ORACLE’

INSURANCE

Oracle® Insurance Calculation
Engine (OICE)

Architecture Guide

Version 9.7.0.0

Documentation Part Number: E51103-01
December, 2013

ORACLE’

ORACLE
INSURANCE

Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions
Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Release 9.7.0.0 OICE Architecture Guide 2 of 37
Revised: 3/22/2013

ORACLE

INSURANCE

Table of Contents
INTRODUCTION . ettt ettt ettt ettt e oo e e oo oo e oo e e e e e oo e e e e e e e e e o e e e e e e e o e aaaeaeaeaeaaaaaaaaaaaaans 5
01011 (0] 4 =T AT N o o Lo o APPSR PT PP PUPPPPTPPR 5
PRODUCT OVERVIEWciiiiiiiet ettt ettt ettt ettt ettt ettt ettt ettt oo e et et e et e et et e e et et et et et et et et et et et e e et e e e e et et e e e e e e aeaaeaaaeeaas 6
Accelerates Speed to Market for New and Adapted Products............cccceeiiiiiieiiiiieeiniiiee e 7
Improves Customers and Channel Loyalty through Better Servicingccccvvvveeeeeiiiciineeeee e 7
Eases Integration With Other SYSTEMIScoiuiiiiiiiee et sbe e e e sbneee e 7
KEY FEATURES AND BENEFITS OF OICE SOLUTIONS......cciiiiiiiiiiiiieieeee ettt ettt 9
Line-of-business and ProdUC AQNOSHICo.vuiiiiiiiiiee ittt e et e e e e snneeeean 9
Web-based, Modern, Highly EXENSIDIEuuuiiiiiiiiiiiiiiieiiiieee e eeenenenrereenrersrnrnrnne 9
Unparalleled, Flexible Rules ConfiQUIAtioNc.ueiiiiiiiiiiiiiiee et 9
POWEITUI RUIES ENQINE .. .uuitiiiiiiiiiiiiiiiiiiiiiieueieteiaeb et bebe e eeeees s eseeeseatssasssesssssssssssssnsssnsssnsnsnsnsnsnsnsnsnnnnns 10
RUIES PaAlBE ... et e et e e e e e s ettt e ee e e sanbe e e eeeaeeesantebaeeeeaeesannnbntaneaaeeseaanns 10
Fa1C=T0 iz 100 I D T=T o 10 o o 1= 10
Pre-configured ProduCt EXAMPIESouuiiiiiiiiii ittt s 10
L (0T [T A [1 T 10
COITECHVE PrOCESSING ... utteteiiuttiee ettt ettt ettt e st e e s et bt e oo bb et e e e a b bt e e e ek bt e e e ean b e e e e enbbe e e e abbeeeeeneee 10
Complete Traceability Of Data............ccooieiiiiii i 11
Proven Performance — Tested Scalability...........coouiiiiiiiiii e 11
LR LS (== RSTSIN Y/F= Ta T T =T o = o) 11
Globalization / LOCAlIZAtION SUPPOIT.......couueiieiiiiiie ittt ettt ettt e e e e abe e e e e nneee 11
LR LTy o (=0 B U LY =T S U o] o o] o A 11
OICE ARCHITECTURE DESIGN PRINCIPLES ... tttttttututstststsuststssssssssssssssssssssssssssssssessssssssssssssssssssssssssssmsssmnmnmnne 12
OICE KKEY CONGCEPTS ..ttttttttteteueueununsenennnsensnsnsssnsssnssssssssssnsssnnssssssssssnnnnnnnns 13
ACTVIEY PTOCESSING .. ttetee ittt ettt ettt e e o a bt e e e sa bt e e e sa b et e e e sa b bt e e e aabbe e e e aabbeeeeanbbeeeesnbaeeaean 13
SCreen CONfIQUIALIONcccie i 14
SCreeN BUSINESS RUIESvviiiiiiiii ettt e et e e e e e e s s et e e e e e e s et eeeeeeeeeannsnteneaaeeesannns 14
Configurable DYNamIC FIRIAS. ...t e et e e e e e 16
Processing INCOMING DALAccoiiuiiieiiiiii ettt e e sttt e e s bt e e e s anbe e e e snbneaesanneeeas 17
R CTo [T g=Ta g L= ol o oot =TTy [o o [P PP TP PTOUPUPPRPPTN 18
SYSTEM ARCHITECTUREtttttttttusttsststsssnnsnnnnns 20
AFCRITECTUIE OVEIVIBWttt e e ettt et e e e e e ot ettt et e e e e s e nabb et e e e e e e s e anbbbeeeeaaeeeaanbnreees 20
Shared RUIES ENQINE.....cccoiiiiieiiiiie ettt et et e e e et e e e e enb et e e e nnbe e e e s snbeeeeenees 23
Configuration-based Code GENEIALIONcoiiiiiiiiiiiii e a e e eeeeaa s 24
ST =Yoo PRSPPI PTPPP 24
YU 11 (=T o= 1 o] o W PO PP PRTT 24
User Privileges and ROIE-BaSed SECUNLYcccceiiiiiiiiiiieeeeeiiiiieee e e e s s srieeer e e e e e s s snniaeee e e e e e s nnnnenees 25
Internationalization and LOCALIZALIONoiiiiiiiiiiee e e e e e e e aeeeee s 26
Support for Multiple CUIreNCIES OVEIVIEWceeeiiiiiiiiiieieeeiesiiiteeee e e e s s snnteaereeeeesssnnnreeeeeeeesseansseeneeeeees 27
SUupport fOr MUILIPIE CUMTENCIESttt e e et e e e e e e s nbeb e eeaaeeeaans 27
(101 =T ooy Y 1o 4 - 4 11 o [P SRS 27
Release 9.7.0.0 OICE Architecture Guide 3of 37

Revised: 3/22/2013

ORACLE

INSURANCE

CUITENCY CONVEISION ...ttt ettt ettt e ettt e e ea et e e e a bt e e e aa b et e e e aabe e e e e aa b et e e e aabe e e e e anbe e e e aanbeeeeeanbneeeanees 28
Yo7 1= 1 o112 29

102 Tod a1 oo [RE O O PP P PP P PTPPPN 30
OICE-BASED SOLUTIONStttttttttttttstsssnnsnnnnns 31
(0] [0F = o T= 11T IS T] [V 1 o o HS PRSPPI 31
(@] a1{To 81T aTe =TS To) 11T} o 1SS 33
Database OPtIMIZALIONoueiiiiiiiiie ettt e e skt e e s bt e e e s asb e e e e s nbne e e s annneees 34

L (=1 T[0T A TSI VLo I] (=T [= U1 o] o TS PRERR 34
ANONYMOUS EXIENSIONSeiiiiiiiiiiitiiee ettt sttt et ekt e e s bbn e e e s anbne e e s annnee s 34
Feature Specific EXIENSIONScccviii i 35

N E= T =0 I 1= 1] T 1 RSP 35

(Do o101 01T o [CT=T o =T r= o] o BT PP PPUP T PUOPPPPPPPPTRN 36
TECANOIOQY STACK..... .ttt ekt e e et e e e nb e e e e aabe e e e e aene 37
Release 9.7.0.0 OICE Architecture Guide 4 of 37

Revised: 3/22/2013

ORACLE
INSURANCE

INTRODUCTION

This architecture guide is intended to give an overview of the OICE application and present the key benefits of
using the application.

Customer Support

If you have any questions about the installation or use of our products, please visit the My Oracle Support
website: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Release 9.7.0.0 OICE Architecture Guide 5 of 37
Revised: 3/22/2013

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
INSURANCE

PRoDUCT OVERVIEW

Oracle Insurance Calculation Engine (OICE) is an adaptive, rules-based policy administration system that
provides full record keeping and support for all policy lifecycle transactions (such as policy issue, billing,
collections, policy processing and claims). With Oracle’s policy administration system, insurers can rapidly
adapt to changing business needs and regulatory requirements while supporting straight-through processing
throughout the policy lifecycle.

The system enables insurers to provide real-time policy servicing of customers and sales channels throughout
the policy lifecycle for increased retention and loyalty. It also helps insurers reduce risk and support compliance,
while better managing the business to optimize performance through use of a single system.

ORACLE APPLICATIONS

CRM and Rating Policy

Distribution and Admin Billi
) - illing
Management llustration istration

w0
w
=
=
e
("]
T
W
-
(5]
=T
[
(=]

Customer Communications Management
Applications * Industry Forms = Policy Issuance * Client Communications & Claims Correspondence

Insurance Data Exchange Insurance General Agent
Data Exchange Between Carriers, Distributors and Service Providers [System for Brokers and Wholesalers

Platform Solutions
MOM » Insurance Bl Applications = Compliance * Enterprise Risk & Performance Management

INTEGRATION & COLLABORATION

Insurance Application Integration Architecture, Business Process Bus

i

TECHNOLOGY FOUNDATION |

Database, Fusion, BPEL, Security, etc.

Insurance Professional Service Team, Education, 24x7 Support

Release 9.7.0.0 OICE Architecture Guide 6 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Accelerates Speed to Market for New and Adapted Products

Insurers require the ability to rapidly bring to market innovative products that stand out from the competition,

capture more market share, and ultimately maximize profitability. They can no longer rely on inflexible, aging
legacy systems that require heavy IT intervention and hamper their ability to quickly adapt to evolving market
dynamics and regulatory conditions.

OICE enables insurers to accelerate product development and time to market for differentiated life insurance,
unit-linked and annuity products globally. The system’s rules-driven configuration capabilities are unmatched in
the industry. Almost all changes to the system—including products, fields, screens, languages, and
currencies—can be made without ever touching the core code or recompiling the data base structure. The
system does the heavy-lifting through a user-friendly Rules Palette visual configuration tool, pre-configured
product examples, the ability to reuse rules and clone products, and release management.

P oeive) oesr 0 Comtoue 0 ext 2 oevey

\‘\ Quality . Release
Assurance / Manager

- _—

%__,/

Hybrld Business / IT Configuration Team

Anah,rze

Adaptive
Approach

Improves Customers and Channel Loyalty through Better
Servicing

Delivering better service to customers and sales channels throughout the policy lifecycle is critical to promote
loyalty and retention. OICE can help insurers improve servicing by enabling them to provide real-time access to
policy information and the ability to process transactions or events through Web Services integration to self-
service portals and other systems. It also provides a single view of the customer through full record keeping and
support of all policy lifecycle transactions. Additionally, it can help insurers reduce manual processing by
customer service representatives (CSRs) and drive consistency by automating support of business processes
and validation of transactional information for improved customer servicing.

Eases Integration with Other Systems

The open, standards-based architecture of OICE allows for integration with other third-party systems such as
illustrations, new business and underwriting, claims, billing, enterprise document automation / customer
communication management, rating, and more. In addition, OICE is compatible with Oracle Application

Release 9.7.0.0 OICE Architecture Guide 7 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Integration Architecture (AIA), which enables rapid, low-risk integration with other back-office systems and
existing legacy systems.

OICE also integrates with Oracle’s service automation, enterprise document automation and content
management solutions. This gives customer service representatives a 360-degree view of the customer,
including associated documents, correspondence, confirmations, statements, and policy data—increasing
productivity and customer satisfaction.

Release 9.7.0.0 OICE Architecture Guide 8 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

KEY FEATURES AND BENEFITS OF OICE SOLUTIONS

Line-of-business and Product Agnostic

OICE is highly configurable through XML business rules and designed to be both line of business and product
agnostic. It enables insurers to create truly innovative products and riders, from simple to complex, across life,
health, unit-linked and annuity products.

Web-based, Modern, Highly Extensible

OICE is a modern system that is built on open, J2EE-based architecture and can be deployed across
numerous technology stacks. The system is Service-Oriented Architecture (SOA)-enabled allowing integration
through Web Services with other insurance systems and Web portals to support straight-through processing.
The system’s browser-based User Interface further promotes ease-of-use by both business and IT users.

Unparalleled, Flexible Rules Configuration

The OICE streamlined architecture separates the rules, which support business and product logic, from the
base code, minimizing the need for heavy IT intervention during the configuration process. Its highly flexibly
rules-configuration capability empowers business and technical users to collaboratively configure changes
using business rules without the need to customize the system’s core code or database structure. This helps
shorten product development time cycles, while reducing the cost of configuring products and installing
upgrades.

Another key benefit is the ability to reuse rules. Users configure rules once and reuse again for other products
reducing development testing, and maintenance.

uild and Manage 5 ~.......Manage Ad nlstratwe

F'rnducts E | Controls Exe:..ute

[Ruleannf‘guratmn mﬁ ﬁdl‘l‘lll‘llstl’ﬂtl?e(:ﬂl‘li]’ﬂ@[Appllcatlun Jf"‘ il
RulesPaleﬂe :
I Transat:h' - Busin

I Multi- Lanauﬂ
Call:ulau Ouern I Release Manaﬂ

I Accuunui REQUI

I UserWami . Sereens:

(o oebugger)

[Rules Eni l CureEni

EEI;E

I Market Caleni

Release 9.7.0.0 OICE Architecture Guide 9 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Powerful Rules Engine

OICE'’s rules engine allows business and technical analysts to configure transactions using business rules to
support unique and creative product features. For example, an insurer may want to execute a distinct
transaction on a policy, such as paying an agent a bonus on every sale. This innovation makes the insurer
more attractive to agents and producers. It also promotes consistency and accuracy, reducing the time
required for development, testing, and maintenance. Through rules-based configuration, business and
technical analysts can create compliant calculations and reusable functions, such as tax withholding, to support
state-filed products across life, health and annuities.

Rules Palette

The Rules Palette, a visual configuration tool with drag-and-drop functionality, simplifies rule creation,
modification, and debugging. It offers unparalleled flexibility by enabling business and technical analysts
involved in configuration to make changes by products, fields, screens, languages, currencies, and more
through business rules—while facilitating improved collaboration with business and IT. With it, users can control
security rights, rates, funds, and other items through administration tables for a centralized view of fixed and
variable data for enhanced flexibility. The integrated Data Dictionary drives a consistent set of field labels and
math variables.

Integrated Debugger

OICE includes an integrated debugger tool within the Rules Palette. The debugger provides full exposure and
step-by-step execution of formulas and complex calculations within policy examples (for example, a partial
surrender charge or taxable gain). The ability to validate calculations and formulas contributes to reusability
and reduced development cycles, testing, and maintenance.

Pre-configured Product Examples

OICE includes pre-configured product configuration examples for guaranteed level premium term life, variable
deferred annuity (without annuitization payout), and unit-linked fund processing. The pre-configured examples
help provide a jump start to insurers during the configuration process and may be adapted by an insurer based
upon the specific product and /or business requirements.

Product Cloning

OICE provides the ability for users to quickly “clone” a product and reconfigure it to create a new one, resulting
in accelerated speed to market. Users may clone rules from an existing product and reconfigure based on new
requirement (for example, add a new secondary guarantee to a life or annuity product).

Corrective Processing

Corrective processing functionality is inherent within the system and is triggered by policy transaction reversals
or compliant back-dated transactions. This eliminates the need for manual processing by customer service
representatives (CSRs). In contrast, legacy systems are often high-touch and time consuming for CSRs to
complete corrective undo and redo processing of policy transactions reversals.

Release 9.7.0.0 OICE Architecture Guide 10 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Complete Traceability of Data

OICE enables insurers to enforce compliance and best practices, reduce manual processing, and provide full
visibility into transaction history throughout the policy lifecycle. It provides the ability for users to view the history
at transaction and screen detail level to support compliance requirements and market conduct audits. This is
available to CSRs or other employees as soon as the transaction has been processed.

Proven Performance — Tested Scalability

The system also is highly scalable to support the evolving business needs of the largest Tier One global
insurers. Oracle recognizes that each implementation project is unique and specialized to each customer’s
requirements with system performance dependent upon the rules configured to support their products and lines
of business. Performance tuning is an important phase of each project to meet client expectations.

Release Management

Release management capability with OICE provides governance of rules migration from development, to
testing, to the production environment throughout the product development lifecycle. This promotes
consistency and further accelerates time to market for new and adapted products.

Globalization / Localization Support

OICE includes several features to support internationalization and localization requirements of global and
regional insurers, including support for multiple languages, locales and currencies in a single instance of the
system.

Restricted User Support

There is a limit on the number of user accounts that can concurrently use one installation of OICE. Only 5 user
accounts can be logged into OICE at any point of time through the OICE login page. Once the limit is reached

an attempt to login will result in HTTP error with code 403 and a message that the limit of active accounts has

been reached

Release 9.7.0.0 OICE Architecture Guide 11 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

OICE ARCHITECTURE DESIGN PRINCIPLES

The system architecture has been based on the following design principles that establish a consistent set of
rules and guidelines for the design and development of the system:

1. The system architecture should have a multi-tier design with well-defined service layers to ensure
flexibility and continued enhancement.

2. The application should be multi-platform, portable, and scalable.

3. The database access should be implemented in a consistent, database-independent manner.

4. The database traffic should be optimized to the utmost degree to increase scalability and availability of
the system.

5. The application should support multiple locales, languages, and currencies in a single deployed
instance.

6. The presentation layer should support, but not be limited to, a browser-based user interface.

7. The Shared Rules Engine should be implemented as a standalone component that is not dependent on
any particular application.

8. The application’s data model should be extensible by configuration to satisfy client-specific
requirements.

9. The system should only implement generic business requirements and leave the client-specific
requirement to the configuration.

10. The system should be extensible via extension points configured and implemented for client
implementations.

11. The system should easily integrate with other technology components.

12. The system should leverage open standards wherever possible.

Release 9.7.0.0 OICE Architecture Guide 12 of 37

Revised: 3/22/2013

ORACLE
INSURANCE

OICE KEY CONCEPTS

Activity Processing

Activity processing is a fundamental part of the Oracle Insurance Calculation Engine system. Almost every
event that occurs in the insurance domain can be modeled as an activity in the system. An activity records all
the changes it makes and provides the ability to undo any such changes. Activities are therefore fundamental to
corrective processing in OICE. Activities are transactional units of work, so they never leave a business entity in
an invalid state.

The behavior of activities from capturing the input data to the resulting changes is configured in XML using the
Rules Palette. The configured XML is called a transaction. An activity is an instance of a transaction.

Some typical OICE transactions at the policy level are premium, billing and anniversary processing. Quite often
as in policy administration, one event on a policy triggers another, such as a notification letter or recalculation.
OICE supports this by providing the ability to spawn one or more activities as a result of processing an activity.

User Interface

Activity(Spawn)

Database
AsFile

Activity T

/

Z
XML
SRE APE
-{ Fields

Math

Activity Processing

— -{ Spawn

The above diagram illustrates the activity processing at a high level. The transaction XML configures input fields
for the activities, the math to transform data, a set of rules to persist the changes, new activities that could be
spawned, and so on.

An activity may be created by a user from the user interface, by another activity or as a result of incoming data
from a web service. An activity is processed by the Shared Rules Engine, which is a component responsible for
executing OICE transactions and business rules. The results of activity processing are then stored in the
database.

Release 9.7.0.0 OICE Architecture Guide 13 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Screen Configuration

Screen Business Rules

Out of the box, the pages of the OICE web-based user interface only implement generic functionality that is
deemed to be of value to a cross-section of insurers. The pages can be customized through business rules to
meet specific insurance product needs. The business rules are created and maintained by the Oracle Insurance
Rules Palette in XML format and considered a part of a custom implementation, along with transactions and
other configuration.

Business rules that govern the content, look and behavior of pages are called screen business rules. The
screen rules provide a wide variety of features that allow customizing pages to meet client-specific needs.

A comprehensive set of input components: text, date, currency, drop-down combo-box, radio button, and so on.

The ability to specify locale-specific field labels.

The ability to set default field values that depend on the existing data, transformed, if needed, by
complex math calculations.

The ability to specify events and actions in response to user input: changing field values, disabling and
enabling fields, showing and hiding fields, displaying field and page messages.

Support for multiple languages, currencies, date formats, and so on.

The ability to specify masks for input text depending on the user’s security privileges.

Validation of screen data triggered after data changes or by a page submission; alerting user with field
and page validation messages.

As with other business rules, screen rules can be set up so that pages look and behave differently for different
products and jurisdictions.

Release 9.7.0.0 OICE Architecture Guide 14 of 37

Revised: 3/22/2013

ORACLE
INSURANCE

+ Fields
P + Math
:: § -1 Events
bt w
+ Actions
- [
_/
Presentation Generated
Logic Java code B
(v

[

Business Logic

Data Access Layer

AN
Kbelds > patabase

The above diagram illustrates the concept of the page configuration. A screen business rule is used to create a
set of fields that are displayed on a page. A set of Java classes, generated at run-time and based on the rule’s
logic, is responsible for handling screen events — page load, page submit and field value changes.

Converting the rule logic from XML to Java classes does away with the inefficiencies of an interpreted language
like XML and replaces it with the compiled efficiency of Java, improving system performance. Furthermore,
when the system has to parse the same screen rule again, it recognizes the existence of a generated class and
uses it, instead of regenerating the class.

When the user performs an action to save the information entered on the screen, the configured validation in
the screen rule is invoked. Only after the screen rule configuration confirms the validity of the data does the
system persist information to the database.

Release 9.7.0.0 OICE Architecture Guide 15 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Configurable Dynamic Fields

Configuring the pages of the OICE application with client-specific rules essentially customizes the application
data model to satisfy customer’s business requirements. The base application data model is extremely flexible
and can be extended as required for a particular client implementation.

Only a few generic data fields, known as fixed fields and shared between all client-specific implementations, are
stored by default in the application database. Fixed fields are represented as columns in the database tables.
The dynamic fields that are configured through the screen business rules as described in the previous section
are stored in the tables with names that have a suffix of Field (As<EntityName>Field). A value of a configured
field of a business entity is stored in its own row in the corresponding Field table:

<EntityScreen>
<Fields>
<Field>
<Name>TextField</Name>
<DataType>Text</DataType>
</Field>
<Field>
<Name>DateField</Name>
<DataType>Date</DataType>
</Field>
</Fields>

AsEntityField (GUID,Name,Type,Value,...)

AsEntity (GUID,...)
GUID1 Entityl GUID2 TextField Text
GUID2 Entity2 GUID2 DateField Date

GUID3 Entity3

The above example shows a screen rule for a hypothetical business entity called Entity. Some business entity
examples are Policy, Client, and Activity. The rule specifies that the Entity has two dynamic fields. The Entity’s
fixed attributes are stored in one row as column values in the AsEntity table. The AsEntityField table stores
dynamic fields, one value per row that matches the configuration in the Entity screen business rule. Each row
contains a GUID of a parent entity, field name, field data type, and value that is stored depending on field’s data

type.

This approach to data configuration and storage enables clients to extend the application data model without
affecting the database schema. This not only makes database administration easier but also reduces the effort
required to upgrade, because schema changes made in the core product with new releases will not conflict with
changes made by clients.

Release 9.7.0.0 OICE Architecture Guide 16 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Processing Incoming Data

The OICE application provides a web service called AsFile or FileReceived to electronically submit data to the
system. The AsFile/FileFeceived web service allows an external system to send data in XML format to OICE.
Based on the client-specific configuration, the data can be transformed, validated, and inserted in the OICE

database followed by processing of related activities.
AsFile
Config

AsFile
o File ID
Web (B0 Config XML
External System [P . XML Data XSL fcontie X
Transformation
*0K/Error
*XML Response = ASLT
.. Database
Activity ST
Processing Entities

As the above diagram illustrates, a SOAP message is sent by an external system to the FileReceived web
service and includes two parameters: FileID and XML data. FilelD identifies the configuration from the AsFile
table that will be used for processing and transforming inbound XML to OICE business entities. Then, the
created entities are persisted in the OICE database. The AsFile configuration may also specify additional
processing after the incoming date is stored in the database. Activities will be created and processed as
dictated by business requirements for processing electronic submissions into the OICE application.

At the end of the processing, a SOAP message is sent back to the external caller that includes the result of the
processed request. If the processing has been successful, the outcome may also include an output XML
constructed based on the provided configuration for the AsFile response.

Integration with external systems, including outgoing calls, is supported through extensions and is discussed
later in this document.

Release 9.7.0.0 OICE Architecture Guide 17 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Requirement Processing

OICE requirement processing is a powerful feature that allows the modeling of complex business processes
that may take days or even months from beginning to completion. Examples of such processes include ordering
and receiving reports from external vendors about an insured, obtaining a missing application form, sending
correspondence to an agent or a client, etc. The following diagram illustrates the requirement processing.

ul

Database

Business Logic (Java)

Triggers
AsFile (Results) i

Requirement Service Results

Activity (Generation)

Requirement

Requirement
XML

SRE - Uses——»| Extension - Calis——»| Third Party Vendor

Requirement Service

The Requirement Service is the heart of requirement processing. The service is a state machine executor that
moves requirements from one state to another according to the requirement XML. The Requirement Service is
built around the Shared Rules Engine. OICE extensions are used to call out to external services and perform
what is needed to obtain requirement results. Requirements can be created, or their processing resumed, by
the user through the Ul, OICE extensions or activities. For example, automatic requirement generation upon
submission of application data for underwriting may be configured through activity processing.

Like many other business entities in OICE, requirements are highly customizable. The requirement screen
business rules specify dynamic fields for each type of requirement used to store data associated with a
requirement. The requirement XML is used to configure business processes for each requirement type by

Release 9.7.0.0 OICE Architecture Guide 18 of 37
Revised: 3/22/2013

ORACLE

INSURANCE
specifying requirement states and transitions between them, as is illustrated below.
<Requirement>
<States>

<State STATUS="01"“ SCHEDULE="5" OVERDUE="30"> <|--Qutstanding-->

$...$

<Rules>...</Rules>

<Transitions>

<Transition IF="X=Y" TO="02"/>

</Transitions>
</State>
<State STATUS="02"> <!--Pending-->
<State STATUS="03"> <|--Completed-->

</States>
</Requirement>
Math
Rules A
Math
\ Rules
Over
due
Math
Rules Math

Rules

Processing of a requirement may be stopped in any state and then resumed when certain conditions are met. It
is also possible to escalate processing if a requirement has not been processed within a given time. The
Requirement Service includes a background process that constantly checks for requirements that need to be
resumed or have become overdue and require special attention.

Requirement results can be sent to the system by third-party providers. The results will be submitted through
AsFile, which will trigger the requirement service to process results and complete requirements. Flexible data
structures used to store and attach results to requirements are configured using business rules.

Release 9.7.0.0 OICE Architecture Guide 19 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

SYSTEM ARCHITECTURE

Architecture Overview

The OICE system is implemented as a multi-tier J2EE-based server-side application. The presentation,
business logic and data access have been developed and maintained as independent layers that run inside a
single JVM. The Spring framework is used as a component container to assemble the components together and
to access available services across the layers.

This is an architectural diagram of the OICE application:

E’: ?2 Business E
o i : 1 . w |
XML a$ JAX-WS ﬁi AsFile/ E% Logic Layer 51 SRE
2 g i Services | 2|
“ i Tl o= APE
: : |
Presentation Layer [
: o0
JSP/IceFaces Presentation (=
Pages Services Data Access Layer =
Q.
=) | v
Pl v u D P D D
i c £ 20 I c | c a
Client [5 5 || & L | : |
i ' == > p
\ o o |
p— a =
JPA JDBC
Al
D:I Architectural tier I Classes //_‘Lt\
1 Extension
""" : @ Data Objects Database
D Component (Oracle, SQL
Server, DB2)

|:| Third-party framework

The following is the glossary of terms used in the diagram:

Data Access Layer (Dal) — an architectural layer that consists of Dal objects and which implements the data
access, hiding the details of implementation within the tier.

Business Logic Layer (BIl) — an architectural layer composed of Bll objects that implements business logic as
services available to the presentation layer, and also deals with some infrastructure aspects such as caching
and transactional processing.

Data Carrier Layer (Dcl) — data carrier objects that carry data throughout the system.

Release 9.7.0.0 OICE Architecture Guide 20 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Presentation Layer — an architectural layer responsible for implementation of the presentation logic; consists of
the two tiers mentioned below.

Presentation Services (Uip) — a technology-independent presentation tier that provides presentation services
to an outer presentation tier.

JSF/IceFaces Pages — a Ul front end built using JSF/IceFaces frameworks.

Model — an object implemented for a user interface page that contains data displayed on the page; a data
carrier between the two presentation tiers.

SRE (Shared Rules Engine) — a standalone component responsible for executing OICE transactions and
business rules

APE (Application Process Executor) — a class that implements a business rule executed within a transaction.

Extensions — configurable call interceptors that allow modification of the out-of-box functionality for client-
specific implementations.

AsFile/Services — a component that exposes the business layer services as web services.

An application’s data access details are hidden from the rest of the application inside of the Data Access layer.
Java Persistence API is used to implement the data persistence for most of the data access requirements. Data
access from the Shared Rules Engine that sometimes requires a greater degree of control over the generated
SQL traffic is implemented using JDBC. The services provided by the Data Access layer are available through
the Spring container and exchange data using the Data Carrier (Dcl) objects.

The Business Logic layer contains generic business logic shared between all custom implementations of the
system that is complemented by the configured business rules. The exposed services include activity
processing, accounting, allocations, and so on. The layer also deals with such infrastructure aspects of the
application as transactional and grid processing, and caching. The services provided by the Business Logic
layer are consumed by the presentation layer with the data exchanged through the Dcl objects, and also
exposed through the web services to be used by external systems.

The Presentation Logic layer itself is two-tiered. The Presentation services are independent of any particular
user-interface technology and implement the presentation logic required in the application. An additional tier

that relies on IceFaces and Java Server Faces and consumes the technology-agnostic presentation services
implements the browser-based user interface.

The Shared Rules Engine is a separate and independent component responsible for processing activities and
math configured in the OICE business rules. The web services component that uses the JAX-WS framework
allows configurable electronic submissions into OICE and, in general, exposes OICE business services to
external systems.

Release 9.7.0.0 OICE Architecture Guide 21 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

The following is a list of the most significant frameworks and technologies used by OICE:

= Spring framework as an application component container

= JPA as a primary method to access persistent data

= JDBC for accessing persistent data from SRE to ensure maximum data access performance
» IceFaces/JSF frameworks to implement browser-based user interface

= JAX-WS to implement web services

= Coherence cache for caching rarely changed persistent data

= Coherence processing pattern as a grid computing framework

Release 9.7.0.0 OICE Architecture Guide 22 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Shared Rules Engine

The Shared Rules Engine (SRE) component performs activity processing in the OICE application. Activity
processing manages insurance events. SRE loads a transaction and processes the data according to the
business rules and math associated with the transaction The transaction, business rules and actual insurance
data are retrieved from the database.

Input Data APE

SRE

Generated Java M
class

P [
< Results

Code Generator

7N

A

OIPA

Extensions

._DataAResulrls/ Tx/Rules XML

Database

_d

——a

The above diagram shows a high level interaction between the calling application and SRE. OICE calls SRE,
provides input data, and implements interfaces to call back when additional date is needed by SRE. SRE does
not directly make calls to the database, except for loading the transaction and rules associated with the current
activity. When processing is complete, the results are packaged and returned to the calling application. Then,
the results are committed to the database within a single database transaction.

It is important to note that the transaction XML is translated into a generated Java class that will be executed by
SRE to ensure the best possible performance.

The following components of SRE come together in processing an activity:

= Processor

= Java code generator that includes a math translator

= Data access components implemented by OICE to retrieve input data and persist results
= Application Process Executor (APE) business rules invoked by SRE

» SRE client-specific extensions

Release 9.7.0.0 OICE Architecture Guide 23 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Configuration-based Code Generation

Most of the OICE application business logic is configurable and contained in the business rules and
transactions stored in the database in XML format. In order to provide the best possible performance, the XML
rules and transactions are transformed by the Shared Rules Engine into generated Java classes that are then
compiled and executed like any other Java classes in the application. There is no difference in the performance
between executing business logic hard coded in the application by developers and when configured in XML by
business analysts.

The process of code generation and compilation is expensive and is only done once, with the result being
cached and used for all consecutive requests. The cache can distinguish between development and production
application modes and detect when the business rule XML changes and requires re-generation of a
corresponding Java class.

Security

Authentication

OICE performs user authentication for both interactive users using Internet browser to access the system and
web service calls. The users are prompted to provide a user name and password on the application’s login
page; these are then sent to the server. The web services are protected with the WS-Security that requires
incoming web service calls to carry a security header with the user name and password. The password can be
sent as a digest or as a text.

Both web service and user authentication are implemented through the same authentication service provided by
the business logic tier of the OICE application. The authentication service retrieves a matching user record from
the OICE database that contains basic user information and a secure digest of a password. The password
digest is then compared to the digest of the incoming password and an authentication decision is made based
on the result of the comparison. User records in the OICE database are usually created by the Rules Palette.

Release 9.7.0.0 OICE Architecture Guide 24 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Presentation Business Logic Layer
Layer /ﬂ_;ﬁ
o Data
s : s | loadUser Authentication Access Database
agin Gz i Service (= layer K—> User Data
! Page processLogin [aadiiser{name) (d
\ (name, pwd) UserDcl nar‘ne, pw
digest)
[o \\ _/‘
He)
Web
Services
ol .
£ verifyUser
XML
¢ g . KD 1axws (= (name, pwd)
g verifyFilelD
| (name, FilelD)

Using OICE extensions, it is possible to implement alternative methods of user authentication to satisfy specific
security requirements of a particular customer.

User Privileges and Role-Based Security

The OICE user privileges and access restrictions implementation is based on the role-based access control
(RBAC) model. According to this model, user permissions are assigned to specific roles or groups that are
created for various job functions. A user that is assigned particular roles, gains through those roles permissions
to perform particular system functions. A user may belong to multiple groups that result in access granted to all
resources authorized across the groups the user belongs to.

For example, users that are assigned to the CSR group (or have the CSR role) may not be able to execute such
activities as issuing a policy or paying a death benefit. An Underwriter should be able to issue a policy. An
administrator group is usually allowed access to all resources.

The following diagram shows what application resources are protected by the OICE security:

Release 9.7.0.0 OICE Architecture Guide 25 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Security
Groups

Authorizations

L] . L] L | L} 1
Companies l Plans | lTransactl'ons | Web Services l Pages | l Buttons | l Fields | l IMasks |

Internationalization and Localization

The OICE application may be adapted to different languages, regional differences and technical requirements
of a particular target market through rules configuration. A configured OICE-based solution is capable of
supporting multiple locales and users of different languages by allowing the co-existence of several languages
within the user interface. Configuring a locale and, therefore, adding support for a language though rules, does
not require re-engineering or changing system’s code.

OICE provides the ability to:

» Translate the content between languages

= Store and display content in multiple languages

= Use regional formats for dates, numbers, and calendars to enter dates

= Display and enter names and addresses in forms native for supported locales

= Handle multiple currencies

= Store country and jurisdiction information that could be used for tax and other purposes

= Allow further customization through configurable extensions to satisfy client-specific localization
requirements

A few aspects of internationalization and localization to take note of are:

= OICE localization is based on the locale of the current user. A number of locales exist in a configured
OICE system and determine which language, translations, date and number format, and so on, will be
used when displaying the user interface for a user.

» Data in OICE is represented in Unicode, the industry standard for the consistent encoding, representing
and handling of text data in most languages.

» Data is stored in the database using multi-byte character types.

= Text data displayed on the screen come through a translation layer (with the exception of text entered
by users) where the translation is performed based on the locale of the user. The translation is applied
to configured text data, validation and error messages, field labels, and so on.

= OICE uses Java parsing and formatting facilities to support locale-based formatting of dates and
numbers. This “out-of-the-box” formatting can be enhanced or even overridden to satisfy the most
diverse customer requirements.

= OICE has an extensive support for using multiple currencies.

Release 9.7.0.0 OICE Architecture Guide 26 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

OICE allows customization of names and addresses through configuration based on the needs of a
particular region.

Configuration of locales, translations, screen rules, and so on, is performed by using the Oracle Insurance
Rules Palette.

Support for Multiple Currencies Overview

OICE provides extensive multi-currency support in a single instance of the system, including:

Currency Entry / Display — the ability to allow users to input monetary values in different currency
denominations

Currency Formatting — the ability for the system to support various formatting and rounding rules based
on a currency

Currency Conversion — the ability for the system to convert money from one currency denomination to
another, and track the conversion details

Support for Multiple Currencies

Currency Entry describes the ability for the system to accept entry of monetary values in different currency
denominations. What currencies are enabled depends solely on the configuration of the system. The
configurable elements include:

The currency designation for a given field — a field on a screen may be assigned a single currency or a
list of acceptable currencies with a default currency.

The default currency for a product — when no currency is configured for a field, or monetary data is
displayed on any screen, the default currency that is configured for the current product will be used to
display the currency.

The default currency for a company — when a screen does not pertain to a particular product, the
default currency that is configured for the company the product belongs to will be applied when
displaying monetary data.

The system-wide default currency - when a screen does not pertain to a particular plan or company, the
default currency that is configured for the application will be applied when displaying monetary data.

Currency Formatting

OICE formats monetary amounts that are displayed in the application. There are two completely separate
pieces of the functionality: number formatting and currency rounding.

Number Formatting refers to how the number appears to the end user, irrespective of the currency. The way the
number appears to the end user is determined by the logged-in user's locale. The locale determines the
grouping character, decimal point character, and negative inflection of a number.

Currency Rounding is the process of rounding a number before it is displayed to the user, used in processing,
or accepted as input by the user. The rounding rules for a currency are configured in the database as part of the
configuration of the OICE application.

Release 9.7.0.0 OICE Architecture Guide 27 of 37

Revised: 3/22/2013

ORACLE
INSURANCE

Currency Conversion

Currency conversion is the process of converting a number of units of one currency denomination to another.
For example, converting 100,000 USD (U.S. Dollars) to Japanese yen will require a conversion. The conversion
that takes place is based on foreign exchange rates. A foreign exchange transaction is the exchange of money
from one currency to another. The foreign exchange rate is a price; the number of units of one nation’s currency
that must be surrendered in order to acquire one unit of another nation’s currency.

The currency conversion in OICE happens in two places: money movement and configured math. The condition
of moving money from one currency to another is automatically detected during transaction processing, so the
currency conversion happens automatically. Whenever a currency is converted, there is a cost incurred in
converting the money. This currency conversion cost is captured by the system when the conversion takes
place.

Configured math supports the ability to convert from one currency to another as a simple formula, and there is
no tracking of the currency conversion details that take place in math. When the currency conversion happens,
the application will look up the exchange rates for the currencies using the latest exchange rates.

OICE stores information on currencies, exchange rates, and rules that different market makers use to convert
currencies.

Release 9.7.0.0 OICE Architecture Guide 28 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Scalability

Scalability refers to the ability of a system to cope with growing loads with stable performance by replicating the
system’s hardware and software components.

As the following diagram illustrates, the OICE architecture addresses the scalability of the system by allowing
the system resources to be scaled up as needed and minimizing contention on the resources that are most
likely to become bottlenecks.

Intranet/

Internet

JVM
App Server
b .
- T
OIPA b —
VI
JVM " v
GED App Server S /’f’\
O = P > @
c r < r g (&) _’/
@ OIPA
= — 8 —>
(an] c
o &>
= o Database
o L=
— . o)
. o &/l/
A
JVM
App Server
S € >
- e
OIPA -

The system performance may be increased by replicating the JVM/Application server instances that
serve the user requests. This requires clustering the servers and imposes an additional overhead of the
load balancing.

It is fairly easy to replicate the application instances, but at some point the database will become a
bottleneck. While it is possible to increase the database performance by upgrading the hardware, OICE
tries to increase database performance by optimizing the traffic between the application and the
database as much as possible. The generated SQL, returned data sets, databases indexes are
analyzed and optimized throughout the design, development, testing and configuration of the OICE
system.

Much of the persistent data that rarely change are stored in the distributed Coherence cache that
further decreases the load on the database and increases the scalability of the system.

Release 9.7.0.0 OICE Architecture Guide 29 of 37

Revised: 3/22/2013

ORACLE
INSURANCE

Caching

Caching is a technique to improve performance by transparently storing data so that future requests for the data
can be served faster from the cache. OICE uses a cache to save configuration data and data that rarely
change. Transactions, business rules, currencies and authentication data are just a few examples of the data
cached in the system.

Coherence is used as a cache provider. Coherence provides distributed caching services for all nodes in the
same cluster. It also provides local caching services within a node.

LOCAL

{Local cache)
{Policy Administration 0sC _Te_mpl ates
and New Business {Optional)
Unde rwriting rule sj
e ™
SRE
(Shared rulesengine that executesrules)
- i
{ ™

CORE

{load resources language, common base classss and utilitizs)
. 7

There are five cache regions defined for the Coherence distributed cache. Each cache region has its own data
store, therefore objects saved in one region will not be found in other regions.

The six cache regions are:

= Region CORE for the Shared libraries

» Region SRE for the SRE components

= Region PAS for the OICE-specific data

= Region LOCAL for data local to the node.

= Region OSC_Templates for OSC-specific caching. This only needs to be configured if OSC is being
used. See the “OSC Installation Instructions” document for further details.

Release 9.7.0.0 OICE Architecture Guide 30 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

OICE-BASED SOLUTIONS

OICE-based Solution

The following diagram is a high-level deployment view of an insurance administration solution based on the
OICE application:

OIPA
J2EE App
Server

User
Desktop ; § a
OlIPA
Database
1 | RulesPalette Utility .
J2EE App Server "
. S \ 4
=
% |
22 3
vy
\oec RulesPalette

IVS Database

Rules Palette
BADesktop

The view contains the following elements:

= OICE J2EE Application Server — This node represents installations of a J2EE Application Server,
such as Oracle WebLogic or IBM WebSphere, running instances of the OICE web application. Every
OICE-based solution will be different depending on the customer’s environment, number of users,
availability and other requirements. Typically, there will be multiple application servers spread out
across multiple machines in order to enable load balancing and failover.

= Rules Palette Utility J2EE Application Server — This node is an instance of the utility application
used for configuration and authentication of the Rules Palette instances on the business analyst’s
desktops.

= Web Service Clients — A node that represents external applications or middleware that consume web
services provided by the OICE application.

Release 9.7.0.0 OICE Architecture Guide 31 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

= User Desktop — This represents interactive users that access the OICE Web application through the
Internet Explorer browser. A typical OICE solution is deployed in a home office of an insurance
company and allows access to the server-based web application within a secured intranet.

= Rules Palette BA Desktop — This node represents the business analyst’s workstations that run the
Rules Palette. The Rules Palette is a Java desktop application built to configure an OICE-based
solution. It provides a rich user interface including drag-and-drop capabilities to work with business
rules, transactions, user security, and so on.

= OICE Database — This node represents an OICE application database that contains both business data
and configuration.

* Rules Palette IVS Database — This represents a database that stores versioning information of the
system’s configuration. The versioning data is used by the Rules Palette that implements a
configuration management system with versioning and revision control capabilities.

Release 9.7.0.0 OICE Architecture Guide 32 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Configuring a Solution

Outside of OIPA
’ ! New Sale
Application " umw
Underwriting
Product Receipt approval
Definitions
l Y /
Details = ~0
N Premium
Riders & \\
Cales /H | poicy lee——o_ R 5 Anniversary | |
T~ \
RN Lapse
Activities & - Mode Change
Roles - _=-=" 1 Face Increase
- - - /
s Surrender
7]
;J <

Benefits/ _
Coverages
__

| Claim Initiation

/ Annual Statement
Confirmation Letter

* Real Time vs Batch
* System vs User Initiated
* Undo/Redo
* Audit Trail
* Complex Calculations/Lookup
* Accounting
* Fund Valuation
* Reatime Webservices

\ Outside of OIPA \

I Downstream Systems to feed |

General
Ledger/
A Financials

oDs/
Data
Warehouse

Document
Management

Business
Analytics/
Reporting

The diagram above represents the processing executed outside of OICE, as well as the main processing within
OICE using a generic life cycle of an individual life policy.

The top block called New Sale represents the New Business and Underwriting processes that execute
externally of the OICE solution. Data from these processes may be transmitted to OICE through the
FileReceived web service or through manual entry via configurable screens.

On the left, in red, begins the representation of the OICE solution processing, starting with an individual product
setup perspective. This represents a portion of the configuration that would constitute a saleable product. After
product setup and availability, the data from specific sales of the product create policies in OICE.

The diagram highlights a few of the configuration driven elements of a policy; client, policy, role, benefits,

coverages, and fund allocation.

The next block represents the recordkeeping, or Activity processing. This processing comprises business
events or transactions to support Policy Servicing and product required processing (anniversary, premium,
annual statement). These sections, all denoted in red, are controlled by rules. All rules are configured (using the

Rules Palette) as part of a product implementation.

The bullet points in red are emphasis on strengths of activity processing within OICE.

The data retained in the OICE database may be sent to downstream systems through real time requests from

external sources.
Release 9.7.0.0

OICE Architecture Guide

Revised: 3/22/2013

33 of 37

ORACLE
INSURANCE

Database Optimization

As discussed in the Scalability section, the database performance is paramount to maintaining stable
performance of the entire system. Because most of the application’s business logic is contained in the
configurable business rules, the final database optimization cannot be performed until the configuration step
has been completed. Additionally, the performance of the database indexes may need to be fine-tuned with the
actual customer’s data. This also can be done only after the configuration is finished.

Out of the box, the OICE database comes with indexes built and optimized for SQL queries that are
independent of the configuration. The transactions and business rules configured to implement a customer’s
business requirements usually contain a significant number of SQL queries as well. Also, the configuration, for
example, for search screens, may change SQL queries issued from the application code.

The customer-specific and configuration-dependent queries need to be analyzed to ensure they are efficient,
executed quickly and does not retrieve data that are not used. A new set of database indexes may be needed
to provide the best possible performance for the customer-specific queries.

The final step of the database optimization should be performed with the actual business data during the
performance and load testing of the configured OICE-based solution.

Extensions and Integration

The ability to integrate the OICE application with external systems and extend it beyond what could be done
through business rule configuration gives the system unlimited flexibility and allows implementation of specific
customer requirements. The OICE system provides several mechanisms for extensibility.

Currently, all extensions are implemented as Java classes that are injected into specific points or levels in the
OICE infrastructure. Extension developers only need to implement the requisite Java interfaces in order to
access this powerful OICE feature.

Primarily, there are three types of extensions: Anonymous, Feature Specific and Named.
1. The Anonymous extensions allow for invocation of custom logic using pre-defined methodologies.
2. The Feature Specific extensions allow for extending specific OICE features.

3. The Named extensions allow for custom logic at pre-defined points through the lifecycle of specific
system events. Named extensions allow for fine-tuned customization.

Anonymous Extensions

Anonymous extensions are provided with data from running transactions, making them powerful tools for
integration. Anonymous extensions can execute when an activity is run or when the FileReceived web service
is invoked. In the example below, the policy lifecycle includes the OICE transactions Premium Receipt, Issue
and Billing. The first two transactions illustrate how the system can perform messaging over an enterprise
service bus (ESB). The last transaction, Billing, illustrates MQ series integration.

Release 9.7.0.0 OICE Architecture Guide 34 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

Example Policy Lifecycle

Premium Receipt

Transaction Logic Web Service Call Extension

Transaction Logic Data Verification Extension -
Billing

Transaction Logic MQ Extension

Feature Specific Extensions

Feature Specific extensions provide the ability to enhance a specific OICE feature. There is only one Feature
Specific extension at this time called External Client Integration which can be used to enhance OICE’s client
and role management feature to interact with an external agent database.

Named Extensions

When fine-tuned control over the application’s lifecycle is required, Named extensions can be employed.
Named extensions are provided through the Extensibility Framework, which is discussed later in this document.

Below is a simplified rules engine processing example that illustrates how Named extensions can provide pre-
or post-processing, or can replace a processing step altogether.

Default implementation
Start Process Persist
Processing Allocations Results
2. Pre-processing added via an extension
Start Pre-Process Process
Processing Math Allocations

3. Post-processing added via an extension

Start
Processing

Release 9.7.0.0 OICE Architecture Guide 35 of 37
Revised: 3/22/2013

ORACLE
INSURANCE

4. Math processing lifecycle step is replaced with custom math via an extension
Start Value Polic Process Persist
Processing Y Allocations Results

Document Generation

The OICE application provides users with the ability to generate documents in PDF format. Out of the box, the
document generating system uses Crystal Reports. The standard Crystal Reports report files are used as the
document templates.

The Rules Palette provides the tools to configure necessary components of the Document Generator.
Configuring a document generation involves the following steps:

1. Atransaction that generates a document should be configured.

2. A GenerateDocument business rule should be configured and attached to the transaction. The rule
prepares business data needed to generate a document and specifies the name of the document
template. Each individual transaction that generates documents can be configured to use a specific
template.

3. A Crystal Reports document template should be created and made available to the document
generation system.

After a transaction that generates documents is processed, generated documents are available on the activity
results screen.

The document generation in the OICE application is implemented as a pre-packaged system extension that
internally uses a document generation web service. When implementing a client-specific solution, a different
extension can be built and configured to use alternative document generating technologies.

This approach has been employed to implement a document generation extension that uses the OICE
extension framework to integrate with Oracle Documaker. Oracle Documaker is a leading Enterprise Document
Automation solution. The OICE extension allows using Documaker as a document generating technology
instead of Crystal Reports.

Release 9.7.0.0 OICE Architecture Guide 36 of 37
Revised: 3/22/2013

ORACLE

INSURANCE
Technology Stack
The Version 9.7.0.0 of the OICE application supports the following software products:
Type of Software Software Product Version
Database SQL Server SQL Server 2008 R2 SP2
Database Oracle 11gR2 11.2.0.3
Database DB2 9.7 SP7
J2EE Application server WebSphere 7.0.0.25
J2EE Application server WebLogic 10.3.6.0
J2EE Application server JBoss EAP 5.1.0
Java JDK 1.6 Update 41
Internet Browser Internet Explorer 8
Release 9.7.0.0 OICE Architecture Guide 37 of 37

Revised: 3/22/2013

