

Extensibility Guide

Oracle Financial Services Lending and Leasing

Release 14.1.0.0.0

[October] [2013]

 Part No. E51268-01

1-1

Table of Contents
1. PREFACE .. 1-2

1.1 AUDIENCE .. 1-2
1.2 CONVENTIONS USED .. 1-2
1.3 PRE-REQUISITE ... 1-2

2. CUSTOMIZING AND EXTENDING THE APPLICATION ... 2-3

2.1 UNDERSTANDING CUSTOMIZING AND EXTENDING THE APPLICATION .. 2-3
2.2 UNDERSTANDING CUSTOMIZATION LAYERS .. 2-4
2.3 INSTALLING CUSTOMIZATION TOOLS ... 2-5

3. USING JDEVELOPER FOR CUSTOMIZATIONS .. 3-6

3.1 ABOUT USING JDEVELOPER FOR CUSTOMIZATION ... 3-6
3.2 ABOUT CUSTOMIZING ORACLE ADF ARTIFACTS ... 3-6
3.3 CUSTOMIZING ORACLE ADF ARTIFACTS WITH JDEVELOPER ... 3-9

4. APPLICATION ARTIFACTS ... 4-12

4.1 ABOUT CUSTOMIZING ORACLE ADF APPLICATION ARTIFACTS ... 4-12
4.2 CUSTOMIZABLE APPLICATION LIBRARIES .. 4-12
4.3 ENABLE JDEVELOPER FOR CUSTOMIZATION .. 4-13
4.4 CUSTOMIZING THE SKIN ... 4-13
4.5 CUSTOMIZING OR ADDING RESOURCE BUNDLES .. 4-15
4.6 EDITING EXISTING BUSINESS COMPONENTS ... 4-17
4.7 EDITING PAGES .. 4-21
4.8 EDITING TASK FLOWS .. 4-21
4.9 CREATING CUSTOM BUSINESS COMPONENTS ... 4-22
4.10 CREATING CUSTOM TASK FLOWS .. 4-23
4.11 CREATING CUSTOM PAGES ... 4-24
4.12 EDITING THE UI SHELL TEMPLATE ... 4-25
4.13 CUSTOMIZING SECURITY FOR ADF APPLICATION ARTIFACTS ... 4-25
4.14 DEPLOYING ADF CUSTOMIZATIONS AND EXTENSIONS .. 4-27
4.15 DEPLOYMENT OPTIONS .. 4-27

5. CUSTOMIZING DATABASE OBJECTS .. 5-1

5.1 UI – PACKAGE INTERACTION LOGIC... 5-1
5.2 UI JAVA WRAPPER (U*JW) .. 5-1
5.3 DATABASE SCHEMA ... 5-2
5.4 WRAPPER ENGINE MODEL .. 5-3
5.5 BATCH JOB (BJ) ... 5-4
5.6 ENGINE WRAPPER (EW) ... 5-4
5.7 MAIN ENGINE (EM) ... 5-4
5.8 ENGINE FUNCTION (EN) ... 5-5
5.9 ENGINE VIEW ... 5-5
5.10 COMMON FEATURES ... 5-5
5.11 SEED DATA... 5-5
5.12 DEVELOPER’S TIPS ... 5-6

6. BI PUBLISHER REPORT ... 6-8

7. NAMING CONVENTION FOR CUSTOMIZED OBJECTS ... 7-9

1-2

1. Preface

This document provides an overview on extensibility capabilities supported by Oracle Financial
Services Lending and Leasing Application.

1.1 Audience

This document is intended for administrators and developers who want to customize and extend
the standard functionality provided by Oracle Financial Services Lending and Leasing Application.
Administrators should have a basic understanding of Oracle Financial Services Lending and
Leasing Application and Oracle Application Development Framework concepts. Developers
should have a basic understanding of the Java programming language, web applications, Oracle
JDeveloper, and Oracle Application Development Framework.

1.2 Conventions Used

Term Refers to

Application Oracle Financial Services Lending and Leasing

Customization application workspace OracleFSLLEnterpriseApp/
OracleFSLLEnterpriseApp.jws provided as part of
installer under /cust_lib folder

1.3 Pre-requisite

You can find all the customizable libraries along with the necessary default projects as part of the
product release installer bundle under /cust_lib folder.

You need to download and install JDeveloper 11.1.1.6.0 as well as ADF Skin Editor 11.1.2.3.0.

2-3

2. Customizing and Extending the Application

This chapter provides an overview of how to customize and extend the application and,
introduces the design time and runtime tools used in the process, such as Oracle JDeveloper,
Oracle Business Intelligence (BI) Publisher and Oracle Enterprise Manager Fusion Middleware
Control.

2.1 Understanding Customizing and Extending the
Application

Oracle Financial Services Lending and Leasing application is based on Oracle Fusion
Middleware. User interfaces are implemented using Oracle Application Development Framework
(Oracle ADF) and standard Java technologies. Business intelligence frameworks provide a
number of reporting capabilities. Each of these areas of the application can be customized and
extended to suit your business needs.

Within this guide, the term customizing means to change a standard (existing) artifact. For
example, you can add an attribute to a standard business object, or you can change what is
displayed on a standard view page. The term extending means to create a completely new
artifact, such as a custom business object or custom view page. For customizations and
extensions of this application, there are two basic scenarios: personalization and design time
customizations and extensions.

Personalization

Personalization refers to the changes that every end user of the application can make to certain
artifacts in the user interface (UI) at runtime. These changes remain for that user each time that
user logs into the application. Personalization includes changes based on user behavior (such as
changing the width of a column in a table)

Design time customizations and extensions

Design time customizations and extensions include more complex changes, such as creating new
business objects or creating new view pages, and they require deployment into the runtime
environment. Design time customizations are done by Java developers using Oracle JDeveloper.
The customizations are then uploaded or deployed to a running instance of the application.

Most customizations, whether a personalization an end user makes, or a change a developer
makes using JDeveloper to create new source code, are stored in a business metadata
repository. Because these customizations are kept separate from the base code, you can safely
upgrade your application without overwriting or needing to redo your changes.

Customizations for the UI and for entity components are created in layers, meaning that you can
create them for specific industry, or for specific region or sites, and the changes will be shown
only when applicable. For more information about the metadata dictionary and customization
layers, see Section 2.2, "Understanding Customization Layers."

2-4

2.2 Understanding Customization Layers

The application contains customization layer that allows you to make customizations which affect
only certain instances of an application. For example, the application has a layer for US region.
When you customize an artifact, you can choose to make that customization available only for US
region.

Customizations you make are not saved to the base standard artifact. Instead, they are saved to
an XML file that is stored in an Oracle Metadata Services (MDS) repository. This XML file acts
like a list of instructions that determines how the artifact looks or behaves in the application,
based on the layer that is controlling the current context. The MDS Customization Engine
manages this process.

For example, say you want to customize the Applicant fragment by adding a new Passport field,
but only for US region. Before you make your customization, you first select the layer to make
your customization in, in this case the region layer whose value is US. When you make your
customization by adding the new Passport field in the Application fragment, an XML file is
generated with the instructions to add the field, but only in the region layer, and only when the
value is US. The original page file remains untouched. The MDS Customization Engine then
stores the XML file in an MDS repository.

Now, whenever someone logs into the application and requests an artifact, the MDS
Customization Engine checks the repository for XML files that match the requested artifact and
the given context, and if there is a match, it layers the instructions on top of the base artifact. In
this example, whenever the Application page is requested (the artifact) by someone where US
region customization is applied, before the page is rendered, the MDS Customization Engine
pulls the corresponding XML file from the repository and layers it on top of the standard
Application page, thereby adding the new field.

All users of the application can personalize the pages. Users can move elements around on a
page, hide elements, and even add available elements to their page. When they do this
personalization, the MDS Customization Engine creates an XML file specific to that user.

Application
Page

Application Page

US Region
Customization Page

Application Page with

customization

2-5

For example, say User 1 personalizes the Application page. There will then be an XML file stored
in the repository, noting the changes that user made. When User 1 logs in, as in the previous
example, the MDS Customization Engine pulls the XML file with the customizations from the
repository and layers it on top of the standard Application page. In addition, the engine pulls the
XML file with User 1's personalization’s, allowing the user to see the personalization changes
along with the US region changes. When other users log in, they do not see User 1's
personalization changes.

The application has following customization layers:

 Region: When customizations are made in this layer, they affect users of the application
for a specific region. This layer's XML files are added for everyone, whenever the artifact
is requested.

 Industry: When customizations are made in this layer, they affect users of the application
for a specific industry. This layer's XML files are added for everyone, whenever the
artifact is requested.

 Site: Customizations made in the Site layer affect users at a particular location.

 User: This is where all personalization’s are made. Users do not have to explicitly select
this layer.

These layers are applied in a hierarchy, and the highest layer in
that hierarchy in the current context is considered the tip. Within
the default customization layers, the Region layer is the base
layer, and the User layer is the tip. If customizations are done to
the same object, but in different layers, at runtime, the tip layer
customizations take precedence. For example, if you customize
the label for a field in the site layer and customize the same label
in the industry layer using JDeveloper, the site layer
customization will be displayed at runtime.

Because customizations are saved in these XML files, when you patch or upgrade your
application, the base artifacts can be updated without touching your changes. The base artifact is
replaced, and when the application is run after the patch or upgrade, the XML files are simply
layered on top of the new version. You do not need to redo your customizations.

Before you create customizations, you must select the layer to which you want your
customizations to be applied.

2.3 Installing Customization Tools

For procedures for setting up JDeveloper for customizations, see Chapter 3, "Using JDeveloper
for Customizations."

USER

SITE

INDUSTRY

REGION

3-6

3. Using JDeveloper for Customizations

This chapter describes how to configure JDeveloper for implementing customizations in the
application.

3.1 About Using JDeveloper for Customization

 JDeveloper is used when it is needed to customize or create business objects or new pages. The
procedures for each of these are different.

New custom objects created in JDeveloper are not saved into the MDS Repository, and so are
done in a standard application workspace using the Default role. However, when you customize
standard objects, those customizations are saved into the MDS Repository, and so must be done
using the Customization Developer role. Doing customizations using the customization
developer role ensures that the changes are saved to upgrade-safe MDS Repository, and not
written directly to the standard object. In future, when patch or upgrade Application, the
customizations held in these metadata files will not be touched, and so, it need not be re-done.

When customizing ADF artifacts, a special customization application workspace can be created;
using the Default role, for this application a default customization application workspace
(/OracleFSLLEnterpriseApp/OracleFSLLEnterpriseApp.jws) is provided. This workspace includes
all the artifacts that can be customized. This customization workspace can be configured, so that
when customizations are tested and deployed, they appear to be part of native Oracle Financial
Services Lending and Leasing Application.

Using the default workspace, it is possible to switch roles to customization developer and
customize the ADF artifacts required. After completion, the artifacts are packaged and deployed
in the workspace to the Oracle Financial Services Lending and Leasing environment.

Often, there is a need to perform both customizations (customizing an existing standard object)
and extensions (creating a new object). For example, suppose it is needed to create a new
business object and expose that new object in an existing application module. First, because a
new custom business object is being created, first a standard application workspace is created
and then entity object is created. After completion, the workspace is packaged as an ADF Library,
and placed into a directory. Next, using the default workspace provided, the new entity object
library and the library that contains the application module to which we need to add the entity
object is added. After both are imported, User should log in using the customization developer
role and make the customizations to the application module. After customizations are complete,
User would deploy the customizations to the test environment.

Note

Before running JDeveloper in customization mode for the application, see Section 4.3
“Enable JDeveloper for Customization” for pre-configuration requirement.

3.2 About Customizing Oracle ADF Artifacts

The application is built using Oracle ADF artifacts, including the following:

3-7

 Application modules: An application module is the transactional component that UI clients
use to work with application data. It defines an updateable data model along with top-
level procedures and functions (called service methods) related to a logical unit of work
that is related to an end-user task.

 Entity objects: An entity object represents a row in a database table and simplifies
modifying its data by handling all data manipulation language (DML) operations. It can
encapsulate business logic to ensure that the required business rules are consistently
enforced. An entity object can be associated with others to reflect relationships in the
underlying database schema, to create a layer of business domain objects, and to reuse
in multiple applications.

 View objects: A view object represents a SQL query and simplifies working with its
results. The SQL language is used to join, filter, sort, and aggregate data into the shape
required by the end-user task to be represented in the user interface. This includes the
ability to link a view object with other view objects to create master-detail hierarchies of
any complexity. When end users modify data in the user interface, view objects
collaborate with entity objects to consistently validate and save the changes.

 Task flows: Task flows define the flow of control throughout an application. They also can
be included in a page as a region, where users can navigate through a series of page
fragments, without leaving the original page.

 JSPX pages and page fragments: The view layer of the application consists of a small
number of pages per application. These pages then contain task flows, which in turn
contain a number of page fragments.

3-8

When Oracle ADF artefacts are customized, it generally happens in an overview editor that
allows making customizations declaratively. For example, below figure shows the editor for an
entity object. Among other things, validation can be set or UI display changes can be done.

3-9

For JSPX pages, a WYSIWYG environment is displayed where changes can be made using the
Design tab in the editor window or structure window.

3.3 Customizing Oracle ADF Artifacts with JDeveloper

To customize ADF artifacts, open the default customization application workspace provided,
using the Customization Developer role and customize the required artifacts.

3-10

Customizing the Artifacts

Users need to switch to the Customization Developer role before they can begin customizing.

1. Restart JDeveloper and select the Customization Developer role

3-11

The artifacts from the imported library are displayed in the Application Navigator pane,
under the ADF Library Customizations node, and the artifact selected to customize opens
in the editor window.

2. In the Customization Context window (by default, displayed at the bottom of JDeveloper),

select the layer that you want the customizations written to.

Note

In case you want to change the value from customization.properties, you can follow the below
steps

Step 1: Extract the OfsllCustomization.jar using the following command.

 Jar –xvf OfsllCustomization.jar

Step 2: Modify the value in customization.properties

Step 3: remove the old OfsllCustomization.jar, to build the jar again, please issue the
following command

Jar -cvf OfsllCustomization.jar customization.properties oracle META-INF adf-loc.jar

4-12

4. Application Artifacts

This chapter describes how to use Oracle JDeveloper to customize and extend application
artifacts defined by Oracle Application Development Framework (Oracle ADF) in Oracle Financial
Services Lending and Leasing Application.

4.1 About Customizing Oracle ADF Application Artifacts

With the customization features provided by Oracle Metadata Services (MDS), developers can
customize the application using JDeveloper, making modifications to suit the needs of a particular
group, such as a specific region or industry or site.

Using JDeveloper, you can implement customizations on existing artifacts that are provided. The
application can also be extended with new custom artifacts that are packaged into a JAR file, and
integrated using customizations on the existing application.

However customizations to the application require a lower level approach, for which JDeveloper
needs to be used.

4.2 Customizable Application Libraries

All customization in the application would be done on the ADF Libraries. List of libraries that can
be customized and set of default projects that can be used for building the projects are:

Library Name Description

adflibOfsllCommonModel.jar Contains all the application Business Objects such as
entity object, view object and application module.

adflibOracleFSLLCommonTemplate.jar Contains task flow templates and page flow
templates. All the re-usable templates are available in
this library.

adflibOfsllCommonUI.jar Contains all the User Interface fragments (JSFF) and
taskflows (TFs).

Project Name Description

OracleFSLLEnterpriseApp/
OracleFSLLEnterpriseApp.jws

Enterprise EAR Application deployment project. This is
the default customization main project used to bundle all
the libraries into an EAR.

OracleFSLLCommonSkin/
OracleFSLLCommonSkin.jws

Application Skin project, containing images and CSS file.
The skin project changes can be handled through Oracle
ADF Skin Editor.

OracleFSLLCustomization/
OracleFSLLCustomization.jws

Customization project containing the customization layer
values i.e. region layer, Industry layer and site layer key
value pair.

4-13

Note

Above projects are available as part of the application installer bundle under /cust_lib folder.

The customizable libraries can be extracted out of /core_as/*.ear file. Extract the *.war out of
*.ear and the libraries are under /WEB-INF/lib folder.

Currently existing menu items cannot be customized as well as new menu items cannot be
added.

4.3 Enable JDeveloper for Customization

Before running the JDeveloper in Customization Developer role, JDeveloper needs to be
configured with following settings:

1. Open JDeveloper in Default role and open the OracleFSLLCustomization/
OracleFSLLCustomization.jws project and edit the customization.properties file with
appropriate values for Region key layer, Industry key layer and Site key layer.

2. Rebuild the OfsllCustomization.jar using the default deployment profile.

3. Copy the OfsllCustomization.jar onto JDeveloper installation location under
$JDEV_HOME/jdeveloper/jdev/lib/patches.

4. Edit the /cust_lib/CustomizationLayerValues.xml in Notepad and update the Region key

layer, Industry key layer and Site key layer with the values added as per required
customization.properties.

5. Copy the CustomizationLayerValues.xml onto JDeveloper installation location under

$JDEV_HOME/jdeveloper/jdev.

4.4 Customizing the Skin

One method of customizing skin is opening the bundled
OracleFSLLCommonSkin/OracleFSLLCommonSkin.jws project in Oracle ADF Skin Editor
Application and customizes the skin details. Once the skin details are customized the same can
be bundled as ADF library and deployed to the application server.

1. Open the OracleFSLLCommonSkin Project in Oracle ADF Skin Editor application

2. Select the component through selectors structure which needs to be customized

4-14

3. Go to Property Inspector and make necessary changes

4. Make ADF Library JAR through deployment profile defined with this project.

5. Copy the JAR into OracleFSLLEnterpriseApp to build the EAR.

Note

Skin can be customized using Oracle ADF Skin Editor (11.1.2.3.0) which can be downloaded
from Oracle site.

If the default skin family name is changed then trinidad-config.xml available in
OracleFSLLEnterpriseApp needs to be changed with new skin family name.

4-15

4.5 Customizing or Adding Resource Bundles

One method of customizing label is by overriding values for existing keys defined in the resource
bundle, but new keys cannot be added.

Because a new key cannot be defined in the shipped resource bundle, a new override bundle
needs to be created. This can be accomplished in JDeveloper by creating an XLIFF file from the
New Gallery. After the file is generated, new keys and their associated text in the XLIFF file can
be entered.

To make the newly created resource bundle available for customization, the resource bundle
needs to be registered with the customization project. To do this, package it into an ADF Library
JAR file, and import the JAR file into the customization project.

Note

All custom JAR file names must begin with the suffix Xx, for example adflibMyJarXx.jar

To test the customizations locally in JDeveloper Integrated Oracle WebLogic Server, the ADF
Library JAR file must also be included in the APP-INF/lib directory.

Step to override a message bundle is shown:

1. The Edit Resource Bundles Dialog box is available under Application Menu. Navigate to
the XLIFF Bundle that needs to overridden.

4-16

2. Change Display Value for the Key as per requirement

3. Once changes are submitted, the override resource bundle folder would be created with
overridden values.

4-17

4.6 Editing Existing Business Components

Before you start customizing business objects, it has to be determined which business objects
need customizing. Then when customizing ADF artifacts, JDeveloper has to be launched in the
Customization Developer role, and the appropriate layer selected.

Task: Edit Attributes

The properties of an attribute can be customized from an entity object or view object using
JDeveloper. When an entity object opened or viewed in the overview editor, the attributes of the
object can be seen on click in the Attributes tab. When an attribute is selected, its properties are
displayed in the Property Inspector.

It is not necessary to modify the page after customizing the properties of an existing attribute.
Customizations to existing attributes are automatically reflected on the pages that show them.

However, if an attribute is modified so that it requires a different UI component, it must also be
updated in the page. For example, if a list of values (LOV) is added to an attribute, the page
needs to be edited to hide the existing UI component that displays the attribute, and a new UI
component added that can display the LOV.

Note that some attribute properties defined in the entity object can be overridden in the view
object. For example, the label text for a field cab be defined in an entity object and subsequently
given a different label in the consuming view object. Then pages that use the view object display
the label from the view object.

4-18

Task: Add Attributes

Custom attributes can be added to an entity object or view object using JDeveloper. To do this,
JDeveloper must be launched in the Customization Developer role, a layer selected. Open an
entity object or view object in the overview editor, and click the Attributes tab to see the attributes
of the object. To add a custom attribute, click the Add icon.

To store the custom attribute in the database, first create the column that will be used to store it.

To display the custom attributes in the application, the pages also needs to be customized to
display them.

Task: Edit Entity Objects

In JDeveloper, edit entity objects using the overview editor. In the Application Navigator, right-
click an entity object, and choose Open. Then click on the navigator tabs to view and edit the
various features of the entity object.

Task: Edit View Objects

In JDeveloper, edit view objects using the overview editor. In the Application Navigator, right-click
a view object, and choose Open. Then click on the navigator tabs to view and edit the various
features of the view object

4-19

Task: Edit Validation

In JDeveloper, edit declarative validation rules for entity objects and view objects using the
overview editor. In the Application Navigator, right-click an entity object or view object, and
choose Open. Then click the Business Rules navigator tab to view and edit the validation rules.

When implementing customizations on validation rules, rules can be added, the error message
modified , rules can be made more restrictive. Avoid removing rules or making rules less
restrictive, because this can cause unpredictable results. Also, only declarative validation rules
can be edited; programmatic validation rules cannot be customized.

Task: Edit Application Modules

In JDeveloper, edit application modules using the overview editor. In the Application Navigator,
right-click an application module, and choose Open.

In JDeveloper, the following kinds of customizations can be made on an application module:

 Add new custom properties. This is done on the General page of the overview editor.

 Add new view object and application module instances. This is done on the Data Model
page of the overview editor.

 Add newly created subtype view objects. This is done on the Data Model page of the
overview editor.

4-20

 Add new application module configurations. This is done on the Configurations page of
the overview editor.

Once the changes are applied, the MDS file is created based on the customization layer value
choose as shown below.

4-21

4.7 Editing Pages

JDeveloper can be used to implement customizations on the pages that are used in the
application. When editing a page in JDeveloper, JDeveloper must be launched in the
Customization role.

Task: Edit Pages

In JDeveloper, the visual editor is used to implement customizations on existing pages. In the
Application Navigator, right-click the page that has to be customized, and choose Open. The
page is displayed in the visual editor (accessed by clicking the Design tab). Then the page can be
edited by using this editor.

4.8 Editing Task Flows

JDeveloper can be used to implement customizations on the task flows that are used in the
application. A task flow is a set of ADF Controller activities, control flow rules, and managed
beans that interact to allow a user to complete a task. Although conceptually similar, a task flow is
not the same as a human task, a task in the worklist, or a process flow.

4-22

A bounded task flow can be rendered in a JSF page or page fragment (.jsff) by using an ADF
region. This is typically done to allow reuse of the task flow, as necessary, throughout the
application. If a bounded task flow is modified, the changes apply to any ADF region that uses the
task flow.

Task: Edit Task Flows

In JDeveloper, the task flow diagram editor is used to implement customizations on existing task
flows. In the Application Navigator, right-click the task flow that has to be customized, and choose
Open. The page is displayed in the diagram editor, where changes can be made to the existing
activities and control flow cases, or create new custom ones.

4.9 Creating Custom Business Components

JDeveloper can be used to extend the application by creating custom business components.
When creating custom business components in JDeveloper, JDeveloper must be launched in the
Default role. This role is used for creating new custom objects that needs to be added to the
application. The same workspace that was created for customization can be used. After the
custom business components are created, switch to the Customization Developer role, to make
changes to existing artifacts to integrate the new custom artifacts into the application.

4-23

Task: Create Custom Entity Objects

An entity object represents a row in a database table, and encapsulates the business logic and
database storage details of business entities.

In JDeveloper, entity objects can be created using the Create Entity Object wizard, which can be
launched from the New Gallery. In the Application Navigator, right-click the project that has to be
added to the entity object, and choose New. Then in the New Gallery, expand Business Tier, click
ADF Business Components, choose Entity Object, and click OK. Follow the prompts in the wizard
to create an entity object.

Task: Create Custom View Objects

A view object represents a SQL query and also collaborates with entity objects to consistently
validate and save the changes when end users modify data in the UI.

In JDeveloper, view objects can be created using the Create View Object wizard, which can be
launched from the New Gallery. In the Application Navigator, right-click the project that has to be
added to the view object, and choose New. Then in the New Gallery, expand Business Tier, click
ADF Business Components, choose View Object, and click OK. Follow the prompts in the wizard
to create a view object.

Task: Create Custom Application Modules

An application module encapsulates an active data model and the business functions for a logical
unit of work related to an end-user task.

In JDeveloper, application modules can be created using the Create Application Module wizard,
which can be launched from the New Gallery. In the Application Navigator, right-click the project
that has to be added to the application module, and choose New. Then in the New Gallery,
expand Business Tier, click ADF Business Components, choose Application Module, and click
OK. Follow the prompts in the wizard to create an application module.

Task: Add Validation

In JDeveloper, declarative validation rules can be created for entity objects and view objects to
help ensure the integrity of the data. To do this, open the entity object or view object in the
overview editor, and click the Business Rules navigation tab. Then select the attribute for which
validation needs to be provided, click the Create new validator icon, and use the Add Validation
Rule dialog to configure the rule.

4.10 Creating Custom Task Flows

JDeveloper can be used to create custom task flows that can be included in the application. A
task flow is a set of ADF Controller activities, control flow rules, and managed beans that interact
to allow a user to complete a task. Although conceptually similar, a task flow is not the same as a
human task, a task in the worklist, or a process flow.

4-24

Task: Create a Custom Task Flow

A custom task flow can be created in JDeveloper using the New Gallery, and then its activities
defined using the task flow diagram editor. In the Application Navigator, right-click the project that
has to be added to the task flow, and choose New. Then in the New Gallery, expand Web Tier,
and click JSF/Facelets. Then select ADF Task Flow, and click OK. In the Create Task Flow
dialog, specify the details about the type of task flow that needs to be created. Click OK and the
task flow is created and displayed in the diagram editor.

4.11 Creating Custom Pages

JDeveloper can be used to create custom pages that can be included in the application. When
creating custom pages in JDeveloper, JDeveloper must be launched in the Default role.

When creating the page (or dropping a view activity onto a task flow), it can be created either as a
JSF JSP or as a JSF JSP fragment. JSF fragments provide a simple way to create reusable page
content in a project, and are used for task flows as regions on a page. When a JSF page
fragment is modified, the JSF pages that consume the page fragment are automatically updated.

After extending the application with custom pages, it is required to make sure that security for the
new pages are implemented appropriately and that the new pages are deployed so that they are
accessible from the application.

Task: Create a Custom Page

In JDeveloper, pages can be created either by double-clicking a view activity in a task flow or by
using the New Gallery. In the Application Navigator, right-click the project to which the page has
to be added to, and choose New. Then in the New Gallery, expand Web Tier, and click
JSF/Facelets. Then select either Page or ADF Page Fragment, and click OK.

Task: Add a Custom Page to a Task Flow

If the page is created by double-clicking a view activity in a task flow, it is already added to the
task flow. If it is created using the New Gallery, it can be added to a task flow by dragging the
page from the Application Navigator and dropping it in the task flow diagram editor. Then connect
the page using a control flow.

4-25

4.12 Editing the UI Shell Template

To edit the UI Shell template in JDeveloper, in the Customization Developer role, import the
adflibOracleFSLLCommonTFPF.jar and drill down to the file
/templates/OfsllUiShellTemplate.jspx. This is the UI Shell template, which can be customized as
necessary.

4.13 Customizing Security for ADF Application Artifacts

This chapter describes how to customize security for custom and extended business objects and
related custom and extended application artifacts defined by Oracle Application Development
Framework (Oracle ADF) in Oracle Fusion applications using Oracle JDeveloper.

This is applicable only for newly added Taskflows, Fragments, Command Buttons and Tabs.

Following Steps are to be followed to add the ADF Security:

1. Open JDeveloper in Default role and open the OracleFSLLEnterpriseApp.jws project

4-26

2. Edit jazn-data.xml file and select the Resource grants from Overview Editor

3. Select the option to import taskflows from ADF libraries

4. Enable the permissions for the newly added Taskflows.

Note

Tab permissions are to be set against TabItemPermission Resource Type.

Command buttons permissions are to be set against ButtonItemPermission Resource Type.

Ensure to follow the naming convention as per base resource keys.

4-27

4.14 Deploying ADF Customizations and Extensions

After customizing existing artifacts, JDeveloper can be used to deploy the customizations to
Oracle Weblogic Server.

The default customization workspace as described in Section 3.1, “About Using JDeveloper for
Customization," contains a MAR profile. By default, the name of the MAR profile is
application_name_customizations. It will automatically include the customizations that are
implemented. This profile can be used to package the customizations for deployment.

When customizations are packaged from the customization workspace, the MAR file should
include only library customizations. Do not include the User Metadata or HTML Root Dir for
Project in the MAR profile, unless explicitly directed to do so by product documentation.

If the application is extended with new custom artifacts, JDeveloper can be used to package them
into an ADF Library JAR and place them into the proper location within the application directory
structure.

Task: Deploy the Customizations

JDeveloper can be used to deploy the customizations directly or to create a MAR, and then load
the MAR using WLST commands or the WebLogic Server Administration Console.

When customizations are deployed on ADF Business Component objects (such as entity objects
and view objects), the server must be restarted for the customizations to be picked up.

Task: Package New Artifacts into ADF Library

If the application is extended with new custom artifacts (or new artifacts are supplied with), these
artifacts must be packaged into an ADF library JAR and place the JAR files in the proper location
within the application.

The ADF library JAR for the new model artifacts (such as entity objects and view objects) should
be placed into the /APP-INF/lib directory. The ADF Library JAR for the new user interface artifacts
(such as pages) should be placed in the /WEB-INF/lib directory

4.15 Deployment Options

The Deployment or EAR creation of the application would be done through
OracleFSLLEnterpriseApp project. In this Project, JPR has the necessary deployment profiles
available. Deployment of the application on to Weblogic Server is defined as per “Install UI
Components to Application Server” document.

Note

In Customization Developer role, the project creates the MAR deployment profile for
customization deployment.

MAR deployment is same as EAR deployment.

5-1

5. Customizing Database Objects

5.1 UI – Package Interaction Logic

OFSLL uses the Oracle Fusion Middleware based ADF user interface. Below mentioned image
show how OFSLL user interfaces interacts with the Java wrapper.

5.2 UI Java Wrapper (U*JW)

If the java wrapper engine needs to be customized, follow the steps given below:

1. Select the Exit point for the customization.

2. Rename the exit point package file name with _xyz. Do not change Package name.

3. Change the variable CV….from NON_CUSTOMIZED to CUSTOMIZED depending upon
the exit point before, replace or after.

5-2

4. Write the required customized engine library and call it in the java wrapper Exit Points
Package (EX).

Business Logic Engine (Process)

5.3 Database Schema

Oracle Financial Services Lending and Leasing has the below mentioned Database Objects

 Table

 Table Column

 Sequence

 Index

5-3

 View

o FVW – User Interface Views

o JVW – Java Interface Views

o EVW – Engine/Wrapper Signature Views

o PL/SQL Programs

5.4 Wrapper Engine model

Below mentioned is the naming convention for Wrapper Engine model used in Oracle Financial
Services Lending and Leasing.

XXXYYY_ZZ_ABC_99 XXXYYY_ZZ_ABC_99

XXX Module or Engine

YYY Function

ZZ Program Type

EM Engine Main

EN Engine Function

A System

 0-Common

 1-Consumer

 2-Commercial

 (Always 0 for Wrapper)

5-4

EW Engine Wrapper

EL Engine Library

EX Engine User Exits

JW Java Wrapper

BJ Batch Job

BL Batch Job Library

CL Common Library

B Product Type

 0-Common

 1-Loan

 2-Lease

 3-WFP

 (Always 0 for Wrapper)

C Product Sub Type

 0-Common

 1-Closed Ended

 2-Open Ended

 (Always 0 for Wrapper)

99 Running Sequence Number

 Starting 01 to 99

5.5 Batch Job (BJ)

Batch Job cannot be customized, it has to be developed as a new job.

5.6 Engine Wrapper (EW)

Engine Wrapper cannot be customized.

5.7 Main Engine (EM)

To customize the main engine, follow the steps given below:

 Select the Exit point for the customization.

 Rename the exit point package file name with _xyz. Do not change Package name.

 Change the variable CV….from NON_CUSTOMIZED to CUSTOMIZED depending upon
the exit point before, replace or after.

 Write your customized engine and call it in the Engine Exit Points Package (EX).

5-5

5.8 Engine Function (EN)

To customize an engine function, follow the steps given below:

 Select the Exit point for the customization.

 Rename the exit point package file name with _xyz. Do not change Package name.

 Change the variable CV….from NON_CUSTOMIZED to CUSTOMIZED depending upon
the exit point before, replace or after.

 Write your customized engine function and call it in the Engine Exit Points Package (EX).

5.9 Engine View

To customize an Engine View (EVW), follow the steps given below:

 Do Not modify the OFSLL Base Engine View Script

 Create a copy of the OFSLL Base Engine View Script, rename and modify that Engine
View Script.

Do not modify the OFSLL Base Engine View Name.

5.10 Common Features

 Error Logging

o Alert Log

 Debugging

o Debug Log

 Version Control Header in each code unit

5.11 Seed Data

Oracle Financial Services Lending and Leasing Seed data tables are classified in following three
categories

System

 Only Oracle Financial Software Services Ltd. can change/update this data

Combination

5-6

 Oracle Financial Software Services Ltd. or customer can change/update this data. It is
recommended to identify all the new customized seed data records with a customer
identifier in the primary key.

Demo

 Oracle Financial Software Services Ltd. provides the demo data as sample demo
configurations. Customer can change/update/delete this data, this data should not be
used for production configurations.

All seed data tables have two Primary Keys - one is user defined codes and the other is a system
generated sequence number.

All seed data tables have a system defined indicator to indicate whether a record is system
defined.

All seed data are stored is in files and checked in the version control systems and sent as merged
statements in patch for changed (added or modified) data.

5.12 Developer’s Tips

Suppose the account number generation needs to be customized different from what OFSLL
generates; Requirement is to replace the baseline format with its own format (like ACC-
NNNNNNN).

Locate the procedure that generates the account number.

 Procedure “set_acc_nbr” from program “aaiacc_en_111_01.pkb” generates account
number in “YYYYMMNNNNNNND” format.

Identify the exit point package having the set_acc_nbr_xxx procedures where xxx is bfr – before,
afr - after and rep – replace.

 aaiprc_ex_111_01.pks and aaiprc_ex_111_01.pkb

 Create new package with name as xyzaaiacc_en_111_01.pkb. Add procedure to create
account number in new format.

 Copy “aaiprc_ex_111_01.pks” to “xyzaaiprc_ex_111_01.pks”

 Modify “xyzaaiprc_ex_111_01.pks”, change constant

From

CV_SET_ACC_NBR_REP CONSTANT VARCHAR2(30) :=
cmncon_cl_000_01.NOT_CUSTOMIZED;

To

CV_SET_ACC_NBR_REP CONSTANT VARCHAR2(30) :=
cmncon_cl_000_01.CUSTOMIZED;

 Copy “aaiprc_ex_111_01.pkb” to “xyz aaiprc_ex_111_01.pkb”

5-7

 Call new procedure from xyzaaiprc_ex_111_01

PROCEDURE set_acc_nbr_rep(

 iv_con_rec IN aai_con_evw%ROWTYPE

 ,iv_acc_aad_id IN OUT aai_con_evw.con_aad_id%TYPE

 ,iv_acc_nbr IN OUT aai_con_evw.con_acc_nbr%TYPE) IS

BEGIN

 xyzaaiprc_en_111_01.set_acc_nbr(iv_con_rec,iv_acc_aad_id, iv_acc_nbr);

END set_acc_nbr_rep;

The above example shows the usage with replacement exit point. Similar way “before” and “after”
exit points can be used to extend the business logic functions.

 Where ‘xyz’ is Customer Unique Id

6-8

6. BI Publisher Report

To customize a report, follow the steps given below:

 Do not modify the OFSLL Base Report.

 Create a copy of the OFSLL Base Report, rename and modify that report. A new report
also can be created. Name the report as xyz_<report_name>.

 Register the new report and it’s parameters in OFSLL using reports setup.

7-9

7. Naming Convention for Customized Objects

Object Naming
Convention

Comment

New Table <table_name>_xyz
Same as Column Naming
Convention

New View <view_name>_xyz Same as Column Naming
Convention

New Column in OFSLL Base
Version Table

abc_<column_name>_xyz

New Column in OFSLL Base
Version View

abc_<column_name>_xyz

New Sequence abc_seqnum_xyz

New Unique Index abc_udx_xyz/ abc_udx2_xyz

New Non Unique Index abc_idx_xyz/ abc_idx2_xyz

New System Parameter (Seed
Data)

<system_parmeter>_xyz

New Lookup Type (Seed
Data)

<lookup_type>_xyz

New Lookup Code (Seed
Data)

<lookup_code>_xyz

New Other (Seed Data) <seed_code>_xyz

New Correspondence
Function

<function_name>_xyz

New Correspondence
Element

<element_name>_xyz

New Package Name (EM/EN) xyz<package_name>

New Package File
Name(EM/EN)

xyz<package_name>

New Package Name (EX) <package_name>

New Package File Name(EX) xyz<package_name>

7-10

Object Naming
Convention

Comment

New Report File Name xyz<report_name>

View File Name xyz<view file name>

 Where ‘xyz’ is Customer Unique Id

 Signature of Base OFSLL Package Functions, Package Procedures, Reports,
Correspondences and Faxes should not be changed.

 No New Functions or Procedures should be added to OFSLL Base Packages.

 List of Objects with exceptions must be published.

When checking-in custom code in version control software, follow theguidelines given below:

1. Instead of putting all the code in one directory, follow the Base Engine directory structure.

2. For New custom Engine Create a New Engine directory.

3. Follow the naming convention for the files. All package files should start with three-
character client name.

e.g.: ulnapp_el_100_01.pkb will become : xyzulnapp_el_100_01.pkb for XYZ Bank.

uln_evw.sql will become : xyzuln_evw.sql for XYZ Bank.

DDL scripts should end with the three-character client name.

e.g. crt_vw_applications.sql will become crt_vw_applications_xyz.sql for XYZ Bank.

Extensibility Guide
October [2013]
Version 14.1.0.0.0

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © [2008] , [2013] , Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or recompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

