
Endeca Content Acquisition
System

Developer's Guide
Version 3.0.2 .1 • September 2013

Contents
Preface...9
About this guide...9
Who should use this guide..9
Conventions used in this guide...10
Contacting Oracle Support..10

Part I: Introduction to CAS and Crawling Data Sources.......................11

Chapter 1: Introduction..13
Overview of the Endeca Content Acquisition System..13
About the Endeca CAS Service...15
About the CAS Server ...15
About the Component Instance Manager..16
About the Record Store..16
About the Dimension Value Id Manager..20
Security requirements..21

Chapter 2: Creating and configuring a crawl ..23
About creating and configuring crawls...23
Configuring a crawl to write to a Record Store instance..27
Configuring a crawl to write to an MDEX compatible format..30
Configuring a crawl to write to an output file..33
Setting document conversion options..35
About filters..37

Chapter 3: Configuring a Record Store instance...................................41
Configuring a Record Store instance...41
Configuration properties for a Record Store instance..42
Change properties and new Record Store instances..46
Disabling automatic management of a Record Store instance..47

Chapter 4: Running a crawl...49
Running a crawl...49
Order of execution in a crawl configuration..49
Full and incremental crawling modes...50
Crawls and archive files...51
About writing records to a Record Store instance..54
About the record output file..54

Chapter 5: Running the CAS sample applications................................57
About the sample CAS applications...57

Part II: Loading data into an MDEX Engine..73

Chapter6:CreatingaForgepipeline to read fromorwrite toaRecordStore.75
Overview of a Forge pipeline...75
Creating a Forge pipeline ..76

Chapter 7: Creating a CAS crawl to write MDEX compatible output...83
Overview of a CAS crawl that produces MDEX compatible output..83
Loading dimension values into Record Store instances..84
Loading data records into Record Store instances..87

iii

Creating and configuring a crawl to write MDEX compatible output..89

Part III: CAS Command Line Utilities..91

Chapter 8: CAS Server Command-line Utility..93
Overview of the CAS Server Command-line Utility..93
About CAS capabilities...95
Saving passwords in a crawl configuration file..95
Inspecting installed modules..96
Managing crawls..99
Managing dimension value Ids..109
Viewing crawl status and results..114

Chapter 9: Component Instance Manager Command-line Utility.......119
Overview of the CIM Command-line Utility..119
Creating a Record Store..120
Deleting a Record Store...121
Listing components..122
Listing types...123

Chapter 10: Record Store Command-line Utility..................................125
Overview of the Record Store Command-line Utility..125
Writing tasks...127
Reading tasks..128
Utility tasks...131

Part IV: Administering CAS..143

Chapter 11: Running CAS components..145
About running CAS components..145
Running the Endeca CAS Service from the Windows Services console...146
Starting the Endeca CAS Service from a command prompt..146
Stopping the Endeca CAS Service from a command prompt..148

Chapter 12: Backing up and restoring CAS ..149
Coordinating backups and restore operations...149
Online backup and restore operations...149
Offline backup and restore operations...152

Chapter 13: Configuring SSL...153
About configuring SSL in the Content Acquisition System..153
Enabling SSL for the Endeca CAS Service...154
Enabling SSL for CAS Console for Oracle Oracle Endeca Workbench...158
Enabling SSL for the CAS Command-line Utilities...160
Enabling the Endeca Web Crawler to write to an SSL enabled Record Store instance....................162
Enabling SSL for Forge record adapters...163

Chapter 14: Configuring logging...165
Configuring logging for CAS components and command-line utilities...165
Setting log properties for troubleshooting CMS connector issues...166
Excluding failed records from the CAS Service log file..166
Enabling log timing information for crawl processing steps...167
Examining the Endeca CAS Service log..167

Chapter 15: Tips and troubleshooting CAS...171
Modifying the CAS Server connection information for the CAS Console...171
Modifying the CAS Service temporary directory..171
Responding to a "Too many open files" error..172

Endeca Content Acquisition Systemiv

Setting the group entry size...172

AppendixA:FileFormatsSupportedbytheCASDocumentConversionModule.175
Archive formats...175
Database formats..176
E-mail formats...176
Multimedia formats..177
Other formats..178
Presentation formats...179
Raster image formats..179
Spreadsheet formats...181
Text and markup formats..182
Vector image formats..182
Word processing formats..184

Appendix B: Record properties generated by crawling......................187
Common record properties..187
Record properties generated by file system crawls..189

Common File System properties..190
Record properties for file system crawls on Windows ..191
Record properties for file system crawls on UNIX...191
Limitations with ACL properties...192

Document Conversion properties..192
Record properties generated by CMS crawls...193
How CMS crawls handle multiple pieces of content...194

v

Contents

Copyright and disclaimer

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

vii

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Endeca Content Acquisition Systemviii

Preface

The Oracle Endeca Commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine™, a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide
This guide provides an overview of the Endeca Content Acquisition System, including the Endeca
CAS Server, the Component Instance Manager, and the Record Store. The guide also explains how
to create a Forge pipeline that incorporates the source data gathered from file systems, CMS data
sources, and custom data sources.

The guide assumes that you are familiar with Endeca concepts and Endeca application development.

Who should use this guide
This guide is intended for application developers who are building applications using the Content
Acquisition System (CAS) and who are responsible for configuring data sources, crawling data sources,
and incorporating the Endeca records into an Endeca pipeline.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca Content Acquisition System Developer's Guide

| Preface10

https://support.oracle.com

Part 1

Introduction to CAS and Crawling Data Sources

• Introduction
• Creating and configuring a crawl
• Configuring a Record Store instance
• Running a crawl
• Running the CAS sample applications

Chapter 1

Introduction

This section provides introductory information about the Endeca Content Acquisition System (CAS).

Overview of the Endeca Content Acquisition System
The Endeca Content Acquisition System is a set of components that add, configure, and crawl data
sources for use in an Endeca application. Data sources include file systems, content management
systems, Web servers, and custom data sources. The Endeca Content Acquisition System crawls
data sources, converts documents and files to Endeca records, and stores them for use in an Forge
pipeline.

The following image shows the Endeca Content Acquisition System components as they work together
in a typical implementation to crawl data sources and produce Endeca records:

The Endeca Content Acquisition System is made up of the following components:
• The Endeca CAS Service is a servlet container that runs the CAS Server, the Component Instance

Manager, and any number of Record Store instances (one per data source).
• The CAS Server is the component that manages all file system and CMS crawling operations. The

CAS Server is documented in the Endeca CAS Developer's Guide.
• The CAS Console for Endeca Workbench is a Web-based application used to crawl various data

sources including file systems and content management systems. During the Content Acquisition
System installation, the CAS Console is installed as an extension to Endeca Workbench. The CAS
Console is documented in the Endeca CAS Console Help.

• The CAS Server API allows users to write programs that communicate with the CAS Server. The
CAS Server API has a WSDL interface and also a CAS Server Command-line Utility. The API is
documented in the Endeca CAS API Guide.

• The Dimension Value Id Manger is a CAS component that creates, stores, and retrieves dimension
value identifiers.

• The Endeca Web Crawler manages all Web crawl-related operations. This component is
documented in the Endeca Web Crawler Guide.

• Endeca CMS connectors are available for use in the CAS Console for Endeca Workbench or the
CAS Server API. CMS connectors provide a means to access and crawl data sources in a variety
of CMS types.

• The Component Instance Manager creates, lists, and deletes Record Store instances. The
Component Instance Manager has a WSDL interface and also a CIM Command-line Utility.

• The Endeca Record Store provides persistent storage for generations of records. The Record
Store has a WSDL interface and also a Record Store Command-line Utility. The CAS Server writes
crawl output from each data source to a unique Record Store instance.

Endeca Content Acquisition System Developer's Guide

Introduction | Overview of the Endeca Content Acquisition System14

• The CAS Extension API provides interfaces and classes to build extensions such as custom data
sources and custom manipulators. You package extensions into a plug-in and install it into the
Content Acquisition System. After you install the plug-in, the extensions are available and
configurable using the CAS Console, the CAS Server API, and the CAS Server Command-line
Utility.

About the Endeca CAS Service
The Endeca CAS Service is a servlet container that runs the CAS Server, the Component Instance
Manager, any number of Dimension Value Id Managers (one per application), and any number of
Record Store instances (one per data source).

On Windows, the CAS installation program starts the service automatically and the service is set to
restart automatically during system restarts. If you accept the installation defaults, the service runs on
port 8500. The following image shows the components running within the Endeca CAS Service:

In the Windows Services console, the service displays as Endeca CAS Service. The service is running
cas-service-wrapper.exe in <install path>\CAS\version\bin.

On UNIX, you can start Endeca CAS Service using cas-service.sh located in <install
path>/CAS/version/bin and stop it using cas-service-shutdown.sh. Or if you set up the
service in inittab, you start it there and stop it using Control-C.

About the CAS Server
The CAS Server manages all crawl operations of file system, CMS, and custom data sources. The
CAS Server has a WSDL interface and a CAS Server Command Line Utility. The CAS Server runs
inside the CAS Service.

The CAS Server has the following characteristics:
• Integrates with the CAS Document Conversion Module, which allows the CAS Server to convert

binary files (such as Microsoft Word documents and Adobe Acrobat PDF files) into text.
• Uses include and exclude filters to specify which files or folders to retrieve or avoid.
• Configures the logging behavior for a crawl, including setting the log level for various components

and specifying output to the console, to a log file, or to both.
• Supports incremental crawls in which the CAS Server processes only the content which has been

added, modified, or deleted since the last crawl.

Endeca Content Acquisition System Developer's Guide

15Introduction | About the Endeca CAS Service

• Enables security by supporting the Endeca Access Control System. Each crawl generates access
control list (ACL) properties for each record, based on the corresponding properties for each file
(for file system crawls) or entry in the CMS repository (for CMS crawls).

The CAS Server also tags the records with metadata properties that are derived from the source
documents. After the CAS Server returns the records, you can configure an Endeca record adapter
(from Developer Studio) to read the records into your Endeca implementation's pipeline, where Forge
processes the records and can add or modify the record properties. These property values can then
be mapped to Endeca dimensions or properties by the property mapper in the pipeline. You can then
build an Endeca application to access the records and allow your application users to search and
navigate the document contents contained in the records.

You can configure the CAS Server to crawl a data source and generate access control list (ACL)
properties for each record. These ACL properties can be used in conjunction with security login modules
to limit access to records based on user login profiles. For details on using the Endeca Access Control
System, see the Endeca Security Guide.

About the Component Instance Manager
The Component Instance Manager creates, lists, and deletes Record Store instances. The Component
Instance Manager has a WSDL interface and also a CIM Command-line Utility.

The Component Instance Manager runs inside the Endeca CAS Service.

About the Record Store
The Endeca Record Store is a Web service that provides persistent storage for generations of records
that can later be accessed by Forge for baseline and incremental updates. The Endeca Record Store
is integrated with the Endeca CAS Server to directly store output in the Record Store instead of sending
output to files.

The Record Store has the following features.

Provides an efficient repository for records

Instead of having your source records residing in different directories, they can be consolidated in one
place. This consolidation eliminates the need to copy and move source files among different directories.

Retrieves baseline and incremental records

You can store records from both baseline and incremental crawls in the Record Store. You can then
run a Forge baseline using all the stored records.

Operates asynchronously

An application (such as the CAS Server) can write records into a Record Store while, at the same
time, Forge can read in records to process. Each process runs isolated from changes that the other
is currently making.

Endeca Content Acquisition System Developer's Guide

Introduction | About the Component Instance Manager16

Operates as a lookup table

Forge can process a record of one type (say, Order records) and then look up a record of another type
(say, Product records) for a join.

Creates a separate Record Store instance for each data source

The Record Store Web service ceates a unique Record Store instance for each data source that CAS
Server crawls. In general, there is a one-to-one mapping from a data source (such as a file system or
a CMS) to a corresponding Record Store instance. A separate Record Store instance for each data
source keeps records schemas separate. CAS Console for Oracle Endeca Workbench enforces this
one-to-one mapping by creating a new Record Store instance for each data source you add. This
mapping is not enforced in cases where you explicitly disable automanagement using the isManaged
property.

Automatically cleans stale records

The Record Store service periodically runs a cleaner process that removes stale generations of records.
The time interval for the cleaner process is configurable and the feature can be disabled.

Easily configured and managed with a Record Store Command-line utility

CAS includes a Record Store Command-line utility to perform Record Store configuration and
management. You can use this utility to run get/set commands to update a Record Store instance with
configuration settings.

You create a Record Store instance using either the Component Instance Manager Command-line
Utility, the CAS Console, or the CAS Server API.

About record generations
A set of records that has been committed to a Record Store instance is a record generation.

For example, if you perform a full (baseline) file system crawl, all the records returned from the crawl
are written to the Record Store and a commit is done. After the commit is done, the Record Store now
has one generation of records. A subsequent crawl, either full or incremental, would then result in the
second generation of records (assuming that the first one is still in a Record Store instance).

As each record is read in, the record is assigned a unique ID. The unique ID is generated from the
value of the idPropertyName Record Store configuration property. If a record already exists with
that unique ID, then the later version (the one just read in) replaces the earlier one. This ensures that
when you run a Forge update, you always get the latest version of any given record.

A record generation is removed from a Record Store instance (via the Record Store Cleaner) when it
becomes stale. A stale generation is a generation that has been in a Record Store instance for a period
of time that exceeds the value of the generationRetentionTime Record Store configuration
property.

Normally, the stale generation is removed when the cleaner runs. However, there are two exceptions:
• Generations that are currently in use are not be cleared.
• If there is only one generation in a Record Store instance, it is not removed, even if it is stale. The

reason is that a Record Store instance keeps at least one generation of records.

Endeca Content Acquisition System Developer's Guide

17Introduction | About the Record Store

About transactions
This topic presents an overview of Record Store transactions.

A transaction is an access operation in the Record Store by another component, such as Forge or a
crawler. Transactions provide a means to keep one operation isolated from another operation and
allow each to operate independently. In other words, one transaction can read while another is writing.
Each transaction is either a READ_WRITE transaction or a READ transaction:

• READ-type transactions support only Read operations. Examples of Read operations are Forge
reading a record generation for a baseline update or an administrator using the Record Store
Command-line utility with the -c flag to get the count (number of records) in a Record Store
instance.

• READ_WRITE-type transactions support both Read and Write operations. An example of a Write
operation is a crawler running a full crawl and writing the output to a Record Store instance.

Each transaction is assigned a transaction ID. When a transaction begins, the Record Store service
logs an INFO message with the transaction type and ID, as in this example of Forge performing a
READ transaction (with an ID of 2) for a baseline update:
Started transaction 2 of type READ

An example of a Write transaction message would be the following:
Started transaction 3 of type READ_WRITE

Each transaction has a status, which is one of the following:
• ACTIVE – The transaction is currently active. For example, the transaction is in the middle of a

Write operation.
• COMMITTED – The transaction has successfully finished. An INFO message of “Committed

transaction” is logged to indicate this status.
• COMMIT_FAILED – A commit transaction failed. The only operation allowed on the transaction is

a rollback.
• ROLLED_BACK – The transaction has been successfully rolled back. No further operations are

allowed on the transaction.

The rules for transactions are as follows:
• Once a transaction has been committed or rolled back, additional operations that try to access the

transaction should fail.
• Once a Read operation has ended, additional operations that try to access the read cursor should

fail.
• Only one operation per transaction can run at a time.
• If a transaction is rolled back, then it cancels operations in progress.

About client states
A Record Store instance can save the state for a client, such as Forge.

To do this, you create a client ID (which can be any string, such as forge1) and then set the last-read
generation for that client ID.

There are two ways to set state for a client:
• Automatically, in your Forge pipeline, by using a Record Store adapter to read records from the

Record Store. In the adapter, use the CLIENT_ID pass-through to specify the client ID to be set
for the generation that is being read in.

Endeca Content Acquisition System Developer's Guide

Introduction | About the Record Store18

• Manually, by using the set-last-read-generation task of the Record Store command-line
utility.

A typical use-case is the following scenario:

1. You run a crawl and write the records to a Record Store as Generation 1.
2. You perform a baseline update using Generation 1. The Record Store adapter to Forge uses the

READ_TYPE pass-through set to BASELINE and the CLIENT_ID pass-through set to forge1. The
use of the CLIENT_ID pass-through means that a client state was saved for the forge1 client.

3. You run a second crawl and store the records as Generation 2. Because both crawls use the same
idPropertyName and the same seeds, some of the records of both generations are identical and
the others are delta records (new, modified, or deleted records).

4. You perform a partial update using the delta records between Generation 1 and Generation 2. For
this pipeline, the Record Store adapter to Forge uses the READ_TYPE pass-through set to DELTA
and the CLIENT_ID pass-through set to forge1.

5. The Forged delta records are uploaded to the Endeca MDEX Engine.

To find out which client states are currently saved in a Record Store instance, use the
list-client-states task of the Record Store command-line utility.

Performance considerations when using a Record Store instance
When reading or writing large numbers of records, some read/write operations can take long periods
of time. Read operations generally take longer than write operations for similar size record sets, and
the transaction time of a read/write operation grows approximately linearly as the number of records
grows and the size of the records grows. For this reason, delta updates are generally faster than
baseline updates.

If reading or writing operations cause performance concerns, there are two configuration changes you
can make:

• Reconfigure output options for a crawl to write records to an output file rather than to a Record
Store instance. For configuration details, see Configuring a crawl to write to an output file on page
33.

• Split the crawl into multiple crawls that use multiple Record Store instances.

About deleted records from the Record Store
Any client of the Record Store, including the CAS Server, the Web Crawler, Forge, the CAS API, and
so on, can modify and delete records that are written to the Record Store. Clients either update or
insert (UPSERT) a record, delete (DELETE) a record, or delete all (DELETE) records. This topic describes
the Endeca.Action property that the Record Store examines to determine whether to modify or
delete records.

Deleting all records for a full crawl

A record that has only the Endeca.Action property set to DELETE (i.e., has no other properties)
functions as a logical “Delete All” record. When the Record Store encounters such a record, the Record
Store removes all records from a Record Store instance. This is useful when running a full crawl and
you want to remove a generation of records before writing a new generation.

For example:
<RECORDS>
 <RECORD>

Endeca Content Acquisition System Developer's Guide

19Introduction | About the Record Store

 <PROP NAME="Endeca.Action">
 <PVAL>DELETE</PVAL>
 </PROP>
 </RECORD>
 ...
</RECORDS>

Deleting records for an incremental crawl

If a record has an Endeca.Action property set to DELETE, the record is removed from the Record
Store instance. This configuration is useful in an incremental crawl where files may have been modified
or deleted since the last crawl.

If an incremental crawl does not find a file that is listed in the crawl history, the CAS Server treats that
file as deleted. For each deleted file, a record is created that contains the location of the deleted file
and an Endeca.Action property with a value of DELETE.

For renamed files, the file with the old name is treated as a deleted file while the file with the new name
is treated as a new (added) file.

This example shows the record for a TestPlan.doc file that was deleted:
<RECORDS>
 <RECORD>
 <PROP NAME="Endeca.Action">
 <PVAL>DELETE</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.Path">
 <PVAL>c:\endeca_test_docs\TestPlan.doc</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceType">
 <PVAL>FILESYSTEM</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceId">
 <PVAL>FileSystemSource</PVAL>
 </PROP>
 </RECORD>
 ...
</RECORDS>

In your pipeline, you can add a record manipulator to remove records that were marked for deletion.

Reading records marked with the DELETE property value

Any client of the Record Store, for example a custom record adapter in a Forge pipeline, can read
from a Record Store instance and process records that are marked with the Endeca.Action property
set to DELETE.

About the Dimension Value Id Manager
The Dimension Value Id Manger is a CAS component that creates, stores, and retrieves dimension
value identifiers. Dimension value Ids are used by Endeca components, such as Oracle Endeca
Workbench and Experience Manager, and also by the Endeca Presentation API as part of URLs in
an application's navigation state.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover

Endeca Content Acquisition System Developer's Guide

Introduction | About the Dimension Value Id Manager20

problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

There is a command line interface (cas-cmd) to the component to manually perform the following
operations:

• Create a Dimension Value Id Manger.
• Generate dimension value Ids.
• Get dimension value Ids.
• Delete a Dimension Value Id Manger.

Using the Dimension Value Id Manager and the ebiz sample application

Most of the cas-cmd operations for the Dimension Value Id Manager are automatic and transparent
if you are running the ebiz sample application and the Deployment Template. The
initialize_services script creates a new instance of a Dimension Value Id Manger. CAS generates
dimension value Ids as part of writing MDEX output. You manually delete the Dimension Value Id
Manger using the cas-cmd utility before removing an Endeca application.

Using the Dimension Value Id Manager with other applications

With other applications controlled by the Deployment Template, you manually create a Dimension
Value Id Manager using the cas-cmd utility.

However, the remaining steps are the same as the ebiz sample application. CAS generates dimension
value Ids as part of writing MDEX output. You manually delete the Dimension Value Id Manger using
the cas-cmd utility before removing an Endeca application.

Lifecycle considerations

There should be one instance of a Dimension Value Id Manger per Endeca application, and that
instance should exist for the lifetime of an Endeca application. You manually delete a Dimension Value
Id Manger by running the deleteDimensionValueIdManager task of cas-cmd before deleting
the Endeca application itself. The is necessary when you are running the ebiz sample application or
any other application.

Security requirements
The CAS Server supports the Endeca Access Control System which you can use to make your front-end
Endeca application secure. This topic explains the details involved in making your Endeca application
secure based on the ACL properties generated from your CMS repository.

To make use of the ACL properties generated by the CAS Server in your Endeca front-end application,
take into account the following considerations:

• The CAS Server tags each record with access control list (ACL) properties that it generates. The
generated ACL properties are based on the corresponding properties for each entry in the CMS
repository. In other words, the ACL properties generated by a crawl are based on ACL properties
created by your CMS repository.

You can use manipulators to transform the generated ACL properties into the format for ACLs that
is used by the Endeca Access Control System. You can then use the modified properties in

Endeca Content Acquisition System Developer's Guide

21Introduction | Security requirements

conjunction with security login modules to limit access to records based on user or group login
profiles. For details on using the Endeca Access Control System, see the Endeca Security Guide.

• Typically, the generated ACL properties, since they are based on the ACL information specific to
a repository, can apply to either users or groups. If they apply to groups, the code for the Endeca
front-end application has to map users to their corresponding groups.

Endeca Content Acquisition System Developer's Guide

Introduction | Security requirements22

Chapter 2

Creating and configuring a crawl

This section provides information about creating crawls, configuring crawls, and specifying filtering
options.

About creating and configuring crawls
You use the CAS Server API, the CAS Server Command-line Utility, and the CAS Console for Oracle
Oracle Endeca Workbench to create and configure any number of crawls in your application.

For each crawl, you specify configuration options such as:
• The name of the configured crawl.
• Seeds for the crawl. A seed is a path to a file or directory that is the starting location for the crawl.
• Filters that include or exclude designated files and folders.
• Repository properties for CMS data sources.
• Manipulators to modify Endeca records as part of the crawl.

Configuring crawls using the CAS Server API

If you want to use the CAS Server API, you configure a crawl by setting configuration properties in the
SourceConfig, TextExtractionConfig, ManipulatorConfigs, and OutputConfig objects
(among others). For details, see the CAS API Guide and the CAS API Reference (Javadoc).

Configuring crawls using the CAS Server Command-line Utility

If you want to use the CAS Server Command-line Utility, you configure a crawl by creating a crawl
configuration file and passing the file as an argument (-f) to the createCrawls task of the utility.

You can create the configuration file in the following ways:
• Run the getCrawl task, save the XML file, and modify it.
• Create your own XML file. Refer to the sample configuration files provided on Sample configuration
for a file system data source on page 24 and Sample configuration for a manipulator on page 26.

Configuring crawls from the CAS Console for Oracle Endeca Workbench

If you want to use the CAS Console, you add a data source and configure the crawl on theData Source
tab, the Filters tab, and the Advanced Settings tab. The data source (crawl) may or may not have
all of the tabs listed. You can also add one or more manipulators to modify Endeca records during the
crawl.

The CAS Console includes an online help system, which provides details on the various configuration
properties.

Sample configuration for a file system data source
This topic shows a sample configuration file that you can use as the basis for your own crawl
configuration file. The sample show the configuration of a file system data source with no manipulators
and no filters.

Much of the configuration is specified in key/value pairs within a moduleProperty property element.
To determine the values for configuration properties, run the getModuleSpec task of the cas-cmd
utility. For details, see Getting the specification of a module on page 97.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>
 <crawlId>
 <id>FileCrawl</id>
 </crawlId>
 <crawlThreads>3</crawlThreads>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\tmp\itldocset</value>
 <value>C:\tmp\iapdocset</value>
 <value>C:\tmp\mdexdocset</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>
 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>true</makeLocalCopy>
 <timeout>90</timeout>
 </textExtractionConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>outputXml</key>
 <value>true</value>
 </moduleProperty>

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | About creating and configuring crawls24

 <moduleProperty>
 <key>outputCompressed</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>outputPrefix</key>
 <value>CrawlerOutput</value>
 </moduleProperty>
 <moduleProperty>
 <key>outputDirectory</key>
 <value>C:\tmp</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
 </crawlConfig>
</configurations>

Sample configuration for a Record Store Merger data source
This topic shows a sample configuration file that you can use as the basis for your own configuration
of a Record Store Merger data source.

Much of the configuration is specified in key/value pairs within a moduleProperty property element.
To determine the values for configuration properties, run the getModuleSpec task of the cas-cmd
utility. For details, see Getting the specification of a module on page 97.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-07">
 <crawlConfig>
 <crawlId>
 <id>ebizsampleapp-last-mile-crawl</id>
 </crawlId>
 <crawlThreads>5</crawlThreads>
 <sourceConfig>
 <moduleId>
 <id>com.endeca.cas.source.RecordStoreMerger</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>dataRecordStores</key>
 <value>ebizsampleapp-products</value>
 </moduleProperty>
 <moduleProperty>
 <key>taxonomyRecordStores</key>
 <value>ebizsampleapp-category-dimension</value>
 <value>ebizsampleapp-trigger-dimensions</value>
 </moduleProperty>
 <moduleProperty>
 <key>isPortSsl</key>
 <value>false</value>
 </moduleProperty>
 </moduleProperties>
 </sourceConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>com.endeca.cas.output.Mdex</id>
 </moduleId>

Endeca Content Acquisition System Developer's Guide

25Creating and configuring a crawl | About creating and configuring crawls

 <moduleProperties>
 <moduleProperty>
 <key>inputDirectory</key>
 <value>C:/Endeca/apps/ebizsampleapp/data/complete_index_config</val¬
ue>
 </moduleProperty>
 <moduleProperty>
 <key>outputDirectory</key>
 <value>C:/Endeca/apps/ebizsampleapp/data/dgidx_input</value>
 </moduleProperty>
 <moduleProperty>
 <key>dimensionValueIdManagerInstanceName</key>
 <value>ebizsampleapp-dimension-value-id-manager</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
 </crawlConfig>
</configurations>

Sample configuration for a manipulator
This topic shows a crawl configuration for a manipulator. You can use it as an example of how to
configure a manipulator in your crawl configuration file.

Much of the configuration is specified in key/value pairs within a moduleProperty property element.
To determine the values for configuration properties, run the getModuleSpec task of the cas-cmd
utility. For details, see Getting the specification of a module on page 97.

The sample omits the configuration of a data source. In other words, the sample does not contain the
sourceConfig or outputConfig of a crawlConfig. The example illustrates the manipulator¬
Configs elements. In particular, it shows two Substring Manipulators. The first creates a property of
20 characters called Short.Truncated.Text, and the second manipulator creates a property of
40 characters called Medium.Truncated.Text.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>

 ...

 <manipulatorConfigs>
 <manipulatorConfig>
 <moduleId>
 <id>com.endeca.cas.extension.sample.manipulator.substring.Sub¬
stringManipulator</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>sourceProperty</key>
 <value>Endeca.Document.Text</value>
 </moduleProperty>
 <moduleProperty>
 <key>targetProperty</key>
 <value>Short.Truncated.Text</value>
 </moduleProperty>
 <moduleProperty>
 <key>length</key>
 <value>20</value>

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | About creating and configuring crawls26

 </moduleProperty>
 </moduleProperties>
 <id>Create short truncated text property</id>
 </manipulatorConfig>
 <manipulatorConfig>
 <moduleId>
 <id>com.endeca.cas.extension.sample.manipulator.substring.Sub¬
stringManipulator</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>sourceProperty</key>
 <value>Endeca.Document.Text</value>
 </moduleProperty>
 <moduleProperty>
 <key>targetProperty</key>
 <value>Medium.Truncated.Text</value>
 </moduleProperty>
 <moduleProperty>
 <key>length</key>
 <value>40</value>
 </moduleProperty>
 </moduleProperties>
 <id>Create_Medium_Text_Property</id>
 <enabled>true</enabled>
 </manipulatorConfig>
 </manipulatorConfigs>

 ...

 </crawlConfig>
</configurations>

Configuring a crawl to write to a Record Store instance
The CAS Server writes crawl output to a Record Store instance by default. This topic describes how
to modify the configuration settings when writing to a Record Store instance. This may be useful if you
want to configure a crawl to write to a Record Store instance on a different host machine.

You can reconfigure crawl output in either of two ways:
• Edit a crawl programmatically and set the output configuration using the CAS Server API. This

configuration is described in the "About the output properties for crawls" topic of the Endeca CAS
API Guide.

• Run the CAS Server Command-line utility to reconfigure a crawl configuration file and then re-crawl
with the new output settings. This approach is described in the steps that follow.

The configuration change is on a per crawl basis. A crawl configuration file used with the command-line
utility can have many crawls defined and each crawl can have different output configuration options.

The procedure requires a crawl configuration file with <outputConfig> settings that specify Record
Store as the <moduleId>. The Record Store value is the main difference between configuring a
data source to write to an output file versus writing to a Record Store instance. The other sub-elements
of <outputConfig> configure additional details of a Record Store instance, such as the host and
port of the Endeca CAS Service running the Record Store instance, whether to use SSL when

Endeca Content Acquisition System Developer's Guide

27Creating and configuring a crawl | Configuring a crawl to write to a Record Store instance

connecting to the Record Store instance, and so on. This XML snippet shows the <moduleId> for a
Record Store instance.
...
 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
...

The following example configuration file shows the required configuration for one crawl named
itldocset that writes records to a Record Store instance named itldocset. It is a simple example
that does not contain any filters. You can use this example as the basis for your own configuration file
in the procedure below.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>
 <crawlId>
 <id>itldocset</id>
 </crawlId>
 <crawlThreads>3</crawlThreads>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\tmp\itldocset</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>
 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>false</makeLocalCopy>
 <timeout>90</timeout>
 </textExtractionConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>isPortSsl</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>host</key>

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | Configuring a crawl to write to a Record Store instance28

 <value>hostname.domainname.com</value>
 </moduleProperty>
 <moduleProperty>
 <key>port</key>
 <value>8500</value>
 </moduleProperty>
 <moduleProperty>
 <key>instanceName</key>
 <value>itldocset</value>
 </moduleProperty>
 <moduleProperty>
 <key>isManaged</key>
 <value>true</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
 </crawlConfig>
</configurations>

The sub-elements of outputConfig define the Record Store instance configuration options. Much
of the configuration is specified in <moduleProperty> key/value pairs. In your configuration file,
configure the following elements:

• Specify that the moduleId element has an id of Record Store.
• Specify whether to use SSL when connecting to the Record Store instance in the isPortSsl

property. A value of true uses HTTPS and treats the port property as an SSL port. A value of
false uses HTTP and treats port as a non-SSL port. Specify false if you enabled redirects
from a non-SSL port to an SSL port.

• Specify the fully qualified name of the host running the Record Store instance in the host property.
The default value is localhost

• Specify the port of the Endeca CAS Service running the Record Store instance in the port property.
The default value is 8500.

• Specify the Record Store instance name to write to in the instanceName property.
• Specify whether the Record Store is managed in the isManaged property. If you disable the is¬
Managed property for a data source by setting it to false, a Record Store instance is not created
when you configure the data source.The default value is true.

To configure a crawl to write to a Record Store instance:

1. Start a command prompt, navigate to <install path>\CAS\version\bin, and locate the
CAS Server Command-line utility (cas-cmd).

2. If a crawl configuration does not exist in the CAS Server, perform the following steps:

Note: If you are not sure whether a crawl configuration exists, you can first run listCrawls
to see all the data sources (by ID) running in an Endeca CAS Server.

a) Manually create an XML crawl configuration file using the example above.
b) Save and close the XML crawl configuration file.
c) Run the createCrawls task of the cas-cmd and specify the -f option with an argument that

specifies a path to the crawl configuration file you created.
For example, in a default CAS installation on Windows, this command creates a new data source
configured by the file crawlConfig.xml.
C:\Endeca\CAS\3.0.2\bin>cas-cmd createCrawls -f C:\tmp\crawlConfig.xml

3. If the crawl configuration does exist, perform the following steps:

Endeca Content Acquisition System Developer's Guide

29Creating and configuring a crawl | Configuring a crawl to write to a Record Store instance

Run the getCrawl task of the cas-cmd and specify the -f option with an argument that
specifies a path for the crawl configuration file and also specify the -id option with the ID of

a)

the crawl. Optionally, you may want to specify the -d option to write default values for the
configuration properties. For example, in a default CAS installation on Windows, this command
identifies a crawl named itldocset and gets its configuration and writes it to
C:\tmp\crawlConfig.xml.
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawl -d -f C:\tmp\crawlConfig.xml
 -id itldocset

b) Modify the XML crawl configuration file using the example configuration file above.
c) Save and close the XML crawl configuration file.
d) Run the updateCrawls task of the cas-cmd and specify the -f option with an argument that

specifies the name for the XML crawl configuration file you modified in the previous steps. For
example, in a default CAS installation on Windows, this command creates a data source named
itldocset. C:\Endeca\CAS\3.0.2\bin>cas-cmd updateCrawls -f
C:\tmp\crawlConfig.xml

If the task succeeds, the console displays a message similar to the following:
Updated crawl itldocset

Configuring a crawl to write to an MDEX compatible format
The CAS Server writes crawl output to a Record Store instance by default. This topic describes how
to modify the configuration settings to write crawl output in an MDEX compatible format (i.e. Dgidx
input files).

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

You can reconfigure crawl output in either of two ways:
• Edit a crawl programmatically and set the output configuration using the CAS Server API. This

configuration is described in the "About the output properties for crawls" topic of the Endeca CAS
API Guide.

• Run the CAS Server Command-line utility to get a crawl configuration file, modify the file, set the
file, and then re-crawl with the new output settings. This approach is described in the steps that
follow.

The configuration change is on a per crawl basis. A crawl configuration file used with the command-line
utility can have many crawls defined and each crawl can have different output configuration options.

The procedure requires a crawl configuration file with <outputConfig> settings that specify
com.endeca.cas.output.Mdex as the <moduleId>. The other sub-elements of <outputConfig>
configure additional details of the MDEX target, such as the input directory for the instance configuration
files and the output directory for the CAS records that are passed to Dgidx. This XML snippet shows
the <moduleId> for an MDEX compatible output.
...
 <outputConfig>
 <moduleId>

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | Configuring a crawl to write to an MDEX compatible format30

 <id>com.endeca.cas.output.Mdex</id>
 </moduleId>
...

The following example configuration file shows the configuration for one crawl named
ebizsampleapp-last-mile-crawl that writes Dgidx input files to
C:/Endeca/apps/ebizsampleapp/data/dgidx_input. You can use this example as the basis
for your own configuration file in the procedure below.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-07">
 <crawlConfig>
 <crawlId>
 <id>ebizsampleapp-last-mile-crawl</id>
 </crawlId>
 <crawlThreads>5</crawlThreads>
 <sourceConfig>
 <moduleId>
 <id>com.endeca.cas.source.RecordStoreMerger</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>dataRecordStores</key>
 <value>ebizsampleapp-products</value>
 </moduleProperty>
 <moduleProperty>
 <key>taxonomyRecordStores</key>
 <value>ebizsampleapp-category-dimension</value>
 <value>ebizsampleapp-trigger-dimensions</value>
 </moduleProperty>
 <moduleProperty>
 <key>isPortSsl</key>
 <value>false</value>
 </moduleProperty>
 </moduleProperties>
 </sourceConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>com.endeca.cas.output.Mdex</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>inputDirectory</key>
 <value>C:/Endeca/apps/ebizsampleapp/data/complete_index_config</val¬
ue>
 </moduleProperty>
 <moduleProperty>
 <key>outputDirectory</key>
 <value>C:/Endeca/apps/ebizsampleapp/data/dgidx_input</value>
 </moduleProperty>
 <moduleProperty>
 <key>dimensionValueIdManagerInstanceName</key>
 <value>ebizsampleapp-dimension-value-id-manager</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
 </crawlConfig>
</configurations>

Endeca Content Acquisition System Developer's Guide

31Creating and configuring a crawl | Configuring a crawl to write to an MDEX compatible format

The sub-elements of outputConfig define the MDEX configuration options. The configuration is
specified in <moduleProperty> key/value pairs. In your configuration file, configure the following
elements:

• Specify that the moduleId element has an id of com.endeca.cas.output.Mdex.
• In the inputDirectory module property, specify a path to the directory containing Developer

Studio instance configuration files
• In the outputDirectory module property, specify a path to the directory where CAS writes

output in an MDEX compatible format (i.e. as Dgidx input files). The CAS output is consumed by
Dgidx.

• In the dimensionValueIdManagerInstanceName module property, specify the name of the
Dimension Value Id Manager for the application.

To configure a crawl to write to an MDEX Engine:

1. Start a command prompt, navigate to <install path>\CAS\version\bin, and locate the
CAS Server Command-line utility (cas-cmd).

2. If a crawl configuration does not exist in the CAS Server, perform the following steps:

Note: If you are not sure whether a crawl configuration exists, you can first run listCrawls
to see all the data sources (by ID) running in an Endeca CAS Server.

a) Manually create an XML crawl configuration file using the example above.
b) Save and close the XML crawl configuration file.
c) Run the createCrawls task of the cas-cmd and specify the -f option with an argument that

specifies a path to the crawl configuration file you created (using the sample above).
For example, in a default CAS installation on Windows, the following command creates a new data
source configured by the file crawlConfig.xml.
C:\Endeca\CAS\2.3.0\bin>cas-cmd createCrawls -f C:\tmp\crawlConfig.xml

3. If the crawl configuration does exist, perform the following steps:
a) Run the getCrawl task of the cas-cmd and specify the -f option with an argument that

specifies a path for the crawl configuration file and also specify the -id option with the ID of
the crawl. Optionally, you may want to specify the -d option to write default values for the
configuration properties. For example, in a default CAS installation on Windows, the following
command identifies a crawl named ebizsampleapp-last-mile-crawl, gets its configuration
and writes it to C:\tmp\crawlConfig.xml:
C:\Endeca\CAS\2.3.0\bin>cas-cmd getCrawl -d -f C:\tmp\crawlConfig.xml
 -id ebizsampleapp-last-mile-crawl

b) Modify the XML crawl configuration file using the example configuration file above.
c) Save and close the XML crawl configuration file.
d) Run the updateCrawls task of the cas-cmd and specify the -f option with an argument that

specifies the name for the XML crawl configuration file you modified in the previous steps. For
example, in a default CAS installation on Windows, this command creates a data source named
ebizsampleapp-last-mile-crawl. C:\Endeca\CAS\2.3.0\bin>cas-cmd update¬
Crawls -f C:\tmp\crawlConfig.xml

If the task succeeds, the console displays a message similar to the following:
Updated crawl ebizsampleapp-last-mile-crawl

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | Configuring a crawl to write to an MDEX compatible format32

Configuring a crawl to write to an output file
If desired, you can reconfigure a crawl configuration so that the CAS Server writes records to an output
file rather than to a Record Store instance.

You can reconfigure crawl output in either of two ways:
• Edit a crawl programmatically and set the output file using the CAS Server API. This configuration

is described in the "About the output properties for crawls" topic of the Endeca CAS API Guide.
• Run the CAS Server Command-line utility to reconfigure a crawl configuration file and then re-crawl

with the new output settings. This approach is described in the steps that follow.

The configuration change is on a per crawl basis. A crawl configuration file used with the command-line
utility can have many crawls defined and each crawl can have different output configuration options.

The procedure requires a crawl configuration file with <outputConfig> settings that specify File
System as the <moduleId>. That File System value constitues the main difference between
configuring a crawl to write to an output file versus writing to a Record Store. The other sub-elements
of <outputConfig> are additional configuration about the output file itself such as whether
compression is enabled, a file prefix name, the path to the output file, and so on. This XML snippet
shows the <moduleId> that you change to reconfigure the data source.
...
 <outputConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
...

The following example configuration file shows the required configuration for one crawl that writes
records to an output file. It is a simple example that does not contain any filters. You can use this
example as the basis for your own configuration file in the procedure below.
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>
 <crawlId>
 <id>FileCrawl</id>
 </crawlId>
 <crawlThreads>3</crawlThreads>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\Endeca\SourceDataDocPOC</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>

Endeca Content Acquisition System Developer's Guide

33Creating and configuring a crawl | Configuring a crawl to write to an output file

 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>false</makeLocalCopy>
 <timeout>90</timeout>
 </textExtractionConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>outputXml</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>outputCompressed</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>outputPrefix</key>
 <value>CrawlerOutput</value>
 </moduleProperty>
 <moduleProperty>
 <key>outputDirectory</key>
 <value>C:\tmp</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
 </crawlConfig>
</configurations>

The sub-elements of outputConfig define the output file configuration options. Much of the
configuration is specified in <moduleProperty> key/value pairs. In your file, configure the following
elements:

• Specity that the moduleId element has an id of File System.
• Specify whether to write the records as XML or binary using <key>outputXml</key>. A value

of true writes a single XML output file of records. A value of false writes binary files of records.
• Specify whether to compress the output file, or not, using <key>outputCompressed</key>.

Specifying true compresses the output. The default is false (not compressed).
• Optionally, specify an output prefix to the file name using <key>outputPrefix</key>. The

default prefix is CrawlerOutput.
• Specify an output directory for the output file using <key>outputDirectory</key>.

The default value of outputDirectory is output. The default name of crawlID is used to
create a subdirectory for each data source.

This ensures each crawl has a unique subdirectory for its output. For example, if you use the
default value for outputDirectory and have a crawlID of FileSystemCrawl, the resulting
directory structure is \CASServerWorkspace\output\FileSystemCrawl\.

To configure a crawl to write to an output file:

1. Start a command prompt, navigate to <install path>\CAS\version\bin, and locate the
CAS Server Command-line utility (cas-cmd).

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | Configuring a crawl to write to an output file34

2. If a crawl configuration does not exist in the CAS Server, perform the following steps:

Note: If you are not sure whether a crawl configuration exists, you can first run listCrawls
to see all the crawls (by ID) running in an Endeca CAS Server.

• Manually create an XML crawl configuration file using the example above.
• Save and close the XML crawl configuration file.
• Run the createCrawls task of the cas-cmd and specify the -f option with an argument that

specifies a path to the crawl configuration file you created.

For example, in a default CAS installation on Windows, this command creates a new data source
configured by the file fileCrawlConfig.xml.
C:\Endeca\CAS\3.0.2\bin>cas-cmd createCrawls -f C:\tmp\fileCrawlConfig.xml

3. If the crawl configuration does exist, perform the following steps:

• Run the getCrawl task of the cas-cmd and specify the -f option with an argument that
specifies a path for the crawl configuration file and also specify the -id option with the ID of
the crawl. For example, in a default CAS installation on Windows, this command identifies a
crawl named FileCrawl and gets its configuration and writes it to
C:\tmp\fileCrawlConfig.xml.
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawl -f C:\tmp\fileCrawlConfig.xml
 -id FileCrawl

• Modify the XML crawl configuration file using the example configuration file above. Note that if
you retrieve a data source that was configured to write to a Record Store instance, you see
many elements in the outputConfig element of the configuration file that are specific to Record
Store configuration. Remove that configuration and replace it with outputConfig elements
as shown in example above.

• Save and close the XML crawl configuration file.
• Run the updateCrawls task of the cas-cmd and specify the -f option with an argument that

specifies the name for the XML crawl configuration file you modified in the previous steps. For
example, in a default CAS installation on Windows, this command creates a crawl named
FileCrawl.
C:\Endeca\CAS\3.0.2\bin>cas-cmd updateCrawls -f C:\tmp\fileCrawlCon¬
fig.xml

If the task succeeds, the console displays a message similar to the following:
Updated crawl FileCrawl

You can now acquire from the data source and the CAS Server writes the Endeca records to a record
output file.

Setting document conversion options
You can change the behavior of the CAS Document Conversion Module for identifying fallback format,
file identification, and extracting hidden text. You change the default document conversion behavior
by specifying options via JVM property names and values. Note that you cannot set these options
from the CAS Console.

The options are:

Endeca Content Acquisition System Developer's Guide

35Creating and configuring a crawl | Setting document conversion options

• stellent.fallbackFormat determines the fallback format, that is, what extraction format will
be used if the CAS Document Conversion Module cannot identify the format of a file. The two valid
settings are ascii8 (unrecognized file types are treated as plain-text files, even if they are not
plain-text) and none (unrecognized file types are considered to be unsupported types and therefore
are not converted). Use the none setting if you are more concerned with preventing many binary
and unrecognized files from being incorrectly identified as text. If there are documents that are not
being properly extracted (especially text files containing multi-byte character encodings), it may
be useful to try the ascii8 option.

• stellent.fileId determines the file identification behavior. The two valid settings are normal
(standard file identification behavior occurs) and extended (an extended test is run on all files
that are not identified). The extended setting may result in slower crawls than with the normal
setting, but it improves the accuracy of file identification.

• stellent.extractHiddenText indicates whether to convert hidden text stored in a content
item. Hidden text may include text produced by optical character recognition (OCR) software in
addition to other types of hidden text. Specifying true for stellent.extractHiddenText
converts any hidden text stored in the content item. Specifying false does not convert hidden
text.

Default values for the options

The default settings for the options are listed in the following table.

DefaultsOption

nonestellent.fallbackFormat

extendedstellent.fileId

If unspecified, the default value is false.stellent.extractHiddenText

Setting the options

You set the text extraction options as parameters to the Java Virtual Machine (JVM), via the Java -D
option. To set the fallback format, use one of these two parameters:
-Dstellent.fallbackFormat=ascii8
-Dstellent.fallbackFormat=none

To set the file identication behavior, use one of these two parameters:
-Dstellent.fileId=normal
-Dstellent.fileId=extended

To enable the extraction of hidden text, use this parameter:
-Dstellent.extractHiddenText=true

To pass these parameters to the JVM, use the -JVM flag when you run the Endeca CAS Service script
or add JVM arguments to the script itself. Note that for Windows machines, the parameters should be
quoted if they contain equal signs, as in this example:
cas-service -JVM "-Dstellent.fallbackFormat=ascii8"

Note that when using the -JVM flag, it must be the last flag on the command line.

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | Setting document conversion options36

About filters
Filters define which folders and files are included and excluded when the CAS Server crawls a data
source. You specify filters in the CAS Console or in the CAS Server API.

Filters perform matching operations against a property on an Endeca record and either include or
exclude the record based on the filter's evaluation. You specify both the Endeca property to evaluate
and the data type and expression to match against that property.

If an include filter matches (evaluates to true) against a property, then that record is included in the
record set. If an exclude filter matches (evaluates to true) against a property, then that record is
excluded from the record set.

Filters perform matching based on the following data types:
• Date - a date value against which files and folders can be filtered.
• Long - a long value to compare against a numerical property.
• String - a string value to compare against a string property. String filters are either regex or wildcard.

Regex - a regular expression value to compare against a string property. The matching evaluation is
one of equality: the string either matches the expression or it does not match.

Wildcard - a wildcard expression value to compare against a string property. The wildcard matcher
uses the question-mark (?) character to represent a single wildcard character and the asterisk (*) to
represent multiple wildcard characters. The matching evaluation is one of equality: the string either
matches the expression or it does not match. Also, there must be either all include filters or all exclude
filters per property.

The following sub-headings define the way filters operate:

One filter per Endeca property per file or folder (unless a wildcard)

You can create one filter per Endeca property that applies to a file and one filter per Endeca property
that applies to a folder, unless you are creating a wildcard filter. (You can create any number of wildcard
filters for an Endeca property.) This also means you can create a file filter and a folder filter that apply
to the same Endeca property.

AND'ing and OR'ing

• If you create multiple filters on a single property (wildcard filters), they are logically OR'ed during
filter evaluation.

• Filters across properties are logically AND'ed during filter evaluation. Remember that AND means
that all filters must match in order for a record to be included or excluded.

Include and exclude filters
• Include filters may apply to either folders or files.
• Exclude filters apply to only to folders.

Filter precedence

If you use both include and exclude filters, exclude filters take precedence. For example, if a test.doc
file was recently modified and you add an include filter for test.doc but then add an exclude filter
that excludes all recently modified files, the test.doc will not be crawled.

Endeca Content Acquisition System Developer's Guide

37Creating and configuring a crawl | About filters

Missing properties on a record

Filters require an Endeca property to match against. In cases where the property for a filter does not
exist on a record, the behavior varies depending on whether the filter is an include or an exclude.

• If the filter is an include and the property does not exist on a record, the record is excluded.
• If the filter is an exclude and the property does not exist on a record, the record is included.

Unfilterable properties

Do not use the Endeca.Document properties for filter matching. These properties are generated by
the CAS Document Conversion Module after a file or folder is crawled and filtered, and therefore cannot
be used to filter files or folders.

Case sensitivity

Regex filters are case sensitive by default (however, you may construct a regular expression that is
case insensitive). Wildcard filters are case insensitive.

Related Links
Introduction to CAS and Crawling Data Sources on page 11

This part contains the following sections:
Configuring document conversion filters on page 38

You can configure a set of filters to apply only to document conversion. These filters either
convert or do not convert files of a specified size or type by using include or exclude filters.
The include and exclude filters apply only to document conversion.

Configuring document conversion filters
You can configure a set of filters to apply only to document conversion. These filters either convert or
do not convert files of a specified size or type by using include or exclude filters. The include and
exclude filters apply only to document conversion.

The document conversion filters perform matching against any Endeca property and include or exclude
a file from the document conversion process but still produce an Endeca record for the file. If a file is
included for document conversion, the corresponding Endeca record has an Endeca.Document.Text
property.

Data source extensions built using the CAS Extension API do not support document conversion filters.
Any changes you make to DocumentConversionFilters.xml are not applied to data source
extensions. Also, CAS does not apply document conversion filters to archive files. However, you can
enable the Expand archives option and then CAS can process the extracted content.

You configure document conversion filters by modifying <install
path>\CAS\workspace\conf\DocumentConversionFilters.xml. These document conversion
filters apply to all data sources that have document conversion enabled; the filters do not apply on a
per-data source basis.

This file has sections for CMS data sources and file system data sources. Within a CMS or file section,
the file has a section for include filters and for exclude filters. Here is an example snippet of the structure
of the file:
<cmsCrawlDocumentConversionFilters>
 <includeFilters>
 ...
 </includeFilters>
 <excludeFilters>

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | About filters38

 ...
 </excludeFilters>
 </cmsCrawlDocumentConversionFilters>

<fileCrawlDocumentConversionFilters>
 <includeFilters>
 ...
 </includeFilters>
 <excludeFilters>
 ...
 </excludeFilters>
</fileCrawlDocumentConversionFilters>

Inside the includeFilters and excludeFilters sections are the filters themselves. Each is
indicated by a filter element. For example, this snippet shows a regular expression filter for file
system data sources that includes all files of the types listed:
<fileCrawlDocumentConversionFilters>
 <includeFilters>
 <filter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="regexFilter">
 <scope>FILE</scope>
 <propertyName>Endeca.FileSystem.Name</propertyName>
 <regex>^(?i:.*\.(?:txt|html?|rtf|docx?|xlsx?|
 pptx?|pdf|sxi|sxc|sxw|shw|qpw|wpd|xml))$</regex>
 </filter>
...
 </includeFilters>

Each filter is made up of the following XML:

DescriptionElement or attribute

The value of type can be either regexFilter, longFilter, dateFilter,
or wildcardFilter.

type attribute of fil¬
ter

The value of scope should always be set to FILE. Document conversion
filters apply only to files; do not modify this value.

scope

The value of propertyName specifies the Endeca property on which you
want the filter to perform matching operations. Common filter properties are
Endeca.FileSystem.Name, and Endeca.FileSystem.Extension.

propertyName

The operator for type="longFilter" performs numeric comparisons
using any of the following values: EQUAL, GREATER, GREATER_EQUAL, LESS,
LESS_EQUAL, and NOT_EQUAL.

The operator for type="dateFilter" performs comparisons against
date time values using either BEFORE or AFTER.

operator

Specifies a regular expression to compare against the specified property.regexFilter

Specifies a numeric value to compare against the specified property.longFilter

Specifies a date against which files can be filtered.dateFilter

Specifies a wildcard to match against a specified property. The wildcard
matcher uses the question-mark (?) character to represent a single wildcard

wildcardFilter

character and the asterisk (*) to represent multiple wildcard characters.
Matching is case insensitive: this is not configurable (If case sensitivity is
required, consider using a regular expression).

Endeca Content Acquisition System Developer's Guide

39Creating and configuring a crawl | About filters

Like other types of filters, document conversion filters cannot have multiple filters with the same
propertyName unless the filters are wildcardFilter.

Note: Mime type properties depend on the data source and you may need to check that you
add the correct mime type to your filters. Also, some CMS data sources may not produce an
Endeca.CMS.ContentLength property and therefore, you may not be able to filter those files
by size.

To configure document conversion filters:

1. Navigate to \CAS\workspace\conf\, and open DocumentConversionFilters.xml in a text
editor.

2. Add include and and exclude filters according to the syntax described above.
The DocumentConversionFilters.xml file contains default filters that you can use as examples.
These filters are include filters for the most common document types such as txt, html, rtf, doc, pdf
and so on.

3. Comment out any filters that you do not want applied.
4. Save and close the file.
5. Restart the Endeca CAS Service.
6. Optionally, perform a full crawl of the data source after configuring filters.

The file is validated against the schema and if there are validation errors, the Endeca CAS Service
does not start. (This is logged in the CAS Service log file.) The file must conform to
DocumentConversionFilters.xsd. If the file is missing, then CAS Server converts all documents
by default.

Endeca Content Acquisition System Developer's Guide

Creating and configuring a crawl | About filters40

Chapter 3

Configuring a Record Store instance

This section describes the Endeca Record Store directories and explains how to configure a Record
Store instance.

Configuring a Record Store instance
Each uniquely named Record Store instance has its own corresponding configuration file. You can
run the get-configuration task of the Record Store Command-line Utility to create this file, or you
can create the file manually. You then modify the configuration properties in the file and then run the
set-configuration task to apply the configuration changes to a particular Record Store instance.
Changes to the properties take effect immediately.

If you change the btreePageSize, changePropertyNames, idPropertyName, jdbmSettings,
or recordCompressionEnabled properties, the Record Store deletes all stored data.

To configure a Record Store instance:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Type recordstore-cmd and specify the get-configuration task with the name of a Record

Store instance and the XML file name where you want to save the configuration settings.
This Windows example gets the configuration for a Record Store named productdata:
recordstore-cmd.bat get-configuration -a productdata -f C:\tmp\config.xml
 -n

3. In a text editor, open the configuration file and modify the property values as described in
Configuration properties for a Record Store instance on page 42.

4. Save and close the configuration file.
5. Type recordstore-cmd and specify the set-configuration task with the name of a Record

Store instance and the XML file name that contains the configuration settings.
This Windows example sets the configuration for a Record Store named productdata:
recordstore-cmd.bat set-configuration -a productdata -f C:\tmp\config.xml
 -n

Configuration properties for a Record Store instance
The Record Store supports the configuration properties listed in the table below.

ValueConfiguration Property

Endeca Internal Use. Endeca does not recommend
modifying this property.

btreePageSize

The number of children per btree node. This value must be
greater than 0. The default is 100.

The Record Store validates that the btreePageSize
property is greater than 0. If this property is not correctly
set, RecordStore.setConfiguration() throws a
RecordStoreConfigurationException.

The changePropertyNames configuration property
specifies which record properties to examine when
determining whether a record has changed.

The changePropertyNames configuration property is
useful because it allows you to specify exactly which record

changePropertyNames

properties are evaluated to determine if that record has
changed between crawls (in other words, if the record is
different from the previous generation's record in the Record
Store instance).

If not specified, the value of changePropertyNames
defaults to all the properties on a record.

If you choose to specify the value changePropertyNames,
here are several suggested properties:

• File system crawls: Endeca.Document.Text,
Endeca.FileSystem.ModificationDate

• CMS crawls: Endeca.Document.Text,
Endeca.CMS.ModificationDate

• Web crawls: Endeca.Document.Text,
Endeca.Web.Last-Modified

If you are gathering native file system properties for file
system crawls, you can also use the ACL properties as
change properties.

The cleanerInterval property specifies how often (in
hours) the Record Store Cleaner should run. This value

cleanerInterval

must be greater than or equal to 0. If not specified, the value
defaults to 1 hour.

When the Record Store cleaner runs, it removes stale
generations as defined by the generationRetention¬
Time property. However, the Record Store cleaner does
not remove the most recent generation even if it exceeds
the value of generationRetentionTime.

Endeca Content Acquisition System Developer's Guide

Configuring a Record Store instance | Configuration properties for a Record Store instance42

ValueConfiguration Property

Fractional values (like 0.1) can be specified if you want the
Record Store Cleaner to run more than once per hour. A
value of 0 (zero) disables the cleaner. If this property is not
specified, the value defaults to 1 hour.

The Record Store service validates that the cleanerIn¬
terval property is greater than or equal to 0. If this
property is not correctly set, RecordStore.setConfigu¬
ration() throws a RecordStoreConfigurationEx¬
ception.

The dataDirectory property specifies the location where
the Record Store’s data files are stored. If not specified, the

dataDirectory

value defaults to <install
path>\CAS\workspace\state\RecordStoreInstanceName\data.

User permissions must allow writing to this directory.

The value of the dataDirectory property can either be
an absolute path or a path relative to the directory where
the Record Store is running. If not specified, the value
defaults to <install
path>\CAS\version\workspace\state\RecordStoreInstanceName
. This directory is created when a Record Store instance is
created if it does not already exist.

The Record Store service validates that the dataDirecto¬
ry property specifies a directory for which the user running
the Endeca CAS Service has write permissions. If this
property is not correctly set, RecordStore.setConfigu¬
ration() throws a RecordStoreConfigurationEx¬
ception.

The duplicateRecordCompressionEnabled property
specifies whether to store new versions of records whose

duplicateRecordCompressionEn¬
abled

change properties have not changed. Enabling this feature
improves Record Store performance and decreases Record
Store disk space.

The duplicateRecordCompressionEnabled property
takes a Boolean value:

• If set to true, the Record Store instance does not store
duplicate copies of records when the hash of record
change properties does not change.

• If set to false, the Record Store instance stores
duplicate copies of records whose hash of record
change properties has not changed.

If not specified, the value defaults to false.

The generationRetentionTime property specifies how
long (in hours) a record generation should remain in a

generationRetentionTime

Endeca Content Acquisition System Developer's Guide

43Configuring a Record Store instance | Configuration properties for a Record Store instance

ValueConfiguration Property

Record Store instance before it is considered a stale
generation.

When the Record Store cleaner runs, it removes stale
generations as specified by this property. (The Record Store
cleaner runs at intervals specified by the cleanerInter¬
val property.)

As a general rule, the value of generationRetention¬
Time should be greater than the sum of the following:

• The time between the start of two write operations to a
Record Store instance.

• The time between the start of two delta read operations
from a Record Store instance.

• Time for a margin of safety (For example, this includes
time to revert to an earlier generation, fix any issues in
the data, and re-crawl the data.)

For example, suppose a crawl, which writes to a Record
Store, takes a few hours to run and runs once a day: the
time between the start of two write operations is 24 hours.
Next, suppose you run Forge once a day so the time
between delta reads to the Record Store is 24 hours. Last,
suppose you want to be able to revert to data up to three
days old. You want a margin of safety of 72 hours. This
means the value of generationRetentionTime should
be at least 120. In this scenario, a value of 120 ensures
there are two generations in a Record Store instance.

Fractional values (like 0.1) can be specified if you want a
generation to be maintained for less than an hour. If not
specified, it defaults to 168 hours (one week).

The Record Store validates that the generationReten¬
tionTime property is greater than or equal to 0. If set to
0, the Record Store instance only stores the latest (single)
generation after the clean up. If this property is not correctly
set, RecordStore.setConfiguration() throws a
RecordStoreConfigurationException.

Note: The Record Store applies a read-lock to the
generation being read. If a generation with a read-lock
exceeds the generationRetentionTime value,
the generation is not deleted until the read is complete
and the read-lock is released.

The idPropertyName property specifies the source
property from which the record ID is derived. This value

idPropertyName

must be a non-empty string. If not specified, it defaults to
Endeca.Id.

When selecting a record property as the idPropertyName,
you should choose a property that is present on every record

Endeca Content Acquisition System Developer's Guide

Configuring a Record Store instance | Configuration properties for a Record Store instance44

ValueConfiguration Property

and whose value is unique to each record. That is, all
records (except those tagged with Delete All) must have a
single unique non-null value for this property.

The uniqueness of the property value is important because
if two records have the same idPropertyName property
value, the second record that is processed overwrites the
first one in the Record Store.

The Record Store validates that the idPropertyName
property is a non-empty string. If this property is not correctly
set, RecordStore.setConfiguration() throws a
RecordStoreConfigurationException.

The ignoreInvalidRecords property specifies how
invalid records are handled.

ignoreInvalidRecords

Invalid records are records with missing IDs (either the id¬
PropertyName property is missing or it has a null value)
or with invalid action types for the Endeca.Action
property.

The ignoreInvalidRecords property takes a Boolean
value:

• If set to true, invalid records are ignored and a warning
message is logged. The READ_WRITE operation for
the records continues.

• If set to false, an invalid record throws an exception
and stops the process.

In either case, invalid records are not added to the Record
Store. If not specified, the value defaults to true.

During the development stage of your Record Store
application, you may want to set the ignoreIn¬
validRecords property to false so that an In¬
validRecordFault exception is thrown whenever an
invalid record is processed. This allows you to immediately
see if your source records have the appropriate properties.
Once you go into production, you can change the property
to true and monitor the logs for warning messages about
invalid records.

Endeca Internal Use. Endeca does not recommend
modifying this property.

indexWriteFlushInterval

This value must greater than 0. The Record Store validates
that the indexWriteFlushInterval property is greater
than 0. If this property is not correctly set, Record¬
Store.setConfiguration() throws a RecordStore¬
ConfigurationException.

Endeca Content Acquisition System Developer's Guide

45Configuring a Record Store instance | Configuration properties for a Record Store instance

ValueConfiguration Property

Endeca Internal Use. Endeca does not recommend
modifying this property.

jdbmSettings

Endeca Internal Use. Endeca does not recommend
modifying this property.

maxDataFileSize

This value must be greater than 0. The default value is 2
GB.

The Record Store validates that the maxDataFileSize
property is greater than 0. If this property is not correctly
set, RecordStore.setConfiguration() throws a
RecordStoreConfigurationException.

The enableRecordCompression property specifies
whether records are stored on disk in a compressed format.

recordCompressionEnabled

The enableRecordCompression property takes a
Boolean value:

• If set to true, records are stored on disk in a
compressed format.

• If set to false, records are stored on disk in an
uncompressed format.

If not specified, the value defaults to false.

Example of a configuration file for a Record Store instance

A sample configuration file is shown here:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<recordStoreConfiguration xmlns="http://recordstore.itl.endeca.com/">
 <btreePageSize>100</btreePageSize>
 <changePropertyNames/>
 <cleanerInterval>1.0</cleanerInterval>
 <dataDirectory>C:\Endeca\CAS\workspace\state\RS1\data</dataDirectory>
 <duplicateRecordCompressionEnabled>false</duplicateRecordCompressionEn¬
abled>
 <generationRetentionTime>168.0</generationRetentionTime>
 <idPropertyName>Endeca.Id</idPropertyName>
 <ignoreInvalidRecords>false</ignoreInvalidRecords>
 <indexWriteFlushInterval>50000</indexWriteFlushInterval>
 <jdbmSettings/>
 <maxDataFileSize>2147483647</maxDataFileSize>
 <recordCompressionEnabled>false</recordCompressionEnabled>
</recordStoreConfiguration>

Change properties and new Record Store instances
When the Content Acquisition System creates a new Record Store instance for a data source, CAS
uses all record properties as change properties. In other words, CAS evaluates all properties on a

Endeca Content Acquisition System Developer's Guide

Configuring a Record Store instance | Change properties and new Record Store instances46

record to determine if the record is different from the previous generation's record in the Record Store
instance.

If necessary, you can restrict the number of properties that CAS evaluates by configuring the
changePropertyNames property.

Disabling automaticmanagement of aRecordStore instance
If you want maintain a Record Store instance separately from its associated crawl configuration, you
can disable automatic management of the Record Store instance by the CAS Server and move a
Record Store instance to another host as necessary. This may be useful if storage space for a Record
Store instance is a concern.

The isManaged property in a crawl configuration determines whether a Record Store instance is
created or deleted at the same time as its associated data source configuration. The isManaged
property has a value of true by default. This means that:

• A Record Store instance is automatically created when you create a crawl. The name of a new
Record Store instance corresponds directly to the crawl name.

• The associated Record Store instance is automatically deleted when you delete a crawl.
If you disable the isManaged property by setting it to false, a Record Store instance is not created
when you create the crawl configuration. You must create the Record Store instance manually, or
configure the crawl to send output to a file. Likewise, any Record Store instance that you create for a
crawl configuration is not deleted when you delete the crawl configuration.

To disable automatic management of a Record Store instance:

1. From a command prompt, run the getCrawl task of the CAS Server Command-line Utility. Use
the -f <arg> flag to specify the name of the XML file to write the configuration to.
For example, you might specify -f configuration.xml.

2. In the configuration.xml file for the crawl configuration, set the isManaged property to false
as shown in the following example:
....
 <crawlConfig>

 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>isManaged</key>
 <value>false</value>
 </moduleProperty>
 </moduleProperties>
 </outputConfig>
....
 </crawlConfig>
....

3. Save and close the crawl configuration file.
4. Run the updateCrawls task of CAS Server Command-line Utility and pass in the crawl configuration

file as input. For example:
updateCrawls --f configuration.xml

Endeca Content Acquisition System Developer's Guide

47Configuring a Record Store instance | Disabling automatic management of a Record Store instance

Chapter 4

Running a crawl

This section provides information about running a crawl using the CAS Server.

Running a crawl
You can run a crawl using any of the following tools or methods: from the CAS Console, from the CAS
Server Command-line Utility, and programmatically from the CAS Server API.

Crawling from the CAS Console for Oracle Endeca Workbench

The Data Sources page of CAS Console displays all data sources available for crawling. You can start
crawling a particular data source by clicking Start in the Acquire Data column. For further information,
see the CAS Console Help for Endeca Workbench.

Crawling from the CAS Server Command-line Utility

You can start and stop a crawl from the CAS Server Command-line Utility by running either the
startCrawl or stopCrawl tasks. For further information, see the chapter in this guide on the CAS
Server Command-line Utility.

Crawling programmatically from the CAS Server API

You can start a crawl by calling the CasCrawler.startCrawl() method from an application. For
further information, see the Endeca CAS API Guide.

Order of execution in a crawl configuration
A crawl configuration specifies settings and processing instructions for a crawl. When you start a crawl,
CAS Server executes the instructions in the following order: sourceConfig, textExtractionCon¬
fig, manipulatorConfig, and outputConfig. This topic provides additional detail about execution
order.

When CAS Server starts a crawl, the following happens:

1. CAS Server crawls files and folders according to the seeds and settings in sourceConfig, and
CAS Server creates an Endeca record for each file and folder crawled.

2. If textExtractionConfig is enabled and contains document conversion settings, then CAS
Server performs document conversion and stores the converted text as a property on the Endeca
record.

3. If one or more manipulatorConfig elements are present, CAS Server passes the record to
each manipulator for processing according to its manipulatorConfig settings.

4. CAS Server then writes the record to a Record Store instance (or an output file) according to the
settings in according to outputConfig.

This processing continues until all files and folders are crawled and all records are processed. In this
way, Endeca records are propagated through a crawl configuration.

Full and incremental crawling modes
The CAS Server crawls a data source in one of two modes:

• full mode, in which all content is processed.
• incremental mode, in which only new, modified, or deleted content is processed.

Crawling in full mode

Crawling in full mode means that CAS processes all the content in a data source according to the
filtering criteria you specify. As part of crawling a data source, CAS creates metadata information and
stores it in a crawl history. This history includes the Id of each record and information about all properties
on the record.

Crawling in incremental mode

Crawling in incrementalmode means that CAS processes only that content whose metadata information,
stored in the crawl history, has changed since the last crawl. Specifically, CAS checks all properties
on the record to see if any have changed. If any properties have changed, the CAS Server crawls the
content again. This is true in cases where CAS is calculating the incremental difference. An extension
developer, using the CAS Extension API, may choose to calculate incremental changes in a data
source extension.

CAS automatically determines which crawling mode is necessary. By default, CAS attempts to crawl
in incremental mode, and if necessary, it switches to crawling in full mode in cases where any of the
following conditions are true:

• A data source has not been crawled before, which means no crawl history exists.
• A Record Store instance does not contain at least one record generation. (This applies to cases

where the CAS Server is configured to output to a Record Store instance rather than a file on disk.)
• Seeds have been removed from the data source configuration (adding seeds does not require

crawling in full mode).
• The document conversion setting has changed.
• Folder filters or file filters have been added, modified, or removed in the data source configuration.
• Repository properties have been changed, such as the Gather native properties option for file

system data sources.

If none of these conditions is true, CAS crawls in incremental mode. This switch from incremental to
full mode can occur no matter how you run a crawl (using the CAS Console, the CAS Server API, or
the CAS Server Command-line Utility).

Endeca Content Acquisition System Developer's Guide

Running a crawl | Full and incremental crawling modes50

After you click Start in the CAS Console, a status message displays indicating whether a full or
incremental crawl is running. After you crawl a data source using the API, the status message is
returned.

Related Links
Introduction to CAS and Crawling Data Sources on page 11

This part contains the following sections:

Crawls and archive files
File system and CMS crawls can process archive files.

Archive expansion is disabled by default. To enable the feature, you must check Expand archives
for the data source in CAS Console.

Archive expansion means that an Endeca record is created for each archived entry and its properties
are populated. Text is extracted if the document conversion option is enabled. Note that native file
properties are not gathered for archived entries even if that option is enabled for file system crawls.
However, file and CMS permissions of the archive file are propagated to the archive entries.

Archive file support

An archive file is one that holds one or more archived entries (files or directories) within it. Two examples
of archives are ZIP files and UNIX TAR files.

The CAS Server identifies archives by their file extensions for file system crawls, or mime types for
CMS crawls. The following archive types are supported in file system data sources:

• JAR files (.jar extension)
• TAR files (.tar extension)
• GZIP-compressed Tar files (.tar.gz and .tgz extensions)
• ZIP files (.zip extension)

See the following sections for support details on ZIP and TAR files, as well as an overview of how
archive files are handled.

Support for ZIP files

ZIP files are supported as follows:
• ZIP files can have either no compression or the standard Deflate compression algorithm. ZIP files

that use a compression scheme other than the Deflate algorithm are not treated as ZIP files. In
this case, one record is created for the file, with the Endeca.File.IsArchive property set to
false.

• There is no support for ZIP files with password-protected entries. ZIP files that contain
password-protected entries are not fully processed. The actual behavior depends on the form of
password protection:

• If using the AES-128 or AES-256 forms of password encryption, the file is not marked as a ZIP
file. One record is created for the file, with the Endeca.File.IsArchive property set to
false.

• If using the ZipCrypto password protection, the ZIP is recognized, and each entry that is
encountered in order that is not password-protected will have a record created for it. Once a
password-protected entry is encountered, the processing on the ZIP stops, and no further
records are created.

Endeca Content Acquisition System Developer's Guide

51Running a crawl | Crawls and archive files

• For a number of ZIP utilities, directory entries are not password-protected (so that only the files
are encrypted), and that directory entries are often put at the beginning of a ZIP. One record
is created for the file, with the Endeca.File.IsArchive property set to true, and additional
records are created for those (directories) that are not encrypted.

• There is no support for entries that are split across multiple Zip files. Splitting a file over multiple
ZIP files results in two kinds of ZIP files: those that store the partial data for the underlying file and
and a "last" one that also stores the entry information. Different tools use different naming
conventions, so sometimes the partials have a .zip extension and sometimes they do not. However,
the last file will be a .zip file. These files are handled as follows:

• The partial files will not be recognized as ZIP files. One record is created for the file, with the
Endeca.File.IsArchive property set to false.

• The last file will be recognized as a ZIP file, but its entry will be unreadable. One record is
created for the file, with the Endeca.File.IsArchive property set to true.

When a Zip file is not treated as a valid ZIP file for any reason, the log file will contain a warning that
the ZIP file in question contains an "invalid CEN header", and the record generated for the ZIP file will
not indicate that it is an archive.

Note: JAR files are handled the same way as ZIP files. Therefore, any caveats that apply to
ZIP files also apply to JAR files as well.

Support for Tar files

The supported Tar formats are the following:
• GNU Tar 1.13
• GNU Tar 1.12 or earlier
• UNIX V7
• POSIX.1-1988 (original USTAR format)
• Any of the above formats, compressed with GZip

Any format that is not listed above is considered an unsupported format. For example, the POSIX.1-2001
format is explicity not supported.

The CAS Server processes Tar files as follows:
• For supported formats, each entry in the Tar file is extracted and written as a record.
• For POSIX.1-2001 Tars, the entries are not extracted and a message is written to the log indicating

that the format is not supported.
• For corrupted Tar entries:

• If the first entry is corrupted, the entire Tar will not be extracted. Instead, it will be treated as
any other non-archive file.

• If any later entry is corrupted, the occurrence of the bad entry is logged. All prior entries are
extracted and written as records to the output file.

How archive files are handled

The following is a detailed view of how the CAS Server handles archive files:
• An Endeca record is created for the archive file itself. This record has the Endeca.File.Is¬
Archive property set to true.

• In addition to the top-level documents (files or directories), nested archive files are also processed.

Endeca Content Acquisition System Developer's Guide

Running a crawl | Crawls and archive files52

• Document conversion (if enabled) is performed on all files within the archive, in accordance with
document conversion filtering.

• A separate Endeca record is created for each document (including nested archives) found in the
archive. The record is processed as follows:

• The record has the Endeca.File.IsInArchive property set to true. In addition, the Ende¬
ca.File.SourceArchive and Endeca.File.PathWithinSourceArchive properties
are added with a reference to the parent archive.

• The filtering behavior works the same for archived files and directories (that is, files and
directories in an archive) as it does for non-archived files and directories.

• For records from either file system or CMS crawls, the record Id is a concatenation of the En¬
deca.File.SourceArchiveId property and the Endeca.File.PathWithin¬
SourceArchive property:

• For file system records, the Endeca.FileSystem.Path property is the record Id. This
property is a canonical string pointing to the file within the archive, and follows this format:
/path/to/archive//path/to/archivedfile

• For CMS records, the Endeca.Id property is the record Id. This property is a canonical
string pointing to the file within the archive, and follows this format:
reposId:itemId[:optionalContentPieceId]//path/to/archivedfile

Note:
• Double delimiters represent the boundaries of the archive.
• Path delimiters for the value of the PathWithinSourceArchive property appear as

forward slashes (they are platform-independent).
• Path delimiters for the value of the Endeca.FileSystem.Path property are

platform-dependent, so in the case of Windows files, path delimeters on this property
appear as backslashes. For example:
C:\path\to\archive//path/to/archivedfile

In the case of nested archives, the Endeca.File.PathWithinSourceArchive property takes
the following format:
//path/to/nested/archive//path/within/nested/archive

• While the properties of archived entries are obtained in an Endeca record, the entries themselves
are not physically extracted from the archive (that is, no new files are permanently saved to disk).

• If an archive has entries with identical names, the first entry that is processed is kept (that is, an
Endeca record is created for it) and the duplicate entry is ignored.

• Seeds are restricted to actual files or directories or entries. That is, seeds cannot point to archived
files or directories.

The above behavior is the default for all archives crawled. To avoid processing archives, disable the
Expand archives option for the data source.

Endeca Content Acquisition System Developer's Guide

53Running a crawl | Crawls and archive files

About writing records to a Record Store instance
A Record Store instance is tightly integrated with the output produced by CAS Server. CAS Server
writes the output for file system and CMS data sources directly to a Record Store instance by default,
instead of to a file on disk.

Web crawls write their output, by default, to a file on disk, but can be configured to write output to a
Record Store instance.

About the record output file
This topic describes record output files for full and incremental crawl modes.

You configure the attributes of an record output file from the CAS Server API or in a crawl configuration
file that you provide to a command in the CAS Server Command-line Utility.

For example, you set the path of the output directory with the outputDirectory property in the API
or path in the configuration file. If you do not specify an output directory, a default name of output is
used for the crawlID sub-directory and it is located in the CAS Server's workspace directory.

Record output file

The prefix for the name of a crawl output file is set by the outputPrefix property (in the API) or key
(in the configuration file). If you do not specify an output prefix, a default name of CrawlerOutput is
used.

The full name of the output file also depends on two other configuration settings:
• The outputXml property. This specifies whether the output format is XML (with a file extension

of .xml) or Binary (with a file extension of .bin).
• The outputCompressed property. This determines whether the output file is compressed. If

compression is enabled, a .gz file extension is added to the .xml or .bin extension. No extension
is added if compression is not enabled.

In addition to the output prefix described above, a second prefix is automatically added to the filename
to distinguish which type of crawl was run:

• For full crawls, the -FULL suffix is added (e.g., CrawlerOutput-FULL.xml).
• For incremental crawls, the -INCR suffix is added (e.g., CrawlerOutput-INCR.xml).

The maximum size of a binary output file is 512 megabytes. If the maximum size is reached and more
records need to be output, the crawler rolls the output into another output file. To distinguish rollover
files, the -sgmt000 prefix is added to the first file, -sgmt001 is added to the second file, and so on,
as shown in this example:
CrawlerOutput-FULL-sgmt000.bin.gz
CrawlerOutput-FULL-sgmt001.bin.gz

The maximum size of binary output files is not configurable. Note that unlike the binary format, if you
choose XML, only one file is output, regardless of its size.

Archived output files

The first time that CAS Server crawls a data source, the output file is named as described in the
previous section. For example, if you run a full crawl, the output filename might be

Endeca Content Acquisition System Developer's Guide

Running a crawl | About writing records to a Record Store instance54

CrawlerOutput-FULL-sgmt000.bin.gz. If you then run a second crawl (for example, an
incremental crawl), the CAS Server works as follows:

1. A directory named archive is created under the output directory.
2. The original CrawlerOutput-FULL-sgmt000.bin.gz file is moved to the archive directory

and is renamed by adding a timestamp to the name; for example:
CrawlerOutput-FULL-20071026140235-sgmt000.bin.gz

3. The output file from a second incremental run is named CrawlerOutput-INCR-sgmt000.bin.gz
and is stored in the output directory.

4. For every subsequent crawl using the same output directory, steps 2 and 3 are repeated.

The timestamp format used for renaming is:
YYYYMMDDHHmmSS

where:
• YYYY is a four-digit year, such as 2009.
• MM is the month as a number (01-12), such as 10 for October.
• DD is the day of the month, such as 25 (for October 25th).
• HH is the hour of the day in a 24-hour format (00-23), such as 14 (for 2 p.m.).
• mm is the minute of the hour (00-59).
• SS is the second of the minute (00-59).

The timestamp format is not configurable.

Endeca Content Acquisition System Developer's Guide

55Running a crawl | About the record output file

Chapter 5

Running the CAS sample applications

This section describes the sample applications.

About the sample CAS applications
This section describes how to run the sample applications of the Content Acquisition System.

There are six sample applications that you can use to exercise the functionality of CAS:
• A Forge application with a Record Store adapter that writes records to a Record Store instance.

This is stored in <install path>\CAS\version\sample\forge-to-recordstore.
• A Forge application with a Record Store adapter that reads records from a Record Store instance.

This is stored in <install path>\CAS\version\sample\recordstore-to-forge.
• A Forge application with multiple Record Store adapters that read records from multiple Record

Store instances. This is stored in <install
path>\CAS\version\sample\multiple-recordstore-to-forge.

• A Web Crawler that writes its output to a Record Store instance instead of to a file on disk. This is
stored in <install path>\CAS\version\sample\webcrawler-to-recordstore.

• A Java client that communicates with a Record Store instance and issues record access requests.
This is stored in <install path>\CAS\version\sample\recordstore-java-client.

• A Java client that communicates with the CAS Service and issues file system crawling requests.
This is stored in <install path>\CAS\version\sample\cas-server-java-client.

Order of running the Forge applications

The Forge applications demonstrate how you would run baseline and partial updates using Record
Store instances as the storage mechanism. The order of running these applications is the following:

1. Run the run-sample script in the forge-to-recordstore application. This populates a Record
Store with three baseline records.

2. Run the run-sample script in the recordstore-to-forge application. This causes Forge to
run a baseline update using the generation in a Record Store instance. In an actual depolyment,
you would run Dgidx on the Forge records and then start the MDEX Engine with the output.

3. Run the run-partial-sample script in the forge-to-recordstore application. This adds
an incremental record to the Record Store.

4. Run the run-partial-sample script in the recordstore-to-forge application. This causes
Forge to run a partial update using the incremental record from the Record Store. In an actual

deployment, a Dgraph update command would then be issued so that the MDEX Engine could
upload the incremental record.

Note: These scripts do not start or update the MDEX Engine.

Writing records from Forge into the Record Store
This sample Forge application writes records from Forge into a Record Store instance.

The sample\forge-to-recordstore directory contains a simple Forge application that
demonstrates how Forge can write records to a Record Store instance via a Record Store adapter.
The application contains two Forge pipelines:

• A baseline pipeline, which is run with the run-sample script and writes three records from the
forge-input-data\data.txt file.

• A partial-update pipeline, which is run with the run-partial-sample script and writes one record
from the forge-partial-input-data\partial-data.txt file.

Both pipelines have only two components:
• An input record adapter (named LoadData) that reads in the records from the appropriate source

file (data.txt or partial-data.txt).
• An output record adapter (named RecordStoreSink) that is a Record Store adapter (i.e., can write

the records to a Record Store instance).

If you open the forge-to-recordstore\forge-config\recordstore.esp project in Developer
Studio, you can see that the RecordStoreSink adapter is a custom record adapter with these two Java
properties set on the General tab:

• Class is: com.endeca.itl.recordstore.forge.RecordStoreSink
• Class path is: <install
path>/CAS/version/lib/recordstore-forge-adapter/recordstore-forge-adapter-3.0.2.jar

The Pass Throughs tab uses the following pass-through name/value pairs:
• For both pipelines, the HOST pass-through is set to localhost (which is the host machine for the

CAS Service).
• For both pipelines, the PORT pass-through is set to 8500 (which is the port on which the CAS

Service is listening).
• For both pipelines, the INSTANCE_NAME pass-through is set to rs1 (which is the unique name for

the Record Store instance).
• For the baseline pipeline, the WRITE_TYPE pass-through is set to BASELINEwhile the partial-update

pipeline has the pass-through set to DELTA (which means that the records are treated as incremental
records).

You can also use the RECORDS_PER_TRANSFER and TRANSFER_TYPE pass-throughs documented
in the topic titled "Reading records from the Record Store into Forge."

The sample\forge-to-recordstore directory also contains a
recordstore-configuration.xml file that is specifically configured for records emitted by Forge.
In particular, the file has these two configuration properties:
<changePropertyNames/>
<idPropertyName>Endeca.Id</idPropertyName>

Setting the idPropertyName is important because its value is used by the Record Store instance to
generate a unique record ID.

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications58

To run the forge-to-recordstore sample application:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. Change to the sample\forge-to-recordstore directory.
3. To use the baseline pipeline, run the run-sample script. To run the partial-update pipeline, run

the run-partial-sample script.

When the forge-to-recordstore sample finishes, you see several pages of INFO messages.
Scroll through the messages and look for the following:
...
INFO 01/19/09 14:43:55.293 UTC (1232376235293) FORGE {baseline}:
 Processed 3 records.
INFO 01/19/09 14:43:55.293 UTC (1232376235293) FORGE {baseline}:
 Stopping stats clock at
'Mon Jan 19 09:43:55 2009'.
INFO 01/19/09 14:43:55.293 UTC (1232376235293) FORGE {baseline}:
 Finished processing records:
...

After running the baseline version of the application (via the run-sample script), you should run the
baseline version of the sample\recordstore-to-forge application to cause Forge to run a baseline
update with the new records.

Reading records from the Record Store into Forge
This sample Forge application reads records from a Record Store instance into Forge.

The sample\recordstore-to-forge directory contains a Forge application that demonstrates
how Forge can run baseline and partial updates by reading records from a Record Store instance via
a Record Store adapter. The application contains a dimension server and a property mapper, but it
does not include an Indexer adapter (instead, it uses an output Record adapter to write the output to
a file on disk).

The application contains two Forge pipelines:
• A baseline pipeline, which is run with the run-sample script and runs a baseline update with

records read from a Record Store instance.
• A partial-update pipeline, which is run with the run-partial-sample script and runs a partial

update by reading from a Record Store instance.

The recordstore-to-forge pipeline has two input and output components:
• An input record adapter (named RecordStoreSource) that is a Record Store adapter (i.e., it can

read records from a Record Store instance).
• An output record adapter (named StoreData) that writes the records to an XML file in
forge-output-data\data.xml.

If you open the recordstore-to-forge\forge-config\recordstore.esp project in Developer
Studio, you can see that the RecordStoreSource adapter is a custom record adapter with these two
Java properties set on the General tab:

• Class is: com.endeca.itl.recordstore.forge.RecordStoreSource

Endeca Content Acquisition System Developer's Guide

59Running the CAS sample applications | About the sample CAS applications

• Class path is:
../../lib/recordstore-forge-adapter/recordstore-forge-adapter-3.0.2.jar

The Pass Throughs tab uses the following pass-through name/value pairs:
• Set an INSTANCE_NAME pass-through to the name of the unique Record Store instance is that

you want to read from. For example, INSTANCE_NAME = crawlID.
• For both pipelines, the HOST pass-through is set to localhost (the host machine for the Record

Store instance).
• For both pipelines, the PORT pass-through is set to 8500 (the port on which the Record Store

instance is listening).
• For the baseline pipeline, the READ_TYPE pass-through is set to BASELINEwhile the partial-update

pipeline has the pass-through set to DELTA.
• For both pipelines, the CLIENT_ID pass-through is set to CLIENT_1.

The CLIENT_ID pass-through specifies the client ID to be set for the generation that is being read in.
In effect, this pass-through is performing the set-last-read-generation task that can be performed with
the Record Store command-line utility (i.e., state is being set for the client, which is Forge in this case).
This pass-through can be used only for READ_TYPE operations.

To run the recordstore-to-forge sample application:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. Make sure that the Record Store has at least one record generation. For example, you may have
to run the forge-to-recordstore sample application to produce the generation.

3. Change to the sample\recordstore-to-forge directory.
4. To run a baseline update, run the run-sample script. To run a partial update, run the

run-partial-sample script.

When the recordstore-to-forge sample finishes, its output is written to the data.xml file in the
forge-output-data directory. In addition, you see several screens of INFO messages. Scroll
through the messages and look for the following completion messages (elipses indicate deleted INFO
messages):
INFO 01/19/09 17:10:29.424 UTC (1232385029416) FORGE {config}:
Starting: RecordAdapter 'StoreData'.

...

INFO 01/19/09 17:10:33.283 UTC (1232385033283) FORGE {baseline}:
 (AdapterRunner): Adapter
 class: com.endeca.itl.recordstore.forge.RecordStoreSource

...

INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Processed 3 records.
INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Stopping stats clock at
'Mon Jan 19 12:10:35 2009'.
INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Finished processing records:

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications60

Reading records from multiple Record Stores into Forge
This sample Forge application reads records from multiple Record Store instances into Forge.

The sample\multiple-recordstore-to-forge directory contains a Forge application that
demonstrates how Forge can run baseline and partial updates by reading records from multiple Record
Store instances via a Record Store adapter. The application contains a dimension server and a property
mapper, but it does not include an Indexer adapter (instead, it uses an output Record adapter to write
the output to a disk file).

The application contains two Forge pipelines:
• A baseline pipeline, which is run with the run-sample script and runs a baseline update with

records read from multiple Record Store instances.
• A partial-update pipeline, which is run with the run-partial-sample script and runs a partial

update by reading from multiple Record Store instances.

The multiple-recordstore-to-forge pipeline has two input and output components:
• An input record adapter (named RecordStoreSource) that is a Record Store adapter (i.e., it can

read records from multiple Record Store instances).
• An output record adapter (named StoreData) that writes the records to an XML file in
forge-output-data\data.xml.

If you open the multiple-recordstore-to-forge\forge-config\recordstore.esp project
in Developer Studio, you can see that in the Pipeline Diagram, the RecordStoreSource adapter is a
custom record adapter with these two Java properties set on the General tab (in the Partial Pipeline,
the custom record adapter is called LoadIncrementalCrawls):

• Class is: com.endeca.itl.recordstore.forge.MultipleRecordStoreSource
• Class path is:
../../lib/recordstore-forge-adapter/recordstore-forge-adapter-2.0.0.jar

The Pass Throughs tab uses the following pass-through name/value pairs:
• For both pipelines, the HOST pass-through is set to localhost (the host machine for the CAS

Services).
• For both pipelines, the PORT pass-through is set to 8500 (the port on which the CAS Service is

listening).
• For the baseline pipeline, the READ_TYPE pass-through is set to BASELINEwhile the partial-update

pipeline has the pass-through set to DELTA.
• For both pipelines, the CLIENT_ID pass-through is set to CLIENT_1.

The CLIENT_ID pass-through specifies the client ID to be set for the generation that is being read in.
In effect, this pass-through is performing the set-last-read-generation task that can be performed
with the Record Store command-line utility (i.e., state is being set for the client, which is Forge in this
case). This pass-through can be used only for READ_TYPE operations.

To run the multiple-recordstore-to-forge sample application:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. Make sure that the Record Store has at least one record generation. For example, you may have
to run the forge-to-recordstore sample application to produce the generation.

3. Change to the sample\multiple-recordstore-to-forge directory.

Endeca Content Acquisition System Developer's Guide

61Running the CAS sample applications | About the sample CAS applications

4. To run a baseline update, run the run-sample script. To run a partial update, run the
run-partial-sample script.

When the multiple-recordstore-to-forge sample finishes, its output is written to the data.xml file in
the forge-output-data directory. In addition, you see several screens of INFO messages. Scroll
through the messages and look for the following completion messages (elipses indicate deleted INFO
messages):
INFO 01/19/09 17:10:29.424 UTC (1232385029416) FORGE {config}:
Starting: RecordAdapter 'StoreData'.

...

INFO 01/19/09 17:10:33.283 UTC (1232385033283) FORGE {baseline}:
 (AdapterRunner): Adapter
 class: com.endeca.itl.recordstore.forge.RecordStoreSource

...

INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Processed 3 records.
INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Stopping stats clock at
'Mon Jan 19 12:10:35 2009'.
INFO 01/19/09 17:10:35.580 UTC (1232385035580) FORGE {baseline}:
 Finished processing records:

Running the sample Web Crawler
The sample Web Crawler application writes output to a Record Store instance.

The sample Web Crawler application is located in the sample\webcrawler-to-recordstore
directory. The directory contains the run-sample scripts that runs the sample Web Crawler.

The directory also contains a recordstore-configuration.xml file that is configured for records
produced by the Web Crawler. In particular, the file has these two configuration properties:
<changePropertyNames/>
<idPropertyName>Endeca.Id</idPropertyName>

Setting the idPropertyName is important because the Record Store instance generates a unique
record ID based on the property value.

The sample Web Crawler is configured to write its output directly to a Record Store instance. Specifically,
the site.xml file in the conf directory has these three output properties:

<property>
 <name>output.recordStore.host</name>
 <value>localhost</value>
 <description>
 The host of the record store service.
 Default: localhost
 </description>
</property>

<property>
 <name>output.recordStore.port</name>
 <value>8500</value>
 <description>

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications62

 The port of the record store service.
 Default: 8500
 </description>
</property>

<property>
 <name>output.recordStore.instanceName</name>
 <value>rs-web</value>
 <description>
 The name of the record store service.
 Default: rs-web
 </description>
</property>

Be sure to change the values if you create a Record Store instance with a different host name and
port.

To run the sample Web Crawler:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. Change to the sample\webcrawler-to-recordstore directory. (For Windows, first open a
command prompt.)

3. Run the run-sample script.

When the Web Crawler finishes, its output is written to the Record Store, instead of to a file on disk.
If you check cas-service.log, you should see these messages similar to this example:
Starting new transaction with generation Id 1
Started transaction 1 of type READ_WRITE
Marking generation committed: 1
Committed transaction 1

In the example, the Record Store is storing the record generation with an ID of 1.

Using the CAS Server Java Client
The Endeca CAS Server API allows users to build client programs that invoke the Endeca CAS Server
to programmatically modify and control a variety of file system and CMS crawling operations.

CAS Server Java Client Sample Files and Directories
This topic describes the contents of the CAS Server Java Client directory.

The CAS Server Java Client (in the /sample directory) has the following directory structure:
/cas-server-java-client
 /lib
 /src
 .classpath
 .project
 build.xml

The contents are as follows:
• lib – Contains the Java libraries for the CAS Server Java client application.

Endeca Content Acquisition System Developer's Guide

63Running the CAS sample applications | About the sample CAS applications

• src – Contains the Java source file for the CAS Server Java Client application.
• .classpath – The classpath file for the Eclipse project.
• .project – The Eclipse project file for the recordstore-java-client project.
• build.xml – The Ant build file for the Record Store Java client application.

About the CAS Server Java Client Program
The CAS Server Java Client (as coded in the CasServerSampleClient.java source file)
demonstrates a number of basic crawling operations.

The Endeca CAS Server Java Client is intended to provide a working example of a client that
communicates with a running CAS Server and issues file system crawling requests. The sample client
program is therefore a template that you can use as a basis for your own client program.

The package includes all the libraries needed to build clients. It also includes an Ant build script (that
can compile and run the sample program) as well as Eclipse .project and .classpath files for
the sample client.

Important: Please note that before starting Eclipse, you should run at least ant compile so
that Eclipse can find the generated Web service stubs.

The sample client application performs the following actions:

1. Makes a connection to the CAS Service.
2. Creates a new file system crawl (named SampleClientTestCrawl), with the current working directory

of the sample client (.\ on Windows or ./ on UNIX) as the seed.
3. Runs a full probe crawl.
4. Updates the crawl configuration by adding file filters and enabling doc conversion.
5. Runs a second full crawl, this time using the new filters and extracting text from documents.
6. Deletes the sample crawl.

Note that a default time limit of 10 seconds is set on both crawls, which means that in most cases the
crawl output will not contain all the files on your file system.

The output files are written to the workspace/output/SampleClientTestCrawl directory, using
a non-compressed XML file format. You can use a text editor to view the contents of the output.

Building and Running the Java Client with Ant
The Ant build.xml file can compile and run the sample client program.

As with any Ant build file, you can run a specific target or run them all at once. Before starting Eclipse,
you should run at least the compile target so that Eclipse can find the generated Web service stubs.

The file has the following targets:
• compile - Runs javac to compile the generated client stubs and sample application.
• ·run-demo - Runs the previous two targets and then runs the sample client application.
• clean - Deletes the build directory.

To run the Ant build script:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications64

2. From a command prompt, navigate to the cas-server-java-client directory and issue the
following command to compile and run the sample client demo:
ant run-demo [--host <host name>] [--port <port number>]

Note: You can issue the ant compile command if you just want to compile (but not run)
the sample client program.

The demo file system crawl (named SampleClientTestCrawl) will use C:\ on Windows and / on
UNIX as the seed. When the demo crawl finishes, the CAS Service's
workspace/output/SampleClientTestCrawl directory should contain two XML-format output
files: CrawlerOutput-FULL.xml will have the content of the second crawl (i.e., the updated crawl
with file filters), while the timestamped file in the archive directory will have the content from the first
crawl.

Opening the cas-server-java-client project in Eclipse
If you use Eclipse for your projects, the sample client package includes Eclipse .project and
.classpath files.

To load the sample client project:

1. Make sure that you have run the Ant build file with at least the compile target. This generates the
necessary Web service stubs.

2. Start Eclipse.
3. Import the project:

a) Open the File menu.
b) Click Import....
c) Expand the General folder.
d) Select Existing Projects into Workspace.
e) Select the cas-server-java-client project.
f) Click Finish.

Running the operations of the Java Client
Assuming that you have opened the CasServerSampleClient.java source in Eclipse or another
editor, you should note certain important operations of the Main class.

1. The values for the host and port of the CAS Service are set by first reading the commandline.prop¬
erties file. If they do not exist, defaults of localhost and 8500 are used.
String host = System.getproperty(CAS_HOST_PROPERTY);
if (host == null || "".equals(host)) {
 host = "localhost";
 }
 if (port == null || "".equals(port)) {
 port = "8500";
 }

2. Arguments are created for the WSDL URL (the service definition interface) and the QName.
final URL wsdlUrl = new URL("http://" + host + ":" + port + "/cas?wsdl");
final QName name = new QName("http://endeca.com/itl/cas/2010-03",
"CasCrawlerService");

Endeca Content Acquisition System Developer's Guide

65Running the CAS sample applications | About the sample CAS applications

3. Using the WSDL URL and QName values, create a Web service locator and then use the
CasCrawlerService.getCasCrawlerPort()method to get a handle to the CAS Service port.
CasCrawlerService service = new CasCrawlerService(wsdlUrl, name);
CasCrawler crawler = service.getCasCrawlerPort();

4. Using a CrawlId object, set the name of the crawl.
CrawlId crawlId = new CrawlId();
crawlId.setId("SampleClientTestCrawl");

5. Using the sampleCreateCrawl method, create the new file system crawl. Text extraction is not
enabled, which means that a probe crawl will be run. Note that the CasCrawler.createCrawl()
method actually creates the crawl.
System.out.println("Creating Crawl with CrawlId '" + crawlId.getId() +
"' ...");
sampleCreateCrawl(crawler, crawlId);

6. Using the sampleRunFullCrawl method, run the probe crawl, specifying a maximum of 10
seconds for the crawl duration. The CasCrawler.startCrawl()method is used to actually start
the crawl, and then the CasCrawler.stopCrawl()method is used to stop crawl after 10 seconds
has elapsed.
System.out.println("Running probe crawl...");
sampleRunFullCrawl(crawler, crawlId, 10);

7. Using the sampleUpdateCrawlAddingFiltersAndTextExtraction method, enable text
extraction and set wildcard (htm*) filters that are evaluated against the Endeca.FileSystem.Ex¬
tension record property. The original crawl configuration is retrieved with the
CasCrawler.getCrawlConfig() method and the updated configuration is sent to the CAS
Server with the CasCrawler.updateConfig() method.
System.out.println("Adding filters and enabling text extraction...");
sampleUpdateCrawlAddingFiltersAndTextExtraction(crawler, crawlId);

8. Using the sampleRunFullCrawl method, run a second full crawl that does text extraction and
uses the added filters. As with the previous crawl, a maximum of 10 seconds is specified for the
crawl duration.
System.out.println("Running full crawl...");
sampleRunFullCrawl(crawler, crawlId, 10);

9. Using the sampleDeleteCrawl method, delete the SampleClientTestCrawl demo crawl. Note
that the class uses the CasCrawler.deleteCrawl() method to actually delete the crawl.
System.out.println("Deleting crawl...");
sampleDeleteCrawl(crawler, crawlId);

The sample client program also shows the use of other CAS Server API functions, such as the
CasCrawler.listCrawls(), CasCrawler.getStatus() and CasCrawler.getMetrics()
methods.

You can modify the file and add other crawling operations, such as changing the output options (to
send output to a Record Store instance), adding other types of filters (including date and regex filters),
enabling archive expansion, and even returning information about the CAS Server. You can also use
the sample code as a basis for creating and running CMS crawls.

These operations, and the methods that call them, are described elsewhere in this guide.

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications66

Using the Record Store Java Client
The Endeca Record Store Java Client package is intended to provide a working example of a client
that communicates with a Record Store instance and issues record access requests. The sample
client program is therefore a template that you can use as a basis for your own client program.

The Endeca Record Store API allows users to build client programs that invoke an Endeca Record
Store instance to programmatically write records to and read records from the Record Store.

The Record Store API consists of two components:
• Record Store core (WSDL) classes. These are classes that you generate from the Record Store

WSDL file using a third-party tool (such as Apache CXF 2.0). For the sake of convenience, Java
versions of these classes are included in the recordstore-api-3.0.2.jar library in the sample
client package.

• Record Store utility (helper) classes, such as the RecordStoreLocator, RecordStoreReader,
and RecordStoreWriter classes which are used in the sample client applications. These Java
classes are also included in the recordstore-api-3.0.2.jar library.

The sample client package includes all the libraries needed to build clients. It also includes an Ant
build script (that can compile and run the sample applications) as well as Eclipse .project and
.classpath files for the sample client.

See the Oracle Technology Network for the Endeca CAS API Guide (which documents the Record
Store API) and a set of Record Store Javadocs for both the core and utility classes.

Record Store Client Sample Files and Directories
This topic describes the contents of the Record Store Java Client directory.

The Record Store Java Client has the following directory structure:
/recordstore-java-client
 /conf
 /lib
 /src
 .classpath
 .project
 build.xml
 run-sample-reader.bat
 run-sample-reader.sh
 run-sample-writer.bat
 run-sample-writer.sh

The contents are as follows:
• conf – Contains the log4j.properties logger configuration file for the sample client application.
• lib – Contains the Java libraries for the Record Store Java client application.
• src – Contains the Java source files for the Record Store java client application.
• .classpath – The classpath file for the Eclipse project.
• .project – The Eclipse project file for the recordstore-java-client project.
• build.xml – The Ant build file for the Record Store Java client application.
• The scripts to run the sample reader and sample writer client applications

(run-sample-reader.sh and run-sample-writer.sh for UNIX, and
run-sample-reader.bat and run-sample-writer.bat for Windows).

Endeca Content Acquisition System Developer's Guide

67Running the CAS sample applications | About the sample CAS applications

About the Record Store Sample Client Applications
The two Record Store sample client applications demonstrate the write and read functionality of the
Record Store API.

The writer client

The writer client (in the SampleWriter.java source file) performs the following actions:

1. Creates a record that will be written to the Record Store.
2. Makes a connection to a Record Store instance, assumed to reside on the localhost machine

with a port of 8500.
3. Starts a READ_WRITE transaction.
4. Using the RecordStoreWriter methods, writes the record to the Record Store.
5. Commits the write transaction.

The reader client

The reader client (in the SampleReader.java source file) performs the following actions:

1. Makes a connection to a Record Store instance, assumed to reside on the localhost machine
with a port of 8500.

2. Starts a READ transaction.
3. Gets the ID of the last-committed generation.
4. Using the RecordStoreReader.next() method, reads the record from the Record Store and

then writes its contents to standard output.
5. Commits the read transaction.

Note: If either application throws a RecordStoreFault exception, it is caught and the
transaction is rolled back.

Building and Running the Sample Writer Client with Ant
The Ant build.xml file can compile and run the sample writer client program.

The file has the following targets:
• init – Creates the build directory structure that will be used by the compile target.
• compile – Runs javac to compile the sample client application.
• run-sample-writer – Runs the previous two targets and then runs the sample client writer

application.
• run-sample-reader – Runs the init and compile targets, and then runs the sample client reader

application.
• clean – Deletes the build directory.

To run the sample writer client with the Ant build script:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. From a command prompt, navigate to the recordstore-java-client directory and issue the
following command to compile and run the sample writer client demo:
run-sample-writer

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications68

The sample writer client’s output messages should be similar to this example:
Buildfile: build.xml

init:
 [mkdir] Created dir: C:\Endeca\CAS\3.0.2\sample\recordstore-java-
client\build

compile:
 [javac] Compiling 2 source files to C:\Endeca\CAS\3.0.2\sample\recordstore-
java-client\build

run-sample-writer:
 [java] Setting record store configuration ...
 [java] Starting a new transaction ...
 [java] Writing records ...
 [java] Committing transaction ...
 [java] DONE

BUILD SUCCESSFUL
Total time: 14 seconds

You can use the -c (count) option with the read-baseline task of the Record Store Command-line
Utility to determine if the Record Store has any records:
C:\Endeca\CAS\3.0.2\bin> recordstore-cmd.bat read-baseline -a rs1 -c
Records read: 1

As the example shows, the Record Store has the one record that was read in by the sample writer
client.

Building and Running the Sample Reader Client with Ant
The Ant build.xml file can compile and run the sample reader client program.

The file has the following targets:
• init – Creates the build directory structure that will be used by the compile target.
• compile – Runs javac to compile the sample client application.
• run-sample-writer – Runs the previous two targets and then runs the sample client writer

application.
• run-sample-reader – Runs the init and compile targets, and then runs the sample client reader

application.
• clean – Deletes the build directory.

To run the sample reader client with the Ant build script:

1. Start the Endeca CAS Service if it is not already running.

• Windows: Start the CAS Service from the Windows Services console.
• UNIX: Run the cas-service.sh script.

2. From a command prompt, navigate to the recordstore-java-client directory and issue the
following command to compile and run the sample reader client demo:
run-sample-reader

Endeca Content Acquisition System Developer's Guide

69Running the CAS sample applications | About the sample CAS applications

The sample reader client’s output messages should be similar to this example:
Buildfile: build.xml

init:

compile:

run-sample-reader:
 [java] Starting a new transaction ...
 [java] Getting the last committed generation ...
 [java] Reading records ...
 [java] RECORD: [Endeca.FileSystem.Path=id1, property.name=property.value]

 [java] 1 record(s) read
 [java] Committing transaction ...
 [java] DONE

BUILD SUCCESSFUL
Total time: 8 seconds

As the example output shows, the properties of the record in the Record Store are written out.

Opening the recordstore-java-client project in Eclipse
If you use Eclipse for your projects, the sample client package includes Eclipse .project and
.classpath files.

As a prerequisite, make sure that you have run the Ant build file with at least the compile target. This
will generate the necessary Web service stubs.

To load the sample client project:

1. Start Eclipse.
2. Import the project:

a) Open the File menu.
b) Click Import...
c) Expand the General folder.
d) Select Existing Projects into Workspace
e) Select the recordstore-java-client project.
f) Click Finish.

Running the operations of the Sample Writer Client
This section provides an overview of the more important operations of the sample writer client program.
You can modify the files and add other Record Store operations.

The methods for these operations are described in the CAS API Guide, and in the Record Store
Javadocs.

Assuming that you have opened the SampleWriter.java source in Eclipse or another editor, you
should note the following important operations:

1. A constant is set for the value of the idPropertyName configuration property that is used for the
Record Store instance.
public static final String PROPERTY_ID = "Endeca.FileSystem.Path";

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications70

2. After a LinkedList of Record objects is instantiated, a record is created and added to the list. The
Record.addPropertyValue() method is used to add the property values to the record.
Collection<Record> records = new LinkedList<Record>();
Record record = new Record();
record.addPropertyValue(new PropertyValue(PROPERTY_ID, "id1"));
record.addPropertyValue(new PropertyValue("property.name",
 "property.value"));
records.add(record);

3. Using the RecordStoreLocator utility class, create a Web service locator with host name, port
number, and Record Store instance name:
RecordStoreLocator locator = RecordStoreLocator.create("localhost", 8500,
 recordStoreInstance);

4. Use the RecordStore.getRecordStore() method to establish a connection to the Record
Store instance:
RecordStore recordStore = locator.getRecordStore();

5. Using the transaction ID created by the RecordStore.startTransaction() method, the
RecordStoreWriter.createWriter() method is used to create a writer.
tId = recordStore.startTransaction(TransactionType.READ_WRITE);

RecordStoreWriter writer =
 RecordStoreWriter.createWriter(recordStore, tId);

6. The writer first writes a "Delete All" record, then writes the sample record, and finally closes the
writer.
writer.deleteAll();
writer.write(records);
writer.close();

7. The RecordStore.commitTransaction() method closes the transaction.
recordStore.commitTransaction(tId);

Note: If a RecordStoreFault exception occurs during the write process, it is caught and the
RecordStore.rollbackTransaction() method rolls back the READ_WRITE transaction.

Running the operations of the Sample Reader Client
This section provides an overview of the more important operations of the sample reader client program.
You can modify the files and add other Record Store operations.

The methods for these operations are described in theCASAPI Guide and in theRecord Store Javadocs.

The SampleReader.java source program executes the following important operations:

1. Using the RecordStoreLocator utility class, create a Web service locator with host name, port
number, and Record Store instance name:
RecordStoreLocator locator = RecordStoreLocator.create("localhost", 8500,
 recordStoreInstance);

Endeca Content Acquisition System Developer's Guide

71Running the CAS sample applications | About the sample CAS applications

2. Use the RecordStore.getRecordStore() method to establish a connection to the Record
Store instance:
RecordStore recordStore = locator.getRecordStore();

3. Using the transaction ID created by the RecordStore.startTransaction() method, the
RecordStore.getLastCommittedGenerationId() method is used to get the ID of the
last-committed generation in the Record Store.
tId = recordStore.startTransaction(TransactionType.READ);

GenerationId gId = recordStore.getLastCommittedGenerationId(tId);

4. The RecordStoreReader.createBaselineReader() method uses the transaction ID and
the generation ID to create a reader.
RecordStoreReader reader =
 RecordStoreReader.createBaselineReader(recordStore, tId, gId);

5. Within a while loop, the RecordStoreReader hasNext() and next() methods are used to
read the sample record. The reader is closed when there are no more records to be read.
int count = 0;
while (reader.hasNext()) {
 Record record = reader.next();
 System.out.println(" RECORD: " + record);
 count++;
}
reader.close();

6. The RecordStore.commitTransaction() method closes the transaction.
recordStore.commitTransaction(tId);

Note: As with the writer client, if a RecordStoreFault exception occurs during the read
process, it is caught and the RecordStore.rollbackTransaction()method rolls back the
READ transaction.

Endeca Content Acquisition System Developer's Guide

Running the CAS sample applications | About the sample CAS applications72

Part 2

Loading data into an MDEX Engine

• Creating a Forge pipeline to read from or write to a Record Store
• Creating a CAS crawl to write MDEX compatible output

Chapter 6

Creating a Forge pipeline to read from or write to
a Record Store

This section describes how to build a Forge pipeline that reads Endeca records from one or more
Record Store instances and that writes Endeca records to a Record Store instance.

Overview of a Forge pipeline
The CAS Server and the Endeca Web Crawler create Endeca records ready for processing by any
type of Forge pipeline (baseline or partial).

The CAS Server stores the records in either a Record Store instance or in a file on disk. By default
record storage is written to a Record Store instance. The Web Crawler stores records, by default, in
a file on disk but can be configured to store records in a Record Store instance. (Using a Record Store
instance is the recommended approach.)

To read the records into a Forge pipeline, you add an input record adapter to your Developer Studio
project.

If the record adapter is reading from a CAS output file, you specify the input format of either XML or
binary (depending on how you configure the output format). The URL field of the record adapter
specifies the location of the CAS output file.

If the record adapter is reading from a Record Store instance, you configure the record adapter as a
custom adapter.

Depending on the needs of your application, you can create these types of Forge pipelines:
• Baseline-update pipeline. This type of pipeline is intended for sites that perform only full crawls

and wish to perform only baseline updates. The topics in this chapter describe this type of Forge
pipeline.

• Delta-update pipeline. This type of pipeline is intended for sites that perform both full and incremental
crawls and wish to perform baseline updates on both sets of data. This type of application is not
documented in this guide.

• Baseline-update and partial-update pipelines. These pipelines are used if the site wants to perform
partial updates. This type of application is not documented in this guide. Instead, refer to the Endeca
Partial Updates Guide.

Regardless of the type of Forge pipeline, you create it as well as perform the rest of the back-end
application tasks (such as creating Endeca properties and dimensions, search interfaces, and so on)
with Endeca Developer Studio.

Creating a Forge pipeline
A baseline-update pipeline can be used for sites that perform only full crawls (not incremental crawls).
This section describes how to create and configure a simple Forge pipeline that runs a baseline update
and also configure a record adapter to read and write from record store instances.

The goal of this section is to describe the Forge pipeline components that are specific to modifying
records produced by crawling. Therefore, for simplicity, components that are common to non-crawler
pipelines (dimension server, property mapper, indexer adapter, and so on) are not described here.

The high-level overview of a baseline-update pipeline is as follows:

1. Create a record adapter to read the Endeca records that CAS produced (required).
2. Identify the language of the documents (optional).
3. Map the record properties to Endeca properties and dimensions (required, but not documented in

this guide. See Oracle Endeca Developer Studio Help.).

The following illustration shows a baseline-update pipeline with the components necessary to process
records produced by crawling a data source. This includes the components common to any pipeline
(dimension adapter, dimension server, and indexer adapter).

Endeca Content Acquisition System Developer's Guide

Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline76

Creating a record adapter to read from one or more Record Store
instances

By default, the CAS writes output from a CMS, file system, or custom data source to a Record Store
instance. The Web Crawler can also be configured to write output to a Record Store instance. If an
application contains multiple data sources, there are multiple Record Store instances that result. Forge
can read the Endeca records from any number of Record Store instances using a custom record
adapter.

You configure a custom record adapter in Developer Studio with Java properties set on the General
tab and with several pass-through values set on the Pass Throughs tab.

To create a record adapter to read from one or more Record Store instances:

1. Open your project in Developer Studio.
2. In the Project tab, double-click Pipeline Diagram.
3. In the Pipeline Diagram editor, click New.
4. Select Record > Adapter.
5. In the Name text box, specify the name of this record adapter.
6. In the Direction frame, select Input.
7. From the Format list, choose Custom Adapter.
8. In the Class field of Java Properties, specify one of the following:

• To read from one Record Store instance, specify
com.endeca.itl.recordstore.forge.RecordStoreSource.

• To read from multiple Record Store instances, specify
com.endeca.itl.recordstore.forge.MultipleRecordStoreSource. This class
instructs Forge to contact the Component Instance Manager, request a list of all available Record
Store instances, and read from each.

9. In the Classpath field of Java Properties, specify the path to <install
path>/CAS/version/lib/recordstore-forge-adapter/recordstore-forge-adapter-3.0.0.jar.
Endeca recommends that you keep this JAR file in the lib directory because of the large number
of dependencies on other JAR files in that location.

10. Select the Pass Throughs tab of the Record Adapter editor.
11. On the Pass Throughs tab, create the following name/value pairs:

• Set a HOST pass-through to the fully qualified host name of the machine running the Endeca
CAS Service. For example, HOST = hostname.endeca.com.

• Set a PORT pass-through to the port number that the Endeca CAS Service is listening on. For
example, PORT = 8500.

• If reading from one Record Store instance, set an INSTANCE_NAME pass-through to the name
of the Record Store instance that you want Forge to read from. For example, INSTANCE_NAME
= crawlID. This pass-through is not required if the adapter is reading from multiple Record
Store instances.

• For a baseline pipeline, set a READ_TYPE pass-through to BASELINE. The BASELINE setting
instructs Forge to read the latest version of all records in the Record Store. For example,
READ_TYPE = BASELINE.

For a partial-update pipeline, set a READ_TYPE pass-through to DELTA. The DELTA setting
instructs Forge to read records that have been modified or added between the last committed

Endeca Content Acquisition System Developer's Guide

77Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline

generation in the Record Store and the last generation read by the same client as identified by
CLIENT_ID setting. For example, READ_TYPE = DELTA.

• Set a CLIENT_ID pass-through to a string that distinguishes this client from others that may
also be reading from the Record Store instances. For example, CLIENT_ID = FORGE. The
CLIENT_ID pass-through specifies the client ID to be set for the generation that is being read
in. In effect, this pass-through is performing the set-last-read-generation task that can be
performed with the CAS Server Command-line Utility (i.e., state is being set for the client, which
is Forge in this case). This pass-through can be used only for READ_TYPE operations.

• Optionally, set a RECORDS_PER_TRANSFER pass-through to the number of records to transfer
at a time for each Record Store instance. The default is 500. Click OK to add the new record
adapter to the project.

• Optionally, to enable SSL with server only authentication, add pass through options for the
truststore location (SSL_TRUSTSTORE), type (SSL_TRUSTSTORE_TYPE), password
(SSL_TRUSTSTORE_PASSWORD), and CAS port usage (IS_PORT_SSL).

Note: A value of true means that PORT is an SSL port and the record adapter uses
HTTPS for connections. A value of false means that PORT is a non-SSL port and the
record adapter uses HTTPS redirects. Specify false if you enabled redirects from a
non-SSL port to an SSL port.

For example: SSL_TRUSTSTORE = C:\Endeca\CAS\workspace\conf\truststore.ks,
SSL_TRUSTSTORE_TYPE = JKS, SSL_TRUSTSTORE_PASSWORD = endeca, IS_PORT_SSL
= false.

• Optionally, to enable SSL with mutual authentication, add pass-through options for the keystore
location (SSL_KEYSTORE), type (SSL_KEYSTORE_TYPE), and password (SSL_KEYSTORE_PASS¬
WORD).

For example: SSL_KEYSTORE = C:\Endeca\CAS\workspace\conf\keystore.ks,
SSL_KEYSTORE_TYPE = JKS, SSL_KEYSTORE_PASSWORD = endeca, IS_PORT_SSL =
false.

12. Click OK to add the new record adapter to the project.
13. Save the project by selecting Save from the File menu.

In some cases, you may get an Out of Memory error if Forge is reading or writing records from a
Record Store instance. To work around this error, you can increase the amount of memory allocated
to the JVM running Forge. To increase the memory, run Forge with --javaArgument flag and the
-Xmx argument, for example --javaArgument -Xmx512m.

Creating a record adapter to read from crawl output files
If you configured the CAS Server or Web Crawler to write to output files (rather than a Record Store
instance), the Endeca records in the file can be loaded into a pipeline using a record adapter that you
create in Developer Studio.

To create a record adapter to read from crawl output files:

1. Open your project in Developer Studio.
2. In the Project tab, double-click Pipeline Diagram.
3. In the Pipeline Diagram editor, click New.
4. Select Record > Adapter. The Record Adapter editor displays.

Endeca Content Acquisition System Developer's Guide

Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline78

5. In the Name text box, specify the name of this record adapter.
6. In the Direction frame, select Input.
7. From the Format drop-down list, choose either Binary or XML depending on how you configured

the output records format.
8. In the URL text box, specify the name of the crawler output records file. Keep in mind that you can

use a wildcard (*) with the name in the URL text box (such as ../output/crawlID/*.bin.gz).
A wildcarded URL is especially useful if your crawls produce multiple segmented Binary files.

9. Configure the remaining settings (Encoding, Require data, and so on) according to the needs of
your application. Be sure to check the Multi file checkbox if you are using a wildcarded URL.

10. Click OK to add the new record adapter to the project.
11. Save the project by selecting Save from the File menu.

After the pipeline is complete, be sure to check the Forge log when you run the pipeline for the first
time. In particular, look for file input errors similar to this example:
Unable to open C:\Crawls\data\incoming*.bin.gz for input:
opening file "C:\Crawls\data\incoming*.bin.gz":
The filename, directory name, or volume label syntax is incorrect.

If you see this error, recheck the setting of the URL text box to ensure that it points to the correct name
and location of the record output files.

Creating a record adapter to write to a Record Store instance
Forge can write Endeca records to a Record Store instance using a custom output record adapter.

There must be records available in a Forge pipeline before you can instruct Forge to write to a Record
Store instance. Typically, Endeca records have already been read into a Forge pipeline from one or
more data sources using an input record adapter. In this scenario, the processing flow is as follows:

1. Read records from data sources using input record adapters.
2. Perform Forge pipeline processing as necessary.
3. Store the processed records in a Record Store instance using a custom output record adapter.
4. Perform additional Forge pipeline processing as necessary.

You configure a custom output record adapter with Java properties set on the General tab and with
pass-through values set on the Pass Throughs tab.

To create a record adapter to write to a Record Store instance:

1. Open your project in Developer Studio.
2. In the Project tab, double-click Pipeline Diagram.
3. In the Pipeline Diagram editor, click New.
4. Select Record > Adapter.
5. In the Name text box, specify the name of this record adapter.
6. In the Direction frame, select Output.
7. From the Format list, choose Custom Adapter.
8. In the Class field of Java Properties, specify

com.endeca.itl.recordstore.forge.RecordStoreSink.
9. In the Classpath field of Java Properties, specify the path to <install

path>/CAS/version/lib/recordstore-forge-adapter/recordstore-forge-adapter-3.0.0.jar.

Endeca Content Acquisition System Developer's Guide

79Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline

Endeca recommends that you keep this JAR file in the lib directory because of the large number
of dependencies on other JAR files in that location.

10. Select the Pass Throughs tab of the Record Adapter editor.
11. On the Pass Throughs tab, create the following name/value pairs:

• Set a HOST pass-through to the fully qualified host name of the machine running the Endeca
CAS Service. For example, HOST = hostname.endeca.com.

• Set a PORT pass-through to port number that the Endeca CAS Service is listening on. For
example, PORT = 8500.

• Set an INSTANCE_NAME pass-through to the name of the unique Record Store instance is that
you want Forge to write to. For example, INSTANCE_NAME = crawlID.

• For a baseline pipeline, set a WRITE_TYPE pass-through to BASELINE. For example,
WRITE_TYPE = BASELINE.

For a partial-update pipeline, set a WRITE_TYPE pass-through to DELTA. The DELTA setting
instructs Forge to write records that have been modified or added. You indicate modified or
added records with an Endeca.Action property that has a value of UPSERT. For example,
WRITE_TYPE = DELTA.

• Optionally, to enable SSL with server only authentication, add pass through options for the
truststore location (SSL_TRUSTSTORE), type (SSL_TRUSTSTORE_TYPE), password
(SSL_TRUSTSTORE_PASSWORD), and CAS port usage (IS_PORT_SSL).

Note: A value of true means that PORT is an SSL port and the record adapter uses
HTTPS for connections. A value of false means that PORT is a non-SSL port and the
record adapter uses HTTP for connections. Specify false if you enabled redirects from
a non-SSL port to an SSL port.

For example: SSL_TRUSTSTORE = C:\Endeca\CAS\workspace\conf\truststore.ks,
SSL_TRUSTSTORE_TYPE = JKS, SSL_TRUSTSTORE_PASSWORD = endeca, IS_PORT_SSL
= false.

• Optionally, to enable SSL with mutual authentication, add pass through options for the keystore
location (SSL_KEYSTORE), type (SSL_KEYSTORE_TYPE), and password (SSL_KEYSTORE_PASS¬
WORD).

For example: SSL_KEYSTORE = C:\Endeca\CAS\workspace\conf\keystore.ks,
SSL_KEYSTORE_TYPE = JKS, SSL_KEYSTORE_PASSWORD = endeca, IS_PORT_SSL =
false.

• Optionally, set a RECORDS_PER_TRANSFER pass-through to the number of records to transfer
at a time. Default is 500.

12. Click OK to add the new record adapter to the project.
13. Save the project by selecting Save from the File menu.

In some cases, you may get an Out of Memory error if Forge is reading or writing records from a
Record Store instance. To work around this error, you can increase the amount of memory allocated
to the JVM running Forge. To increase the memory, run Forge with --javaArgument flag and the
-Xmx argument, for example --javaArgument -Xmx512m.

Endeca Content Acquisition System Developer's Guide

Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline80

Identifying the language of records
An ID_LANGUAGE expression can identify the language of the records.

If your pipeline requires explicitly identifying multiple source documents that may be in multiple
languages, you can use the ID_LANGUAGE expression in your record manipulator. This identification
requirement may be necessary if you crawl a set of source documents where each document may be
in a different language, and an aspect of your application depends on identifying the language. For
example, an application might organize documents to be navigated by language.

The ID_LANGUAGE expression examines the value of the Endeca.Document.Text property,
determines the language of the document, and tags the record with a corresponding language value
in a property of your choosing (the default name of the property is Endeca.Document.Language).
ISO 639 lists the valid language codes. See http://xml.coverpages.org/iso639a.html for a full list of the
language codes.

The advantage of using the ID_LANGUAGE expression is twofold: you can specify any property to
examine, and you can modify the number of bytes to examine in the property. Increasing the number
of bytes leads to more accurate language detection. Decreasing the number of bytes improves
processing performance.

To identify the language of a document:

1. In the Pipeline Diagram editor, click New.
2. Select Record > Manipulator.
3. In the Name text box, enter the name of the record manipulator.
4. From the Record Source drop-down list, choose the name of the upstream component you previously

created.
5. Click OK.
6. In the Pipeline Diagram, double-click the record manipulator you just created.
7. Add the ID_LANGUAGE expression, using this example as a guide (note that it is not necessary

to provide attribute values for the LABEL or URL attributes):
<EXPRESSION TYPE="VOID" NAME="ID_LANGUAGE">
 <EXPRNODE NAME="PROPERTY" VALUE="Endeca.Document.Text"/>
 <EXPRNODE NAME="LANG_PROP_NAME" VALUE="Endeca.Document.Language"/>
 <EXPRNODE NAME="LANG_ID_BYTES" VALUE="500"/>
</EXPRESSION>

The configuration values are as follows:
• The PROPERTY expression node specifies the property to use for language identification.

Typically, this is the Endeca.Document.Text property.
• The LANG_PROP_NAME expression node specifies the property to store a value representing

the language of the document. If unspecified, the value is stored in the Endeca.Document.Lan¬
guage property.

• The LANG_ID_BYTES expression node specifies the number of bytes Forge uses to determine
the language. A larger number provides a more accurate determination, but requires more
processing time. The default value is 300 bytes.

8. Click Check Syntax to ensure the expressions are well formed.
9. Click Commit Changes and close the Expression editor.
10. Save the project by selecting Save from the File menu.

If you need information about using expressions, see the Data Foundry Expression Reference.

Endeca Content Acquisition System Developer's Guide

81Creating a Forge pipeline to read from or write to a Record Store | Creating a Forge pipeline

http://xml.coverpages.org/iso639a.html

Chapter 7

Creating a CAS crawl to write MDEX compatible
output

This section describes how to build a CAS crawl that crawls multiple data sources, merges records
from multiple record store instances, and writes MDEX compatible output (Dgidx input files).

Overview of a CAS crawl that produces MDEX compatible
output

You create a CAS crawl that produces MDEX compatible output (Dgidx input files) by creating a crawl
(of any type) and configuring the crawl to write MDEX compatible output. After CAS writes the output,
Dgidx can process the files, create index files, and the MDEX Engine can load the index files.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

Although you can create a crawl of any data source type, the most common scenario is to create a
Record Store Merger crawl to write MDEX compatible output. The advantage of this type of crawl is
the capability to merge many types of data and write output that can be directly processed by Dgidx
without using Forge. For example, this data can include product inventory, product descriptions,
extended product reviews, and so on.

Here is a diagram of a CAS crawl that uses a Record Store Merger crawl to read from five record store
instances and then write MDEX compatible output for use by Dgidx:

This high-level process consists of the following steps:
• Load dimension values into Record Store instances.
• Load data records into Record Store instances.
• Create a Record Store Merger crawl to read the dimension values and data records.
• Configure the Record Store Merger crawl to write MDEX compatible output.

Each step is covered in topics below.

Loading dimension values into Record Store instances
There are several common scenarios to load dimension values into Record Store instances. There
are two scenarios to crawl source data and one scenario to programmatically load dimension values
into a Record Store instance. In all of the scenarios, the goal is the same -- to crawl hierarchy information
(dimension values) and then populate a Record Store instance with that information.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

Endeca Content Acquisition System Developer's Guide

Creating a CAS crawl to write MDEX compatible output | Loading dimension values into Record Store
instances

84

Scenario 1 - Crawling extracts of the source data

This scenario consists of the following steps:

1. Export hierarchy information from the source data type to a common output format, for example,
a CSV file. Each line in a CSV file typically corresponds to one node in a hierarchy and one
dimension value.

2. Create one Endeca record for each dimension value, and add Endeca record properties that define
each dimension value. For details, see Required record properties for dimension values on page
86.

3. Download or implement a custom data source that can crawl the exported source data. You can
implement your own data sources using the CAS Extension API. For details, see the Endeca CAS
Extension API Guide.

4. Crawl the extract of the source data.

Here is a diagram of this example scenario:

Scenario 2 - Crawling the source data

This scenario consists of the following steps:

1. Download or implement a custom data source that can crawl the output format. You can implement
your own data sources and manipulators using the CAS Extension API. For details, see the Endeca
CAS Extension API Guide.

2. Crawl the source data. By default, crawls are configured to write the crawl output to a Record Store
instance.

Here is a diagram of this example scenario:

Scenario 3 - Programmatically writing to a Record Store instance

In this scenario, you programmatically write to a Record Store instance using the Record Store API.
For details about these interfaces see the Endeca CAS API Guide.

Endeca Content Acquisition System Developer's Guide

85Creating a CAS crawl to write MDEX compatible output | Loading dimension values into Record Store
instances

Required record properties for dimension values
CAS produces one dimension value in the dimension output (dimensions.xml) for each Endeca
record that CAS crawls. Each Endeca record requires the following record properties to specify
information about the dimension values output. The properties describe the name, specification, parent
relationship, and any synonyms for the dimension value.

Property ValueProperty Name

Required. The unique Id of a dimension value. The dim¬
val.spec must be unique within a dimension.

dimval.spec

Optional. The name of the dimension value indicated by dim¬
val.spec.

dimval.display_name

Required. The unique Id of a parent dimension value. Root
dimension values should have a value of forward slash (/).

dimval.parent_spec

Required. The name of the dimension that the dimension value
belongs to.

dimval.dimension_name

Optional. A synonym for the dimension value's display name.
Synonyms provide alternative ways of describing and
consequently, searching a particular dimension.

dimval.search_synonym

After a CAS processing, the dimval properties above map to the following dimension value constructs
in dimensions.xml output:

Dimension Value OutputProperty Name

CAS maps the dimval.spec for a source record to a
Dgraph.Spec property in the dimension value output.

dimval.spec

CAS maps the dimval.display_name for a source record to
the display name in the dimension value output (that is, the name
stored in the SYN element).

dimval.display_name

Based on the value of the dimval.parent_spec property,
CAS generates two types of dimension values.

If the source dimval.parent_spec was a root dimension
value, then CAS generates a corresponding root dimension value

dimval.parent_spec

(that is, a DIMENSION_NODE with a Dgraph.Spec value of /),
and CAS nests the dimension value under the parent dimension.

If the source dimval.parent_specwas a unique Id, then CAS
generates a dimension value with the same unique
Dgraph.Spec value, and CAS nests the dimension value under
the parent dimension value.

CAS nests the dimension value under the dimension (that is,
under a DIMENSION element).

dimval.dimension_name

If a dimval.search_synonym was specified, CAS creates an
additional search synonym within the dimension value (that is,
an additional SYN element).

dimval.search_synonym

Endeca Content Acquisition System Developer's Guide

Creating a CAS crawl to write MDEX compatible output | Loading dimension values into Record Store
instances

86

Dimension Value OutputProperty Name

Most other record properties map to dimension value properties
in the output (that is, they map to a list of PROP elements nested
under the DVAL).

The properties that are excluded from becoming dimension value
properties areEndeca.Action,Endeca.Id,Endeca.Source¬

Other properties on the source
record.

Type, Endeca.SourceId, and Endeca.IsDimensionVal¬
ueRecord.

Length limitations on name and spec values
The name and specification record properties have a length limitation of 65,536 characters. In particular,
this limitation applies to: dimval.spec, dimval.parent_spec, and dimval.dimension_name.

The Dimension Value Id Manager throws validation errors if it process names or spec property values
that exceed the 65,536 character limit, and the crawl itself will fail.

Loading data records into Record Store instances
Loading data records is conceptually similar to loading dimension values. You can create a crawl that
crawls the data records directly, or you can crawl an export of the data records, or you can
programmatically write data records to a Record Store instance. The scenarios are the same. However,
for data records, the content you load could be product inventory, product descriptions, enterprise
data, and so on, rather than dimension value data.

Dimension values and data records

If you add a new dimension value to your application, ensure that you add a record property to each
data record that should be tagged with that dimension value. For example, suppose the dimension
values in an application describe product categories like components such as motherboards, RAM,
and so on. You add a new dimension value for software. You also add a record property to each
software product record that belongs with the software dimension value.

Property mapping for data records

During a crawl that produces MDEX compatible output, CAS performs property mapping from source
properties on a data record to properties on an MDEX record. The mapping from the source property
can go to one of three possible targets:

• A source property can map to a dimension value. In this case, the source properties must match
target dimension names.

• A source property can map to a property value. In this case, the source properties must match
target property names.

• A source property can be dropped from matching with any target property. This occurs when a
source property does not match with a target property or dimension value. For example, if Ende¬
ca.Action is not defined in your instance configuration, the property is omitted in MDEX records.

The table below shows an example of how CAS maps properties on a data record to properties on an
MDEX record during a crawl that write MDEX compatible output. (The data record is for an HP camera

Endeca Content Acquisition System Developer's Guide

87Creating a CAS crawl to write MDEX compatible output | Loading data records into Record Store
instances

dock in a camera store application.) Each of the three mapping possibilities mentioned above are
called out.

Property type or dimension
value

Property or dimension value in
the MDEX record

Property assignments in the
data record

Dimension valueThe "camera docks" dimension
value, with spec 1179, in the
product.category dimension.

product.category="1179"

Dimension valueThe "HP" dimension value in the
HP product.brand.name
dimension.

product.brand.name="HP"

Property valueThe product.id property with
a value of 365710.

product.id="365710"

Property valueThe product.name property
with a value of "Photosmart

product.name="Photosmart
R-series dock with re¬

R-series dock with re¬mote control plus addi¬
mote control plus addi¬tional rechargeable

lithium-ion battery" tional rechargeable
lithium-ion battery".

Property valueThe product.price property
with a value of 1053.

product.price="1053"

Property valueThe product.short_descr
property with a value of "As

product.short_descr="As
well as recharging the

well as recharging thelithium-ion battery in
lithium-ion battery inyour camera - plus a
your camera - plus aspare - this dock lets

you ..." spare - this dock lets
you ...".

NoneNone. This source property in the
data record is dropped from the

Endeca.Id="365710"

MDEX record during CAS
processing.

NoneNone. This source property in the
data record is dropped from the

Endeca.Action="UPSERT"

MDEX record during CAS
processing.

NoneNone. This source property in the
data record is dropped from the

Endeca.SourceId="icecat-
products"

MDEX record during CAS
processing.

Endeca Content Acquisition System Developer's Guide

Creating a CAS crawl to write MDEX compatible output | Loading data records into Record Store
instances

88

Creating and configuring a crawl to write MDEX compatible
output

After loading dimension values and data records, you create a crawl and configure it to write MDEX
compatible output. You can create a crawl of any data source type and configure it to write MDEX
compatible output. However, the most common scenario is to create a Record Store Merger crawl to
write MDEX compatible output. Use any of the usual means to create a crawl. You can use CAS
Console, the CAS Server Command Line Utility, or the CAS Server API.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

Related Links
About creating and configuring crawls on page 23

You use the CAS Server API, the CAS Server Command-line Utility, and the CAS Console
for Oracle Oracle Endeca Workbench to create and configure any number of crawls in your
application.

Sample configuration for a Record Store Merger data source on page 25
This topic shows a sample configuration file that you can use as the basis for your own
configuration of a Record Store Merger data source.

Configuring a crawl to write to an MDEX compatible format on page 30
The CAS Server writes crawl output to a Record Store instance by default. This topic describes
how to modify the configuration settings to write crawl output in an MDEX compatible format
(i.e. Dgidx input files).

Endeca Content Acquisition System Developer's Guide

89Creating a CAS crawl to write MDEX compatible output | Creating and configuring a crawl to write
MDEX compatible output

Part 3

CAS Command Line Utilities

• CAS Server Command-line Utility
• Component Instance Manager Command-line Utility
• Record Store Command-line Utility

Chapter 8

CAS Server Command-line Utility

This section describes how to run the tasks of the CAS Server Command-line Utility.

Overview of the CAS Server Command-line Utility
The CAS Server Command-line Utility creates and manages data source crawls.

The CAS Server Command-line Utility is a script named cas-cmd.sh (for Linux/UNIX systems) and
cas-cmd.bat (for Windows) that you run from a command prompt. The scripts are in the bin directory.

Help options

The CAS Server Command-line Utility has two help options that display the usage syntax. The --help
option displays a summary of the tasks. The --help-detail option displays detailed usage information
for all the tasks. For example:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat --help
usage: cas-cmd <task-name> [options]
[Inspecting Installed Modules]
 getAllModuleSpecs
 getModuleSpec
 listModules
[Managing Crawls]
 createCrawls
 deleteCrawl
 getAllCrawls
 getCrawl
 getCrawlIncrementalSupport
 listCrawls
 startCrawl
 stopCrawl
 updateCrawls
[Managing Dimension Value Ids]
 createDimensionValueIdManager
 deleteDimensionValueIdManager
 generateDimensionValueId
 getDimensionValueId
[Viewing Crawl Status and Results]
 getAllCrawlMetrics
 getCrawlMetrics
 getCrawlStatus

For detailed usage information including task options, use --help-detail
For detailed usage information for individual task options, use <task-name>
--help

Command-line options

The command syntax for executing the tasks is:
cas-cmd task-name [options]

The task-name argument is the task to be performed by the utility, such as the createCrawls task.
The task options vary, depending on the task. However, these options can be used with any task:

• -h (or --host) specifies the host name of the machine on which the CAS Service is running. If
the flag is omitted, it defaults to the value of the com.endeca.itl.cas.server.host property
in <install path>\CAS\workspace\conf\commandline.properties. If the property is
not set, the value then defaults to localhost as the host name.

• -p (or --port) specifies the port on which CAS Service is listening. If the flag is omitted, it defaults
to the value of the com.endeca.itl.cas.server.port property in
workspace\CAS\conf\commandline.properties. If the property is not set, the value then
defaults to 8500 as the port number.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Host and port settings

You first specify the host and port settings for the Endeca CAS Service as part of the installation wizard.
That host runs the CAS Server, the Component Instance Manager, and all Record Store instances.
The installation wizard then writes the host (com.endeca.itl.cas.server.host) and port
(com.endeca.itl.cas.server.port) settings as properties in commandline.properties. All
of the CAS command-line utilities use these settings as default values if you omit the -h and -p flags
when executing any tasks.

Setting the bin directory in the PATH environment variable

Although not required, it is recommended that you set the path of the bin directory in your system's
PATH environment variable. This allows you to run the CAS Server Command-line Utility script from
any location.

About error handling

• If desired, you can re-configure the default logging settings in <install
path>\CAS\workspace\conf\cas-cmd.log4j.properties.

• Errors print to standard error, unless you redirect stderr to a file instead.
• Errors of mis-configured command-line tasks or incorrect input parameters are written to standard

out.

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Overview of the CAS Server Command-line Utility94

About CAS capabilities
The Content Acquisition System provides a list of capabilities that describe whether a data source or
manipulator supports an optional set of CAS features. For example, if a data source or manipulator
has the Supports Incrementals capability, then it can run in an incremental crawl.

You get the capabilities for a data source or manipulator by running the listModules task or the
getModuleSpec task of cas-cmd.

The list of CAS capabilities available to a data source or manipulator includes the following:
• Binary Content Accessible via FileSystem - Indicates that the data source supports

local caching for files accessible from a file system. This capability does not apply to manipulators.
• Data Source Filter - Indicates that the data source supports filter configuration. This capability

does not apply to manipulators.
• Has Binary Content - Indicates that the data source supports document conversion. This

capability does not apply to manipulators.
• Expand Archives - indicates that the data source supports archive expansion as part of a crawl.

This capability does not apply to manipulators.
• Supports Incrementals - Indicates that the manipulator can run as part of an incremental

crawl. This capability does not apply to data sources.

Saving passwords in a crawl configuration file
Although data sources and manipulators can be configured with passwords, their crawl configurations
are retrieved by the getCrawl or getAllCrawls tasks without passwords.

There are two ways to specify a password for a data source or a manipulator:
• You can specify a password when prompted by the createCrawls task of cas-cmd.
• You can save the password in a crawl configuration file.

Note: The updateCrawls task of cas-cmd does not prompt for a password because CAS
Server stores the password during the create process, and the updateCrawls task uses the
stored password.

Recall that passwords are indicated in Endeca CMS connectors with the hardcoded password
configuration property. However, in cases where a plug-in developer creates a data source or
manipulator with a password configuration property, the property may have any name the plug-in
developer chooses. (In this situation, the plug-in developer specifies a password configuration property
by adding the isPassword=true attribute in the property's annotation.)

To save a password in a crawl configuration:

1. In a text editor, open the crawl configuration file and locate the <configuration> element for
the given crawl and within <configuration> locate the <sourceConfig> element.

2. Within <sourceConfig>, locate the <moduleProperty> element that specifies the password
configuration property.

• For Endeca CMS connectors, this is the <moduleProperty> with <key>password</key>.
• For data sources or manipulators created by a plug-in developer, you can locate the password

configuration property by running the getModuleSpec and looking for the property that has
*Password: true.

Endeca Content Acquisition System Developer's Guide

95CAS Server Command-line Utility | About CAS capabilities

For example:
<moduleProperty>
 <key>password</key>
</moduleProperty>

3. Directly below the <key> ...</key> line, enter <value> followed by a value you wish to set as
the password, and then the closing </value> tag.
For example
<moduleProperty>
 <key>password</key>
 <value>p@ssw0rd</value>
</moduleProperty>

4. Save and close the configuration file.
5. Specify this configuration file with the -f option of the createCrawls task.

Inspecting installed modules
The following cas-cmd tasks return information about the modules you have installed.

Getting the specifications of all modules
The getAllModuleSpecs task retrieves all module specifications. A module specification includes
the configuration properties, capabilities, and moduleInfo of a particular module.

The syntax for this task is:
cas-cmd getAllModuleSpecs [-h HostName] [-l true|false] [-p PortNumber] [-
t ModuleType]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -t (or --type) specifies the type of module to list. If unspecified, the task returns the specifications
of all modules. A value of SOURCE returns the specifications of all data sources. A value of
MANIPULATOR returns the specifications of all manipulators. Optional.

To get the specifications of all modules:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Inspecting installed modules96

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getAllModule¬
Specs task.

Note: This task name is case sensitive.

Getting the specification of a module
The getModuleSpec task retrieves the specification of a particular module. A module specification
includes the configuration properties, capabilities, and moduleInfo of a particular module.

The syntax for this task is:
cas-cmd getModuleSpec -id ModuleId [-h HostName]
[-p PortNumber] [-l true|false]

Where:
• -id (or --module_id) specifies the ID of a module that you have installed into CAS.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

If necessary you can first run the listModules task to list the modules that you have installed.

To get the specification of a module:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getModuleSpec
task with the id of the module for which to retrieve the specification.

Note: This task name is case sensitive.

Example of getting the specification of a module
C:\Endeca\CAS\3.0.2\bin>cas-cmd getModuleSpec -id "File System"
File System
===========
[Module Information]
 *Id: File System
 *Type: SOURCE
 *Description: No description available for File System
 *Capabilities:
 *Binary Content Accessible via FileSystem
 *Data Source Filter
 *Has Binary Content

Endeca Content Acquisition System Developer's Guide

97CAS Server Command-line Utility | Inspecting installed modules

 *Expand Archives

[File System Configuration Properties]
Group: Seeds

 *Help Link: /casconsole-infocenter/index.jsp?topic=/com.endeca.itl.doc¬
set.cas-c
onsole-eclipse-help/src/tcasc_adding_a_new_fs_ds.html
Seeds:
 *Name: seeds
 *Type: {http://www.w3.org/2001/XMLSchema}string
 *Required: true
 *Max Length: 255
 *Multiple Values: true
 *Multiple Lines: false
 *Password: false
 *Always Show: true

Group:

Gather Native File Properties:
 *Name: gatherNativeFileProperties
 *Type: {http://www.w3.org/2001/XMLSchema}boolean
 *Required: false
 *Description: Gather Native File Properties
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Expand Archives:
 *Name: expandArchives
 *Type: {http://www.w3.org/2001/XMLSchema}boolean
 *Required: false
 *Description: Expand Archives
 *Multiple Values: false
 *Multiple Lines: false
 *Password: false
 *Always Show: false

Listing modules
The listModules task lists modules you can include in a crawl. Modules include CMS connectors
that you have licensed and enabled and any other data sources and manipulators.

The syntax for this task is:
cas-cmd listModules [-t ModuleType] [-h HostName] [-p PortNumber] [-l
true|false]

Where:
• -t (or --type) specifies the type of module to list. If unspecified, the task returns all modules. A

value of SOURCE returns a list of all data sources enabled on the CAS Server. A value of
MANIPULATOR returns a list of all manipulators installed on the CAS Server. Optional.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Inspecting installed modules98

commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To list modules:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the listModules
task.

Note: This task name is case sensitive.

Managing crawls
The following cas-cmd tasks manage crawls.

Creating crawls
The createCrawls task creates and stores named crawls.

The syntax for this task is:
cas-cmd createCrawls -f CrawlConfig.xml [-h HostName] [-p PortNumber] [-l
true|false]

Where:
• -f (or --file) specifies the pathname of the input XML file containing the crawl configuration(s).

Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in <install path>\CAS\workspace\conf (on Windows) or <install
path>/CAS/workspace/conf (on UNIX). If the property is not set, the value then defaults to
8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Endeca Content Acquisition System Developer's Guide

99CAS Server Command-line Utility | Managing crawls

Note:
• If you are running createCrawls as part of migrating from a previous version of CAS to

the current version, the createCrawls task handles updating all aspects of the crawl
configuration file.

• If conflicts arise when running the createCrawls task (such as multiple crawl configurations
occuring with the same crawlId), the utility prompts you to either ignore the listed conflicts
and continue creating the rest of the crawls, or to abort the task. If a crawl cannot be created,
the CAS Server logs an error and ignores that crawl.

• When the CAS Server Command-line Utility loads a crawl configuration that contains an
empty password property, the user is prompted for a password. If a password is entered
incorrectly, the crawl is not saved.

• You may add a password to the crawl configuration and update CAS Server with this modified
configuration. Or, you may enter the password when prompted by running the task. The
password is saved only on the server running the Endeca CAS Service.

To create crawls:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify createCrawls with
the -f or --file_name flag, and the absolute path to the crawl configuration file.

Note: This task name is case sensitive.

Example of creating crawls
C:\Endeca\CAS\3.0.2\bin>cas-cmd createCrawls -f C:\tmp\fileCrawlConfig.xml
Created crawl FileCrawl

Deleting a crawl
The deleteCrawl task deletes a crawl.

The syntax for this task is:
cas-cmd deleteCrawl -id CrawlName [-h HostName] [-p PortNumber] [-l
true|false]

Where:
• -id (or --crawl_id) specifies the name of the crawl to be deleted. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing crawls100

er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the deleteCrawl
task with the id of the crawl to be deleted.

Note: This task name is case sensitive.

Example of deleting a crawl
C:\Endeca\CAS\3.0.2\bin>cas-cmd deleteCrawl -id FileCrawl

Getting all crawls
The getAllCrawls task retrieves all crawl configurations.

The syntax for this task is:
cas-cmd getAllCrawls [-f FileName.xml] [-h HostName] [-p PortNumber]
[-d] [-l true|false]

Where:
• -f (or --file) specifies the name of the XML file to write the configuration to. If omitted, the crawl

configuration is sent to standard output. Optional.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -d (or --fill_in_defaults) specifies whether to populate the configuration file with the default
values for unspecified properties. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Crawls are retrieved without password values if there are any configuration properties marked as is¬
Password.

To get all crawls:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getAllCrawls
task, optionally with the -f (or --file) flag and the name of the XML file to write the crawl
configuration(s) to.

Endeca Content Acquisition System Developer's Guide

101CAS Server Command-line Utility | Managing crawls

Note: This task name is case sensitive.

Example of getting all crawls
C:\Endeca\CAS\3.0.2\bin>cas-cmd getAllCrawls
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>
 <crawlId>
 <id>FileCrawl</id>
 </crawlId>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\tmp\itldocset</value>
 <value>C:\tmp\iapdocset</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>
 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>false</makeLocalCopy>
 </textExtractionConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
 <moduleProperties/>
 </outputConfig>
 </crawlConfig>
 <crawlConfig>
 <crawlId>
 <id>SecondFileCrawl</id>
 </crawlId>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>false</value>
 </moduleProperty>

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing crawls102

 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\tmp\mdexdocset</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>
 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>false</makeLocalCopy>
 </textExtractionConfig>
 </manipulatorConfigs>
 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
 <moduleProperties/>
 </outputConfig>
 </crawlConfig>
</configurations>

Getting a crawl
The getCrawl task retrieves a single crawl configuration.

The syntax for this task is:
cas-cmd getCrawl -id CrawlName [-f FileName.xml] [-h HostName]
[-p PortNumber] [-d] [-l true|false]

Where:
• -id (or --crawl_id) specifies the name of the crawl for which you want to retrieve the crawl

configuration. Required.
• -f (or --file_name) specifies the XML output file to which you want to write the crawl

configuration. Optional.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -d (or --fill_in_defaults) specifies whether to populate the configuration file with the default
values for unspecified properties. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Endeca Content Acquisition System Developer's Guide

103CAS Server Command-line Utility | Managing crawls

The XML input and output files resulting from the getAllCrawls and createCrawls operations
are similar to those from getCrawl, except that getAllCrawls returns a series of <crawlConfig>
elements because it pertains to multiple crawls.

Crawls are retrieved without password values if there are any configuration properties marked as is¬
Password.

To get a crawl:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getCrawl task
with the id of the crawl for which to retrieve the configuration.

Note: This task name is case sensitive.

Example of getting a crawl
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawl -id FileCrawl
<?xml version="1.0" encoding="UTF-8"?>

<configurations xmlns="http://endeca.com/itl/cas/2010-03">
 <crawlConfig>
 <crawlId>
 <id>FileCrawl</id>
 </crawlId>
 <sourceConfig>
 <moduleId>
 <id>File System</id>
 </moduleId>
 <moduleProperties>
 <moduleProperty>
 <key>expandArchives</key>
 <value>false</value>
 </moduleProperty>
 <moduleProperty>
 <key>gatherNativeFileProperties</key>
 <value>true</value>
 </moduleProperty>
 <moduleProperty>
 <key>seeds</key>
 <value>C:\tmp\itldocset</value>
 <value>C:\tmp\iapdocset</value>
 </moduleProperty>
 </moduleProperties>
 <excludeFilters/>
 <includeFilters/>
 </sourceConfig>
 <textExtractionConfig>
 <enabled>true</enabled>
 <makeLocalCopy>false</makeLocalCopy>
 </textExtractionConfig>
 <manipulatorConfigs/>
 <outputConfig>
 <moduleId>
 <id>Record Store</id>
 </moduleId>
 <moduleProperties/>
 </outputConfig>

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing crawls104

 </crawlConfig>
</configurations>

Getting the incremental support status of a crawl
The getCrawlIncrementalSupport task indicates whether a specified crawl configuration supports
incremental crawling and also indicates which manipulators within the crawl configuration do not
support incremental crawling.

The syntax for this task is:
cas-cmd getCrawlIncrementalSupport [-h HostName] -id CrawlName [-l
true|false] [-p PortNumber]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -id (or --crawl_id) specifies the name of the crawl to retrieve incremental support status for.
Required.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

To get the incremental support status of an incremental crawl:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the
getCrawlIncrementalSupport task with the id of the crawl.

Note: This task name is case sensitive.

Example of getting the support status of an incremental crawl
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawlIncrementalSupport -id Test
Incrementals Supported: yes

Listing crawls
The listCrawls task lists all crawls in the Endeca CAS Service.

The syntax for this task is:
cas-cmd listCrawls [-h HostName] [-p PortNumber] [-l true|false]

Where:

Endeca Content Acquisition System Developer's Guide

105CAS Server Command-line Utility | Managing crawls

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To list crawls:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the listCrawls task.

Note: This task name is case sensitive.

Example of listing crawls
C:\Endeca\CAS\3.0.2\bin>cas-cmd listCrawls
FileCrawl
FileCrawl2

Starting acquisition from a data source
The startCrawl task starts acquisition from a data source.

When you acquire from a data source, the CAS Server automatically determines which acquisition
mode is necessary. By default, the CAS Server attempts incremental acquisition, and it switches to
full acquisition if any of the following conditions are true:

• A data source has not been acquired before, which means no crawl history exists.
• A Record Store instance that stores record output does not contain at least one record generation.

This applies to the default case in which the CAS Server is configured to output to a Record Store
instance rather than a file on disk.

• Seeds have been removed from the data source configuration (adding seeds does not require full
acquisition).

• The document conversion setting has changed.
• Filters have been added, modified, or removed in the data source configuration.
• Repository properties have changed, such as the username property setting for CMS data sources.

In all other cases, the CAS Server acquires incrementally. However, you may force full acquisition of
a data source by specifying the -full option.

The syntax for this task is:
cas-cmd startCrawl -id CrawlName [-full] [-h HostName]
[-p PortNumber] [-l true|false]

Where:

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing crawls106

• -full (or --full_crawl) specifies whether to force a full crawl. If unspecified, CAS Server runs
an incremental crawl. Optional

• -id (or --crawl_id) specifies the ID of the acquisition to start. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To start acquisition from a data source:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the startCrawl task
with the required arguments.

Note: This task name is case sensitive.

Example of starting data acquisition from a data source
C:\Endeca\CAS\3.0.2\bin>cas-cmd startCrawl -id FileCrawl

Stopping acquisition from a data source
The stopCrawl task stops acquisition from a data source.

The syntax for this task is:
cas-cmd stopCrawl -id CrawlName [-h HostName] [-p PortNumber] [-l true|false]

Where:
• -id (or --crawl_id) specifies the ID of the acquisition to stop. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Endeca Content Acquisition System Developer's Guide

107CAS Server Command-line Utility | Managing crawls

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the stopCrawl task
with the proper arguments.

Note: This task name is case sensitive.

Example of stopping acquisition from a data source
C:\Endeca\CAS\3.0.2\bin>cas-cmd stopCrawl -id FileCrawl

Updating crawls
The updateCrawls task updates one or more existing crawl configurations with a new crawl
configuration. The task does not create new crawl configurations. It updates existing crawl configurations
with changes.

The syntax for this task is:
cas-cmd updateCrawls -f CrawlConfig.xml [-h HostName] [-p PortNumber] [-l
true|false]

Where:
• -f (or --file) specifies the pathname of the input XML file containing the crawl configuration(s).

Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in CAS\workspace\conf (on Windows) or CAS/workspace/conf (on UNIX). If the property is
not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Note: This task does not create a new crawl. The task throws an exception if you attempt to
update a crawl that does not already exist.

To update crawls:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify updateCrawls with
the -f or --file_name flag, and the absolute path to the crawl configuration file.

Note: This task name is case sensitive.

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing crawls108

Example of updating crawls
C:\Endeca\CAS\3.0.2\bin>cas-cmd updateCrawls -f C:\tmp\newCrawlConfig.xml
Updated crawl FileCrawl

Managing dimension value Ids
The following cas-cmd tasks manage dimension value Ids.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

Creating a Dimension Value Id Manager
The createDimensionValueIdManager task creates a new instance of a Dimension Value Id
Manager. In cases where you are not modifying the ebiz sample application, you can run this task to
create a Dimension Value Id manager.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

The syntax for this task is:
cas-cmd createDimensionValueIdManager [-h HostName] [-l true|false] -m
managername [-p PortNumber]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -m (or --dimension_value_id_manger) specifies name of the Dimension Value Id Manager
you are creating. Required.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in <install path>\CAS\workspace\conf (on Windows) or <install
path>/CAS/workspace/conf (on UNIX). If the property is not set, the value then defaults to
8500. Optional.

Endeca Content Acquisition System Developer's Guide

109CAS Server Command-line Utility | Managing dimension value Ids

To create a Dimension Value Id Manager:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the createDimensionValueIdManager task and specify the -m option with a name argument

for the Dimension Value Id Manager.

Example of creating a Dimension Value Manager

This example creates a Dimension Value Id Manager named dvalmgr:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat createDimensionValueIdManager -m
dvalmgr

Deleting a Dimension Value Id Manager
The deleteDimensionValueIdManager task deletes a Dimension Value Id Manager. You typically
run this task before you delete an Endeca application from your environment. There is no automatic
mechanism to delete a Dimension Value Id Manager. You do not need to run this task after you delete
individual crawls.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

The syntax for this task is:
cas-cmd deleteDimensionValueIdManager [-h HostName] [-l true|false] -m
managername [-p PortNumber]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -m (or --dimension_value_id_manger) specifies name of the Dimension Value Id Manager
you are deleting. Required.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the deleteDimensionValueIdManager task and specify the -m option with a name argument

for the Dimension Value Id Manager you want to delete.

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing dimension value Ids110

Example of deleting a Dimension Value Manager

This example deletes a Dimension Value Id Manager named dvalmgr:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat deleteDimensionValueIdManager -m
dvalmgr

Generating a dimension value Id
The generateDimensionValueId task generates Ids given a dimension name and a dimension
specification. In general, you should rarely need to run this task because CAS generates dimension
value Ids as part of writing MDEX output. In cases where you need to create dimension value
configuration before the data ingest process, you can run this task manually.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

The syntax for this task is:
cas-cmd generateDimensionValueId -d dimensionname [-h HostName] [-l
true|false] -m managername [-p PortNumber]

Where:
• -d (or --dimension) specifies the name of the dimension that you want to generate Ids for.

Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -m (or --dimension_value_id_manger) specifies name of the Dimension Value Id Manager
you are creating. Required.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in <install path>\CAS\workspace\conf (on Windows) or <install
path>/CAS/workspace/conf (on UNIX). If the property is not set, the value then defaults to
8500. Optional.

• -s (or --spec) specifies the dimension value specification that you want to get the Ids of. Required.

To generate dimension value Ids:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the generateDimensionValueId task and specify at least the required options described

above.

Endeca Content Acquisition System Developer's Guide

111CAS Server Command-line Utility | Managing dimension value Ids

Example of generating dimension value Ids

This example creates a Dimension Value Id Manager named dvalmgr:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat generateDimensionValueId -m dvalmgr -
d Region -s Bordeaux
Generated id: 1

Getting a dimension value Id
The getDimensionValueId task returns a dimension value Id when you specify a dimension name
and dimension value specification. (This task is the reverse of getDimensionValueSpec.) This
information may be useful for debugging.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

The syntax for this task is:
cas-cmd getDimensionValueId -d dimensionname [-h HostName] [-l true|false]
 -m managername [-p PortNumber] - s dvalspec

Where:
• -d (or --dimension) specifies the name of the dimension that you want to get the Ids for. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -m (or --dimension_value_id_manger) specifies name of the Dimension Value Id Manager
you are creating. Required.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in <install path>\CAS\workspace\conf (on Windows) or <install
path>/CAS/workspace/conf (on UNIX). If the property is not set, the value then defaults to
8500. Optional.

• -s (or --spec) specifies the dimension value specification that you want to get the Ids of. Required.

To get a dimension value Id:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the getDimensionValueId task and specify at least the required options listed above.

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Managing dimension value Ids112

Example of getting dimension value Ids

This example gets the dimension value Ids of the Bordeaux dimension value:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat getDimensionValueId -m dvalmgr -d Region
 -s Bordeaux
Bordeaux
1

Getting a dimension value specification
The getDimensionValueSpec task returns a dimension value specification when you specify a
dimension name and a dimension value Id. (This task is the reverse of getDimensionValueId.)
This information may be useful for debugging.

Note: This is an Early Access feature for CAS 3.0.2. Early Access features give you a chance
to work with new functionality early in the development cycle and provide feedback to uncover
problems and to shape ongoing development. The behavior of Early Access features may change
in later releases. Early Access features in CAS 3.0.2 are not enabled by default. Contact your
Endeca Services representative for information about enablement.

The syntax for this task is:
cas-cmd getDimensionValueSpec [-h HostName] -i dimension_value_id [-l
true|false] -m managername [-p PortNumber]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -i (or --dimension_value_id) specifies the Id of the dimension that you want to get the
specification for. Required.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -m (or --dimension_value_id_manger) specifies name of the Dimension Value Id Manager
you are creating. Required.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties,
in <install path>\CAS\workspace\conf (on Windows) or <install
path>/CAS/workspace/conf (on UNIX). If the property is not set, the value then defaults to
8500. Optional.

To get dimension a value specification:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the getDimensionValueSpec task and specify at least the required options listed above.

Endeca Content Acquisition System Developer's Guide

113CAS Server Command-line Utility | Managing dimension value Ids

Example of getting dimension value Ids

This example gets the dimension value specification of the Bordeaux dimension value:
C:\Endeca\CAS\3.0.2\bin>cas-cmd.bat getDimensionValueSpec -m dvalmgr -i
1
Dimension: Region
Spec: Bordeaux

Viewing crawl status and results
The following cas-cmd tasks return information about crawl status and crawl results.

Getting metrics for all crawls
The getAllCrawlMetrics task retrieves a list of crawl IDs and their associated metrics.

The syntax for this task is:
cas-cmd getAllCrawlMetrics [-h HostName] [-p PortNumber] [-l true|false]

Where:
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To get metrics for all crawls:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the
getAllCrawlMetrics task.

Note: This task name is case sensitive.

Example of getting metrics for all crawls
C:\Endeca\CAS\3.0.2\bin>cas-cmd getAllCrawlMetrics
Metrics for crawl FileCrawl:

ARCHIVED_DIRECTORIES_CRAWLED: 0
ARCHIVED_DIRECTORIES_FILTERED: 0
ARCHIVED_FILES_CRAWLED: 0
ARCHIVED_FILES_FILTERED: 0

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Viewing crawl status and results114

CRAWL_MODE: FULL_CRAWL
CRAWL_STATE: NOT_RUNNING
CRAWL_STOP_CAUSE: COMPLETED
DELETED_RECORDS: 0
DIRECTORIES_CRAWLED: 3009
DIRECTORIES_FILTERED: 0
DURATION_IN_SECONDS: 595
END_TIME: Thu Apr 23 13:46:27 EDT 2009
FAILED_TEXT_EXTRACTIONS: 65
FILES_CRAWLED: 28849
FILES_FILTERED: 0
NEW_OR_UPDATED_RECORDS: 31858
NONARCHIVED_DIRECTORIES_CRAWLED: 3009
NONARCHIVED_DIRECTORIES_FILTERED: 0
NONARCHIVED_FILES_CRAWLED: 28849
NONARCHIVED_FILES_FILTERED: 0
START_TIME: Thu Apr 23 13:36:32 EDT 2009
SUCCESSFUL_TEXT_EXTRACTIONS: 1420
SUCCESSFUL_TEXT_EXTRACTIONS_AFTER_RETRY: 1
TOTAL_RECORDS: 31858

Metrics for crawl FileCrawl2:

ARCHIVED_DIRECTORIES_CRAWLED: 3787
ARCHIVED_DIRECTORIES_FILTERED: 0
ARCHIVED_FILES_CRAWLED: 62085
ARCHIVED_FILES_FILTERED: 0
CRAWL_MODE: FULL_CRAWL
CRAWL_STATE: NOT_RUNNING
CRAWL_STOP_CAUSE: COMPLETED
DELETED_RECORDS: 0
DIRECTORIES_CRAWLED: 16504
DIRECTORIES_FILTERED: 0
DURATION_IN_SECONDS: 1569
END_TIME: Thu Apr 23 14:37:53 EDT 2009
FAILED_TEXT_EXTRACTIONS: 67
FILES_CRAWLED: 153511
FILES_FILTERED: 0
NEW_OR_UPDATED_RECORDS: 170015
NONARCHIVED_DIRECTORIES_CRAWLED: 12717
NONARCHIVED_DIRECTORIES_FILTERED: 0
NONARCHIVED_FILES_CRAWLED: 91426
NONARCHIVED_FILES_FILTERED: 0
START_TIME: Thu Apr 23 14:11:44 EDT 2009
SUCCESSFUL_TEXT_EXTRACTIONS: 7109
SUCCESSFUL_TEXT_EXTRACTIONS_AFTER_RETRY: 1
TOTAL_RECORDS: 170015

Getting the metrics for a crawl
The getCrawlMetrics task retrieves metrics for a particular crawl.

The syntax for this task is:
cas-cmd getCrawlMetrics -id CrawlName [-h HostName] [-p PortNumber] [-l
true|false]

Where:

Endeca Content Acquisition System Developer's Guide

115CAS Server Command-line Utility | Viewing crawl status and results

• -id (or --crawl_id) specifies the name of the crawl for to retrieve metrics for. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getCrawlMetrics
task with the id of the crawl for which you want to get metrics.

Note: This task name is case sensitive.

Example of getting the metrics for a crawl
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawlMetrics -id Test
ARCHIVED_DIRECTORIES_CRAWLED: 0
ARCHIVED_DIRECTORIES_FILTERED: 0
ARCHIVED_FILES_CRAWLED: 0
ARCHIVED_FILES_FILTERED: 0
CRAWL_MODE: FULL_CRAWL
CRAWL_STATE: NOT_RUNNING
CRAWL_STOP_CAUSE: COMPLETED
DELETED_RECORDS: 0
DIRECTORIES_CRAWLED: 97
DIRECTORIES_FILTERED: 0
DURATION_IN_SECONDS: 25
END_TIME: Thu Jan 07 16:33:17 EST 2010
FAILED_RECORDS: 0
FAILED_TEXT_EXTRACTIONS: 0
FILES_CRAWLED: 688
FILES_FILTERED: 0
NEW_OR_UPDATED_RECORDS: 785
NONARCHIVED_DIRECTORIES_CRAWLED: 97
NONARCHIVED_DIRECTORIES_FILTERED: 0
NONARCHIVED_FILES_CRAWLED: 688
NONARCHIVED_FILES_FILTERED: 0
START_TIME: Thu Jan 07 16:32:51 EST 2010
SUCCESSFUL_TEXT_EXTRACTIONS: 557
SUCCESSFUL_TEXT_EXTRACTIONS_AFTER_RETRY: 0
TOTAL_RECORDS: 785

Getting the status of a crawl
The getCrawlStatus task returns the status of a specific crawl.

Endeca Content Acquisition System Developer's Guide

CAS Server Command-line Utility | Viewing crawl status and results116

The syntax for this task is:
cas-cmd getCrawlStatus -id CrawlName [-h HostName] [-p PortNumber] [-l
true|false]

Where:

• -id (or --crawl_id) specifies the name of the crawl to retrieve status for. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties . If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To get the status of a crawl:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getCrawlStatus
task with the id of the acquisition.

Note: This task name is case sensitive.

Example of getting the status of a crawl
C:\Endeca\CAS\3.0.2\bin>cas-cmd getCrawlStatus -id FileCrawl
RUNNING

Endeca Content Acquisition System Developer's Guide

117CAS Server Command-line Utility | Viewing crawl status and results

Chapter 9

Component InstanceManagerCommand-lineUtility

This section describes how to run the tasks of the Component Instance Manager (CIM) Command-line
Utility.

Overview of the CIM Command-line Utility
The Component Instance Manager (CIM) Command-line Utility is a tool to create components, delete
components, and view components. The CIM Command-line Utility runs inside the Endeca CAS
Service. The Endeca CAS Service must be running before you can execute any of the CIM
Command-line Utility tasks.

In this version of CAS, the types of components you can manage with the CIM Command-line Utility
are Record Store components. In future releases, the utility may be extended to manage additional
types of components.

The CIM Command-line Utility is a script named component-manager-cmd.sh (for Linux/UNIX
systems) and component-manager-cmd.bat (on Windows) that you run from a command prompt.
The script is in the bin directory.

Help options

The CIM Command-line Utility has two help options that display the usage syntax. The --help option
displays a summary of the tasks. The --help-detail option displays detailed usage information
for all the tasks.

For example:
C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat --help
usage: component-manager-cmd <task-name> [options]

 list-types
 list-components
 create-component
 delete-component

For detailed usage information including task options, use --help-detail
For detailed usage information for individual task options, use <task-name>
 --help

Command-line options

The command syntax for executing the tasks is:
component-manager-cmd task-name [options]

The task-name argument is the task to be performed by the utility, such as the createCrawls task.
The task options vary, depending on the task. However, these options can be used with any task:

• -h (or --host) specifies the host name of the machine on which the CAS Service is running. If
the flag is omitted, it defaults to the value of the com.endeca.itl.cas.server.host property
in workspace\CAS\conf\commandline.properties. If the property is not set, the value then
defaults to localhost as the host name.

• -p (or --port) specifies the port on which CAS Service is listening. If the flag is omitted, it defaults
to the value of the com.endeca.itl.cas.server.port property in <install
path>\workspace\CAS\conf\commandline.properties. If the property is not set, the value
then defaults to 8500 as the port number.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Host and port settings

You first specify the host and port settings for the Endeca CAS Service as part of the installation wizard.
That host runs the CAS Server, the Component Instance Manager, and all Record Store instances.
The installation wizard then writes the host (com.endeca.itl.cas.server.host) and port
(com.endeca.itl.cas.server.port) settings as properties in commandline.properties. All
of the command-line utilities use these settings as default values if you omit the -h and -p flags when
executing any tasks.

Setting the bin directory in the PATH environment variable

Although not required, it is recommended that you set the path of the bin directory in your systems'
PATH environment variable. This allows you to run the Component Instance Manager Command-line
Utility script from any location.

About error handling

• If desired, you can re-configure the default logging settings in <install
path>\CAS\workspace\conf\component-manager-cmd.log4j.properties.

• Errors print to standard error, unless you redirect std err to a file instead.
• Errors of mis-configured command-line tasks or incorrect input parameters are written to standard

out.

Creating a Record Store
The create-component task creates a Record Store instance.

The syntax for this task is:
component-manager-cmd create-component -n RecordStoreName -t RecordStore
[-h HostName] [-p PortNumber] [-l true|false]

Endeca Content Acquisition System Developer's Guide

Component Instance Manager Command-line Utility | Creating a Record Store120

Where:
• -n specifies the name of the component you are creating. Required.
• -t specifies the type of the component instance you want to create. Specify RecordStore.

Required.
• -h (or --host) specifies the host where the CAS Service is running. If the flag is omitted, the

default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the CAS Service. If the flag is omitted, the default is the value
of the com.endeca.itl.cas.server.port property in commandline.properties. If the
property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To create a Record Store:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the create-component task and specify the -t option with an argument of RecordStore

and specify the-n option with a Record Store instance name of your choice.

Example of creating a Record Store

This example creates a Record Store named RS1:
C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat create-component
 -n RS1 -t RecordStore

Deleting a Record Store
The delete-component task deletes a Record Store.

The syntax for this task is:
component-manager-cmd delete-component -n RecordStoreName
[-h HostName] [-p PortNumber] [-l true|false]

where:
• -n specifies the name of the component you are deleting. Required.
• -h (or --host) specifies the host where the Component Instance Manager is running. If the flag

is omitted, the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Component Instance Manager. If the flag is omitted, the
default is the value of the com.endeca.itl.cas.server.port property in
commandline.properties. If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬

Endeca Content Acquisition System Developer's Guide

121Component Instance Manager Command-line Utility | Deleting a Record Store

er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To delete a Record Store:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the delete-component task and specify the -n option.

Example of deleting a Record Store

This example deletes a Record Store named RS1:
C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat
delete-component -n RS1

Listing components
The list-components task lists all component instances that are managed by the Component
Instance Manager. Executing the task returns a list of all managed components in the CAS Service.

The syntax for this task is:
component-manager-cmd list-components [-h HostName] [-p PortNumber]
[-l true|false]

where:
• -h (or --host) specifies the host where the Component Instance Manager is running. If the flag

is omitted, the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Component Instance Manager. If the flag is omitted, the
default is the value of the com.endeca.itl.cas.server.port property in
commandline.properties. If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To list components:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the list-components task with any of the options listed above.

Example of listing components

This example lists the Record Store instances and Dimension Value Id Manager for the ebiz sample
application running in the Endeca CAS Service:
C:\Endeca\CAS\2.3.0\bin>component-manager-cmd.bat list-components
NAME TYPE STATUS
ebizsampleapp-trigger-dimensions RecordStore RUNNING
ebizsampleapp-products RecordStore RUNNING
ebizsampleapp-dimension-value-id-manager DimensionValueIdManager
RUNNING
ebizsampleapp-category-dimension RecordStore RUNNING

Endeca Content Acquisition System Developer's Guide

Component Instance Manager Command-line Utility | Listing components122

If no components have been created, the list-components task returns the following:
No components have been provisioned.

Listing types
The list-types task lists all component types that are managed by the Component Instance Manager.
Executing the task returns a list of all managed component types in the CAS Service.

In this release, the only supported component type is RecordStore.

The syntax for this task is:
component-manager-cmd list-types [-h HostName] [-p PortNumber]
[-l true|false]

where:
• -h (or --host) specifies the host where the Component Instance Manager is running. If the flag

is omitted, the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -p (or --port) specifies the port of the Component Instance Manager. If the flag is omitted, the
default is the value of the com.endeca.itl.cas.server.port property in
commandline.properties. If the property is not set, the value then defaults to 8500. Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

To list component types:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run the list-types task with any of the options listed above.

Example of listing types

This example lists the type of components running on the Endeca CAS Service:
C:\Endeca\CAS\2.3.0\bin>component-manager-cmd.bat list-types
ID PATH
DimensionValueIdManager C:\Endeca\CAS\2.3.0\components\DimensionValueIdMan¬
ager.war
RecordStore C:\Endeca\CAS\2.3.0\components\RecordStore.war

Related Links
CAS Command Line Utilities on page 91

This part contains the following sections:

Endeca Content Acquisition System Developer's Guide

123Component Instance Manager Command-line Utility | Listing types

Chapter 10

Record Store Command-line Utility

This section describes how to run the tasks of the Record Store Command-line Utility.

Overview of the Record Store Command-line Utility
The Record Store Command-line Utility provides the ability to read records from and write records to
a Record Store instance, in addition to a number of utility tasks such as setting client IDs and rolling
back transactions.

The Record Store Command-line Utility is a script named recordstore-cmd.sh (for Linux/UNIX
systems) and recordstore-cmd.bat (for Windows) that you run from a command prompt. The
scripts are in the bin directory.

Transactions

Read and write operations take place within the scope of a transaction. You can specify the start,
commit, or roll back of a transaction. This is useful in cases where you want to perform multiple
operations within the scope of a single transaction. If you do not explicitly control the transaction, all
read and write operations take place in a default auto commit mode.

Help options

The Record Store Command-line Utility has two help options that display the usage syntax. The --help
option displays a summary of the tasks. The --help-detail option displays detailed usage information
for all the tasks. For example:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd --help
usage: recordstore-cmd <task-name> [options]

[READ TASKS]
 read-baseline
 read-delta
 read-by-id
[UTILITY TASKS]
 clean
 clear-last-read-generation
 commit-transaction
 get-configuration
 get-last-committed-generation
 get-last-read-generation
 get-write-generation

 list-active-transactions
 list-client-states
 list-generations
 rollback-transaction
 set-configuration
 set-last-read-generation
 start-transaction
[WRITE TASKS]
 write

For detailed usage information including task options, use --help-detail
For detailed usage information for individual task options, use <task-name>
 --help

Command-line options

With one exception, the command syntax for executing the tasks is:
recordstore-cmd task-name [options]

The exception to this syntax format is the read-by-id task, which is explained in its own topic.

The task-name argument is the task to be performed by the utility, such as the read-delta task. The
task options vary, depending on the task. However, these options can be used with any task:

• -h (or --host) specifies the host name of the machine on which the Record Store is running. If
the flag is omitted, it defaults to the value of the com.endeca.itl.cas.server.host property
in commandline.properties. If the property is not set, the value then defaults to localhost
as the host name.

• -p (or --port) specifies the port on which the Record Store is listening. If the flag is omitted, it
defaults to the value of the com.endeca.itl.cas.server.port property in
commandline.properties. If the property is not set, the value then defaults to 8500 as the
port number.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Host and port settings

You first specify the host and port settings for the Endeca CAS Service as part of the installation wizard.
That host runs the CAS Server, the Component Instance Manager, and all Record Store instances.
The installation wizard then writes the host (com.endeca.itl.cas.server.host) and port
(com.endeca.itl.cas.server.port) settings as properties in commandline.properties. All
of the command-line utilities use these settings as default values if you omit the -h and -p flags when
executing any tasks.

Setting the bin directory in the PATH environment variable

Although not required, it is recommended that you set the path of the bin directory in your systems'
PATH environment variable. This allows you to run the Record Store Command-line Utility script from
any location.

About error handling

• If desired, you can re-configure the default logging settings in <install
path>\CAS\workspace\conf\recordstore-cmd.log4j.properties.

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Overview of the Record Store Command-line Utility126

• By default, errors print to a log file named recordstore-cmd.log that is located in the logs
directory.

Writing tasks
The following recordstore-cmd tasks perform write operations to a Record Store instance.

Writing records
The write task writes a list of records into a specified Record Store instance.

The syntax for this task is:
recordstore-cmd write -a RecordStoreInstanceName [-b]
-f InputFile [-h HostName] [-l true|false] [-p PortNumber] [-r Type] [-x
Id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -b (or --baseline) is a flag with no arguments that specifies that this is to be a baseline write.

If the Record Store has any existing generations, a baseline write will not delete those previous
generations, however, it will mark them as "to be deleted" and the cleaner will delete them when
it runs (if the records are older than the generation retention time). If the flag is omitted, the write
operation is considered an incremental write to the last-committed generation. Optional.

• -f (or --file) specifies the file that contains Endeca records. The filename extension will
determine the format of the input file. Valid extensions for the file are .xml (for an XML format)
and .bin (for a binary format); either file type can also have an additional, optional .gz extension
if it is a compressed file. Required.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow the command with a commit-transaction task to commit the write operation. If this flag
is omitted, the operation is done in auto-commit mode. Optional.

Examples of writing records

If there are two generations in the Record Store, this command:
recordstore-cmd write -a RS2 -b -f basedata.xml

Endeca Content Acquisition System Developer's Guide

127Record Store Command-line Utility | Writing tasks

will write the records in the basedata.xml file as a baseline write operation. If you check the log
output, you should see messages similar to these:
Starting new transaction with generation Id 3
Started transaction 10 of type READ_WRITE
Processing delete all for generation 3
Marking generation committed: 3
Committed transaction 10

The Delete message (Processing delete all for generation 3) indicates that the transaction
that created Generation 3 also marked the previous generations for deletion.

If you then perform a subsequent incremental write command:
recordstore-cmd write -f incrdata.xml

the console or log output messages should look like these:
Starting new transaction with generation Id 4
Started transaction 11 of type READ_WRITE
Marking generation committed: 4
Committed transaction 11

At this point, the Record Store has two generations: Generation 3 is a baseline generation and
Generation 4 is an incremental generation. If you then run a Forge baseline update, it will use both
generations.

Reading tasks
The following recordstore-cmd tasks perform read operations from a Record Store instance.

Reading baselines
The read-baseline task reads the baseline records from a Record Store instance.

The syntax for this task is:
recordstore-cmd read-baseline -a RecordStoreInstanceName
[-c] [-f FileName.xml] [-g GenId] [-h HostName] [-l true|false]
[-p PortNumber] [-n NumRecs] [-x id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -c (or --count) that only prints the record count from the read. Optional.
• -f (or --file) specifies the pathname of the file to which the Endeca records will be output. The

filename extension determines the format of the output file. Valid extensions for the file are .xml
(for an XML format) and .bin (for a binary format); the file can also have an additional, optional
.gz extension if it is a compressed file. If unspecified, the record are written to the console. Optional.

• -g (or --generation) specifies the ID of the generation from which the records are read. If
omitted, records from the last-committed generation are read. Optional.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Reading tasks128

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -n (or --firstN) specifies that only the first numRecs records of the baseline will be read. If
omitted, all records are read. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

Examples of reading baselines

The first example reads the first 50 baseline records (from the last-committed generation) and outputs
them to a file:
recordstore-cmd read-baseline -a RS1 -n 50 -f c:\recdata\basedata.xml

The output is written in an XML format to the basedata.xml file located in the C:\recdata directory.

The second example prints the number of records in the baseline:
recordstore-cmd read-baseline -a RS1 -c -g 2

The command prints out the number of records in generation 2 of the Record Store.

Reading delta records
The read-delta task reads the delta between two or more generations in the Record Store.

Delta records can be one of three types:
• Modified records. A modified record has the same record ID as the previous version, but the content

(as determined from the changePropertyNames property) has changed.
• Added records. An added (new) record will have a record ID that does not appear in the previous

generations.
• Deleted records. A deleted record will have a valid record ID, but its Endeca.Action property

will be set to DELETE.

The syntax for this task is:
recordstore-cmd read-delta -a RecordStoreInstanceName [-c] [-f FileName]
[-n NumRecs] [-h HostName] [-l true|false] [-p PortNumber] [-s StartGenId]

[-e EndGenId] [-x Id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -c (or --count) prints the record count from the read. Optional.
• -f (or --file) specifies the pathname of the file to which the Endeca records will be output. The

filename extension will determine the format of the output file. Valid extensions for the file are .xml
(for an XML format) and .bin (for a binary format); the file can also have an additional, optional
.gz extension if it is a compressed file. Optional.

Endeca Content Acquisition System Developer's Guide

129Record Store Command-line Utility | Reading tasks

• -n (or --firstN) specifies that only the first numRecs number of delta records will be read. If
omitted, all records are read. Optional.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -s (or --startGeneration) specifies the ID of the start generation from which the diff will be
done. If omitted, the initial generation is used. Optional.

• -e (or --endGeneration) specifies the ID of the end generation from which the diff will be done.
If omitted, the last-committed generation is used. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

For this task, it is recommended that you explicitly specify the start and end generations.

Example of reading delta records

This example reads all the delta records that constitute the difference between Generation 1 and
Generation 2 and writes them to a file:
recordstore-cmd read-delta -a RS1 -f c:\recdata\diffdata.xml -s 1 -e 2

The delta records are written in an XML format to the diffdata.xml file located in the C:\recdata
directory.

If you only want a record count of the difference, use the -c option:
recordstore-cmd read-delta -a RS1 -c -s 1 -e 2

The number of delta records read is output to the console.

Reading specific records
The read-by-id task reads one or more specific records from a Record Store instance.

The read-by-id task uses a syntax that is different from the other tasks. The difference is that you
specify the record IDs at the end of the command line (i.e., after all the options have been specified).

The syntax for this task is:
recordstore-cmd read-by-id -a RecordStoreInstanceName [-c] [-f FileName]
[-g GenId] [-h HostName] [-l true|false] [-p PortNumber] [-x Id]
[RecId1 [RecId2 [... RecIdN]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -c (or --count) prints the record count from the read. Optional.

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Reading tasks130

• -f (or --file) specifies the pathname of the file to which the Endeca records are output. The
filename extension determines the format of the output file. Valid extensions for the file are .xml
(for an XML format) and .bin (for a binary format); the file can also have an additional, optional
.gz extension to create a compressed file. Optional.

• -g (or --generation) specifies the ID of the generation from which the records are read. If
omitted, records from the last-committed generation are read. Optional.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

• recId is the ID of the record to read. The record ID is the value of the record property being used
for the idPropertyName configuration property. For multiple records, you must specify a
space-delimited list of record IDs. If an ID contains a space, enclose the ID within double quotation
marks.

Example of reading a specific record

Assume that the idPropertyName configuration in the Record Store instance is set to the
Endeca.Web.URL record property. Also assume that you want to read a record that has this value:
<PROP NAME="Endeca.Web.URL">
 <PVAL>http://endeca.com/contact.html</PVAL>
</PROP>

This means that the string http://endeca.com/contact.html is the ID of that record. You would
therefore retrieve that record with this command:
recordstore-cmd read-by-id -a RS1 -f rec.xml http://endeca.com/contact.html

The record will be written in an XML format to the rec.xml file.

Utility tasks
The following recordstore-cmd tasks perform utility operations to manage a Record Store instance.

Cleaning a Record Store instance
The clean task manually removes stale generations of records from a specified Record Store instance.

Endeca Content Acquisition System Developer's Guide

131Record Store Command-line Utility | Utility tasks

By default, the clean task runs automatically as a background process, at time intervals specified by
the cleanerInterval configuration property. The clean task automatically removes record
generations that exceed the generationRetentionTime configuration property.

The task syntax is:
recordstore-cmd clean -a RecordStoreInstanceName [-h HostName]
[-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

Note that only one clean process can run at a time. If a clean task is running when you issue this
command, an exception is thrown and the second clean process does not run.

There are several cases where the clean task does not remove eligible generations in a Record Store
instance:

• If it is the only generation in a Record Store instance.
• If the generation is in use.
• If it is the last committed generation.
• If it is the last generation read by a client, such as a Forge Record Store adapter or the Record

Store API.

Clearing the last read generation
The clear-last-read-generation task clears the last-read generation for a given client ID. This
task is the counterpart of set-last-read-generation.

The syntax for this task is:
recordstore-cmd clear-last-read-generation -a RecordStoreInstanceName
-c ClientId [-h HostName] [-l true|false] [-p PortNumber] [-x Id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -c (or --client) specifies a string to identify the client ID. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks132

property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

Example of setting the last-read generation

This example clears the last read generation flag for the client ID forge1:
recordstore-cmd clear-last-read-generation -a RS1 -c forge1

Committing transactions
The commit-transaction task commits an active (uncommitted) transaction for a specified Record
Store instance.

The syntax for this task is:
recordstore-cmd commit-transaction -a RecordStoreInstanceName -x Id
[-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the ID of the transaction that will be committed. Required.

Example of committing a transaction

This example commits the transaction with an ID of 8:
recordstore-cmd commit-transaction -a RS1 -x 8

If the command succeeds, it prints the following message:
Committed transaction: 8

If the command fails, it prints the following error message:
Failed to commit transaction: 8

Endeca Content Acquisition System Developer's Guide

133Record Store Command-line Utility | Utility tasks

Getting the configuration of a Record Store instance
The get-configuration task returns the configuration settings of a specified Record Store instance.

A Record Store instance has a default configuration that you can retrieve and save. You can modify
the configuration and use it to configure a new Record Store or reconfigure an existing Record Store
instance.

The syntax for this task is:
recordstore-cmd get-configuration -a RecordStoreInstanceName
-f FileName.xml [-h HostName] [-l true|false] [-n] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -f (or --file) specifies the XML file name where you want to save the configuration settings.

Omitting this option sends the XML for the configuration settings to stdout. Optional.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -n (or --normalize) specifies whether to normalize the configuration settings. Specifying this
option returns all default configuration settings and their associated default values. Omitting this
option returns only user-specified settings. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

To get the configuration of a Record Store:

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run recordstore-cmd and specify options as documented above.

Example of getting the configuration of a Record store

This Windows example gets the configuration for a Record Store named RS1:
recordstore-cmd.bat get-configuration -a RS1 -f config.xml -n

The command output of the example above is stored in config.xml and is also shown here:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<recordStoreConfiguration xmlns="http://recordstore.itl.endeca.com/">
 <btreePageSize>100</btreePageSize>
 <changePropertyNames/>
 <cleanerInterval>1.0</cleanerInterval>
 <dataDirectory>C:\Endeca\CAS\workspace\state\RS1\data</dataDirectory>
 <duplicateRecordCompressionEnabled>false</duplicateRecordCompressionEn¬
abled>
 <generationRetentionTime>168.0</generationRetentionTime>
 <idPropertyName>Endeca.Id</idPropertyName>
 <ignoreInvalidRecords>false</ignoreInvalidRecords>
 <indexWriteFlushInterval>50000</indexWriteFlushInterval>
 <jdbmSettings/>

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks134

 <maxDataFileSize>2147483647</maxDataFileSize>
 <recordCompressionEnabled>false</recordCompressionEnabled>
</recordStoreConfiguration>

Getting the ID of the last-committed generation
The get-last-committed-generation task retrieves the ID of the last generation that was
committed to a Record Store instance.

The syntax for this task is:
recordstore-cmd get-last-committed-generation -a RecordStoreInstanceName
[-h HostName] [-l true|false] [-p PortNumber] [-x Id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

Example of getting the last-committed generation ID

The output of this command:
recordstore-cmd get-last-committed-generation -a RS1

will be similar to this example:
The last committed generation: 4

The command output shows that Generation 4 was the last generation to be committed to the Record
Store.

Getting the last-read generation
The get-last-read-generation task retrieves the last-read generation for a given client ID.

Before running this task, make sure to use the set-last-read-generation task to set a last-read
generation for a specific client ID.

The syntax for this task is:
recordstore-cmd get-last-read-generation -a RecordStoreInstanceName
-c ClientId [-h HostName] [-l true|false] [-p PortNumber] [-x Id]

Endeca Content Acquisition System Developer's Guide

135Record Store Command-line Utility | Utility tasks

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -c (or --client) specifies a client ID that was previously set with the set-last-read-gener¬
ation task. Required.

• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,
the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

Example of getting the last-read generation

This example gets the last-read generation for the client ID of forge1:
recordstore-cmd get-last-read-generation -a RS1 -c forge1

The command output is similar to this example:
The last read generation id saved for client forge1 is: 2

In the example, Generation 2 had been previously set as the last read generation for the forge1
client ID.

Getting the ID of the write generation
The get-write-generation task returns the ID of the write generation.

The syntax for this task is:
recordstore-cmd get-write-generation -a RecordStoreName -x id
[-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks136

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. The transaction must be a
READ_WRITE type. Required.

Example of getting the write-generation ID
recordstore-cmd get-write-generation -a RS1 -x 5
Write generation: 2

The output of the get-write-generation task shows that Generation 2 is the current write
generation.

Listing active transactions
The list-active-transactions task lists all the existing active transactions of a specified Record
Store instance.

Uncommitted transactions are often the result of an unexpected termination of a crawl or other write
operation. In this case, you see an error in the log file that includes the ID of the uncommitted
transaction.

The syntax for this task is:
recordstore-cmd list-active-transactions -a RecordStoreInstanceName
[-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

The task output consists of these fields:
• ID - an integer that is the transaction ID.
• TYPE - the transaction type, which is READ (which supports only Read operations) or READ_WRITE

(which supports both Read and Write operations).
• STATUS - the status of the transaction, which is ACTIVE (the transaction is in progress), COMMITTED

(the transaction has been committed), COMMIT_FAILED (the commit task failed for this transaction),
or ROLLED_BACK (the transaction was rolled back).

• WRITING_GEN - either the new generation ID (for READ_WRITE types) or N/A (for READ types,
because a new generation is not being written).

• LAST_COMMITTED - the generation ID of the last committed generation.

Endeca Content Acquisition System Developer's Guide

137Record Store Command-line Utility | Utility tasks

If no transactions are active, this message is displayed:
There are no active transactions right now.

Example of listing active transactions

If there are active transactions, the output of this command:
recordstore-cmd list-active-transactions -a RS1

will be similar to this example:
ID TYPE STATUS WRITING_GEN LAST_COMMITTED_GEN
13 READ ACTIVE N/A 2
14 READ_WRITE ACTIVE 3 2

Listing generations
The list-generations task lists information about the generations that are currently in a Record
Store instance.

The syntax for this task is:
recordstore-cmd list-generations -a RecordStoreInstanceName
[-h Hostname] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

The task output consists of these fields:
• ID - an integer that is the generation ID.
• STATUS - the status of the generation, which is STARTED (the generation is being written to the

Record Store instance), COMPLETED (the generation has been written and committed to the Record
Store instance), or BEING_CLEANED (the cleaner is currently cleaning the generation).

• CREATION TIME - the date (in YYYYMMDD format) and time (in UTC format) that the generation
was created. This value is based on the clock of the machine running the Endeca CAS Service.

If no generations have been written, this message displays:
There are no generations in the record store

Example of listing generations

If there are generations in the Record Store instance, the output of this command:
recordstore-cmd list-generations -a RS1

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks138

is similar to this example:
ID STATUS CREATION TIME
1 COMPLETED 2008-05-21T14:35:16.326Z
2 COMPLETED 2008-05-21T17:32:30.658Z

The sample output shows that there are two committed generations in the Record Store instance.

Rolling back transactions
The rollback-transaction task rolls back an active (uncommitted) transaction for a specified
Record Store instance. Once a transaction is rolled back, this can not be undone.

The syntax for this task is:
recordstore-cmd rollback-transaction -a RecordStoreInstanceName -x Id
[-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the ID of the transaction that is rolled back. Required.

Note that uncommitted transactions are often the result of an unexpected termination of a crawl. In
this case, you see an error in the log file that includes the ID of the uncommitted transaction.

Example of a transaction rollback

This example rolls back the transaction with an ID of 7:
recordstore-cmd rollback-transaction -a RS1 -x 7

If the command succeeds, it prints the following message:
Rolled back transaction: 7

If the command fails, it prints the following error message:
Failed to roll back transaction: 7

Setting the configuration of a Record Store instance
The set-configuration task sets configuration settings for a specified Record Store instance.

You can configure a new Record Store instance or reconfigure an existing Record Store instance by
specifying an XML configuration file for it.

Endeca Content Acquisition System Developer's Guide

139Record Store Command-line Utility | Utility tasks

The syntax for this task is:
recordstore-cmd set-configuration -a RecordStoreInstanceName
-f FileName.xml [-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -f (or --file) specifies the XML file name that contains the configuration settings for a Record

Store. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

Note: If you set configuration using a file that modifies any of the following properties, the set
operation automatically clears all record data in the Record Store instance:

• btreePageSize

• changePropertyNames

• idPropertyName

• jdbmSettings

• recordCompressionEnabled

1. Start a command prompt and navigate to <install path>\CAS\version\bin.
2. Run recordstore-cmd and specify options as documented above.

Example of setting the configuration of a Record store

This example sets the configuration for a Record Store named RS2:
recordstore-cmd.bat set-configuration -a RS2 -f config.xml

where the contents of config.xml are as follows:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<recordStoreConfiguration xmlns="http://recordstore.itl.endeca.com/">
 <btreePageSize>100</btreePageSize>
 <changePropertyNames/>
 <cleanerInterval>1.0</cleanerInterval>
 <dataDirectory>C:\Endeca\CAS\workspace\state\RS1\data</dataDirectory>
 <duplicateRecordCompressionEnabled>false</duplicateRecordCompressionEn¬
abled>
 <generationRetentionTime>168.0</generationRetentionTime>
 <idPropertyName>Endeca.Id</idPropertyName>
 <ignoreInvalidRecords>false</ignoreInvalidRecords>
 <indexWriteFlushInterval>50000</indexWriteFlushInterval>
 <jdbmSettings/>
 <maxDataFileSize>2147483647</maxDataFileSize>

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks140

 <recordCompressionEnabled>false</recordCompressionEnabled>
</recordStoreConfiguration>

Note: This example deletes all records per the note above.

Setting the last-read generation
The set-last-read-generation task sets the last-read generation for a given client ID. This task
is the counterpart of clean-last-read-generation.

As a result, you are setting the state for that client. This task is mainly used to save the last-read
generation for use by a future delta read.

The syntax for this task is:
recordstore-cmd set-last-read-generation -a RecordStoreInstanceName -g
GenId
-c ClientId [-h HostName] [-l true|false] [-p PortNumber] [-x Id]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -g (or --generation) specifies the generation ID to set as the last read for the client. Required.
• -c (or --client) specifies a string for which the last-read generation will be set. You can use

any string for the client ID, as it is used only as an identifier. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -x (or --transaction) specifies the active transaction ID to use. If you use this option, you must
follow it with a commit-transaction task to commit the read operation. If this flag is omitted,
the operation is done in auto-commit mode. Optional.

Typically, you use this command so that the Record Store instance can save the state. For example,
if you do a baseline-read of Generation 2, you might later come back to the Record Store instance
and do a delta read of your last-read generation (in this case it is Generation 2) and the most
recently-committed generation. So you would save the first baseline-read of Generation 2 for the client,
for example, forge1, and then perform a delta read later after getting the last-read generation.

Example of setting the last-read generation

This example sets Generation 2 as the last read for the client ID of forge1:
recordstore-cmd set-last-read-generation -a RS1 -c forge1 -g 2

If the command succeeds, it prints out this message:
Set the last read generation id for client forge1 to 2.

Endeca Content Acquisition System Developer's Guide

141Record Store Command-line Utility | Utility tasks

By using this method, Forge does not need to maintain state in order to use the Record Store; instead,
it can push to the Record Store instance to maintain the state.

Starting transactions
The start-transaction task begins a Read or Write transaction. Explictly starting and committing
transactions is useful if you want to group multiple operations within a single transaction.

If you choose not to use transactions, all read and write operations are performed in auto-commit
mode.

The syntax for this task is:
recordstore-cmd start-transaction -a RecordStoreInstanceName -t Type
[-h HostName] [-l true|false] [-p PortNumber]

where:
• -a (or --instanceName) specifies the name of a Record Store instance. Required.
• -h (or --host) specifies the host where the Endeca CAS Service is running. If the flag is omitted,

the default is the value of the com.endeca.itl.cas.server.host property in
commandline.properties. If the property is not set, the value then defaults to localhost.
Optional.

• -l (or --isPortSsl) specifies whether to communicate with the service using an HTTPS
connection. A value of true uses HTTPS and treats the com.endeca.itl.cas.server.port
property as an SSL port. A value of false uses HTTP and treats com.endeca.itl.cas.serv¬
er.port as a non-SSL port. Specify false if you enabled redirects from a non-SSL port to an
SSL port. Optional.

• -p (or --port) specifies the port of the Endeca CAS Service. If the flag is omitted, the default is
the value of the com.endeca.itl.cas.server.port property in commandline.properties.
If the property is not set, the value then defaults to 8500. Optional.

• -t (or --transactionType) specifies the type of transaction to be performed: READ (which
supports only Read operations) or READ_WRITE (which supports both Read and Write operations).
Note that the transaction-type arguments are case sensitive. Required.

Note: A java.lang.IllegalArgumentException is thrown if the -t argument is invalid
(such as using lower case).

Example of starting a transaction

This example starts a Read transaction:
recordstore-cmd start-transaction -a RS1 -t READ

If the command is successful, it prints a message similar to this example:
Started transaction: 15

Endeca Content Acquisition System Developer's Guide

Record Store Command-line Utility | Utility tasks142

Part 4

Administering CAS

• Running CAS components
• Backing up and restoring CAS
• Configuring SSL
• Configuring logging
• Tips and troubleshooting CAS

Chapter 11

Running CAS components

This section provides information on how to run the CAS components.

About running CAS components
This topic provides an overview of the recommended way to run CAS components, optional ways to
run CAS components, and explains differences between Windows and UNIX platforms.

You run CAS components in any of the following ways:
• In the Endeca CAS Service
• Using command-line utilities
• From the CAS Console for Oracle Endeca Workbench
• Programmatically from the CAS APIs (For details, see the Endeca CAS API Guide.)

Running CAS components in the Endeca CAS Service

As discussed in the introduction, the Endeca CAS Service is a container process that runs the CAS
components such as the CAS Server, the Component Instance Manager, and one or more Record
Store instances. In a typical implementation, running the CAS Service is the recommended way to run
CAS components.

Running CAS components using the command-line utilities

The Content Acquisition System provides several convenience utilities so you can run any component
manually from a command prompt, if you choose to. These utilities include the following:

• CAS Server Command-line Utility
• Component Instance Manager Command-line Utility
• Record Store Command-line Utility

Each utility is described in subsequent chapters of this guide.

Running CAS components from the CAS Console for Oracle Oracle Endeca Workbench

As a user adds data sources, crawls data sources, and so on, the CAS Console runs the appropriate
CAS component.

Running the Endeca CAS Service on Windows

On Windows, the Endeca CAS Service is automatically started as part of the installation process.
Oracle recommends that you start and stop the service from the Microsoft Services console.

You may optionally choose to start the Endeca CAS Service on Windows using the cas-service.bat
script in <install path>\CAS\<version>\bin and stop it using cas-service-shutdown.bat.

Running the Endeca CAS Service on UNIX

On UNIX, you run the Endeca CAS Service using the scripts in <install
path>/CAS/<version>/bin. You start the service with cas-service.sh or via the inittab and
stop it with cas-service-shutdown.sh. Oracle recommends using the inittab in production
environments.

Restarting the Endeca CAS Service

On either platform, you can leave the service running as a background process. The only time you
must restart the service is if you modify any of the configuration files in <install
path>\CAS\<version>\conf. For example, you might change the CAS Service logging configuration
and therefore have to restart the service.

Running the Endeca CAS Service from the Windows
Services console

On Windows, the Endeca CAS Service is registered as a Windows Service and starts automatically
when the operating system starts. This is the recommended way of running CAS on Windows.

If you have changed any of the CAS configuration files, you can stop and restart the Endeca CAS
service, using the Windows Console, for those changes to take effect.

Note: The CAS Service can be slow to startup if it contains large Record Store instances and
has not been cleanly shutdown.

To run the Endeca CAS Service on Windows:

1. From the Windows Start menu, go to Control Panel > Administrative Tools > Services.
2. Locate the Endeca CAS Service from the list and right-click it.
3. From the context menu, select Stop, Restart, or Start as necessary.
4. Exit the Windows Service console.

Starting the Endeca CAS Service from a command prompt
In UNIX environments, you start the Endeca CAS Service from a command prompt. In Windows
enviroments, you can start the service from a command prompt, but it is optional.

The only prerequisite to this task is that the CAS software must be installed. This means that the
cas-service.bat (for Windows) or cas-service.sh (for UNIX) scripts must be available. Note
that for the UNIX cas-service.sh script, you must have Execute rights to the file.

Endeca Content Acquisition System Developer's Guide

Running CAS components | Running the Endeca CAS Service from the Windows Services console146

Note: The CAS Service can be slow to startup if it contains large Record Store instances and
has not been cleanly shutdown.

To start the Endeca CAS Service from a command prompt:

1. Open a command prompt and navigate to the bin directory.
In a default installation on Windows, this is C:\Endeca\CAS\version\bin.

2. Run the cas-service.bat script (for Windows) or cas-service.sh script (for UNIX).
For example, in a default installation on a Windows machine, the command is as follows:
C:\Endeca\CAS\3.0.2\bin>cas-service

This command starts the CAS Service on the default port 8500 with a workspace directory of
Endeca\CAS\workspace.
Note that you do not see any startup messages. All messages are sent to the CAS Service log (by
default, workspace\logs\cas-service.log). However, if there is an error in setting up logging,
all messages are sent to the console.

3. Verify that the server is running by opening a Web browser and entering a URL with the CAS
Service host and port number followed by cas/?wsdl. For example, in a default installation:
http://localhost:8500/cas/?wsdl

You see the CasCrawlerService WSDL in the Web browser window, which indicates that the Endeca
CAS Service is running.

The workspace directory has these sub-directories:
• state contains a crawlerDb subdirectory that stores a unified crawl history (that is, one crawl

history for all crawls defined for this CAS Server) and contains an output directory which is the
default location for the crawl output files.

• logs contains the cas-service.log log file for the CAS Service.

Command-line flags to CAS Service
The Endeca CAS Service startup script has an optional Java Virtual Machine (-JVM) flag.

Note: Flag names are case sensitive.

Flag Argumentcas-service Flag

Allows arguments on the command line to be passed to the JVM. If this
flag is used, any arguments after it are passed to the CAS Service and any

-JVM

arguments afterwards are appended to those passed to the JVM. Note that
on Windows machines, the flag parameters should be quoted if they contain
equal signs. Optional.

Specifying JVM arguments

To pass arguments to the JVM, you can use the -JVM script flag. For example, assume you want to
override the default maximum heap size setting of 1024 MB with a setting of 2048 MB. The command
line is as follows:
cas-service -JVM -Xmx2048m

Endeca Content Acquisition System Developer's Guide

147Running CAS components | Starting the Endeca CAS Service from a command prompt

Keep in mind that this flag must be the last flag on the command line, because any arguments that
follow it are appended to those passed to the JVM.

Stopping the EndecaCASService from a command prompt
In UNIX environments, you stop the Endeca CAS Service from a command prompt. In Windows
enviroments, you can optionally stop the service from a command prompt, or use the Windows Services
console (recommended).

Note: If you start the service using the command prompt you should also stop the service using
the command prompt.

To stop the Endeca CAS Service:

1. Open a command prompt and navigate to the bin directory.
In a default installation on Windows, this is C:\Endeca\CAS\version\bin.

2. Run the cas-service-shutdown.bat script (for Windows) or cas-service-shutdown.sh
script (for UNIX).
For example, in a default installation on a Windows machine, the command is as follows:
C:\Endeca\CAS\3.0.2\bin>cas-service-shutdown

Endeca Content Acquisition System Developer's Guide

Running CAS components | Stopping the Endeca CAS Service from a command prompt148

Chapter 12

Backing up and restoring CAS

This section describes how to back up and restore CAS state, crawl configurations, and Record Store
instance data.

Coordinating backups and restore operations
Online backups are often done more frequently than offline backups. For example, you might perform
a full offline backup once a week, and perform smaller online back ups on a daily basis. So when you
restore the backup, you would have to first restore the weekly offline backup and then the series of
daily online backups.

Online backup and restore operations
The administration tasks in this section can be performed while the Endeca CAS Service is running.
The tasks are generally more focused and specific than the tasks you can perform while the Endeca
CAS Service is offline. And there are some elements of CAS that you cannot back up online, for
example, you cannot back up crawl histories while the Endeca CAS Service is running.

Backing up crawl configurations
You back up crawl configurations using the CAS Server Command line Utility.

To back up crawl configurations:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Type cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the getAllCrawls
task with the -f (or --file) flag and the name of the XML file to write the crawl configurations to.
For example:
C:\Endeca\CAS\3.0.2\bin>cas-cmd getAllCrawls -f C:\tmp\backupconfig.xml

Note that password configuration properties are not stored in the crawl configuration.

Backing up the last generation of Endeca records
This procedure describes how to back up the last generation of Endeca records in a Record Store
instance and back up the corresponding configuration for the Record Store instance. This task does
not describe backing up multiple generations or deltas between generations.

To back up the last generation of Endeca records:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. To list the available Record Store instances in the Content Acquisition System, type
component-manager-cmd.bat (for Windows), or component-manager-cmd.sh (for UNIX)
and specify the listComponents task.
For example:
C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat list-components
NAME TYPE STATUS
Test RecordStore RUNNING

3. From the list, identify the Record Store instance that contains the generation of records you want
to back up.

4. Type recordstore-cmd.bat (for Windows), or recordstore-cmd.sh (for UNIX) and specify
the read-baseline task with the -a (or --instanceName) flag and the name of a Record Store
instance and also the -f (or --file) flag and the pathname of the file to which the Endeca records
will be output.
Valid extensions for the file are .xml (for an XML format) and .bin (for a binary format); the file
can also have an additional, optional .gz extension if it is a compressed file. Endeca recommends
using .bin.gz because it is the most compact format.
For example:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd.bat read-baseline -a Test -f
C:\tmp\RSIbackup.xml

The read-baseline operation writes the last generation of Endeca records. It does not write all
generations.

5. To back up the configuration for a Record Store instance, type recordstore-cmd.bat (for
Windows), or recordstore-cmd.sh (for UNIX) and specify the get-configuration task with
the -a (or --instanceName) flag and the name of a Record Store instance and also the -f (or
--file) flag and the XML file name where you want to save the configuration settings.
For example:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd.bat get-configuration -a Test -
f C:\tmp\RSIbackup_configfile.xml

Restoring crawl configurations
You restore crawl configurations using the CAS Server Command line Utility.

To restore crawl configurations:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. If you are restoring into a system that has an older version of the crawl configuration, type
cas-cmd.bat (for Windows), or cas-cmd.sh (for UNIX) and specify the updateCrawls task
with the -f (or --file) flag and the name of the XML file that contains crawl configurations.

Endeca Content Acquisition System Developer's Guide

Backing up and restoring CAS | Online backup and restore operations150

For example:
C:\Endeca\CAS\3.0.2\bin>cas-cmd updateCrawls -f C:\tmp\backupconfig.xml
Updated crawl Test

3. If you are restoring into a system that does not have the crawl configuration, type cas-cmd.bat
(for Windows), or cas-cmd.sh (for UNIX) and specify the createCrawls task with the -f (or
--file) flag and the name of the XML file that contains crawl configurations.
For example:
C:\Endeca\CAS\3.0.2\bin>cas-cmd createCrawls -f C:\tmp\backupconfig.xml
Updated crawl Test

Restoring the last generation of Endeca records
This task describes restoring one generation of baseline data into a Record Store instance and restoring
the corresponding configuration file for the Record Store instance. This task does not describe restoring
multiple generations or deltas between generations.

To restore the last generation of Endeca records:

1. Start a command prompt and navigate to <install path>\CAS\version\bin (for Windows),
or <install path>/CAS/version/bin (for UNIX).

2. Create a new empty Record Store instance by typing component-manager-cmd.bat (for
Windows), or component-manager-cmd.sh (for UNIX) and specify the create-component
task with the -t option with an argument of RecordStore, and the-n option with a Record Store
instance name of your choice.
You need to repeat this step if your crawl configuration contains multiple Record Store instances.
Also you should ensure that the name of each Record Store instance coordinates with the crawlId.
For example, if you have a crawlId of Test, you create a Record Store instance named Test.
For example:
C:\Endeca\CAS\3.0.2\bin>component-manager-cmd.bat create-component
 -n Test -t RecordStore

3. Restore the configuration file for a Record Store instance by typing recordstore-cmd.bat (for
Windows), or recordstore-cmd.sh (for UNIX) and specify the set-configuration task with
the -a (or --instanceName) flag and the name of a Record Store instance and also the -f (or
--file) flag and the XML file name that contains the configuration settings.
For example:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd.bat set-configuration -a Test -
f C:\tmp\RSIbackup_configfile.xml
Successfully set recordstore configuration.

4. Write the data into the Record Store instance by typing recordstore-cmd.bat (for Windows),
or recordstore-cmd.sh (for UNIX) and specify the write task with the -a (or --instanceName)
flag and the name of a Record Store instance and also the -f (or --file) flag and the pathname
of the file that contains the Endeca records.
For example:
C:\Endeca\CAS\3.0.2\bin>recordstore-cmd.bat write -a Test -f
C:\tmp\RSIbackup.xml
Wrote 2190 records.

Endeca Content Acquisition System Developer's Guide

151Backing up and restoring CAS | Online backup and restore operations

Offline backup and restore operations
The administration tasks in this section can only be performed while the Endeca CAS Service is
stopped. Once you shutdown the service, you can back up CAS to preserve nearly all of its state.

The CAS state includes:
• Record Store instance data and configuration
• Crawl configurations
• Crawl history

The CAS state does not include:
• Alternate data directories for Record Store instance data (configured via the dataDirectory

property).
• State information for custom data sources or manipulators that write state to other locations.

(Extensions developed using the CAS Extension API can write to any location a developer choses.)

Backing up CAS state
This task describes how to back up CAS state. CAS stores its state in <install
path>\CAS\workspace\state.

To back up CAS state:

1. Stop the Endeca CAS Service.
2. On the machine running the CAS Service, navigate to <install path>\CAS\workspace\state.
3. Copy the state directory to a location outside the CAS installation.
4. Restart the Endeca CAS Service.

Restoring CAS state
This task describes how to restore CAS state information.

To restore CAS state:

1. Stop the Endeca CAS Service.
2. Locate the cas directory that you previously backed up. This is typically in a location outside the

CAS installation.
3. Navigate to <install path>\CAS\Workspace\state.
4. Copy thestate directory that you previously backed up into <install path>\CAS\Workspace.
5. Restart the Endeca CAS Service.

Endeca Content Acquisition System Developer's Guide

Backing up and restoring CAS | Offline backup and restore operations152

Chapter 13

Configuring SSL

This section describes how to configure the Content Acquisition System to use SSL.

About configuring SSL in the Content Acquisition System
Configuring SSL in the Content Acquisition System enables SSL communication among all the CAS
components.

To configure SSL in CAS, you need to do the following:

1. Enable SSL for the Endeca CAS Service. Optionally, enable mutual authentication and if desired
disable HTTPS as part of this step.

2. Enable SSL for Oracle Endeca Workbench. This is a pre-requisite task that CAS Console requires.
For details, see "Chapter 6 SSL Configuration" in the Oracle Endeca Workbench Administrator's
Guide.

3. Enable SSL for CAS Console for Oracle Endeca Workbench.
4. Enable SSL for the CAS Command-line Utilities.
5. Enable the Endeca Web Crawler to write to an SSL-enabled Record Store instance.
6. Enable SSL for Forge record adapters.

HTTPS redirects

Although enabling HTTPS redirects is optional, it is highly recommended to simplify CAS configuration.
You can use the default CAS ports during installation and system setup and then perform minimal
configuration to redirect requests from the default port (HTTP) to a secure port (HTTPS). For this
reason, the CAS configuration files have HTTPS redirects enabled by default.

Mutual authentication and server-only authentication

The Content Acquisition System supports both mutual authentication (client and server authentication)
and server-only authentication. Oracle recommends configuring your environment for mutual
authentication.

Mutual authentication requires a keystore and truststore for clients of the Endeca CAS Service.
Server-only authentication requires only truststore configuration.

SSL version 3.0

The Content Acquisition System supports Version 3.0 of the Secure Sockets Layer (SSL) protocol for
its communication endpoints.

About enecerts, Java keytool, and fully qualified host names

The SSL certificates used for CAS must be issued to the fully qualified host name for the server running
the CAS Service. The fully qualified host name must match the either the first common name (CN) or
any of the subject-alts in the server certificate. A wildcard may occur in the CN and in any of the
subject-alts. Also, certificates may be issued to all hosts in a domain by specifying a wildcard such as
*.endeca.com.

If you generated keystores and truststores by running enecerts (included with MDEX Engine installation),
followed by endeca-key-importer (included with the Platform Services installation), the keystores and
truststores do not include the fully qualified host name.

You must generate your own keystore and truststore using another utility, for example, Java keytool.
This is available at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html for Windows
and http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html for
Solaris/Linux.

When running Java keytool, you specify the fully qualified host name or wildcard in response to the
prompt "What is your first and last name?" For example:
Enter keystore password: endeca
What is your first and last name?
[Unknown]: machine.endeca.com

If you are also running EAC under SSL, you must use the same keystore and truststore files in your
Workbench configuration, so you may need to update or replace existing keystore and truststore files
and update existing EAC and Workbench configuration. For details, see the Endeca Security Guide.

In general, Oracle recommends that you create one truststore for your entire environment (it can
contain multiple entries) and a keystore per machine. You can place the truststore in a common
directory, for example, C:\Endeca\truststore\truststore.ks or
/usr/local/endeca/truststore/truststore.ks and point to that location for EAC, Workbench,
and CAS configuration.

Enabling SSL for the Endeca CAS Service
This procedure establishes a secure connection from any CAS client to the Web services running
inside the CAS Service. Recall that the CAS Server, Component Instance Manager, and Record Store
Web services run inside the CAS Service. This task also explains how to disable mutual authentication
for clients of the Endeca CAS Service and explains how to disable HTTPS redirects (mutual
authentication and HTTPS redirects are enabled by default).

This task requires that you have already created keystore and truststore files for the server on which
you are running the Endeca CAS Service.

Note: For simplicity, the paths below use Windows syntax. The UNIX paths are equivalent.

To enable SSL for the Endeca CAS Service:

1. Stop the Endeca CAS Service.

Endeca Content Acquisition System Developer's Guide

Configuring SSL | Enabling SSL for the Endeca CAS Service154

2. Copy the keystore file you previously created to <install path>\CAS\workspace\conf.
3. Optionally, to enable mutual authentication, copy the truststore file you previously created to

<install path>\CAS\workspace\conf.
4. In <install path>\CAS\workspace\conf, open jetty.xml in a text editor.
5. Uncomment the section with SSL configuration properties.
6. In the SSL configuration section, replace the tokens listed below for the fully qualified host, SSL

port, truststore, and keystore properties on the machine running CAS.
Token to replaceProperty

@CASHOST@com.endeca.cas.fullyQualifiedHostName

@CASSSLPORT@com.endeca.cas.ssl.port

@TRUSTSTORE_FILE@javax.net.ssl.trustStore

@TRUSTSTORE_PASSWORD@javax.net.ssl.trustStorePassword

JKSjavax.net.ssl.trustStoreType

@KEYSTORE_FILE@javax.net.ssl.keyStore

@KEYSTORE_PASSWORD@javax.net.ssl.keyStorePassword

JKSjavax.net.ssl.keyStoreType

Ensure that host names are fully qualified. Also, Endeca recommends relative paths for truststore
and keystore locations. The paths should be relative to \CAS\3.0.2

For example:
<Configure id="Server" class="org.mortbay.jetty.Server">

 <!-- Redirect java.util.logging to slf4j -->
 <Call class="org.slf4j.bridge.SLF4JBridgeHandler" name="install"/>

 <!-- Set the com.endeca.cas.port with the port we will run on -->
 <Call class="java.lang.System" name="setProperty">
 <Arg>com.endeca.cas.port</Arg>
 <Arg><SystemProperty name="com.endeca.cas.port" default="8500"/></Arg>

 </Call>

 <!-- If the com.endeca.cas.ssl.port is set. CAS will default to using
 this port and use HTTPS to communicate with CAS Component instances.

 Make sure to also add a secure connector by uncommenting the proper
 section in this file.

 Make sure the trust store and key store are set properly.
 If using self-signed certificate, you need to also put the
 certificate in the truststore.-->

 <Call class="java.lang.System" name="setProperty">
 <Arg>com.endeca.cas.ssl.port</Arg>
 <Arg><SystemProperty name="com.endeca.cas.ssl.port" de¬
fault="8505"/></Arg>
 </Call>

 <Call class="java.lang.System" name="setProperty">
 <Arg>com.endeca.cas.fullyQualifiedHostName</Arg>
 <Arg>hostname.eng.endeca.com</Arg>

Endeca Content Acquisition System Developer's Guide

155Configuring SSL | Enabling SSL for the Endeca CAS Service

 </Call>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.trustStore</Arg>
 <Arg><SystemProperty name="jetty.home" default="."
/>/../workspace/conf/truststore.ks</Arg>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.trustStorePassword</Arg>
 <Arg>endeca</Arg>
 </Call>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.trustStoreType</Arg>
 <Arg>JKS</Arg>
 </Call>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.keyStore</Arg>
 <Arg><SystemProperty name="jetty.home" default="."
/>/../workspace/conf/keystore.ks</Arg>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.keyStorePassword</Arg>
 <Arg>endeca</Arg>
 </Call>

 <Call class="java.lang.System" name="setProperty">
 <Arg>javax.net.ssl.keyStoreType</Arg>
 <Arg>JKS</Arg>
 </Call>

7. Also in jetty.xml, locate the connector section and enable the SslSocketConnector class
by uncommenting the following:
<Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.security.SslSocketConnector">
 <Set name="Port"><SystemProperty name="com.ende¬
ca.cas.ssl.port"/></Set>
 <Set name="maxIdleTime">30000</Set>
 <Set name="keystore"><SystemProperty
 name="javax.net.ssl.keyStore"/></Set>
 <Set name="keyPassword"><SystemProperty
 name="javax.net.ssl.keyStorePassword"/></Set>
 <Set name="truststore"><SystemProperty
 name="javax.net.ssl.trustStore"/></Set>
 <Set name="trustPassword"><SystemProperty
 name="javax.net.ssl.trustStorePassword"/></Set>
 <!-- set this to false if you want mutual authentication to
 be turned off -->
 <Set name="needClientAuth">true</Set>
 </New>
 </Arg>
</Call>

8. Optionally, to disable mutual authentication, set the needClientAuth shown above to false.
The default is true (mutual authentication is enabled).

Endeca Content Acquisition System Developer's Guide

Configuring SSL | Enabling SSL for the Endeca CAS Service156

9. Optionally, to disable HTTPS redirects, comment out the SelectChannelConnector connector
or delete the connector. By default, HTTPS redirects are enabled. (A non-secure HTTP request is
redirected to a secure SSL port. The default SSL port for CAS is 8505.)
For example, to disable redirects, comment out the following:
<!-- <Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.nio.SelectChannelConnector">
 <Set name="port"><SystemProperty name="com.ende¬
ca.cas.port"/></Set>
 <Set name="maxIdleTime">30000</Set>
 <Set name="Acceptors">2</Set>
 <Set name="statsOn">false</Set>
 <Set name="confidentialPort"><SystemProperty
 name="com.endeca.cas.ssl.port" default="8505"/></Set>
 <Set name="lowResourcesConnections">5000</Set>
 <Set name="lowResourcesMaxIdleTime">5000</Set>
 </New>
 </Arg>
</Call> -->

10. If you are using HTTPS redirects to a port other than the CAS default (8505), modify de¬
fault="8505" to the appropriate port for you environment.

11. Save and close jetty.xml.
12. In the same directory (<install path>\CAS\workspace\conf on Windows or

/cas/workspace/conf on UNIX), open webdefault.xml in a text editor.
13. Uncomment the user-data-constraint section.

For example:
<security-constraint>
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
</security-constraint>

14. Save and close webdefault.xml.
15. Start the Endeca CAS Service.

You can confirm that SSL is enabled for the Endeca CAS Service by starting a Web browser and
loading the CAS Server WSDL on the SSL port or if you have redirects enabled, loading it on the
non-SSL port. For example, specify https://hostname:8505/cas/?wsdl or if you have redirects
enabled specify http://hostname:8500/cas/?wsdl. The following WSDL displays:
<?xml version="1.0" encoding="UTF-8" ?>
- <wsdl:definitions name="CasCrawlerService" targetNamespace="http://ende¬
ca.com/itl/cas/2010-03" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://endeca.com/itl/cas/2009-09" xmlns:wsdl="http://schemas.xml¬
soap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <wsdl:documentation>CAS Crawler Service</wsdl:documentation>
- <wsdl:types>
...

Endeca Content Acquisition System Developer's Guide

157Configuring SSL | Enabling SSL for the Endeca CAS Service

Enabling SSL for CAS Console for Oracle Oracle Endeca
Workbench

This procedure establishes a secure connection between the CAS Console for Oracle Endeca
Workbench and the Endeca CAS Service.

This task requires that you have already enabled SSL in Endeca Workbench. If you have not done
so, see "Chapter 6 SSL Configuration" in the Oracle Endeca Workbench Administrator's Guide.

To enable SSL in CAS Console:

1. Stop the Endeca Tools Service.
2. Navigate to %ENDECA_TOOLS_CONF%\conf\Standalone\localhost on Windows or

$ENDECA_TOOLS_CONF/conf\Standalone/localhost on UNIX.
3. Open casconsole.xml in a text editor.
4. Modify docBase to specify the SSL version of the CAS Console WAR file.

For example: docBase="C:\Endeca\Workbench\3.0.2\server\webapps/casconsole-
3.0.2-ssl.war".

5. Save and close casconsole.xml.
6. Navigate to %ENDECA_TOOLS_ROOT%\server\bin on Windows or

$ENDECA_TOOLS_ROOT/server/bin on UNIX.
7. Open either setenv.bat (for Windows) or setenv.sh (for UNIX) in a text editor.
8. Add Java options for the truststore location (-Djavax.net.ssl.trustStore), type

(-Djavax.net.ssl.trustStoreType), and password (-Djavax.net.ssl.trustStorePass¬
word).
For example, on Windows you add options similar to the following:
set JAVA_OPTS=-Djavax.security.auth.login.config=%ENDE¬
CA_TOOLS_CONF%/conf/Login.conf
-Djavax.net.ssl.trustStore="C:\Endeca\CAS\workspace\conf\truststore.ks"
-Djavax.net.ssl.trustStoreType=JKS -Djavax.net.ssl.trustStorePassword=en¬
deca

Do not remove or modify the other Java options in the file.

9. If you enabled mutual authentication in jetty.xml, specify Java options for the keystore location
(-Djavax.net.ssl.keyStore), type (-Djavax.net.ssl.keyStoreType), and password
(-Djavax.net.ssl.keyStorePassword).
For example, on Windows you add options similar to the following:
set JAVA_OPTS=-Djavax.net.ssl.keyStore="C:\Endeca\CAS\workspace\conf\key¬
store.ks"
-Djavax.net.ssl.keyStoreType=JKS
-Djavax.net.ssl.keyStorePassword=endeca

Do not remove or modify the other Java options in the file.

10. Save and close either setenv.bat (for Windows) or setenv.sh (for UNIX).
11. If you are using the Endeca Tools Service on Windows, start a Command Prompt window and run

regedit.
12. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Apache Software Foundation\Procrun

2.0\EndecaToolsService\Parameters\Java.
13. Modify the Options registry entry by appending the trustStore, trustStoreType, and

trustStorePassword options:

Endeca Content Acquisition System Developer's Guide

Configuring SSL | Enabling SSL for CAS Console for Oracle Oracle Endeca Workbench158

For example:
-Djavax.net.ssl.trustStore="C:\Endeca\CAS\workspace\conf\truststore.ks"
-Djavax.net.ssl.trustStoreType=JKS
-Djavax.net.ssl.trustStorePassword=endeca

Do not remove or modify the other Java options in the registry.

14. If you enabled mutual authentication in jetty.xml, append the keyStore, keyStoreType, and
keyStorePassword options to the Options registry entry.
For example:
-Djavax.net.ssl.keyStore="C:\Endeca\CAS\workspace\conf\keystore.ks"
-Djavax.net.ssl.keyStoreType=JKS
-Djavax.net.ssl.keyStorePassword=endeca

Do not remove or modify the other Java options in the registry.

15. Click OK and close the Registry Editor.
16. Navigate to %ENDECA_TOOLS_CONF%\conf on Windows or $ENDECA_TOOLS_CONF/conf on

UNIX.
17. If you disabled HTTPS redirects, open casconsole.properties in a text editor and modify the

following properties. (You do not need to change this file if using HTTPS redirects.)
DescriptionProperty name

Specify the fully qualified name of the machine running the CAS
Service.

com.endeca.cascon¬
sole.cas.server

Specify the port for CAS Service.com.endeca.cascon¬
sole.cas.port

Specify how to interpret the CAS port setting.

A value of true means that com.endeca.cascon¬
sole.cas.port is an SSL port and CAS Console uses HTTPS
for connections.

com.endeca.cascon¬
sole.cas.isPortSsl

A value of false means that com.endeca.cascon¬
sole.cas.port is a non-SSL port and CAS Console uses
HTTP for connections. The default is false.

Specify false if you enabled HTTPS redirects.

Do not modify this property. (It must match the sharedSecret
value in ws-extensions.xml.)

com.endeca.casconsole.se¬
cret

18. Navigate to %ENDECA_TOOLS_CONF%\conf on Windows or $ENDECA_TOOLS_CONF/conf on
UNIX.

19. Open ws-extensions.xml in a text editor.
20. Modify the following in ws-extensions.xml.

• Make sure the host name is fully qualified.
• Optionally, if you disabled HTTPS redirects, modify the url protocol from http to https.
• Optionally, if you disabled HTTPS redirects, modify the port in the url to indicate the SSL port

of Endeca Workbench.

21. Save and close ws-extensions.xml.
22. Start the Endeca Tools Service.

Endeca Content Acquisition System Developer's Guide

159Configuring SSL | Enabling SSL for CAS Console for Oracle Oracle Endeca Workbench

You can confirm the configuration is correct by starting a Web browser, logging into SSL-enabled
Endeca Workbench, and then selecting the Data Sources page to access CAS Console.

Enabling SSL for the CAS Command-line Utilities
This procedure establishes a secure connection between all of the CAS Command-line Utilities and
the Web services running in the Endeca CAS Service. Recall that the CAS Command-line Utilities
include the CAS Server Command-line Utility, the Component Instance Manager Command-line Utility,
and the Record Store Command-line Utility.

To enable SSL in the CAS command-line utilities:

1. Navigate to <install path>\CAS\version\bin on Windows or <install
path>/CAS/version/bin on UNIX.

2. To enable SSL in the CAS Server Command-line Utility, open either cas-cmd.bat (for Windows)
or cas-cmd.sh (for UNIX) in a text editor.

3. Uncomment the Java options for the truststore location (-Djavax.net.ssl.trustStore), type
(-Djavax.net.ssl.trustStoreType), and password (-Djavax.net.ssl.trustStorePass¬
word).

4. Replace the tokens listed below for the truststore location path, type, and password values as
appropriate for your environment.

Token to replaceProperty

@TRUSTSTORE_FILE@javax.net.ssl.trustStore

@TRUSTSTORE_PASSWORD@javax.net.ssl.trustStorePassword

JKSjavax.net.ssl.trustStoreType

For example, on Windows, uncomment and modify options similar to the following:
REM Setup the Trust Store
SET JVM_ARGS=-Djavax.net.ssl.trustStore="C:\Endeca\CAS\workspace\conf\trust¬
store.ks" %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.trustStoreType=JKS %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.trustStorePassword=endeca %JVM_ARGS%

For example, on UNIX, uncomment and modify options similar to the following:
Setup the Trust Store
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStore=$CAS_WORKSPACE/conf/trust¬
store.ks"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStoreType=JKS"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStorePassword=endeca"

5. If you enabled mutual authentication in jetty.xml, uncomment the Java options for the keystore
location (-Djavax.net.ssl.keyStore), type (-Djavax.net.ssl.keyStoreType), and
password (-Djavax.net.ssl.keyStorePassword).

6. If you uncommented the keystore options, replace the tokens listed below for the keystore location
path, type and password values as appropriate for your environment.

Token to replaceProperty

@KEYSTORE_FILE@javax.net.ssl.keyStore

@KEYSTORE_PASSWORD@javax.net.ssl.keyStorePassword

Endeca Content Acquisition System Developer's Guide

Configuring SSL | Enabling SSL for the CAS Command-line Utilities160

Token to replaceProperty

JKSjavax.net.ssl.keyStoreType

For example, on Windows you uncomment and modify options similar to the following:
SET JVM_ARGS=-Djavax.net.ssl.keyStore="C:\Endeca\CAS\workspace\conf\key¬
store.ks" %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.keyStoreType=JKS %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.keyStorePassword=endeca %JVM_ARGS%

For example, on UNIX you uncomment and modify options similar to the following:
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStore=$CAS_WORKSPACE/conf/key¬
store.ks"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStoreType=JKS"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStorePassword=endeca"

7. Save and close either cas-cmd.bat (for Windows) or cas-cmd.sh
8. Similarly, to enable SSL and mutual authentication in the CIM Command-line Utility

(component-manager-cmd) and the Record Store Command-line Utility (recordstore-cmd):

• Open the batch or shell files.
• Uncomment the truststore and keystore properties listed above.
• Modify the property values as appropriate for your environment.
• Save and close the files.

9. If you disabled HTTPS redirects, navigate to %ENDECA_TOOLS_CONF%\conf on Windows or
$ENDECA_TOOLS_CONF/conf on UNIX. (You do not need to perform this step if using HTTPS
redirects.)
a) Open commandline.properties in a text editor.
b) Modify the following properties:

DescriptionProperty name

Specify the fully qualified name of the machine running the
command-line utility.

com.endeca.itl.cas.serv¬
er.host

Specify the port for Endeca CAS Service.com.endeca.itl.cas.serv¬
er.port

Specify how to interpret the CAS port setting.

A value of true means that com.endeca.itl.cas.serv¬
er.port is an SSL port and CAS Console uses HTTPS for
connections.

com.endeca.itl.cas.serv¬
er.isPortSsl

A value of false means that com.endeca.itl.cas.serv¬
er.port is a non-SSL port and CAS Console uses HTTP for
connections. The default is false.

Specify false if you enabled HTTPS redirects.

10. Save and close commandline.properties.

Endeca Content Acquisition System Developer's Guide

161Configuring SSL | Enabling SSL for the CAS Command-line Utilities

Enabling the Endeca Web Crawler to write to an SSL
enabled Record Store instance

This procedure establishes a secure connection between the Endeca Web Crawler and the Record
Store Web service running in the Endeca CAS Service.

This task requires that you have already configured the Endeca Web Crawler to write to a Record
Store instance. If you have not done so, see "Configuring Web crawls to write output to a Record Store
instance" in the Endeca Web Crawler Guide.

To enable SSL in the Endeca Web Crawler:

1. Navigate to <install path>\CAS\version\bin on Windows or <install
path>/CAS/version/bin on UNIX.

2. Open either web-crawler.bat (for Windows) or web-crawler.sh (for UNIX) in a text editor.
3. Uncomment the Java options for the truststore location (-Djavax.net.ssl.trustStore), type

(-Djavax.net.ssl.trustStoreType), and password (-Djavax.net.ssl.trustStorePass¬
word).

4. Replace the tokens listed below for the truststore location path, type, and password values as
appropriate for your environment.

Token to replaceProperty

@TRUSTSTORE_FILE@javax.net.ssl.trustStore

@TRUSTSTORE_PASSWORD@javax.net.ssl.trustStorePassword

JKSjavax.net.ssl.trustStoreType

For example, on Windows, uncomment and modify options similar to the following:
SET JVM_ARGS=-Djavax.net.ssl.trustStore="C:\Endeca\CAS\workspace\conf\trust¬
store.ks" %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.trustStoreType=JKS %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.trustStorePassword=endeca %JVM_ARGS%

For example, on UNIX, uncomment and modify options similar to the following:
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStore=$CAS_WORKSPACE/conf/trust¬
store.ks"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStoreType=JKS"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.trustStorePassword=endeca"

5. If you enabled mutual authentication in jetty.xml, uncomment Java options for the keystore
location (-Djavax.net.ssl.keyStore), type (-Djavax.net.ssl.keyStoreType), and
password (-Djavax.net.ssl.keyStorePassword).

6. If you uncommented the keystore options, replace the tokens listed below for the keystore location
path, type and password values as appropriate for your environment.

Token to replaceProperty

@KEYSTORE_FILE@javax.net.ssl.keyStore

@KEYSTORE_PASSWORD@javax.net.ssl.keyStorePassword

JKSjavax.net.ssl.keyStoreType

Endeca Content Acquisition System Developer's Guide

Configuring SSL | Enabling the Endeca Web Crawler to write to an SSL enabled Record Store instance162

For example, on Windows you uncomment and modify options similar to the following:
SET JVM_ARGS=-Djavax.net.ssl.keyStore="C:\Endeca\CAS\workspace\conf\key¬
store.ks" %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.keyStoreType=JKS %JVM_ARGS%
SET JVM_ARGS=-Djavax.net.ssl.keyStorePassword=endeca %JVM_ARGS%

For example, on UNIX you uncomment and modify options similar to the following:
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStore=$CAS_WORKSPACE/conf/key¬
store.ks"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStoreType=JKS"
JVM_ARGS="$JVM_ARGS -Djavax.net.ssl.keyStorePassword=endeca"

7. Save and close either web-crawler.bat (for Windows) or web-crawler.sh (for UNIX).
8. If you disabled HTTPS redirects, open either default.xml (for global configuration of the Endeca

Web Crawler) or site.xml (for per-crawl property overrides) in a text editor. (You do not need to
change this file or the isPortSsl property if you are using HTTPS redirects.)

9. Add the isPortSsl configuration property to specify how to interpret the CAS port setting. Setting
the property to true instructs the Web Crawler to use the CAS port as an HTTPS port. Setting the
property to false means the CAS port is treated as an HTTP port. If you enabled redirects for the
Endeca CAS Service, you typically set the property to false and let the redirect forward the request
to the SSL port.
For example:
<property>
 <name>output.recordStore.isPortSsl</name>
 <value>false</value>
 <description>
 Whether or not to use the CAS port as an HTTPS port to
 communicate with the record store service.
 Default: false
 </description>
</property>

Enabling SSL for Forge record adapters
This procedure establishes a secure connection from a Forge record adapter that is reading or writing
to a Record Store instance running in the CAS Service.

To enable SSL, specify truststore and keystore pass-through options in the record adapter. For details
about the pass throughs, see Creating a record adapter to read from one or more Record Store
instances on page 77 and also Creating a record adapter to write to a Record Store instance on page
79.

Endeca Content Acquisition System Developer's Guide

163Configuring SSL | Enabling SSL for Forge record adapters

Chapter 14

Configuring logging

This section describes how to configure logging for CAS.

Configuring logging for CAScomponents and command-line
utilities

You can change the default logging configuration of the Endeca CAS Service and any CAS components
you run from the command line.

Log location and rolling

By default, the logging utilities write logs to the <install path>\CAS\workspace\logs directory.

By default, the CAS Service log rolls once it exceeds a size of 100MB, and the CAS Service keeps
10 backups of its log.

Note: If you delete the log file, the Endeca CAS Service recreates the log only when you restart
the service. So it is possible to delete the log, run a crawl, and not have logging information if
you did not restart the service.

Configuration files for CAS components

The <install path>\CAS\workspace\conf directory contains the following logging configuration
files:

• cas-cmd.log4j.properties - configures logging for the CAS Server Command-line Utility
• cas-service-log4j.properties - configures logging for the Endeca CAS Service
• component-manager-cmd.log4j.properties - configures logging for the Component Instance

Manager Command-line Utility
• recordstore-cmd.log4j.properties - configures logging for the Record Store Command-line

Utility

Logging options and levels

You can re-configure log locations, log file size, log pattern, and logging message level such as:
• DEBUG designates fine-grained informational events that are most useful to debug Record Store

problems.

• INFO designates informational messages that highlight the progress of Record Store operations
at a coarse-grained level.

• WARN designates potentially harmful situations.
• ERROR designates error events that might still allow the Record Store to continue running.
• FATAL designates very severe error events that will presumably lead the Record Store to abort.
• OFF has the highest possible rank and is intended to turn off logging.

These levels allow you to monitor events of interest at the appropriate granularity. When you are initially
setting up your Record Store implementation, you might want to use the DEBUG level to get all messages,
and change to a less verbose level in production.

Setting log properties for troubleshooting CMS connector
issues

You can set logging properties that may help determine the causes of connection, authentication, and
request/response time issues between the CAS and the CMS provider.

To configure logging properties for troubleshooting CMS connector issues:

1. In a text editor, open cas-service-log4j.properties.
2. Add the following lines to the file:

log4j.logger.org.apache.axis.client=DEBUG
log4j.logger.httpclient.wire=DEBUG
log4j.logger.org.apache.commons.httpclient=DEBUG

Excluding failed records from the CAS Service log file
If a record fails during a crawl, the CAS Server discards the failed record and writes a truncated version
of the record to the cas-service.log file. If you do not want the CAS Server to write any information
about failed records to the log file, you can disable logging for failed records by uncommenting a setting
in the cas-service-log4j.properties file.

To exclude failed records from the CAS Service log file:

1. Stop the Endeca CAS Service.
2. Navigate to the CAS\workspace\conf directory.
3. In a text editor, open cas-service-log4j.properties.
4. Uncomment the line containing the log4j.logger.com.endeca.itl.executor.ErrorChan¬

nelImpl setting.
5. Save and close the cas-service-log4j.properties file.
6. Start the Endeca CAS Service.

Once you uncomment the setting, the CAS Server does not write any information about failed records
to the log file. However, failed records are still counted as metrics under FAILED_RECORDS.

Endeca Content Acquisition System Developer's Guide

Configuring logging | Setting log properties for troubleshooting CMS connector issues166

Enabling log timing information for crawl processing steps
You can enable a logging setting in cas-service-log4j.properties that instructs CAS to write
log timing information for each processing step of a crawl. This additional logging information is
especially useful for troubleshooting performance issues.

1. In a text editor, open <install
path>\CAS\workspace\conf\cas-service-log4j.properties.

2. Un-comment the following line in the file:
log4j.logger.com.endeca.itl.executor.ProcessorTaskTiming=DEBUG

3. Save and close the file.
4. Restart the Endeca CAS Service.

The next time you run a crawl you will get additional logging information similar to the following:
Processor Task Timing

IncrementalDataSourceProcessor-414611937: (Hits=1, Value=8542.280 ms,
Time=15:11:37,489)
MdexOutputSink-1898864883(processRecord): (Total=7413.427 ms, Avg=0.835 ms,
 Hits=8877, StdDev=9.526 ms, Min=0.001 ms, Max=659.003 ms, First¬
Timed=15:11:36,802, LastTimed=15:11:40,078)
SplittingFilterProcessor-1235020019(processRecord): (Total=3250.518 ms,
Avg=0.366 ms, Hits=8877, StdDev=0.711 ms, Min=0.010 ms, Max=26.920 ms,
FirstTimed=15:11:29,626, LastTimed=15:11:37,457)
ArchiveExpandProcessor-1134860470(processRecord): (Total=2104.446 ms,
Avg=0.237 ms, Hits=8877, StdDev=0.843 ms, Min=0.004 ms, Max=44.004 ms,
FirstTimed=15:11:29,595, LastTimed=15:11:37,457)
PropertyRemover-92265517(processRecord): (Total=1849.963 ms, Avg=0.208 ms,
 Hits=8877, StdDev=0.716 ms, Min=0.003 ms, Max=27.465 ms, First¬
Timed=15:11:29,595, LastTimed=15:11:37,457)
MdexOutputSink-1898864883(notifyInputClosed): (Total=598.802 ms, Avg=299.401
 ms, Hits=2, StdDev=391.645 ms, Min=22.466 ms, Max=576.336 ms, First¬
Timed=15:11:38,206, LastTimed=15:11:40,094)
PropertyRemover-92265517(notifyInputClosed): (Hits=1, Value=0.544 ms,
Time=15:11:37,489)
ArchiveExpandProcessor-1134860470(notifyInputClosed): (Total=0.330 ms,
Avg=0.165 ms, Hits=2, StdDev=0.141 ms, Min=0.065 ms, Max=0.265 ms, First¬
Timed=15:11:37,489, LastTimed=15:11:37,489)
SplittingFilterProcessor-1235020019(notifyInputClosed): (Hits=1, Value=0.012
 ms, Time=15:11:37,489)

Examining the Endeca CAS Service log
The Endeca CAS Service logs messages for all CAS components and crawls in the cas-service.log
file.

Location of the CAS Service log

The Endeca CAS Server has one (and only one) log, regardless of how many crawls have been
configured. The log is named cas-service.log and is located in the logs directory in the CAS

Endeca Content Acquisition System Developer's Guide

167Configuring logging | Enabling log timing information for crawl processing steps

workspace directory. If you are using the default workspace directory name, the pathname of the log
file is similar to this:
C:\Endeca\CAS\workspace\logs\cas-service.log

Format of log entries

The log contains two types of log entries:
• CAS component log entries, which are entries that pertain to starting and stopping CAS components.
• crawl log entries, which are entries that pertain to a specific crawl.

By default, crawl log entries have the format:
yy-MM-dd HH-mm-ss logLevel crawl-name message (module)

where:
• yy-MM-dd HH-mm-ss is the timestamp of the entry. You can change the format by editing the
cas-server.log4j.properties file.

• logLevel is the log level of the entry, such as INFO or FATAL.
• crawl-id is the name of the crawl.
• message is the message returned by a CAS Server module.
• module is the CAS Server module that was working on the document when it returned the message.

For example, a log entry for a crawl named Crawl07 might look like this (assuming a DEBUG log level
and omitting timestamps for ease of reading):
[Crawl07] Starting work: Processing C:\Work\Plans.doc (WorkExecu¬
tor$WorkRunnable)
[Crawl07] Processing record C:\Work\Plans.doc (FileCrawlSource)
[Crawl07] Extracting text from file: C:\Work\Plans.doc of size 82K (Docu¬
mentConversionProcessor)
[Crawl07] Stellent converting file: C:\Work\Plans.doc (StellentDocumentCon¬
verter)
[Crawl07] Successfully converted file: C:\Work\Plans.doc (StellentDocument¬
Converter)
[Crawl07] Finished work: Processing C:\Work\Plans.doc (WorkExecu¬
tor$WorkRunnable)

The entries show that the text-extraction process for a file (named Plans.doc) was successfully
accomplished.

Enabling crawl statistics

If a crawl log level is set to INFO, TRACE, or DEBUG, the crawl statistics are entered as INFO entries
in the log when the crawl finishes, as in this example (timestamps and log levels are omitted for ease
of reading):
Crawl Mode = FULL_CRAWL (MetricsReport)
Crawl Stop Cause = Completed (MetricsReport)
Directories Filtered from Archives = 0 (MetricsReport)
Directories Filtered = 0 (MetricsReport)
Total Records Output = 423 (MetricsReport)
Files Filtered from Archives = 124 (MetricsReport)
Directories Crawled Not from Archives = 55 (MetricsReport)
Documents Unsuccessfully Converted = 9 (MetricsReport)
Files Crawled from Archives = 65 (MetricsReport)
Files Crawled Not from Archives = 285 (MetricsReport)
Delete Records Output = 0 (MetricsReport)
Files Filtered Not from Archives = 51 (MetricsReport)
Directories Crawled = 73 (MetricsReport)

Endeca Content Acquisition System Developer's Guide

Configuring logging | Examining the Endeca CAS Service log168

Directories Filtered Not from Archives = 0 (MetricsReport)
Documents Converted = 333 (MetricsReport)
Files Crawled = 350 (MetricsReport)
Documents Converted After Retry = 0 (MetricsReport)
New or Updated Records Output = 423 (MetricsReport)
Directories Crawled from Archives = 18 (MetricsReport)
Files Filtered = 175 (MetricsReport)
Crawl Seconds = 71 (MetricsReport)
Start Time = 5/23/08 9:23:59 AM EDT (MetricsReport)
End Time = 5/23/08 9:25:10 AM EDT (MetricsReport)

Note that for incremental crawls, the Delete Records Output statistic is also included and indicates
how many files were deleted from the previous crawl. An Endeca record is created for each deleted
file; the record will have the Endeca.Action property set to DELETE.

The Crawl Stop Cause statistic has one of the following values:
• Completed
• Failed
• Aborted

If a crawl fails, the Crawl Failure Reason statistic provides a message from the CAS Server
explaining the failure.

Keep in mind that if the log is too verbose (thus making it more difficult to find errors), you can change
the log level of the crawl. The default log level is INFO.

The CAS logging configuration file is cas-service-log4j.properties and is located in the
<install path>\CAS\workspace\conf directory. You can also change the log level on a per-crawl
basis using the CAS Console, the CAS API, or the CAS command-line utilities.

Endeca Content Acquisition System Developer's Guide

169Configuring logging | Examining the Endeca CAS Service log

Chapter 15

Tips and troubleshooting CAS

This section provides tips and miscellaneous troubleshooting information about the Content Acquisition
System.

Modifying the CAS Server connection information for the
CAS Console

You first specified this information during the installation procedure. If you need to run the CAS Server
on a different machine, you can change the CAS Server connection information through the
casconsole.properties file.

To modify your CAS Server connection:

1. Navigate to %ENDECA_TOOLS_CONF%\conf (on Windows) or $ENDECA_TOOLS_CONF/conf (on
UNIX).
In a default installation, this is C:\Endeca\Workbench\workspace (on Windows) or
usr/local/Endeca/Workbench/workspace (on UNIX).

2. Open casconsole.properties.
3. Modify the entries for Default cas server host and Default cas server port as needed.
4. Save and close the file.

Modifying the CAS Service temporary directory
By default, the Endeca CAS Service temporary directory is set to <install
path>\CAS\workspace\temp (on Windows) and <install path>/CAS/workspace/temp (on
UNIX). If necessary, you can modify this path by changing the java.io.tmpdir system property in
the Endeca CAS Service script.

To modify the CAS Service temporary directory:

1. Stop the Endeca CAS Service.
2. Navigate to <install path>\CAS\version\bin.
3. If you are running the Endeca CAS Service manually, open cas-service (either .bat or .sh

depending on your platform) in a text editor.

4. If you are running the Endeca CAS Service automatically as a Windows service, open
cas-service-wrapper.conf in a text editor.

5. Locate the Djava.io.tmpdir argument and modify the value of the path as necessary.
6. Save and close the file.
7. Re-start the Endeca CAS Service.

Responding to a "Too many open files" error
On UNIX, you may get a “Too many open files” error if you are crawling several data sources
simultaneously.

The relevant line in the error’s stack trace is the following:
Caused by: java.io.FileNotFoundException: /localdisk/jsmith/ende¬
ca/CAS/workspace/state/test_data_multiseeds/data/dictionary/seg0/c3a1.dat
(Too many open files)

The error occurs because the operating system has reached the per-process limit for the number of
files the process can have open at once.

To resolve this problem, you can increase the number of file handles available. For more information
about how to increase the number of available file handles, refer to the documentation for your operating
system.

Note: There is no single recommended range of file handles values that will fit all situations.
File/socket requirements can depend on a number of metrics, such as processes managed,
nodes, files transferred, and system status queries. Therefore, determining a new limit
experimentally, through trial and error, is the simplest resolution.

Setting the group entry size
You can change the group entry size default setting.

On UNIX systems, the crawler relies on the group and passwd databases to generate native properties
for files. Because there is no limit to the size of the entries in these databases, the default sizes may
be too small for some systems.

For example, if the size of a group entry is too large, the following message is written to the log:
The group's entry in the group database is too large,
consider setting the com.endeca.itl.group.size property.

You change group entry size by using the Java -D option as a parameter to the Java Virtual Machine
(JVM), as follows:
-Dcom.endeca.itl.group.size=2048

Note that the 2048 parameter is in bytes.

To pass this parameter to the JVM, use the -JVM flag when you run the startup script.

Keep in mind that the -JVM flag must be the last flag on the command line.

Endeca Content Acquisition System Developer's Guide

Tips and troubleshooting CAS | Responding to a "Too many open files" error172

This type of error is more likely to occur with entries in the group database, rather than the passwd
database. If, however, your crawl encounters problems with the passwd database, there is also a
passwd entry property:
com.endeca.itl.passwd.size

Endeca Content Acquisition System Developer's Guide

173Tips and troubleshooting CAS | Setting the group entry size

Appendix A

File Formats Supported by the CAS Document
Conversion Module

This section lists the binary file formats that the CAS Document Conversion Module can convert to
text during a crawl. The CAS Document Conversion Module is installed by default as part of the CAS
installation.

Archive formats
The following table lists supported archive formats:

Version (if applicable)Format

7z (BZIP2 and split archives not supported)

7z Self Extracting exe (BZIP2 and split
archives not supported)

LZA Self Extracting Compress

LZH Compress

95, 97Microsoft Binder

1.5, 2.0, 2.9RAR

Self-extracting .exe

UNIX Compress

UNIX GZip

UNIX TAR

Uuencode

PKZipZIP

WinZipZIP

Database formats
The following table lists supported database formats:

VersionFormat

4.xDataEase

III, IV, and VDBase

Through 3.0First Choice DB

3.0Framework DB

1.0, 2.0Microsoft Access

2000 - 2003Microsoft Access Report Snapshot (File ID
only)

1.0, 2.0Microsoft Works DB for DOS

2.0Microsoft Works DB for Macintosh

3.0, 4.0Microsoft Works DB for Windows

2.0 - 4.0Paradox (DOS)

1.0Paradox (Windows)

Through 2.0Q & A

R:Base 5000 and R:Base System VR:Base

2.0Reflex

1.02SmartWare II

E-mail formats
The following table lists supported e-mail formats:

VersionFormat

2.0Apple Mail Message (EMLX)

MHTEncoded mail messages

Multi Part AlternativeEncoded mail messages

Multi Part DigestEncoded mail messages

Multi Part MixedEncoded mail messages

Multi Part News GroupEncoded mail messages

Multi Part SignedEncoded mail messages

TNEFEncoded mail messages

8.5IBM Lotus Notes Domino XML
Language DXL

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Database formats176

VersionFormat

7.x, 8.xIBM Lotus Notes NSF (File ID
only)

8.xIBM Lotus Notes NSF (Windows,
Linux x86-32 and Oracle Solaris
32-bit only with Notes Client or
Domino Server)

RFC 822MBOX Mailbox

97 - 2007Microsoft Outlook MSG

Microsoft Outlook Express (EML)

97 - 2007Microsoft Outlook Forms
Template (OFT)

97 - 2007Microsoft Outlook OST

97 - 2007Microsoft Outlook PST

2001Microsoft Outlook PST (Mac)

Multimedia formats
The following table lists supported e-mail formats:

VersionFormat

AVI (Metadata extraction only)

6.x, 7.x, LiteFlash (text extraction only)

9, 10Flash (File ID only)

Real Media - (File ID only)

MP3 (ID3 metadata only)

MPEG-1 Audio layer 3 V ID3 v1
(File ID only)

MPEG-1 Audio layer 3 V ID3 v2
(File ID only)

MPEG-1 Video V 2 (File ID only)

MPEG-1 Video V 3 (File ID only)

MPEG-2 Audio (File ID only)

MPEG-4 (Metadata extraction
only)

MPEG-7 (Metadata extraction
only)

QuickTime (Metadata extraction
only)

Endeca Content Acquisition System Developer's Guide

177File Formats Supported by the CAS Document Conversion Module | Multimedia formats

VersionFormat

Windows Media ASF (Metadata
extraction only)

Windows Media DVR-MS
(Metadata extraction only)

Windows Media Audio WMA
(Metadata extraction only)

Windows Media Playlist (File ID
only)

Windows Media Video WMV
(Metadata extraction only)

WAV (Metadata extraction only)

Other formats
The following table lists other supported formats:

Version (if applicable)Format

7.3AOL Messenger (File ID
only)

2007Microsoft InfoPath (file ID
only)

10.0Microsoft Live Messenger
(via XML filter)

2007Microsoft OneNote (file ID
only)

98 - 2003Microsoft Project (table view
only)

2007 - 2010Microsoft Project (table view
only)

.chmMicrosoft Windows Compiled
Help (File ID only)

Microsoft Windows DLL

Microsoft Windows
Executable

.scfMicrosoft Windows Explorer
Command (File ID only)

.hlpMicrosoft Windows Help (File
ID only)

.lnkMicrosoft Windows Shortcut
(File ID only)

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Other formats178

Version (if applicable)Format

4.2Trillian Text Log File (via text
filter)

4.2Trillian XML Log File (File ID
only)

ttf, ttcTrueType Font (File ID only)

2.1vCalendar

2.1vCard

6.x - 8.0Yahoo! Messenger

Presentation formats
The following table lists supported presentation formats:

Version (if applicable)Format

6.0 - X3Corel Presentations

3.0Harvard Graphics (DOS)

1.xIBM Lotus Symphony Presentations

2010Kingsoft WPS Presentation

1.0 - Millennium 9.6Lotus Freelance

2.0Lotus Freelance (OS/3)

95, 97Lotus Freelance for Windows

4.0 - 2008Microsoft PowerPoint for Macintosh

3.0 - 2010Microsoft PowerPoint for Windows

2007 - 2010Microsoft PowerPoint for Windows
Slideshow

2007 - 2010Microsoft PowerPoint for Windows Template

3.0, 7.0Novell Presentations

1.1, 3.0OpenOffice Impress

3.xOracle Open Office Impress

5.2 - 9.0StarOffice Impress

5.1 - X4WordPerfect Presentations

Raster image formats
The following table lists supported raster image formats:

Endeca Content Acquisition System Developer's Guide

179File Formats Supported by the CAS Document Conversion Module | Presentation formats

VersionFormat

Type I and Type IICALS Raster (GP4)

ANSI, CALS, NISTComputer Graphics Metafile

TIFF header onlyEncapsulated PostScript (EPS)

GEM Image (Bitmap)

Graphics Interchange Format (GIF)

1.0IBM Graphics Data Format (GDF)

1.0IBM Picture Interchange Format (PIF)

graphic embeddings in PDF filesJBIG2

JFIF (JPEG not in TIFF format)

JPEG

JP2JPEG 2000

Kodak Flash Pix

1.0Kodak Photo CD

Lotus PIC

Lotus Snapshot

BMP onlyMacintosh PICT1 and PICT2

MacPaint

Microsoft Windows Bitmap

Microsoft Windows Cursor

Microsoft Windows Icon

OS/2 Bitmap

OS/2 Warp Bitmap

5.0, 6.0Paint Shop Pro (Win32 only)

PC Paintbrush (PCX)

PC Paintbrush DCX (multi-page PCX)

Portable Bitmap (PBM)

Portable Graymap (PGM)

Portable Network Graphics (PNG)

Portable Pixmap (PPM)

Progressive JPEG

6.x - 9.0StarOffice Draw

Sun Raster

Group 5 and Group 6TIFF

Group 3 and Group 4TIFF CCITT Fax

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Raster image formats180

VersionFormat

2.0Truevision TGA (Targa)

WBMP wireless graphics format

1.0Word Perfect Graphics

x10 compatibleX-Windows Bitmap

x10 compatibleX-Windows Dump

x10 compatibleX-Windows Pixmap

2.0, 7.0, 8.0, 9.0, 10.0WordPerfect Graphics

Spreadsheet formats
The following table lists supported spreadsheet formats:

VersionFormat

3.0 - 4.5Enable Spreadsheet

Through 3.0First Choice SS

3.0Framework SS

1.xIBM Lotus Symphony Spreadsheets

2010Kingsoft WPS Spreadsheets

Through Millennium 9.6Lotus 1-2-3

Through 5.0Lotus 1-2-3 Charts (DOS and Windows)

2.0Lotus 1-2-3 (OS/2)

2.x - 2007Microsoft Excel Charts

98 - 2008Microsoft Excel for Macintosh

3.0 - 2010Microsoft Excel for Windows

2007 - 2010 BinaryMicrosoft Excel for Windows (xslb)

4.0Microsoft Multiplan

2.0Microsoft SS Works for DOS

2.0Microsoft Works for Macintosh

3.0, 4.0Microsoft SS Works for Windows

2.0Novell PerfectWorks

1.1 - 3.0OpenOffice Calc

3.xOracle Open Office Calc

1.0PFS: Professional Plan

Through 5.0Quattro for DOS

Endeca Content Acquisition System Developer's Guide

181File Formats Supported by the CAS Document Conversion Module | Spreadsheet formats

VersionFormat

Through X4QuattroPro for Windows

SmartWare Spreadsheet

1.02SmartWare II SS

5.2 - 9.0StarOffice Calc

5.0SuperCalc

Through 2.0Symphony

1.0VP Planner

Text and markup formats
The following table lists supported text and markup formats:

Notes:
• CAS 2.3.0 and later supports converting XML content contained in both PCDATA and CDATA

elements.
• In the case of XHTML, "file ID only" means that the conversion process produces an Endeca

property for the file format type but nothing else.

Version (if applicable)Format

7 bit and 8 bitANSI Text

7 bit and 8 bitASCII Text

DOS character set

EBCDIC

1.0 - 4.0HTML (CSS rendering not supported)

IBM DCA/RFT

Macintosh character set

Rich Text Format (RTF)

3.0, 4.0Unicode Text

UTF-8

1.0Wireless Markup Language

text onlyXML

1.0XHTML (file ID only)

Vector image formats
The following table lists supported vector image formats:

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Text and markup formats182

Version (if applicable)Format

4.0 - 7.0, 9.0Adobe Illustrator

11 - 13 (CS 1 - 3)Adobe Illustrator (XMP only)

3.0 - 5.0 (CS 1 - 3)Adobe InDesign (XMP only)

Adobe InDesign Interchange (XMP
only)

8.0 -10.0 (CS 1 - 3)Adobe Photoshop (XMP only)

1.0 - 1.7 (Acrobat 1 - 9)Adobe PDF

1.7 (Acrobat 8 - 9)Adobe PDF Package

1.7 (Acrobat 8 - 9)Adobe PDF Portfolio

4.0Adobe Photoshop

SDWAmi Draw

2.5, 2.6AutoCAD Drawing

9.0 - 14.0AutoCAD Drawing

2000i - 2010AutoCAD Drawing

2.0AutoShade Rendering

2.0 - 9.0Corel Draw

5.0, 7.0Corel Draw Clipart

Enhanced Metafile (EMF)

Escher graphics

3.0 - 5.0FrameMaker Vector and Raster
Graphics (FMV)

Gem File (Vector)

2.0 - 3.0Harvard Graphics Chart (DOS)

Harvard Graphics for Windows

2.0HP Graphics Language

5.1 - 5.3Initial Graphics Exchange Specification
(IGES) Drawing

Through 3.1Micrografx Designer

6.0Micrografx Designer

Through 4.0Micrografx Draw

Microsoft XPS (Text only)

2.0Novell PerfectWorks Draw

1.1 - 3.0OpenOffice Draw

3.xOracle Open Office Draw

Endeca Content Acquisition System Developer's Guide

183File Formats Supported by the CAS Document Conversion Module | Vector image formats

Version (if applicable)Format

4Visio (Page Preview mode only
WMF/EMF)

5.0 - 2007Visio

2007Visio XML VSX (File ID only)

Windows Metafile

Notes on Adobe PDF text extraction

The CAS Document Conversion Module works as follows when processing Adobe PDF files with
security settings:

• The CAS Document Conversion Module will respect the no-copy option of a PDF. That is, if a PDF
publishing application has a no-copy option (which prohibits the copying or extraction of text within
the PDF), the Document Conversion Module will not extract text from that PDF.

• The CAS Document Conversion Module does not support text extraction from password-protected
files.

• The CAS Document Conversion Module does not support text extraction from PDFs with encrypted
content.

To extract the text from these types of PDFs, you must re-create them without setting the appropriate
security option.

In addition, text added with the Sticky Note tool is not extracted.

Word processing formats
The following table lists supported word processing formats:

Version (if applicable)Format

Versions 3.0 - 6.0Adobe FrameMaker (MIF)

Level 2Adobe Illustrator Postscript

Ami

Ami Pro for OS2

2.0, 3.0Ami Pro for Windows

Through 4.0DEC DX

4.0, 4.1DEC DX Plus

3.0 - 4.5Enable Word Processor

1.0, 3.0First Choice WP

3.0Framework WP

97 - 2007Hangul

IBM DCA/FFT

2.0 - 5.0IBM DisplayWrite

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Word processing formats184

Version (if applicable)Format

1.01IBM Writing Assistant

5.0, 6.0, 8.0 - 13.0, 2004Ichitaro

Through 3.0JustWrite

2010Kingsoft WPS Writer

1.1Legacy

Through 2.0Lotus Manuscript

9.7, 96, - Millennium 9.6Lotus WordPro

97 - Millennium 9.6Lotus WordPro (non-Win32)

1.1MacWrite II

All versions through 8.0Mass 11

2003 - 2007Microsoft Publisher (File ID only)

4.0 - 6.0Microsoft Word for DOS

4.0 - 6.0, 98 - 2008Microsoft Word for Macintosh

1.0 - 2007Microsoft Word for Windows

98-JMicrosoft Word for Windows

Microsoft WordPad

2.0Microsoft Works WP for DOS

2.0Microsoft Works WP for Macintosh

3.0, 4.0Microsoft Works WP for Windows

1.0 - 3.0Microsoft Write for Windows

Through 4.0MultiMate

2.0MultiMate Advantage

Navy DIF

3.0Nota Bene

2.0Novell Perfect Works

4.0 - 6.0Office Writer

1.1 - 3.0OpenOffice Writer

3.xOracle Open Office Writer

5.0PC File Doc

Versions A, BPFS:Write

1.0, 2.0Professional Write (DOS)

1.0Professional Write Plus (Windows)

2.0, 3.0Q&A Write (Windows)

1.0 - 3.0Samna Word IV

Endeca Content Acquisition System Developer's Guide

185File Formats Supported by the CAS Document Conversion Module | Word processing formats

Version (if applicable)Format

Smna Work IV+

Samsung JungUm Global (File ID
only)

1.0Signature

1.02SmartWare II WP

1.0Sprint

5.2 - 9.0StarOffice Writer

1.2Total Word

Versions through 2.6Wang PC (IWP)

WordMarc Composer

WordMarc Composer+

WordMarc Word Processor

4.2WordPerfect for DOS

1.02 - 3.1WordPerfect for Macintosh

5.1 - X4WordPerfect for Windows

1.0 - 3.0WordStar 2000 for DOS

2.0, 3.0WordStar 2000 for DOS

3.0 - 7.0WordStar for DOS

1.0WordStar for Windows

Through III+XyWrite

Endeca Content Acquisition System Developer's Guide

File Formats Supported by the CAS Document Conversion Module | Word processing formats186

Appendix B

Record properties generated by crawling

During a crawl, the CAS Server produces record properties according to certain naming schemes.
You can map any of these properties to Endeca properties or dimensions by the property mapper
component in a pipeline.

Common record properties
The CAS Server generates certain properties whether you crawl a file system, CMS, or custom data
source extension.

The CAS Server generates record properties and assigns each property a qualified name, with a period
(.) to separate qualifier terms. The CAS Server constructs the qualified name as follows:

• The first term is always Endeca and is followed by one or more additional terms.
• The second term describes a property category, for example: CMS or FileSystem. The term File

may be added to files from either file system or content management system data sources.
• The third and fourth terms, if present, fully qualify the property, for example: Endeca.CMS.ItemId

or Endeca.FileSystem.Path.

The CAS Server may generate the following properties for all records:

Property ValueEndeca Property Name

The action that was taken with the document. Values are
UPSERT (the file or folder has been added or modified) or

Endeca.Action

DELETE (the document or directory has been deleted since
the last crawl).

Indicates the source type of the crawl. Values are
FILESYSTEM (for file system data sources), WEB (for Web

Endeca.SourceType

servers), CMS (for Content Management System data
sources), or EXTENSION (for data source extensions).

Provides a unique identifier for each record.Endeca.Id

For file system crawls, Endeca.Id is the same as Ende¬
ca.FileSystem.Path. It is the full path to the file including
the file name. For archive files, this is a string pointing to a
file within Endeca.FileSystem.Path a container. This

Property ValueEndeca Property Name

property also includes the PathWithinSourceArchive
(if present).

For Web crawls, Endeca.Id is the same as Ende¬
ca.Web.Url.

For CMS crawls, Endeca.Id is the concatenation of the
Endeca.CMS.RepositoryId andEndeca.CMS.ItemId
properties, and the Endeca.CMS.ContentPieceId (if
present). This property also includes the PathWithin¬
SourceArchive (if present)

For data source extensions, a plug-in developer must add
Endeca.Id to each record and assign it a value appropriate
for the data source.

Indicates the name of the data source. This is the same as
the id value of crawlId in a crawl configuration.

Endeca.SourceId

A boolean that, if set to a value of true, indicates that the
document is an archive file, such as a Zip file. If the file is

Endeca.File.IsArchive

not identified as an archive, the property is absent. Note
that archives are identified by their file extension or Mime
type.

It is possible for a document to have bothEndeca.File.Is¬
Archive and Endeca.File.IsInArchive properties
set, as archive files may contain other archive files nested
within.

A boolean that, if set to a value of true, indicates that the
document is extracted from an archive file. If the file is not
an archived document, the property is absent.

Endeca.File.IsInArchive

The size of the document in bytes, as reported by the native
file system, CMS, or an archive entry.

Endeca.File.Size

This property is added to all records that have the Ende¬
ca.File.IsInArchive property. It is intended to provide

Endeca.File.SourceArchiveId

a reference to the original archive that was encountered in
the file system or CMS. The value is the original archive's
Endeca.FileSystem.Path or Endeca.Id property. In
the case of nested archives, it is the top-level archive,
because that is the original source in the file system or CMS
being crawled.

This property is added to all records that have the Ende¬
ca.File.SourceArchiveId property. The value of this

Endeca.File.PathWithin¬
SourceArchive

property is the path to the current record within the source
archive file. In the case of nested archive entries, it includes
the path to the nested archive, appended with the path to
the current record within the nested archive.

Endeca Content Acquisition System Developer's Guide

Record properties generated by crawling | Common record properties188

Record properties generated by file system crawls
During a file system crawl, the CAS Server produces record properties according to a standardized
naming scheme.

Windows file example

The following example shows the properties returned from a Windows crawl for a Windows text file
named TestFile.txt, which is owned by user fsmith from the DEVGROUP domain:

...

<RECORD>

...

 <PROP NAME="Endeca.FileSystem.Owner">
 <PVAL>DEVGROUP\fsmith</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.Group">
 <PVAL>DEVGROUP\Domain Users</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.IsHidden">
 <PVAL>false</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.IsTemporary">
 <PVAL>false</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.Path">
 <PVAL>c:\endecafiles\TestFile.txt</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ParentPath">
 <PVAL>c:\endecafiles</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>BUILTIN\Administrators</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>NT AUTHORITY\SYSTEM</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>DEVGROUP\fsmith</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>BUILTIN\Users</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.IsDirectory">
 <PVAL>false</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.ModificationDate">
 <PVAL>1182453853873</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.CreationDate">
 <PVAL>1182453827530</PVAL>
 </PROP>
 <PROP NAME="Endeca.Action">
 <PVAL>UPSERT</PVAL>
 </PROP>
 <PROP NAME="Endeca.FileSystem.IsSystem">

Endeca Content Acquisition System Developer's Guide

189Record properties generated by crawling | Record properties generated by file system crawls

 <PVAL>false</PVAL>
 </PROP>
 <PROP NAME="Endeca.File.Size">
 <PVAL>16</PVAL>
 </PROP>
 <PROP NAME="Endeca.Document.Type">
 <PVAL>Unknown (ASCII 8)</PVAL>
 </PROP>
 <PROP NAME="Endeca.Document.Text">
 <PVAL>This is a test.</PVAL>
 </PROP>
</RECORD>

...

Common File System properties
The CAS Server produces some common properties from records crawled in either a Windows or
UNIX file system.

The following record properties are common to documents fetched from both Windows and UNIX file
systems.

Property ValueEndeca Property Name

The file extension of the document, which is the string after
the last dot in the file name. If the document has no dot in
the name, this property will not be generated.

Endeca.FileSystem.Extension

The name of a group for which permissions have been set
for the document. For UNIX files, the property value is the

Endeca.FileSystem.Group

groupname. For Windows files, the name is prepended
with the domain to which the group name belongs, in the
format: DOMAIN\principal.

A Boolean that indicates whether the document is a directory
(a value of true) or a file (a value of false). The value is
set to true even if the directory is in a container.

Endeca.FileSystem.IsDirectory

A Boolean that indicates whether the document is a hidden
file (a value of true) or not (a value of false).

Endeca.FileSystem.IsHidden

The date when the file was last modified. Modifications
include changing permissions on the document. The date

Endeca.FileSystem.Modification¬
Date

format is in milliseconds since midnight January 1, 1970
UTC (Coordinated Universal Time).

The name of the file.Endeca.FileSystem.Name

The name of a user or other principal who is the owner of
the file. For UNIX files, the property value is the

Endeca.FileSystem.Owner

ownername. For Windows files, the name is prepended
with the domain to which the name belongs, in the format:
DOMAIN\principal.

The identifier of the full path to the file, including the file
name. For archive files, this is a string pointing to a file within

Endeca.FileSystem.Path

Endeca Content Acquisition System Developer's Guide

Record properties generated by crawling | Record properties generated by file system crawls190

Property ValueEndeca Property Name

a container. This property also includes the PathWithin¬
SourceArchive (if present).

The identifier of the path to the directory containing the file.
This does not include the file name. For archive files, this
is a string pointing to a container.

Endeca.FileSystem.ParentPath

Record properties for file system crawls on Windows
The CAS Server produces certain properties from records crawled on a Windows file system.

The following table lists the record file properties that are specific to Windows file systems.

Property ValueEndeca Property Name

The name of a user, group, or other principal who has the right
to read the document. The name is prepended with the domain

Endeca.FileSystem.ACL.Al¬
lowRead

to which the name belongs, in the format: DOMAIN\principal
.

The name of a user, group, or other principal who is denied the
right to read the document. The name is prepended with the

Endeca.FileSys¬
tem.ACL.DenyRead

domain to which the name belongs, in the format: DO¬
MAIN\principal .

The date when the document was created. The date format is
in milliseconds since midnight January 1, 1970 UTC (Coordinated
Universal Time).

Endeca.FileSystem.Creation¬
Date

A Boolean that indicates whether the document is a system file
(a value of true) or not (a value of false).

Endeca.FileSystem.IsSystem

A Boolean that indicates whether the document is a temporary
file (a value of true) or not (a value of false).

Endeca.FileSystem.IsTempo¬
rary

Record properties for file system crawls on UNIX
The CAS Server produces certain properties from records crawled in a UNIX file system.

The following table lists the record file properties that are specific to UNIX file systems.

Property ValueEndeca Property Name

A Boolean that indicates whether the group (the Ende¬
ca.FileSystem.Group value) has read rights to the
document.

Endeca.FileSystem.IsGroupRead¬
able

A Boolean that indicates whether the file owner (the Ende¬
ca.FileSystem.Owner value) has read rights to the
document.

Endeca.FileSystem.IsOwnerRead¬
able

A Boolean that indicates whether the document is a symbolic
link that refers to another file or directory (a value of true
indicates that the document is a symbolic link).

Endeca.FileSystem.IsSymboli¬
cLink

Endeca Content Acquisition System Developer's Guide

191Record properties generated by crawling | Record properties generated by file system crawls

Property ValueEndeca Property Name

A Boolean that indicates whether everyone on the system
(world) has read rights to the document.

Endeca.FileSystem.IsWorldRead¬
able

The name of the document to which a symbolic link refers.
This property is present only if the Endeca.FileSys¬
tem.IsSymbolicLink property is set to true.

Endeca.FileSystem.LinkTarget

Limitations with ACL properties
The Content Acquisition System on Windows cannot get ACL properties for seeds that represent a
root folder. However, the Content Acquisition System successfully gets ACL properties for all children
of the root.

This limitation only occurs in the following scenario:
• The machine running the Endeca CAS Service is a Windows machine.
• The crawl is a file crawl with the Retrieve ACLs option enabled. (By default Retrieve ACLs is

enabled.)
• The seed specified represents a root folder (for example, C:\ or \\machinename\folder).

The Content Acquisition System produces an Endeca record for a root folder, and the record is tagged
with other generated record properties. Only the ACL properties are missing.

Document Conversion properties
The CAS Document Conversion Module generates certain properties for records crawled with document
conversion enabled.

The CAS Document Conversion Module generates Document properties that contain information
(including the text) of the document or metadata about the document.

Property ValueEndeca Property Name

Metadata information in the document. The metadata attributes
depend on which ones were added by the authoring tool used

Endeca.Document.Metadata.at¬
tribute

to create the document. For example, an Adobe Acrobat PDF
document could have such metadata attributes asEndeca.Doc¬
ument.Metadata.title and Endeca.Document.Meta¬
data.primary_author.

Properties that are returned from the CAS Document
Conversion Module but that do not have a type attribute are
mapped to this property.

Endeca.Document.Metada¬
ta.Misc

The text (content) of the source document. Note that the CAS
Document Conversion Module typically does not preserve line
break information.

Endeca.Document.Text

An error returned by the CAS Document Conversion Module.
Note that a no filter available for this file type

Endeca.Document.TextExtrac¬
tion.Error

error indicates that you should modify the document conversion
module to exclude files of this type.

Endeca Content Acquisition System Developer's Guide

Record properties generated by crawling | Document Conversion properties192

Property ValueEndeca Property Name

The type of document, such as Microsoft Word 2003/2004,
Adobe Acrobat (PDF), JPEG File Interchange, and Extensible
Markup Language (XML).

Endeca.Document.Type

Note:
• You should not use these properties for filters. These properties are created after the files

are accessed, and therefore cannot be used to filter out files.
• If you crawl a data source without text conversion enabled (a probe crawl), none of these

properties are generated.

Record properties generated by CMS crawls
The CAS Server produces certain CMS properties regardless of whether document conversion is
enabled or not. The following record properties are common to CMS data sources.

Property ValueEndeca Property Name

The URI of the object which, if defined, allows an application to
access an object as a web resource.

Endeca.CMS.Uri

The user name of the person who updated the content item.Endeca.CMS.UpdatedBy

The type of CMS repository.Endeca.CMS.RepositoryType

The version of the CMS repository, such as 7.1.Endeca.CMS.RepositoryVer¬
sion

The ID of the repository.Endeca.CMS.RepositoryId

The unique ID of the item in the repository.Endeca.CMS.ItemId

The unique ID of the item's content piece.Endeca.CMS.ContentPieceId

The path to the item in the repository, including the name of item,
such as /dctm65/test.

In cases where an item resides in several locations, the property
value for both Endeca.CMS.Path and Endeca.CMS.Parent¬

Endeca.CMS.Path

Path depends on which location the CAS Server encounters first
when crawling the repository. This means that subsequent crawls
of the repository may produce different property values. For
example, if an item named doc1 resides in root/folder1/doc1
and root/doc1, the CAS Server can produce a property value
of either root/folder1/doc1 or root/doc1.

The path to the parent of the item in the repository, not including
the name of the item, such as /dctm65.

Endeca.CMS.ParentPath

The name of the item.Endeca.CMS.Name

The author of the item.Endeca.CMS.Author

true if the item is a folder, false otherwise.Endeca.CMS.IsFolder

Endeca Content Acquisition System Developer's Guide

193Record properties generated by crawling | Record properties generated by CMS crawls

Property ValueEndeca Property Name

The number of pieces of content associated with the item in the
repository.

Endeca.CMS.NumContent¬
Pieces

The length in bytes of the content as reported by the CAS Server.Endeca.CMS.ContentLength

The creation date of the item.Endeca.CMS.CreationDate

The last modified date of the item.Endeca.CMS.Modification¬
Date

The MIME type of the item.Endeca.CMS.MimeType

An ACL entry for a user or group that can read the content of the
item.

Endeca.CMS.AllowReadCon¬
tent

An ACL entry for a user or group that cannot read the content of
the item.

Endeca.CMS.DenyReadContent

An ACL entry for a user or group that can read the properties of
the item.

Endeca.CMS.AllowReadProper¬
ties

An ACL entry for a user or group that cannot read the properties
of the item.

Endeca.CMS.DenyReadProper¬
ties

Here are additional notes concerning record properties produced by CMS crawls:
• In addition to the properties listed above, an Endeca record may also contain properties that are

specific to a CMS repository that are passed through to CAS. Such properties have a prefix of
Endeca.CMS.Misc.

• CMS connectors may be inconsistent in displaying the format of ACL property values. For example,
property values could contain: user display name, user display name@domain, domain\user name,
domain\group name, or domain\role name.

CAS makes its best effort to return names in the form [domain\](user name), [domain\](group
name), and [domain\](role name), but CAS is limited by the capabilities of the underlying CMS and
the values the CMS returns in ACLs.

How CMS crawls handle multiple pieces of content
Some CMS repositories support items with multiple pieces of content. In these cases the CAS Server
outputs a record for the item and records for each piece of content.

For example, an item from the Lotus Notes repository could contain an attached PDF and an Excel
file.

After the crawl, the records for each piece of content will contain:
• All properties of the original item record, such as ACL user and group permission entries of type
Endeca.CMS.AllowReadContent

• A content piece identifier property Endeca.CMS.ContentPieceId
• An identifier of a specific record Endeca.Id. It is the concatenation of the Endeca.CMS.Repos¬
itoryId and Endeca.CMS.ItemId properties, and also the Endeca.CMS.ContentPieceId
(if present).

Endeca Content Acquisition System Developer's Guide

Record properties generated by crawling | How CMS crawls handle multiple pieces of content194

Example of generated records for items with multiple pieces of content

This example includes a portion of output for two records — the first is the root document that has
two pieces of attached content. The second is the first of the attached pieces. The Id property is
produced by concatenating the RepositoryId with the ItemId, plus the child record's Content¬
PieceId (if present), using a colon as a delimiter (shown in bold in the example):
<?xml version="1.0"
encoding="UTF-8"?>
<RECORDS>
 <RECORD>
 <PROP NAME="Endeca.Action">
 <PVAL>UPSERT</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.ContentLength">
 <PVAL>0</PVAL>
 </PROP>

 ...

 <PROP NAME="Endeca.CMS.Name">
 <PVAL>doc_with_attachment</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.NumContentPieces">
 <PVAL>2</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.RepositoryId">
 <PVAL>discussion</PVAL>
 </PROP>

 ...

<PROP NAME="Endeca.Id">
 <PVAL>discussion:doc_with_attachment</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.ItemId">
 <PVAL>doc_with_attachment</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.RepositoryType">
 <PVAL>Lotus Notes</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.RepositoryVersion">
 <PVAL>release 6.5</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceType">
 <PVAL>CMS</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceId">
 <PVAL>LotusNotesSource</PVAL>
 </PROP>
 </RECORD>
 <RECORD>
 <PROP NAME="Endeca.Action">
 <PVAL>UPSERT</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.ContentLength">
 <PVAL>54699</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.ContentPieceId">
 <PVAL>Attached.pdf</PVAL>
 </PROP>

Endeca Content Acquisition System Developer's Guide

195Record properties generated by crawling | How CMS crawls handle multiple pieces of content

 <PROP NAME="Endeca.CMS.RepositoryId">
 <PVAL>discussion</PVAL>
 </PROP>

 ...

<PROP NAME="Endeca.Id">
 <PVAL>discussion:doc_with_attachment:attached.pdf</PVAL>
 </PROP>

 <PROP NAME="Endeca.CMS.IsFolder">
 <PVAL>false</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.ItemId">
 <PVAL>doc_with_attachment</PVAL>
 </PROP>
 <PROP NAME="Endeca.CMS.MimeType">
 <PVAL>application/pdf</PVAL>
 </PROP>

 ...

 <PROP NAME="Endeca.Document.Type">
 <PVAL>Adobe Acrobat (PDF)</PVAL>
 </PROP>
 <PROP NAME="Endeca.File.Size">
 <PVAL>54699</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceType">
 <PVAL>CMS</PVAL>
 </PROP>
 <PROP NAME="Endeca.SourceId">
 <PVAL>LotusNotesSource</PVAL>
 </PROP>
 </RECORD>

...

</RECORDS>

Endeca Content Acquisition System Developer's Guide

Record properties generated by crawling | How CMS crawls handle multiple pieces of content196

Index

A
archive files, support for 51
archived output files 55

B
baseline updates, running 59, 61

C
CAS Document Conversion Module

options for 35
CAS Server Command-line Utility

creating a Dimension Value Id Manager 109
creating crawls 99
deleting a crawl 100
deleting a Dimension Value Id Manager 110
getting a crawl 103
getting all crawls 101
getting metrics for all crawls 114
getting specification of a module 97
getting the metrics of a crawl 115
getting the status of a data source acquisition 117
listing all module specifications 96, 105
listing crawls 105
listing data sources and manipulators 98
saving passwords for crawls 95
starting acquisition from a data source 106
stopping acquisition from a data source 107
updating crawls 108
generating dimension value Ids 111
getting dimension value Ids 112
getting dimension value specifications 113
sample crawl configuration file of a data source 24
sample crawl configuration file of a manipulator 26

changing logging levels 165
CIM Command-line Utility

creating components 120
deleting components 121
listing components 122, 123
overview of 119

cleaner
interval property 43

client state
overview 18

configuring a Record Store instance 42
crawls

output filename 54

D
deleted files, properties of 19

Dimension Value Id Manager 21
Document Conversion module

other supported formats 178
supported compressed formats 175
supported database formats 176
supported e-mail formats 176
supported multimedia formats 177
supported presentation formats 179
supported raster image formats 180
supported text and markup formats 182
supported vector image formats 183
supported word processing formats 184

E
Endeca CAS Server

changing host and port 171
CAS Document Conversion Module options 35
creating a Forge pipeline 76
flags for startup scripts 147
language identification of document 81
output files 54
overview 15
properties of deleted files 19
recommended file filters 37
record properties 187
specifying JVM arguments 147
starting 146
stopping 148

Endeca CAS Service log 167
Endeca Crawler

Document Conversion module
supported spreadsheet formats 181

Endeca Document Conversion Module
properties generated by 192

Endeca Record Store instance configuration 42
Endeca Web Crawler, running sample 62
errors

too many open files 172

F
file system properties 190
filters, overview of 37
flags for startup script 147
Forge sample applications

reading from Record Store 59, 61
writing to Record Store 58

G
generated record properties

for multiple pieces of content 194

group entry size, setting 172
GZIP Tar files, support for 51

I
ID_LANGUAGE expression 81

J
Jar files, support for 52
JVM arguments for crawls, specifying 147

L
language identification of documents 81
log, CAS Service 167
logging configuration files 165

M
multiple pieces of content in records 195

O
output records file

archived 55
naming format 54

P
partial updates, running 59, 61
pipeline

creating a record adapter 78
identifying language of records 81
overview 76

pipeline, creating a Forge 75

R
record adapter for pipeline, creating 78
record properties

CMS crawls 193
for deleted files 19

Record Store Command-line Utility
committing transactions 133
getting client state 135
getting configuration 134

Record Store Command-line Utility (continued)
getting last-committed generation ID 135
getting last-read generation 135
getting write generation ID 136
listing active transactions 137
listing generations 138
overview of 125
reading baselines 128
reading delta records 129
reading records by ID 130
rolling back transactions 139
running the cleaner 132
setting client state 132, 141
setting configuration 139
setting last-read generation 132, 141
starting transactions 142
writing records 127

S
sample applications

Forge reading from Record Store 59, 61
Forge writing to Record Store 58
Web Crawler 62

security 21
starting the CAS Server 146
stopping the CAS Server 148

T
Tar files, support for 52
too many open files error 172
transactions

overview 18

U
UNIX record properties 191

W
Windows record properties 191
workspace directory output files 54

Z
Zip files, support for 51

Endeca Content Acquisition System198

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to CAS and Crawling Data Sources
	Introduction
	Overview of the Endeca Content Acquisition System
	About the Endeca CAS Service
	About the CAS Server
	About the Component Instance Manager
	About the Record Store
	About record generations
	About transactions
	About client states
	Performance considerations when using a Record Store instance
	About deleted records from the Record Store

	About the Dimension Value Id Manager
	Security requirements

	Creating and configuring a crawl
	About creating and configuring crawls
	Sample configuration for a file system data source
	Sample configuration for a Record Store Merger data source
	Sample configuration for a manipulator

	Configuring a crawl to write to a Record Store instance
	Configuring a crawl to write to an MDEX compatible format
	Configuring a crawl to write to an output file
	Setting document conversion options
	About filters
	Configuring document conversion filters

	Configuring a Record Store instance
	Configuring a Record Store instance
	Configuration properties for a Record Store instance
	Change properties and new Record Store instances
	Disabling automatic management of a Record Store instance

	Running a crawl
	Running a crawl
	Order of execution in a crawl configuration
	Full and incremental crawling modes
	Crawls and archive files
	About writing records to a Record Store instance
	About the record output file

	Running the CAS sample applications
	About the sample CAS applications
	Writing records from Forge into the Record Store
	Reading records from the Record Store into Forge
	Reading records from multiple Record Stores into Forge
	Running the sample Web Crawler
	Using the CAS Server Java Client
	CAS Server Java Client Sample Files and Directories
	About the CAS Server Java Client Program
	Building and Running the Java Client with Ant
	Opening the cas-server-java-client project in Eclipse
	Running the operations of the Java Client

	Using the Record Store Java Client
	Record Store Client Sample Files and Directories
	About the Record Store Sample Client Applications
	Building and Running the Sample Writer Client with Ant
	Building and Running the Sample Reader Client with Ant
	Opening the recordstore-java-client project in Eclipse
	Running the operations of the Sample Writer Client
	Running the operations of the Sample Reader Client

	Loading data into an MDEX Engine
	Creating a Forge pipeline to read from or write to a Record Store
	Overview of a Forge pipeline
	Creating a Forge pipeline
	Creating a record adapter to read from one or more Record Store instances
	Creating a record adapter to read from crawl output files
	Creating a record adapter to write to a Record Store instance
	Identifying the language of records

	Creating a CAS crawl to write MDEX compatible output
	Overview of a CAS crawl that produces MDEX compatible output
	Loading dimension values into Record Store instances
	Required record properties for dimension values
	Length limitations on name and spec values

	Loading data records into Record Store instances
	Creating and configuring a crawl to write MDEX compatible output

	CAS Command Line Utilities
	CAS Server Command-line Utility
	Overview of the CAS Server Command-line Utility
	About CAS capabilities
	Saving passwords in a crawl configuration file
	Inspecting installed modules
	Getting the specifications of all modules
	Getting the specification of a module
	Listing modules

	Managing crawls
	Creating crawls
	Deleting a crawl
	Getting all crawls
	Getting a crawl
	Getting the incremental support status of a crawl
	Listing crawls
	Starting acquisition from a data source
	Stopping acquisition from a data source
	Updating crawls

	Managing dimension value Ids
	Creating a Dimension Value Id Manager
	Deleting a Dimension Value Id Manager
	Generating a dimension value Id
	Getting a dimension value Id
	Getting a dimension value specification

	Viewing crawl status and results
	Getting metrics for all crawls
	Getting the metrics for a crawl
	Getting the status of a crawl

	Component Instance Manager Command-line Utility
	Overview of the CIM Command-line Utility
	Creating a Record Store
	Deleting a Record Store
	Listing components
	Listing types

	Record Store Command-line Utility
	Overview of the Record Store Command-line Utility
	Writing tasks
	Writing records

	Reading tasks
	Reading baselines
	Reading delta records
	Reading specific records

	Utility tasks
	Cleaning a Record Store instance
	Clearing the last read generation
	Committing transactions
	Getting the configuration of a Record Store instance
	Getting the ID of the last-committed generation
	Getting the last-read generation
	Getting the ID of the write generation
	Listing active transactions
	Listing generations
	Rolling back transactions
	Setting the configuration of a Record Store instance
	Setting the last-read generation
	Starting transactions

	Administering CAS
	Running CAS components
	About running CAS components
	Running the Endeca CAS Service from the Windows Services console
	Starting the Endeca CAS Service from a command prompt
	Command-line flags to CAS Service

	Stopping the Endeca CAS Service from a command prompt

	Backing up and restoring CAS
	Coordinating backups and restore operations
	Online backup and restore operations
	Backing up crawl configurations
	Backing up the last generation of Endeca records
	Restoring crawl configurations
	Restoring the last generation of Endeca records

	Offline backup and restore operations
	Backing up CAS state
	Restoring CAS state

	Configuring SSL
	About configuring SSL in the Content Acquisition System
	Enabling SSL for the Endeca CAS Service
	Enabling SSL for CAS Console for Oracle Oracle Endeca Workbench
	Enabling SSL for the CAS Command-line Utilities
	Enabling the Endeca Web Crawler to write to an SSL enabled Record Store instance
	Enabling SSL for Forge record adapters

	Configuring logging
	Configuring logging for CAS components and command-line utilities
	Setting log properties for troubleshooting CMS connector issues
	Excluding failed records from the CAS Service log file
	Enabling log timing information for crawl processing steps
	Examining the Endeca CAS Service log

	Tips and troubleshooting CAS
	Modifying the CAS Server connection information for the CAS Console
	Modifying the CAS Service temporary directory
	Responding to a "Too many open files" error
	Setting the group entry size

	File Formats Supported by the CAS Document Conversion Module
	Archive formats
	Database formats
	E-mail formats
	Multimedia formats
	Other formats
	Presentation formats
	Raster image formats
	Spreadsheet formats
	Text and markup formats
	Vector image formats
	Word processing formats

	Record properties generated by crawling
	Common record properties
	Record properties generated by file system crawls
	Common File System properties
	Record properties for file system crawls on Windows
	Record properties for file system crawls on UNIX
	Limitations with ACL properties

	Document Conversion properties
	Record properties generated by CMS crawls
	How CMS crawls handle multiple pieces of content

	Index

