Oracle® Endeca Server
EQL Guide

Version 7.6.1 « December 2013

ORACLE

Copyright and disclaimer

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Table of Contents

Copyright and disclaimer 2
PrefaCE. . . 6
About this QUIdE 6
Who should use this guide. 6
Conventions used inthis guUIde. e 6
Contacting Oracle Customer SUPPOIT o it e e e e e 7
Chapter 1: Introduction to the Endeca Query Language it 8
EQL OVEIVIEBW . . . ottt e e 8
Important concepts and terms 8

EQL and SQL: @ COMPAISON ottt et e e e e e e e e 9
QUEIY OVEIVIBW . . o ettt e e e e e e e e e e e 10

HOW qUETIES are ProCeSSEA ottt e e e e e e 11

EQL requests in the Conversation ServiCe 12

EQL reserved KEYWOrAS.ottt e e e e 13
Chapter 2: Statements and ClausSest e 16
DEFINE ClaUSe . . . oo ottt e e 16
RETURN Clause oo e e e e e e e e e e 17
SELECT ClaUSES . . . o ot 17

AS ClaUSE . . . o 18
Using AS expressions to calculate derived attributes. 19

FROM ClaUSES . . .o\ e e e e 19
JOIN ClaUSESot 21
WHERE ClaUSES oo 25
HAVING ClaUSeSot e e e e e 26
ORDER BY ClaUSeS. ottt 26
PAGE ClaUSES. . . . ot 29
Chapter 3: Aggregation 31
GROUP/GROUP BY ClaUSES . . . o o ottt e e e e e e e e e e e 31
MEMBERS EXIENSIONt 34
GROUPING SETS @XPreSSION . . . o v vttt e et e et e e e e e e e e e e e e 36
ROLLUP BXIENSIONttt e e e e e e e e e e e e e 37
CUBE BXIENSION . . . ottt e e e e e e 39
Grouping sets helper fUNCtioNS. 40
GROUPING fUNCtiON e 40
GROUPING_ID fUNCHON . . . o e e e e e e 41

GROUP _ID fUNCHiON e e e 42

Notes on grouping behavior. 42

COUNT fUNCHON . . o e e e e e e e 43

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Table of Contents 4

COUNTDISTINCT fUNCLIONo e e e e e e e e 44
Multi-level aggregation. 45
Per-aggregation filters 45
Chapter 4: EXPresSSiONS . . .ot 47
Supported data tyPesS. o e 47
Operator precedence FUIBS. o 49
1 =T - 50
Character handling 50
Handling of upper- and [oWer-Case 51
Handling NULL attribute values e e 52
TYPE PrOMOLION . .« . . oottt et e e e e e e e 53
Handling of NaN, inf, and -infresults 55
Functions and Operators it 56
NUMENC fUNCHIONS e 56
Aggregation funClioNS 59
Hierarchy fUNCLiONS 61
Ge0COode fUNCHIONS. . . . 63

Date and time fUNCONS 63
Manipulating current date and time. e 65
Constructing date and time values e 65

Time zone manipulation. 67

Using EXTRACT to extract a portion of a dateTime value 68

Using TRUNC to round down dateTime valuest 69

Using arithmetic operations on date and timevalues. 70

StriNg fUNCHONS 71
Arithmetic Operators 72
BOO0IEAN OPEIAIOIS o\ ottt 72
Using EQL results to compose follow-0n qUEeries. 73
Using lookup expressions for inter-statement references o o 74
AR . 76
BETWEEN . . . 77
COALESCE . . o 78
CASE . . o 78
IN 79
Chapter 5: Sets and Multi-assign Data e 80
ADOUL SBES. . . . 80
Aggregate fUNCHIONS.o 82
SET fUNCHON 82
SET_INTERSECTIONS funcCtion e e e e 84

SET _UNIONS funCtion e e e 85

ROW fUNCHIONS . . . o 87
UNION fUNCHON. . . . e e e 87
INTERSECTION fUNCHON. e e e e e e e 88
DIFFERENCE fUNCHON e e e e e e e 89
SUBSET fUNCHONo e e e 90

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Table of Contents 5

IS MEMBER_OF funCtion e e 91
ADD_ELEMENT fUNCHON 92

IS_ EMPTY and IS_NOT_EMPTY functions. s 93
SINGLETON fUNCHONo e e e e e e 96
CARDINALITY funCtion e e e e 96
TRUNCATE_SET fUNCLION o e e e e e 97

SEL CONSITUCTON e 98
QUANLIIEIS . . . 99
GrouUpINg BY SEtS. . . . 101
Chapter 6: EQL USE CasSeSottt it e e e 103
Re-normalization. 103
Grouping by range buckets 104
Manipulating records in a dynamically computed range value, 105
Grouping data into quartiles 105
Combining multiple sparse fields into one. 107
Joining data from different types of records. 107
Joining on hierarChy 108
Linear regressions in EQLt 108
Using an IN filter for pie chart segmentation 109
RUNNING SUML. . . oo e e e e e e e 109
QUEIY DY @06 . . . o 110
Calculating percent change between most recent month and previous month. 110
Chapter 7: EQL Best PractiCes 112
Controlling INPUL SIZE e 112
Filtering as early as possible 113
Controlling JOIN SIZe o 114
Additional tipS . . . oo 114

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Preface

Oracle® Endeca Server is a hybrid search-analytical engine that organizes complex and varied data from
disparate sources. At the core of Endeca Information Discovery, the unique NoSQL-like data model and in-
memory architecture of the Endeca Server create an extremely agile framework for handling complex data
combinations, eliminating the need for complex up-front modeling and offering extreme performance at scale.
Endeca Server also supports 35 distinct languages.

About this guide

This guide describes how to write queries in the Endeca Query Language, or EQL.

Who should use this guide

This guide is intended for data developers who need to create EQL queries.

Conventions used in this guide

The following conventions are used in this document.

Typographic conventions

This table describes the typographic conventions used when formatting text in this document.

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sanpl e This formatting is used for sample code phrases within a paragraph.

Variable This formatting is used for variable values.

For variables within a code sample, the formatting is Vari abl e.

Fil e Path This formatting is used for file names and paths.

Symbol conventions

This table describes the symbol conventions used in this document.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Preface

Symbol

Description

Example

Meaning

>

The right angle bracket,
or greater-than sign,
indicates menu item
selections in a graphic
user interface.

File > New > Project

From the File menu,
choose New, then from
the New submenu,
choose Project.

Path variable conventions

This table describes the path variable conventions used in this document.

Path variable

Meaning

directory.

$MWV HOVE Indicates the absolute path to your Oracle Middleware home directory,
which is the root directory for your WebLogic installation.
$DOVAI N_HOVE Indicates the absolute path to your WebLogic domain home directory. For

example, if endeca_ser ver _donmai n is the name of your WebLogic
domain, then the $DOVMAI N_HOVE value would be the
$MN HOVE/ user _pr oj ect s/ domai ns/ endeca_server _domai n

$ENDECA_HOMVE

Indicates the absolute path to your Oracle Endeca Server home directory,
which is the root directory for your Endeca Server installation.

Contacting Oracle Customer Support

Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at

https://support.oracle.com.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

https://support.oracle.com

Chapter 1
Introduction to the Endeca Query Language

This section introduces the Endeca Query Language (EQL) and walks you through the query processing
model.

EQL overview

Important concepts and terms

EQL and SQL: a comparison

Query overview

How queries are processed

EQL requests in the Conversation Service

EQL reserved keywords

EQL overview

EQL is a SQL-like language designed specifically to query and manipulate data from the Oracle Endeca
Server. It enables Endeca Server—based applications to examine aggregate information such as trends,
statistics, analytical visualizations, comparisons, and more.

An EQL query contains one or more statements, each of which can group, join, and analyze records, either
those stored in the server or those produced by other statements. Multiple statements within a single query
can return results back to the application, allowing complex analyses to be done within a single query.

Important concepts and terms

In order to work with EQL, you need to understand the following concepts.

o Attribute: An attribute is the basic unit of a record schema. Attributes describe records in the Endeca
Server.

» Single-assign attribute: An attribute for which a record may have only one value. For example,
because a book has only one price, the Price attribute would be single-assign. Single-assign attributes
are of the atomic data type (such as ndex: stri ng and ndex: doubl e).

* Multi-assign attribute: An attribute for which a record may have more than one value. For example,
because a book may have more than one author, the Author attribute would be multi-assign. Multi-
assign attributes are of the set data type (such as ndex: stri ng- set and ndex: doubl e-set).
They are represented in EQL by sets (see Sets and Multi-assign Data on page 79).

* Managed attribute: An attribute for which a hierarchy of attribute values is attached. Managed
attributes are used to support hierarchical navigation.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 9

e Standard attribute: An attribute whose value is not included in an enumerated list or hierarchy.

e Record: The fundamental unit of data in the Endeca Server. Records are assigned attribute values. An
assignment indicates that a record has a value for an attribute. A record typically has assignments from
multiple attributes. Records in the corpus can include multiple assignments to the same attribute, as can
records in EQL results.

e Corpus: The full body of Endeca Server records. Endeca Server data is corpus—based rather than
table—based. By default, the source of records for an EQL statement is the result of the containing search
and navigation query. However, you can also include the FROMsyntax in your statement to specify a

different record source, such as from the corpus, from a previously-defined statement, or from a named
state. Two names identify a corpus-based source:

» Al | BaseRecor ds: Every record that passed the security filter.
* NavSt at eRecor ds: Every record that passed all previous filters.

The omission of the FROMclause implies FROMNav St at eRecor ds. This implicit FROMis equivalent to
using a WHERE clause that expresses the filters currently applied.

e Statement: A unit of EQL that computes related or independent analytics results. In EQL, a statement
starts with DEFI NE or RETURN and ends with a semi-colon if it is between statements (the semi-colon is
optional on the last statement). The statement also includes a mandatory SELECT clause and, optionally,
some other clause(s).

e Result: Query results are a collection of statement results; statement results are a collection of records.

e Intermediate results: Results from RETURN statements can also be used as intermediate results for
further processing by other statements.

e Returned results: Set of matching values returned by the query or statement.

e Query: A request sent to the Endeca Server. In general, a query consists of multiple statements.

EQL and SQL: a comparison

EQL is, in many ways, similar to SQL, but has some marked differences as well.

This topic identifies EQL concepts that may be familiar to users familiar with SQL, as well as the unique
features of EQL:

e Tables with a single schema vs a corpus of records with more than one schema. SQL is designed
around tables of records — all records in a table have the same schema. EQL is designed around a single
corpus of records with heterogeneous schemas.

 EQL Query vs SQL Query. An EQL statement requires a DEFI NE or RETURN clause, which, like a SQL
common table expression (or CTE), defines a temporary result set. The following differences apply,
however:

» EQL does not support a schema declaration.

In EQL, the scope of a CTE is the entire query, not just the immediately following statement.
* In EQL, a RETURN s both a CTE and a normal statement (one that produces results).

» EQL does not support recursion. That is, a statement cannot refer to itself using a FROMclause, either
directly or indirectly.

» EQL does not contain an update operation.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 10

e Clauses. In EQL, SELECT, FROM WHERE, HAVI NG, GROUP BY, and ORDER BY are all like SQL, with the
following caveats:

In SELECT statements, AS aliasing is optional when selecting an attribute verbatim; statements using
expressions require an AS alias. Aliasing is optional in SQL.

In EQL, GROUP BY implies SELECT. That is, grouping attributes are always included in statement
results, whether or not they are explicitly selected.

Grouping by a multi-assign attribute can cause a single record to participate in multiple groups. For
this reason, the MEMBERS extension should be used with a GROUP BY clause.

VWHERE can be applied to an aggregation expression.

In SQL, use of aggregation implies grouping. In EQL, grouping is always explicit.

e Other language comparisons:

PAGE works in the same way as many common vendor extensions to SQL.

In EQL, a JO N expression's Boolean join condition must be contained within parentheses. This is not
necessary in SQL.

EQL supports SELECT statements only. It does not support other DML statements, such as | NSERT
or DELETE, nor does it support DDL, DCL, or TCL statements.

EQL supports a different set of data types, expressions, and functions than described by the SQL
standard.

Query overview

An EQL query contains one or more semicolon-delimited statements with at least one RETURN clause.

Any number of statements from the query can return results, while others are defined only as generating
intermediate results.

Each statement must contain at least two clauses: a DEFI NE or a RETURN clause, and a SELECT clause. In
addition, it may contain other, optional clauses.

Most clauses can contain expressions. Expressions are typically combinations of one or more functions,
attributes, constants, or operators. Most expressions are simple combinations of functions and attributes. EQL
provides functions for working with numeric, string, dateTime, duration, Boolean, and geocode attribute types.

Input records, output records, and records used in aggregation can be filtered in EQL. EQL supports filtering
on arbitrary, Boolean expressions.

Syntax conventions used in this guide

The syntax descriptions in this guide use the following conventions:

Convention Meaning Example
Square Optional FROM <st at enent Key> [al i as]
brackets []

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 11

Convention Meaning Example

Asterisk * May be [, JON statenent [alias] ON <Bool ean expression>]*
repeated

Ellipsis ... Additional, DEFI NE <r ecor dSet Name> AS . . .
unspecified
content

Angle brackets | Variable name | pay NG <Bool ean expr essi on>

<>

Commenting in EQL
You can comment your EQL code using the following notation:

DEFI NE Exanpl e AS SELECT /* This is a conment */

You can also comment out lines or sections as shown in the following example:

RETURN Top5 AS SELECT
SUM Sal e) AS Sal es
GROUP BY Cust omer

ORDER BY Sal es DESC
PAGE(0, 5) ;

/*

RETURN Ot hers AS SELECT
SUM Sal e) AS Sal es
WHERE NOT [Custoner] | N Top5
GROUP

*/

Note that EQL comments cannot be nested.

How queries are processed

This topic walks you through the steps involved in EQL query processing.

/,9 Note: This abstract processing model is provided for educational purposes and is not meant to reflect
& actual query evaluation.

Prior to processing each statement, EQL computes source records for that statement. When the records come
from a single statement or the corpus, the source records are the result records of the statement or the
appropriately filtered corpus records, respectively. When the records come from a JO N, there is a source
record for every pair of records from the left and right sides for which the join condition evaluates to true on
that pair of records. Before processing, statements are re-ordered, if necessary, so that statements are
processed before other statements that depend on them.

EQL then processes queries in the following order. Each step is performed within each statement in a query,
and each statement is done in order:

1. It filters source records (both statement and per-aggregate) according to the WHERE clauses.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 12

2. For each source record, it computes SELECT clauses that are used in the GROUP BY clause (as well as
GROUP BYs not from SELECT clauses) and arguments to aggregations.

. It maps source records to result records and computes aggregations.
. It finishes computing SELECT clauses.
. It filters result records according to the HAVI NG clause.

. It orders result records.

N o o~ oW

. It applies paging to the results.

EQL requests in the Conversation Service

A request made with the Conversation Web Service can include statements in EQL.
The Conversation Service's EQLConf i g type lets you make queries using EQL statements.

Consider the following EQL statement:

RETURN Sal esTransacti ons AS SELECT SUM Fact Sal es_Sal esAnpunt)
WHERE (Di nDat e_Fi scal Year =2008) AS Sal es2008,

SUM Fact Sal es_Sal esAnmpunt)

WHERE (Di nDat e_Fi scal Year =2007) AS Sal es2007,

((Sal es2008- Sal es2007) / Sal es2007 * 100) AS pct Change,

COUNTDI STI NCT(Fact Sal es_Sal esOr der Nunber)

AS Transacti onCount

GROUP

To send it for processing to the Oracle Endeca Server, use the EQLConf i g summarization type, including the
statement inside the EQLQuer ySt ri ng element, as in this example:

<soapenv: Envel ope xmnl ns: soapenv="htt p://schemas. xnm soap. or g/ soap/ envel ope/ "
xm ns: ns="http://ww. endeca. comf MDEX/ conver sati on/ 3/ 0"
xm ns: typ="http://ww. endeca. com MDEX/ | ql _par ser/types">
<soapenv: Header/ >
<soapenv: Body>
<ns: Request >
<ns: Language>en</ ns: Language>
<ns: State/ >
<ns: EQLConfi g | d="EQ.Request"
<ns: EQLQueryStri ng>
RETURN Sal esTr ansacti ons AS SELECT SUM Fact Sal es_Sal esAnpbunt)
WHERE (Di nDat e_Fi scal Year =2008) AS Sal es2008,
SUM Fact Sal es_Sal esAnount) WHERE (Di nDat e_Fi scal Year =2007) AS Sal es2007,
((Sal es2008- Sal es2007) / Sal es2007 * 100) AS pct Change,
count Di stinct (Fact Sal es_Sal esOr der Nunber)
AS Transacti onCount
GROUP
</ ns: EQLQueryString>
</ ns: EQ.Confi g>
</ ns: Request >
</ soapenv: Body>
</ soapenv: Envel ope>

The contents of the EQLQuer ySt ri ng element must be a valid EQL statement.
The following abbreviated response returned from the Conversation Web Service contains the calculated
results of the EQL statements:

<cs: EQL | d="EQ.Request ">
<cs: Resul t Records NunRecords="1" Nane="Sal esTransacti ons">
<cs: Di mensi onHi er ar chy/ >

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 13

<cs: AttributeMet adat a nane="Sal es2007" type="ndex: doubl e"/ >
<cs: Attribut eMet adat a name="Sal es2008" type="ndex: doubl e"/ >
<cs:AttributeMet adat a nane="Transacti onCount" type="ndex:|ong"/>
<cs: Attribut eMet adat a name="pct Change" type="ndex: doubl e"/>
<cs: Recor d>
<Sal es2007 type="ndex: doubl e">2. 79216705182E7</ Sal es2007>
<Sal es2008 type="ndex: doubl e">3. 62404846965997E7</ Sal es2008>
<Transact i onCount type="ndex:|ong">3796</ Transacti onCount >
<pct Change type="ndex: doubl e">29. 793397114178</ pct Change>
</ cs: Recor d>
</ cs: Resul t Recor ds>
</ cs: Cont ent El enent >

/s Note: This example shows only one of the ways to use EQL statements in Conversation Web Service
/ requests. Typically, requests also include St at e and Oper at or elements that define the navigation
state. In your EQL statement, you can select from this navigation state using the FROMclause.

Language ID for parsing error messages

The Request complex type has an optional Language element that sets the language for error messages that
result from EQL parsing. The supported languages and their corresponding language IDs are:

e Chinese (simplified): zh_CN
e Chinese (traditional): zh_TW
e English: en
* French: fr
* German: de
o ltalian: it
e Japanese:ja
» Korean : ko
* Portuguese: pt
e Spanish: es
If a language ID is not specified, then en (English) is the default.

The EQLQuer ySt ri ng example above shows where in the request you would specify the Language element
for EQL parsing error messages.

EQL reserved keywords

EQL reserves certain keywords for its exclusive use.

Reserved keywords

Reserved keywords cannot be used in EQL statements as identifiers, unless they are delimited by double
guotation marks. For example, this EQL snippet uses the YEAR and MONTH reserved keywords as delimited

identifiers:

DEFI NE | nput AS SELECT
Di nDat e_Cal endar Year AS "Year",
Di nDat e_Mont hNunber O Year AS " Mont h",

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 14

However, as a rule of thumb it is recommended that you do not name any identifier with a name that is the
same as a reserved word.

The reserved keywords are:

AND DESC JULI AN_DAY_NUMBER ROLLUP

AS ELSE LEFT SATI SFI ES
ASC EMPTY MEMBERS SECOND
BETWEEN END M NUTE SELECT

BY EVERY MONTH SETS

CASE FALSE NOT SOVE
CRCSS FROM NULL SYSDATE
CUBE FULL ON SYSTI MESTAMP
CURRENT_DATE GROUP OR THEN
CURRENT_TI MESTAVP GROUPI NG CRDER TRUE

DATE HAVI NG PAGE VEEK
DAY_OF_MONTH HOUR PERCENT VWHEN
DAY_OF_WVEEK I'N QUARTER VWHERE
DAY_COF_YEAR IS RETURN YEAR

DEFI NE JAN Rl GHT

Keep in mind that function names (such as COUNT and STRI NG_JO N) are not keywords and, therefore, could
be used as identifiers. However, as a best practice, you should also avoid using function names as identifiers.

Reserved punctuation symbols
e , (comma)
e ; (semicolon)
e . (dot)

/ (division)

s + (plus)
e - (minus)

* (star)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Introduction to the Endeca Query Language 15

< (less than)

» > (greater than)

» <= (less than or equal)
» => (greater than or equal)
* = (equal)

* <> (not equal)

* ((left parenthesis)

*) (right parenthesis)

* { (left brace)

* 1} (right brace)

* [(left bracket)

] (right bracket)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Chapter 2
Statements and Clauses

This section describes the types of clauses used in EQL statements.

For information on the GROUP and GROUP BY clauses, see Aggregation on page 30.

DEFINE clause
RETURN clause
SELECT clauses
AS clause

FROM clauses
JOIN clauses
WHERE clauses
HAVING clauses
ORDER BY clauses
PAGE clauses

DEFINE clause

DEFI NE is used to generate an intermediate result that will not be included in the query result.
All EQL statements begin with either DEFI NE or RETURN.

You can use multiple DEFI NE clauses to make results available to other statements. Typically, DEFI NE
clauses are used to look up values, compare attribute values to each other, and normalize data.

The DEFI NE syntax is:

DEFI NE <recor dSet Nane> AS . ..

In the following example, the RegionTotals record set is used in a subsequent calculation:

DEFI NE Regi onTotal s AS
SELECT SUM Anpunt) AS Tot al
GROUP BY Regi on;

RETURN Product Pct AS

SELECT 100* SUM Anpunt) / Regi onTot al s[Regi on] . Total AS Pct Tot al
GROUP BY Regi on, Product Type

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 17

RETURN clause

RETURN indicates that the statement result should be included in the query result.
All EQL statements begin with either DEFI NE or RETURN.

RETURN provides the key for accessing EQL results from the Endeca Server query result. This is important
when more than one statement is submitted with the query.

The RETURN syntax is:
RETURN <r ecor dSet Nane> AS ...

The following statement returns for each size the number of different values for the Color attribute:

RETURN result AS
SELECT COUNTDI STI NCT(Col or) AS Tot al
GROUP BY Si ze

SELECT clauses

The SELECT clause defines the list of attributes on the records produced by the statement.
Its syntax is as follows:

SELECT <expression> AS <attributeKey>[, <expression> AS <key>]*

For example:
SELECT Sun{Anpunt) AS Tot al Sal es

The attribute definitions can refer to previously defined attributes, as shown in the following example:
SELECT Sun{Anpunt) AS Total Sal es, Total Sales / 4 AS QuarterAvg

/,.s Note: If an attribute defined in a SELECT clause is used in the statement's GROUP clause, then the
& expression can only refer to source attributes and other attributes used in the GROUP clause. It must
not contain aggregations.

Using SELECT *
SELECT * selects all the attributes at once from a given record source. The rules for using SELECT * are:

* You cannot use SELECT * over the corpus. This means that you must use a FROMclause in your
statement to reference a non-corpus source.

* You cannot use SELECT * in a grouping statement.

For example, assume this simple query:

DEFI NE Resel | erlnfo as
SELECT Di nResel | er _Resel | er Nane, D nGeogr aphy_St at eProvi nceNane, D nResel | er _Phone;

RETURN Resel | ers as

SELECT *
FROM Resel | er | nfo

The query first generates an intermediate result (named Resellerinfo) from data in three attributes, and then
uses SELECT * to select all the attributes from ResellerInfo.

You can also use SELECT * with a JO N clause, as shown in this example:

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 18

DEFI NE Resel | er AS
SELECT Di nResel | er_Resel | erKey, DinReseller_ResellerNane, DinReseller_Annual Sal es;

DEFI NE Orders AS
SELECT Fact Sal es_Resel | er Key, Fact Sal es_Sal esAmount ;

RETURN TopResel | ers AS
SELECT R *, O Fact Sal es_Sal esAnmpunt
FROM Reseller R JON O ders O on (R DinReseller_ResellerKey = O Fact Sal es_Resel | er Key)

WHERE O. Fact Sal es_Sal esAnmount > 10000

In the example, the expression R. * (in the RETURN TopResel | er s statement) expands to include all the
attributes selected in the DEFI NE Resel | er statement.

Note that you should be aware of the behavior of SELECT * clauses in regard to attributes with the same
name in statements. That is, assuming these scenarios:

SELECT Ant AS Z, *

SELcérCT *, Am AS Z

if * includes an attribute named Z, then whichever attribute comes first is the one included in the result.
Likewise in a join:

SELECT * FROMa JON b ON (...)

If a and b both contain an attribute with the same name, then you get the attribute from the first statement in
the JO N clause.

AS clause

The AS clause allows you to give an alias name to EQL attributes and results.

The alias name can be given to an attribute, attribute list, expression result, or query result set. The aliased
name is temporary, as it does not persist across different EQL queries.

Alias names must be NCName-compliant (for example, they cannot contain spaces). The NCName format is
defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at this URL:
http://www.w3.0rg/TR/REC-xml-names/.

/,.s Note: Attribute names are not required to be aliased, as the names are already NCName-compliant.
However, you can alias attribute names if you wish (for example, for better human readability of a
query that uses long attribute names).

AS is used in:

» DEFI NE statements, to name a record set that will later be referenced by another statement (such as a
SELECT or FROMclause).

* RETURN statements, to name the EQL results. This name is typically shown at the presentation level.

» SELECT statements, to name attributes, attribute lists, or expression results. This name is also typically
shown at the presentation level.

Assume this DEFI NE example:

DEFI NE Enpl oyeeTot al s AS
SELECT
Di nEnpl oyee_Ful | Nane AS Nane,
SUM Fact Sal es_Sal esAmount) AS Tot al

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

http://www.w3.org/TR/REC-xml-names/

Statements and Clauses 19

GROUP BY Di nEnpl oyee_Enpl oyeeKey, Product Subcat egor yNane;

In the example, EmployeeTotals is an alias for the results produced by the SELECT and GROUP BY
statements, while Name is an alias for the DimEmployee_FullName attribute, and Total is an alias for the
results of the SUMexpression.

Using AS expressions to calculate derived attributes

EQL statements typically use expressions to compute one or more derived attributes.

Each aggregation operation can declare an arbitrary set of named expressions, sometimes referred to as
derived attributes, using SELECT AS syntax. These expressions represent aggregate analytic functions that

are computed for each aggregated record in the statement result.

A Important: Derived attribute names must be NCName-compliant. They cannot contain spaces or
special characters. For example, the following statement would not be valid:

RETURN price AS SELECT AVG Price) AS "Average Price"

<

The space would have to be removed:
RETURN price AS SELECT AVG Price) AS AveragePrice

FROM clauses

You can include a FROMclause in your statement to specify a different record source from the result of the
containing search and navigation query.

By default, the source of records for an EQL statement is the result of the containing search and navigation
guery. However, you can also include the FROMsyntax in your statement to specify a different data source,

such as from a state name or from a previously-defined statement.
The FROMsyntax is:
FROM <r ecSource> [al i as]
where <recSource> can be:
e A corpus-based source.
» The name of previously-defined statement (whether that statement is a DEFI NE or a RETURN).

» A state name. Note that FROMdoes not directly support collection names, but does in essence if the state
includes a collection.

If you omit the FROMclause in your query, the EQL statement uses the corpus-based NavSt at eRecor ds
source.

Corpus-based source
Two names identify a corpus-based source:
* Al | BaseRecor ds: Every record that passed the security filter.
* NavSt at eRecor ds: Every record that passed all previous filters.

For example:

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 20

FROM Al | BaseRecor ds

The absence of FROMimplies Nav St at eRecor ds. This means that if you want to submit your query against
Nav St at eRecor ds, you do not need to include the FROMclause in your statement.

Previously-defined statement

You can use the result of a different statement as your record source. In the following example, a statement
computes the total number of sales transactions for each quarter and sales representative. To then compute
the average number of transactions per sales rep, a subsequent statement groups those results by quarter.

DEFI NE RepQuarters AS

SELECT COUNT(Transld) AS Nunilr ans
GROUP BY Sal esRep, Quarter;

RETURN Quarters AS

SELECT AVGE Nunilrans) AS AvgTr ansPer Rep
FROM RepQuarters

GROUP BY Quarter

The RepQuart er s statement generates a list of records. Each record contains the attributes { Sal esRep,
Quarter, Numfrans }. For example:

{ J. Smith, 11Q1, 10 }
{ J. Smth, 11Q, 3}
{ F. Jackson, 104, 10 }

The Quart er s statement then uses the results of the RepQuart er s statement to generate a list with the
attributes { Quarter, AvgTransPer Rep }. For example:

{ 104, 10}
{ 11QL, 4.5 }
{ 112, 6}

State name

State names can be specified in EQL FROMclauses with this syntax:
FROM <st at enanme>[. FI LTERED | . UNFI LTERED | .ALL]

where:

» statename.FILTERED represents the state with all filters applied (i.e., all the filters that are in the state of
the Conversation Service query).

» statename (i.e., using just the state name without a filtering qualifier) is a synonym for
statename.FILTERED.

» statename.UNFILTERED represents the state with only the security filter applied (i.e., the
Dat aSour ceFi | t er if one exists in the state of the Conversation Service query).

e statename.ALL is a synonym for statename.UNFILTERED.

As an example, assume this simple Conversation Service query that uses the EQLQuery type:

<Request >
<Language>en</ Language>
<St at e>
<Nanme>W ne</ Nane>
<Dat aSour ceFilter |d="DataFltr">
<filterString>WneType <> 'Red' </filterString>

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 21

</ Dat aSour ceFi | t er >
<Sel ectionFilter 1d="SecFltr">
<filterString>Price > 25</filterString>
</ Sel ectionFilter>
</ St at e>
<EQLConfig |d="Resul ts">
<St at eNanme>W ne</ St at eNane>
<EQLQueryStri ng>
RETURN results AS
SELECT Price AS prices
FROM W ne. FI LTERED
GROUP BY prices
</ EQLQueryString>
</ EQLConf i g>
</ Request >
The query works as follows:

1. The Dat aSour ceFi | t er filter (which is the security filter) first removes any record that does not have a
WineType=Red assignment. In our small data set, only 11 records pass the filter.

2. The Sel ecti onFi | t er filter then selects any record whose Price assignment is $25 or more. 7 more
records are filtered out (from the previous 11 records), leaving 4 records.

3. The FROMclause in the EQL statement references the state named Wine. Because FI LTERED is used
with the state name, both filters from the state are applied and the 4 records are returned. (The same
behavior applies only if the state name is used.)

If, however, this FROMclause is used in the same query:
FROM W ne. UNFI LTERED

then only the Dat aSour ceFi | t er filter would be applied (i.e., the Sel ecti onFi | t er filter would be
ignored). In this case, the 11 records that passed the security filter would be returned by the EQL statement.

JOIN clauses

JA N clauses allow records from multiple statements and/or named states to be combined, based on a
relationship between certain attributes in these statements.

JA N clauses, which conform to a subset of the SQL standard, do a join with the specified join condition. The
join condition may be an arbitrary Boolean expression referring to the attributes in the FROM statement. The
expression must be enclosed in parentheses.

The JA N clause always modifies a FROMclause. Two named sources (one or both of which can be named
states) can be indicated in the FROMclause. Fields must be dot-qualified to indicate which source they come
from, except in queries from a single table.

Self-join is supported. Statement aliasing is required for self-join.

Both input tables must result from DEFI NE or RETURN statements (that is, from intermediate results).
Al | BaseRecor ds and Nav St at eRecor ds cannot be joined.

Any number of joins can be performed in a single statement.

The syntax of JO Nis as follows:

FROM <st at enent 1> [al i as]
[CROSS, LEFT, RI GHT, FULL] JA N <statenent 2> [al i as]
ON (Bool ean- expression) [JON <statenmentN> [alias] ON (Bool ean- expression)]*

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 22

where statement is either a statement or a named state. If there is more than one JO N, each statement is
joined with a FROM statement.

Types of joins
EQL supports the following types of joins:

* INNER JOIN: I NNER JO N joins records on the left and right sides, then filters the result records by the
join condition. That means that only rows for which the join condition is TRUE are included. If you do not
specify the join type, JO N defaults to | NNERJO N.

e LEFT JOIN, RIGHT JOIN, and FULL JOIN: LEFT JAO N, RI GHT JA N, and FULL JO N (collectively called
outer joins) extend the result of an | NNER JO N with records from a side for which no record on the other
side matched the join condition. When such an additional record is included from one side, the record in
the join result contains NULLSs for all attributes from the other side. LEFT JO Nincludes all such rows from
the left side, Rl GHT JO Nincludes all such rows from the right side, and FULL JA N includes all such
rows from either side.

* CROSS JOIN: The result of CROSS JA Nis the Cartesian product of the left and right sides. Each result
record has the assignments from both of the corresponding records from the two sides.

Keep in mind that if not used correctly, joins can cause the Endeca Server to grow beyond available RAM
because they can easily create very large results. For example, a CROSS JO N of a result with 100 records
and a result with 200 records would contain 20,000 records. Two best practices are to avoid CROSS JO N if
possible and to be careful with ON conditions so that the number of results are reasonable.

INNER JOIN example

The following | NNER JO N example finds employees whose sales in a particular subcategory account for
more than 10% of that subcategory's total:

DEFI NE Enpl oyeeTotal s AS
SELECT
ARB(Di mEnpl oyee_Ful | Nane) AS Nane,
SUM Fact Sal es_Sal esAnmount) AS Tot al
GROUP BY Di nEnpl oyee_Enpl oyeeKey, Product Subcat egor yNane;

DEFI NE Subcat egoryTotal s AS
SELECT

SUM Fact Sal es_Sal esAmount) AS Tot al
GROUP BY Product Subcat egor yNane;

RETURN Stars AS
SELECT

Enpl oyeeTot al s. Nane AS Nane,

Enpl oyeeTot al s. Product Subcat egor yNanme AS Subcat egory,

100 * Enpl oyeeTotal s. Total / SubcategoryTotals. Total AS Pct
FROM Enpl oyeeTot al s

JA N Subcat egoryTot al s

ON (Enpl oyeeTot al s. Product Subcat egor yName = Subcat egor yTot al s. Product Subcat egor yNane)
HAVI NG Pct > 10

Self-join example

The following self-join using I NNER JO N computes cumulative daily sales totals per employee:

DEFI NE Days AS
SELECT
Fact Sal es_Or der Dat eKey AS Dat eKey,
Di nEnpl oyee_Enpl oyeeKey AS Enpl oyeeKey,

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses

23

ARB(Di nEnpl oyee_Ful | Nane) AS Enpl oyeeNaneg,
SUM Fact Sal es_Sal esAmount) AS Dai | yTot al
GROUP BY Dat eKey, Enpl oyeeKey;

RETURN Cunul ati veDays AS
SELECT
SUM Pr evi ousDays. Dai | yTotal) AS Cunul ati veTot al ,
Day. Dat eKey AS Dat eKey,
Day. Enpl oyeeKey AS Enpl oyeeKey,
ARB(Day. Enpl oyeeNane) AS Enpl oyeeNane
FROM Days Day
JA N Days PreviousDays
ON (PreviousDays. Dat eKey <= Day. Dat eKey)
GROUP BY Dat eKey, Enpl oyeeKey

LEFT JOIN examples

The following LEFT JO N example computes the top 5 subcategories along with an Other bucket, for use in a

pie chart:

DEFI NE Total s AS
SELECT

SUM Fact Sal es_Sal esAmount) AS Tot al
GROUP BY Product Subcat egor yNane;

DEFI NE Top5 AS
SELECT
ARB(Total) AS Tot al
FROM Tot al s
ORDER BY Total DESC PAGE(O, 5);

RETURN Chart AS
SELECT
COALESCE(Top5. Product Subcat egor yNanme, 'Ot her') AS Subcategory,
SUM Tot al s. Total) AS Tot al
FROM Tot al s
LEFT JO N Top5
ON (Tot al s. Product Subcat egor yName = Top5. Product Subcat egor yNane)
GROUP BY Subcat egory

The following LEFT JO N computes metrics for each product in a particular region, ensuring all products
appear in the list even if they have never been sold in that region:

DEFI NE Product AS
SELECT
Product Al t er nat eKey AS Key,
ARB(Pr oduct Nane) AS Nanme GROUP BY Key;

DEFI NE Regi onTrans AS
SELECT
Product Al t er nat eKey AS Product Key,
Fact Sal es_Sal esAmount AS Anpunt
VWHERE Di nfal esTerritory_Sal esTerritoryRegi on="United Kingdoni;

RETURN Resul ts AS
SELECT
Product . Key AS Product Key,
ARB(Product . Nane) AS Product Nane,
COALESCE(SUM Regi onTr ans. Amount), 0) AS Sal esTot al ,
COUNT(Regi onTr ans. Ambunt) AS Transacti onCount
FROM Pr oduct
LEFT JO N Regi onTr ans
ON (Product. Key = Regi onTr ans. Product Key)
GROUP BY Product Key

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 24

FULL JOIN example

The following FULL JO N computes the top 10 employees' sales totals for the top 10 products, ensuring that
each employee and each product appears in the result:

DEFI NE TopEnpl oyees AS
SELECT
Di nEnpl oyee_Enpl oyeeKey AS Key,
ARB(Di mEnpl oyee_Ful | Nane) AS Nane,
SUM Fact Sal es_Sal esAnmount) AS Sal esTot al
GROUP BY Key
ORDER BY Sal esTotal DESC
PAGE (0, 10);

DEFI NE TopProducts AS
SELECT
Product Al t er nat eKey AS Key,
ARB(Pr oduct Nane) AS Nane,
SUM Fact Sal es_Sal esAnmount) AS Sal esTot al
GROUP BY Key
ORDER BY Sal esTotal DESC
PAGE (0, 10);

DEFI NE Enpl oyeePr oduct Total s AS
SELECT
Di nEnpl oyee_Enpl oyeeKey AS Enpl oyeeKey,
Product Al t er nat eKey AS Product Key,
SUM Fact Sal es_Sal esAnmount) AS Sal esTot al
GROUP BY Enpl oyeeKey, Product Key
HAVI NG [Enpl oyeeKey] | N TopEnpl oyees AND [Product Key] | N TopProducts;

RETURN Resul ts AS
SELECT
TopEnpl oyees. Key AS Enpl oyeeKey,
TopEnpl oyees. Nane AS Enpl oyeeNane,
TopEnpl oyees. Sal esTotal AS Enpl oyeeTot al ,
TopPr oduct s. Key AS Product Key,
TopPr oduct s. Nane AS Product Nane,
TopPr oduct s. Sal esTotal AS Product Tot al ,
Enpl oyeePr oduct Tot al s. Sal esTotal AS Enpl oyeePr oduct Tot al
FROM Enpl oyeePr oduct Tot al s
FULL JO N TopEnpl oyees
ON (Enpl oyeePr oduct Tot al s. Enpl oyeeKey = TopEnpl oyees. Key)
FULL JO N TopPr oduct s
ON (Enpl oyeePr oduct Tot al s. Product Key = TopProduct s. Key)

CROSS JOIN example

The following CROSS JA N example finds the percentage of total sales each product subcategory represents:

DEFI NE d obal Total AS
SELECT

SUM Fact Sal es_Sal esAmount) AS d obal Tot al
GROUP;

DEFI NE Subcat egoryTotal s AS
SELECT

SUM Fact Sal es_Sal esAmount) AS Subcat egor yTot al
GROUP BY Product Subcat egor yNane;

RETURN Subcat egoryContri buti ons AS
SELECT

Subcat egor yTot al s. Product Subcat egor yName AS Subcat egory,

Subcat egor yTot al s. Subcat egoryTotal / G obal Total . d obal Total AS Contri bution
FROM Subcat egoryTot al s

CROSS JO N d obal Tot al

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 25

WHERE clauses

The WHERE clause is used to filter input records for an expression.

EQL provides two filtering options: WHERE and HAVI NG. The syntax of the WHERE clause is as follows:
VWHERE <Bool eanExpr essi on>

You can use the WVHERE clause with any Boolean expression, such as:
» Numeric and string value comparison: {=, <>, <, <=, >, >=}
» Set operations: such as SUBSET and | S_MEMBER_OF

* Null value evaluation: <att ri bute>1S{NULL, NOT NULL} (for atomic values) and <attribute>1S
{ EMPTY, NOT EMPTY} (for sets)

* Grouping keys of the source statement: <attri bute-1i st>1N<source- st at enent >. The number

and type of these keys must match the number and type of keys used in the statement referenced by the
I N clause. For more information, see IN on page 79.

Aliased attributes (from the SELECT clause) cannot be used in the WHERE clause, because WHERE looks for an
attribute in the source (such as the corpus). Thus, this example:
RETURN results AS
SELECT
WnelD AS id,
Score AS scores
WHERE id > 5
ORDER BY scores

is invalid and returns the error message:

In statement "results": In WHERE cl ause: This corpus does not have an attribute naned "id"
Location: 5:9-5: 10

If an aggregation function is used with a WHERE clause, then the Boolean expression must be enclosed within
parentheses. The aggregation functions are listed in the topic Aggregation functions on page 59.

In this example, the amounts are only calculated for sales in the West region. Then, within those results, only
sales representatives who generated at least $10,000 are returned:

RETURN Reps AS

SELECT SUM Ampunt) AS Sal esTot al

WHERE Regi on = ' West'

GROUP BY Sal esRep

HAVI NG Sal esTotal > 10000

In the next example, a single statement contains two expressions. The first expression computes the total for
all of the records and the second expression computes the total for one specific sales representative:

RETURN QuarterTotals AS SELECT

SUM Anmpunt) As Sal esTot al ,

SUM Anpunt) WHERE (Sal esRep = 'Juan Smith') AS JuanTot al
GROUP BY Quarter

This would return both the total overall sales and the total sales for Juan Smith for each quarter. Note that the
Boolean expression in the WHERE clause is in parentheses because it is used with an aggregation function
(SUMin this case).

The second example also shows how use a per-aggregate WHERE clause:
SUM Ambunt) WHERE (Sal esRep = 'Juan Smith') AS JuanTot al

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 26

For more information on per-aggregate WHERE filters, see Per-aggregation filters on page 45.

HAVING clauses

The HAVI NG clause is used to filter output records.

The syntax of the HAVI NG clause is as follows:
HAVI NG <Bool eanExpr essi on>

You can use the HAVI NG clause with any Boolean expression, such as:
* Numeric and string value comparison: {=, <>, <, <=, >, >=}
* Null value evaluation: <att ri but e>1S{NULL, NOT NULL}
» Set operations: such as SUBSET and | S_MEMBER_OF
» Grouping keys of the source statement: <attri bute-1ist>|N<source-statenent >

In the following example, the results include only sales representatives who generated at least $10,000:

Return Reps AS

SELECT SUM Anpunt) AS Sal esTot al
GROUP BY Sal esRep

HAVI NG Sal esTotal > 10000

Note that HAVI NG clauses may refer only to attributes defined in the same statement (such as aliased
attributes defined by a SELECT clause), as shown in these examples:

/1 Invalid because Price is not defined in the statenent (i.e., Price is a corpus attribute).
Return results AS

SELECT SUM Price) AS Total Prices

GROUP BY W neType

HAVI NG Price > 100

/1 Valid because Total Prices is defined in the statenent.
Return results AS
SELECT SUM Price) AS Total Prices

GROUP BY W neType
HAVI NG Tot al Prices > 100

ORDER BY clauses

The ORDER BY clause is used to control the order of result records.

You can sort result records by specifying attribute names or an arbitrary expression.

The ORDER BY syntax is as follows:

ORDER BY <Attr| Exp> [ASC| DESC] [, <Attr| Exp> [ASC| DESC]] *

where Attr|[Exp is either an attribute name or an arbitrary expression. The attribute can be either a single-
assign or multi-assign attribute.

Optionally, you can specify whether to sort in ascending (ASC) or descending (DESC) order. You can use any
combination of values and sort orders. The absence of a direction implies ASC.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 27

An ORDER BY clause has the following behavior:

e NULL values will always sort after non-NULL values for a given attribute, and NaN (not-a-number) values
will always sort after values other than NaN and NULL, regardless of the direction of the sort.

e An arbitrary but stable order is used when sorting by sets (multi-assign attributes).

» Tied ranges (or all records in the absence of an ORDER BY clause) are ordered in an arbitrary but stable
way: the same query will always return its results in the same order, as long as it is querying against the
same version of the data.

» Data updates add or remove records from the order, but will not change the order of unmodified records.
In this example, the Price single-assign attribute is totaled and then grouped by the single-assign WineType

attribute. The resulting records are sorted by the total amount in descending order:

RETURN Results AS

SELECT SUM Price) AS Tot al
GROUP BY W neType

ORDER BY Tot al DESC

The result of this statement from a small set of twenty-five records might be:

Tot al W neType

142.34	Red
97.97	Wite
52.90	Chardonnay
46.98	Brut
25.99	Merlot
21.99	Bordeaux
16.99	Blanc de Noirs
14.99	Pinor Noir
	Zi nfandel

The Zinfandel bucket is sorted last because it has a NULL value for Price. Note that if the sort order were ASC,
Zinfandel would still be last in the result.

String sorting

String values are sorted in Unicode code point order.

Geocode sorting

Data of type geocode is sorted by latitude and then by longitude. To establish a more meaningful sort order
when using geocode data, compute the distance from some point, and then sort by the distance.

Expression sorting

An ORDER BY clause allows you to use an arbitrary expression to sort the resulting records. The expressions
in the ORDER BY clause will only be able to refer to attributes of the local statement, except through lookup
expressions, as shown in these simple statements:

/* Invalid statement */

DEFINE T1 AS
SELECT ... AS foo

RETURN T2 AS

SELECT ... AS bar
FROM T1

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 28

ORDER BY T1.foo /* not allowed */

/* Valid statenent */
DEFI NE T1 AS
SELECT ... AS foo

RETURN T2 AS

SELECT ... AS bar

FROM T1

ORDER BY T1[].foo /* allowed */

In addition, the expression cannot contain aggregation functions. For example:

RETURN T AS

SELECT ... AS bar

FROM T1

ORDER BY SUM bar) /* not allowed because of SUM aggregation function */

RETURN T AS

SELECT ... AS bar

FROM T1

ORDER BY ABS(bar) /* allowed */

Sorting by sets

As mentioned above, an arbitrary but stable order is used when sorting by sets (multi-assign attributes).

In this example, the Price single-assign attribute is converted to a set and then grouped by the single-assign
WineType attribute. The resulting records are sorted by the set in descending order:

RETURN Results AS

SELECT SET(Price) AS PriceSet
GROUP BY W neType

ORDER BY PriceSet DESC

The result of this statement from a small set of 25 records might be:

Pri ceSet W neType

{ 14.99 }	Pinot Noir
{ 12.99, 13.95, 17.5, 18.99, 19.99, 21.99, 9.99 }	Red
{ 25.99}	Merl ot
{ 22.99, 23.99 }	Brut
{ 21.99 }	Bor deaux
{ 20.99, 32.99, 43.99 }	Wiite
{ 16.99 }	Blanc de Noirs
{ 17.95, 34.95 }	Chardonnay
	Zi nf andel

In this descending order, the Zinfandel bucket is sorted last because it does not have a Price assignment (and
thus returns an empty set).

Stability of ORDER BY
EQL guarantees that the results of a statement are stable across queries. This means that:

 If no updates are performed, then the same statement will return results in the same order on repeated
queries, even if no ORDER BY clause is specified, or there are ties in the order specified in the ORDER BY

clause.

» If updates are performed, then only changes that explicitly impact the order will impact the order; the order
will not be otherwise affected. The order can be impacted by changes such as deleting or inserting

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 29

records that contribute to the result on or prior to the returned page, or modifying a value that is used for
grouping or ordering.
For example, on a statement with no ORDER BY clause, queries that use PAGE(0, 10), then PAGE(10, 10),

then PAGE(20, 10) will, with no updates, return successive groups of 10 records from the same arbitrary but
stable result.

For an example with updates, on a statement with ORDER BY NumPAGE(3, 4), an initial query returns
records {5, 6, 7, 8}. An update then inserts a record with 4 (before the specified page), deletes the record with
6 (on the specified page), and inserts a record with 9 (after the specified page). The results of the same query,
after the update, would be {4, 5, 7, 8}. This is because:

e The insertion of 4 shifts all subsequent results down by one. Offsetting by 3 records includes the new
record.

e The removal of 6 shifts all subsequent results up by one.
e The insertion of 9 does not impact any of the records prior to or included in this result.

Note that ORDER BY only impacts the result of a RETURN clause, or the effect of a PAGE clause. ORDER BY on
a DEFI NE with no PACE clause has no effect.

PAGE clauses

The PAGE clause specifies a subset of records to return.

By default, a statement returns all of the result records. In some cases, however, it is useful to request only a
subset of the results. In these cases, you can use the PAGE (<of f set >, <count >) clause to specify how

many result records to return.

The <of f set > argument is an integer that determines the number of records to skip. An offset of 0 will return
the first result record; an offset of 8 will return the ninth. The <count > argument is an integer that determines
the number of records to return.

The following example groups the NavSt at eRecor ds by the SalesRep attribute, and returns result records
11-20:
DEFI NE Reps AS

GROUP BY Sal esRep
PAGE (10, 10)

PAGE applies to intermediate results; a statement FROMa statement with PAGE(0, 10) will have at most 10
source records.

Top-K

You can use the PAGE clause in conjunction with the ORDER BY clause in order to create Top-K queries. The
following example returns the top 10 sales representatives by total sales:

DEFI NE Reps AS

SELECT SUM Anpunt) AS Tot al
GROUP BY Sal esRep

ORDER BY Total DESC

PAGE (0, 10)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Statements and Clauses 30

Percentile

The PAGE clause supports a PERCENT modifier. When PERCENT is specified, fractional offset and size are
allowed, as in the example PAGE(33. 3, 0. 5) PERCENT. This specified the portion of the data set to skip and
the portion to return.

The number of records skipped equals r ound(of f set * COUNT / 100) .

The number of records returned equals r ound((of f set + si ze) * COUNT/ 100) - round(of fset *
COUNT / 100) .

DEFI NE " Model Year" AS

SELECT SUM Cost) AS Cost

GROUP BY Mobdel , Year

ORDER BY Cost DESC
PAGE(0, 10) PERCENT

The PERCENT keyword will not repeat records at non-overlapping offsets, but the number of results for a given
page size may not be uniform across the same query.

For example, if COUNT = 6:

PAGE clause Resulting behavior is the same as
PAGE (0, 25) PERCENT PAGE (0, 2)
PAGE (25, 25) PERCENT PAGE (2, 1)
PAGE (50, 25) PERCENT PAGE (3, 2)
PAGE (75, 25) PERCENT PAGE (5, 1)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Chapter 3
Aggregation

In EQL, aggregation operations bucket a set of records into a resulting set of aggregated records.

GROUP/GROUP BY clauses
MEMBERS extension
GROUPING SETS expression
ROLLUP extension

CUBE extension

Grouping sets helper functions
COUNT function
COUNTDISTINCT function
Multi-level aggregation

Per-aggregation filters

GROUP/GROUP BY clauses

The GROUP and GROUP BY clauses specify how to map source records to result records in order to group
statement output.

Some of the ways to use these clauses in a query are:
» Omitting the GROUP clause maps each source record to its own result record.
» GROUP maps all source records to a single result record.

e GROUP BY <attri buteLi st > maps source records to result records by the combination of values in the
listed attributes.

You can also use other grouping functions (such as MEMBERS, CUBE, or GROUPI NG SETS) with the GROUP and
GROUP BY clauses. Details on these functions are given later in this section.

BNF grammar for grouping
The BNF grammar representation for GROUP and the family of group functions is:

G oupC ause ::= GROUP | GROUP BY GroupByList | GROUP BY G oupAll

GroupByLi st ::= G oupByEl enent | GroupByList , G oupByEl enent

G oupByEl ement ::= G oupBySingle | GoupingSets | CubeRoll up

Groupi ngSets ::= GROUPI NG SETS (G oupi ngSet Li st)

Groupi ngSet Li st ::= G oupingSetEl ement | G oupingSetList , G oupingSetElenent
G oupi ngSet El ement ::= G oupBySingle | GoupByConposite | CubeRollup | G oupAll

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 32

CubeRol lup ::= {CUBE | ROLLUP} (CubeRol | uplList)

CubeRol | upLi st ::= CubeRol | upEl ement | CubeRol | upList , CubeRol !l upEl ement
CubeRol | upEl ement ::= G oupBySingle | G oupByConposite

G oupBySingle ::= Ildentifier | G oupByMenbers

GroupByConposite ::= (G oupByConpositelist)

G oupByConposi teList ::= G oupBySingle | G oupByConpositelist, G oupBySingle
GroupByMenbers ::= MEMBERS (ldentifier | Identifier.ldentifier) AS Indentifier
G oupAll ::= ()

Note that the use of G- oupAl | results in the following being all equivalent:
GROUP = GROUP BY() = GROUP BY GROUPI NG SETS(())

Specifying only GROUP

You can use a GROUP clause to aggregate results into a single bucket. As the BNF grammar shows, the
GROUP clause does not take an argument.

For example, the following statement uses the SUMstatement to return a single sum across a set of records:

RETURN Revi ewCount AS
SELECT SUM NunRevi ews) AS Nunber Of Revi ews
GROUP

This statement returns one record for NumberOfReviews. The value is the sum of the values for the
NumReviews attribute.

Specifying GROUP BY

You can use GROUP BY to aggregate results into buckets with common values for the grouping keys. The
GROUP BY syntax is:

GROUP BY attributelist

where attributeList is a single attribute, a comma-separated list of multiple attributes, GROUPI NG SETS, CUBE,
RCOLLUP, or () to specify an empty group. The empty group generates a total.

Grouping is allowed on source and locally-defined attributes.

/,9 Note: If you group by a locally-defined attribute, that attribute cannot refer to non-grouping attributes
& and cannot contain any aggregates. However, | N expressions and lookup expressions are valid in this
context.

All grouping attributes are part of the result records. In any grouping attribute, NULL values (for single-assign
attributes) or empty sets (for multi-assign attributes) are treated like any other value, which means the source
record is mapped to result records. However, note that NULL values and empty sets are ignored if selecting
from the corpus (this includes selecting from a named state as well as from Al | BaseRecor ds or

Nav St at eRecor ds). For information about user-defined NULL-value handling in EQL, see COALESCE on
page 78.

For example, suppose we have sales transaction data with records consisting of the following attributes:

{ Transld, ProductType, Amount, Year, Quarter, Region,
Sal esRep, Custoner }

For example:
{ Transld = 1, ProductType = "Wdget", Anpunt = 100. 00,
Year = 2011, Quarter = "11Ql", Region = "East",

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 33

Sal esRep = "J. Smth", Custonmer = "Custonerl" }

If an EQL statement uses Region and Year as GROUP BY attributes, the statement results contain an
aggregated record for each valid, non-empty combination of Region and Year. In EQL, this example is
expressed as:

DEFI NE Regi onsByYear AS
GROUP BY Regi on, Year

resulting in the aggregates of the form { Region, Year }, for example:

{ "East", "2010" }
{ "vest", "2011" }
{ "East", "2011" }

Note that using duplicated columns in GROUP BY clauses is allowed. This means that the following two queries
are treated as equivalent:

RETURN Resul ts AS
SELECT SUM PROMD COST) AS PR Cost
GROUP BY PROVD NANVE

RETURN Resul ts AS

SELECT SUM PROMD_COST) AS PR Cost
GROUP BY PROVD NAME, PROMO NANE

Using a GROUP BY that is an output of a SELECT expression

A GROUP BY key can be the output of a SELECT expression, as long as that expression itself does not contain
an aggregation function.

For example, the following syntax is a correct usage of GROUP BY:
SELECT COALESCE(Person, 'Unknown Person') AS Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error, because Sales2 contains an aggregation function
(SUM:

SELECT SUM Sal es) AS Sales2, ... GROUP BY Sal es2

Specifying the hierarchy level for a managed attribute

You can group by a specified depth of each managed attribute. However, GROUP BY statements cannot use
the ANCESTOR function (because you cannot group by an expression in EQL). Therefore, you must first use
ANCESTOR with the SELECT statement and then specify the aliased results in the GROUP BY clause.

For example, assume that the Region attribute contains the hierarchy Country, State, and City. We want to
group the results at the State level (one level below the root of the managed attribute hierarchy). An
abbreviated query would look like this:

SELECT ANCESTOR("Regi on", 1) AS Statelnfo

GROUP BY Statelnfo

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 34

MEMBERS extension

MEMBERS is an extension to GROUP BY that allows grouping by the members of a set.

MEMBERS lets you group by multi-assign attributes. Keep in mind that when grouping by a multi-assign
attribute, rows with no assignments for the attribute are discarded during grouping.

MEMBERS syntax

MEMBERS appears in the GROUP BY clause, using this syntax:
GROUP BY MEMBERS(<set>) AS <alias> [, MEMBERS(<set 2>) AS <alias2>]*

where:

» setis a set of any set data type (such as nmdex: stri ng-set or ndex: | ong- set) and must be an
attribute reference. MEMBERS can only refer to attributes from the source statement(s) or corpus (i.e.,
cannot be locally defined). For example, set can be a multi-assign string attribute from the corpus.

» alias is an aliased name, which must be NCName-compliant. In statement results, the aliased name has
the same data type as the elements of the set.

As the syntax shows, EQL supports grouping by the members of multiple sets simultaneously. To do this,
simply include multiple MEMBERS clauses in a GROUP list.

The MEMBERS form is available in grouping sets, with surface syntax like:
GROUP BY ROLLUP(a, b, MEMBERS(c) AS cVal ue, d)

Note that grouping by the members of a set is available in any statement, not just those over the corpus
(because EQL preserves all values in a set across statement boundaries).

MEMBERS data type error message

If an attempt is made to use a single-assign attribute as an argument to MEMBERS, an error message is
returned similar to this example:

Cannot apply MEMBERS to ndex: double. A set type is required

In this error example, MEMBERS was used with a single-assign double attribute (mdex: doubl e), instead of a
multi-assign double attribute (mdex: doubl e- set).

MEMBERS examples

Assume a small data set of 25 records, with each record having zero, one, or two assignments from the Body
multi-assign attribute. In this sample query, WinelD is a single-assign attribute:
RETURN results AS

SELECT

SET(W nel D) AS IDs
GROUP BY MEMBERS(Body) AS bodyType

The result of this statement might be:

| Ds bodyType

{ 19}	Fresh
{ 22, 25}	Firm
{ 14, 15}	Supple
{ 11, 19, 22, 23, 24, 25, 4, 6, 8}	Robust

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 35

| { 10, 11, 12, 13, 16, 18, 3, 4, 5 7, 9} | Tannins |
| { 10, 12, 13, 16, 18, 3, 5, 7, 9} | Silky |

In the results, note that several records contribute to multiple buckets, because they have two Body
assignments. Five records do not contribute to the buckets, because they have no assignments for the Body
attribute, and thus are discarded during the grouping.

This second example shows how to group by the members of multiple sets simultaneously. The Body and
Score multi-assign attributes are used in the query:

RETURN results AS
SELECT
SET(Wnel D) as |Ds
WHERE W neType = 'Wiite'
GROUP BY MEMBERS(Body) AS bodyType, MEMBERS(Score) AS scoreVal ue

The result of this query might be:

| Ds bodyType scoreVal ue
{ 19}	Fresh	88
{25}	Firm	82
{25}	Firm	84
{ 25 }	Robust	82
{ 25 }	Robust	84
{ 19 }	Robust	88

Note that the record with WinelD=25 contributes to four buckets, corresponding to the cross product of { Firm,
Robust } and { 82, 84 }.

Note on MEMBERS interaction with GROUPING SETS

You should be aware that grouping by set members may interact with GROUPI NG SETS (including CUBE and
ROLLUP) to produce results that at first glance may seem unexpected.

For example, first we make a query that groups only by the ROLLUP extension:

RETURN results AS
SELECT
SUM Price) AS total Price
GROUP BY ROLLUP(W neType)

The result with our data set is:

W neType total Price
Pinot Noir	14.99
Wite	97.97
Blanc de Noirs	16.99
Zi nf andel	
Brut	46.98
Red	142.34
Merl ot	25.99
Bor deaux	21.99
Chardonnay	52.90
	420.15

We get one row for each WineType, and one summary row at the bottom, which includes records from all of
the WineType values. Because SUMis associative, the expected behavior is that the totalPrice summary row
will be equal to the sum of the totalPrice values for all other rows, and in fact the 420.15 result meets that
expectation. (Note that the total for White wines is 97.97.)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 36

Then we make a similar query, but selecting only the White wines and grouping with MEMBERS and ROLLUP:

RETURN results AS
SELECT
SUM Price) AS total Price
VWHERE W neType = 'Wite'
GROUP BY ROLLUP(W neType, MEMBERS(Body) AS bodyType)

The result from this second query is:

W neType bodyType total Price

Waite	Fresh	20.99
White	Firm	43.99
Wiite	Robust	64.98
Wite		97.97
		97.97

The results show that the correspondence between the summary row and the individual rows is not as
expected. One might expect the totalPrice for the 'White' summary row (that is, the row where WineType is
White and bodyType is null) to be the sum of the total prices for the (White, Firm), (White, Fresh), and (White,
Robust) rows above it.

However, if you add the total prices for the first three rows, you get 129.96, rather than the expected value of
97.97. This discrepancy arises because, when you group by the members of a set, a row can contribute to
multiple buckets. In particular, Record 19 has two Body assignments (Fresh and Robust) and therefore
contributes to both the (White, Fresh) and (White, Robust) rows, and so its price is in effect double-counted.
Similarly, Record 20 has no Body assignments and so it does not contribute to any of the buckets in which
bodyType is not NULL, because its value of Body is the empty set.

EQL effectively computes the 'White' summary row, however, by grouping by WineType (which is a single-
assign attribute), so each input row counts exactly once.

GROUPING SETS expression

A GROUPI NG SETS expression allows you to selectively specify the set of groups that you want to create
within a GROUP BY clause.

GROUPI NG SETS specifies multiple groupings of data in one query. Only the specified groups are aggregated,
instead of the full set of aggregations that are generated by CUBE or ROLLUP. GROUPI NG SETS can contain a
single element or a list of elements. GROUPI NG SETS can specify groupings equivalent to those returned by
ROLLUP or CUBE.

Note that multiple grouping sets are supported against named states, but are not supported against the
corpus.

GROUPING SETS syntax

The GROUPI NG SETS syntax is:
GROUPI NG SETS(gr oupi ngSet Li st)

where groupingSetList is a single attribute, a comma-separated list of multiple attributes, CUBE, ROLLUP, or ()
to specify an empty group. The empty group generates a total. Note that nested grouping sets are not allowed.

For example:

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 37

GROUP BY GROUPI NG SETS(a, (b), (c, d), ())

Multiple grouping sets expressions can exist in the same query.
GROUP BY a, GROUPING SETS(b, c), GROUPING SETS((d, e))

is equivalent to:
GROUP BY GROUPI NG SETS((a, b, d, e),(a, ¢, d, e))

Keep in mind that the use of () to specify an empty group means that the following are all equivalent:
GROUP = GROUP BY() = GROUP BY GROUPI NG SETS(())

/} Note: Multiple grouping sets cannot be used on the corpus.

How duplicate attributes in a grouping set are handled

Specifying duplicate attributes in a given grouping set will not raise an error, but only one instance of the
attribute will be used. For example, these two queries are equivalent:

SELECT SUM PROD_NAME) AS Products GROUP BY PROD LI ST _PRICE, PROD LI ST PRI CE

SELECT SUM PROD_NAME) AS Products GROUP BY PROD LI ST PRI CE

However, you can use duplicate attributes if they are in different grouping sets. In this GROUPI NG SETS
example:
GROUP BY GROUPI NG SETS((COUNTRY_TOTAL), (COUNTRY_TOTAL))

two "COUNTRY_TOTAL" groups are generated.
However, this example:
GROUP BY GROUPI NG SETS((COUNTRY_TOTAL, COUNTRY_TOTAL))

will generate only one "COUNTRY_TOTAL" group because both attributes are in the same grouping set.

GROUPING SETS example

DEFI NE Resel | er Sal es AS

SELECT SUM Di nResel | er _Annual Sal es) AS Tot al Sal es,
ARB(D nResel | er _Resel | er Nane) AS RepNanes,
Di nResel | er _Order Month AS O der Mont h

GROUP BY O der Mont h;

RETURN Mont hl ySal es AS

SELECT AV Tot al Sal es) AS AvgSal esPer Rep

FROM Resel | er Sal es

GROUP BY Tot al Sal es, GROUPI NG SETS(RepNanes), GROUPI NG SETS(Or der Mont h)

ROLLUP extension

ROLLUP is an extension to GROUP BY that enables calculation of multiple levels of subtotals across a specified
group of attributes. It also calculates a grand total.

RCOLLUP (like CUBE) is syntactic sugar for GROUPI NG SETS:
ROLLUP(a, b, c) = GROUPING SETS((a, b,c), (a,b), (a), ())

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 38

The action of ROLLUP is that it creates subtotals that roll up from the most detailed level to a grand total,
following a grouping list specified in the ROLLUP clause. ROLLUP takes as its argument an ordered list of

attributes and works as follows:
1. It calculates the standard aggregate values specified in the GROUP BY clause.

. It creates progressively higher-level subtotals, moving from right to left through the list of attributes.

2

3. It creates a grand total.

4. Finally, ROLLUP creates subtotals at n+1 levels, where n is the number of attributes.
For instance, if a query specifies ROLLUP on attributes of t i me, r egi on, and depart nent (n=3), the
result set will include rows at four aggregation levels.

In summary, ROLLUP is intended for use in tasks involving subtotals.

ROLLUP syntax
ROLLUP appears in the GROUP BY clause, using this syntax:
GROUP BY ROLLUP(attributelist)

where attributeList is either a single attribute or a comma-separated list of multiple attributes. The attributes
may be single-assign or multi-assign attributes. ROLLUP can be used on the corpus, including named states.

ROLLUP example

DEFI NE Resel | ers AS SELECT
Di nResel | er _Annual Sal es AS Sal es,
Di mGeogr aphy_Count r yRegi onName AS Countri es,
Di nGeogr aphy_St at eProvi nceNane AS St at es,
Di nResel | er _Order Month AS O der Mont h
WHERE Di nResel | er _Order Month IS NOT NULL;

RETURN Resel | er Sal es AS

SELECT SUM Sal es) AS Tot al Sal es

FROM Resel | ers

GROUP BY ROLLUP(Countries, States, O derMnth)

Partial ROLLUP

You can also roll up so that only some of the subtotals are included. This partial rollup uses this syntax:
GROUP BY exprl, ROLLUP(expr2, expr3)

In this case, the GROUP BY clause creates subtotals at (2+1=3) aggregation levels. That is, at level (exprl,
expr2, expr3), (exprl, expr2), and (exprl).

Using the above example, the GROUP BY clause for partial ROLLUP would look like this:

DEFI NE Resel | ers AS SELECT

RETURN Resel | er Sal es AS

SELECT SUM Sal es) AS Tot al Sal es

FROM Resel | ers

GROUP BY Countries, ROLLUP(States, OrderMnth)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 39

CUBE extension

CUBE takes a specified set of attributes and creates subtotals for all of their possible combinations.
If n attributes are specified for a CUBE, there will be 2 to the n combinations of subtotals returned.

CUBE (like ROLLUP) is syntactic sugar for GROUPI NG SETS:
CUBE(a, b, c¢) = GROUPING SETS((a, b,c), (a,b), (a,c), (b,c), (a), (b), (c), ())

CUBE syntax
CUBE appears in the GROUP BY clause, using this syntax:
GROUP BY CUBE(attributeList)

where attributeList is either one attribute or a comma-separated list of multiple attributes. The attributes may
be single-assign or multi-assign attributes. CUBE can be used on the corpus, including named states.

CUBE example

This example is very similar to the ROLLUP example, except that it uses CUBE:

DEFI NE Resel | ers AS SELECT
Di nResel | er _Annual Sal es AS Sal es,
Di mGeogr aphy_Count r yRegi onName AS Countri es,
Di nGeogr aphy_St at eProvi nceNane AS St at es,
Di nResel | er _Order Month AS O der Mont h
WHERE Di nResel | er _Order Month IS NOT NULL;

RETURN Resel | er Sal es AS
SELECT SUM Sal es) AS Tot al Sal es

FROM Resel | er s
GROUP BY CUBE(Countries, States, OrderMonth)

Partial CUBE

Partial CUBE is similar to partial ROLLUP in that you can limit it to certain attributes and precede it with
attributes outside the CUBE operator. In this case, subtotals of all possible combinations are limited to the
attributes within the cube list (in parentheses), and they are combined with the preceding items in the GROUP
BY list.

The syntax for partial CUBE is:
GROUP BY exprl, CUBE(expr2, expr3)
This syntax example calculates 22 (i.e., 4) subtotals:
o (exprl, expr2, expr3)
o (exprl, expr2)
o (exprl, expr3)
o (exprl)
Using the above example, the GROUP BY clause for partial CUBE would look like this:
DEFI NE Resel | ers AS SELECT

RI:_l'URN Resel | er Sal es AS
SELECT SUM Sal es) AS Tot al Sal es

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 40

FROM Resel | ers
GROUP BY Countries, CUBE(States, OrderMnth)

Grouping sets helper functions

There are three helper functions that you can use for queries that use grouping capabilities.

GROUPI NG, GROUPI NG_I D, and GROUP_I D are helping functions for GROUPI NG SETS, CUBE, and ROLLUP.
Note that these helper functions cannot be used in a WHERE clause, join condition, inside an aggregate
function, or in the definition of a grouping attribute.

GROUPING function

GROUPING_ID function

GROUP_ID function

Notes on grouping behavior

GROUPING function

GROUPI NG indicates whether a specified attribute expression in a GROUP BY list is aggregated.
The use of ROLLUP and CUBE can result in two challenging problems:

* How can you programmatically determine which result set rows are subtotals, and how do you find the
exact level of aggregation for a given subtotal? You often need to use subtotals in calculations such as
percent-of-totals, so you need an easy way to determine which rows are the subtotals.

» What happens if query results contain both stored NULL values and NULL values created by a ROLLUP or
CUBE? How can you differentiate between the two?

The GROUPI NG function can handle these problems.

GROUPI NGis used to distinguish the NULL values that are returned by ROLLUP, CUBE, or GROUPI NG SETS
from standard null values. The NULL returned as the result of a ROLLUP, CUBE, or GROUPI NG SETS operation
is a special use of NULL. This acts as a column placeholder in the result set and means all.

GROUPI NG returns TRUE when it encounters a NULL value created by a ROLLUP, CUBE, or GROUPI NG SETS
operation. That is, if the NULL indicates the row is a subtotal, GROUPI NGreturns TRUE. Any other type of
value, including a stored NULL, returns FALSE.

GROUPI NG thus lets you programmatically determine which result set rows are subtotals, and helps you find
the exact level of aggregation for a given subtotal.

GROUPING syntax

The GROUPI NG syntax is:
GROUPI NG(attri bute)

where attribute is a single attribute.

GROUPING example

DEFINE r AS SELECT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation

41

Di nResel | er _Annual Revenue AS Revenue,
Di nResel | er _Annual Sal es AS Sal es,
Di nResel | er _Order Month AS O der Mont h;

RETURN resul ts AS SELECT
COUNT(1) AS COUNT,
GROUPI NG Revenue) AS groupi ng_Revenue,
GROUPI NG Sal es) AS groupi ng_Sal es,
GROUPI NG Or der Mont h) AS gr oupi ng_Or der Mont h
FROM r
GROUP BY
GROUPI NG SETS (
ROLLUP(
(Revenue),
(Sal es),
(O der Mont h)
)
)

GROUPING_ID function

The GROUPI NG _| D function computes the GROUP BY level of a particular row.

The GROUPI NG _| D function returns a single number that enables you to determine the exact GROUP BY level.
For each row, GROUPI NG _| Dtakes the set of 1's and 0's that would be generated if you used the appropriate

GROUPI NG functions and concatenated them, forming a bit vector. The bit vector is treated as a binary

number, and the number's base-10 value is returned by the GROUPI NG _I D function.

For example, if you group with the expression CUBE(a, b), the possible values are:

Aggregation Level Bit Vector GROUPING_ID
a,b 00 0
a 01 1
b 10 2
Grand Total 11 3

GROUPING_ID syntax

The GROUPI NG _| D syntax is:
GROUPI NG_| D(attri buteli st)

where attributeList is a single attribute or a comma-separated list of 1-63 attributes.

GROUPING_ID example

DEFI NE r AS SELECT
Di nResel | er _Annual Revenue AS Revenue,
Di nResel | er _Annual Sal es AS Sal es;

RETURN results AS SELECT
COUNT(1) AS COUNT,
GROUPI NG _| D(Revenue) AS gi d_Revenue,
GROUPI NG _| D(Sal es) AS gi d_Sal es

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Aggregation 42

FROM r
GROUP BY CUBE(Revenue, Sal es)

GROUP_ID function

The GROUP_I D function uniquely identifies a group of rows that has been created by a GROUP BY clause in the
query result set.

The GROUP BY extensions (such as CUBE) allow complex result sets that can include duplicate groupings. The
GROUP_I D function allows you to distinguish among duplicate groupings.

If there are multiple sets of rows calculated for a given level, GROUP_I D assigns the value of O to all the rows
in the first set. All other sets of duplicate rows for a particular grouping are assigned higher values, starting
with 1.

GROUP_I Dthus helps you filter out duplicate groupings from the result set. For example, you can filter out
duplicate groupings by adding a HAVI NG clause condition GROUP_I D() =0 to the query.

GROUP_ID syntax

GROUP_I D cannot be used in a WHERE clause, join condition, inside an aggregate function, or in the definition
of a grouping attribute.

The GROUP_I D syntax is:
GROUP_ID() AS alias

Note that the function does not accept any parameters.

GROUP_ID example

DEFI NE r AS SELECT
Di nResel | er _Annual Revenue AS Revenue,
Di nResel | er _Annual Sal es AS Sal es,
Di nResel | er _Order Month AS O der Mont h;

RETURN results AS SELECT
COUNT(1) AS COUNT,
GROUP_I () AS gid,
GROUPI NG Revenue) AS groupi ng_Revenue,
GROUPI N Sal es) AS groupi ng_Sal es,
GROUPI NG Or der Mont h) AS gr oupi ng_Or der Mont h
FROM r
GROUP BY Order Month, ROLLUP(Revenue, Sal es)

Notes on grouping behavior

This topic describes some EQL grouping behaviors that you should be aware of.

GROUPING and GROUPING_ID interaction with attribute source

Setting an alias to be the same as a selected attribute can change the attribute source. For example, in the
following query, amount in stmtl_amount refers to stmtl.amount, while amount in stmt2_amount refers to
stmt2.amount:

SELECT stntl AS SELECT anmount AS anount;

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 43

SELECT stnt2 AS SELECT anpbunt+1 AS stntl anount, anmount+2 AS anpunt, anount
+3 AS stnt2_anmount FROM stnt 1
This also applies when using the GROUPI NG and GROUPI NG _| D functions:

SELECT stnt1l AS SELECT anmpbunt AS anount;

SELECT GROUPI NG anpunt) AS stntl_anount, anmount AS anount,
GROUPI NG anpbunt) AS stnt2_anount, orders AS orders,
FROM st nt 1
GROUP BY CUBE(anpunt, orders)

Implicit selects

Implicit selects can be added to the end of the sel ect list. For example, the following two queries are
equivalent:

SELECT COUNT(sal es) AS cnt GROUP BY totals, price

SELECT COUNT(sal es) AS cnt, totals AS totals, price AS price GROUP BY totals, price

This only affects constructs that have different pre-aggregate and post-aggregate behavior, such as the
GROUPI NG function.

COUNT function

The COUNT function returns the number of records that have a value for an attribute.

The COUNT function counts the number of records that have non-NULL values in a field for each GROUP BY
result. COUNT can be used with both multi-assign attributes (sets) and single-assign attributes.

For multi-assign attributes, the COUNT function counts all non-NULL sets in the group. Note that because sets
are never NULL but can be empty, COUNT will also count a record with an empty set (that is, an empty set is
returned for any record that does not have an assignment for the specified multi-assign attribute). See the
second example below for how to ignore empty sets from the results.

The syntax of the COUNT function is:

COUNT(<attri bute>)

where attribute is either a multi-assign or single-assign attribute.

COUNT examples

The following records include the single-assign Size attribute and the multi-assign Color attribute:

Record 1: Size=small, Color=red, Color=white

Record 2: Size=small, Col or=blue, Col or=green

Record 3: Size=small, Col or=black

Record 4: Size=snall

The following statement returns the number of records for each size that have a value for the Color attribute:

RETURN result AS
SELECT COUNT(Col or) AS Tot al
GROUP BY Size

The statement result is:
Record 1: Size=snmall, Total =4

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 44

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 4, because Records 1-3 have Color assignments (and thus return non-
empty sets) and Record 4 does not have a Color assignment (and an empty set is returned).

If you are using COUNT with a multi-assign attribute and want to exclude empty sets, use a per-aggregate
WHERE clause with the | S NOT EMPTY function, as in this example:

RETURN result AS

SELECT COUNT(Col or) WHERE (Col or |'S NOT EMPTY) AS Tot al
GROUP BY Si ze

This statement result is:

Record 1: Size=smull, Total =3

because the empty set for Record 4 is not counted.

COUNT(1) format
The COUNT(1) syntax returns a count of all records, including those with NULL values. For example, you can
get the number of data records in your Endeca data domain as follows:

RETURN results AS

SELECT COUNT(1) AS recordCount
VWHERE W nel D | S NOT NULL
GROUP

The statement result should be an integer that represents the total number of data records. The WHERE clause
excludes all non-data records (such as primordial records) by checking whether the primary key property of
each record has a non-NULL value.

COUNTDISTINCT function

The COQUNTDI STI NCT function counts the number of distinct values for an attribute.

The COUNTDI STI NCT function returns the number of unique values in a field for each GROUP BY result.
COUNTDI STI NCT can be used for both single-assign and multi-assigned attributes.

Note that because sets are never NULL but can be empty, COUNTDI STI NCT will also evaluate a record with
an empty set (that is, an empty set is returned for any record that does not have an assignment for the
specified multi-assign attribute). See the second example below for how to ignore empty sets from the results.

The syntax of the COUNTDI STI NCT function is:
COUNTDI STI NCT(<attri bute>)

where attribute is either a multi-assign or single-assign attribute.

COUNTDISTINCT example

The following records include the single-assign Size attribute and the multi-assign Color attribute:

Record 1: Size=small, Col or=red

Record 2: Size=snmall, Col or=blue

Record 3: Size=small, Color=red

Record 4: Size=snall

The following statement returns for each size the number of different values for the Color attribute:

RETURN result AS

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 45

SELECT COUNTDI STI NCT (Col or) as Total
GROUP BY Size

The statement result is:

Record 1: Size=small, Total =3

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 3 because there are two non-empty sets with unique values for the Color
attribute (red and blue), and an empty set is returned for Record 4.

If you are using COUNTDI STI NCT with a multi-assign attribute and want to exclude empty sets, use a WHERE
clause with the I S NOT EMPTY function, as in this example:

RETURN result AS
SELECT COUNTDI STI NCT(Col or) WHERE (Col or |'S NOT EMPTY) AS Tot al

GROUP BY Si ze
This statement result is:
Record 1: Size=small, Total =2

because the empty set for Record 4 is not counted.

Multi-level aggregation

You can perform multi-level aggregation in EQL.

This example computes the average number of transactions per sales representative grouped by Quarter and
Region.

This query represents a multi-level aggregation. First, transactions must be grouped into sales representatives

to get per-representative transaction counts. Then these representative counts must be aggregated into
averages by quarter and region.

DEFI NE Deal Count AS
SELECT COUNT(Transld) AS NunDeal s
GROUP BY Sal esRep, Quarter, Region ;

RETURN AvgDeal s AS

SELECT AVGE NunDeal s) AS AvgDeal sPer Rep
FROM Deal Count

GROUP BY Quarter, Region

Per-aggregation filters

Each aggregation can have its own filtering WHERE clause. Aggregation function filters filter the inputs to an
aggregation expression. They are useful for working with sparse or heterogeneous data. Only records that
satisfy the filter contribute to the calculation of the aggregation function.

Per-aggregate WHERE filters are indeed applied pre-aggregation. The reason is that if it is delayed until post-
aggregation, the implementation may not necessarily have access to all of the columns that it needs.

The per-aggregation syntax is:
Aggr egat eFuncti on(Expressi on) WHERE (Filter)

For example:
RETURN Net Sal es AS

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Aggregation 46

SELECT
SUM Ampunt) WHERE (Type='Sal e') AS Sal esTot al ,
SUM Anount) WHERE (Type='Return') AS ReturnTotal,
ARB(Sal esTotal — ReturnTotal) AS Total

GROUP BY Year, Month, Category

This is the same as:

SUM CASE WHEN Type=' Sal e’ THEN Anpbunt END) AS Sal esTot al ,
SUM CASE WHEN type='"Return' THEN Amount END) AS ReturnTot al

f Note: These WHERE clauses also operate on records, not assignments, just like the statement-level
VWHERE clause. A source record will contribute to an aggregation if it passes the statement-level WHERE
clause and the aggregation's WHERE clause.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Chapter 4
Expressions

Expressions are typically combinations of one or more functions, attributes, constants, or operators. Most
expressions are simple combinations of functions and attributes.
Supported data types

Operator precedence rules

Literals

Functions and operators

Using EQL results to compose follow-on queries

Using lookup expressions for inter-statement references

ARB

BETWEEN

COALESCE

CASE

IN

Supported data types

This topic describes the format of data types supported by EQL.

EQL data type Description

ndex: bool ean Represents a Boolean value (TRUE or FALSE). Used for atomic values
(from single-assign Boolean attributes).

nmdex: bool ean- set Represents a Boolean value (TRUE or FALSE). Used for sets (from multi-
assign Boolean attributes).

nmdex: dat eTi me Represents a date and time to a resolution of milliseconds. Used for
atomic values (from single-assign dateTime attributes).

nmdex: dat eTi me- set Represents a date and time to a resolution of milliseconds. Used for sets
(from multi-assign dateTime attributes).

nmdex: doubl e Represents a floating point number. Used for atomic values (from single-
assign double attributes).

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

48

EQL data type

Description

ndex

: doubl e-set

Represents a floating point number. Used for sets (from multi-assign
double attributes).

ndex:

duration

Represents a length of time with a resolution of milliseconds. Used for
atomic values (from single-assign duration attributes).

ndex:

dur ati on- set

Represents a length of time with a resolution of milliseconds. Used for
sets (from multi-assign duration attributes).

ndex:

geocode

Represents a latitude and longitude pair. Used for atomic values (from
single-assign geocode attributes).

ndex:

geocode- set

Represents a latitude and longitude pair. Used for sets (from multi-assign
geocode attributes).

ndex:

| ong

Represents a 64-bit integer. Used for atomic values (from single-assign
32-bit integer attributes and single-assign 64-bit long attributes).

Note that while Dgraph records support both 32-bit integers (mdex: i nt
data type) and 64-bit integers (nmdex: | ong data type), EQL only
supports 64-bit integers (i.e., ndex: | ong data type). This means that if
you query an attribute that has a 32-bit integer value, it will appear as a
long (64-bit value) in EQL results.

ndex:

| ong- set

Represents a 64-bit integer. Used for sets (from multi-assign 32-bit
integer attributes multi-assign and 64-bit long attributes). See note for
nmdex: | ong data type.

ndex:

string

Represents character strings. Used for atomic values (from single-assign
string attributes).

ndex:

string-set

Represents character strings. Used for sets (from multi-assign string
attributes).

ndex:

tine

Represents the time of day to a resolution of milliseconds. Used for
atomic values (from single-assign time attributes).

nmdex

ctime-set

Represents the time of day to a resolution of milliseconds. Used for sets
(from multi-assign time attributes).

D me

nsi on

Represents a managed attribute. Used for atomic values (from single-
assign managed attributes).

D ne

nsi on- set

Represents a managed attribute. Used for sets (from multi-assign
managed attributes).

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions 49

Operator precedence rules

EQL enforces the following precedence rules for operators.
The rules are listed in descending order:

1. Parentheses (as well as brackets in lookup expressions and | N expressions). Note that you can freely add
parentheses any time you want to impose an alternative precedence or to make precedence clearer.

*
.-

L =<3 ><=>=

.1 S(I' SNULL, I SNOT NULL, | SEMPTY, | S NOT EMPTY)
. BETVWEEN

. NoT

. AND

9. OR

All binary operators are left-associative, as are all of the JO N operators.

© N o U A W N

Comparisons with sets

When comparing values against sets (multi-assign data), you must use the appropriate set functions and
expressions.

For example, if Price is a single-assign double attribute, then this syntax is correct:
RETURN Results AS

SELECT Price AS prices

WHERE Price > 20

However, if Score is a multi-assign integer attribute, then this syntax will fail:
RETURN Results AS

SELECT Score AS ratings

WHERE Score > 80

The error message will be:

In statenent “results": In WHERE cl ause: Cannot conpare ndex:|ong-set and ndex:|ong

The error message means that Score is a set (an ndex: | ong- set data type) and therefore cannot be
compared to an integer (80, which is an ndex: | ong data type).

You therefore must re-write the query, as in this example:

RETURN Results AS
SELECT Score AS Ratings
WHERE SOVE x | N Score SATISFIES (x > 80)

This example uses an existential quantifier expression.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

50

Literals

This section discusses how literals are used in EQL.

Character handling

Handling of upper- and lower-case
Handling NULL attribute values
Type promotion

Handling of NaN, inf, and -inf results

Character handling

EQL accepts all Unicode characters.

<Literal> ::= <StringLiteral > | <NunmericLiteral >

Literal type

Handling

String literals

String literals must be surrounded by single quotation marks.
Embedded single quotes and backslashes must be escaped by
backslashes. Examples:

“jim

"al éx\'s house'

Numeric literals

Numeric literals can be integers or floating point numbers.

Numeric literals cannot be surrounded by single quotation marks.

Numeric literals do not support exponential notation.

34
.34

Boolean literal

TRUE/ FALSE

Boolean literals cannot be surrounded by single quotation marks.

Literals of structured types
(such as Date, Time, or
Geocode)

Literals of structured types must use appropriate conversions, as shown

in the following example:

RETURN Result AS
SELECT TO GEOCODE(45.0, 37.0) AS Geocode,
TO_DATETI ME(' 2012- 11- 21T08: 22: 00Z') AS Ti mest anp

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

51

Literal type Handling

Identifiers

parser.

Examples:
"Count "

Identifiers must be NCNames. The NCName format is defined in the
W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.0rg/TR/REC-xml-names/.

An identifier must be enclosed in double quotation marks if:

e The identifier contains characters other than letters, digits, and
underscores. For example, if an attribute name contains a hyphen
(which is a valid NCName), then the attribute name must be
enclosed in double quotation marks in statements. Otherwise, the
hyphen will be treated as the subtraction operator by the EQL

« The identifier starts with a digit.

¢ The identifier uses the same name as an EQL reserved keyword.
For example, if an attribute is named WHERE or GROUP, then it must
be specified as " WHERE" or " GROUP" .

If an identifier is in quotation marks, then you must use a backslash to
escape double quotation marks and backslashes.

" Sal es. Anbunt "

Handling of upper- and lower-case

This topic discusses character case handling in EQL.

The following are case sensitive:
 Identifiers
 Literals
» Standard attribute references
e Managed attribute references
The following are case insensitive:
» Clauses
» Reserved words
e Keywords
» Al | BaseRecor ds and NavSt at eRecor ds

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

http://www.w3.org/TR/REC-xml-names/

Expressions

52

Handling NULL attribute values

If an attribute value is missing for a record, then the attribute is referred to as being NULL. For example, if a
record does not contain an assignment for a Price attribute, EQL defines the Price value as NULL.

The following table outlines how EQL handles NULL values for each type of operation:

Type of operation

How EQL handles NULL values

Arithmetic operations and non-
aggregating functions

The value of any operation on a NULL value is also defined as NULL.

For example, if a record has a value of 4 for Quantity and a NULL value
for Price, then the value of Quantity + Pri ce is considered to be
NULL.

Aggregating functions

EQL ignores records with NULL values.

For example, if there are 10 records, and 2 of them have a NULL value
for a Price attribute, all aggregating operations ignore the 2 records, and
instead compute their value using only the other 8 records.

If all 10 records have a NULL Price, then most aggregations, such as
SUM Pri ce), also result in NULL values.

The exceptions are COUNT and COUNTDI STI NCT, which return zero if all
the records have a NULL value (That is, the output of COUNT or
COUNTDI STI NCT is never NULL). Note, however, that COUNT(1) does
count records with NULL values.

Boolean operators

See Boolean operators on page 72.

Grouping expressions

If grouping from intermediate results, EQL does not ignore records that
have a NULL value in any of the group keys, and considers the record to
be present in a group. Even all-NULL groups are returned.

If grouping from the corpus, EQL ignores records that have a NULL
value in any of the group keys, and does not consider the record to be
present in any group.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

53

Type of operation How EQL handles NULL values

Filters When doing a comparison against a specific value, the NULL value will
not match the specified filter, except for the I S NULL filter.

Note that:

on intermediate results.
* NOT(x=y) is always equivalent to x<>y for all filters.

For example, if record A has price 5, and record B has no price value,
then:

e WHERE pri ce =5 matches A

 WHERE NOT(pri ce <>5) matches A

 WHERE pri ce <> 5 matches neither A nor B
 WHERE NOT(pri ce =5) matches neither A nor B

* WHERE pri ce = 99 matches neither A nor B
 VWHERE NOT(pri ce <>99) matches neither A nor B
e WHERE pri ce <> 99 matches A

 WHERE NOT(pri ce = 99) matches A

 Filters used directly on the corpus have the same semantics as filters

Sorting For any sort order specified, EQL returns:
1. Normal results

2. Records for a NaN value

3. Records with a NULL value

/} Note: There is no NULL keyword or literal. To create a NULL, use CASE, as in this example: CASE
o WHEN Fal se THEN 1 END.

Type promotion

In general, EQL performs type promotion when there is no risk of loss of information.

In some cases, EQL supports automatic value promotion of integers (to doubles) and strings (to managed
attribute values).

Promotion of integers
Promotion of integers to doubles occurs in the following contexts:
» Arguments to the COALESCE expression when called with a mix of integer and double.

» Arguments to the following operators when called with a mix of integer and double:

+-F=<>

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 54

 Integer arguments to the following functions are always converted to double:
» / (division operator; note that dur at i on arguments are not converted)
e CEIL
e CCS
e EXP
e« FLOOR

e LOG
* SIN

- PONER
« SIN

« SQRT

« TAN

« TO_GEOCODE
« TRUNC

* When the clauses in a CASE expression return a mix of integer and double results, the integers are
promoted to double.

For example, in the expression 1 + 3. 5, 1 is an integer and 3.5 is a double. The integer value is promoted to
a double, and the overall result is 4.5.

In contexts other than the above, automatic type promotion is not performed and an explicit conversion is
required. For example, if Quantity is an integer and SingleOrder is a Boolean, then an expression such as the
following is not allowed:

COALESCE(Quantity, SingleGOrder)

An explicit conversion from Boolean to integer such as the following is required:
COALESCE(Quantity, TO I NTEGER(Si ngl eOrder))

Promotion of strings

Strings can also be promoted to managed attribute values. These strings must be string literals; other kinds of
expressions that produce strings are not converted.

String promotion applies to arguments to the following functions when they are called with a mix of string and
managed attribute arguments:

. CASE
. COALESCE

« GET_LCA

« |'S_ANCESTOR
« |'S_DESCENDANT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 55

For example, in CASE expressions, if some clauses produce values in a managed attribute hierarchy and
others produce string literals, then the string literals are automatically converted to values in the hierarchy.

Note that for all the functions listed above, all managed attribute arguments must be from the same underlying
hierarchy.

Handling of NaN, inf, and -inf results

Operations in EQL adhere to the conventions for Not a Number (NaN), i nf, and - i nf defined by the IEEE
7540 2008 standard for handling floating point numbers.

In cases when it has to perform operations involving floating point numbers, or operations involving division by
zero or NULL values, EQL expressions can return NaN, i nf, and - i nf results.

For example, NaN, i nf, and - i nf values could arise in your EQL calculations when:
» A zero divided by zero results in NaN
» A positive number divided by zero results in i nf
* A negative number divided by zero results in - i nf
For most operations, EQL treats NaN, i nf, or - i nf values the same way as any other value.

However, you may find it useful to know how EQL defines the following special values:

Type of operation How EQL handles NaN, i nf, and - i nf
Arithmetic operations Arithmetic operations with NaN values result in NaN values.
Filters NaN values do not pass filters (except for ! =).

Any other comparison involving a NaN value is false.

Sorting For any sort order specified, EQL returns:
1. Normal records
2. Records with a NaN value

3. Records with a NULL value

The following example shows how i nf and -i nf values are treated in ascending and descending sort orders:
ASC DESC

-inf +i nf

-4 3

0 0

3 -4
+i nf -inf
NaN NaN
NULL NULL

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

56

Functions and operators

EQL contains a number of built-in functions that process data. It also supports arithmetic operators.

<

A_ Important: With three exceptions, all the functions and operators described in this chapter work only

on atomic data types. That is, they are not supported with sets. The three exceptions are ARB, COUNT,
and COUNTDI STI NCT. For information on the set functions, see Sets and Multi-assign Data on page

79.

Numeric functions
Aggregation functions
Hierarchy functions
Geocode functions
Date and time functions
String functions
Arithmetic operators

Boolean operators

Numeric functions

EQL supports the following numeric functions.

Function

Description and Example

addition

The addition operator (+) .

SELECT Nort heast Sal es + Sout heast Sal es AS East Tot al Sal es

subtraction

The subtraction operator (-) .

SELECT Sal esRevenue - Total Costs AS Profit

multiplication The multiplication operator (*) .
SELECT Price * 0.7 AS Sal ePrice
division The division operator (/) .

SELECT Year Total / 4 AS QuarterAvg

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

57

Function

Description and Example

ABS

Returns the absolute value of n.
If nis O or a positive integer, returns n.
Otherwise, n is multiplied by -1.

SELECT ABS(-1) AS one

RESULT: one =1

CEIL

Returns the smallest integer value not less than n.

SELECT CEIL(123.45) AS x, CEIL(32) ASy, CEIL(-123.45) AS z

RESULT: x =124, y =32, z =123

EXP

Exponentiation, where the base is e.
Returns the value of e (the base of natural logarithms) raised to the power n.

SELECT EXP(1.0) AS baseE

RESULT: baseE=e”1.0=2.71828182845905

FLOOR

Returns the largest integer value not greater than n.

SELECT FLOOR(123.45) AS x, FLOOR(32) AS 'y, FLOOR(-123.45) AS z

RESULT: x =123, y =32, z =124

LN

Natural logarithm. Computes the logarithm of its single argument, the base
of which is e.

SELECT LN(1.0) AS baseE

RESULT: baseE=e*1.0=0

LOG

Logarithm. | og(n, n) takes two arguments, where n is the base, and mis
the value you are taking the logarithm of.

Log(10, 1000) = 3

MOD

Modulo. Returns the remainder of n divided by m
Mbd(10,3) = 1

EQL uses the f nod floating point remainder, as defined in the C/POSIX
standard.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

58

Function

Description and Example

ROUND

Returns a number rounded to the specified decimal place.

The unary (one argument) version takes only one argument (the number to
be rounded) and drops the decimal (non-integral) portion of the input. For
example:

ROUND(8.2) returns 8
ROUND(8.7) returns 9

The binary (two argument) version takes two arguments (the number to be
rounded and a positive or negative integer that allows you to set the number
of spaces at which the number is rounded). The binary version always
returns a double:

» Positive second arguments correspond to the number of places that
must be returned after the decimal point. For example:
ROUND(123. 4567, 3) returns 123. 457

» Negative second arguments correspond to the number of places that
must be returned before the decimal point. For example:

ROUND(123. 4, -3) returns O
ROUND(1234. 56, -3) returns 1000

SIGN

Returns the sign of the argument as -1, 0, or 1, depending on whether n is
negative, zero, or positive. The result is always a double.

SELECT SIGN(-12) AS x, SIGN(0) AS y, SIG\N(12) AS z

RESULT: x=-1, y=0, z=1

SQRT

Returns the nonnegative square root of n.

SELECT SQRT(9) AS x

RESULT: x =3

TRUNC

Returns the number n truncated to mdecimal places. If mis 0, the result has
no decimal point or fractional part.

The unary (one argument) version drops the decimal (non-integral) portion of
the input. For example:

SELECT TRUNC(3. 14159265) AS X
RESULT: x =3

The binary (two argument) version allows you to set the number of spaces at
which the number is truncated. The binary version always returns a double.
For example:

SELECT TRUNC(3. 14159265, 3) AS 'y
RESULT:y = 3. 141

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

59

Function Description and Example
SIN The sine of n, where the angle of n is in radians.
SI N(3. 14159/ 6) = 0.499999616987256
COSs The cosine of n, where the angle of n is in radians.
COS(3. 14159/ 3) = 0.500000766025195
TAN The tangent of n, where the angle of n is in radians.
TAN(3. 14159/4) = 0.999998673205984
POWER Returns the value (as a double) of n raised to the power of m
Power (2,8) = 256
TO_DURATION Casts a string representation of a timestamp into a number of milliseconds
so that it can be used as a duration.
TO_DOUBLE Casts a string representation of an integer as a double.
TO_INTEGER(boolean) Casts TRUE/ FALSE to 1/ 0.

Aggregation functions

EQL supports the following aggregation functions.

Function Description

ARB Selects an arbitrary but consistent value from the set of values in a field. Works on
both multi-assign attributes (sets) and single-assign attributes.

AVG Computes the arithmetic mean value for a field.

COUNT Counts the number of records with valid non-NULL values in a field for each GROUP
BY result. Works on both multi-assign attributes (sets) and single-assign attributes.

COUNTDISTINCT | Counts the number of unique, valid non-NULL values in a field for each GROUP BY
result. Works on both multi-assign attributes (sets) and single-assign attributes.

MAX Finds the maximum value for a field.

MIN Finds the minimum value for a field.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions 60

Function Description

MEDIAN Finds the median value for a field. (Note that PAGE PERCENT provides overlapping
functionality). If the argument is an integer, a double is always returned.

Note that the EQL definition of MEDI AN is the same as the normal statistical definition
when EQL is computing the median of an even number of numbers. That is, given an
input relation containing { 1, 2, 3, 4}, the following query:

RETURN results AS SELECT
MEDI AN(a) AS med
GROUP

produces the mean of the two elements in the middle of the sorted set, or 2.5.

STDDEV Computes the standard deviation for a field.

STRING_JOIN Creates a single string containing all the values of a string attribute.

SUM Computes the sum of field values.

VARIANCE Computes the variance (that is, the square of the standard deviation) for a field.

STRING_JOIN function

The STRI NG_JA N function takes a string property and a delimiter and creates a single string containing all of
the property's values, separated by the delimiter. Its syntax is:

STRING JON('delimter', string_attribute)

The delimiter is a string literal enclosed in single quotation marks.

The resulting strings are sorted in an arbitrary but stable order within each group. NULL values are ignored in
the output, but values having the empty string are not.

For this sample query, assume that the R_NAME standard attribute is of type string and contains names of
regions, while the R_NANME standard attribute is also of type string and contains the names of nations:

RETURN results AS SELECT

STRING JON(', ', R NAME) AS Regi ons,
STRING JO N(', ', N_NAVE) AS Nations
GROUP

The query will return the region and country names delimited by commas:

Nat i ons

ALCERI A, ARGENTI NA, BRAZI L, CANADA, CHI NA, EGYPT, ETHI OPI A, FRANCE, GERMANY, | NDI A | NDONESI A, | RAN,
| RAQ JAPAN, JORDAN, KENYA, MOROCCO, MOZAMBI QUE, PERU, ROVANI A, RUSSI A, SAUDI ARABI A, UNI TED KI NGDOM
UNI TED STATES, VI ETNAM

Regi ons

AFRI CA, AVERI CA, ASI A, EUROPE, M DDLE EAST

Note that the Regions delimiter includes a space while the Nations delimiter does not. That is, if you want a
space between the output terms, you must specify it in the delimiter.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

61

Hierarchy functions

EQL supports hierarchy functions on managed attributes.

You can filter by a descendant or an ancestor, or return a specific or relative level of the hierarchy. Managed
attributes can be aliased in the SELECT statement and elsewhere.

The following are the related functions:

Function

Description

ANCESTOR(expr, int)

Return the ancestor of the named attribute at the depth
specified. Note that this function returns the spec of the
managed attribute value. Returns NULL if the requested depth
is greater than the depth of the attribute value. The root is at
depth 0.

HI ERARCHY_LEVEL(expr)

Return the level of the named attribute as a number. The level
is the number of values on the path from the root to it. The root
is always level 0.

TO_MANAGED VALUE(attri bute,
val ue)

Returns a managed value literal from literals representing a
managed attribute and a managed value. Both parameters
must be string literals.

| S _DESCENDANT(expr, val ue)

Include the record if the named attribute is the attribute
specified or a descendant and if the specified value matches. If
the attribute is not a member of the specified hierarchy, it is a
compile-time error. If no attribute with the primary key in the
attribute is found, it results in NULL.

This function can also be used with standard attributes. In this
case, the record is included if the specified attribute exists and
the specified value matches.

I S_ANCESTOR(expr, val ue)

Include the record if the named attribute is the attribute
specified or an ancestor. If the attribute is not a member of the
specified hierarchy, it is a compile-time error. If no attribute
with the primary key in the attribute is found, it results in NULL.

This function can also be used with standard attributes. In this
case, the record is included if the specified attribute exists and
the specified value matches.

GET_LCA(exprl, expr?2)

A row function that returns the LCA (least common ancestor) of
the two managed attributes. The two managed attributes
should belong to the same hierarchy. Otherwise, it is a
compile-time error.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions 62

Function Description

LCA(attribute) An aggregation function that returns the LCA of the managed
attributes in the specified attribute column. The LCA is the
lowest point in a hierarchy that is an ancestor of all specified
members. Any encountered NULL values are ignored by the
function.

Hierarchy examples

Example 1: In this example, we filter by the CAT_BIKES managed attribute value, and get all records
assigned CAT_BIKES or a descendant thereof:

RETURN Results AS
SELECT
Pr oduct Cat egory AS PC,
ARB(ANCESTOR(PC, HI ERARCHY_LEVEL(Product Cat egory)-1)) AS Anc
VWHERE
| S_DESCENDANT(Pr oduct Cat egory, ' CAT_BI KES')
GROUP BY PC
ORDER BY PC

Example 2: In this example, we want to return level 1 (one level below the root) of the ProductCategory
hierarchy:

RETURN Results AS
SELECT
Pr oduct Cat egory AS PC,
ANCESTOR(PC, 1) AS Ancestor
WHERE
ANCESTOR(Pr oduct Cat egory, 1) = ' CAT_BI KES
CGROUP BY PC
ORDER BY PC

Example 3: In the third example, we want to return the direct ancestor of the ProductCategory hierarchy:

RETURN Results AS
SELECT

Pr oduct Cat egory AS PC,

ANCESTOR(PC, H ERARCHY_LEVEL(PC) - 1) AS Parent
WHERE

ANCESTOR(Pr oduct Cat egory, 1) = ' CAT_BI KES'
GROUP BY PC
ORDER BY PC

In the second and third examples, we use GROUP BY to de-duplicate. In addition, note that even though we
aliased Pr oduct Cat egory AS PC, we cannot use the alias in the WHERE clause, because the alias does not
become available until after WHERE clause executes.

/@ Note: GROUP BY statements cannot use the ANCESTOR function, because you cannot group by an
I expression in EQL.

Example 4: This abbreviated example shows the use of the TO_MANAGED VAL UE function:

RETURN Results AS
SELECT
HI ERARCHY_LEVEL(TO_MANAGED VALUE(' Product Cat egory', 'Bikes')) AS HL

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 63

Geocode functions

The geocode data type contains the longitude and latitude values that represent a geocode property.

Note that all distances are expressed in kilometers.

Function Description

LATI TUDE(ndex: geocode) Returns the latitude of a geocode as a floating-point number.
LONG TUDE(ndex: geocode) Returns the longitude of a geocode as a floating-point number.
DI STANCE(ndex: geocode, Returns the distance (in kilometers) between the two geocodes,
ndex: geocode) using the haversine formula.

TO_GEOCODE(ndex: doubl e, Creates a geocode from the given latitude and longitude.

nmdex: doubl e)

The following example enables the display of a map with a pin for each location where a claim has been filed:

RETURN Result AS
SELECT

LATI TUDE(geo) AS Lat,

LONG TUDE(geo) AS Lon,

DI STANCE(geo, TO GEOCODE(42.37, 71.13)) AS Di stanceFronCanbri dge
VHERE

DI STANCE(geo, TO GEOCODE(42.37, 71.13)) BETWEEN 1 AND 10

/} Note: All distances are expressed in kilometers.

Date and time functions
EQL provides functions for working with t i ne, dat eTi e, and dur at i on data types.

EQL supports normal arithmetic operations between these data types.

All aggregation functions can be applied on these types except for SUM which cannot be appliedtoti ne or
dat eTi ne types.

/} Note: In all cases, the internal representation of dates and times is on an abstract time line with no

& time zone. On this time line, all days are assumed to have exactly 86400 seconds. The system does
not track, nor can it accommodate, leap seconds. This is equivalent to the SQL date, time, and
timestamp data types that specify W THOUT TI MEZONE. ISO 8601 ("Data elements and interchange
formats - Information interchange - Representation of dates and times") recommends that, when
communicating dates and times without a time zone to other systems, they be represented using Zulu
time, which is a synonym for GMT. Endeca Server conforms to this recommendation.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

64

The following table summarizes the supported date and time functions:

Function Return Data Type Purpose

CURRENT _TI MESTAMP dat eTi ne Constants representing the current date and

SYSTI MESTAVP dat eTi e time (at. an grbltrary point durlng_ query
evaluation) in GMT and server time zone,
respectively.

CURRENT_DATE dat eTi ne Constants representing current date (at an

SYSDATE dat eTi me arbitrary pomt during query eyaluatlon) in GMT
and server time zone, respectively.

TO TI ME time Constructs a timestamp representing time,

TO_DATETI ME dat eTi e date, or duration, using an expression.

TO_DURATI ON duration

EXTRACT i nt eger Extracts a portion of a dat eTi ne value, such
as the day of the week or month of the year.

TRUNC dat eTi e Rounds a dat eTi me value down to a coarser
granularity.

TO Tz dat eTi ne Returns the given timestamp in a different time

FROM TZ dat eTi me Zone.

Note that using CURRENT _TI MESTAMP or SYSTI MESTAMP affects performance because these two functions
are effectively not cached. The other functions in the table are cached.

The following table summarizes supported operations:

Operation Return Data Type
time (+]-) duration time

dat eTi ne (+|-) durati on dat eTi e
time-tine duration

dat eTi ne - dat eTi ne duration
duration (+|-) duration duration

dur ati on (*|//) doubl e duration
duration /duration doubl e

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

65

Manipulating current date and time

EQL provides four constant keywords to obtain current date and time values. Values are obtained at an
arbitrary point during query evaluation.

GMT time and date are independent of any daylight savings rules, while System time and date are subject to
daylight savings rules.

Keyword

Description

CURRENT_TI MESTAMP

Obtains current date and time in GMT.

SYSTI MESTAMP Obtains current date and time in server time zone.
CURRENT_DATE Obtains current date in GMT.
SYSDATE Obtains system date in server time zone.

/,9 Note: CURRENT _DATE and SYSDATE return dateTime data types where time fields are reset to zero.

The following example retrieves the average duration of service:
RETURN Exanpl e AS

SELECT AVG({ CURRENT_DATE -

GROUP

Di nEnpl oyee_Hi reDate) AS Durati onCf Servi ce

Constructing date and time values

EQL provides functions to construct a timestamp representing time, date, or duration using an expression.

If the expression is a string, it must be in a certain format. If the format is invalid or the value is out of range, it

results in NULL.

Function

Description

Format

TO TI ME

Constructs a
timestamp
representing
time.

<Ti meStringFormat>::=hh:mm ss[.sss]((+|-) hh: mm] 2)

TO_DATETI ME

Constructs a
timestamp
representing

date and time.

See the section below for the syntax of this function's string interface,
date-only numeric interface, and date-time numeric interface.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

66

Function Description Format

representing
duration. <M nut es>[<Seconds>] |

<Seconds>)]

TO_DURATI ON | Constructs a | <DurationStri ngFormat>::=
timestamp [-] P[<Days>] [T(<Hour s>[<M nut es>} [<Seconds>] |

<Days>::=<lInteger>D

<Hour s>:: =<l nteger>H

<M nut es>:: =<l nt eger >M
<Seconds>::=<Integer>[.<Integer>]S

As stated in the Format column above, TO Tl ME and TO_DATETI ME accept time zone offset. However, EQL
does not store the offset value. Instead, it stores the value normalized to the GMT time zone.

The following table shows the output of several date and time expressions:

Expression Normalized value
TO_DATETI ME(' 2012- 03- 2012-03-21T14:00:00.000Z
21T16: 00: 00. 000+02: 00")

TO_DATETI ME(' 2012-12- 31T20: 00: 00. 000- 2013-01-01T02:00:00.000Z
06: 00")

TO_DATETI ME(' 2012- 06- 15T20: 00: 00. 000Z") | 2012-06-15T20:00:00.000Z

TO_TI ME(' 23: 00: 00. 000+03: 00") 20:00:00.000Z

TO_TI ME(' 15: 00: 00. 000- 10: 00") 01:00:00.000Z2

TO_DATETIME formats

The single-argument string interface for this function is:
TO_DATETI ME(<Dat eTi neSt ri ng>)

where:
<DateTimeString> ::= [-] YYYY- MM DDT<Ti neSt ri ngFor mat >
Three examples of the string interface are listed in the table above.

The numeric interface signatures are:
TO _DATETI ME(<Year >, <Mont h>, <Day>)

TO_DATETI ME(<Year >, <Mont h>, <Day>, <Hour>, <M nute>, <Second>,

where all arguments are integers.

Oracle® Endeca Server : EQL Guide

<M I | i second>)

Version 7.6.1 « December 2013

Expressions 67

In the first signature, time arguments will be filled with zeros. In both signatures, time zone will be assumed to
be UTC. If time zone information exists, duration (TO_DURATI ON) and time zone (TO_TZ) constructs can be

used, as shown below in the examples.

Examples of the numeric interface signatures are:
TO DATETI ME(2012, 9, 22)

TO DATETI ME(2012, 9, 22, 23, 15, 50, 500)
TO DATETI ME(2012, 9, 22, 23, 15, 50, 500) + TO_DURATI ON(1000)

TO TZ(TO DATETI ME(2012, 9, 22, 23, 15, 50, 500), 'Anerica/ New York')

Time zone manipulation

EQL provides two functions to obtain the corresponding timestamp in different time zones.
EQL supports the standard IANA Time Zone database (https://www.iana.org/time-zones).

e TO TZ. Takes a timestamp in GMT, looks up the GMT offset for the specified time zone at that time in
GMT, and returns a timestamp adjusted by that offset. If the specified time zone does not exist, the result
is NULL.

For example, TO TZ(dat eTi me, ' Aneri ca/ New_Yor k') answers the question, "What time was it in
America/New_York when it was dat eTi me in GMT?"

« FROM TZ. Takes a timestamp in the specified time zone, looks up the GMT offset for the specified time
zone at that time, and returns a timestamp adjusted by that offset. If the specified time zone does not
exist, the result is NULL.

For example, FROM TZ(dat eTi ne, ' EST') answers the question, "What time was it in GMT when it was
dat eTi ne in EST?"

The following table shows the results of several time zone expressions:

Expression Results

TO_TZ(TO_DATETI ME(' 2012-07- 2012-07-05T12:00:00.000Z
05T16: 00: 00. 000Z'), ' Arreri ca/ New_York')

TO TZ(TO_DATETI ME(' 2012- 01- 2012-01-05T11:00:00.000Z
05T16: 00: 00. 000Z'), ' Amreri ca/ New_York')

FROM TZ(TO_DATETI ME(' 2012-07- 2012-07-05T23:00:00.000Z
05T16: 00: 00. 000Z'),
" Anerical/ Los_Angel es')

FROM TZ(TO_DATETI ME(' 2012- 01- 2012-01-06T00:00:00.000Z
05T16: 00: 00. 000Z'),
" Aneri cal/ Los_Angel es')

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

https://www.iana.org/time-zones

Expressions

68

Using EXTRACT to extract a portion of a dateTime value

The EXTRACT function extracts a portion of a dat eTi e value, such as the day of the week or month of the
year. This can be useful in situations where the data must be filtered or grouped by a slice of its timestamps,

for example to compute the total sales that occurred on any Monday.

The syntax of the EXTRACT function is:

<Extract Expr>
<Dat eTi neUni t >

SECOND |

EXTRACT(<expr >, <Dat eTi neUni t >)
M NUTE | HOUR | DAY_OF WEEK |

DAY_OF MONTH | DAY_OF YEAR |

DATE | WEEK |
MONTH | QUARTER | YEAR | JULI AN DAY _NUVBER

Date Time Unit

Range of Returned
Values

SECOND (0 - 59)

M NUTE (0 - 59)

HOUR (0-23)

DAY_OF_VEEK @-7 Returns the rank of the day within the week,
where Sunday is 1.

DAY_OF MONTH (DATE) (1-31)

DAY _OF YEAR (1 - 366)

VEEK (1-53) Returns the rank of the week in the year, where
the first week starts on the first day of the year.

MONTH (1-12)

QUARTER 1-4) Quarters start in January, April, July, and

YEAR (-9999 - 9999)

JULI AN_DAY_NUMBER

(0 - 5373484)

Returns the integral number of whole days
between the timestamp and midnight, 24
November -4713.

For example, the dat eTi ne attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The
following list shows the results of using the EXTRACT operator to extract each component of that value:

EXTRACT(" Ti meSt anp”, SECOND)
EXTRACT(" Ti meSt anp”, M NUTE)
EXTRACT(" Ti meSt anp”, HOUR)
EXTRACT(" Ti meSt anp", DATE)
EXTRACT(" Ti meSt anp”, WEEK)
EXTRACT(" Ti meSt anp”, NMONTH)
EXTRACT(" Ti meSt anp”, QUARTER)
EXTRACT(" Ti meSt anp”, YEAR)
EXTRACT(" Ti meSt anp”, DAY_OF_WEEK)
EXTRACT(" Ti meSt anp”, DAY_OF_MONTH)

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

69

EXTRACT(" Ti meSt anp", DAY_OF_YEAR)
EXTRACT(" Ti neSt anp", JULI AN_DAY_NUMBER)

286
2455848

Here is a simple example of using this functionality. The following statement groups the total value of the
Amount attribute by quarter, and for each quarter computes the total sales that occurred on a Monday

(DAY_OF_WEEK=2):

RETURN Quarters AS
SELECT SUM Anpunt) AS Tot al

ARB(TRUNC(Ti meSt anp, QUARTER)) AS Qr
VWHERE EXTRACT(Ti neSt anp, DAY_OF_WEEK) = 2
GROUP BY Qr

The following example allows you to sort claims in buckets by age:

DEFI NE Cl ai nsW t hAge AS
SELECT

ARB(FLOOR((EXTRACT(TO_TZ(CURRENT_TI MESTANP, cl ai m t z), JULI AN_DAY_NUMBER) - EXTRACT(TO TZ(cl aimts, clai m_

tz), JULI AN_DAY_NUMBER))/ 7)) AS Agel nWeeks,
COUNT(1) AS Count

GROUP BY Agel nWeeks

HAVI NG Agel n\Weeks < 2

ORDER BY Agel n\Weks;

RETURN Result AS
SELECT
CASE Agel n\eeks
WHEN O THEN ' Past 7 Days'
WHEN 1 THEN ' Prior 7 Days'
ELSE ' O her'
END
AS Label , Count
FROM Revi ewsW t hAge

Using TRUNC to round down dateTime values

The TRUNC function can be used to round a dat eTi nme value down to a coarser granularity.

For example, this may be useful when you want to group your statement results data for each quarter using a

dat eTi e attribute.

The syntax of the TRUNC function is:

TRUNC(<expr >, <Dat eTi neUni t >)

SECOND | M NUTE | HOUR |

DATE | WEEK | MONTH | QUARTER | YEAR
DAY_OF_WEEK | DAY_OF_MONTH | DAY_OF_YEAR
JULI AN_DAY_NUVBER

<Tr uncExpr >
<dat eTi meUni t >

/‘9 Note: WEEK truncates to the nearest previous Sunday.

For example, the dat eTi ne attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The list
below shows the results of using the TRUNC operator to round the TimeStamp value at each level of
granularity. The values are displayed here in a format that is easier to read—the actual values would use the

standard Endeca dat eTi ne format.

TRUNC(" Ti meSt anp", SECOND)
TRUNC(" Ti meSt anp”, M NUTE)
TRUNC(" Ti meSt anp", HOUR)
TRUNC(" Ti meSt anp”, DATE)
TRUNC(" Ti meSt anp”, WEEK)

10/ 13/ 2011 11:35:12. 000
10/13/ 2011 11:35: 00. 000
10/ 13/ 2011 11:00: 00. 000
10/13/ 2011 00: 00: 00. 000
10/ 09/ 2011 00: 00: 00. 000

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

70

TRUNC(" Ti meSt anp”, NMONTH)
TRUNC(" Ti meSt anp”, QUARTER)
TRUNC(" Ti meSt anp", YEAR)

TRUNC(" Ti meSt anp", DAY_OF_WEEK)
TRUNC(" Ti meSt anp", DAY_OF_NONTH)
TRUNC(" Ti meSt anp", DAY_OF_YEAR)

TRUNC(" Ti meSt anp", JULI AN_DAY_NUMBER)

10/ 01/ 2011
10/ 01/ 2011
01/ 01/ 2011
10/ 13/ 2011
10/ 13/ 2011
10/ 13/ 2011
10/ 13/ 2011

00: 00: 00. 000
00: 00: 00. 000
00: 00: 00. 000
00: 00: 00: 000
00: 00: 00: 000
00: 00: 00: 000
00: 00: 00: 000

Here is a simple example of using this functionality. In the following statement, the total value for the Amount
attribute is grouped by quarter. The quarter is obtained by using the TRUNC operation on the TimeStamp

attribute:

RETURN Quarters AS
SELECT SUM Ampunt) AS Tot al ,

ARB(TRUNC(Ti meSt anp, QUARTER)) AS Qtr

GROUP BY Qr

Using arithmetic operations on date and time values

In addition to using the TRUNC and EXTRACT functions, you also can use normal arithmetic operations with

date and time values.

The following are the supported operations:

e Add or subtract a duration to or from a time or a dateTime to obtain a new time or dateTime.

e Subtract two times or dateTimes to obtain a duration.

e Add or subtract two durations to obtain a new duration.

» Multiply or divide a duration by a double number.

» Divide a duration by a duration.

The following table shows the results of several arithmetic operations on date and time values:

Expression

Results

2012-10-05T00: 00: 00. 000Z + P30D

2012-11-04T00:00:00.000Z

2012-10-05T00: 00: 00. 000Z - PTO1M

2012-10-04T23:59:00.000Z

23: 00: 00. 000Z + PTO2H

01:00:00.00

20: 00: 00. 000Z - PTO2S

19:59:58.000Z

31T00: 00: 00. 000Z

2012-01-01T00: 00: 00. 000Z - 2012-12-

-P365DTOHOMO0.000S

23:15: 00. 000Z - 20: 12: 30. 500Z

PODT3H2M29.500S

P1500DTOHOM). 000S - P500DTOHOM). 000S

P1000DTOHOMO.000S

P1DTOH30MD. 500S * 2. 5

P2DT13H15M1.250S

P1DTOH30M). 225S/ 2

PODT12H15M0.112S

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

71

Expression

Results

P5DT12HOOMD. 000S/ P1DTOHOOM). 000S

5.5

String functions

EQL supports the following string functions.

Function Description

CONCAT Concatenates two string arguments into a single string.
SUBSTR Returns a part (substring) of a character expression.
TO _STRI NG Converts a value to a string.

CONCAT function

CONCAT is a row function that takes two string arguments and concatenates them into a single string. Its

syntax is:
CONCAT(stringl, string2)

Each argument can be a literal string (within single quotation marks), an attribute of type string, or any

expression that produces a string.

This sample query uses literal strings for the arguments:

RETURN results AS SELECT
CONCAT(' Jane ', 'WIlson') AS Full Nane
GROUP

This similar query uses two string-type standard attributes:

RETURN results AS SELECT
ARB(CONCAT('S_NAME, S_ADDRESS)) AS Suppl i er
GROUP

SUBSTR function

The SUBSTR function has two syntaxes:
SUBSTR(string, position)

SUBSTR(string, position, |ength)
where:

 string is the string to be parsed.

* position is a number that indicates where the substring starts (counting from the left side). Note that the
parameter is not zero indexed, which means that in order to start with the fifth character, the parameter

has to be 5. If O (zero) is specified, it is treated as 1.

* length is a number that specifies the length of the substring that is to be extracted.

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

72

TO_STRING function

The TO_STRI NGfunction takes an integer value and returns a string equivalent. Its syntax is:

TO_STRI NG nt)

If the input value is NULL, the output value will also be NULL.

This sample query converts the value of the P_SIZE integer attribute to a string equivalent:

RETURN results AS SELECT
ARB(TO_STRI NG P_SI ZE)) AS Si zes
GROUP

Arithmetic operators

EQL supports arithmetic operators for addition, subtraction, multiplication, and division.

The syntax is as follows:

<expr>{+, -, *, /} <expr>

Each arithmetic operator has a corresponding numeric function. For information on order of operations, see

Operator precedence rules on page 49.

Boolean operators
EQL supports the Boolean operators AND, OR, and NOT.

The results of Boolean operations (including the presence of NULL) is shown in the following tables:

Results of NOT operations:

Value of x Result of NOT x
TRUE FALSE

FALSE TRUE

NULL NULL

Results of AND operations:

Value of x Value of y Result of x AND y
TRUE TRUE TRUE

TRUE NULL NULL

TRUE FALSE FALSE

NULL TRUE NULL

NULL NULL NULL

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions

73

Value of x Value of y Result of x AND y
NULL FALSE FALSE
FALSE TRUE FALSE
FALSE NULL FALSE
FALSE FALSE FALSE
Results of OR operations:
Value of x Value of y x OR Yy
TRUE TRUE TRUE
TRUE NULL TRUE
TRUE FALSE TRUE
NULL TRUE TRUE
NULL NULL NULL
NULL FALSE NULL
FALSE TRUE TRUE
FALSE NULL NULL
FALSE FALSE FALSE

For information on order of operations, see Operator precedence rules on page 49.

Using EQL results to compose follow-on queries

You can select a value in an EQL result and use it to compose a follow-on query.

This enables users to interact with EQL results through a chart or a graph to compose follow-on queries. For
example, when viewing a chart of year-to-date sales by country, a user might select a specific country for drill-

down.

EQL is specifically designed to support this kind of follow-on query.

If, in the above example, the user selects the country United States, then the follow-on query should examine
only sales of products in the United States. To filter to these items, a WHERE clause like the following can be

added:

VWHERE Di mCeogr aphy_Count ryRegi onName = ' United States'

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Expressions 74

For attributes with types other than string, a conversion is necessary to use the string representation of the
value returned by EQL. For an integer attribute, such as Di nDat e_Cal endar Year , the string representation

of the value must be converted to an integer for filtering, as follows:

VWHERE Di nDat e_Cal endar Year = TO_| NTEGER(' 2006') .

EQL provides conversions for all non-string data types:
« TO BOOLEAN()

« TO DATETI ME()

e TO_DOUBLE()

« TO_DURATI ON()

» TO_GEOCODE()

« TO | NTEGER()

« TO_TI ME()

Each of these accepts the string representation of values produced by the Endeca Server. Note that, for
ndex: st ri ng attributes (including managed attributes), no conversion is necessary.

To determine which conversion function to use, EQL results are accompanied by attribute metadata that
describes both the type of the attribute, and, for managed attributes, any associated hierarchy.

Filtering to a node in a hierarchy

When filtering to a node in a hierarchy, such as ProductCategory, users typically want to filter to records that
are tagged with a particular value or any of its descendants. For example, if a user drills into Accessories,
filtering to records tagged with Accessories will return no results. However, filtering with:

WHERE | S_DESCENDANT(Pr oduct Cat egory, ' Accessories')

produces the desired result of filtering to records tagged with Accessories or any descendent thereof.

Using lookup expressions for inter-statement references

In EQL, you can define statements and then refer to these statements from other statements.

Multiple EQL sub-queries can be specified within the context of a single navigation query, each corresponding
to a different analytical view, or to a subtotal at a different granularity level. Expressions also can use values
from other computed statements. This is often useful when coarser subtotals are required for computing
analytics within a finer-grained bucket.

For example, when computing the percent contribution for each sales representative in a given year, you must
also calculate the overall total for the year. You can use a lookup table to create these types of queries.

Syntax for lookup expressions
A lookup expression is a simple form of join. It treats the result of a prior statement as a lookup table.

The syntax for a lookup expression is:

<LookupExpr> ::= <stat enent - nane>[<LookupLi st>].<attri bute-nane>

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 75

The square bracket operators are literal and are used to identify the record set and grouping attribute, while
the dot operator is also literal and is used to identify the field.

The BNF for LookupList is

<LookupLi st> ::= <enpty>
<Si npl eExpr > [, <LookupLi st >]

In this BNF syntax, the square brackets indicate the optional use of a second LookuplList.

The lookup list corresponds to the grouping attributes of the specified statement. The result is NULL if the
lookup list does not match target group key values, or the target column is NULL for a matching target group
key values.

Lookup attributes refer to GROUP BY clauses of the target statement, in order. Computed lookup of indexed
values is allowed, which means you can look up related information, such as total sales from the prior year, as
shown in the following example:

DEFI NE Year Total s AS SELECT

SUM Sal esAnpunt) AS Tot al
GROUP BY Year ;

RETURN Annual Cat egoryPcts AS SELECT
SUM Sal esAnbunt) AS Tot al ,
Tot al / Year Tot al s[Year] . Total AS Pct
CROUP BY Year, Category ;

RETURN YoY AS SELECT
Year Tot al s[Year] . Total AS Total,
Year Tot al s[Year-1]. Total AS Prior,
(Total -Prior)/Prior AS PctChange
GROUP BY Year

Referencing a value from another statement

For example, suppose we want to compute the percentage of sales per ProductType per Region. One
aggregation computes totals grouped by Region, and a subsequent aggregation computes totals grouped by
Region and ProductType.

This second aggregation would use expressions that referred to the results from the Region aggregation. That
is, it would allow each Region and ProductType pair to compute the percentage of the full Region subtotal
represented by the ProductType in this Region:

DEFI NE Regi onTotal s AS

SELECT SUM Anmount) AS Tot al
GROUP BY Regi on

RETURN Pr oduct Pcts AS
SELECT

100 * SUM Anpunt) / Regi onTot al s[Regi on] . Total AS Pct Tot al
GROUP BY Regi on, Product Type

The first statement computes the total product sales for each region. The next statement then uses the
RegionTotals results to determine the percentage for each region, making use of the inter-statement reference
syntax.

» The bracket operator indicates to reference the RegionTotals result that has a group-by value equal to the
ProductPcts value for the Region attribute.

e The dot operator indicates to reference the Total field in the specified RegionTotals record.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 76

Computing percentage of sales
This example computes for each quarter the percentage of sales for each product type.
This query requires calculating information in one statement in order to use it in another statement.

To compute the sales of a given product as a percentage of total sales for a given quarter, the quarterly totals
must be computed and stored. The calculations for quarter/product pairs can then retrieve the corresponding
quarterly total.

DEFI NE QuarterTotals AS
SELECT SUM Anpunt) AS Tot al
CGROUP BY Quarter ;

RETURN Product Pcts AS
SELECT

100 * SUM Anpunt) / QuarterTotal s[Quarter]. Total AS Pct Tot al
GROUP BY Quarter, ProductType

ARB

ARB selects an arbitrary but consistent value from the set of values in a field.

The syntax of the ARB function is:
ARB(<attri bute>)

where attribute is a single-assign attribute or a set (multi-assign attribute).
ARB works as follows:

» For a single-assign attribute, ARB first discards all NULL values and then selects an arbitrary but
consistent value from the remaining non-NULL values. If the attribute has no non-NULL values, then
NULL is returned.

» For a multi-assign attribute, ARB looks at all of the rows in the group (including those with empty sets) and
selects the set value from one of the rows. In other words, empty sets and non-empty sets are treated
equally. This means that because the selection is arbitrary, the returned set value could be an empty set.
The ARB return type is the same as its argument type: if attribute x is an ndex: | ong- set, then so is
ARB(x). If the attribute has no non-NULL values, then the empty set is returned.

ARB examples

Single-assign Example: Price is a single-assign attribute:

RETURN results AS
SELECT ARB(Price) AS prices
GROUP BY W neType
ORDER BY W neType

The result for this example is:

W neType prices
Blanc de Noirs	16.99
Bordeaux:	21.99
Brut	22.99
Chardonnay:	17.95
Merlot:	25.99
Pinot Noir:	14.99
Red:	9.99

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 77

| Wite: | 20.99 |
| Zi nfandel : | |

Some of the interesting result values from this data set are:

e There are three Bordeaux records: one has a Price assignment of 21.99 and the other two have no Price
assignments. Therefore, for the Bordeaux value, ARB discarded the two NULL values and returned the

21.99 value.

e There is one Zinfandel record and it does not have a Price assignment. Therefore, a NULL value is
returned.

Multi-assign Example: Body is a multi-assign attribute:

RETURN results AS
SELECT ARB(Body) AS bodi es
GROUP BY W neType
ORDER BY W neType

The result for this example is:

W neType bodi es

Blanc de Noirs	{ Firm Robust }
Bordeaux:	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay:	{}
Merlot:	{1}
Pinot Noir:	{ Supple }
Red:	{ Silky, Tannins }
Wite: [{1}	
Zi nfandel :	{ Robust, Tannins }

Some interesting results from this attribute are:

e All nine Red records have at least one Body assignment. The returned value for Red is the {Silky,
Tannins} set, but, because it is arbitrary, the value could have been any of the other eight sets.

e Two of the White records have Body assignments (and therefore have non-empty sets) while the other
two records have no Body assignments (and therefore have empty sets). One of the White empty sets
was returned as the arbitrary value, but it just as well could have been one of the non-empty sets.

e Neither of the two Chardonnay records have Body assignments, and therefore the empty set was returned
for this group.

BETWEEN

The BETWEEN expression determines whether an attribute's value falls within a range of values.
BETWEEN is useful in conjunction with WHERE clauses.

The syntax for BETWEEN is:
<attribute> BETWEEN <startVal ue> AND <endVal ue>

where <attribute> is the single-assign attribute whose value will be tested.

BETWEEN is inclusive, which means that it returns TRUE if the value of <attribute> is greater than or equal to
the value of <startValue> and less than or equal to the value of <endValue>.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions 78

With one exception, <attribute> must be of the same data type as <startValue> and <endValue> (supported
data types are integer, double, dateTime, duration, time, string, and Boolean). The exception is that you can
use a mix of integer and double, because the integer is promoted to a double.

Note that if any of the BETWEEN arguments (i.e., <attribute>, <startValue>, or <endValue>) are NaN (Not a
Number) values, then the expression evaluates to FALSE.

The following is a simple example of BETWEEN:

RETURN Resul ts AS

SELECT SUM AMOUNT_SOLD) AS Sal esTot al
WHERE AMOUNT_SOLD BETWEEN 10 AND 100
CROUP BY CUST_STATE_PROVI NCE

COALESCE

The COALESCE expression allows for user-specified NULL-handling. It is often used to fill in missing values in
dirty data.

It has a function-like syntax, but can take unlimited arguments, for example:
COALESCE(a, b, c, x, vy, 2z)

You can use the COALESCE expression to evaluate records for multiple values and return the first non-NULL
value encountered, in the order specified. The following requirements apply:
* You can specify two or more arguments to COALESCE.
» Arguments that you specify to COALESCE must all be of the same type, with the following exceptions:
 Integers with doubles (resulting in doubles)
e Strings with managed attributes (resulting in managed attributes)
» COALESCE does not support multi-assign attributes.
In the following example, all records without a specified price are treated as zero in the computation:
AVG(COALESCE(Pri ce, 0))

COALESCE can also be used without aggregation, for example:
SELECT COALESCE(Price, 0) AS price_or_zero WHERE . ..

CASE

CASE expressions allow conditional processing in EQL, allowing you to make decisions at query time.

The syntax of the CASE expression, which conforms to the SQL standard, is:

CASE
WHEN <Bool ean- expr essi on> THEN <expr essi on>
[WHEN <Bool ean- expr essi on> THEN <expr essi on>] *
[ELSE expressi on]

END

CASE expressions must include at least one WHEN expression. The first WHEN expression with a TRUE
condition is the one selected. NULL is not TRUE. The optional ELSE clause must always come at the end of

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Expressions

79

the CASE statement and is equivalent to WHEN TRUE THEN. If no condition matches, the result is NULL or the

empty set, depending on the data type of the THEN expressions.

In this example, division by non-positive integers is avoided:

CASE
WHEN 'y < 0 THEN x / (0 - y)
WHENYyY >0 THEN x / vy
ELSE 0

END

In this example, records are categorized as Recent or Old:

RETURN Result AS
SELECT
CASE
WHEN (Days < 7) THEN ' Recent'
ELSE ‘A d’
END AS Age

The following example groups all records by class and computes the following:

e The minimum DealerPrice of all records in class H.
e The minimum ListPrice of all records in class M.
» The minimum StandardCost of all other records (called class L).

RETURN CaseExanpl e AS SELECT
CASE
WHEN Class = 'H THEN M N(Deal erPri ce)
WHEN Class = 'M THEN M N(Li stPrice)
ELSE M N(St andar dCost)
END
AS val ue
GROUP BY Cl ass

IN

I N expressions perform a membership test.

I N expressions address use cases where you want to identify a set of interest, and then filter to records with
attributes that are in or out of that set. They are useful in conjunction with HAVI NG and PAGE expressions.

The syntax is as follows:
[Attrl, Attr2, .] IN StatenentNane

The example below helps answer the questions, "Which products do my highest value customers buy?" and
"What is my total spend with suppliers from which | purchase my highest spend commodities?"

DEFI NE Hi ghVal ueCust AS SELECT
SUM Sal esAnpunt) AS Val ue

GROUP BY Custld

HAVI NG Val ue>10000 ;

RETURN Top_HVC Products AS SELECT
COUNT(1) AS NunBal es

WHERE [Cust|d] I N Hi ghVal ueCust

GROUP BY Product Nanme

ORDER BY Nunfal es DESC

PAGE(0, 10)

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

Chapter 5
Sets and Multi-assign Data

EQL supports sets, in particular the use of sets to represent multi-assign attributes.

About sets
Aggregate functions
Row functions

Set constructor
Quantifiers

Grouping by sets

About sets

EQL represents multi-assign attributes from the corpus as sets.

A set consists of a group of elements, typically derived from the values of a multi-assign attribute. EQL sets
are intended to behave like mathematical sets: the order of the elements within a set is not specified (and, in
general, not observable). An empty set is a set that contains no elements.

All elements in a set must be of the same data type. If the elements in the set come from two multi-assign
attributes (for example, by using the | NTERSECTI ON row function), then those two multi-assign attributes must
be of the same data type. Sets may not contain duplicate values and sets may not contain other sets.

Sets are constructed in an EQL statement as follows:

» From a reference to a multi-assign attribute. For example, using SELECT with a multi-assign attribute will
return the vales of that attribute in a set. The source multi-assign attribute may be a standard attribute or a
managed attribute.

» From a single-assign attribute, as an argument to the SET function.

» From an expression that results in a set. For example, using a UNI ON function will return a set that is a
union of two input sets. Note that these set expressions require at least one set on which to operate.

» From a set constructor.
All of these methods are described in this section.

Note that sets are not persistent from one EQL query to another.

Set data types
The data types for sets are:

e ndex: bool ean- set for multi-assign Boolean attributes

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 81

* ndex: dat eTi me- set for multi-assign dateTime attributes

* ndex: doubl e- set for multi-assign double attributes

* ndex: durati on-set for multi-assign duration attributes

* ndex: geocode- set for multi-assignh geocode attributes

* ndex: | ong- set for multi-assign 32-bit integer and 64-bit long attributes
* ndex: string-set for multi-assign string attributes

e ndex:tine-set for multi-assign time attributes

» di nensi on- set for multi-assign managed attributes

Sets are strictly typed. All of the elements of a specific set must have the same data type. For example, this
set:

{3, 4.0, 'five'}
is invalid because it contains an integer, a double, and a string.

An important special case is that EQL considers values from two different managed attribute hierarchies to
have different types. Therefore, a set may not contain values from different hierarchies.

Sets and NULL

Sets may not contain NULL values. In addition, sets may not be NULL, but they may be empty. These
requirements apply to both multi-assign corpus attributes and other expressions of set type.

If a corpus record has no assignments for a multi-assign attribute, then in an EQL query, that attribute's value
for that record is the empty set.

The results of an EQL statement (whether DEFI NE or RETURN) may contain sets. This means, for instance,
that you can define an entity (view) that provides all of the values of a multi-assign attribute to queries that use
that entity.

Note that the | SNULL and | S NOT NULL operations are not supported on sets. Instead, use the | S_ EMPTY
and | S_NOT_EMPTY functions to determine whether a set is empty. Likewise, the | S_ EMPTY and
I S NOT_EMPTY functions cannot be used on atomic values (such as on a single-assign attribute).

Set equality

Set equality is the same as mathematical set equality: two sets are equal if and only if they contain exactly the
same elements, no more, no less. The order of the elements in the set is immaterial. Two empty sets are
equal.

Set equality and inequality are defined only on two sets of the same type. For example, you cannot compare
an mdex: | ong- set and an ndex: geocode- set for equality; doing so will result in an EQL type error.

You can use the = (equal) and <> (not equal) operators to test for equality between sets. Note that the < (less
than) and > (greater than) operators are not defined for sets.

Sets, functions, and operators

This chapter documents the aggregation and row functions that are used with sets.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 82

In addition, sets can be used with the following functions that work on both sets and single-assign attributes,
and are documented elsewhere in this guide:

* ARB on sets looks at all of the rows (both empty sets and non-empty sets) in the group and selects the set
value from one of the rows. For details on this function, see ARB on page 76.

e COUNT counts all non-NULL sets (that is, all the sets in the group, including the empty ones). For details,
see COUNT function on page 43.

e COUNTDI STI NCT counts all of the sets, including the empty ones. For details, see COUNTDISTINCT
function on page 44.

As mentioned above, you can use the = (equal) and <> (not equal) operators to test for equality between sets.
The other operators (such as the * multiplication operator) cannot be used on sets.

Aggregate functions

EQL provides three aggregators for working with sets.

The set aggregate functions can be used only in SELECT clauses.

SET function
SET_INTERSECTIONS function
SET_UNIONS function

SET function

The SET aggregation function takes a single-assign attribute and constructs a set of all of the (non-NULL)
values from that attribute.

Single-assign attributes have non-set data types (such as ndex: | ong). So the SET function takes a non-set
data type attribute and produces a set data type result (for example, ndex: | ong- set).

The SET function's behavior is as follows:

» All NULL values are discarded. This means that if there are two non-NULL values for an attribute and one
NULL value, then only the two non-NULL values are returned.

 If an attribute has no non-NULL values, then the empty set is returned.

e Duplicate values in an attribute are discarded. For example, if three records all have a WineType=Red
assignment and two of them have Price=14.95 assignments (the third having Price=21.95), then only two
Price values (one 14.95 and one 21.95) will be returned for the Red set.

e String values are case-sensitive. Therefore, the string value "Merlot" is distinct from the string value
"merlot", which means that they are not duplicate values.

e The order of the values within a set is unspecified and unobservable.

The resulting set will have a set data type (such as ndex: doubl e- set). All subsequent operations on it must
follow the rules for sets.

The SET function is available in one-argument and two-argument versions, as described below. This function
can be used only in SELECT clauses.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 83

SET one-argument version

The syntax of the one-argument version of the SET function is:

SET(<si ngl e-assi gn_attri bute>)

where the data type of the attribute must be a non-set data type (such as ndex: doubl e for a single-assign
double attribute).

In this example, Price is a single-assign double attribute:

RETURN results AS
SELECT

SET(Price) AS prices
GROUP BY W neType
ORDER BY W neType

The result of this statement might be:

W neType prices

Blanc de Noirs	{ 16.99 }
Bordeaux:	{ 21.99 }
Brut	{ 22.99, 23.99 }
Chardonnay:	{ 17.95, 34.95}
Merlot:	{ 25.99 }
Pinot Noir:	{ 14.99
Red:	{ 12.99, 13.95, 17.5, 18.99, 21.99, 9.99 }
Wite:	{ 20.99, 32.99, 43.99 }
Zi nfandel :	{}

In the results, note that Zinfandel has an empty set because Zinfandel does not have a Price attribute
assignment.

SET two-argument version

For situations where the result of the SET aggregator can be extremely large (causing the Dgraph to consume
excessive memory), a two-argument form of the aggregator is provided to limit the set size.
The syntax of the two-argument version of the SET function is:
SET(<si ngl e-assign_attri bute> <max-size>)
where:
e single-assign_attribute is an attribute whose data type is a non-set data type (such as ndex: st ri ng for a
single-assign string attribute).

e max-size is an integer that specifies the maximum size of the set. If max-size is less than the number of
elements in the set, Endeca Server arbitrarily chooses which elements to discard; this choice is stable
across multiple executions of the query. If max-size is 0 (zero) or a negative number, SET always returns

the empty set.
Note that max-size must be an integer literal:
SET(Price, 3) is valid.
SET(Price, x) is not valid, even if x is an integer.

This sample query is the same as the one-argument example, except that the query limits the sets to a
maximum of two elements:

RETURN results AS
SELECT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 84

SET(Price, 2) AS prices
GROUP BY W neType
ORDER BY W neType

The result of this statement might be:

W neType prices

Blanc de Noirs	{ 16.99 }
Bordeaux:	{ 21.99
Brut	{ 22.99, 23.99 }
Chardonnay:	{ 17.95, 34.95 }
Merlot:	{ 25.99 }
Pinot Noir:	{ 14.99 }
Red:	{ 12.99, 9.99 }
Wite:	{ 20.99, 32.99 }
Zi nfandel :	{}

In the results, note that Red set now has two elements, while it had six elements with the one-argument SET
version. Likewise with the White set, which previously had three elements.

Data type errors

When working with the SET function, keep in mind that its resulting sets are of the set data types, such as a
ndex: doubl e- set data type.
For example, assume that Price is a multi-assign double attribute. This incorrect example:

RETURN results AS

SELECT SET(Price) AS prices
GROUP BY W neType

HAVI NG prices > 10

will throw this error:

In statement "results": In HAVING cl ause: Cannot conpare ndex: doubl e-set and ndex: | ong

The reason for the error is that the "prices" set is of type mdex: doubl e- set and it is being compared to the
number 10 (which is an ndex: doubl e type).

The query should therefore be corrected to something like this:

RETURN results AS

SELECT SET(Price) AS prices

GROUP BY W neType

HAVI NG SOVE x | N prices SATISFIES (x > 10)

In this example, the SATI SFI ES expression allows you to make a numerical comparison.

SET_INTERSECTIONS function

The SET_| NTERSECTI ONS aggregation function takes a multi-assign attribute and constructs a set that is the
intersection of all of the values from that attribute.

The syntax of the SET_| NTERSECTI ONS function is:
SET_| NTERSECTI ONS(<mul ti - assi gn_attri bute>)

where the data type of the attribute must be a set data type (such as ndex: stri ng- set for a multi-assign
string attribute).

This function can be used only in SELECT clauses.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data

85

SET_INTERSECTIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_| NTERSECTI ONS(Body) AS bodyl nt ersecti on
GROUP BY W neType
ORDER BY W neType

The result of this statement might be:

W neType bodyl nt er secti on

Bordeaux:	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merl ot	{1}
Pinot Noir	{ Supple }
Red [{} I	
wite	{
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

Bordeaux: Assigned on three records, with each record having two Body assignments of "Silky" and
"Tannins". Therefore, there is an intersection among the three records and a two-element set is returned.

Brut: Assigned on two records, with each record having one Body assignment of "Robust". Therefore,
there is an intersection between the two records and a one-element set is returned.

Chardonnay: Assigned on two records, but neither record has a Body assignment. Therefore, there is no
intersection between the two records (because there are no values to compare) and the empty set is
returned.

Merlot: Assigned on two records, with one record having one Body assignment of "Fruity" and the other
record having no Body assignment. Therefore, there is no intersection between the two records and the
empty set is returned.

Pinot Noir: Assigned on only one record, which has one Body assignment of "Supple". Therefore, there is
an intersection on that record.

Red: Assigned on eight records, with six records having two Body assignments of "Silky" and "Tannins",
one record with two Body assignments of "Robust" and "Tannins", and the eighth record with one Body
assignment of "Robust". Therefore, there is no intersection among the eight records and the empty set is
returned.

White: Assigned on four records, with the first record having two Body assignments of "Fresh" and
"Robust", the second record with two Body assignments of "Firm" and "Robust", and the third and fourth
records with no Body assignments. Therefore, there is no intersection among the four records and the
empty set is returned.

Zinfandel: Assigned on only one record with two Body assignments of "Robust" and "Tannins". Therefore,
there is an intersection on that record and a two-element set is returned.

SET_UNIONS function

The SET_UNI ONS aggregation function takes a multi-assign attribute and constructs a set that is the union of
all of the values from that attribute.

The syntax of the SET_UNI ONS function is:

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 86

SET_UNI ONS(<mul ti -assign_attri bute>)

where the data type of the attribute must be a set data type (such as nmdex: stri ng- set for a multi-assign
string attribute).

This function can be used only in SELECT clauses.

SET_UNIONS example

In this example, Body is a multi-assign string attribute:

RETURN results AS
SELECT SET_UNI ONS(Body) AS bodyUni on
GROUP BY W neType
ORDER BY W neType

The result of this statement might be:

W neType bodyUni on

Bor deaux	{ Silky, Tannins }
Brut	{ Robust }
Chardonnay	{ }
Merl ot	{ Fruity }
Pinot Noir	{ Supple }
Red	{ Robust, Silky, Tannins }
Wite	{ Firm Fresh, Robust }
Zinfandel	{ Robust, Tannins }

The sets are derived as follows:

Bordeaux: Assigned on three records, with each record having two Body assignments of"Silky" and
"Tannins". Therefore, the union returns a two-element set of the two assignments.

Brut: Assigned on two records, with each record having one Body assignment of "Robust". Therefore, the
union returns a one-element set with "Robust".

Chardonnay: Assigned on two records, but neither record has a Body assignment. Therefore, the union is
empty.

Merlot: Assigned on two records, with one record having one Body assignment of "Fruity" and the other
record having no Body assignment. Therefore, there is a union of the single assignment on the one
record.

Pinot Noir: Assigned on only one record, which has one Body assignment of "Supple". Therefore, there is
a union on that record.

Red: Assigned on eight records, with six records having two Body assignments of "Silky" and "Tannins",
one record with two Body assignments of "Robust" and "Tannins", and the eighth record with one Body
assignment of "Robust". Therefore, the resulting union produces a three-element set of the three distinct
assignments.

White: Assigned on four records, with the first record having two Body assignments of "Fresh" and
"Robust", the second record with two Body assignments of "Firm" and "Robust", and the third and fourth
records with no Body assignments. Therefore, there is a union of the "Firm", "Fresh", and "Robust"
assignments.

Zinfandel: Assigned on only one record with two Body assignments of "Robust" and "Tannins". Therefore,
there is a union on that record.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 87

Row functions

EQL provides a number of row functions for working with sets.

The set row functions can be used anywhere that an arbitrary expression can be used. For example, they can
be used in SELECT clauses, WHERE clauses, ORDER BY clauses, and so on.
UNION function

INTERSECTION function

DIFFERENCE function

SUBSET function

IS_MEMBER_OF function

ADD_ELEMENT function

IS_EMPTY and IS_NOT_EMPTY functions

SINGLETON function

CARDINALITY function

TRUNCATE_SET function

UNION function

The UNI ON row function takes two sets of the same data type and returns a set that is the union of both input
sets.

The syntax of the UNI ON function is:

UNI ON(<set 1>, <set 2>)

where:

» setl is a set of any set data type (such as ndex: stri ng- set). For example, setl can be a multi-assign
string attribute.

» set2 is a set of the same set data type as setl. For example, if setl is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

If an attempt is made to union two sets of different set data types, an error message is returned similar to this
example:
"UNTON' is not a valid function on the types (ndex:string-set, mdex:doubl e)

In this error case, UNI ON was used with a multi-assign string attribute (ndex: st ri ng- set) and a multi-
assign double attribute (mdex: doubl e- set) as inputs.

UNION example

In this example, both Body and Flavors are multi-assign string attributes and WinelD is the primary key of the
records:

RETURN results AS

SELECT

W nel D AS i dRec,
UNI ON(Body, Fl avors) AS unionAttrs

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 88

WHERE W nel D BETWEEN 5 AND 9
ORDER BY i dRec

The result of this statement might be:

i dRec uni onAttrs

5	{ Blackberry, Earthy, Silky, Tannins, Toast }
6	{ Berry, Plum Robust, Zesty }
7	{ Cherry, Pepper, Prune, Silky, Tannins }
8	{ Cherry, Cak, Raspberry, Robust }
9	{ Earthy, Fruit, Strawberry, Silky, Tannins }

To take one set as an example, Record 5 has "Silky" and "Tannins" for its two Body assignments and
"Blackberry", "Earthy", and "Toast" for its three Flavors assignments. The resulting set is a union of all five
attribute values.

INTERSECTION function

The | NTERSECTI ON row function takes two sets of the same data type and returns a set that is the
intersection of both input sets.

The syntax of the | NTERSECTI ON function is:

| NTERSECTI ON(<set 1>, <set 2>)

where:

» setl is a set of any set data type (such as ndex: stri ng- set). For example, setl can be a multi-assign
string attribute.

e set2 is a set of the same set data type as setl. For example, if setl is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

If an attempt is made to intersect two sets of different set data types, an error message is returned similar to
this example:

"I NTERSECTI ON' is not a valid function on the types (ndex:string-set, nmdex:doubl e)

In this error case, | NTERSECTI ON was used with a multi-assign string attribute (ndex: stri ng-set) and a
multi-assign double attribute (mdex: doubl e- set) as inputs.

INTERSECTION example

In this example, both Body and Flavors are multi-assign string attributes and WinelD is the primary key of the
records:

RETURN results AS
SELECT
W nel D AS i dRec,
| NTERSECT!| ON(Body, Fl avors) AS intersectAttrs
WHERE W nel D BETWEEN 5 AND 9
ORDER BY i dRec

The result of this statement might be:

i dRec intersectAttrs

| 5] { Earthy } |
| 61 {} |
[71 {3} |

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 89

Records 5 and 8 have one-element result sets because there is one intersection between their Body and
Flavors assignments, while Record 9 has a two-element intersection. Records 6 and 7 return empty sets
because there is no intersection among their Body and Flavors assignments.

DIFFERENCE function

The DI FFERENCE row function takes two sets of the same data type and returns a set containing all of the
elements of the first set that do not appear in the second set.

The syntax of the DI FFERENCE function is:

DI FFERENCE(<set 1>, <set 2>)

where:

» setl is a set of any set data type (such as ndex: stri ng- set). For example, setl can be a multi-assign
string attribute.

e set2 is a set of the same set data type as setl. For example, if setl is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute).

Examples of some results are as follows ({ } indicates an empty set):

DIFFERENCE({ 1, 2, 3, 4, 5}, {1, 3, 5}) ={ 2, 4}
DI FFERENCE({ }, { 1, 3, 5} }

DI FFERENCE({ 1, 2, 3}, { }

DI FFERENCE({ 1, 2 q e,
data type

{1, 2, 3}
}) yields a checking error because the two sets are not of the sane

oo

DIFFERENCE example

In the examples below, both Body and Flavors are multi-assign string attributes. Their values for five records
are:

Record 5: Body=Earthy, Silky, Tannins
Fl avor s=Bl ackberry, Earthy, Toast
Record 6: Body=Robust
Fl avors=Berry, Plum Zesty
Record 7: Body=Si | ky, Tannins
Fl avor s=Cherry, Pepper, Prune
Record 8: Body=0ak, Robust
Fl avor s=Cherry, Oak, Raspberry
Record 9: Body=Fruit, Strawberry, SilKky, Tannins
Fl avors=Fruit, Earthy, Strawberry

First, we want all the elements of the Body set that do not appear in the Flavors set:

RETURN results AS
SELECT
W nel D AS i dRec,
DI FFERENCE(Body, Flavors) AS diffAttrs
VWHERE W nel D BETWEEN 5 AND 9
ORDER BY i dRec

The result of this statement might be:
diffAttrs i dRec

| { Silky, Tannins } | 5|

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 90

{ Robust }	6
{ Silky, Tannins }	7
{ Robust }	8
{ Silky, Tannins }	9

Records 5, 7, and 9 have "Silky" and "Tannins" in the Body set, but these values do not appear in the Flavors
set. Likewise, Records 6 and 8 have "Robust" in the Body set, but that value does not appear in the Flavors
set.

We then reverse the difference comparison between the two sets. The statement is identical to the first
example, except that Flavors is the first argument rather than Body:
RETURN results AS
SELECT
W nel D AS i dRec,
DI FFERENCE(Fl avors, Body) AS diffAttrs

WHERE W nel D BETWEEN 5 AND 9
ORDER BY i dRec

This time, the result of this statement will look different:
diffAttrs i dRec

{ Blackberry, Toast }	5
{ Berry, Plum Zesty }	6
{ Cherry, Pepper, Prune }	7
{ Cherry, Raspberry }	8
{ Earthy } [91	

To take Record 9 as an example of the output, "Earthy" is the only element from the first set (the Flavors set)
that does not appear in the second set (the Body set).

SUBSET function

The SUBSET row function takes two sets of the same data type and returns a Boolean indicating whether the
first set is a subset of the second set.

The syntax of the SUBSET function is:

SUBSET(<set 1>, <set 2>)

where:

» setl is a set of any set data type (such as ndex: stri ng- set). For example, setl can be a multi-assign
string attribute.

e set2 is a set of the same set data type as setl. For example, if setl is a multi-assign string attribute, then
set2 must also be a set of strings (such as another multi-assign string attribute). set2 will be checked to
see if it is completely contained within setl.

Examples of some results are as follows ({ } indicates an empty set):

SUBSET({ }, { }) = TRUE

SUBSET({ }, { 1, 2, 3 }) = TRUE

SUBSET({ 1, 2}, { 1, 2 }) = TRUE

SUBSET({ 1, 2}, { 1, 2, 3}) = TRUE

SUBSET({ 1, 2}, { 1, 3, 5}) = FALSE

SUBSET({ 1, 2}, { 'x', '"y', "z'" }) yields a checking error because the two sets are not of the sane
data type

Note that the empty set is always a subset of every other set (including the empty set).

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 91

SUBSET example

In this example, both Flavors and Body are multi-assign string attributes, and WinelD is the primary key of the
records:

RETURN results AS
SELECT
WnelD AS id,
SUBSET(Fl avors, Body) AS subAttrs
WHERE W nel D < 5
ORDER BY id

The result of this statement might be:
id subAttrs

1	true
2	true
3	false
4	false

The results show that the Flavors set is a subset of the Body set in Records 1 and 2, but not in Records 3 and
4.

IS MEMBER_OF function

The | S_MEMBER _OF row function takes an atomic value and a set, and returns a Boolean indicating whether
the atomic value occurs in the set.

The syntax of the | S_MEMBER _OF function is:
| S MEMBER_OF(<at oni c-val ue>, <set>)

where:

» atomic-value is an atomic value, such as 50 (for an integer set) or 'test' (for a string set). It can also be a
single-assign attribute. atomic-value will be checked to see whether it occurs in set. The type of the atomic
value must match the type of the set's elements.

e setis a set in which its elements have the same set data type as atomic-value. For example, if atomic-
value is a single-assign string attribute, then the elements of set must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

IS MEMBER OF(1, { }) = FALSE
IS_MEMBER OF(1, { 1, 2, 3 1})
IS MEMBER OF(1, { 2, 3, 4 1})

I S_MEMBER_OF(NULL, { }) = NULL

I'S_ MEMBER OF(NULL, { 1, 2, 3 }) = NULL

IS MEMBER OF(1, { 'a', 'b', 'c' }) yields a checking error because the atonic value and the set
el enents are not of the sanme data type

TRUE
FALSE

The | S_ MEMBER_OF function is intended as a membership check function.

IS_ MEMBER_OF examples

Example 1: In this example, the statement determines whether the number 82 (which is an integer) occurs in
the Score set (which has integer elements):

RETURN results AS
SELECT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 92

W nel D AS i dRec,

IS MEMBER OF(82, Score) AS menberAttrs
WHERE W nel D BETWEEN 22 AND 25
ORDER BY i dRec

The result of this statement might be:

22	false
23	true
24	false
25	true

The results show that the number 82 occurs in the Score set of Records 23 and 25, but not in Records 22 and
24,

Example 2: This example is similar to Example 1, except that it uses the Ranking single-assign integer
attribute as the first argument to the | S MEMBER OF function and the Score set (which has integer elements)

as the second argument:

RETURN results AS
SELECT

W nel D AS i dRec,

| S_MEMBER OF(Ranki ng, Score) AS nenberAttrs
ORDER BY i dRec

Example 3: This example is similar to Example 2, except that it uses the | S_ MEMBER_CF function in a WHERE
clause:

RETURN results AS
SELECT
W nel D AS i dRec,
Price AS prices
WHERE | S_MEMBER OF(Ranki ng, Score) AND Price |'S NOT NULL
ORDER BY i dRec

Using the IN expression

You can use the | N expression as an alternative to the | S_ MEMBER _CF function for membership tests. To
illustrate this, Example 3 can be re-written as:

RETURN results AS
SELECT
W nel D AS i dRec,
Price AS prices
WHERE Ranking IN Score AND Price |I'S NOT NULL
ORDER BY i dRec

For details on the | N expression, see IN on page 79.

ADD_ELEMENT function

The ADD_ELEMENT row function adds an element to a set.

ADD_ ELEMENT takes an atomic value and a set and returns that set with the atomic value added to it. The
atomic value must be of the same data type as the current elements in the set. The atomic value is not added
to the set if a duplicate value is already in the set. Note that the atomic value is not added to the set in the
Dgraph, but only to the new, temporary set that is created by the ADD_ELEMENT function.

The syntax of the ADD_EL EMENT function is:

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 93

ADD_ELEMENT(<at omi c-val ue>, <set>)
where:

e atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string set. It can also be a
single-assign attribute. atomic-value will be added to set. The type of the atomic value must match the
type of the set's elements.

e setis a set to which atomic-value will be added. The elements of set must have the same set data type as
atomic-value. For example, if atomic-value is a single-assign double attribute, then the elements of set
must also be strings.

Examples of some results are as follows ({ } indicates an empty set):

ADD ELEMENT(1, { 2, 3}) ={ 1, 2, 3}

ADD ELEMENT(1, { 1, 2}) ={ 1, 2}

ADD_ELEMENT(NULL, { 1, 2}) ={ 1, 2}

ADD_ELEMENT(1, { 'a', 'b' }) yields a checking error because the atonmic value and the set elenents
are not of the sane data type

ADD_ELEMENT examples
Example 1: In this example, the number 100 is added to the Score integer set (which currently does not have
a value of 100 in it):

RETURN results AS
SELECT
W nel D AS i dRec,
ADD_ELEMENT(100, Score) AS addAttrs
WHERE W nel D BETWEEN 10 AND 14
ORDER BY i dRec
The result of this statement might be:

addAttrs i dRec

The results show that the number 100 was added to the sets. For example, the Score set of Record 12
previously had 81 and 89 as its elements, but now has 81, 89, and 100 as the element values.

IS_ EMPTY and IS_NOT_EMPTY functions

The | S EMPTY and | S_NOT_EMPTY functions determine whether a set is or is not empty. The | S EMPTY and
I S NOT EMPTY functions provide alternative syntaxes for these functions.

/} Note: The | SNULL and | S NOT NULL operations are not supported on sets.

Sample data for the examples

The sample data used to illustrate these functions consists of a Body multi-assign string attribute and five
records:

Rec I D Body attribute

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 94

| 16 | { Silky, Tannins } |
[17| { } |
18	{ Silky, Tannins }
19	{ Fresh, Robust }
20	{ }
[21	{ }
22	{ Firm Robust }

Three of the records have no Body assignment (and therefore are empty sets), while the other three records
have two Body assignments.

Note that these functions are used in WHERE clauses in the examples. However, they can be used anywhere
that an arbitrary expression can be used, such as in SELECT and HAVI NG clauses.

IS_EMPTY function

The | S_EMPTY function takes a set and returns TRUE if that set is empty. The syntax of the | S_EMPTY
function is:

I'S_ EMPTY(<set >)

where set is a set of any set data type (such as ndex: stri ng-set or ndex: | ong- set). For example, set
can be a multi-assign double attribute.

Examples of two results are as follows (note that { } indicates an empty set):

IS EMPTY({ }) = TRUE
IS EMPTY({ 1 }) = FALSE

In this example, the Body attribute is checked for emptiness:

RETURN results AS
SELECT
W nel D AS i dRec,
Body AS bodyAttr
WHERE (W nel D BETWEEN 16 AND 22) AND (| S_EMPTY(Body))
ORDER BY i dRec

The result of this statement would be:

In the result, only Records 17, 20, and 21 are returned because they have an empty Body set.

IS EMPTY function

The | S EMPTY function provides an alternative syntax to | S_EMPTY and also returns TRUE if that set is empty.
The syntax of the | S EMPTY function is:

<set> | S EMPTY

where set is a set of any set data type, such as a multi-assign double attribute.

The previous | S_EMPTY example can be re-written as follows:

RETURN results AS
SELECT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 95

W nel D AS i dRec,

Body AS bodyAttr
WHERE (W nel D BETVEEN 16 AND 22) AND (Body |S EMPTY)
ORDER BY i dRec

The results of this example would the same as the previous | S_EMPTY example.

IS_ NOT_EMPTY function

The I S_NOT_EMPTY function takes a set and returns TRUE if that set is not empty. The syntax of the
I S NOT_EMPTY function is:

| S_NOT_EMPTY(<set >)
where set is a set of any set data type. For example, set can be a multi-assign geocode attribute.

Examples of two results are as follows ({ } indicates an empty set):

I'S_NOT_EMPTY({ }) = FALSE
I'S_NOT_EMPTY({ 1 }) = TRUE

In this example, the Body attribute is checked for non-emptiness:

RETURN results AS
SELECT
W nel D AS i dRec,
Body AS bodyAttr
WHERE (W nel D BETWEEN 16 AND 22) AND (| S_NOT_EMPTY(Body))
ORDER BY i dRec

The result of this statement might be:

{ Silky, Tannins }	
{ Silky, Tannins }	
{ Fresh, Robust }	19
{ Firm Robust }	

In the result, Records 16, 18, 19, and 22 are returned because they have non-empty Body sets. However,
Records 17, 20, and 21 are not returned because there is no Body assignment for those records (and
therefore those sets would be empty).

IS NOT EMPTY function

The | S NOT EMPTY function provides an alternative syntax to | S_NOT_EMPTY and also returns TRUE if that
set is not empty.

The syntax of the | S NOT EMPTY function is:

<set> |'S NOT EMPTY

where set is a set of any set data type, such as a multi-assign string attribute.

The previous | S_NOT_EMPTY example can be re-written as follows:

RETURN resul ts AS
SELECT
W nel D AS i dRec,
Body AS bodyAttr
WHERE (W nel D BETWEEN 16 AND 22) AND (Body IS NOT EMPTY)
ORDER BY i dRec

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 96

The results of this example would the same as the previous | S_NOT_EMPTY example.

SINGLETON function

The SI NGLETON function takes a single atomic value and returns a set containing only that value.

The syntax of the SI NGLETON function is:

SI NGLETON\(<at omi c- val ue>)

where atomic-value is an atomic value, such as 50 for an integer set or 'fifty' for a string set. It can also be a
single-assign attribute. The resulting set will contain only atomic-value.

Examples of some results are as follows ({ } indicates an empty set):

SINGLETON(NULL) = { }
SINGLETON(1) = { 1}
SINGLETON('a') = { 'a' }

SINGLETON example

In this example, WineType is a single-assign string attribute and WinelD is the primary key of the records:

RETURN results AS
SELECT

W nel D AS i dRec,

SI NGLETON(W neType) AS singl eAttr
WHERE W nel D BETVWEEN 10 AND 14
ORDER BY i dRec

The result of this statement might be:
i dRec singl eAttr

| 10 | { Bordeaux } |
| 11 | { Zinfandel } |
[12 | { Red } I
| 13 | { Bordeaux } |
| 14 | { Merlot } |

CARDINALITY function

The CARDI NALI TY row function takes a set and returns the number of elements in that set.

The syntax of the CARDI NALI TY function is:
CARDI NALI TY(<set >)

where set is a set of any set data type (such as mdex: stri ng-set or ndex: | ong- set). For example, set
can be a multi-assign double attribute.

CARDINALITY example

In this example, Body is a multi-assign string attribute and WinelD is the primary key of the records:

RETURN results AS
SELECT

WnelD AS id,

CARDI NALI TY(Body) AS nunBody
WHERE W nel D < 7

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 97

ORDER BY id

The result of this statement might be:

id nunBody
| 1] 0|
[2] 0|
| 31 2|
[41 2|
| 51 4|
| 61 1]

The numBody column shows the number of elements in the Body set for each record.

TRUNCATE_SET function

The TRUNCATE_SET row function takes a set and an integer, and returns a copy of the set with no more than
the specified number of elements in it.

The syntax of the TRUNCATE_SET function is:
TRUNCATE_SET(<set >, <mmx-size>)

where:

» setis a set of any set data type (such as ndex: string-set or ndex: | ong- set). For example, set can
be a multi-assign string attribute.

* max-size is an integer that specifies the maximum size of the truncated set. If max-size is less than the
number of elements in the set, Endeca Server arbitrarily chooses which elements to discard; this choice is
stable across multiple executions of the query. If max-size is 0 (zero) or a negative number, the empty set
is returned.

Examples of some results are as follows ({ } indicates an empty set):

TRUNCATE_SET({ }, 2) =1{ }
TRUNCATE_SET({ 'a', 'b'

TRUNCATE_SET({ 'a', 'b', 'c' }
TRUNCATE_SET({ 1, 2 }, 20) = {
TRUNCATE_SET({ 1, 2 }, -3) ={

L2 ={'b, "¢}
1, 2}
}

TRUNCATE_SET is useful when you want to ensure that final results of a set are of a reasonable and
manageable size for your front-end UI.

TRUNCATE_SET example

In this example, Flavors is a multi-assign string attribute and WinelD is the primary key of the records:

RETURN results AS
SELECT
WnelD AS id,
Fl avors AS full Fl avors,
TRUNCATE_SET(ful | Fl avors, 1) AS truncFl avors
WHERE W nel D BETVWEEN 15 AND 19
ORDER BY id

The result of this statement might be:

ful |l Fl avors id truncFl avors

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 98

Bl ackberry, OGaky, Strawberry }
Currant, Licorice, Tobacco } Licorice }

| { | | { Blackberry } |
[{ I [{ I
| { Cedar, Cherry, Spice } | 17 | { Cherry } |
[{ I [{ I
I { | I { |

Bl ack Cherry, Cedar, Fruit } Bl ack Cherry }
Herbal , Strawberry, Vanilla } Her bal }

The fullFlavors set shows the full set of Flavors assignments on each of the five chosen records. The
fullFlavors set is then truncated to a one-element set.

Set constructor

EQL allows users to write sets directly in queries.

The syntax of the set constructor is:

{<expr1> [, <expr2>]*}
where the curly braces enclose a comma-separated list of one or more expressions.

For example, this is an integer set:
{1, 4, 7, 10}

while this is a string set:
{ "Red', "Wiite', 'Merlot', 'Chardonnay' }

Keep the following in mind when using set constructors:

e Set constructors may appear anywhere in a query where an expression is legal. (Because set
constructors have a set type, you will get an EQL checking error if you use a set constructor in a context
that expects an atomic value.)

e The individual elements of the set constructor may be arbitrary expressions, as long as they have the
correct type. For instance, you may write the following as long as X, y, and z are integers:

{ x, y + z, 3, H ERARCHY_LEVEL(nmanagedAttr) }

« All of the expressions within the curly braces must have the same type. For example, you cannot mix
integers and strings.

» Empty set constructors are not allowed; there must be at least one expression within the curly braces.

Note that EQL does not auto-convert integers to doubles or string literals to managed-attribute values within a
set constructor. Therefore, writing { 1, 2. 5} results in a type error. In this case, you can use TO_DOUBLE or
TO_MANAGED VAL UE to perform the conversion manually (for example, { TO DOUBLE(1), 2. 5}).

Set constructor examples

In this first example, the SELECT clause constructs a string-type set (named selectWines) that contains 'Red’
and 'White' as its two elements. The selectWines set is then used in a HAVI NG clause to limit the returned
records to those have WineType assignments of either '‘Red’ or 'White'.

RETURN results AS
SELECT
{'Red', "'Wiite'} AS selectWnes,
W nel D AS i dRec,
W neType AS wi nes,
Body AS bodyAttr
HAVI NG wi nes | N sel ect W nes

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 99

ORDER BY i dRec

This second example is similar to the first example, except that the set is used in a WHERE clause:

RETURN results AS
SELECT
W nel D AS i dRec,
W neType AS wi nes,
Body AS bodyAttr
VWHERE W neType IN {'Red', 'Wite'}
ORDER BY i dRec

Both queries would return only records with a WineType of 'Red' or 'White'.

Quantifiers

EQL provides existential and universal quantifiers for use with Boolean expressions against sets.

Both types of expressions can appear in any context that accepts a Boolean expression, such as SELECT
clauses, WHERE clauses, HAVI NG clauses, ORDER BY clauses, join conditions, and so on.

Existential quantifier

An existential quantifier uses the SOVE keyword. In an existential quantifier, if any item in the set has a match
based on the comparison operator that is used, the returned value is TRUE.

The syntax of the existential quantifier is:
SOME <id> | N <set> SATI SFI ES (<bool eanExpr >)

where:
 id is an arbitrary identifier for the item to be compared. The identifier must use the NCName format.
» setis a set of any set data type.
* booleanExpr is any expression that produces a Boolean (or NULL).

The expression binds the identifier id within booleanExpr. This binding shadows any other attributes with the
same name inside the predicate. Note that this shadowing applies only to references to identifiers/attributes
that do not have a statement qualifier.

To evaluate an existential quantifier expression, EQL evaluates the predicate expression for every member of
the indicated set. Then, EQL computes the results of the quantifier based on these predicate values as
follows:

1. If set is empty, the quantifier is FALSE.
2. Otherwise, if booleanExpr is true for least one element of set , the quantifier is TRUE.
3. Otherwise, if booleanExpr is false for every id element of set, the quantifier is FALSE.

4. Otherwise (the values of booleanExpr are either false or NULL, with at least one NULL), the quantifier is
NULL.

Some results of this evaluation are:
e SOME x | N{} SATI SFI ES (x > 0) is FALSE.
« SOME x I N{-3, -2, 1} SATI SFI ES (x > 0) is TRUE, because the predicate expression is true for x = 1.
e SOME X I N{5, 7,10} SATI SFI ES (x > 0) is TRUE, because the predicate is true for x = 5.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 100

e SOME x | N{ 'foo', '3, '4"} SATI SFI ES (TO_| NTEGER(x) > 0) is TRUE, because the predicate is true for x =
'3

e SOME x | N{ 'foo', *-1', -2 } SATI SFI ES (TO_| NTEGER(x) > 0) is NULL. The predicate is false for x = '-1'
and x ='-2', but NULL for x = 'foo'.

In this existential quantifier example, Body is a multi-assign string attribute (one of whose assignments on
several records is 'Robust’):

RETURN results AS
SELECT
W nel D AS i dRec,
W neType AS wi nes,
Body AS bodyAttr
WHERE SOME x | N Body SATISFIES (x = ' Robust')
ORDER BY i dRec

The result of this statement would be:

bodyAt tr idRec wines

{ Robust, Tannins }	4	Red
{ Robust }	6	Red
{ OCak, Robust	8	Red
{ Robust, Tannins }	11	Zi nfandel
{ Fresh, Robust }	19	Wite
{ Firm Robust }	22	Blanc de Noirs
{ Robust }	23	Brut
{ Robust }	24	Brut
{ Firm Robust }	25	Wite

Only the nine records that have the Body='"Robust' assignment are returned.

Universal quantifier

A universal quantifier uses the EVERY keyword. In a universal quantifier, if every item in the set has a match
based on the comparison operator that is used, the returned value is TRUE.

The syntax of the universal quantifier is:
EVERY <i d> | N <set> SATI SFI ES (<bool eanExpr >)

where i d, set, and bool eanExpr have the same meanings as in the existential quantifier.

The expression binds the identifier id within booleanExpr. This binding shadows any other attributes with the
same name inside the predicate. Note that this shadowing applies only to references to identifiers/attributes
that do not have a statement qualifier.

Similar to an existential quantifier expression, for a universal quantifier expression EQL evaluates the
predicate expression for every member of the indicated set. Then, EQL computes the results of the quantifier
based on these predicate values as follows:

1. If set is empty, the quantifier is TRUE.
2. Otherwise, if booleanExpr is false for at least one element of set , the quantifier is FALSE.
3. Otherwise, if booleanExpr is true for every element of set , the quantifier is TRUE.

4. Otherwise (the values of booleanExpr are either true or NULL, with at least one NULL), the quantifier is
NULL.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 101

Some results of this evaluation are:
* EVERY x| N{} SATI SFI ES (x > 0) is TRUE.
* EVERY x I N{-3, -2, 1} SATI SFI ES (x > 0) is FALSE, because the predicate is false for x = -3.

« EVERY x I N{5, 7,10 } SATI SFI ES (x > 0) is TRUE, because the predicate is true for every value in the
set.

* EVERY x | N{'foo’, '3', '4' } SATI SFI ES (TO_I NTEGER(x) > 0) is NULL. The predicate is true for x = '3' and
x ="'4", but NULL for x = 'foo'.

* EVERY x | N{ foo’, -1, '-2' } SATI SFI ES (TO_I NTEGER(x) > 0) is FALSE, because the predicate is false
for x ="'-1".

This universal quantifier example is very similar to the existential quantifier example above:

RETURN results AS
SELECT
W nel D AS i dRec,
W neType AS wi nes,
Body AS bodyAttr
VWHERE (EVERY x | N Body SATISFIES (x = 'Robust')) AND (WnelD I'S NOT NULL)
ORDER BY i dRec

The result of this statement would be:

bodyAt tr i dRec wi nes

	1	Chardonnay
	2	Chardonnay
{ Robust }	6	Red
	17	Merl ot
	20	Wite
	21	Wite
{ Robust }	23	Brut
{ Robust }	24	Brut

The only records that are returned are those that have only one Body='"Robust' assignment (Records 6, 23,
and 24) and those that have no Body assignments (Records 1, 2, 17, 20, and 21).

In the query, note the use of the "WinelD IS NOT NULL" expression in the WHERE clause. This prevents the
return of other records in the system for which the universal expression would normally be evaluated as TRUE
but which would return empty sets.

Grouping by sets

EQL provides support for grouping by sets.

Using GROUP BY

In the normal grouping syntax for the GROUP BY clause, EQL groups by set equality (that is, rows for which the
sets are equal are placed into the same group).

For example, assume a data set in which Body is a multi-assign attribute and every record has at least one
Body assignment except for Records 1, 2, 17, 20, and 21. This query is made against that data set:

RETURN results AS
SELECT
SET(W nel D) AS | Ds

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Sets and Multi-assign Data 102

GROUP BY Body

The result of this statement might be:

{ Ssilky, Tannins }	{ 10, 12, 13, 16, 18, 3, 5 7, 9}
{ Robust }	{ 23, 24, 6, 8}
{ Robust, Tannins }	{ 11, 4}
{ Firm Robust }	{ 22, 25}
{ Fresh, Robust }	{
{ Supple } [£ I	

Keep in mind that when using GROUP BY that NULL values and empty sets are ignored if selecting from the

corpus (which is the case in this query). Therefore, Records 1, 2, 17, 20, and 21 are not returned because
they have no Body assignments (and thus the empty set is returned for those records).

For more information on the GROUP BY clause, see Specifying GROUP BY on page 32.

Using GROUP BY MEMBERS

The MEMBERS extension to GROUP BY allows grouping by the members of a set. To illustrate the use of
MEMBERS, the previous example can be re-written as:
RETURN results AS

SELECT

SET(W nel D) AS I Ds
GROUP BY MEMBERS(Body) AS BodyType

The result might be:

BodyType | Ds

Fresh	{ 19}
Firm	{ 22, 25}
Supple	{ 14, 15}
Robust	{ 11, 19, 22, 23, 24, 25, 4, 6, 8}
Tannins	{ 10, 11, 12, 13, 16, 18, 3, 4, 5 7, 9}
Silky	{ 10, 12, 13, 16, 18, 3, 5, 7, 9}

Note that like the previous example, Records 1, 2, 17, 20, and 21 are not returned because they have empty
sets for the Body attribute.

For more information on MEMBERS, see MEMBERS extension on page 34.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Chapter 6
EQL Use Cases

This section describes how to handle various business scenarios using EQL. The examples in this section are
not based on a single data schema.

Re-normalization

Grouping by range buckets

Manipulating records in a dynamically computed range value

Grouping data into quartiles

Combining multiple sparse fields into one

Joining data from different types of records

Joining on hierarchy

Linear regressions in EQL

Using an IN filter for pie chart segmentation

Running sum

Query by age

Calculating percent change between most recent month and previous month

Re-normalization

Re-normalization is important in denormalized data models in the Endeca Server, as well as when analyzing
multi-value attributes.

In a sample data set, Employees source records were de-normalized onto Transactions, as shown in the
following example:

DimEmployee_FullName: Tsvi Michael Reiter
DimEmployee_HireDate: 2005-07-01T04:00:00.000Z
DimEmployee_Title: Sales Representative
FactSales RecordSpec: S049122-2
FactSales_SalesAmount: 939.588

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Use Cases 104

Incorrect

The following EQL code double-counts the tenure of Employees with multiple transactions:

RETURN AvgTenure AS
SELECT

AVG(CURRENT_DATE - Di nEnpl oyee_Hi reDate) AS AvgTenure
GROUP BY Di nEnpl oyee Title

Correct

In this example, you re-normalize each Employee, and then operate over them using FROM

DEFI NE Enpl oyees AS

SELECT
ARB(Di nEnpl oyee_Hi reDate) AS Di nEnpl oyee_HireDat e,
ARB(Di mEnpl oyee_Title) AS Di nEnpl oyee Title

GROUP BY Di nEnpl oyee_ Enpl oyeeKey;

RETURN AvgTenure AS
SELECT
AVG(CURRENT_DATE - Di nEnpl oyee_Hi reDate) AS AvgTenure
FROM Enpl oyees
GROUP BY Di nEnpl oyee Title

Grouping by range buckets

To create value range buckets, divide the records by the bucket size, and then use FLOOR or CEI L if needed
to round to the nearest integer.

The following examples group sales into buckets by amount:
/**
* This groups results into buckets by anount,
* rounded to the nearest 1000.
*/
RETURN Resul ts AS
SELECT
ROUND(Fact Sal es_Sal esAmount, -3) AS Bucket,
COUNT(1) AS CT
GROUP BY Bucket

/**
* This groups results into buckets by anount,
* truncated to the next-lower 1000.
*/
RETURN Resul ts AS
SELECT
FLOOR(Fact Sal es_Sal esAmount / 1000) *1000 AS Bucket ,
COUNT(1) AS CT
GROUP BY Bucket

A similar effect can be achieved with ROUND, but the set of buckets is different:
e FLOOR(900/1000) =0
e ROUND(900, - 3) =1000

In the following example, records are grouped into a fixed number of buckets:

DEFI NE Val ueRange AS SELECT
COUNT(1) AS CT
GROUP BY Sal esAnpunt

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Use Cases 105

HAVI NG Sal esAnmpbunt > 1.0
AND Sal esAnpbunt < 10000. 0;

RETURN Buckets AS SELECT
SUM CT) AS CT,
FLOOR((Sal esAmpbunt - 1)/999. 0) AS Bucket

FROM Val ueRange
GROUP BY Bucket
ORDER BY Bucket

Manipulating records in a dynamically computed range
value

The following scenario describes how to manipulate records in a dynamically computed range value.

In the following example:
* Use GROUP to calculate a range of interest.
e Use an empty lookup list to get the range of interest into the desired expression.

Use subtraction and HAVI NGto enable filtering by a dynamic value (HAVI NG must be used because Diff is
not in scope in a WHERE clause on Result).

DEFI NE Cust oner Total s AS SELECT
SUM Sal esAnpunt) AS Tot al
CGROUP BY Cust oner Key ;

DEFI NE Range AS SELECT
MAX(Tot al) AS MaxVal ,
M N(Total) AS M nVal,
((MaxVal - M nVal)/ 10) AS Decil e,
M nVal + (Decile*9) AS ToplOPct
FROM Cust oner Tot al s GROUP ;

RETURN Result AS SELECT

SUM Sal esAnpbunt) AS Tot al ,

Tot al - Range[] . Topl0Pct AS Diff
CROUP BY Cust oner Key
HAVI NG Di f f >0

Grouping data into quartiles

EQL allows you to group your data into quartiles.
The following example demonstrates how to group data into four roughly equal-sized buckets:

/* This finds quartiles in the range
* of Product SubCategory, arranged by
* total sales. Adjust the grouping
* attribute and netric to your use case.
*/
DEFI NE | nput AS SELECT
Pr oduct Subcat egor yNane AS Key,
SUM Fact Sal es_Sal esAnobunt) AS Metric
GROUP BY Key
ORDER BY Metri c;

DEFI NE Quartil elRecords AS SELECT
Key AS Key,

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Use Cases

106

Metric AS Metric
FROM | nput
ORDER BY Metric
PAGE(0, 25) PERCENT;

/* Using MAX(Metric) as the Quartile boundary isn't quite
* right: if the boundary falls between two records, the

* quartile is the average of the values on those two records.

* But this gives the right groupings.

*/
DEFI NE Quartilel AS SELECT

MAX(Metric) AS Quartile,

SUM Metric) AS Metric /* ...or any other aggregate */
FROM Quartil elRecords
GROUP;

DEFI NE Quartil e2Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(25, 25) PERCENT;

DEFI NE Quartile2 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quarti | e2Recor ds

CGROUP;

DEFI NE Quartil e3Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(50, 25) PERCENT;

DEFI NE Quartile3 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quartil e3Records

GROUP;

DEFI NE Quartil e4Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(75, 25) PERCENT;

DEFI NE Quartiled4 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quarti | e4Recor ds

CGROUP;

/**

The technical definition of "Quartile" is

the val ues that segnent the data into four
roughly equal groups. Here, we return not
just the Quartiles, but the nmetric aggregated
over the records within the groups defined

by the Quartiles.

EE I

RETURN Quartiles AS

SELECT
Quartile AS Quartilel,
Metric AS QuartilelMetric,
Quartile2[].Quartile AS Quartile2,

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

EQL Use Cases

107

Quartile2[].Metric AS Quartile2Metric,
Quartile3[].Quartile AS Quartile3,
Quartile3[].Metric AS Quartile3Metric,
Quartiled[].Quartile AS Quartil e4,

Quartiled[].Metric AS QuartiledMetric FROM Quartil el;

Combining multiple sparse fields into one

EQL allows you to combine multiple sparse fields into a single field.

In the example below, we use the AVG and COALESCE functions to combine the | easePaynent and

| oanPaynent fields into a single avgPaynent field.

ID | Make Model | Type leasePayment | loanPayment
1| Audi A4 lease 380
2 | Audi Ad loan 600
3| BMW 325 lease 420
4 | BMW 325 loan 700

RETURN Result AS SELECT
AVGE COALESCE(| oanPaynent , | easePaynent))
AS avgPaynment
FROM Conbi nedCol umms
GROUP BY make

Joining data from different types of records

You can use EQL to join data from different types of records.

Use lookups against Al | BaseRecor ds to avoid eliminating all records of a secondary type when navigation
refinements are selected from an attribute only associated with the primary record type.

In the following example, the following types of records are joined:

Record type 1

Recor dType: Revi ew

Rating: 4

Productld: Drill-X15

Text: This is a great product...

Record type 2

Recor dType: Transaction
Sal esAnpunt: 49. 99
Product1d: Drill-X15

The query is:

DEFI NE Ratings AS SELECT
AVG(Rati ng) AS AvScore

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

EQL Use Cases

108

FROM Al | BaseRecor ds
WHERE Recor dType = ' Revi ew
GROUP BY Productld ;

RETURN TopProducts AS SELECT
SUM Sal esAnpunt) AS Tot al Sal es,

Rat i ngs[Product | d] . AvScore AS AvScore

WHERE RecordType = 'Transaction'
GROUP BY Product | d

ORDER BY Tot al Sal es DESC

PAGE(0, 10)

Joining on hierarchy

The following example shows a transitive join on hierarchy.

This query returns the number of reports in each manager's Or g. (Or g is a managed attribute representing

organizational structure.)

RETURN SELECT
COUNT(1) AS Tot al Menbers,
manager. Org AS Og

FROM Peopl e nanager
JA N Peopl e report

ON | S_ANCESTOR(manager . Org, report. O g)

GROUP BY Org

Linear regressions in EQL

Using the syntax described in this topic, you can produce linear regressions in EQL.

Using the following data set:

ID X Y
1 60 3.1
2 61 3.6
3 62 3.8
4 63 4
5 65 4.1

The following simple formulation:
y = A+ Bx

Can be expressed in EQL as:

RETURN Regr essi on AS SELECT
COUNT(I D) AS N,
SUM X) AS sunk,
SUM Y) AS suny,
SUM X*Y) AS sunXY,

Oracle® Endeca Server : EQL Guide

Version 7.6.1 « December 2013

EQL Use Cases 109

SUM X*X) AS sumX2,
((N*sunXY) - (sumX*sumy)) /
((N*sumX2) - (sumX*sunX)) AS B,
(sunmy- (B*sunX))/ N AS A

GROUP

With the result:

N sumX sumY sumXY sumx2 B A

5 311.000000 | 18.600000 1159.700000 19359.000000 0.187838 -7.963514

Using the regression results
Fory = A+ Bx:

DEFI NE Regressi on AS SELECT
COUNT(I D) AS N,
SUM X) AS sunk,
SUM Y) AS suny,
SUM X*Y) AS sunXY,
SUM X*X) AS sumX2,
((N*sumXY) - (sumX*sumy)) /
((NfsumX2) - (sumX*sumX)) AS B,
(sumy- (B*sunX))/ N AS A

GROUP

RETURN Resul ts AS SELECT
YAS Y, XAS X Regression[].A + Regression[].B * X AS Projection

As a final step in the example above, you would need to PAGE or GROUP what could be a very large number of
results.

Using an IN filter for pie chart segmentation

This query shows how the I Nfilter can be used to populate a pie chart showing sales divided into six
segments: one segment for each of the five largest customers, and one segment showing the aggregate sales
for all other customers.

The first statement gathers the sales for the top five customers, and the second statement aggregates the
sales for all customers not in the top five:

RETURN Top5 AS SELECT
SUM Sal e) AS Sal es
GROUP BY Cust oner
ORDER BY Sal es DESC
PAGE(0, 5) ;

RETURN O hers AS SELECT
SUM Sal e) AS Sal es

VWHERE NOT [Customer] | N Top5
GROUP

Running sum

A running (or cumulative) sum calculation can be useful in warranty scenarios.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Use Cases 110

/* This selects the total sales in the 12 npbst recent nonths.
*/
DEFI NE | nput AS SELECT
Di nDat e_Cal endar Year AS Cal Year,
Di nDat e_Mont hNunber O Year AS Nunmivbnt h,
SUM Fact Sal es_Sal esAnmpbunt) AS Tot al Sal es\
GROUP BY Cal Year, NunmVbnth
ORDER BY Cal Year DESC, NumiVont h DESC
PAGE(0, 12);

RETURN Cunul ati veSum AS SELECT
one. Cal Year AS Cal Year,
one. Numvont h AS NumiVont h,
SUM many. Tot al Sal es) AS Tot al Sal es
FROM | nput one JO N | nput many
ON ((one. Cal Year > many. Cal Year) OR
(one. Cal Year = nmny. Cal Year AND
one. NumVbont h >= many. NuniVbnt h)

)
GROUP BY Cal Year, Numbnth
ORDER BY Cal Year, NunmVbnt h

In the example, the words "one" and "many" are statement aliases to clarify the roles in this many-to-one self-
join. Looking at the join condition, you can think of this as, for each (one) record, create multiple records
based on the (many) values that match the join condition.

Query by age
In this example, records are tagged with a Date attribute on initial ingest. No updates are necessary.

RETURN Result AS
SELECT
EXTRACT(CURRENT _DATE,
JULI AN_DAY_NUMBER) -
EXTRACT(Dat e, JULI AN_DAY_NUVBER)
AS Agel nDays
HAVI NG (Agel nDays < 30)

Calculating percent change between most recent month and
previous month

The following example finds the most recent month in the data that matches the current filters, and compares
it to the prior month, again in the data that matches the current filters.
/* This conputes the percent change between the npst

* recent nmonth in the current nav state, conpared to the prior
* nonth in the nav state. Note that, if there's only

* one nonth represented in the nav state, this will return NULL.
*/

DEFI NE | nput AS

SELECT

ARB(Di nDat e_Cal endar Year) AS Cal Year,
ARB(Di mDat e_Mont hNurber O Year) AS NumVont h,
Di nDat e_Cal endar Year * 12 + Di nDat e_Mont hNunber O Year AS O di nal Mont h,
SUM Fact Sal es_Sal esAmount) AS Tot al Sal es
GROUP BY O di nal Mont h;

RETURN Result AS
SELECT

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Use Cases 111

Cal Year AS Cal Year,

Numvont h AS Numont h,

Tot al Sal es AS Tot al Sal es,

I nput [Ordi nal Month - 1] . Tot al Sal es AS Pri or Mont hSal es,

100 * (Total Sal es - PriorMnthSales) / PriorMnthSal es AS Percent Change
FROM | nput
ORDER BY Cal Year DESC, Numibnth DESC
PAGE(0, 1)

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Chapter 7
EQL Best Practices

This section discusses ways to maximize your EQL query performance.

Controlling input size
Filtering as early as possible
Controlling join size

Additional tips

Controlling input size

The size of the input for a statement can have a big impact on the evaluation time of the query.

The input for a statement is defined by the FROMclause. If no FROMclause is provided, the input defaults to
the Nav St at eRecor ds. When possible, use an already completed result from another statement (or a named
state), instead of using corpus records, to avoid inputting unnecessary records.

Consider the following queries. In the first query, the input to each statement is of a size on the order of the
navigation state. In the first two statements, Sums and Totals, the data is aggregated at two levels of
granularity. In the last statement, the data set is accessed again for the sole purpose of identifying the
month/year combinations that are present in the data. The computations of interest are derived from
previously-computed results:

DEFI NE Suns AS SELECT

SUM a) AS Mont hl yTot al
GROUP BY nont h, year;

DEFI NE Total s AS SELECT
SUM a) AS Yearl yTot al
CROUP BY year;

DEFI NE Result AS SELECT

Suns[nont h, year] . Mont hl yTotal AS Mont hl yTot al ,

Suns[nont h, year] . Mont hl yTot al / Tot al s[year] . Yearl yTotal AS Fraction
GROUP BY nont h, year

In the following rewrite of the query, the index is accessed only once. The first statement accesses the index
to compute the monthly totals. The second statement has been modified to compute yearly totals using the
results of the first statement. Assuming that there are many records per month, the savings could be multiple
orders of magnitude. Finally, the last statement has also been modified to use the results of the first
statement. The first statement has already identified all of the valid month/year combinations in the data set.
Rather than accessing the broader data set (possibly millions of records) just to identify the valid
combinations, the month/year pairs are read from the much smaller (probably several dozen records) previous
result:

DEFI NE Suns AS SELECT

SUM a) AS Mont hl yTot al
GROUP BY nont h, year;

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Best Practices 113

DEFI NE Total s AS SELECT

SUM Mont hl yTotal) AS Yearl yTot al
FROM Suns
GROUP year;

DEFI NE Result AS SELECT

Mont hl yTot al AS Mont hl yTot al ,

Mont hl yTot al / Tot al s[year] . Year| yTotal AS Fraction
FROM Suns

Defining constants independent of data set size

A common practice is to define constants for a query through a single group, as shown in the first query
below. Note that the input for this query is the entire navigation state, even though nothing from the input is
used:

DEFI NE Constants AS SELECT
500 AS Def aul t Quot a
GROUP

Since none of the input is actually needed, restrict the input to the smallest size possible with a very restrictive
filter, such as the one shown in this second example:
DEFI NE Constants AS SELECT

500 AS Def aul t Quot a

WHERE " ndex- property_Key" |I'S NOT NULL
GROUP

Filtering as early as possible

Filtering out rows as soon as possible improves query latency because it reduces the amount of data that
must be tracked through the evaluator.

Consider the following two versions of a query. The first form of the query first groups records by g, passes
each group through the filter (b < 10) , and then accumulates the records that remain. The input records are
not filtered, and the grouping operation must operate on all input records.

RETURN Resul t AS SELECT

SUMa) WHERE (b < 10) AS sum.a_blt10
GROUP BY g

The second form of the query filters the input (with the WHERE clause) before the records are passed to the
grouping operation. Thus the grouping operation must group only those records of interest to the query. By
eliminating records that are not of interest sooner, evaluation will be faster.
RETURN Resul ts AS SELECT

SUMa) AS sum a_blt10,

VHERE (b < 10)
GROUP BY g

Another example of filtering records early is illustrated with the following pair of queries. Recall that a WHERE
clauses filters input records and a HAVI NG clause filters output records. The first query computes the sum for
all values of g and (after performing all of that computation) throws away all results that do not meet the
condition (g < 10).
RETURN Resul t AS SELECT

SUM a) AS sum a

GROUP BY g
HAVING g < 10

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

EQL Best Practices 114

The second query, on the other hand, first filters the input records to only those in the interesting groups. It
then aggregates only those interesting groups.

RETURN Result AS SELECT
SUM a) AS sum a

WHERE g < 10

GROUP BY g

Controlling join size

Joins can cause the Endeca Server to grow beyond available RAM. Going beyond the scale capabilities will
cause very, very large materializations, intense memory pressure, and can result in an unresponsive Endeca
Server.

Additional tips

This topic contains additional tips for working effectively with EQL.

» String manipulations are unsupported in EQL. Therefore, ensure you prepare string values for query
purposes in the data ingest stage.

* Normalize information to avoid double counting or summing.

» Use a common case (upper case) for attribute string values when sharing attributes between data
sources.

» Name each DEFI NE statement something meaningful so that others reading your work can make sense of
what your logic is.

» Use paging in DEFI NE statements to reduce the number of records returned.

» When using CASE statements, bear in mind that all conditions and expressions are always evaluated,
even though only one is returned.

If an expression is repeated across multiple WHEN clauses of a CASE expression, it is best to factor the
computation of that expression into a separate SELECT, then reuse it.

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

Index

A

about queries 10
ABS function 57
ADD_ELEMENT function 92
addition operator 56
aggregation
function filters 45
functions 59
multi-level 45

with COUNT 43
with COUNTDISTINCT 44

ANCESTOR function 61
ARB function 76
arithmetic operators 72
AVG function 59

best practices
additional tips 114
controlling input size 112
defining constants 113
filtering as early as possible 113

BETWEEN operator 77

Boolean
literal handling 50
operators 72

calculate percent change over month 110
CARDINALITY function 96

CASE expression 78

case handling in EQL 51

CEIL function 57

characters in EQL 50

clauses
DEFINE 16
FROM 19
GROUP 31
GROUP BY 31
HAVING 26
JOIN 21
ORDER BY 26
PAGE 29
RETURN 17
SELECT 17
WHERE 25

COALESCE expression 78
combining multiple sparse fields into one 107

Oracle® Endeca Server : EQL Guide

commenting in EQL 11
CONCAT function 71
controlling input size 112
controlling join size 114

Conversation Web Service, EQL queries via 12

COS function 59

COUNTDISTINCT function 44, 59
COUNT function 43, 59

CROSS JOIN 21

CUBE extension 39

cumulative sum 110
CURRENT_DATE function 65
CURRENT_TIMESTAMP function 65

data types 47

date and time values 63
constructing 65
using arithmetic operations on 70

DAY_OF_MONTH function 68
DAY_OF_WEEK function 68
DAY_OF_YEAR function 68

DEFINE clause 16

defining constants for best performance 113
DIFFERENCE function 89

DISTANCE function 63

division operator 57

double
data type 48
promotion from integer 53

EQL
case handling 51
characters 50
commenting 11
concepts 8
handling of inf results 55
handling of NaN results 55
handling of NULL results 52
hierarchy filtering 61
inter-statement references 74
lookup expressions 74
multi-level aggregation example 45
overview 8
processing order 11
reserved keywords 13
SELECT AS statements 19

Version 7.6.1 « December 2013

Index

116

SQL comparison 9
syntax conventions 10

evaluation time and input size 112
EVERY function 100

existential quantifier 99

EXP function 57

expressions
CASE 78
COALESCE 78
GROUPING SETS 36
IN 79
in ORDER BY 27
lookup 74
SELECT AS 19

EXTRACT function 68

filtering 10
geocode 63
hierarchy 61
performance impact of 113
to a node in a hierarchy 74

filters
per-aggregation 45
using results values as 73
FLOOR function 57
follow-on queries 73
FROM clause 19
FROM_TZ function 67
FULL JOIN 21

functions
ABS 57
aggregation 59
ANCESTOR 61
ARB 76
arithmetic operators 72
AVG 59
CEIL 57
CONCAT 71
COS 59
COUNT 43, 59
COUNTDISTINCT 44, 59
CURRENT_DATE 65
CURRENT_TIMESTAMP 65
date and time 63
DAY_OF_MONTH 68
DAY_OF_WEEK 68
DAY_OF_YEAR 68
DISTANCE 63
EXP 57
EXTRACT 68
FLOOR 57
FROM_TZ 67
GET_LCA 62
GROUP_ID 42
GROUPING 40
GROUPING_ID 41

Oracle® Endeca Server : EQL Guide

hierarchy 61
HIERARCHY_LEVEL 61
HOUR 68
IS_ANCESTOR 61
IS_DESCENDANT 61
JULIAN_DAY_NUMBER 68
LATITUDE 63

LCA 62

LN 57

LOG 57
LONGITUDE 63
MAX 59

MEDIAN 60

MIN 60

MINUTE 68

MOD 58

MONTH 68

numeric 56

POWER 59
QUARTER 68
ROUND 58
SECOND 68

SIGN 58

SIN 59

SQRT 58

STDDEV 60

string 71
STRING_JOIN 60
SUBSTR 72

SUM 60

SYSDATE 65
SYSTIMESTAMP 65
TAN 59
TO_DATETIME 66
TO_DOUBLE 59
TO_DURATION 59, 66
TO_GEOCODE 63
TO_INTEGER 59
TO_MANAGED_VALUE 61
TO_STRING 72
TO_TIME 65

TO_TZ 67

TRUNC 58, 69
VARIANCE 60
WEEK 68

YEAR 68

geocode
data type 48
filtering 63
sorting by 27
GET_LCA function 62

GROUP BY clause 31
CUBE extension 39
MEMBERS extension 34
ROLLUP extension 37

GROUP clause 31
GROUP_ID function 42

Version 7.6.1 « December 2013

Index

117

grouping
by range buckets 104
data into quartiles 105

GROUPING function 40
GROUPING_ID function 41
GROUPING SETS expression 36

HAVING clause 26

hierarchy filtering 61
HIERARCHY_LEVEL function 61
HOUR function 68

identifier handling 51
important concepts 8

IN expression 79

inf, EQL handling of 55
INNER JOIN 21

integer promotion to double 53
INTERSECTION function 88
inter-statement references, EQL 74
IS_ANCESTOR function 61
IS_DESCENDANT function 61
IS_EMPTY function 94
IS_MEMBER_OF function 91
IS_NOT_EMPTY function 95

JOIN clause 21

joining data from different types of records 107

joining on hierarchy 108
join size constraints 114

JULIAN_DAY_NUMBER function 68

LATITUDE function 63

LCA function 62

LEFT JOIN 21

linear regression in EQL 108
literals 50

LN function 57

LOG function 57
LONGITUDE function 63
lookup table 74

Oracle® Endeca Server : EQL Guide

manipulating records in a dynamically computed

range value 105

MAX function 59

MEDIAN function 60

MEMBERS extension 34

MIN function 60

MINUTE function 68

MOD function 58

MONTH function 68

multi-level aggregation example 45
multiplication operator 56

NaN, EQL handling of 55

NULL values
and sets 81
EQL handling of 52

numeric
functions 56
literal handling 50

operations, date and time 63

operators
arithmetic 72
Boolean 72
precedence order 49
ORDER BY clause 26
order of processing in EQL 11

overview of queries 10

PAGE clause 29
PERCENT modifier 29
Top-K queries 29

PERCENT modifier 29

pie chart segmentation with IN filters 109

POWER function 59
precedence rules for operators 49

QUARTER function 68
queries 10

query by age 110

query processing order 11

re-normalization 103

Version 7.6.1 « December 2013

Index

118

reserved keywords 13

result values used as filters 73
RETURN clause 17

RIGHT JOIN 21

ROLLUP extension 37
ROUND function 58

running sum 110

SATISFIES function 99
SECOND function 68
SELECT AS statements 19
SELECT clause 17

SET function 82

set functions
ADD_ELEMENT 92
ARB 76
CARDINALITY 96
COUNT 43
COUNTDISTINCT 44
DIFFERENCE 89
EVERY 100
INTERSECTION 88
IS_EMPTY 94
IS MEMBER_OF 91
IS_NOT_EMPTY 95
SET 82
SET_INTERSECTIONS 84
SET_UNIONS 85
SINGLETON 96
SOME 99
SUBSET 90
TRUNCATE_SET 97
UNION 87

SET_INTERSECTIONS function 84
sets
constructing from single-assign attributes 82
constructor 98
data types 80
grouping by 101
sort order 28
SET_UNIONS function 85
SIGN function 58
SIN function 59
SINGLETON function 96
SOME function 99
SQL comparison 9
SQRT function 58
state names in FROM clause 20
STDDEV function 60
string
data type 48

literal handling 50
promotion to managed attribute value 54

Oracle® Endeca Server : EQL Guide

Vv

sort order 27
STRING_JOIN function 60
structured literal handling 51
SUBSET function 90
SUBSTR function 72
subtraction operator 56
SUM function 60
syntax conventions 10
SYSDATE function 65
SYSTIMESTAMP function 65

TAN function 59

terminology, EQL 8
TO_DATETIME function 66
TO_DOUBLE function 59
TO_DURATION function 59, 66
TO_GEOCODE function 63
TO_INTEGER function 59
TO_MANAGED_VALUE function 61
Top-K queries 29

TO_STRING function 72
TO_TIME function 65

TO_TZ function 67
TRUNCATE_SET function 97
TRUNC function 58, 69

type promotion 53

UNION function 87
universal quantifier 100

use cases
calculate percent change over month 110
combining multiple sparse fields into 107
grouping by range buckets 104
grouping data into quartiles 105
joining data from different types of 107
joining on hierarchy 108
linear regression 108
manipulating records in a dynamically
computed 105
pie chart segmentation 109
query by age 110
re-normalization 103
running sum 110

using arithmetic operations on date and time
values 70

VARIANCE function 60

Version 7.6.1 « December 2013

Index 119

W Y

WEEK function 68 YEAR function 68
WHERE clause 25

Oracle® Endeca Server : EQL Guide Version 7.6.1 « December 2013

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the Endeca Query Language
	EQL overview
	Important concepts and terms
	EQL and SQL: a comparison
	Query overview
	How queries are processed
	EQL requests in the Conversation Service
	EQL reserved keywords

	Chapter 2: Statements and Clauses
	DEFINE clause
	RETURN clause
	SELECT clauses
	AS clause
	Using AS expressions to calculate derived attributes

	FROM clauses
	JOIN clauses
	WHERE clauses
	HAVING clauses
	ORDER BY clauses
	PAGE clauses

	Chapter 3: Aggregation
	GROUP/GROUP BY clauses
	MEMBERS extension
	GROUPING SETS expression
	ROLLUP extension
	CUBE extension
	Grouping sets helper functions
	GROUPING function
	GROUPING_ID function
	GROUP_ID function
	Notes on grouping behavior

	COUNT function
	COUNTDISTINCT function
	Multi-level aggregation
	Per-aggregation filters

	Chapter 4: Expressions
	Supported data types
	Operator precedence rules
	Literals
	Character handling
	Handling of upper- and lower-case
	Handling NULL attribute values
	Type promotion
	Handling of NaN, inf, and -inf results

	Functions and operators
	Numeric functions
	Aggregation functions
	Hierarchy functions
	Geocode functions
	Date and time functions
	Manipulating current date and time
	Constructing date and time values
	Time zone manipulation
	Using EXTRACT to extract a portion of a dateTime value
	Using TRUNC to round down dateTime values
	Using arithmetic operations on date and time values

	String functions
	Arithmetic operators
	Boolean operators

	Using EQL results to compose follow-on queries
	Using lookup expressions for inter-statement references
	ARB
	BETWEEN
	COALESCE
	CASE
	IN

	Chapter 5: Sets and Multi-assign Data
	About sets
	Aggregate functions
	SET function
	SET_INTERSECTIONS function
	SET_UNIONS function

	Row functions
	UNION function
	INTERSECTION function
	DIFFERENCE function
	SUBSET function
	IS_MEMBER_OF function
	ADD_ELEMENT function
	IS_EMPTY and IS_NOT_EMPTY functions
	SINGLETON function
	CARDINALITY function
	TRUNCATE_SET function

	Set constructor
	Quantifiers
	Grouping by sets

	Chapter 6: EQL Use Cases
	Re-normalization
	Grouping by range buckets
	Manipulating records in a dynamically computed range value
	Grouping data into quartiles
	Combining multiple sparse fields into one
	Joining data from different types of records
	Joining on hierarchy
	Linear regressions in EQL
	Using an IN filter for pie chart segmentation
	Running sum
	Query by age
	Calculating percent change between most recent month and previous month

	Chapter 7: EQL Best Practices
	Controlling input size
	Filtering as early as possible
	Controlling join size
	Additional tips

	Index

