conformity_.
See Additional fields (p. 650).

2 no Optional output port for master
data records without slave matches

Input 0

Output

3 no Optional output port for slave data
records without master matches

Input 1

ApproximativeJoin Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key according to which the incoming data flows with the same
value of Matching key are compared and distributed between
the first and the second output port. Depending on the specified
Conformity limit. See Join key (p. 648).

Matching key yes This key serves to match master and slave records.

Transform 1) Transformation in CTL or Java defined in the graph for records
with greater conformity.

Transform URL 1) External file defining the transformation in CTL or Java for
records with greater conformity.

Transform class 1) External transformation class for records with greater
conformity.

Transform for
suspicious

2) Transformation in CTL or Java defined in the graph for records
with smaller conformity.

Transform URL for
suspicious

2) External file defining the transformation in CTL or Java for
records with smaller conformity.

Transform class for
suspicious

2) External transformation class for records with smaller
conformity.

Chapter 56. Joiners

646

Attribute Req Description Possible
values

Conformity limit (0,1) This attribute defines the limit of conformity for pairs of records.
To the records with conformity higher than this value the
transformation is applied, to those with conformity less than this
value, the transformation for suspicious is applied.

0.75 (default) |
between 0 and
1

Advanced

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Deprecated

Locale Locale to be used when internationalization is used.

Case sensitive If set to true, upper and lower cases of characters are
considered different. By default, they are processed as if they
were equal to each other.

false (default) |
true

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Slave override key In older versions of CloverETL, slave part of Join key. Join
key was defined as the sequence of individual expressions
consisting of master field names each of them was followed
by parentheses containing the 6 parameters mentioned below.
These individual expressions were separated by semicolon. The
Slave override key was a sequence of slave counterparts of
the master Join key fields. Thus, in the case mentioned above,
Slave override key would be fname;lname, whereas Join
key would be first_name(3 0.8 true false false
false);last_name(4 0.2 true false false
false).

Slave override
matching key

In older versions of CloverETL, slave part of Matching key.
Matching key was defined as a master field name. Slave
override matching key was its slave counterpart. Thus, in the
case mentioned above ($masterField=$slaveField),
Slave override matching key would be this slaveField
only. And Matching key would be this masterField.

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

2) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 651) or Java Interfaces (p. 651) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Chapter 56. Joiners

647

Advanced Description

• Matching key

You can define the Matching key using the Matching key wizard. You only need to select the desired master
(driver) field in the Master key pane on the left and drag and drop it to the Master key pane on the right in the
Master key tab. (You can also use the provided buttons.)

Figure 56.1. Matching Key Wizard (Master Key Tab)

In the Slave key tab, you must select one of the slave fields in the Fields pane on the left and drag and drop it
to the Slave key field column at the right from the Master key field column (containing the master field the
Master key tab) in the Key mapping pane.

Figure 56.2. Matching Key Wizard (Slave Key Tab)

Example 56.1. Matching Key

Matching key looks like this:

$master_field=$slave_field

Chapter 56. Joiners

648

• Conformity limit

You have to define the limit of conformity (Conformity limit (0,1)). The defined value distributes incoming
records according to their conformity. The conformity can be greater or smaller than the specified limit. You
have to define transformations for either group. The records with smaller conformity are marked "suspicious"
and sent to port 1, while records with higher conformity go to port 0 ("good match").

The conformity calculation is a challenge so let us try to explain at least in basic terms. First, groups of records
are made based on Matching key. Afterwards, all records in a single group are compared to each other according
to the Join Key specification. The strength of comparison selected in particular Join key fields determines what
"penalty" characters get (for comparison strength, see Join key (p. 648)):

• Identical - is a character-by-character comparison. The penalty is given for each different character (similar
to String.equals()).

• Tertiary - ingores differences in lower/upper case (similar to String.equalsIgnoreCase()), if it is
the only comparison strength activated. If activated together with Identical, then a difference in diacritic (e.g.
'c' vs. ' ') is a full penalty and a difference in case (e.g. 'a' vs. 'A') is half a penalty.

• Secondary - a plain letter and its diacritic derivates for the same language are considered equal. The language
used during comparison is taken from the metadata on the field. When no metadata is set on the field, it is
treated as en and should work identically to Primary (i.e. derivatives are treated as equal).

Example:

language=sk: 'a', 'á', 'ä' are equal because they are all Slovak characters

language= sk: 'a', ' ' are different because ' ' is a Polish (and not Slovak) character

• Primary - all diacritic-derivates are considered equal regardless of language settings.

Example:

language=any: 'a', 'á', 'ä', ' ' are equal because they are all derivatives of 'a'

As a final step, the total conformity is calculated as a weighted average of field conformities.

• Join key

You can define the Join key with the help of the Join key wizard. When you open the Join key wizard, you
can see two tabs: Master key tab and Slave key tab.

Chapter 56. Joiners

649

Figure 56.3. Join Key Wizard (Master Key Tab)

In the Master key tab, you must select the driver (master) fields in the Fields pane on the left and drag and drop
them to the Master key pane on the right. (You can also use the buttons.)

Figure 56.4. Join Key Wizard (Slave Key Tab)

In the Slave key tab, you can see the Fields pane (containing all slave fields) on the left and the Key mapping
pane on the right.

You must select some of these slave fields and drag and drop them to the Slave key field column at the right
from the Master key field column (containing the master fields selected in the Master key tab in the first step).
In addition to these two columns, there are other six columns that should be defined: Maximum changes, Weight
and the last four representing strength of comparison.

The maximum changes property contains the integer number that is equal to the the number of letters that should
be changed so as to convert one data value to another value. The maximum changes property serves to compute
the conformity. The conformity between two strings is 0, if more letters must be changed so as to convert one
string to the other.

The weight property defines the weight of the field in computing the similarity. Weight of each field difference
is computed as the quotient of the weight defined by user and the sum of the weights defined by user.

Chapter 56. Joiners

650

The strength of comparison can be identical, tertiary, secondary or primary.

• identical

Only identical letters are considered equal.

• tertiary

Upper and lower case letters are considered equal.

• secondary

Diacritic letters and their Latin equivalents are considered equal.

• primary

Letters with additional features such as a peduncle, pink, ring and their Latin equivalents are considered equal.

In the wizard, you can change any boolean value of these columns by simply clicking. This switches true to
false, and vice versa. You can also change any numeric value by clicking and typing the desired value.

When you click OK, you will obtain a sequence of assignments of driver (master) fields and slave fields
preceded by dollar sign and separated by semicolon. Each slave field is followed by parentheses containing six
mentioned parameters separated by white spaces. The sequence will look like this:

$driver_field1=$slave_field1(parameters);...;$driver_fieldN=$slave_fieldN(parameters)

Figure 56.5. An Example of the Join Key Attribute in ApproximativeJoin Component

Example 56.2. Join Key for ApproximativeJoin

$first_name=$fname(3 0.8 true false false false);$last_name=$lname(4 0.2
true false false false). In this Join key, first_name and last_name are fields from the first
(master) data flow and fname and lname are fields from the second (slave) data flow.

• Additional fields

Metadata on the first and second output ports can contain additional fields of numeric data type. Their names
must be the following: "_total_conformity_" and some number of "_keyName_conformity_"
fields. In the last field names, you must use the field names of the Join key attribute as the keyName in these
additional field names. To these additional fields the values of computed conformity (total or that for keyName)
will be written.

Chapter 56. Joiners

651

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

Chapter 56. Joiners

652

Combine

Jobflow Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

The component is located in Palette →Joiners.

Short Summary

Combine takes one record from each input port, combines them according to a specified transformation and sends
the resulting records to one or more ports.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

.

Ja
va

C
T

L

Combine no no 1–n 1-n yes yes yes yes

Abstract

In each step, the Combine component takes one record from all input ports, creates single output record, and fills
fields of this output record with data from input record (or other data) according to specified transformation.

The simplest way how to define the combination transformation is using the Transform Editor (p. 285) available at
the Transform component attribute. There you will see metadata for each input port on the left side and metadata
for single output port on the right side. Simply drag and drop fields from the left to the fields on the right to create
desired combination transformation.

In default setting, the component assumes that the same number of records will arrive on each input port, and in
case that some input edge becomes empty while others still contain some records, the component fails. You can
avoid this failures by setting the Allow incomplete tuples attribute to true.

Icon

Ports

Port type Number Required Description Metadata

Input 1–n yes Input records to be combined. Any

Output 0 yes Output record which is the result of combination. Any

Chapter 56. Joiners

653

Combine Attributes

Attribute Req Description Possible
values

Basic

Transform 1) Definition of how input records should be combined into output
record. Written in the graph source either in CTL or in Java.

Transform URL 1) Name of external file, including path, containing the definition
of the way how records should be combined. Written in CTL
or in Java.

Transform class 1) Name of external class defining the way how records should be
combined.

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Allow incomplete
tuples

Whether each input port has to contribute a record for each
output record.

true (default) |
false

Legend:

1): One of these must be specified. Any of these transformation attributes uses a CTL template for Reformat or
implements a RecordTransform interface.

See also Defining Transformations (p. 278) for detailed information about transformations.

Chapter 56. Joiners

654

DBJoin

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

Short Summary

DBJoin receives data through a single input port and joins it with data from a database table. These two data
sources can potentially have different metadata structures.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

DBJoin no no 1 (virtual) 1-2 yes no yes

Abstract

DBJoin receives data through a single input port and joins it with data from a database table. These two data
sources can potentially have different metadata structure. It is a general purpose joiner usable in most common
situations. It does not require the input to be sorted and is very fast as data is processed in memory.

The data attached to the first input port is called the master, the second data source is called slave. Its data is
considered as if it were incoming through the second (virtual) input port. Each master record is matched to the
slave record on one or more fields known as a join key. The output is produced by applying a transformation that
maps joined inputs to the output.

Icon

Ports

DBJoin receives data through a single input port and joins it with data from a database table. These two data
sources can potentially have different metadata structure.

The joined data is then sent to the first output port. The second output port can optionally be used to capture
unmatched master records.

Port type Number Required Description Metadata

0 yes Master input port AnyInput

1 (virtual) yes Slave input port Any

Chapter 56. Joiners

655

Port type Number Required Description Metadata

0 yes Output port for the joined data AnyOutput

1 no Optional output port for master data records without slave
matches. (Only if the Join type attribute is set to Inner
join.) This applies only to LookupJoin and DBJoin.

Input 0

DBJoin Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key according to which the incoming data flows are joined. See
Join key (p. 656).

Left outer join If set to true, also driver records without corresponding slave
are parsed. Otherwise, inner join is performed.

false (default) |
true

DB connection yes ID of the DB connection to be used as the resource of slave
records.

DB metadata ID of DB metadata to be used. If not set, metadata is extracted
from database using SQL query.

Query URL 3) Name of external file, including path, defining SQL query.

SQL query 3) SQL query defined in the graph.

Transform 1), 2) Transformation in CTL or Java defined in the graph.

Transform URL 1), 2) External file defining the transformation in CTL or Java.

Transform class 1), 2) External transformation class.

Cache size Maximum number of records with different key values that can
be stored in memory.

100 (default)

Advanced

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Legend:

1) One of these transformation attributes should be set. Any of them must use a common CTL template for Joiners
or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 656) or Java Interfaces (p. 656) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

2) The unique exception is the case when none of these three attributes is specified, but the SQL query attribute
defines what records will be read from DB table. Values of Join key contained in the input records serve to select
the records from db table. These are unloaded and sent unchanged to the output port without any transformation.

3) One of these attributes must be specified. If both are defined, Query URL has the highest priority.

Chapter 56. Joiners

656

Advanced Description

• Join key

The Join key is a sequence of field names from master data source separated from each other by a semicolon,
colon, or pipe. You can define the key in the Edit key wizard.

Order of these field names must correspond to the order of the key fields from database table (and their data
types). The slave part of Join key must be defined in the SQL query attribute.

One of the query attributes must contain the expression of the following form: ... where field_K=?
and field_L=?.

Example 56.3. Join Key for DBJoin

$first_name;$last_name

This is the master part of fields that should serve to join master records with slave records.

SQL query must contain the expression that can look like this:

... where fname=? and lname=?

Corresponding fields will be compared and matching values will serve to join master and slave records.

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

Chapter 56. Joiners

657

ExtHashJoin

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

Short Summary

General purpose joiner, merges potentionally unsorted data from two or more data sources on a common key.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

ExtHashJoin no no 1-n 1 no no yes

Abstract

This is a general purpose joiner used in most common situations. It does not require the input be sorted and is
very fast as it is processed in memory.

The data attached to the first input port is called the master (as usual in other Joiners). All remaining connected
input ports are called slaves. Each master record is matched to all slave records on one or more fields known as the
join key. The output is produced by applying a transformation that maps joined inputs to the output. For details,
see Joining Mechanics (p. 662).

This joiner should be avoided in case of large inputs on the slave port. The reason is slave data is cached in the
memory.

Tip

If you have larger data, consider using the ExtMergeJoin component. If your data sources are
unsorted, use a sorting component first (ExtSort, FastSort, or SortWithinGroups).

Chapter 56. Joiners

658

Icon

Ports

ExtHashJoin receives data through two or more input ports, each of which may have a different metadata structure.

The joined data is then sent to the single output port.

Port type Number Required Description Metadata

0 yes Master input port Any

1 yes Slave input port Any

Input

2-n no Optional slave input ports Any

Output 0 yes Output port for the joined data Any

ExtHashJoin Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key according to which the incoming data flows are joined. See
Join key (p. 660).

Join type Type of the join. See Join Types (p. 323). Inner (default) |
Left outer | Full
outer

Transform 1) Transformation in CTL or Java defined in the graph.

Transform URL 1) External file defining the transformation in CTL or Java.

Transform class 1) External transformation class.

Allow slave duplicates If set to true, records with duplicate key values are allowed.
If it is false, only the first record is used for join.

false (default) |
true

Advanced

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Hash table size Initial size of hash table that should be used when joining data
flows. If there are more records that should be joined, hash table
can be rehashed, however, it slows down the parsing process.
See Hash Tables (p. 662) for more information:

512 (default)

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Chapter 56. Joiners

659

Attribute Req Description Possible
values

Left outer If set to true, left outer join is performed. By default it
is false. However, this attribute has lower priority than Join
type. If you set both, only Join type will be applied.

false (default) |
true

Full outer If set to true, full outer join is performed. By default it
is false. However, this attribute has lower priority than Join
type. If you set both, only Join type will be applied.

false (default) |
true

Chapter 56. Joiners

660

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 662) or Java Interfaces (p. 662) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Join key

The Join key attribute is a sequence of mapping expressions for all slaves separated from each other by hash.
Each of these mapping expressions is a sequence of field names from master and slave records (in this order)
put together using equal sign and separated from each other by semicolon, colon, or pipe.

Figure 56.6. An Example of the Join Key Attribute in ExtHashJoin Component

Order of these mappings must correspond to the order of the slave input ports. If some of these mappings is
empty or missing for some of the slave input ports, the mapping of the first slave input port is used instead.

Note

Different slaves can be joined with the master using different master fields!

Example 56.4. Slave Part of Join Key for ExtHashJoin

$master_field1=$slave_field1;$master_field2=$slave_field2;...;$master_fieldN=$slave_fieldN

• If some $slave_fieldJ is missing (in other words, if the subexpression looks like this:
$master_fieldJ=), it is supposed to be the same as the $master_fieldJ.

• If some $master_fieldK is missing, $master_fieldK from the first port is used.

Chapter 56. Joiners

661

Example 56.5. Join Key for ExtHashJoin

$first_name=$fname;$last_name=$lname#=$lname;$salary=;$hire_date=$hdate

.

• Following is the part of Join key for the first slave data source (input port 1):

$first_name=$fname;$last_name=$lname.

• Thus, the following two fields from the master data flow are used for join with the first slave data source:

$first_name and $last_name.

• They are joined with the following two fields from this first slave data source:

$fname and $lname, respectively.

• Following is the part of Join key for the second slave data source (input port 2):

=$lname;$salary=;$hire_date=$hdate.

• Thus, the following three fields from the master data flow are used for join with the second slave data
source:

$last_name (because it is the field which is joined with the $lname for the first slave data source),
$salary, and $hire_date.

• They are joined with the following three fields from this second slave data source:

$lname, $salary, and $hdate, respectively. (This slave $salary field is expressed using the master
field of the same name.)

To create the Join key attribute, you must use the Hash Join key wizard. When you click the Join key attribute
row, a button appears in this row. By clicking this button you can open the mentioned wizard.

Figure 56.7. Hash Join Key Wizard

In it, you can see the tabs for all of the slave input ports. In each of the slave tab(s) there are two panes. The
Slave fields pane on the left and the Key mapping pane on the right. In the left pane, you can see the list of all

Chapter 56. Joiners

662

the slave field names. In the right pane, you can see two columns: Master fields and Slave key field mapped.
The left column contains all field names of the driver input port. If you want to map some slave fields to some
driver (master) fields, you must select each of the desired slave fields that should be selected in the left pane
by clicking its item, and drag and drop it to the Slave key field mapped column in the right pane at the row of
some driver (master) field to which it should be mapped. It must be done for the selected slave fields. And the
same process must be repeated for all slave tabs. Note that you can also use the Auto mapping button or other
buttons in each tab. Thus, slave fields are mapped to driver (Master) fields according to their names. Note that
different slaves can map different number of slave fields to different number of driver (Master) fields.

• Hash Tables

The component first receives the records incoming through the slave input ports, reads them and creates hash
tables from these records. These hash tables must be sufficiently small. After that, for each driver record
incoming through the driver input port the component looks up the corresponding records in these hash tables.
For every slave input port one hash table is created. The records on the input ports do not need to be sorted. If
such record(s) are found, the tuple of the driver record and the slave record(s) from the hash tables are sent to
transformation class. The transform method is called for each tuple of the master and its corresponding slave
records.

The incoming records do not need to be sorted, but the initialization of the hash tables is time consuming and
it may be good to specify how many records can be stored in hash tables. If you decide to specify this attribute,
it would be good to set it to the value slightly greater than needed. Nevertheless, for small sets of records it is
not necessary to change the default value.

Joining Mechanics

All slave input data is stored in the memory. However, the master data is not. As for memory requirements, you
therefore need to consider only the size of your slave data. In consequence, be sure to always set the larger data
to the master and smaller inputs as slaves. ExtHashJoin uses in-memory hash tables for storing slave records.

Important

Remember each slave port can be joined with the master using different numbers of various master
fields.

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

Chapter 56. Joiners

663

ExtMergeJoin

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

Short Summary

General purpose joiner, merges sorted data from two or more data sources on a common key.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

ExtMergeJoin no yes 1-n 1 no no yes

Abstract

This is a general purpose joiner used in most common situations. It requires the input be sorted and is very fast
as there is no caching (unlike ExtHashJoin).

The data attached to the first input port is called the master (as usual in other Joiners). All remaining connected
input ports are called slaves. Each master record is matched to all slave records on one or more fields known as
the join key. For a closer look on how data is merged, see Data Merging (p. 666).

Tip

If you want to join different slaves with the master on a key with various key fields, use ExtHashJoin
instead. But remember slave data sources have to be sufficiently small.

Icon

Chapter 56. Joiners

664

Ports

ExtMergeJoin receives data through two or more input ports, each of which may have a distinct metadata
structure.

The joined data is then sent to the single output port.

Port type Number Required Description Metadata

0 yes Master input port Any

1 yes Slave input port Any

Input

2-n no Optional slave input ports Any

Output 0 yes Output port for the joined data Any

ExtMergeJoin Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key according to which the incoming data flows are joined. See
Join key (p. 665).

Join type Type of the join. See Join Types (p. 323). Inner (default) |
Left outer | Full
outer

Transform 1) Transformation in CTL or Java defined in the graph.

Transform URL 1) External file defining the transformation in CTL or Java.

Transform class 1) External transformation class.

Allow slave duplicates If set to true, records with duplicate key values are allowed.
If it is false, only the first record is used for join.

true (default) |
false

Advanced

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Ascending ordering of
inputs

If set to true, incoming records are supposed to be sorted in
ascending order. If it is set to false, they are descending.

true (default) |
false

Deprecated

Locale Locale to be used when internationalization is used.

Case sensitive If set to true, upper and lower cases of characters are
considered different. By default, they are processed as if they
were equal to each other.

false (default) |
true

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Left outer If set to true, left outer join is performed. By default it
is false. However, this attribute has lower priority than Join
type. If you set both, only Join type will be applied.

false (default) |
true

Chapter 56. Joiners

665

Attribute Req Description Possible
values

Full outer If set to true, full outer join is performed. By default it
is false. However, this attribute has lower priority than Join
type. If you set both, only Join type will be applied.

false (default) |
true

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 667) or Java Interfaces (p. 667) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Join key

You must define the key that should be used to join the records (Join key). The records on the input ports must
be sorted according to the corresponding parts of the Join key attribute. You can define the Join key in the
Join key wizard.

The Join key attribute is a sequence of individual key expressions for the master and all of the slaves separated
from each other by hash. Order of these expressions must correspond to the order of the input ports starting
with master and continuing with slaves. Driver (master) key is a sequence of driver (master) field names (each
of them should be preceded by dollar sign) separated by colon, semicolon or pipe. Each slave key is a sequence
of slave field names (each of them should be preceded by dollar sign) separated by colon, semicolon or pipe.

Figure 56.8. An Example of the Join Key Attribute in ExtMergeJoin Component

You can use this Join key wizard. When you click the Join key attribute row, a button appears there. By clicking
this button you can open the mentioned wizard.

In it, you can see the tab for the driver (Master key tab) and the tabs for all of the slave input ports (Slave
key tabs).

Figure 56.9. Join Key Wizard (Master Key Tab)

Chapter 56. Joiners

666

In the driver tab there are two panes. The Fields pane on the left and the Master key pane on the right. You
need to select the driver expression by selecting the fields in the Fields pane on the left and moving them to the
Master key pane on the right with the help of the Right arrow button. To the selected Master key fields, the
same number of fields should be mapped within each slave. Thus, the number of key fields is the same for all
input ports (both the master and each slave). In addition to it, driver (Master) key must be common for all slaves.

Figure 56.10. Join Key Wizard (Slave Key Tab)

In each of the slave tab(s) there are two panes. The Fields pane on the left and the Key mapping pane on the
right. In the left pane you can see the list of the slave field names. In the right pane you can see two columns:
Master key field and Slave key field. The left column contains the selected field names of the driver input
port. If you want to map some driver field to some slave field, you must select the slave field in the left pane
by clicking its item, and by pushing the left mouse button, dragging to the Slave key field column in the right
pane and releasing the button you can transfer the slave field to this column. The same must be done for each
slave. Note that you can also use the Auto mapping button or other buttons in each tab.

Example 56.6. Join Key for ExtMergeJoin

$first_name;$last_name#$fname;$lname#$f_name;$l_name

Following is the part of Join key for the master data source (input port 0):

$first_name;$last_name

• Thus, these fields are joined with the two fields from the first slave data source (input port 1):

$fname and $lname, respectively.

• And, these fields are also joined with the two fields from the second slave data source (input port 2):

$f_name and $l_name, respectively.

Data Merging

Joining data in ExtMergeJoin works the following way. First of all, let us stress again that data on both the master
and the slave have to be sorted.

The component takes the first record from the master and compares it to the first one from the slave (with respect
to Join key). There are three possible comparison results:

Chapter 56. Joiners

667

• master equals slave - records are joined

• "slave.key < master.key" - the component looks onto the next slave record, i.e. a one-step shift is performed
trying to get a matching slave to the current master

• "slave.key > master.key" - the component looks onto the next master record, i.e. a regular one-step shift is
performed on the master

Some input data contain sequences of same values. Then they are treated as one unit on the slave (a slave record
knows the value of the following record), This happens only if Allow slave duplicates has been set to true.
Moreover, the same-values unit gets stored in the memory. On the master, merging goes all the same by comparing
one master record after another to the slave.

Note

In case there are is a large number of duplicate values on the slave, they are stored on your disk.

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

Chapter 56. Joiners

668

LookupJoin

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

For information about lookup tables see Chapter 27, Lookup Tables (p. 194).

Short Summary

General purpose joiner, merges potentionally unsorted data from one data source incoming through the single
input port with another data source from lookup table based on a common key.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

LookupJoin no no 1 (virtual) 1-2 yes no yes

Abstract

This is a general purpose joiner used in most common situations. It does not require that the input be sorted and
is very fast as it is processed in memory.

The data attached to the first input port is called the master, the second data source is called the slave. Its data
is considered as if it were coming through the second (virtual) input port. Each master record is matched to the
slave record on one or more fields known as the join key. The output is produced by applying a transformation
which maps joined inputs to the output.

Slave data is pulled out from a lookup table, so depending on the lookup table the data can be stored in the memory.
That also depends on the lookup table type - e.g. Database lookup stores only the values which have already been
queried. Master data is not stored in the memory.

Icon

Ports

LookupJoin receives data through a single input port and joins it with data from lookup table. Either data source
may potentially have different metadata structure.

Chapter 56. Joiners

669

The joined data is then sent to the first output port. The second output port can optionally be used to capture
unmatched master records.

Port type Number Required Description Metadata

0 yes Master input port AnyInput

1 (virtual) yes Slave input port Any

0 yes Output port for the joined data AnyOutput

1 no Optional output port for master data records without slave
matches. (Only if the Join type attribute is set to Inner
join.) This applies only to LookupJoin and DBJoin.

Input 0

LookupJoin Attributes

Attribute Req Description Possible
values

Basic

Join key yes Key according to which the incoming data flows are joined. See
Join key (p. 669).

Left outer join If set to true, also driver records without corresponding slave
are parsed. Otherwise, inner join is performed.

false (default) |
true

Lookup table yes ID of the lookup table to be used as the resource of slave records.
Number of lookup key fields and their data types must be the
same as those of Join key. These fields values are compared
and matched records are joined.

Transform 1) Transformation in CTL or Java defined in the graph.

Transform URL 1) External file defining the transformation in CTL or Java.

Transform class 1) External transformation class.

Transform source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Advanced

Free lookup table after
finishing

If set to true, lookup table is emptied after the parsing finishes. false (default) |
true

Deprecated

Error actions Definition of the action that should be performed when the
specified transformation returns some Error code. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to Console.

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 670) or Java Interfaces (p. 670) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Join key

Chapter 56. Joiners

670

You must define the key that should be used to join the records (Join key). It is a sequence of field names from
the input metadata separated by semicolon, colon or pipe. You can define the key in the Edit key wizard.

Figure 56.11. Edit Key Wizard

A counterpart of this Join key of the input metadata is the key of lookup table in lookup tables. It is specified
in the lookup table itself.

Example 56.7. Join Key for LookupJoin

$first_name;$last_name

This is the master part of fields that should serve to join master records with slave records.

Lookup key should look like this:

$fname;$lname

Corresponding fields will be compared and matching values will serve to join master and slave records.

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

Chapter 56. Joiners

671

RelationalJoin

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 46, Common Properties of Joiners (p. 322)

If you want to find the right Joiner for your purposes, see Joiners Comparison (p. 322).

Short Summary

Joiner that merges sorted data from two or more data sources on a common key whose values must differ in these
data sources.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

Sl
av

e
in

pu
ts

O
ut

pu
ts

O
ut

pu
t

fo
r

dr
iv

er
s

w
it

ho
ut

 s
la

ve

O
ut

pu
t

fo
r

sl
av

es
w

it
ho

ut
 d

ri
ve

r

Jo
in

in
g

ba
se

d
on

 e
qu

al
it

y

RelationalJoin no yes 1 1 no no no

Abstract

This is a joiner usable in situation when data records with different field values should be joined. It requires the
input to be sorted and is very fast as it is processed in memory.

The data attached to the first input port is called the master as it is also in the other Joiners. The other connected
input port is called slave. Each master record is matched to all slave records on one or more fields known as a join
key. The slave records whose values of this join key do not equal to their slave counterparts are joined together
with such slaves. The output is produced by applying a transformation that maps joined inputs to the output.

All slave input data is stored in memory, however, the master data is not. Therefore you only need to consider the
size of your slave data for memory requirements.

Icon

Ports

RelationalJoin receives data through two input ports, each of which may have a distinct metadata structure.

The joined data is then sent to the single output port.

Port type Number Required Description Metadata

0 yes Master input port AnyInput

1 yes Slave input port Any

Chapter 56. Joiners

672

Port type Number Required Description Metadata

Output 0 yes Output port for the joined data Any

RelationalJoin Attributes

Attribute Req Description Possible values

Basic

Join key yes Key according to which the incoming data
flows are joined. See Join key (p. 672).

Join relation yes Defines the way of joining driver (master) and
slave records. See Join relation (p. 674).

master != slave |
master(D) < slave(D) |
master(D) <= slave(D)
| master(A) > slave(A) |
master(A) >= slave(A)

Join type Type of the join. See Join Types (p. 323). Inner (default) | Left outer | Full
outer

Transform 1) Transformation in CTL or Java defined in the
graph.

Transform URL 1) External file defining the transformation in
CTL or Java.

Transform class 1) External transformation class.

Transform source
charset

Encoding of external file defining the
transformation.

ISO-8859-1 (default)

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes must use a common CTL template for Joiners or implement a RecordTransform interface.

See CTL Scripting Specifics (p. 674) or Java Interfaces (p. 674) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Advanced Description

• Join key

You must define the key that should be used to join the records (Join key). The records on the input ports must
be sorted according to the corresponding parts of the Join key attribute. You can define the Join key in the
Join key wizard.

The Join key attribute is a sequence of individual key expressions for the master and all of the slaves separated
from each other by hash. Order of these expressions must correspond to the order of the input ports starting with
master and continuing with slaves. Driver (master) key is a sequence of driver (master) field names (each of
them should be preceded by dollar sign) seperated by a colon, semicolon or pipe. Each slave key is a sequence
of slave field names (each of them should be preceded by dollar sign) separated by a colon, semicolon, or pipe.

Figure 56.12. An Example of the Join Key Attribute in the RelationalJoin Component

You can use this Join key wizard. When you click the Join key attribute row, a button appears there. By clicking
this button you can open the mentioned wizard.

Chapter 56. Joiners

673

In it, you can see the tab for the driver (Master key tab) and the tabs for all of the slave input ports (Slave
key tabs).

Figure 56.13. Join Key Wizard (Master Key Tab)

In the driver tab there are two panes. The Fields pane on the left and the Master key pane on the right. You
need to select the driver expression by selecting the fields in the Fields pane on the left and moving them to the
Master key pane on the right with the help of the Right arrow button. To the selected Master key fields, the
same number of fields should be mapped within each slave. Thus, the number of key fields is the same for all
input ports (both the master and each slave). In addition to it, driver (Master) key must be common for all slaves.

Figure 56.14. Join Key Wizard (Slave Key Tab)

In each of the slave tab(s) there are two panes. The Fields pane on the left and the Key mapping pane on the
right. In the left pane you can see the list of the slave field names. In the right pane you can see two columns:
Master key field and Slave key field. The left column contains the selected field names of the driver input
port. If you want to map some driver field to some slave field, you must select the slave field in the left pane
by clicking its item, and by pushing the left mouse button, dragging to the Slave key field column in the right
pane and releasing the button you can transfer the slave field to this column. The same must be done for each
slave. Note that you can also use the Auto mapping button or other buttons in each tab.

Chapter 56. Joiners

674

Example 56.8. Join Key for RelationalJoin

$first_name;$last_name#$fname;$lname#$f_name;$l_name

Following is the part of Join key for the master data source (input port 0):

$first_name=$fname;$last_name=$lname.

• Thus, these fields are joined with the two fields from the first slave data source (input port 1):

$fname and $lname, respectively.

• And, these fields are also joined with the two fields from the second slave data source (input port 2):

$f_name and $l_name, respectively.

• Join relation

• If both input ports receive data records that are sorted in descending order, slave data records that are greater
than or equal to the driver (master) data records are the only ones that are joined with driver data records
and sent out through the output port. Corresponding Join relation is one of the following two: master(D)
< slave (D) (slaves are greater than master) or master(D) <= slave(D) (slaves are greater than
or equal to master).

• If both input ports receive data records that are sorted in ascending order, slave data records that are less
than or equal to the driver (master) data records are the only ones that are joined with driver data records and
sent out through the output port. Corresponding Join relation is one of the following two: master(A) >
slave (A) (slaves are less than driver) or master(A) >= slave(A) (slaves are less than or equal
to driver).

• If both input ports receive data records that are unsorted, slave data records that differ from the driver (master)
data records are the only ones that are joined with driver data records and sent out through the output port.
Corresponding Join relation is the following: master != slave (slaves are different from driver).

• Any other combination of sorted order and Join relation causes the graph fail.

CTL Scripting Specifics

When you define your join attributes you must specify a transformation that maps fields from input data sources
to the output. This can be done using the Transformations tab of the Transform Editor. However, you may
find that you are unable to specify more advanced transformations using this easist approach. This is when you
need to use CTL scripting.

For detailed information about Clover Transformation Language see Part IX, CTL - CloverETL Transformation
Language (p. 813). (CTL is a full-fledged, yet simple language that allows you to perform almost any imaginable
transformation.)

CTL scripting allows you to specify custom field mapping using the simple CTL scripting language.

All Joiners share the same transformation template which can be found in CTL Templates for Joiners (p. 324).

Java Interfaces

If you define your transformation in Java, it must implement the following interface that is common for all Joiners:

Java Interfaces for Joiners (p. 327)

675

Chapter 57. Job Control
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Some components are focused on execution and monitoring of various job types. We call this group of components:
Job control.

Job control components are usually tightly bound with jobflow (p. 249). However, a few of them can be used
even in regular ETL graphs.

These components allow running ETL graphs, jobflows and any interpreted scripts. Graphs and jobflows can be
monitored and optionally aborted.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, while others are common for most of the components. You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

We can distinguish each component of the Job control group according to the task it performs.

• Barrier (p. 676) waits for results of jobs running in parallel and sends an aggregated result an to output port.

• Condition (p. 679) routes incoming tokens to one of its output ports based on the result of a specified
condition.

• ExecuteGraph (p. 682) runs subgraphs with user-specified settings.

• ExecuteJobflow (p. 689) runs jobflows with user-specified settings.

• ExecuteProfilerJob (p. 700) runs Profiler jobs with user-specified settings.

• ExecuteScript (p. 704) runs either shell scripts or scripts interpreted by a selected interpreter.

• Fail (p. 710) aborts parent job.

• GetJobInput (p. 713) produces a single record populated by dictionary content.

• KillGraph (p. 715) aborts specified graphs.

• KillJobflow (p. 719) aborts specified jobflows.

• MonitorGraph (p. 721) watches running graphs.

• MonitorJobflow (p. 725) watches running jobflows.

• SetJobOutput (p. 727) sets incoming values to dictionary content.

• Success (p. 729) consumes all incoming tokens or records which are considered successful.

• TokenGather (p. 731) copies incoming tokens from any input port to all output ports.

Chapter 57. Job Control

676

Barrier

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

Barrier allows to wait for results of parallel running jobs and react to the success or failure of groups of jobs
in a simple way.

Barrier waits for all input tokens belonging to a group, evaluates this group and based on the results sends output
token(s) to first or second output port.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

Barrier no no 1-n 1-2 no no no

Abstract

Barrier is mainly used for management of parallel running jobs. Barrier receives all incoming tokens, which carry
information about job results, and splits them to logical groups of jobs. Each job group is evaluated independently.
Results of groups evaluated as successful are sent to the first output port. Results of the unsuccessful groups are
sent to the second output port.

Logical grouping of incoming records

Component attribute 'Input grouping' provides two options how the incoming tokens are split to logical groups
of jobs.

• All - all incoming tokens are considered as a single group, exactly one group is processed by the component.
This covers the most common scenarios, e.g. checking that all previous jobs were successful.

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

677

• Tuple - a group consists from a single token from all input ports, i.e. the groups are created by "waves" of
tokens coming from input ports. Tokens which arrive first from each input port form the first logical group, the
second tokens from each input port form the second logical group etc (i.e. n-th group consists from n-th input
token from all input ports). This setting covers checking result of waves of parallel job.

Group evaluation

Each token in a group is evaluated by CTL boolean expression from component attribute 'Token evaluation
expression' - let's call it job status. The group is considered successful if and only if the job statuses joined by logical
operation AND or OR (component attribute 'Group evaluation criteria') is true. So in case of AND operation, all
incoming token needs to be successful for success of whole group. On the other hand in case of OR operation, at
least one token from the group needs to be successful for group success.

Generating output tokens

Successful groups send their results to the first output port and the unsuccessful groups send their results to the
second output port. Number and content of output tokens is specified by component attribute 'Output':

• Single token - only one token is sent to an output port per group, the token is populated by all group tokens -
fields are copied based on fields names (input tokens order to be copied is not guaranteed).

• All tokens - each incoming token from the group is sent to the dedicated output port, in case of incompatible
metadata fields are copied based on field names.

Note

Output ports are not required. Tokens routed to a missing edge are quietly discarded.

Example usage

Let's look at simple example of usage.

Figure 57.1. Example of typical usage of Barrier component

In this example, three different graphs are synchronously executed by three ExecuteGraph components. All three
graphs are running in parallel. Barrier is a collection point for graph execution outcomes; it waits for all graphs
to finish prior to moving on to the next step. If all graphs finished successfully, an output token is sent to the first
output port. On the other hand, if one or more graphs failed, an output token is sent to the second output port. This
component allows simple evaluation for status of the whole job group.

Icon

Ports

Port type Number Required Description Metadata

0 yes Input tokens with job results. Any 1)Input

1-n no Input tokens with job results. Any 1)

Chapter 57. Job Control

678

Port type Number Required Description Metadata

0 no Tokens for successful groups of jobs. Any 2)Output

1 no Tokens for unsuccessful groups of jobs. Any 2)

Legend:

1): Any metadata are possible, only field called 'status' is expected by 'Token evaluation expression' attribute by
default ($status == "FINISHED_OK").

2): Any metadata are possible, but tokens sent to output ports are copied based on field names from input ports,
so only fields with equal names are populated.

Chapter 57. Job Control

679

Barrier Attributes

Attribute Req Description Possible
values

Basic

Input grouping no Type of algorithm how the incoming tokens are split into
groups of jobs, which are evaluated independently. See Logical
grouping of incoming records (p. 676)

Tuple (default)
| All

Token evaluation
expression

no Boolean CTL expression which is applied to each incoming
token to decide, whether the token represents successful
or unsuccessful job run - final job status. See Group
evaluation (p. 677)

default CTL
expression
'$status ==
"FINISHED_OK"'

Group evaluation
criteria

no Logical operation which is applied to the job status (see attribute
'Token evaluation expression') to decide, whether the group of
jobs is successful or unsuccessful. See Group evaluation (p. 677)

AND (default) |
OR

Output no Defines number of output tokens per group of jobs. See
Generating output tokens (p. 677)

Single token
(default) | All
tokens

Condition

Jobflow Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

The component is located in Palette →Job Control.

Short Summary

The Condition component routes incoming tokens to one of its output ports based on result of specified condition.
It is similar to if statement in programming languages.

Note

To be able to use this component, your license needs to support the Jobflow. Also, the component
requires your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

Condition – no 1 1–2 no – –

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

680

Abstract

For each incoming token, the Condition component evaluates specified Boolean condition and if the result is true,
the token is sent to the first output port, otherwise to the second (optional) output port.

Condition works the same way as the ExtFilter (p. 588) component.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input tokens Any

0 yes For tokens compliant with the condition Input 01)Output

1 no For tokens not satisfying the condition Input 01)

Legend:

1) Metadata can be propagated through this component. All output metadata must be the same.

This component has Metadata Templates (p. 274) available.

Chapter 57. Job Control

681

Condition Attributes

Attribute Req Description Possible
values

Basic

Condition yes Boolean expression according to which the tokens are filtered.
Expressed as the sequence of individual expressions for
individual input fields separated from each other by semicolon.

Advanced Description

For more details about the Condition attribute see Filter Expression (p. 589) of the ExtFilter component.

Chapter 57. Job Control

682

ExecuteGraph

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Tip

If you drag a *.grf file and drop it into the jobflow pane, you will add the ExecuteGraph
component.

Short Summary

ExecuteGraph allows running of subgraphs with user-specified settings and provides execution results and
tracking details to output ports.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

ExecuteGraph no no 0-1 0-2 yes no yes

Abstract

The ExecuteGraph component runs a subgraph with specific settings, waits for the graph to finish and monitors
the graph results and tracking information.

The component can have single input port and two output ports attached. The component reads an input token,
executes a subgraph based on incoming data values, waits for the subgraph to finish and sends results of successful
subgraph to the first output port and results of failed subgraph to second output port (error port). If the graph
run was successful the component continues with processing of next input tokens. Otherwise, component stops
executing other graphs and from now all incoming tokens are ignored and information about ignored tokens are
sent to error output port. This behaviour can be changed via attribute Stop processing on fail.

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

683

In case no input port is attached, only one graph is executed with default settings specified in the component's
attributes. In case the first output port is not connected, the component just prints out the subgraph results to the log.
In case the second output port (error port) is not attached, first failed subgraph causes interruption of the parent job.

For graph execution, it is necessary to specify subgraph location, execution type and optionally initial values of
graph parameters and dictionary content, timeout, execution group and several other attributes. Most of these
execution settings can be specified on the component via various component attributes described bellow. These
settings could be considered as a default execution settings. However, these default execution settings can be
dynamically changed individually for each graph execution based on data from incoming token. Input mapping
attribute is the place where this override is defined.

After the subgraph is finished, results can be mapped to output ports. Output mapping and error mapping attributes
define how the output tokens are populated. Information available in graph results comprise mainly from general
runtime information, final dictionary content and tracking information.

Tip

Right-click the component and click Open Graph to access the graph that is executed. Similarly, in
the ExecuteJobflow and ExecuteProfilerJob components, there are the Open Jobflow and Open
Profiler Job options.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input tokens with graph execution settings. Any

0 no Execution information for successful subgraphs. AnyOutput

1 no Execution information for unsuccessful subgraphs. Any

This component has Metadata Templates (p. 274) available.

Chapter 57. Job Control

684

ExecuteGraph Attributes

Attribute Req Description Possible
values

Basic

Graph URL yes Path to executed subgraph. Only single graph can be specified in
this attribute. Can be overridden by a value from input token, see
Input mapping attribute. The graph referenced by this attribute
is also used for all mapping dialogs - they display dictionary
entries and tracking information based on this graph.

Execution type no Specifies type of execution - synchronous (sequential) or
asynchronous (parallel) execution model. Can be overridden
by a value from input token, see Input mapping attribute. See
Execution type (p. 685).

synchronous
(default) |
asynchronous

Timeout no Maximal amount of time dedicated for subgraph run; by default
in milliseconds, but other time units (p. 274) may be used. If
the timeout interval elapses the subgraph is aborted. Can be
overridden by a value from input token, see Input mapping
attribute.

Timeout attribute is ignored for asynchronous execution type.
Use MonitorGraph component to watch the running graph.

0 (unlimited) |
positive
number

Input mapping no Input mapping defines how data from incoming token overrides
default execution settings. See Input mapping (p. 685).

CTL
transformation

Output mapping no Output mapping maps results of successful graphs to the first
output port. See Output mapping (p. 686).

CTL
transformation

Error mapping no Error mapping maps results of unsuccessful graphs to the second
output port. See Error mapping (p. 688).

CTL
transformation

Redirect error output no By default, results of failed graphs are sent to the second output
port (error port). If this switch is true, results of unsuccessful
graphs are sent to the first output port in the same way as
successful graphs.

false (default) |
true

Advanced

Execution group no Name of execution group to which the executed subgraph
belongs. Execution group can be used by KillGraph component
as a named handler for a set of graphs to be interrupted.

string

Preferred cluster node
ID

no Cluster node ID which is preferred for execution of subgraph.
The cluster node is not guaranteed, it's a preferrence.

string

Execute graph as
daemon

no By default, all subgraphs are executed in non-daemon mode, so
none of them can live longer than parent graph. Clover server
automatically ensures for finished jobs that all non-daemon
subgraphs are interrupted if they are not finished yet. If you want
to start a subgraph which can live longer than parent graph, set
this switch to true.

false (default) |
true

Skip checkConfig no By default, the pre-execution configuration check of the
subgraph is performed if and only if the check was performed
on the parent job. This attribute can explicitly enable or disable
the check.

boolean
(default is
inherited from
parent job)

Chapter 57. Job Control

685

Attribute Req Description Possible
values

Stop processing on fail no By default, any failed subgraph causes the component stops
executing other subgraphs and information about skipped
tokens are sent to the error output port. This behaviour can be
turned off by this attribute.

true (default) |
false

Number of executors no By default, subgraphs executed in synchronous mode are
triggered one after the other - the next graph is executed right
the previous one finished. This option allows to increment
number of simultaneously running graphs. Number of executors
attribute defines how many subgraphs can be executed at
once. All of them are monitored and once one of the running
subgraphs finish processing another one is executed. This option
is applied only to subgraphs executed in synchronous mode.

positive
number (1 is
default)

Execution type

The component supports synchronous (sequential) and asynchronous (parallel) graph execution.

• synchronous execution mode (default) - the component blocks until the graph has finished processing, so graphs
are monitored by this component until the end of run.

• asynchronous execution mode - the component starts the graph and immediately sends the status information
to the output. The graphs are just started by this component, the component MonitorGraph should be used for
monitoring asynchronously executed graphs.

Input mapping

Input mapping attribute allows to override the settings of the component based on data from incoming token.
Moreover, initial dictionary content and graph parameters of executed graph can be changed in input mapping.

Input mapping is regular CTL transformation which is executed before each subgraph execution. Input token if
any is only input for this mapping and outputs are up to three records, RunConfig, JobParameters and Dictionary.

• RunConfig record represents execution settings. If a field of the record is not populated by this mapping, default
value from respective attribute of the component is used instead.

Field
Name

Type Description

jobURL string Overrides component attribute Graph URL.

executionTypestring Overrides component attribute Execution type.

timeout long Overrides component attribute Timeout.

executionGroupstring Overrides component attribute Execution group.

clusterNodeIdstring Overrides component attribute Preferred cluster node ID.

daemon boolean Overrides component attribute Execute graph as daemon.

skipCheckConfigboolean Overrides component attribute Skip checkConfig.

jobParametersmap[string,
string]

graph parameters passed to the executed graph. Primary way of definition of graph
paramaters is direct mapping to JobParameters record available in input mapping dialog,
where you can easily populate prepared graph parameters extracted from executed graph.
Graph parameters defined via this map have the highest priority. This map can be used
in case the set of graph parameters is not available in design time of jobflow.

• JobParameters record represents all internal and external graph parameters of triggered graph.

Chapter 57. Job Control

686

• Dictionary record represents input dictionary entries of triggered graph.

Note

JobParameters and Dictionary records are available in transform dialog only if component attribute
Graph URL links to an existing graph which is used as a template for extraction of graph parameters
and dictionary structure. Only graph parameters and input dictionary entries from this graph can be
populated by input mapping, no matter which graph will be actually executed in runtime.

Output mapping

Output mapping is regular CTL transformation which is used to populate token passed to the first output port. The
mapping is executed for successful graphs. Up to four input data records are available for this mapping.

• The input token based on which the graph was executed (is not available for component usage without input
connector), this is very helpful for passing through some fields from input token to output token. This record
has Port 0 displayed in the Type column.

• RunStatus record provides information about graph execution.

Field
Name

Type Description

runId long Unique identifier of subgraph run. In case of asynchronous execution type the value can
be used for graph monitoring or interruption.

orignalJobURLstring Path to executed subgraph.

startTime date Time of graph execution.

endTime date Time of graph finish or null for asynchronous execution.

duration long Graph execution time in milliseconds.

status string Final graph execution status (FINISHED_OK | ERROR | ABORTED | TIMEOUT |
RUNNING for asynchronous execution).

errExceptionstring Cause exception for failed graphs only.

errMessagestring Error message for failed graphs only.

errComponentstring Component ID which caused graph fail.

errComponentTypestring Type of component which caused graph fail.

• Dictionary record provides content of output dictionary entries of the subgraph. This record is available for the
mapping only if the attribute 'Graph URL' refers to a subgraph instance, which has an output dictionary entry.

• Tracking record provides tracking information usually available only in JMX interface of the running graph.
This record is available for the mapping only if the attribute 'Graph URL' refers to a subgraph instance.

• Tracking fields available for whole graph:

Field
Name

Type Description

startTime date Time of graph execution.

endTime date Time of graph finish or null for running graph.

executionTimelong Graph execution time in milliseconds.

graphNamestring Name of executed graph.

result string Graph execution status (FINISHED_OK | ERROR | ABORTED | TIMEOUT |
RUNNING).

runningPhaseinteger Index of running phase or null if graph is already finished.

Chapter 57. Job Control

687

Field
Name

Type Description

usedMemoryinteger Memory footprint (in bytes) of executed graph.

• Tracking fields available for a graph phase:

Field
Name

Type Description

startTime date Time of phase execution.

endTime date Time of phase finish or null for running phase.

executionTimelong Phase execution time in milliseconds.

memoryUtilizationlong Graph memory footprint (in bytes).

result string Phase execution status (FINISHED_OK | ERROR | ABORTED | RUNNING).

• Tracking fields available for a component:

Field
Name

Type Description

name string Name of the component.

usageCPUnumber Actual CPU time used by the component expressed by number from interval (0, 1)
(0 means 0% of CPU is used by the component, 1 means 100% of CPU is used by
the component).

usageUser number Actual CPU time used by the component in user mode expressed by number from
interval (0, 1) (0 means 0% of CPU is used by the component, 1 means 100% of CPU
is used by the component).

peakUsageCPUnumber Maximal CPU time used by the component expressed by number from interval (0, 1)
(0 means 0% of CPU is used by the component, 1 means 100% of CPU is used by
the component).

peakUsageUsernumber Maximal CPU time used by the component in user mode expressed by number from
interval (0, 1) (0 means 0% of CPU is used by the component, 1 means 100% of CPU
is used by the component).

totalCPUTimelong Number of milliseconds of CPU time used by this component.

totalUsetTimenumber Number of milliseconds of CPU time in user mode used by this component.

memoryUtilizationlong Graph memory footprint (in bytes).

result string Component execution status (FINISHED_OK | ERROR | ABORTED | RUNNING).

usedMemoryinteger Memory footprint (in bytes) of this component. Only experimental implementation.

• Tracking fields available for an input or output port:

Field
Name

Type Description

byteFlow integer Number of bytes passed through this port per seconds.

bytePeak integer Maximal byteFlow registered on this port.

totalBytes long Number of bytes passed through this port.

recordFlowinteger Number of records passed through this port per seconds.

recordPeakinteger Maximal recordFlow registered on this port.

totalRecordsinteger Number of records passed through this port.

Chapter 57. Job Control

688

Field
Name

Type Description

waitingRecordsinteger Number of records cached on the edge connected to the port.

averageWaitingRecordsinteger Average number of records cached on the edge connected to the port.

usedMemoryinteger Memory footprint (in bytes) of the attached edge.

Error mapping

Attitude of error mapping is almost identical to output mapping. Unlike the output mapping this error mapping is
used if and only if the graph finished unsuccessfully and the second output port is populated instead of the first one.

Chapter 57. Job Control

689

ExecuteJobflow

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Tip

If you drag a *.jbf file and drop it into the jobflow pane, you will add the ExecuteJobflow
component.

Short Summary

ExecuteJobflow allows running of jobflows with user-specified settings and provides execution results and
tracking details to output ports.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

ExecuteJobflow no no 0-1 0-2 yes no yes

Abstract

This component works similarly to ExecuteGraph. See ExecuteGraph (p. 682) component documentation.

Icon

Ports

Please refer to ExecuteGraph Ports (p. 683).

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

690

ExecuteJobflow Attributes

Please refer to ExecuteGraph Attributes (p. 684).

Chapter 57. Job Control

691

ExecuteMapReduce

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

ExecuteMapReduce runs specified MapReduce job on a Hadoop cluster.

Note

To be able to use this component, you need a separate jobflow license.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

ExecuteMapReduce no no 0-1 0-2 no no yes

Abstract

The ExecuteMapReduce component runs a Hadoop MapReduce job implemented using specified classes in a
provided .jar file. The component periodically queries the Hadoop cluster for a job run status and prints this
information to the graph log.

The MapReduce job classes can be implemented using both new and old Hadoop MapReduce job
API. Implementation using the new API means that job classes extend adequate classes from the
org.apache.hadoop.mapreduce package, whereas job classes using the old API implement appropriate
interfaces from the org.apache.hadoop.mapred package. By default, the ExecuteMapReduce
component expects the new job API. If your job is implemented with the old API, you have to explicitly set the
Job implementation API version attribute (see below).

As a typical Job Control component, ExecuteMapReduce can have a single input port and two output ports
attached. The component reads an input token, executes a MapReduce job based on incoming data values, waits
for the job to finish, and sends the results of a successful job to the first output port and the results of a failed
job to second output port (error port). If the job run is successful, the component continues processing the next
input tokens. Otherwise, the component stops executing other jobs and, from then on, all incoming tokens are
ignored and information about ignored tokens are sent to the error output port. This behavior can be changed via
the attribute Stop processing on fail.

In the case that no input port is attached, only one MapReduce job is executed with default settings specified in
the component's attributes. Both output ports are optional.

Chapter 57. Job Control

692

For a MapReduce job execution, it's necessary to specify at least the Hadoop connection (p. 191), the location
of a .jar file with classes implementing the MapReduce job, the input file and the output directory located on
HDFS determined by the selected Hadoop connection, and finally, the output key/value classes. These and other
(optional) settings could be considered as default execution settings. However, these default execution settings
can be dynamically changed individually for each job execution based on data from an incoming token. The Input
mapping attribute is where this override is defined.

After the MapReduce job is finished, results can be mapped to output ports. Output mapping and error mapping
attributes define how output tokens are populated. Information available in job results are comprised mainly of
general runtime information and job counters information.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input tokens with MapReduce job execution settings. Any

0 no Execution information for successful jobs. AnyOutput

1 no Execution information for unsuccessful jobs. Any

This component has Metadata Templates (p. 274) available.

ExecuteMapReduce Attributes

Attribute Req Description Possible values

Basic

Hadoop connection yes Hadoop connection (p. 191) which defines both connection
to HDFS server (NameNode) and connection to
MapReduce server (JobTracker).

Job name no Arbitrary label of a job execution. Default value is the name
of specified MapReduce .jar file.

Any string

URL of JAR file with
job classes

yes Path to a .jar file with MapReduce job. The file has to be
on local file system.

Timeout (ms) no Time limit for job execution in milliseconds. If job
execution time exceeds this limit, the job is killed. Set to 0
(default) for no limit.

0 (unlimited) | positive
number

Input mapping no Input mapping defines how data from incoming token
overrides default execution settings.

CTL transformation

Output mapping no Output mapping maps results of successful MapReduce
jobs to the first output port. See Output and error mappings
 (p. 698).

CTL transformation

Error mapping no Error mapping maps results of unsuccessful jobs to the
second output port. See Output and error mappings
 (p. 698).

CTL transformation

Redirect error output no By default, results of failed jobs are sent to the second
output port (error port). If this switch is true, results of
unsuccessful jobs are sent to the first output port in the same
way as successful jobs.

false (default) |
true

Job folders

Chapter 57. Job Control

693

Attribute Req Description Possible values

Input files yes One or more paths to input files located on HDFS. The path
can be in a form of HDFS URL, e.g. hdfs://CONN_ID/
path/to/inputfile, where the Hadoop connection
ID CONN_ID has to match ID of connection specified in the
Hadoop connection attribute, or it can be simply a path on
the HDFS, either absolute, e.g. /path/to/inputfile,
or relative to job's working directory, e.g. relative/
path/to/inputfile.

Output directory yes Path to output directory located on HDFS. The
directory will be created if it does not already
exist (see Clear output directory before execution
attribute). HDFS URL or absolute/working-directory-
relative path on HDFS can be specified here, just as
in the Input files attribute, e.g. hdfs://CONN_ID/
path/to/outputdir, /path/to/outputdir, or
relative/path/to/outputdir.

Job's working
directory

no Location of working directory of MapReduce job on HDFS.
This can be a HDFS URL, e.g. hdfs://CONN_ID/
path/to/workdir, or an absolute path on the HDFS,
e.g. /path/to/workdir.

Clear output
directory before
execution

no Indicates whether the Output directory should be deleted
before starting the job. If this is set to false and the
output directory already exists before job execution, the job
will fail to start with error saying that the output directory
already exists.

false (default) |
true

Classes

Job implementation
API version

yes Version of API used to implement MapReduce
job. If New API is selected (default), classes
implementing the job have to extend classes from
the org.apache.hadoop.mapreduce package. If
Old API is selected, classes implementing the
job extend/implement classes/interfaces from the
org.apache.hadoop.mapred package.

mapreduce
(default) | mapred

Chapter 57. Job Control

694

Attribute Req Description Possible values

Mapper class no Fully qualified name of Java class to be used as mapper of
the job. Definition of the class is typically found in the job
JAR file.

Depending on selected Job implementation API version
the class must extend/implement class/interface from the
following table:

Extends/implements

New API org.apache.hadoop.mapreduce.Mapper

Old API org.apache.hadoop.mapred.Mapper

Following table contains job configuration parameter and
Hadoop API method which correspond to setting this
component attribute. The ExecuteMapReduce component
always directly sets the job configuration parameter
according to selected Job implementation API version
(listed Java methods are never called and are listed just for
comparison).

Job configuration

New API mapreduce.map.class
Parameter

Old API mapred.mapper.class

New API Job.setMapperClass(Class)
Method

Old API JobConf.setMapperClass(Class)

Fully qualified class
name, e.g.
com.acme.MyMap

Default

New
API

org.apache.hadoop.mapreduce.Mapper

Old
API

org.apache.hadoop.mapred.lib.IdentityReducer

Combiner class no Fully qualified name of Java class to be used as combiner
of the job. Definition of the class is typically found in the
job JAR file.

Extends/implements

New API org.apache.hadoop.mapreduce.Reducer

Old API org.apache.hadoop.mapred.Reducer

Job configuration

New API mapreduce.combine.class
Parameter

Old API mapred.combiner.class

New API Job.setCombinerClass(Class)
Method

Old API JobConf.setCombinerClass(Class)

Fully qualified class
name, e.g.
com.acme.MyReduce
| No combiner
(default)

Chapter 57. Job Control

695

Attribute Req Description Possible values

Partitioner class no Fully qualified name of Java class to be used as partitioner
of the job. Definition of the class is typically found in the
job JAR file.

Extends/implements

New API org.apache.hadoop.mapreduce.Partitioner

Old API org.apache.hadoop.mapred.Partitioner

Job configuration

New API mapreduce.partitioner.class
Parameter

Old API mapred.partitioner.class

New API Job.setPartitionerClass(Class)
Method

Old API JobConf.setPartitionerClass(Class)

Fully qualified class
name, e.g.
com.acme.MyPartitioner

Default

New
API

org.apache.hadoop.mapreduce.lib.partition.HashPartitioner

Old
API

org.apache.hadoop.mapred.lib.HashPartitioner

Reducer class no Fully qualified name of Java class to be used as reducer of
the job. Definition of the class is typically found in the job
JAR file.

Extends/implements

New API org.apache.hadoop.mapreduce.Reducer

Old API org.apache.hadoop.mapred.Reducer

Job configuration

New API mapreduce.reduce.class
Parameter

Old API mapred.reducer.class

New API Job.setReducerClass(Class)
Method

Old API JobConf.setReducerClass(Class)

Fully qualified class
name, e.g.
com.acme.MyReduce

Default

New
API

org.apache.hadoop.mapreduce.Reducer

Old
API

org.apache.hadoop.mapred.lib.IdentityReducer

Mapper output key
class

no Fully qualified name of Java class whose instances are the
keys of mapper output records. Has to be specified only if
the mapper output key class is different than the final output
value class.

Job configuration

Parameter mapred.mapoutput.key.class

New API Job.setMapOutputKeyClass(Class)
Method

Old API JobConf.setMapOutputKeyClass(Class)

Fully qualified class
name, e.g.
org.apache.hadoop.io.Text
| Default is the value of
the Output key class
attribute

Mapper output value
class

no Fully qualified name of Java class whose instances are the
values of mapper output records. Has to be specified only
if the mapper output value class is different than the final
output value class.

Job configuration

Parameter mapred.mapoutput.value.class

New API Job.setMapOutputValueClass(Class)
Method

Old API JobConf.setMapOutputValueClass(Class)

Fully qualified class
name, e.g.
org.apache.hadoop.io.Text
| Default is the value
of the Output value
class attribute

Chapter 57. Job Control

696

Attribute Req Description Possible values

Grouping
comparator

no Fully qualified name of Java class implementing
comparator that decides which keys are grouped
together for a single call to reduce method
of the reducer. The class has to implement
the org.apache.hadoop.io.RawComparator
interface (or extend its base implemenation
org.apache.hadoop.io.WritableComparator).

Job configuration

Parameter mapred.output.value.groupfn.class

New API Job.setGroupingComparatorClass(Class)
Method

Old API JobConf.setOutputValueGroupingComparator(Class)

Fully qualified class
name, e.g.
com.acme.MyGroupingComp
| Default class is
derived in these steps:
1) take the class
name value of the
Sorting comparator
attribute, if specified,
otherwise 2) take
implementation of
org.apache.hadoop.io.WritableComparable
registered as
comparator for the
Mapper output
key class, if
registered, otherwise
3) take the generic
implementation, i.e.
org.apache.hadoop.io.WritableComparator.

Sorting comparator no Fully qualified name of Java class implementing
comparator that controls how the keys are sorted before
they are passed to the reducer. The class has to implement
the org.apache.hadoop.io.RawComparator
interface (or extend its base implemenation
org.apache.hadoop.io.WritableComparator).

Job configuration

Parameter mapred.output.key.comparator.class

New API Job.setSortComparatorClass(Class)
Method

Old API JobConf.setOutputKeyComparatorClass(Class)

Fully qualified class
name, e.g.
com.acme.MySorter
| Default class is
the implementation of
org.apache.hadoop.io.WritableComparable
registered as
comparator for the
Mapper output key
class, if registered,
otherwise generic
implementation
org.apache.hadoop.io.WritableComparator
is used.

Output key class yes Fully qualified name of Java class whose instances are keys
of output records of the job (output of the reducer, in other
words).

Job configuration

Parameter mapred.output.key.class

New API Job.setOutputKeyClass(Class)
Method

Old API JobConf.setOutputKeyClass(Class)

Fully qualified class
name, e.g.
org.apache.hadoop.io.Text
|
org.apache.hadoop.io.LongWritable
(default)

Output value class yes Fully qualified name of Java class whose instances are
values of output records of the job (output of the reducer,
in other words).

Job configuration

Parameter mapred.output.value.class

New API Job.setOutputValueClass(Class)
Method

Old API JobConf.setOutputValueClass(Class)

Fully qualified class
name, e.g.
org.apache.hadoop.io.IntWritable
|
org.apache.hadoop.io.Text
(default)

Chapter 57. Job Control

697

Attribute Req Description Possible values

Input format no Fully qualified name of Java class that is to be used as input
format of the job. This class implements parsing of input
files and produces key-value pairs which will serve as input
of the mapper.

Extends/implements

New API org.apache.hadoop.mapreduce.InputFormat

Old API org.apache.hadoop.mapred.InputFormat

Job configuration

New API mapreduce.inputformat.class
Parameter

Old API mapred.input.format.class

New API Job.setInputFormatClass(Class)
Method

Old API JobConf.setInputFormat(Class)

Fully qualified class
name

Default

New
API

org.apache.hadoop.mapreduce.lib.input.TextInputFormat

Old
API

org.apache.hadoop.mapred.TextInputFormat

Output format no Fully qualified name of Java class that is to be used as
output format of the job. This class implementation takes
key-value pairs produced by the reducer and writes them
into output file.

Extends/implements

New API org.apache.hadoop.mapreduce.OutputFormat

Old API org.apache.hadoop.mapred.OutputFormat

Job configuration

New API mapreduce.outputformat.class
Parameter

Old API mapred.output.format.class

New API Job.setOutputFormatClass(Class)
Method

Old API JobConf.setOutputFormat(Class)

Fully qualified class
name, e.g.
org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat
in which case,
output files can
be read using the
HadoopReader (p. 373)
component.

Default

New
API

org.apache.hadoop.mapreduce.lib.input.TextOutputFormat

Old
API

org.apache.hadoop.mapred.TextOutputFormat

Advanced

Number of mappers no Number of mapper tasks that should be run by Hadoop
to execute the job. This is only a hint, the actual number
of spawned map tasks depends on input format class
implementation.

Integer grater than
zero

Number of reducers no Number of required reducer tasks to be run by Hadoop
to execute the job. It is legal to specify zero number of
reducers in which case no reducer is run and output of
mappers goes directly to the Output directory.

Integer grater or equal
to zero

Chapter 57. Job Control

698

Attribute Req Description Possible values

Execute job as
daemon

no By default, this is false and the ExecuteMapReduce
component executes MapReduce jobs synchronously, i.e. it
starts the job and waits until the job finishes, then it starts
another job defined by next input token (or finishes if there
are no more jobs to run).

If set to true, jobs are executed asynchronously, i.e. the
component just starts the job and, instead of waiting, it
immediately runs another job defined by next input token
(or finishes if there are no more jobs to run). This also
means that job runs are not monitored (no job run status is
printed to graph run log).

false (default) |
true

Stop processing on
fail

no By default, any failed MapReduce job causes the
component to stop executing other jobs and information
about skipped tokens are sent to the error output port. This
behavior can be turned off by this attribute.

true (default) |
false

Additional job
settings

no Other properties of the job that needs to be set can be
specified here as key-value pairs. Key is Hadoop specific
name of the property (must be valid for used version of
Hadoop) and value is new value of the named property.
Component attributes values have higher priority than
values of corresponding properties specified here.

Value of this field has to be in form of Java properties files.

For each executed job, overview of all job settings (job.xml
file) can be viewed on JobTracker HTML status page (by
default running on port 50030).

Note

All of the component’s attributes described above can be also configured using data from input
tokens. The Input mapping CTL transformation defines mapping from input token data fields to
MapReduce job run configuration.

Tip

When the ExecutemapReduce component creates job configuration, information about setting each
parameter is printed with DEBUG log level into graph run log. Moreover, complete final job
configuration XML is printed with TRACE log level.

Output and error mappings

Both mappings are regular CTL transformations. Output mapping is used to populate the token passed to the first
output port. The mapping is executed for successful MapReduce jobs. Error mapping is used if and only if the job
finished unsuccessfully and the second output port is populated instead of the first one.

Input data records are the same for both mappings. Two or three records are available:

• The input token which triggered the job execution (not available for component usage without an input
connector). This is helpful when you need to pass some fields from the input token to the output token. This
record has Port 0 displayed in the Type column.

• JobResults records provide information about the job execution.

Chapter 57. Job Control

699

Field
Name

Type Description

jobID string The unique identification given to the job by JobTracker. This value might not be set if
the job failed before it was started while contacting the JobTracker.

startTime date Start date and time of the job. This is measured locally by CloverETL and might be
slightly different from the job start time measured by JobTracker. Always set.

endTime date End date and time of the job. This is measured locally by CloverETL and might be
slightly different from the job end time measured by JobTracker. Always set.

duration long Duration of the job in milliseconds. This is the difference between endTime and
startTime in milliseconds. May not be greater than the timeout value of the job if it is
set. This value is always set.

state string The state of the job at the end of its execution.

Possible field values are:

• SUCCEEDED if the job was executed successfully,

• FAILED if job execution failed,

• TIMEOUT if job was killed because its execution time exceeded specified timeout.

clusterErrMessagestring Error message string as obtained from the JobTracker.

errExceptionstring Textual representation of full stack trace of exception that has occurred on JobTracker
or during communication with the JobTracker. This value is unset if no exception has
occurred.

lastMapReducePhasestring The last MapReduce job phase that was in progress when the job ended. The value is
one of following strings: Setup, Map, Reduce or Cleanup. If wasJobSuccessful is true
then the value is Cleanup. In the case of job failure, this value might be inaccurate if
there is a long communication delay to the JobTracker. The actual value can always be
obtained using the JobTracker administration site. This value is always set.

lastMapReducePhaseProgressnumber The progress of last MapReduce phase that was executing when the job ended. The value
is a floating point number inside interval from 0 to 1, inclusively. If wasJobSuccessful is
true then value is 1. In the case of job failure, the value might be inaccurate especially
if there is a considerable communication delay to the JobTracker. Always set.

• Values of counters handled by the job.

Field
Name

Type Description

allCountersmap[string,long]Map with name/value pairs of all counters available for the job.

* long All other fields are names of some predefined (default) counters automatically collected
by Hadoop for every job. The list of counters might differ depending on the version of
Hadoop being used.

Chapter 57. Job Control

700

ExecuteProfilerJob

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Tip

If you drag a *.cpj file and drop it into the jobflow pane, you will add the ExecuteProfilerJob
component.

Short Summary

ExecuteProfilerJob allows running of Profiler Jobs with user-specified settings and provides execution results
to output ports.

Note

To be able to use this component, you need a license with Profiler and Jobflow. Also, the component
requires your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

ExecuteProfilerJob no no 0-1 0-2 yes no yes

Abstract

This component works similarly to ExecuteGraph. See ExecuteGraph (p. 682) component documentation. See the
section ExecuteProfilerJob Attributes (p. 702) for the list of main differences between these two components.

Icon

Ports

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

701

Please refer to ExecuteGraph Ports (p. 683).

Chapter 57. Job Control

702

ExecuteProfilerJob Attributes

Please refer to ExecuteGraph Attributes (p. 684) for the description of attributes. Compared to ExecuteGraph,
the ExecuteProfilerJob component is missing the attributes Execution group and Skip checkConfig.

Also, the Input mapping (p. 702) and Output mapping (p. 702) attributes offer slightly different configuration,
specific to Profiler Jobs.

Input mapping

Input mapping attribute allows to override the settings of the component based on the data from the incoming
token. Moreover, job parameters of the executed profiler job can be changed in the input mapping.

Input mapping is a regular CTL transformation which is executed before each profiler job execution. Input token,
if any, is the only input for this mapping and outputs of the transformation are up to two records: RunConf and
Parameters.

• RunConf record represents execution settings. If a field of the record is not populated by this mapping, default
value from respective attribute of the component is used instead.

Field
Name

Type Description

jobURL string Overrides component attribute Profiler Job URL .

source string Overrides the profiled data source. In case a file or an XLS spreadsheet is profiled, this
will change which file is profiled. In case of a DB table job, this will override the table
from which the data is obtained.

charset string Overrides the input encoding (charset) of the profiled data for file and XLS profiler jobs.

executionTypestring Overrides component attribute Execution type .

timeout long Overrides component attribute Timeout .

clusterNodeIdstring Overrides component attribute Preferred cluster node ID .

daemon boolean Overrides component attribute Execute profiler job as daemon .

• Parameters record represents all external profiler job parameters of the triggered profiler job.

Note

The Parameters record is available in the transform dialog only if the component attribute Profiler
Job URL links to an existing profiler job which is used as a template for extraction of the parameters
structure. Only parameters from this profiler job can be populated by input mapping, no matter which
profiler job will be actually executed in runtime.

Output mapping

Output mapping is regular CTL transformation which is used to populate token passed to the first output port.
The mapping is executed for successful profiler job executions. Up to four input data records are available for
this mapping.

• The input RunConf token based on which the profiler job was executed (is not available for component usage
without input connector), this is very helpful for passing through some fields from input token to output token.
This record has Port 0 displayed in the Type column.

• RunStatus record provides information about profiler job execution.

Chapter 57. Job Control

703

Field
Name

Type Description

runId long Unique identifier of the profiler job run.

orignalJobURLstring Path to executed profiler job.

startTime date Time of the job execution.

endTime date Time of job finish or null for asynchronous execution.

duration long Job execution time in milliseconds.

status string Final job execution status (FINISHED_OK | ERROR | ABORTED | TIMEOUT |
RUNNING for asynchronous execution).

errExceptionstring Cause exception for failed jobs only.

errMessagestring Error message for failed jobs only.

• RunInfo provides additional info about the job execution, specific to profiler jobs.

Field
Name

Type Description

inputRecordCountlong Number of profiled records.

rejectedRecordCountlong Number of records rejected from profiling, e.g. due to parse errors.

• RunResults record provides profiling results - output values of metrics enabled on profiled fields. The results
of profiling will be available only in the case of Synchronous execution and only if the current user has sandbox
privileges to read the profiling results.

Metrics with structured results return values as Multivalue Fields (p. 167). This includes charts, format count
metrics, and some others.

Chapter 57. Job Control

704

ExecuteScript

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

Short Summary

ExecuteScript is a component that runs either shell scripts or scripts interpreted by a selected interpreter. It either
runs a script only once or the script is executed repeatedly for each incoming record. Each incoming record can
redefine almost all parameters of run including the script itself.

Abstract

ExecuteScript runs a script with a given interpreter (default system shell by default).

When there is no edge connected to an input port, the component runs a script only once. One output record is
produced in this case.

When there are records coming to an input port, one script execution per record is performed and one output record
per script execution is produced.

If the script was successful the component continues with processing of next input tokens. Otherwise, component
stops executing other scripts and from now all incoming tokens are ignored and information about ignored tokens
are sent to error output port. This behaviour can be changed in parameter Stop processing on fail.

Output record contains all important information about a script run (times, exit value, error reports and standard
output). Mapping of these values to user-defined output metadata can be defined in Output Mapping and Error
Mapping attributes.

All script execution parameters can be set via input records with use of Input Mapping attribute. The mapping
sets which values for the input are used as script execution parameters. Input and output mapping are common
to job control (p. 675) components.

A single run of a script is performed as follows:

• The script code is copied to a temporary batch file.

• An interpreter is run with a ${} string substituted with the name of the temporary file

• When the script is over, the output record is produced and sent to first output port for successful runs and to
second output port for unsuccessful runs.

For more detailed information see attribute description (p. 706).

Icon

Chapter 57. Job Control

705

Ports

Port type Number Required Description Metadata

Input 0 no Parameters of script run (including a script itself if needed). Any

Output 0 no Component input and results of a script run. Any

Error 1 no Component input and results of a script run. Records for
scripts that cannot cannot run or return 1.

Any

This component has Metadata Templates (p. 274) available.

Chapter 57. Job Control

706

ExecuteScript Attributes

Attribute Req Description Possible
values

Basic

Script no Code of a script to be executed. If an interpreter attribute value
is kept default, script must be a code of a shell script. Thus, it
can easily be used for running one or more system commands.
Otherwise, the code format depends on a chosen interpreter.

Script URL no URL of a script to be executed. If an interpreter attribute value
is kept default, script must be a code of a shell script. Thus, it
can easily be used for running one or more system commands.
Otherwise, the code format depends on a chosen interpreter. If
both, script and script URL attributes are specified, only script
URL is used.

Script charset no This character encoding is used for an executed script file. A
script file reference is specified either in 'Script URL' attribute
or temporary batch file is created automatically from 'Script'
attribute.

ISO-8859-1
(default) |
<other
encodings>

Working directory no Working directory of the executed script. All relative paths
used inside the script will be interpreted with respect the this
directory. By default it is set to the root of CloverETL project
containing the graph.

Timeout no A limit for script execution (in milliseconds). When a script
runs longer than the limit the components kills it. In this case
in the output record fields are set as follows: exitValue is set
to 1, reachedTimeout to true and duration is greater or equal to
timeout.

0 (unlimited) |
positive
number

Input Mapping no Input mapping defines how data from incoming token
overrides default component settings. See input mapping fields
description (p. 707)

CTL
transformation

Output Mapping no Output mapping maps results of successful script executions
to the first output port. See output mapping fields
description (p. 708)

CTL
transformation

Error Mapping no Error mapping maps results of unsuccessful scripts to the second
output port. See output mapping fields description (p. 708)

CTL
transformation

Redirect Error Output no By default, results of failed scripts are sent to the second output
port (error port). If this switch is true, results of unsuccessful
scripts are sent to the first output port in the same way as
successful scripts.

false (default) |
true

Interpreter no Set an interpreter to be used for running a script. When an
interpreter is executed ${} is substituted with a name of a
temporary batch file that contains a copy of the script. If
an interpreter is sensitive to an extension of a script file, it
is necessary to set Batch file extension property so that a
temporary file will have the right extension.

A path to
an interpreter
followed by
${}. By
default a script
is interpreted
by a system
shell (e.g. cmd
in Windows
and sh in
Linux).

Chapter 57. Job Control

707

Attribute Req Description Possible
values

Environment
variables

no Sets environment variables values in the script. It allows either
to setting or appending to them. Appending to a non-existing
variable leads to defining it and setting its value. Note that
variable values are only visible inside of a script, i.e. setting
PATH cannot be used for setting path to an interpreter. Variable
values set in this property can be overridden by mapping of
input to EnvironmentVariables metadata in an input mapping
dialog.

Standard input no Contents of standard input that will be sent to the script. Be
aware that if the script expects more input lines than available,
it may hang.

string

Standard input file
URL

no File URL to contents of standard input that will be sent to the
script. Be aware that if the script expects more input lines than
available, it may hang.

Standard output file
URL

no File URL of a file to store standard output of the script. The
file content is either rewritten or appended depending on the
append flag.

Standard error file
URL

no File URL of a file to store error output of the script. The file
content is either rewritten or appended depending on the append
flag.

Append no Sets whether standard output and error output written into files
(attributes Standard output file URL and Error output file
URL) should rewrite existing content or it should be appended.

false (default) |
true

Data charset no Character encoding used to encode standard input passed from
input port and to decode standard and error output to be passed
to output ports.

ISO-8859-1
(default) |
<other
encodings>

Batch file extension no Sets an extension of a batch file that is given to thr interpreter
(its name is substituted for ${} in the interpreter setting).

bat (defaul) |
string

Stop processing on fail no By default, any failed script causes the component stops
executing other scripts and information about skipped tokens
are sent to the error output port. This behaviour can be turned
off by this attribute.

true (default) |
false

Note

The contents of script attribute are copied to a temporary batch file. On Microsoft Windows, it is
often useful to start the script with @echo off to disable echoing the executed commands.

Input Mapping Fields Description

Input records can be mapped to two different metadata: RunConfig and EnvironmentVariables.
Fields of RunConfig have the following functionality:

Field Description

script Overrides component attribute Script

scriptURL Overrides component attribute Script URL

scriptCharset Overrides component attribute Script charset

interpreter Overrides component attribute Interpreter

Chapter 57. Job Control

708

Field Description

workingDirectory Overrides component attribute Working Directory

timeout Overrides component attribute Timeout

environmentVariables Overrides component attribute Environment Variables. It is expected that the
value contains a list of variable assignments delimited with ";". An assignment
with simple "=" symbol assigns a value to an assigned environment variable.
An assignment with "+=" symbol appends a value to an assigned environment
variable.

stdIn Overrides component attribute Standard Input

stdInFileURL Overrides component attribute Standard Input File URL

stdOutFileURL Overrides component attribute Standard Output File URL

errOutFileURL Overrides component attribute Error Output File URL

append Overrides component attribute Append

dataCharset Overrides component attribute Data charset

batchFileExtension Overrides component attribute Batch File Extension

Note

In Input mapping, you can use the $out.0.script field to create a dynamic command line. Just
map a script and its parameters onto the field. Example:

$out.0.script = "md5.exe " + $in.0.filePath;

Note

Environment variables provided to the executed script can be defined in three different ways.

1. Use component's attribute Environmental variables for statical definition of environment
variables. Variable names and values are defined once for all script executions.

2. The output record EnvironmentVariables populated in Input mapping is the second way how
the environment variables can be defined. Set of variable names is still statically defined by the
record structure, but values of variables can be derived from input tokens.

3. The most complex way how the environment variables can be defined is to populate
environmentVariables field in the output record RunConfig in Input mapping. Value of this
field has same syntax and meaning like component's attribute Environment variables. Both, set
of variables and their values can be defined fully dynamically in this case.

Note

If you want to append a string to an environment variable in Input mapping, use
getEnvironmentVariables() CTL function. Example:

$out.1.PATH = getEnvironmentVariables()["PATH"] + ":" +
$in.0.additionalPath;

Output Mapping Fields Description

Field Description

stdOut Standard output of a script.

errOut Error output of a script.

Chapter 57. Job Control

709

Field Description

startTime Start time of a script.

stopTime Stop time of a script.

duration Duration of a script. (duration = stopTime - startTime)

exitValue Value returned by the script. Typically 0 means no error, non-zero values stand
for errors.

reachedTimeout Boolean determining whether the script reached timeout.

errException If the script call finished with error, it may contain an exception that caused the
error. This happens only in situation when the script has not started (e.g. path to
the script is not valid) or its run has been interrupted (e.g. when a timeout has been
reached).

errMessage Message reported by the exception in errException.

Chapter 57. Job Control

710

Fail

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

The Fail component aborts the parent job (jobflow or graph) with user-specified error message.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

Fail no no 0-1 0 no no yes

Abstract

Fail interrupts parent job (jobflow or graph). First incoming token to the component throws exception
(org.jetel.exception.UserAbortException) with user defined error message. The job finishes immediately with final
status ERROR. Moreover, the dictionary content can be changed before the job is interrupted. In general, the
component allows to interrupt the job and at the same time return some results through dictionary.

The component Fail works even without input port attached. In this case, the job is interrupted immediately when
the phase with the Fail component is started up.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Any input token from this port interrupts the jobflow (or
graph).

Any 1)

Legend:

Chapter 57. Job Control

711

1): Input field named 'errorMessage' is automatically used for user-specific error message, which interrupts the
job, if it is not specified in mapping other way.

Chapter 57. Job Control

712

Fail Attributes

Attribute Req Description Possible
values

Basic

Error message no In case the job is interrupted, the exception is thrown with this
error message. The error message can be dynamically changed
in mapping.

"user
abort" (default)
| text

Mapping no Mapping is used for dynamical assembling of error message,
which is thrown in case the job is going to be interrupted.
Moreover, dictionary content of interrupted job can be changed
as well. See Advanced Description (p. 712).

Advanced Description

• Mapping details

Mapping in Fail component is generally used for two purposes:

• Assembling of error message from incoming record.

• Populating dictionary content from incoming record.

Note

Only output dictionary entries can be changed.

Figure 57.2. Example of mapping for Fail component

Error message compiled by the mapping has the highest priority. If the mapping does not set 'errorMessage', the
error message from component attribute is used instead. If even this attribute is not set, predefined text "user
abort" is used instead.

Chapter 57. Job Control

713

GetJobInput

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

GetJobInput produces single record populated by dictionary content and/or graph parameters.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

GetJobInput - - 0 1 - no yes

Abstract

The component GetJobInput retrieves requested job parameters and sends them to output port. The component
produces single output record which is populated by mapping. Auto-mapping is applied when mapping is not
specified, e.g. input dictionary entries are automatically copied to output fields with identical names.

Icon

Ports

Port type Number Required Description Metadata

Output 0 yes For record with job input. Any 1)

Legend:

1): fields with identical names with input dictionary entries are populated automatically

Chapter 57. Job Control

714

GetJobInput Attributes

Attribute Req Description Possible
values

Basic

Mapping no Mapping populates the output record of the component. Input
dictionary entries and graph parameters are natural input values
for the mapping. In fact, mapping attribute is a regular CTL
transformation from record, which represents input dictionary
entries, to record with output metadata structure. Mapping is
invoked exactly once.

Chapter 57. Job Control

715

KillGraph

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

KillGraph aborts specified graphs and passes their final status to output port.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

KillGraph no no 0-1 0-1 yes no yes

Abstract

The KillGraph component aborts graphs specified by run ID or by execution group (all graphs belonging to the
execution group are aborted). Final execution status of interrupted graphs is passed to output port or just printed
out to log. Moreover, you can choose if even daemon children of interrupted graphs are aborted (non-daemon
children are interrupted in any case) - see Execute graph as daemon attribute of ExecuteGraph (p. 682).

The component reads input token, extracts run ID or execution group from incoming data (see Input mapping
attribute), interrupts the requested graphs and writes final status of interrupted graph to the output port (see Output
mapping attribute).

In case the input port is not attached, just the graphs specified in Run ID attribute or in Execution group attribute
are interrupted.

Icon

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

716

Ports

Port type Number Required Description Metadata

Input 0 no Input tokens with identifications of interrupted graphs. Any

Output 0 no Final graph execution status. Any

This component has Metadata Templates (p. 274) available.

Chapter 57. Job Control

717

KillGraph Attributes

Attribute Req Description Possible
values

Basic

Run ID no Specifies run ID of interrupted graph. Has higher priority than
'Execution group' attribute. This attribute can be overridden in
input mapping.

long

Execution group no All graphs belonging to the specified execution group are
interrupted. 'Run ID' attribute has higher priority. This attribute
can be overridden in input mapping.

string

Kill daemon children no Specifies whether even daemon children are interrupted. Non-
daemon children are aborted in any case. This attribute can be
overridden in input mapping.

false (default) |
true

Input mapping no Input mapping defines how to extract run ID or execution group
to be interrupted from incoming token. See Input mapping
 (p. 717).

CTL
transformation

Output mapping no Output mapping defines how to populate the output token by
final graph status of interrupted graph. See Output mapping
 (p. 717).

CTL
transformation

Input mapping

Input mapping is regular CTL transformation which is executed for each input token to extract run ID or execution
group to be interrupted. Output record has following structure:

Field
Name

Type Description

runId long Overrides component attribute Run ID

executionGroupstring Overrides component attribute Execution group

killDaemonChildrenboolean Overrides component attribute Kill daemon children

Output mapping

Output mapping is regular CTL transformation which is executed for interrupted graph to populate the output
token. Available input data has following structure:

Field
Name

Type Description

runId long run ID of interrupted graph

originalJobURLstring path to interrupted graph

version string version of interrupted graph

startTime date time of graph execution

endTime date time of graph finish

duration long graph run execution time in milliseconds (endTime - startTime)

status string final graph execution status (FINISHED_OK | ERROR | ABORTED | TIMEOUT)

errExceptionstring cause exception for failed graphs

Chapter 57. Job Control

718

Field
Name

Type Description

errMessagestring error message for failed graphs

errComponentstring component ID which caused graph fail

errComponentTypestring type of component which caused graph fail

Chapter 57. Job Control

719

KillJobflow

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

KillJobflow aborts specified jobflows and passes their final status to output port.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L
KillJobflow no no 0-1 0-1 yes no yes

Abstract

This component works similarly to KillGraph. See KillGraph (p. 715) component documentation.

Icon

Ports

Please refer to KillGraph Ports (p. 716).

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

720

KillJobflow Attributes

Please refer to KillGraph Attributes (p. 717).

Chapter 57. Job Control

721

MonitorGraph

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

MonitorGraph allows watching of running graphs. Component can either wait for final execution status or
periodically monitor current execution status.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

MonitorGraph no no 0-1 0-2 yes no yes

Abstract

The MonitorGraph component allows watching of running graphs. Each incoming token triggers new monitor of
a graph specified by run ID extracted from the token. It is possible to monitor multiple graphs at once.

A single graph monitor watches the graph and waits for it to finish. When the graph is finished running, graph
results are sent to an output port in the same manner as in ExecuteGraph component; results of successful graphs
are sent to the first output port and unsuccessful graphs are sent to the second output port. Moreover whenever time
specified in the monitoring interval attribute elapses, the graph monitors send current graph status information
even for still running graphs.

In case no input port is attached, only one graph is monitored with the settings specified in component's attributes.
In case the first output port is not connected, the component just prints out the subgraph results to the log. In case the
second output port (error port) is not attached, first subgraph that fails would cause interruption of the parent job.

Input mapping defines how to extract run ID and other settings of the graph monitor from incoming token.
Whenever graph results or actual graph status need to be mapped to output ports, output mapping and error mapping
attributes are used to populate output tokens. Information available in graph results comprise mainly from general
runtime information, dictionary content and tracking information.

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

722

Note

Only graphs executed by the current jobflow (direct children) can be watched by the MonitorGraph
component.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input tokens with identification of monitored graph. Any

0 no Execution information for successful graphs. AnyOutput

1 no Execution information for unsuccessful graphs. Any

This component has Metadata Templates (p. 274) available.

Chapter 57. Job Control

723

MonitorGraph Attributes

Attribute Req Description Possible
values

Basic

Graph URL no Path to a graph which represents typical monitored graph.
The graph referenced by this attribute is also used for all
mapping dialogs - they display dictionary entries and tracking
information based on this graph.

Timeout no Maximal amount of time dedicated for graph run; by default in
milliseconds, but other time units (p. 274) may be used. If the
graph is running longer than the time specified in this attribute,
current graph information with TIMEOUT status is send to error
output port.

This is just default value for all graph monitors. Can be
overridden in input mapping individually for each graph
monitor.

0 (unlimited) |
positive
number

Monitoring interval no Whenever time specified in this attribute elapses, the graph
monitor send actual graph status information to the first output
port. The interval is in milliseconds by default, but other time
units (p. 274) may be used.

By default, only final graph results are sent to output ports.

This is just default value for all graph monitors. Can be
overridden in input mapping individually for each graph
monitor.

none (default) |
positive
number

Input mapping no Input mapping defines how to extract run ID and other graph
monitor settings from incoming token. See Input mapping
 (p. 723).

CTL
transformation

Output mapping no Output mapping maps results of successful graphs to the first
output port. Output mapping is used also for sending of current
status in case the monitoring interval is specified. See Output
mapping (p. 724).

CTL
transformation

Error mapping no Error mapping maps results of unsuccessful graphs to the second
output port. See Error mapping (p. 724).

CTL
transformation

Redirect error output no By default, results of failed graphs are sent to the second output
port (error port). If this switch is true, results of unsuccessful
graphs are sent to the first output port in the same way as
successful graphs.

false (default) |
true

Advanced

Run ID no Statically defined run ID of monitored graph. This attribute is
usually overridden in input mapping by data from incoming
token.

string

Input mapping

Input mapping is regular CTL transformation which is executed for each incoming token to specify run ID of
monitored graph and settings of respective graph monitor. Available output fields:

Chapter 57. Job Control

724

Field
Name

Type Description

runId long Run ID of monitored graph. Overrides component attribute Run ID.

timeout long Overrides component attribute Timeout.

monitoringIntervallong Overrides component attribute Monitoring interval.

Output mapping

Output mapping is regular CTL transformation which is used to populate token passed to the first output port.
The mapping is executed for successful graphs or for current status of still running graphs, which is sent in
case monitoring interval is specified. More details about input records for this output mapping is available in
documentation for ExecuteGraph (p. 682) component.

The graph monitor finishes watching the graph after the graph is complete or timeout elapses. Another option how
to stop graph monitoring is to return STOP constant in output mapping.

Error mapping

Error mapping is almost identical to output mapping.This error mapping is used only if the graph finished
unsuccessfully or timeout elapsed. The second output port is populated by error mapping.

Chapter 57. Job Control

725

MonitorJobflow

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

MonitorJobflow allows watching of running jobflows. Component can either wait for final execution status or
periodically monitor current execution status.

Note

To be able to use this component, you need a separate jobflow license. Also, the component requires
your project is executed on Clover Server.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

MonitorJobflow no no 0-1 0-2 yes no yes

Abstract

This component works similarly to MonitorGraph. See MonitorGraph (p. 721) component documentation.

Icon

Ports

Please refer to MonitorGraph Ports (p. 722).

http://doc.cloveretl.com/documentation/ServerReferenceManual/topic/com.cloveretl.server.docs/docs/sandboxes.html

Chapter 57. Job Control

726

MonitorJobflow Attributes

Please refer to MonitorGraph Attributes (p. 723).

Chapter 57. Job Control

727

SetJobOutput

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control component for your purposes, see Job control Comparison (p. 332).

The component is located in Palette →Job Control.

Short Summary

SetJobOutput receives input records and sets the incoming values to dictionary content.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

SetJobOutput - - 1 0 - no yes

Abstract

The component SetJobOutput writes incoming records to output dictionary entries. Output dictionary entries are
populated according to mapping. If no mapping is specified, field values are set to dictionary entries with identical
names.

First input record sets values of dictionary entries, and subsequent input records override the existing values.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For records to be written to dictionary. Any 1)

Legend:

1): field values with identical names with output dictionary entries are written automatically

Chapter 57. Job Control

728

SetJobOutput Attributes

Attribute Req Description Possible
values

Basic

Mapping no This attribute specifies mapping from input record metadata to
output dictionary entries. Each incoming record is processed by
this mapping and its values are mapped to dictionary. In fact,
mapping attribute is a regular CTL transformation from input
metadata structure to record, which represents output dictionary
entries.

Chapter 57. Job Control

729

Success

Jobflow Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

The component is located in Palette →Job Control.

Short Summary

Success is a successful endpoint in a jobflow

Component Data output

In
pu

t
po

rt
s

O
ut

pu
t

po
rt

s

T
ra

ns
fo

rm
at

io
n

T
ra

ns
f.

 r
eq

ui
re

d

Ja
va

C
T

L

Success none 0-1 0 no no no yes

Abstract

Success is a successful endpoint in a jobflow. Tokens that flow into the component are not processed anymore -
they are considered to be successfully processed within the jobflow. The component can serve as a visual marker
of success in a jobflow.

The component can log a message and set contents of dictionary - it is similar to the Fail (p. 710) component.

Icon

Ports

Port type Number Required Description Metadata

Input 0-1 yes For received tokens Any

Success Attributes

Attribute Req Description Possible
values

Basic

Chapter 57. Job Control

730

Attribute Req Description Possible
values

Message no Text message to log for each incoming token. text

Mapping no Mapping is used for dynamical assembling of log message.
Moreover, dictionary content can be changed as well. See
Advanced Description (p. 730).

Advanced Description

• Mapping details

Mapping in Success component is generally used for two purposes:

• Assembling of log message from incoming record.

• Populating dictionary content from incoming record.

Note

Only output dictionary entries can be changed.

Log message compiled by the mapping has the highest priority. If the mapping does not set 'message', the
message from component attribute is used instead. If no message is set via attribute or mapping, nothing is
logged.

Chapter 57. Job Control

731

TokenGather

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 50, Common Properties of Job Control (p. 332)

If you want to find the right Job Control for your purposes, see Job control Comparison (p. 332).

Short Summary

TokenGather copies each incoming token from any input port to all connected output ports. If input metadata
differs from output metadata copying based on field names is used. This component is typically used to collect all
tokens from several parallel execution branches and send them to one unified output.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

TokenGather no no 1-n 1-n - -

Abstract

The TokenGather component receives incoming tokens from any input port and copies them to all connected
output ports - each incoming token is copied to all output ports. Input ports and output ports can have any metadata.
Copying from input metadata to output metadata is based on field names - field value is moved to output token
if and only if output token has field with identical name.

Icon

Ports

Port type Number Required Description Metadata

Input 0-n at least
one

For incoming tokens. Any

Output 0-n at least
one

For gathered tokens. Any 1)

This component has Metadata Templates (p. 274) available.

Legend:

Chapter 57. Job Control

732

1): only fields with identical names with input fields are populated

733

Chapter 58. File Operations
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

The group of components designed for file system manipulation is called File Operations.

File Operations components can create, copy, move, delete files and directories, list directories, and read file
attributes. The components can work with local files and remote files via FTP or Apache Hadoop HDFS. Access
to sandboxes is also supported when running on the Server. It also offers limited support on other protocols (e.g.
copy files from the web using the HTTP protocol); however, archived content manipulation is not supported (e.g.
zip, gzip and tar protocols).

Note that when working with remote files, the server and the client should be synchronized.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, while others are common for most of the components. You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

Chapter 58. File Operations

734

CopyFiles

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

If you want to find the right File Operation component for your purposes, see File Operations
Comparison (p. 333).

The component is located in Palette →File Operations.

Short Summary

CopyFiles can be used to copy files and directories.

Note

To be able to use this component, you need a separate jobflow license.

Component

In
pu

ts

O
ut

pu
ts

CopyFiles 0-1 0-2

Abstract

CopyFiles can copy multiple sources into one destination directory or a regular source file to a target file.
Directories can be copied recursively. Optionally, existing files may be skipped or updated based on the
modification date of the files.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input data records to be mapped to component attributes. Any

0 no Results AnyOutput

1 no Errors Any

Chapter 58. File Operations

735

This component has Metadata Templates (p. 274) available.

Chapter 58. File Operations

736

CopyFiles Attributes

Attribute Req Description Possible values

Basic

Source file URL yes 1) Path to the source file or directory
(see Supported URL Formats for File
Operations (p. 334)).

Target file URL yes 1) Path to the destination file or directory
(see Supported URL Formats for File
Operations (p. 334)). When it points to a
directory, the source will be copied into the
directory.

It must be a path to a single file or directory.

Recursive no Copy directories recursively. false (default) | true

Overwrite no Specifies whether existing files shall be
overwritten. In update mode, the target will
be overwritten only when the source file is
newer than the destination file.

always (default) | update |
never

Create parent directories no Attempt to create non-existing parent
directories.

When the Create parent directories option
is enabled and the Target file URL ends with
a slash ('/'), it is treated as the parent directory,
i.e. the source directory or file is copied into
the target directory, even if it does not exist.

false (default) | true

Input mapping 2) Defines mapping of input records to
component attributes.

Output mapping 2) Defines mapping of results to standard output
port.

Error mapping 2) Defines mapping of errors to error output
port.

Redirect error output no If enabled, errors will be sent to the output
port instead of the error port.

false (default) | true

Verbose output no If enabled, one input record may cause
multiple records to be sent to the output
(e.g. as a result of wildcard expansion).
Otherwise, each input record will yield just
one cumulative output record.

false (default) | true

Advanced

Stop processing on fail no By default, a failure causes the component
to skip all subsequent operations and send
the information about skipped operations to
the error output port. This behaviour can be
turned off by this attribute.

true (default) | false

Legend

1) The attribute is required, unless specified in the Input mapping.

2) Required if the corresponding edge is connected.

Chapter 58. File Operations

737

Advanced Description

Editing any of the Input, Output or Error mapping opens the Transform Editor (p. 285).

Input mapping - the editor allows you to override selected attributes of the component with the values of the
input fields.

Field Name Attribute Type Possible values

sourceURL Source file URL string

targetURL Target file URL string

recursive Recursive boolean true | false

overwrite Overwrite string "always" | "update" | "never"

makeParentDirs Create parent directories boolean true | false

Output mapping - the editor allows you to map the results and the input data to the output port.

Field Name Type Description

sourceURL string URL of the source file.

targetURL string URL of the destination.

resultURL string New URL of the successfully copied file. Only set in Verbose output mode.

result boolean True if the operation has succeeded (can be false when Redirect error output is
enabled).

errorMessage string If the operation has failed, the field contains the error message (used when
Redirect error output is enabled).

stackTrace string If the operation has failed, the field contains the stack trace of the error (used when
Redirect error output is enabled).

Error mapping - the editor allows you to map the errors and the input data to the error port.

Field Name Type Description

result boolean Will always be set to false.

errorMessage string The error message.

stackTrace string The stack trace of the error.

sourceURL string URL of the source file.

targetURL string URL of the destination.

Chapter 58. File Operations

738

CreateFiles

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

If you want to find the right File Operation component for your purposes, see File Operations
Comparison (p. 333).

The component is located in Palette →File Operations.

Short Summary

CreateFiles can be used to create files and directories and to set their modification date.

Note

To be able to use this component, you need a separate jobflow license.

Component

In
pu

ts

O
ut

pu
ts

CreateFiles 0-1 0-2

Abstract

CreateFiles can create files and directories. It is also capable of setting the modification date of both existing and
newly created files and directories. Optionally, non-existing parent directories may also be created.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input data records to be mapped to component attributes. Any

0 no Results AnyOutput

1 no Errors Any

This component has Metadata Templates (p. 274) available.

Chapter 58. File Operations

739

CreateFiles Attributes

Attribute Req Description Possible values

Basic

File URL yes 1) Path to the file or directory to be created
(see Supported URL Formats for File
Operations (p. 334)). If it ends with a slash
('/'), it denotes that a directory should be
created, which can also be specified using the
Create as directory attribute.

Create as directory no Specifies that directories should be created
instead of regular files.

false (default) | true

Create parent directories no Attempt to create non-existing parent
directories.

false (default) | true

Last modified date no Set the last modified date of existing
and newly created files to the specified
value. Format of the date is defined
in the DEFAULT_DATETIME_FORMAT
property (Changing Default CloverETL
Settings (p. 88)).

Input mapping 2) Defines mapping of input records to
component attributes.

Output mapping 2) Defines mapping of results to standard output
port.

Error mapping 2) Defines mapping of errors to error output
port.

Redirect error output no If enabled, errors will be sent to the standard
output port instead of the error port.

false (default) | true

Verbose output no If enabled, one input record may cause
multiple records to be sent to the output
(e.g. as a result of wildcard expansion).
Otherwise, each input record will yield just
one cumulative output record.

false (default) | true

Advanced

Stop processing on fail no By default, a failure causes the component
to skip all subsequent operations and send
the information about skipped operations to
the error output port. This behaviour can be
turned off by this attribute.

true (default) | false

Legend

1) The attribute is required, unless specified in the Input mapping.

2) Required if the corresponding edge is connected.

Advanced Description

Editing any of the Input, Output or Error mapping opens the Transform Editor (p. 285).

Input mapping - the editor allows you to override selected attributes of the component with the values of the
input fields.

Chapter 58. File Operations

740

Field Name Attribute Type Possible values

fileURL File URL string

directory Create as directory boolean true | false

makeParentDirs Create parent directories boolean true | false

modifiedDate Last modified date date

Output mapping - the editor allows you to map the results and the input data to the output port.

Field Name Type Description

fileURL string URL of the target file or directory.

result boolean True if the operation has succeeded (can be false when Redirect error output is
enabled).

errorMessage string If the operation has failed, the field contains the error message (used when
Redirect error output is enabled).

stackTrace string If the operation has failed, the field contains the stack trace of the error (used when
Redirect error output is enabled).

Error mapping - the editor allows you to map the errors and the input data to the error port.

Field Name Type Description

result boolean Will always be set to false.

errorMessage string The error message.

stackTrace string The stack trace of the error.

fileURL string URL of the target file or directory.

Chapter 58. File Operations

741

DeleteFiles

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

If you want to find the right File Operation component for your purposes, see File Operations
Comparison (p. 333).

The component is located in Palette →File Operations.

Short Summary

DeleteFiles can be used to delete files and directories.

Note

To be able to use this component, you need a separate jobflow license.

Component

In
pu

ts

O
ut

pu
ts

DeleteFiles 0-1 0-2

Abstract

DeleteFiles can be used to delete files and directories (also recursively).

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input data records to be mapped to component attributes. Any

0 no Results AnyOutput

1 no Errors Any

This component has Metadata Templates (p. 274) available.

Chapter 58. File Operations

742

DeleteFiles Attributes

Attribute Req Description Possible values

Basic

File URL yes 1) Path to the file or directory to be deleted
(see Supported URL Formats for File
Operations (p. 334)).

Recursive no Delete directories recursively. false (default) | true

Input mapping 2) Defines mapping of input records to
component attributes.

Output mapping 2) Defines mapping of results to standard output
port.

Error mapping 2) Defines mapping of errors to error output
port.

Redirect error output no If enabled, errors will be sent to the standard
output port instead of the error port.

false (default) | true

Verbose output no If enabled, one input record may cause
multiple records to be sent to the output
(e.g. as a result of wildcard expansion).
Otherwise, each input record will yield just
one cumulative output record.

false (default) | true

Advanced

Stop processing on fail no By default, a failure causes the component
to skip all subsequent operations and send
the information about skipped operations to
the error output port. This behaviour can be
turned off by this attribute.

true (default) | false

Legend

1) The attribute is required, unless specified in the Input mapping.

2) Required if the corresponding edge is connected.

Advanced Description

Editing any of the Input, Output or Error mapping opens the Transform Editor (p. 285).

Input mapping - the editor allows you to override selected attributes of the component with the values of the
input fields.

Field Name Attribute Type Possible values

fileURL File URL string

recursive Recursive boolean true | false

Output mapping - the editor allows you to map the results and the input data to the output port.

Field Name Type Description

fileURL string Path to the file or directory that was deleted.

result boolean True if the operation has succeeded (can be false when Redirect error output is
enabled).

Chapter 58. File Operations

743

Field Name Type Description

errorMessage string If the operation has failed, the field contains the error message (used when
Redirect error output is enabled).

stackTrace string If the operation has failed, the field contains the stack trace of the error (used when
Redirect error output is enabled).

Error mapping - the editor allows you to map the errors and the input data to the error port.

Field Name Type Description

result boolean Will always be set to false.

errorMessage string The error message.

stackTrace string The stack trace of the error.

fileURL string URL of the deleted file or directory.

Chapter 58. File Operations

744

ListFiles

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

If you want to find the right File Operation component for your purposes, see File Operations
Comparison (p. 333).

The component is located in Palette →File Operations.

Short Summary

ListFiles can be used to list directory contents and to retrieve file attributes, such as size or modification date.

Note

To be able to use this component, you need a separate jobflow license.

Component

In
pu

ts

O
ut

pu
ts

ListFiles 0-1 1-2

Abstract

ListFiles lists directory contents including detailed information about individual files. Subdirectories may be listed
recursively.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input data records to be mapped to component attributes. Any

0 yes One record per each entry in the target directory AnyOutput

1 no Errors Any

This component has Metadata Templates (p. 274) available.

Chapter 58. File Operations

745

ListFiles Attributes

Attribute Req Description Possible
values

Basic

File URL yes 1) Path to the file or directory to be listed (see Supported URL
Formats for File Operations (p. 334)).

Recursive no List subdirectories recursively. false (default) |
true

Input mapping 2) Defines mapping of input records to component attributes.

Output mapping 2) Defines mapping of results to standard output port.

Error mapping 2) Defines mapping of errors to error output port.

Redirect error output no If enabled, errors will be sent to the standard output port instead
of the error port.

false (default) |
true

Advanced

Stop processing on fail no By default, a failure causes the component to skip all subsequent
operations and send the information about skipped operations to
the error output port. This behaviour can be turned off by this
attribute.

true (default) |
false

Legend

1) The attribute is required, unless specified in the Input mapping.

2) Required if the corresponding edge is connected.

Advanced Description

Editing any of the Input, Output or Error mapping opens the Transform Editor (p. 285).

Input mapping - the editor allows you to override selected attributes of the component with the values of the
input fields.

Field Name Attribute Type Possible
values

fileURL File
URL

string

recursive Recursiveboolean true | false

Output mapping - the editor allows you to map the results and the input data to the output port.

Field
Name

Type Description

URL string URL of the file or directory.

name string File name.

canRead boolean True if the file can be read.

canWrite boolean True if the file can be modified.

canExecuteboolean True if the file can be executed.

isDirectoryboolean True if the file exists and is a directory.

isFile boolean True if the file exists and is a regular file.

Chapter 58. File Operations

746

Field
Name

Type Description

isHidden boolean True if the file is hidden.

lastModifieddate The time that the file was last modified.

size long True size of the file in bytes.

result boolean True if the operation has succeeded (can be false when Redirect error output is enabled).

errorMessagestring If the operation has failed, the field contains the error message (used when Redirect error
output is enabled).

stackTrace string If the operation has failed, the field contains the stack trace of the error (used when
Redirect error output is enabled).

Error mapping - the editor allows you to map the errors and the input data to the error port.

Field
Name

Type Description

result boolean Will always be set to false.

errorMessagestring The error message.

stackTrace string The stack trace of the error.

Chapter 58. File Operations

747

MoveFiles

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 51, Common Properties of File Operations (p. 333)

If you want to find the right File Operation component for your purposes, see File Operations
Comparison (p. 333).

The component is located in Palette →File Operations.

Short Summary

MoveFiles can be used to move files and directories.

Note

To be able to use this component, you need a separate jobflow license.

Component

In
pu

ts

O
ut

pu
ts

MoveFiles 0-1 0-2

Abstract

MoveFiles can move multiple sources into one destination directory or a regular source file to a target file.
Optionally, existing files may be skipped or updated based on the modification date of the files.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no Input data records to be mapped to component attributes. Any

0 no Results AnyOutput

1 no Errors Any

This component has Metadata Templates (p. 274) available.

Chapter 58. File Operations

748

MoveFiles Attributes

Attribute Req Description Possible values

Basic

Source file URL yes 1) Path to the source file or directory
(see Supported URL Formats for File
Operations (p. 334)).

Target file URL yes 1) Path to the destination file or directory
(see Supported URL Formats for File
Operations (p. 334)). When it points to a
directory, the source will be moved into the
directory.

It must be a path to a single file or directory.

Overwrite no Specifies whether existing files shall be
overwritten. In update mode, the target will
be overwritten only when the source file is
newer than the destination file.

always (default) | update |
never

Create parent directories no Attempt to create non-existing parent
directories.

When the Create parent directories option
is enabled and the Target file URL ends with
a slash ('/'), it is treated as the parent directory,
i.e. the source directory or file is moved into
the target directory, even if it does not exist.

false (default) | true

Input mapping 2) Defines mapping of input records to
component attributes.

Output mapping 2) Defines mapping of results to standard output
port.

Error mapping 2) Defines mapping of errors to error output
port.

Redirect error output no If enabled, errors will be sent to the output
port instead of the error port.

false (default) | true

Verbose output no If enabled, one input record may cause
multiple records to be sent to the output
(e.g. as a result of wildcard expansion).
Otherwise, each input record will yield just
one cumulative output record.

false (default) | true

Advanced

Stop processing on fail no By default, a failure causes the component
to skip all subsequent operations and send
the information about skipped operations to
the error output port. This behaviour can be
turned off by this attribute.

true (default) | false

Legend

1) The attribute is required, unless specified in the Input mapping.

2) Required if the corresponding edge is connected.

Advanced Description

Chapter 58. File Operations

749

Editing any of the Input, Output or Error mapping opens the Transform Editor (p. 285).

Input mapping - the editor allows you to override selected attributes of the component with the values of the
input fields.

Field Name Attribute Type Possible values

sourceURL Source file URL. string

targetURL Target file URL. string

overwrite Overwrite string "always" | "update" | "never"

makeParentDirs Create parent directories boolean true | false

Output mapping - the editor allows you to map the results and the input data to the output port.

Field Name Type Description

sourceURL string URL of the source file.

targetURL string URL of the destination.

resultURL string New URL of the successfully moved file. Only set in Verbose output mode.

result boolean True if the operation has succeeded (can be false when Redirect error output is
enabled).

errorMessage string If the operation has failed, the field contains the error message (used when
Redirect error output is enabled).

stackTrace string If the operation has failed, the field contains the stack trace of the error (used when
Redirect error output is enabled).

Error mapping - the editor allows you to map the errors and the input data to the error port.

Field Name Type Description

result boolean Will always be set to false.

errorMessage string The error message.

stackTrace string The stack trace of the error.

sourceURL string URL of the source file.

targetURL string URL of the destination.

750

Chapter 59. Cluster Components
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Components from this category are primary dedicated for data flow management in CloverETL Cluster
environment, which provides ability of massive parallelisation of data transformation processing. Each component
in a transformation graph running in cluster environment can be executed in multiple instances, which is called
component allocation. Component allocation specifies how many instances will be executed and where (on which
cluster nodes) will be running. See documentation for CloverETL Cluster for more details.

In general, cluster components can be divided into two sub-categories - partitioners and gathers.

Cluster partitioners distribute data records from a single worker among various cluster workers. Cluster
partitioners are actually used to change single-worker allocation to multiple-worker allocation.

• ClusterPartition (p. 751) distributes data records among various workers, algorithm of the component is based
on Partition component

• ClusterLoadBalancingPartition (p. 753) distributes data records among various workers, algorithm of the
component is based on LoadBalancingPartition component

• ClusterSimpleCopy (p. 755) copies data records among various workers, algorithm of the component is based
on SimpleCopy component. So incoming data are duplicated and sent to all output workers.

On the other side, cluster gathers collect data records from various cluster workers to a single worker. Cluster
gathers are actually used to change multiple-worker allocation to single-worker allocation.

• ClusterSimpleGather (p. 757) gathers data records from various cluster workers, algorithm of the component
is based on SimpleGather component

• ClusterMerge (p. 759) gathers data records from various cluster workers, algorithm of the component is
based on Merge component

Out of both basic cluster component groups stands ClusterRepartition component.

• ClusterRepartition (p. 761) changes partitioning of already partitioned data, data are re-partitioned. For
example, if you have data already partitioned according a key by ClusterPartition component and you would
like to change the key or you would like to change number of partitions, this component do the work in one
step, without necessity to gather all partitioned data to single worker (avoiding bottleneck) by a cluster gather
and partition the data again according new rules by a cluster partitioner.

Different components can have different properties. But they also can have something in common. Some properties
are common for all components, while others are common for most of the components, and also others are common
only for some of them. You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Chapter 59. Cluster Components

751

ClusterPartition

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterPartition distributes incoming data records among different CloverETL Cluster workers. The algorithm
of the component is derived from the regular Partition (p. 609) component.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterPartition yes no 1 11) yes/no2) yes/no2)

Legend

1) The single output port represents multiple virtual output ports.

2) ClusterPartition can use either a transformation or two other attributes (Ranges and/or Partition key). A
transformation must be defined unless at least one of the attributes is specified.

Abstract

ClusterPartition distributes incoming data records among different CloverETL Cluster workers.

The algorithm of this component is derived from the regular Partition (p. 609) component. See the documentation
of the Partition (p. 609) component for more details about attributes and other component specific behaviour.

If the Ranges attribute is used for partitioning, the number of defined ranges must match the allocation (p. 272)
of the following component. Use the Add and Remove toolbar buttons to adjust the number of defined ranges:

This component belongs to group of cluster components that allows the change from a single-worker allocation
to a multiple-worker allocation. So the allocation of the component preceding the ClusterPartition component
has to provide just a single worker. The allocation of the component following the ClusterPartition component
can provide multiple workers.

Note

More details about usage of this component are available in the CloverETL Cluster documentation.

Chapter 59. Cluster Components

752

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 59. Cluster Components

753

ClusterLoadBalancingPartition

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterLoadBalancingPartition distributes incoming data records among different CloverETL Cluster
workers. The algorithm of the component is derived from the regular LoadBalancingPartition (p. 616) component.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterLoadBalancingPartition yes no 1 11) no no

Legend

1) The single output port represents multiple virtual output ports.

Abstract

ClusterLoadBalancingPartition distributes incoming data records among different CloverETL Cluster
workers.

The algorithm of this component is derived from the regular LoadBalancingPartition (p. 616) component. See the
documentation of the LoadBalancingPartition component for more details about attributes and other component
specific behaviour.

This component belongs to group of cluster components that allows the change from a single-worker allocation to
a multiple-worker allocation. So the allocation of the component preceding the ClusterLoadBalancingPartition
component has to provide just a single worker. The allocation of the component following the
ClusterLoadBalancingPartition component can provide multiple workers.

Note

More details about usage of this component are available in the CloverETL Cluster documentation.

Icon

Ports

Chapter 59. Cluster Components

754

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 59. Cluster Components

755

ClusterSimpleCopy

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterSimpleCopy copies incoming data records to all output CloverETL Cluster workers. The algorithm of
the component is derived from the regular SimpleCopy (p. 637) component.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterSimpleCopy yes no 1 11) no no

Legend

1) The single output port represents multiple virtual output ports.

Abstract

ClusterSimpleCopy copies incoming data records to all output CloverETL Cluster workers. Each incoming
record is duplicated and sent to all output partitions.

This component is useful whenever you need to have some data available for all workers. For example you decide
to process big amount of your business transactions in parallel way. ClusterPartition is the right component
to split your data among several workers. Now you realise you need to join your transactions for example with
country codes, where the transactions have been performed. The list of all country codes you need to have available
on all workers. Each worker can acquire the country codes individually, but if the data reading is very expensive,
for example reading from a slow web service, it could be favourable to read them once and copy them among all
workers using clover abilities. So you can read the country codes from a slow data source just once on a single
worker and copy them using ClusterSimpleCopy to all workers, where can be used to join with your transactions.

The algorithm of this component is derived from the regular SimpleCopy (p. 637) component. See the
documentation of the SimpleCopy (p. 637) component for more details.

This component belongs to group of cluster components that allows the change from a single-worker allocation to a
multiple-worker allocation. So the allocation of the component preceding the ClusterSimpleCopy component has
to provide just a single worker. The allocation of the component following the ClusterSimpleCopy component
can provide multiple workers.

Note

More details about usage of this component is available in CloverETL Cluster documentation.

Chapter 59. Cluster Components

756

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 59. Cluster Components

757

ClusterSimpleGather

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterSimpleGather gathers data records from multiple CloverETL Cluster workers. The algorithm of the
component is derived from the regular SimpleGather (p. 638) component.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterSimpleGather yes no 11) 1 - -

Legend

1) The single input port represents multiple virtual input ports.

Abstract

ClusterSimpleGather gathers data records from multiple CloverETL Cluster workers.

The algorithm of this component is derived from the regular SimpleGather component. See the documentation of
the SimpleGather (p. 638) component for more details about attributes and other component specific behaviour.

This component belongs to group of cluster components that allows the change from a multiple-workers allocation
to a single-worker allocation. So the allocation of the component preceding the ClusterSimpleGather component
can provide multiple workers. The allocation of the component following the ClusterSimpleGather component
has to provide a single worker.

Note

More details about usage of this component are available in the CloverETL Cluster documentation.

Icon

Ports

Chapter 59. Cluster Components

758

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For gathered data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 59. Cluster Components

759

ClusterMerge

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterMerge gathers data records from multiple CloverETL Cluster workers. The algorithm of the component
is derived from the regular Merge (p. 597) component.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterMerge yes yes 11) 1 - -

Legend

1) The single input port represents multiple virtual input ports.

Abstract

ClusterMerge gathers data records from multiple CloverETL Cluster workers.

The algorithm of this component is derived from the regular ClusterMerge (p. 759) component. See the
documentation of the Merge component for more details about attributes and other component specific behaviour.

This component belongs to group of cluster components that allows the change from a multiple-workers allocation
to a single-worker allocation. So the allocation of the component preceding the ClusterMerge component can
provide multiple workers. The allocation of the component following the ClusterMerge component has to provide
a single worker.

Note

More details about usage of this component are available in the CloverETL Cluster documentation.

Icon

Ports

Chapter 59. Cluster Components

760

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For gathered data records Input 01)

Legend:

1): Metadata can be propagated through this component.

Chapter 59. Cluster Components

761

ClusterRepartition

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

• Chapter 47, Common Properties of Cluster Components (p. 329)

Short Summary

ClusterRepartition component re-distributes already partitioned data according new rules among a different set
of CloverETL Cluster workers.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

ClusterRepartition yes no 11) 12) yes/no3) yes/no3)

Legend

1) The single input port represents multiple virtual input ports.

2) The single output port represents multiple virtual output ports.

3) ClusterRepartition can use either a transformation or two other attributes (Ranges and/or Partition key). A
transformation must be defined unless at least one of the attributes is specified.

Abstract

ClusterRepartition component re-distribute already partitioned data according new rules among different set of
CloverETL Cluster workers.

This component is functionally analogous of ClusterPartition (p. 751) component, distributes incoming data
records among different CloverETL Cluster workers. Unlike ClusterPartition the incoming data can be already
partitioned.

For more details behind the scene of this component consider following usage of the repartitioner:

Figure 59.1. Usage example of ClusterRepartition component

ClusterRepartition component defines a boundary between two incompatible allocations. Data in front of
ClusterRepartition are already partitioned on node1 and node2, let's say according to key A. ClusterRepartition
component allows changing allocation (even cardinality), in our case the allocation behind the repartitioner is

Chapter 59. Cluster Components

762

node1, node2 and node3, according to new key B. All is done in one step. Let's look at the following image, which
shows how the repartitioner works.

Figure 59.2. Example of actual working of ClusterRepartition component in runtime

Three separate graphs are executed, one on each of three nodes - node1, node2 and node3. ClusterRepartition
component is substituted by one Partition component for each source partition and by one SimpleGather
component for each target partition. So altogether actually five components do the work instead of the
ClusterRepartition. Each Partition splits the data from single input partition to all output partitions where the data
are gathered by SimpleGather component.

Note

More details about usage of this component are available in the CloverETL Cluster documentation.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0 yes For output data records Input 01)

Legend:

1): Metadata can be propagated through this component.

763

Chapter 60. Data Quality
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Some components are focused on determining and assuring the quality of your data. We call this group of
components: Data Quality.

Data Quality serve to perform multiple and heterogeneous tasks.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, while others are common for most of the components. You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

As Data Quality are heterogeneous group of components, they have no common properties.

We can distinguish each component of the Data Quality group according to the task it performs.

• Address Doctor 5 (p. 764) validates or fixes address format.

• EmailFilter (p. 768) validates e-mail adresses and sends out the valid ones. Data records with invalid e-mail
addresses can be sent out through the optional second output port.

• ProfilerProbe (p. 773) performs statistical analyses of data flowing through the component.

Chapter 60. Data Quality

764

Address Doctor 5

Commercial Component

We suppose that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the appropriate Data Quality component for your purpose, see Data Quality
Comparison (p. 331).

Note

Despite being a Transformer, the component is located in Palette →Data Quality.

Short Summary

Address Doctor 5 validates, corrects or completes the address format of your input records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L
Address Doctor 5 - no 1 1-2 - -

Abstract

Address Doctor 5 receives records on its single input port. It then performs a user-defined transformation to the
address format (e.g. corrects it or completes its fields). At last it sends the edited address to the first output port. The
second output port can optionally be used for records that did not fit the transformation (i.e. a standard error port).

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any1

Output 0 yes For transformed data records Any2

Chapter 60. Data Quality

765

Port type Number Required Description Metadata

Output 1 no For records that could not be transformed (error port) Any2

Address Doctor 5 Attributes

Attribute Req Description Possible
values

Basic

Config file 1) External file defining the configuration.

Parameter file 1) External file defining parameters.

Configuration 2) Specifies the address database and its location.

Parameters 2) Controls how the transformation is performed.

Input mapping yes Determines what will be processed.

Output mapping yes Controls what will be mapped to the ouptput.

Element item
delimiter

If the whole address is stored on a single line, this attribute
specifies which special character separates the address fields.

delimiter is not
used (default) |
one of these: ; :
| \n \r\n
clover_item_delimiter

Legend:

1): If these two are set, you do not have to define Configuration and Parameters.

2): You either set these two or you define Config file and Parameter file instead.

Advanced Description

Address Doctor 5 operates by passing the input data and configuration to a third party Address Doctor library.
Afterwards, the component maps the outputs from the library back to CloverETL.

Consequently, if you ever get unsure about working with the component, a good place to look for help is the
official Address Doctor 5 documentation. It contains the necessary information for a detailed configuration of the
Address Doctor 5 component. CloverETL actually serves as a GUI for setting parameters.

Working with the component can be regarded as fulfilling these tasks:

• telling the graph where Address Doctor libraries (*.jar + native libraries) are - they can be passed as a
Java Argument or copied to Program Files; please note you have to obtain the libraries yourself - they are not
embedded in CloverETL

• obtaining the address database

• setting the component attributes - see Address Doctor 5 Configuration (p. 765)

Address Doctor 5 Configuration

The components is configured in four basic steps setting these attributes:

1. Configuration - specifies where the address database is located. Do not forget your database is supplied
in one of the modes (e.g. BATCH_INTERACTIVE) and thus you have to set a matching Type (applies to
Enrichment databases set in Parameters, too). In order to be able to work with the database, you have to
obtain an appropriate Unlock code (either universal or specific).

Chapter 60. Data Quality

766

Figure 60.1. DataBase Configuration

2. Parameters - controls what transformation will be performed. Particular settings are highly specific and should
be consulted with the official Address Doctor 5 documentation.

For instance in the Process tab of the dialogue, you can configure various Enrichments. These allow you to
add certificates of the address format. The certificates guarantee that a particular address format matches the
official format of a national post office. Note that adding Enrichments usually slows the data processing and
can optionally require an additional database.

3. Input mapping - determines what will be processed. You work with a wizard that lets you do the settings in
three basic steps:

• Select address properties form all Address Doctor internal fields ("metadata") that are permitted on the input.
Field names are accompanied by a number in parantheses informing you how many fields can form a property
("output metadata"). For instance "Street name (6)" tells you the street name can be written on up to 6 rows
of the input file.

• Specify the internal mapping of Address Doctor - drag input fields you have chosen in the previous step on
the available fields of the Input mapping.

Figure 60.2. Input mapping

Chapter 60. Data Quality

767

• Examine the summary of the input mapping.

4. Output mapping - here you decide what will be mapped to the output, i.e. the first output port. Optionally,
you can map data to the second "error" port (if no such mapping is done, error codes and error messages are
generated).

Similarly to Input mapping, you do the configuration by means of a clear wizard comprising these steps:

• Select address properties for mapping.

• Specify particular output mapping. That involves assigning the internal fields you have selected before to
output fields. In the Error port tab, design a structure of the error output (its fields) that is sent to the second
output port if the component cannot perform the address transformation.

Figure 60.3. Output mapping

• Examine the summary of the output mapping.

A spin-off of working with the component is the so-called transliteration. That means you can e.g. input an address
in the Cyrillic alphabet and have it converted to the Roman alphabet. No extra database is needed for this task.

Chapter 60. Data Quality

768

EmailFilter

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Data Quality component for your purposes, see Data Quality Comparison (p. 331).

Note

Despite being a Transformer, the component is located in Palette →Data Quality.

Short Summary

EmailFilter filters input records according to the specified condition.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

Ja
va

C
T

L

EmailFilter - no 1 0-2 - -

Abstract

EmailFilter receives incoming records through its input port and verifies specified fields for valid e-mail
addresses. Data records that are accepted as valid are sent out through the optional first output port if connected.
Specified fields from the rejected inputs can be sent out through the optional second output port if this is connected
to other component. Metadata on the optional second output port may also contain up to two additional fields with
information about error.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 no For valid data records Input 01)Output

1 no For rejected data records Any2)

Legend:

1): Metadata cannot be propagated through this component.

Chapter 60. Data Quality

769

2): Metadata on the output port 0 contain any of the input data fields plus up to two additional fields. Fields whose
names are the same as those in the input metadata are filled in with input values of these fields.

Table 60.1. Error Fields for EmailFilter

Field number Field name Data type Description

FieldA the Error field attribute value string Error field

FieldB the Status field attribute value integer1) Status field

Legend:

1): The following error codes are most common:

• 0 No error - e-mail address accepted.

• 1 Syntax error - any string that does not conform to e-mail address format specification is rejected with
this error code.

• 2 Domain error - verification of domain failed for the address. Either the domain does not exist or the DNS
system can not determine a mail exchange server.

• 3 SMTP handshake error - at SMTP level this error code indicates that a mail exchange server for specified
domain is either unreachable or the connection failed for other reason (e.g. server to busy, etc.).

• 4 SMTP verify error - at SMTP level this error code means that server rejected the address as being invalid
using the VRFY command. Address is officially invalid.

• 5 SMTP recipient error - at SMTP level this error code means the server rejected the address for delivery.

• 6 SMTP mail error - at MAIL level this error indicates that although the server accepted the test message
for delivery, an error occurred during send.

EmailFilter Attributes

Attribute Req Description Possible values

Basic

Field list yes List of selected input field names whose values
should be verified as valid or non-valid e-mail
addresses. Expressed as a sequence of field names
separated by colon, semicolon, or pipe.

Level of inspection Various methods used for the e-mail address
verification can be specified. Each level includes
and extends its predecessor(s) on the left. See Level
of Inspection (p. 771) for more information.

SYNTAX | DOMAIN
(default) | SMTP | MAIL

Accept empty By default, even empty field is accepted as a valid
address. This can be switched off, if it is set to
false. See Accept Conditions (p. 771) for
more information.

true (default) | false

Error field Name of the output field to which error message
can be written (for rejected records only).

Status field Name of the output field to which error code can be
written (for rejected records only).

Multi delimiter Regular expression that serves to split individual
field value to multiple e-mail addresses. If empty,
each field is treated as a single e-mail address.

[,;] (default) | other

Chapter 60. Data Quality

770

Attribute Req Description Possible values

Accept condition By default, record is accepted even if at least
one field value is verified as valid e-mail address.
If set to STRICT, record is accepted only if all
field values from all fields of the Field list are
valid. See Accept Conditions (p. 771) for more
information.

LENIENT (default) |
STRICT

Advanced

E-mail buffer size Maximum number of records that are read into
memory after which they are bulk processed.
See Buffer and Cache Size (p. 771) for more
information.

2000 (default) | 1-N

E-mail cache size Maximum number of cached e-mail address
verification results. See Buffer and Cache
Size (p. 771) for more information.

2000 (default) | 0 (caching is
turned off) | 1-N

Domain cache size Maximum number of cached DNS query results. Is
ignored at SYNTAX level.

3000 (default) | 0 (caching is
turned off) | 1-N

Domain retry timeout
(ms)

Timeout in millisecond for each DNS query
attempt. Thus, maximum time in milliseconds
spent to resolving equals to Domain retry timeout
multiplicated by Domain retry count.

800 (default) | 1-N

Domain retry count Number of retries for failed DNS queries. 2 (default) | 1-N

Domain query A
records

By default, according to the SMTP standard, if no
MX record could be found, A record should be
searched. If set to false, DNS query is two times
faster, however, this SMTP standard is broken..

true (default) | false

SMTP connect
attempts (ms,...)

Attempts for connection and HELO. Expressed as
a sequence of numbers separated by comma. The
numbers are delays between individual attempts to
connect.

1000,2000 (default)

SMTP anti-greylisting
attempts (s,...)

Anti-greylisting feature. Attempts and delays
between individual attempts expressed as a
sequence of number separated by comma. If empty,
anti-greylisting is turned off. See SMTP Grey-
Listing Attempts (p. 772) for more information.

30,120,240 (default)

SMTP retry timeout
(s)

TCP timeout in seconds after which a SMTP
request fails.

300 (default) | 1-N

SMTP concurrent
limit

Maximum number of parallel tasks when anti-
greylisting is on.

10 (default) | 1-N

Mail From The From field of a dummy message sent at MAIL
level.

CloverETL
<clover@cloveretl.org>
(default) | other

Mail Subject The Subject field of a dummy message sent at
MAIL level.

Hello, this is a test message
(default) | other

Mail Body The Body of a dummy message sent at MAIL level. Hello,\nThis is CloverETL
text message.\n\nPlease
ignore and don't respond.
Thank you, have a nice day!
(default) | other

Chapter 60. Data Quality

771

Advanced Description

Buffer and Cache Size

Increasing E-mail buffer size avoids unnecessary repeated queries to DNS system and SMTP servers by
processing more records in a single query. On the other hand, increasing E-mail cache size might produce even
better performance since addresses stored in cache can be verified in an instant. However, both parameters require
extra memory so set it to the largest values you can afford on your system.

Accept Conditions

By default, even an empty field from input data records specified in the List of fields is considered to be a valid e-
mail address. The Accept empty attribute is set to true by default. If you want to be more strict, you can switch
this attribute to false.

In other words, this means that at least one valid e-mail address is sufficient for considering the record accepted.

On the other hand, in case of Accept condition set to STRICT, all e-mail addresses in the List of fields must be
valid (either including or excluding empty values depending on the Accept empty attribute).

Thus, be careful when setting these two attributes: Accept empty and Accept condition. If there is an empty field
among fields specified in List of fields, and all other non-empty values are verified as invalid addresses, such
record gets accepted if both Accept condition is set to LENIENT and Accept empty is set to true. However, in
reality, such record does not contain any useful and valid e-mail address, it contains only an empty string which
assures that such record is accepted.

Level of Inspection

1. SYNTAX

At the first level of validation (SYNTAX), the syntax of e-mail expressions is checked and even both non-strict
conditions and international characters (except TLD) are allowed.

2. DOMAIN

At the second level of validation (DOMAIN) - which is the default one - DNS system is queried for domain
validity and mail exchange server information. The following four attributes can be set to optimize the ratio of
performance to false-negative responses: Domain cache size, Domain retry timeout, Domain retry count.
and Domain query A records. The number of queries sent to DNS server is specified by the Domain retry
count attribute. Its default value is 2. Time interval between individual queries that are sent is defined by
Domain retry timeout in milliseconds. By default it is 800 milliseconds. Thus, the whole time during which
the queries are being resolved is equal to Domain retry count x Domain retry timeout. The results of queries
can be cached. The number of cached results is defined by Domain cache size. By default, 3000 results are
cached. If you set this attribute to 0, you turn the caching off. You can also decide whether A records should be
searched if no MX record is found (Domain query A records). By default, it is set to true. Thus, A record is
searched if MX record is not found. However, you can switch this off by setting the attribute to false. This
way you can speed the searching two times, although that breaks the SMTP standard.

3. SMTP

At the third level of validation (SMTP), attempts are made to connect SMTP server. You need to specify the
number of attempts and time intervals between individual attempts. This is defined using the SMTP connect
attempts attribute. This attribute is a sequence of integer numbers separated by commas. Each number is the
time (in seconds) between two attempts to connect the server. Thus, the first number is the interval between
the first and the second attempts, the second number is the interval between the second and the third attempts,
etc. The default value is three attempts with time intervals between the first and the second attempts equal to
1000 and between the second and the third attempts equal to 2000 milliseconds.

Chapter 60. Data Quality

772

Additionally, the EmailFilter component at SMTP and MAIL levels is capable to increase accuracy and
eliminate false-negatives caused by servers incorporating greylisting. Greylisting is one of very common anti-
spam techniques based on denial of delivery for unknown hosts. A host becomes known and "greylisted" (i.e.
not allowed) when it retries its delivery after specified period of time, usually ranging from 1 to 5 minutes.
Most spammers do not retry the delivery after initial failure just for the sake of high performance. EmailFilter
has an anti-greylisting feature which retries each failed SMTP/MAIL test for specified number of times and
delays. Only after the last retry fails, the address is considered as invalid.

4. MAIL

At the fourth level (MAIL), if all has been successful, you can send a dummy message to the specified e-mail
address. The message has the following properties: Mail From, Mail Subject and Mail Body. By default, the
message is sent from CloverETL <clover@cloveretl.org>, its subject is Hello, this is a
test message. And its default body is as follows: Hello,\nThis is CloverETL test message.
\n\nPlease ignore and don't respond. Thank you and have a nice day!

SMTP Grey-Listing Attempts

To turn anti-greylisting feature, you can specify the SMTP grey-listing attempts attribute. Its default value is
30,120,240. These numbers means that four attempts can be made with time intervals between them that equal to
30 seconds (between the first and the second), 120 seconds (between the second and the third) and 240 seconds
(between the third and the fourth). You can change the default values by any other comma separated sequence of
integer numbers. The maximum number of parallel tasks that are performed when anti-greylisting is turned on is
specified by the SMTP concurrent limit attribute. Its default value is 10.

Chapter 60. Data Quality

773

ProfilerProbe

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Data Quality component for your purposes, see Data Quality Comparison (p. 331).

The component is located in Palette →Data Quality.

Short Summary

ProfilerProbe analyses (profiles) input data. The component is a light-weight version of the Data Profiler
application, fullly integrated within the CloverETL environment. The big advantage of the component is the
combined power of CloverETL solutions with data profiling features. Thus, it makes profiling accessible in very
complex workflows, such as data integration, data cleansing, and other ETL tasks.

ProfilerProbe is not limited to only profiling isolated data sources; instead, it can be used for profiling data from
various sources (including popular DBs, flat files, spreadsheets etc.). ProfilerProbe is capable of handling all data
sources supported by CloverETL's Readers (p. 338). As a result, this component is considered a major step forward
comparing to the stand-alone Clover Profiling Jobs (cpj) in Data Profiler.

Note

To be able to use this component, you need a separate data profiling license.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

al
l o

ut
pu

ts

Ja
va

C
T

L

ProfilerProbe - no 1 1-n yes no no

Abstract

ProfilerProbe calculates metrics of the data that is coming through its first input port. You can choose which
metrics you want to apply on each field of the input metadata. You can use this component as a 'probe on an edge'
to get a more detailed (statistical) view of data that is flowing in your graph.

The component sends an exact copy of the input data to output port 0 (behaves as SimpleCopy). That means
you can use ProfilerProbe in your graphs to examine data flowing in it - without affecting the graph's business
logic itself.

The remaining output ports contain results of profiling, i.e. metric values for individual fields.

Icon

http://profiler.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.profiler.doc/docs/dataprofiler-intro.html
http://profiler.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.profiler.doc/docs/dataprofiler-intro.html

Chapter 60. Data Quality

774

Ports

Port type Number Required Description Metadata

Input 0 yes Input data records to be analysed by metrics. Any

0 no A copy of input data records. Input port 0Output

1-n no Results of data profiling per individual field. Any

Chapter 60. Data Quality

775

ProfilerProbe Attributes

Attribute Req Description Possible
values

Basic

Metrics 1) Statistics you want to be calculated on metadata fields. You
can apply all metrics as in standalone Profiler jobs. Learn more
about metrics here.

List of all
metrics

Output mapping 2) Maps profiling results to output ports, starting from port number
1. See Advanced Description (p. 775).

Advanced

Metrics URL 1) Profiler job file containing the Metrics settings. *.cpj

Output mapping URL 2) External XML file containing the Output mapping definition.

Processing mode Always active (default) - default mode to execute
ProfilerProbe component locally and remotely (if executed on
the server).

Debug mode only - select this mode to capture
execution data for debugging purpose, similar to debug mode
on component edges - please note that when executing a graph
with this mode selected for ProfilerProbe:

• runs as expected when server debug_mode = true (a
server graph configuration property - see Clover Server docs).

• when server debug_mode = false, the input data would
continue through the 1st output port, but it does not send
profiling of data to subsequent output ports.

Always active
(default) |
Debug mode
only

Persist results In Server environment, the profiling results will also be stored
to the profiling results database. This can be switched off, by
setting this attribute to false.

true (default) |
false

Legend

1) Specify only one of these attributes. (If both are set, Metrics URL has a higher priority.)

2) Specify only one of these attributes. (If both are set, Output mapping URL has a higher priority.)

Advanced Description

• Output mapping - editing the attribute opens the Transform Editor (p. 285) where you can decide which metrics
to send to output ports.

http://profiler.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.profiler.doc/docs/dataprofiler-metrics.html?resultof=%22%6d%65%74%72%69%63%73%22%20
http://profiler.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.profiler.doc/docs/dataprofiler-appdx-a.html
http://profiler.cloveretl.com/documentation/UserGuide/topic/com.cloveretl.profiler.doc/docs/dataprofiler-appdx-a.html
http://server-demo-ec2.cloveretl.com/clover/docs/graph-config-properties.html

Chapter 60. Data Quality

776

Figure 60.4. Transform Editor in ProfilerProbe

The dialog provides you with all the power and features known from Transform Editor and CTL (p. 891).
In addition, notice metadata on the left hand side has a special format. It is a tree of input fields AND metrics
you assigned to them via the Metrics attribute. Fields and metrics are grouped under the RunResults record.
Each field in RunResults record has a special name: fieldName__metric_name (note the underscore is
doubled as a separator), e.g. firstName__avg_length. Additionally is another special record containing
one field - inputRecordCount. After you run your graph, the field will store the total number of records
which were profiled by the component. You can right-click a field/metric and Expand All, or Collapse All
metrics.

Note

The ProfilerComponent can report an error similar to:

CTL code compilation finished with 1 errors
Error: Line 5 column 23 - Line 5 column 39: Field 'field1__avg_length' does not exist in record 'RunResults'!

This means that you're accessing a disabled metric in output mapping - in this example the Average
length is not enabled on the field field1.

To do the mapping in a few basic steps:

1. Provided you already have some output metadata, just left-click a metric in the left-hand pane and drag it
onto an output field. This will send profiling results of that particular metric to the output.

2. If you do not have any output metadata:

a. Drag a Field from the left hand side pane and drop it into the right hand pane (an empty space).

b. This produces a new field in the output metadata. Its format is: fieldName__metric_name (note the
underscore is doubled as a separator), e.g. firstName__avg_length.

Chapter 60. Data Quality

777

c. You can map metrics to fields of any output port, except for port 0. That port is reserved for input data
(which just 'flows through' the component without being affected in a way).

Note

Output mapping uses CTL (you can switch to the Source tab). All kinds of functions are available
that help you learn even more about your data. Example:

double uniques = $out.0.firstName__uniques; // conversion from integer
double uniqInAll = (uniques / $in.0.recordCount) * 100;

calculates the per cent of unique frist names in all records.

• Importing and Externalizing metrics - in the Metrics dialog, you can have your settings of fields and their
metrics externalized to a Profiler job (*.cpj) file, or imported from a Profiler job (*.cpj) file into this attribute.
There are two buttons at the bottom of the dialog for this purpose: Import from .cpj and Externalize to .cpj.
The externalized .cpj file can be used in the Metrics URL attribute. The Externalize to .cpj action fills in this
attribute automatically

Figure 60.5. Import/Externalize metrics buttons

ProfilerProbe Notes & Limitations

This short section describes the main differences between using the ProfilerProbe component and profiling data
via *.cpj jobs.

• It performs analyses just on the data which comes through its input edge. Profiling results are sent to output
ports. Please note you do not need any results database. In server environment, the component will send the
results also to the profiling results database. Such results can further be viewed using the CloverETL Data
Profiler Reporting Console.

• It is able to use data profiling jobs (*.cpj) via the Metrics URL attribute.

• If you want to use sampling of the input data, connect the DataSampler (or other filter) component to your
graph. There is no built-in sampling in ProfilerProbe.

• In cluster environment, the component will profile data from each node where it is running. Therefore, the
results are only appliable to the portions of data processed on given node. If you need to compute metrics
for data from all nodes, first gather the data to single node where this component will run (e.g. by using
ClusterSimpleGather (p. 757)). Note: in case the component is running on multiple nodes, it will also produce
multiple run results in the profiling results database, each of them appliable only to the portion of data processed

Chapter 60. Data Quality

778

on each single node. Typically, for cluster environment, you may therefore wish to turn off the persist results
feature.

779

Chapter 61. Others
We assume that you already know what components are. See Chapter 19, Components (p. 97) for brief information.

Some of the components are slightly different from all those described above. We call this group of components:
Others.

Others serve to perform multiple and heterogeneous tasks.

Components can have different properties. But they also can have something in common. Some properties are
common for all of them, while others are common for most of the components. You should learn:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

As Others are heterogeneous group of components, they have no common properties.

We can distinguish each component of the Others group according to the task it performs.

• SystemExecute (p. 805) executes system commands.

• JavaExecute (p. 793) executes Java commands.

• DBExecute (p. 784) executes SQL/DML/DDL statements against database.

• RunGraph (p. 797) runs specified CloverETL graph(s).

• HTTPConnector (p. 788) sends HTTP requests and receives responses from web server.

• WebServiceClient (p. 808) calls a web-service and maps response to output ports.

• CheckForeignKey (p. 780) checks foreign key values and replaces those invalid by default values.

• SequenceChecker (p. 801) checks whether input data records are sorted.

• LookupTableReaderWriter (p. 795) reads data from a lookup table and/or write data to a lookup table.

• SpeedLimiter (p. 803) slows down data flowing throughout the component.

Chapter 61. Others

780

CheckForeignKey

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

CheckForeignKey checks the validity of foreign key values and replaces invalid values by valid ones.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

CheckForeignKey - no 2 1-2 - no no

1) Component sends each data record to all connected output ports.

Abstract

CheckForeignKey receives data records through two input ports. The data records on the first input port are
compared with those one the second input port. If some value of the specified foreign key (input port 0) is not
found within the values of the primary key (input port1), default value is given to the foreign key instead of its
invalid value. Then all of the foreign records are sent to the first output port with the new (corrected) foreign key
values and the original foreign records with invalid foreign key values can be sent to the optional second output
port if it is connected.

Icon

Ports

Port type Number Required Description Metadata

0 yes For data with foreign key Any1Input

1 yes For data with primary key Any2

0 yes For data with corrected key Input 01)Output

1 no For data with invalid key Input 01)

Chapter 61. Others

781

Legend:

1): Metadata cannot be propagated through this component.

CheckForeignKey Attributes

Attribute Req Description Possible
values

Basic

Foreign key yes Key that is compared according to which both incoming data
flows are compared and data records are distributed among
different output ports. See Foreign Key (p. 781) for more
information.

Default foreign key yes Sequence of values corresponding to the Foreign key data
types separated from each other by semicolon. Serves to replace
invalid foreign key values. See Foreign Key (p. 781) for more
information.

Equal NULL By default, records with null values of fields are considered to
be different. If set to true, nulls are considered to be equal.

false (default) |
true

Advanced

Hash table size Table for storing key values. Should be higher than the number
of records with unique key values.

512 (default) |
properties

Deprecated

Primary key Sequence of field names from the second input port separated
from each other by semicolon. See Deprecated: Primary
Key (p. 783) for more information.

Advanced Description

• Foreign Key

The Foreign key is a sequence of individual assignments separated from each other by semicolon. Each of these
individual assignments looks like this: $foreignField=$primaryKey.

To define Foreign key, you must select the desired fields in the Foreign key tab of the Foreign key definition
wizard. Select the fields from the Fields pane on the left and move them to the Foreign key pane on the right.

Chapter 61. Others

782

Figure 61.1. Foreign Key Definition Wizard (Foreign Key Tab)

When you switch to the Primary key tab, you will see that the selected foreign fields appeared in the Foreign
key column of the Foreign key definition pane.

Figure 61.2. Foreign Key Definition Wizard (Primary Key Tab)

You only need to select some primary fields from the left pane and move them to the Primary key column of
the Foreign key definition pane on the right.

Chapter 61. Others

783

Figure 61.3. Foreign Key Definition Wizard (Foreign and Primary Keys Assigned)

You must also define the default foreign key values (Default foreign key). This key is also a sequence of
values of corresponding data types separated from each other by semicolon. The number and data types must
correspond to metadata of the foreign key.

If you want to define the default foreign key values, you need to click the Default foreign key attribute row
and type the default values for all fields.

• Deprecated: Primary Key

In older versions of Clover you had to specify both the primary and the foreign keys using the Primary key
and the Foreign key attributes, respectively. They had the form of a sequence of field names separated from
each other by semicolon. However, the use of Primary key is deprecated now.

Chapter 61. Others

784

DBExecute

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

DBExecute executes SQL/DML/DDL statements against a database.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s 1

)

Ja
va

C
T

L

DBExecute - 0-1 0-2 -
1) Component sends each data record to all connected output ports.

Abstract

DBExecute executes specified SQL/DML/DDL statements against a database connected using the JDBC driver.
It can execute queries, transactions, call stored procedures, or functions. Input parameters can be received through
the single input port and output parameters or result set are sent to the first output port. Error information can be
sent to the second output port.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) Input records for stored procedure
or the whole SQL commands

any

0 2) Output parameters of stored
procedure or result set of the query

anyOutput

1 for error information based on input metadata 3)

1) Input port must be connected if Query input parameters attribute is specified or if the whole SQL query is received through input port.
2) Output port must be connected if the Query output parameters or Return set output fields attribute is required.
3) Metadata on output port 1 may contain any number of fields from input (same names and types) along with up to two additional fields for
error information. Input metadata are mapped automatically according to their name(s) and type(s). The two error fields may have any names
and must be set to the following Autofilling Functions (p. 131): ErrCode and ErrText

Chapter 61. Others

785

DBExecute Attributes

Attribute Req Description Possible values

Basic

DB connection yes ID of the DB connection to be used.

Query URL 1) One of these two options: Either the name of external
file, including path, defining SQL query with the same
characteristics as described in the SQL query attribute, or
the File URL attribute string that is used for port reading.
See SQL Query Received from Input Port (p. 786) for
details.

SQL query 1) SQL query defined in the graph. Contains SQL/DML/
DDL statement(s) that should be executed against database.
If stored procedure or function with parameters should
be called or if output data set should be produced, the
form of the statement must be the folowing: {[? =]call
procedureName([?[,?,[...]])}. (Do not forget enclose the
statement in curly brackets!) At the same time, if the input
and/or the output parameters are required, corresponding
attributes are to be defined for them (Query input
parameters, Query output parameters and/or Result
set output fields, respectively). In addition, if the query
consists of multiple statements, they must be separated
from each other by specified SQL statement delimiter.
Statements will be executed one by one.

SQL statement
delimiter

Delimiter between individual SQL statements in the SQL
query or Query URL attribute. Default delimiter is
semicolon.

";" (default) | other
character

Print statements By default, SQL commands are not printed. If set to true,
they are sent to stdout.

false (default) | true

Transaction set Specifies whether the statements should be executed
in transaction. See Transaction Set (p. 786) for
more information. Is applied only if database supports
transactions.

SET (default) |
ONE | ALL |
NEVER_COMMIT

Advanced

Query source charset Encoding of external file specified in the Query URL
attribute.

ISO-8859-1
(default) | <other
encodings>

Call as stored
procedure

By default, SQL commands are not executed as stored
procedure calls unless this attribute is switched to
true. If they are called as stored procedures, JDBC
CallableStatement is used.

false (default) | true

Query input
parameters

Used when stored procedure/function with input
parameters is called. It is a sequence of the following
type: 1:=$inputField1;...;n:=$inputFieldN.
Value of each specified input field is mapped to
corresponding parameter (whose position in SQL query
equals to the specified number). This attribute cannot be
specified if SQL commands should be received through
input port.

Chapter 61. Others

786

Attribute Req Description Possible values

Query output
parameters

Used when stored procedure/function with output
parameters or return value is called. It is a equence
of the following type: 1:=$outputField1;...;n:=
$outputFieldN. Value of each output parameter
(whose position in SQL query equals to the specified
number) is mapped to the specified field. If the function
returns a value, this value is represented by the first
parameter.

Result set output fields If stored procedure or function returns a set of data, its
output will be mapped to given output fields. Attribute is
expressed as a sequence of output field names separated
from each other by semicolon.

Error actions Definition of the action that should be performed when
the specified query throws an SQL Exception. See Return
Values of Transformations (p. 282).

Error log URL of the file to which error messages for specified Error
actions should be written. If not set, they are written to
Console.

Legend:

1): One of these must be set. If both are specified, Query URL has higher priority.

Advanced Description

SQL Query Received from Input Port

SQL query can also be received from input port.

In this case, two values of the Query URL attribute are allowed:

• SQL command is sent through the input edge.

The attribute value is: port:$0.fieldName:discrete.

Metadata of this edge has neither default delimiter, nor record delimiter, but EOF as delimiter must be set
to true.

• Name of the file containing the SQL command, including path, is sent through the input edge.

The attribute value is: port:$0.fieldName:source.

For more details about reading data from input port see Input Port Reading (p. 302).

Transaction Set

Options are the following:

• One statement

Commit is performed after each query execution.

• One set of statements

All statements are executed for each input record. Commit is performed after a set of statements.

For this reason, if an error occurs during the execution of any statement for any of the records, all statements
are rolled back for such a record.

Chapter 61. Others

787

• All statements

Commit is performed after all statements only.

For this reason, if an error occurs, all operations are rolled back.

• Never commit

Commit is not called at all.

May be called from other component in different phase.

Tips & Tricks

• In general, you shouldn't use the DBExecute component for INSERT and SELECT statements. For uploading
data to a database, please use the DBOutputTable component. And similarly for downloading use the
DBInputTable component.

Specific Cases

• Transfering data within a database: The best practice to load data from one table to another in the same database
is to do it inside the database. You can use the DBExecute component with a query like this

insert into my_table select * from another_table

because pulling data out from the database and putting them in is slower as the data has to be parsed during
the reading and formatted when writing.

Chapter 61. Others

788

HTTPConnector

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

HTTPConnector sends HTTP requests to a web server and receives responses

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

HTTPConnector - no 0-1 0-2 - no no

1) Component sends each data record to all connected output ports.

Abstract

HTTPConnector sends HTTP requests to a web server and receives responses. Request is written in a file or in
the graph itself or it is received through a single input port. The response can be sent to an output port, stored to a
specified file or stored to a temporary file. Path to the file can then be sent to a specified output port.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For setting various attributes of the component Any

0 no For response content, response file path, status code,
component attributes...

AnyOutput

1 no For error details Any

This component has Metadata Templates (p. 274) available.

HTTPConnector Attributes

Attribute Req Description Possible
values

Basic

Chapter 61. Others

789

Attribute Req Description Possible
values

URL 1) URL of the HTTP server the component connects to.
May contain one or more placeholders in the following
form: *{<field name>}. See the section called
“Reading of Remote Files” (p. 298) for the URL
format. The HTTP, HTTPS, FTP and SFTP
protocols are supported. Connecting via a proxy server
is available, too, in a way like: http:(proxy://
proxyHost:proxyPort)//www.domain.com.

Request method Method of request. GET (default) |
POST

Add input fields as
parameters

Specifies whether aditional parameters from the input edge
should be added to the URL. Note: When parameters are read
from the input edge and put to the query string, they can even
contain special characters (?, @, :, etc.). Do not replace such
characters with %-notation, HTTPConnector automatically
makes them URL-encoded This feature was introduced in
Clover 3.3-M3 and causes backwards incompatibility.

false (default) |
true

Add input fields as
parameters to

Specifies whether input fields should be added to the query
string or method body. Parameters can only be added to the
method body in case that Request method is set to POST.

QUERY
(default) |
BODY

Ignored fields Specifies which input fields are not added as parameters. List of
input fields separated by semicolon is expected.

Additional HTTP
header properties

Additional properties of the request that will be sent to the
server. A dialog is used to create it, the final form is a sequence
of key=value pairs separated by comma and the whole
sequence is surrounded by curly braces. The value may refer to
a field using ${fieldName} notation.

Multipart entities Specifies fields, that should be added as multipart entities to a
POST request. Field name is used as an entity name. List of input
fields separated by semicolon is expected.

Request/response
charset

Character encoding of the input/output files ISO-8859-1
(default) | other
encoding

Request content Request content defined directly in the graph.

Input file URL URL of the file from which single HTTP request is read. See
URL File Dialog (p. 69).

Output file URL URL of the file to which HTTP response is written. See
URL File Dialog (p. 69). The output files are not deleted
automatically and must be removed by hand or as a part of
transformation.

Append output By default, any new response overwrites the older one. If you
switch this attribute to true, new response is appended to the
olders. Is applied to output files only.

false (default) |
true

Input Mapping Allows to set various properties of the component by mapping
their values from input record.

Output Mapping Allows to map response data (like content, status code, ...) to the
output record. It is also possible to map values from input fields
and error details (if Redirect error output is set to true).

Chapter 61. Others

790

Attribute Req Description Possible
values

Error Mapping Allows to map error message to the output record. It is also
possible to map values from input fields and attributes.

Redirect error output Allows to redirect error details to standard output port. false (default) |
true

Advanced

Authentication
method

Specifies which authentication method should be used. HTTP BASIC
(default) |
HTTP DIGEST
| ANY

Username Username required to connect to the server

Password Password required to connect to the server

OAuth Consumer key Consumer key associated with a service. Defines the access
token (2-legged OAuth) for signing requests - together with
OAuth Consumer secret.

OAuth Consumer
secret

Consumer secret associated with a service. Defines the access
token (2-legged OAuth) for signing requests - together with
OAuth Consumer key.

Store HTTP response
to file

2) If this attribute is switched to true, response is written to
temporary files with the prefix specified in the Prefix for
response names attribute. The path to these temporary files is
can be retrieved using Output Mapping. Storing response to
temporary files is necessary in case the response body is too
large to be stored in a single string data field. The temporary
files are deleted automatically after graph finishes (if not run in
Debug mode).

false (default) |
true

Prefix for response
files

Prefix that will be used in the name of each output file with
HTTP response. To this prefix, distinguishing numbers are
appended.

"http-
response-"

(default)
| other prefix

Redirect error output If true the error details will be sent to a Ouput port 0 instead
of Ouput port 1

false (default) |
true

Deprecated

URL from input field 1) Name of a string field specifying the target URL you
wish to retrieve. Field value may contain placeholders in the
form *{<field name>}. See the section called “Reading
of Remote Files” (p. 298) for the URL format. The HTTP,
HTTPS, FTP and SFTP protocols are supported.

Input field 2) Name of the field of the input metadata from which the request
content is received. Must be of string data type. May be used
for multi HTTP requests.

Output field Name of the field of the output metadata to which the response
response is sent. Must be of string data type. May be used for
multi HTTP responses.

1)URL must be specified by setting one of URL or URL from field attributes or mapping it in the Input mapping.
2)The response can be stored either to a file specified in Output file URL or to a temporary file (when Store reponse file URL to output
field is set to true) - it is not possible to use both the options.

Advanced Description

Chapter 61. Others

791

• Input mapping - editing the attribute opens the Transform Editor (p. 285) where you can decide which
component attributes should be set using input record.

Figure 61.4. Transform Editor in HTTPConnector

The dialog provides you with all the power and features known from Transform Editor and CTL (p. 891).

Note

All kinds of CTL functions are available to modify the input field value to be used.

• Output mapping - editing the attribute opens the Transform Editor (p. 285) where you can decide what should
be sent to an output port.

Figure 61.5. Transform Editor in HTTPConnector

The dialog provides you with all the power and features known from Transform Editor and CTL (p. 891).

To do the mapping in a few basic steps:

1. Provided you already have some output metadata, just left-click an item in the left-hand pane and drag it
onto an output field. This will send the result data to the output.

2. If you do not have any output metadata:

a. Drag a Field from the left hand side pane and drop it into the right hand pane (an empty space).

b. This produces a new field in the output metadata.

You can map various data to output port:

Chapter 61. Others

792

• Values of fields from input metadata - you can send values from input fields to the output port. This is mainly
useful, when you are using some kind of session identifier for HTTP requests.

• Result - provides result data. These includes:

• content - the content of the HTTP response. This field will be null, if the reponse is written to a file.

• outputFilePath - the path to a file, where the response has been written. Will be null, if the response
is not written to a file.

• statusCode - HTTP status code of the response.

• header - map representing HTTP header properties from response.

• errorMessage - error message in case, that the error output is redirected to a standart output port.

• Attributes - provides values of the component attributes:

• URL - the URL where the request has been sent.

• requestMethod - method that was used for the request.

• requestContent - content of the request, that has been sent.

• inputFileUrl - URL of the file containing request content.

Note

Output mapping uses CTL (you can switch to the Source tab). All kinds of functions are available
to modify the value to be stored in the output field.

$out.0.prices = find($in.1.content, "price: .*? USD")

finds all occurrences of the form price: [some text] USD in the response content.

• Error mapping - editing the attribute opens the Transform Editor (p. 285) where you can map error details to
an output port. The behavior is very similar to the Output mapping (p.)

Notes

• Since v3.3.0-M3 it is no longer neccessary to encode field values used as Query parameters before passing them
to HTTPConnector - they are encoded automatically. This, however, breaks backward compatibility, so be
aware of this fact.

• Since v3.3.0-M3 it is possible to use Output mapping to retrieve path to an output file, when the response is
stored to a file (whether it is stored to temporary file or user-specified file). The file path is no longer sent to
an output port automatically (as was the case for temporary files).

Chapter 61. Others

793

JavaExecute

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

JavaExecute executes Java commands.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

JavaExecute - - 0 0 - yes no

1) Component sends each data record to all connected output ports.

Abstract

JavaExecute executes Java commands. Runnable transformation, which is required in the component, implements
a JavaRunnable interface and inherits other common methods from the Transform interface. See Common
Java Interfaces (p. 294).

Below is the list of JavaRunnable interface methods. See Java Interfaces for JavaExecute (p. 794) for more
information.

Icon

Ports

JavaExecute has neither input nor output port.

JavaExecute Attributes

Attribute Req Description Possible
values

Basic

Runnable 1) Runnable transformation in Java defined in the graph.

Runnable URL 1) External file defining the runnable transformation in Java.

Runnable class 1) External runnable transformation class.

Chapter 61. Others

794

Attribute Req Description Possible
values

Runnable source
charset

Encoding of external file defining the transformation. ISO-8859-1
(default)

Advanced

Properties Properties to be used when executing Java command.

Legend:

1) One of these must be set. These transformation attributes must be specified. Any of these transformation
attributes implements a JavaRunnable interface.

See Java Interfaces for JavaExecute (p. 794) for more information.

See also Defining Transformations (p. 278) for detailed information about transformations.

Java Interfaces for JavaExecute

Runnable transformation, which is required in the component, implements a JavaRunnable interface and
inherits other common methods from the Transform interface. See Common Java Interfaces (p. 294).

Following are the methods of the JavaRunnable interface:

• boolean init(Properties parameters)

Initializes java class/function. This method is called only once at the beginning of transformation process. Any
object allocation/initialization should happen here.

• void free()

This is de-initialization method for this graph element. All resources allocated in the init() method should
be released here. This method is invoked only once at the end of element existence.

• void run()

The core method, which holds implementation of the Java code to be run by the JavaExecute component.

• void setGraph(TransformationGraph graph)

Method which passes into transformation graph instance within which the transformation will
be executed. Since TransformationGraph singleton pattern was removed, it is NO longer
POSSIBLE to access graph's parameters and other elements (e.g. metadata definitions) through
TransformationGraph.getInstance().

Chapter 61. Others

795

LookupTableReaderWriter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

LookupTableReaderWriter reads data from lookup table and/or writes it to lookup table.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

LookupTableReaderWriter - no 0-1 0-n yes no no

1) Component sends each data record to all connected output ports.

Abstract

LookupTableReaderWriter works in one of the three following ways:

• Receives data through connected single input port and writes it to the specified lookup table.

• Reads data from the specified lookup table and sends it out through all connected output ports.

• Receives data through connected single input port, updates the specified lookup table, reads updated lookup
table and sends data out through all connected output ports.

Icon

Ports

Port type Number Required Description Metadata

Input 0 1) For data records to be written to lookup table Any

Output 0-n 1) For data records to be read from lookup table Input 01)

Legend:

1): At least one of them has to be connected. If the input port is connected, the component receives data through
it and writes it to the lookup table. If an output port is connected, the component reads data from the lookup table
and sends it out through this port.

Chapter 61. Others

796

If the input port is connected and the component cannot write into the Lookup table (see
LookupTableReaderWriter Attributes (p. 796)) you have specified, an error will be shown.

Important

Please note writing into Database lookup table is not supported. You should use
DBOutputTable (p. 465) instead.

LookupTableReaderWriter Attributes

Attribute Req Description Possible
values

Basic

Lookup table yes ID of the lookup table to be used as

• a source of records when the component is used as a reader, or

• a deposit when the component is used as a writer, or

• both when it is used both for reading and writing.

Advanced

Free lookup table after
finishing

By default, contents of the lookup table are not deleted after the
graph finishes. If set to true, the lookup table is emptied after
the processing ends.

false (default) |
true

Chapter 61. Others

797

RunGraph

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

RunGraph runs CloverETL graphs.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

RunGraph - no 0-1 1-2 - no no

1) Component sends each data record to all connected output ports.

Abstract

RunGraph executes CloverETL graphs whose names can be specified in the component attribute or received
through the input port.

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For graph names and Clover
command line arguments

Input Metadata for RunGraph (In-
Out Mode) (p. 798)

0 yes For information about graph
execution1)

Output Metadata for
RunGraph (p. 798)

Output

1 2) For information about unsuccessful
graph execution

Output Metadata for
RunGraph (p. 798)

Legend:

Chapter 61. Others

798

1): Information about successful execution of the specified graph is sent to the first output port if graph is specified
in the component itself, or information about both success and fail is sent to it if the graph(s) is(are) specified
on the input port.

2): If the name of a single graph that should be executed is specified in the component itself, the second output
port must be connected. Data record is sent to it only if the specified graph fails. If the name(s) of one or more
graphs that should be executed are received through input port, second output port does not need to be connected.
Information about both success or fail is sent to the first output port only.

Table 61.1. Input Metadata for RunGraph (In-Out Mode)

Field
number

Field name Data type Description

0 <anyname1> string Name of the graph to be executed, including path

1 <anyname2> string Clover command line argument. Warning: Arguments sent in
this field are ignored when the Same JVM attribute is true (see
RunGraph Attributes (p. 798)).

Table 61.2. Output Metadata for RunGraph

Field
number

Field name Data type Description

0 graph string Name of the graph to be executed, including path

1 result string Result of graph execution (Finished OK, Aborted, or Error)

2 description string Detailed description of graph fail

3 message string Value of org.jetel.graph.Result

4 duration integer,
long, or
decimal

Duration of graph execution in milliseconds

5 runID decimal Identification of the execution of the graph which runs on
CloverETL Server.

RunGraph Attributes

Attribute Req Description Possible values

Basic

Graph URL 1) Name of one graph, including path, that should be
executed by the component. In this case, both output
ports must be connected and information about success
or fail is sent to the first or the second output port,
respectively. (Pipeline mode)

The same JVM By default, the same JVM instance is used to run
the specified graphs. If switched to false, graph(s)
run as external processes. When working in the server
environment, this attribute always has to be true (thus,
you cannot pass graph arguments through field 1 of port
0, see Ports (p. 797)).

true (default) | false

Graph parameters to
pass

Parameters that are used by executed graphs. List
a sequence separated by semicolon. If The same
JVM attribute is switched to false, this attribute is
ignored. See Advanced Description (p. 799) for more
information.

Chapter 61. Others

799

Attribute Req Description Possible values

Alternative JVM
command

2) Command line to execute external process. If you want
to give more memory to individual graphs that should
be run by this RunGraph component, type here java
-Xmx1g -cp or equivalent according to the maximum
memory needed by any of the specified graphs.

java -cp (default) | other
java command

Advanced

Log file URL Name of the file, including path, containing the log of
external processes. The logging will be performed to
the specified file independently on the value of The
same JVM attribute. If The same JVM is set true
(the default setting), logging will also be performed
to console. If it is switched to false, logging to
console will not be performed and logging information
will be written to the specified file. See URL File
Dialog (p. 69).

Append to log file 2) By default, data in the specified log file is overwritten
on each graph run.

false (default) | true

Graph execution class 2) Full class name to execute graph(s). org.jetel.main.runGraph
(default) | other
execution class

Command line
arguments

2) Arguments of Java command to be executed when
running graph(s).

Ignore graph fail By default, if the execution of any of the specified
graphs fails (their names are received by RunGraph
through the input port), the graph with RunGraph (that
executes them) fails too. If this attribute is set to true,
fail of each executed graph is ignored. It is also ignored
if the graph with RunGraph (that executes one other
graph) is specified in the component itself as the success
information is sent to the first output port and the fail
information is sent to the second output port.

false (default) | true

Legend:

1): Must be specified if input port is not connected.

2): These attributes are applied only if The same JVM attribute is set to false.

Advanced Description

• Pipeline mode

If the component works in pipeline mode (without input edge, with the Graph URL attribute specified),
the Command line arguments attribute must at least specify CloverETL plugins in the following way: -
plugins <plugins of CloverETL>

• In-out mode

If the component works in in-out mode (with input port connected, with empty Graph URL attribute) plugins
do not need to be specified in the Command line arguments attribute.

• Processing of command line arguments

All command line arguments passed to the RunGraph component (either as the second field of an input record
or as the cloverCmdLineArgs component property) are regarded as a space delimited list of arguments
which can be quoted. Moreover, the quote character itself can be escaped by backslash.

Chapter 61. Others

800

Example 61.1. Working with Quoted Command Line Arguments

Let us have the the following list of arguments:

firstArgument "second argument with spaces" "third argument with spaces
and \" a quote"

The resulting command line arguments which will be passed to the child JVM are:

1) firstArgument

2) second argument with spaces

3) third argument with spaces and " a quote

Notice in 2) the argument is actually unquoted. That grants an OS-independent approach and smooth run on
all platforms.

Chapter 61. Others

801

SequenceChecker

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

SequenceChecker checks the sort order of input data records.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

SequenceChecker - no 1 1-n yes no no

1) Component sends each data record to all connected output ports.

Abstract

SequenceChecker receives data records through single input port, checks their sort order. If this does not
correspond to the specified Sort key, graph fails. If the sort order corresponds to the specified, data records can
optionally be sent to all connected output port(s).

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

Output 0-n no For checked and copied data records Input 01)

Legend:

1): If data records are sorted properly, they can be sent to the connected output port(s). All metadata must be the
same. Metadata can be propagated through this component.

Chapter 61. Others

802

SequenceChecker Attributes

Attribute Req Description Possible
values

Basic

Sort key yes Key according to which the records should be sorted. If they are
sorted in any other way, graph fails. See Sort Key (p. 276) for
more information.

Unique keys By default, values of Sort key should be unique. If set to
false, values of Sort key can be duplicated.

true (default) |
false

Equal NULL By default, records with null values of fields are considered to
be equal. If set to false, nulls are considered to be different.

true (default) |
false

Deprecated

Sort order Order of sorting (Ascending or Descending). Can be
denoted by the first letter (A or D) only. The same for all key
fields. Default sort order is ascending. If records are not sorted
this way, graph fails.

Ascending
(default) |
Descending

Locale Locale to be used when internationalization is set to true. By
default, system value is used unless value of Locale specified in
the defaultProperties file is uncommented and set to the
desired Locale. For more information on how Locale may be
changed in the defaultProperties see Changing Default
CloverETL Settings (p. 88).

system value
or specified
default value
(default) | other
locale

Use
internationalization

By default, no internationalization is used. If set to true,
sorting according national properties is performed.

false (default) |
true

Chapter 61. Others

803

SpeedLimiter

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

SpeedLimiter slows down data records going through it.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

SpeedLimiter - no 1 1-n yes no no

1) Component sends each data record to all connected output ports.

Abstract

SpeedLimiter receives data records through its single input port, delays each input record by a specified number
of milliseconds and copies each input record to all connected output ports. Total delay does not depend on the
number of output ports. It only depends on the number of input records.

Icon

Ports

Port type Number Required Description Metadata

Input 0 yes For input data records Any

0 yes For copied data records Input 01)Output

1-n no For copied data records Input 01)

Legend:

1): Unlike in SimpleCopy (p. 637), metadata on the output must be the same as those on the input. All metadata
must be the same. Metadata can be propagated through this component.

Chapter 61. Others

804

SpeedLimiter Attributes

Attribute Req Description Possible
values

Basic

Delay yes Delay of processing each input record; by default in
milliseconds, but other time units (p. 274) may be used. Total
delay of parsing is equal to the this value multiplicated by the
number of input records.

0-N

Tips & Tricks

When using Speedlimiter, do not forget records are sent out from the component only after its buffer gets full
(by default). Sometimes you might need to:

1. send a record to Speedlimiter

2. have it delayed by a specified amount of seconds

3. send this very record to output ports immediately

In such case, you have to change settings of the edge outgoing from Speedlimiter to Direct fast propagate. See
Types of Edges (p. 100) for more details.

Chapter 61. Others

805

SystemExecute

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

SystemExecute executes system commands.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

SystemExecute - no 0-1 0-1 - no no

1) Component sends each data record to all connected output ports.

Abstract

SystemExecute executes commands and arguments specified in the component itself as a separate process. The
commands receive standard input through the input port and send standard output to the output port (if the
command creates any output).

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For standard input of the specified system command (input
of the process)

Any1

Output 0 1) For standard output of the specified system command
(output of the process)

Any2

Legend:

1): Standard output must be written to output port or output file. If both output port is connected and output file
is specified, output is sent to output port only.

Chapter 61. Others

806

SystemExecute Attributes

Attribute Req Description Possible
values

Basic

System command yes Command to be executed by the system. The command is
always saved to a tmp file as a script. In case an interpreter is
specified, it executes that script. If the command requires an
input, it has to be sent to the command through the optional input
port. See How it works (p. 807) for details.

Process input/output
charset

Encoding used for formating/parsing data for input/from output
of system process.

ISO-8859-1 |
<any other>

Output file URL 1) Name of the file, including path, to which output of the process
(together with errors) should be written if the output edge is not
connected and if System command creates the standard output.
See URL File Dialog (p. 69) for more information.

Append By default, the contents of output file is always deleted and
overwritten by new data. If set to true, new output data is
appended to the output file without deleting the file contents.

false (default) |
true

Command interpreter Interpreter that should execute the command. If specified,
System command is saved as a script to a temporary
file and executed by this interpreter. Its form must be the
following: <interpreter name> [parameters]
${} [parameters]. If an interpreter is defined, System
command is saved to a temporary file and executed as a script.
In such a case, the component replaces this ${} expression by
the name of this temporary script file.

Working directory Working directory of the component. current
directory
(default) | other
directory

Advanced

Number of error lines Number of lines that are printed if a command finishes with
errors.

2 (default) | 1-N

Delete tmp batch file IMPORTANT: This attribute has been removed from Clover
v. 3.3.0.M3 because of a clash with temp space management.

By default, the created temporary batch file is deleted after
command execution. If set to false, it will not be deleted.

true (default) |
false

Environment System-dependent mapping from variables to values. Mappings
are separated by a colon, semicolon, or pipe. By default,
the new value is appended to the environment of the current
process. Both PATH=/home/user/mydir and PATH=/
home/user/mydir!true means that /home/user/
mydir will be appended to the existing PATH. Whereas,
PATH=/home/user/mydir!false replaces the old PATH
value by the new one (/home/user/mydir).

For example:
PATH=/home/
user/mydir[!
true] (default)
| PATH=/
home/user/
mydir!false

Timeout for producer/
consumer workers
(ms)

Timeout; by default in milliseconds, but other time units (p. 274)
may be used. See Timeout (p. 807) for details.

0 (without
limitation) | 1-n

Chapter 61. Others

807

Attribute Req Description Possible
values

Ignore exit value In case the executed system command returns non-zero value
component fails. This option can change this behavior, the exit
value can be ignored.

true | false
(default)

Legend:

1): If the output port is not connected, standard output can only be written to the specified output file. If the output
port is connected, output file will not be created and standard output will be sent to the output port.

Advanced Description

How it works

SystemExecute runs the command specified in the System command and creates two threads.

• The first thread (producer) reads records from the input edge, serializes them and sends them to stdin of the
command.

• The second thread (consumer) reads stdout of the command, parses it and sends it to the output edge.

Timeout

• When the command ends, component still waits until both the producer and the consumer also finish their work.
The time is defined in the Timeout attribute.

• By default, timeout is unlimited now. In case of an unexpected deadlock, you can set the timeout to any number
of milliseconds.

Chapter 61. Others

808

WebServiceClient

Commercial Component

We assume that you have already learned what is described in:

• Chapter 41, Common Properties of All Components (p. 265)

• Chapter 42, Common Properties of Most Components (p. 274)

If you want to find the right Other component for your purposes, see Others Comparison (p. 330).

Short Summary

WebServiceClient calls a web-service.

Component

Sa
m

e
in

pu
t

m
et

ad
at

a

So
rt

ed
 in

pu
ts

In
pu

ts

O
ut

pu
ts

E
ac

h
to

 a
ll

ou
tp

ut
s1)

Ja
va

C
T

L

WebServiceClient - no 0-1 0-n no no no

1) Component sends processed data records to the connected output ports as defined by mapping.

Abstract

WebServiceClient sends incoming data record to a web-service and passes the response to the output ports if they
are connected. WebServiceClient supports document/literal styles only.

WebServiceClient supports only SOAP (version 1.1 and 1.2) messaging protocol with document style binding
and literal use (document/literal binding).

Icon

Ports

Port type Number Required Description Metadata

Input 0 no For request Any1(In0)

Output 0-N no1) For response mapped to these ports Any2(Out#)

Legend:

1): Response does not need to be sent to output if output ports are not connected.

Chapter 61. Others

809

WebServiceClient Attributes

Attribute Req Description Possible
values

Basic

WSDL URL yes URL of the WSD server to which component
will connect. Connecting via a proxy server is
available, too, in a way like: http:(proxy://
proxyHost:proxyPort)//www.domain.com.

Operation name yes Name of the operation to be performed. See Advanced
Description (p. 810).

Request Body
structure

yes Structure of the request that is received from input
port or written directly to the graph. See Advanced
Description (p. 810) for more information about request
generation.

Request Header
structure

Optional attribute to Request Body structure. If not
specified, automatic generation is disabled. See Advanced
Description (p. 810) for more information about request
generation.

Response mapping Mapping of successful response to output ports. The same
mapping as in XMLExtract. See XMLExtract Mapping
Definition (p. 422) for more information.

Fault mapping Mapping of fault response to output ports. The same mapping as
in XMLExtract. See XMLExtract Mapping Definition (p. 422)
for more information.

Namespace bindings A set of name-value assignments defining custom namespaces. e.g. weather
= http://
ws.cdyne.com/
WeatherWS/

Use nested nodes When true, all elements with the same name are mapped,
no matter their depth in the tree. See example in Advanced
Description (p. 810).

true (default) |
false

Advanced

Username 1) Username to be used when connecting to the server.

Password 1) Password to be used when connecting to the server.

Auth Domain 1) Authentication domain. If not set, the NTLM authentication
scheme will be disabled. Does not affect Digest and Basic
authentication methods.

Auth Realm 1) Authentication realm to which specified credentials apply. If left
empty, the credentials will be used for any realm. Does not affect
NTLM authentication scheme.

Timeout (ms) Timeout for the request; by default in milliseconds, but other
time units (p. 274) may be used

Override Server URL Specifies a URL that should be used for the requests instead of
the one specified in WSDL definition.

Override Server URL
from field

Specifies a field containing a URL that should be used for the
requests instead of the one specified in WSDL definition.

Chapter 61. Others

810

Attribute Req Description Possible
values

Disable SSL
Certificate Validation

If true, component ignores certificate validatation problems for
SSL connection.

true | false
(default)

1)See Authentication (p. 811) section for more details.

Advanced Description

• After sending your request to the server, WebServiceClient waits up to 10 mins for a response. If there is none,
the component fails on error.

• If you switch log level (p. 85) to DEBUG, you can examine the full SOAP request and response in log. This is
useful for development and issue investigation purposes.

• Operation name opens a dialog, depicted in the figure below, in which you can select a WS operation - just
double click on one of them. Operations not supporting the document style of the input message are displayed
with a red error icon.

Figure 61.6. Choosing WS operation name in WebServiceClient.

• Request Body structure and Request Header structure - open a dialog showing the request structure. The
Generate button generates the request sample based on a schema defined for the chosen operation. The
Customized generation... option in the button's drop-down menu opens a dialog which helps to customize the
generated request sample by allowing to select only suitable elements or to choose a subtype for an element.

Chapter 61. Others

811

• Example 61.2. Use nested nodes example

Mapping

<?xml version="1.0" encoding="UTF-8"?>
<Mappings>
 <Mapping element="request">
 <Mapping element="message" outPort="0" />
 </Mapping>
</Mappings>

applied to

<?xml version="1.0" encoding="UTF-8"?>
<request>
 <message>msg1</message>
 <operation>
 <message>msg2</message>
 </operation>
</request>

produces:

• msg1 and msg2 with Use nested nodes switched on (default behaviour)

• msg1 with Use nested nodes switched off . In order to extract msg2, you would need to create an explicit
<Mapping> tag (one for every nested element).

Authentication

If authentication is required by the web service server, Username, Password and, in case of NTLM authentication,
Auth Domain component properties need to be set.

There are currently three authentication schemes supported: NTLM, Digest and Basic. NTLM is the most secure,
Basic is the least secure of these methods. Server advertizes which authentication methods it supports and
WebServiceClient automatically selects the most secure one.

Auth Realm can be used to restrict specified credential only to desired realm in case Basic or Digest authentication
schema is selected.

Note

Auth Domain is required by the NTLM authentication. If it is not set, only Digest and Basic
authentication schemes will be enabled.

In case server requires NTLM authentication, but Auth Domain is left empty, you will get error like
these in graph execution log:

• ERROR [Axis2 Task] - Credentials
cannot be used for NTLM authentication:
org.apache.commons.httpclient.UsernamePasswordCredentials

• ERROR [WatchDog] - Node WEB_SERVICE_CLIENT0 finished with status:
ERROR caused by: org.apache.axis2.AxisFault: Transport error: 401
Error: Unauthorized

Chapter 61. Others

812

Also note that it is not possible to specify the domain as part of the Username in form of domain
\username as is sometimes customary. The domain name has to be specified separately in the
Auth Domain component property.

Part IX. CTL - CloverETL
Transformation Language

814

Chapter 62. Overview
CTL is a proprietary scripting language oriented on data processing in transformation components of CloverETL.

It is designed to allow simple and clear notation of how data is processed and yet provide suficient means for
its manipulation.

Language syntax resembles Java with some constructs common in scripting languages. Although scripting
language itself, CTL code organization into function resembles structure of Java classes with clearly defined
methods designating code entry points.

CTL is a high level language in both abstraction of processed data as well as its execution environment. The
language shields programmer from the complexity of overall data transformation, while refocusing him to develop
a single transformation step as a set of operations applicable onto all processed data records.

Closely integrated with CloverETL environment the language also benefits the programmer with uniform access
to elements of data transformation located outside the executing component, operations with values of types
permissible for record fields and a rich set of validation and manipulation functions.

During transformation execution each component running CTL code uses separate interpreter instance thus
preventing possible collisions in heavily parallel multi-threaded execution environment of CloverETL.

Basic Features of CTL:

1. Easy scripting language

Clover transformation language (CTL) is very simple scripting language that can serve for writing
transformations in great number of CloverETL components.

Although Java can be used in all of these components, working with CTL is much easier.

2. Used in many CloverETL components

CTL can be used in all of the components whose overview is provided in Transformations Overview (p. 281)
, except in JMSReader, JMSWriter, JavaExecute, and MultiLevelReader.

Chapter 62. Overview

815

3. Used even without knowledge of Java

Even without any knowledge of Java user can write the code in CTL.

4. Almost as fast as Java

Transformations written in CTL are almost as fast as those written in Java.

Source code of CTL2 can even be compiled into Java class.

Two Versions of CTL

Since version 3.0 of CloverETL, user can write transformation codes in either of the two CTL versions.

In the following chapters and sections we provide a thorough description of both versions of CTL and the list of
their built-in functions.

CTL1 reference and built-in functions:

• Language Reference (p. 831)

• Functions Reference (p. 861)

CTL2 reference and built-in functions:

• Language Reference (p. 892)

• Functions Reference (p. 921)

Note

CTL2 version of Clover transformation language is recommended.

816

Chapter 63. CTL1 vs. CTL2 Comparison
CTL2 is a new version of CloverETL transformation language. It adds many improvements to the CTL concept.

Table 63.1. CTL Version Comparison

Feature CTL1 CTL2

Strongly typed

Interpreted mode

Compiled mode

Speed slower faster

Typed Language
CTL has been redesigned to be strongly typed in CTL2. With variable declarations already containing type
information the introduction of type checking mostly affects container types and functions. In CTL2, container
types (lists and maps) must declare the element type and user-defined functions must declare return type as well
as types of their arguments.

Naturally, strict typing for functions requires introduction of void type for functions not returning any value.
typing also introduces function overloading in local code as well as in the built-in library.

Arbitrary Order of Code Parts
CTL2 allows to declare variables and functions in any place of the code. Only one condition must be fulfilled -
each variable and function must be declared before it is used.

CTL2 also allows to define mapping in any place of the transformation and be followed by other code.

Parts of CTL2 code may be interspersed almost arbitrarily.

Compiled Mode
CTL2 code can be transformed into pure Java which greatly increases speed of the transformation. This is called
"compiled mode" and CloverETL can do it for you transparently each time you run a graph with CTL2 code in
it. The transformation into compiled form is done internally so you do not need to be Java programmer to use it.

Each time you use a component with CTL2 transform and explicitly set it to work in compiled mode, CloverETL
produces an in-memory Java code from your CTL and runs the Java natively - giving you a great speed increase.

Access to Graph Elements (Lookups, Sequences, ...)
A strict type checking is further extended to validation of lookup tables and sequences access. For lookup tables
the actual arguments of lookup operation are validated against lookup table keys, while using the record returned
by table in further type checked.

Sequences support three possible return types explicitly set by user: integer, long, and string. In CTL1
records, lookup tables, and sequences were identified by their IDs - in CTL2 they are defined by names. For this
reason, names of these graph elements must always be unique in a graph.

Metadata
In CTL2, any metadata is considered to be a data type. This changes the way records are declared in CTL
transformation code, as sou can use your metadata names directly in your code to declare a variable:

Employee tmpEmployee;
recordName1 myRecord;

Chapter 63. CTL1 vs.
CTL2 Comparison

817

The following table presents an overview of differences between both versions of CTL.

Table 63.2. CTL Version Differences

CTL1 CTL2

Header (interpreted mode)

//#TL

//#CTL1

//#CTL2

Header (compiled mode)

unavailable //#CTL2:COMPILED

Declaration of primitive variables

int integer

bytearray byte

Declaration of container variables

list myList; <element type>[] myList;

Example: integer[] myList;

map myMap; map[<type of key>, <type of value>] myMap;

Example: map[string,boolean] myMap;

Declaration of records

record (<metadataID>) myRecord; <metadataName> myRecord;

Declaration of functions

function fName(arg1,arg2) {
 <functionBody> }

function <data type> fName(<type1> arg1,<type2> arg2) {
 <functionBody> }

Mapping operator

$0.field1 := $0.field1;(please note ':=' vs
'=')

$0.field1 = $0.field1;(please note ':=' vs
'=')

Accessing input records

unavailable, may be replaced with:@<port No>

$<port No>.*

unavailable, may be replaced with:@<metadata name>

$<metadata name>.*

Accessing field values

unavailable, may be replaced with:@<port No>[<field No>]

$<port No>.<field name>

unavailable, may be replaced with:@<metadata name>[<field No>]

$<metadata name>.<field name>

<record variable name>["<field name>"] <record variable name>.<field name>

Conditional fail expression (interpreted mode only)

$0.field1 := expr1 : expr2 : ... :
exprN;

$0.field1 = expr1 : expr2 : ... :
exprN;

unavailable myVar = expr1 : expr2 : ... : exprN;

unavailable myFunction(expr1 : expr2 : ... :
exprN)

Dictionary declaration

Chapter 63. CTL1 vs.
CTL2 Comparison

818

CTL1 CTL2

need not be defined must always be defined

Dictionary entry types

string, readable.channel, writable.channel boolean, byte, date, decimal, integer, long, number,
string, readable.channel, writable.channel, object

Writing to dictionary

signature: syntax:

void write_dict(string name, string value) dictionary.<entry name> = value;

example 1: example:

write_dict("customer", "John Smith");

example 2:

string customer;
write_dict(customer, "John Smith");

signature:
boolean dict_put_str(string name, string value);

example 3:

dict_put_str("customer", "John Smith");

example 4:

string customer;
dict_put_str(customer, "John Smith");

dictionary.customer = "John Smith";

Reading from dictionary

signature: syntax:

string read_dict(string name) value = dictionary.<entry name>;

example 1: example:

string myString;
myString = read_dict("customer");

example 2:

string myString;
string customer;
myString = read_dict(customer);

signature:
string dict_get_str(string name)

example 3:

string myString;
myString = dict_get_str("customer");

example 4:

string myString;
string customer;
dict_get_str(customer);

string myString;
myString = dictionary.customer;

Lookup table functions

lookup_admin(<lookup ID>,init)1) unavailable

lookup(<lookup ID>,keyValue) lookup(<lookup name>).get(keyValue)

lookup_next(<lookup ID>) lookup(<lookup name>).next()

lookup_found(<lookup ID>) lookup(<lookup name>).count(keyValue)

lookup_admin(<lookup ID>,free)1) unavailable

Sequence functions

sequence(<sequence ID>).current sequence(<sequence name>).current()

Chapter 63. CTL1 vs.
CTL2 Comparison

819

CTL1 CTL2

sequence(<sequence ID>).next sequence(<sequence name>).next()

sequence(<sequence ID>).reset sequence(<sequence name>).reset()

Switch statement

switch (Expr) {
 case (Expr1) : { StatementA StatementB }
 case (Expr2) : { StatementC StatementD }
 [default : { StatementE StatementF }]
}

switch (Expr) {
 case Const1 : StatementA StatementB break;
 case Const2 : StatementC StatementD break;
 [default : StatementE StatementF]
}

For loop

int myInt;
for(Initialization;Condition,Iteration)

(Initialization, Condition and Iteration are required)

for(integer myInt;Condition;Iteration)

(Initialization, Condition and Iteration are optional)

Foreach loop

int myInt;
list myList;
foreach(myInt : myList) Statement

integer[] myList;
foreach(integer myInt : myList) Statement

Error handling

string MyException;
try Statement1 catch(MyException)
[Statement2]

unavailable

following set of optional functions can be used in both CTL1 and CTL2:

<required template function>OnError() (e.g. transformOnError(), etc.)

Jump statements

break break;

continue continue;

return Expression return Expression;

Contained-in operator

in(myVar,myContainer)

or

myVar .in. myContainer

myVar.in(myContainer)

Eval functions

eval() unavailable

eval_exp() unavailable

Ternary operator

unavailable

but

iif(Condition,ExprIfTrue,ExprIfFalse)

can be used instead

Condition ? ExprIfTrue : ExprIfFalse

but

iif(Condition,ExprIfTrue,ExprIfFalse)

also exists

Legend:

1) These functions do nothing since version 3.0 of CloverETL and can be removed from the code.

820

Chapter 64. Migrating CTL1 to CTL2
When you want to migrate any transformation code written in CTL1 to CTL2, you need to make the following
steps:

Step 1: Replace the header

Replace the header which is at the beginning of your transformation code.

CTL1 used either //#TL, or //#CTL1 whereas CTL2 uses //#CTL2 for interpeted mode.

Remember that you can also choose compiled mode which is not available in CTL1. In such a case, header in
CTL2 would be: //#CTL2:COMPILED

CTL1 CTL2

Interpreted mode

//#TL

//#CTL1

//#CTL2

Compiled mode

unavailable //#CTL2:COMPILED

Step 2: Change declarations of primitive variables (integer, byte, decimal
data types)

Both versions of CTL have the same variables, however, key words differ for some of them.

• The integer data type is declared using the int word in CTL1, whereas it is declared as integer in CT2.

• The byte data type is declared using the bytearray word in CTL1, whereas it is declared as byte in CT2.

• The decimal data type may contain Length and Scale in its declaration in CTL1.

For example, decimal(15,6) myDecimal; is valid declaration of a decimal in CTL1 with Length equal
to 15 and Scale equal to 6.

In CTL2, neither Length nor Scale may be used in a declaration of decimal.

By default any decimal variable may use up to 32 digits plus decimal dot in its value.

Only when such decimal is sent to an edge, in which Length and Scale are defined in metadata (by default
they are 8 and 2), precission or length may change.

Thus, equivalent declaration (in CTL2) would look like this:

decimal myDecimal;

Decimal field defines these Length and Scale in metadata. Or uses the default 8 and 2, respectively.

CTL1 CTL2

Integer data type

int myInt; integer myInt;

Byte data type

bytearray myByte; byte myByte;

Chapter 64. Migrating
CTL1 to CTL2

821

CTL1 CTL2

Decimal data type

decimal myDecimal;decimal(15,6) myDecimal;

If such variable should be assigned to a decimal field,
the field should have defined Length and Scale to 15
and 6, respectively.

Step 3: Change declarations of structured variables: (list, map, record data
types)

• Each list is a uniform structure consisting of elements of the same data type.

The list is declared as folows in CTL1 (for example):

list myListOfStrings;

Equivalent list declaration would look like the following in CTL2:

string[] myListOfStrings;

Declaration of any list in CTL2 uses the following syntax:

<data type of element>[] identifier

Thus, replace the declaration of a list of CTL1 with another, valid in CTL2.

• Each map is a uniform structure consisting of key-value pairs. Key is always of string data type, whereas
value is of any primitive data type (in CTL1).

Map declaration may look like this:

map myMap;

Unlike in CTL1, in addition to string, key may be of any other primitive data type in CTL2.

Thus, in CTL2 you need to specify both key type and value type like this:

map[<key type>, <value type>] myMap;

In order to rewrite your map declarations fom CTL1 syntax to that of CTL2, replace the older declaation of
CTL1:

map myMap;

with the new of CTL2:

map[string, <value type>] myMap;

For example, map[string, integer] myMap;

• Each record is a heterogeneous structure consisting of specified number of fields. Each field can be of different
primitive data type. Each field has its name and its number.

In CTL1, each record may be declared in three different ways:

Two of them use metadata ID, the third uses port number.

Unlike in CTL1, where metadata are idetified with their ID, in CTL2 metadata are identified by their unique
name.

Chapter 64. Migrating
CTL1 to CTL2

822

See the table below on how records may be declared in CTL1 and in CTL2.

CTL1 CTL2

Declaration of a list

<element type>[] myList;list myList;

e.g.: string[] myList;

Declaration of a map

map[<type of key>,<type of value>]
myMap;

map myMap;

e.g.: map[string,integer] myMap;

Declaration of a record

record (<metadata ID>) myRecord;

record (@<port number>) myRecord;

record (@<metadata name>) myRecord;

<metadata name> myRecord;

Step 4: Change declarations of functions

1. Add return data types to declarations of functions. (Remember that there is also void return type in CTL2.)

2. Add data types of their arguments.

3. Each function that returns any data type other than void must end with a return statement. Add
corresponding return statement when necessary.

See following table:

CTL1 CTL2

function transform(idx) {
 <other function body>
 $0.customer := $0.customer;
}

function integer transform(integer idx) {
 <other function body>
 $0.customer = $0.customer;
 return 0;
}

Step 5: Change record syntax

In CTL1, @ sign was used in assignments of input records and fields.

In CTL2, other syntax should be used. See the following table:

CTL1 CTL2

Whole record

<record variable name> = @<port number>; <record variable name>.* = $<port number>.*;

<record variable name> = @<metadata name> <record variable name>.* = $<metadata name>.*;

Individual field

@<port number>[<field number>] $<port number>.<corresponding field name>

@<metadata name>[<field number>] $<metadata name>.<corresponding field name>

<record variable name>["<field name>"] <record variable name>.<field name>

Note

Note that you should also change the syntax of groupAccumulator usage in Rollup.

Chapter 64. Migrating
CTL1 to CTL2

823

CTL1 CTL2

groupAccumulator["<field name>"] groupAccumulator.<field name>

Step 6: Replace dictionary functions with dictionary syntax

In CTL1, a set of dictionary functions may be used.

In CTL2, dictionary syntax is defined and should be used.

CTL1 CTL2

Writing to dictionary

write_dict(string <entry name>, string <entry value>);

dict_put_str(string <entry name>, string <entry value>);

dictionary.<entry name> = <entry value>;

Reading from dictionary

string myVariable;
myVariable = read_dict(<entry name>);

string myVariable;
myVariable = dict_get_str(<entry name>);

string myVariable;
myVariable = dictionary.<entry name>;

Example 64.1. Example of dictionary usage

CTL1 CTL2

Writing to dictionary

write_dict("Mount_Everest", "highest");

dict_put_str("Mount_Everest", "highest");

dictionary.Mount_Everest = "highest";

Reading from dictionary

string myVariable;
myVariable = read_dict("Mount_Everest");

string myVariable;
myVariable = dict_get_str("Mount_Everest");

string myVariable;
myVariable = dictionary.Mount_Everest;

Step 7: Add semicolons where necessary

In CT1, jump, continue, break, or return statement sometime do not allow terminal semicolon.

In CTL2, it is even required.

Thus, add semicolons to the end of any jump, continue, break, or return statement when necessary.

Step 8: Check, replace, or rename some built-in CTL functions

Some CTL1 functions are not available in CTL2. Please check Functions Reference (p. 921) for list of CTL2
functions.

Example:

CTL1 function CTL2 function

uppercase() upperCase()

bit_invert() bitNegate()

Chapter 64. Migrating
CTL1 to CTL2

824

Step 9: Change switch statements

Replace expressions in the case parts of switch statement with constants.

Note that CTL1 allows usage of expressions in the case parts of the switch statements, it requires curle braces
after each case part. Values of one or more expression may even equal to each other, in such a case, all statements
are executed.

CTL2 requires usage of constants in the case parts of the switch statements, it does not allow curle braces after
each case part, and requires a break statement at the end of each case part. Without such break statement,
all statements below would be executed. The constant specified in different case parts must be different.

CTL
version

Switch statement syntax

CTL1 //#CTL1

int myInt;
int myCase;

myCase = 1;

// Transforms input record into output record.
function transform() {

 myInt = random_int(0,1);

 switch(myInt) {
 case (myCase-1) : { print_err("two"); print_err("first case1"); }
 case (myCase) : { print_err("three"); print_err("second case1"); }
 }

 $0.field1 := $0.field1;

 return 0
}

CTL2 //#CTL2

integer myInt;

// Transforms input record into output record.
function integer transform() {

 myInt = randomInteger(0,1);

 switch(myInt) {
 case 0 : printErr("zero"); printErr("first case"); break;
 case 1 : printErr("one"); printErr("second case");
 }

 $0.field1 = $0.field1;

 return 0;
}

Chapter 64. Migrating
CTL1 to CTL2

825

Step 10: Change sequence and lookup table syntax

In CTL1, metadata, lookup tables, and sequences were identified with their IDs.

In CTL2 they are identified with their names.

Thus, make sure that all metadata, lookup tables, and sequences have unique names. Otherwise, rename them.

The two tables below show how you shout change the code containing lookup table or sequence syntax. Note that
these are identified with either IDs (in CTL1) or with their names.

CTL
version

Sequence syntax

CTL1 //#CTL1

// Transforms input record into output record.
function transform() {
 $0.field1 := $0.field1;
 $0.field2 := $0.field2;
 $0.field3 := sequence(Sequence0).current;
 $0.field4 := sequence(Sequence0).next;
 $0.field5 := sequence(Sequence0, string).current;
 $0.field6 := sequence(Sequence0, string).next;
 $0.field7 := sequence(Sequence0, long).current;
 $0.field8 := sequence(Sequence0, long).next;

 return 0
}

CTL2 //#CTL2

// Transforms input record into output record.
function integer transform() {
 $0.field1 = $0.field1;
 $0.field2 = $0.field2;
 $0.field3 = sequence(seqCTL2).current();
 $0.field4 = sequence(seqCTL2).next();
 $0.field5 = sequence(seqCTL2, string).current();
 $0.field6 = sequence(seqCTL2, string).next();
 $0.field7 = sequence(seqCTL2, long).current();
 $0.field8 = sequence(seqCTL2, long).next();

 return 0;
}

Chapter 64. Migrating
CTL1 to CTL2

826

CTL
version

Lookup table usage

CTL1 //#CTL1

// variable for storing number of duplicates
int count;
int startCount;

// values of fields of the first records
string Field1FirstRecord;
string Field2FirstRecord;

// values of fields of next records
string Field1NextRecord;
string Field2NextRecord;

// values of fields of the last records
string Field1Value;
string Field2Value;

// record with the same metadata as those of lookup table
record (Metadata0) myRecord;

// Transforms input record into output record.
function transform() {

 // getting the first record whose key value equals to $0.Field2
 // must be specified the value of both Field1 and Field2
 Field1FirstRecord = lookup(LookupTable0,$0.Field2).Field1;
 Field2FirstRecord = lookup(LookupTable0,$0.Field2).Field2;

 // if lookup table contains duplicate records with the value specified above
 // their number is returned by the following expression
 // and assigned to the count variable
 count = lookup_found(LookupTable0);

 // it is copied to another variable
 startCount = count;

 // loop for searching the last record in lookup table
 while ((count - 1) > 0) {

 // searching the next record with the key specified above
 Field1NextRecord = lookup_next(LookupTable0).Field1;
 Field2NextRecord = lookup_next(LookupTable0).Field2;

 // decrementing counter
 count--;
 }

 // if record had duplicates, otherwise the first record
 Field1Value = nvl(Field1NextRecord,Field1FirstRecord);
 Field2Value = nvl(Field2NextRecord,Field2FirstRecord);

 // mapping to the output
 // last record from lookup table
 $0.Field1 := Field1Value;
 $0.Field2 := Field2Value;

 // corresponding record from the edge
 $0.Field3 := $0.Field1;
 $0.Field4 := $0.Field2;

 // count of duplicate records
 $0.Field5 := startCount;

 return 0
}

Chapter 64. Migrating
CTL1 to CTL2

827

CTL
version

Lookup table usage

CTL2 //#CTL2

// record with the same metadata as those of lookup table
recordName1 myRecord;

// variable for storing number of duplicates
integer count;
integer startCount;

// Transforms input record into output record.
function integer transform() {

 // if lookup table contains duplicate records,
 // their number is returned by the following expression
 // and assigned to the count variable
 count = lookup(simpleLookup0).count($0.Field2);

 // This is copied to startCount
 startCount = count;

 // getting the first record whose key value equals to $0.Field2
 myRecord = lookup(simpleLookup0).get($0.Field2);

 // loop for searching the last record in lookup table
 while ((count-1) > 0) {

 // searching the next record with the key specified above
 myRecord = lookup(simpleLookup0).next();

 // decrementing counter
 count--;
 }

 // mapping to the output
 // last record from lookup table
 $0.Field1 = myRecord.Field1;
 $0.Field2 = myRecord.Field2;

 // corresponding record from the edge
 $0.Field3 = $0.Field1;
 $0.Field4 = $0.Field2;

 // count of duplicate records
 $0.Field5 = startCount;

 return 0;
}

Warning

We suggest you better use other syntax for lookup tables.

The reason is that the following expression of CTL2:

lookup(Lookup0).count($0.Field2);

searches the records through the whole lookup table which may contain a great number of records.

The syntax shown above may be replaced with the following loop:

myRecord = lookup(<name of lookup table>).get(<key value>);
while(myRecord != null) {
 process(myRecord);
 myRecord = lookup(<name of lookup table>).next();
}

Chapter 64. Migrating
CTL1 to CTL2

828

Especially DB lookup tables can return -1 instead of real count of records with specified key value
(if you do not set Max cached size to a non-zero value).

The lookup_found(<lookup table ID>) function for CTL1 is not too recommended either.

Chapter 64. Migrating
CTL1 to CTL2

829

Step 11: Change mappings in functions

Rewrite the mappings according to CTL2 syntax. Change mapping operators and remove expressions that use @
as shown above.

CTL
version

Transformation with mapping

CTL1 //#TL

 int retInt;
 function transform() {

 if ($0.field3 < 5) retInt = 0; else retInt = 1;

 // the following part is the mapping:
 $0.* := $0.*;
 $0.field1 := uppercase($0.field1);
 $1.* := $0.*;
 $1.field1 := uppercase($0.field1);

 return retInt
 }

CTL2 //#CTL2

 integer retInt;
 function integer transform() {

 // the following part is the mapping:
 $0.* = $0.*;
 $0.field1 = upperCase($0.field1);
 $1.* = $0.*;
 $1.field1 = upperCase($0.field1);

 if ($0.field3 < 5) return = 0; else return 1;
 }

Go to CTL2

830

Chapter 65. CTL1
This chapter describes the syntax and the use of CTL1. For detailed information on language reference or built-
in functions see:

• Language Reference (p. 831)

• Functions Reference (p. 861)

Example 65.1. Example of CTL1 syntax (Rollup)

//#TL
list customers;
int Length;

function initGroup(groupAccumulator) {
}

function updateGroup(groupAccumulator) {
 customers = split($0.customers," - ");
 Length = length(customers);

 return true
}

function finishGroup(groupAccumulator) {
}

function updateTransform(counter, groupAccumulator) {
 if (counter >= Length) {
 remove_all(customers);

 return SKIP;
 }

 $0.customers := customers[counter];
 $0.EmployeeID := $0.EmployeeID;

 return ALL
}

function transform(counter, groupAccumulator) {
}

Go to CTL2 Chapter 65. CTL1

831

Language Reference

Clover transformation language (CTL) is used to define transformations in many transformation components. (in
all Joiners, DataGenerator, Partition, DataIntersection, Reformat, Denormalizer, Normalizer, and Rollup)

Note

Since the version 2.8.0 of CloverETL, you can also use CTL expressions in parameters. Such CTL
expressions can use any possibilities of CTL language. However, these CTL expressions must be
surrounded by back quotes.

For example, if you define a parameter TODAY="`today()`" and use it in your CTL codes, such
${TODAY} expression will be resolved to the date of this day.

If you want to display a back quote as is, you must use this back quote preceded by back slash as
follows: \`.

Important

CTL1 version is used in such expressions.

This section explains the following areas:

• Program Structure (p. 832)

• Comments (p. 832)

• Import (p. 832)

• Data Types in CTL (p. 833)

• Literals (p. 835)

• Variables (p. 837)

• Operators (p. 838)

• Simple Statement and Block of Statements (p. 843)

• Control Statements (p. 843)

• Functions (p. 848)

• Conditional Fail Expression (p. 850)

• Accessing Data Records and Fields (p. 851)

• Mapping (p. 854)

• Parameters (p. 860)

Go to CTL2 Chapter 65. CTL1

832

Program Structure

Each program written in CTL must have the following structure:

ImportStatements
VariableDeclarations
FunctionDeclarations
Statements
Mappings

Remember that the ImportStatements must be at the beginning of the program and the Mappings must be
at its end. Both ImportStatements and Mappings may consist of more individual statements or mappings
and each of them must be terminated by semicolon. The middle part of the program can be interspersed. Individual
declaration of variables and functions and individual statements does not need to be in this order. But they always
must use only declared variables and functions! Thus, first you need to declare variable and/or function before
you can use it in some statement or another declaration of variable and function.

Comments

Throughout the program you can use comments. These comments are not processed, they only serve to describe
what happens within the program.

The comments are of two types. They can be one-line comments or multiline comments. See the following two
options:

•// This is an one-line comment.

•/* This is a multiline comment. */

Import

First of all, at the beginning of the program in CTL, you can import some of the existing programs in CTL. The
way how you must do it is as follows:

•import 'fileURL';

•import "fileURL";

You must decide whether you want to use single or double quotes. Single quotes do not escape so called escape
sequences. For more details see Literals (p. 835) below. For these fileURL, you must type the URL of some
existing source code file.

But remember that you must import such files at the beginning before any other declaration(s) and/or statement(s).

Go to CTL2 Chapter 65. CTL1

833

Data Types in CTL

For basic information about data types used in metadata see Data Types and Record Types (p. 111)

In any program, you can use some variables. Data types in CTL can be the following:

boolean

Its declaration look like this: boolean identifier;

bytearray

This data type is an array of bytes of a length that can be up to Integer.MAX_VALUE as a maximum. It behaves
similarly to the list data type (see below).

Its declaration looks like this: bytearray [(size)] identifier;

date

Its declaration look like this: date identifier;

decimal

Its declaration looks like this: decimal[(length,scale)] identifier;

The default length and scale are 12 and 2, respectively.

The default values of DECIMAL_LENGTH and DECIMAL_SCALE are contained in the
org.jetel.data.defaultProperties file and can be changed to other values.

You can cast any float number to the decimal data type by apending the d letter to its end.

int

Its declaration looks like this: int identifier;

If you apend an l letter to the end of any integer number, you can cast it to the long data type

long

Its declaration looks like this: long identifier;

Any integer number can be cast to this data type by apending an l letter to its end.

number (double)

Its declaration looks like this: number identifier;

string

The declaration looks like this: string identifier;

list

Each list is a container of one the following primitive data types: boolean, byte, date, decimal,
integer, long, number, string.

The list data type is indexed by integers starting from 0.

Go to CTL2 Chapter 65. CTL1

834

Its declaration looks like this: list identifier;

The default list is an empty list.

Examples:

list list2; examplelist2[5]=123;

Assignments:

• list1=list2;

It means that both lists reference the same elements.

• list1[]=list2;

It adds all elements of list2 to the end of list1.

• list1[]="abc";

It adds the "abc" string to the list1 as its new last element.

• list1[]=NULL;

It removes the last element of the list1.

map

This data type is a container of any data type.

The map is indexed by strings.

Its declaration looks like this: map identifier;

The default map is an empty map.

Example: map map1; map1["abc"]=true;

The assignments are similar to those valid for a list.

record

This data type is a set of fields of data.

The structure of record is based on metadata.

Its declaration can look like one of these options:

1. record (<metadata ID>) identifier;

2. record (@<port number>) identifier;

3. record (@<metadata name>) identifier;

For more detailed information about possible expressions and records usage see Accessing Data Records and
Fields (p. 851).

The variable does not have a default value.

It can be indexed by both integer numbers and strings. If indexed by numbers, fields are indexed starting from 0.

Go to CTL2 Chapter 65. CTL1

835

Literals

Literals serve to write values of any data type.

Table 65.1. Literals

Literal Description Declaration
syntax

Example

integer digits representing integer number [0-9]+ 95623

long integer digits representing integer numbers with
absolute value even greater than 231, but
less than 263

[0-9]+L? 257L, or 9562307813123123

hexadecimal
integer

digits and letters representing integer
number in hexadecimal form

0x[0-9A-F]+ 0xA7B0

octal integer digits representing integer number in octal
form

0[0-7]* 0644

number
(double)

floating point number represented by
64bits in double precision format

[0-9]+.[0-9]+ 456.123

decimal digits representing a decimal number [0-9]+.[0-9]+D 123.456D

double quoted
string

string value/literal enclosed in double
quotes; escaped characters [\n,\r,\t, \\, \", \b]
get translated into corresponding control
chars

"...anything
except ["]..."

"hello\tworld\n\r"

single quoted
string

string value/literal enclosed in single
quotes; only one escaped character [\'] gets
translated into corresponding char [']

'...anything
except [']...'

'hello\tworld\n\r'

list of literals list of literals where individual literals can
also be other lists/maps/records

[<any literal>
(, <any
literal>)*]

[10, 'hello', "world", 0x1A,
2008-01-01], [[1 , 2]] , [3 , 4]]

date date value this mask
is expected:
yyyy-MM-dd

2008-01-01

datetime datetime value this mask
is expected:
yyyy-MM-dd
HH:mm:ss

2008-01-01 18:55:00

Important

You cannot use any literal for bytearray data type. If you want to write a bytearray value, you
must use any of the conversion functions that return bytearray and aply it on an argument value.

For information on these conversion functions see Conversion Functions (p. 862)

Important

Remember that if you need to assign decimal value to a decimal field, you should use decimal literal.
Otherwise, such number would not be decimal, it would be a double number!

For example:

1. Decimal value to a decimal field (correct and accurate)

Go to CTL2 Chapter 65. CTL1

836

// correct - assign decimal value to decimal field

myRecord.decimalField = 123.56d;

2. Double value to a decimal field (possibly inaccurate)

// possibly inaccurate - assign double value to decimal field

myRecord.decimalField = 123.56;

The latter might produce inaccurate results!

Go to CTL2 Chapter 65. CTL1

837

Variables

If you define some variable, you must do it by typing data type of the variable, white space, the name of the
variable and semicolon.

Such variable can be initialized later, but it can also be initialized in the declaration itself. Of course, the value of
the expression must be of the same data type as the variable.

Both cases of variable declaration and initialization are shown below:

•dataType variable;

...

variable=expression;

•dataType variable=expression;

Go to CTL2 Chapter 65. CTL1

838

Operators

The operators serve to create more complicated expressions within the program. They can be arithmetic, relational
and logical. The relational and logical operators serve to create expressions with resulting boolean value. The
arithmetic operators can be used in all expressions, not only the logical ones.

All operators can be grouped into three categories:

• Arithmetic Operators (p. 838)

• Relational Operators (p. 840)

• Logical Operators (p. 842)

Arithmetic Operators

The following operators serve to put together values of different expressions (except those of boolean values).
These signs can be used more times in one expression. In such a case, you can express priority of operations by
parentheses. The result depends on the order of the expressions.

• Addition

+

The operator above serves to sum the values of two expressions.

But the addition of two boolean values or two date data types is not possible. To create a new value from two
boolean values, you must use logical operators instead.

Nevertheless, if you want to add any data type to a string, the second data type is converted to a string
automatically and it is concatenated with the first (string) summand. But remember that the string must be on
the first place! Naturally, two strings can be summed in the same way. Note also that the concat() function
is faster and you should use this function instead of adding any summand to a string.

You can also add any numeric data type to a date. The result is a date in which the number of days is increased
by the whole part of the number. Again, here is also necessary to have the date on the first place.

The sum of two numeric data types depends on the order of the data types. The resulting data type is the same
as that of the first summand. The second summand is converted to the first data type automatically.

• Subtraction and Unitary minus

-

The operator serves to subtract one numeric data type from another. Again the resulting data type is the same
as that of the minuend. The subtrahend is converted to the minuend data type automatically.

But it can also serve to subtract numeric data type from a date data type. The result is a date in which the number
of days is reduced by the whole part of the subtrahend.

• Multiplication

*

The operator serves only to multiplicate two numeric data types.

Remember that during multiplication the first multiplicand determines the resulting data type of the operation.
If the first multiplicand is an integer number and the second is a decimal, the result will be an integer number.
On the other hand, if the first multiplicand is a decimal and the second is an integer number, the result will be
of decimal data type. In other words, order of multiplicands is of importance.

Go to CTL2 Chapter 65. CTL1

839

• Division

/

The operator serves only to divide two numeric data types. Remember that you must not divide by zero.
Dividing by zero throws TransformLangExecutorRuntimeException or gives Infinity (in case
of a number data type)

Remember that during division the numerator determines the resulting data type of the operation. If the
nominator is an integer number and the denominator is a decimal, the result will be an integer number. On the
other hand, if the nominator is a decimal and the denominator is an integer number, the result will be of decimal
data type. In other words, data types of nominator and denominator are of importance.

• Modulus

%

The operator can be used for both floating-point data types and integer data types. It returns the remainder of
division.

• Incrementing

++

The operator serves to increment numeric data type by one. The operator can be used for both floating-point
data types and integer data types.

If it is used as a prefix, the number is incremented first and then it is used in the expression.

If it is used as a postfix, first, the number is used in the expression and then it is incremented.

• Decrementing

--

The operator serves to decrement numeric data type by one. The operator can be used for both floating-point
data types and integer data types.

If it is used as a prefix, the number is decremented first and then it is used in the expression.

If it is used as a postfix, first, the number is used in the expression and then it is decremented.

Go to CTL2 Chapter 65. CTL1

840

Relational Operators

The following operators serve to compare some subexpressions when you want to obtain a boolean value result.
Each of the mentioned signs can be used. If you choose the .operator. signs, they must be surrounded by
white spaces. These signs can be used more times in one expression. In such a case you can express priority of
comparisons by parentheses.

• Greater than

Each of the two signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•>

•.gt.

• Greater than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•>=

•=>

•.ge.

• Less than

Each of the two signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•<

•.lt.

• Less than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•<=

•=<

•.le.

• Equal to

Each of the two signs below can be used to compare expressions of any data type. Both data types in the
expressions must be comparable. The result can depend on the order of the two expressions if they are of
different data type.

•==

•.eq.

Go to CTL2 Chapter 65. CTL1

841

• Not equal to

Each of the three signs below can be used to compare expressions of any data type. Both data types in the
expressions must be comparable. The result can depend on the order of the two expressions if they are of
different data type.

•!=

•<>

•.ne.

• Matches regular expression

The operator serves to compare a string and a regular expression (p. 964). It returns true if the whole string
matches the regular expression, otherwise returns false.

•~=

•.regex.

• Contained in

This operator serves to specify whether some value is contained in the list or in the map of other values.

•.in.

Go to CTL2 Chapter 65. CTL1

842

Logical Operators

If the expression whose value must be of boolean data type is complicated, it can consist of some subexpressions
(see above) that are put together by logical conjunctions (AND, OR, NOT, .EQUAL TO, NOT EQUAL TO). If
you want to express priority in such an expression, you can use parentheses. From the conjunctions mentioned
below you can choose either form (for example, && or and, etc.).

Every sign of the form .operator. must be surrounded by white space.

• Logical AND

•&&

•and

• Logical OR

•||

•or

• Logical NOT

•!

•not

• Logical EQUAL TO

•==

•.eq.

• Logical NOT EQUAL TO

•!=

•<>

•.ne.

Go to CTL2 Chapter 65. CTL1

843

Simple Statement and Block of Statements

All statements can be divided into two groups:

• Simple statement is an expression terminated by semicolon.

For example:

int MyVariable;

• Block of statements is a series of simple statements (each of them is terminated by semicolon). The statements
in a block can follow each other in one line or they can be written in more lines. They are surrounded by curled
braces. No semicolon is used after the closing curled brace.

For example:

while (MyInteger<100) {
 Sum = Sum + MyInteger;
 MyInteger++;
}

Control Statements

Some statements serve to control the process of the program.

All control statements can be grouped into the following categories:

• Conditional Statements (p. 843)

• Iteration Statements (p. 844)

• Jump Statements (p. 845)

Conditional Statements

These statements serve to branch out the process of the program.

If Statement

On the basis of the Condition value this statement decides whether the Statement should be executed. If the
Condition is true, Statement is executed. If it is false, the Statement is ignored and process continues
next after the if statement. Statement is either simple statement or a block of statements

•if (Condition) Statement

Unlike the previous version of the if statement (in which the Statementis executed only if the Condition is
true), other Statements that should be executed even if the Condition value is false can be added to the if
statement. Thus, if the Condition is true, Statement1 is executed, if it is false, Statement2 is executed.
See below:

•if (Condition) Statement1 else Statement2

The Statement2 can even be another if statement and also with else branch:

•if (Condition1) Statement1
 else if (Condition2) Statement3
 else Statement4

Go to CTL2 Chapter 65. CTL1

844

Switch Statement

Sometimes you would have very complicated statement if you created the statement of more branched out if
statement. In such a case, much more better is to use the switch statement.

Now, the Condition is evaluated and according to the value of the Expression you can branch out the
process. If the value of Expression is equal to the the value of the Expression1, the Statement1 are
executed. The same is valid for the other Expression : Statement pairs. But, if the value of Expression
does not equal to none of the Expression1,...,ExpressionN, nothing is done and the process jumps over
the switch statement. And, if the value of Expression is equal to the the values of more ExpressionK,
more StatementK (for different K) are executed.

•switch (Expression) {
 case Expression1 : Statement1
 case Expression2 : Statement2
 ...
 case ExpressionN : StatementN
}

In the following case, even if the value of Expression does not equal to the values of the
Expression1,...,ExpressionN, StatementN+1 is executed.

•switch (Expression) {
 case Expression1 : Statement1
 case Expression2 : Statement2
 ...
 case ExpressionN : StatementN
 default:StatementN+1
}

If the value of the Expression in the header of the switch function is equal to the the values of more
Expressions# in its body, each Expression# value will be compared to the Expression value
continuously and corresponding Statements for which the values of Expression and Expression# equal
to each other will be executed one after another. However, if you want that only one Statement# should be
executed for some Expression# value, you should put a break statement at the end of the block of statements
that follow all or at least some of the following expressions: case Expression#

The result could look like this:

•switch (Expression) {
 case Expression1 : {Statement1; break;}
 case Expression2 : {Statement2; break;}
 ...
 case ExpressionN : {StatementN; break;}
 default:StatementN+1
}

Iteration Statements

These iteration statements repeat some processes during which some inner Statements are executed cyclically
until the Condition that limits the execution cycle becomes false or they are executed for all values of the
same data type.

For Loop

First, the Initialization is set up, after that, the Condition is evaluated and if its value is true, the Statement
is executed and finally the Iteration is made.

During the next cycle of the loop, the Condition is evaluated again and if it is true, Statement is executed
and Iteration is made. This way the process repeats until the Condition becomes false. Then the loop is
terminated and the process continues with the other part of the program.

Go to CTL2 Chapter 65. CTL1

845

If the Condition is false at the beginning, the process jumps over the Statement out of the loop.

•for (Initialization;Condition;Iteration) {
 Statement
}

Do-While Loop

First, the Statement is executed, then the process depends on the value of Condition. If its value is true, the
Statement is executed again and then the Condition is evaluated again and the subprocess either continues
(if it is true again) or stops and jumps to the next or higher level subprocesses (if it is false). Since the Condition
is at the end of the loop, even if it is false at the beginning of the subprocess, the Statement is executed at
least once.

•do {
 Statement
} while (Condition)

While Loop

This process depends on the value of Condition. If its value is true, the Statements is executed and then
the Condition is evaluated again and the subprocess either continues (if it is true again) or stops and jumps to
the next or higher level subprocesses (if it is false). Since the Condition is at the start of the loop, if it is false
at the beginning of the subprocess, the Statements is not executed at all and the loop is jumped over.

•while (Condition) {
 Statement
}

For-Each Loop

The foreach statement is executed on all fields of the same data type within a container. Its syntax is as follows:

•foreach (variable : iterableVariable) {
 Statement
}

All elements of the same data type (data type is declared for the variable at the beginning of the transformation
code) are searched in the iterableVariable container. The iterableVariable can be a list, a map, or
a record. For each variable of the same data type, specified Statement is executed. It can be either a simple
statement or a block of statements.

Thus, for example, the same Statement can be executed for all string fields of a record, etc.

Jump Statements

Sometimes you need to control the process in a different way than by decision based on the Condition value.
To do that, you have the following options:

Break Statement

If you want to stop some subprocess, you can use the following word in the program:

•break

The subprocess breaks and the process jumps to the higher level or to the next Statements.

Continue Statement

If you want to stop some iteration subprocess, you can use the following word in the program:

•continue

Go to CTL2 Chapter 65. CTL1

846

The subprocess breaks and the process jumps to the next iteration step.

Return Statement

In the functions you can use the return word either alone or along with an expression. (See the following
two options below.) The return statement must be at the end of the function. If it were not at the end, all of the
variableDeclarations, Statements and Mappings located after it would be ignored and skipped. The
whole function both without the return word and with the return word alone returns null, whereas the function
with the return expression returns the value of the expression.

•return

•return expression

Go to CTL2 Chapter 65. CTL1

847

Error Handling

Clover Transformation Language also provides a simple mechanism for catching and handling possible errors.

As the first step, a string variable must be declared:

•string MyException;

After that, in the code of your transformation, you can use the following try-catch statement:

•try Statement1 catch(MyException) [Statement2]

If Statement1 (a simple statement or a block of statements) is executed successfully, the graph does not fail
and the processing continues.

On the other hand, if Statement1 fails, an exception is thrown and assigned to the MyException variable.

The MyException variable can be printed or managed other way.

Once the exception is thrown, graph fails unless another Statement2 (which fixes the failed Statement1)
is executed.

In addition to it, since version 3.0 of CloverETL, CTL1 uses a set of optional OnError() functions that exist
to each required transformation function.

For example, for required functions (e.g., append(), transform(), etc.), there exist following optional
functions:

appendOnError(), transformOnError(), etc.

Each of these required functions may have its (optional) couterpart whose name differs from the original (required)
by adding the OnError suffix.

Moreover, every <required ctl template function>OnError() function returns the same values
as the original required function.

This way, any exception that is thrown by the original required function causes call of its
<required ctl template function>OnError() counterpart (e.g., transform() fail may call
transformOnError(), etc.).

In this transformOnError(), any incorrect code can be fixed, error message can be printed to Console, etc.

Important

Remember that these OnError() functions are not called when the original required functions
return Error codes (values less then -1)!

If you want that some OnError() function is called, you need to use a raiseError(string
arg) function. Or (as has already been said) also any exception thrown by original required function
calls its OnError() counterpart.

Go to CTL2 Chapter 65. CTL1

848

Functions

You can define your own functions in the following way:

function functionName (arg1,arg2,...) {
 variableDeclarations
 Statements
 Mappings
 [return [expression]]
}

You must put the return statement at the end. For more information about the return statement see Return
Statement (p. 846). Right before it there can be some Mappings, the variableDeclarations and
Statements must be at the beginning, the variableDeclarations and Statements can even be
interspersed, but you must remember that undeclared and uninitialized variables cannot be used. So we suggest
that first you declare variables and only then specify the Statements.

Message Function

Since CloverETL version 2.8.0, you can also define a function for your own error messages.

function getMessage() {
 return message;
}

This message variable should be declared as a global string variable and defined anywhere in the code so as to
be used in the place where the getMessage() function is located. The message will be written to console.

Go to CTL2 Chapter 65. CTL1

849

Eval

CTL1 offers two functions that enable inline evaluation of a string as if it were CTL code. This way you can
interpret text that is e.g stored somewhere in a database as code.

• eval(string) - executes the string as CTL code

• eval_exp(string) - evaluates the string as a CTL expression (same as in eval(string)) and then
returns the value of the result. The value can be saved to a variable.

When using the functions, keep in mind only valid CTL code should be passed to them. So you have to use proper
identificators and even terminate expressions with a semicolon. The evaluated expression has a limited scope and
cannot see variables declared outside of it.

Example 65.2. Eval() Function Examples

Example 1:

int value = eval_exp("2+5"); // the result of the expression is stored to 'value'

Example 2:

int out; // the variable has to be declared as global

function transform() {

 eval("out = 3 + 5;");
 print_err(out);
 $0.Date := $0.DATE;
 return ALL
}

Go to CTL2 Chapter 65. CTL1

850

Conditional Fail Expression

You can use a conditional fail expression in CTL1.

However, it can only be used for defining a mapping to an output field.

Important

Remember that (in interpreted mode of CTL2) this expression can be used in multiple ways: for
assigning the value to a variable, mapping a value to an output field, or as an argument of a function.

A conditional fail expressions looks like this (for one output field):

expression1 : expression2 : expression3 : ... : expressionN;

The expressions are evaluated one by one, starting from the first expression and going from left to right.

1. As soon as one of these expressions may successfully be mapped to the output field, it is used and the other
expressions are not evaluated.

2. If none of these expressions may be mapped to the output field, graph fails.

Go to CTL2 Chapter 65. CTL1

851

Accessing Data Records and Fields

This section describes the way how the record fields should be worked with. As you know, each component may
have ports. Both input and output ports are numbered starting from 0.

Metadata of connected edges may be identified by names or IDs.

Metadata consist of fields.

Working with Records and Variables

Now we suppose that ID of metadata of an edge connected to the first port (port 0) - independently of whether it
is input or output - is Customers, their name is customers, and their third field (field 2) is firstname.

Following expressions represent the value of the third field (field 2) of the specified metadata:

• $<port number>.<field number>

Example: $0.2

$0.* means all fields on the first port (port 0).

• $<port number>.<field name>

Example: $0.firstname

• $<metadata name>.<field number>

Example: $customers.2

$customers.* means all fields on the first port (port 0).

• $<metadata name>.<field name>

Example: $customers.firstname

For input data following syntax can also be used:

• @<port number>[<field number>]

Example: @0[2]

@0 means the whole input record incoming through the first port (port 0).

• @<metadata name>[<field number>]

Example: @customers[2]

@customers means the whole input record whose metadata name is customers.

Integer variables can also be used for identifying field numbers of input records. When an integer variable is
declared (int index;), following is possible:

• @<port number>[index]

Example: @0[index]

• @<metadata name>[index]

Example: @customers[index]

Go to CTL2 Chapter 65. CTL1

852

Remember that metadata name may be the same for multiple edges.

This way you can also create loops. For example, to print out field values on the first input port you can type:

int i;
for (i=0; i<length(@0); i++){
 print_err(@0[i]);
}

You can also define records in CTL code. Such defitions can look like these:

• record (metadataID) MyCTLRecord;

Example: record (Customers) MyCustomers;

• record (@<port number>) MyCTLRecord;

Example: record (@0) MyCustomers;

This is possible for input ports only.

• record (@<metadata name>) MyCTLRecord;

Example: record (@customers) MyCustomers;

Records from an input edge can be assigned to records declared in CTL in the following way:

• MyCTLRecord = @<port number>;

Example: MyCTLRecord = @0;

Mapping of records to variables looks like this:

• myVariable = $<port number>.<field number>;

Example: FirstName = $0.2;

• myVariable = $<port number>.<field name>;

Example: FirstName = $0.firstname;

• myVariable = $<metadata name>.<field number>;

Example: FirstName = $customers.2;

Remember that metadata names should be unique. Otherwise, use port number instead.

• myVariable = $<metadata name>.<field name>;

Example: FirstName = $customers.firstname;

Remember that metadata names should be unique. Otherwise, use port number instead.

• myVariable = @<port number>[<field number>];

Example: FirstName = @0[2];

• myVariable = @<metadata name>[<field number>];

Example: FirstName = @customers[2];

Remember that metadata names should be unique. Otherwise, use port number instead.

Go to CTL2 Chapter 65. CTL1

853

Mapping of variables to records can look like this:

• $<port number>.<field number> := myVariable;

Example: $0.2 := FirstName;

• $<port number>.<field name> := myVariable;

Example: $0.firstname := FirstName;

• $<metadata name>.<field number> := myVariable;

Example: $customers.2 := FirstName;

• $<metadata name>.<field name> := myVariable;

Example: $customers.firstname := FirstName;

Go to CTL2 Chapter 65. CTL1

854

Mapping

Mapping is a part of each transformation defined in some of the CloverETL components.

Calculated or generated values or values of input fields are assigned (mapped) to output fields.

1. Mapping assigns a value to an output field.

2. Mapping operator is the following:

:=

3. Mapping must always be defined inside a function.

4. Mapping must be defined at the end of the function and may only be followed by one return statement.

5. Remember that you can also wrap a mapping in a user-defined function which would be subsequently used in
any place of another function.

6. You can also map different input metadata to different output metadata by field names.

Mapping of Different Metadata (by Name)

When you map input to output like this:

$0.* := $0.*;

input metadata may even differ from those on the output.

In the expression above, fields of the input are mapped to the fields of the output that have the same name and
type as those of the input. The order in which they are contained in respective metadata and the number of all
fields in either metadata is of no importance.

Example 65.3. Mapping of Metadata by Name

When you have input metadata in which the first two fields are firstname and lastname, each of these
two fields is mapped to its counterpart on the output. Such output firstname field may even be the fifth and
lastname field be the third, but those two fields of the input will be mapped to these two output fields .

Even if input metadata had more fields and output metadata had more fields, such fields would not be mapped to
each other if there did not exist a field with the same name as one of the input fields (independently on the mutual
position of the fields in corresponding metadata).

Important

Metadata fields are mapped from input to output by name and data type independently on their order
and on the number of all fields!

Go to CTL2 Chapter 65. CTL1

855

Use Case 1 - One String Field to Upper Case

To show how mapping works, we provide here a few examples of mappings.

We have a graph with a Reformat component. Metadata on its input and output are identical. First two fields
(field1 and field2) are of string data type, the third (field3) is of integer data type.

1. We want to change the letters of field1 values to upper case while passing the other two fields unchanged
to the output.

2. We also want to distribute records according to the value of field3. Those records in which the value of
field3 is less than 5 should be sent to the output port 0, the others to the output port 1.

Examples of Mapping

As the first possibility, we have the mapping for both ports and all fields defined inside the transform()
function of CTL template.

Example 65.4. Example of Mapping with Individual Fields

The mapping must be defined at the end of a function (the transform() function, in this case) and it may only
be followed by one return statement.

Since we need that the return statement return the number of output port for each record, we must assign it the
corresponding value before the mapping is defined.

Note that the mappings will be performed for all records. In other words, even when the record will go to the
output port 1, also the mapping for output port 0 will be performed, and vice versa.

Moreover, mapping consists of individual fields, which may be complicated in case there are many fields in a
record. In the next examples, we will see how this can be solved in a better way.

//#TL

// declare variable for returned value (number of output port)
int retInt;

function transform() {
 // create returned value whose meaning is the number of output port.
 if ($0.field3 < 5) retInt = 0; else retInt = 1;

 // define mapping for all ports and for each field
 // (each field is mapped separately)
 $0.field1 := uppercase($0.field1);
 $0.field2 := $0.field2;
 $0.field3 := $0.field3;
 $1.field1 := uppercase($0.field1);
 $1.field2 := $0.field2;
 $1.field3 := $0.field3;

 // return the number of output port
 return retInt
}

Go to CTL2 Chapter 65. CTL1

856

As the second possibility, we also have the mapping for both ports and all fields defined inside the transform()
function of CTL template. But now there are wild cards used in the mapping. These passes the records unchanged
to the outputs and after this wildcard mapping the fields that should be changed are specified.

Example 65.5. Example of Mapping with Wild Cards

The mapping must also be defined at the end of a function (the transform() function, in this case) and it may
only be followed by one return statement.

Since we need that return statement returns the number of output port for each record, we must assign it the
corresponding value before the mapping is defined.

Note that mappings will be performed for all records. In other words, even when the record will go to the output
port 1, also the mapping for output port 0 will be performed, and vice versa.

However, now the mapping uses wild cards at first, which passes the records unchanged to the output, but the first
field is changed below the mapping with wild cards.

This is useful when there are many unchanged fields and a few that will be changed.

//#TL

// declare variable for returned value (number of output port)
int retInt;

function transform() {
 // create returned value whose meaning is the number of output port.
 if ($0.field3 < 5) retInt = 0; else retInt = 1;

 // define mapping for all ports and for each field
 // (using wild cards and overwriting one selected field)
 $0.* := $0.*;
 $0.field1 := uppercase($0.field1);
 $1.* := $0.*;
 $1.field1 := uppercase($0.field1);

 // return the number of output port
 return retInt
}

Go to CTL2 Chapter 65. CTL1

857

As the third possibility, we have the mapping for both ports and all fields defined outside the transform()
function of CTL template. Each output port has its own mapping.

Also here, wild cards are used.

The mapping that is defined in separate function for each output port allows the following improvements:

1. Mappings may now be used inside the code in the transform() function! Not only at its end.

2. Mapping is performed only for respective output port! In other words, now there is no need to map record to
the port 1 when it will go to the port 0, and vice versa.

3. And, there is no need of a variable for the number of output port. Number of output port is defined by constants
immediately after corresponding mapping function.

Example 65.6. Example of Mapping with Wild Cards in Separate User-Defined Functions

The mappings must be defined at the end of a function (two separate functions, by one for each output port).

Moreover, mapping uses wild cards at first, which passes the records unchanged to the output, but the first field
is changed below the mapping with wild card. This is of use when there are many unchanged fields and a few
that will be changed.

//#TL

// define mapping for each port and for each field
// (using wild cards and overwriting one selected field)
// inside separate functions
function mapToPort0 () {
 $0.* := $0.*;
 $0.field1 := uppercase($0.field1);
}

function mapToPort1 () {
 $1.* := $0.*;
 $1.field1 := uppercase($0.field1);
}

// use mapping functions for all ports in the if statement
function transform() {
 if ($0.field3 < 5) {
 mapToPort0();
 return 0
 }
 else {
 mapToPort1();
 return 1
 }
}

Go to CTL2 Chapter 65. CTL1

858

Use Case 2 - Two String Fields to Upper Case

We have a graph with a Reformat component. Metadata on its input and output are identical. First two fields
(field1 and field2) are of string data type, the third (field3) is of integer data type.

1. We want to change the letters of both the field1 and the field2 values to upper case while passing the
last field (field3) unchanged to the output.

2. We also want to distribute records according to the value of field3. Those records in which the value of
field3 is less than 5 should be sent to the output port 0, the others to the output port 1.

Go to CTL2 Chapter 65. CTL1

859

Example 65.7. Example of Successive Mapping in Separate User-Defined Functions
Mapping is defined in two separate user-defined functions. The first of them maps the first input field to both
output ports. The second maps the other fields to both output fields.

Note that these functions now accept one input parameter of string data type - valueString.

In the transformation, a CTL record varibale is declared. Input record is mapped to it and the record is used in
the foreach loop.

Remember that the number of output port is defined in the if that follows the code with the mapping functions.

//#TL

string myString;
string newString;
string valueString;

// declare the count variable for counting string fields
int count;

// declare CTL record for the foreach loop
record (@0) CTLRecord;

// declare mapping for field 1
function mappingOfField1 (valueString) {
 $0.field1 := valueString;
 $1.field1 := valueString;
}

// declare mapping for field 2 and 3
function mappingOfField2and3 (valueString) {
 $0.field2 := valueString;
 $1.field2 := valueString;
 $0.field3 := $0.field3;
 $1.field3 := $0.field3;
}

function transform() {

 // count is initialized for each record
 count = 0;

 // input record is assigned to CTL record
 CTLRecord = @0;

 // value of each string field is changed to upper case letters
 foreach (myString : CTLRecord) {
 newString = uppercase(myString);
 // count variable counts the string fields in the record
 count++;

 // mapping is used for fields 1 and the other fields - 2 and 3
 switch (count) {
 case 1 : mappingOfField1(newString);
 case 2 : mappingOfField2and3(newString);
 }
 }

 // output port is selected based on the return value
 if($0.field3 < 5) return 0 else return 1
}

Go to CTL2 Chapter 65. CTL1

860

Parameters

The parameters can be used in Clover transformation language in the following way:
${nameOfTheParameter}. If you want such a parameter is considered a string data type, you must surround
it by single or double quotes like this: '${nameOfTheParameter}' or "${nameOfTheParameter}".

Important

1. Remember that escape sequences are always resolved as soon as they are assigned to parameters.
For this reason, if you want that they are not resolved, type double backslashes in these strings
instead of single ones.

2. Remember also that you can get the values of environment variables using parameters. To learn
how to do it, see Environment Variables (p. 222).

Go to CTL2 Chapter 65. CTL1

861

Functions Reference

Clover transformation language has at its disposal a set of functions you can use. We describe them here.

All functions can be grouped into following categories:

• Conversion Functions (p. 862)

• Date Functions (p. 867)

• Mathematical Functions (p. 870)

• String Functions (p. 874)

• Miscellaneous Functions (p. 884)

• Dictionary Functions (p. 886)

• Lookup Table Functions (p. 887)

• Sequence Functions (p. 889)

• Custom CTL Functions (p. 890)

Important

Remember that if you set the Null value property in metadata for any string data field to any
non-empty string, any function that accept string data field as an argument and throws NPE when
applied on null (e.g., length()), it will throw NPE when applied on such specific string.

For example, if field1 has Null value property set to "<null>", length($0.field1) will
fail on the records in which the value of field1 is "<null>" and it will be 0 for empty field.

See Null value (p. 163) for detailed information.

Go to CTL2 Chapter 65. CTL1

862

Conversion Functions

Sometimes you need to convert values from one data type to another.

In the functions that convert one data type to another, sometimes a format pattern of a date or any number must
be defined. Also locale can have an influence to their formatting.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about formatting and/or parsing of any numeric data type see Numeric Format (p. 120).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of these functions:

• bytearray base64byte(string arg);

The base64byte(string) function takes one string argument in base64 representation and converts it
to an array of bytes. Its counterpart is the byte2base64(bytearray) function.

• string bits2str(bytearray arg);

The bits2str(bytearray) function takes an array of bytes and converts it to a string consisting of two
characters: "0" or "1". Each byte is represented by eight characters ("0" or "1"). For each byte, the lowest bit
is at the beginning of these eight characters. The counterpart is the str2bits(string) function.

• int bool2num(boolean arg);

The bool2num(boolean) function takes one boolean argument and converts it to either integer 1 (if the
argument is true) or integer 0 (if the argument is false). Its counterpart is the num2bool(<numeric type>)
function.

• <numeric type> bool2num(boolean arg, typename <numeric type>);

The bool2num(boolean, typename) function accepts two arguments: the first is boolean and the other
is the name of any numeric data type. It takes them and converts the first argument to the corresponding 1 or 0
in the numeric representation specified by the second argument. The return type of the function is the same
as the second argument. Its counterpart is the num2bool(<numeric type>) function.

• string byte2base64(bytearray arg);

The byte2base64(bytearray) function takes an array of bytes and converts it to a string in base64
representation. Its counterpart is the base64byte(string) function.

• string byte2hex(bytearray arg);

The byte2hex(bytearray) function takes an array of bytes and converts it to a string in hexadecimal
representation. Its counterpart is the hex2byte(string) function.

Go to CTL2 Chapter 65. CTL1

863

• long date2long(date arg);

The date2long(date) function takes one date argument and converts it to a long type. Its value is equal to
the the number of milliseconds elapsed from January 1, 1970, 00:00:00 GMT to the date specified
as the argument. Its counterpart is the long2date(long) function.

• int date2num(date arg, unit timeunit);

The date2num(date, unit) function accepts two arguments: the first is date and the other is any time
unit. The unit can be one of the following: year, month, week, day, hour, minute, second, millisec.
The unit must be specified as a constant. It can neither be received through an edge nor set as variable. The
function takes these two arguments and converts them to an integer. If the time unit is contained in the date, it is
returned as an integer number. If it is not contained, the function returns 0. Remember that months are numbered
starting from 0. Thus, date2num(2008-06-12, month) returns 5. And date2num(2008-06-12,
hour) returns 0.

• string date2str(date arg, string pattern);

The date2str(date, string) function accepts two arguments: date and string. The function
takes them and converts the date according to the pattern specified as the second argument.
Thus, date2str(2008-06-12, "dd.MM.yyyy") returns the following string: "12.6.2008". Its
counterpart is the str2date(string, string) function.

• string get_field_name(record argRecord, integer index);

The get_field_name(record, integer) function accepts two arguments: record and integer. The
function takes them and returns the name of the field with the specified index. Fields are numbered starting
from 0.

• string get_field_type(record argRecord, integer index);

The get_field_type(record, integer) function accepts two arguments: record and integer. The
function takes them and returns the type of the field with the specified index. Fields are numbered starting from 0.

• bytearray hex2byte(string arg);

The hex2byte(string) function takes one string argument in hexadecimal representation and converts
it to an array of bytes. Its counterpart is the byte2hex(bytearray) function.

• date long2date(long arg);

The long2date(long) function takes one long argument and converts it to a date. It adds the argument
number of milliseconds to January 1, 1970, 00:00:00 GMT and returns the result as a date. Its
counterpart is the date2long(date) function.

• bytearray long2pacdecimal(long arg);

The long2pacdecimal(long) function takes one argument of long data type and returns its value in the
representation of packed decimal number. It is the counterpart of the pacdecimal2long(bytearray)
function.

• bytearray md5(bytearray arg);

The md5(bytearray) function accepts one argument consisting of an array of bytes. It takes this argument
and calculates its MD5 hash value.

• bytearray md5(string arg);

The md5(string) function accepts one argument of string data type. It takes this argument and calculates
its MD5 hash value.

Go to CTL2 Chapter 65. CTL1

864

• boolean num2bool(<numeric type> arg);

The num2bool(<numeric type>) function takes one argument of any numeric data type representing 1
or 0 and returns boolean true or false, respectively.

• <numeric type> num2num(<numeric type> arg, typename <numeric type>);

The num2num(<numeric type>, typename) function accepts two arguments: the first is of any numeric
data type and the second is the name of any numeric data type. It takes them and converts the first argument value
to that of the numeric type specified as the second argument. The return type of the function is the same as the
second argument. The conversion is successful only if it is possible without any loss of information, otherwise
the function throws exception. Thus, num2num(25.4, int) throws exception, whereas num2num(25.0,
int) returns 25.

• string num2str(<numeric type> arg);

The num2str(<numeric type>) function takes one argument of any numeric data type and converts it
to its string representation. Thus, num2str(20.52) returns "20.52".

• string num2str(<numeric type> arg, int radix);

The num2str(<numeric type>, int) function accepts two arguments: the first is of any numeric data
type and the second is integer. It takes these two arguments and converts the first to its string representation in
the radix based numeric system. Thus, num2str(31, 16) returns "1F".

• string num2str(<numeric type> arg, string format);

The num2str(<numeric type>, string) function accepts two arguments: the first is of any numeric
data type and the second is string. It takes these two arguments and converts the first to its string representation
using the format specified as the second argument.

• long pacdecimal2long(bytearray arg);

The pacdecimal2long(bytearray) function takes one argument of an array of bytes whose meaning is
the packed decimal representation of a long number. It returns its value as long data type. It is the counterpart
of the long2pacdecimal(long) function.

• bytearray sha(bytearray arg);

The sha(bytearray) function accepts one argument consisting of an array of bytes. It takes this argument
and calculates its SHA hash value.

• bytearray sha(string arg);

The sha(string) function accepts one argument of string data type. It takes this argument and calculates
its SHA hash value.

• bytearray str2bits(string arg);

The str2bits(string) function takes one string argument and converts it to an array of bytes. Its
counterpart is the bits2str(bytearray) function. The string consists of the following characters: Each
of them can be either "1" or it can be any other character. In the string, each character "1" is converted to
the bit 1, all other characters (not only "0", but also "a", "z", "/", etc.) are converted to the bit 0. If the
number of characters in the string is not an integral multiple of eight, the string is completed by "0" characters
from the right. Then, the string is converted to an array of bytes as if the number of its characters were integral
multiple of eight.

• boolean str2bool(string arg);

The str2bool(string) function takes one string argument and converts it to the corresponding boolean
value. The string can be one of the following: "TRUE", "true", "T", "t", "YES", "yes", "Y", "y", "1",

Go to CTL2 Chapter 65. CTL1

865

"FALSE", "false", "F", "f", "NO", "no", "N", "n", "0". The strings are converted to boolean true
or boolean false.

• date str2date(string arg, string pattern);

The str2date(string, string) function accepts two string arguments. It takes them and converts
the first string to the date according to the pattern specified as the second argument. The pattern must
correspond to the structure of the first argument. Thus, str2date("12.6.2008", "dd.MM.yyyy")
returns the following date: 2008-06-12.

• date str2date(string arg, string pattern, string locale, boolean lenient);

The str2date(string, string, string, boolean) function accepts three string arguments
and one boolean. It takes the arguments and converts the first string to the date according to the pattern
specified as the second argument. The pattern must correspond to the structure of the first argument. Thus,
str2date("12.6.2008", "dd.MM.yyyy") returns the following date: 2008-06-12 . The third
argument defines the locale for the date. The fourth argument specify whether date interpretation should be
lenient (true) or not (false). If it is true, the function tries to make interpretation of the date even if it does not
match locale and/or pattern. If this function has three arguments only, the third one is interpreted as locale (if
it is string) or lenient (if it is boolean).

• <numeric type> str2num(string arg);

The str2num(string) function takes one string argument and converts it to the corresponding numeric
value. Thus, str2num("0.25") returns 0.25 if the function is declared with double return type, but the
same throws exception if it is declared with integer return type. The return type of the function can be any
numeric type.

• <numeric type> str2num(string arg, typename <numeric type>);

The str2num(string, typename) function accepts two arguments: the first is string and the second is the
name of any numeric data type. It takes the first argument and returns its corresponding value in the numeric
data type specified by the second argument. The return type of the function is the same as the second argument.

• <numeric type> str2num(string arg, typename <numeric type>, int radix);

The str2num(string, typename, int) function accepts three arguments: string, the name of any
numeric data type and integer. It takes the first argument as if it were expressed in the radix based numeric
system representation and returns its corresponding value in the numeric data type specified as the second
argument. The return type is the same as the second argument. The third argument can be 10 or 16 for
number data type as the second argument (however, radix does not need to be specified as the form of the
string alone determines whether the string is decimal or hexadecimal string representation of a number), 10
for decimal type as the second argument and any integer number between Character.MIN_RADIX and
Character.MAX_RADIX for int and long types as the second argument.

• <numeric type> str2num(string arg, typename <numeric type>, string format);

The str2num(string, typename, string) function accepts three arguments. The first is a string
that should be converted to the number, the second is the name of the return numeric data type and the third
is the format of the string representation of a number used in the first argument. The type name specified as
the second argument can neither be received through the edge nor be defined as variable. It must be specified
directly in the function. The function takes the first argument, compares it with the format using system value
locale and returns the numeric value of data type specified as the second argument.

• <numeric type> str2num(string arg, typename <numeric type>, string format,
string locale);

The str2num(string, typename, string, string) function accepts four arguments. The first
is a string that should be converted to the number, the second is the name of the return numeric data type, the
third is the format of the string representation of a number used in the first argument and the fourth is the locale

Go to CTL2 Chapter 65. CTL1

866

that should be used when applying the format. The type name specified as the second argument can neither be
received through the edge nor be defined as variable. It must be specified directly in the function. The function
takes the first argument, compares it with the format using the locale at the same time and returns the numeric
value of data type specified as the second argument.

• string to_string(<any type> arg);

The to_string(<any type>) function takes one argument of any data type and converts it to its string
representation.

• returndatatype try_convert(<any type> from, typename returndatatype);

The try_convert(<any type>, typename) function accepts two arguments: the first is of any data
type and the second is the name of any other data type. The name of the second argument can neither be received
through the edge nor be defined as variable. It must be specified directly in the function. The function takes
these arguments and tries to convert the first argument to specified data type. If the conversion is possible,
the function converts the first argument to data type specified as the second argument. If the conversion is not
possible, the function returns null.

• date try_convert(string from, datetypename date, string format);

The try_convert(string, nameofdatedatatype, string) function accepts three arguments:
the first is of string data type, the second is the name of date data type and the third is a format of the first
argument. The date word specified as the second argument can neither be received through the edge nor be
defined as variable. It must be specified directly in the function. The function takes these arguments and tries
to convert the first argument to a date. If the string specified as the first argument corresponds to the form of
the third argument, conversion is possible and a date is returned. If the conversion is not possible, the function
returns null.

• string try_convert(date from, stringtypename string, string format);

The try_convert(date, nameofstringdatatype, string) function accepts three arguments:
the first is of date data type, the second is the name of string data type and the third is a format of a string
representation of a date. The string word specified as the second argument can neither be received through the
edge nor be defined as variable. It must be specified directly in the function. The function takes these arguments
and converts the first argument to a string in the form specified by the third argument.

• boolean try_convert(<any type> from, <any type> to, string pattern);

The try_convert(<any type>, <any type>, string) function accepts three arguments: two are
of any data type, the third is string. The function takes these arguments, tries convert the first argument to the
second. If the conversion is successful, the second argument receives the value from the first argument. And the
function returns boolean true. If the conversion is not successful, the function returns boolean false and the first
and second arguments retain their original values. The third argument is optional and it is used only if any of the
first two arguments is string. For example, try_convert("27.5.1942", dateA, "dd.MM.yyyy")
returns true and dateA gets the value of the 27 May 1942.

Go to CTL2 Chapter 65. CTL1

867

Date Functions

When you work with date, you may use the functions that process dates.

In these functions, sometimes a format pattern of a date or any number must be defined. Also locale can have an
influence to their formatting.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of the functions:

• date dateadd(date arg, <numeric type> amount, unit timeunit);

The dateadd(date, <numeric type>, unit) function accepts three arguments: the first is date, the
second is of any numeric data type and the last is any time unit. The unit can be one of the following: year,
month, week, day, hour, minute, second, millisec. The unit must be specified as a constant. It can
neither be received through an edge nor set as variable. The function takes the first argument, adds the amount
of time units to it and returns the result as a date. The amount and time unit are specified as the second and
third arguments, respectively.

• int datediff(date later, date earlier, unit timeunit);

The datediff(date, date, unit) function accepts three arguments: two dates and one time unit. It
takes these arguments and subtracts the second argument from the first argument. The unit can be one of the
following: year, month, week, day, hour, minute, second, millisec. The unit must be specified as
a constant. It can be neither received through an edge nor set as variable. The function returns the resulting
time difference expressed in time units specified as the third argument. Thus, the difference of two dates is
expressed in defined time units. The result is expressed as an integer number. Thus, date(2008-06-18,
2001-02-03, year) returns 7. But, date(2001-02-03, 2008-06-18, year) returns -7!

• date random_date(date startDate, date endDate);

The random_date(date, date) function accepts two date arguments and returns a random date between
startDate and endDate. These resulting dates are generated at random for different records and different
fields. They can be different for both records and fields. The return value can also be startDate or endDate.
However, it cannot be the date before startDate nor after endDate. Remember that dates represent 0 hours
and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you want that endDate could be
returned, enter the next date as endDate. As locale, system value is used. The default format is specified
in the defaultProperties file.

• date random_date(date startDate, date endDate, long randomSeed);

The random_date(date, date, long) function accepts two date arguments and one long argument
and returns a random date between startDate and endDate. These resulting dates are generated at random
for different records and different fields. They can be different for both records and fields. The return value can
also be startDate or endDate. However, it cannot be the date before startDate nor after endDate.
Remember that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day,
thus, if you want that endDate could be returned, enter the next date as endDate. As locale, system value

Go to CTL2 Chapter 65. CTL1

868

is used. The default format is specified in the defaultProperties file. The third argument ensures that
the generated values remain the same upon each run of the graph. The generated values can only be changed
by changing the randomSeed value.

• date random_date(date startDate, date endDate, string format);

The random_date(date, date, string) function accepts two date arguments and one string argument
and returns a random date between startDate and endDate corresponding to the format specified by
the third argument. These resulting dates are generated at random for different records and different fields.
They can be different for both records and fields. The return value can also be startDate or endDate.
However, it cannot be the date before startDate nor after endDate. Remember that dates represent 0 hours
and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you want that endDate could be
returned, enter the next date as endDate. As locale, system value is used.

• date random_date(date startDate, date endDate, string format, long
randomSeed);

The random_date(date, date, string, long) function accepts two date arguments, one string
and one long arguments and returns a random date between startDate and endDate corresponding to the
format specified by the third argument. These resulting dates are generated at random for different records
and different fields. They can be different for both records and fields. The return value can also be startDate
or endDate. However, it cannot be the date before startDate nor after endDate. Remember that dates
represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you want that
endDate could be returned, enter the next date as endDate. As locale, system value is used. The fourth
argument ensures that the generated values remain the same upon each run of the graph. The generated values
can only be changed by changing the randomSeed value.

• date random_date(date startDate, date endDate, string format, string
locale);

The random_date(date, date, string, string) function accepts two date arguments and two
string arguments and returns a random date between startDate and endDate. These resulting dates are
generated at random for different records and different fields. They can be different for both records and
fields. The return value can also be startDate or endDate corresponding to the format and the locale
specified by the third and the fourth argument, respectively. However, it cannot be the date before startDate
nor after endDate. Remember that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of
the specified day, thus, if you want that endDate could be returned, enter the next date as endDate.

• date random_date(date startDate, date endDate, string format, string locale,
long randomSeed);

The random_date(date, date, string, string, long) function accepts two date arguments,
two strings and one long argument returns a random date between startDate and endDate. These resulting
dates are generated at random for different records and different fields. They can be different for both records
and fields. The return value can also be startDate or endDate corresponding to the format and the
locale specified by the third and the fourth argument, respectively. However, it cannot be the date before
startDate nor after endDate. Remember that dates represent 0 hours and 0 minutes and 0 seconds and
0 milliseconds of the specified day, thus, if you want that endDate could be returned, enter the next date as
endDate. The fifth argument ensures that the generated values remain the same upon each run of the graph.
The generated values can only be changed by changing the randomSeed value.

• date today();

The today() function accepts no argument and returns current date and time.

• date trunc(date arg);

The trunc(date) function takes one date argument and returns the date with the same year, month and day,
but hour, minute, second and millisecond are set to 0.

Go to CTL2 Chapter 65. CTL1

869

• long trunc(<numeric type> arg);

The trunc(<numeric type>) function takes one argument of any numeric data type and returns its
truncated long value.

• null trunc(list arg);

The trunc(list) function takes one list argument, empties its values and returns null.

• null trunc(map arg);

The trunc(map) function takes one map argument, empties its values and returns null.

• date trunc_date(date arg);

The trunc_date(date) function takes one date argument and returns the date with the same hour, minute,
second and millisecond, but year, month and day are set to 0. The 0 date is 1970-01-01.

Go to CTL2 Chapter 65. CTL1

870

Mathematical Functions

You may also want to use some mathematical functions:

• <numeric type> abs(<numeric type> arg);

The abs(<numeric type>) function takes one argument of any numeric data type and returns its absolute
value.

• long bit_and(<numeric type> arg1, <numeric type> arg2);

The bit_and(<numeric type>, <numeric type>) function accepts two arguments of any numeric
data type. It takes integer parts of both arguments and returns the number corresponding to the bitwise and.
(For example, bit_and(11,7) returns 3.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can
be expressed as 111, thus the result is 11 what corresponds to decimal 3. Return data type is long, but if it is
sent to other numeric data type, it is expressed in its numeric representation.

• long bit_invert(<numeric type> arg);

The bit_invert(<numeric type>) function accepts one argument of any numeric data type. It takes
its integer part and returns the number corresponding to its bitwise inverted number. (For example,
bit_invert(11) returns -12.) The function inverts all bits in an argument. Return data type is long, but
if it is sent to other numeric data type, it is expressed in its numeric representation.

• boolean bit_is_set(<numeric type> arg, <numeric type> Index);

The bit_is_set(<numeric type>, <numeric type>) function accepts two arguments of any
numeric data type. It takes integer parts of both arguments, determines the value of the bit of the first
argument located on the Index and returns true or false, if the bit is 1 or 0, respectively. (For example,
bit_is_set(11,3) returns true.) As decimal 11 can be expressed as bitwise 1011, the bit whose index
is 3 (the fourth from the right) is 1, thus the result is true. And bit_is_set(11,2) would return false.

• long bit_lshift(<numeric type> arg, <numeric type> Shift);

The bit_lshift(<numeric type>, <numeric type>) function accepts two arguments of any
numeric data type. It takes integer parts of both arguments and returns the number corresponding to the original
number with some bits added (Shift number of bits on the left side are added and set to 0.) (For example,
bit_lshift(11,2) returns 44.) As decimal 11 can be expressed as bitwise 1011, thus the two bits on
the right side (10) are added and the result is 101100 which corresponds to decimal 44. Return data type is
long, but if it is sent to other numeric data type, it is expressed in its numeric data type.

• long bit_or(<numeric type> arg1, <numeric type> arg2);

The bit_or(<numeric type>, <numeric type>) function accepts two arguments of any numeric
data type. It takes integer parts of both arguments and returns the number corresponding to the bitwise or. (For
example, bit_or(11,7) returns 15.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can be
expressed as 111, thus the result is 1111 what corresponds to decimal 15. Return data type is long, but if it
is sent to other numeric data type, it is expressed in its numeric data type.

• long bit_rshift(<numeric type> arg, <numeric type> Shift);

The bit_rshift(<numeric type>, <numeric type>) function accepts two arguments of any
numeric data type. It takes integer parts of both arguments and returns the number corresponding to the
original number with some bits removed (Shift number of bits on the right side are removed.) (For example,
bit_rshift(11,2) returns 2.) As decimal 11 can be expressed as bitwise 1011, thus the two bits on the
right side are removed and the result is 10 what corresponds to decimal 2. Return data type is long, but if it
is sent to other numeric data type, it is expressed in its numeric data type.

Go to CTL2 Chapter 65. CTL1

871

• long bit_set(<numeric type> arg1, <numeric type> Index, boolean SetBitTo1);

The bit_set(<numeric type>, <numeric type>, boolean) function accepts three arguments.
The first two are of any numeric data type and the third is boolean. It takes integer parts of the first two
arguments, sets the value of the bit of the first argument located on the Index specified as the second argument
to 1 or 0, if the third argument is true or false, respectively, and returns the result as a long value. (For
example, bit_set(11,3,false) returns 3.) As decimal 11 can be expressed as bitwise 1011, the bit
whose index is 3 (the fourth from the right) is set to 0, thus the result is 11 what corresponds to decimal 3. And
bit_set(11,2,true) would return 1111 what corresponds to decimal 15. Return data type is long, but
if it is sent to other numeric data type, it is expressed in its numeric data type.

• long bit_xor(<numeric type> arg, <numeric type> arg);

The bit_xor(<numeric type>, <numeric type>) function accepts two arguments of any numeric
data type. It takes integer parts of both arguments and returns the number corresponding to the bitwise
exclusive or. (For example, bit_or(11,7) returns 12.) As decimal 11 can be expressed as bitwise
1011, decimal 7 can be expressed as 111, thus the result is 1100 what corresponds to decimal 15. Return
data type is long, but if it is sent to other numeric data type, it is expressed in its numeric data type.

• number e();

The e() function accepts no argument and returns the Euler number.

• number exp(<numeric type> arg);

The exp(<numeric type>) function takes one argument of any numeric data type and returns the result
of the exponential function of this argument.

• number log(<numeric type> arg);

The log(<numeric type>) takes one argument of any numeric data type and returns the result of the
natural logarithm of this argument.

• number log10(<numeric type> arg);

The log10(<numeric type>) function takes one argument of any numeric data type and returns the result
of the logarithm of this argument to the base 10.

• number pi();

The pi() function accepts no argument and returns the pi number.

• number pow(<numeric type> base, <numeric type> exp);

The pow(<numeric type>, <numeric type>) function takes two arguments of any numeric data
types (that do not need to be the same) and returns the exponential function of the first argument as the exponent
with the second as the base.

• number random();

The random() function accepts no argument and returns a random positive double greater than or equal to
0.0 and less than 1.0.

• number random(long randomSeed);

The random(long) function accepts one argument of long data type and returns a random positive double
greater than or equal to 0.0 and less than 1.0. The argument ensures that the generated values remain the same
upon each run of the graph. The generated values can only be changed by changing the randomSeed value.

Go to CTL2 Chapter 65. CTL1

872

• boolean random_boolean();

The random_boolean() function accepts no argument and generates at random boolean values true or
false. If these values are sent to any numeric data type field, they are converted to their numeric representation
automatically (1 or 0, respectively).

• boolean random_boolean(long randomSeed);

The random_boolean(long) function accepts one argument of long data type and generates at random
boolean values true or false. If these values are sent to any numeric data type field, they are converted
to their numeric representation automatically (1 or 0, respectively). The argument ensures that the generated
values remain the same upon each run of the graph. The generated values can only be changed by changing
the randomSeed value.

• <numeric type> random_gaussian();

The random_gaussian() function accepts no argument and generates at random both positive and negative
values of return numeric data type in a Gaussian distribution.

• <numeric type> random_gaussian(long randomSeed);

The random_gaussian(long) function accepts one argument of long data type and generates at random
both positive and negative values of return numeric data type in a Gaussian distribution. The argument ensures
that the generated values remain the same upon each run of the graph. The generated values can only be changed
by changing the randomSeed value.

• int random_int();

The random_int() function accepts no argument and generates at random both positive and negative integer
values.

• int random_int(long randomSeed);

The random_int(long) function accepts one argument of long data type and generates at random both
positive and negative integer values. The argument ensures that the generated values remain the same upon each
run of the graph. The generated values can only be changed by changing the randomSeed value.

• int random_int(int Minimum, int Maximum);

The random_int(int, int) function accepts two argument of integer data types and returns a random
integer value greater than or equal to Minimum and less than or equal to Maximum.

• int random_int(int Minimum, int Maximum, long randomSeed);

The random_int(int, int, long) function accepts three arguments. The first two are of integer data
types and the third is long. The function takes them and returns a random integer value greater than or equal to
Minimum and less than or equal to Maximum. The third argument ensures that the generated values remain the
same upon each run of the graph. The generated values can only be changed by changing the randomSeed
value.

• long random_long();

The random_long() function accepts no argument and generates at random both positive and negative long
values.

• long random_long(long randomSeed);

The random_long(long) function accepts one argument of long data type and generates at random both
positive and negative long values. The argument ensures that the generated values remain the same upon each
run of the graph. The generated values can only be changed by changing the randomSeed value.

Go to CTL2 Chapter 65. CTL1

873

• long random_long(long Minimum, long Maximum);

The random_long(long, long) function accepts two argument of long data types and returns a random
long value greater than or equal to Minimum and less than or equal to Maximum.

• long random_long(long Minimum, long Maximum, long randomSeed);

The random_long(long, long, long) function accepts three arguments of long data types and returns
a random long value greater than or equal to Minimum and less than or equal to Maximum. The argument
ensures that the generated values remain the same upon each run of the graph. The generated values can only
be changed by changing the randomSeed value.

• long round(<numeric type> arg);

The round(<numeric type>) function takes one argument of any numeric data type and returns the long
that is closest to this argument.

• number sqrt(<numeric type> arg);

The sqrt(<numeric type>) function takes one argument of any numeric data type and returns the square
root of this argument.

Go to CTL2 Chapter 65. CTL1

874

String Functions

Some functions work with strings.

In the functions that work with strings, sometimes a format pattern of a date or any number must be defined.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about formatting and/or parsing of any numeric data type see Numeric Format (p. 120).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of the functions:

• string char_at(string arg, <numeric type> index);

The char_at(string, <numeric type>) function accepts two arguments: the first is string and the
other is of any numeric data type. It takes the string and returns the character that is located at the position
specified by the index.

• string chop(string arg);

The chop(string) function accepts one string argument. The function takes this argument, removes the line
feed and the carriage return characters from the end of the string specified as the argument and returns the new
string without these characters.

• string chop(string arg1, string arg2);

The chop(string, string) function accepts two string arguments. It takes the first argument, removes
the string specified as the second argument from the end of the first argument and returns the first string argument
without the string specified as the second argument.

• string concat(<any type> arg1,, <any type> argN);

The concat(<any type>, ..., <any type>) function accepts unlimited number of arguments of any
data type. But they do not need to be the same. It takes these arguments and returns their concatenation. If some
arguments are not strings, they are converted to their string representation before the concatenation is done. You
can also concatenate these arguments using plus signs, but this function is faster for more than two arguments.

• int count_char(string arg, string character);

The count_char(string, string) function accepts two arguments: the first is string and the second
is one character. It takes them and returns the number of occurrence of the character specified as the second
argument in the string specified as the first argument.

• list cut(string arg, list list);

The cut(string, list) function accepts two arguments: the first is string and the second is list of numbers.
The function returns a list of strings. The number of elements of the list specified as the second argument
must be even. The integer part of each pair of such adjacent numbers of the list argument serve as position
(each number in the odd position) and length (each number in the even position). Substrings of the specified

Go to CTL2 Chapter 65. CTL1

875

length are taken from the string specified as the first argument starting from the specified position (excluding
the character at the specified position). The resulting substrings are returned as list of strings. For example,
cut("somestringasanexample",[2,3,1,5]) returns ["mes","omest"].

• int edit_distance(string arg1, string arg2);

The edit_distance(string, string) function accepts two string arguments. These strings will be
compared to each other. The strength of comparison is 4 by default, the default value of locale for comparison
is the system value and the maximum difference is 3 by default.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the two arguments to
the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

• int edit_distance(string arg1, string arg2, string locale);

The edit_distance(string, string, string) function accepts three arguments. The first two are
strings that will be compared to each other and the third (string) is the locale that will be used for comparison.
The default strength of comparison is 4. The maximum difference is 3 by default.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• int edit_distance(string arg1, string arg2, int strength);

The edit_distance(string, string, int) function accepts three arguments. The first two are
strings that will be compared to each other and the third (integer) is the strength of comparison. The default
locale that will be used for comparison is the system value. The maximum difference is 3 by default.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

• int edit_distance(string arg1, string arg2, int strength, string locale);

The edit_distance(string, string, int, string) function accepts four arguments. The first
two are strings that will be compared to each other, the third (integer) is the strength of comparison and the
fourth (string) is the locale that will be used for comparison. The maximum difference is 3 by default.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Go to CTL2 Chapter 65. CTL1

876

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• int edit_distance(string arg1, string arg2, string locale, int
maxDifference);

The edit_distance(string, string, string, int) function accepts four arguments. The first
two are strings that will be compared to each other, the third (string) is the locale that will be used for comparison
and the fourth (integer) is the maximum difference. The strength of comparison is 4 by default.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• int edit_distance(string arg1, string arg2, int strength, int
maxDifference);

The edit_distance(string, string, int, int) function accepts four arguments. The first two
are strings that will be compared to each other and the two others are both integers. These are the strength of
comparison (third argument) and the maximum difference (fourth argument). The locale is the default system
value.

(For more details, see another version of the edit_distance() function below - the
edit_distance(string, string, int, string, int) function.)

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

• int edit_distance(string arg1, string arg2, int strength, string locale,
int maxDifference);

The edit_distance(string, string, int, string, int) function accepts five arguments.
The first two are strings, the three others are integer, string and integer, respectively. The function takes the first
two arguments and compares them to each other using the other three arguments.

The third argument (integer number) specifies the strength of comparison. It can have any value from 1 to 4.

If it is 4 (identical comparison), that means that only identical letters are considered equal. In case of 3 (tertiary
comparison), that means that upper and lower cases are considered equal. If it is 2 (secondary comparison), that
means that letters with diacritical marks are considered equal. And, if the strength of comparison is 1 (primary
comparison), that means that even the letters with some specific signs are considered equal. In other versions
of the edit_distance() function where this strength of comparison is not specified, the number 4 is used
as the default strength (see above).

The fourth argument is of string data type. It is the locale that serves for comparison. If no locale is specified in
other versions of the edit_distance() function, its default value is the system value (see above).

The fifth argument (integer number) means the number of letters that should be changed to transform one of
the first two arguments to the other. If other version of the edit_distance() function does not specify this
maximum difference, as the default maximum difference is accepted the number 3 (see above).

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Go to CTL2 Chapter 65. CTL1

877

changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

Actually the function is implemented for the following locales: CA, CZ, ES, DA, DE, ET, FI, FR, HR, HU, IS,
IT, LT, LV, NL, NO, PL, PT, RO, SK, SL, SQ, SV, TR.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• list find(string arg, string regex);

The find(string, string) function accepts two string arguments. The second one is regular
expression (p. 964). The function takes them and returns a list of substrings corresponding to the regex pattern
that are found in the string specified as the first argument.

• string get_alphanumeric_chars(string arg);

The get_alphanumeric_chars(string) function takes one string argument and returns only letters
and digits contained in the string argument in the order of their appearance in the string. The other characters
are removed.

• string get_alphanumeric_chars(string arg, boolean takeAlpha, boolean
takeNumeric);

The get_alphanumeric_chars(string, boolean, boolean) function accepts three arguments:
one string and two booleans. It takes them and returns letters and/or digits if the second and/or the third
arguments, respectively, are set to true.

• int index_of(string arg, string substring);

The index_of(string, string) function accepts two strings. It takes them and returns the index of the
first appearance of substring in the string specified as the first argument.

• int index_of(string arg, string substring, int fromIndex);

The index_of(string, string, int) function accepts three arguments: two strings and one integer.
It takes them and returns the index of the first appearance of substring counted from the character located
at the position specified by the third argument.

• boolean is_ascii(string arg);

The is_ascii(string) function takes one string argument and returns a boolean value depending on
whether the string can be encoded as an ASCII string (true) or not (false).

• boolean is_blank(string arg);

The is_blank(string) function takes one string argument and returns a boolean value depending on
whether the string contains only white space characters (true) or not (false).

• boolean is_date(string arg, string pattern);

The is_date(string, string) function accepts two string arguments. It takes them, compares the first
argument with the second as a pattern and, if the first string can be converted to a date which is valid within
system value of locale, according to the specified pattern, the function returns true. If it is not possible,
it returns false.

(For more details, see another version of the is_date() function below - the is_date(string,
string, string, boolean) function.)

This function is a variant of the mentioned is_date(string, string, string, boolean) function
in which the default value of the third argument is set to system value and the fourth argument is set to false
by default.

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Go to CTL2 Chapter 65. CTL1

878

• boolean is_date(string arg, string pattern, string locale);

The is_date(string, string, string) function accepts three string arguments. It takes them,
compares the first argument with the second as a pattern, use the third argument (locale) and, if the first string
can be converted to a date which is valid within specified locale, according to the specified pattern, the
function returns true. If it is not possible, it returns false.

(For more details, see another version of the is_date() function below - the is_date(string,
string, string, boolean) function.)

This function is a variant of the mentioned is_date(string, string, string, boolean) function
in which the default value of the fourth argument (lenient) is set to false by default.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• boolean is_date(string arg, string pattern, boolean lenient);

The is_date(string, string, boolean) function accepts two string arguments and one boolean.

Note

Since the version 2.8.1 of CloverETL, the lenient argument is ignored and is implicitly set
to false.

The function takes these arguments, compares the first argument with the second as a pattern and, if the first
string can be converted to a date which is valid within system value of locale, according to the specified
pattern, the function returns true. If it is not possible, it returns false.

(For more details, see another version of the is_date() function below - the is_date(string,
string, string, boolean) function.)

This function is a variant of the mentioned is_date(string, string, string, boolean) function
in which the default value of the third argument (locale) is set to system value.

• boolean is_date(string arg, string pattern, string locale, boolean lenient);

The is_date(string, string, string, boolean) function accepts three string arguments and
one boolean.

Note

Since the version 2.8.1 of CloverETL, the lenient argument is ignored and is implicitly set
to false.

The function takes these arguments, compares the first argument with the second as a pattern, use the third
(locale) argument and, if the first string can be converted to a date which is valid within specified locale,
according to the specified pattern, the function returns true. If it is not possible, it returns false.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• boolean is_integer(string arg);

The is_integer(string) function takes one string argument and returns a boolean value depending on
whether the string can be converted to an integer number (true) or not (false).

• boolean is_long(string arg);

The is_long(string) function takes one string argument and returns a boolean value depending on
whether the string can be converted to a long number (true) or not (false).

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Go to CTL2 Chapter 65. CTL1

879

• boolean is_number(string arg);

The is_number(string) function takes one string argument and returns a boolean value depending on
whether the string can be converted to a double (true) or not (false).

• string join(string delimiter, <any type> arg1,, <any type> argN);

The join(string, <any type>, ..., <any type>) function accepts unlimited number of
arguments. The first is string, the others are of any data type. All data types do not need to be the same. The
arguments that are not strings are converted to their string representation and put together with the first argument
as delimiter.

Note

This function was already included in CloverETL Engine and CloverETL Designer that were
release before 2.7.0 or 2.2.0, respectively. However, this older version of the join() function
also added a terminal delimiter to the end of the sequence unlike the new version of the join()
function in which the delimiter is only inserted between each pair of elements.

In older releases join(";",argA,argB) returned the following string: "argA;argB;".
Since CloverETL Engine 2.7.0 and CloverETL Designer 2.2.0, the result of the same expression
is as follows: "argA;argB" (without the terminal ;).

Thus, if you want to run an old graph created for old version of CloverETL Engine and
CloverETL Designer that uses this function in CloverETL Engine 2.7.0 and CloverETL
Designer 2.2.0 or higher, replace the old join(delimiter,...) expression in the graph by
join(delimiter,...) + delimiter. In the case mentioned above, you should replace
the older join(";",argA,argB) expression with the new join(";",argA,argB) +
";" expression.

• string join(string delimiter, arraytype arg);

The join(string, arraytype) function accepts two arguments. The first is string, the other one is an
array. The elements of the array argument are converted to their string representation and put together with the
first argument as delimiter between each pair of them.

Note

Also in this case, older versions of CloverETL Engine and CloverETL Designer added a
delimiter to the end of the resulting sequence, whereas the new versions (since CloverETL Engine
2.7.0 and CloverETL Designer 2.2.0) do not add any delimiter to its end.

• string left(string arg, <numeric type> length);

The left(string, <numeric type>) function accepts two arguments: the first is string and the other is
of any numeric data type. It takes them and returns the substring of the length specified as the second argument
counted from the start of the string specified as the first argument.

• int length(structuredtype arg);

The length(structuredtype) function accepts one argument of structured data type: string,
bytearray, list, map or record. It takes this argument and returns the number of elements composing
the argument.

• string lowercase(string arg);

The lowercase(string) function takes one string argument and returns another string with cases
converted to lower cases only.

Go to CTL2 Chapter 65. CTL1

880

• string metaphone(string arg, int maxLength);

The metaphone(string, int) function accepts one string argument and one integer meaning the
maximum length. The function takes these arguments and returns the metaphone code of the first argument of
the specified maximum length. The default maximum length is 4. For more information, see the following site:
www.lanw.com/java/phonetic/default.htm.

• string NYSIIS(string arg);

The NYSIIS(string) function takes one string argument and returns the New York State Identification
and Intelligence System Phonetic Code of the argument. For more information, see the following site: http://
en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System.

• string random_string(int minLength, int maxLength);

The random_string(int, int) function takes two integer arguments and returns strings composed
of lowercase letters whose length varies between minLength and maxLength. These resulting strings are
generated at random for records and fields. They can be different for both different records and different fields.
Their length can also be equal to minLength or maxLength, however, they can be neither shorter than
minLength nor longer than maxLength.

• string random_string(int minLength, int maxLength, long randomSeed);

The random_string(int, int, long) function takes two integer arguments and one long argument
and returns strings composed of lowercase letters whose length varies between minLength and maxLength.
These resulting strings are generated at random for records and fields. They can be different for both different
records and different fields. Their length can also be equal to minLength or maxLength, however, they can
be neither shorter than minLength nor longer than maxLength. The argument ensures that the generated
values remain the same upon each run of the graph.

• string remove_blank_space(string arg);

The remove_blank_space(string) function takes one string argument and returns another string with
white spaces removed.

• string remove_diacritic(string arg);

The remove_diacritic(string) function takes one string argument and returns another string with
diacritical marks removed.

• string remove_nonascii(string arg);

The remove_non ascii(string) function takes one string argument and returns another string with non-
ascii characters removed.

• string remove_nonprintable(string arg);

The remove_nonprintable(string) function takes one string argument and returns another string with
non-printable characters removed.

• string replace(string arg, string regex, string replacement);

The replace(string, string, string) function takes three string arguments - a string, a regular
expression (p. 964), and a replacement - and replaces all regex matches inside the string with the replacement
string you specified. All parts of the string that match the regex are replaced. You can also reference the matched
text using a backreference in the replacement string. A backreference to the entire match is indicated as $0. If
there are capturing parentheses, you can reference specifics groups as $1, $2, $3, etc.

replace("Hello","[Ll]","t") returns "Hetto"

replace("Hello","[Ll]",$0) returns "HeHelloHelloo"

http://www.lanw.com/java/phonetic/default.htm
http://en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System
http://en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System

Go to CTL2 Chapter 65. CTL1

881

• string right(string arg, <numeric type> length);

The right(string, <numeric type>) function accepts two arguments: the first is string and the other
is of any numeric data type. It takes them and returns the substring of the length specified as the second argument
counted from the end of the string specified as the first argument.

• string soundex(string arg);

The soundex(string) function takes one string argument and converts the string to another. The resulting
string consists of the first letter of the string specified as the argument and three digits. The three digits are based
on the consonants contained in the string when similar numbers correspond to similarly sounding consonants.
Thus, soundex("word") returns "w600".

• list split(string arg, string regex);

The split(string, string) function accepts two string arguments. The second is some regular
expression (p. 964). It is searched in the first string argument and if it is found, the string is split into the parts
located between the characters or substrings of such a regular expression. The resulting parts of the string are
returned as a list. Thus, split("abcdefg", "[ce]") returns ["ab", "d", "fg"].

• string substring(string arg, <numeric type> fromIndex, <numeric type>
length);

The substring(string, <numeric type>, <numeric type>) function accepts three arguments:
the first is string and the other two are of any numeric data type. The two numeric types do not need to be the
same. The function takes the arguments and returns a substring of the defined length obtained from the original
string by getting the length number of characters starting from the position defined by the second argument.
If the second and third arguments are not integers, only the integer parts of them are used by the function. Thus,
substring("text", 1.3, 2.6) returns "ex".

• string translate(string arg, string searchingSet, string replaceSet);

The translate(string, string, string) function accepts three string arguments. The number of
characters must be equal in both the second and the third arguments. If some character from the string specified
as the second argument is found in the string specified as the first argument, it is replaced by a character taken
from the string specified as the third argument. The character from the third string must be at the same position
as the character in the second string. Thus, translate("hello", "leo", "pii") returns "hippi".

• string trim(string arg);

The trim(string) function takes one string argument and returns another string with leading and trailing
whitespace characters removed.

• string uppercase(string arg);

The uppercase(string) function takes one string argument and returns another string with cases
converted to upper cases only.

Go to CTL2 Chapter 65. CTL1

882

Container Functions

When you work with containers (list, map, record), you may use the following functions:

• list copy(list arg, list arg);

The copy(list, list) function accepts two arguments, each of them is list. Elements of all lists must be
of the same data type. The function takes the second argument, adds it to the end of the first list and returns the
new resulting list. Thus, the resulting list is a sum of both strings specified as arguments. Remember that also
the list specified as the first argument changes to this new value.

• boolean insert(list arg, <numeric type> position, <element type>
newelement1,, <element type> newelementN);

The insert(list, <numeric type>, <element type>1, ..., <element type>N)function
accepts the following arguments: the first is a list, the second is of any numeric data type and the others are of
any data type, which is the same for all of them. At the same time, this data type is equal to the that of the list
elements. The function takes the elements that are contained in the function starting from the third argument
(including the third argument) and inserts them one after another to the list starting from the position defined
by the integer part of the second argument. The list specified as the first argument changes to this new value.
The function returns true if it was successful, otherwise, it returns false. Remember that the list element
are indexed starting from 0.

• <element type> poll(list arg);

The poll(list)function accepts one argument of list data type. It takes this argument, removes the first
element from the list and returns this element. Remember that the list specified as the argument changes to this
new value (without the removed first element).

• <element type> pop(list arg);

The pop(list)function accepts one argument of list data type. It takes this argument, removes the last element
from the list and returns this element. Remember that the list specified as the argument changes to this new
value (without the removed last element).

• boolean push(list arg, <element type> list_element);

The push(list, <element type>)function accepts two arguments: the first is list and the second is of
any data type. However, the second argument must be of the same data type as each element of the list. The
function takes the second argument and adds it to the end of the first argument. Remember that the list specified
as the first argument changes to this new value. The function returns true if it was successful, otherwise, it
returns false.

• list remove(list arg, <numeric type> position);

The remove(list, <numeric type>)function accepts two arguments: the first is list and the second
is of any numeric data type. The function takes the integer part of the second argument and removes the list
element at the specified position. Remember that the list specified as the first argument changes to this new
value (without the removed element). And note that the function returns this new list. Remember that the list
elements are indexed starting from 0.

• boolean remove_all(list arg);

The remove_all(list)function accepts one list argument. The function takes this argument and empties
the list. It returns a boolean value. Remember that the list specified as the argument changes to the empty list.

Go to CTL2 Chapter 65. CTL1

883

• list reverse(list arg);

The reverse(list)function accepts one argument of list data type. It takes this argument, reverses the order
of elements of the list and returns such new list. Remember that the list specified as the argument changes to
this new value.

• list sort(list arg);

The sort(list)function accepts one argument of list data type. It takes this argument, sorts the elements of
the list in ascending order according to their values and returns such new list. Remember that the list specified
as the argument changes to this new value.

Go to CTL2 Chapter 65. CTL1

884

Miscellaneous Functions

The rest of the functions can be denominated as miscellaneous. These are the following:

• void breakpoint();

The breakpoint() function accepts no argument and prints out all global and local variables.

• <any type> iif(boolean con, <any type> iftruevalue, <any type>
iffalsevalue);

The iif(boolean, <any type>, <any type>) function accepts three arguments: one is boolean
and two are of any data type. Both argument data types and return type are the same.

The function takes the first argument and returns the second if the first is true or the third if the first is false.

• boolean isnull(<any type> arg);

The isnull(<any type>) function takes one argument and returns a boolean value depending on whether
the argument is null (true) or not (false). The argument may be of any data type.

Important

If you set the Null value property in metadata for any string data field to any non-empty string,
the isnull() function will return true when applied on such string. And return false when
applied on an empty field.

For example, if field1 has Null value property set to "<null>", isnull($0.field1)
will return true on the records in which the value of field1 is "<null>" and false on the
others, even on those that are empty.

See Null value (p. 163) for detailed information.

• <any type> nvl(<any type> arg, <any type> default);

The nvl(<any type>, <any type>) function accepts two arguments of any data type. Both arguments
must be of the same type. If the first argument is not null, the function returns its value. If it is null, the function
returns the default value specified as the second argument.

• <any type> nvl2(<any type> arg, <any type> arg_for_non_null, <any type>
arg_for_null);

The nvl2(<any type>, <any type>, <any type>) function accepts three arguments of any data
type. This data type must be the same for all arguments and return value. If the first argument is not null, the
function returns the value of the second argument. If the first argument is null, the function returns the value
of the third argument.

• void print_err(<any type> message);

The print_err(<any type>) function accepts one argument of any data type. It takes this argument and
prints out the message on the error output.

Note

Remember that if you are using this function in any graph that runs on CloverETL Server, the
message is saved to the log of Server (e.g., to the log of Tomcat). Use the print_log()
function instead. It logs error messages to the console even when the graph runs on CloverETL
Server.

Go to CTL2 Chapter 65. CTL1

885

• void print_err(<any type> message, boolean printLocation);

The print_err(type, boolean) function accepts two arguments: the first is of any data type and the
second is boolean. It takes them and prints out the message and the location of the error (if the second argument
is true).

Note

Remember that if you are using this function in any graph that runs on CloverETL Server, the
message is saved to the log of Server (e.g., to the log of Tomcat). Use the print_log()
function instead. It logs error messages to the console even when the graph runs on CloverETL
Server.

• void print_log(level loglevel, <any type> message);

The print_log(level, <any type>) function accepts two arguments: the first is a log level of
the message specified as the second argument, which is of any data type. The first argument is one of the
following: debug, info, warn, error, fatal. The log level must be specified as a constant. It can be neither
received through an edge nor set as variable. The function takes the arguments and sends out the message
to a logger.

Note

Remember that you should use this function especially in any graph that would run on CloverETL
Server instead of the print_err() function which logs error messages to the log of Server
(e.g., to the log of Tomcat). Unlike print_err(), print_log() logs error messages to the
console even when the graph runs on CloverETL Server.

• void print_stack();

The print_stack() function accepts no argument and prints out all variables from the stack.

• void raise_error(string message);

The raise_error(string) function takes one string argument and throws out error with the message
specified as the argument.

Go to CTL2 Chapter 65. CTL1

886

Dictionary Functions

CTL1 provides functions that allow to manipulate the dictionary entries of string data type.

Note

These functions allow to manipulate also the entries that are not defined in the graph.

You may write dictionary value to an entry first, and then access it using the functions for reading
the dictionary.

• string read_dict(string name);

This function takes the dictionary, selects the entry specified by the name and returns its value, which is of
string data type.

• string dict_get_str(string name);

This function takes the dictionary, selects the entry specified by the name and returns its value, which is of
string data type.

• void write_dict(string name, string value);

This function takes the dictionary and writes a new or updates the existing entry of string data type, specified
as the first argument of the function, and assigns it the value specified as the second argument, which is also
of string data type.

• boolean dict_put_str(string name, string value);

This function takes the dictionary and writes a new or updates the existing entry of string data type, specified
as the first argument of the function, and assigns it the value specified as the second argument, which is also
of string data type.

• void delete_dict(string name);

This function takes the dictionary and deletes the property with specified name.

Currently we are able to work just with string dictionary type. For this reason, to access the value of the
heightMin property, following CTL code should be used:

value = read_dict("heightMin");

Go to CTL2 Chapter 65. CTL1

887

Lookup Table Functions

In your graphs you are also using lookup tables. You can use them in CTL by specifying ID of the lookup table and
placing it as an argument in the lookup(), lookup_next(), lookup_found(), or lookup_admin()
functions.

Note

The lookup_admin() functions do nothing since version 3.0 of CloverETL and can be removed.

Warning

Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

You have five options depending on what you want to do with the lookup table. You can create lookup table, get
the value of the specified field name from the lookup table associated with the specified key, or get the next value
of the specified field name from the lookup table, or (if the records are duplicated) count the number of the records
with the same field name values, or you can destroy the lookup table.

Now, the key in the function below is a sequence of values of the field names
separated by comma (not semicolon!). Thus, the keyValue is of the following form:
keyValuePart1,keyValuePart2,...,keyValuePartN.

See the mentioned following five options:

• lookup_admin(<lookup ID>,init)1)

This function initializes the specified lookup table.

• lookup(<lookup ID>,keyValue).<field name>

This function searches the first record whose key value is equal to the value specified as the second argument
in this function and returns the value of <field name>. Here, <field name> is a field of the lookup
table metadata.

• lookup_next(<lookup ID>).<field name>

After call the lookup() function, the lookup_next() function searches the next record whose key value is
equal to the value specified as the second argument in the lookup() function and returns the value of <field
name> value. Here, <field name> is a field of the lookup table.

• lookup_found(<lookup ID>)

After call the lookup() function, the lookup_found() function returns the number of records whose key
value is equal to the value specified as the second argument in the lookup() function.

• lookup_admin(<lookup ID>,free)1)

This function destroys the specified lookup table.

Legend:

1) These functions do nothing since version 3.0 of CloverETL and can be removed from the code.

Warning

Remember that the usage of the lookup_found(<lookup ID>) function of CTL1 is not too
recommended.

Go to CTL2 Chapter 65. CTL1

888

The reason is that such expression searches the records through the whole lookup table which may
contain a great number of records.

You should better use a pair of two functions in a loop:

lookup(<lookup ID>,keyValue).<field name>

lookup_next(<lookup ID>).<field name>

Especially DB lookup tables may return -1 instead of real count of records with specified key value
(if you do not set Max cached size to a non-zero value).

Go to CTL2 Chapter 65. CTL1

889

Sequence Functions

In your graphs you are also using sequences. You can use them in CTL by specifying ID of the sequence and
placing it as an argument in the sequence() function.

Warning

Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

You have three options depending on what you want to do with the sequence. You can get the current number
of the sequence, or get the next number of the sequence, or you may want to reset the sequence numbers to the
initial number value.

See the mentioned following three options:

•sequence(<sequence ID>).current

•sequence(<sequence ID>).next

•sequence(<sequence ID>).reset

Although these expressions return integer values, you may also want to get long or string values. This can be done
in one of the following ways:

•sequence(<sequence ID>,long).current

•sequence(<sequence ID>,long).next

•sequence(<sequence ID>,string).current

•sequence(<sequence ID>,string).next

Go to CTL2 Chapter 65. CTL1

890

Custom CTL Functions

In addition to the prepared CTL functions, you can create your own CTL functions. To do that, you need to write
your own code defining the custom CTL functions and specify its plugin.

Each custom CTL function library must be derived/inherited from:

org.jetel.interpreter.extensions.TLFunctionLibrary class.

Each custom CTL function must be derived/inhereted from:

org.jetel.interpreter.extensions.TLFunctionPrototype class.

These classes have some standard operations defined and several abstract methods which need to be defined so
that the custom functions may be used. Within the custom functions code, an existing context must be used or some
custom context must be defined. The context serves to store objects when function is to be executed repeatedly,
in other words, on more records.

Along with the custom functions code, you also need to define the custom functions plugin. Both the library and
the plugin will be used in CloverETL. For more information, see the following wiki page: wiki.cloveretl.org/
doku.php?id=function_building.

http://wiki.cloveretl.org/doku.php?id=function_building
http://wiki.cloveretl.org/doku.php?id=function_building

891

Chapter 66. CTL2
This chapter describes the syntax and the use of CTL2. For detailed information on language reference or built-
in functions see:

• Language Reference (p. 892)

• Functions Reference (p. 921)

Example 66.1. Example of CTL2 syntax (Rollup)

//#CTL2

string[] customers;
integer Length;

function void initGroup(VoidMetadata groupAccumulator) {
}

function boolean updateGroup(VoidMetadata groupAccumulator) {
 customers = split($0.customers," - ");
 Length = length(customers);

 return true;
}

function boolean finishGroup(VoidMetadata groupAccumulator) {
 return true;
}

function integer updateTransform(integer counter, VoidMetadata groupAccumulator) {
 if (counter >= Length) {
 clear(customers);

 return SKIP;
 }

 $0.customers = customers[counter];
 $0.EmployeeID = $0.EmployeeID;

 return ALL;
}

function integer transform(integer counter, VoidMetadata groupAccumulator) {
 return ALL;
}

Chapter 66. CTL2

892

Language Reference

Clover transformation language (CTL) is used to define transformations in many components. (in all Joiners,
DataGenerator, Partition, DataIntersection, Reformat, Denormalizer, Normalizer, and Rollup)

This section describes the following areas:

• Program Structure (p. 893)

• Comments (p. 893)

• Import (p. 893)

• Data Types in CTL2 (p. 894)

• Literals (p. 897)

• Variables (p. 899)

• Dictionary in CTL2 (p. 900)

• Operators (p. 901)

• Simple Statement and Block of Statements (p. 907)

• Control Statements (p. 907)

• Functions (p. 912)

• Conditional Fail Expression (p. 913)

• Accessing Data Records and Fields (p. 914)

• Mapping (p. 916)

• Parameters (p. 920)

Chapter 66. CTL2

893

Program Structure

Each program written in CTL must contain the following parts:

ImportStatements
VariableDeclarations
FunctionDeclarations
Statements
Mappings

All of them may be interspersed, however, there are some principles that are valid for them:

• If an import statement is defined, it must be situated at the beginning of the code.

• Variables and functions must first be declared and only then they can be used.

• Declarations of variables and functions, statements and mappings may also be mutually interspersed.

Important

In CTL2 declaration of variables and functions may be in any place of the transformation code and
may be preceded by other code. However, remember that each variable and each function must
always be declared before it is used.

This is one of the differences between the two versions of CloverETL Transformation Language.

(In CTL1 the order of code parts was fixed and could not be changed.)

Comments

Throughout the program you can use comments. These comments are not processed, they only serve to describe
what happens within the program.

The comments are of two types. They can be one-line comments or multiline comments. See the following two
options:

•// This is an one-line comment.

•/* This is a multiline comment. */

Import

First of all, at the beginning of the program in CTL, you can import some of the existing programs in CTL. The
way how you must do it is as follows:

•import 'fileURL';

•import "fileURL";

You must decide whether you want to use single or double quotes. Single quotes do not escape so called escape
sequences. For more details see Literals (p. 897) below. For these fileURL, you must type the URL of some
existing source code file.

But remember that you must import such files at the beginning before any other declaration(s) and/or statement(s).

Chapter 66. CTL2

894

Data Types in CTL2

For basic information about data types used in metadata see Data Types and Record Types (p. 111)

In any program, you can use some variables. Data types in CTL are the following:

boolean

Its declaration look like this: boolean identifier;

byte

This data type is an array of bytes of a length that can be up to Integer.MAX_VALUE as a maximum. It behaves
similarly to the list data type (see below).

Its declaration looks like this: byte identifier;

cbyte

This data type is a compressed array of bytes of a length that can be up to Integer.MAX_VALUE as a maximum.
It behaves similarly to the list data type (see below).

Its declaration looks like this: cbyte identifier;

date

Its declaration look like this: date identifier;

decimal

Its declaration looks like this: decimal identifier;

By default, any decimal may have up to 32 significant digits. If you want to have different Length or Scale, you
need to set these properties of decimal field in metadata.

Example 66.2. Example of usage of decimal data type in CTL2

If you assign 100.0 /3 to a decimal variable, its value might for example be
33.333333333333335701809119200333. Assigning it to a decimal field (with default Length and Scale,
which are 12 and 2, respectively), it will be converted to 33.33D.

You can cast any float number to the decimal data type by apending the d letter to its end.

integer

Its declaration looks like this: integer identifier;

If you apend an l letter to the end of any integer number, you can cast it to the long data type

long

Its declaration looks like this: long identifier;

Any integer number can be cast to this data type by appending an l letter to its end.

Chapter 66. CTL2

895

number (double)

Its declaration looks like this: number identifier;

string

The declaration looks like this: string identifier;

list

Each list is a container of one the following data types: boolean, byte, date, decimal, integer, long,
number, string, record.

The list data type is indexed by integers starting from 0.

Its declaration can look like this: string[] identifier;

List cannot be created as a list of lists or maps.

The default list is an empty list.

Examples:

integer[] myIntegerList; myIntegerList[5] = 123;

Customer JohnSmith;

Customer PeterBrown;

Customer[] CompanyCustomers;

CompanyCustomers[0] = JohnSmith;

CompanyCustomers[1] = PeterBrown

Assignments:

• myStringList[3] = "abc";

It means that the specified string is put to the fourth position in the string list. The other values are fille with
null as follows:

myStringList is [null,null,null,"abc"]

• myList1 = myList2;

It means that both lists reference the same elements.

• myList1 = myList1 + myList2;

It adds all elements of myList2 to the end of myList1.

Both list must be based on the same primitive data type.

• myList1 = myList1 + "abc";

It adds the "abc"string to the myList1 as its new last element.

myList1 must be based on string data type.

• myList1 = null;

Chapter 66. CTL2

896

It destroys the myList1.

Be careful when performing list operations (such as append). See Warning (p. 896).

map

This data type is a container of pairs of a key and a value.

Its declaration looks like this: map[<type of key>, <type of value>] identifier;

Both the Key and the Value can be of the following primitive data types: boolean, byte, date, decimal,
integer, long, number, string. Value can be also of record type.

Map cannot be created as a map of lists or other maps.

The default map is an empty map.

Examples:

map[string, boolean] map1; map1["abc"]=true;

Customer JohnSmith;

Customer PeterBrown;

map[integer, Customer] CompanyCustomersMap;

CompanyCustomersMap[JohnSmith.ID] = JohnSmith;

CompanyCustomersMap[PeterBrown.ID] = PeterBrown

The assignments are similar to those valid for a list.

record

This data type is a set of fields of data.

The structure of record is based on metadata. Any metadata item represent a data type.

Declaration of a record looks like this: <metadata name> identifier;

Metadata names must be unique in a graph. Different metadata must have different names.

For more detailed information about possible expressions and records usage see Accessing Data Records and
Fields (p. 914).

Record does not have a default value.

It can be indexed by both integer numbers and strings (field names). If indexed by numbers, fields are indexed
starting from 0.

Warning

Be careful when a record is pushed|appended|inserted (push(), append(), insert()
functions) to a list of records within the transform() or another function. If the record is declared
as a global variable, the last item in the list will always reference the same record. To avoid that,
declare your record as a local variable (within transform()). Calling transform(), a new
reference will be created and a correct value will be put to the list.

Chapter 66. CTL2

897

Literals

Literals serve to write values of any data type.

Table 66.1. Literals

Literal Description Declaration
syntax

Example

integer digits representing integer number [0-9]+ 95623

long integer digits representing integer number with
absolute value even greater than 231, but
less than 263

[0-9]+L? 257L, or 9562307813123123

hexadecimal
integer

digits and letters representing integer
number in hexadecimal form

0x[0-9A-F]+ 0xA7B0

octal integer digits representing integer number in octal
form

0[0-7]* 0644

number
(double)

floating point number represented by
64bits in double precision format

[0-9]+.[0-9]+ 456.123

decimal digits representing a decimal number [0-9]+.[0-9]+D 123.456D

double quoted
string

string value/literal enclosed in double
quotes; escaped characters [\n,\r,\t, \\, \", \b]
get translated into corresponding control
chars

"...anything
except ["]..."

"hello\tworld\n\r"

single quoted
string

string value/literal enclosed in single
quotes; only one escaped character [\'] gets
translated into corresponding char [']

'...anything
except [']...'

'hello\tworld\n\r'

list of literals list of literals where individual literals can
also be other lists/maps/records

[<any literal>
(, <any
literal>)*]

[10, 'hello', "world", 0x1A,
2008-01-01], [[1 , 2]] , [3 , 4]]

date date value this mask
is expected:
yyyy-MM-dd

2008-01-01

datetime datetime value this mask
is expected:
yyyy-MM-dd
HH:mm:ss

2008-01-01 18:55:00

Important

You cannot use any literal for byte data type. If you want to write a byte value, you must use any
of the conversion functions that return byte and aply it on an argument value.

For information on these conversion functions see Conversion Functions (p. 923)

Important

Remember that if you need to assign decimal value to a decimal field, you should use decimal literal.
Otherwise, such number would not be decimal, it would be a double number!

For example:

1. Decimal value to a decimal field (correct and accurate)

Chapter 66. CTL2

898

// correct - assign decimal value to decimal field

myRecord.decimalField = 123.56d;

2. Double value to a decimal field (possibly inaccurate)

// possibly inaccurate - assign double value to decimal field

myRecord.decimalField = 123.56;

The latter might produce inaccurate results!

Chapter 66. CTL2

899

Variables

If you define some variable, you must do it by typing data type of the variable, white space, the name of the
variable and semicolon.

Such variable can be initialized later, but it can also be initialized in the declaration itself. Of course, the value of
the expression must be of the same data type as the variable.

Both cases of variable declaration and initialization are shown below:

•dataType variable;

...

variable = expression;

•dataType variable = expression;

Chapter 66. CTL2

900

Dictionary in CTL2

If you want to have a dictionary in your graph and acces an entry from CTL2, you must define it in the graph as
shown in Chapter 31, Dictionary (p. 227).

To access the entries from CTL2, use the dot syntax as follows:

dictionary.<dictionary entry>

This expression can be used to

• define the value of the entry:

dictionary.customer = "John Smith";

• get the value of the entry:

myCustomer = dictionary.customer;

• map the value of the entry to an output field:

$0.myCustomerField = dictionary.customer;

• serve as the argument of a function:

myCustomerID = isInteger(dictionary.customer);

Chapter 66. CTL2

901

Operators

The operators serve to create more complicated expressions within the program. They can be arithmetic, relational
and logical. The relational and logical operators serve to create expressions with resulting boolean value. The
arithmetic operators can be used in all expressions, not only the logical ones.

All operators can be grouped into four categories:

• Arithmetic Operators (p. 901)

• Relational Operators (p. 903)

• Logical Operators (p. 905)

• Assignment Operator (p. 905)

Arithmetic Operators

The following operators serve to put together values of different expressions (except those of boolean values).
These signs can be used more times in one expression. In such a case, you can express priority of operations by
parentheses. The result depends on the order of the expressions.

• Addition

+

The operator above serves to sum the values of two expressions.

But the addition of two boolean values or two date data types is not possible. To create a new value from two
boolean values, you must use logical operators instead.

Nevertheless, if you want to add any data type to a string, the second data type is converted to a string
automatically and it is concatenated with the first (string) summand. But remember that the string must be on
the first place! Naturally, two strings can be summed in the same way. Note also that the concat() function
is faster and you should use this function instead of adding any summand to a string.

You can also add any numeric data type to a date. The result is a date in which the number of days is increased
by the whole part of the number. Again, here is also necessary to have the date on the first place.

The sum of two numeric data types depends on the order of the data types. The resulting data type is the same
as that of the first summand. The second summand is converted to the first data type automatically.

• Subtraction and Unitary minus

-

The operator serves to subtract one numeric data type from another. Again the resulting data type is the same
as that of the minuend. The subtrahend is converted to the minuend data type automatically.

But it can also serve to subtract numeric data type from a date data type. The result is a date in which the number
of days is reduced by the whole part of the subtrahend.

• Multiplication

*

The operator serves only to multiplicate two numeric data types.

Remember that during multiplication the first multiplicand determines the resulting data type of the operation.
If the first multiplicand is an integer number and the second is a decimal, the result will be an integer number.

Chapter 66. CTL2

902

On the other hand, if the first multiplicand is a decimal and the second is an integer number, the result will be
of decimal data type. In other words, order of multiplicands is of importance.

• Division

/

The operator serves only to divide two numeric data types. Remember that you must not divide by zero.
Dividing by zero throws TransformLangExecutorRuntimeException or gives Infinity (in case
of a number data type)

Remember that during division the numerator determines the resulting data type of the operation. If the
nominator is an integer number and the denominator is a decimal, the result will be an integer number. On the
other hand, if the nominator is a decimal and the denominator is an integer number, the result will be of decimal
data type. In other words, data types of nominator and denominator are of importance.

• Modulus

%

The operator can be used for both floating-point data types and integer data types. It returns the remainder of
division.

• Incrementing

++

The operator serves to increment numeric data type by one. The operator can be used for both floating-point
data types and integer data types.

If it is used as a prefix, the number is incremented first and then it is used in the expression.

If it is used as a postfix, first, the number is used in the expression and then it is incremented.

Important

Remember that the incrementing operator cannot be applied on literals, record fields, map, or list
values of integer data type.

It can only be used with integer variables.

• Decrementing

--

The operator serves to decrement numeric data type by one. The operator can be used for both floating-point
data types and integer data types.

If it is used as a prefix, the number is decremented first and then it is used in the expression.

If it is used as a postfix, first, the number is used in the expression and then it is decremented.

Important

Remember that the decrementing operator cannot be applied on literals, record fields, map, or list
values of integer data type.

It can only be used with integer variables.

Chapter 66. CTL2

903

Relational Operators

The following operators serve to compare some subexpressions when you want to obtain a boolean value result.
Each of the mentioned signs can be used. These signs can be used more times in one expression. In such a case
you can express priority of comparisons by parentheses.

Important

If you choose the .operator. syntax, operator must be surrounded by white spaces. Example
syntax for the eq operator:

CodeWorking?

5 .eq.
3

5 == 3

5
eq
3

5.eq(3)

• Greater than

Each of the two signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•>

•.gt.

• Greater than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•>=

•=>

•.ge.

• Less than

Each of the two signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

•<

•.lt.

• Less than or equal to

Each of the three signs below can be used to compare expressions consisting of numeric, date and string data
types. Both data types in the expressions must be comparable. The result can depend on the order of the two
expressions if they are of different data type.

Chapter 66. CTL2

904

•<=

•=<

•.le.

• Equal to

Each of the two signs below can be used to compare expressions of any data type. Both data types in the
expressions must be comparable. The result can depend on the order of the two expressions if they are of
different data type.

•==

•.eq.

• Not equal to

Each of the three signs below can be used to compare expressions of any data type. Both data types in the
expressions must be comparable. The result can depend on the order of the two expressions if they are of
different data type.

•!=

•<>

•.ne.

• Matches regular expression

The operator serves to compare string and some regular expression (p. 964). It returns true if the whole
string matches the regular expression, otherwise returns false.

•~=

•.regex.

• Contains regular expression

The operator serves to compare string and some regular expression (p. 964). It returns true if the string
contains a substring that matches the regular expression, otherwise returns false.

•?=

Chapter 66. CTL2

905

Logical Operators

If the expression whose value must be of boolean data type is complicated, it can consist of some subexpressions
(see above) that are put together by logical conjunctions (AND, OR, NOT, .EQUAL TO, NOT EQUAL TO). If
you want to express priority in such an expression, you can use parentheses. From the conjunctions mentioned
below you can choose either form (for example, && or and, etc.).

Every sign of the form .operator. must be surrounded by white space.

• Logical AND

•&&

•and

• Logical OR

•||

•or

• Logical NOT

•!

•not

• Logical EQUAL TO

•==

•.eq.

• Logical NOT EQUAL TO

•!=

•<>

•.ne.

Assignment Operator

As of Clover 3.3, the = operator does not just pass object references, but performs a deep copy of values. That is
of course more demanding in terms of performance. Deep copy is only performed for mutable data types, i.e. lists,
maps, records and dates. Other types are considered immutable, as CTL2 does not provide any means of changing
the state of an existing object (even though the object is mutable in Java). Therefore it is safe to pass a reference
instead of copying the value. Note that this assumption may not be valid for custom CTL2 function libraries.

Chapter 66. CTL2

906

Example 66.3. Modification of a copied list, map and record

 integer[] list1 = [1, 2, 3];
 integer[] list2;
 list2 = list1;

 list1.clear(); // only list1 is cleared (older implementation: list2 was cleared, too)

 map[string, integer] map1;
 map1["1"] = 1;
 map1["2"] = 2;
 map[string, integer] map2;
 map2 = map1;

 map1.clear(); // only map1 is cleared (older implementation: map2 was cleared, too)

 myMetadata record1;
 record1.field1 = "original value";
 myMetadata record2;
 record2 = record1;

 record1.field1 = "updated value"; // only record1 will be updated (older implementation: record2 was updated, too)

Chapter 66. CTL2

907

Simple Statement and Block of Statements

All statements can be divided into two groups:

• Simple statement is an expression terminated by semicolon.

For example:

integer MyVariable;

• Block of statements is a series of simple statements (each of them is terminated by semicolon). The statements
in a block can follow each other in one line or they can be written in more lines. They are surrounded by curled
braces. No semicolon is used after the closing curled brace.

For example:

while (MyInteger<100) {
 Sum = Sum + MyInteger;
 MyInteger++;
}

Control Statements

Some statements serve to control the process of the program.

All control statements can be grouped into the following categories:

• Conditional Statements (p. 907)

• Iteration Statements (p. 908)

• Jump Statements (p. 909)

Conditional Statements

These statements serve to branch out the process of the program.

If Statement

On the basis of the Condition value this statement decides whether the Statement should be executed. If the
Condition is true, Statement is executed. If it is false, the Statement is ignored and process continues
next after the if statement. Statement is either simple statement or a block of statements

•if (Condition) Statement

Unlike the previous version of the if statement (in which the Statementis executed only if the Condition is
true), other Statements that should be executed even if the Condition value is false can be added to the if
statement. Thus, if the Condition is true, Statement1 is executed, if it is false, Statement2 is executed.
See below:

•if (Condition) Statement1 else Statement2

The Statement2 can even be another if statement and also with else branch:

•if (Condition1) Statement1
 else if (Condition2) Statement3
 else Statement4

Chapter 66. CTL2

908

Switch Statement

Sometimes you would have very complicated statement if you created the statement of more branched out if
statement. In such a case, much more better is to use the switch statement.

Now, instead of the Condition as in the if statement with only two values (true or false), an Expression
is evaluated and its value is compared with the Constants specified in the switch statement.

Only the Constant that equals to the value of the Expression decides which of the Statements is executed.

If the Expression value is Constant1, the Statement1 will be executed, etc.

Important

Remember that literals must be unique in the Switch statement.

•switch (Expression) {
 case Constant1 : Statement1 StatementA [break;]
 case Constant2 : Statement2 StatementB [break;]
 ...
 case ConstantN : StatementN StatementW [break;]
}

The optional break; statements ensure that only the statements correspoding to a constant will be executed.
Otherwise, all below them would be executed as well.

In the following case, even if the value of the Expression does not equal to the values of the
Constant1,...,ConstantN, the default statement (StatementN+1) is executed.

•switch (Expression) {
 case Constant1 : Statement1 StatementA [break;]
 case Constant2 : Statement2 StatementB [break;]
 ...
 case ConstantN : StatementN StatementW [break;]
 default : StatementN+1 StatementZ
}

Iteration Statements

These iteration statements repeat some processes during which some inner Statements are executed cyclically
until the Condition that limits the execution cycle becomes false or they are executed for all values of the
same data type.

For Loop

First, the Initialization is set up, after that, the Condition is evaluated and if its value is true, the Statement
is executed and finally the Iteration is made.

During the next cycle of the loop, the Condition is evaluated again and if it is true, Statement is executed
and Iteration is made. This way the process repeats until the Condition becomes false. Then the loop is
terminated and the process continues with the other part of the program.

If the Condition is false at the beginning, the process jumps over the Statement out of the loop.

•for (Initialization;Condition;Iteration)
 Statement

Important

Remember that the Initialization part of the For Loop may also contain the declaration
of the variable that is used in the loop.

Chapter 66. CTL2

909

Initialization, Condition, and Iteration are optional.

Do-While Loop

First, the Statement is executed, then the process depends on the value of Condition. If its value is true, the
Statement is executed again and then the Condition is evaluated again and the subprocess either continues
(if it is true again) or stops and jumps to the next or higher level subprocesses (if it is false). Since the Condition
is at the end of the loop, even if it is false at the beginning of the subprocess, the Statement is executed at
least once.

•do Statement while (Condition)

While Loop

This process depends on the value of Condition. If its value is true, the Statements is executed and then
the Condition is evaluated again and the subprocess either continues (if it is true again) or stops and jumps to
the next or higher level subprocesses (if it is false). Since the Condition is at the start of the loop, if it is false
at the beginning of the subprocess, the Statements is not executed at all and the loop is jumped over.

•while (Condition) Statement

For-Each Loop

The foreach statement is executed on all fields of the same data type within a container. Its syntax is as follows:

•foreach (<data type> myVariable : iterableVariable) Statement

All elements of the same data type (data type is declared in this statement) are searched in the
iterableVariable container. The iterableVariable can be a list or a record. For each variable of the
same data type, specified Statement is executed. It can be either a simple statement or a block of statements.

Thus, for example, the same Statement can be executed for all string fields of a record, etc.

Note

It is possible to iterate over values of a map (i.e. not whole <entries>). Remember the type of
the loop variable has to match the type of map's values:

map[string, integer] myMap;

myMap["first"] = 1;
myMap["second"] = 2;

foreach(integer value: myMap) {
 printErr(value); // prints 1 and 2
}

To obtain map's keys as a list[], use the getKeys() (p. 946) function.

Jump Statements

Sometimes you need to control the process in a different way than by decision based on the Condition value.
To do that, you have the following options:

Break Statement

If you want to stop some subprocess, you can use the following statement in the program:

Chapter 66. CTL2

910

•break;

The subprocess breaks and the process jumps to the higher level or to the next Statements.

Continue Statement

If you want to stop some iteration subprocess, you can use the following statement in the program:

•continue;

The subprocess breaks and the process jumps to the next iteration step.

Return Statement

In the functions you can use the return word either alone or along with an expression. (See the following
two options below.) The return statement can be in any place within the function. There may also be multiple
return statements among which a specific one is executed depending on a condition, etc.

•return;

•return expression;

Chapter 66. CTL2

911

Error Handling

CTL2 also provides a simple mechanism for catching and handling possible errors.

However, CTL2 differs from CTL1 as regards handling errors. It does not use the try-catch statement.

It only uses a set of optional OnError() functions that exist to each required transformation function.

For example, for required functions (e.g., append(), transform(), etc.), there exist following optional
functions:

appendOnError(), transformOnError(), etc.

Each of these required functions may have its (optional) couterpart whose name differs from the original (required)
by adding the OnError suffix.

Moreover, every <required ctl template function>OnError() function returns the same values
as the original required function.

This way, any exception that is thrown by the original required function causes call of its
<required ctl template function>OnError() counterpart (e.g., transform() fail may call
transformOnError(), etc.).

In this transformOnError(), any incorrect code can be fixed, error message can be printed to Console, etc.

Important

Remember that these OnError() functions are not called when the original required functions
return Error codes (values less then -1)!

If you want that some OnError() function is called, you need to use a raiseError(string
arg) function. Or (as has already been said) also any exception thrown by original required function
calls its OnError() counterpart.

Chapter 66. CTL2

912

Functions

You can define your own functions in the following way:

function returnType functionName (type1 arg1, type2 arg2,..., typeN argN) {
 variableDeclarations
 otherFunctionDeclarations
 Statements
 Mappings
 return [expression];
}

You must put the return statement at the end. For more information about the return statement see Return
Statement (p. 910). Inside some functions, there can be Mappings. These may be in any place inside the function.

In addition to any other data type mentioned above, the function can also return void.

Message Function

Since CloverETL version 2.8.0, you can also define a function for your own error messages.

function string getMessage() {
 return message;
}

This message variable should be declared as a global string variable and defined anywhere in the code so as to
be used in the place where the getMessage() function is located. The message will be written to console.

Chapter 66. CTL2

913

Conditional Fail Expression

You can also use conditional fail expressions.

They look like this:

expression1 : expression2 : expression3 : ... : expressionN;

This conditional fail expression may be used for mapping, assignment to a variable, and as an argument of a
function too.

The expressions are evaluated one by one, starting from the first expression and going from left to right.

1. As soon as one of these expressions may be successfully assigned to a variable, mapped to an output field, or
used as the argument of the function, it is used and the other expressions are not evaluated.

2. If none of these expressions may be used (assigned to a variable, mapped to the output field, or used as an
argument), graph fails.

Important

Remember that in CTL2 this expression may be used in multiple ways: for assigning to a variable,
mapping to an output field, or as an argument of the function.

(In CTL1 it was only used for mapping to an output field.)

Remember also that this expression can only be used in interpreted mode of CTL2.

Chapter 66. CTL2

914

Accessing Data Records and Fields

This section describes the way how the record fields should be worked with. As you know, each component may
have ports. Both input and output ports are numbered starting from 0.

Metadata of connected edges must be identified by their names. Different metadata must have different names.

Working with Records and Variables

Important

Since v. 3.2, the syntax has changed to:

$in.portID.fieldID and $out.portID.fieldID

e.g. $in.0.* = $out.0.*;

That way, you can clearly distinguish input and output metadata.

Transformations you have written before will be compatible with the old syntax.

Now we suppose that Customers is the ID of metadata, their name is customers, and their third field (field
2) is firstname.

Following expressions represent the value of the third field (field 2) of the specified metadata:

• $<port number>.<field number>

Example: $0.2

$0.* means all fields on the first port (port 0).

• $<port number>.<field name>

Example: $0.firstname

• $<metadata name>.<field number>

Example: $customers.2

$customers.* means all fields on the first port (port 0).

• $<metadata name>.<field name>

Example: $customers.firstname

You can also define records in CTL code. Such defitions can look like these:

• <metadata name> MyCTLRecord;

Example: customers myCustomers;

• After that, you can use the following expressions:

<record variable name>.<field name>

Example: myCustomers.firstname;

Mapping of records to variables looks like this:

• myVariable = $<port number>.<field number>;

Chapter 66. CTL2

915

Example: FirstName = $0.2;

• myVariable = $<port number>.<field name>;

Example: FirstName = $0.firstname;

• myVariable = $<metadata name>.<field number>;

Example: FirstName = $customers.2;

• myVariable = $<metadata name>.<field name>;

Example: FirstName = $customers.firstname;

• myVariable = <record variable name>.<field name>;

Example: FirstName = myCustomers.firstname;

Mapping of variables to records can look like this:

• $<port number>.<field number> = myVariable;

Example: $0.2 = FirstName;

• $<port number>.<field name> = myVariable;

Example: $0.firstname = FirstName;

• $<metadata name>.<field number> = myVariable;

Example: $customers.2 = FirstName;

• $<metadata name>.<field name> = myVariable;

Example: $customers.firstname = FirstName;

• <record variable name>.<field name> = myVariable;

Example: myCustomers.firstname = FirstName;

Important

Remember that if component has single input port or single output port, you can use the syntax as
follows:

$firstname

Generally, the syntax is:

$<field name>

Important

You can assign input to an internal CTL record using following syntax:

MyCTLRecord.* = $0.*;

Also, you can map values of an internal record to the output using following syntax:

$0.* = MyCTLRecord.*;

Chapter 66. CTL2

916

Mapping

Mapping is a part of each transformation defined in some of the CloverETL components.

Calculated or generated values or values of input fields are assigned (mapped) to output fields.

1. Mapping assigns a value to an output field.

2. Mapping operator is the following:

=

3. Mapping must always be defined inside a function.

4. Mapping may be defined in any place inside a function.

Important

In CTL2 mapping may be in any place of the transformation code and may be followed by any
code. This is one of the differences between the two versions of CloverETL Transformation
Language.

(In CTL1 mapping had to be at the end of the function and could only be followed by one return
statement.)

In CTL2 mapping operator is simply the equal sign.

5. Remember that you can also wrap a mapping in a user-defined function which would be subsequently used
inside another function.

6. You can also map different input metadata to different output metadata by field names or by field positions.
See examples below.

Mapping of Different Metadata (by Name)

When you map input to output like this:

$0.* = $0.*;

input metadata may even differ from those on the output.

In the expression above, fields of the input are mapped to the fields of the output that have the same name and
type as those of the input. The order in which they are contained in respective metadata and the number of all
fields in either metadata is of no importance.

When you have input metadata in which the first two fields are firstname and lastname, each of these
two fields is mapped to its counterpart on the output. Such output firstname field may even be the fifth and
lastname field be the third, but those two fields of the input will be mapped to these two output fields .

Even if input metadata had more fields and output metadata had more fields, such fields would not be mapped
to each other if there did not exist an output field with the same name as one of the input (independently on the
mutual position of the fields in corresponding metadata).

In addition to the simple mapping as shown above ($0.* = $0.*;) you can also use the following function:

void copyByName(record to, record from);

Example 66.4. Mapping of Metadata by Name (using the copyByName() function)

recordName2 myOutputRecord;
copyByName(myOutputRecord.*,$0.*);
$0.* = myOutputRecord.*;

Chapter 66. CTL2

917

Important

Metadata fields are mapped from input to output by name and data type independently on their order
and on the number of all fields!

Following syntax may also be used: myOutputRecord.copyByName($0.*);

Mapping of Different Metadata (by Position)

Sometimes you need to map input to ouput, but names of input fields are different from those of output fields. In
such a case, you can map input to output by position.

To achieve this, you must to use the following function:

void copyByPosition(record to, record from);

Example 66.5. Mapping of Metadata by Position

recordName2 myOutputRecord;
copyByPosition(myOutputRecord,$0.*);
$0.* = myOutputRecord.*;

Important

Metadata fields may be mapped from input to output by position (as shown in the example above)!

Following syntax may also be used: myOutputRecord.copyByPosition($0.*);

Use Case 1 - One String Field to Upper Case

To show in more details how mapping works, we provide here a few examples of mappings.

We have a graph with a Reformat component. Metadata on its input and output are identical. First two fields
(field1 and field2) are of string data type, the third (field3) is of integer data type.

1. We want to change the letters of field1 values to upper case while passing the other two fields unchanged
to the output.

2. We also want to distribute records according to the value of field3. Those records in which the value of
field3 is less than 5 should be sent to the output port 0, the others to the output port 1.

Examples of Mapping

As the first possibility, we have the mapping for both ports and all fields defined inside the transform()
function of CTL template.

Chapter 66. CTL2

918

Example 66.6. Example of Mapping with Individual Fields

Note that the mappings will be performed for all records. In other words, even when the record will go to the
output port 1, also the mapping for output port 0 will be performed, and vice versa.

Moreover, mapping consists of individual fields, which may be complicated in case there are many fields in a
record. In the next examples, we will see how this can be solved in a better way.

function integer transform() {

 // mapping input port records to output port records
 // each field is mapped separately
 $0.field1 = upperCase($0.field1);
 $0.field2 = $0.field2;
 $0.field3 = $0.field3;
 $1.field1 = upperCase($0.field1);
 $1.field2 = $0.field2;
 $1.field3 = $0.field3;

 // output port number returned
 if ($0.field3 < 5) return 0; else return 1;
}

Note

As CTL2 allows to use any code after the mapping, here we have used the if statement with two
return statements after the mapping.

In CTL2 mapping may be in any place of the transformation code and may be followed by any code!

As the second possibility, we also have the mapping for both ports and all fields defined inside the transform()
function of CTL template. But now there are wild cards used in the mapping. These passes the records unchanged
to the outputs and after this wildcard mapping the fields that should be changed are specified.

Example 66.7. Example of Mapping with Wild Cards

Note that mappings will be performed for all records. In other words, even when the record will go to the output
port 1, also the mapping for output port 0 will be performed, and vice versa.

However, now the mapping uses wild cards at first, which passes the records unchanged to the output, but the first
field is changed below the mapping with wild cards.

This is useful when there are many unchanged fields and a few that will be changed.

function integer transform() {

 // mapping input port records to output port records
 // wild cards for mapping unchanged records
 // transformed records mapped aditionally
 $0.* = $0.*;
 $0.field1 = upperCase($0.field1);
 $1.* = $0.*;
 $1.field1 = upperCase($0.field1);

 // return the number of output port
 if ($0.field3 < 5) return 0; else return 1;
}

Chapter 66. CTL2

919

Note

As CTL2 allows to use any code after the mapping, here we have used the if statement with two
return statements after the mapping.

In CTL2 mapping may be in any place of the transformation code and may be followed by any code!

As the third possibility, we have the mapping for both ports and all fields defined outside the transform()
function of CTL template. Each output port has its own mapping.

Also here, wild cards are used.

The mapping that is defined in separate function for each output port allows the following improvements:

• Mapping is performed only for respective output port! In other words, now there is no need to map record to
the port 1 when it will go to the port 0, and vice versa.

Example 66.8. Example of Mapping with Wild Cards in Separate User-Defined Functions

Moreover, mapping uses wild cards at first, which passes the records unchanged to the output, but the first field
is changed below the mapping with wild card. This is of use when there are many unchanged fields and a few
that will be changed.

// mapping input port records to output port records
// inside separate functions
// wild cards for mapping unchanged records
// transformed records mapped aditionally
function void mapToPort0 () {
 $0.* = $0.*;
 $0.field1 = upperCase($0.field1);
}

function void mapToPort1 () {
 $1.* = $0.*;
 $1.field1 = upperCase($0.field1);
}

// use mapping functions for all ports in the if statement
function integer transform() {
 if ($0.field3 < 5) {
 mapToPort0();
 return 0;
 }
 else {
 mapToPort1();
 return 1;
 }
}

Chapter 66. CTL2

920

Parameters

The parameters can be used in Clover transformation language in the following way:
${nameOfTheParameter}. If you want such a parameter is considered a string data type, you must surround
it by single or double quotes like this: '${nameOfTheParameter}' or "${nameOfTheParameter}".

Important

1. Remember that escape sequences are always resolved as soon as they are assigned to parameters.
For this reason, if you want that they are not resolved, type double backslashes in these strings
instead of single ones.

2. Remember also that you can get the values of environment variables using parameters. To learn
how to do it, see Environment Variables (p. 222).

Chapter 66. CTL2

921

Functions Reference

Clover transformation language has at its disposal a set of functions you can use. We describe them here.

All functions can be grouped into following categories:

• Conversion Functions (p. 923)

• Container Functions (p. 945)

• Record functions (dynamic field access) (p. 949)

• Date Functions (p. 930)

• Mathematical Functions (p. 932)

• String Functions (p. 936)

• Miscellaneous Functions (p. 953)

• Lookup Table Functions (p. 957)

• Sequence Functions (p. 960)

• Custom CTL Functions (p. 961)

Important

Remember that with CTL2 you can use both CloverETL built-in functions and your own functions
in one of the ways listed below.

Built-in functions

• substring(upperCase(getAplhanumericChars($0.field1))1,3)

• $0.field1.getAlphanumericChars().upperCase().substring(1,3)

The two expressions above are equivalent. The second option with the first argument
preceding the function itself is sometimes referred to as object notation. Do not forget
to use the "$port.field.function()" syntax. Thus, arg.substring(1,3) is equal to
substring(arg,1,3).

You can also declare your own function with a set of arguments of any data type, e.g.:

function integer myFunction(integer arg1, string arg2, boolean arg3) {
<function body>
}

User-defined functions

• myFunction($0.integerField,$0.stringField,$0.booleanField)

• $0.integerField.myFunction($0.stringField,$0.booleanField)

Warning

Remember that the object notation (<first argument>.function(<other arguments>) cannot be used
in Miscellaneous functions. See Miscellaneous Functions (p. 953).

Chapter 66. CTL2

922

Important

Remember that if you set the Null value property in metadata for any string data field to any
non-empty string, any function that accept string data field as an argument and throws NPE when
applied on null (e.g., length()), it will throw NPE when applied on such specific string.

For example, if field1 has Null value property set to "<null>", length($0.field1) will
fail on the records in which the value of field1 is "<null>" and it will be 0 for empty field.

See Null value (p. 163) for detailed information.

Chapter 66. CTL2

923

Conversion Functions

Sometimes you need to convert values from one data type to another.

In the functions that convert one data type to another, sometimes a format pattern of a date or any number must
be defined. Also locale can have an influence to their formatting.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about formatting and/or parsing of any numeric data type see Numeric Format (p. 120).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of these functions:

• byte base64byte(string arg);

The base64byte(string) function takes one string argument in base64 representation and converts it
to an array of bytes. Its counterpart is the byte2base64(byte) function.

• string bits2str(byte arg);

The bits2str(byte) function takes an array of bytes and converts it to a string consisting of two characters:
"0" or "1". Each byte is represented by eight characters ("0" or "1"). For each byte, the lowest bit is at the
beginning of these eight characters. The counterpart is the str2bits(string) function.

• integer bool2num(boolean arg);

The bool2num(boolean) function takes one boolean argument and converts it to either integer 1 (if the
argument is true) or integer 0 (if the argument is false). Its counterpart is the num2bool(<numeric type>)
function.

• string byte2base64(byte arg);

The byte2base64(byte) function takes an array of bytes and converts it to a string in base64
representation. Its counterpart is the base64byte(string) function.

• string byte2hex(byte arg);

The byte2hex(byte) function takes an array of bytes and converts it to a string in hexadecimal
representation. Its counterpart is the hex2byte(string) function.

• string byte2str(byte payload, string charset);

Returns bytes converted to string using a given charset.

• long date2long(date arg);

The date2long(date) function takes one date argument and converts it to a long type. Its value is equal to
the number of milliseconds elapsed from January 1, 1970, 00:00:00 GMT to the date specified as
the argument. Its counterpart is the long2date(long) function.

Chapter 66. CTL2

924

• integer date2num(date arg, unit timeunit);

The date2num(date, unit) function accepts two arguments: the first is date and the other is any time unit.
The unit can be one of the following: year, month, week, day, hour, minute, second, millisec. The
unit must be specified as a constant. It can neither be received through an edge nor set as variable. The function
takes these two arguments and converts them to an integer using system locale. If the time unit is contained in
the date, it is returned as an integer number. If it is not contained, the function returns 0. Remember that months
are numbered starting from 1 unlike in CTL1. Thus, date2num(2008-06-12, month) returns 6. And
date2num(2008-06-12, hour) returns 0.

• integer date2num(date arg, unit timeunit, string locale);

The date2num(date, unit, string) function accepts three arguments: the first is date, the second is
any time unit, the third is a locale. The unit can be one of the following: year, month, week, day, hour,
minute, second, millisec. The unit must be specified as a constant. It can neither be received through
an edge nor set as variable. The function takes these two arguments and converts them to an integer using
the specified locale. If the time unit is contained in the date, it is returned as an integer number. If it is not
contained, the function returns 0. Remember that months are numbered starting from 1 unlike in CTL1. Thus,
date2num(2008-06-12, month) returns 6. And date2num(2008-06-12, hour) returns 0.

• string date2str(date arg, string pattern);

The date2str(date, string) function accepts two arguments: date and string. The function
takes them and converts the date according to the pattern specified as the second argument.
Thus, date2str(2008-06-12, "dd.MM.yyyy") returns the following string: "12.6.2008". Its
counterpart is the str2date(string, string) function.

• string date2str(date arg, string pattern, string locale);

Converts the date field type into a date of the string data type according to the pattern (describing
the date and time format) and locale (defining what date format symbols should be used). Thus,
date2str(2009/01/04,"yyyy-MMM-d","fr.CA") returns 2009-janv.-4. See Locale (p. 126)
for more info about locale settings.

• number decimal2double(decimal arg);

The decimal2double(decimal) function takes one argument of decimal data type and converts it to a
double value.

The conversion is narrowing. And, if a decimal value cannot be converted into a double (as the
ranges of double data type do not cover all decimal values), the function throws exception. Thus,
decimal2double(92378352147483647.23) returns 9.2378352147483648E16.

On the other hand, any double can be converted into a decimal. Both Length and Scale of a decimal can
be adjusted for it.

• integer decimal2integer(decimal arg);

The decimal2integer(decimal) function takes one argument of decimal data type and converts it to
an integer.

The conversion is narrowing. And, if a decimal value cannot be converted into an integer (as the range
of integer data type does not cover the range of decimal values), the function throws exception. Thus,
decimal2integer(352147483647.23) throws exception, whereas decimal2integer(25.95)
returns 25.

On the other hand, any integer can be converted into a decimal without loss of precision. Length of a
decimal can be adjusted for it.

• long decimal2long(decimal arg);

Chapter 66. CTL2

925

The decimal2long(decimal) function takes one argument of decimal data type and converts it to a long
value.

The conversion is narrowing. And, if a decimal value cannot be converted into a long
(as the range of long data type does not cover all decimal values), the function throws
exception. Thus, decimal2long(9759223372036854775807.25) throws exception, whereas
decimal2long(72036854775807.79) returns 72036854775807.

On the other hand, any long can be converted into a decimal without loss of precision. Length of a decimal
can be adjusted for it.

• integer double2integer(number arg);

The double2integer(number) function takes one argument of double data type and converts it to an
integer.

The conversion is narrowing. And, if a double value cannot be converted into an integer (as the
range of double data type does not cover all integer values), the function throws exception. Thus,
double2integer(352147483647.1) throws exception, whereas double2integer(25.757197)
returns 25.

On the other hand, any integer can be converted into a double without loss of precision.

• long double2long(number arg);

The double2long(number) function takes one argument of double data type and converts it to a long.

The conversion is narrowing. And, if a double value cannot be converted into a long (as the
range of double data type does not cover all long values), the function throws exception. Thus,
double2long(1.3759739E23) throws exception, whereas double2long(25.8579) returns 25.

On the other hand, any long can always be converted into a double, however, user should take into account
that loss of precision may occur.

• byte hex2byte(string arg);

The hex2byte(string) function takes one string argument in hexadecimal representation and converts
it to an array of bytes. Its counterpart is the byte2hex(byte) function.

• string json2xml(string arg);

The json2xml(string) function takes one string argument that is JSON formatted and converts it to an
XML formatted string. Its counterpart is the xml2json(string) function.

• date long2date(long arg);

The long2date(long) function takes one long argument and converts it to a date. It adds the argument
number of milliseconds to January 1, 1970, 00:00:00 GMT and returns the result as a date. Its
counterpart is the date2long(date) function.

• integer long2integer(long arg);

The long2integer(decimal) function takes one argument of long data type and converts it to an
integer value. The conversion is successful only if it is possible without any loss of information, otherwise
the function throws exception. Thus, long2integer(352147483647) throws exception, whereas
long2integer(25) returns 25.

On the other hand, any integer value can be converted into a long number without loss of precision.

• byte long2packDecimal(long arg);

Chapter 66. CTL2

926

The long2packDecimal(long) function takes one argument of long data type and returns its value in the
representation of packed decimal number. It is the counterpart of the packDecimal2long(byte) function.

• byte md5(byte arg);

The md5(byte) function accepts one argument consisting of an array of bytes. It takes this argument and
calculates its MD5 hash value.

• byte md5(string arg);

The function accepts one argument of string data type. It takes this argument and calculates its MD5 hash
value.

• boolean num2bool(<numeric type> arg);

The num2bool(<numeric type>) function takes one argument of any numeric data type (integer,
long, number, or decimal) and returns boolean false for 0 and true for any other value.

• string num2str(<numeric type> arg);

The num2str(<numeric type>) function takes one argument of any numeric data type (integer,
long, number, or decimal) and converts it to a string in decimal representation. Locale is system value.
Thus, num2str(20.52) returns "20.52".

• string num2str(<numeric type> arg, integer radix);

The num2str(<numeric type>,integer) function accepts two arguments: the first is of any of three
numeric data types (integer, long, number) and the second is integer. It takes these two arguments and
converts the first to its string representation in the radix based numeric system. Thus, num2str(31, 16)
returns "1F". Locale is system value.

For both integer and long data types, any integer number can be used as radix. For double (number) only
10 or 16 can be used as radix.

Chapter 66. CTL2

927

• string num2str(<numeric type> arg, string format);

The num2str(<numeric type>, string) function accepts two arguments: the first is of any numeric
data type (integer, long, number, or decimal) and the second is string. It takes these two arguments
and converts the first to a string in decimal representation using the format specified as the second argument.
Locale has system value.

• string num2str(<numeric type> arg, string format, string locale);

The num2str(<numeric type>, string, string) function accepts three arguments: the first is of
any numeric data type (integer, long, number, or decimal) and two are strings. It takes these arguments
and converts the first to its string representation using the format specified as the second argument and the locale
specified as the third argument.

• long packDecimal2long(byte arg);

The packDecimal2long(byte) function takes one argument of an array of bytes whose meaning is the
packed decimal representation of a long number. It returns its value as long data type. It is the counterpart of
the long2packDecimal(long) function.

• byte sha(byte arg);

The sha(byte) function accepts one argument consisting of an array of bytes. It takes this argument and
calculates its SHA-1 hash value.

• byte sha(string arg);

The sha(string) function accepts one argument of string data type. It takes this argument and calculates
its SHA-1 hash value.

• byte sha256(byte arg);

The sha256(byte) function accepts one argument consisting of an array of bytes. It takes this argument and
calculates its SHA-256 hash value.

• byte sha256(string arg);

The sha256(string) function accepts one argument of string data type. It takes this argument and calculates
its SHA-256 hash value.

• byte str2bits(string arg);

The str2bits(string) function takes one string argument and converts it to an array of bytes. Its
counterpart is the bits2str(byte) function. The string consists of the following characters: Each of them
can be either "1" or it can be any other character. In the string, each character "1" is converted to the bit 1,
all other characters (not only "0", but also "a", "z", "/", etc.) are converted to the bit 0. If the number of
characters in the string is not an integral multiple of eight, the string is completed by "0" characters from the
right. Then, the string is converted to an array of bytes as if the number of its characters were integral multiple
of eight.

The first character represents the lowest bit.

• boolean str2bool(string arg);

The str2bool(string) function takes one string argument and converts it to the corresponding boolean
value. The string can be one of the following: "TRUE", "true", "T", "t", "YES", "yes", "Y", "y", "1",
"FALSE", "false", "F", "f", "NO", "no", "N", "n", "0". The strings are converted to boolean true
or boolean false.

• string str2byte(string payload, string charset);

Chapter 66. CTL2

928

Returns a string converted from input bytes using a given charset encoder.

• date str2date(string arg, string pattern);

The str2date(string, string) function accepts two string arguments. It takes them and converts
the first string to the date according to the pattern specified as the second argument. The pattern must
correspond to the structure of the first argument. Thus, str2date("12.6.2008", "dd.MM.yyyy")
returns the following date: 2008-06-12.

• date str2date(string arg, string pattern, string locale);

The str2date(string, string, string) function accepts three string arguments and one boolean.
It takes the arguments and converts the first string to the date according to the pattern and locale specified
as the second and the third argument, respectively. The pattern must correspond to the structure of the
first argument. Thus, str2date("12.6.2008", "dd.MM.yyyy",cs.CZ) returns the following date:
2008-06-12 . The third argument defines the locale for the date.

• decimal str2decimal(string arg);

The str2decimal(string) function takes one string argument and converts it to the corresponding
decimal value.

• decimal str2decimal(string arg, string format);

The str2decimal(string, string) function takes the first string argument and converts it to the
corresponding decimal value according to the format specified as the second argument. Locale has system value.

• decimal str2decimal(string arg, string format, string locale);

The str2decimal(string, string, string) function takes the first string argument and converts
it to the corresponding decimal value according to the format specified as the second argument and the locale
specified as the third argument.

• number str2double(string arg);

The str2double(string) function takes one string argument and converts it to the corresponding double
value.

• number str2double(string arg, string format);

The str2double(string, string) function takes the first string argument and converts it to the
corresponding double value according to the format specified as the second argument. Locale has system value.

• number str2double(string arg, string format, string locale);

The str2decimal(string, string, string) function takes the first string argument and converts
it to the corresponding double value according to the format specified as the second argument and the locale
specified as the third argument.

• integer str2integer(string arg);

The str2integer(string) function takes one string argument and converts it to the corresponding integer
value.

• integer str2integer(string arg, integer radix);

The str2integer(string, integer) function accepts two arguments: string and integer. It takes
the first argument as if it were expressed in the radix based numeric system representation and returns its
corresponding integer decimal value.

• integer str2integer(string arg, string format);

Chapter 66. CTL2

929

The str2integer(string, string) function takes the first string argument as decimal string
representation of an integer number corresponding to the format specified as the second argument and the system
locale and converts it to the corresponding integer value.

• integer str2integer(string arg, string format, string locale);

The str2integer(string, string, string) function takes the first string argument as decimal
string representation of an integer number corresponding to the format specified as the second argument and
the locale specified as the third argument and converts it to the corresponding integer value.

• long str2long(string arg, integer radix);

The str2long(string, integer) function accepts two arguments: string and integer. It takes the
first argument as if it were expressed in the radix based numeric system representation and returns its
corresponding long decimal value.

• long str2long(string arg, string format);

The str2long(string, string) function takes the first string argument as decimal string representation
of a long number corresponding to the format specified as the second argument and the system locale and
converts it to the corresponding long value.

• long str2long(string arg, string format, string locale);

The str2long(string, string, string) function takes the first string argument as decimal string
representation of a long number corresponding to the format specified as the second argument and the locale
specified as the third argument and converts it to the corresponding long value.

• string toString(<numeric|list|map type> arg);

The toString(<numeric|list|map type>) function takes one argument and converts it to its string
representation. It accepts any numeric data type, list of any data type, as well as map of any data types.

• string xml2json(string arg);

The xml2josn(string) function takes one string argument that is XML formatted and converts it to a JSON
formatted string. Its counterpart is the json2xml(string) function.

Chapter 66. CTL2

930

Date Functions

When you work with date, you may use the functions that process dates.

In these functions, sometimes a format pattern of a date or any number must be defined. Also locale can have an
influence to their formatting.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of the functions:

• date dateAdd(date arg, long amount, unit timeunit);

The dateAdd(date, long, unit) function accepts three arguments: the first is date, the second is of long
data type and the last is any time unit. The unit can be one of the following: year, month, week, day, hour,
minute, second, millisec. The unit must be specified as a constant. It can neither be received through an
edge nor set as variable. The function takes the first argument, adds the amount of time units to it and returns
the result as a date. The amount and time unit are specified as the second and third arguments, respectively.

• long dateDiff(date later, date earlier, unit timeunit);

The dateDiff(date, date, unit) function accepts three arguments: two dates and one time unit. It
takes these arguments and subtracts the second argument from the first argument. The unit can be one of the
following: year, month, week, day, hour, minute, second, millisec. The unit must be specified as
a constant. It can be neither received through an edge nor set as variable. The function returns the resulting time
difference expressed in time units specified as the third argument. Thus, the difference of two dates is expressed
in defined time units. The result is expressed as an integer number. Thus, dateDiff(2008-06-18,
2001-02-03, year) returns 7. But, dateDiff(2001-02-03, 2008-06-18, year) returns -7!

• date extractDate(date arg);

The extractDate(date) function takes one date argument and returns only the information containing
year, month, and day values. The function's argument is not modified by the return value.

• date extractTime(date arg);

The extractTime(date) function takes one date argument and returns only the information containing
hours, minutes, seconds, and milliseconds. The function's argument is not modified by the return value.

• date randomDate(date startDate, date endDate);

The randomDate(date, date) function accepts two date arguments and returns a random date between
startDate and endDate. These resulting dates are generated at random for different records and different
fields. They can be different for both records and fields. The return value can also be startDate or endDate.
However, it cannot be the date before startDate nor after endDate. Remember that dates represent 0 hours
and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you want that endDate could be
returned, enter the next date as endDate. As locale, system value is used. The default format is specified
in the defaultProperties file.

Chapter 66. CTL2

931

• date randomDate(long startDate, long endDate);

The randomDate(long, long) function accepts two arguments of long data type - each of them represents
a date - and returns a random date between startDate and endDate. These resulting dates are generated at
random for different records and different fields. They can be different for both records and fields. The return
value can also be startDate or endDate. However, it cannot be the date before startDate nor after
endDate. Remember that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the
specified day, thus, if you want that endDate could be returned, enter the next date as endDate. As locale,
system value is used. The default format is specified in the defaultProperties file.

• date randomDate(string startDate, string endDate, string format);

The randomDate(string, string, string) function accepts three stringarguments. Two first
represent dates, the third represents a format. The function returns a random date between startDate and
endDate corresponding to the format specified by the third argument. These resulting dates are generated
at random for different records and different fields. They can be different for both records and fields. The return
value can also be startDate or endDate. However, it cannot be the date before startDate nor after
endDate. Remember that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the
specified day, thus, if you want that endDate could be returned, enter the next date as endDate. As locale,
system value is used.

• date randomDate(string startDate, string endDate, string format, string
locale);

The randomDate(string, string, string, string) function accepts four string arguments. The
first and the second argument represent dates. The third is a format and the fourt is locale. The function returns a
random date between startDate and endDate. These resulting dates are generated at random for different
records and different fields. They can be different for both records and fields. The return value can also be
startDate or endDate corresponding to the format and the locale specified by the third and the fourth
argument, respectively. However, it cannot be the date before startDate nor after endDate. Remember
that dates represent 0 hours and 0 minutes and 0 seconds and 0 milliseconds of the specified day, thus, if you
want that endDate could be returned, enter the next date as endDate.

• date today();

The today() function accepts no argument and returns current date and time.

• date zeroDate();

The zeroDate() function accepts no argument and returns 1.1.1970.

Note

The following two functions are deprecated. Their return value modifies the argument at the same
time.

• date trunc(date arg);

The trunc(date) function takes one date argument and returns the date with the same year,
month and day, but hour, minute, second and millisecond are set to 0 values.

• date truncDate(date arg);

The truncDate(date) function takes one date argument and returns the date with the same
hour, minute, second and millisecond, but year, month and day are set to 0 values. The 0 date is
0001-01-01.

Chapter 66. CTL2

932

Mathematical Functions

You may also want to use some mathematical functions:

• <numeric type> abs(<numeric type> arg);

The abs(<numeric type>) function takes one argument of any numeric data type (integer, long,
number, or decimal) and returns its absolute value in the same data type.

• integer bitAnd(integer arg1, integer arg2);

The bitAnd(integer, integer) function accepts two arguments of integer data type. It takes them and
returns the number corresponding to the bitwise and. (For example, bitAnd(11,7) returns 3.) As decimal
11 can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is 11 what corresponds
to decimal 3.

• long bitAnd(long arg1, long arg2);

The bitAnd(long, long) function accepts two arguments of long data type. It takes them and returns
the number corresponding to the bitwise and. (For example, bitAnd(11,7) returns 3.) As decimal 11 can
be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is 11 what corresponds to
decimal 3.

• boolean bitIsSet(integer arg, integer Index);

The bitIsSet(integer, integer) function accepts two arguments of integer data type. It takes them,
determines the value of the bit of the first argument located on the Index and returns true or false,
if the bit is 1 or 0, respectively. (For example, bitIsSet(11,3) returns true.) As decimal 11 can be
expressed as bitwise 1011, the bit whose index is 3 (the fourth from the right) is 1, thus the result is true.
And bitIsSet(11,2) would return false.

• boolean bitIsSet(long arg, integer Index);

The bitIsSet(long, integer) function accepts one argument of long data type and one integer. It takes
these arguments, determines the value of the bit of the first argument located on the Index and returns true
or false, if the bit is 1 or 0, respectively. (For example, bitIsSet(11,3) returns true.) As decimal 11
can be expressed as bitwise 1011, the bit whose index is 3 (the fourth from the right) is 1, thus the result is
true. And bitIsSet(11,2) would return false.

• integer bitLShift(integer arg, integer Shift);

The bitLShift(integer, integer) function accepts two arguments of integer data type. It takes them
and returns the number corresponding to the original number with some bits added (Shift number of bits on
the left side are added and set to 0.) (For example, bitLShift(11,2) returns 44.) As decimal 11 can be
expressed as bitwise 1011, thus the two bits on the right side (10) are added and the result is 101100 which
corresponds to decimal 44.

• long bitLShift(long arg, long Shift);

The bitLShift(long, long) function accepts two arguments of long data type. It takes them and returns
the number corresponding to the original number with some bits added (Shift number of bits on the left side
are added and set to 0.) (For example, bitLShift(11,2) returns 44.) As decimal 11 can be expressed as
bitwise 1011, thus the two bits on the right side (10) are added and the result is 101100 which corresponds
to decimal 44.

• integer bitNegate(integer arg);

The bitNegate(integer) function accepts one argument of integer data type. It returns the number
corresponding to its bitwise inverted number. (For example, bitNegate(11) returns -12.) The
function inverts all bits in an argument.

Chapter 66. CTL2

933

• long bitNegate(long arg);

The bitNegate(long) function accepts one argument of long data type. It returns the number corresponding
to its bitwise inverted number. (For example, bitNegate(11) returns -12.) The function inverts all
bits in an argument.

• integer bitOr(integer arg1, integer arg2);

The bitOr(integer, integer) function accepts two arguments of integer data type. It takes them and
returns the number corresponding to the bitwise or. (For example, bitOr(11,7) returns 15.) As decimal 11
can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is 1111 what corresponds
to decimal 15.

• long bitOr(long arg1, long arg2);

The bitOr(long, long) function accepts two arguments of long data type. It takes them and returns the
number corresponding to the bitwise or. (For example, bitOr(11,7) returns 15.) As decimal 11 can be
expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is 1111 what corresponds to
decimal 15.

• integer bitRShift(integer arg, integer Shift);

The bitRShift(integer, integer) function accepts two arguments of integer data type. It takes them
and returns the number corresponding to the original number with some bits removed (Shift number of bits on
the right side are removed.) (For example, bitRShift(11,2) returns 2.) As decimal 11 can be expressed as
bitwise 1011, thus the two bits on the right side are removed and the result is 10 what corresponds to decimal 2.

• long bitRShift(long arg, long Shift);

The bitRShift(long, long) function accepts two arguments of long data type. It takes them and returns
the number corresponding to the original number with some bits removed (Shift number of bits on the right
side are removed.) (For example, bitRShift(11,2) returns 2.) As decimal 11 can be expressed as bitwise
1011, thus the two bits on the right side are removed and the result is 10 what corresponds to decimal 2.

• integer bitSet(integer arg1, integer Index, boolean SetBitTo1);

The bitSet(integer, integer, boolean) function accepts three arguments. The first two are of
integer data type and the third is boolean. It takes them, sets the value of the bit of the first argument located on
the Index specified as the second argument to 1 or 0, if the third argument is true or false, respectively,
and returns the result as an integer. (For example, bitSet(11,3,false) returns 3.) As decimal 11 can
be expressed as bitwise 1011, the bit whose index is 3 (the fourth from the right) is set to 0, thus the result
is 11 what corresponds to decimal 3. And bitSet(11,2,true) would return 1111 what corresponds to
decimal 15.

• long bitSet(long arg1, integer Index, boolean SetBitTo1);

The bitSet(long, integer, boolean) function accepts three arguments. The first is long, the second
is integer, and the third is boolean. It takes them, sets the value of the bit of the first argument located on the
Index specified as the second argument to 1 or 0, if the third argument is true or false, respectively,
and returns the result as an integer. (For example, bitSet(11,3,false) returns 3.) As decimal 11 can
be expressed as bitwise 1011, the bit whose index is 3 (the fourth from the right) is set to 0, thus the result
is 11 what corresponds to decimal 3. And bitSet(11,2,true) would return 1111 what corresponds to
decimal 15.

• integer bitXor(integer arg, integer arg);

The bitXor(integer, integer) function accepts two arguments of integer data type. It takes them
and returns the number corresponding to the bitwise exclusive or. (For example, bitXor(11,7) returns
12.) As decimal 11 can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is
1100 what corresponds to decimal 15.

Chapter 66. CTL2

934

• long bitXor(long arg, long arg);

The bitXor(long, long) function accepts two arguments of long data type. It takes them and returns
the number corresponding to the bitwise exclusive or. (For example, bitXor(11,7) returns 12.) As
decimal 11 can be expressed as bitwise 1011, decimal 7 can be expressed as 111, thus the result is 1100
what corresponds to decimal 15.

• number ceil(decimal arg);

The ceil(decimal) function takes one argument of decimal data type and returns the smallest (closest to
negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.

• number ceil(number arg);

The ceil(number) function takes one argument of double data type and returns the smallest (closest to
negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.

• number e();

The e() function accepts no argument and returns the Euler number.

• number exp(<numeric type> arg);

The exp(<numeric type>) function takes one argument of any numeric data type (integer, long,
number, or decimal) and returns the result of the exponential function of this argument.

• number floor(decimal arg);

The floor(decimal) function takes one argument of decimal data type and returns the largest (closest to
positive infinity) double value that is less than or equal to the argument and is equal to a mathematical integer.

• number floor(number arg);

The floor(number) function takes one argument of double data type and returns the largest (closest to
positive infinity) double value that is less than or equal to the argument and is equal to a mathematical integer.

• void setRandomSeed(long arg);

The setRandomSeed(long) takes one long argument and generates the seed for all functions that generate
values at random.

This function should be used in the preExecute() function or method.

In such a case, all values generated at random do not change on different runs of the graph, they even remain
the same after the graph is resetted.

• number log(<numeric type> arg);

The log(<numeric type>) takes one argument of any numeric data type (integer, long, number, or
decimal) and returns the result of the natural logarithm of this argument.

• number log10(<numeric type> arg);

The log10(<numeric type>) function takes one argument of any numeric data type (integer, long,
number, or decimal) and returns the result of the logarithm of this argument to the base 10.

• number pi();

The pi() function accepts no argument and returns the pi number.

Chapter 66. CTL2

935

• number pow(<numeric type> base, <numeric type> exp);

The pow(<numeric type>, <numeric type>) function takes two arguments of any numeric data
types (that do not need to be the same, integer, long, number, or decimal) and returns the exponential
function of the first argument as the exponent with the second as the base.

• number random();

The random() function accepts no argument and returns a random positive double greater than or equal to
0.0 and less than 1.0.

• boolean randomBoolean();

The randomBoolean() function accepts no argument and generates at random boolean values true or
false. If these values are sent to any numeric data type field, they are converted to their numeric representation
automatically (1 or 0, respectively).

• number randomGaussian();

The randomGaussian() function accepts no argument and generates at random both positive and negative
values of number data type in a Gaussian distribution.

• integer randomInteger();

The randomInteger() function accepts no argument and generates at random both positive and negative
integer values.

• integer randomInteger(integer Minimum, integer Maximum);

The randomInteger(integer, integer) function accepts two argument of integer data types and
returns a random integer value greater than or equal to Minimum and less than or equal to Maximum.

• long randomLong();

The randomLong() function accepts no argument and generates at random both positive and negative long
values.

• long randomLong(long Minimum, long Maximum);

The randomLong(long, long) function accepts two argument of long data types and returns a random
long value greater than or equal to Minimum and less than or equal to Maximum.

• long round(decimal arg);

The round(decimal) function takes one argument of decimal data type and returns the long that is closest
to this argument. Decimal is converted to number prior to the operation.

• long round(number arg);

The round(number) function takes one argument of number data type and returns the long that is closest
to this argument.

• number sqrt(<numeric type> arg);

The sqrt(mumerictype) function takes one argument of any numeric data type (integer, long,
number, or decimal) and returns the square root of this argument.

Chapter 66. CTL2

936

String Functions

Some functions work with strings.

In the functions that work with strings, sometimes a format pattern of a date or any number must be defined.

• For detailed information about date formatting and/or parsing see Date and Time Format (p. 113).

• For detailed information about formatting and/or parsing of any numeric data type see Numeric Format (p. 120).

• For detailed information about locale see Locale (p. 126).

Note

Remember that numeric and date formats are displayed using system value Locale or Locale
specified in the defaultProperties file, unless other Locale is explicitly specified.

For more information on how Locale may be changed in the defaultProperties see Changing
Default CloverETL Settings (p. 88).

Here we provide the list of the functions:

• string charAt(string arg, integer index);

The charAt(string, integer) function accepts two arguments: the first is string and the second is
integer. It takes the string and returns the character that is located at the position specified by the index.

• string chop(string arg);

The chop(string) function accepts one string argument. The function takes this argument, removes the line
feed and the carriage return characters from the end of the string specified as the argument and returns the new
string without these characters.

• string chop(string arg1, string arg2);

The chop(string, string) function accepts two string arguments. It takes the first argument, removes
the string specified as the second argument from the end of the first argument and returns the first string argument
without the string specified as the second argument.

• string concat(string arg1, string ..., string argN);

The concat(string, ..., string) function accepts unlimited number of arguments of string data
type. It takes these arguments and returns their concatenation. You can also concatenate these arguments using
plus signs, but this function is faster for more than two arguments.

• integer countChar(string arg, string character);

The countChar(string, string) function accepts two arguments: the first is string and the second
is one character. It takes them and returns the number of occurrences of the character specified as the second
argument in the string specified as the first argument.

• string[] cut(string arg, integer[] indeces);

The cut(string, integer[]) function accepts two arguments: the first is string and the second is list
of integers. The function returns a list of strings. The number of elements of the list specified as the second
argument must be even. The integers in the list serve as position (each number in the odd position) and length
(each number in the even position). Substrings of the specified length are taken from the string specified
as the first argument starting from the specified position (excluding the character at the specified position).

Chapter 66. CTL2

937

The resulting substrings are returned as list of strings. For example, cut("somestringasanexample",
[2,3,1,5]) returns ["mes","omest"].

• integer editDistance(string arg1, string arg2);

The editDistance(string, string) function accepts two string arguments. These strings will be
compared to each other. The strength of comparison is 4 by default, the default value of locale for comparison
is the system value and the maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the two arguments to
the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

• integer editDistance(string arg1, string arg2, string locale);

The editDistance(string, string, string) function accepts three arguments. The first two are
strings that will be compared to each other and the third (string) is the locale that will be used for comparison.
The default strength of comparison is 4. The maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• integer editDistance(string arg1, string arg2, integer strength);

The editDistance(string, string, integer) function accepts three arguments. The first two are
strings that will be compared to each other and the third (integer) is the strength of comparison. The default
locale that will be used for comparison is the system value. The maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

• integer editDistance(string arg1, string arg2, integer strength, string
locale);

The editDistance(string, string, integer, string) function accepts four arguments. The
first two are strings that will be compared to each other, the third (integer) is the strength of comparison and the
fourth (string) is the locale that will be used for comparison. The maximum difference is 3 by default.

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Chapter 66. CTL2

938

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• integer editDistance(string arg1, string arg2, string locale, integer
maxDifference);

The editDistance(string, string, string, integer) function accepts four arguments. The
first two are strings that will be compared to each other, the third (string) is the locale that will be used for
comparison and the fourth (integer) is the maximum difference. The strength of comparison is 4 by default.

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• integer editDistance(string arg1, string arg2, integer strength, integer
maxDifference);

The editDistance(string, string, integer, integer) function accepts four arguments.
The first two are strings that will be compared to each other and the two others are both integers. These are
the strength of comparison (third argument) and the maximum difference (fourth argument). The locale is the
default system value.

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be
changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

For more details, see another version of the editDistance() function below - the editDistance (string,
string, integer, string, integer) (p. 938) function.

• integer editDistance(string arg1, string arg2, integer strength, string
locale, integer maxDifference);

The editDistance(string, string, integer, string, integer) function accepts five
arguments. The first two are strings, the three others are integer, string and integer, respectively. The function
takes the first two arguments and compares them to each other using the other three arguments.

The third argument (integer number) specifies the strength of comparison. It can have any value from 1 to 4.

If it is 4 (identical comparison), that means that only identical letters are considered equal. In case of 3 (tertiary
comparison), that means that upper and lower cases are considered equal. If it is 2 (secondary comparison), that
means that letters with diacritical marks are considered equal. Last, if the strength of comparison is 1 (primary
comparison), that means that even the letters with some specific signs are considered equal. In other versions
of the editDistance() function where this strength of comparison is not specified, the number 4 is used
as the default strength (see above).

The fourth argument is the string data type. It is the locale that serves for comparison. If no locale is specified
in other versions of the editDistance() function, its default value is the system value (see above).

The fifth argument (integer number) means the number of letters that should be changed to transform one of the
first two arguments to the other. If another version of the editDistance() function does not specify this
maximum difference, the default maximum difference is number 3 (see above).

The function returns the number of letters that should be changed to transform one of the first two arguments
to the other. However, when the function is being executed, if it counts that the number of letters that should be

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Chapter 66. CTL2

939

changed is at least the number specified as the maximum difference, the execution terminates and the function
returns maxDifference + 1 as the return value.

Actually the function is implemented for the following locales: CA, CZ, ES, DA, DE, ET, FI, FR, HR, HU,
IS, IT, LT, LV, NL, NO, PL, PT, RO, SK, SL, SQ, SV, TR. These locales have one thing in common: they all
contain language-specific characters. A complete list of these characters can be examined in CTL2 Appendix
- List of National-specific Characters (p. 962)

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• string escapeUrl(string arg);

The function escapes illegal characters within components of specified URL (see isUrl() CTL2
function (p. 941) for the URL component description). Illegal characters must be escaped by a percent
character % symbol, followed by the two-digit hexadecimal representation (case-insensitive) of the ISO-Latin
code point for the character, e.g., %20 is the escaped encoding for the US-ASCII space character.

• string[] find(string arg, string regex);

The find(string, string) function accepts two string arguments. The second one is a regular
expression (p. 964). The function takes them and returns a list of substrings corresponding to the regex pattern
that are found in the string specified as the first argument.

• string getAlphanumericChars(string arg);

The getAlphanumericChars(string) function takes one string argument and returns only letters and
digits contained in the string argument in the order of their appearance in the string. The other characters are
removed.

• string getAlphanumericChars(string arg, boolean takeAlpha, boolean
takeNumeric);

The getAlphanumericChars(string, boolean, boolean) function accepts three arguments: one
string and two booleans. It takes them and returns letters and/or digits if the second and/or the third arguments,
respectively, are set to true.

• string getFieldLabel(reference record, string arg);

The function returns a label of a field whose name is specified in arg. The fields are taken from record.

• string getFieldLabel(reference record, integer arg);

The function returns a label of a field whose index is specified in arg. The fields are taken from record.

• string getUrlHost(string arg);

The function parses out host name from specified URL (see isUrl() CTL2 function (p. 941) for the scheme).
If the hostname part is not present in the URL argument, an empty string is returned. If the URL is not valid,
null is returned.

• string getUrlPath(string arg);

The function parses out path from specified URL (see isUrl() CTL2 function (p. 941) for the scheme). If
the path part is not present in the URL argument, an empty string is returned. If the URL is not valid, null
is returned.

• integer getUrlPort(string arg);

The function parses out port number from specified URL (see isUrl() CTL2 function (p. 941) for the scheme).
If the port part is not present in the URL argument, -1 is returned. If the URL has invalid syntax, -2 is returned.

• string getUrlProtocol(string arg);

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html

Chapter 66. CTL2

940

The function parses out protocol name from specified URL (see isUrl() CTL2 function (p. 941) for the
scheme). If the protocol part is not present in the URL argument, an empty string is returned. If the URL is
not valid, null is returned.

• string getUrlQuery(string arg);

The function parses out query (parameters) from specified URL (see isUrl() CTL2 function (p. 941) for the
scheme). If the query part is not present in the URL argument, an empty string is returned. If the URL syntax
is invalid, null is returned.

• string getUrlUserInfo(string arg);

The function parses out username and password from specified URL (see isUrl() CTL2 function (p. 941) for
the scheme). If the userinfo part is not present in the URL argument, an empty string is returned. If the URL
syntax is invalid, null is returned.

• string getUrlRef(string arg);

The function parses out fragment after # character, also known as ref, reference or anchor, from specified URL
(see isUrl() CTL2 function (p. 941) for the scheme). If the fragment part is not present in the URL argument,
an empty string is returned. If the URL syntax is invalid, null is returned.

• integer indexOf(string arg, string substring);

The indexOf(string, substring) function returns the index (zero-based) of the first occurrence of
substring in the string. Returns -1 if no occurrence is found.

• integer indexOf(string arg, string substring, integer fromIndex);

The indexOf(string, substring, fromIndex) function returns the index (zero-based) of the first
occurrence of substring in the string, starting from fromIndex. Returns -1 if no occurrence is found.

• boolean isAscii(string arg);

The isAscii(string) function takes one string argument and returns a boolean value depending on
whether the string can be encoded as an ASCII string (true) or not (false).

• boolean isBlank(string arg);

The isBlank(string) function takes one string argument and returns a boolean value depending on
whether the string contains only white space characters (true) or not (false).

• boolean isDate(string arg, string pattern);

The isDate(string, string) function accepts two string arguments. It takes them, compares the first
argument with the second as a pattern and, if the first string can be converted to a date which is valid within
system value of locale, according to the specified pattern, the function returns true. If it is not possible,
it returns false.

(For more details, see another version of the isDate() function below - the isDate(string, string,
string, boolean) function.)

This function is a variant of the mentioned isDate(string, string, string) function in which the
default value of the third argument is set to system value.

Chapter 66. CTL2

941

• boolean isDate(string arg, string pattern, string locale);

The isDate(string, string, string) function accepts three string arguments. It takes them,
compares the first argument with the second as a pattern, use the third argument (locale) and, if the first string
can be converted to a date which is valid within specified locale, according to the specified pattern, the
function returns true. If it is not possible, it returns false.

(For more details, see another version of the isDate() function below - the isDate(string, string,
string, boolean) function.)

See http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html for details about Locale.

• boolean isInteger(string arg);

The isInteger(string) function takes one string argument and returns a boolean value depending on
whether the string can be converted to an integer number (true) or not (false).

• boolean isLong(string arg);

The isLong(string) function takes one string argument and returns a boolean value depending on whether
the string can be converted to a long number (true) or not (false).

• boolean isNumber(string arg);

The isNumber(string) function takes one string argument and returns a boolean value depending on
whether the string can be converted to a double (true) or not (false).

• boolean isUrl(string arg);

The function checks whether specified string is a valid URL of the following syntax

foo://username:passw@host.com:8042/there/index.dtb?type=animal;name=cat#nose
_/ ____________/ ______/ __/______________/ __________________/ __/
 | | | | | | |
protocol userinfo host port path query ref

See http://www.ietf.org/rfc/rfc2396.txt for more info about the URI standards.

• string join(string delimiter, <element type>[] arg);

The join(string, <element type>[]) function accepts two arguments. The first is string, the second
is a list of elements of any data type. The elements that are not strings are converted to their string representation
and put together with the first argument as delimiter.

• string join(string delimiter, map[<type of key>,<type of value>] arg);

The join(string, map[<type of key>,<type of value>]) function accepts two arguments.
The first is string, the second is a map of any data types. The map elements are displayed as key=value
strings. These are put together with the first argument as delimiter.

• string left(string arg, integer length);

The left(string, integer) function accepts two arguments: the first is string and the second is integer.
It takes them and returns the substring of the length specified as the second argument counted from the start of
the string specified as the first argument. If the input string is shorter than the length parameter, an exception is
thrown and the graph fails. To avoid such failure, use the left(string, integer, boolean) function
described below.

• string left(string arg, integer length, boolean spacePad);

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://www.ietf.org/rfc/rfc2396.txt

Chapter 66. CTL2

942

The function returns prefix of the specified length. If the input string is longer or equally long as the length
parameter, the function behaves the same way as the left(string, integer) function. There is different
behaviour if the input string is shorter than the specified length. If the 3th argument is true, the right side of
the result is padded with blank spaces so that the result has specified length beeing left justified. Whereas if
false, the input string is returned as the result with no space added.

• integer length(structuredtype arg);

The length(structuredtype) function accepts a structured data type as its argument: string,
<element type>[], map[<type of key>,<type of value>] or record. It takes the argument
and returns a number of elements forming the structured data type.

• string lowerCase(string arg);

The lowerCase(string) function takes one string argument and returns another string with cases
converted to lower cases only.

• boolean matches(string arg, string regex);

The matches(string, string) function takes two string arguments. The second argument is some
regular expression (p. 964). If the first argument can be expressed with such regular expression, the function
returns true, otherwise it is false.

• string[] matchGroups(string text, string regex);

If text matches the regular expression (p. 964) regex, the matchGroups(text, regex) function
returns the list of group matches (the substrings matched by the capturing groups of the regex). The list is
zero-based and the element with index 0 is the match for the entire expression. The following elements (1, ...)
correspond with the capturing groups indexed from left to right, starting at one. The returned list is unmodifiable.
If text does not match regex, null is returned.

• string metaphone(string arg, integer maxLength);

The metaphone(string, integer) function accepts one string argument and one integer meaning the
maximum length. The function takes these arguments and returns the metaphone code of the first argument of
the specified maximum length. The default maximum length is 4. For more information, see the following site:
www.lanw.com/java/phonetic/default.htm.

• string NYSIIS(string arg);

The NYSIIS(string) function takes one string argument and returns the New York State Identification
and Intelligence System Phonetic Code of the argument. For more information, see the following site: http://
en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System.

• string randomString(integer minLength, integer maxLength);

The function returns a string consisting of lowercase letters. Its length is between <minLength;
maxLength>. Characters in the generated string always belong to ['a'-'z'] (no special symbols).

Example random string: qjfxq

• string randomUUID();

Generates a random but undoubtedly unique string identifier. The generated string has this format:

hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

where h belongs to [0-9a-f]. In other words, you generate hexadecimal code of a random 128bit number.

Example generated string: cee188a3-aa67-4a68-bcd2-52f3ec0329e6

http://www.lanw.com/java/phonetic/default.htm
http://en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System
http://en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System

Chapter 66. CTL2

943

For more details on the algorithm used, browse the Java documentation.

• string removeBlankSpace(string arg);

The removeBlankSpace(string) function takes one string argument and returns another string with
white spaces removed.

• string removeDiacritic(string arg);

The removeDiacritic(string) function takes one string argument and returns another string with
diacritical marks removed.

• string removeNonAscii(string arg);

The removeNonAscii(string) function takes one string argument and returns another string with non-
ascii characters removed.

• string removeNonPrintable(string arg);

The removeNonPrintable(string) function takes one string argument and returns another string with
non-printable characters removed.

• string replace(string arg, string regex, string replacement);

The replace(string, string, string) function takes three string arguments - a string, a regular
expression (p. 964), and a replacement - and replaces all regex matches inside the string with the replacement
string you specified. All parts of the string that match the regex are replaced. You can also reference the matched
text using a backreference in the replacement string. A backreference to the entire match is indicated as $0. If
there are capturing parentheses, you can reference specifics groups as $1, $2, $3, etc.

replace("Hello","[Ll]","t") returns "Hetto"

replace("Hello", "e(l+)", "a$1") returns "Hallo"

Important - please beware of similar syntax of $0, $1 etc. While used inside the replacement string it refers
to matching regular expression parenthesis (in order). If used outside a string, it means a reference to an input
field. See other example:

replace("Hello", "e(l+)", $0.name) returns HJohno if input field "name" on port 0 contains
the name "John".

You can also use modifier in the start of the regular expression: (?i) for case-insensitive search, (?m) for
multiline mode or (?s) for "dotall" mode where a dot (".") matches even a newline character

replace("Hello", "(?i)L", "t") will produce Hetto while replace("Hello", "L", "t")
will just produce Hello

• string right(string arg, integer length);

The right(string, integer) function accepts two arguments: the first is string and the second is integer.
It takes them and returns the substring of the length specified as the second argument counted from the end of
the string specified as the first argument. If the input string is shorter than the length parameter, an exception
is thrown and the graph fails. To avoid such failure, use the right(string, integer, boolean)
function described below.

• string right(string arg, integer length, boolean spacePad);

The function returns suffix of the specified length. If the input string is longer or equally long as the length
parameter, the function behaves the same way as the right(string, integer) function. There is
different behaviour if the input string is shorter than the specified length. If the 3th argument is true, the left side

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/UUID.html

Chapter 66. CTL2

944

of the result is padded with blank spaces so that the result has specified length beeing right justified. Whereas
if false, the input string is returned as the result with no space added.

• string soundex(string arg);

The soundex(string) function takes one string argument and converts the string to another. The resulting
string consists of the first letter of the string specified as the argument and three digits. The three digits are based
on the consonants contained in the string when similar numbers correspond to similarly sounding consonants.
Thus, soundex("word") returns "w600".

• string[] split(string arg, string regex);

The split(string, string) function accepts two string arguments. The second is some regular
expression (p. 964). It is searched in the first string argument and if it is found, the string is split into the parts
located between the characters or substrings of such a regular expression. The resulting parts of the string are
returned as a list of strings. Thus, split("abcdefg", "[ce]") returns ["ab", "d", "fg"].

• string substring(string arg, integer fromIndex, integer length);

The substring(string, integer, integer) function accepts three arguments: the first is string
and the other two are integers. The function takes the arguments and returns a substring of the defined length
obtained from the original string by getting the length number of characters starting from the position defined
by the second argument. Thus, substring("text", 1, 2) returns "ex".

• string translate(string arg, string searchingSet, string replaceSet);

The translate(string, string, string) function accepts three string arguments. The number of
characters must be equal in both the second and the third arguments. If some character from the string specified
as the second argument is found in the string specified as the first argument, it is replaced by a character taken
from the string specified as the third argument. The character from the third string must be at the same position
as the character in the second string. Thus, translate("hello", "leo", "pii") returns "hippi".

• string trim(string arg);

The trim(string) function takes one string argument and returns another string with leading and trailing
white spaces removed.

• string unescapeUrl(string arg);

The function decodes escape sequences of illegal characters within components of specified URL (see isUrl()
CTL2 function (p. 941) for the URL component description). Escape sequences consist of a percent character
% symbol, followed by the two-digit hexadecimal representation (case-insensitive) of the ISO-Latin code point
for the character, e.g., %20 is the escaped encoding for the US-ASCII space character.

• string upperCase(string arg);

The upperCase(string) function takes one string argument and returns another string with cases
converted to upper cases only.

Chapter 66. CTL2

945

Container Functions

When working with containers (list, map, record), you will typically use the 'contained in' function call - in.
This call identifies whether a value is contained in a list or a map of other values. There are two syntactic options:

boolean myBool;
string myString;
string[] myList;
...

1.
myBool = myString.in(myList)

2.
myBool = in(myString,myList);

In the table below, examine (im)possible ways of using in:

CodeWorking?

"abc".in(["a", "b"])

in(10, [10, 20])

10.in([10, 20])

As for lists and maps in metadata, use in like this:

CodeComment

"abc" in ["a", "b"] standard
operator
syntax

"abc" in $in.0.listFieldoperator
syntax

for
list

field

"abc" in $in.0.mapFieldoperator
for

map
field

Note

The operator syntax has a con. Searching through lists will always be slow (since it has to be linear).

Functions you can use with containers

• <element type>[] append(<element type>[] arg, <element type> list_element);

The append(<element type>[], <element type>) function accepts two arguments: the first is a list
of any element data type and the second is of the element data type. The function takes the second argument and
adds it to the end of the first argument. The function returns the new value of list specified as the first argument.

Chapter 66. CTL2

946

This function is alias of the push(<element type>[], <element type>) function. From the list
point of view, append() is much more natural.

• boolean containsAll(<element type>[] list, <element type>[] subList);

The containsAll(<element type>[], <element type>[]) function returns true if the list
passed as the first argument contains every element of the second passed list, i.e. the second list is a sublist
of the first list.

• boolean containsKey(map[<type of key>,<type of value>] map, <type of key>
key);

The containsKey(map[<type of key>,<type of value>], <type of key>) function
returns true if the specified map contains a mapping for the specified key.

• boolean containsValue(map[<type of key>,<type of value>] map, <type of
value> value);

The containsKey(map[<type of key>,<type of value>], <type of value>) function
returns true if the specified map maps one or more keys to the specified value.

• void clear(<element type>[] arg);

The clear(<element type>[])function accepts one list argument of any element data type. The function
takes this argument and empties the list. It returns void.

• void clear(map[<type of key>,<type of value>] arg);

The clear(map[<type of key>,<type of value>])function accepts one map argument. The
function takes this argument and empties the map. It returns void.

• <element type>[] copy(<element type>[] arg, <element type>[] arg);

The copy(<element type>[], <element type>[]) function accepts two arguments, each of them
is a list. Elements of both lists must be of the same data type. The function takes the second argument, adds it
to the end of the first list and returns the new value of the list specified as the first argument.

• void copyByName(record to, record from);

Copies data from the input record to the output record based on field names. Enables mapping of equally named
fields only.

• void copyByPosition(record to, record from);

Copies data from the input record to the output record based on fields order. The number of fields in output
metadata decides which input fields (beginning the first one) are mapped.

• map[<type of key>, <type of value>] copy(map[<type of key>, <type of value>]
arg, map[<type of key>, <type of value>] arg);

The copy(map[<type of key>, <type of value>], map[<type of key>, <type of
value>]) function accepts two arguments, each of them is a map. Elements of both maps must be of the same
data type. The function takes the second argument, adds it to the end of the first map replacing existing key
mappings and returns the new value of the map specified as the first argument.

• list[] getKeys(map[<type of key>, <type of value>] arg);

The function returns a list of your map's keys. Remember the list has to be the same type as map's keys, e.g.:

Chapter 66. CTL2

947

map[string, integer] myMap;

// filling the map with values, e.g. myMap["first"] = 1;

string[] listOfKeys = getKeys(myMap);

• <element type>[] insert(<element type>[] arg, integer position, <element
type> newelement);

The insert(<element type>[], integer, <element type>)function accepts the following
arguments: the first is a list of any element data type, the second is integer, and the other is of the element
data type. The function takes the third argument and inserts it to the list at the position defined by the second
argument. The list specified as the first argument changes to this new value and it is returned by the function.
Remember that the list element are indexed starting from 0.

• boolean isEmpty(<element type>[] arg);

The isEmpty(<element type>[])function accepts one argument of list of any element data type. It
takes this argument, checks whether the list is empty and returns true, or false.

• boolean isEmpty(map[<type of key>,<type of value>] arg);

The isEmpty(map[<type of key>,<type of value>])function accepts one argument of a map
of any value data types. It takes this argument, checks whether the map is empty and returns true, or false.

• integer length(structuredtype arg);

The length(structuredtype) function accepts a structured data type as its argument: string,
<element type>[], map[<type of key>,<type of value>] or record. It takes the argument
and returns a number of elements forming the structured data type.

• <element type> poll(<element type>[] arg);

The poll(<element type>[])function accepts one argument of list of any element data type. It takes
this argument, removes the first element from the list and returns this element. The list specified as the argument
changes to this new value (without the removed first element).

• <element type> pop(<element type>[] arg);

The pop(<element type>[])function accepts one argument of list of any element data type. It takes this
argument, removes the last element from the list and returns this element. The list specified as the argument
changes to this new value (without the removed last element).

• <element type>[] push(<element type>[] arg, <element type> list_element);

The push(<element type>[], <element type>)function accepts two arguments: the first is a list
of any data type and the second is the data type of list element. The function takes the second argument and adds
it to the end of the first argument. The function returns the new value of the list specified as the first argument.

This function is alias of the append(<element type>[], <element type>) function. From the
stack/queue point of view, push() is much more natural.

• <element type> remove(<element type>[] arg, integer position);

The remove(<element type>[], integer)function accepts two arguments: the first is a list of any
element data type and the second is integer. The function removes the element at the specified position and
returns the removed element. The list specified as the first argument changes its value to the new one. (List
elements are indexed starting from 0.)

Chapter 66. CTL2

948

• <element type>[] reverse(<element type>[] arg);

The reverse(<element type>[])function accepts one argument of a list of any element data type. It
takes this argument, reverses the order of elements of the list and returns such new value of the list specified
as the first argument.

• <element type>[] sort(<element type>[] arg);

The sort(<element type>[])function accepts one argument of a list of any element data type. It takes
this argument, sorts the elements of the list in ascending order according to their values and returns such new
value of the list specified as the first argument.

Chapter 66. CTL2

949

Record functions (dynamic field access)

These functions are to be found in the Functions tab, section Dynamic field access library inside the Transform
Editor (p. 285).

• integer length();

Returns the number of fields of a record the function is called on.

• integer compare(reference record1, string field1, reference record2, string
field2);

Compares two fields of given records. The fields are identified by their name. The function returns an integer
value which is either:

1. < 0 ... field2 is greater than field1

2. > 0 ... field2 is lower than field1

3. 0 ... fields are equal

• integer compare(reference record1, integer field1, reference record2,
integer field2);

Compares two fields of given records. The fields are identified by their index (0 is the first field). The function
returns an integer value which is either:

1. < 0 ... field2 is greater than field1

2. > 0 ... field2 is lower than field1

3. 0 ... fields are equal

• boolean getBoolValue(reference record, integer field);

Returns the value of a boolean field. The field is identified by its index.

• boolean getBoolValue(reference record, string field);

Returns the value of a boolean field. The field is identified by its name.

• byte getByteValue(reference record, integer field);

Returns the value of a byte field. The field is identified by its index.

• byte getByteValue(reference record, string field);

Returns the value of a byte field. The field is identified by its name.

• date getDateValue(reference record, integer field);

Returns the value of a date field. The field is identified by its index.

• date getDateValue(reference record, string field);

Returns the value of a date field. The field is identified by its name.

• decimal getDecimalValue(reference record, integer field);

Returns the value of a decimal field. The field is identified by its index.

• decimal getDecimalValue(reference record, string field);

Chapter 66. CTL2

950

Returns the value of a decimal field. The field is identified by its name.

• integer getFieldIndex(reference record, string field);

Returns the index (zero-based) of a field which is identified by its name. If the field name is not found in the
record, the function returns -1.

• string getFieldLabel(reference record, integer field);

Returns the label of a field which is identified by its index. Please note a label is not a field's name, see Field
Name vs. Label vs. Description (p. 160).

• string getFieldName(record argRecord, integer index);

The getFieldName(record, integer) function accepts two arguments: record and integer. The
function takes them and returns the name of the field with the specified index. Fields are numbered starting
from 0.

Important

The argRecord may have any of the following forms:

• $<port number>.*

E.g., $0.*

• $<metadata name>.*

E.g., $customers.*

• <record variable name>[.*]

E.g., Customers or Customers.* (both cases, if Customers was declared as record in
CTL.)

• lookup(<lookup table name>).get(<key value>)[.*]

E.g., lookup(Comp).get("JohnSmith") or
lookup(Comp).get("JohnSmith").*

• lookup(<lookup table name>).next()[.*]

E.g., lookup(Comp).next() or lookup(Comp).next().*

• string getFieldType(record argRecord, integer index);

Returns the type of a field you specify by its index (i.e. field's number starting from 0). The returned string
is the name of the type (string, integer, ...), see the section called “Data Types in Metadata” (p. 111).
Example code:

 string dataType = getFieldType($in.0, 2);

will return the data type of the third field for each incoming record (e.g. decimal).

Important

Records as arguments look like the records for the getFieldName() function. See above.

• integer getIntegerValue(reference record, integer field);

Chapter 66. CTL2

951

Returns the value of an integer field. The field is identified by its index.

• integer getIntegerValue(reference record, string field);

Returns the value of an integer field. The field is identified by its name.

• long getLongValue(reference record, integer field);

Returns the value of a long field. The field is identified by its index.

• long getLongValue(reference record, string field);

Returns the value of a long field. The field is identified by its name.

• number getNumValue(reference record, integer field);

Returns the value of a number field. The field is identified by its index.

• number getNumValue(reference record, string field);

Returns the value of a number field. The field is identified by its name.

• string getStringValue(reference record, integer field);

Returns the value of a string field. The field is identified by its index.

• string getStringValue(reference record, string field);

Returns the value of a string field. The field is identified by its name.

• string getValueAsString(reference record, string field);

Attempts to return the value of a field (no matter its type) as a common string. The field is identified by
its name.

• string getValueAsString(reference record, integer field);

Attempts to return the value of a field (no matter its type) as a common string. The field is identified by
its index.

• boolean isNull(reference record, string field);

Checks whether a given field is null. The field is identified by its name.

• boolean isNull(reference record, integer field);

Checks whether a given field is null. The field is identified by its index.

• void setBoolValue(reference record, integer field, boolean value);

Sets a boolean value to a field. The field is identified by its index.

• void setBoolValue(reference record, string field, boolean value);

Sets a boolean value to a field. The field is identified by its name.

• void setByteValue(reference record, integer field, byte value);

Sets a byte value to a field. The field is identified by its index.

• void setByteValue(reference record, string field, byte field);

Sets a byte value to a field. The field is identified by its name.

Chapter 66. CTL2

952

• void setDateValue(reference record, integer field, date value);

Sets a date value to a field. The field is identified by its index.

• void setDateValue(reference record, string field, date value);

Sets a date value to a field. The field is identified by its name.

• void setDecimalValue(reference record, integer field, decimal value);

Sets a decimal value to a field. The field is identified by its index.

• void setDecimalValue(reference record, string field, decimal value);

Sets a decimal value to a field. The field is identified by its name.

• void setIntValue(reference record, integer field, integer value);

Sets an integer value to a field. The field is identified by its index.

• void setIntValue(reference record, string field, integer value);

Sets an integer value to a field. The field is identified by its name.

• void setLongValue(reference record, integer field, long value);

Sets a long value to a field. The field is identified by its index.

• void setLongValue(reference record, string field, long value);

Sets a long value to a field. The field is identified by its name.

• void setNumValue(reference record, integer field, number value);

Sets a number value to a field. The field is identified by its index.

• void setNumValue(reference record, string field, number value);

Sets a number value to a field. The field is identified by its name.

• void setStringValue(reference record, integer field, string value);

Sets a string value to a field. The field is identified by its index.

• void setStringValue(reference record, string field, string value);

Sets a string value to a field. The field is identified by its name.

Chapter 66. CTL2

953

Miscellaneous Functions

The rest of the functions can be denominated as miscellaneous. They are the functions listed below.

Important

Remember that the object notation (e.g., arg.isnull()) cannot be used for these Miscellaneous
functions!

For more information about object notation see Functions Reference (p. 921).

• map[string,string] getEnvironmentVariables();

Returns an unmodifiable map of system environment variables. An environment variable is a system-dependent
external named value. Similar to Java function System.getenv(). Note that the keys are case-sensitive.
Example call:

string envPath = getEnvironmentVariables()["PATH"];

• map[string,string] getJavaProperties();

The function returns the map of Java VM system properties. Similar to Java function
System.getProperties(). Example call:

string operatingSystem = getJavaProperties()["os.name"];

• string getParamValue(string paramName);

Returns the value of the specified graph parameter. The argument is the name of the graph parameter without
the ${ } characters, e.g. PROJECT_DIR. The returned value is resolved, i.e. it doesn't contain any references
to other graph parameters.

The function returns null for non-existent parameters.

Example call:

string datainDir = getParamValue("DATAIN_DIR"); // will contain "./data-in"

• map[string,string] getParamValues();

Returns a map of graph parameters and their values. The keys are the names of the parameters without the ${ }
characters, e.g. PROJECT_DIR. The values are resolved, i.e. they don't contain any references to other graph
parameters. The map is unmodifiable. Example call:

string datainDir = getParamValues()["DATAIN_DIR"]; // will contain "./data-
in"

• <any type> iif(boolean con, <any type> iftruevalue, <any type>
iffalsevalue);

The iif(boolean, <any type>, <any type>) function accepts three arguments: one is boolean
and two are of any data type. Both argument data types and return type are the same.

The function takes the first argument and returns the second if the first is true or the third if the first is false.

• boolean isnull(<any type> arg);

The isnull(<any type>) function takes one argument and returns a boolean value depending on whether
the argument is null (true) or not (false). The argument may be of any data type.

Chapter 66. CTL2

954

Important

If you set the Null value property in metadata for any string data field to any non-empty string,
the isnull() function will return true when applied on such string. And return false when
applied on an empty field.

For example, if field1 has Null value property set to "<null>", isnull($0.field1)
will return true on the records in which the value of field1 is "<null>" and false on the
others, even on those that are empty.

See Null value (p. 163) for detailed information.

• <any type> nvl(<any type> arg, <any type> default);

The nvl(<any type>, <any type>) function accepts two arguments of any data type. Both arguments
must be of the same type. If the first argument is not null, the function returns its value. If it is null, the function
returns the default value specified as the second argument.

• <any type> nvl2(<any type> arg, <any type> arg_for_non_null, <any type>
arg_for_null);

The nvl2(<any type>, <any type>, <any type>) function accepts three arguments of any data
type. This data type must be the same for all arguments and return value. If the first argument is not null, the
function returns the value of the second argument. If the first argument is null, the function returns the value
of the third argument.

• void printErr(<any type> message);

The printErr(<any type>) function accepts one argument of any data type. It takes this argument and
prints out the message on the error output.

This function works as void printErr(<any type> arg, boolean printLocation) with
printLocation set to false.

Note

Remember that if you are using this function in any graph that runs on CloverETL Server, the
message is saved to the log of Server (e.g., to the log of Tomcat). Use the printLog()
function instead. It logs error messages to the console even when the graph runs on CloverETL
Server.

• void printErr(<any type> message, boolean printLocation);

The printErr(type, boolean) function accepts two arguments: the first is of any data type and the
second is boolean. It takes them and prints out the message and the location of the error (if the second argument
is true).

Note

Remember that if you are using this function in any graph that runs on CloverETL Server, the
message is saved to the log of Server (e.g., to the log of Tomcat). Use the printLog()
function instead. It logs error messages to the console even when the graph runs on CloverETL
Server.

• void printLog(level loglevel, <any type> message);

The printLog(level, <any type>) function accepts two arguments: the first is a log level of the
message specified as the second argument, which is of any data type. The first argument is one of the
following: debug, info, warn, error, fatal. The log level must be specified as a constant. It can be neither

Chapter 66. CTL2

955

received through an edge nor set as variable. The function takes the arguments and sends out the message
to a logger.

Note

Remember that you should use this function especially in any graph that would run on CloverETL
Server instead of the printErr() function which logs error messages to the log of Server (e.g.,
to the log of Tomcat). Unlike printErr(), printLog() logs error messages to the console
even when the graph runs on CloverETL Server.

• void raiseError(string message);

The raiseError(string) function takes one string argument and throws out error with the message
specified as the argument.

• string resolveParams(string text);

Behaves as string resolveParams(string, false, true), see the related function (p. 955).

• string resolveParams(string parameter, boolean resolveSpecialChars, boolean
resolveCtl);

The function takes a string and substitutes all graph parameters in it by their respective values. So each
occurrence of pattern ${<PARAMETER_NAME>} which is referencing an existing graph parameter is replaced
by the parameter's value. This is always carried out no matter the values of both boolean arguments. The function
can resolve system properties in a similar manner - e.g. PATH or JAVA_HOME.

Moreover, you can control what else will be resolved:

• resolveSpecialChars - resolve special characters (e.g. \n \u). Example: Let us have a metadata field
called asterisk whose content is \u002A. Then transformation

 resolveParams(asterisk, true, false);

Produces the * character.

• resolveCtl - resolve CTL code. Note that CTL code inside the inverted commas is interpreted as
CTL1 (p. 830). Example: Let us have a metadata field called code whose content is 1 plus 2 equals
`to_string(1+2)`. Then transfomration

 resolveParams(code , false, true);

Produces "1 plus 2 equals 3".

Note

If you are passing the parameter directly, not as a metadata field, e.g. like this:

string special = "\u002A"; // Unicode for asterisk - *
resolveParams(special, true, false); // this line is not needed
printErr(special);

it is automatically resolved. The code above will print an asterisk, even if you omit the second line.
It is because resolving is triggered when processing the quotes which surround the parameter.

Chapter 66. CTL2

956

• void sleep(long duration);

The function pauses the execution for specified milliseconds.

• string toAbsolutePath(string path);

The function converts the specified path to an OS-dependent absolute path to the same file. The input may be
a path or a URL. If the input path is relative, it is resolved against the context URL of the running graph.

If running on the Server, the function can also handle sandbox URLs (p. 300). However, a sandbox URL can
only be converted to an absolute path, if the file is locally available on the current server node.

Returns null if the conversion fails.

Note

The returned path will always use forward slashes as directory separator, even on Microsoft
Windows systems.

If you need the path to contain backslashes, use the translate() function:

string absolutePath = toAbsolutePath(path).translate('/', '\\');

Chapter 66. CTL2

957

Lookup Table Functions

In your graphs you are also using lookup tables. You need to use them in CTL by specifying the name of the
lookup table and placing it as an argument in the lookup() function.

Warning

Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

Now, the key in the function below is a sequence of values of the field names separated by comma (not semicolon!).
Thus, the key is of the following form: keyValuePart1,keyValuePart2,...,keyValuePartN.

See the following options:

• lookup(<lookup name>).get(keyValue)[.<field name>|.*]

This function searches the first record whose key value is equal to the value specified in the get(keyValue)
function.

It returns the record of the lookup table. You can map it to other records in CTL2 (with the same metadata).
If you want to get the value of the field, you can add the .<field name> part to the expression or .* to
get the values of all fields.

• lookup(<lookup name>).count(keyValue)

If you want to get the number of records whose key value equals to keyValue, use the syntax above.

• lookup(<lookup name>).next()[.<field name>|.*]

After getting the number of duplicate records in lookup table using the lookup().count() function, and
getting the first record with specified key value using the lookup().get() function, you can work (one by
one) with all records of lookup table with the same key value.

You need to use the syntax shown here in a loop and work with all records from lookup table. Each record will
be processed in one loop step.

The mentioned syntax returns the record of the lookup table. You can map it to other records in CTL2 (with
the same metadata). If you want to get the value of the field, you can add the .<field name> part to the
expression or .* to get the values of all fields.

• lookup(<lookup name>).put(<record>)

The put() function stores the record passed as its argument in the selected lookup table. It returns a boolean
result indicating whether the operation has succeeded or not.

Note that the metadata of the passed record must match the metadata of the lookup table.

The operation may not be supported by all types of lookup tables (it is not supported by Database lookup
tables, for example) and its exact semantics is implementation-specific (in particular, the stored records may
not be immediately available for reading in the same phase).

Chapter 66. CTL2

958

Example 66.9. Usage of Lookup Table Functions

//#CTL2

// record with the same metadata as those of lookup table
recordName1 myRecord;

// variable for storing number of duplicates
integer count;

// Transforms input record into output record.
function integer transform() {

 // if lookup table contains duplicate records,
 // their number is returned by the following expression
 // and assigned to the count variable
 count = lookup(simpleLookup0).count($0.Field2);

 // getting the first record whose key value equals to $0.Field2
 myRecord = lookup(simpleLookup0).get($0.Field2);

 // loop for searching the last record in lookup table
 while ((count-1) > 0) {

 // searching the next record with the key specified above
 myRecord = lookup(simpleLookup0).next();

 // incrementing counter
 count--;
 }

 // mapping to the output

 // last record from lookup table
 $0.Field1 = myRecord.Field1;
 $0.Field2 = myRecord.Field2;

 // corresponding record from the edge
 $0.Field3 = $0.Field1;
 $0.Field4 = $0.Field2;
 return 0;
}

Warning

In the example above we have shown you the usage of all lookup table functions. However, we
suggest you better use other syntax for lookup tables.

The reason is that the following expression of CTL2:

lookup(Lookup0).count($0.Field2);

searches the records through the whole lookup table which may contain a great number of records.

The syntax shown above may be replaced with the following loop:

myRecord = lookup(<name of lookup table>).get(<key value>);
while(myRecord != null) {
 process(myRecord);

Chapter 66. CTL2

959

 myRecord = lookup(<name of lookup table>).next();
}

Especially DB lookup tables can return -1 instead of real count of records with specified key value
(if you do not set Max cached size to a non-zero value).

The lookup_found(<lookup table ID>) function for CTL1 is not too recommended either.

Important

Remember that DB lookup tables cannot be used in compiled mode! (code starts with the following
header: //#CTL2:COMPILE)

You need to switch to interpreted mode (with the header: //#CTL2) to be able to access DB lookup
tables from CTL2.

Chapter 66. CTL2

960

Sequence Functions

In your graphs you are also using sequences. You can use them in CTL by specifying the name of the sequence
and placing it as an argument in the sequence() function.

Warning

Remember that you should not use the functions shown below in the init(), preExecute(),
or postExecute() functions of CTL template.

You have three options depending on what you want to do with the sequence. You can get the current number
of the sequence, or get the next number of the sequence, or you may want to reset the sequence numbers to the
initial number value.

See the following options:

•sequence(<sequence name>).current()

•sequence(<sequence name>).next()

•sequence(<sequence name>).reset()

Although these expressions return integer values, you may also want to get long or string values. This can be done
in one of the following ways:

•sequence(<sequence name>,long).current()

•sequence(<sequence name>,long).next()

•sequence(<sequence name>,string).current()

•sequence(<sequence name>,string).next()

Chapter 66. CTL2

961

Custom CTL Functions

In addition to the prepared CTL functions, you can create your own CTL functions. To do that, you need to write
your own code defining the custom CTL functions and specify its plugin.

Each custom CTL function library must be derived/inherited from:

org.jetel.interpreter.extensions.TLFunctionLibrary class.

Each custom CTL function must be derived/inhereted from:

org.jetel.interpreter.extensions.TLFunctionPrototype class.

These classes have some standard operations defined and several abstract methods which need to be defined so
that the custom functions may be used. Within the custom functions code, an existing context must be used or some
custom context must be defined. The context serves to store objects when function is to be executed repeatedly,
in other words, on more records.

Along with the custom functions code, you also need to define the custom functions plugin. Both the library and
the plugin will be used in CloverETL. For more information, see the following wiki page: wiki.cloveretl.org/
doku.php?id=function_building.

http://wiki.cloveretl.org/doku.php?id=function_building
http://wiki.cloveretl.org/doku.php?id=function_building

Chapter 66. CTL2

962

CTL2 Appendix - List of National-specific Characters

Several functions, e.g. editDistance (string, string, integer, string, integer) (p. 938) need to work with special
national characters. These are important especially when sorting items with a defined comparison strength.

The list below shows first the locale and then a list of its national-specific derivatives for each letter. These may
be treated either as equal or different characters depending on the comparison stregth you define.

Table 66.2. National Characters

Locale National Characters

CA - Catalan

CZ - Czech

DA - Danish and
Norwegian

DE - German

ES - Spanish

ET - Estonian

FI - Finnish

FR - French

HR - Croatian

HU - Hungarian

IS - Icelandic

Chapter 66. CTL2

963

Locale National Characters

IT - Italian

LV - Latvian

PL - Polish

PT - Portuguese

RO - Romanian

RU - Russian

SK - Slovak

SL - Slovenian

SQ - Albanian

SV - Swedish

964

Chapter 67. Regular Expressions
A regular expression is a formalism used to specify a set of strings with a single expression. Since the
implementation of regular expressions comes from the Java standard library, the syntax of expressions is the same
as in Java.

Example 67.1. Regular Expressions Examples

[p-s]{5}

• means the string has to be exactly five characters long and it can only contain the p, q, r and s characters

[^a-d].*

• this example expression matches any string which starts with a character other than a, b, c, d because

• the ^ sign means exception

• a-d means characters from a to d

• these characters can be followed by zero or more (*) other characters

• the dot stands for an arbitrary character

For more detailed explanation of how to use regular expressions see the Java documentation for
java.util.regex.Pattern.

The meaning of regular expressions can be modified using embedded flag expressions. The expressions include
the following:

(?i) –
Pattern.CASE_INSENSITIVE

Enables case-insensitive matching.

(?s) – Pattern.DOTALL In dotall mode, the dot . matches any character, including line terminators.

(?m) – Pattern.MULTILINE In multiline mode you can use ^ and $ to mean the beginning and end
othe line, respectively (that includes at the beginning and end of the entire
expression).

Further reading and description of other flags can be found at http://docs.oracle.com/javase/tutorial/essential/
regex/pattern.html.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

965

List of Figures
1.1. Family of CloverETL Products ... 2
2.1. CloverETL Server Project Displayed after Opening CloverETL Designer .. 5
2.2. Prompt to Open CloverETL Server Project .. 5
2.3. Opening CloverETL Server Project .. 5
2.4. Network connections window ... 8
5.1. CloverETL Designer Splash Screen .. 15
5.2. Workspace Selection Dialog .. 15
5.3. CloverETL Designer Introductory Screen .. 16
5.4. CloverETL Help ... 16
6.1. Available Software .. 17
7.1. License Manager showing installed licenses. .. 19
7.2. CloverETL License dialog .. 20
7.3. CloverETL License wizard ... 21
7.4. Select Activate using license key radio button and click Next. ... 22
7.5. Enter the path to the license file or copy and paste the license text. ... 22
7.6. Confirm you accept the license agreement and click Finish button. ... 23
7.7. Select Activate online radio button, enter your license number and password and click Next. 24
7.8. Confirm you accept the license agreement and click Finish button. ... 24
8.1. Giving a Name to a CloverETL Project .. 26
8.2. CloverETL Server Project Wizard - Server Connection .. 27
8.3. CloverETL Server Project Wizard - Sandbox Selection .. 27
8.4. CloverETL Server Project Wizard - Clustered Sandbox Creation .. 28
8.5. Giving a Name to the New CloverETL Server Project ... 29
8.6. CloverETL Examples Project Wizard ... 30
8.7. Renaming CloverETL Examples Projects .. 30
9.1. Project Folder Structure inside Navigator Pane ... 32
9.2. Opening the Workspace.prm File ... 33
9.3. Workspace.prm File ... 33
9.4. Basic Eclipse Perspective ... 34
9.5. Selecting CloverETL Perspective ... 34
9.6. CloverETL Perspective .. 35
10.1. CloverETL Perspective ... 36
10.2. Graph Editor with an Opened Palette of Components ... 37
10.3. Closing the Graphs .. 38
10.4. Rulers in the Graph Editor .. 38
10.5. Grid in the Graph Editor ... 39
10.6. A Graph before Selecting Auto-Layout. ... 39
10.7. A Graph after Selecting Auto-Layout. ... 40
10.8. Six New Buttons in the Tool Bar Appear Highlighted (Align Middle is shown) 40
10.9. Alignments from the Context Menu .. 41
10.10. Navigator Pane .. 41
10.11. Outline Pane ... 42
10.12. Another Representation of the Outline Pane .. 42
10.13. Accessing a locked graph element - you can add any text you like to describe the lock. 43
10.14. Properties Tab ... 44
10.15. Console Tab ... 44
10.16. Problems Tab .. 45
10.17. Clover - Regex Tester Tab .. 45
10.18. Clover - Graph Tracking Tab ... 46
10.19. Clover - Log Tab ... 46
11.1. Creating a New Graph ... 48
11.2. Giving a Name to a New CloverETL Graph ... 48
11.3. Selecting the Parent Folder for the Graph .. 49
11.4. CloverETL Perspective with Highlighted Graph Editor ... 49
11.5. Graph Editor with a New Graph and the Palette of Components ... 50

CloverETL Designer

966

11.6. Components Selected from the Palette ... 51
11.7. Components are Connected by Edges .. 52
11.8. Creating an Input File .. 52
11.9. Creating the Contents of the Input File .. 53
11.10. Metadata Editor with Default Names of the Fields ... 53
11.11. Metadata Editor with New Names of the Fields ... 54
11.12. Edge Has Been Assigned Metadata ... 54
11.13. Metadata Have Been Propagated through the Component .. 55
11.14. Opening the Attribute Row .. 55
11.15. Selecting the Input File ... 56
11.16. Input File URL Attribute Has Been Set ... 56
11.17. Output File URL without a File .. 57
11.18. Output File URL with a File .. 57
11.19. Defining a Sort Key ... 58
11.20. Sort Key Has Been Defined ... 58
11.21. Running the Graph ... 59
11.22. Result of Successful Run of the Graph .. 59
11.23. Contents of the Output File ... 60
12.1. Running a Graph from the Main Menu .. 61
12.2. Running a Graph from the Context Menu .. 62
12.3. Running a Graph from the Upper Tool Bar .. 62
12.4. Successful Graph Execution .. 63
12.5. Console Tab with an Overview of the Graph Execution .. 63
12.6. Counting Parsed Data ... 64
12.7. Run Configurations Dialog .. 64
13.1. Selecting Cheat Sheets ... 66
13.2. The Cheat Sheet Selection Wizard .. 66
13.3. CloverETL and Standard Eclipse Commands (Collapsed) .. 67
13.4. CloverETL and Standard Eclipse Commands (Expanded) .. 67
13.5. CloverETL Designer Reference Cheat Sheet ... 68
13.6. Locating a Custom Cheat Sheet ... 68
14.1. URL File Dialog ... 69
14.2. Edit Value Dialog .. 70
14.3. Find Wizard ... 70
14.4. Go to Line Wizard .. 71
14.5. Open Type Dialog ... 71
15.1. Import (Main Menu) .. 72
15.2. Import (Context Menu) ... 72
15.3. Import Options .. 73
15.4. Import Projects ... 73
15.5. Import from CloverETL Server Sandbox Wizard (Connect to CloverETL Server) 74
15.6. Import from CloverETL Server Sandbox Wizard (List of Files) .. 74
15.7. Import Graphs ... 75
15.8. Import Metadata from XSD ... 76
15.9. Import Metadata from DDL .. 77
16.1. Export Options .. 78
16.2. Export Graphs ... 78
16.3. Export Graphs to HTML .. 79
16.4. Export metadata to XSD ... 80
16.5. Export to CloverETL Server Sandbox ... 81
16.6. Export Image .. 82
17.1. Edge tracking example ... 83
17.2. An example of a medium level of tracking information .. 83
17.3. An example of a high level tracking information ... 83
18.1. Setting Up Memory Size .. 87
18.2. Custom Clover Settings .. 88
18.3. Enlarging the Font of Numbers .. 91
18.4. Setting the Font Size .. 91

CloverETL Designer

967

18.5. Setting The Java Runtime Environment ... 92
18.6. Preferences Wizard .. 93
18.7. Installed JREs Wizard .. 93
18.8. Adding a Java Development Kit ... 94
18.9. Searching for JDK Jars ... 95
18.10. Adding JDK Jars ... 95
20.1. Selecting the Edge Type ... 100
20.2. Creating Metadata on an empty Edge .. 101
20.3. Assigning Metadata to an Edge .. 102
20.4. Metadata in the Tooltip ... 103
20.5. Properties of an Edge ... 104
20.6. Filter Editor Wizard ... 104
20.7. Debug Properties Wizard .. 106
20.8. View Data Dialog .. 106
20.9. Viewing Data on Debugged Edge ... 106
20.10. Hide/Show Columns when Viewing Data ... 107
20.11. View Record Dialog ... 107
20.12. Find Dialog ... 108
20.13. Copy Dialog .. 108
21.1. Creating Internal Metadata in the Outline Pane .. 133
21.2. Creating Internal Metadata on the Edge ... 134
21.3. Externalizing and/or Exporting Internal Metadata .. 135
21.4. Selecting a Location for a New Externalized and/or Exported Internal Metadata 135
21.5. Creating External (Shared) Metadata in the Main Menu and/or in the Navigator Pane 136
21.6. Internalizing External (Shared) Metadata .. 137
21.7. Extracting Metadata from Delimited Flat File ... 138
21.8. Extracting Metadata from Fixed Length Flat File ... 139
21.9. Setting Up Delimited Metadata .. 140
21.10. Setting Up Fixed Length Metadata .. 142
21.11. Extract Metadata from Excel Spreadsheet Wizard .. 143
21.12. Format Extracted from Spreadsheet Cell ... 144
21.13. Extracting Internal Metadata from a Database ... 145
21.14. Database Connection Wizard .. 146
21.15. Selecting Columns for Metadata ... 146
21.16. Generating a Query .. 147
21.17. DBF Metadata Editor .. 149
21.18. Specifying Lotus Notes connection for metadata extraction .. 150
21.19. Lotus Notes metadata extraction wizard, page 2 ... 151
21.20. Merging two metadata - conflicts can be resolved in one of the three ways (notice radio buttons at
the bottom). .. 152
21.21. Creating Database Table from Metadata and Database Connection .. 154
21.22. Metadata Editor for a Delimited File ... 158
21.23. Metadata Editor for a Fixed Length File ... 159
21.24. Trackable Fields Selection in Metadata Editor ... 159
22.1. Creating Internal Database Connection .. 172
22.2. Externalizing Internal Database Connection .. 173
22.3. Internalizing External (Shared) Database Connection .. 175
22.4. Database Connection Wizard ... 176
22.5. Adding a New JDBC Driver into the List of Available Drivers ... 176
22.6. Running a Graph with the Password Encrypted ... 180
22.7. Connecting to MS SQL with Windows authentication. Setting-up a database connection like this is
not sufficient. Additional steps explained below this figure need to be performed. 181
22.8. Adding path to the native dll to VM arguments. .. 182
23.1. Edit JMS Connection Wizard ... 187
24.1. QuickBase Connection Dialog .. 189
25.1. Lotus Notes Connection Dialog .. 190
26.1. Hadoop Connection Dialog .. 191
27.1. Creating Internal Lookup Table .. 196

CloverETL Designer

968

27.2. Externalizing Wizard .. 197
27.3. Selecting Lookup Table Item ... 199
27.4. Lookup Table Internalization Wizard ... 200
27.5. Lookup Table Wizard ... 201
27.6. Simple Lookup Table Wizard .. 201
27.7. Edit Key Wizard .. 202
27.8. Simple Lookup Table Wizard with File URL .. 202
27.9. Simple Lookup Table Wizard with Data .. 203
27.10. Changing Data ... 203
27.11. Database Lookup Table Wizard .. 204
27.12. Appropriate Data for Range Lookup Table ... 205
27.13. Range Lookup Table Wizard .. 205
27.14. Persistent Lookup Table Wizard ... 207
27.15. Aspell Lookup Table Wizard ... 209
28.1. Creating a Sequence ... 211
28.2. Editing a Sequence .. 214
28.3. A New Run of the Graph with the Previous Start Value of the Sequence 214
29.1. Creating Internal Parameters .. 217
29.2. Externalizing Internal Parameters .. 218
29.3. Internalizing External (Shared) Parameter ... 220
29.4. Example of a Parameter-Value Pairs ... 221
31.1. Dictionary Dialog with Defined Entries ... 228
32.1. Pasting a Note to the Graph Editor Pane .. 231
32.2. Enlarging the Note ... 231
32.3. Highlighted Margins of the Note Have Disappeared ... 232
32.4. Changing the Note Label .. 232
32.5. Writing a New Description in the Note .. 233
32.6. A New Note with a New Description .. 233
32.7. Folding the Note .. 234
32.8. Properties of a Note ... 234
33.1. CloverETL Search Tab ... 235
33.2. Search Results ... 236
35.1. Valid selections ... 239
35.2. How to select the FTL wizard .. 239
35.3. Select a wizard (new wizard selection window) ... 240
35.4. Deselection ... 240
35.5. New Graph Name Page .. 241
35.6. Output Page .. 241
35.7. File Selection Page .. 242
35.8. URL Dialog .. 242
35.9. Database Connection Page ... 243
35.10. Fact Table Selection Page .. 243
35.11. Dimension Table Selection Page ... 244
35.12. Order Table Page ... 244
35.13. Mapping Page ... 245
35.14. Fact Mapping Page ... 245
35.15. Summary Page ... 246
35.16. Created Graph ... 246
35.17. Graph Parameters ... 247
39.1. Selecting Components .. 261
39.2. Components in Palette .. 261
39.3. Removing Components from the Palette .. 262
40.1. Find Components dialog - the searched text is higlighted both in component names and description. ... 263
40.2. Add Components dialog - finding a sorter. ... 264
41.1. Edit Component Dialog (Properties Tab) .. 265
41.2. Edit Component Dialog (Ports Tab) .. 265
41.3. Simple Renaming Components ... 269
41.4. Running a Graph with Various Phases ... 270

CloverETL Designer

969

41.5. Setting the Phases for More Components ... 270
41.6. Running a Graph with Disabled Component ... 271
41.7. Running a Graph with Component in PassThrough Mode .. 272
41.8. Component allocation dialog .. 273
41.9. Allocation cardinality decorator .. 273
42.1. Creating Metadata from a Template .. 274
42.2. Defining Group Key ... 275
42.3. Defining Sort Key and Sort Order .. 276
42.4. Define Error Actions Dialog .. 284
42.5. Transformations Tab of the Transform Editor ... 285
42.6. Copying the Input Field to the Output ... 286
42.7. Transformation Definition in CTL (Transformations Tab) .. 287
42.8. Mapping of Inputs to Outputs (Connecting Lines) .. 287
42.9. Editor with Fields and Functions .. 288
42.10. Input Record Mapped to Output Record Using Wildcards .. 288
42.11. Transformation Definition in CTL (Source Tab) .. 289
42.12. Java Transform Wizard Dialog ... 289
42.13. Confirmation Message .. 290
42.14. Transformation Definition in CTL (Transform Tab of the Graph Editor) 290
42.15. Outline Pane Displaying Variables and Functions ... 291
42.16. Content Assist (Record and Field Names) ... 291
42.17. Content Assist (List of CTL Functions) .. 292
42.18. Error in Transformation ... 292
42.19. Converting Transformation to Java .. 292
42.20. Transformation Definition in Java ... 293
43.1. Viewing Data in Components .. 300
43.2. Viewing Data as Plain Text ... 301
43.3. Viewing Data as Grid ... 301
43.4. Plain Text Data Viewing ... 301
43.5. Grid Data Viewing ... 302
43.6. XML Features Dialog ... 306
44.1. Viewing Data on Components .. 313
44.2. Viewing Data as Plain Text ... 313
44.3. Viewing Data as Grid ... 314
44.4. Plain Text Data Viewing ... 314
44.5. Grid Data Viewing ... 314
46.1. Source Tab of the Transform Editor in Joiners .. 325
53.1. Configuring prefix selector in ComplexDataReader. Rules are defined in the Selector properties
pane. Notice the two extra attributes for regular expressions. .. 348
53.2. Sequences Dialog .. 352
53.3. A Sequence Assigned ... 352
53.4. Edit Key Dialog .. 353
53.5. Source Tab of the Transform Editor in DataGenerator .. 354
53.6. Generated Query with Question Marks .. 362
53.7. Generated Query with Output Fields ... 363
53.8. Mapping to Clover fields in EmailReader ... 366
53.9. Example mapping of nested arrays - the result. .. 383
53.10. SpreadsheetDataReader Mapping Editor ... 404
53.11. Basic Mapping – notice leading cells and dashed borders marking the area data will be taken from ... 405
53.12. The difference between global data offsets set to 1 (default) and 3. In the right hand figure, reading
would start at row 4 (ignoring data in rows 2 and 3). .. 406
53.13. Global data offset is set to 1 to all columns. In the third column, it is locally changed to 3. 406
53.14. Rows per record is set to 4. This makes SpredsheetDataReader take 4 Excel rows and create
one record out of their cells. Cells actually becoming fields of a record are marked by a dashed border,
therefore the record is not populated by all data. Which cells populate a record is also determined by the
data offsets setting, see the following bullet point. .. 406
53.15. Rows per record is set to 3. The first and third columns 'contribute' to the record by their first row
(because of the global data offset being 1). The second and fourth columns have (local) data offsets 2 and

CloverETL Designer

970

4, respectively. The first record will, thus, be formed by 'zig-zagged' cells (the yellow ones – follow them
to make sure you understand this concept clearly). ... 407
53.16. Retreiving format from a date field. Format Field was set to the "Special" field as target. 407
53.17. Reading mixed data using two leading cells per column. Rows per record is 2, Data offset needed
to be raised to 2 – looking at the first leading cell which has to start reading on the third row. 408
53.18. XLS Mapping Dialog .. 417
53.19. XLS Fields Mapped to Clover Fields ... 418
53.20. The Mapping Dialog for XMLExtract .. 428
53.21. Parent Elements ... 429
53.22. Editing Namespace Bindings in XMLExtract .. 434
53.23. Selecting subtype in XMLExtract .. 435
54.1. Generated Query with Question Marks .. 471
54.2. Generated Query with Input Fields .. 471
54.3. Generated Query with Returned Fields .. 472
54.4. EmailSender Message Wizard .. 474
54.5. Edit Attachments Wizard .. 475
54.6. Attachment Wizard .. 476
54.7. Defining bean structure - click the Select combo box to start. .. 485
54.8. Mapping editor in JavaBeanWriter after first open. Metadata on the input edge(s) are displayed on
the left hand side. The right hand pane is where you design the desired output tree - it is pre-defined by
your bean's structure (note: in the example, the bean contains employees and projects they are working
on). Mapping is then performed by dragging metadata from left to right (and performing additional tasks
described below). ... 486
54.9. Example mapping in JavaBeanWriter - employees are joined with projects they work on. Fields in
bold (their content) will be printed to the output dictionary, i.e. they are used in the mapping. 487
54.10. Mapping editor in JavaMapWriter after first open. Metadata on the input edge(s) are displayed
on the left hand side. The right hand pane is where you design the desired output tree. Mapping is then
performed by dragging metadata from left to right (and performing additional tasks described below). 490
54.11. Example mapping in JavaMapWriter - employees are joined with projects they work on. Fields in
bold (their content) will be printed to the output dictionary. ... 491
54.12. Mapping arrays in JavaMapWriter - notice the array contains a dummy element 'State' which you
bind the input field to. .. 492
54.13. Mapping editor in JSONWriter after first open. Metadata on the input edge(s) are displayed on the
left hand side. The right hand pane is where you design the desired JSON tree. Mapping is then performed
by dragging metadata from left to right (and performing additional tasks described below). 498
54.14. Example mapping in JSONWriter - employees are joined with projects they work on. Fields in bold
(their content) will be printed to the output file - see below. ... 499
54.15. Mapping arrays in JSONWriter - notice the array contains a dummy element 'State' which you bind
the input field to. ... 500
54.16. Spreadsheet Mapping Editor ... 527
54.17. Explicit mapping of the whole record .. 528
54.18. The difference between global data offsets set to 1 (default) and 3. In the right hand figure, writing
would start at row 4 with no data written to rows 2 and 3. ... 529
54.19. Global data offsets is set to 1. In the last column, it is locally changed to 4. In the output file, the
initial rows of this column would be blank, data would start at D5. .. 529
54.20. With Rows per record set to 2 in leading cells Name and Adress, the component always writes
one data row, skips one and then writes again. This way various data does not get mixed (overwritten by
the other one). For a successful output, make sure Data offsets is set to 2. ... 530
54.21. Rows per record is set to 3. Data in the first and third column will start in their first row (because
of their data offsets being 1). The second and fourth columns have data offsets 2 and 4, respectively.
The output will, thus, be formed by 'zig-zagged' cells (the dashed ones – follow them to make sure you
understand this concept clearly). ... 530
54.22. Writing into a template. Its original content will not be affected, your data will be written into
Name, Surname and Age fields. .. 532
54.23. Partitioning by one data field ... 533
54.24. Mapping summary .. 535
54.25. Create Mask Dialog .. 538
54.26. Mapping Editor .. 551

CloverETL Designer

971

54.27. Adding Child to Root Element. .. 552
54.28. Wildcard attribute and its properties. .. 553
54.29. Attribute and its properties. ... 554
54.30. Element and its properties. .. 554
54.31. Mapping editor toolbar. ... 557
54.32. Binding of Port and Element. ... 559
54.33. Generating XML from XSD root element. .. 562
54.34. Source tab in Mapping editor. .. 562
54.35. Content Assist inside element. .. 563
54.36. Content Assist for ports and fields. .. 564
55.1. Source Tab of the Transform Editor in the Denormalizer Component (I) 582
55.2. Source Tab of the Transform Editor in the Denormalizer Component (II) 582
55.3. Example MetaPivot Input .. 601
55.4. Example MetaPivot Output .. 601
55.5. Source Tab of the Transform Editor in the Normalizer Component (I) .. 604
55.6. Source Tab of the Transform Editor in the Normalizer Component (II) .. 604
55.7. Source Tab of the Transform Editor in the Partitioning Component ... 612
55.8. Source Tab of the Transform Editor in the Rollup Component (I) ... 627
55.9. Source Tab of the Transform Editor in the Rollup Component (II) .. 627
55.10. Source Tab of the Transform Editor in the Rollup Component (III) .. 628
55.11. XSLT Mapping .. 642
55.12. An Example of Mapping ... 642
56.1. Matching Key Wizard (Master Key Tab) ... 647
56.2. Matching Key Wizard (Slave Key Tab) ... 647
56.3. Join Key Wizard (Master Key Tab) .. 649
56.4. Join Key Wizard (Slave Key Tab) .. 649
56.5. An Example of the Join Key Attribute in ApproximativeJoin Component 650
56.6. An Example of the Join Key Attribute in ExtHashJoin Component .. 660
56.7. Hash Join Key Wizard .. 661
56.8. An Example of the Join Key Attribute in ExtMergeJoin Component .. 665
56.9. Join Key Wizard (Master Key Tab) .. 665
56.10. Join Key Wizard (Slave Key Tab) ... 666
56.11. Edit Key Wizard .. 670
56.12. An Example of the Join Key Attribute in the RelationalJoin Component 672
56.13. Join Key Wizard (Master Key Tab) ... 673
56.14. Join Key Wizard (Slave Key Tab) ... 673
57.1. Example of typical usage of Barrier component ... 677
57.2. Example of mapping for Fail component .. 712
59.1. Usage example of ClusterRepartition component ... 761
59.2. Example of actual working of ClusterRepartition component in runtime 762
60.1. DataBase Configuration .. 766
60.2. Input mapping ... 766
60.3. Output mapping ... 767
60.4. Transform Editor in ProfilerProbe ... 776
60.5. Import/Externalize metrics buttons .. 777
61.1. Foreign Key Definition Wizard (Foreign Key Tab) .. 782
61.2. Foreign Key Definition Wizard (Primary Key Tab) .. 782
61.3. Foreign Key Definition Wizard (Foreign and Primary Keys Assigned) ... 783
61.4. Transform Editor in HTTPConnector ... 791
61.5. Transform Editor in HTTPConnector ... 791
61.6. Choosing WS operation name in WebServiceClient. ... 810

972

List of Tables
6.1. Sites with CloverETL .. 17
9.1. Standard Folders and Parameters ... 32
20.1. Memory Demands per Edge Type ... 109
21.1. Data Types in Metadata .. 111
21.2. Available date engines .. 113
21.3. Date Format Pattern Syntax (Java) .. 114
21.4. Rules for Date Format Usage (Java) .. 115
21.5. Date and Time Format Patterns and Results (Java) ... 116
21.6. Date Format Pattern Syntax (Joda) .. 117
21.7. Rules for Date Format Usage (Joda) .. 117
21.8. Numeric Format Pattern Syntax .. 120
21.9. BNF Diagram ... 121
21.10. Used Notation ... 121
21.11. Locale-Sensitive Formatting ... 121
21.12. Numeric Format Patterns and Results .. 122
21.13. Available Binary Formats .. 123
21.14. List of all Locale ... 126
21.15. CloverETL-to-SQL Data Types Transformation Table (Part I) ... 155
21.16. CloverETL-to-SQL Data Types Transformation Table (Part II) .. 155
21.17. CloverETL-to-SQL Data Types Transformation Table (Part III) ... 156
42.1. Transformations Overview ... 281
43.1. Readers Comparison ... 296
44.1. Writers Comparison ... 309
45.1. Transformers Comparison .. 319
46.1. Joiners Comparison .. 322
46.2. Functions in Joiners, DataIntersection, and Reformat .. 325
47.1. Cluster Components Comparison .. 329
48.1. Others Comparison .. 330
49.1. Data Quality Comparison .. 331
50.1. Job control Comparison .. 332
51.1. File Operations Comparison ... 333
53.1. Functions in DataGenerator ... 354
53.2. Error Metadata for Parallel Reader .. 394
53.3. Error Metadata for QuickBaseRecordReader ... 397
53.4. Error Port Metadata - first ten fields have mandatory types, names can be arbitrary 401
53.5. Format strings .. 408
53.6. Error Metadata for UniversalDataReader .. 411
54.1. Error Metadata for DB2DataWriter ... 457
54.2. Error Fields for InformixDataWriter .. 482
54.3. Error Fields for MSSQLDataWriter ... 506
54.4. Error Metadata for MySQLDataWriter ... 509
54.5. Error Fields for QuickBaseImportCSV ... 519
54.6. Error Fields for QuickBaseRecordWriter .. 521
55.1. Functions in Denormalizer ... 582
55.2. Functions in Normalizer .. 605
55.3. Functions in Partition (or clusterpartition) .. 612
55.4. Functions in Rollup .. 628
60.1. Error Fields for EmailFilter ... 769
61.1. Input Metadata for RunGraph (In-Out Mode) .. 798
61.2. Output Metadata for RunGraph .. 798
63.1. CTL Version Comparison .. 816
63.2. CTL Version Differences .. 817
65.1. Literals .. 835
66.1. Literals .. 897
66.2. National Characters .. 962

973

List of Examples
21.1. String Format .. 125
21.2. Examples of Locale .. 126
21.3. Example situations when you could take advantage of multivalue fields 167
21.4. Integer lists which are (not) equal - symoblic notation ... 170
29.1. Canonizing File Paths ... 223
35.1. Example of usage .. 238
36.1. Example jobflow log - token starting a subgraph ... 254
40.1. Finding a sort component .. 264
42.1. Time Interval Specification .. 275
42.2. Sorting ... 277
42.3. Example of the Error Actions Attribute .. 284
53.1. Example State Function .. 347
53.2. ... 349
53.3. Generating Variable Number of Records in CTL ... 357
53.4. Example Mapping in JavaBeanReader ... 369
53.5. Reading lists with JavaBeanReader ... 372
53.6. Field Mapping in XLSDataReader .. 418
53.7. Mapping in XMLExtract ... 422
53.8. From XML Structure to Mapping Structure .. 424
53.9. Mapping in XMLReader ... 440
53.10. Reading lists with XMLReader ... 444
53.11. Mapping in XMLXPathReader ... 447
53.12. Reading lists with XMLXpathReader ... 451
54.1. Internal Structure of Archived Output File(s) .. 455
54.2. Examples of Queries .. 467
54.3. Creating Binding ... 487
54.4. Creating Binding ... 490
54.5. Writing arrays ... 491
54.6. Creating Binding ... 498
54.7. Writing arrays ... 500
54.8. Example of a Control script ... 513
54.9. Writing Excel format ... 531
54.10. Using Expressions in Ports and Fields .. 552
54.11. Include and Exclude property examples .. 553
54.12. Attribute value examples ... 553
54.13. Writing null attribute .. 555
54.14. Omitting Null Attribute .. 555
54.15. Hide Element .. 556
54.16. Partitioning According to Any Element .. 556
54.17. Writing and omitting blank elements ... 557
54.18. Binding that serves as JOIN .. 561
54.19. Insert Wildcard attributes in Source tab .. 564
55.1. Aggregation Mapping ... 570
55.2. Join Key for DataIntersection ... 574
55.3. Key for Denormalizer ... 580
55.4. Example MetaPivot Transformation .. 601
55.5. Data Transformation with Pivot - Using Key .. 620
56.1. Matching Key ... 647
56.2. Join Key for ApproximativeJoin ... 650
56.3. Join Key for DBJoin .. 656
56.4. Slave Part of Join Key for ExtHashJoin ... 660
56.5. Join Key for ExtHashJoin ... 661
56.6. Join Key for ExtMergeJoin .. 666
56.7. Join Key for LookupJoin ... 670
56.8. Join Key for RelationalJoin ... 674

CloverETL Designer

974

61.1. Working with Quoted Command Line Arguments .. 800
61.2. Use nested nodes example ... 811
64.1. Example of dictionary usage .. 823
65.1. Example of CTL1 syntax (Rollup) .. 830
65.2. Eval() Function Examples ... 849
65.3. Mapping of Metadata by Name .. 854
65.4. Example of Mapping with Individual Fields ... 855
65.5. Example of Mapping with Wild Cards ... 856
65.6. Example of Mapping with Wild Cards in Separate User-Defined Functions 857
65.7. Example of Successive Mapping in Separate User-Defined Functions .. 859
66.1. Example of CTL2 syntax (Rollup) .. 891
66.2. Example of usage of decimal data type in CTL2 .. 894
66.3. Modification of a copied list, map and record ... 906
66.4. Mapping of Metadata by Name (using the copyByName() function) .. 916
66.5. Mapping of Metadata by Position ... 917
66.6. Example of Mapping with Individual Fields ... 918
66.7. Example of Mapping with Wild Cards ... 918
66.8. Example of Mapping with Wild Cards in Separate User-Defined Functions 919
66.9. Usage of Lookup Table Functions .. 958
67.1. Regular Expressions Examples ... 964

	Copyright and disclaimer
	Clover_users_manual_3_4_1_010P.pdf
	CloverETL Designer
	Table of Contents
	Part I. CloverETL Overview
	Chapter 1. Family of CloverETL Products
	CloverETL Designer
	CloverETL Engine
	CloverETL Server
	Getting Additional Information

	Chapter 2. Integrating CloverETL Designer with CloverETL Server
	Creating CloverETL Server project (Basic Principles)
	Opening CloverETL Server Projects
	Connecting via HTTP
	Connecting via HTTPS
	Designer has its Own Certificate
	Designer does not have its Own Certificate

	Connecting via proxy server

	Part II. Installation Instructions
	Chapter 3. System Requirements for CloverETL Designer
	Related Links

	Chapter 4. Downloading CloverETL
	CloverETL Desktop Edition
	CloverETL Desktop Trial Edition
	CloverETL Community Edition

	Chapter 5. Starting CloverETL Designer
	Chapter 6. Installing Designer as Eclipse plugin

	Part III. Getting Started
	Chapter 7. License Manager
	CloverETL License dialog
	CloverETL License wizard
	Activation using License key
	Activation online

	Chapter 8. Creating CloverETL Projects
	CloverETL Project
	CloverETL Server Project
	CloverETL Examples Project

	Chapter 9. Structure of CloverETL Projects
	Standard Structure of All CloverETL Projects
	Workspace.prm File
	Opening the CloverETL Perspective

	Chapter 10. Appearance of CloverETL Perspective
	CloverETL Designer Panes
	Graph Editor with Palette of Components
	Navigator Pane
	Outline Pane
	Tabs Pane

	Chapter 11. Creating CloverETL Graphs
	Creating Empty Graphs
	Creating a Simple Graph in a Few Simple Steps

	Chapter 12. Running CloverETL Graphs
	Successful Graph Execution
	Using the Run Configurations Dialog

	Part IV. Working with CloverETL Designer
	Chapter 13. Using Cheat Sheets
	Chapter 14. Common Dialogs
	URL File Dialog
	Edit Value Dialog
	Open Type Dialog

	Chapter 15. Import
	Import CloverETL Projects
	Import from CloverETL Server Sandbox
	Import Graphs
	Import Metadata
	Metadata from XSD
	Metadata from DDL

	Chapter 16. Export
	Export Graphs
	Export Graphs to HTML
	Export Metadata to XSD
	Export to CloverETL Server Sandbox
	Export Image

	Chapter 17. Graph tracking
	Chapter 18. Advanced Topics
	Program and VM Arguments
	Example of Setting Up Memory Size

	Changing Default CloverETL Settings
	Enlarging the Font of Displayed Numbers
	Setting and Configuring Java
	Setting Java Runtime Environment
	Installing Java Development Kit

	Part V. Graph Elements, Structures and Tools
	Chapter 19. Components
	Chapter 20. Edges
	What Are the Edges?
	Connecting Components by the Edges
	Types of Edges
	Assigning Metadata to the Edges
	Propagating Metadata through the Edges
	Colors of the Edges
	Debugging the Edges
	Enabling Debug
	Selecting Debug Data
	Viewing Debug Data
	Turning Off Debug

	Edge Memory Allocation

	Chapter 21. Metadata
	Data Types and Record Types
	Data Types in Metadata
	Record Types

	Data Formats
	Date and Time Format
	Numeric Format
	Boolean Format
	String Format

	Locale and Locale Sensitivity
	Locale
	Locale Sensitivity

	Autofilling Functions
	Internal Metadata
	Creating Internal Metadata
	Externalizing Internal Metadata
	Exporting Internal Metadata

	External (Shared) Metadata
	Creating External (Shared) Metadata
	Linking External (Shared) Metadata
	Internalizing External (Shared) Metadata

	Creating Metadata
	Extracting Metadata from a Flat File
	Extracting Metadata from Delimited Files
	Extracting Metadata from Fixed Length Files

	Extracting Metadata from an XLS(X) File
	Extracting Metadata from a Database
	Extracting Metadata from a DBase File
	Creating Metadata by User
	Extracting Metadata from Lotus Notes
	Merging existing metadata
	Dynamic Metadata
	Reading Metadata from Special Sources
	Creating Database Table from Metadata and Database Connection
	Metadata Editor
	Basics of Metadata Editor
	Record Pane
	Field Name vs. Label vs. Description
	Details Pane

	Changing and Defining Delimiters
	Changing Record Delimiter
	Changing Default Delimiter
	Defining Non-Default Delimiter for a Field

	Editing Metadata in the Source Code
	Multivalue Fields
	Lists and Maps Support in Components
	Joininig on Lists and Maps (Comparison Rules)

	Chapter 22. Database Connections
	Internal Database Connections
	Creating Internal Database Connections
	Externalizing Internal Database Connections
	Exporting Internal Database Connections

	External (Shared) Database Connections
	Creating External (Shared) Database Connections
	Linking External (Shared) Database Connections
	Internalizing External (Shared) Database Connections

	Database Connection Wizard
	Encrypting the Access Password
	Browsing Database and Extracting Metadata from Database Tables
	Windows Authentication on Microsoft SQL Server
	Getting the Native Library
	Installation

	Hive Connection

	Chapter 23. JMS Connections
	Internal JMS Connections
	Creating Internal JMS Connections
	Externalizing Internal JMS Connections
	Exporting Internal JMS Connections

	External (Shared) JMS Connections
	Creating External (Shared) JMS Connections
	Linking External (Shared) JMS Connection
	Internalizing External (Shared) JMS Connections

	Edit JMS Connection Wizard
	Encrypting the Authentication Password

	Chapter 24. QuickBase Connections
	Chapter 25. Lotus Connections
	Chapter 26. Hadoop Connections
	Chapter 27. Lookup Tables
	LookupTables in CloverETL Cluster environment
	Internal Lookup Tables
	Creating Internal Lookup Tables
	Externalizing Internal Lookup Tables
	Exporting Internal Lookup Tables

	External (Shared) Lookup Tables
	Creating External (Shared) Lookup Tables
	Linking External (Shared) Lookup Tables
	Internalizing External (Shared) Lookup Tables

	Types of Lookup Tables
	Simple Lookup Table
	Database Lookup Table
	Range Lookup Table
	Persistent Lookup Table
	Aspell Lookup Table

	Chapter 28. Sequences
	Internal Sequences
	Creating Internal Sequences
	Externalizing Internal Sequences
	Exporting Internal Sequences

	External (Shared) Sequences
	Creating External (Shared) Sequences
	Linking External (Shared) Sequences
	Internalizing External (Shared) Sequences

	Editing a Sequence

	Chapter 29. Parameters
	Internal Parameters
	Creating Internal Parameters
	Externalizing Internal Parameters
	Exporting Internal Parameters

	External (Shared) Parameters
	Creating External (Shared) Parameters
	Linking External (Shared) Parameters
	Internalizing External (Shared) Parameters

	Parameters Wizard
	Parameters with CTL Expressions
	Environment Variables
	Canonizing File Paths
	Using Parameters

	Chapter 30. Internal/External Graph Elements
	Internal Graph Elements
	External (Shared) Graph Elements
	Working with Graph Elements
	Advantages of External (Shared) Graph Elements
	Advantages of Internal Graph Elements
	Changes of the Form of Graph Elements

	Chapter 31. Dictionary
	Creating a Dictionary
	Using the Dictionary in a Graph

	Chapter 32. Notes in the Graphs
	Chapter 33. Search Functionality
	Chapter 34. Transformations
	Chapter 35. Fact table loader
	Launching Fact Table Loader Wizard
	Wizard with project parameters file enabled
	Wizard with the project parameter file disabled

	Working with Fact Table Loader Wizard
	Created graph

	Part VI. Jobflow
	Chapter 36. Jobflow Overview
	Introduction
	Important concepts
	Advanced Concepts

	Chapter 37. Jobflow Design Patterns

	Part VII. Components Overview
	Chapter 38. Introduction to Components
	Chapter 39. Palette of Components
	Chapter 40. Find / Add Components
	Finding Components
	Adding Components

	Chapter 41. Common Properties of All Components
	Edit Component Dialog
	Component Name
	Phases
	Enable/Disable Component
	PassThrough Mode
	Component Allocation

	Chapter 42. Common Properties of Most Components
	Metadata Templates
	Time Intervals
	Group Key
	Sort Key
	Defining Transformations
	Return Values of Transformations
	Error Actions and Error Log (deprecated since 3.0)
	Transform Editor
	Regex Tester

	Common Java Interfaces

	Chapter 43. Common Properties of Readers
	Supported File URL Formats for Readers
	Viewing Data on Readers
	Input Port Reading
	Incremental Reading
	Selecting Input Records
	Data Policy
	XML Features
	CTL Templates for Readers
	Java Interfaces for Readers

	Chapter 44. Common Properties of Writers
	Supported File URL Formats for Writers
	Viewing Data on Writers
	Output Port Writing
	How and Where Data Should Be Written
	Selecting Output Records
	Partitioning Output into Different Output Files
	Java Interfaces for Writers

	Chapter 45. Common Properties of Transformers
	CTL Templates for Transformers
	Java Interfaces for Transformers

	Chapter 46. Common Properties of Joiners
	Join Types
	Slave Duplicates
	CTL Templates for Joiners
	Java Interfaces for Joiners

	Chapter 47. Common Properties of Cluster Components
	Chapter 48. Common Properties of Others
	Chapter 49. Common Properties of Data Quality
	Chapter 50. Common Properties of Job Control
	Chapter 51. Common Properties of File Operations
	Supported URL Formats for File Operations

	Chapter 52. Custom Components

	Part VIII. Component Reference
	Chapter 53. Readers
	CloverDataReader
	ComplexDataReader
	DataGenerator
	DBFDataReader
	DBInputTable
	EmailReader
	JavaBeanReader
	HadoopReader
	JMSReader
	JSONReader
	LDAPReader
	LotusReader
	MultiLevelReader
	ParallelReader
	QuickBaseRecordReader
	QuickBaseQueryReader
	SpreadsheetDataReader
	UniversalDataReader
	XLSDataReader
	XMLExtract
	XMLReader
	XMLXPathReader

	Chapter 54. Writers
	CloverDataWriter
	DB2DataWriter
	DBFDataWriter
	DBOutputTable
	EmailSender
	HadoopWriter
	InfobrightDataWriter
	InformixDataWriter
	JavaBeanWriter
	JavaMapWriter
	JMSWriter
	JSONWriter
	LDAPWriter
	LotusWriter
	MSSQLDataWriter
	MySQLDataWriter
	OracleDataWriter
	PostgreSQLDataWriter
	QuickBaseImportCSV
	QuickBaseRecordWriter
	SpreadsheetDataWriter
	StructuredDataWriter
	Trash
	UniversalDataWriter
	XLSDataWriter
	XMLWriter

	Chapter 55. Transformers
	Aggregate
	Concatenate
	DataIntersection
	DataSampler
	Dedup
	Denormalizer
	ExtFilter
	ExtSort
	FastSort
	Merge
	MetaPivot
	Normalizer
	Partition
	LoadBalancingPartition
	Pivot
	Reformat
	Rollup
	SimpleCopy
	SimpleGather
	SortWithinGroups
	XSLTransformer

	Chapter 56. Joiners
	ApproximativeJoin
	Combine
	DBJoin
	ExtHashJoin
	ExtMergeJoin
	LookupJoin
	RelationalJoin

	Chapter 57. Job Control
	Barrier
	Condition
	ExecuteGraph
	ExecuteJobflow
	ExecuteMapReduce
	ExecuteProfilerJob
	Input mapping
	Output mapping

	ExecuteScript
	Fail
	GetJobInput
	KillGraph
	KillJobflow
	MonitorGraph
	MonitorJobflow
	SetJobOutput
	Success
	TokenGather

	Chapter 58. File Operations
	CopyFiles
	CreateFiles
	DeleteFiles
	ListFiles
	MoveFiles

	Chapter 59. Cluster Components
	ClusterPartition
	ClusterLoadBalancingPartition
	ClusterSimpleCopy
	ClusterSimpleGather
	ClusterMerge
	ClusterRepartition

	Chapter 60. Data Quality
	Address Doctor 5
	EmailFilter
	ProfilerProbe

	Chapter 61. Others
	CheckForeignKey
	DBExecute
	HTTPConnector
	JavaExecute
	LookupTableReaderWriter
	RunGraph
	SequenceChecker
	SpeedLimiter
	SystemExecute
	WebServiceClient

	Part IX. CTL - CloverETL Transformation Language
	Chapter 62. Overview
	Chapter 63. CTL1 vs. CTL2 Comparison
	Typed Language
	Arbitrary Order of Code Parts
	Compiled Mode
	Access to Graph Elements (Lookups, Sequences, ...)
	Metadata

	Chapter 64. Migrating CTL1 to CTL2
	Chapter 65. CTL1
	Language Reference
	Program Structure
	Comments
	Import
	Data Types in CTL
	Literals
	Variables
	Operators
	Simple Statement and Block of Statements
	Control Statements
	Error Handling
	Functions
	Eval
	Conditional Fail Expression
	Accessing Data Records and Fields
	Mapping
	Parameters

	Functions Reference
	Conversion Functions
	Date Functions
	Mathematical Functions
	String Functions
	Container Functions
	Miscellaneous Functions
	Dictionary Functions
	Lookup Table Functions
	Sequence Functions
	Custom CTL Functions

	Chapter 66. CTL2
	Language Reference
	Program Structure
	Comments
	Import
	Data Types in CTL2
	Literals
	Variables
	Dictionary in CTL2
	Operators
	Simple Statement and Block of Statements
	Control Statements
	Error Handling
	Functions
	Conditional Fail Expression
	Accessing Data Records and Fields
	Mapping
	Parameters

	Functions Reference
	Conversion Functions
	Date Functions
	Mathematical Functions
	String Functions
	Container Functions
	Record functions (dynamic field access)
	Miscellaneous Functions
	Lookup Table Functions
	Sequence Functions
	Custom CTL Functions
	CTL2 Appendix - List of National-specific Characters

	Chapter 67. Regular Expressions

