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Preface

This preface introduces you to the Oracle Database Mobile Server Mobile Client Guide discussing the intended audience, documentation accessibility, and structure of this document.


Audience

This manual is intended for application developers as the primary audience and for database administrators who are interested in application development as the secondary audience.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Related Documents

Use the following manuals and Web site as reference when installing and configuring Berkeley DB or SQLite:

	
Berkeley DB Installation and Build Guide


	
Getting Started with the Oracle Berkeley DB SQL APIs


	
http://www.sqlite.org/








Conventions

The following conventions are also used in this manual:


	Convention	Meaning
	. . .	Vertical ellipsis points in an example mean that information not directly related to the example has been omitted.
	. . .	Horizontal ellipsis points in statements or commands mean that parts of the statement or command not directly related to the example have been omitted
	boldface text	Boldface type in text indicates a term defined in the text, the glossary, or in both locations.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
	italic monospace	Italic monospace type indicates a variable in a code example that you must replace. For example:
Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation directory.


	< >	Angle brackets enclose user-supplied names.
	[ ]	Brackets enclose optional clauses from which you can choose one or none.
















1 Mobile Client Overview

Oracle Database Mobile Server delivers critical bi-directional data synchronization capability to mobile or fixed location distribution devices, while providing a centralized backend interface for managing mobile deployments. On the client device, the mobile client facilitates the transfer of data to and from the client database, which can be either Berkeley DB or SQLite. Install the desired database and the mobile client for Berkeley DB or SQLite on your client device.

The following sections describe both databases and the mobile client for these databases:

	
Section 1.1, "Mobile Client Architecture"


	
Section 1.2, "Mobile Client for the Berkeley DB SQL Interface"


	
Section 1.3, "Mobile Client for SQLite"






1.1 Mobile Client Architecture

As shown in Figure 1-1, when both the client database and the mobile client are installed, the mobile device has the following components:

	
Client database—The client database can be either Berkeley DB or SQLite, which is installed independently of the mobile client.


	
Mobile client—When you install the mobile client, the following components are provided:

	
Sync Engine—Automatic synchronization can be enabled on the Android, iOS, Win32, WinCE, and Linux platforms. However, you can initiate manual synchronization within a mobile application on all platforms.

The Sync Engine interacts with BDB or SQLite database to upload and download data in conjunction with the mobile server to synchronize the data with the Oracle database.


	
Device Manager Agent (DM Agent)—The mobile server uses the DM Agent to send commands to the mobile device for remote management. The DM Agent is only installed on Android, Win32, WinCE, and Linux platforms. The Blackberry, iOS, OJEC mobile client and pure Java client installed on standard Java SE platforms cannot be remotely managed





	
Mobile application—Interacts with the client database to manage the data and with the Sync Engine to initiate a manual synchronization.





Figure 1-1 Architecture for Device with a Mobile Client and Client Database

[image: Description of Figure 1-1 follows]





The following sections describe each mobile client:

	
Section 1.2, "Mobile Client for the Berkeley DB SQL Interface"


	
Section 1.3, "Mobile Client for SQLite"









1.2 Mobile Client for the Berkeley DB SQL Interface

Berkeley DB is a general-purpose, high-performance, embedded database that is designed for high-throughput applications. The primary goal of Berkeley DB is to deliver fast, scalable and flexible data management services to your application while remaining transparent to the end-user. Berkeley DB executes in the same process as your application.

Berkeley DB provides the following features that are expected of client/server enterprise-scale SQL databases: high throughput, high availability, high concurrency, replication, low-latency reads, non-blocking writes, failure recovery, data scalability, in-memory caching, ACID transactions, automatic and catastrophic recovery. Berkeley DB offers advanced features in a self-contained, small footprint software library.

The mobile client was built to use the Berkeley DB SQL interface, which adds a SQL API to the Berkeley DB storage engine. The mobile client uses this interface to facilitate synchronization between the client and the back-end database.

The following sections describe the Berkeley DB SQL interface and how it is used to synchronize data with the mobile client:

	
Introducing the Berkeley DB SQL Interface


	
Synchronizing Data from Berkeley DB to a Back-End Oracle Database






1.2.1 Introducing the Berkeley DB SQL Interface

The Berkeley DB SQL interface comes with a SQL processor layer on top of Berkeley DB. The Berkeley DB SQL interface is compatible with SQLite, so it can be used as a replacement for SQLite applications. Thus, you can manage relational data in Berkeley DB, but access the data with the SQLite3 API.

The interaction with the Berkeley DB SQL interface is almost identical to SQLite. You can use the same APIs, SQL statements, command shell environment, and most of the PRAGMAs with the Berkeley DB SQL interface. There are no differences in the SQL data types between the Berkeley DB SQL API and the SQLite API. The Database Mobile Server install package comes with prebuilt libraries for Berkeley DB.

The documentation for the Berkeley DB SQL interface is in two books within the Berkeley DB documentation:

	
Berkeley DB Installation and Build Guide—The SQL interface is not installed by default. You must explicitly request it to be included when building Berkeley DB. The "Building the SQL API" section in this book details the correct build steps for the Berkeley DB SQL interface. It also includes information on compatibility with SQLite.

This section can be accessed at the following site:


http://download.oracle.com/docs/cd/E17076_02/html/installation/build_win_sql.html


	
Getting Started with the Oracle Berkeley DB SQL APIs—The main book for the Berkeley DB SQL interface, which can be accessed at the following site:


http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/index.html




The Berkeley DB product and all documentation is available at the following site:


http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html


The default installed Berkeley DB SQL interface DLLs and the command line interpreter are named as follows:

	
dbsql.exe on WIndows and dbsql on UNIX—This is the command line shell. It operates identically to the SQLite shell, sqlite3.exe on Windows and sqlite3 on UNIX.


	
libdb_sql60.dll on Windows and libdb_sql-6.0 so on UNIX—This is the library that provides the Berkeley DB SQL interface. It is the equivalent and compatible with the SQLite library, sqlite3.dll on Windows and libsqlite3 on UNIX.




If you want the names to be exactly the same names as SQLite, you can perform the following:

	
On Windows, copy dbsql.exe to sqlite3.exe and libdb_sql60.dll to sqlite3.dll. Once copied, you can use these applications as a replacement for the standard SQLite binaries with the same names.


	
On UNIX, specify the compatibility option (--enable-sql_compat) for the Berkeley DB SQL interface UNIX build.




However, this must only be performed with extreme caution. For more details on building the Berkeley DB SQL Interface to have the same names as SQLite, see "Building the SQL API" section in the "Berkeley DB Installation and Build Guide" in the Berkeley DB documentation.






1.2.2 Synchronizing Data from Berkeley DB to a Back-End Oracle Database

The mobile client synchronizes the data in Berkeley DB with the mobile server. This book describes how to configure, manage and implement synchronization using the mobile client. It does not discuss how to build, install, configure, manage or use the Berkeley DB SQL interface.








1.3 Mobile Client for SQLite

SQLite is a small, compact, and self-contained database available on multiple platforms and available to the public. It has a small footprint and is easy to install and administer. In addition, many devices have SQLite already installed, including Android and Blackberry devices.

You can synchronize the data in one or more SQLite databases to a back-end Oracle database with the mobile client. This mobile client provides the ability to synchronize the data in SQLite databases with the Sync Engine contained within the mobile client.

SQLite is installed independently from the mobile client. SQLite does not provide the same SQL functionality as an Oracle database. This book describes how to configure, manage and implement synchronization using the mobile client. It does not discuss how to configure, manage or use SQLite. For information on SQLite and a full list of what functionality is supported, see http://www.sqlite.org/.

The SQLite Mobile Client can be installed on the following platforms: Linux, Windows (Win32), WinCE, Android, iOS, and Blackberry platforms. Device management is supported on Android, iOS, Win32, WinCE and Linux platforms. The Sync Engine supports both automatic and manual synchronization for SQLite. However, without device management support, remote device management and automatic synchronization is not supported on the Blackberry platform.












2 Installing the Mobile Client

One of the benefits of Oracle Database Mobile Server is that you can have an application downloaded onto a device, where data can be synchronized between the device and the back-end Oracle database. When you install the mobile client, Oracle Database Mobile Server installs the Sync Engine and Device Manager.




	
Note:

Any reference to the mobile client in this book apply to both the Berkeley DB Mobile Client and the SQLite Mobile Client.
All references of Berkeley DB refers to the Berkeley DB SQL interface.









The following sections detail how to install the mobile client software on your client device:

	
Section 2.1, "Supported Platforms and Requirements for the Mobile Client"


	
Section 2.2, "Preparing the Device for a Mobile Application"


	
Section 2.3, "Installing the Mobile Client"


	
Section 2.4, "Configuring the Location of Mobile Client and Database Files"


	
Section 2.5, "Configuring for Automatic Synchronization When Installing the Client"


	
Section 2.6, "Uninstalling the Mobile Client"




See Chapter 1, "Oracle Database Mobile Server Management" in the Oracle Database Mobile Server Administration and Deployment Guide for information on how to manage functionality from the mobile server.



2.1 Supported Platforms and Requirements for the Mobile Client

The Berkeley DB and SQLite Mobile Clients are certified on the following platforms:


Table 2-1 Supported Platforms for Berkeley DB and SQLite

	Platform	Berkeley DB Mobile Client	SQLite Mobile Client
	
Microsoft Windows XP Professional Edition with Service Pack 3, 32-bit

	
Yes

	
Yes


	
Microsoft Windows 7 (32-bit and 64-bit)

	
Yes

	
Yes


	
Microsoft Windows 2003 (64-bit)

	
Yes

	
Yes


	
Microsoft Windows 2008 R2 (64-bit)

	
Yes

	
Yes


	
Microsoft Windows 8 (32-bit and 64-bit)

	
Yes

	
Yes


	
Oracle Enterprise Linux 5.0, or 6.0 containing Unbreakable Enterprise Kernel (32-bit and 64-bit)

	
Yes

	
Yes


	
OpenSUSE 12 (64-bit)

	
Yes

	
Yes


	
Ubuntu 11 (64-bit)

	
Yes

	
Yes


	
Fedora 16 (64-bit)

	
Yes

	
Yes


	
Windows Mobile 5.0, 6.0 and 6.5

	
Yes

	
Yes


	
Android 2.3, 4.0 and 4.1

	
Yes

	
Yes


	
Blackberry RIM 5.0 and 6.0

	
No

	
Yes


	
Java SE 1.6 and 1.7

	
Yes

	
Yes


	
Java ME (OJEC 1.1)

	
Yes

	
Yes


	
iOS 6.0 and above

	
Yes

	
Yes











	
Note:

You can configure only one device for a particular user. For example, it is not possible to have two devices both executing the mobile client for the user JOHN.







Automatic synchronization and device management are available on most mobile client platforms. Table 2-2 displays what features are available on which platforms.


Table 2-2 Feature Support for Client Platforms

	Platform	Automatic Synchronization	Device management through the DM Agent
	
Windows Mobile

	
Yes

	
Yes


	
Win32

	
Yes

	
Yes


	
Linux

	
Yes

	
Yes


	
Android

	
Yes

	
Yes


	
Blackberry

	
No

	
No


	
Java SE 1.6 and 1.7

	
Yes

	
No


	
Java ME (OJEC 1.1)

	
Yes

	
No


	
iOS

	
Yes

	
No









2.1.1 Certified Operating Systems and Other Software Requirements

The following tables detail the requirements for the client platforms on which you may install the mobile client. The requirements do not include requirements for either client database, but are only the requirements for the mobile client including the Sync Engine and Device Manager.

	
Table 2-3, "BlackBerry and Android Platform Requirements"


	
Table 2-4, "Software Requirements for Mobile Clients"


	
Table 2-5, "Supported and Certified Technologies for Native Mobile Clients"


	
Table 2-6, "Pocket PC and Windows Mobile Supported Platforms"


	
Table 2-7, "Supported and Certified Technologies for Java Clients"





Table 2-3 BlackBerry and Android Platform Requirements

	Platform	Minimum Storage for Mobile Client
	
BlackBerry

	
100 KB


	
Android

	
100 KB









Table 2-4 Software Requirements for Mobile Clients

	Device Platform	Certified Operating System	Other Software Requirements
	
Win32

Minimum storage needed for mobile client is 2,756 KB.

	
Windows 2003, Windows 2008, Windows XP Professional Edition with Service Pack 2, Windows 7

	
If using Java APIs for synchronization, use Oracle JDK 1.6 or 1.7

If implementing any .NET applications, use Microsoft .NET Framework 1.1 or 2.0


	
Windows Mobile

	
Windows Mobile 5

Windows Mobile 6

Windows Mobile 6.5

	
If using Java APIs for synchronization, use Oracle JDK 1.6.

ActiveSync version 4.5 or higher.

Microsoft.NET Compact Framework 3.5








You should install all of the patches required for the JDK for the Windows operating system. This is constantly under review and published on the JDK download page on the Oracle Java Web site.





2.1.2 Supported and Certified Technologies for Native Mobile Clients

The following are the supported and certified technologies for native mobile clients:




	
Note:

Ensure that after you install the required software, the appropriate directories are included in the PATH. For example, after you install the JDK, ensure that the JAVA_HOME/bin is included in the PATH.







ADO.Net is supported for both the Berkeley DB and SQLite Mobile Clients. For more information on ADO.Net support, see the following URL:


http://system.data.sqlite.org/index.html/doc/trunk/www/features.wiki



Table 2-5 Supported and Certified Technologies for Native Mobile Clients

	Device Platform	Supported Technologies	Certified Technologies
	
Win32

	
	
ADO.Net


	
JDBC


	
ODBC




	
Oracle JDK 1.6 or 1.7


	
Windows Mobile

	
	
Microsoft ActiveSync version 4.1 or higher.


	
ADO.Net


	
JDBC


	
ODBC




	
Oracle JDK 1.6 or 1.7


	
Linux

	
	
JDBC


	
ODBC




	
Oracle JDK 1.6 or 1.7









Table 2-6 Pocket PC and Windows Mobile Supported Platforms

	Product Name	WinCE Version	Chipsets	Mobile Client CAB File
	
Windows Mobile 6

	
5.2.1236

	
ARMV4I

	
PPC60 ARMV4I, <mobile_client>.cab


	
Windows Mobile 6.5

	
5.2.23090

	
ARMV4I

	
PPC60 ARMV4I, <mobile_client>.cab


	
Windows Mobile 5

	
5.1.1700

	
ARMV4I

	
PPC50 ARMV4I, <mobile_client>.cab









Table 2-7 Supported and Certified Technologies for Java Clients

	Pure Java Clients Device Platform	Supported Technologies	Certified Technologies
	
Java SE 1.6 or 1.7

	
JDBC

	
Berkeley DB 12.1.6.0

Berkeley DB JDBC

SQLite 3.7.6.2, SQLite JDBC


	
Java ME (CDC 1.1)

	
JSR169

	
OJEC 1.1














2.2 Preparing the Device for a Mobile Application

To execute mobile applications on a device, do the following:

	
Install the mobile client software that is appropriate for the client platform on your client machine. For example, install the SQLite WIN32 on a Windows 32 client machine.

See Section 2.3, "Installing the Mobile Client" for a full description.


	
Download the user applications and its associated data.

Synchronize the mobile client for the first time. Sign in with the user name/password of the mobile user who owns the mobile applications. The data for each application is retrieved.




	
Notes:

For the restrictions on creating the user name and password, see Section 4.3.1.2.1, "Define User Name and Password" in the Oracle Database Mobile Server Administration and Deployment Guide.
For more information about synchronization, see Chapter 5, "Managing Synchronization" in the Oracle Database Mobile Server Administration and Deployment Guide.










	
You can now launch your applications from your client machine or from your mobile device.









2.3 Installing the Mobile Client

The following sections provide directions for the mobile client install:

	
Section 2.3.1, "Installing the Mobile Client on Blackberry Devices"


	
Section 2.3.2, "Installing the Mobile Client on Android Devices"


	
Section 2.3.3, "Installing the Mobile Client for Win32, Windows Mobile or Linux"


	
Section 2.3.4, "Installing Mobile Client with Multiple Languages"


	
Section 2.3.5, "Installing the Mobile Client for Java SE"


	
Section 2.3.6, "Installing the Mobile Client for Java ME"


	
Section 2.3.7, "Installing iOS Mobile Client"




We do not support the following configuration scenarios:

	
A mobile client and the Mobile Development Kit (MDK) cannot be installed on a single system.


	
A client user cannot have more than one device.


	
While you can synchronize multiple Berkeley DB or SQLite databases on the same client, you cannot synchronize both SQLite and Berkeley DB on the same mobile client.






2.3.1 Installing the Mobile Client on Blackberry Devices

To install the mobile client on Blackberry devices, perform the following:




	
Note:

Applications cannot be downloaded to your Blackberry device from the mobile server, since device management is not supported for this device. You must download all applications to your Blackberry device as documented on the Blackberry Web site at http://www.blackberry.com.







	
On the Blackberry device, open a browser to point to the mobile server setup page using the following URL.

http://<mobile_server>:<port>/mobile/setup




	
Note:

Substitute https if using HTTP over SSL.







Figure 2-10 displays the mobile client setup page, which contains links to install mobile client software for multiple languages. You can select another language than English on the Language pulldown.


	
Click the mobile client for your language and the Blackberry client platform. This downloads and installs the mobile client.


	
Perform a manual synchronization for the mobile client.


	
Synchronization requires you to enter the user name and password for the mobile user. During the first synchronization, all data for this user is brought down and installed on your mobile device.




	
Note:

For information on the restrictions on creating the user name and password, see Section 4.3.1.2.1, "Define User Name and Password" in the Oracle Database Mobile Server Administration and Deployment Guide.















2.3.2 Installing the Mobile Client on Android Devices

To install the mobile client on Android devices, perform the following:

	
On the Android device, open a browser to point to the mobile server setup page using the following URL.

http://<mobile_server>:<port>/mobile/setup




	
Note:

Substitute https if using HTTP over SSL.







Figure 2-1 displays the mobile client setup page, which contains links to install mobile client software for multiple languages. You can select another language than English on the Language pulldown.


Figure 2-1 Mobile Client Setup Page

[image: ]



	
Click the mobile client for your language and the Android client platform. This downloads the setup.apk for SQLite Android client and setup_bdb.apk for Berkeley DB Android client.


	
Bootstrap the setup_bdb.apk or setup.apk to install Berkeley DB Android or SQLite Android on the Android device. If you want to install the Oracle setup application, click the "Install" button when the system prompts you (see Figure 2-2).


Figure 2-2 Android Mobile Client Setup Page

[image: ]



	
Figure 2-3 shows that the Oracle Setup application is installed successfully. Click the "Open" button to run the Oracle Setup application.


Figure 2-3 Android Setup Apllication Installed Page

[image: ]



	
Figure 2-4 shows that the invocation of Oracle Setup application prompts you to input mobile user name, mobile user password and mobile server URL for registration purpose.

Input the necessary information and click OK.


Figure 2-4 Android Device Registration Page

[image: ]



	
The Oracle Setup application will download two other applications on the Android device - Oracle DMAgent and Oracle Update, and will install them one by one.


	
Oracle Setup downloads Oracle DMAgent application to the Android device and installs it. Click the "Install" button in Figure 2-5 to install Oracle DMAgent application.


Figure 2-5 Install Oracle Android DMAgent Application Page

[image: ]



	
Figure 2-6 shows that the Oracle DMAgent application is installed successfully, Click the "Open" button to run the Oracle DMAgent application.


Figure 2-6 Oracle DMAgent Application Installed Page

[image: ]



	
When Oracle DMAgent starts, it displays information like Mobile Device Type (Berkeley DB Android or SQLite Android), Processor, Language, the software version of the Oracle Android Device Manager, the User Name, the Device Name, the Mobile Device Id and the Mobile Server URL, as Figure 2-7 Oracle Android Device Manager page demonstrates.

Click OK to confirm this information.


Figure 2-7 Oracle Android Device Manager Page

[image: ]



	
Oracle Setup also downloads Oracle Update application to the Android device and installs it. Click the "Install" button in Figure 2-8 to install Oracle Update application.


Figure 2-8 Install Oracle Update Application Page

[image: ]



	
Figure 2-9 shows Oracle Update application installed successfully. Click "Open" button to invoke the Oracle Update application.


Figure 2-9 Oracle Update Application Installed Page

[image: ]



	
The Oracle Update application will prompt you of any available software or application update. You can select to install or skip to install.


	
The Oracle Setup execution completes after downloading and installing Oracle DMAgent and Oracle Update applications.


	
The Oracle Mobile Sync application is not deployed on Android devices (unlike native clients) because of Android's data access per application restriction.

Thus, the instructions for installing the Oracle Mobile Sync application on Android devices is presented with an example of creating and downloading the Oracle Mobile Sync application on a Android device, which is provided in Chapter 4.




	
Note:

Android platforms require that any software downloaded to the device is digitally signed with a certificate whose private key is held by the application's developer.
This means, that you cannot simply download and install the mobile client binaries unless they are downloaded within the context of a signed application.

















2.3.3 Installing the Mobile Client for Win32, Windows Mobile or Linux

Before you install the mobile client on your device, make sure that there is 1 MB of space available to download the setup.exe.



	
Note:

Before installing the mobile client on a Linux platform, set MOBILE_CLIENT_HOME environment variable to the desired mobile client installation directory (default is: ~/mobileclient). Also, set environment variables PATH and LD_LIBRARY_PATH to include $MOBILE_CLIENT_HOME/bin.






To install the mobile client software, perform the following tasks.




	
Note:

Any developer can modify how the client is installed before the installation with the INF file. For details on how to customize your Win32, Windows Mobile or Linux client, see Section 7.1, "Customize the Mobile Client Software Installation for Your Mobile Device" in the Oracle Database Mobile Server Administration and Deployment Guide.







	
On the mobile client, open a browser to point to the mobile server using the following URL.

http://<mobile_server>:<port>/mobile/setup




	
Note:

Substitute https if using HTTP over SSL.







Figure 2-10 displays the mobile client setup page, which contains links to install mobile client software for multiple platforms and languages.

	
Language: Select a language other than English on the Language pulldown. English is the default.


	
Platform: Choose to see all available platforms for the indicated language.




Client platforms are provided in the mobile client setup page. These client CAB files are optimized for size to minimize the footprint on your device.


Figure 2-10 Mobile Client Setup Page
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Note:

Available clients may differ from what is shown above.








	
Click the mobile client for your language and client platform.




	
Note:

	
On Microsoft Windows and Windows Mobile platforms, all the messages on the client platform are in the same language as you specified during download.


	
On Linux platform, all the messages on the client are in the same language as specified by the system's environment variable 'LANG' and not in the language that you have specified during download. For example, if your system's 'LANG' variable is set to English (for example, 'en_US'), even though you downloaded the German mobile client setup, the messages displayed will be in English. To avoid this discrepancy in the message language, ensure that the LANG and the downloaded mobile client setup language are same.













	
The "Save As" dialog box appears. The file name field displays the setup executable file for the selected platform as a .exe file type on Windows and Windows Mobile platform and a batch file type on Linux platform. Save the executable file to a directory on the client machine.




	
Note:

For Windows Mobile, install any of the Oracle Database Mobile Server Windows Mobile platforms to ActiveSync. Then, when the device is put into the cradle, ActiveSync installs the Oracle Database Mobile Server on the device when it synchronizes.








	
Install the mobile client. For all platforms, except installing Windows Mobile on ActiveSync, go to the directory where you saved the setup executable file. Double-click the file to execute it.


	
Enter the user name and password for the mobile user.




	
Note:

For information on the restrictions on creating the user name and password, see Section 4.3.1.2.1, "Define User Name and Password" in the Oracle Database Mobile Server Administration and Deployment Guide.








	
You may be required to select the type of privilege under which to install the mobile client. This may already be designated by the administrator in the INF file before installation or the current user may have a privilege that defaults to a certain privilege for the installation.

	
All Users—The user installing this mobile client has administrator privileges and can install the mobile client.




	
Note:

To avoid providing administrator privileges, create a directory named "Oracle Database Mobile Client" under the "<Windows Start Menu>\Programs" directory. The exact location of <Windows Start Menu> is dependent on what Windows version you are using.








	
Current User—Selecting this option designates that the user does not have administrator privileges, but can install and use the mobile client as a single user.







	
Note:

For details on how to designate the user privilege and for more information on user installation types, see Section 7.1, "Customize the Mobile Client Software Installation for Your Mobile Device" in the Oracle Database Mobile Server Administration and Deployment Guide.








Figure 2-11 Select Installation Privileges

[image: Description of Figure 2-11 follows]





	
Provide the client directory name where to install the mobile client.


	
Once installed, synchronize the mobile client for the first time. During the first synchronization, all applications and data for this user is brought down and installed on your mobile client.


	
Each platform has further steps. See Table 2-8 for a description of the steps for each platform.




	
Note:

See Section 2.5, "Configuring for Automatic Synchronization When Installing the Client" for directions on how to enable a default synchronization after any client installation on your device.











Table 2-8 Initializing the First Synchronization for Each Mobile Client Platform

	Mobile Client	Initial Synchronization Details
	
Windows Mobile

	
Perform the following steps.

	
If you install the Windows Mobile platform through ActiveSync, insert the Windows Mobile device in the cradle. ActiveSync performs a synchronization to install Oracle Database Mobile Server on the device.


	
After the mobile client is installed on the device, start the Device Manager Agent on the device either by selecting Device Manager in the programs group or by executing dmagent.exe, which is in the orace directory.


	
Enter the user name and password. If the mobile server URL field is empty, provide the URL as well.

You can either enter the complete URL of the mobile server, the IP address and port number of the mobile server, or hostname and port number of the mobile server. If left off, the prefix "http://" is added automatically. Only use the hostname if the device is properly configured to use DNS name resolution. Otherwise, enter the IP address.




The device is now registered with the mobile server and ready to be used.


	
All other platforms

	
Perform the following steps.

	
Locate the directories where you installed the runtime libraries, and launch the Mobile Sync application.


	
The mSync dialog appears. Enter the user name and password of the mobile user. If you do not know your user name and password, ask your system administrator, who creates users and assigns passwords to each user. In the Server field, enter the URL for your mobile server. Click Apply and click Sync.















2.3.4 Installing Mobile Client with Multiple Languages

When you download the setup program to install mobile client on target platform, you can specify a Language. This determines the language that the mobile client software (msync, dmagent, syncagent and update) will use.






2.3.5 Installing the Mobile Client for Java SE

To install the mobile client for Java SE, perform the following:




	
Note:

Mobile client for Java SE does not include device management component. Therefore, applications cannot be deployed by the mobile client for Java SE.







	
Open a browser to point to the mobile server setup page using the following URL:

http://<mobile_server>:<port>/mobile/setup

Figure 2-10 displays the mobile client setup page, which contains links to install mobile client software for multiple languages.




	
Note:

The Java SE mobile client includes NLS resources for all supported locales in one jar archive.








	
Click the Java Sync client platform and download osync_se.jar archive. This archive contains the pure Java synchronization client for Berkeley DB and SQLite databases.




	
Note:

The jdbc drivers are not included with the client. They need to be installed and configured separately. Download the appropriate drivers supported on your particular platform.







The synchronization APIs (refer to Section 3.1.1. "OSE Synchronization API for Applications on Mobile Clients" in the Developer's Guide, can be invoked from your own Java application, or you can use the included sync class: oracle.opensync.tools.OSync

For usage details, refer to Section 3.4, "Use oracle.opensync.tools.OSync to Initiate Synchronization".









2.3.6 Installing the Mobile Client for Java ME

The Java ME sync client is included with the MDK installation. It is located in:

<MOBILE_HOME>\Mobile\Sdk\j2me\ojec\osync_me.jar

Install this archive in your J2ME environment.




	
Note:

The sync client also needs JSR169 implementation on top of SQLite engine.







If you are using Oracle Java Embeded Client (OJEC 1.1), JSR169 drivers for Berkeley DB are bundled with it; therefore in this case, no external JDBC drivers needed.




	
Note:

J2ME CDC 1.1 spec (based on JDK 1.4 JCE) does not include RSA Ciphers which are needed for the encryption support on the mobile client.







You need to install a JCE provider with support for RSA cyphers. For example, you can use BouncyCastle JCE provider for JDK 1.4. In the case of OJEC 1.1, the JCE povider archive needs to be installed at the cvm lib\ext directory. Also, lib/security/java.security file needs to be modified to include the following line:

security.provider.[n]=org.bouncycastle.jce.provider.BouncyCastleProvider

Where n is a sequential number following the last number in the list of the existing providers already included in the file.

Once all the necessary archives are installed, the sync client can be invoked either from your application by using Java sync APIs (for information, see Chapter 4.1.1.1 of the dev guide) or by invoking a command line tool:

./bin/cvm -Xbootclasspath/a:./lib/sqlite.jar:./lib/jdbc.jar:./lib/jsr280.jar -Dsun.boot.library.path=./lib -classpath ./lib/osync_me.jar oracle.opensync.tools.OSync <USER_NAME> <PASSWORD> <SERVER_IP:SERVER_PORT e.g. 127.0.0.1:7001> -param OSE.FILES=YES






2.3.7 Installing iOS Mobile Client

iOS Mobile Client gets installed and runs entirely within the user's application, so no components need to be additionally installed on the device.




	
Note:

Device management is not currently supported for iOS Mobile clients so sections 2.5 and 2.6 of this guide do not apply for iOS clients.







However, to develop mobile application that uses mobile sync you need components such as header files, libraries and resources that you use to compile and link your application. These components are located in the mini-mdk package that you can download from the Mobile Server:

	
You need Mac computer to develop mobile sync application for iOS. Your Mac has to be running OS X v10.7 Lion or above depending on which iOS version you are targeting.

You need to download and install Xcode IDE to develop the mobile sync application.

(As of now, the latest version is 4.6 and it includes iOS6.1 SDK).


	
On your Mac, open a browser to point to the mobile server setup page using the following URL:

http://<mobile_server>:<port>/mobile/setup

You should see the following:


Figure 2-12 Mobile Client Setup Page
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You can download either Sqlite iOS sync package or Berkeley DB iOS sync package (as highlighted above). The package file names are:

	
For Sqlite Sync Package: osync_ios.dmg


	
For Berkeley DB Sync Package: osync_bdb_ios.dmg





	
By default the package file will be downloaded into your "Downloads" directory. Open it. It will mount as a disk image on your desktop and you will also see the folder with its contents:


Figure 2-13 Installing iOS Mobile Sync Package
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For Sqlite Sync Package: osync-ios-11.3


	
For Berkeley DB Sync Package: osync-bdb-ios-11.3





	
Open a "Finder" window and locate the directory where you want to place the package. Then drag the package folder from disk image contents folder to that location. Now the package is installed and you can move the disk image icon to the "Trash" to unmount it.


	
The package folder (osync-ios-11.3 or osync-bdb-ios-11.3) has the components you need to develop mobile sync application. For information on the description of the components and how to use them in your application, see Chapter 6, "Creating Sync Application for iOS".











2.4 Configuring the Location of Mobile Client and Database Files

The location of the client database is determined by the DATA_DIRECTORY parameter in the OSE.INI file. If this parameter is not present, for SQLite Mobile Client the DATA_DIRECTORY defaults to MOBILE_CLIENT_HOME/sqlite/sqlite_db, and for Berkeley DB Mobile Client the DATA_DIRECTORY defaults to MOBILE_CLIENT_HOME/bdb/data directory.

	
All client databases are stored in the DATA_DIRECTORY/<user> directory, where <user> is the synchronization user id. These are named with the .db extension, such as TERRY/mysqlite.db.


	
Internal configuration files for the mobile client are stored in the MOBILE_CLIENT_HOME/bin/oseconf directory.




The following shows an example of configuring the client database directory on a Win32 platform:


SQLITE.DATA_DIRECTORY=C:\mobileclient\sqlite


For more details on this parameter, see Appendix A, "DATA_DIRECTORY".




	
Note:

Differences for iOS clients:
For iOS clients, all client databases and other synchronization-related data has to be stored within the iOS application sandbox. The directory for mobile client in iOS application sandbox is "Library/Application Support/oracle" relative to the sandbox root. All databases and synchronization-related files are stored in that directory and its subdirectories.

The default location of database files is "Library/Application Support/oracle/sqlite_db/<user>" and the location of internal configuration files is "Library/Application Support/oracle/oseconf".

Note that the value of DATA_DIRECTORY parameter in ose.ini must be specified relative to the application sandbox root.














2.5 Configuring for Automatic Synchronization When Installing the Client

In the default configuration, mobile clients do not automatically synchronize after you install the client. However, for Win32, Windows Mobile or Linux platforms, you can modify your configuration to automatically synchronize each client after it is installed, as follows:

	
Logon to the mobile server as an administrator and launch the Mobile Manager tool.


	
Click on Mobile Devices, followed by Administration.


	
Click on Command Management.


	
Edit the Command Device Info (Retrieve device information).


	
Insert 'Synchronize' as a Selected Command and click Apply to accept the changes.




See Section 7.5, "Sending Commands to Your Mobile Devices" in the Oracle Database Mobile Server Administration and Deployment Guide for more details on sending commands to your mobile device.






2.6 Uninstalling the Mobile Client

The following sections provide directions for the mobile client uninstall:

	
Section 2.6.1, "Uninstalling the Native Mobile Client"


	
Section 2.6.2, "Uninstalling the Android Client"






2.6.1 Uninstalling the Native Mobile Client

When you want to uninstall the mobile client, execute the uninst executable that is located in the install directory for the mobile client






2.6.2 Uninstalling the Android Client

Follow below steps to uninstall mobile client on Android device:.

	
Select Oracle DMAgent, and click "Options..." button in Figure 2-14.


Figure 2-14 Oracle Android Device Manager Screen
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Click "De-install" button in Figure 2-15.


Figure 2-15 De-Install Oracle Android Device Manager
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Select Yes" to question in Figure 2-16 and all following questions.


Figure 2-16 De-installation Process
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3 Managing Your Mobile Client

The following sections describe how to manage the Oracle Database Mobile Server functionality on the mobile client:

	
Section 3.1, "Starting the Mobile Client"


	
Section 3.2, "Synchronize Data for Applications on the Mobile Client"


	
Section 3.3, "Use the mSync GUI to Initiate Synchronization"


	
Section 3.4, "Use oracle.opensync.tools.OSync to Initiate Synchronization"


	
Section 3.5, "Synchronization Mechanisms on Mobile Client"


	
Section 3.6, "Manage Snapshots on the Mobile Client"


	
Section 3.7, "Control Automatic Synchronization for a Specific Mobile Client"


	
Section 3.8, "Providing Security for the Mobile Client"


	
Section 3.9, "Improve Performance by Disabling the Resume Feature"


	
Section 3.10, "Use the Device Manager Client GUI to Manage the Client-Side Device"


	
Section 3.11, "Initiate Updates for the Mobile Client"


	
Section 3.12, "Communicate Between the Internet and Intranet Through a Reverse Proxy"






3.1 Starting the Mobile Client

When you installed the mobile client on Linux or Windows, it is configured so that the mobile client always starts automatically when the device is initiated.






3.2 Synchronize Data for Applications on the Mobile Client

You can have an application downloaded onto a device, where data can be synchronized between the mobile client and the back-end Oracle database.

The following describes how to initiate synchronization from each type of mobile client:

	
Blackberry and Android clients: The application built for these clients initiate synchronization by executing the Mobile Client's Java APIs. For details on synchronization APIs, see Chapter 2, "Synchronization" and Chapter 3, "Managing Synchronization on the Mobile Client" in the Oracle Database Mobile Server Developer's Guide for more information. For full details on the Java APIs, see the Javadoc


	
Linux, Win32, and Windows Mobile clients: The application built for these clients can use the Mobile Client's Java APIs or C/C++ APIs. Thus, start the application as you would start any application on these platforms.




	
Note:

When you initiate a synchronization from the client, either manually or by scheduling a job, the synchronization cannot occur if there is an active connection with an uncommitted transaction opened from another source. This could be from scheduling two jobs to synchronize at the same time, from mSync, or the client synchronization APIs.










	
Note:

iOS clients: Applications using these clients can use C/C++ APIs to manage manual and automatic synchronization, as described in Mobile Client Developer's Guide, chapter 3.







Initiate synchronization through one of the following methods:

	
Execute the msync executable, described in Section 3.3, "Use the mSync GUI to Initiate Synchronization".







	
Note:

msync or any other UI tools are not currently supported for iOS clients.







	
Implement synchronization within your application using the synchronization APIs, as described in Chapter 2, "Synchronization" and Chapter 3, "Managing Synchronization on the Mobile Client" in the Oracle Database Mobile Server Developer's Guide.










	
Note:

The mobile client device clock must be accurate for the time zone set on the device before attempting to synchronize. An inaccurate time may result in the following exception during synchronization: CNS: 9026 "Wrong user name or password. Please enter correct value and reSync."












3.3 Use the mSync GUI to Initiate Synchronization

You can initiate synchronization of the mobile client using the mSync GUI, as shown in Figure 3-1.


Figure 3-1 Using the mSync GUI to Initiate Synchronization

[image: Description of Figure 3-1 follows]





To bring up the mSync GUI, execute msync.exe on Win32 and Windows Mobile or msync on Linux, which is located in the /bin subdirectory under the directory where you installed the mobile client. For Blackberry and Android platforms, start mSync by clicking the mSync application icon.

Modify the following supplied values, if incorrect:

	
User name and password for the user that is starting the synchronization.




	
Note:

See Section 4.3.1.2.1, "Define User Name and Password" in the Oracle Database Mobile Server Administration and Deployment Guide for conventions for creating the user name or password.








	
Check if you want the password saved for future requests.


	
Mobile Server URL, which is http://<mobile_server_hostname>:<port_number>, replace 'http' with 'https' in case SSL is used. If SSL is not used, 'http://' can be skipped.




Click Sync to start the Synchronization. Click Apply to save any modifications you made to the entries. Click Exit to leave the tool.

If there are software updates that are waiting to be downloaded to the client, then the update tool is automatically executed after the end of the synchronization process. See Section 3.11, "Initiate Updates for the Mobile Client" for more information.




	
Note:

The only time that the client does not check for software updates is if you are using the Synchronization APIs. If you want to launch the update UI, then enter update on the command line.







You can also modify the tool options by selecting the Tools menu, as shown in Figure 3-2.


Figure 3-2 The mSync Tools Selection

[image: Description of Figure 3-2 follows]





The following sections describe the Tools options:

	
Section 3.3.1, "Network Options for MSync Tool"


	
Section 3.3.2, "Sync Options for MSync Tool"


	
Section 3.3.3, "Sync to a File Using File-Based Sync"


	
Section 3.3.4, "Use Mobile Client Tools on Linux"






3.3.1 Network Options for MSync Tool

Figure 3-3 displays the Network options screen where you can specify a proxy if your network provider requires that you use a proxy server to access the internet. Click Use Proxy to use a proxy and then enter the proxy server and port number.


Figure 3-3 The mSync Network Options Selection

[image: Description of Figure 3-3 follows]









3.3.2 Sync Options for MSync Tool

Figure 3-4 displays the Sync Options screen where you can specify the following:

	
Mobile User Password—Modify the existing password. The mobile user password is stored on both the client and the mobile server. To ensure that both are modified, only change the password when connected to the mobile server. See Section 3.5, "Synchronization Mechanisms on Mobile Client" for details.


	
High Priority—Select this checkbox to specify synchronizing only High Priority data. This specifies under what conditions the different priority records are synchronized. By default, the value is LOW, which is synchronized last. If you have a very low network bandwidth and a high ping delay, you may only want to synchronize your HIGH priority data.

When you select this checkbox, you are enabling pre-defined high priority records to be synchronized first. This only applies for those publication items that have specified a restricting predicate. See Section 1.2.10, "Priority-Based Replication" in the Oracle Database Mobile Server Troubleshooting and Tuning Guide for more information.


	
Force Refresh—The force refresh option is an emergency only synchronization option. Check this option when a client is corrupt or malfunctioning, so that you decide to replace the mobile client data with a fresh copy of data from the enterprise data store with the forced refresh. When this option is selected, any data transactions that have been made on the client are lost.

When a force refresh is initiated all data on the client is removed. The client then brings down an accurate copy of the client data from the enterprise database to start fresh with exactly what is currently stored in the enterprise data store.





Figure 3-4 The mSync Options Selection
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3.3.3 Sync to a File Using File-Based Sync

Once you select File Based Sync off the Tools menu, the screen shown in Figure 3-5 is displayed. To synchronize to a file, click on the File based sync checkbox and perform the following:

	
If you select the send radio button, then browse for a directory where you want the client to save the upload data file from the mobile client for the mobile server.


	
If you select the receive radio button, then provide the location for the download data file from the mobile server.




For full details on File-Based Sync, see Section 5.10, "Synchronizing to a File with File-Based Sync" in the Oracle Database Mobile Server Administration and Deployment Guide.


Figure 3-5 File Sync Options
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3.3.4 Use Mobile Client Tools on Linux

The mobile client for Linux supports the msync, dmagent, update and autosync tools. To use the UI-based tools, use the following executables: msync, dmagent, update, or autosync.

To synchronize on a Linux client with the command line tool, use the msync executable for synchronization, as follows:


./msync username/password@http://server[:port][@proxy:port]





	
Note:

Substitute https if using HTTP over SSL.







For example,


./msync john/john@testserver:8000


The other msync options, such as -save, -a, -password and -force currently will not result in a successful sync. This is a limitation only for the msync executable in the MDK installation on Linux.








3.4 Use oracle.opensync.tools.OSync to Initiate Synchronization

Pure java client exposes a way to specify which JDBC drivers to use. You can try the following command to verify that your client can sync with the Berkeley DB drivers:

java -Djava.library.path=<path to BDB native and jdbc jni libraries> -cp .:osync_se.jar:jdbc.jar oracle.opensync.tools.OSync <USER_NAME> <PASSWORD> <SERVER_IP[:SERVER_PORT]e.g. 127.0.0.1:7001> -param OSE.FILES=YES -param SQLITE.JDBC.DRIVER=SQLite.JDBCDriver -param SQLITE.JDBC.URL_PFX=jdbc:sqlite:/

And the following command to verify that your client can sync with the SQLite drivers:

java -cp .:osync_se.jar:sqlitejdbc-v053.jar oracle.opensync.tools.OSync <USER_NAME> <PASSWORD> <SERVER_IP[:SERVER_PORT]e.g. 127.0.0.1:7001> -param OSE.FILES=YES -param SQLITE.JDBC.DRIVER=org.sqlite.JDBC -param SQLITE.JDBC.URL_PFX=jdbc:sqlite:

You can also create an ose.ini file manually in the same dir as osync_se.jar and add these parameters to it:

SQLITE.JDBC.DRIVER=SQLite.JDBCDriver SQLITE.JDBC.URL_PFX=jdbc:sqlite:/

Instead of creating the ose.ini manually, you can also call the included sync class oracle.opensync.tools.SetParam in your MySync.main() procedure to programmatically set the parameters in ose.ini before the call to sync.

For more information, refer to Section 5.2, "SetParam Utility" for detailed usage and supported parameters. The supported parameters are as demonstrated in SetParam.usage() method.






3.5 Synchronization Mechanisms on Mobile Client

SQLite and Berkeley DB clients support two types of synchronization: state-based (no queues) and queue-based. Both modes implement change capture but use different mechanisms to upload client changes to the server and download server changes to the client. In state-based mode, client changes are taken directly from snapshots and server changes are applied directly to the snapshots. This mechanism is efficient but the drawback is that all snapshots are locked during sync session so that users's applications cannot read or modify snapshots during the sync session.In queue-based mode, synchronization is split into 3 tasks:

	
Compose task: client changes are taken from snapshots and put into the outqueue.


	
Sync task: client changes in the outqueue are uploaded to the server, and the server changes are dowloaded into the inqueue.


	
Apply task: server changes in the inqueue are applied to the snapshots.




The advantage of this mode is that Sync task (the most lengthy of the 3, since it usually involves network trasfers) does not lock the snapshots. During execution of sync task, user's application is free to read or modify the snapshots.




	
Note:

Compose and apply tasks still require the snapshots to be locked.







Also, queue-based mode is transaction-based: client and server changes are split into atomic transactions, each identified by a unique transaction id. This allows compose, sync and apply tasks to run asynchronously. In addition, compose and apply tasks are performed on per-database basis. The main application of this structure is automatic rule-based synchronization that is performed by sync agent. The disadvangage compared to the state-based mode is that more time is needed because of additional compose and apply tasks.




	
Note:

In queue-based mode, foreground sync (the sync done through msync tool or sync APIs) invokes compose, sync and apply tasks. These tasks are run in sequence: first compose is performed for each database, then sync task and then apply is performed for each database. The snapshots are locked during the whole foreground sync session.







The mode is controlled by ose.ini parameter SQLITE.QUEUES which can be set to YES or NO. Note that the queue-based mode is the default. To enable state-based mode, set SQLITE.QUEUES parameter in ose.ini to NO.




	
Note:

Currently this setting is permanent. It needs to be set before the first sync and it cannot be changed after that unless the client is removed and reinstalled or all client database are removed (changing SQLITE.QUEUES parameter after the client databases have been used may result in unpredicatble behavior).







For more details on this parameter, see Appendix A, "QUEUES".

The following section describe metadata structure that is used to implement state-based and queue-based mechanisms:

	
Section 3.5.1, "State-based Mode"


	
Section 3.5.2, "Queue-based mode"






3.5.1 State-based Mode

For each snapshot a state table is created that references each record in the snapshot through primary key columns of that snapshot. For example, for a snapshot TABLE1, a state table OSE_ST$TABLE1 is created with primary key columns idential to that of TABLE1. Additional columns are created for OSE_ST$TABLE1 and are used for change capture, server and client versioning, and data priority.




	
Note:

The above applies only to updatable snapshots. For read-only snapshots the state table is not created. For more information about read-only and updatable snapshots, see Section 2.3.1.1.1, "Read-only Snapshots" and Section 2.3.1.1.2, "Updatable Snapshots" of the Mobile Server Developer's Guide.







For versioning, the state table contains the details for all the records in the snapshot and not just records modified by the client. These records are populated and updated with the server's data and versions. The records that are not updated by the client are marked as "clean" (see Section 3.5.1.1).

Another tables used by sync are OSE$TABLES and OSE$TRSEQ. OSE$TABLES meta-table exists in each database where snapshots reside and describes meta-information for every snapshot in the given database. OSE$TRSEQ also exists in each database and contains acknowledgement sequences needed by the server. These tables are only used by sync internally and should not be modified by the user.

The following sections describe state table columns and how data priority should be set by user's application:

	
Section 3.5.1.1, "State Table Columns (except for the primary key columns)"


	
Section 3.5.1.2, "Data Priority Handling"






3.5.1.1 State Table Columns (except for the primary key columns)

	
OSE$STATE - column to indicate DML type of the record, INSERT ("I"), UPDATE ("U"), DELETE ("D") or CLEAN ("C") ("Clean" meaning, that the record was not updated by client since last sync)


	
OSE$PRIO - priority of the record, set to 0 to indicate high priority, 1 to indicate normal priority


	
OSE$SVER - record's server version


	
OSE$CVER - record's client version









3.5.1.2 Data Priority Handling

The snapshot table itself does not contain extra column(s) to indicate record priority. It is up to the applications to choose what the priority of a client record should be. Currently two priorities are supported - high (value 0) and normal (value 1). The state table for each updatable snapshot includes priority column as described in the previous section. The default priority is normal (value 1). If an application wishes to make a given record high priority, it can find the corresponding state table record by using snapshot record's primary key and set the value of OSE$PRIO column to 0. It can make the record normal priority by setting this value to 1.




	
Note:

This only applies to the records that were modified on the client, because only those record's changes will be uploaded to the server during sync.







Usually, application will have its own criteria on which records need to be of high priority, decided by the application data in the snapshot's record. For example, it could decide that records with certain department id in the employees snapshot table must be of high priority. In this kind of cases, the application to create additional triggers on the snapshot table that will appropriately set OSE$PRIO column in the state table when a new record is inserted or a record is updated in the snapshot table.It is also common to setup automatic sync rules such that high priority records will be uploaded to the server more promptly than normal priority records. See Section 4.5, "Define the Rules Under Which the Automatic Synchronization Starts" of the Mobile Server Developer's Guide for information on automatic synchronization rules.








3.5.2 Queue-based mode

Queue-based mode is a superset of state-based mode: change capture on the client is done the same way as above using state table and triggers, but instead of being synced directly, client changes are put into the outqueue during compose task. The apply task will propagate server changes from the inqueue to the snapshots and will populate their state tables as well.

Currently the queue tables for each database are stored in a separate database, "queue database". This design was chosen because of SQLite's database-level locking mechanism. Each database with snapshot data will have it's own corresponding queue database with the same name prefixed by "OSE$". For example, database TESTDB.db will have its corresponding queue database OSE$TESTDB.db. It is easy to refer to those as data db and queue db.

The queue database contains the following:

	
OSE$TABLES - for queue-based mode is in queue db instead of data db.


	
OSE$TRSEQ - both data db and queue db have it for using in the recovery mechanism.


	
OSE$TRANS - table describing client and server transactions.


	
OSE$DATAQ - table containing both outqueue and inqueue records for each transaction. Inqueue records are differentiated from outqueue records by having negative values in TRID column.


	
OSE$BLOBQ - table containing BLOBs for both outqueue and inqueue records.











3.6 Manage Snapshots on the Mobile Client

The following are the types of snapshots you can enable for tracking the changes on the client database:

	
State-based. State-based snapshots decipher the difference in the state of the data between subsequent synchronization events. This snapshot type is more resource efficient than queue-based snapshots. To enable state-based snapshots, set the QUEUES parameter in the OSE.INI file to NO.

Snapshot state tables, OSE_ST$<snapshot>, are created in the client database and are populated by SQL triggers with primary keys of the modified rows.


	
Queue-based: Both client and server changes are stored in a single queue. Whenever the snapshot is not locked by an application, the synchronization retrieves data from the In Queue and applies it to the base snapshot. At this point, the synchronization propagates data from the Out Queue to the server.

Although both snapshot types rely on triggers, queue-based snapshots allow concurrent operations on the client database while any synchronization is in progress. The Sync Agent compose operation places modified data into the Out Queue. Later, the sync session uploads multiple client transactions delineated by a unique transaction id to the server.

To enable queue-based snapshots, set the QUEUES parameter in the OSE.INI file to YES. This is the default.

When you use queue-based snapshots, a queue database file is created, which is named OSE$<database name>.db. This database file contains the following tables:

	
Data queue for both In Queue and Out Queue records named OSE$DATAQ.


	
BLOB queue named OSE$BLOBQ.


	
Snapshot registry named OSE$TABLES.


	
Transactions registry named OSE$TRANS.


	
Transaction sequences per publication named OSE$TRSEQ.




The OSE$DATAQ queue is used for all snapshots and contains both In and Out Queue records. The TRID column is positive when the record is an Out Queue record. When you synchronize with queue-based snapshots enabled, new data from the client is uploaded from the OSE$DATAQ queue table and new data from the Oracle database is downloaded into this queue.




For more details on this parameter, see Appendix A, "QUEUES".






3.7 Control Automatic Synchronization for a Specific Mobile Client

As described in Section 5.5, "Using Automatic Synchronization" in the Oracle Database Mobile Server Administration and Deployment Guide, you can enable automatic synchronization for mobile clients either in the publication item or for the entire platform.

However, you can disable automatic synchronization for a single client by configuring the DISABLE parameter to YES in the OSE.INI file on the mobile client. This disables the Sync Agent and the only method for synchronization is a manual synchronization.

For more details on this parameter, see Appendix A, "Background Sync Parameter—BGSYNC".






3.8 Providing Security for the Mobile Client

The introduction of handheld devices within the corporate environment can pose a security threat to an organization. Devices are now used to store not only company contacts; but, with external cards, may store up to 60 gigabytes of information or more. Devices also provide a mobile point of entry into the organizational network that is located outside the network security perimeter. It is essential to secure this data if a device is lost or compromised.

Securing a device involves a layered approach. You must secure not only access to the device, but data stored on the device and communications across the network. Most aspects of security for a mobile device must be incorporated before Oracle Database Mobile Server is included within the security infrastructure.

	
Security starts with the device itself. Authentication on the device must be implemented through pin or password authentication, biometric readers, secure digital media for storage, and even how the device is stored, transported, and accounted for.


	
Once access is gained to the device, further security must be implemented within the mobile application to prevent the application from being able to retrieve invalid data. Technologies, such as the Microsoft.Net Compact Framework, incorporate API calls that may be used to encrypt and decrypt any data that will be stored or retrieved from the device.




Oracle Database Mobile Server provides several security features that may be utilized to help in securing data. These features aid in protecting information during synchronization and once access to a device has been obtained. The two most important aspects of security for the mobile infrastructure are the following:

	
Use Secure Socket Layer (SSL) to protect the transmission of data during the synchronization process. For more information, see Section 9.4, "Configuring for Secure Socket Layer (SSL) Communication" in the Oracle Database Mobile Server Administration and Deployment Guide.


	
Encrypt the mobile client database, whether for the Berkeley DB or the SQLite database. For more information, see Section 3.8.1, "Encryption for the Berkeley DB and SQLite Databases".






3.8.1 Encryption for the Berkeley DB and SQLite Databases

For both the Berkeley DB and SQLite databases, you can encrypt the data by using the encryption methods provided by Berkeley DB and SQLite respectively. For details on encryption for these databases, see the following:

	
SQLite provides a proprietary extension for encryption called SQLite Encryption Extension (SEE). For more information, see the following link:


http://www.hwaci.com/sw/sqlite/see.html


	
The Berkeley DB SQL Interface also supports the SQLite Encryption Extension (SEE) with some limitations. Berkeley DB encryption is discussed in the following documentation:


http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/sql_encryption.html











3.9 Improve Performance by Disabling the Resume Feature

The resume feature manages intermittent network failures. If resume is enabled on both the server and the client, synchronization will resume automatically within the specified resume timeout period. Also, if sync session was interrupted during a network operation, the next synchronization will try to resume the operation, as long as resume is enabled and the resume timeout has not expired.

The resume transport adds overhead with additional network round trips and additional data to be saved on the client and on the server. Any device with reliable networks may disable the resume feature to improve performance of the synchronization system for this device and improve scalability on the server.

You can disable the resume feature for the mobile client by setting the RESUME parameter in the OSE.INI file to NO. For more details on the resume feature and disabling it for your mobile client, see Section A.1.1, "OSE Parameters - OSE" and Section 5.7, "Resuming an Interrupted Synchronization" in the Oracle Database Mobile Server Administration and Deployment Guide.






3.10 Use the Device Manager Client GUI to Manage the Client-Side Device

On Win32, Windows Mobile, or Linux client platforms, you can manage the client software using the Device Manager. See Section 7.7, "Using the Device Manager Agent (dmagent) on the Client" in the Oracle Database Mobile Server Administration and Deployment Guide for more information.






3.11 Initiate Updates for the Mobile Client

You can initiate a request for software updates from the mobile server by executing the Oracle Database Mobile Server Update tool. For more information, see Section 7.6.3, "Initiate Updates of Oracle Database Mobile Server Software for Mobile Clients" in the Oracle Database Mobile Server Administration and Deployment Guide.






3.12 Communicate Between the Internet and Intranet Through a Reverse Proxy

If a Win32, Windows Mobile or Linux mobile client is on either side of the firewall, set up a proxy or reverse proxy to facilitate communication between the mobile client and mobile server. For more information, see Section 9.6, "Using a Firewall Proxy or Reverse Proxy" in the Oracle Database Mobile Server Administration and Deployment Guide.












4 Creating Sync Application for Android

The following sections use the simple_sync_android sample project to describe the steps to create an Android application that invokes Oracle Database Mobile Server sync APIs.




	
Note:

This chapter assumes that you know how to use Eclipse to build an Android project and how to appropriately develop and sign an Android application.







	
Section 4.1, "Prerequisites"


	
Section 4.2, "Import the Oracle Database Mobile Server Android Project into Eclipse"


	
Section 4.3, "Build Oracle Database Mobile Server Android Project"






4.1 Prerequisites

The following are the prerequisites for enabling synchronization for a SQLite or Berkeley DB Android application:

	
Install Eclipse IDE with the ADT plug-in, as detailed at the following site:


http://developer.android.com/sdk/eclipse-adt.html#installing


	
Install the latest Android SDK, as detailed at the following site:


http://developer.android.com/sdk/index.html


	
Install the Mobile Server Development Kit.









4.2 Import the Oracle Database Mobile Server Android Project into Eclipse

Import the Oracle Database Mobile Server simple_sync_android sample Android project into your Eclipse Workspace.

The following steps show how to import the mobile server sample Android project.

	
In Eclipse, with your Workspace open, select File->Import and choose Existing Projects into Workspace. Click Next.


Figure 4-1 Import Existing Projects into Eclipse Workspace

[image: Description of Figure 4-1 follows]





	
In the project location point to

<MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android

Replace <MDK_ROOT> with the full path where Oracle Database Mobile Server Development Kit was installed. In Figure 4-2, for example, it is C:\oracle\mdk_11g


Figure 4-2 Select Root Directory for Eclipse Project

[image: Description of Figure 4-2 follows]





	
Click on "Browse…" button which should find the project files. Select the simple_sync_android project and click Finish. The simple_sync_android project is now imported into your Eclipse Workspace.









4.3 Build Oracle Database Mobile Server Android Project

The following steps show how to build Oracle Database Mobile Server Android project:

	
Since the project references sync classes, in order to build it, you must copy the sync library file (s) to the libs subdirectory of the project.


	
For Berkeley DB client, copy the contents of <MDK_ROOT>\Mobile\Sdk\android\lib\bdb to <MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs. The libs directory should contain:

	
<MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs\osync_bdb_android.jar


	
<MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs\sqlite.jar


	
<MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs\armeabi\liboracle-jdbc.so





	
For SQLite client, copy osync_android.jar from <MDK_ROOT>\Mobile\Sdk\android\lib\ to <MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs\. The libs directory should contain: <MDK_ROOT>\Mobile\Sdk\samples\Sync\android\simple_sync_android\libs\osync_android.jar.


	
Build the project.


	
Run/Debug the simple_sync_android on a device emulator. After a successful build, to run the application, right click on the “simple_sync_android” project. Go to “Run As” item, and select “Android Application.” This will bring up the Android Emulator, where you should find “Mobile Sync” application.


Figure 4-3 "Run As" Eclipse Project Menu

[image: ]



	
Once the Android emulator is loaded, the mSync application will be started. To sync with a Mobile Server, provide a sync client's authentication information, the Mobile Server's http url (for example, myhost: 8090) and select the "Sync" button.

Several menu options are available when you select the "Device Menu" button. For more information, see Table 4-1.


Figure 4-4 Synchronization UI

[image: Description of Figure 4-4 follows]






Table 4-1 Menu Options for "Device Menu" Button

	Button	Functions
	
Sync Agent

	
Brings up the automatic Sync Agent screen


	
Edit OSE.ini

	
Allows users to modify contents of parameter file, OSE.ini


	
View Error Log

	
View the contents of the sync error log


	
Purge Error Log

	
Remove all contents from the sync error log


	
Exit mSync

	
Exit the application and terminate the mSync process.

Selecting the Android device's "Back" button puts the sync process in the background.








	
Examine the data after sync.

	
Use the Android SDK tool adb shell (located at <Android SDK root>\android-sdk\platform-tools) , to connect to the running instance of a device or an emulator.


	
For SQLite client, use the sqlite3 tool, included with Android SDK, to connect to the synchronized database(s). For more information on sqlite3 utility, see Android documentation. The simple sync client, by default, creates databases under:

/data/data/tests.sync/app_oracle.sync/sqlite_db/<SYNC USERNAME>

For example, if the user name is S11U1 and the user is subscribed to "SAMPLE11" publication, to connect to the database sample11.db and list all of its tables, the following commands are required: adb shell, cd /data/data/tests.sync/app_oracle.sync/sqlite_db/S11U1, sqlite3 sample11.db, and .tables


	
For Berkeley DB client, you can use dbsql utility for Android platform to examine the synchronization data. The dbsql utility is located at <MDK_ROOT>\Mobile\Sdk\android\tools\bdb. You can use the Android SDK tool adb push (located at <Android SDK root>\android-sdk\platform-tools), to copy it into the running instance of a device or an emulator. For more information on dbsql utility, see Berkeley DB documentation. The simple sync client, by default, creates databases under:

/data/data/tests.sync/app_oracle.sync/bdb/data/<SYNC USERNAME>


	
Examine MainAct.java

The sample consists of the UI layout code (found in the res\layout subdirectory) and the main application Java class file: MainAct.java. All the logic of initializing sync structures and calling the sync functions is located here. Examine this file for detailed explanation of the required sequence of calls to the sync API.


















5 Synchronization Utilities for Java Sync Client

The following sections provide information on synchronization utilities for java sync client:

	
Section 5.1, "OSync Utility"


	
Section 5.2, "SetParam Utility"


	
Section 5.3, "SyncConsole Utility"






5.1 OSync Utility

OSync utility is used to do a synchronization for Java Sync client. The usage is given as follows:


Table 5-1 Usage of OSync Utility

	Parameter	Description
	
user, pwd, url

	
Username, password, server URL


	
-f

	
Use files to store temporary sync payload


	
-ns

	
Do not save sync metadata files before sync


	
-sp

	
Save sync password in encrypted form in sync metadata files


	
-r

	
Enable resume


	
-ssl

	
Use SSL over HTTP


	
-sel pub

	
Sync with selective publication


	
-nnp

	
Do not download new publications


	
-fr

	
Force complete refresh


	
-np password

	
New password


	
-hp

	
High priority


	
-so

	
Send only one-way sync


	
-cancel stage percent

	
Sync and cancel at stage and percent, specify stage and percent with numbers, valid numbers for stage are 1 ~ 4, which stands for stage 1 to 4, numbers for percent are 1 ~ 99, which stands for 1% to 99% of the specific stage


	
-param par1=val1 par2=val2

	
Set parameters in ose.ini before sync, refer to oracle.opensync.tools. SetParam for valid parameters in ose.ini.








OSync utility is supported for both Java SE client and Java ME (OJEC) client. For SE client, by default, OSync would do synchronization with SQLite JDBC Driver if you do not specify which JDBC driver to use. However, you can specify which JDBC drivers to use during synchronization by using OSync command below.

The following command is used to sync with the Berkeley DB drivers:


java -Djava.library.path=<path to BDB native and jdbc jni libraries> -cp .:osync_se.jar:jdbc.jar oracle.opensync.tools.OSync <USER_NAME> <PASSWORD> <SERVER_URL: e.g. MobileServerIp:MobileServerPort>  -param OSE.FILES=YES -param SQLITE.JDBC.DRIVER=SQLite.JDBCDriver  -param SQLITE.JDBC.URL_PFX=jdbc:sqlite:/


The following command is used to sync with the SQLite drivers:


java -cp .:osync_se.jar:sqlitejdbc-v053.jar oracle.opensync.tools.OSync <USER_NAME> <PASSWORD> <SERVER_URL: e.g. MobileServerIp:MobileServerPort>  -param OSE.FILES=YES -param SQLITE.JDBC.DRIVER=org.sqlite.JDBC -param SQLITE.JDBC.URL_PFX=jdbc:sqlite:


Another method to specify which JDBC drivers to use during synchronization is that you can create an ose.ini file manually in the same dir as osync_se.jar and add below parameters to it before you invoke OSync utility. To sync with Berkeley DB JDBC driver, the corresponding parameters should be:

	
SQLITE.JDBC.DRIVER=SQLite.JDBCDriver


	
SQLITE.JDBC.URL_PFX=jdbc:sqlite:/




To sync with SQLite JDBC driver, the corresponding parameters should be:

	
SQLITE.JDBC.DRIVER=org.sqlite.JDBC


	
SQLITE.JDBC.URL_PFX=jdbc:sqlite:




For ME client, there is no SQLite option. You can use the above 2 methods to specify Berkeley DB JDBC driver only.

Another difference for ME client and SE client is that you must specify OSE.FILES=YES in arguments when you run OSync utility for ME client while it is optional for the SE client.

If your Mobile server URL starts with "https", you must specify NETWORK.DISABLE_SSL_CHECK = YES in the argument.

For more information, refer to javadoc of class oracle.opensync.tools.OSync.






5.2 SetParam Utility

SetParam utility is used to create and edit ose.ini, which is in the same dir as osync_se.jar. The supported parameters in ose.ini are given in the following table:


Table 5-2 Usage of SetParam Utility

	Parameter	Description
	
BGSYNC.DISABLE=YES|NO

	
Enable/Disable Sync Agent


	
OSE.RESUME=YES|NO

	
Use resume or not


	
OSE.FILES=YES|NO

	
Use file or not to store temporary sync payload


	
SQLITE.LIMIT_CONNECTIONS=YES|NO

	
Use limit number of database connections during sync to 2 (queue-based mode) or 1 (state-based mode). Only used for Blackberry client where OS limits number of database connections.


	
SQLITE.QUEUES=YES|NO

	
Use queue-based mode (YES) or state-based mode (NO).


	
SQLITE.DATA_DIRECTORY

	
Root of the client database directory (for example:/home/user/mobileclient/sqlite_db)


	
SQLITE.JDBC.DRIVER=org.sqlite.JDBC

	
Client JDBC Driver name


	
SQLITE.JDBC.URL_PFX=jdbc:sqlite:

	
Client JDBC URL prefix


	
BGSYNC.NET_WAIT_TIMEOUT=600000

	
Time interval to wait to check network status in syncagent in absence of network notifications. Default is 10000ms (10 seconds).


	
NETWORK.DISABLE_SSL_CHECK=YES|NO

	
Disable SSL Certificate check on the client. Needed if server uses self-signed certificates.








Usage:


java -cp .;osync_se.jar oracle.opensync.tools.SetParam parameter1 paramter2 


Example:


java -cp .;osync_se.jar oracle.opensync.tools.SetParam OSE.FILES=NO


You can invoke the utility in command line or call the included class methods in oracle.opensync.tools.SetParam from your own classes to programmatically set the parameters in ose.ini before the call to sync.

For more information, refer to javadoc of class oracle.opensync.tools.SetParam.






5.3 SyncConsole Utility

You can use SyncConsole utility to invoke a synchronization, set parameters in ose.ini and control syncagent for Java Sync client.

Usage:

	
To start it with Berkeley DB JDBC Driver:


java -Djava.library.path=<path to BDB native and jdbc jni libraries> -cp .:osync_se.jar:jdbc.jar oracle.opensync.tools.SyncConsole


	
To start it with SQLite JDBC Driver:


java -cp .:osync_se.jar:sqlitejdbc-v053.jar oracle.opensync.tools.SyncConsole




You can input commands once you start SyncConsole. The supported commands are as follows:


Table 5-3 Usage of SyncConsole Utility

	Command	Description
	
sync

	
Invokes oracle.opensync.tools.OSync to do a synchronization. You can refer to Section 5.1, "OSync Utility" for valid parameters for OSync.


	
status

	
Reports sync agent status.


	
start

	
Start Syncagent. The command will wait for syncagent to be started unless -nw or -nowait option is specified.


	
stop

	
Stop Syncagent. The command will wait for syncagent to be stopped unless -nw or -nowait option is specified.


	
pause

	
Pause Syncagent. The command will wait for syncagent to be paused unless -nw or -nowait option is specified.


	
resume

	
Resume Syncagent. The command will wait for syncagent to be resumed unless -nw or -nowait option is specified.


	
enable

	
Enables Sync Agent


	
disable

	
Disables Sync Agent. It would stop Sync Agent first and then Disable it. If you specify -nw or -nowait, it will disable immediately.


	
message

	
Invoking this command first time will add message handler to syncagent to dump syncagent messages into file named "SyncConsoleMsg.txt" in the working directory. Invoking this command second time will remove this message handler so that writing of syncagent messages will be stopped.


	
msg

	
The same as command "message".


	
setparam

	
Invokes oracle.opensync.tools.SetParam to set parameters in ose.ini. You can refer to Section 5.2, "SetParam Utility" for valid parameters for SetParam.


	
q

	
Exit SyncConsole process.


	
exit

	
The same as command "q".


	
quit

	
The same as command "q".








For example:


Sync Console>sync john john server_url












6 Creating Sync Application for iOS

The following sections describe how to use mobile client sync package for iOS to develop mobile sync application for Sqlite or Berkeley DB:

	
Section 6.1, "Contents of the iOS Mobile Client Package"


	
Section 6.2, "Building Sync Application"




You need to download and install the mobile sync package on your Mac from the mobile server in order to develop the application.

Refer to Section 2.3.7, "Installing iOS Mobile Client" for requirements and instructions.



6.1 Contents of the iOS Mobile Client Package

Here is the directory tree for Berkeley DB sync package:

osync-bdb-ios-11.3

doc

mcguide.pdf

include

bgmsg.h

bgsync.h

ose.h

oseerr.h

sqlitePluginErr.h

lib

ios6.0

armv7

libdb_sql-6.0.a

libosync_bdb.a

ios6.0simulator

i386

libdb_sql-6.0.a

libosync_bdb.a

res

osync_res

del.proj

osync.strings

en.lproj

osync.strings

es.lproj

osync.strings

fr.lproj

osync.strings

it.lproj

osync.strings

ja.lproj

osync.strings

ko.lproj

osync.strings

pt-BR.lproj

osync.strings

zh-Hans.lproj

osync.strings

The structure of Sqlite sync package is almost identical, except that it does not contain Berkeley DB library libdb_sql-6.0.a (instead the Sqlite library provided by the system is used):

osync-ios-11.3

doc

mcguide.pdf

include

bgmsg.h

bgsync.h

ose.h

oseerr.h

sqlitePluginErr.h

lib

ios6.0

armv7

libosync.a

ios6.0simulator

i386

libosync.a

res

osync_res

de.lproj

osync.strings

en.lproj

osync.strings

es.lproj

osync.strings

fr.lproj

osync.strings

it.lproj

osync.strings

ja.lproj

osync.strings

ko.lproj

osync.strings

pt-BR.lproj

osync.strings

zh-Hans.lproj

osync.strings




	
Note:

The contents are subject to change when new versions/platforms are supported.







The following sections provide information on the top-level directories in the package:

	
Section 6.1.1, "doc Directory"


	
Section 6.1.2, "include Directory"


	
Section 6.1.3, "lib Directory"


	
Section 6.1.4, "res Directory"






6.1.1 doc Directory

Contains this document and the related files.






6.1.2 include Directory

Contains sync header files. Your application needs to include these files for using the sync APIs:

	
ose.h contains foreground sync APIs and related constants and structures.


	
bgsync.h contains background sync APIs and related constants and structures.


	
oseerr.h contains foreground sync error code constants.


	
sqlitePluginErr.h contains SQLite and Berkeley DB plugin error code constants that provide more information about database-related sync errors.


	
bgmsg.h contains background sync error code constants and background sync message and other related constants.









6.1.3 lib Directory

Contains sync and Berkeley DB static libraries (for Berkeley DB client). Your application needs to link with libosync.a and libosync_bdb.a to use the sync APIs for Sqlite and Berkeley DB clients respectively. For Berkeley DB client, your application also needs to link with Berkeley DB library libdb_sql-6.0 a to access Berkeley DB client databases.

The contents are arranged by platform and CPU type. Both device and simulator builds are provided.

Currently iOS 6.0 and above targets are supported built for armv7 architecture.






6.1.4 res Directory

Contains a bundle directory osync_res that contains resources used by sync client. Currently osync_res contains only string files used for sync client error messages and background sync messages.

However, more resources may be added in future to support UI components. Internationalization is currently provided for 9 languages: English, Spanish, French, German, Italian, Korean, Japanese, Portuguese(Brazilian) and Chinese Simplified.








6.2 Building Sync Application

The following sections provide information on how to build sync application:

	
Section 6.2.1, "Prerequisites"


	
Section 6.2.2, "Build Settings"






6.2.1 Prerequisites

This section assumes that you are already familiar with how to create iOS applications and hence describes how to include sync functionality into your iOS application project.




	
Note:

For information on Mobile Server and Sync concepts, refer to Chapter 2, "Synchronization" of the "Mobile Server Developer's Guide".










	
Note:

iOS client supports only native C APIs. Refer to Section 3.1.1.2, "OSE Synchronization APIs For Native Applications" of the "Mobile Server Developer's Guide " for OSE Synchronization APIs (foreground sync) and Section 3.2.1.2, "Native APIs for the Sync Agent and Automatic Synchronization" of the "Mobile Server Developer's Guide" for Automatic Synchronization APIs.







You need the following installed on your Mac:

	
OS X v10.7 Lion or later version, currently OS X v.10.8 Mountain Lion.


	
Xcode 4.5 or later version, currently 4.6. Xcode already includes iOS SDKs. To develop for iOS 6.1 and later Xcode 4.6 is required (it includes iOS 6.1 SDK).


	
Mobile Sync package described in Section 6.1, "Contents of the iOS Mobile Client Package".









6.2.2 Build Settings

This section assumes that you are already familiar with how to create iOS applications and hence describes how to include sync functionality into your iOS application project. For more information see the following section:

	
Section 6.2.2.1, "Header Search Path"






6.2.2.1 Header Search Path

	
Click on your project, then on your application target, then on "Build Phases" tab.


	
Scroll down until you see "Search Paths" section and double-click on a line of "Header Search Paths".


	
A window will pop up. Click "+" in the bottom left corner.


	
Add "include" directory from the sync package to the header search path (either via absolute path or relative path from your project directory).





Figure 6-1 Add "include" Directory to Header Search Path

[image: ]






	
Note:

In order to use Sqlite C APIs to access your sync application databases, you also need to include "sqlite3.h" header file into your source files.
This file is already provided by iOS SDK so no additional include path is necessary. Berkeley DB fully supports Sqlite C APIs, so you can use "sqlite3.h" for Berkeley DB clients as well.

Refer to Berkeley DB documentation for more details.















6.2.3 Link With Libraries

On the same screen, click "Build Phases" tab and toggle "Link Binary With Libraries". Click on "+".


Figure 6-2 Link With Libraries

[image: ]



You will see the following window:


Figure 6-3 Add Frameworks and Libraries

[image: ]



See the sections below for more information:

	
Section 6.2.3.1, "Frameworks"


	
Section 6.2.3.2, "Libraries From The Sync Package"






6.2.3.1 Frameworks

The following frameworks are needed for mobile sync:

	
CoreFoundation.Framework


	
CFNetwork.Framework


	
SystemConfiguration.Framework


	
Security.Framework


	
UIKit.Framework


	
Foundation.Framework


	
Libsqlite3.dylib - only for Sqlite clients







	
Note:

Berkeley DB clients will use Berkeley DB libraries included in the sync package.







Add these frameworks using the procedure outlined above. You may later move the frameworks under "Frameworks" group in your project






6.2.3.2 Libraries From The Sync Package

If you are only building for one architecture (either device only or simulator only), it is simple to add the sync package libraries.

On the window from Figure 6-3, click on "Add Other". Navigate to the sync package directory, lib subdirectory and then appropriate subdirectories for your platform and CPU type (currently this will only depend on whether you are performing device or simulator build).

You need to add libosync.a and libosync_bdb.a for Sqlite and Berkeley DB clients respectively. For Berkeley DB clients only, you also need to add libdb_sql-6.0.a.

On the other hand, if you want to have both simulator and device architectures you may have to follow different steps:

	
Within the "Build Settings" tab (Figure 6-1) navigate to the "Linking" section and find "Other Linker Flags" row.


	
Click to the right of this row and add linking to these libraries explicitely:

	
-losync for SQLite clients


	
-losync -ldb_sql-6.0 for Berkeley DB clients


Figure 6-4 Explicit Linking
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The previous step only specified the library names but not their locations. You can customize the search path for different architectures following the steps below:

	
In the same "Build Settings" tab, find "Search Paths" section and "Library Search Paths" row. Toggle it.


	
For each build configuration, "Debug" and "Release", you can customize the library search path depending on SDK and architecture. Click "+" next to configuration. You will see "Any Architecture | Any SDK", click on it to pop up the menu.


	
To have both device and simulator builds, it would be enough to customize based on SDK ("iOS 6.1 SDK" or "iOS Simulator 6.1 SDK").


	
Double-click to the right of the selected item. A window will pop-up, click on "+" at the bottom left corner.


	
For each SDK, enter appropriate path within the lib directory of the sync package. See Figure 6-5 below.







	
Note:

You can separately customize Debug and Release configurations.







Now your project will link with correct libraries from the sync package depending on the configuration, architecture and SDK.


Figure 6-5 Customizing Library Search Paths
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6.2.4 Include Sync Package Resources

You must include resource from the sync package. Currently they only contain localized string files for error and other messages. More will be added in the future. Follow the steps below to include sync package resource:

	
Right-click on your project and select "Add Files To [Your Project Name]". Navigate to "res" directory in the sync package, select "osync_res" subdirectory and add it to the project.

Alternatively you can navigate to "res" directory in the Finder and drag "osync_res" directory to your project.




	
Note:

You can choose "Copy Files to Destination Group's Folder" option but it is not required.








	
Xcode should automatically add the string files within "osync_res" to "Copy Bundle Resources" build phase. You can verify this by going to the "Build Phases" tab and toggling "Copy Bundle Resources" section. You should see localized "osync.strings" file added.


Figure 6-6 osync.strings in "Copy Bundle Resources" Phase
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In case you don't see "osync.strings" file added, you can add it manually by clicking "+" from Figure 6-6. On the screen that pops up, you should see "osync_res" folder under your project. Select "osync.strings" file in it. See Figure 6-7.


Figure 6-7 Adding "osync.strings" Manually
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This concludes the steps needed to build Sqlite and Berkeley DB sync applications.














A Mobile Client Configuration Parameters

You can customize the mobile client by modifying the parameter values defined in the OSE.INI configuration file.

The installation automatically sets the parameters in the OSE.INI file, but you can modify them to customize the product behavior. To modify these files, use an ASCII text editor. You must have write permissions on the directory where either file is located to be able to modify them.




	
Note:

On the Windows Mobile and Blackberry platforms, these files are named with the extension of .TXT, so that you can double-click on it to open the file.







The following sections detail the parameters within the OSE.INI and DEVMGR.INI configuration files:

	
Section A.1, "OSE.INI File Overview"


	
Section A.2, "DEVMGR.INI File"


	
Section A.3, "Sample OSE.INI and DEVMGR.INI Files"






A.1 OSE.INI File Overview

The OSE.INI file stores properties used by the mobile clients. It contains parameters that define the location of the mobile client database and mobile client files, defines parameters for all databases on a system, and how to customize synchronization for the mobile client database. There is a single OSE.INI file for each mobile device for all users of that device. On Windows, Linux and Windows Mobile platforms, the latest modifications to parameters in the OSE.ini file take effect only after restarting the mSync, Sync Agent and dmagent programs. On Pure Java Client supported platforms, the latest modifications to parameters in the OSE.ini file take effect only after restarting the simple Sync example program.




	
Note:

The installation automatically sets the parameters in your OSE.INI file, but you can customize the mobile client by modifying the parameter values defined in your OSE.INI file, which is available under <MOBILE_CLIENT_HOME>\bin. You must have write permissions on the directory where this file is located to be able to modify the OSE.INI file. To modify the OSE.INI file, use an ASCII text editor.







Depending on the platform, it can be located in one of the following directories on the mobile device:

	
On Win32, Windows Mobile and Linux platforms, the OSE.INI file is located in the <mobile_client_install_root>\bin directory. On Windows Mobile and Blackberry, this file is named OSE.TXT.


	
On Blackberry, the OSE.TXT file is located in /store/home/user/oracle/sync.


	
On Android, the OSE.INI file is located in /data/data/<application_package>/app_oracle.sync. Applications import the osync_android.jar library; thus, the <application_package> should be replaced with the user's application that invokes the OSESession APIs.


	
On iOS, ose.ini file is located within the application sandbox in the mobile client directory which is "Library/Application Support/oracle" (relative to the sandbox root).







	
Note:

The user cannot modify files within application sandbox, so the only way to access and modify ose.ini file for iOS client is by using OSE APIs oseSetParam() and oseGetParamNC() within your application. For more information, see section 3.1.1.2.14 of the Mobile Server Develoeper's guide.







The following are the parameter sections for the OSE.INI file:

	
Section A.1.1, "OSE Parameters - OSE"


	
Section A.1.2, "SQLite Mobile Client Parameters—SQLITE"


	
Section A.1.3, "Background Sync Parameter—BGSYNC"






A.1.1 OSE Parameters - OSE

The following are the OSE parameters:

	
Section A.1.1.1, "Resume Parameter - RESUME"


	
Section A.1.1.2, "Files Parameter - FILES"


	
Section A.1.1.3, "Encryptdb Parameter - ENCRYPTDB"






A.1.1.1 Resume Parameter - RESUME

The RESUME parameter specifies whether the resume transport is enabled.Values are YES, TRUE, NO or FALSE.


Syntax


OSE.RESUME=YES|NO|TRUE|FALSE 






A.1.1.2 Files Parameter - FILES

The FILES parameter specifies whether files are used to temporarily store the data before it's sent/after it's received. Values are YES, TRUE, NO orFALSE.


Syntax


OSE.FILES=YES|NO|TRUE|FALSE 






A.1.1.3 Encryptdb Parameter - ENCRYPTDB

The ENCRYPTDB parameter specifies whether databases newly created during sync should be encrypted. Values are YES, TRUE, NO or FALSE.


Syntax


OSE.ENCRYPTDB=YES|NO|TRUE|FALSE 








A.1.2 SQLite Mobile Client Parameters—SQLITE

The SQLITE section configures certain aspects of both the Berkeley DB and SQLite Mobile Clients. The following sections describe the mobile client parameters that you can modify:

	
Section A.1.2.1, "DATA_DIRECTORY"


	
Section A.1.2.2, "QUEUES"


	
Section A.1.2.3, "LIMIT_CONNECTIONS"


	
Section A.1.2.4, "SQLITE.JDBC.DRIVER and SQLITE.JDBC.URL_PFX"






A.1.2.1 DATA_DIRECTORY

By default, the location of Berkeley DB and SQLite database files is determined by the DATA_DIRECTORY parameter in the OSE.INI file. However, if this parameter is not set, the location of client database files on Win32, Windows Mobile, or Linux platforms is determined by the location of plugin library.

	
Mobile Client database files , Oracle Database Mobile Server repository files, and temporary synchronization data are stored in the DATA_DIRECTORY/<user> directory, where <user> is the synchronization user id. The database repository files are named with the .db extension, such as TERRY\mysqlite.db. These files are used to manage the change control for transactions and synchronization for the user.


	
Internal settings and parameters for the Berkeley DB and SQLite Mobile Client is stored in the DATA_DIRECTORY/oseconf directory.





Example

Example for setting the directory on a Win32 platform:


SQLITE.DATA_DIRECTORY=C:\mobileclient\sqlite\sqlite_db


Example for setting the directory on a Blackberry:


SQLITE.DATA_DIRECTORY=file:///SDCard/databases/my_app






A.1.2.2 QUEUES

The QUEUES parameter specifies which type of snapshots the client will use in tracking the changes for Berkeley DB and SQLite databases. The following lists the two snapshot types:

	
Queue-based: Both client and server changes are stored in a single queue. Whenever the snapshot is not locked by an application, the synchronization retrieves data from the In Queue and applies it to the base snapshot. At this point, the synchronization propagates data from the Out Queue to the server.

Although both snapshot types rely on triggers, queue-based snapshots allow concurrent operations on Berkeley DB and SQLite databases while any synchronization is in progress. The Sync Agent's compose operation places modified data into the Out Queue. Later, the Sync Session uploads multiple client transactions delineated by a unique transaction id to the server.

Set this type with QUEUES=YES.


	
State-based. State-based snapshots decipher the difference in the state of the data between subsequent synchronization events. This snapshot type is more resource efficient than queue-based snapshots. To enable state-based snapshots, set the QUEUES parameter in the OSE.INI file to NO.





Syntax


SQLITE.QUEUES=YES|NO 






A.1.2.3 LIMIT_CONNECTIONS

Set LIMIT_CONNECTIONS to YES when you want to limit the number of concurrent connections used by synchronization. Setting this parameter to YES keeps alive only the minimum required number of connections. If the QUEUES parameter is set to YES, the minimum number of connections necessary for synchronization is 2. If QUEUES is set to NO, only a single connection is required.

Setting the LIMIT_CONNECTIONS parameter is a trade-off between performance and memory limitations. This parameter is set to YES by default on all Blackberry devices for conserving memory.


Syntax


SQLITE.LIMIT_CONNECTIONS=YES|NO 






A.1.2.4 SQLITE.JDBC.DRIVER and SQLITE.JDBC.URL_PFX

These parameters are used for Pure Java (PJ) SE and Pure Java ME clients to specify which JDBC driver is used by the client. Commonly this is used to determine whether PJ SE or ME client should be SQLite or Berkeley DB client. These settings in ose.ini should be permanent and not be changed unless the client is removed and reinstalled. For more information on the values of these parameters for SQLite and Berkeley DB clients, see Section 5.1, "OSync Utility".








A.1.3 Background Sync Parameter—BGSYNC

The DISABLE parameter specifies whether the Sync Agent is disabled. Values are YES or NO. Disabling the Sync Agent prevents any automatic synchronization to be initiated for any user on this SQLite or BDB Mobile Client.


Syntax


BGSYNC.DISABLE=YES|NO 





A.1.4 Network Parameters - NETWORK

This section provides information on:

	
Section A.1.4.1, "DISABLE_SSL_CHECK"






A.1.4.1 DISABLE_SSL_CHECK

This ose.ini parameter is only for Pure Java (Android, Blackberry, SE, ME) and iOS clients. For other clients use the corresponding parameter in devmgr.ini (see section A.2.2.2).

Specifies whether the client can use certificates from mobile server that are not signed by trusted authority, such as self-signed certificate. The values are YES and NO, with NO being the default.

Set this parameter to YES if you want to use self-signed certificate for SSL encryption, but not to perform SSL authentication.


Syntax


NETWORK.DISABLE_SSL_CHECK=YES|NO 










A.2 DEVMGR.INI File

The DEVMGR.INI file contains mobile client parameters for Device Management in the DMC section and the network parameters in the NETWORK section. For more information on device management parameters that can be modified before installing the client, see Section 7.2, "Configuring Mobile Clients Before Installation" in the Oracle Database Mobile Server Administration and Deployment Guide.

The following sections describe the parameters for the DMC and Network sections:

	
Section A.2.1, "Device Management Parameters—DMC Section"


	
Section A.2.2, "Network Parameters—NETWORK Section"






A.2.1 Device Management Parameters—DMC Section

The Device Management parameters are as follows:

	
Section A.2.1.1, "DISABLE_PROMPT"


	
Section A.2.1.2, "PUSH_PORT"


	
Section A.2.1.3, "UPDATE_DAY and UPDATE_TIME"


	
Section A.2.1.4, "MAX_RETRY"


	
Section A.2.1.5, "FREQUENCY"


	
Section A.2.1.6, "DEBUG"






A.2.1.1 DISABLE_PROMPT

The DISABLE_PROMPT parameter accepts a TRUE or FALSE value, which causes the following action:

	
TRUE: The device checks for software updates available on the server. If updates are available, these are brought down to the client and installed.


	
FALSE: The device checks for software updates available on the server. If updates are available, the option to bring down the updates and install them is displayed to the user, who decides what action to take. If the client chooses to update, then these are brought down to the client and installed.









A.2.1.2 PUSH_PORT

The port number on the mobile device that accepts device management commands from the mobile server. By default, the port number is 8521. Do not modify on the client. Even though it is described here, you should only modify the PUSH_PORT variable in the INF file BEFORE the mobile client is installed. For more information, see Section 7.2, "Configuring Mobile Clients Before Installation" in the Oracle Database Mobile Server Administration and Deployment Guide.






A.2.1.3 UPDATE_DAY and UPDATE_TIME

The day and time to check for software updates for the client. You can modify day and time here or within the DMAgent UI. For more information on the DMAgent UI, see Section 7.7, "Using the Device Manager Agent (dmagent) on the Client" in the Oracle Database Mobile Server Administration and Deployment Guide. If you do want to modify them here, the values are as follows:

Day when the device checks for software updates. Used in combination with UPDATE_TIME. UPDATE_DAY takes 0 - 8 which translates to the following days:

	
Never = 0


	
Daily = 1


	
Sunday = 2


	
Monday = 3


	
Tuesday = 4


	
Wednesday = 5


	
Thursday = 6


	
Friday = 7


	
Saturday = 8




Time of day that the device checks for software updates from the mobile server. Used in combination with UPDATE_DAY. UPDATE_TIME can take values 0 - 23 which translates to the following time:

	
00:00 = 0


	
01:00 = 1


	
12:00 = 12


	
13:00 = 13


	
23:00 = 23









A.2.1.4 MAX_RETRY

Integer value that configures the maximum number of retry attempts before abandoning a server command.






A.2.1.5 FREQUENCY

The frequency of how many seconds between the client polls. The DMAGENT connects to the mobile server checking for new commands at the defined FREQUENCY interval.






A.2.1.6 DEBUG

If you turn on the DEBUG parameter in the [DMC] section, then this turns on the debugging for the device manager. All device manager debug messages are written to the _dmdebug.txt file.

To enable, set the DEBUG parameter in the [DMC] section to 1. Set to 0 to turn off debug feature, which is the default.

Default value: 0








A.2.2 Network Parameters—NETWORK Section

The following parameter configures how the client interacts over the network:

	
Section A.2.2.1, "SERVER_URL"


	
Section A.2.2.2, "DISABLE_SSL_CHECK"


	
Section A.2.2.3, "HTTP_PROXY"






A.2.2.1 SERVER_URL

This parameter points to the mobile server. It communicates with the mobile server over HTTP or HTTPS. The expected syntax for the SERVER_URL parameter is as follows:


HTTP://<host>:<port>/mobile


For example:


[NETWORK]
SERVER_URL=HTTPs://myhost:8888/mobile






A.2.2.2 DISABLE_SSL_CHECK

For Pure Java and iOS clients use the corresponding parameter in ose.in. For more information, see Section A.1.4.1, "DISABLE_SSL_CHECK".

You can use certificates that are not signed by a trusted authority, such as a self-signed certificate, on the mobile server. Set the following parameter in the NETWORK section on the client device:


[NETWORK]
DISABLE_SSL_CHECK=YES





This parameter enables the client to use the self-signed certificate for SSL encryption, but not to perform SSL authentication.






A.2.2.3 HTTP_PROXY

If user has a proxy between the mobile client and the mobile server, then in order for the Device Manager (dmagent) to access the mobile server to poll for command, then configure this parameter to the proxy server URL, including port number.

Format is <hostname>:<port>, as follows:


[NETWORK]
HTTP_PROXY=proxy.foo.com:8080










A.3 Sample OSE.INI and DEVMGR.INI Files

The following content is displayed from a sample OSE.INI file.


SQLITE.DATA_DIRECTORY=C:\mobileclient\sqlite
SQLITE.QUEUES=YES
OSE.RESUME=NO 
BGSYSNC.DISABLE=NO 


The following content is displayed from a sample DEVMGR.INI file.


[NETWORK]
DISABLE_SSL_CHECK=YES
HTTP_PROXY=proxy.foo.com:8080
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