ORACLE’

INSURANCE

Oracle® Insurance Calculation
Engine (OICE)

Activity Processing

Version 9.7.0.0

Documentation Part Number: E51103-01
December, 2013

ORACLE’

ORACLE
INSURANCE

Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions

Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Release 9.7.0.0 OICE Activity Processing 2 of 23
Revised: 11/21/2013

ORACLE

INSURANCE
Table of Contents
g (oo [UTo1 i o] o WU PP P PP PUPPPP 4
[OFN 1S3 (o]0 0 [=T ST U] o e To] o ST PPP PP 4
OVBIVIBW ...ttt ettt ettt ettt ekttt e ookttt e ook ket e e 4a ke et e e 1A ke et e 4 4Rk et e a4 4H R et e a4 1Ak e e e e e 4a ke e e e e 4a b e et e e an b e e e e e anbee e e e anbnneeeanbreeeeanes 5
SNAred RUIES ENQINE......coiiiiiiiie ittt ettt e ettt e e e aa b et e e e sabe e e e e aabe e e e e aabe e e e e anbe e e e e aabb e e e e snbnneeeabrneeeaae 6
Interface Between the Shared Rules Engine and OICE..............ccc e, 7
UNAErstanding ACHIVILIEScooiiiiiieiiii ettt ettt e e e s bt e e e e a b et e e e sa b et e e e aabe e e e e aabe e e e e anbr e e e e anbeeeeennnns 9
TEANSACTION TYPES ..teeieiiteiee ittt e e ettt e ettt e e e ettt e e e st b et e e e aa b et e e e aa b et e e e aabe e e e ek b et e e e ek ke e e e e aa b e e e e e R be e e e e asbe e e e e anbn e e e e anbaeeeennnns 9
A VY Ty DS i 11
F Yo 1)1 £= LU L O PSP PP UPUPPRPTI 12
Subcomponents of the Shared RUIES ENQGINEcoooiiiiiiiiiii it 16
List of Processes as Part of ACtivity ProCeSSINGcocvvviiiiiiiiiee e 17
LTl CT - 1o £ PP PP PPPTPPPRRPPR 18
PaSTIANSACHONGENEIALONeeiiitiiiei ittt ettt ettt e s it bt e e e sttt e e o a bttt e e aab b et e e aab bt e e e enbbe e e e ensbeeeeennbeeeeenreas 20
S T=Te =T gL OF= 1o U] L o] (C L= =T = (o] S PPPPPPPPPPNt 21
=T = g Lo [T a1 = Ted (o Y2 PO RPPUPRR 21
[V gTetilo] o [OF=1 [©1=T o =T = (o] S PP PPPUPRR 21
SCrEENEVENIGENEIALONuiiiiiiiii ittt e e e e e e s s s e e e e e e s s s bbb e e e e e e e s s saasbaneeeaeeeeeas 21
REQUIrEMENTPIOCESSOIGENEIALON eiii ittt ettt ettt ettt et e e s bt e s e bt e e s ettt e e s e b be e e e aabbe e e e enbreeeenbaeeeeanneas 21
= L1 o PP PPPPPPPPPPPPNE 22
LT =0 £ TP PO P O PP PPPPPPPPPPRTI 23
Release 9.7.0.0 OICE Activity Processing 30of 23

Revised: 11/21/2013

ORACLE
INSURANCE

INTRODUCTION

Activity processing is a core component of the Oracle Insurance Calculation Engine (OICE) system. Every
administrative event that occurs in an insurance policy, plan, client or company is described as an activity in the
system. The purpose of this guide is to provide a comprehensive explanation of activity processing in OICE.

CUSTOMER SUPPORT

If you have any questions about the installation or use of our products, please visit the My Oracle Support
website: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Release 9.7.0.0 OICE Activity Processing 4 of 23
Revised: 11/21/2013

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
INSURANCE

OVERVIEW

An activity is an event that may or may not change relative data based on a business’s requirements.

An activity is an instance of a transaction. A transaction can be considered as synonymous to a class and an
activity is synonymous to the object that is an instance of that class. Transactions are XML rules that are
configured according to business requirements. They are configured using the Oracle Insurance Rules Palette.
Transactions define input variables, processing logic and lists of changes made to data such as policy
information. Transactions can be defined in the system at the policy, plan, client and company level depending
on the type of data they need to execute. Some typical OICE transactions at the policy level are premium,
billing and anniversary processing.

ORACLE’ Oracle Insurance Policy Administration

lssue (

1/2002

Premium (0

From Date:

POLICY CLIENT INQUIRY DISBURSEMENT SUSPENSE TABLES

» POLICY: GLPT31012263 Q, inquiry ~ i J% Add Activity

= POLICY Policy Name: TERM_02 Plan Date: 03/01/2002

= 3 ACTIVITIES Policy Number: GLFT31012263 Company Name: Primary Company 1
COPayment (Policy Status: Active Plan Name: Guaranteed Level Premium Term
Anniversa

AACTVITY

BilingStart (02/0
COPayment { Display [Shadows [T als [T Futures [Documents I Financial

To Date: [01/28/2031 B2 Fiters: [Fiter Al Activiie x|

o
Front-end OICE User Interface Listing Activities that Occurred at the Policy Level

Refresh [~ Auto-Process | Process All
CoverageCalculation
= ROLES Maximum Results |10 =
T SEGMENTS Activity Activity Date Status Detail Action
COlPayment 03/01/2003 Pending
ﬁ] Anniversary 03/01/2003 Pending
Activities — | B gngeian 02/01/2003 Pending
COlPayment 03/01/2002 Active 2,240.00 USD
B ssee 03/01/2002 Active iolcA
FE Premum 03/01/2002 Active 234000usD O] @
El CoverageCalculation 03/01/2002 Active jO @

i=0racle Insurance Rules Palette

File Edit ‘iew Navigate Source Tools ‘Window Help

5P Transactions

: Cytle Transactions
[Plan Transactions
Paolicy Transaction
H-lg - Add Transactiol

Tra

P Anniversaryxml
g Copy Books

I-l }'%@}j G ¢ & panel selector:
Main Explarer 40 x ‘ Anniversary ><1
General | Allocations | Figlds | Events | IMath Assignment

associated XML rule cpacnvariable VARTABLENAME="EffectiveDatelv™ TYI
S-la Anniversary q—ronfiguration o yoihivariable VARTABLENANE="Cooling?eriodDays” |

Functions <Paramneters>
Spawns <Parameter NAME="pNextModallate'|
</Parametersr
@ Attached Rules < Mathvariables
AutaRebalance 3 <MathVariahle VARTARLENAME="NextMonthaversaryDa
CostAwveraging <MathVariable VARIABLENAME="MonthaversaryMarket]]
DirectedDeductionMegat cDarameteras
InitialFundReallocation <Parameter NAME="pNextModalDate']
Issue </Parameters:
E-lg Premiurm < /MathVariable»

1 <Transaction>
3 <EffectiveDare STATUS="Enahled” TITLE="Issue Date” TY¥FE="
= <Math
SMestTeriahless
nsactions and «MathVariable VARIABLENAME="0One" TYPE="VALUE™ D

<MathVariahle VARIABLENAME="CoolingPeriodEndDat
«MathVariabhle VARIABRLENAME="ReallocationMarketD

Rules Palette Interface for Con

Release 9.7.0.0

figuration of Transactions that Become Activities

OICE Activity Processing
Revised: 11/21/2013

5of 23

ORACLE
INSURANCE

SHARED RULES ENGINE

The Shared Rules Engine (SRE) component performs activity processing for the OICE application. Activity
processing manages insurance events. SRE loads a transaction and processes the data according to the
business rules and math associated with the transaction. When processing completes, the results are sent back
to the calling application. The database stores both the configured transaction rules and the actual insurance
data.

| Interface Implementauon:>

#; Reireve Daia
Result

The above diagram shows a high level interaction between the calling application and SRE. The calling
application calls SRE and provides input data and an interface to callback the calling application for extra data
needed. SRE does not directly make calls to the database, except for loading rules attached to the current
activity. SRE loads the transaction and retrieves any other rules associated with the transaction. When
processing is complete, the results are packaged and returned to the calling application and then the results are
committed to the database.

High Level Interaction Diagram

There are five components of SRE that come together in processing an activity. They are as follows:
1. Processor
2. Generators
3. Math
4. Application Process Execution (Part of the calling application, but SRE calls into the application process
execution during activity processing.)
5. Extensibility

Release 9.7.0.0 OICE Activity Processing 6 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

INTERFACE BETWEEN THE SHARED RULES ENGINE AND OICE

This section describes how SRE and the calling application communicate. Currently SRE and the calling
application are not completely separated with interfaces. The calling application directly calls SRE to start
processing and SRE libraries are required for the calling application to be compiled.

To begin activity processing, the calling application calls a process method in SRE’s class; ActivityProcessorBll.

The process

method has three input parameters and returns an ActivityProcessResultsDcl.

Input Parameters

1. VariableHashMap — A collection of key-value pairs. The key is a string and the value is an instance of
VariableDcl. Data is flattened into a key-value pair for lookup.

Activity:FieldsXX would be used for activity data.
Activity:MultiValueField:FieldsXX would be used for activity multivaluefield data.
Policy:FieldXX would be used for policy data.

Transaction: XXXX would be used for transaction data

Plan: XXXX would be used for plan dataClient: XXXX would be used for client data
Company:XXXX would be used for company data

Address: XXXX would be used for address data

Program: XXXX would be used for program data

Withholding: XXXX would be used for withholding data
AllocationFromFundGuidArray would be used for From allocation data
AllocationToFundGuidArray would be used for To allocation data

2. 1ApplicationCallback — An “umbrella” interface for all callback interfaces. The callback interfaces are

as follows:

Release 9.7.0.0

DataRetriever — Executes SQL statements and named queries related to activity processing.
Results from the database are returned to SRE as DataDcls, which contain row and column
details from the result set.

RateRetriever — Retrieves rates depending on the rate description and the criteria for the rates.
The calling application can store the rates for insurance in any manner and implement this
interface for processing needs specified in the rules.

IActivityTaskExecutor — Processes other activities as part of this parent activity. This is used
especially when running backdated activities. To process backdated activities, all active activities
that appear in the activity timeline after the backdated activity must be undone and then the
backdated activity must be processed. This interface is used to run other activities and commit
them as part of the outer processing activity.

IPolicyValuationBIl — Values a policy and returns the cash value. It also is used to locate details
about the funds and their cash value, as well as deposits and removal history.

ICurrencyBII — This interface is used to load currency and round currency information.
IActivityFunctionFactory — This interface is used to create activity functions.

OICE Activity Processing 7 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

= JAddressCallbackBIl - This is the callback interface for the AddressScreen rule.
= |ClientCallbackBII - This is the callback interface for Client details.

3. ActivityProcessType — An enumerated type (enum) that specifies the type of activity processing
logic.

Output Result

ActivityProcessResultDcl — A complex Dcl that contains the inputs passed, math calculation variables,
errors if applicable and a list of updates, inserts and deletes to the data as part of the rule processing. This data
is then iterated to be updated to the database.

Release 9.7.0.0 OICE Activity Processing 8 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

UNDERSTANDING ACTIVITIES

Activity processing is controlled by various attributes associated with the activity. Activities are instances of
XML transaction rules being applied on data at a specific level in the application. The AsActivity table stores
records for activity processing that house applicable business event data. The AsTransaction table stores the
XML transaction logic that processes activity data. There are three important areas to focus on when
discussing activities: transaction type, activity type and activity status. Each of these areas is tracked using
code values. These codes may be found in the AsCodes table or from Admin Explorer | Codes in the Rules
Palette. The code values used in activity processing are used by the system and should not be changed.

TRANSACTION TYPES

The transaction type code, which is stored in AsTransaction in the XML transaction rule associated with the
activity, plays an important role in activity processing. The transaction type code specifies the type of data or
the level where the activity will process. This then drives the type of processing, such as math or valuation, that
should be executed by the system. The type code definition can be located in the AsCode table under

AsCodeTransactionType.

OICE Transaction Types

Transaction Type

Description

Policy Financial

This transaction executes at the policy level and may or may not have financial impact. It participates in
undo/redo and can be recycled from the user interface.

Policy Financial Non Reversible
Non Reversing

This transaction executes at the policy level and may or may not have financial impact. It does not participate
in undo/redo and cannot be recycled via the user interface.

Policy Document

This transaction executes at the policy level and generates documents or reports. It participates in undo/redo
and can be recycled from the user interface.

Policy Document Non Reversible
Non Reversing

This transaction executes at the policy level and generates documents or reports. It does not participate in
undo/redo and cannot be recycled from the user interface.

Policy Financial Reversible Non
Reversing

This transaction executes at the policy level and may or may not have financial impact. It participates
partially* in undo/redo and can be recycled from the user interface.

Policy Document Reversible Non
Reversing

This transaction executes at the policy level and generates documents or reports. It participates partially* in
undo/redo and can be recycled from the user interface.

Plan Financial

This transaction executes at the plan level and may or may not have financial impact. It does not participate in
undo/redo and can be recycled via the user interface.

Plan Financial Non Reversible
Non Reversing

This transaction executes at the plan level and may or may not have financial impact. It does not participate in
undo/redo and cannot be recycled via the user interface..

Plan Document

This transaction executes at the plan level and generates documents or reports. It does not participate in
undo/redo and can be recycled via the user interface.

Plan Document Non Reversible
Non Reversing

This transaction executes at the plan level and generates documents or reports. It does not participate in
undo/redo and cannot be recycled via the user interface.

Client Financial

This transaction executes at the client level and may or may not have financial impact. It does not participate
in undo/redo and can be recycled via the user interface.

Release 9.7.0.0

OICE Activity Processing 9 of 23

Revised: 11/21/2013

ORACLE
INSURANCE

Client Financial Non Reversible
Non Reversing

This transaction executes at the client level and may or may not have financial impact. It does not participate
in undo/redo and cannot be recycled via the user interface.

Client Document

This transaction executes at the client level and generates documents or reports. It does not participate in
undo/redo and can be recycled via the user interface.

Client Document Non Reversible
Non Reversing

This transaction executes at the client level and generates documents or reports. It does not participate in
undo/redo and cannot be recycled via the user interface.

*Partially: May be inserted between existing active activities without invoking undo-redo on any of the
processed activities after it. Once processed, will be recycled/reprocessed due to the reprocessing of any
“Policy Financial” or “Policy Document” activities prior to it.

Release 9.7.0.0

OICE Activity Processing 10 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

ACTIVITY TYPES

Each activity record has an activity type code that is stored in the AsActivity table. The type code definition can
be found in the AsCode table under AsCodeActivityType. These types should not be confused with the
transaction type code or the status of an activity, but instead, used in conjunction with them to understand how
an activity was generated and what status the activity is currently in. Activities can be generated by an end user
or the system may automatically generate activities because a dependent activity’s data was changed.

OICE Activity Types

Code Name Code Value | Description

Natural 01 Activity entered manually by a user.
Activity that was spawned for the first time from a natural activity. A spawned activity even though
system generated can be considered a natural activity because the user manually processed the activity
that spawned it.
Activity created by a web service.

Reversal 02 Reversal activity that was created by an end user when either manually deleting or recycling an activity.
Spawned activity that was reversed because the originating activity was manually reversed.

Undo 03 Activity that is created to reverse an active activity that is created by the system as part of running
another reversal or as part of processing a pre-dated activity.
This behaves exactly as the Reversal but just differentiates itself as system generated.

Redo 04 System generated activity that was automatically created due to the generation of an Undo activity.

Deleted 05 Currently not used.

Release 9.7.0.0

OICE Activity Processing 11 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

ACTIVITY STATUS

The activity statuses are fundamental for activity processing and historical recording. They indicate at the
activity level the status of that activity record. In comparison, the activity types section records the type of
activity that was processed. The activity status, with the date stamp in current and history records, identifies the
significant point of process and provides internal control for activities.

Status Code

Code Name Code Value Description
Pending 02 The activity is not yet processed.

Pending data requires action before applying to current processing and math calculation. All
required data must be entered and the activity processed to change the status from pending
to active.

Active 01 Indicates the activity is active.

Refers to current data that has completed activity processing and math calculation. This
includes processing, any changes to table and inserting XML to write to the table.

No more processing can be done on this activity.

Pending Ready 09 An attempt was made to run the activity but was unsuccessful.

NUV Pending 13 The activity is active but it does not have NUVs for some or all of the funds associated with
activity processing. This will process later when NUVs become available.

This status does not invoke undo/ redo processing for future active activities.

Gain Loss Pending 14 This activity is active but gain loss calculation is pending and is not complete. This will be
processed later when NUVs are available.

This status does not invoke undo/ redo processing for future active activities.

Shadow 12 This activity is effectively deleted from the system from an end user perspective as it is a
result of an activity being reversed.

Itis available in the database and system for auditing purposes.

Pending Shadow 34 An activity whose data was entered, but never processed and then deleted.
Requirement Pending 57 An activity that has pending activity level requirements has this status.
Queued 58 If the Transitions/Queue configuration is present and there are prior activities in NUV Pending

status that share allocation funds with the current activity, the activity will go into Queued
status when either a user or nightly cycle attempts to process the activity. It will remain in this
status until there are no prior activities in NUV Pending status that share common funds in
the activity allocations.

Processing Wait 97 This status implies that the activity is executing a long running task and is waiting for that task
to complete.
Processing Stopped 98 This status implies that the activity has stopped processing a long running task and has

ended in an error.

Sub Status Code

Code Name Code Value | Description

Cancelled 01 Only applies to policy financial activities in Status Code 12 and 34. Activities in this sub
status code are visible by default on the policy activity screen activity grid and are displayed
as Cancelled.

Regular activities in Status Code 12 and 34 without a sub status code are not displayed by
default on the policy activity screen activity grid.

Release 9.7.0.0 OICE Activity Processing 12 of 23
Revised: 11/21/2013

ORACLE’

INSURANCE
Error Status Code
Code Name Code Value Description
No Errors 01 Activity did not generate any business errors.
Business Error 02 Activity generated business errors.
Release 9.7.0.0 OICE Activity Processing 13 of 23

Revised: 11/21/2013

ORACLE
INSURANCE

Activity Processing Flow

The activity processing flowchart reveals the system steps.

Start — The shared rules engine receives a request from OICE.
The processing proceeds only if the activity is not active.

If “Complete” — If standard activity processing should be
invoked. Value of ActivityProcessType.

It is sent by OICE. It has three possible values: COMPLETE,
SKIP_UNDOREDO_GENERATION or QUOTE. Strip down
processing is done for options other than COMPLETE. QUOTE
is for quoting an activity. SKIP_UNDOREDO_GENERATION for
Run Undos non-reversing activities, undo processing and for a specific
instance during cycle processing after processing one activity in
a policy. COMPLETE is the default option.

If Complete

A A Run Undos — This step looks for all pending undo activities that
:\lo enerate Undo)) o
Redo need to be run with an effective date after the current activity

effective date and executes them. This logic calls back into
OICE and it calls the shared rules engine in recursion to execute
the undo activity. If there are no activities in future relative to the
Run Undos current then this step is skipped.

Generate Undo/Redo — This step looks for all activities that are
active with an effective date after the current activity effective
date. It creates an Undo/Redo for those activities.

Load Processor

Move ready to pending — This looks for activities in
PendingReady (09) status on or before the current activity, and
moves them to Pending (02) status.

Process
Run Undos — If in the previous steps there are any activities

generated then this step runs the undos of the activities
generated.

(_—) Run related undo — This step checks if this activity is created by
recycle and corresponding UNDO is still pending then execute
here to make sure it is executed as the last before
processWithoutUndoRedoGeneration

Load Processor — This loads the corresponding processor
depending on the activity type code, activity status code and
transaction type code.

Release 9.7.0.0 OICE Activity Processing 14 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

Process - Call the processor process method. This is explained in detail in the next section of this document.

Release 9.7.0.0 OICE Activity Processing 15 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

SUBCOMPONENTS OF THE SHARED RULES ENGINE

Depending on the activity type that is sent for processing, an appropriate processor is initiated that handles the
processing steps. The different processing types and diagram are as follows:

If Undo/
Reversal

Yes

Return
UndoProcessorBll

If NuvPending/
GainLossPending

Return

Yes

NuvPendingPolicyFinanci

alProcessorBlIl

If Policy/Plan/
Client Financial

Yes

Return

XXFinancialProcessorBII

Yes

Return
XXDocumentProcessorBlIl

Document

Release 9.7.0.0

OICE Activity Processing

Undo/Reversal Activity — Activity is already
processed and it needs to be undone. Handled by
UndoProcessorBll.java.

Nuv Pending/Gain Loss Pending Activity —
Activity is processed and is in active status, but
some NUV’s are missing or Gain Loss calculation
is missing due to missing data. Handled by
NuvPendingPolicyFinancialProcessorBll.java.

Policy Level Activity — Activity at the policy
holder that impacts the policy alone. Handled by
PolicyFinancialProcessorBll.java.

Client Level Activity — Activity at the client level
that impacts client data and might impact all
policies the client holds. Handled By
ClientFinancialProcessorBll.java.

Plan Level Activity — Activity at the plan level that
aggregates all policies in the plan like reports or
other changes to the plan. Handled by
PlanFinancialProcessorBll.java.

Document Generation — Activities that generate
only reports are handled by
DocumentProcessorBIl classes. Separate classes
exist for Policy Level Documents
(PolicyDocumentProcessorBIl), Plan level
documents (PlanDocumentProcessorBlIl) and
Client level Documents
(ClientDocumentProcessorBll).

16 of 23

Revised: 11/21/2013

ORACLE
INSURANCE

LIST OF PROCESSES AS PART OF ACTIVITY PROCESSING

Depending on the processors, different sections of activity processing are executed. The processes are as

follows:

doPreliminaryForForward — Checks the transaction’s eligibility for processing and loads NUVs for
funds and prepares the activity for processing.

doSuspense — Processes suspense for funds received.

doValuation — Values the policy of all funds and calculates the cash value and other variables. This is
called only when the transaction calls for the valuation in its rules. SRE calls the calling application to
do the valuation using the interface. The calculated values are later used in other sections of activity
processing.

doMath — Calculates the math section of rules.

doBusinessLogic — Runs the application process execution associated with the activity.
doAssignment — Runs assignment processing.

doTransition - Processes Transition element in Transaction Xml. If required, moves activity to Queued
status and modifies its effective date.

doPostAssignmentValidation - Processes the PostAssignmentValidateExpressions rule overridden at
the Transaction level thus enabling validation and creation of business errors after Assignment
processing.

doDisbursement — Runs dishursement processing.

doAccounting — Runs accounting for bookkeeping purposes.

doSpawn — Runs spawn logic to spawn new activities based on the transaction’s specific rules.

There are various sub processes that run during activity processing. Processors like Undo and NuvPending run
a few of these and also run other processes, such as loading the changes that happened during activity
processing and reversing those changes.

Release 9.7.0.0 OICE Activity Processing 17 of 23

Revised: 11/21/2013

ORACLE
INSURANCE

GENERATORS

Generators are classes that produce other classes for execution. XML rules are configurable with expressions
and conditions, and generators are used to execute these rules. Generators are responsible for loading the
rules, performing error checking, translating the rules and creating java source code at run time for the rules
then compiling them into classes. They also create an instance of the run time generated class and return them
to the caller for execution.

Generators have the following functions:
= Load rules.
= Parse rules and check for errors. Report Errors if needed.
= Translate rules to java code and compile the class.
= Cache the translation for next time lookup.

Generators run in the modes described below. The mode can be set in the application property file, such as
PAS.properties. Information regarding the PAS.properties file can be located on Oracle’s Technology Network..

The PAS.properties file section where you set the application mode:

#H

application mode (DEVELOPMENT or PRODUCTION)
Development mode is where configuration changes are allowed.
Production mode is where configuration change is a new release and JVM is restarted when they are

changed.
H

ke

application.mode= DEVELOPMENT

In DEVELOPMENT mode the system allows rules to be changed in the database during application runtime.
This mode should only be used during active development. Generators load the rules every time, generate a
hash key and cache the generated classes associated with the hash key. If the rules are changed using Oracle
Insurance Rules Palette, then the hash key generated will be different, which will force the generator to
translate and compile again. If the rules are not changed then it reaches out to its cache and returns the
cached instance.

application.mode= PRODUCTION

In PRODUCTION mode the system does not allow the changing of rules. If rules are modified, it requires that
all JVMs be stopped and restarted so that caches are cleared. In production mode, rules are cached as well as
the translated classes. Hence no check is made to ensure changes.

Generators support debugging mode and non-debugging mode. The Rules Palette can debug into transactions
and do a line by line execution of the math section using a web service. In order to debug via the Rules Palette,
the application should be started in debugging mode. Debugging mode adds a lot of extra information to enable
remote debugging, and therefore, generators create extra lines of code.

Release 9.7.0.0 OICE Activity Processing 18 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

The PAS.properties file section for settings debugging:

#H

T

This property allows remote level debugging or not. Yes or No.
#.

T

debug.remoteDebugging=No

If set to No, then the application will not support remote debugging at runtime. If set to Yes, then remote
debugging is supported. It should NEVER be set to Yes in a Production environment.

To support developer debugging of activity processing, Generators can save the generated classes to a local
file system if configured in the property file. If debug.ldentiyTranslator is set to Yes, then in the java files
generated, at the end of each file, it will add a comment identifying the translator class and the line number that
generated that line of code. This is extremely useful in debugging the generated source code and changing it
for future needs.

The PAS.properties file section of settings for debugging properties:

#H

ke

Directory to save generated source code.

This property will be used to debug issues with sre processing.

Generated source code while processing will be saved in the

directory specified. Only to be used in Non Production environment.
debug.identifyTranslator will write comments for every line identifying

the translator(line number) that generated that part of code.
H

ke

debug.SaveGeneratedClass=Yes
debug.identifyTranslator=Yes
debug.SaveGeneratedClassDirectory=c:\\temp

There are different types of generators for different purposes. A few are described in the next section of this
document.

Release 9.7.0.0 OICE Activity Processing 19 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

ules
ey

Release 9.7.0.0

ache

»l

PASTRANSACTIONGENERATOR

PasTransactionGenerator is a Generator specific to OICE transactions. It
understands the rules of the OICE transaction and generates the classes
suited to its processing needs. All generated classes by this Generator
extend from PasTransactionBll, which implements the basics of OICE activity
processing.

Logic Flow of the Transaction Generator

Start — Shared rules engine calls the static method in the Generator for
activity processing. PasTransactionGenerator.
getTransactionBlIForProcessing

Get Generator Instance - Creates an instance of a generator class per
transactionGUID. There is only one instance of the Generator per transaction,
but many instances of the Generator for different transactions. This prevents
multiple threads calling to process activities of the same transaction type and
simultaneously translating the same rules. Only one thread translates the
rules for a transaction and other threads, it there are any, wait for the first
thread to complete. It then uses the class for processing.

Production Cache — The Generator then looks at the cache to see if a class
exists for this transactionGUID. In Development mode, the cache will not
contain the key. In Production mode, if the transaction is already translated, it
will pick it up and return.

Load Rules, Compute HashKey — If false in the above decision, the
Generator loads the rules from the database. It computes the unique hash
key for the rules XML.

Check Cache — It then checks in the cache to see if it has a class file for the
hash key generated. In Development mode, if the transaction is updated then
the hash key will be different and it will force the Generator to translate again.

Generate — It will parse the rules, translate the rules using translators and
then compile the generated java classes. It also saves to the file system if
specified in the property file.

Update Cache — It updates the cache depending on development or
production mode for future use. Future calls with the same transaction GUID
and same hash key are not translated.

Return Class — Returns the instance of the generated class to the caller.

OICE Activity Processing 20 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

SEGMENTCALCULATORGENERATOR

SegmentCalculatorGenerator is used to create classes at runtime for segment calculation based on the rules.
This creates classes specific to the OICE system. SegmentCalculator follows the same algorithm as the
PasTransactionGenerator except that it has only one instance of the generator class for all segment rules
where PasTransactionGenerator has one instance per transaction GUID. At any given point of time in a JVM,
only one segment calculation can be translated.

Note: If there are multiple requests to retrieve a segment calculator class, one gets through and others are
blocked until the class is returned from the cache or translated and compiled.

MATHENGINEFACTORY

This is the stand alone math Generator. This class is not named like other classes, which end in the word
Generator. It is good to note this, to avoid confusion regarding it being a Generator. The MathEngineFactory
loads the rules with only math sections and creates a class that executes the math rules and returns the results.
This is an independent math generator that is used by valuation, exposed computation and any module that has
math sections that need to execute.

FUNCTIONCALLGENERATOR

FunctionCallGenerator is used to create function code. The generated function rule classes are embedded
within the transaction, segment or math classes. These Generators are not thread synchronized because
currently they are called from one of the above generators and they are throttled above.

SCREENEVENTGENERATOR

There are four types of ScreenEventGenerators: OnLoadGenerator, OnSubmitGenerator, OnClickGenerator
and OnChangeGenerators. These are used to process the rules at three different events of the application.
They are not related to activity processing but part of the shared rules engine as they involve processing math
calculation.

REQUIREMENTPROCESSORGENERATOR

The RequirementProcessorGenerator generates Java code for requirement processing based on the
configuration provided in the Requirement Definition XML. The generator is a part of the shared rules engine
but is not actually related to activity processing.

Release 9.7.0.0 OICE Activity Processing 21 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

MATH

The Math module is a sub-component of the shared rules engine, which is responsible for executing any math
sections in the rules. In arule, all tags between the <MathVariables> element are handled by this sub-

component.

Conceptual Math Functionality

MathVariables Element Mathy Dal List<MathStatementDcl> JavgMathTranglatorBlII ProcessContext

Conceptual Math Functionality

1. The Generator that generates java source for the <MathVariables> section calls the MathDal with the

location to the MathVariables element in the rules XML file.
. The MathDal classes parse the element and its sub-elements and create a list <MathStatementDcl>

and returns it as an output. MathStatementDcl represents the entire tree hierarchy of the math section

with loops and MathlF’s.
3. The above List <MathStatementDcl> is sent to JavaMathTranslatorBll for translation. Each math

statement Dcl is translated and the corresponding java code for that statement is set in the

MathStatementDcl itself.
4. JavaMathTranslatorBll returns an instance of ProcessContext that contain lots of information. It

N

contains:
= List of MathVariables declared
= List of functions called
= Other structures for dependency and debugging purposes
5. Generators get the ProcessContext and generate the final class with variable declaration, statements
and function calls for compilation and execution.

Release 9.7.0.0 OICE Activity Processing 22 of 23
Revised: 11/21/2013

ORACLE
INSURANCE

TRANSLATORS

Translator classes are the most important piece of the Math sub-component. Translators are responsible for
translating every MathStatementDcl to its corresponding java source code. Translators perform error checking
and also code generation for the single XML line.

Each <MathVariable> type that is defined by the TYPE attribute has one or more translators associated with it
depending on the operations allowed on the math type and its complexity. MathVariableType.java, an enum,
defines the list of all MathVariable TYPE and the corresponding translator classes. JavaMathTranslatorBlI|
iterates through the MathStatementDcl and invokes the corresponding translator with the MathStatementDcl to
perform the translation.

Note: Please see the XML Configuration Guide in the OICE Documentation Library on Oracle’s Technology
Network for more details regarding XML schemas and definitions used by various OICE rules.

Release 9.7.0.0 OICE Activity Processing 23 of 23
Revised: 11/21/2013

