Oracle® ZFS Storage Appliance Customer Service Manual

For ZS3-x, 7x20 Controllers, and DE2-24, Sun Disk Shelves
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Contents

Using This Documentation .. 9

1 Introduction ... 11
 Overview ... 11
 Introduction ... 11
 Hardware ... 15
 Hardware View ... 16
 BUI ... 16
 CLI ... 22
 Tasks .. 24

2 Hardware Maintenance .. 27
 Maintenance ... 27
 Introduction .. 27
 ZS3-2 .. 28
 ZS3-2 Hardware Overview ... 28
 Controller Overview ... 29
 Physical Specifications ... 35
 Electrical Specifications ... 35
 Acoustic Noise Emissions ... 36
 Internal Components ... 36
 Motherboard, Memory, and PCIe Cards ... 39
 Optional Cable Management Arm .. 44
 Attached Storage ... 45
 ZS3-4 .. 46
 ZS3-4 Hardware Overview ... 46
 Controller Overview ... 46
 Internal Boards ... 51
 Components .. 51
 Attached Storage ... 61
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS3-2 CRU Maintenance Procedures</td>
<td>61</td>
</tr>
<tr>
<td>Prepare the Controller for Servicing Internal Components</td>
<td>63</td>
</tr>
<tr>
<td>Controller Replacement Tasks</td>
<td>65</td>
</tr>
<tr>
<td>Oracle DE2 and Sun Disk Shelf Interoperability</td>
<td>97</td>
</tr>
<tr>
<td>ZS3-4 CRU Maintenance Procedures</td>
<td>97</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>97</td>
</tr>
<tr>
<td>Safety Information</td>
<td>97</td>
</tr>
<tr>
<td>Required Tools and Information</td>
<td>98</td>
</tr>
<tr>
<td>Chassis Serial Number</td>
<td>98</td>
</tr>
<tr>
<td>Controller Replacement Tasks</td>
<td>98</td>
</tr>
<tr>
<td>Oracle DE2 and Sun Disk Shelf Interoperability</td>
<td>124</td>
</tr>
<tr>
<td>7120 Hardware Overview</td>
<td>124</td>
</tr>
<tr>
<td>Chassis Overview</td>
<td>124</td>
</tr>
<tr>
<td>Electrical Specifications</td>
<td>127</td>
</tr>
<tr>
<td>Internal Components</td>
<td>128</td>
</tr>
<tr>
<td>Standalone Controller Configurations</td>
<td>133</td>
</tr>
<tr>
<td>Attached Storage</td>
<td>135</td>
</tr>
<tr>
<td>7320 Hardware Overview</td>
<td>136</td>
</tr>
<tr>
<td>Chassis Overview</td>
<td>136</td>
</tr>
<tr>
<td>7320 Replaceable Components</td>
<td>143</td>
</tr>
<tr>
<td>7320 Single and Cluster Controller Configurations</td>
<td>145</td>
</tr>
<tr>
<td>7420 Hardware Overview</td>
<td>149</td>
</tr>
<tr>
<td>Appliance Overview</td>
<td>149</td>
</tr>
<tr>
<td>Chassis</td>
<td>150</td>
</tr>
<tr>
<td>Internal Boards</td>
<td>155</td>
</tr>
<tr>
<td>Components</td>
<td>155</td>
</tr>
<tr>
<td>Attached Storage</td>
<td>164</td>
</tr>
<tr>
<td>7x20 CRU Maintenance Procedures</td>
<td>165</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>165</td>
</tr>
<tr>
<td>Safety Information</td>
<td>165</td>
</tr>
<tr>
<td>Required Tools and Information</td>
<td>166</td>
</tr>
<tr>
<td>Chassis Serial Number</td>
<td>166</td>
</tr>
<tr>
<td>Controller Replacement Tasks</td>
<td>166</td>
</tr>
<tr>
<td>Oracle DE2 and Sun Disk Shelf Interoperability</td>
<td>204</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf</td>
<td>204</td>
</tr>
<tr>
<td>Disk Shelf Overview</td>
<td>204</td>
</tr>
<tr>
<td>Shelf</td>
<td>218</td>
</tr>
<tr>
<td>Disk Shelf Maintenance Procedures</td>
<td>218</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>218</td>
</tr>
<tr>
<td>Safety Information</td>
<td>218</td>
</tr>
<tr>
<td>Electrostatic Discharge Precautions</td>
<td>218</td>
</tr>
<tr>
<td>Tasks</td>
<td>219</td>
</tr>
<tr>
<td>Faults</td>
<td>232</td>
</tr>
<tr>
<td>Hardware Faults</td>
<td>232</td>
</tr>
<tr>
<td>Cabling</td>
<td>233</td>
</tr>
<tr>
<td>Connecting to Attached Storage</td>
<td>233</td>
</tr>
<tr>
<td>Maximum Number of Disk Shelves per Controller Configuration</td>
<td>234</td>
</tr>
<tr>
<td>Next Steps</td>
<td>234</td>
</tr>
<tr>
<td>3 System Maintenance</td>
<td>235</td>
</tr>
<tr>
<td>System</td>
<td>235</td>
</tr>
<tr>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>System Disks</td>
<td>235</td>
</tr>
<tr>
<td>Support Bundles</td>
<td>236</td>
</tr>
<tr>
<td>Initial Setup</td>
<td>238</td>
</tr>
<tr>
<td>Factory Reset</td>
<td>239</td>
</tr>
<tr>
<td>Updates</td>
<td>239</td>
</tr>
<tr>
<td>System Updates</td>
<td>239</td>
</tr>
<tr>
<td>Hardware Firmware Updates</td>
<td>251</td>
</tr>
<tr>
<td>Rollback</td>
<td>253</td>
</tr>
<tr>
<td>Cluster Upgrade</td>
<td>254</td>
</tr>
<tr>
<td>Updating via the BUI</td>
<td>256</td>
</tr>
<tr>
<td>Updating via the CLI</td>
<td>259</td>
</tr>
<tr>
<td>Passthrough x</td>
<td>262</td>
</tr>
<tr>
<td>Passthrough-x Deferred Update</td>
<td>262</td>
</tr>
<tr>
<td>User Quotas</td>
<td>263</td>
</tr>
<tr>
<td>User Quotas Deferred Update</td>
<td>263</td>
</tr>
<tr>
<td>COMSTAR</td>
<td>263</td>
</tr>
<tr>
<td>COMSTAR Deferred Update</td>
<td>263</td>
</tr>
<tr>
<td>Triple Parity RAID</td>
<td>263</td>
</tr>
<tr>
<td>Triple-Parity RAID Deferred Update</td>
<td>263</td>
</tr>
<tr>
<td>Dedup</td>
<td>264</td>
</tr>
<tr>
<td>Data Deduplication Deferred Update</td>
<td>264</td>
</tr>
</tbody>
</table>
Contents

Workflow Input Validation ... 288
Workflow Execution Auditing ... 289
Workflow Execution Reporting ... 289
Versioning ... 291
 Appliance Versioning .. 291
 Workflow Versioning .. 292
Workflows as Alert Actions ... 292
 Alert Action Execution Context ... 292
 Auditing Alert Actions .. 293
Using Scheduled Workflows .. 294
 Using the CLI ... 294
 Coding the Schedule ... 295
Example: Device Type Selection ... 297
BUI ... 299
CLI ... 300
 Downloading Workflows .. 300
 Viewing Workflows .. 301
 Executing Workflows .. 301
Using This Documentation

- **Overview** – Describes maintenance procedures for the Oracle ZFS Storage Appliance
- **Audience** – Technicians, system administrators, and authorized service providers
- **Required knowledge** – Experience working with the Oracle ZFS Storage Appliance

Product Documentation Library

Visit http://www.oracle.com/goto/ZFSStorage/docs for the Oracle ZFS Storage Appliance documentation library.

For related documentation, including white papers, visit http://www.oracle.com/technetwork/server-storage/sun-unified-storage/overview/index.html and click on the Documentation tab. For late-breaking information and known issues about this product, visit My Oracle Support at http://support.oracle.com.

Access to Oracle Support

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.
Overview

Introduction

The Oracle ZFS Storage Appliance family of products provides efficient file and block data services to clients over a network, and a rich set of data services that can be applied to the data stored on the system.

Controllers

- “ZS3-2” on page 28
- “ZS3-4” on page 46
- “7120” on page 124
- “7320” on page 136
- “7420” on page 149
Expansion Storage

- “Disk Shelves” on page 204

Protocols

Oracle ZFS Storage Appliances include support for a variety of industry-standard client protocols, including:

- SMB
- NFS
- HTTP and HTTPS
- WebDAV
- iSCSI
- FC
- SRP
- iSER
- FTP
- SFTP

For information on these protocols, see the “Oracle ZFS Storage Appliance Administration Guide”.

Key Features

Oracle ZFS Storage Appliances also include new technologies to deliver the best storage price/performance and unprecedented observability of your workloads in production, including:

- Analytics, a system for dynamically observing the behavior of your system in real-time and viewing data graphically. For more information, see “Analytics” in “Oracle ZFS Storage Appliance Analytics Guide”.
- The ZFS Hybrid Storage Pool, composed of optional Flash-memory devices for acceleration of reads and writes, low-power, high-capacity disks, and DRAM memory, all managed transparently as a single data hierarchy.

Data Services

To manage the data that you export using these protocols, you can configure your Oracle ZFS Storage Appliance using the built-in collection of advanced data services, including:
License Notice: Remote Replication and Cloning may be evaluated free of charge, but each feature requires that an independent license be purchased separately for use in production. After the evaluation period, these features must either be licensed or deactivated. Oracle reserves the right to audit for licensing compliance at any time. For details, refer to the “Oracle Software License Agreement (“SLA”) and Entitlement for Hardware Systems with Integrated Software Options.”

- RAID-Z (RAID-5 and RAID-6), mirrored, and striped disk configurations
- Unlimited read-only and read-write snapshots, with snapshot schedules
- Data deduplication
- Built-in data compression
- Remote replication of data for disaster recovery
- Active-active clustering for high availability
- Thin provisioning of iSCSI LUNs
- Virus scanning and quarantine
- NDMP backup and restore

For information on these data services, see the “Oracle ZFS Storage Appliance Administration Guide.”

Availability

To maximize the availability of your data in production, Oracle ZFS Storage Appliances include a complete end-to-end architecture for data integrity, including redundancies at every level of the stack. Key features include:

- Predictive self-healing and diagnosis of all system hardware failures: CPUs, DRAM, I/O cards, disks, fans, power supplies
- ZFS end-to-end data checksums of all data and metadata, protecting data throughout the stack
- RAID-6 (double- and triple-parity) and optional RAID-6 across disk shelves
- Active-active clustering for high availability
- Link aggregations and IP multipathing for network failure protection
- I/O Multipathing between the controller and disk shelves
- Integrated software restart of all system software services
- Phone Home of telemetry for all software and hardware issues
- Lights-out Management of each system for remote power control and console access

For information on these availability features, see the “Oracle ZFS Storage Appliance Administration Guide.”
Browser User Interface (BUI)

The browser user interface

The BUI is the graphical tool for administration of the appliance. The BUI provides an intuitive environment for administration tasks, visualizing concepts, and analyzing performance data.

The management software is designed to be fully featured and functional on a variety of web browsers, as described in Browser User Interface (BUI).

Direct your browser to the system using either the IP address or host name you assigned to the NET-0 port during initial configuration as follows: https://ipaddress:215 or https://hostname:215. The login screen appears.

The online help linked in the top right of the BUI is context-sensitive. For every top-level and second-level screen in the BUI, the associated help page appears when you click the Help button.
Command Line Interface (CLI)

The CLI is designed to mirror the capabilities of the BUI, while also providing a powerful scripting environment for performing repetitive tasks. The following sections describe details of the CLI. When navigating through the CLI, there are two principles to be aware of:

- Tab completion is used extensively: if you are not sure what to type in any given context, pressing the Tab key will provide you with possible options. Throughout the documentation, pressing Tab is presented as the word "tab" in bold italics.
- Help is always available: the help command provides context-specific help. Help on a particular topic is available by specifying the topic as an argument to help, for example `help commands`. Available topics are displayed by tab-completing the help command, or by typing help topics.

You can combine these two principles, as follows:

dory:> help tab
builtins commands general help properties script

Hardware

Locating a disk
Hardware View

The Maintenance > Hardware screen (also known as the "hardware view") provides component status of the appliance and attached disk shelves. This information is available from both the BUI and the CLI.

BUI

The BUI hardware view provides interactive illustrations that enable you to browse through the appliance and attached disk shelf components. The screenshot at the start of this section shows a disk highlighted in a Sun ZFS Storage 7320, showing both its physical location and details.

The buttons in the hardware view are described in the following table:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![icon]</td>
<td>Show a more detailed view of this component</td>
<td>![icon]</td>
<td>Toggle blinking of the locator LED for this component</td>
</tr>
<tr>
<td>![icon]</td>
<td>Leave this detailed view</td>
<td>![icon]</td>
<td>Power off, reboot, or diagnostic reboot</td>
</tr>
<tr>
<td>![icon]</td>
<td>Click for more details</td>
<td>![icon]</td>
<td>Offline disk</td>
</tr>
<tr>
<td>![icon]</td>
<td>Hardware component is ok (green)</td>
<td>![icon]</td>
<td>Port active</td>
</tr>
<tr>
<td>![icon]</td>
<td>Hardware component is not present (grey)</td>
<td>![icon]</td>
<td>Port inactive</td>
</tr>
<tr>
<td>![icon]</td>
<td>Hardware component is faulted (amber)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Overview

The main hardware page lists the system chassis, a summary of its contents, and any attached disk shelves (on supported systems). This provides an overview of the hardware present on the system. The power icon, located in the upper left of the view, presents a dialog box to either power off, reboot (power cycle), or reboot the appliance with diagnostics. Only select the diagnostic reboot option when instructed by Oracle Service personnel because it could take a long time to complete and could have adverse results if not performed properly. Do not
perform a diagnostic reboot when system-affecting operations are occurring, such as upgrading firmware, executing commands, and configuring or unconfiguring storage. The diagnostic reboot option is not available when using the system chassis power icon, described below.

System Chassis

The primary system chassis is shown on the top half of the view. At the top left, click the right-arrow icon to get more detail about the chassis. The indicator notes if there are any faulted components within the chassis, and the name of the chassis. The chassis name is initially set to the appliance name during installation. To change the chassis name, use the entry field on the Configuration > Services > System Identity screen. For more information, see “System Identity” in “Oracle ZFS Storage Appliance Administration Guide”.

At the top right of the system chassis is the locator icon to light the locator LED, and the power icon, which presents a dialog box to either power off or reboot (power cycle) the appliance.

A thumbnail of the controller is presented at left. Clicking on the thumbnail or the "Show Details" link takes you to a detailed view of the chassis, and is identical to clicking on the right-arrow icon at the top left of the view.

The following information is presented in a summary view:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Manufacturer of the system</td>
</tr>
<tr>
<td>Model</td>
<td>System model name</td>
</tr>
<tr>
<td>Serial</td>
<td>System chassis hardware serial number</td>
</tr>
<tr>
<td>Processors</td>
<td>Count and description of processors in the system</td>
</tr>
<tr>
<td>Memory</td>
<td>Total memory in the system</td>
</tr>
<tr>
<td>System</td>
<td>Size and number of system disks used for the system image</td>
</tr>
<tr>
<td>Data</td>
<td>Size and number of data disks in the system chassis. This is only valid for standalone systems. If there are no data disks present, "-" will be displayed.</td>
</tr>
<tr>
<td>Cache</td>
<td>Size and number of cache disks in the system chassis. This is only valid for expandable systems that support additional disk shelves. If there are no cache disks present, "-" will be displayed.</td>
</tr>
</tbody>
</table>
Disk Shelves

A list of disk shelves, if supported, is displayed at the bottom of the view. The thumbnail to the left represents the front of the currently selected disk shelf. Clicking on the right-pointing arrow or double-clicking on a row within the list will provide complete details about the disk shelf. The state indicator will be orange if the chassis contains any faulted components. The following fields are displayed in the list:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the disk shelf, used in faults and alerts. This is initially set to the serial number of the disk shelf, but can be changed by clicking on the name within the list.</td>
</tr>
<tr>
<td>MFR/MODEL</td>
<td>The disk shelf manufacturer and the model number.</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute; the speed of the disk drive.</td>
</tr>
<tr>
<td>Data</td>
<td>Total size of all data disks within the disk shelf.</td>
</tr>
<tr>
<td>Cache</td>
<td>Total size of all read-optimized cache devices ("Readzillas") within the drive shelf. There are currently no supported disk shelves with read cache devices, but this may not always be the case. If there are no cache devices within the shelf, then "-" is displayed.</td>
</tr>
<tr>
<td>Log</td>
<td>Total size of all write-optimized cache devices ("Logzillas") within the drive shelf. If there are no log devices within the shelf, then "-" is displayed.</td>
</tr>
<tr>
<td>Paths</td>
<td>Total number of I/O paths to the disk shelf. The only supported configurations are those with multiple paths to all disks, so this should read "2" under normal operating circumstances. Clicking the information icon will bring up a dialog with information about each path. This includes which HBAs are connected to the disk shelf, and the state of any paths. If the disks within the disk shelf are not currently configured as part of a storage pool, complete path information will not be available, though it displays two paths to the chassis.</td>
</tr>
<tr>
<td>Locate</td>
<td>Toggle the locator LED for this disk shelf. If the LED is currently on, then this indicator will be flashing.</td>
</tr>
</tbody>
</table>
Chassis Detail

To view the chassis details, click on the right-arrow icon (or one of the alternative forms described above). This view includes some of the same controls in the upper left (state, name, locate, reset, power off), as well as listings of all the components in the chassis.

At the left is a set of images describing the chassis. If there are multiple views, then you can switch between them by clicking on the name of the view above the image.

For each view, faulted components will be highlighted in red. In addition, the currently selected component will be highlighted in the image. Clicking on a component within the image will select the corresponding component in the list to the right.

A tab is present for each component type in the following list. Each component type has a state icon which will be orange if there is a faulted component of the given type.

- Disk
- Slot
- CPU (controller only)
- DIMM (Memory) (controller only)
- Fan
- PSU (Power supply unit)
- SP (Service processor) (controller only)

Clicking on a component type will display a list of all physical locations within the chassis where components may be present. Clicking on a component within the list will highlight it within the appropriate chassis image. Clicking on the information icon while over a row or double-clicking a row will bring up a dialog with detailed information about the component. The information displayed in the list depends on the component type, but is a subset of the information available in the component detail. Disks and service processors support additional operations described below. Each component can report any or all of the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Human-readable identifier for this component within the chassis. This typically, but not necessarily, equivalent to the label printed on the physical chassis.</td>
</tr>
<tr>
<td>FMRI</td>
<td>Fault managed resource identifier (FMRI) for the component. This is an internal identifier used to identify the component within faults and is intended for service personnel.</td>
</tr>
<tr>
<td>Active Problems</td>
<td>For a faulted component, links to active problems affecting the component.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Component manufacturer.</td>
</tr>
<tr>
<td>Model</td>
<td>Component model.</td>
</tr>
<tr>
<td>Build</td>
<td>Manufacturing build identifier. This is used to identify a particular location or batch where the component was manufactured.</td>
</tr>
<tr>
<td>Part</td>
<td>Component part number, or core factory part number. The orderable part number may differ, depending on whether a component is for replacement or expansion, and whether it’s part of a larger assembly. Your service provider should be able to refer you to the appropriate orderable part. For components without part numbers, the model number should be used instead.</td>
</tr>
<tr>
<td>Serial</td>
<td>Component serial number.</td>
</tr>
<tr>
<td>Revision</td>
<td>Firmware or hardware revision of the component.</td>
</tr>
<tr>
<td>Size</td>
<td>Total memory or storage, in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Disk type. Can be one of 'system', 'data', 'log', 'cache', or 'spare'. When a spare is active, it will be displayed as 'spare'.</td>
</tr>
<tr>
<td>Speed</td>
<td>Processor speed, in gigahertz.</td>
</tr>
<tr>
<td>Cores</td>
<td>Number of CPU cores.</td>
</tr>
<tr>
<td>GUID</td>
<td>Hardware global unique identifier.</td>
</tr>
</tbody>
</table>

Disks

Disks support the additional options:

TABLE 1-5 Additional Options for Disks

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate ![Locator]</td>
<td>Toggle the locator indicator for the disk. If the LED is currently turned on, this icon will be blinking.</td>
</tr>
<tr>
<td>Offline ![Offline]</td>
<td>Offline the disk. This option is only available for disks that are part of a configured storage pool (including the system pool). Offline a disk prevents the system from reading or writing to it. Faulted devices are already avoided, so this option should only be required if a disk is exhibiting performance problems that do not result in pathological failure. It is not possible to offline a disk that would prevent access to data (i.e. offlineing both halves of a mirror). If the device is an active hot spare, this will also give the option of detaching the hot spare.</td>
</tr>
</tbody>
</table>
InfiniBand Host Controller Adapters

InfiniBand Host Controller Adapters (HCA) report additional properties for the list of available ports:

TABLE 1-6 Additional Properties for InfiniBand Host Controller Adapters

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>When "active", the active-port icon is displayed. Other valid port states ("down", "init", and "arm") are denoted by the inactive-port icon . Mousing over the port icon will display the current port state in the tip pop-up.</td>
</tr>
<tr>
<td>GUID</td>
<td>The hardware assigned port GUID.</td>
</tr>
<tr>
<td>Speed</td>
<td>The current port speed enabled: Single Data Rate (SDR), Dual Data Rate (DDR) or Quad Data Rate (QDR)</td>
</tr>
</tbody>
</table>

Service Processor

The service processor behaves differently from other component nodes. Instead of providing a list of components, it presents a set of network properties that can be configured from the storage appliance. The following properties control the behavior of the service processor network management port:

TABLE 1-7 Properties for the Service Processor Network Management Port

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Hardware MAC address. This is read-only</td>
</tr>
<tr>
<td>IP Address Source</td>
<td>Either 'DHCP' or 'Static'. Controls whether DHCP should be used on the interface.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IPv4 Address, when using static IP configuration. IPv6 is not supported.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Dotted decimal subnet, when using static IP configuration.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>IPv4 default gateway address.</td>
</tr>
</tbody>
</table>
Changing multiple values in conflicting ways (such as changing static IP assignments while in DHCP mode) has undefined behavior.

CLI

Hardware status details are available in the CLI under the maintenance hardware section. Use the show command to list the status of all components. The list command will list available chassis, which can be selected and then viewed using show.

```
tarpon:> maintenance hardware show
Chassis:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>chassis-000</td>
<td>0839QCJ01A</td>
<td>ok</td>
<td>Sun Microsystems, Inc. Sun Storage 7320</td>
</tr>
<tr>
<td>cpu-000</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-001</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-002</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-003</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>disk-000</td>
<td>ok</td>
<td>STEC</td>
<td>MACH8 IOPS</td>
</tr>
<tr>
<td>disk-001</td>
<td>ok</td>
<td>STEC</td>
<td>MACH8 IOPS</td>
</tr>
<tr>
<td>disk-002</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-003</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-004</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-005</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-006</td>
<td>ok</td>
<td>HITACHI</td>
<td>HTE5450SASN500G</td>
</tr>
<tr>
<td>disk-007</td>
<td>ok</td>
<td>HITACHI</td>
<td>HTE5450SASN500G</td>
</tr>
<tr>
<td>fan-000</td>
<td>ok</td>
<td>unknown</td>
<td>ASY,FAN,BOARD,H2</td>
</tr>
<tr>
<td>fan-001</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-002</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-003</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-004</td>
<td>ok</td>
<td>unknown</td>
<td>ASY,FAN,BOARD,H2</td>
</tr>
<tr>
<td>fan-005</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-006</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>memory-000</td>
<td>ok</td>
<td>HYNIX</td>
<td>4096MB DDR-II 66</td>
</tr>
<tr>
<td>memory-001</td>
<td>ok</td>
<td>HYNIX</td>
<td>4096MB DDR-II 66</td>
</tr>
</tbody>
</table>

A 5th and 6th column for serial number ("SERIAL") and revolutions per minute ("RPM") have been truncated in the above example, as has the length of this list.

Component Properties

If a particular component is selected, detailed information about its properties are reported. The following properties are supported, with the corresponding BUI property name. For a description of a particular property, see the earlier descriptions.
TABLE 1-8 Component CLI Properties and BUI Equivalent Properties

<table>
<thead>
<tr>
<th>CLI Property</th>
<th>BUI Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>build</td>
<td>Build</td>
</tr>
<tr>
<td>cores</td>
<td>Cores</td>
</tr>
<tr>
<td>device</td>
<td>N/A</td>
</tr>
<tr>
<td>faulted</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>label</td>
<td>Label</td>
</tr>
<tr>
<td>locate</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>manufacturer</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>model</td>
<td>Model</td>
</tr>
<tr>
<td>offline</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>part</td>
<td>Part</td>
</tr>
<tr>
<td>present</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>revision</td>
<td>Revision</td>
</tr>
<tr>
<td>serial</td>
<td>Serial</td>
</tr>
<tr>
<td>size</td>
<td>Size</td>
</tr>
<tr>
<td>speed</td>
<td>Speed</td>
</tr>
<tr>
<td>type</td>
<td>(combined with use)</td>
</tr>
<tr>
<td>use</td>
<td>Type</td>
</tr>
</tbody>
</table>

When viewing a disk that is active as a hot spare, the detach command is also available.

Viewing CPU Details

For example, the following shows details for component "CPU 0":

tarpon:maintenance hardware> select chassis-000  
tarpon:maintenance chassis-000> select cpu  
tarpon:maintenance chassis-000 cpu> select cpu-000  
tarpon:maintenance chassis-000 cpu-000> show  
Properties:
  label = CPU 0  
present = true  
faulted = false  
manufacturer = AMD  
model = Quad-Core AMD Opteron(tm) Processor 8356  
part = 1002
Restarting the Appliance

Only issue the restart command as instructed by Oracle Service personnel. This function is only available via the CLI and is not the same as a reboot (power cycle) via the BUI. The restart command is a software-only operation that restarts the management server, which could impact some client services, like replication. During execution, both the CLI and BUI are not available; wait for the appliance to return to normal operation.

Under the maintenance system context, issue the command `restart`.

tarpon:maintenance system> restart

Performing a Diagnostic Reboot

Only issue the diagnostic reboot command as instructed by Oracle Service personnel. A diagnostic reboot gathers diagnostic information before power cycling the appliance. This operation could take a long time to complete and could cause adverse results if not performed properly. Do not reboot when system-affecting operations are occurring, such as upgrading firmware, executing commands, and configuring or unconfiguring storage.

Under the maintenance system context, issue the command `diagreboot`.

tarpon:maintenance system> diagreboot

Tasks

BUI

- Locating a failed component

1. Go to the Maintenance > Hardware screen.
2. Click the right-arrow icon on the Storage System or Disk Shelf which has the fault icon.
3. Locate the fault icon in the lists of hardware components, and click it. The image should be updated to show where that component is physically located.

4. (Optional) Click the locator icon for that component, if the component has it. The LED on the component will begin to flash.

### CLI

To turn on the locator LED using the CLI, run the following commands.

Go to the `maintenance hardware` context:

```
hostname:> maintenance hardware
```

List the appliance components:

```
hostname:maintenance hardware> list
```

Select the chassis and list its components:

```
hostname:maintenance hardware> select chassis-001
hostname:maintenance chassis-001>
```

Select the component type and show all available disks:

```
hostname:maintenance chassis-001 disk> show
```

<table>
<thead>
<tr>
<th>LABEL</th>
<th>STATE</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk-000</td>
<td>HDD 0</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACNJ</td>
</tr>
<tr>
<td>disk-001</td>
<td>HDD 1</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF6</td>
</tr>
<tr>
<td>disk-002</td>
<td>HDD 2</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF9</td>
</tr>
<tr>
<td>disk-003</td>
<td>HDD 3</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF2</td>
</tr>
<tr>
<td>disk-004</td>
<td>HDD 4</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF3</td>
</tr>
<tr>
<td>disk-005</td>
<td>HDD 5</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF4</td>
</tr>
<tr>
<td>disk-006</td>
<td>HDD 6</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF5</td>
</tr>
<tr>
<td>disk-007</td>
<td>HDD 7</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF6</td>
</tr>
<tr>
<td>disk-008</td>
<td>HDD 8</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF7</td>
</tr>
<tr>
<td>disk-009</td>
<td>HDD 9</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF8</td>
</tr>
<tr>
<td>disk-010</td>
<td>HDD 10</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACF9</td>
</tr>
<tr>
<td>disk-011</td>
<td>HDD 11</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACFA</td>
</tr>
<tr>
<td>disk-012</td>
<td>HDD 12</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
<td>9QG1ACFB</td>
</tr>
</tbody>
</table>
### Hardware

<table>
<thead>
<tr>
<th>Disk ID</th>
<th>Type</th>
<th>Status</th>
<th>Model</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk-013</td>
<td>HDD 13</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ACQ5</td>
</tr>
<tr>
<td>disk-014</td>
<td>HDD 14</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ACKA</td>
</tr>
<tr>
<td>disk-015</td>
<td>HDD 15</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1AC5Y</td>
</tr>
<tr>
<td>disk-016</td>
<td>HDD 16</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ACQ2</td>
</tr>
<tr>
<td>disk-017</td>
<td>HDD 17</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1AA7S</td>
</tr>
<tr>
<td>disk-018</td>
<td>HDD 18</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ACDY</td>
</tr>
<tr>
<td>disk-019</td>
<td>HDD 19</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1AC3Y</td>
</tr>
<tr>
<td>disk-020</td>
<td>HDD 20</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ACG6</td>
</tr>
<tr>
<td>disk-021</td>
<td>HDD 21</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1AC3X</td>
</tr>
<tr>
<td>disk-022</td>
<td>HDD 22</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1AHL</td>
</tr>
<tr>
<td>disk-023</td>
<td>HDD 23</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>9QG1ABLW</td>
</tr>
</tbody>
</table>

**Note** - The RPM (revolutions per minute) of the disk drive is also shown in the output. However, RPM is truncated in the above example.

Select the faulted disk and turn on the locator LED:

```
hostname:maintenance chassis-001 disk> select disk-001
hostname:maintenance chassis-001 disk-001> set locate=true
 locate = true (uncommitted)
hostname:maintenance chassis-001 disk-001> commit
```
Hardware Maintenance

Introduction

This section describes concepts and procedural instructions for performing hardware and software maintenance tasks. The graphic above illustrates locating a spare disk within the chassis by highlighting its name in the BUI Hardware Maintenance list. The Maintenance > Hardware screen of the BUI provides visual representations of the physical system components, allowing you to visually identify and locate hardware components and verify their status. Software updates can be applied in the System section of the interface, as well as viewing logs and current problems.
Hardware and software maintenance tasks include the following topics:

- **Hardware Overviews** - identify hardware components and verify their status
- **Controllers**
  - “ZS3-2 Hardware Overview” on page 28 - component diagrams and specifications
  - “ZS3-2 CRU Maintenance Procedures” on page 61 - replace controller drives, fans, power supplies, memory, cards, and batteries
  - “ZS3-4 Hardware Overview” on page 46 - component diagrams and specifications
  - “ZS3-4 CRU Maintenance Procedures” on page 97 - replace controller drives, fans, power supplies, memory, cards, risers, and batteries
  - “7120 Hardware Overview” on page 124 | “7320 Hardware Overview” on page 136 | “7420 Hardware Overview” on page 149 - component diagrams and specifications
  - “7x20 CRU Maintenance Procedures” on page 165 - replace controller drives, fans, power supplies, memory, cards, risers, and batteries
- **Expansion Storage**
  - “Disk Shelf Overview” on page 204 - component diagrams and specifications for Oracle Storage Drive Enclosure DE2-24, and Sun Disk Shelf
  - “Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf chassis components
  - “Connecting to Attached Storage” on page 233 - cabling storage controllers to the disk shelves
- “Hardware Faults” on page 232 - Connect to ILOM to diagnose hardware faults
- “System” on page 235 - view system disks, manage support bundles
  - “Updates” on page 239 - manage appliance software
  - “Configuration Backup” on page 268 - backup and restore appliance configuration
- “Problems” on page 273 - view current problems
- “Logs” on page 275 - view appliance logs
- “Maintenance Workflows” on page 283 - manage and execute workflows

---

**ZS3-2 Hardware Overview**

This section describes the internal and external components of the Oracle ZFS Storage ZS3-2 controller. Use this information when preparing to service replaceable components. Refer to the following topics for procedural instructions:
“ZS3-2 CRU Maintenance Procedures” on page 61 - replace system controller components

“Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf components

Controller Overview

The ZS3-2 controller is an enterprise-class, rackmount x86 system powered by the Intel Xeon processor. It provides high performance and room for growth with expandable PCIe slots and 16 DIMM slots in a compact 2U footprint.

<table>
<thead>
<tr>
<th>CPU</th>
<th>Memory</th>
<th>Readzilla</th>
<th>Boot Drive</th>
<th>PCIe Slots</th>
<th>HBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x8-core, 2.1GHz</td>
<td>256GB</td>
<td>1-4 1.6TB</td>
<td>2x2.5-inch</td>
<td>2 dedicated; 4 available</td>
<td>4-port (4x4) SAS-2 6Gb/s external</td>
</tr>
<tr>
<td></td>
<td>16x16GB</td>
<td>SAS-2 SSDs</td>
<td>900GB SAS-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>512GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16x32GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to the product site at http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html for the most recent component specification.

Front Panel

The ZS3-2 controller drive slots and front panel components are shown in the following figure.
Drive slots 0 and 1 have two mirrored 900GB SAS-2 boot drives. Up to four 1.6TB flash read-optimized (Readzilla) solid state drives (SSDs) fill slots 2 through 5, in order. Slots 6 and 7 are empty and must contain drive fillers.

---

**Figure Legend**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locator LED/button (white)</td>
</tr>
<tr>
<td>2</td>
<td>Service Action Required LED (amber)</td>
</tr>
<tr>
<td>3</td>
<td>Power OK LED (green)</td>
</tr>
<tr>
<td>4</td>
<td>Power button</td>
</tr>
</tbody>
</table>

**Note** - The LEDs below the Fan/CPU/Memory Service Required LED are not currently used.

---

**Rear Panel**

The ZS3-2 controller PCIe slots and rear panel components are shown in the following figure.
FIGURE 2-2  ZS3-2 Controller Rear Panel

Figure Legend

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAS-2 HBA (slot 1)</td>
<td>7 AC power supplies PS1 (top), PS0 (bottom)</td>
</tr>
<tr>
<td>2</td>
<td>4x4 SAS-2 6Gb/s HBA (slot 2)</td>
<td>8 System status LEDs</td>
</tr>
<tr>
<td>3</td>
<td>PCIe slot 3</td>
<td>9 USB 2.0 ports</td>
</tr>
<tr>
<td>4</td>
<td>PCIe slot 4</td>
<td>10 SP 15-pin VGA video port</td>
</tr>
<tr>
<td>5</td>
<td>PCIe slot 5</td>
<td>11 Serial management port</td>
</tr>
<tr>
<td>6</td>
<td>PCIe slot 6</td>
<td>12 Network management port</td>
</tr>
<tr>
<td>13</td>
<td>Alarm port, DB-15 connector</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15-16 Cluster I/O ports</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10-Gbit Ethernet ports</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chassis ground post</td>
<td></td>
</tr>
</tbody>
</table>

Note - The three Cluster I/O ports (0, 1, and GigE) are reserved for cluster interconnection only.

4x4 SAS-2 HBA

The 4x4 SAS-2 HBA, installed in PCIe slot 2 of the ZS3-2, provides connectivity to external DE2 and Sun Disk Shelves. The HBA ports are numbered 0-3, left to right, as shown in the following figure.
FIGURE 2-3  ZS3-2 Controller 4x4 SAS-2 HBA Port Numbers

For controllers with an additional 4x4 SAS-2 HBA, see “PCIe Options” on page 43 for slot placement.

Serial Management Connector

The serial management connector (SER MGT) is an RJ-45 port and provides a terminal connection to the service processor (SP) console.

FIGURE 2-4  ZS3-2 Controller Serial Management Port

Network Management Connector

The network management connector (NET MGT) is an RJ-45 port and provides an alternate terminal interface to the SP console.
The ZS3-2 has four RJ-45 10-Gigabit Ethernet (10GbE) network connectors, labeled NET 3, NET 2, NET 1, and NET 0 (left to right) on the rear panel. The ports operate at 100 Mbits/sec, 1000 Mbits/sec, or 10-Gbits/sec. Use these ports to connect the appliance to the network.

The LEDs located above each NET port are Link/Activity (left) and Speed (right) indicators for each port as described in this table:

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>EEE Terminology</th>
<th>Speed LED Color</th>
<th>Transfer Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Ethernet</td>
<td>100BASE-TX</td>
<td>Off</td>
<td>100 Mbits/sec</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000BASE-T</td>
<td>Amber</td>
<td>1000 Mbits/sec</td>
</tr>
<tr>
<td>10 Gigabit Ethernet</td>
<td>10GBASE-T</td>
<td>Green</td>
<td>10000 Mbits/sec</td>
</tr>
</tbody>
</table>

Cluster I/O Ports

Two cluster serial ports (0 and 1) and one Ethernet port provide communication between two controllers to form a cluster configuration. For information about how to connect cables
to form a cluster, see the topic “Cluster Node Cabling” in “Oracle ZFS Storage Appliance Administration Guide”.

**FIGURE 2-7** ZS3-2 Controller Cluster I/O Ports: Serial 0, Serial 1, Ethernet

---

**Caution** - When disconnecting an RJ-45 cable from a cluster serial port (0 and 1), use extreme care not to damage the internal RJ-45 receptacle. To properly remove an RJ-45 cable from a cluster serial port, do the following:

**Disconnecting the RJ-45 Cable from the Cluster Serial Port**

1. **Using your index finger, press down fully on the RJ-45 release tab. Be sure the tab is fully disengaged from the port.**
2. Using your thumb and middle finger, apply a slight downward pressure while pulling the plug out of the port. Do not pull the plug upward or pinch the release tab with your fingers below the plug, as shown below.

**Physical Specifications**

The ZS3-2 controller 2U chassis dimensions are as follows:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>3.44 in./87.4 mm</td>
<td>Depth</td>
<td>20.25 in./514 mm</td>
</tr>
<tr>
<td>Width</td>
<td>17.52 in./445 mm</td>
<td>Weight</td>
<td>41.23 lb/18.70 kg</td>
</tr>
</tbody>
</table>

**Electrical Specifications**

The ZS3-2 controller electrical specifications are listed below. The power dissipation numbers listed are the maximum rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.

**Connectors**

- Two C13 connectors which work on 110-220v outlets
Input

- Nominal frequencies: 50/60Hz (47 to 63 Hz range)
- Nominal voltage range: 100 to 120/200 to 240 VAC
- Maximum current AC RMS: 6.8 A @ 100-120 V / 3.4 A @ 200-240 V
- AC operating range: 90-264 VAC

Output

- 3.3 VDC STBY: 3.0A
- +12 VDC: 86.7A

Power Dissipation

- Max power consumption: 890 W max
- Max heat output: 3026 BTU/hr
- Volt-Ampere rating: 908 VA @ 240 VAC, 0.98P.F.

Acoustic Noise Emissions

In compliance with the requirements defined in ISO 7779, the workplace-dependent noise level of this product is less than 70 db (A).

Internal Components

The ZS3-2 chassis has the following field replaceable units (FRUs). FRUs are not customer-serviceable and must be replaced by trained Oracle service technicians.

- **PCIe Risers**: There are three risers per system, each attached to the rear of the motherboard. Each riser supports two PCIe cards (which are customer replaceable units (CRUs).
- **Motherboard**: The motherboard includes CPU modules, slots for 16 DIMMs, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.
- **Power Distribution Board**: The power distribution board distributes main 12V power from the power supplies to the rest of the controller. It is directly connected to the connector break out board and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock kill switch. The power supplies connect directly to the power distribution board.
- **Storage Drive Backplane**: The storage drive backplane includes the connectors for the storage drives, as well as the interconnect for the I/O board, power and locator buttons, and
system/component status LEDs. The system has an 8-disk backplane. Each drive has an LED indicator for Power/Activity, Fault, and Locate.

Storage, Power, and Fan Components

The ZS3-2 controller’s internal storage, power, and cooling components are described in the following figure and legend. A component identified as a field replaceable unit (FRU) must be replaced by trained Oracle service technicians.

FIGURE 2-8  ZS3-2 Controller Storage, Power, and Fan Components
Internal Cables

The ZS3-2 controller contains the following field-replaceable unit (FRU) internal cables. FRUs are not customer-serviceable, and must be replaced by trained Oracle service technicians.

FIGURE 2-9  ZS3-2 Controller Internal Cables
Motherboard, Memory, and PCIe Cards

The ZS3-2 controller motherboard, memory, and PCIe components are described in the following figure and legend.

**Note** - Field replaceable components (FRUs) are not customer-serviceable, and must be replaced by trained Oracle service technicians.
FIGURE 2-10  ZS3-2 Controller Motherboard, Memory, and PCIe Components

![ZS3-2 Controller Motherboard, Memory, and PCIe Components](image)

<table>
<thead>
<tr>
<th>Figure Legend</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Drive cage (FRU)</td>
<td>5 Airduct</td>
<td>9 Battery</td>
</tr>
<tr>
<td>2 Drive backplane (FRU)</td>
<td>6 PCIe Risers (FRU)</td>
<td>10 PDB duct</td>
</tr>
<tr>
<td>3 Motherboard (FRU)</td>
<td>7 PCIe cards</td>
<td>11 Power distribution board (FRU)</td>
</tr>
<tr>
<td>4 DIMMs</td>
<td>8 USB flash drive</td>
<td></td>
</tr>
</tbody>
</table>
CPU and Memory

The ZS3-2 controller motherboard has 16 slots in two groups that hold industry-standard DDR3 low voltage (LV) DIMMS.

Note - All sockets must be occupied by identical DDR3 DIMMs.

<table>
<thead>
<tr>
<th>TABLE 2-4</th>
<th>ZS3-2 Controller CPU Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>CPU 0</td>
</tr>
<tr>
<td>256GB</td>
<td>D0, D2, D5, D7 (blue)</td>
</tr>
<tr>
<td></td>
<td>D1, D3, D4, D6 (white)</td>
</tr>
</tbody>
</table>

The ZS3-2 controller replaceable memory components and part numbers are listed below.
TABLE 2-5  ZS3-2 Controller Replaceable Memory Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>FRU/CRU</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel E5-2658, 2.1G, 8-core</td>
<td>FRU</td>
<td>7019701</td>
</tr>
<tr>
<td>Memory</td>
<td>DIMM, 16GB, DDR3, 1600, 2Rx4, 1.35V</td>
<td>CRU</td>
<td>7041603</td>
</tr>
<tr>
<td>Memory</td>
<td>DIMM, 32GB, DDR3, 1066, 4Rx4, 1.35V</td>
<td>CRU</td>
<td>7055964</td>
</tr>
</tbody>
</table>

NIC/HBA Options

The following table describes the NIC/HBA options for the ZS3-2 controller. See “PCle Options” on page 43 for slot allocations.

TABLE 2-6  ZS3-2 Controller NIC/HBA Options

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-SAS6-INT-Z</td>
<td>8-port 6Gb/s SAS-2 internal HBA</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port 8Gb FC HBA</td>
</tr>
<tr>
<td>7103791</td>
<td>4-port (4x4) SAS-2 6Gb/s external HBA</td>
</tr>
<tr>
<td>7101674</td>
<td>2-port 16Gb FC HBA</td>
</tr>
<tr>
<td>X1109A-Z</td>
<td>2-port 10GbE SFP+ NIC</td>
</tr>
<tr>
<td>X4242A</td>
<td>2-port InfiniBand CX2 HCA</td>
</tr>
<tr>
<td>7100477</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
</tr>
<tr>
<td>7100488</td>
<td>2-port 10Gb Ethernet Copper Base-T NIC</td>
</tr>
<tr>
<td>X2129A</td>
<td>XCVR 850NM, 1/10Gbps, SFP, short reach</td>
</tr>
<tr>
<td>X5562A-Z</td>
<td>10GbE/1GbE SFP+ Transceiver, long reach</td>
</tr>
</tbody>
</table>

PCle Riser Configuration

The three risers are labeled Riser 1, Riser 2, and Riser 3. Though similar, the risers are not interchangeable. Riser 1 installs at the left rear of the chassis, Riser 2 at the center rear, and Riser 3 at the right rear of the chassis. Each riser can accommodate two PCle cards:

- Riser 1 contains slots 1 and 4
- Riser 2 contains slots 2 and 5
- Riser 3 contains slots 3 and 6
PCIe Options

The following table describes the supported PCIe configuration options for the ZS3-2 controller. Slots 1 and 2 are reserved for internal and external HBAs, as shown in the following table. When adding PCIe cards, populate from higher order slots (6) first toward lower order slots.

**Note** - Any empty PCIe slots must have a filler panel installed.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mfg Part Number</th>
<th>Description</th>
<th>Max</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7047852</td>
<td>8-port SAS-2 internal HBA</td>
<td>1</td>
<td>Base configuration</td>
</tr>
<tr>
<td>2</td>
<td>7067091</td>
<td>4-port (4x4) SAS-2 external HBA</td>
<td>2</td>
<td>Base configuration</td>
</tr>
<tr>
<td>3</td>
<td>7067091</td>
<td>4-port (4x4) SAS-2 external HBA</td>
<td>2</td>
<td>Second 4x4-port SAS-2 external HBA</td>
</tr>
<tr>
<td>3</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>3</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>3</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper Base-T NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4-6</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4-6</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>4-6</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
</tbody>
</table>
### PCIe Slot Order

Install optional PCIe cards in the following order:

1. **Install optional second 4x4 SAS-2 HBA (7067091) in slot 3.**

   **Note** - For the remainder of PCIe option cards, always start installing in slot 6 and then work down to slot 3 in this order:

2. **Install InfiniBand CX2 HCA (375-3696-01) in slot 6 and continue until all InfiniBand options are installed and or,**

3. **Install 10Gb Ethernet Optical NICs (7051223) and or,**

4. **Install 10Gb Ethernet Copper NICs (7070006) and or,**

5. **Install 8Gb FC HBAs (371-4325-02) or 16Gb FCs HBA (7023303) and or,**

6. **Install 1Gb Ethernet Copper NICs (7070195).**

### Optional Cable Management Arm

The following figure identifies the components of the second-generation cable management arm (CMA). See the CMA installation instructions.
**Figure Legend**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector A</td>
</tr>
<tr>
<td>2</td>
<td>Front slide bar</td>
</tr>
<tr>
<td>3</td>
<td>Velcro straps (6)</td>
</tr>
<tr>
<td>4</td>
<td>Connector B</td>
</tr>
<tr>
<td>5</td>
<td>Connector C</td>
</tr>
<tr>
<td>6</td>
<td>Connector D</td>
</tr>
<tr>
<td>7</td>
<td>Slide-rail latching bracket (used with connector D)</td>
</tr>
<tr>
<td>8</td>
<td>Rear slide bar</td>
</tr>
<tr>
<td>9</td>
<td>Cable covers</td>
</tr>
</tbody>
</table>

**Attached Storage**

The ZS3-2 controller connects to external storage through a 4-port (4x4) SAS-2 HBA. You can attach from one to eight HDD-only or SSD/HDD Logzilla-capable disk shelves.
to the controller. You can also attach mixed disk shelf types (DE2 family and legacy Sun Disk Shelves) behind the same controllers, but each chain must contain only the same disk shelf type. Directly connecting different disk shelf types is not supported. For more information, see “Connecting to Attached Storage” on page 233. See also “Disk Shelf Overview” on page 204 for component specifications and diagrams.

ZS3-4

ZS3-4 Hardware Overview

Use the information on this page as a preparation reference for servicing replaceable components of the Oracle ZFS Storage ZS3-4 controller. Refer to the following topics for procedural instructions:

- “ZS3-4 CRU Maintenance Procedures” on page 97 - replace system controller components
- “Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf components

Controller Overview

The ZS3-4 controller can be configured as a single controller or two controllers to create a high-availability cluster configuration. The following table describes the configuration options:

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>CPU</th>
<th>Memory</th>
<th>Readzilla SAS-2</th>
<th>Boot Drive SAS-2</th>
<th>HBA SAS-2</th>
<th>Software Version (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7105725</td>
<td>4x10-core, 2.40GHz</td>
<td>1TB (16GB DIMMs)</td>
<td>Four 1.6TB</td>
<td>Two 900GB</td>
<td>4X4-port</td>
<td>2013.1.0</td>
</tr>
</tbody>
</table>

Refer to the product site at http://www.oracle.com/us/products/servers-storage/storage/unified-storage/index.html for the most recent component specification.

Chassis Dimensions

The ZS3-4 controller chassis fits in a standard equipment rack, and occupies three rack units (3RU) in height. The chassis dimensions are as follows:
TABLE 2-9  ZS3-4 Controller Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>13.3 cm/5.25 in</td>
<td>Depth</td>
<td>70.6 cm/27.8 in</td>
</tr>
<tr>
<td>Width</td>
<td>43.7 cm/17.19 in</td>
<td>Weight</td>
<td>16.36 kg/96 lbs</td>
</tr>
</tbody>
</table>

Front Panel

FIGURE 2-13  ZS3-4 Controller Front Panel

Figure Legend

1. Locator LED and button (white)
2. Service Required LED (amber)
3. Power/OK LED (green)
4. Power button
5. Service Processor (SP) OK LED (green)
6. Fan/CPU/Memory Service Required LED
7. Power Supply (PS) Service Required LED
9. USB 2.0 Connectors
10. DB-15 video connector
11. Boot drive 0
12. Boot drive 1 (required)
13. Solid state drive 2 (optional)
14. Solid state drive 3 (optional)
15. Solid state drive 4 (optional)
System Drives

The ZS3-4 controller has two 900GB SAS-2 system boot drives in slots 0 and 1, configured as a mirrored pair. Up to four 1.6TB SAS-2 Readzilla SSDs can fill slots 2 through 5, in order.

FIGURE 2-14  ZS3-4 Controller System Drive

Rear Panel

The following graphic shows the rear panel. Base configuration HBAs are not depicted in this illustration.
Figure Legend

1 Power supply unit 0 status LEDs OK: green Power Supply Fail: amber AC OK: green
2 Power supply unit 0 AC inlet
3 Power supply unit 1 status LEDs OK: green Power Supply Fail: amber AC OK: green
4 Power supply unit 1 AC inlet
5 System status LEDs Power: green Attention: amber Locate: white
6 PCIe slots 0-4
7 Cluster card slot
8 Network (NET) 10/100/1000 ports: NET0-NET3
9 USB 2.0 ports
10 PCIe slots 5-9
11 Network management (NET MGT) port
12 Serial management (SER MGT) port
13 DB-15 video connector

4x4 SAS-2 HBA

The 4x4 SAS-2 HBA, installed in the ZS3-4, provides connectivity to external DE2 and Sun Disk Shelves. The HBA ports are numbered 3-0, top to bottom:
FIGURE 2-16 ZS3-4 Controller 4x4 SAS-2 HBA Port Numbers

See “PCIe Options” on page 57 for slot placement.

Electrical Specifications

The following list shows the electrical specifications for the controller.

Note - The power dissipation numbers listed are the maximum rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.

Input

- Nominal frequencies: 50/60Hz
- AC operating range: 200-240 VAC
- Maximum current AC RMS: 12A @ 200 VAC

Power Dissipation
Max power consumption: 1800 W
Max heat output: 6143 BTU/hr
Volt-Ampere rating: 1837 VA @ 240 VAC, 0.98 P.F.

Internal Boards

The ZS3-4 controller chassis contains the following field-replaceable units (FRUs). FRUs are not customer-serviceable, and should only be replaced by trained Oracle service technicians.

- **Motherboard:** The motherboard includes CPU modules, slots for eight DIMM risers, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host's 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.

- **Power Distribution Board:** The power distribution board distributes main 12V power from the power supplies to the rest of the system. It is directly connected to the Vertical PDB card, and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock ("kill") switch. In the controller, the power supplies connect to the power supply backplane which connects to the power distribution board.

- **Vertical PDB Card:** The vertical power distribution board, or Paddle Card serves as the interconnect between the power distribution board and the fan power boards, hard drive backplane, and I/O board.

- **Power Supply Backplane Card:** This board connects the power distribution board to power supplies 0 and 1.

- **Fan Power Boards:** The two fan power boards are FRUs and carry power to the controller fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

- **Drive Backplane:** The six-drive backplane includes the connectors for the drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. Each drive has an LED indicator for Power/Activity, Fault, and Locate.

Components

The components of the ZS3-4 controller are shown in the following figure and identified in the legend.
FIGURE 2-17  ZS3-4 Controller Components

Figure Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motherboard</td>
</tr>
<tr>
<td>2</td>
<td>Low-profile PCIe cards</td>
</tr>
<tr>
<td>3</td>
<td>Power supplies</td>
</tr>
<tr>
<td>4</td>
<td>Power supply backplane</td>
</tr>
<tr>
<td>5</td>
<td>Drive backplane</td>
</tr>
<tr>
<td>6</td>
<td>System lithium battery</td>
</tr>
<tr>
<td>7</td>
<td>CPUs and heatsinks</td>
</tr>
<tr>
<td>8</td>
<td>Memory risers</td>
</tr>
<tr>
<td>9</td>
<td>Fan board</td>
</tr>
<tr>
<td>10</td>
<td>Fan modules</td>
</tr>
<tr>
<td>11</td>
<td>Boot drives and SSDs</td>
</tr>
</tbody>
</table>

CPU and Memory

The ZS3-4 controller supports 16GB DDR3 DIMMs installed on all eight risers, accommodating 1TB of memory.
Refer to the service label on the cover for DIMM placement information. On every memory riser, slots D0, D2, D4, and D6 must be populated; optionally, slots D1, D3, D5, and D7 may be populated as a group on all installed memory risers. All DIMMs in the system must be identical.
DIMM names in appliance logs and the Maintenance > Hardware view are displayed with the full name, such as /SYS/MB/P0/D7.

**Fan Modules**

The Fan Modules and Fan Module LEDs of the controller are shown in the following figure. The following LEDs are lit when a fan module fault is detected:
Front and rear Service Action Required LEDs
Fan Module Service Action Required (TOP) LED on the front of the server
Fan Fault LED on or adjacent to the faulty fan module

The system Overtemp LED might light if a fan fault causes an increase in system operating temperature.

**NIC/HBA Options**

This table describes NIC/HBA PCIe card options for ZS3-4 standalone and cluster configurations.

**TABLE 2-10**  ZS3-4 Controller NIC/HBA Options

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-SAS6-INT-Z</td>
<td>8-port 6Gb/s SAS-2 internal HBA</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port 8Gb FC HBA</td>
</tr>
<tr>
<td>7103791</td>
<td>4-port (4x4) SAS-2 6Gb/s external HBA</td>
</tr>
<tr>
<td>7101674</td>
<td>2-port 16Gb FC HBA</td>
</tr>
<tr>
<td>7100477</td>
<td>4-port 1Gb Ethernet Copper UTP</td>
</tr>
</tbody>
</table>
Connectors

The serial management connector (SER MGT) is an RJ-45 connector and provides a terminal connection to the SP console.

**FIGURE 2-21** ZS3-4 Controller Serial Management Port

The network management connector (NET MGT) is an RJ-45 connector and provides a LAN interface to the SP console.

**FIGURE 2-22** ZS3-4 Controller Network Management Port

There are four RJ-45 Gigabit Ethernet connectors (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.
## PCIe Options

This table describes the PCIe base configuration and optional slot assignments for ZS3-4 standalone and cluster configurations.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mfg Part Number</th>
<th>Description</th>
<th>Max</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7047852</td>
<td>8-port SAS-2 internal HBA</td>
<td>1</td>
<td>Base configuration</td>
</tr>
<tr>
<td>1</td>
<td>7067091</td>
<td>4-port (4x4) SAS-2 external HBA</td>
<td>4</td>
<td>Base configuration</td>
</tr>
<tr>
<td>2</td>
<td>7067091</td>
<td>4-port (4x4) SAS-2 external HBA</td>
<td>4</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>2</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>2</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>3</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>Slot</td>
<td>Mfg Part Number</td>
<td>Description</td>
<td>Max</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>3</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>4</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>4</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>C</td>
<td>511-1496-05</td>
<td>Cluster Controller 200</td>
<td>1</td>
<td>Cluster base configuration</td>
</tr>
<tr>
<td>5</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>7070195</td>
<td>4-port 1GbE UTP Ethernet</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>5</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>6</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>Slot</td>
<td>Mfg Part Number</td>
<td>Description</td>
<td>Max</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>6</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>7</td>
<td>7067091</td>
<td>4-port (4x4) external HBA</td>
<td>4</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>7</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>375-3696-01</td>
<td>2-port InfiniBand CX2 HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>7</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>8</td>
<td>7067091</td>
<td>4-port (4x4) SAS-2 external HBA</td>
<td>4</td>
<td>Base configuration</td>
</tr>
<tr>
<td>9</td>
<td>371-4325-02</td>
<td>2-port 8Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
<tr>
<td>9</td>
<td>7070006</td>
<td>2-port 10Gb Ethernet Copper NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
</tbody>
</table>
### PCIe Slot Order

When installing additional PCIe cards to your base configuration, cards must be added in a specific order.

**Note** - Slot 0 is always populated with a SAS-2 internal HBA. Slots 1 and 8 are reserved for 4x4 SAS-2 external HBAs.

![Figure 2-23 ZS3-4 Controller PCIe Cards Slot Order](image)

Install optional PCIe cards in the following order:

<table>
<thead>
<tr>
<th>PCIe Card</th>
<th>Slot Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4-port (4x4) SAS-2 external HBA</td>
<td>Slot 2, 7</td>
</tr>
</tbody>
</table>

#### Table 2-12 ZS3-4 Controller Optional PCIe Cards and Slot Order

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mfg Part Number</th>
<th>Description</th>
<th>Max</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>7070195</td>
<td>4-port 1Gb Ethernet Copper UTP NIC</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>9</td>
<td>7051223</td>
<td>2-port 10Gb Ethernet Optical NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>9</td>
<td>7023303</td>
<td>2-port 16Gb FC HBA</td>
<td>4</td>
<td>Optional FC target or initiator (backup)</td>
</tr>
</tbody>
</table>
### PCIe Card Slot Order

<table>
<thead>
<tr>
<th>PCIe Card</th>
<th>Slot Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 8Gb FC HBA</td>
<td>Slot 9</td>
</tr>
<tr>
<td>3. InfiniBand HCAs</td>
<td>Slot 3, 6, 4, 5, 2, 7</td>
</tr>
<tr>
<td>4. 2-port 10Gb Ethernet NIC</td>
<td>Slot 3, 6, 4, 5, 2, 7, 9</td>
</tr>
<tr>
<td>Note: If you are adding a 2-port 10Gb Ethernet Optical NIC and 2-port 10Gb Ethernet Copper NIC, the 10Gb Ethernet Optical NIC has slot priority.</td>
<td></td>
</tr>
<tr>
<td>5. 4-port 1Gb Ethernet NIC</td>
<td>Slot 3, 6, 4, 5, 2, 7, 9</td>
</tr>
<tr>
<td>6. 16Gb FC HBA</td>
<td>Slot 3, 6, 4, 5, 2, 7, 9</td>
</tr>
<tr>
<td>7. Remaining 8Gb FC HBAs</td>
<td>Slot 3, 6, 4, 5, 2, 7 (slot 9, see step 2)</td>
</tr>
</tbody>
</table>

### Attached Storage

The ZS3-4 single and cluster controller configurations allow up to 36 disk shelves, consisting of up to six chains of one to six disk shelves. Any combination of disk-only and Logzilla-capable shelves may be combined within the chain in any order. You can also attach mixed disk shelf types (DE2 family and legacy Sun Disk Shelves) behind the same controllers, but each chain must contain only the same disk shelf type. Directly connecting different disk shelf types is not supported. For more information, see “Connecting to Attached Storage” on page 233. See also “Disk Shelf Overview” on page 204 for component specifications and diagrams.

### ZS3-2 CRU Maintenance Procedures

This section provides instructions on how to replace customer replaceable components (CRUs) in the Oracle ZFS Storage ZS3-2 controller.

Refer to “Disk Shelf Maintenance Procedures” on page 218 for replacing disk shelf components.

### Prerequisites

- Read the section “ZS3-2 Hardware Overview” on page 28 to become familiar with the replaceable parts of the system.
Follow the instructions in the sections “Safety Information” on page 62 and “Required Tools and Information” on page 62.

Safety Information

This section contains safety information that you must follow when servicing the storage system. For your protection, observe the following safety precautions when setting up your equipment:

- Do not remove the side panels, or run the storage system with the side panels removed. Hazardous voltage is present that could cause injury. The covers and panels must be in place for proper air flow to prevent equipment damage.
- Follow all cautions, warnings, and instructions marked on the equipment and described in Important Safety Information for Oracle's Hardware Systems included with your system.
- Ensure that the voltage and frequency of your power source match the voltage inscribed on the electrical rating label.
- Follow the electrostatic discharge safety practices. Electrostatic discharge (ESD) sensitive devices, such as PCI cards, HDDs, SSDs, and memory cards, require special handling. Circuit boards and HDDs contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static electricity from clothing or the work environment can destroy the components located on these boards. Do not touch the components without using antistatic precautions, especially along the connector edges.

Required Tools and Information

The following tools are needed to service the CRUs:

- Antistatic wrist strap - Wear an antistatic wrist strap and use an antistatic mat when handling components such as HDDs or PCI cards. When servicing or removing storage controller components, attach an antistatic strap to your wrist and then to a metal area on the chassis. Following this practice equalizes the electrical potentials between you and the storage controller.
- Antistatic mat - Place static-sensitive components on an antistatic mat.
- No. 2 Phillips screwdriver
- Nonconducting, No.1 flat-blade screwdriver or equivalent
- Nonconducting stylus or pencil (to power on the storage controller)

Chassis Serial Number

To obtain support for your storage controller or to order new parts, you need your chassis serial number. You can find a chassis serial number label on the storage controller front panel on the
left side. Another label is on the top of the storage controller. Alternatively, click the Oracle logo in the BUI masthead to obtain the serial number or issue the following command:

```
hostname: maintenance hardware show
```

## Prepare the Controller for Servicing Internal Components

### ZS3-2 Prepare the Controller for Servicing Internal Components

### Remove Power

Removing fan modules, memory, PCIe cards, DIMMs, and USB are cold-service operations. You must shut off power from the appliance before you remove any of these components. There will be a loss of access to the storage unless the system is in a clustered configuration.

Shut down the appliance using one of the following methods:

- Log in to the BUI and click the power icon on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

**Note** - The Critical status indicator on the front panel flashes red when powering off and powering on the ZS3-2. After the controller is powered on, the Power/OK status indicator is steady green, and the Red Critical status indicator is off.

### Extend the Storage Controller From the Rack

1. Disconnect the AC power cords from the rear panel of the storage controller.
Caution - Because 3.3 VDC standby power is always present in the system, you must unplug the power cords before accessing any cold-serviceable components.

2. Disconnect the data cables and disk shelf cables from the back of the storage controller. Be sure the cables are labeled for proper connection later.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
Remove the Top Cover

To access internal controller components for servicing, remove the top cover.

1. Fully loosen the two captive screws at the rear of the top cover (1).
2. Slide the top cover rearward 0.5 in (13 mm) and lift it straight up and off the chassis (2), and set the top cover aside.

Controller Replacement Tasks

ZS3-2 Controller Replacement Tasks

Use the following procedures to replace the ZS3-2 controller:

- “SSDs and HDDs” on page 66
- “Power Supplies” on page 69
- “Fan Modules” on page 73
- “Memory” on page 77
- “PCIe Cards and Risers” on page 84
SSDs and HDDs

Note - If you have more than one failed drive, replace only one drive at a time. Removing more than one drive in quick succession causes a hardware/pool fault.

Replacing the ZS3-2 Controller SSDs and HDDs

1. Identify the failed drive by going to the Maintenance > Hardware section of the BUI and clicking the drive information icon 🔄. If you are physically at the system, the amber Service Required indicator on the HDD or SSD should be illuminated.

2. If you are not physically at the system, turn on the locator indicator by clicking the locator icon ✯.

3. At the front of the controller, pinch the air filter's left and right release levers inward (1).

4. Pivot the air filter forward and lift if out of the chassis (2).
5. Press the release button of the failed drive, and pivot the release lever open to the right.

6. Grasp the release lever and pull the drive out of the drive slot.
7. After 15 seconds, navigate to the Hardware > Maintenance screen, and click the right-arrow icon on the system controller to verify that the software has detected that the drive is not present.

8. Align the replacement drive with the drive slot.

9. Press on the release button to slide the drive into the chassis until the release lever moves slightly inward.

10. Press the release lever fully closed with a click, securing the drive into the drive slot.
The Oracle ZFS Storage system software automatically detects and configures the new drive. The device appears in the BUI Maintenance > Hardware screen when you view details for the controller or drive shelf.

**Power Supplies**

Storage controllers are equipped with redundant hot-swappable power supplies. If a power supply fails and you do not have a replacement, leave the failed power supply installed to ensure proper air flow. A faulted power supply is indicated by an amber colored status LED.

▼ **Replacing the ZS3-2 Controller Power Supplies**

1. Gain access to the rear of the storage controller where the faulted power supply is located.

2. If a cable management arm (CMA) is installed, press and hold the CMA release tab and rotate the arm out of the way.
3. Disconnect the power cord from the faulted power supply.

4. Press the release tab to the left and pull on the handle.

5. Continue to pull on the handle to slide the power supply out of the chassis.
6. Align the replacement power supply with the empty power supply chassis bay.

7. Slide the power supply into the bay until the power supply seats and the release tab clicks.
8. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

9. Reconnect the data cables and the disk shelf cables.

10. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.

11. After the SP indicator is solid, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.

12. Close the CMA, inserting the CMA into the rear left rail bracket.

13. Go to the Maintenance > Hardware screen of the BUI. Click the right-arrow icon for the controller and then click power supply to verify that the online icon is green for the newly installed power supply.
Fan Modules

Removing a fan module is a cold-service operation. You must power off the appliance before you remove the fan module. There will be a loss of access to the storage unless the system is in a clustered configuration.

The status of each fan module is represented by a single bi-color LED. The LEDs are located on the motherboard near each fan module, and are visible from the rear panel, by looking through the grille below the risers.

▼ Replacing the ZS3-2 Controller Fan Modules

1. To locate the chassis you want to service, click the associated locator icon on the Maintenance > Hardware screen of the BUI or issue the `set /SYS/Locate status=on` command at the service processor (SP) prompt. The locate LED will flash on the controller chassis.

2. Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locator icon on the Maintenance > Hardware screen of the BUI for the fan you want to replace.

3. Power off the storage controller as described in “Remove Power” on page 63.

4. Disconnect all cables and extend the controller from the rack as described in “Extend the Storage Controller From the Rack” on page 63.

5. Remove the top cover as described in “Remove the Top Cover” on page 65.

6. Grasp the green band of the fan module to be removed with your forefinger and press down on the fan module with your thumb.

7. Pull the band straight up and lift the fan module out of the chassis.
8. Align the replacement fan module into the fan tray slot. The green band is on the top of the fan module and the arrow points to the rear of the chassis.
9. Lower the fan module into the fan tray and press down until the module clicks securely in the fan tray.
10. Replace the top cover and tighten the two captive screws.

11. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

12. Reconnect the data cables and the disk shelf cables.

13. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.

14. After the SP status indicator is solid green, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.

15. Verify that the Fan OK status indicator is lit, and that the fault status indicator on the replaced fan module is dim.
Memory

Removing a DIMM is a cold-service operation. You must power off the appliance before you remove the DIMM. There will be a loss of access to the storage unless the system is in a clustered configuration.

To identify a general memory fault, go to the Maintenance > Hardware screen of the BUI, and click on the right-arrow icon on the controller. Then click DIMMs to locate the faulted component, indicated by the warning icon . To identify a specific memory module that has faulted, you can open the storage controller and use the amber status LEDs on the motherboard.

▼ Replacing the ZS3-2 Controller Memory

Caution - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. Power off the storage controller as described in “Remove Power” on page 63.
2. Disconnect all cables and extend the controller from the rack as described in “Extend the Storage Controller From the Rack” on page 63.
3. Remove the top cover as described in “Remove the Top Cover” on page 65.
4. Disconnect the cables attached to the drive backplane, and the cable attached to the USB board.
5. Fully loosen the four screws securing the drive cage to the chassis (1).
6. Raise the drive cage to the vertical position (2).
7. Fully loosen the thumbscrews that secure the air duct.
8. Slide the left (L) thumbscrew bracket forward and off of the mounting pins.

9. Slide the right (R) thumbscrew bracket rearward and off of the mounting pins. Set the thumbscrew bracket aside.

10. Lift the air duct straight up and off the alignment pins. Set the air duct aside.
11. Press the button on the midplane. An amber LED indicates the faulty DIMM.

12. Press down and out on the release levers at both ends of the DIMM slot.

13. Lift the DIMM up and out of the slot. Set the DIMM aside on an antistatic mat.
14. Align the DIMM to the location where it installs into the slot. Ensure that the notch in the DIMM lines up with the key in the slot.
15. Insert the DIMM into the slot, pressing firmly so that both release levers click closed.
16. Replace and secure the air duct.

17. Lower the drive cage to the horizontal position and with the cage slightly elevated, reconnect the power cable. Tighten the four screws. Reconnect the cables to the drive backplane and the cable attached to the USB board.

18. Replace the top cover and tighten the two captive screws.

19. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

20. Reconnect the data cables and the disk shelf cables.

21. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.

22. After the SP status indicator is solid green, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.

The Maintenance > Hardware screen of the BUI provides status of the replacement on the Details page for DIMMs.
PCIe Cards and Risers

Removing a PCIe card is a cold-service operation. You must power off the appliance before you remove the card. There will be a loss of access to the storage unless the system is in a clustered configuration.

Go to the Maintenance > Hardware screen of the BUI and click the right-arrow icon on the controller, and then click Slots to locate the faulted component.

Replacing the ZS3-2 Controller PCIe Cards and Risers

Caution - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. Power off the storage controller as described in “Remove Power” on page 63.
2. Disconnect all cables and extend the controller from the rack as described in “Extend the Storage Controller From the Rack” on page 63.
3. Remove the top cover as described in “Remove the Top Cover” on page 65.
4. Locate the PCIe card position in the storage controller, see “PCIe Options” on page 43.
5. Fully loosen the two captive screws securing the riser to the motherboard.
6. Lift the riser straight up and out of its socket on the motherboard.
7. Disconnect any internal cables attached to the PCIe cards installed in the riser.

8. Swing the retainer to its fully open (120 degrees) position.

Note that the riser 3 latch is slightly different than the latch for riser 1 and 2.
9. Lift the PCIe card off of the bracket alignment pin and out of the socket.
10. Position the replacement PCIe card with where it will install into the riser. The PCIe card bracket mates with the alignment pin and the socket of the riser.
11. Press the PCIe card into the socket.

12. Swing the retainer to its fully closed position. If there is resistance, check the alignment of the PCIe card bracket and try again.
13. Align the riser to the location where it installs into the chassis.

14. Reconnect any previously removed internal cables to the PCIe card installed in the riser, if doing so will ease installation of the riser.

15. Lower the riser card onto the motherboard and press the card edge connector securely into the socket. The bracket of the riser (riser 2 and 3) overlaps the bracket of the adjacent riser.
16. Tighten the two captive screws that secure the riser to the motherboard.

17. Replace the top cover and tighten the two captive screws.

18. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

19. Reconnect the data cables and the disk shelf cables.

20. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.
21. After the SP status indicator is solid green, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.

22. Go to the Maintenance > Hardware screen of the BUI, and click the right-arrow icon on the controller. Then, click Slots to verify the status of the new component. The online icon should be green.

USB Flash Drive

Removing the USB flash drive is a cold-service operation. You must power off the appliance before you remove the USB. There will be a loss of access to the storage unless the system is in a clustered configuration.

The USB flash drive is located in the forward-most USB socket at the center rear of the motherboard, labeled USB 1, near where Riser 2 installs.

Replacing the ZS3-2 Controller USB Flash Drive

1. Power off the storage controller as described in “Remove Power” on page 63.

2. Disconnect all cables and extend the controller from the rack as described in “Extend the Storage Controller From the Rack” on page 63.

3. Remove the top cover as described in “Remove the Top Cover” on page 65.

4. If a PCIe card installed in Riser 2 prevents you from accessing the USB drive, remove Riser 2.

5. Grasp the USB drive and pull it straight up and out of the chassis.
6. Position the replacement USB drive to where it installs onto the motherboard. The USB drive installs into the USB socket that is most forward. The socket is labeled USB 1.

7. Gently insert the USB drive into the USB socket.

8. If you removed Riser 2 to access the USB drive, reinstall Riser 2.

9. Replace the top cover and tighten the two captive screws.

10. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

11. Reconnect the data cables and the disk shelf cables.

12. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.

13. After the SP status indicator is solid green, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.
Battery

Removing the battery is a cold-service operation. You must power off the appliance before you remove the battery. There will be a loss of access to the storage unless the system is in a clustered configuration.

You might need to replace the battery if the storage controller fails to maintain the proper time when powered off and disconnected from the network. You will need a small (No.1 flat-blade) non-metallic screwdriver or equivalent.

▼ Replacing the ZS3-2 Controller Battery

1. Power off the storage controller as described in “Remove Power” on page 63.
2. Disconnect all cables and extend the controller from the rack as described in “Extend the Storage Controller From the Rack” on page 63.
3. Remove the top cover as described in “Remove the Top Cover” on page 65.
4. Remove Riser 1.
5. Press the tab of the battery receptacle forward to release the battery. The battery pops up.
6. Lift the battery out of the receptacle and set it aside.

7. Position the battery where it will install into the receptacle, with the positive (+) side of the battery facing up.

8. Press the battery into the receptacle until you hear a click.

10. Replace the top cover and tighten the two captive screws.

11. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

12. Reconnect the data cables and the disk shelf cables.

13. Connect the power cords to the power supplies. Verify that standby power is on, indicated by the Power/OK and SP status indicators flashing green on the front panel.

14. After the SP status indicator is solid green, use a pen or other pointed object to press and release the recessed Power button on the front panel. The Power/OK status indicator next to the Power button lights and remains lit.

15. When the system has finished booting, log in and set the time using the steps in the task “NTP BUI Clock” in “Oracle ZFS Storage Appliance Administration Guide”.
Oracle DE2 and Sun Disk Shelf Interoperability

Oracle DE2s and Sun Disk shelves can be used together with standalone and clustered ZS3-2 controllers after certain hardware modifications. Contact Oracle Service to update your controllers for disk shelf interoperability.

ZS3-4 CRU Maintenance Procedures

This section provides instructions on how to replace customer replaceable components (CRUs) for Oracle ZFS Storage ZS3-4 controllers.

Refer to “Disk Shelf Maintenance Procedures” on page 218 for replacing expansion storage shelf components.

Prerequisites

- Read the information in the overview section for your controller to become familiar with the replaceable parts of the system: “ZS3-4 Hardware Overview” on page 46
- Follow the instructions in the sections “Safety Information” on page 97 and “Required Tools and Information” on page 98.

Safety Information

This section contains safety information that you must follow when servicing the storage system. For your protection, observe the following safety precautions when setting up your equipment:

- Do not remove the side panels, or run the storage system with the side panels removed. Hazardous voltage is present that could cause injury. The covers and panels must be in place for proper air flow to prevent equipment damage.
- Follow all cautions, warnings, and instructions marked on the equipment and described in *Important Safety Information for Oracle's Hardware Systems*.
- Ensure that the voltage and frequency of your power source match the voltage inscribed on the electrical rating label.
- Follow the electrostatic discharge safety practices. Electrostatic discharge (ESD) sensitive devices, such as PCI cards, HDDs, SSDs, and memory cards, require special handling.
Circuit boards and HDDs contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static electricity from clothing or the work environment can destroy the components located on these boards. Do not touch the components without using antistatic precautions, especially along the connector edges.

**Required Tools and Information**

The following tools are needed to service the CRUs:

- Antistatic wrist strap - Wear an antistatic wrist strap and use an antistatic mat when handling components such as HDDs or PCI cards. When servicing or removing storage controller components, attach an antistatic strap to your wrist and then to a metal area on the chassis. Following this practice equalizes the electrical potentials between you and the storage controller.
- Antistatic mat - Place static-sensitive components on an antistatic mat.
- No. 2 Phillips screwdriver
- Nonconducting, No.1 flat-blade screwdriver or equivalent
- Nonconducting stylus or pencil (to power on the storage controller)

**Chassis Serial Number**

To obtain support for your storage controller or to order new parts, you need your chassis serial number. You can find a chassis serial number label on the storage controller front panel on the left side. Another label is on the top of the storage controller. Alternatively, click the Oracle logo in the BUI masthead to obtain the serial number or issue the following command:

```bash
hostname: maintenance hardware show
```

**Controller Replacement Tasks**

**ZS3-4 Controller Replacement Tasks**

Use the following procedures to replace the ZS3-4 controller:

- “HDD or SSD” on page 99
- “Fan Module” on page 100
- “Power Supply” on page 102
- “Memory” on page 105
- “PCIe Cards and Risers” on page 114
HDD or SSD

**Note** - If you have more than one failed drive, replace only one drive at a time. Removing more than one drive in quick succession causes a hardware/pool fault.

▼ **Replacing the ZS3-4 Controller HDD or SSD**

1. Identify the failed HDD or SSD by going to the Maintenance > Hardware section of the BUI and clicking the drive information icon. If you are physically at the system, the amber Service Required indicator on the HDD or SSD should be illuminated.

2. If you are not physically at the system, turn on the locator indicator by clicking the locator icon.

3. Push the release button on the HDD or SSD to open the latch.

4. Grasp the latch (2), and pull the drive out of the drive slot.

5. After 15 seconds, navigate to the Hardware > Maintenance screen, and click the right-arrow icon on the system controller to verify that the software has detected that the drive is not present.
6. Slide the replacement drive into the slot until it is fully seated.

7. Close the latch to lock the drive in place.

8. The Oracle ZFS Storage system software automatically detects and configures the new drive. The device appears in the BUI Maintenance > Hardware screen when you view details for the controller or drive shelf.

Fan Module

Fan modules are hot-swappable and can be removed and installed while the storage controller is running without affecting other hardware capabilities.

The following illustration shows the fan modules in the ZS3-4 storage controller.
Replacing the ZS3-4 Controller Fan Module

Caution - Operating a controller for an extended period of time with fans removed reduces the effectiveness of the cooling system. For this reason, the replacement fan should be unpacked in advance and ready to insert into the controller chassis as soon as the faulted fan is removed.

1. To locate the chassis you want to service, click the associated locator icon on the Maintenance > Hardware screen of the BUI or issue the set /SYS/LOCATE status=on command at the service processor (SP) prompt. The locate LED will flash on the controller chassis.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locator icon 🌟 on Maintenance > Hardware screen of the BUI for the fan you want to replace.

6. Lift the latch at the top of the fan module to unlock the fan module, and pull the fan module out.

7. Unlock and insert the fan module.

8. Apply firm pressure to fully seat the fan module.

9. Verify that the Fan OK status indicator is lit and that the fault status indicator on the replaced fan module is dim.

10. Verify that the Top Fan status indicator, the Service Required status indicators, and the Locator status indicator/Locator button are dim.

11. Push the release tabs on the side of each rail and slowly slide the storage controller into the rack.

**Power Supply**

Storage controllers are equipped with redundant hot-swappable power supplies. If a power supply fails and you do not have a replacement, leave the failed power supply installed to ensure proper air flow. A faulted power supply is indicated by an amber colored status LED.
Replacing the ZS3-4 Controller Power Supply

1. Gain access to the rear of the storage controller where the faulted power supply is located.

2. If a cable management arm (CMA) is installed, press and hold the CMA release tab and rotate the arm out of the way.

3. Disconnect the power cord from the faulted power supply.

4. Remove the power supply.

5. Grasp the power supply handle and press the release latch to remove the power supply.
6. Align the replacement power supply with the empty power supply chassis bay.

7. Slide the power supply into the bay until it is fully seated. The following figure shows the power supply.
8. Connect the power cord to the power supply.

9. Verify that the green AC Present status indicator is lit.

10. Close the CMA, inserting the CMA into the rear left rail bracket.

11. Go to the Maintenance > Hardware screen of the BUI. Click the right-arrow icon ➔ for the controller and then click power supply to verify that the online icon 🟢 is green for the newly installed power supply.

Memory

To identify a specific memory module that has faulted, you must open the storage controller and use the amber status LEDs on the motherboard. To identify a general memory fault, go to the Maintenance > Hardware screen of the BUI, and click on the right-arrow icon ➔ on the controller. Then click DIMMs to locate the faulted component, indicated by the warning icon 🚨.

You must shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:
Log in to the BUI and click the power icon on the left side of the masthead.

SSH into the appliance and issue the `maintenance system poweroff` command.

SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.

Use a pen or nonconducting pointed object to press and release the Power button on the front panel.

To initiate emergency shutdown during which all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

### Replacing the ZS3-4 Controller Memory

**Caution** - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. Disconnect the AC power cords from the rear panel of the storage controller.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. To remove the top cover:

   Simultaneously lift both cover latches in an upward motion.
Lift up and remove the top cover.

6. **To locate the DIMM you want to service, press the Fault Remind Button on the storage controller.**

The following illustration shows the Fault remind button on the ZS3-4 controller.
7. Identify the memory riser that hosts the faulted DIMM by the Service Required status indicator. Lift the memory riser straight up to remove it from the motherboard, and place it on an antistatic mat.
8. Rotate both DIMM slot ejectors outward as far as they will go and carefully lift the faulted DIMM straight up to remove it from the socket.

9. Line up the replacement DIMM with the connector, aligning the notch with the key to ensure that the component is oriented correctly.
10. Push the DIMM into the connector until the ejector tabs lock the component in place.

11. To replace the cover:

Push the memory riser module into the associated CPU memory riser slot until the riser module locks in place.
Place the top cover on the chassis so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

Slide the top cover toward the rear of the chassis until it seats and press down on the cover with both hands until both latches engage.
12. Push the release tabs on the side of each rail and slowly push the storage controller into the rack.
The following image shows the chassis.
13. Connect the power cords to the power supplies.

14. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

15. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel.

   The Power/OK status indicator next to the Power button lights and remains lit. The Maintenance > Hardware screen of the BUI provides status of the replacement on the Details page for DIMMs.

**PCIe Cards and Risers**

Go to the Maintenance > Hardware screen of the BUI and click the right-arrow icon on the controller, and then click Slots to locate the faulted component.
All HBAs must be of the same type. Ensure that you upgrade your system software before installing a newly-released HBA.

You must shut down the controller before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Log in to the BUI, and click the power icon on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

### Replacing the ZS3-4 Controller PCIe Cards and Risers

**Caution** - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. Disconnect the AC power cords from the rear panel of the storage controller.
2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.
3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
5. To remove the top cover:
   Simultaneously lift both cover latches in an upward motion.
Lift up and remove the top cover.

6. **Locate the PCIe card position in the storage controller, see “PCIe Options” on page 57.**

7. **To replace the PCIe card:**

Disengage the PCIe card slot crossbar from its locked position and rotate the crossbar into an upright position.
Remove the retaining screw that holds the PCIe card to the chassis.

Carefully remove the PCIe card from the connector and clean the slot with filtered, compressed air if necessary.

Install the replacement PCIe card into the PCIe card slot.

Install the retaining screw to hold the PCIe card to the chassis.

Return the crossbar to its closed and locked position.
8. **To install the top cover:**

   Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

   Slide the top cover toward the rear of the chassis (2) until it seats.

   Press down on the cover with both hands until both latches engage.
9. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

10. Connect the power cords to the power supplies.

11. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

12. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

13. Connect data cables to the PCIe card, routing them through the cable management arm.
14. Go to the Maintenance > Hardware screen of the BUI, and click the right-arrow icon on the controller. Then, click Slots to verify the status of the new component. The online icon should be green.

15. Install the disk shelf as described in “Installation” in “Oracle ZFS Storage Appliance Installation Guide” and connect the expansion storage as described in “Connecting to Attached Storage” on page 233.

Battery

You might need to replace the battery if the storage controller fails to maintain the proper time when powered off and disconnected from the network. You will need a small (No.1 flat-blade) non-metallic screwdriver or equivalent.

You must shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Login to the BUI and click the power icon on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

Replacing the ZS3-4 Controller Battery

1. Disconnect the AC power cords from the rear panel of the storage controller.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. To remove the top cover:
Simultaneously lift both cover latches in an upward motion.

6. Lift up and remove the top cover.

7. Using a small, non-metallic screwdriver, press the latch and remove the battery from the motherboard. The battery is shown here.
8. Press the replacement battery into the motherboard with the positive side (+) facing upward.

9. To install the top cover:
   Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).
   Slide the top cover toward the rear of the chassis (2) until it seats.
   Press down on the cover with both hands until both latches engage.
10. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

11. Connect the power cords to the power supplies.

12. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

13. Use a pen, or other pointed object, to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

14. Connect data cables to the PCIe card, routing them through the cable management arm.
When the system has finished booting, log in and set the time using the steps in the task “NTP BUI Clock” in “Oracle ZFS Storage Appliance Administration Guide”.

Oracle DE2 and Sun Disk Shelf Interoperability

Oracle DE2s and Sun Disk Shelves can be used together with standalone and clustered 7x20 controllers after certain hardware modifications. Contact Oracle Service to update your controllers for disk shelf interoperability.

7120 Hardware Overview

Use the information in this section as a reference when preparing to service replaceable components of the Sun ZFS Storage 7120.

Refer to the following for procedural instructions:

- “7x20 CRU Maintenance Procedures” on page 165 - replace system controller components
- “Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf components

Chassis Overview

The Sun ZFS Storage 7120 is an enterprise-class two-socket rackmount x64 system powered by the Intel Xeon processor. It packs high performance and room for growth with four PCIe slots and 18 DIMM slots into a compact 2U footprint. Refer to the product site at http://www.oracle.com/us/products/servers-storage/storage/nas/overview/index.html for the most recent component specification.

Refer to the white paper Implementing Fibre Channel SAN Boot with Oracle’s Sun ZFS Storage Appliance at http://www.oracle.com/technetwork/articles/servers-storage-admin/fbsanboot-365291.html for details on FC SAN boot solutions using the Sun ZFS Storage 7120.

The 7120 is a standalone controller that consists of an internal SAS-2 HBA providing disk shelf expansion, write flash acceleration, and 11 x 300GB 15K, 600GB 15K, 1TB 7.2K, 2TB 7.2K, or 3TB 7.2K hard drive storage. The SAS-2 storage fabric supports a greater number of targets, greater bandwidth, higher reliability, and bigger scale.

The 2U chassis form factor dimensions are as follows:
TABLE 2-13  7120 Controller Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>87.6 mm/3.45 in</td>
<td>Depth</td>
<td>765.25 mm/30.13 in</td>
</tr>
<tr>
<td>Width</td>
<td>436.8 mm/17.2 in</td>
<td>Weight</td>
<td>29.54 kg/65 lb</td>
</tr>
</tbody>
</table>

Front Panel

The following figure and legend show the front panel and the drive locations. The Logzilla 3.5" SSD belongs in slot 3 and is not supported in controllers configured with the internal Sun Aura flash HBA Logzilla.

FIGURE 2-25  7120 Controller Front Panel

Figure Legend

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locator LED/button (white)</td>
<td>7 HDD 2</td>
</tr>
<tr>
<td>2</td>
<td>Service Action Required LED (amber)</td>
<td>8 HDD or SSD 3</td>
</tr>
<tr>
<td>3</td>
<td>Power button</td>
<td>9 HDD 4</td>
</tr>
<tr>
<td>4</td>
<td>Power/OK LED (green)</td>
<td>10 HDD 5</td>
</tr>
<tr>
<td>5</td>
<td>HDD 0</td>
<td>11 HDD 6</td>
</tr>
<tr>
<td>6</td>
<td>HDD 1</td>
<td>12 HDD 7</td>
</tr>
<tr>
<td>13</td>
<td>HDD 8</td>
<td>14 HDD 9</td>
</tr>
<tr>
<td>15</td>
<td>HDD 10</td>
<td>16 HDD 11</td>
</tr>
<tr>
<td>17</td>
<td>Drive map</td>
<td></td>
</tr>
</tbody>
</table>

Rear Panel

The following figure and legend show the rear panel.
**Note** - Optional Sun Dual Port 40Gb/sec 4x InfiniBand QDR HCA adapter PCIe cards (375-3606-01) may be located in slots 1, 2, or 3. 375-3606-01 HCA expansion cards are not supported in the 10Gb network configurations.

**FIGURE 2-26** 7120 Controller Rear Panel

---

The serial management connector (SER MGT) is an RJ-45 port and provides a terminal connection to the SP console.

**FIGURE 2-27** 7120 Controller Serial Management Port

---

The network management connector (NET MGT) is an RJ-45 port and provides an alternate terminal interface to the SP console.
There are four RJ-45 Gigabit Ethernet ports (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

**Electrical Specifications**

The following list shows the electrical specifications for the 7120. Note that the power dissipation numbers listed are the *maximum* rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.

**Connectors**
- Two C13 connectors which work on 110-220v outlets

**Input**
- Nominal frequencies: 50/60Hz
- Nominal voltage range: 100-120/200-240 VAC
- Maximum current AC RMS: 13.8A @ 100 VAC
- AC operating range: 90-264 VAC

**Output**
- 3.3 VDC STBY: 3.0A
- +12 VDC: 86.7A

**Power Dissipation**
- Max power consumption: 1235.3 W
- Max heat output: 4212 BTU/hr
- Volt-Ampere rating: 1261 VA @ 240 VAC, 0.98P.F.
Internal Components

The chassis has the following boards installed.

**Note** - Field-replaceable units (FRU) should only be replaced by trained Oracle service technicians.

- **PCIe Risers**: Each riser supports two PCIe cards that are customer-replaceable. There are two risers per system, each attached to the rear of the motherboard.

- **Motherboard**: The motherboard is a FRU and includes CPU modules, slots for 18 DIMMs, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.

- **Power Distribution Board**: The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the storage controller. It is directly connected to the connector break out board and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock "kill" switch. The power supplies connect directly to the power distribution board.

- **Connector Break Out Board**: The connector break out board is FRU and serves as the interconnect between the power distribution board and the fan power boards, storage drive backplane, and I/O board. It also contains the top-cover interlock "kill" switch.

- **Fan Power Boards**: The two fan power boards are FRUs and carry power to the system fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

- **Storage Drive Backplane**: The storage drive backplane is a FRU and includes the connectors for the storage drives, as well as the interconnect for the I/O board, power and locator buttons, and system/component status LEDs. The system has a 12-disk backplane. Each drive has an LED indicator for Power/Activity, Fault, and Locate.

I/O Components

The following figure and legend show the I/O components of the 7120 system.
FIGURE 2-29  7120 Controller I/O Components

Figure Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top Cover</td>
</tr>
<tr>
<td>2</td>
<td>Right Control Panel Light Pipe Assembly</td>
</tr>
<tr>
<td>3</td>
<td>Hard Disk Drives</td>
</tr>
<tr>
<td>4</td>
<td>Left Control Panel Light Pipe Assembly</td>
</tr>
</tbody>
</table>

Cables

The following figure and legend show the storage controller internal cables.

Note - The rear boot drives are not depicted in this illustration.
FIGURE 2-30  7120 Controller Storage Drive Data Cable

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Storage Drive Data Cable</td>
<td>Connection between the HBA PCI-Express Card and the storage drive backplane.</td>
</tr>
</tbody>
</table>
FIGURE 2-31  7120 Controller Ribbon Cable

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ribbon cable</td>
<td>Connection is between the power distribution board and the motherboard.</td>
</tr>
</tbody>
</table>

CPU and Memory

The 7120 motherboard has 18 slots in two groups that hold industry-standard DDR3 DIMMs. The standard memory configuration is 48GB, 6x8GB DDR-1333 low voltage (LV) DIMMS.

Following are the replaceable CPU and memory components of the 7120 system.

TABLE 2-14   7120 Controller Replaceable CPU and Memory Components

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F371-4966-01</td>
<td>DIMM, 8GB, DDR3, 2RX4, 13</td>
<td>CRU</td>
</tr>
<tr>
<td>F371-4885-01</td>
<td>Intel E5620, 2.40G</td>
<td>FRU</td>
</tr>
</tbody>
</table>

All sockets must be occupied by either a filler or a DDR3 DIMM. All DDR3 DIMMs must be identical. DIMMs are pre-installed in P0 slots D1, D2, D4, D5, D7, and D8.
Power Distribution, Fan Module and Disk Components

The fan modules and LEDs are shown in the following illustration.

The following figure and legend show the power distribution and associated components.
FIGURE 2-34  7120 Controller Power Distribution Board and Associated Components

<table>
<thead>
<tr>
<th>Figure Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fan Board</td>
</tr>
<tr>
<td>2 SAS Expander Board</td>
</tr>
<tr>
<td>3 Disk Backplane</td>
</tr>
<tr>
<td>4 Front Control Panel Light Pipe Assembly</td>
</tr>
</tbody>
</table>

Standalone Controller Configurations

The following table shows the configuration options for a 7120 controller. All PCIe cards are low-profile, and must be fitted with low-profile mounting brackets.

This table describes base configurations for the 7120 with Aura Logzilla.

TABLE 2-15  7120 Standalone Controller Base Configurations for Aura Logzilla

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7120-12TB</td>
<td>S7120, 1xCPU, 24GB, 12TB</td>
<td>597-0754-01</td>
</tr>
</tbody>
</table>
The following table describes base configurations for the 7120 with Logzilla 3.5” SSD.

**TABLE 2-16** 7120 Standalone Controller Base Configurations for Logzilla 3.5” SSD

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7120-24TB</td>
<td>S7120, 1xCPU, 24GB, 24TB</td>
<td>597-0755-01</td>
</tr>
<tr>
<td>7101282</td>
<td>S7120, 1xCPU, 24GB, 3.3TB</td>
<td>7014523</td>
</tr>
<tr>
<td>7101284</td>
<td>S7120, 1xCPU, 24GB, 6.6TB</td>
<td>7014525</td>
</tr>
</tbody>
</table>

**NIC/HBA Options**

The following table describes NIC/HBA options for the 7120.

**TABLE 2-17** 7120 Controller NIC/HBA Options

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-XPCIESAS-GEN2-Z</td>
<td>2-port External Sun Thebe SAS (x4) HBA, PCIe</td>
<td>594-5889-01</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port FC HBA, 8Gb, PCIe</td>
<td>594-5684-01</td>
</tr>
<tr>
<td>X4446A-Z</td>
<td>4-port PCI-E Quad GigE UTP</td>
<td>594-4024-01</td>
</tr>
<tr>
<td>X4237A-N</td>
<td>2-port 4X IB HCA PCIe</td>
<td>594-5862-02</td>
</tr>
<tr>
<td>X1109A-Z</td>
<td>2-port 10Gig SFP+ NIC, PCIe</td>
<td>594-6039-01</td>
</tr>
</tbody>
</table>

**PCle Options**

The following table describes the supported PCle configuration option summary for the 7120.

**TABLE 2-18** 7120 Controller PCle Options

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Sun Part Number</th>
<th>Vendor Part Number</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>540-7975-03</td>
<td>Sun Aura</td>
<td>Internal Flash HBA Logzilla</td>
<td>Base Configuration (OBSOLETE)</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
</tbody>
</table>
### Slot Types and Part Numbers

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Part Number 1</th>
<th>Part Number 2</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Mellanox MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Mellanox MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXP19404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>375-3665-01</td>
<td>Sun Thebe (INT)</td>
<td>Internal SAS HBA</td>
<td>Base Configuration</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXP19404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3609-03</td>
<td>Sun Thebe (EXT)</td>
<td>8P 6Gb/s SAS HBA</td>
<td>Additional Optional Back-end</td>
</tr>
</tbody>
</table>

### Attached Storage

The 7120 standalone configurations allow a single chain of 1 or 2 disk shelves. Write-optimized (Logzilla) SSDs are not supported in the expansion storage for the 7120. The disk shelves must be fully populated with 24 HDDs. Half-populated shelf configurations are not supported. For
more information, see “Connecting to Attached Storage” on page 233. See also “Disk Shelf Overview” on page 204 for component specifications and diagrams.

7320

7320 Hardware Overview

Use the information in this section to prepare to service replaceable components of the 7320 system. After you have reviewed this section, refer to these procedural instructions:

- “7x20 CRU Maintenance Procedures” on page 165 - replace storage controller components
- “Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf components

Chassis Overview

The Sun ZFS Storage 7320 consists of either a single storage controller or two storage controllers in a high availability cluster configuration. Both the single and clustered configuration supports one to six disk shelves.

The 7320 controller base configuration includes two CPUs, built-in 4 x 1Gb/s front-end GigE ports, redundant power supplies, NIC options for expanded front-end support, tape backup, InfiniBand, and dual port SAS HBA for storage expansion.

The CPUs are Intel Xeon 5600 series, 2.40GHz, 80W, with 4 core processors. The standard memory configuration is 96GB, 6 x 8GB DDR3-1333 low voltage (LV) DIMMs per CPU. Memory can be upgraded to 144GB using 9 x 8GB DDR3-1333 LV DIMMs per CPU (for a total of 18 x 8GB for two CPUs). Earlier versions of the 7320 controller included 24GB (base), 48GB, or 72GB memory options. The clustered configuration simply uses two servers and a cluster card in each server for a heartbeat connection between the servers.

All user-accessible storage is provided by one to six disk shelves that are external to the server(s). RAID functions are managed by software. Solid state 18GB SAS-1 drives (7320 SAS-2) are used for a high-performance write cache (known as LogZilla) or ZFS intent log (ZIL) devices, and are used in place of up to four of the 24 drives in a disk shelf. The remaining 20 drives are available for storage.

Refer to the product site at http://www.oracle.com/us/products/servers-storage/storage/unified-storage/index.html for the most recent component specification.

The 7320 is a SAS-2 (Serial Attached SCSI 2.0) device that consists of an HBA, disk shelf, and disks (1TB and 2TB SAS-2). The SAS-2 storage fabric supports a greater number of targets, greater bandwidth, higher reliability, and bigger scale than the SAS-1 fabric.
Boards

The 7320 storage controller chassis has the following boards installed.

**Note** - Field-replaceable units (FRUs) should only be replaced by trained Oracle service technicians.

- **PCIe Risers**: The storage controller contains three PCIe risers that are customer-replaceable units (CRUs) and are attached to the rear of the motherboard. Each riser supports one PCIe card.

- **Motherboard**: The motherboard is a FRU and includes CPU modules, slots for 18 DIMMs, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the appliance is turned off.

- **Power Distribution Board**: The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the storage controller. It is directly connected to the paddle board and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock Kill switch.

- **Paddle Board**: The paddle board is a FRU and serves as the interconnect between the power distribution board and the fan power boards, hard drive backplane, and I/O board.

- **Fan Board**: The fan boards are FRUs and carry power to the storage controller fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

- **Disk Backplane**: The hard drive backplane is a FRU and includes the connectors for the hard disk drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. The storage controller has an eight-disk backplane. Each drive has an LED indicator for Power/Activity, Fault, and OK-to-Remove (not supported).

The following list contains the replaceable system boards for the 7320 storage controller.

<table>
<thead>
<tr>
<th>TABLE 2-19</th>
<th>7320 Controller Replaceable System Boards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
</tr>
<tr>
<td>F541-2883-01</td>
<td>X8 PCIe Riser Card 1U</td>
</tr>
<tr>
<td>F541-2885-01</td>
<td>X16 PCIe Riser Card 1U</td>
</tr>
<tr>
<td>F541-4081-01</td>
<td>RoHS Motherboard and Tray</td>
</tr>
<tr>
<td>F511-1489-01</td>
<td>DB, Power Distribution Board</td>
</tr>
<tr>
<td>F511-1548-01</td>
<td>PCB, 8 Disk 1U Backplane</td>
</tr>
</tbody>
</table>
Cables

The following list contains the replaceable cables for the 7320 storage controller.

**TABLE 2-20** 7320 Controller Replaceable Cables

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F530-4228-01</td>
<td>Cable, Mini SAS</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-3927-01</td>
<td>FRU, CBL, PDB, MB, 1U + 2U, RIBBON</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-4431-01</td>
<td>Cable, Fan data</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-4417-01</td>
<td>FRU Cable, Fan paddle</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-3880-01</td>
<td>Cable, Assembly, Ethernet, Shielded, RJ45-RJ45, 6m</td>
<td>CRU (external)</td>
</tr>
<tr>
<td>F530-3883-01</td>
<td>FRU, 2M, 4X Mini SAS Cable</td>
<td>CRU (external)</td>
</tr>
</tbody>
</table>

**7320 I/O Components**

The following figure and legend identify the I/O components of the storage controller.
**FIGURE 2-35** 7320 Controller I/O Components

![Diagram of 7320 Controller I/O Components]

**Figure Legend**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top cover</td>
</tr>
<tr>
<td>2</td>
<td>Left Control Panel Light Pipe Assembly</td>
</tr>
<tr>
<td>3</td>
<td>Drive Cage</td>
</tr>
<tr>
<td>4</td>
<td>Solid State Drives</td>
</tr>
<tr>
<td>5</td>
<td>blank/USB Module</td>
</tr>
<tr>
<td>6</td>
<td>Right Control Panel Light Pipe Assembly</td>
</tr>
</tbody>
</table>

**7320 CPU and Memory Components**

The following list contains the replaceable CPU and memory components of the 7320.

**TABLE 2-21** 7320 Controller Replaceable CPU and Memory Components

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F371-4966-01</td>
<td>DIMM, 8GB, DDR3, 2RX4, 13</td>
<td>CRU</td>
</tr>
</tbody>
</table>
The storage controller motherboard has 18 slots in two groups that hold industry-standard DDR3 DIMM memory cards. All sockets must be occupied by either a filler or a DDR3 DIMM.

FIGURE 2-36 7320 Controller CPU and Memory Components

The following figure and legend identify the Power Distribution/Fan Module components of the storage controller.

7320 Power Distribution and Fan Module Components

The following figure and legend identify the Power Distribution/Fan Module components of the storage controller.
**FIGURE 2-37** 7320 Controller Power Distribution and Fan Module Components

**Figure Legend**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan Modules</td>
</tr>
<tr>
<td>2</td>
<td>Fan Board</td>
</tr>
<tr>
<td>3</td>
<td>Paddle Board</td>
</tr>
<tr>
<td>4</td>
<td>Power Distribution/Bus Bar Assembly</td>
</tr>
<tr>
<td>5</td>
<td>Power Supplies</td>
</tr>
</tbody>
</table>

**Electrical Specifications**

The following list shows the electrical specifications for the 7320.

**Note** - The power dissipation numbers listed are the maximum rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.
Connectors

- Two C13 connectors which work on 110-220v outlets

Input

- Nominal frequencies: 50/60Hz
- Nominal voltage range: 100-120/200-240 VAC
- Maximum current AC RMS: 9.0 amps Max
- AC operating range: 90-264 VAC

Output

- 3.3 VDC STBY: 3.6A
- +12 VDC: 62.3A

Power Dissipation

- Max power consumption: 873 W
- Max heat output: 2977 BTU/hr
- Volt-Ampere rating: 891 VA @ 240 VAC, 0.98P.F.

7320 Front Panel

The following figure and legend identify the front panel LEDs.

FIGURE 2-38  7320 Controller Front Panel LEDs
The following figure and legend identify the 7320 front panel drive locations. Two mirrored hard disk drives (HDDs) that store the operating system reside in slots 0 and 1. Up to four solid state drives (ReadZilla SSDs), which store the read cache, fill slots 2 through 5, in order. Slots 6 and 7 are empty and must contain drive fillers.

**FIGURE 2-39** 7320 Controller Front Panel Drive Locations

<table>
<thead>
<tr>
<th>Disk Drive Locations</th>
<th>HDD1</th>
<th>HDD3</th>
<th>HDD5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD0</td>
<td>HDD2</td>
<td>HDD4</td>
<td>HDD6</td>
</tr>
<tr>
<td></td>
<td>HDD7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**7320 Replaceable Components**

The following list contains all of the replaceable power distribution, disk, and fan module components of the 7320. Note that power supplies, disks, and fan modules are hot-pluggable on the storage controller.
TABLE 2-23  7320 Controller Replaceable Components

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F300-2233-02</td>
<td>RoHS 760W Power Supply</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-2075-04</td>
<td>Buss Bar Power, 1U</td>
<td>FRU</td>
</tr>
<tr>
<td>F542-0184-01</td>
<td>DR, 3Gb SATA</td>
<td>CRU</td>
</tr>
<tr>
<td>F542-0330-01</td>
<td>2.5&quot; 512GB ReadZilla SSD</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-276-01</td>
<td>ASSY, FAN Module</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-4274-02</td>
<td>Fan Board (1U)</td>
<td>FRU</td>
</tr>
</tbody>
</table>

7320 PCIe Cards and Risers

Following is the complete list of replaceable PCIe cards for the 7320 system.

TABLE 2-24  7320 Controller Replaceable PCIe Cards

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F371-4325-01</td>
<td>8Gb FC HBA (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3609-02</td>
<td>PCA, SAS 6GBS 8 Port (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3606-03</td>
<td>Dual Port (x4) IB HCA (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3696-01</td>
<td>Dual Port CX2 4XQDR (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3617-01</td>
<td>2X10GbE SFP+, X8 (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3481-01</td>
<td>NIC Card Quad Port 1GigE Cu (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F511-1496-04</td>
<td>Sun Fishworks Cluster Controller 200 (PCIe)</td>
<td>FRU</td>
</tr>
</tbody>
</table>

7320 Rear Panel

Following is an illustration of the 7320 storage controller rear panel. The Sun 375-3609 belongs in slot 2, cannot be installed in any other slots, and a second is not offered as an option.
FIGURE 2-40 7320 Controller Rear Panel

Figure Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supplies</td>
</tr>
<tr>
<td>2</td>
<td>SC summary status LEDs</td>
</tr>
<tr>
<td>3</td>
<td>Serial management port</td>
</tr>
<tr>
<td>4</td>
<td>Network management port</td>
</tr>
<tr>
<td>5</td>
<td>Ethernet ports</td>
</tr>
<tr>
<td>6</td>
<td>PCIe slots</td>
</tr>
</tbody>
</table>

7320 Single and Cluster Controller Configurations

The single controller base configuration is 96GB RAM, 2x2.4GHz Quad-Core processors, one external SAS HBA, and four 10/100/1000 Ethernet ports.

The following table describes base configurations for the 7320.

TABLE 2-25 7320 Controller Base Configurations

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7320-24A</td>
<td>S7320, 2xCPU, 24GB, Single</td>
<td>597-1060-01</td>
</tr>
<tr>
<td>7104054</td>
<td>S7320, 2xCPU, 96GB, Single</td>
<td>7045900</td>
</tr>
<tr>
<td>TA7320-24A-HA</td>
<td>S7320, 2xCPU, 24GB, Cluster</td>
<td>597-1061-01</td>
</tr>
<tr>
<td>7104055</td>
<td>S7320, 2xCPU, 96GB, Cluster</td>
<td>7045903</td>
</tr>
</tbody>
</table>

Following are the PCIe configuration options for a single controller. All PCIe cards are low profile and must be fitted with low-profile mounting brackets.
### TABLE 2-26 7320 Standalone Controller PCIe Configuration Options

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Part Number</th>
<th>Vendor Part</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3696-01</td>
<td>Mellanox</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3606-03</td>
<td>MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXP19404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3696-01</td>
<td>Mellanox</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3606-03</td>
<td>MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXP19404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3609-03</td>
<td>Sun Thebe</td>
<td>External SAS HBA</td>
<td>Base Configuration</td>
</tr>
</tbody>
</table>

### 7320 Cluster Configurations

The 7320 cluster base configuration is 96GB RAM, 2x2.4GHz Quad-Core processors, one external SAS HBA, and four 10/100/1000 Ethernet ports, and a Cluster card. The Sun Storage 7420C Cluster Upgrade Kit (XOPT 594-4680-01) contains two cluster cards with cables for converting two 7320 or two 7420 controllers to a cluster.
The following options are available for clustered storage controllers.

**Note** - When you cluster a 7320, you must identically configure the cards in both of the clustered storage controllers, and you must identically configure all optional NIC/HBA cards used in the clustered storage controllers in both chassis.

---

**TABLE 2-27**  
7320 Clustered Controllers Configurations

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Part Number</th>
<th>Vendor Part</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3696-01</td>
<td>Mellanox</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3606-03</td>
<td>MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPi9404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>542-0298-01</td>
<td>Sun</td>
<td>Fishworks Cluster Card 2</td>
<td>Cluster Base Configuration</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3609-03</td>
<td>Sun Thebe</td>
<td>External SAS HBA</td>
<td>Cluster Base Configuration</td>
</tr>
</tbody>
</table>

**7320 Connector Pinouts**

The serial management connector (SERIAL MGT) is an RJ-45 connector and is a terminal connection to the SP console.
The network management connector (NET MGT) is an RJ-45 connector on the motherboard and provides an alternate terminal interface to the SP console.

There are four RJ-45 Gigabit Ethernet connectors (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

**Attached Storage**

The 7320 single and cluster controller configurations allow a single chain of one to six disk shelves. Any combination of disk-only and Logzilla-capable shelves may be combined within the chain in any order. The cabling configurations are unchanged. Half-populated shelf configurations are not supported. For more information, see “Connecting to Attached Storage” on page 233. See also “Disk Shelf Overview” on page 204 for component specifications and diagrams.

**See Also**

- “7x20 CRU Maintenance Procedures” on page 165
- “Disk Shelf Overview” on page 204
- “Disk Shelf Maintenance Procedures” on page 218
7420 Hardware Overview

Use the information on this page as a preparation reference for servicing replaceable components of 7420 controllers.

Refer to the following for procedural instructions:

- “7x20 CRU Maintenance Procedures” on page 165 - replace system controller components
- “Disk Shelf Maintenance Procedures” on page 218 - replace disk shelf components

Appliance Overview

The Sun ZFS Storage 7420 Appliance consists of a standalone storage controller, or two storage controllers in a high-availability cluster configuration, and one to 36 disk shelves. The following table describes the 7420 configuration options:

Note - 7420 M2 controllers cannot be clustered with 7420 controllers.

<table>
<thead>
<tr>
<th>TABLE 2-28</th>
<th>7420 Controller Configuration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
<td>Mktg Part Number</td>
</tr>
<tr>
<td>7420 M2</td>
<td>7107089</td>
</tr>
<tr>
<td>7420 M2</td>
<td>7107090</td>
</tr>
<tr>
<td>7420</td>
<td>7100566</td>
</tr>
<tr>
<td>7420</td>
<td>7100568</td>
</tr>
</tbody>
</table>

You can identify your configuration by looking at the product id on the BUI Maintenance screen or by using the CLI configuration version show command. You can also check the physical label on the boot drive, as shown in the boot drive illustration in section “System Drives” on page 151.
Refer to the product site at http://oracle.com/ZFSStorage for the most recent component specification.

## Chassis

The 3U chassis form factor dimensions are as follows:

### TABLE 2-29  7420 Controller Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>13.3 cm/5.25 in</td>
<td>Depth</td>
<td>70.6 cm/27.8 in</td>
</tr>
<tr>
<td>Width</td>
<td>43.7 cm/17.19 in</td>
<td>Weight</td>
<td>16.36 kg/36 lbs</td>
</tr>
</tbody>
</table>

## Front Panel

### FIGURE 2-43  7420 Controller Front Panel

**Figure Legend**

- 1 Locator LED and button (white)
- 7 Power Supply (PS) Service Required LED
- 13 SSD 2 (optional)
System Drives

The 7420 M2 has two 900GB SAS-2 system boot drives in slots 0 and 1, configured as a mirrored pair. Up to four 1.6TB SAS-2 Readzilla SSDs may fill slots 2 through 5, in order. In a 7420 M2 cluster, the number of solid state drives (SSDs) installed in each controller can vary.

7420 controllers have two 500GB SATA system boot drives in slots 0 and 1, configured as a mirrored pair. Zero, two, three, or four 512GB SSDs, may optionally fill slots 2 through 5, in order. In a 7420 cluster, the number of SSDs installed in both controllers must match.
FIGURE 2-44  7420 Controller System Drive

Figure Legend

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate (white)</td>
<td>2 Service action required (amber)</td>
</tr>
</tbody>
</table>

Rear Panel

The following graphic shows the rear panel of the controller. Base configuration HBAs are not depicted in this illustration.
Figure Legend

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supply unit 0 status LEDs OK: green Power Supply Fail: amber AC OK: green</td>
</tr>
<tr>
<td>2</td>
<td>Power supply unit 0 AC inlet</td>
</tr>
<tr>
<td>3</td>
<td>Power supply unit 1 status LEDs OK: green Power Supply Fail: amber AC OK: green</td>
</tr>
<tr>
<td>4</td>
<td>Power supply unit 1 AC inlet</td>
</tr>
<tr>
<td>5</td>
<td>System status LEDs Power: green Attention: amber Locate: white</td>
</tr>
<tr>
<td>6</td>
<td>PCIe slots 0-4</td>
</tr>
<tr>
<td>7</td>
<td>Cluster card slot</td>
</tr>
<tr>
<td>8</td>
<td>Network (NET) 10/100/1000 ports: NET0-NET3</td>
</tr>
<tr>
<td>9</td>
<td>USB 2.0 ports</td>
</tr>
<tr>
<td>10</td>
<td>PCIe slots 5-9</td>
</tr>
<tr>
<td>11</td>
<td>Network management (NET MGT) port</td>
</tr>
<tr>
<td>12</td>
<td>Serial management (SER MGT) port</td>
</tr>
<tr>
<td>13</td>
<td>DB-15 video connector</td>
</tr>
</tbody>
</table>

Connectors

The serial management connector (SER MGT) is an RJ-45 connector and provides a terminal connection to the SP console.
FIGURE 2-46  7420 Controller Serial Management Port

The network management connector (NET MGT) is an RJ-45 connector and provides a LAN interface to the SP console.

FIGURE 2-47  7420 Controller Network Management Port

There are four RJ-45 Gigabit Ethernet connectors (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

**Electrical Specifications**

The following list shows the electrical specifications for 7420 controllers.

**Note** - The power dissipation numbers listed are the maximum rated for the power supply and are not a rating of the actual power consumption of the appliance.

**Input**

- Nominal frequencies: 50/60Hz
- AC operating range: 100-127 VAC for 2 CPUs and 200-240 VAC for 2 or 4 CPUs
- Maximum current AC RMS: 12A @ 100 VAC / 12A @ 200 VAC

**Power Dissipation**
Max power consumption: 1800 W
Max heat output: 6143 BTU/hr
Volt-Ampere rating: 1837 VA @ 240 VAC, 0.98 P.F.

Internal Boards

The 7420 controller chassis has the following boards installed. Field-replaceable units (FRUs) should only be replaced by trained Oracle service technicians.

- **Motherboard**: The motherboard is a FRU and includes CPU modules, slots for eight DIMM risers, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host’s 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.

- **Power Distribution Board**: The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the system. It is directly connected to the Vertical PDB card, and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock ("kill") switch. In the storage controller, the power supplies connect to the power supply backplane which connects to the power distribution board.

- **Vertical PDB Card**: The vertical power distribution board, or Paddle Card is a FRU and serves as the interconnect between the power distribution board and the fan power boards, hard drive backplane, and I/O board.

- **Power Supply Backplane Card**: This board connects the power distribution board to power supplies 0 and 1.

- **Fan Power Boards**: The two fan power boards are FRUs and carry power to the storage controller fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

- **Drive Backplane**: The six-drive backplane is a FRU and includes the connectors for the drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. Each drive has an LED indicator for Power/Activity, Fault, and Locate.

Components

The controller components are shown in the following figure and identified in the table.
FIGURE 2-48  7420 Controller Components

<table>
<thead>
<tr>
<th>Figure Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motherboard</td>
</tr>
<tr>
<td>2 Low-profile PCIe cards</td>
</tr>
<tr>
<td>3 Power supplies</td>
</tr>
<tr>
<td>4 Power supply backplane</td>
</tr>
<tr>
<td>5 Drive backplane</td>
</tr>
<tr>
<td>6 System lithium battery</td>
</tr>
</tbody>
</table>

**CPU and Memory**

The 7420 controller supports the following configurations:

- Two, four, or eight 8GB DDR3 DIMMs installed on each riser, accommodating 128GB, 256GB, or 512GB of memory for 2.0Ghz CPUs.
Four or eight 8GB DDR3 DIMMs installed on each riser, accommodating 256GB or 512GB of memory for 2.0GHz and 2.4Ghz CPUs.

Four or eight 16GB DDR3 DIMMs installed on each riser, accommodating 512GB or 1TB of memory for 2.4Ghz CPUs.

**Note** - For proper cooling, memory risers corresponding to unpopulated CPU sockets must have fillers installed.

Previous 7420 controller configurations support two or four (1.86GHz or 2.00GHz) CPUs, with two memory risers required by each CPU. Four or eight 4GB or 8GB DDR3 DIMMs are installed on each riser, accommodating up to 256GB of memory for two CPUs, or up to 512GB for four CPUs.

**FIGURE 2-49** 7420 Controller Memory Risers

Refer to the service label on the cover for DIMM placement information. On every memory riser, slots D0, D2, D4, and D6 must be populated; optionally, slots D1, D3, D5, and D7 may be populated as a group on all installed memory risers. All DIMMs in the system must be identical.
DIMM names in appliance logs and the Maintenance > Hardware view are displayed with the full name, such as /SYS/MB/P0/D7.

**Fan Modules**

The Fan Modules and Fan Module LEDs of the storage controller are shown in the following figure. The following LEDs are lit when a fan module fault is detected:
Front and rear Service Action Required LEDs
- Fan Module Service Action Required (TOP) LED on the front of the server
- Fan Fault LED on or adjacent to the faulty fan module

The system Overtemp LED might light if a fan fault causes an increase in system operating temperature.

NIC/HBA Options

This table describes NIC/HBA PCIe card options for standalone and cluster configurations.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGX-SAS6-INT-Z</td>
<td>8-port 6Gb/s SAS-2 internal HBA</td>
<td>7054001</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port 8Gb FC HBA</td>
<td>371-4325-02</td>
</tr>
<tr>
<td>SG-XPCIESAS-GEN2-Z</td>
<td>2-port SAS (x4) external HBA</td>
<td>F375-3609-03</td>
</tr>
<tr>
<td>7105394</td>
<td>2-port SAS (x4) external HBA for EU countries</td>
<td>7059331</td>
</tr>
<tr>
<td>X4446A-Z-N</td>
<td>4-port GigE UTP</td>
<td>7054739</td>
</tr>
<tr>
<td>X4242A</td>
<td>2-port CX2 4xQDR, HCA</td>
<td>594-6776-01</td>
</tr>
</tbody>
</table>
### PCIe Options

The 7420 controller has ten PCIe slots. This table describes base and optional PCIe card slots for standalone and cluster configurations.

**Note** - The 7420 M2 reserves slot 0 for a SAS-2 internal HBA, and slots 1 and 8 for two SAS-2 external HBAs.

**TABLE 2-31** 7420 Controller PCIe Options

<table>
<thead>
<tr>
<th>Slot</th>
<th>Mfg Part Number</th>
<th>Description</th>
<th>Max</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7054001</td>
<td>8-port 6Gb/s SAS-2 internal HBA</td>
<td>1</td>
<td>Slot 0 of the 7420 M2 is reserved for the SAS-2 internal HBA</td>
</tr>
<tr>
<td>0</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup) for the 7420 controller</td>
</tr>
<tr>
<td>0</td>
<td>7051223</td>
<td>2-port optical 10GbE NIC</td>
<td>6</td>
<td>Optional recommended front-end for the 7420 controller</td>
</tr>
<tr>
<td>0</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end for the 7420 controller</td>
</tr>
<tr>
<td>1</td>
<td>F375-3609-03</td>
<td>2-port SAS external HBA</td>
<td>6</td>
<td>Base configuration (2 minimum)</td>
</tr>
<tr>
<td>2</td>
<td>F375-3609-03</td>
<td>2-port SAS external HBA</td>
<td>6</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>2</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>Slot</td>
<td>Mfg Part Number</td>
<td>Description</td>
<td>Max</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-----</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>371-4325-02</td>
<td>8Gb DP FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>2</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>2</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>F375-3609-03</td>
<td>2-port SAS external HBA</td>
<td>6</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>3</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>3</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>3</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>4</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>4</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>Slot</td>
<td>Mfg Part Number</td>
<td>Description</td>
<td>Max</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-----</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>C</td>
<td>7056175</td>
<td>Cluster Controller 200</td>
<td>1</td>
<td>Cluster base configuration</td>
</tr>
<tr>
<td>5</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>5</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>5</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>F375-3609-03</td>
<td>2-port SAS external HBA</td>
<td>6</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>6</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>6</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>6</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>F375-3609-03</td>
<td>DP SAS external HBA</td>
<td>6</td>
<td>Additional optional back-end</td>
</tr>
<tr>
<td>7</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>Slot</td>
<td>Mfg Part Number</td>
<td>Description</td>
<td>Max</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>7</td>
<td>375-3606-03</td>
<td>CX1 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>7051223</td>
<td>2-port optical 10GE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>7</td>
<td>375-3696-01</td>
<td>CX2 InfiniBand HCA</td>
<td>4</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>8</td>
<td>F375-3609-03</td>
<td>2-port SAS external HBA</td>
<td>6</td>
<td>Base configuration (2 minimum)</td>
</tr>
<tr>
<td></td>
<td>(7059331 for EU countries)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>371-4325-02</td>
<td>8Gb 2-port FC HBA</td>
<td>6</td>
<td>Optional FC target or initiator (Backup)</td>
</tr>
<tr>
<td>9</td>
<td>7051223</td>
<td>2-port optical 10GbE NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
<tr>
<td>9</td>
<td>7054739</td>
<td>4-port copper NIC</td>
<td>6</td>
<td>Optional recommended front-end</td>
</tr>
</tbody>
</table>

**PCIe Slot Order**

When installing additional PCIe cards to your base 7420 configuration, cards must be added in a specific order.

**Note** - The 7420 M2 reserves slot 0 for a SAS-2 internal HBA, and slots 1 and 8 for two SAS-2 external HBAs (see “PCIe Options” on page 160).
Install optional PCIe cards in the following order:

**TABLE 2-32** 7420 Controller Optional PCIe Cards and Slot Order

<table>
<thead>
<tr>
<th>PCIe Card</th>
<th>Slot Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SAS-2 external HBA</td>
<td>Slot 2, 7, 3, 6</td>
</tr>
<tr>
<td>2. 8Gb FC HBA</td>
<td>Slot 9</td>
</tr>
<tr>
<td></td>
<td>Additional FC HBAs are installed last</td>
</tr>
<tr>
<td>3. InfiniBand HCAs</td>
<td>Slot 7, 2, 6, 3, 5, 4</td>
</tr>
<tr>
<td>4. 10Gb Ethernet</td>
<td>Slot 7, 2, 6, 3, 5, 4, 0 (not available for 7420 M2), 9</td>
</tr>
<tr>
<td>5. Quad 1Gb Ethernet</td>
<td>Slot 7, 2, 6, 3, 5, 4, 0 (not available for 7420 M2), 9</td>
</tr>
<tr>
<td>6. Remaining 8Gb FC HBAs</td>
<td>Slot 7, 2, 6, 3, 5, 4, 0 (not available for 7420 M2)</td>
</tr>
</tbody>
</table>

**Attached Storage**

Primary storage for 7420 controllers is provided by one to six chains of attached storage. Each chain consists of up to six HDD-only or SSD-capable disk shelves, combined in any order. For more information, see “Connecting to Attached Storage” on page 233. See also “Disk Shelf Overview” on page 204 for component specifications and diagrams.
7x20 CRU Maintenance Procedures

This section provides instructions on how to replace customer replaceable components (CRUs) in Oracle's Sun ZFS Storage 7120, 7320, and 7420 controllers.

Refer to “Disk Shelf Maintenance Procedures” on page 218 for replacing expansion storage shelf components.

Prerequisites

- Read the information in the overview section for your controller to become familiar with the replaceable parts of the system:
  - “7120 Hardware Overview” on page 124
  - “7320 Hardware Overview” on page 136
  - “7420 Hardware Overview” on page 149
- Follow the instructions in the sections “Safety Information” on page 165 and “Required Tools and Information” on page 166.

Safety Information

This section contains safety information that you must follow when servicing the storage system. For your protection, observe the following safety precautions when setting up your equipment:

- Do not remove the side panels, or run the storage system with the side panels removed. Hazardous voltage is present that could cause injury. The covers and panels must be in place for proper air flow to prevent equipment damage.
- Follow all cautions, warnings, and instructions marked on the equipment and described in Important Safety Information for Oracle’s Hardware Systems.
- Ensure that the voltage and frequency of your power source match the voltage inscribed on the electrical rating label.
- Follow the electrostatic discharge safety practices. Electrostatic discharge (ESD) sensitive devices, such as PCI cards, HDDs, SSDs, and memory cards, require special handling. Circuit boards and HDDs contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static electricity from clothing or the work environment can destroy the components located on these boards. Do not touch the components without using antistatic precautions, especially along the connector edges.
Required Tools and Information

The following tools are needed to service the CRUs:

- Antistatic wrist strap - Wear an antistatic wrist strap and use an antistatic mat when handling components such as HDDs or PCI cards. When servicing or removing storage controller components, attach an antistatic strap to your wrist and then to a metal area on the chassis. Following this practice equalizes the electrical potentials between you and the storage controller.
- Antistatic mat - Place static-sensitive components on an antistatic mat.
- No. 2 Phillips screwdriver
- Nonconducting, No.1 flat-blade screwdriver or equivalent
- Nonconducting stylus or pencil (to power on the storage controller)

Chassis Serial Number

To obtain support for your storage controller or to order new parts, you need your chassis serial number. You can find a chassis serial number label on the storage controller front panel on the left side. Another label is on the top of the storage controller. Alternatively, click the Sun/Oracle logo in the BUI masthead to obtain the serial number or issue the following command:

```
hostname: maintenance hardware show
```

Controller Replacement Tasks

7x20 Controller Replacement Tasks

Use the following procedures to replace the 7x20 controller:

- “HDD or SSD” on page 166
- “Fan Module” on page 168
- “Power Supply” on page 173
- “Memory” on page 177
- “PCIe Cards and Risers” on page 188
- “Battery” on page 198

HDD or SSD

If you have more than one failed drive, replace only one drive at a time. Removing more than one drive in quick succession will cause a hardware/pool fault.
Replacing the 7x20 Controller HDD or SSD

1. Identify the failed HDD or SSD by going to the Maintenance > Hardware section of the BUI and clicking the drive information icon 📦. If you are physically at the system, the amber Service Required indicator on the HDD or SSD should be illuminated.

2. If you are not physically at the system, turn on the locator indicator by clicking the locator icon ☀️.

3. Push the release button on the HDD or SSD to open the latch.

4. Grasp the latch (2), and pull the drive out of the drive slot.

5. After 15 seconds, navigate to the Hardware > Maintenance screen, and click the right-arrow icon ➡️ on the system controller to verify that the software has detected that the drive is not present.

6. Slide the replacement drive into the slot until it is fully seated.
7. **Close the latch to lock the drive in place.**

The Sun ZFS Storage system software automatically detects and configures the new drive. The device appears in the BUI Maintenance > Hardware screen when you view details for the controller or drive shelf.

**Fan Module**

Fan modules are hot-swappable and can be removed and installed while the storage controller is running without affecting other hardware capabilities.

**7120 or 7320:** The fan modules and status indicators are hidden under a fan door in the 7120 and 7320 storage controllers. Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320 controller.
Leaving the door open for more than 60 seconds while the storage controller is running might cause it to overheat and shut down.

7420: The following illustration shows the fan modules in the 7420 storage controller.
Replacing the 7x20 Controller Fan Module

Caution - Operating a controller for an extended period of time with fans removed reduces the effectiveness of the cooling system. For this reason, the replacement fan should be unpacked in advance and ready to insert into the controller chassis as soon as the faulted fan is removed.

1. To locate the chassis you want to service, click the associated locator icon on the Maintenance > Hardware screen of the BUI or issue the set /SYS/LOCATE status=on command at the service processor (SP) prompt. The locate LED will flash on the controller chassis.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. 7120 or 7320: To replace the fan module:
   - Open the fan module door while unlatching the release tabs on the door.
   - Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locator icon on the Maintenance > Hardware screen of the BUI for the fan you want to replace.
   - Using thumb and forefinger, pull the fan module up and out.
Install the replacement fan module into the storage controller fan slot.

**Caution** - The fan must be replaced within one minute to avoid controller shutdown.
Apply firm pressure to fully seat the fan module.

Verify that the Fan OK status indicator is lit, and that the fault status indicator on the replaced fan module is dim.

Close the top cover door immediately after replacing the fan to maintain airflow in the storage controller.

6. **7420: To replace the fan module:**

Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locator icon on the Maintenance > Hardware screen of the BUI for the fan you want to replace.

Lift the latch at the top of the fan module to unlock the fan module, and pull the fan module out.
Unlock and insert the 7420 fan module.
Apply firm pressure to fully seat the fan module.
Verify that the Fan OK status indicator is lit and that the fault status indicator on the replaced fan module is dim.

7. **Verify that the Top Fan status indicator, the Service Required status indicators, and the Locator status indicator/Locator button are dim.**

8. **Push the release tabs on the side of each rail and slowly slide the storage controller into the rack.**

**Power Supply**

Storage controllers are equipped with redundant hot-swappable power supplies. If a power supply fails and you do not have a replacement, leave the failed power supply installed to ensure proper air flow. A faulted power supply is indicated by an amber-colored status LED.

▼ **Replacing the 7x20 Controller Power Supply**

1. **Gain access to the rear of the storage controller where the faulted power supply is located.**

2. **If a cable management arm (CMA) is installed, press and hold the CMA release tab and rotate the arm out of the way.**
3. **Disconnect the power cord from the faulted power supply.**

4. **Remove the power supply.**

   **7120 or 7320:** Release the latch, then remove the power supply. Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320 controller.
7420: Grasp the power supply handle and press the release latch to remove the power supply.
5. Align the replacement power supply with the empty power supply chassis bay.

6. Slide the power supply into the bay until it is fully seated. The following figure shows the 7420 power supply.
7. **Connect the power cord to the power supply.**

8. **Verify that the green AC Present status indicator is lit.**

9. **Close the CMA, inserting the CMA into the rear left rail bracket.**

10. **Go to the Maintenance > Hardware screen of the BUI. Click the right-arrow icon ➡️ for the controller and then click power supply to verify that the online icon 🟢 is green for the newly installed power supply.**

**Memory**

To identify a specific memory module that has faulted, you must open the storage controller and use the amber status LEDs on the motherboard. To identify a general memory fault, go to the Maintenance > Hardware screen of the BUI, and click on the right-arrow icon ➡️ on the controller. Then click DIMMs to locate the faulted component, indicated by the warning icon ⚠️.

You **must** shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:
Log in to the BUI and click the power icon on the left side of the masthead.

SSH into the appliance and issue the `maintenance system poweroff` command.

SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.

Use a pen or nonconducting pointed object to press and release the Power button on the front panel.

To initiate emergency shutdown during which all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

### Replacing the 7x20 Controller Memory

**Caution** - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. **Disconnect the AC power cords from the rear panel of the storage controller.**
2. **Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.**
3. **From the front of the storage controller, release the two slide release latches.**
4. **While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.**
5. **7120 or 7320: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320 controller. To remove the top cover:**
   - Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
   - Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm).
   - Lift up and remove the top cover.
   - Also remove the air baffle by pressing the air baffle connectors outward and lifting the air baffle up and out of the server.
6. **7420: To remove the top cover:**

   Simultaneously lift both cover latches in an upward motion.
Lift up and remove the top cover.

7. To locate the DIMM you want to service, press the Fault Remind Button on the storage controller.

The following illustration shows the Fault remind button on the 7120 controller.

The following illustration shows the Fault remind button on the 7420 controller.
8. 7420: Identify the memory riser that hosts the faulted DIMM by the Service Required status indicator. Lift the memory riser straight up to remove it from the motherboard, and place it on an antistatic mat.
9. Rotate both DIMM slot ejectors outward as far as they will go and carefully lift the faulted DIMM straight up to remove it from the socket.

10. Line up the replacement DIMM with the connector, aligning the notch with the key to ensure that the component is oriented correctly.
11. **Push the DIMM into the connector until the ejector tabs lock the component in place.**

12. **7120 or 7320:** Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320. **To replace the cover:**

   Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm).

   Slide the top cover forward until it seats.

   Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.
13. **7420: To replace the cover:**

Push the memory riser module into the associated CPU memory riser slot until the riser module locks in place.
Place the top cover on the chassis so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

Slide the top cover toward the rear of the chassis until it seats and press down on the cover with both hands until both latches engage.
14. Push the release tabs on the side of each rail and slowly push the storage controller into the rack.
The following image shows the 7420 chassis.
15. Connect the power cords to the power supplies.

16. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

17. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel.

The Power/OK status indicator next to the Power button lights and remains lit. The Maintenance > Hardware screen of the BUI provides status of the replacement on the Details page for DIMMs.

**PCle Cards and Risers**

Go to the Maintenance > Hardware screen of the BUI and click the right-arrow icon on the controller, and then click Slots to locate the faulted component.
Note that the 7120 Sun Flash Accelerator F20 card is a FRU and must be replaced by an Oracle service representative.

All HBAs must be of the same type. Ensure that you upgrade your system software before installing a newly released HBA.

You must shut down the controller before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Log in to the BUI, and click the power icon on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

### Replacing the 7x20 Controller PCIe Cards and Risers

**Caution** - This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

1. Disconnect the AC power cords from the rear panel of the storage controller.
2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.
3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
5. **7120 or 7320:** To remove the top cover:
   - Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
   - Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm).
Lift up and remove the top cover.

6. **7420: To remove the top cover:**
   Simultaneously lift both cover latches in an upward motion.

7. **Locate the PCIe card position in the storage controller,** see “7320 Single and Cluster Controller Configurations” on page 145 for the 7320, the “PCIe Options” on page 134 for the 7120, or “PCIe Options” on page 160 for the 7420.

8. **7120 or 7320: To replace the PCIe card:**
   Disconnect any data cables connected to the cards on the PCIe riser you want to replace. Label the cables for proper connection later.
   Loosen the two captive Phillips screws on the end of the rear panel crossbar and lift the crossbar up and back to remove it.
Loosen the captive retaining screw holding the front end of the riser and the Phillips screw on the end of the riser.

Lift the riser up to remove it from the storage controller.

Carefully remove the PCIe card from the riser board connector and clean the slot with filtered, compressed air if necessary.
Seat the replacement PCIe card in the slot of the riser and connect the cables.

Align the riser, together with any attached PCIe cards, with the intended location on the motherboard, and carefully insert it into its slot.
Slide the back of the riser into the motherboard rear panel stiffener.

Tighten the screw that secures the riser to the motherboard.

Replace the rear panel PCI crossbar by sliding it down over the PCIe risers, ensuring the crossbar is secured with two captive Phillips screws.
9. **7420: To replace the PCIe card:**

Disengage the PCIe card slot crossbar from its locked position and rotate the crossbar into an upright position.

Remove the retaining screw that holds the PCIe card to the chassis.

Carefully remove the PCIe card from the connector and clean the slot with filtered, compressed air if necessary.

Install the replacement PCIe card into the PCIe card slot.

Install the retaining screw to hold the PCIe card to the chassis.

Return the crossbar to its closed and locked position.
10. **7120 or 7320**: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320 controller. To install the top cover:

Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm), then slide the top cover forward until it seats.

Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.
11. **7420: To install the top cover:**

   Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

   Slide the top cover toward the rear of the chassis (2) until it seats.

   Press down on the cover with both hands until both latches engage.
12. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

13. Connect the power cords to the power supplies.

14. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

15. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

16. Connect data cables to the PCIe card, routing them through the cable management arm.
17. Go to the Maintenance > Hardware screen of the BUI, and click the right-arrow icon on the controller. Then, click Slots to verify the status of the new component. The online icon should be green.

18. Install the disk shelf as described in “Installation” in “Oracle ZFS Storage Appliance Installation Guide” and connect the expansion storage as described in “Connecting to Attached Storage” on page 233.

Battery

You might need to replace the battery if the storage controller fails to maintain the proper time when powered off and disconnected from the network. You will need a small (No.1 flat-blade) non-metallic screwdriver or equivalent.

You must shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Login to the BUI and click the power icon on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

▼ Replacing the 7x20 Controller Battery

1. Disconnect the AC power cords from the rear panel of the storage controller.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. 7120 or 7320: To remove the top cover:
Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm). Lift up and remove the top cover.

6. **7420: To remove the top cover:**
   Simultaneously lift both cover latches in an upward motion.

7. Lift up and remove the top cover.

8. Using a small, non-metallic screwdriver, press the latch and remove the battery from the motherboard. The 7420 battery is shown here.
The following figure shows the 7120 battery.
9. Press the replacement battery into the motherboard with the positive side (+) facing upward.

10. 7120 or 7320: Components may differ slightly between the 7120 and 7320, however, service procedures for each are identical. The illustration shows the 7320. To install the top cover:

Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm), then slide the top cover forward until it seats.

Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.
11. **7420: To install the top cover:**

Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

Slide the top cover toward the rear of the chassis (2) until it seats.

Press down on the cover with both hands until both latches engage.
12. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

13. Connect the power cords to the power supplies.

14. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

15. Use a pen, or other pointed object, to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

16. Connect data cables to the PCIe card, routing them through the cable management arm.
17. **When the system has finished booting, log in and set the time using the steps in the task “NTP BUI Clock” in “Oracle ZFS Storage Appliance Administration Guide”**.

**Oracle DE2 and Sun Disk Shelf Interoperability**

Oracle DE2s and Sun Disk shelves can be used together with standalone and clustered 7x20 controllers after certain hardware modifications. Contact Oracle Service to update your controllers for disk shelf interoperability.

**Disk Shelf Overview**

Oracle disk shelves are high-availability serial attached SCSI (SAS) devices that provide expanded storage. The main components are hot-swappable, including drives, I/O Modules (IOMs) or SAS Interface Module (SIM) boards for connecting to controllers and other disk shelves, and dual load-sharing power supply with fan modules. This provides a fault-tolerant environment with no single point of failure. Component status is indicated with lights on the disk shelf, and in the Maintenance > Hardware screen of the BUI.

Refer to “Disk Shelf Maintenance Procedures” on page 218 for procedural information about replacing disk shelf components.

**Note** - Disk shelves can be added to standalone or clustered storage controllers without powering down the appliance or loss of service to clients.

**FIGURE 2-53  Oracle Storage Drive Enclosure DE2-24P**
The Oracle Storage Drive Enclosure DE2-24P is a 2U chassis that supports 24 2.5" SAS-2 drives. The high-performance HDDs provide reliable storage, and the SSDs provide accelerated write operations. This disk shelf features dual, redundant I/O Modules (IOMs), and dual power supply with fan modules.

**FIGURE 2-54**  Oracle Storage Drive Enclosure DE2-24C

The Oracle Storage Drive Enclosure DE2-24C is a 4U chassis that supports 24 3.5" SAS-2 drives. The SSDs provide accelerated write operations, and the high-capacity HDDs provide reliable storage. This disk shelf features dual, redundant I/O Modules (IOMs), and dual power supply with fan modules.

**FIGURE 2-55**  Sun Disk Shelf 24x3.5" SAS-2
The Sun Disk Shelf is a 4U chassis that supports 24 3.5" SAS-2 drives. The SSDs provide accelerated write operations, and the high-capacity HDDs provide reliable storage. This disk shelf features dual, redundant SAS Interface Module (SIM) boards, and dual power supply with fan modules.

**SAS-2**

The SAS-2 (Serial Attached SCSI 2.0) storage fabric supports a greater number of targets, greater bandwidth, higher reliability and bigger scale. The scale and reliability improvements are achieved with SAS-2 disks you can daisy-chain to as many as 36 shelves for certain systems, for a total of 864 disks. In addition, the high-performance SAS-2 HBA is designed for the Oracle ZFS Storage Appliance family with a standard chip set to support a high-density of target devices, capable of attachment to 1024 targets.

With this fabric, you are encouraged to apply entire shelves to pools, so you can gain the benefits of No Single Point of Failure configurations, and striping across the maximum possible number of devices.

The following shelves implement SAS-2 disks:

- Oracle Storage Drive Enclosure DE2-24P
- Oracle Storage Drive Enclosure DE2-24C
- Sun Disk Shelf

**Front Panel**

The front panel consists of the drives and indicator lights.

**Drive Locations**

The following figures show the location of the drives.

**FIGURE 2-56** Oracle Storage Drive Enclosure DE2-24P Drive Locations
Up to four Logzilla SSDs are supported per disk shelf.

Logzilla SSDs should be populated in order of slots 20, 21, 22, and 23.

**FIGURE 2-57** Oracle Storage Drive Enclosure DE2-24C and Sun Disk Shelf Drive Locations

Up to four Logzilla SSDs are supported per disk shelf.

Logzilla SSDs should be populated in order of slots 20, 21, 22, and 23. (The Oracle Storage Drive Enclosure DE2-24C is shown and represents both models.)

**Front Panel Indicators**

The following figures show the front panel indicators.
**FIGURE 2-58** Oracle Storage Drive Enclosure DE2-24P Front Panel Indicators

**Figure Legend**

<table>
<thead>
<tr>
<th>1</th>
<th>System power indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Module fault indicator</td>
</tr>
<tr>
<td>3</td>
<td>Locate indicator</td>
</tr>
<tr>
<td>4</td>
<td>Drive fault indicator</td>
</tr>
<tr>
<td>5</td>
<td>Power / Activity indicator</td>
</tr>
</tbody>
</table>
FIGURE 2-59 Oracle Storage Drive Enclosure DE2-24C Front Panel Indicators

<table>
<thead>
<tr>
<th>Figure Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 System power indicator</td>
</tr>
<tr>
<td>2 Module fault indicator</td>
</tr>
<tr>
<td>3 Locate indicator</td>
</tr>
<tr>
<td>4 Power / Activity indicator</td>
</tr>
<tr>
<td>5 Drive fault indicator</td>
</tr>
</tbody>
</table>
FIGURE 2-60  Sun Disk Shelf Front Panel Indicators

<table>
<thead>
<tr>
<th>Figure Legend</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate button and indicator</td>
</tr>
<tr>
<td>2</td>
<td>System fault indicator</td>
</tr>
<tr>
<td>3</td>
<td>System power indicator</td>
</tr>
<tr>
<td>4</td>
<td>Disk ready to be removed indicator</td>
</tr>
<tr>
<td>5</td>
<td>Disk fault indicator</td>
</tr>
<tr>
<td>6</td>
<td>Disk activity indicator</td>
</tr>
<tr>
<td>7</td>
<td>Over temperature warning indicator</td>
</tr>
<tr>
<td>8</td>
<td>SIM board fault indicator</td>
</tr>
<tr>
<td>9</td>
<td>Power supply fault indicator</td>
</tr>
</tbody>
</table>

**Back Panel**

The back panel consists of the power supplies, fans, I/O Modules (IOMs) or SAS Interface Modules (SIMs), and indicator lights.
FIGURE 2-61  Oracle Storage Drive Enclosure DE2-24P Back Panel

1 Power Supply with Fan Module 0
2 I/O Module 1
3 I/O Module 0
4 Power Supply with Fan Module 1

FIGURE 2-62  Oracle Storage Drive Enclosure DE2-24C Back Panel
**Figure Legend**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Supply Filler Panel, Slot 0</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply with Fan Module 1</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply with Fan Module 2</td>
</tr>
<tr>
<td>4</td>
<td>Power Supply Filler Panel, Slot 3</td>
</tr>
<tr>
<td>5</td>
<td>I/O Module Filler Panel</td>
</tr>
<tr>
<td>6</td>
<td>I/O Module 0</td>
</tr>
<tr>
<td>7</td>
<td>I/O Module Filler Panel</td>
</tr>
<tr>
<td>8</td>
<td>I/O Module 1</td>
</tr>
</tbody>
</table>

**Note** - It is especially important that power supplies and their filler panels are in the correct slots.

**FIGURE 2-63** Sun Disk Shelf Back Panel

---

**Figure Legend**

1. Power supply modules with built-in fans. Power supply 0 is on the left and power supply 1 is on the right.

2. Removable SAS Interface Module (SIM) Boards. SIM 0 is on the left, and SIM 1 is on the right.

**I/O Module Indicators**

The following disk shelves have I/O Modules (IOMs):
- Oracle Storage Drive Enclosure DE2-24P
- Oracle Storage Drive Enclosure DE2-24C

**FIGURE 2-64** I/O Module Indicators

<table>
<thead>
<tr>
<th>Figure Legend</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fault / Locate indicator</td>
<td>4 SAS-2 Port 1</td>
<td>7 For Oracle service only</td>
</tr>
<tr>
<td>2 Power / OK indicator</td>
<td>5 SAS-2 Port 2</td>
<td>8 For Oracle service only</td>
</tr>
<tr>
<td>3 SAS-2 Port 0</td>
<td>6 Host port activity indicators</td>
<td></td>
</tr>
</tbody>
</table>

**SIM Board Indicators**

The following disk shelves have SIM boards:

- Sun Disk Shelf

The following figure shows the SIM board indicators for the Sun Disk Shelf.
FIGURE 2-65 SIM Board Indicators

![SIM Board Indicators Diagram]

**Figure Legend**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC power indicator</td>
</tr>
<tr>
<td>2</td>
<td>DC power indicator</td>
</tr>
<tr>
<td>3</td>
<td>Fan fault indicator</td>
</tr>
<tr>
<td>4</td>
<td>Power supply fault indicator</td>
</tr>
<tr>
<td>5</td>
<td>Universal power connector</td>
</tr>
<tr>
<td>6</td>
<td>Power switch</td>
</tr>
<tr>
<td>7</td>
<td>Port fault indicator</td>
</tr>
<tr>
<td>8</td>
<td>Port OK indicator</td>
</tr>
<tr>
<td>9</td>
<td>SIM board OK indicator (green)/SIM board fault indicator (amber)</td>
</tr>
<tr>
<td>10</td>
<td>SIM locator indicator</td>
</tr>
</tbody>
</table>

**Power Supply Indicators**

The following figure shows power supply with fan module indicators for these disk shelves:

- Oracle Storage Drive Enclosure DE2-24P
- Oracle Storage Drive Enclosure DE2-24C
FIGURE 2-66  DE2 Disk Shelf Power Supply Indicators

The following figure shows power supply with fan module indicators for these disk shelves:

- Sun Disk Shelf
FIGURE 2-67  Sun Disk Shelf Power Supply Indicators

FIGURE Legend

1 Cooling fan status indicator
2 AC power status indicator
3 DC power status indicator
4 Power supply status indicator
5 Power on/off switch
6 Power cord tie wrap
7 Universal power input connector
8 Right ejection arm and captive screw latch

Disk Shelf Configurations

The following tables describe and provide part numbers for the supported expansion storage shelves.

Oracle Storage Drive Enclosure DE2-24P

TABLE 2-33  Part Numbers for Oracle Storage Drive Enclosure DE2-24P

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7103910</td>
<td>Drive Enclosure DE2-24P Base Chassis</td>
</tr>
</tbody>
</table>
### Oracle Storage Drive Enclosure DE2-24C

**TABLE 2-34**  Part Numbers for Oracle Storage Drive Enclosure DE2-24C

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7103914</td>
<td>Drive Enclosure DE2-24C Base Chassis</td>
</tr>
<tr>
<td>7103913</td>
<td>3TB 7.2Krpm, SAS-2, 3.5&quot; HDD</td>
</tr>
<tr>
<td>7103916</td>
<td>73GB SSD XATO SAS-2, 2.5&quot; (2.5&quot; to 3.5&quot; Drive Adapter)</td>
</tr>
<tr>
<td>7103918</td>
<td>Filler Panel, Drive Enclosure DE2-24C</td>
</tr>
</tbody>
</table>

### Sun Disk Shelf (DS2)

**TABLE 2-35**  Part Numbers for Sun Disk Shelf (DS2)

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2-BASE</td>
<td>Sun Disk Shelf (DS2) 24x3.5&quot; SAS-2</td>
</tr>
<tr>
<td>DS2-HD2T</td>
<td>2TB 7.2Krpm, SAS-2, 3.5&quot; HDD</td>
</tr>
<tr>
<td>7101765</td>
<td>3TB 7.2Krpm, SAS-2, 3.5&quot; HDD</td>
</tr>
<tr>
<td>7101274</td>
<td>300GB 15Krpm, SAS-2, 3.5&quot; HDD</td>
</tr>
<tr>
<td>7101276</td>
<td>600GB 15Krpm, SAS-2, 3.5&quot; HDD</td>
</tr>
<tr>
<td>7101197</td>
<td>73GB SSD XATO, 3.5&quot;</td>
</tr>
<tr>
<td>DS2-LOGFILLER</td>
<td>Sun Disk Shelf (DS2) 24x3.5&quot;, LOGFiller</td>
</tr>
<tr>
<td>DS2-4URK-19U</td>
<td>Disk Shelf Rail Kit</td>
</tr>
</tbody>
</table>
Shelf

Disk Shelf Maintenance Procedures

This section provides procedural details for customer replaceable units (CRUs) of any disk shelf or drive enclosure that attaches to the Oracle ZFS Storage Appliance family of products. Refer to “Disk Shelf Overview” on page 204 for component specifications and diagrams.

Prerequisites

Read the information in the overview section for your controller to become familiar with the replaceable parts of the system:

- “7120 Hardware Overview” on page 124
- “7320 Hardware Overview” on page 136
- “7420 Hardware Overview” on page 149
- “ZS3-2 Hardware Overview” on page 28
- “ZS3-4 Hardware Overview” on page 46

Follow the instructions in the “Electrostatic Discharge Precautions” on page 218 section.

Safety Information

Follow all cautions, warnings, and instructions marked on the equipment and described in Important Safety Information for Oracle’s Hardware Systems.

Electrostatic Discharge Precautions

- Remove all plastic, vinyl, and foam material from the work area.
- Wear an antistatic wrist strap at all times when handling any CRU.
- Before handling any CRU, discharge any static electricity by touching a grounded surface.
- Do not remove a CRU from its antistatic protective bag until you are ready to install it.
- After removing a CRU from the chassis, immediately place it in an antistatic bag or antistatic packaging.
- Handle any card that is part of a CRU by its edges only and avoid touching the components or circuitry.
- Do not slide a CRU over any surface.
Limit body movement (which builds up static electricity) during the removal and replacement of a CRU.

Shelf Electrostatic Discharge Precautions

Removing Power from the Disk Shelf

Most disk shelf components are hot-swappable; you do not need to remove power when replacing them. Do not remove a component if you do not have an immediate replacement. The disk shelf must not be operated without all components in place.

Powering off or removing all SAS chains from a disk shelf will trigger a kernel panic on the controller(s) to prevent data loss, unless the shelf is part of an NSPF (no single point of failure) data pool. To avoid this, shut down the controller(s) before decommissioning the shelf. For details on NSPF profiles, see “Storage Configuration Profile” in “Oracle ZFS Storage Appliance Administration Guide”.

Remove Power from the Disk Shelf

1. Stop all input and output to and from the disk shelf.
2. Wait approximately two minutes until all disk activity indicators have stopped flashing.
3. Place the power supply on/off switches to the "O" off position.
4. Disconnect the power cords from the external power source for the cabinet.

Note - All power cords must be disconnected to completely remove power from the disk shelf.

Tasks

Disk Shelf Replacement Tasks

Use the following procedures to replace the disk shelf:

- “Drives” on page 220
Drives

The shelf drives are hot-swappable and may be replaced without removing power from the shelf. The replacement drive must be of the same capacity and type as the drive to be replaced. To avoid possible data loss when removing non-faulted drives, label each drive with the number of the slot from which it was removed and reinstall each drive into the same slot.

Faulted drives are indicated by an amber LED. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and click the information icon for the appropriate drive to view details, or click the locator icon to turn on the locator LED.

Replacing a Drive

Caution - Do not remove a component if you do not have an immediate replacement. The disk shelf must not be operated without all components in place, including filler panels. Refer to “Disk Shelf Overview” on page 204 for component locations.

1. Locate the failed disk drive at the front of the chassis.
2. Press the release button or latch to release the drive lever.
3. Pull the drive lever fully open to unlock and partially eject the drive from the chassis.
4. Grasp the middle of the drive body and pull it toward you to remove it from the chassis.

5. Ensure the new drive lever is in the fully extended position.

6. While constantly pushing toward the pivot point of the lever, slide the drive fully into the chassis slot.
7. Press the drive lever closed until it locks in place. For vertically oriented drives, push down on the top of the drive if it is higher than surrounding drives to properly seat it. The Activity LED will be steady green to indicate a ready state.
8. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and then click Disk to verify that the disk online icon is green for the newly installed disk.

Power Supply

Disk shelves are provided with redundant power supplies to prevent loss of service due to component failure. Each power supply is accompanied by one or more chassis cooling fans in one customer-replaceable unit (CRU). Power supplies are hot-swappable, meaning they can be replaced one at a time without removing power from the disk shelf. The modules can produce a high-energy hazard and should only be replaced by instructed individuals with authorized access to the equipment.

Separate indicator LEDs on the back panel (see “Back Panel” on page 210) represent the operational state of power supplies and fans individually; see the rear panel illustration for details. Failed components are indicated by amber LEDs as well as amber icons in the administrative BUI. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, then select PSU or Fan to view details on the respective components. You can also click the locator icon to flash the chassis locator LED.

Replacing a Power Supply

**Caution** - Do not remove a component if you do not have an immediate replacement. The disk shelf must not be operated without all components in place, including filler panels. Refer to “Disk Shelf Overview” on page 204 for component locations.

1. Locate the chassis and module containing the failed component.
2. Ensure the power supply on/off switch is in the "O" off position.
3. Disconnect the power cord tie strap from the power cord, and unplug the power cord from the power supply.
4. Release the lever/ejection arms.
   Oracle Storage Drive Enclosure DE2-24P or DE2-24C:
   Grasp the latch and the opposite side of the module, and squeeze together to release the lever.
**Sun Disk Shelf:**

Using your thumb and forefinger, unscrew both ejection arm captive screws until loose and swing the ejection arms out until they are fully open.
5. Pull the module out of the chassis, being careful not to damage the connector pins in the back.

6. With the lever/ejection arms fully open, slide the new module into the chassis slot until it contacts the chassis backplane, and the lever/ejection arms begin to engage.

7. Close the lever/ejection arms.
   
   **Oracle Storage Drive Enclosure DE2-24P or DE2-24C:**
   
   Push the lever fully closed until you hear or feel a click.
Sun Disk Shelf:

Push the ejection arms fully closed and secure both captive screws to seat and secure the module in the chassis.
8. Ensure the power supply on/off switch is in the "O" off position.

9. Plug the power cord into the new power supply and attach the power cord tie strap to the power cord.

10. Place the power supply on/off switch to the "I" on position. The Power/OK status LED should be a steady green, and all other indicators should be off.

11. Go to the Maintenance > Hardware section of the BUI, and click the right-arrow icon at the beginning of the appropriate disk shelf row. As appropriate for the failure, click either PSU or Fan to verify that the online icon is green for the newly installed power supply with fan module.

I/O Module

The following disk shelves have I/O Modules (IOMs):

- Oracle Storage Drive Enclosure DE2-24P
- Oracle Storage Drive Enclosure DE2-24C

The I/O Modules (IOMs), which are similar to SIM boards, are hot-swappable so you can replace them without removing power to the system. A faulted I/O Module is indicated by an amber LED. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and then click Slot to view details, or click the locator icon to turn on the locator LED.

Replacing an I/O Module

Caution - Do not remove a component if you do not have an immediate replacement. The disk shelf must not be operated without all components in place, including filler panels. Refer to “Disk Shelf Overview” on page 204 for component locations.

1. Locate the failed I/O Module at the back of the disk shelf.

2. Label and disconnect the I/O Module interface cables.

3. Using your thumb and forefinger, squeeze the release button toward the lever hole to release the lever.
4. Grasp the lever and remove the I/O Module, being careful not to damage the connector pins in back.

5. With the lever of the new I/O Module in the open position, slide the I/O Module into the disk shelf, being careful of the connector pins.

6. Push the lever fully closed until you hear or feel a click.

7. Reconnect the interface cables to their original locations.

8. Wait approximately 60 seconds for the I/O Module to complete its boot process, at which time the Power LED should be solid green and the Fault/Locate LED should be off. All four activity LEDs should be solid green for each SAS-2 port that has an interface cable connected to it.

9. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and then click Slot to verify that the I/O Module online icon is green for the newly installed I/O Module.

SIM Board

The following disk shelves have SIM boards:

- Sun Disk Shelf

The SIM boards, which are similar to I/O Modules, are hot-swappable so you can replace them without removing power to the system. The SIM boards are multi-pathed, so you can remove one of the SIM boards at any time, regardless of the state of the blue SIM OK indicator. A faulted SIM board is indicated by an amber LED. Go to the Maintenance > Hardware section of
the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and then click Slot to view details, or click the locator icon to turn on the locator LED.

**Replacing a SIM Board**

---

**Caution** - Do not remove a component if you do not have an immediate replacement. The disk shelf must not be operated without all components in place, including filler panels. Refer to “Disk Shelf Overview” on page 204 for component locations.

---

1. Locate the failed SIM at the back of the disk tray.
2. Label and disconnect the tray interface cables.
3. Use two hands to disconnect the SAS cable. Grasp the metal body of the connector with one hand and firmly grasp and pull the tab gently toward the connector body with the other, then pull the connector body outward to extract it from the bulkhead. Do not twist or pull the tab in any direction other than parallel with the connector body or it may break. If the tab breaks, use a small sharp object (such as a fine-tipped screwdriver) to lift the metal spring at the top of the connector shell to unlatch it.
4. Loosen the two extraction arm captive screws using your thumb and forefinger. If the captive screws are too tight to loosen by hand, use a No.2 Phillips screwdriver to loosen each screw.
5. Pull each ejector tab outward and push to the sides to release and partially eject the SIM from the chassis.
6. **Grasp the middle of the SIM board and slide it out of the slot.**

7. **With the ejector arms in the full open position, align the new SIM board with the open slot and slide it into the tray until the ejector arms contact the tray connectors and begin to swing closed.**
8. Swing both ejector arms in until they are flush with the SIM board panel to seat the board.

9. Tighten both captive screws to secure the board.

10. Reconnect the SAS interface cables to their original locations.

11. Wait approximately 60 seconds for the SIM board to complete its boot process, at which time the Power LED should be solid green and the SIM locate LED should be off.

12. Go to the Maintenance > Hardware section of the BUI, click the right-arrow icon at the beginning of the appropriate disk shelf row, and then click Slot to verify that the SIM board online icon is green for the newly installed SIM board.
Faults

Hardware Faults

This section describes connecting to the controller Service Processor (SP) and configuration considerations for maximum serviceability. In rare cases, faults associated with uncorrectable CPU errors are not diagnosable or displayed in the controller. These faults will be preserved by and observable on the ILOM. The following sections describe how to connect to and manage faults for these cases.

Connect to ILOM

Connect to the server ILOM (Service Processor) on the server platform to diagnose hardware faults that do not appear in the BUI.

In a cluster environment, an ILOM connection should be made to each controller.

The server ILOM provides options for (i) network and (ii) serial port connectivity. Network connection is the preferred choice, as the ILOM serial port does not always allow adequate means of platform data collection.

Note - Failure to configure ILOM connectivity may lead to longer than necessary hardware fault diagnosis and resolution times.

Management Port Configuration

All standalone controllers should have at least one NIC port configured as a management interface. Select the Allow Admin option in the BUI to enable BUI connections on port 215 and CLI connections on ssh port 22.

All cluster installations should have at least one NIC port on each controller configured as a management interface as described above. In addition, the NIC instance number must be unique on each controller. For example, nodeA uses igb0 and nodeB uses igb1, so that neither may be used as a cluster data interface. In addition, these interfaces must be locked to the controller using the Configuration -> Cluster option in the BUI. In some cases, this may require installation of an additional network interface card on each controller in a cluster configuration.

If access to the appliance data interfaces is impossible for any reason, the management network interface will maintain BUI and CLI access. During a cluster takeover, interfaces are taken down on the failed controller. So, locked interface configuration is required to gather diagnostic information from a failed controller.
**Note** - Failure to configure locked management interfaces on a cluster may lead to longer than necessary fault diagnosis and resolution times.

### Observing and Clearing CPU faults from ILOM

Log in to the server as root using the ILOM CLI. To view server faults, type the following command to list all known faults on the system:

```
-> show /SP/faultmgmt
```

The server lists all known faults, for example:

```
SP/faultmgmt
 Targets: 0 (/SYS/MB/P0)
 Properties:
 Commands: cd show
```

To clear the CPU fault, type the following command:

```
-> set /SYS/MB/Pn clear_fault_action=true
```

For example, to clear a fault on CP0:

```
-> set /SYS/MB/P0 clear_fault_action=true
Are you sure you want to clear /SYS/MB/P0 (y/n)? y
```

### See Also

Chapter 10, “Cluster Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”.

### Cabling

### Connecting to Attached Storage

Disk shelves can be added to standalone or clustered storage controllers without powering down the appliance or loss of service to clients. After connecting expansion storage, verify that you have redundant paths to each disk shelf.
Use the diagrams in the “Oracle ZFS Storage Appliance Cabling Guide” to connect one or more disk shelves. Also see that guide for general cabling guidelines.

### Maximum Number of Disk Shelves per Controller Configuration

The following table shows the maximum number of disk shelves supported per controller configuration.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Max. Shelves</th>
<th>Max. 2X4 port SAS-2 HBA</th>
<th>Max. 4X4 port SAS-2 HBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS3-2</td>
<td>16</td>
<td>NA</td>
<td>2</td>
</tr>
<tr>
<td>ZS3-4</td>
<td>36</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>7120</td>
<td>2</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td>7320</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7420</td>
<td>36</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

**Note** - Controllers cannot use 2X4 port SAS-2 HBAs and 4X4 port SAS-2 HBAs at the same time. To use DE2 and Sun Disk Shelves together, the controller must use 4X4 port SAS-2 HBAs, which are only supported with software version 2013.1.0 and later.

### Next Steps

After connecting attached storage, apply power and configure the appliance:

- Chapter 4, “Powering On and Configuring the System,” in “Oracle ZFS Storage Appliance Installation Guide”
- Chapter 3, “Initial Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”

Storage expansion may require adding or replacing HBAs in your configuration. For information, see the following sections:

- ZS3-2 Maintenance Procedures: “PCIe Cards and Risers” on page 84
- ZS3-4 Maintenance Procedures: “PCIe Cards and Risers” on page 114
- 7x20 Maintenance Procedures: “PCIe Cards and Risers” on page 188
System Maintenance

System

Introduction

The Maintenance > System screen provides several system-level features. The screen allows the administrator to:

- View the status of the system disks as described in “System” on page 235
- Manage software updates and update the system software as described in “Updates” on page 239
- Create and restore appliance as described in “Configuration Backup” on page 268
- Create and upload a support bundle as described in “Support Bundles” on page 236
- Repeat the initial setup with existing settings as described in “Initial Setup” on page 238
- Reset the system to the factory defaults as described in “Factory Reset” on page 239
- View pending disk firmware updates as described in “Hardware Firmware Updates” on page 251

System Disks

The system disks section shows the status of the system disks, and their current usage. The BUI displays this with a pie-chart, and the CLI as a text list. For example:

tarpon:> maintenance system disks show
Properties:
    profile = mirror
    root = 1.14G
    var = 52.4M
    update = 2.52M
    stash = 14.8M
    dump = 16.8G
Disks:

<table>
<thead>
<tr>
<th>DISK</th>
<th>LABEL</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk-000</td>
<td>HDD 7</td>
<td>healthy</td>
</tr>
<tr>
<td>disk-001</td>
<td>HDD 6</td>
<td>healthy</td>
</tr>
</tbody>
</table>

Note - The "disk" column is not required by the GUI.

**Support Bundles**

The appliance can generate support bundles containing system configuration information and core files for use by Oracle support personnel for troubleshooting system problems. When the Phone Home service is enabled, support bundles are generated automatically and securely uploaded in response to faults. You can also manually generate and upload bundles using the BUI or CLI.

To facilitate support bundle uploads, you must first:

- Create an Oracle Single Sign-On account
- Register the appliance with the service “Phone Home Service” in “Oracle ZFS Storage Appliance Administration Guide”.

Once generated, support bundles are authenticated and securely uploaded to OracleService at https://transport.oracle.com. After a support bundle has been successfully uploaded, the support bundle and core files are automatically deleted from the appliance.

If you have not registered the appliance with Phone Home before a support bundle is uploaded, you are given the option to continue collecting the bundle for local analysis or to cancel the upload.

**Managing Support Bundles Using the BUI**

Use the following procedure to generate and upload a support bundle.

▼ **Generating and Uploading a Support Bundle Using the BUI**

1. **Be sure the Phone Home service is configured for the appliance.**

If Phone Home is not configured, the following message is displayed:
Note: You must register for Phone Home before uploading support bundles to Oracle Support. Continue to collect the bundle for local analysis, or Cancel to register your account and activate Phone Home.

2. Go to Maintenance > System.
3. Click the add icon next to Support Bundles.
4. Enter the Service Request (SR) number that was provided to you by Oracle support. The SR format is 3-<nnnnnnnnnn>, where \(n\) is a digit between 0 and 9.

**Note** - If you do not enter an SR number, the support bundle will be deleted within 72 hours of arrival.

### Support Bundle Options

For each support bundle currently being generated or uploaded or which has failed to upload, the following BUI options may be available:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>Cancel the current operation. If the bundle is being generated, it will be deleted. If the bundle is being uploaded, the upload will be cancelled and the appliance will not retry it later.</td>
</tr>
<tr>
<td>🔽</td>
<td>Download the support bundle.</td>
</tr>
<tr>
<td>🔄</td>
<td>Try again to upload the bundle to support.</td>
</tr>
<tr>
<td>🗑</td>
<td>Cancel any pending operation and delete the support bundle.</td>
</tr>
</tbody>
</table>

### Managing Support Bundles Using the CLI

To generate and upload a new support bundle, use the `sendbundle` command followed by the SR number:

```
loader:> maintenance system
loader:~> sendbundle 3-7596250401
```
A support bundle is being created and sent to Oracle. You will receive an alert when the bundle has finished uploading. Please save the following filename, as Oracle support personnel will need it in order to access the bundle:

```
/upload/issue/3-7596250401/3-7596250401_ak.9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8.tar.gz
```

To view details, use the list and select commands from the maintenance system bundles context in the CLI, as follows:

```
loader:maintenance system> bundles
loader:maintenance system bundles> list
Bundles:

<table>
<thead>
<tr>
<th>BUNDLE</th>
<th>SRNUMBER</th>
<th>STATUS</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5ff532a2-2377-e72d-b0fe-f2efc2aa8aaf</td>
<td>-</td>
<td>Building</td>
<td>50%</td>
</tr>
</tbody>
</table>
```

To select a bundle, specify the uuid only, or the SR number and uuid, as shown in the following examples:

```
loader:maintenance system bundles> select 5ff532a2-2377-e72d-b0fe-f2efc2aa8aaf
loader:maintenance system bundles 5ff532a2-2377-e72d-b0fe-f2efc2aa8aaf> show
Properties:
 filename = /upload/uuid/5ff532a2-2377-e72d-b0fe-f2efc2aa8aaf/ak.5ff532a2-2377-e72d-b0fe-f2efc2aa8aaf.tar.gz
 status = building
 date = 2014-1-9 17:42:09
 type = User initiated
 step_progress = 50
```

```
loader:maintenance system bundles> select 3-7596250401_9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8
loader:maintenance system bundles 3-7596250401_3f6c9960-ef06-68df-c5f9-e640e8d7ad3> list
Properties:
 filename = /upload/issue/3-7596250401_3f6c9960-ef06-68df-c5f9-e640e8d7ad3.tar.gz
 status = uploading
 date = 2014-1-9 17:42:09
 type = User initiated
 step_progress = 14.709744730821669
```

These read-only properties indicate that the appliance is 14% of the way through uploading the file. To retry a failed upload or cancel a pending operation, enter the retry and cancel commands respectively.

To delete a support bundle, use the destroy command.

**Initial Setup**

Initial setup steps through the tasks performed as part of the initial configuration as described in Chapter 3, “Initial Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”. This does not change any of the current settings unless explicitly requested. User data on the storage pool (including projects and shares) is not affected.
To perform an initial setup:

- **BUI**: Click the Initial Setup button on the Maintenance > System screen.
- **CLI**: Enter the maintenance system context, then enter the setup command.

### Factory Reset

Factory reset resets the appliance configuration back to factory settings of the current software version, and reboots the appliance. All configuration changes are lost, and the appliance needs to go through initial configuration again, as when it was first installed. User data on the storage pool (including projects and shares) is not affected - however the pool needs to be imported as part of the initial setup process.

To perform a factory reset:

- **BUI**: Click the Factory Reset button on the Maintenance > System screen.
- **CLI**: Enter the maintenance system context, then issue the factoryreset command.
- **GRUB**: In the GRUB menu, add `-c` to the line beginning with `kernel`.

**Note** - Factory reset of a single controller while configured into a cluster is not supported. The controller must be unclustered first.

### System Updates

The system update feature provides customers, developers, and field personnel with the ability to update a system's software after the system is installed. You can be notified when new software updates are available on My Oracle Support (MOS) or you can perform an immediate check for updates, using the BUI or CLI.

### Software Update Notification

You can set up periodic checks for software updates, or you can check for updates at any time. When an updated software package is available, you are directed to download the latest package from MOS. To use the update notification feature, the Phone Home service must be enabled, as described in "Phone Home Service" in "Oracle ZFS Storage Appliance Administration Guide".
Scheduling Software Notification Using the BUI

1. Be sure the Phone Home service is enabled.
2. Go to Maintenance > System > Software Updates.
3. Click the Check box, and select the frequency: daily, weekly, or monthly. When a software update is available on MOS, you will receive an alert notification similar to the following:

   An update is available on My Oracle Support version 2013.1.0.1.

4. Go to Maintenance > System > Software Updates, and click the download icon at the far right.
5. Click the download link shown in the popup window, and save the zip file.

Scheduling Software Notification Using the CLI

1. Be sure the Phone Home service is enabled.
2. At the command line, enter `configuration services scrk`. The following example checks for new software versions every 30 days:

   ```
 zfs-appliance:configuration services scrk> ls
 ...
 updatecheck_on = false
 time_updatecheck = 7d
 ...
 zfs-appliance:configuration services scrk> set updatecheck_on=true
 updatecheck_on = true (uncommitted)
 zfs-appliance:configuration services scrk> set time_updatecheck=30d
 time_updatecheck = 30d (uncommitted)
   ```
3. When you are notified of an update, go to MOS and download the package.

Checking for Updates Using the BUI

1. Be sure the Phone Home service is enabled.
2. Go to Maintenance > System > Software Updates.
3. Notice the date of the last software check, displayed next to the Check now link.
4. Click the Check now link.

5. When an update is available on MOS, you see the following under STATUS:
   
   Update available for download

6. Click the download icon, at the far right.

7. Click the download link shown in the popup window, and save the zip file.

Checking for Updates Using the CLI

1. Be sure the Phone Home service is enabled.

2. At the command line, enter the following in the `maintenance system updates` context:

   ```
 zfs-appliance:maintenance system updates> show
 Updates:
 UPDATE DATE STATUS
 2013.1.1.5 2014-2-18 08:00 downloadable
 ak-nas@2014.01.15,1-0 2014-1-15 14:38:53 previous
 ak-nas@2014.02.01,1-0 2014-2-1 19:38:55 previous
 ak-nas@2014.02.08,1-0 2014-2-8 00:59:04 current
 zfs-appliance:maintenance system updates>
   ```

   ```
 zfs-appliance:maintenance system updates> select status=downloadable
 zfs-appliance:maintenance system 2013.1.1.5>
 show
 Properties:
 version = 2013.1.1.5
 date = 2014-2-18 08:00
 status = downloadable
 checkdate = 2014-3-4
 zfs-appliance:maintenance system 2013.1.1.5>
   ```

System Update Overview

Software updates are delivered as opaque binary downloads that contain some or all of:

- Management and system software.
- Firmware for internal components such as HBAs and network devices.
- Firmware for disks and flash devices.
Firmware for external storage enclosure components.

The updated release notes describe what is in the update, and the update process automates all of the steps of activating the delivered components. The procedure for updating the system is as follows:

- Download the software update "media" from My Oracle Support (MOS) or from another official source. The media is represented by a single compressed file named after the version number, such as: ak-nas-2013-06-05-0-0.0.pkg.gz. You can rename the file if needed, as the true version number is recorded internally within the image. The compressed media packages vary in size, but typically are on the order of several hundred megabytes.

- Upload the software update to the appliance, using either the BUI or the CLI. See later for details of this operation.

- After you upload the media, it is unpacked and verified. If all verification checks pass, it appears in the list of update images as eligible for installation. Any number of images can be maintained on the appliance, subject to a system disk space quota, without actually applying them. If an update has not yet been applied (i.e., is not running and is not a rollback target), it can be deleted via either the BUI or the CLI. You might want to delete images to free up needed space to download new images.

- Verify that the system is in a healthy state prior to applying the update. The details are described in "Preconditions" on page 243.

- After the media is unpacked and verified, you can apply the update. During this process, an update health check is performed to verify that the appliance is ready to update. You may be asked to set update options and confirm. For more information on these questions, see the section on deferred updates. If the update is no longer appropriate for the system (because you have skipped past its version number), an error message may be provided. During the update, messages and a progress meter appear to indicate that the update is proceeding. The installation portion of the update takes about half an hour to complete; however, the full upgrade process may not be complete at that point. See later regarding additional firmware upgrades that may take place following the reboot.

- While the update is in progress, up until the reboot and following the reboot during any firmware upgrades, it is non-disruptive: the controller continues to provide data services to clients. If the system software fails during the upgrade, it reboots and continues running the software from before the upgrade. **Important:** Do not perform a cluster takeover operation or a reboot while an update is in progress.

- Following the post-upgrade reboot, component firmware is updated (see “Hardware Firmware Updates” on page 251) which takes additional time that depends on the size of the system configuration and the amount of firmware that has changed since the previously installed version was delivered. Very large configurations may take several hours to complete all firmware upgrades after the update itself has been applied.

For details on the update process using the BUI or CLI, review the following sections.
Preconditions

Best practices include verifying several preconditions prior to applying an update. Whenever possible, administrators should ensure that these preconditions are satisfied immediately prior to applying an update on the storage controller. In a clustered environment, these should be verified on both storage controllers before applying the update to either one.

- Ensure that any resilvering operations have completed. This can be observed in Configuration > Storage or the equivalent CLI context. For more information, see Chapter 5, “Storage Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”.
- Ensure that there are no active problems as described in “Problems” on page 273.
- Verify that firmware updates are not in progress.
- Check the most recent product release notes for additional preconditions that should be observed for the software release to which you are upgrading.

Update Health Checks

System-level health checks are provided to help ensure that no pathologies interfere with the software update. If a problem is encountered, it is noted in the Alert Log and the update process is aborted. System software updates do not proceed until all problems have been corrected.

You can manually run the same health checks in advance of any planned update. This allows you to check the state of the system prior to scheduling an update maintenance window so you can correct any problems that could interfere with the update process. Any problem report that is issued by a manual health check is identical to that issued by the health checks integrated in the update process. As with the integrated health checks, you are presented with a link to the Alert Log, as described in “Alerts” on page 275, when problems are found. If no problems are found, the System Ready state transitions to Yes to indicate that the system is ready for software updates.

Note - Running an update health check does not replace meeting required preconditions. Precondition checks, described in “Preconditions” on page 243, must also be executed and problems resolved prior to updating the system software.

BUI

After you select and start an update, update health checks may be issued from the software update dialog box in the BUI by clicking Check.
FIGURE 3-1  Starting the Update Health Checks in the BUI

The system remains in the Unchecked state until the Check button is clicked. During the health check operation, an indicator shows its progress.

FIGURE 3-2  Update Health Checks in Progress in the BUI

After completion, the System Ready state changes to Yes or No with a link to the Alert Log.
FIGURE 3-3 Completed Update Health Checks in the BUI

CLI

To execute the update health checks via the CLI, execute the `upgrade` command in the `maintenance system updates` context after selecting the update media:

```
zfs-appliance:maintenance system updates:ak-nas@2013.06.05.0.0,1-1.6> upgrade
This procedure will consume several minutes and requires a system reboot upon
successful update, but can be aborted with [Control-C] at any time prior to
reboot. A health check will validate system readiness before an update is attempted, and may also be executed independently by clicking the Check button.

System ready: No. Alert log

Deferred Updates
The following updates enable features that are incompatible with earlier software versions.
As these updates cannot be reverted once committed, and peer system resources are

Are you sure? (Y/N)
Healthcheck running ... /
Healthcheck completed. There are no issues at this time which
would cause an upgrade to this media to be aborted.
```

Troubleshooting Update Health Check Failures

Prior to the actual update, health checks are performed automatically when an update is started. If an update health check fails, it can cause an update to abort (see following example). Update health checks only validate issues that can impact updates.
FIGURE 3-4 Example BUI and CLI Update Health Checks Failures

zfs-appliance:maintenance system updates ak-nas@2013.06.05-0.0.1-1.6> upgrade
This procedure will consume several minutes and requires a system reboot upon successful update, but can be aborted with [Control-C] at any time prior to reboot. A health check will validate system readiness before an update is attempted, and may also be executed independently using the check command.
Are you sure? (Y/N)
error: System is not in an upgradeable state: prerequisite healthcheck reports problems. See alert log for more.

Actions to Take to Resolve Health Check Alerts

After an update health check failure, you can review the Alert Log and take action to resolve each failure based on the message in the log. The following table lists the update health check failures that can block an update, and describes the associated Alert Log message and recommended order of steps you can take to resolve the issue. For component faults, follow the instructions for removal and installation found in the maintenance procedures for your controller.

<table>
<thead>
<tr>
<th>ID and Alert Log Message</th>
<th>Failure</th>
<th>Resolution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 &quot;System software update cannot proceed: Slot &lt;label&gt; in disk shelf &lt;name&gt; is reported as absent.&quot;</td>
<td>SIM cannot be detected.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>B2 &quot;System software update cannot proceed: Slot &lt;label&gt; in disk shelf &lt;name&gt; is faulted.&quot;</td>
<td>SIM is faulted.</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>C1 &quot;System software update cannot proceed: Some slots of disk shelf &lt;name&gt; have no firmware revision information.&quot;</td>
<td>SIM is missing firmware revision information.</td>
<td>1, 4</td>
</tr>
</tbody>
</table>
### ID and Alert Log Message

<table>
<thead>
<tr>
<th>ID and Alert Log Message</th>
<th>Failure</th>
<th>Resolution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>&quot;System software update cannot proceed: The slots of disk shelf &lt;name&gt; have non-uniform part numbers.&quot;</td>
<td>SIMs report different part numbers. 2, 4</td>
</tr>
<tr>
<td>C5</td>
<td>&quot;System software update cannot proceed: The slots of disk shelf &lt;name&gt; have mixed firmware revisions &lt;rev1&gt; and &lt;rev2&gt;.&quot;</td>
<td>SIMs report different firmware revisions. 4</td>
</tr>
<tr>
<td>E1</td>
<td>&quot;System software update cannot proceed: Disk shelf &lt;name&gt; has &lt;just one path or zero paths&gt;.&quot;</td>
<td>Disk shelf does not have two paths. 1, 2, 4</td>
</tr>
<tr>
<td>E2</td>
<td>&quot;System software update cannot proceed: Disk shelf &lt;name&gt; path &lt;pathname&gt; is &lt;state&gt;.&quot;</td>
<td>Disk shelf path is not online. 1, 2, 4</td>
</tr>
<tr>
<td>E3</td>
<td>&quot;System software update cannot proceed: Pool &lt;data or log&gt; disk &lt;label&gt; in disk shelf &lt;name&gt; has &lt;just one path or zero paths&gt;.&quot;</td>
<td>Disk or log device that is configured in a pool does not have two paths. 3, 4</td>
</tr>
<tr>
<td>PAN1</td>
<td>&quot;Slot &lt;slot&gt; has a Revision B3 SAS HBA; Revision C0 (or later) required.&quot;</td>
<td>A revision B3 SAS HBA is present. 4</td>
</tr>
<tr>
<td>PAN2</td>
<td>&quot;J4400 and J4500 disk shelves are not supported in this release.&quot;</td>
<td>Disk shelf/shelves are present that are not supported for this software release.</td>
</tr>
<tr>
<td>V1</td>
<td>&quot;&lt;product&gt; is not supported in this release.&quot;</td>
<td>Controller (product) is not supported for this software release.</td>
</tr>
</tbody>
</table>

### Resolution Steps

Take the following steps in the order listed above to resolve the issue detected during the upgrade health check.

**Steps for Resolving Health Check Alerts**

1. **If a SAS port LED is unlit, check all connections and replace cables as needed.**
2. **Identify affected chassis, then disconnect and remove faulted SIM. After two minutes, re-seat SIM and wait for steady Power LED before reconnecting cables.**
3. **Identify affected chassis, and remove faulted disk. After 30 seconds, re-seat disk and wait for steady or flashing LED.**
4. **Contact Oracle Support for component service or replacement.**

**Deferred Updates**

Each update may come with new firmware or updates to external resources. In general, these updates are backwards-compatible and applied automatically without user intervention. There are exceptions, however, for non-reversible updates. These updates involve updating a resource external to the system software in a way that is incompatible with older software releases. After the update is applied, rolling back to previous versions results in undefined behavior. For these updates, you are always given an explicit option of applying them automatically during upgrade or applying them after the fact. They are, therefore, referred to as "deferred updates."

When applying an update to a version with incompatible version changes, you are given an option to apply these version changes as part of the upgrade. For each version change, the benefits of applying the change are presented to you. The default is to not apply them, requiring you to return to the updates view and apply them once the system has rebooted after the upgrade is applied. This allows you to verify that the rest of the software is functional and a rollback is not required before applying the update.

If you elect to not apply deferred updates during an upgrade, you can return to the updates view at any point to apply the update. If deferred updates are available for the current software version, they appear as a list below the current set of available updates, with an "Apply" button to apply the updates. Deferred updates in a cluster take effect on both storage controllers simultaneously, and can only be applied while both controllers are operational. Because deferred updates are listed only for resources present on the local storage controller, in a cluster it may be the case that deferred updates are available only for resources active on the peer controller. In a cluster, it is therefore necessary to check both storage controllers to determine the availability of deferred updates.

**Note** - Replication does not work across deferred updates. After deferred updates are applied that increment the stream format version, it is no longer possible to replicate to an older system. See the "Incompatible Target" failure in section **Replication Failures** in “Oracle ZFS Storage Appliance Administration Guide ”.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Passthrough x&quot; on page 262</td>
<td>2009.Q2.0.0</td>
</tr>
<tr>
<td>&quot;User Quotas&quot; on page 263</td>
<td>2009.Q3.0.0</td>
</tr>
<tr>
<td>&quot;COMSTAR&quot; on page 263</td>
<td>2009.Q3.0.0</td>
</tr>
<tr>
<td>&quot;Triple Parity RAID&quot; on page 263</td>
<td>2009.Q3.0.0</td>
</tr>
</tbody>
</table>
### Feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Dedup” on page 264</td>
<td>2010.Q1.0.0</td>
</tr>
<tr>
<td>“Replication” on page 264</td>
<td>2010.Q1.0.0</td>
</tr>
<tr>
<td>“Received Properties” on page 265</td>
<td>2010.Q1.0.0</td>
</tr>
<tr>
<td>“Slim ZIL” on page 265</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>“Snapshot Deletion” on page 265</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>“Recursive Snapshots” on page 266</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>“Multi Replace” on page 266</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>“RAIDZ Mirror” on page 266</td>
<td>2011.1.0.0</td>
</tr>
<tr>
<td>“Optional Child Dir” on page 267</td>
<td>2011.1.0.0</td>
</tr>
<tr>
<td>“Multiple Initiator Groups per LUN” on page 267</td>
<td>2011.1.8.0</td>
</tr>
<tr>
<td>“Support for Large Block Sizes” on page 267</td>
<td>2013.1.1.0</td>
</tr>
<tr>
<td>“Sequential Resilvering” on page 267</td>
<td>2013.1.2.0</td>
</tr>
</tbody>
</table>

### Reboot After an Update

Following the completion of the update process, the system reboots automatically. If you have the serial console open, you will notice during this reboot that multiple GRUB menu entries are available, ordered from the newest software (at the top) to the oldest software (at the bottom). The default menu entry is at the top — the new software to which you just updated. If you do nothing, this entry boots by default, completing the update. The previous entries are rollback targets that can be used to initiate a rollback to previous versions of the system software. Rollback is discussed later.

As the system boots up using the new system software, you will see some special messages on the first boot indicating that an update is completing and noting the previous and new versions of the system software:

SunOS Release 5.11 Version ak/generic@2013.06.05.0.0,1-1.6 64-bit
Copyright (c) 1983, 2013, Oracle and/or its affiliates. All rights reserved.
System update in progress.
Updating from: ak/nas@2011.04.24.4.2,1-1.28
Updating to: ak/nas@2013.06.05.0.0,1-1.6

Cloning active datasets ...... done.
Upgrading /var/ak/home ... 16 blocks
Upgrading /etc/svc/profile ... 176 blocks
Upgrading /var/apache2 ... 4432 blocks
Upgrading /var/sadm ... 5040 blocks
Upgrading /var/svc ... 0 blocks
Upgrading /var/dhcp/duid ... done.
Upgrading /var/pkg ... 208800 blocks
Upgrading /var/ak/logadm.conf ... done.
Adjusting system/dump and system/cores ... done.
Upgrading /var/crypto/pkcs11.conf ... done.
Upgrading /var/svc ... done.
Starting primordial svc.configd
Upgrading SMF repository. This may take several minutes.
  Upgrading from Version 5 to Version 6:
    11570 of 11570 rows upgraded
  Upgrading from Version 6 to Version 7:
    6305 of 6305 rows upgraded
  Upgrading from Version 7 to Version 8:
SMF repository upgrade complete
SMF online in 180 seconds
Sanitizing manifestfiles properties ... done.
Loading smf(5) service descriptions: 162/162
svcconfig: Loaded 162 smf(5) service descriptions
Transitioning NFS server properties ... done.
Re-enabling auditing of Solaris commands ... done.
Transitioning network/initial IPMP properties to network/ipmp ... done.
Transitioning name service properties ... done.
Transitioning CIFS server properties ... done.
Preparing for service import ... done.
Importing adconf.xml ... done.
... Configuring appliance/kit/identity:default ... done.
Applying service layer ak_generic ... done.
Refreshing services: done.
Applying service layer ak_nas ... done.
Refreshing services: done.
Applying service layer ak_SUNW,iwashi_plus ... done.
Refreshing services: done.
Applying service profile ak_generic ... done.
Applying profile upgrade/akinstall.xml ... done.
Applying layer upgrade/composite.svc ... done.
Cleaning up services ... done.
Shutting down svc.configd ... done.
Configuring devices.
Configuring network devices.

Sun ZFS Storage 7120 Version ak/SUNW,iwashi_plus@2013.06.05.0.0,1-1.6
Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
dorab console login:
Hardware Firmware Updates

Following the application of a software upgrade, any hardware for which the upgrade includes newer versions of firmware is upgraded. There are several types of devices for which firmware upgrades may be made available; each has distinct characteristics.

Disks, storage enclosures, and certain internal SAS devices are upgraded in the background. When this is occurring, the firmware upgrade progress is displayed in the left panel of the Maintenance > System BUI view, or in the maintenance system updates CLI context. These firmware updates are almost always hardware related, though it may briefly show some number of outstanding updates when applying certain deferred updates to components other than hardware.

As of 2010Q3.4, when there are outstanding updates, an informational or warning icon appears next to the number of updates remaining. Clicking the icon brings up the Firmware Updates dialog, which lists the current remaining updates. For each update we also show the current version of the component, the time of the last attempted update, as well as the reason why the last attempt did not succeed.

We consider any outstanding updates to be in one of 3 states: Pending, In Progress and Failed. An update begins in the Pending state, and is periodically retried, at which time it moves into the In Progress state. If we fail to upgrade, due to a transient condition, the upgrade is moved back to the Pending state, and otherwise to the Failed state.

In general, it is only an indication of a problem if:

- There are updates in the Failed state.
- Updates remain in the Pending state (or in limbo between the Pending and In Progress states) for an extended period of time (more than half an hour), without the number of remaining updates decreasing.

The following conditions do not indicate a problem:

- Disks firmware updates are shown as pending for extended periods of time, with a status message indicating that they are not part of any pool. This is expected, given that we only update disk firmware, for disks that are part of a pool. In order to update these disks, add them to a pool.
- There are multiple chassis being updated, we are making progress (the number of remaining updates decreases), and some of the chassis transiently appear pending with a status indicating that some disk has only one path. This is also expected, since when we update a chassis, we may reset one of its expanders. Resetting an expander causes some disks to temporarily have only one path, and as a result, upgrades to other chassis are held back until it is safe to do so again non-disruptively.

Note that currently the Firmware Updates dialog does not automatically refresh, so you would have to close it and re-open it to get an updated view.
Applying hardware updates is always done in a completely safe manner. This means that the system may be in a state where hardware updates cannot be applied. This is particularly important in the context of clustered configurations. During takeover and failback operations, any in-progress firmware upgrade is completed; pending firmware upgrades are suspended until the takeover or failback has completed, at which time the restrictions described below are reevaluated in the context of the new cluster state and, if possible, firmware upgrades resume.

**Caution** - Unless absolutely necessary, takeover and failback operations should not be performed while firmware upgrades are in progress.

The rolling upgrade procedure documented later meets all of these best practices and addresses the per-device-class restrictions described later. It should always be followed when performing upgrades in a clustered environment. In both clustered and standalone environments, these criteria are also reevaluated upon any reboot or diagnostic system software restart, which may cause previously suspended or incomplete firmware upgrades to resume.

- Components internal to the storage controller (such as HBAs and network devices) other than disks and certain SAS devices are generally upgraded automatically during boot; these upgrades are not visible and will have completed by the time the management interfaces become available.

- Upgrading disk or flash device firmware requires that the device be taken offline during the process. If there is insufficient redundancy in the containing storage pool to allow this operation, the firmware upgrade will not complete and may appear "stalled." Disks and flash devices that are part of a storage pool which is currently in use by the cluster peer, if any, are not upgraded. Finally, disks and flash devices that are not part of any storage pool are not upgraded.

- Upgrading the firmware in a disk shelf requires that both back-end storage paths be active to all disks within all enclosures, and for storage to be configured on all shelves to be upgraded. For clusters with at least one active pool on each controller, these restrictions mean that disk shelf firmware upgrade can be performed only by a controller that is in the "owner" state.

During the firmware upgrade process, hardware may appear to be removed and inserted, or offline and online. While alerts attributed to these actions are suppressed, if you are viewing the Maintenance > Hardware screen or the Configuration > Storage screen, you may see the effects of these upgrades in the UI in the form of missing or offline devices. This is not a cause for concern; however, if a device remains offline or missing for an extended period of time (several minutes or more) even after refreshing the hardware view, this may be an indication of a problem with the device. Check the Maintenance > Problems view for any relevant faults that may have been identified. Additionally, in some cases, the controllers in the disk shelves may remain offline during firmware upgrade. If this occurs, no other controllers are updated until this condition is fixed. If an enclosure is listed as only having a single path for an extended period of time, check the physical enclosure to determine whether the green link lights on the back of the SIM are active. If not, remove and re-insert the SIM to re-establish the connection. Verify that all enclosures are reachable by two paths.
Rollback

The rollback procedure reverts all of the system software and all of the metadata settings of the system back to their state just prior to applying an update. This feature is implemented by taking a snapshot of various aspects of the system before the new update is applied, and rolling back this snapshot to implement the rollback. The implications of rollback are as follows:

- Any appliance configuration changes are reverted and lost. For example, assume you are running version V, and then you update to V+1, and then you change your DNS server. If you execute a rollback, then your DNS server setting modification is effectively undone and removed from the system permanently.

- Conversely, any changes made to user data are not reverted: if you update from V to V+1, and clients then create directories or modify shares in any way, those changes still exist after the rollback (as you would expect).

- If the appliance is running version V, and has previous rollback targets V-1 and V-2, and you revert all the way to version V-2 (thereby "skipping" V-1), then you not only are removing the system software settings and system software for V, but also for V-1. That is, after a rollback to V-2, it is as if updates V-1 and V never happened. However, the software upload images for V-1 and V are saved on the system, and you can apply them again after the rollback, if you wish, by re-executing the update.

If after applying an update, the system is back up and running, you can use either the BUI or the CLI to initiate a rollback to one of two previously applied updates. If the system is not able to run at all after an update, then use the fail-safe rollback procedure.

Fail-safe Rollback

Administrators can execute a fail-safe rollback of the system software from the serial console by selecting one of the other boot menu entries, if present. Although rollback can also be requested from the BUI or CLI, rollback is offered from the boot menu because it is possible that rollback will be needed in scenarios where the new system software has completely failed, i.e., has failed to even boot. To rollback from the console, access the serial console as usual, and during boot, before the ten second timeout, use the arrow key to move the menu selection down to one of the earlier entries:

GNU GRUB version 0.97 (612K lower / 2087424K upper memory)
++-------------------------------------++
| Sun ZFS Storage 7120 2013.06.05.0.0,1-1.6 |  |
| Sun ZFS Storage 7120 2011.04.24.4.2,1-1.28 |  |
++-------------------------------------++
Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, 'e' to edit the commands before booting, or 'c' for a command-line.

After the rollback boot menu entry is selected, the system boots the old kernel software, but the rollback must be manually confirmed on the console to commit the rollback, which
effectively removes all changes to the system that have happened since, as described above. The confirmation step looks like this:

SunOS Release 5.11 Version ak/generic@2011.04.24.4.2,1-1.28 64-bit
Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.

System rollback in progress.
Rollback to: ak/nas@2011.04.24.4.2,1-1.28

Proceed with system rollback [y,n,?]  

Entering "y" proceeds with the rollback, and the system completes boot using the prior snapshot. Entering "n" cancels the rollback and immediately reboots the system, allowing the administrator to select a different boot image (i.e., the current system software or an older snapshot).

Cluster Upgrade

In a clustered system, a rolling upgrade can be performed, eliminating downtime while the upgrade is performed. This section assumes familiarity with the Oracle ZFS Storage Appliance clustering model: if you are not familiar with the clustering concepts and terminology, please first read Chapter 10, “Cluster Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”. To describe the rolling upgrade procedure, this document refers to the two clustered storage controllers as A and B, where A is the controller that will be updated first, and B is the controller that will be updated second. A key best practice in rolling upgrades is that each controller should be upgraded at a time when it is not providing service to clients. The procedure described here meets this requirement. In addition, all general upgrade best practices described earlier also apply to rolling upgrades.

▼ Performing the Cluster Upgrade

Important: Do not perform a takeover operation while an upgrade is in progress.

1. Use the CLI or BUI to upload the software update image to both storage controllers.

2. Select which controller to update first. If a controller has no storage pools, update that controller first. In the following steps, controller A is updated first so if any clients are using controller A’s storage pool(s), they experience a takeover-induced availability delay first.
3. Log in to controller A and use the CLI `maintenance system reboot` command or the BUI power icon in the masthead and select the reboot option to reboot controller A. Controller B takes over resources from controller A.

4. Log in to controller A and use the CLI or BUI to apply the software update to controller A. At the end of the upgrade, controller A reboots again and runs the new software version.

   **Note - Do not perform an upgrade on a controller while it is providing service.**

5. Log in to controller B and use the CLI `maintenance system reboot` command or the BUI power icon in the masthead and select the reboot option to reboot controller B. Controller A takes over all resources and provides service using the new software version.

6. Validate the new software version on controller A and ensure that all services work correctly on the client systems.

7. If a serious problem appears, roll back controller A. Controller A reboots and controller B takes over and runs the previous software version. When controller A recovers, it also runs the previous software version.

8. If no serious problem appears, log in to controller B and use the CLI or BUI to apply the software update to controller B. Controller B reboots and runs the new software version.

9. Verify that all firmware updates complete.

   **Note - Controller firmware updates cannot proceed if the controllers are running different system software versions.**

10. To restore normal operation and return resources to their respective assigned controllers, log in to controller A and use the CLI or BUI to perform a failback on controller A. For information on the failback operation, see “Cluster Takeover and Failback” in “Oracle ZFS Storage Appliance Administration Guide”.

### Cluster States During Upgrade

The following table describes the state of the cluster after each step of the previous procedure.
### TABLE 3-4  Cluster States During Upgrade

<table>
<thead>
<tr>
<th>Step</th>
<th>Controller A State</th>
<th>Controller A Version</th>
<th>Controller B State</th>
<th>Controller B Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>CLUSTERED</td>
<td>V</td>
<td>CLUSTERED</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>STRIPPED</td>
<td>V</td>
<td>OWNER</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>STRIPPED</td>
<td>V+1</td>
<td>OWNER</td>
<td>V</td>
</tr>
<tr>
<td>5, 6, 7</td>
<td>OWNER</td>
<td>V+1</td>
<td>STRIPPED</td>
<td>V</td>
</tr>
<tr>
<td>8, 9</td>
<td>OWNER</td>
<td>V+1</td>
<td>STRIPPED</td>
<td>V+1</td>
</tr>
<tr>
<td>10</td>
<td>CLUSTERED</td>
<td>V+1</td>
<td>CLUSTERED</td>
<td>V+1</td>
</tr>
</tbody>
</table>

**Note - Do not make configuration changes to either storage controller while an upgrade is in progress.** While controllers are running different software versions, configuration changes made to one controller are not propagated to its peer controller.

Accessing the BUI or logging into the CLI while the controllers are running different software versions generates a warning that your configuration changes will not be propagated. You can configure the appliance to generate alerts when the cluster controllers are running different software versions (events “Cluster rejoin mismatch” and “Cluster rejoin mismatch on peer”).

If you change the root password during an upgrade and then rollback the cluster, the nodes are not able to re-join after the rollback.

### Updating via the BUI

Click the add icon next to Available Updates and specify the pathname of the update media on your desktop or local client. During the upload, a progress bar is displayed indicating the progress of the upload.
Note that on some older browsers, the progress bar may not be updated continuously during the upload; if you see a "watch" cursor, wait a minute -- in the worst case, the upload proceeds all the way to completion and you may not see the progress bar.

**Unpacking and Verifying Media**

This step happens automatically after the media is finished uploading.

**Beginning the Upgrade**

After the update is uploaded, unpacked and verified, it appears as an update.
Click the information icon 📝 to view the Release Notes for the software update.

To begin the upgrade, click on the right-arrow icon ⏩. During this process, an update health check is performed to verify the appliance is ready to update. As the upgrade progresses, you see the most recent message in the status field of the update. To cancel the update at any time (and without a bad effect), click on the disable icon ⏹️.

**Rolling Back**

To roll back, locate a previous image and click on the rollback icon ⏪. You are asked to confirm that you wish to execute a rollback, and then the system reboots and executes the rollback. Unlike fail-safe rollback, you are not asked for further confirmation when the system reboots. For information on the fail-safe rollback, see “Fail-safe Rollback” on page 253.

**Removing Update Media**

To remove update media, highlight the corresponding row and click on the trash icon 🗑️.

**Applying Deferred Updates**

Any deferred updates are displayed below the list of available updates. If no deferred updates are available, no list is displayed. The deferred updates describe what effects they will have on the system. Clicking the "Apply" button applies all available deferred updates. Deferred updates apply to both nodes in a cluster, and the cluster peer must be up and available to apply any deferred updates.
Updating via the CLI

Because you log into the appliance to use the CLI, the *upload* as described earlier is actually a *download*. To download the media onto the appliance via the CLI, execute the *download* command in *maintenance system updates*:

```
dory:maintenance system updates> download
```

Then execute:

```
dory:maintenance system updates download (uncommitted)> get
 url = (unset)
 user = (unset)
 password = (unset)
```

You must set the "url" property to be a valid URL for the download. This may be either local to your network or over the internet. The URL can be either HTTP (beginning with "http://") or FTP (beginning with "ftp://"). If user authentication is required, it may be a part of the URL (for example, "ftp://myusername:mypasswd@myserver/export/foo"), or you may leave the username and password out of the URL and instead set the user and password properties.

```
dory:maintenance system updates download (uncommitted)> set url=ftp://foo/update.pkg.gz
 url = ftp://foo/update.pkg.gz
```

```
dory:maintenance system updates download (uncommitted)> set user=bmc
 user = bmc
```

```
dory:maintenance system updates download (uncommitted)> set password
 Enter password:
 password = ********
```

```
dory:maintenance system updates download (uncommitted)> commit
```

```
Transferred 157M of 484M (32.3%) ...
```

Unpacking and Verifying Media

After the file has been transferred, it is automatically unpacked and verified:

```
dory:maintenance system updates download (uncommitted)> commit
```

```
Transferred 484M of 484M (100%) ... done
```

```
Unpacking ... done
```

```
dory:maintenance system updates> list
```

```
<table>
<thead>
<tr>
<th>UPDATE</th>
<th>DATE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ak-nas@2009.10.14,1-0-nd</td>
<td>2009-10-14 08:45</td>
<td>AKUP_WAITING</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Beginning an Upgrade

To begin an upgrade, select the update that constitutes the upgrade. During this process, an update health check is performed to verify that the appliance is ready to update.
Note - If the update is no longer appropriate for the system (because you have skipped past its version number), an error message may be provided.

From this context, you can set any properties specific to the update, including applying deferred updates. For more information on the set of properties available for the particular update, run the `help properties` command. User-controllable properties begin with the `update_` prefix:

```bash
clownfish:maintenance system updates ak-nas@2009.04.03,1-0> help properties
Properties that are valid in this context:

 version => Update media version
 date => Update release date
 status => Update media status
 update_zfs_upgrade => Apply incompatible storage pool update

clownfish:maintenance system updates ak-nas@2009.04.03,1-0> get
 version = 2009.04.03,1-0
 date = 2009-4-3 08:45:01
 status = AKUP_WAITING
 update_zfs_upgrade = deferred

clownfish:maintenance system updates ak-nas@2009.04.03,1-0> set update_zfs_upgrade=onreboot
 update_zfs_upgrade = onreboot

clownfish:maintenance system updates ak-nas@2009.04.03,1-0>
```

After you set any properties, execute the `upgrade` command. You are prompted for confirmation and (assuming an affirmative) the upgrade begins:

```bash
dory:maintenance system updates> select ak-nas@2009.10.14,1-0-nd

dory:maintenance system updates ak-nas@2009.10.14,1-0-nd> upgrade
The selected software update requires a system reboot in order to take effect.
The system will automatically reboot at the end of the update process. The update will take several minutes. At any time during this process, you can cancel the update with [Control-C].

Are you sure? (Y/N) y
Updating from ... ak/nas@2009.10.11,1-0
Back up smf(5) ... done.
Loading media metadata ... done.
Selecting alternate product ... SUNW,iwashi
Installing Sun Storage 7120 2009.10.14,1-0
 pkg://sun.com/ak/SUNW,iwashi@2009.10.14,1-0:20091014T084500Z
Creating system/boot/ak-nas-2009.10.14_1-0 ... done.
Creating system/root/ak-nas-2009.10.14_1-0 ... done.
...
```

As the upgrade proceeds, the latest message is printed. You can cancel the upgrade at any time by pressing `^C`, at which point you are prompted for confirmation:
Chapter 3 • System Maintenance

Updates

Rolling Back

To roll back to an earlier version, select the update that corresponds to that version and execute the rollback command. You are asked to confirm that you wish to execute a rollback, and then the system reboots and executes the rollback. Unlike fail-safe rollback, you are not asked for further confirmation when the system reboots. For information on the fail-safe rollback, see “Fail-safe Rollback” on page 253.

Removing Update Media

To remove update media, use the destroy command, specifying the update to be removed:

dory:maintenance system updates> destroy ak-nas@2009.10.14,1-0-nd
This will destroy the update "ak-nas@2009.10.14,1-0-nd". Are you sure? (Y/N) y
dory:maintenance system updates>

Applying Deferred Updates (CLI)

To see if there are any available deferred updates, run the show command. If deferred updates are available, you can use the apply command:

clownfish:maintenance system updates> show
Updates:

<table>
<thead>
<tr>
<th>UPDATE</th>
<th>DATE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ak-nas@2011.04.24.3.0,1-2.19.11.2</td>
<td>2012-6-24 17:14:19</td>
<td>current</td>
</tr>
<tr>
<td>ak-nas@2011.04.24.4.2,1-1.20</td>
<td>2012-11-5 03:11:34</td>
<td>waiting</td>
</tr>
<tr>
<td>ak-nas@2013.06.05.0.0,1-1.2</td>
<td>2013-6-19 12:58:18</td>
<td>unavailable</td>
</tr>
</tbody>
</table>

Waiting media is listed as unavailable if the currently active software is not sufficiently recent to be able to upgrade to that waiting media. In this example, media has been downloaded for both 2011.1.4.2 and 2013.1 but the 2013.1 upgrade is unavailable because you first need to upgrade to at least 2011.1.4.2.
Passthrough x

The following incompatible updates are available. Applying these updates will enable new software features as described below, but will prevent older versions of the software from accessing the underlying resources. You should apply deferred updates once you have verified that the current software update is functioning and a rollback is not required. Applying deferred updates in a cluster will also update any resources on the cluster peer.

1. Support for the "passthrough-x" aclinherit property for shares.
clownfish:maintenance system updates> apply
Applying deferred updates will prevent rolling back to previous versions of software.

Are you sure? (Y/N)
clownfish:maintenance system updates> apply

Passthrough x Deferred Update

For filesystems, ACLs are inherited according to the "aclinherit" property on the filesystem (or inherited from the project). Previous versions of software allowed four options for this setting: "discard", "noallow", "restricted", and "passthrough". The 2009.Q2.0.0 release introduces a new option, "passthrough-x", with slightly different semantics as described in the product documentation:

Same as "passthrough", except that the owner, group, and everyone ACL entries inherit the execute permission only if the file creation mode also requests the execute bit.

The "passthrough" mode is typically used to cause all "data" files to be created with an identical mode in a directory tree. An administrator sets up ACL inheritance so that all files are created with a mode, such as 0664 or 0666. This all works as expected for data files, but you might want to optionally include the execute bit from the file creation mode into the inherited ACL. One example is an output file that is generated from tools, such as "cc" or "gcc". If the inherited ACL does not include the execute bit, then the output executable from the compiler is not executable until you use chmod(1) to change the permissions for the file.

To use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to ZFS Pool Version Summary.
User Quotas

User Quotas Deferred Update

With the 2009.Q3 software release, the system now supports user and group quotas on a per-share basis. In order to make use of this feature, a deferred update must be applied to upgrade all shares in the system to support this feature. Applying this deferred update also allows the current usage (user or group) to be queried on a per-filesystem or per-project basis. To quote the product documentation:

Quotas can be set on a user or group at the filesystem level. These enforce physical data usage based on the POSIX or Windows identity of the owner or group of the file or directory. There are some significant differences between user and group quotas and filesystem and project data quotas.

Be sure to completely read “Shares Space Management” in “Oracle ZFS Storage Appliance Administration Guide” before attempting to use user or group quotas.

This update is applied in the background, and takes time proportional to the number of shares and amount of data on the system. Until this deferred update is finished, attempts to apply user quotas produce an error indicating that the update is still in progress.

COMSTAR

COMSTAR Deferred Update

The COMSTAR framework relies on a ZFS pool upgrade for complete support of persistent group reservations (PGRs). Before this upgrade has been applied, the number of reservations stored with each LUN is severely limited, and may even be zero.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 16.

Triple Parity RAID

Triple-Parity RAID Deferred Update

This update provides the ability to use the triple-parity RAID storage profile, RAID-Z with three parity sectors per stripe. Triple-parity offers increased protection against drive failures and additional overall availability.
In order to use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 17.

**Data Deduplication Deferred Update**

This update provides the ability to use data deduplication.

In order to use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 21.

**Replication Deferred Update**

The 2010.Q1 release stores replication configuration differently than 2009.Q3 and earlier releases. This update migrates existing target, action, and replica configuration created under an earlier release to the new form used by 2010.Q1 and later.

After upgrading to 2010.Q1 but before this update is applied, incoming replication updates for existing replicas fail. Replicas received under earlier releases are not manageable via the BUI or CLI, although they occupy space in the storage pool. Additionally, the system does not send replication updates for actions configured on earlier releases.

After applying this update, incoming replication updates for replicas originally received on earlier releases continue normally and without a full resync. The system also sends incremental replication updates for actions configured under earlier releases.
Received Properties

Received Properties Deferred Update

The 2010.Q1 feature that enables administrators to customize properties on replicated shares relies on a ZFS pool upgrade. This upgrade provides support of persistent local changes to received properties. Before this upgrade has been applied, the system does not allow administrators to change properties on replicated shares.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 22.

Slim ZIL

Introduction

This deferred update changes the layout of ZFS intent log blocks to improve synchronous write performance. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, log records continue to be written in the old format and performance may be reduced.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 23.

Snapshot Deletion

Snapshot Deletion Deferred Update

This deferred update increases snapshot deletion parallelism and reduces the size of transaction groups associated with snapshot deletion to improve systemic responsiveness. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, new snapshot data is stored in the old format and deleted using the old algorithm. Note that any snapshots created before this update is applied are also deleted using the old algorithm.

Applying this update is equivalent to upgrading the on-disk ZFS pool version 26.
Recursive Snapshots

Recursive Snapshots Deferred Update

This deferred update allows recursive snapshots to be taken without suspending the ZFS intent log, which greatly improves snapshot creation performance especially on heavily loaded controllers. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system is able to create snapshots, but does so using the old, much slower, algorithm.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 27.

Multi Replace

Multi Replace Deferred Update

This deferred update allows importing a pool with a missing log device and corrects the behavior of the system when a device that is being resilvered is itself removed or replaced. These fixes rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system is unable to import pools with missing log devices and does not correctly handle replacement of resilvering devices (see CR 6782540).

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 28.

RAIDZ Mirror

RAIDZ/Mirror Deferred Update

This deferred update improves both latency and throughput on several important workloads. These improvements rely on a ZFS pool upgrade provided by this update. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 29.
Optional Child Dir

Introduction

This deferred update improves list retrieval performance and replication deletion performance by improving dataset rename speed. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system is able to retrieve lists and delete replications, but does so using the old, much slower, recursive rename code. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 31.

Multiple Initiator Groups per LUN

Introduction

This deferred update allows a LUN to be associated with more than one initiator group at a time. If replicating LUNs with this update applied, also apply the update to the replication target system(s).

Support for Large Block Sizes

Support for Large Block Sizes

This feature provides improved performance when blocksize/recordsize larger than 128K are used. The supported block sizes are: 256k, 512k, and 1M. If large block sizes are used for projects or shares, replication of those projects or shares to systems that do not support large block sizes fail.

Sequential Resilvering

Sequential Resilvering

The previous resilvering algorithm repairs blocks from oldest to newest, which can degrade into a lot of small random I/O. The new resilvering algorithm uses a two-step process to sort and resilver blocks in LBA order.
The amount of improvement depends on how pool data is laid out. For example, sequentially written data on a mirrored pool shows no improvement, but randomly written data or sequentially written data on RAID-Z improves significantly - typically reducing time by 25 to 50 percent.

Configuration Backup

Configuration Backup

The configuration backup function enables the administrator to:

- **Backup** the appliance configuration, consisting of system metadata only (such as the network configuration, local users and roles, service settings, and other appliance metadata).
- **Restore** a previously saved configuration from a backup.
- **Export** a saved configuration, as a plain file, so that it may be stored on an external server, or included in a backup of a share on the appliance itself.
- **Import** a saved configuration that was previously exported from this system or another system, making it available for a restore operation.

Backup Contents

A configuration backup **does** include:

- Metadata associated with the system as a whole, such as settings for NTP, NIS, LDAP, and other services.
- Network device, datalink, and interface configuration.
- User accounts, roles and privileges, preferences, and encrypted passwords for local users (not directory users).
- Alerts and thresholds and their associated rules.
- SRP targets and initiators.

**Note** - In a cluster configuration, configuration backups are visible only on the node on which they were created or imported.

A configuration backup **does not** include:

- User data (shares and LUNs). Your user data must be backed up separately, using NDMP backup software, snapshots, and/or remote replication.
User passwords for directory users. These remain stored solely in your separate network directory service, such as LDAP or Active Directory, and are not stored in the backup or restored.

- Metadata directly associated with user data, such as snapshot schedules, user quotas, compression settings, and other attributes of shares and LUNs.
- Analytics and logs. Events can be redirected to external SNMP trap receivers or e-mail destinations using Alerts rules.
- System software. The system software is automatically backed up as part of the System Update capability.
- Replication targets.
- iSCSI targets and initiators.
- iSCSI service properties.

Restore Impact

The restore operation takes a selected configuration backup, and modifies all of the corresponding system settings to reflect those in the backup, including removing aspects of the configuration that were not present at the time of the backup. Administrators should adhere to the following guidelines when planning a restore:

- **Scheduled downtime**: The restore process takes several minutes to complete and impacts service to clients, as the active networking configuration and data protocols are reconfigured. Therefore, a configuration restore should only be used on a development system, or during a scheduled downtime.

- **Service interruption**: Clients accessing data on the system through a data protocol, such as NFS, experience service interruption as the network is reconfigured and the service is restarted. If the selected backup copy was taken when a service was disabled by the administrator, that setting is restored, and therefore client sessions are terminated for that protocol.

- **Session interruption**: If restore is initiated from a web browser, that web browser session is also disconnected during the restore process as the network is reconfigured. If the restored configuration does not include the same routing and network address settings used by the current browser connection, or if the browser is connected to a network address managed by DHCP, the browser session is interrupted during the restore. The restore process completes in the background, but you need to reload or point the browser at a new, restored network address to continue. For this reason, it may be desirable to initiate a complex configuration restore from the service processor serial console using the CLI.

- **Un-cluster, restore, and re-cluster**: Configuration backups may be initiated for appliances that are joined in a cluster, but a configuration restore may not be used while systems are actively clustered. The clustering process means that settings are being synchronized between cluster peers, and each peer appliance also is maintaining private settings. For this reason, you must first use the unconfiguring-clustering procedure to un-cluster the two systems as described in “Unconfiguring Clustering” in “Oracle ZFS
Storage Appliance Administration Guide”. Then, restore the configuration backup on a selected head, and then re-cluster the two systems, at which point the other system automatically synchronizes itself with the restored configuration.

- **Root privileges required**: Configuration backups include all system metadata, and therefore require all possible privileges and authorizations to create or apply. Therefore, unlike other delegated administrative options, only the root user is authorized to perform a configuration backup or restore.

- **Verify setting for new features**: It is permitted to restore a configuration that was saved before applying a system update to a new version of the appliance software. In some cases, services and properties that were present at the time of the backup may have different effects, and new services and properties may exist in the newer software that did not exist at the time of the backup. Similar to the system update process, the configuration restore process makes every effort to transfer applicable settings, and apply reasonable defaults to those properties that did not exist at the time of the backup. When restoring across software versions, administrators should manually verify settings for new features following the restore.

- **Password maintenance**: The root password is not changed or reverted to the password at the time of the backup if it was different. The current root password is maintained on the system across the restore. For more details about passwords, refer to the summary of Security Considerations.

### Security Considerations

A configuration backup contains information that is normally only accessible to the root administrative user on the appliance. Therefore, any configuration backup that is exported to another system or into a filesystem share must apply security restrictions to the backup file to ensure that unauthorized users cannot read the backup file.

Local user passwords are stored in the backup file in encrypted (hashed) format, not as clear text. However, on the system, access to these password hashes is restricted, as they could be used as input to dictionary attacks. Therefore, administrators must carefully protect configuration backups that are exported, either by restricting file access to the backup, or by applying an additional layer of encryption to the entire backup file, or both.

Directory user passwords are not stored in the appliance, and therefore are not stored in the configuration backup. If you have deployed a directory service such as LDAP or AD for administrative user access, there are no copies of directory service password hashes for directory users stored in the configuration backup. Only the user name, user ID, preferences, and authorization settings for directory users are stored in the backup and then restored.

Following a configuration restore, the local root administrative user password is not modified to the root password at the time of the backup. The root password is left as-is, unmodified, by the restore process, to ensure that the password used by the administrator who is executing the restore process (and thus has logged in, using that password) is retained. If the administrator's intent was to also change the root password at the time of configuration restore, that step must
be executed manually following the restore, using the normal administrative password change procedure.

Managing Configuration Backups Using the BUI

The following section outlines how various Configuration Backup tasks can be accomplished using the Configuration Backup area near the bottom of the Maintenance > System screen in the BUI.

Create a Configuration Backup

To create a backup, simply click the Backup button above the list of saved configurations and follow the instructions. You are prompted to enter a descriptive comment for the backup.

Restore from a Saved Configuration

Click the rollback icon on any saved configuration to begin the process of reverting the system to that saved configuration. Review the Restore Impact guidance above, and confirm that it is ok to proceed.

Delete a Saved Configuration

To delete a Saved Configuration simply click the trash icon to delete the configuration that is no longer required.

Export a Saved Configuration

To export a Saved Configuration, mouse over the configuration list entry you wish to export and click the download icon. Your browser prompts you to save the file locally. The file is a compressed archive whose contents are versioned and may vary over time. You should not attempt to unpack or modify the content of the archive, and doing so renders it unable to be imported back to the appliance successfully.

Import a Saved Configuration

To import a previously exported Saved Configuration, click the add icon at the top of the saved configurations list and then use your web browser’s file selection dialog to locate the previously exported configuration. You should upload the single, compressed archive file previously saved using the export function.
Managing Configuration Backups Using the CLI

The following section outlines how various Configuration Backup tasks can be accomplished using the CLI in the maintenance system configs context.

Listing Configurations

```plaintext
host:maintenance system configs> list
CONFIG DATE SYSTEM VERSION
bfa614d7-1db5-655b-cba5-bd0db0a1efc4 2009-8-5 17:14:28 host 2009.08.04,1-0
cb2f085f-cf2b-608f-90db-fc7a0803db2a 2009-8-24 17:56:53 host 2009.08.18,1-0
```

Create a Configuration Backup

The `backup` command saves a configuration backup. You are prompted to enter a descriptive comment for the backup. Then enter `done` to execute the backup operation.

```
host:maintenance system configs> backup
Backup Configuration. Enter a descriptive comment for this configuration, and then enter done to execute the backup operation:
host:maintenance system configs conf_backup step0> set comment="pre-upgrade"
comment = pre-upgrade
host:maintenance system configs conf_backup step0> done
```

Restore from a Saved Configuration

The `restore` command reverts the system to a saved configuration. You are prompted to enter the universal unique identifier for the backup (see the output of `list`, above). Then enter `done` to execute the restore. Review the Restore Impact guidance above, and confirm that it is ok to proceed.

```
host:maintenance system configs> restore
Restore. Select the configuration to restore:
host:maintenance system configs conf_restore step0> set uuid=36756f96-b204-4911-8ed5-fefaf89cad6a
 uuid = 36756f96-b204-4911-8ed5-fefaf89cad6a
host:maintenance system configs conf_restore step0> done
```

Note - Storage pools are not automatically unconfigured when you execute the `restore` command.
Delete a Saved Configuration

The `destroy` command deletes a saved configuration:

```
host:maintenance system configs> destroy cb2f005f-cf2b-608f-90db-fc7a0503db2a
Are you sure you want to delete the saved configuration "new"? y
host:maintenance system configs>
```

Export a Saved Configuration

The `export` command exports a saved configuration, by means of executing an HTTP or FTP PUT operation against a remote HTTP or FTP server. You can also use the export function to export the file to a share on the appliance itself, that has the HTTP or FTP protocol enabled for writing. You can enter a username and password for authentication to the remote server if one is required.

Import a Saved Configuration

The `import` command imports a saved configuration, by means of executing an HTTP or FTP GET operation against a remote HTTP or FTP server. You can also use the import function to import a configuration stored in a share on the appliance itself, that has the HTTP or FTP protocol enabled for reading. You can enter a username and password for authentication to the remote server if one is required.

Problems

To aid serviceability, the appliance detects persistent hardware failures (faults) and software failures (defects, often included under faults) and reports them as active problems on this screen. If the phone home service is enabled, active problems are automatically reported to Oracle Support, where a support case may be opened depending on the service contract and the nature of the fault.

Active Problems Display

For each problem, the appliance reports what happened, when the problem was detected, the severity and type of the problem, and whether it has been phoned home. Below are some example faults as they would be displayed in the BUI:
### TABLE 3-5  Example BUI Problem Displays

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Type</th>
<th>Phoned Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-09-16 13:56:36</td>
<td>SMART health-monitoring firmware reported that a disk failure is imminent.</td>
<td>Major Fault</td>
<td>Never</td>
</tr>
<tr>
<td>2009-09-05 17:42:55</td>
<td>A disk of a different type (cache, log, or data) was inserted into a slot. The newly inserted device must be of the same type.</td>
<td>Minor Fault</td>
<td>Never</td>
</tr>
<tr>
<td>2009-08-21 16:40:37</td>
<td>The ZFS pool has experienced currently unrecoverable I/O failures.</td>
<td>Major Error</td>
<td>Never</td>
</tr>
<tr>
<td>2009-07-16 22:03:22</td>
<td>A memory module is experiencing excessive correctable errors affecting large numbers of pages.</td>
<td>Major Fault</td>
<td>Never</td>
</tr>
</tbody>
</table>

This information can also be viewed in the CLI:

```
gefilte:~> maintenance problems show
Problems:

COMPONENT DIAGNOSED TYPE DESCRIPTION
problem-000 2010-7-27 00:02:49 Major Fault SMART health-monitoring firmware reported that a failure is imminent on disk 'HDD 17'.
```

Selecting any fault shows more information about the fault including the impact to the system, affected components, the system’s automated response (if any), and the recommended action for the administrator (if any). In the CLI, only the "uuid", "diagnosed", "severity", "type", and "status" fields are considered stable. Other property values may change from release to release.

For hardware faults, you may be able to select the affected hardware component to locate it on the Maintenance > Hardware screen.

### Repairing problems

Problems can be repaired by performing the steps described in the suggested action section. This typically involves replacing the physical component (for hardware faults) or reconfiguring and restarting the affected service (for software defects). Repaired problems no longer appear on this screen.

While the system typically detects repairs automatically, in some cases manual intervention may be required. If a problem persists after the affected components have been repaired, contact
support. You may be instructed to mark the problem repaired. This should only be done under
the direction of service personnel or as part of a documented Oracle repair procedure.

Related features

- A persistent log of all faults and defects is available under Logs as the **Fault log**. For more
  information, see “**Faults**” on page 276.
- Faults and defects are subcategories of Alerts. Filter rules can be configured to cause
  the appliance to email administrators or perform other actions when faults are detected.
  For more information about alerts, see Chapter 9, “Alert Configuration,” in “Oracle ZFS
  Storage Appliance Administration Guide”.

Logs

Alerts

This is the appliance alert log, recording key events of interest during appliance operation.

The following are example alert log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event ID</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-9-16 13:01:56</td>
<td>f18bbad1-8084-4cab-c950-82ef5b8228ea</td>
<td>An I/O path from slot 'PCIe 0' to chassis 'JBOD #1' has been removed.</td>
<td>Major alert</td>
</tr>
<tr>
<td>2013-9-16 13:01:51</td>
<td>8fb8688c-08f2-c994-a6a5-ac6e755e53bb</td>
<td>A disk has been inserted into slot 'HDD 4' of chassis 'JBOD #1'.</td>
<td>Minor alert</td>
</tr>
<tr>
<td>2013-9-16 13:01:51</td>
<td>446654fc-b898-6da5-e87e-8d23f12d5d0</td>
<td>A disk has been inserted into slot 'HDD 15' of chassis 'JBOD #1'.</td>
<td>Minor alert</td>
</tr>
</tbody>
</table>

An information icon next to the Event ID means that extended information is available.
Click the icon to display information below the list of alerts.

The appliance can also be configured to send email, raise an SNMP trap, or perform other
actions when particular alerts occur. This is configured in the Alerts section. All alerts appear
in this log, regardless of whether they have actions configured for them. For more information about alerts, see Chapter 9, “Alert Configuration,” in “Oracle ZFS Storage Appliance Administration Guide ”.

Faults

The fault log records hardware and software faults. This is a useful reference when troubleshooting hardware failure, as timestamps are available for these hardware fault events.

The following are example fault log entries as they would appear in the BUI:

TABLE 3-7  Example BUI Fault Log Entry Displays

<table>
<thead>
<tr>
<th>Date</th>
<th>Event ID</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-9-5 17:42:35</td>
<td>9e46fc0b-b1a4-4e69-1f0f-e7abe80794fe</td>
<td>The device ‘HDD 6’ has failed or could not be opened.</td>
<td>Major Fault</td>
</tr>
<tr>
<td>2013-9-3 19:20:15</td>
<td>d37cb5cd-88a8-640b-e82d-c05576c52279</td>
<td>External sensors indicate that a fan is no longer operating correctly.</td>
<td>Minor Fault</td>
</tr>
<tr>
<td>2013-8-21 16:40:48</td>
<td>c91c7b32-83ce-6da8-e51e-a5539e4bbdbb</td>
<td>The ZFS pool has experienced currently unrecoverable I/O failures.</td>
<td>Major Error</td>
</tr>
</tbody>
</table>

These faults generate alert log entries that use the alert reporting settings (such as sending email), if configured. Faults that require administrator attention appear in Problems. For more information, see “Problems” on page 273.

System

This is the operating system log, available to read via the appliance interfaces. This may be useful when troubleshooting complex issues, but should only be checked after first examining the alert and fault logs.

The following are example system log entries as they would appear in the BUI:

TABLE 3-8  Example BUI System Log Entry Displays

<table>
<thead>
<tr>
<th>Time</th>
<th>Module</th>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-11 14:13:38</td>
<td>ntpdate</td>
<td>error</td>
<td>no server suitable for synchronization found</td>
</tr>
<tr>
<td>2013-10-11 14:03:52</td>
<td>genunix</td>
<td>notice</td>
<td>^MSunOS Release 5.11 Version ak/generic@2013 .10.10.1-0 64-bit</td>
</tr>
</tbody>
</table>
### Logs

<table>
<thead>
<tr>
<th>Time</th>
<th>Module</th>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-11 14:02:04</td>
<td>genunix</td>
<td>notice</td>
<td>done</td>
</tr>
<tr>
<td>2013-10-11 14:02:01</td>
<td>genunix</td>
<td>notice</td>
<td>syncing file systems...</td>
</tr>
</tbody>
</table>

### Audit

The audit log records user activity events, including login and logout to the BUI and CLI, and administrative actions. If session annotations are used (see Chapter 7, “User Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”), each audit entry should be noted with a reason.

The following are example audit log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>User</th>
<th>Host</th>
<th>Summary</th>
<th>Session Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-12 05:20:24</td>
<td>root</td>
<td>deimos</td>
<td>Disabled ftp service</td>
<td></td>
</tr>
<tr>
<td>2013-10-12 03:17:05</td>
<td>root</td>
<td>deimos</td>
<td>User logged in</td>
<td></td>
</tr>
<tr>
<td>2013-10-11 22:38:56</td>
<td>root</td>
<td>deimos</td>
<td>Browser session timed out</td>
<td></td>
</tr>
</tbody>
</table>

### Phone Home

If Phone Home is used, this log shows communication events with Oracle support. For information about Phone Home, see “Phone Home Service” in “Oracle ZFS Storage Appliance Administration Guide”.

The following is an example phone home entry as it would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-10-12 05:24:09</td>
<td>Uploaded file 'cores/ak.45e5ddd1-ce92-c16e-b5eb-9cb2a8091f1c.tar.gz' to Oracle support</td>
<td>OK</td>
</tr>
</tbody>
</table>
BUI

The Maintenance > Logs screen lets you view various log types and export them to a file.

**FIGURE 3-8** Logs Screen

[%image]

▼ Viewing Logs

The following log types are available: Alerts, Faults, System, Audit, and Phone Home.

1. **To view logs, navigate to the Maintenance > Logs screen.**

2. **To navigate between the log types, click the Alerts, Faults, System, Audit, and Phone Home buttons.**

3. **To scroll through the logs, use the forward and back buttons.**

▼ Exporting Logs

If the RESTful API service is enabled, you can export any combination of log types to your local machine by using the BUI Collect button. For information on using the RESTful API, see its product documentation at [http://www.oracle.com/goto/ZFSStorage/docs](http://www.oracle.com/goto/ZFSStorage/docs).

1. **To view logs, navigate to the Maintenance > Logs screen.**
2. Click Collect.

3. In the Collect Logs dialog box, choose the log types you want to export.

4. To export the logs, click Apply. A <stdout> gz file containing all the requested log information is downloaded to your local machine.

CLI

Logs can be viewed under the maintenance logs context in the CLI.

Listing Logs

Use the show command to list available logs and the time stamp of the last log entry for each log type.

caji:> maintenance logs
caji:maintenance logs> show
Logs:

<table>
<thead>
<tr>
<th>LOG</th>
<th>ENTRIES</th>
<th>LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>alert</td>
<td>2</td>
<td>2013-10-16 02:44:04</td>
</tr>
<tr>
<td>audit</td>
<td>42</td>
<td>2013-10-16 18:19:53</td>
</tr>
<tr>
<td>fltlog</td>
<td>2</td>
<td>2013-10-16 02:44:04</td>
</tr>
<tr>
<td>scrk</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>system</td>
<td>100</td>
<td>2013-10-16 03:51:01</td>
</tr>
</tbody>
</table>

Up to 100 recent entries for each log are visible.
Viewing a Log

There are two different ways to view a log:

- View All Log Entries
- View Groups of Log Entries

Viewing All Log Entries

Use the select command in conjunction with the log name, and the list -a command to view all log entries. The most recent entries are displayed at the bottom of the list.

caji:maintenance logs> select audit
caji:maintenance logs audit> list -a

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TIME</th>
<th>SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry-000</td>
<td>2013-1-9 15:13:50</td>
<td>root, 10.154.161.197, User logged in</td>
</tr>
<tr>
<td>entry-001</td>
<td>2013-1-9 15:17:42</td>
<td>root, 10.154.161.197, Released resources to cluster peer</td>
</tr>
<tr>
<td>entry-003</td>
<td>2013-1-9 15:20:33</td>
<td>root, 10.154.161.197, Transferred ak:/net/igb1 to 2917b8aa-8b0a-4b74-f36b-ff0a8d150c3b</td>
</tr>
</tbody>
</table>

... entry-2077 2013-12-17 05:24:43 osc_agent, 10.80.218.16, User logged in
entry-2078 2013-12-17 05:24:45 osc_agent, 10.80.218.16, User logged out
entry-2079 2013-12-17 05:24:53 osc_agent, 10.80.218.16, User logged in

Viewing Groups of Log Entries

To view up to 100 log entries at a time, select the log and use the show command.

caji:maintenance logs> select audit
caji:maintenance logs audit> show

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TIME</th>
<th>SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry-2874</td>
<td>2014-2-20 18:05:44</td>
<td>root, 10.159.134.211, Beginning system update to ak-nas@2014.02.11.1-0</td>
</tr>
<tr>
<td>entry-2875</td>
<td>2014-2-20 18:08:18</td>
<td>root, 10.159.134.211, Rebooting system as part of update to ak-nas@2014.02.11.1-0</td>
</tr>
<tr>
<td>entry-2876</td>
<td>2014-2-20 18:08:20</td>
<td>root, 10.159.134.211, User logged out</td>
</tr>
<tr>
<td>entry-2877</td>
<td>2014-2-20 18:16:06</td>
<td>root, 10.159.134.211, User logged in</td>
</tr>
<tr>
<td>entry-2878</td>
<td>2014-2-20 18:18:20</td>
<td>root, 10.159.134.211, Deleted update media ak-nas@2011.04.24.8.0.1-1.43</td>
</tr>
<tr>
<td>entry-2879</td>
<td>2014-2-20 18:34:19</td>
<td>root, 10.159.134.211, Cluster takeover requested</td>
</tr>
</tbody>
</table>

... entry-2970 2014-2-27 17:40:37 root,
Logs

dhcp-amer-vpn-rmdc-anyconnect-10-159-100-157.vpn.oracle.com,
User logged out of CLI
entry-2971 2014-2-27 17:48:23 root, 10.159.100.157, User logged in
entry-2972 2014-2-27 19:05:46 root, 10.159.100.157, Browser session timed out
entry-2973 2014-2-27 23:53:31 root,
dhcp-amer-vpn-rmdc-anyconnect-10-159-125-20.vpn.oracle.com,
User logged in via CLI

Then use the previous or next command to view the previous or next 100 entries.

caji:maintenance logs alert> list
ENTRY     TIME                SUMMARY
entry-023  2013-1-16 15:06:36  d1dd862d-93ff-6e3d-a51c-fe5f01159a3e, System software update cannot proceed: J4400 and J4500 disk shelves are not supported in this release., Minor alert

caji:maintenance logs alert> previous
ENTRY     TIME                SUMMARY
entry-000  2013-11-21 15:45:23 67ccd46c-3d4d-eb86-8966-f9e0ec497293, System software update cannot proceed: J4400 and J4500 disk shelves are not supported in this release., Minor alert

To view a specific group of log entries at one time, select the log and use the list - command in conjunction with a number to list the desired number of the latest entries.

caji:maintenance logs> select audit
caji:maintenance logs audit> list -5
ENTRY     TIME                SUMMARY
entry-721  2013-2-18 22:02:02  <system>, <system>, Request to create replication package
entry-722  2013-2-18 22:02:08  <system>, <system>, Request to modify replication package
entry-723  2013-2-18 23:33:32 root, 10.135.69.243, User logged in
entry-724  2013-2-19 00:48:51 root, 10.135.69.243, Browser session timed out
entry-725  2013-2-19 23:30:11 root, User logged in via CLI

Viewing Entry Details

To view details for a log entry, use the select command in conjunction with the entry name, and the show command.
caji:maintenance logs> select audit
caji:maintenance logs audit> select entry-000 show

Properties:

    timestamp = 2013-10-15 00:59:37
    user = root
    address = <console>
    summary = Enabled datalink:igb0 service
    annotation =

The "annotation" is the session annotation, which can be enabled when configuring users. For information about user configuration, see Chapter 7, "User Configuration," in "Oracle ZFS Storage Appliance Administration Guide".

Exporting Logs

To export logs, use the collect command, which is available on each log node. A <stdout> gz file containing all the requested log information is downloaded to your local machine.

caji:maintenance logs> show
Logs:

<table>
<thead>
<tr>
<th>LOG</th>
<th>ENTRIES</th>
<th>LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>alert</td>
<td>3458</td>
<td>2013-2-18 23:02:29</td>
</tr>
<tr>
<td>audit</td>
<td>731</td>
<td>2013-2-20 16:13:04</td>
</tr>
<tr>
<td>fltlog</td>
<td>2</td>
<td>2013-2-3 06:29:02</td>
</tr>
<tr>
<td>scrk</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>system</td>
<td>44</td>
<td>2013-1-14 18:19:59</td>
</tr>
</tbody>
</table>

caji:maintenance logs> select fltlog
caji:maintenance logs fltlog> collect

SUNW-MSG-ID: AK-8000-86, TYPE: Defect, VER: 1, SEVERITY: Major
EVENT-TIME: Wed Nov 13 03:50:15 UTC 2013
PLATFORM: Sun-Fire-X4240, CSN: 0000000000, HOSTNAME: hpc-iwashi-01
SOURCE: ak-diagnosis, REV: 1.0
EVENT-ID: db3635cd-c03d-efef-efde-9c78dd47259e
DESC: The service processor needs to be reset to ensure proper functioning.
AUTO-RESPONSE: None.
IMPACT: Service Processor-controlled functionality, including LEDs, fault management, and the serial console, may not work correctly.
REC-ACTION: Click the initiate repair button.

SUNW-MSG-ID: FMD-8000-4M, TYPE: Repair, VER: 1, SEVERITY: Major
EVENT-TIME: Wed Nov 13 03:50:15 UTC 2013
PLATFORM: Sun-Fire-X4240, CSN: 0000000000, HOSTNAME: hpc-iwashi-01
SOURCE: ak-diagnosis, REV: 1.0
EVENT-ID: db3635cd-c03d-efef-efde-9c78dd47259e
DESC: All faults associated with an event id have been addressed.
AUTO-RESPONSE: Some system components offline because of the original fault may have been brought back online.
IMPACT: Performance degradation of the system
due to the original fault may have been recovered.
REC-ACTION: No action is required.

caji:maintenance logs fltlog>

## Maintenance Workflows

A workflow is a script that is uploaded to and managed by the Oracle ZFS Storage Appliance by itself. For information on scripting, see Chapter 15, “CLI Scripting,” in “Oracle ZFS Storage Appliance Administration Guide ”. Workflows can be parameterized and executed in a first-class fashion from either the browser user interface (BUI) or the command line interface (CLI). Workflows may also be optionally executed as alert actions or at a designated time. As such, workflows allow for the Oracle ZFS Storage Appliance to be extended in ways that capture specific policies and procedures, and can be used (for example) to formally encode best practices for a particular organization or application. For information on alert actions, see Chapter 9, “Alert Configuration,” in “Oracle ZFS Storage Appliance Administration Guide ”.

## Using Workflows

A workflow is embodied in a valid ECMA script file, containing a single global variable, `workflow`. This is an Object that must contain at least three members:

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>String</td>
<td>Name of the workflow</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>Description of workflow</td>
</tr>
<tr>
<td>execute</td>
<td>Function</td>
<td>Function that executes the workflow</td>
</tr>
</tbody>
</table>

Here is the canonically trivial workflow:

```javascript
var workflow = {
 name: 'Hello world',
 description: 'Bids a greeting to the world',
 execute: function () { return ('hello world!') }
};
```

Uploading this workflow results in a new workflow named "Hello world". Executing the workflow results in the output "hello world!"
Workflow Execution Context

Workflows execute asynchronously in the Oracle ZFS Storage Appliance shell, running (by default) as the user executing the workflow. As such, workflows have at their disposal the Oracle ZFS Storage Appliance scripting facility, and may interact with the Oracle ZFS Storage Appliance just as any other instance of the Oracle ZFS Storage Appliance shell. That is, workflows may execute commands, parse output, modify state, and so on. Here is a more complicated example that uses the run function to return the current CPU utilization:

```javascript
var workflow = {
 name: 'CPU utilization',
 description: 'Displays the current CPU utilization',
 execute: function () {
 run('analytics datasets select name=cpu.utilization');
 cpu = run('csv 1').split('
')[1].split(',');
 return ('At ' + cpu[0] + ', utilization is ' + cpu[1] + '%');
 }
};
```

Workflow Parameters

Workflows that do not operate on input have limited scope; many workflows need to be parameterized to be useful. This is done by adding a parameters member to the global workflow object. The parameters member is in turn an object that is expected to have a member for each parameter. Each parameters member must have the following members:

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>String</td>
<td>Label to adorn input of workflow parameter</td>
</tr>
<tr>
<td>type</td>
<td>String</td>
<td>Type of workflow parameter</td>
</tr>
</tbody>
</table>

The type member must be set to one of these types:

<table>
<thead>
<tr>
<th>Type Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>A boolean value</td>
</tr>
<tr>
<td>ChooseOne</td>
<td>One of a number of specified values</td>
</tr>
<tr>
<td>Type Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>EmailAddress</td>
<td>An e-mail address</td>
</tr>
<tr>
<td>File</td>
<td>A file to be transferred to the ZFSSA</td>
</tr>
<tr>
<td>Host</td>
<td>A valid host, as either a name or dotted decimal</td>
</tr>
<tr>
<td>HostName</td>
<td>A valid hostname</td>
</tr>
<tr>
<td>HostPort</td>
<td>A valid, available port</td>
</tr>
<tr>
<td>Integer</td>
<td>An integer</td>
</tr>
<tr>
<td>NetAddress</td>
<td>A network address</td>
</tr>
<tr>
<td>NodeName</td>
<td>A name of a network node</td>
</tr>
<tr>
<td>NonNegativeInteger</td>
<td>An integer that is greater than or equal to zero</td>
</tr>
<tr>
<td>Number</td>
<td>Any number -- including floating point</td>
</tr>
<tr>
<td>Password</td>
<td>A password</td>
</tr>
<tr>
<td>Permissions</td>
<td>POSIX permissions</td>
</tr>
<tr>
<td>Port</td>
<td>A port number</td>
</tr>
<tr>
<td>Size</td>
<td>A size</td>
</tr>
<tr>
<td>String</td>
<td>A string</td>
</tr>
<tr>
<td>StringList</td>
<td>A list of strings</td>
</tr>
</tbody>
</table>

Based on the specified types, an appropriate input form is generated when the workflow is executed. For example, here is a workflow that has two parameters, the name of a business unit (to be used as a project) and the name of a share (to be used as the share name):

```javascript
var workflow = {
 name: 'New share',
 description: 'Creates a new share in a business unit',
 parameters: {
 name: {
 label: 'Name of new share',
 type: 'String'
 },
 unit: {
 label: 'Business unit',
 type: 'String'
 }
 },
 execute: function (params) {
 run('shares select ' + params.unit);
 run('filesystem ' + params.name);
 run('commit');
 }
};
```
If you upload this workflow and execute it, you are prompted with a dialog box to fill in the name of the share and the business unit. When the share has been created, a message is generated that indicates the creation.

### Constrained Parameters

For some parameters, one does not wish to allow an arbitrary string, but wishes to rather limit input to one of a small number of alternatives. These parameters should be specified to be of type `ChooseOne`, and the object containing the parameter must have two additional members:

**TABLE 3-14** Constrained Parameters Required Members

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>options</td>
<td>Array</td>
<td>An array of strings that specifies the valid options</td>
</tr>
<tr>
<td>optionlabels</td>
<td>Array</td>
<td>An array of strings that specifies the labels associated with the options specified in options</td>
</tr>
</tbody>
</table>

Using the `ChooseOne` parameter type, we can enhance the previous example to limit the business unit to be one of a small number of predefined values:

```javascript
var workflow = {
 name: 'Create share',
 description: 'Creates a new share in a business unit',
 parameters: {
 name: {
 label: 'Name of new share',
 type: 'String'
 },
 unit: {
 label: 'Business unit',
 type: 'ChooseOne',
 options: ['development', 'finance', 'qa', 'sales'],
 optionlabels: ['Development', 'Finance', 'Quality Assurance', 'Sales/Administrative']
 }
 },
 execute: function (params) {
 run('shares select ' + params.unit);
 run('filesystem ' + params.name);
 run('commit');
 return ('Created new share "' + params.name + '"');
 }
};
```
When this workflow is executed, the unit parameter is not entered by hand -- it is selected from the specified list of possible options.

Optional Parameters

Some parameters may be considered optional in that the UI should not mandate that these parameters are set to any value to allow execution of the workflow. Such a parameter is denoted via the optional field of the parameters member:

<table>
<thead>
<tr>
<th>Optional Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>optional</td>
<td>Boolean</td>
<td>If set to true, denotes that the parameter need not be set; the UI may allow the workflow to be executed without a value being specified for the parameter.</td>
</tr>
</tbody>
</table>

If a parameter is optional and is unset, its member in the parameters object passed to the execute function is set to undefined.

Workflow Error Handling

If, in the course of executing a workflow, an error is encountered, an exception is thrown. If the exception is not caught by the workflow itself (or if the workflow throws an exception that is not otherwise caught), the workflow fails, and the information regarding the exception is displayed to the user. To properly handle errors, exceptions should be caught and processed. For example, in the previous example, an attempt to create a share in a non-existent project results in an uncaught exception. This example could be modified to catch the offending error, and create the project in the case that it doesn't exist:

```javascript
var workflow = {
 name: 'Create share',
 description: 'Creates a new share in a business unit',
 parameters: {
 name: {
 label: 'Name of new share',
 type: 'String'
 },
 unit: {
 label: 'Business unit',
 type: 'ChooseOne',
 options: ['development', 'finance', 'qa', 'sales'],
 optionlabels: ['Development', 'Finance',
```
Workflow Input Validation

Workflows may optionally validate their input by adding a validate member that takes as a parameter an object that contains the workflow parameters as members. The validate function should return an object where each member is named with the parameter that failed validation, and each member's value is the validation failure message to be displayed to the user. To extend our example to give a crisp error if the user attempts to create an extant share:

```javascript
var workflow = {
 name: 'Create share',
 description: 'Creates a new share in a business unit',
 parameters: {
 name: {
 label: 'Name of new share',
 type: 'String'
 },
 unit: {
 label: 'Business unit',
 type: 'ChooseOne',
 options: ['development', 'finance', 'qa', 'sales'],
 optionLabels: ['Development', 'Finance', 'Quality Assurance', 'Sales/Administrative'],
 }
 },
 validate: function (params) {
 try {
 run('shares select ' + params.unit);
 } catch (err) {
 if (err.code != EAKSH_ENTITY_BADSELECT)
 throw (err);

 /* We haven't yet created a project that corresponds to this business unit; create it now. */
 run('shares project ' + params.unit);
 run('commit');
 run('shares select ' + params.unit);
 }
 run('filesystem ' + params.name);
 run('commit');
 return ('Created new share "' + params.name + '"');
 }
};
```
Workflow Execution Auditing

Workflows may emit audit records by calling the `audit` function. The only argument for the `audit` function is a string that is placed into the audit log.

Workflow Execution Reporting

For complicated workflows that may require some time to execute, it can be useful to provide clear progress to the user executing the workflow. To allow the execution of a workflow to be reported in this way, the `execute` member should return an array of `steps`. Each array element must contain the following members:

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>String</td>
<td>String that denotes the name of the execution step</td>
</tr>
<tr>
<td>Required Member</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>execute</td>
<td>Function</td>
<td>Function that executes the step of the workflow</td>
</tr>
</tbody>
</table>

As with the execute function on the workflow as a whole, the execute member of each step takes as its argument an object that contains the parameters to the workflow. As an example, here is a workflow that creates a new project, share, and audit record over three steps:

```javascript
var steps = [{
 step: 'Checking for associated project',
 execute: function (params) {
 try {
 run('shares select ' + params.unit);
 } catch (err) {
 if (err.code != EAKSH_ENTITY_BADSELECT)
 throw (err);

 /*
 * We haven't yet created a project that corresponds to
 * this business unit; create it now.
 */
 run('shares project ' + params.unit);
 set('mountpoint', '/export/' + params.unit);
 run('commit');
 run('shares select ' + params.unit);
 }
 }
}, {
 step: 'Creating share',
 execute: function (params) {
 run('filesystem ' + params.name);
 run('commit');
 }
}, {
 step: 'Creating audit record',
 execute: function (params) {
 audit('created "' + params.name + '" in "' + params.unit);
 }
}];

var workflow = {
 name: 'Create share',
 description: 'Creates a new share in a business unit',
 parameters: {
 name: {
 label: 'Name of new share',
 type: 'String'
 },
 unit: {
 label: 'Business unit',
 type: 'ChooseOne',
 options: ['development', 'finance', 'qa', 'sales'],
 optionlabels: ['Development', 'Finance',
 'Quality Assurance', 'Sales/Administrative']
 }
 }
};```
Versioning

There are two aspects of versioning with respect to workflows: the first is the expression of the version of the Oracle ZFS Storage Appliance software that the workflow depends on, and the second is the expression of the version of the workflow itself. Versioning is expressed through two optional members to the workflow:

<table>
<thead>
<tr>
<th>Optional Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>required</td>
<td>String</td>
<td>The minimum version of the ZFSSA software required to run this workflow, including the minimum year, month, day, build and branch.</td>
</tr>
<tr>
<td>version</td>
<td>String</td>
<td>Version of this workflow, in dotted decimal (major.minor.micro) form.</td>
</tr>
</tbody>
</table>

Appliance Versioning

To express a minimally required version of the Oracle ZFS Storage Appliance software, add the optional `required` field to your workflow. The Oracle ZFS Storage Appliance software is versioned in terms of the year, month and day on which the software was built, followed by a build number and then a branch number, expressed as "year.month.day.build-branch". For example "2009.04.10,12-0" would be the twelfth build of the software originally build on April 10th, 2009. To get the version of the current Oracle ZFS Storage Appliance kit software, run the "configuration version get version" CLI command, or look at the "Version" field in the Maintenance > System screen in the BUI. Here is an example of using the `required` field:

```javascript
var workflow = {
    name: 'Configure FC',
    validate: function (params) {
        try {
            run('shares select ' + params.unit);
            run('select ' + params.name);
        } catch (err) {
            if (err.code == EAKSH_ENTITY_BADSELECT)
                return;
        }

        return ({ name: 'share already exists' });
    },
    execute: function (params) { return (steps); }
};
```
description: 'Configures fibre channel target groups',
required: '2009.12.25,1-0',
...

If a workflow requires a version of software that is newer than the version loaded on the Oracle ZFS Storage Appliance, the attempt to upload the workflow fails with a message explaining the mismatch.

Workflow Versioning

In addition to specifying the required version of the Oracle ZFS Storage Appliance software, workflows themselves may be versioned with the `version` field. This string denotes the major, minor and micro numbers of the workflow version, and allows multiple versions of the same workflow to exist on the machine. When uploading a workflow, any `compatible, older` versions of the same workflow are deleted. A workflow is deemed to be `compatible` if it has the same major number, and a workflow is considered to be `older` if it has a lower version number. Therefore, uploading a workflow with a version of "2.1" removes the same workflow with version "2.0" (or version "2.0.1"), but not "1.2" or "0.1".

Workflows as Alert Actions

Workflows may be optionally executed as `alert actions`. To allow a workflow to be eligible as an alert action, its `alert action` must be set to `true`. For information on alert actions, see Chapter 9, “Alert Configuration,” in “Oracle ZFS Storage Appliance Administration Guide”.

Alert Action Execution Context

When executed as alert actions, workflows assume the identity of the user that created them. For this reason, any workflow that is to be eligible as an alert action must set `setid` to `true`. Alert actions have a single object parameter that has the following members:

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>String</td>
<td>The class of the alert.</td>
</tr>
<tr>
<td>code</td>
<td>String</td>
<td>The code of the alert.</td>
</tr>
<tr>
<td>items</td>
<td>Object</td>
<td>An object describing the alert.</td>
</tr>
<tr>
<td>timestamp</td>
<td>Date</td>
<td>Time of alert.</td>
</tr>
</tbody>
</table>
The items member of the parameters object has the following members:

TABLE 3-19 Required Members for the Items Member

<table>
<thead>
<tr>
<th>Required Member</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>String</td>
<td>The URL of the web page describing the alert</td>
</tr>
<tr>
<td>action</td>
<td>String</td>
<td>The action that should be taken by the user in response to the alert.</td>
</tr>
<tr>
<td>impact</td>
<td>String</td>
<td>The impact of the event that precipitated the alert.</td>
</tr>
<tr>
<td>description</td>
<td>String</td>
<td>A human-readable string describing the alert.</td>
</tr>
<tr>
<td>severity</td>
<td>String</td>
<td>The severity of the event that precipitated the alert.</td>
</tr>
</tbody>
</table>

Auditing Alert Actions

Workflows executing as alert actions may use the audit function to generate audit log entries. It is recommended that any relevant debugging information be generated to the audit log via the audit function. For example, here is a workflow that executes failover if in the clustered state -- but audits any failure to reboot:

```javascript
var workflow = {
    name: 'Failover',
    description: 'Fail the node over to its clustered peer',
    alert: true,
    setid: true,
    execute: function (params) {
        /*
        * To failover, we first confirm that clustering is configured
        * and that we are in the clustered state. We then reboot,
        * which will force our peer to takeover. Note that we're
        * being very conservative by only rebooting if in the
        * AKCS_CLUSTERED state: there are other states in which it
        * may well be valid to failback (e.g., we are in AKCS_OWNER,
        * and our peer is AKCS_STRIPPED), but those states may also
        * indicate aberrent operation, and we therefore refuse to
        * failback. (Even in an active/passive clustered config, a
        * FAILBACK should always be performed to transition the
        * cluster peers from OWNER/STRIPPED to CLUSTERED/CLUSTERED.)
        */
        var uuid = params.uuid;
        var clustered = 'AKCS_CLUSTERED';

        audit('Attempting failover in response to alert ' + uuid);
        try {
```
using scheduled workflows

workflows can be started via a timer event by setting up a schedule for them. the property scheduled has to be added to the workflow object and needs to be set to true. schedules can either be created via the cli once a workflow is loaded into the oracle zfs storage appliance or an array type property named schedule can be added to the object workflow.

using the cli

after a workflow has been loaded into the oracle zfs storage appliance, a schedule can be defined for it via the cli interface as follows:

```bash
dory:~ maintenance workflows
dory:~ maintenance workflows> "select workflow-002"
dory:~ maintenance workflow-002> schedules
dory:~ maintenance workflow-002 schedules> create
dory:~ maintenance workflow-002 schedule (uncommitted)> set frequency=day
    frequency = day (uncommitted)
dory:~ maintenance workflow-002 schedule (uncommitted)> set hour=10
    hour = 10 (uncommitted)
dory:~ maintenance workflow-002 schedule (uncommitted)> set minute=05
    minute = 05 (uncommitted)
dory:~ maintenance workflow-002 schedule (uncommitted)> commit
dory:~ maintenance workflow-002 schedules> list
    NAME       FREQUENCY    DAY    HH:MM
    schedule-001   day -   10:05

dory:~ maintenance workflow-002 schedules> create
dory:~ maintenance workflow-002 schedule (uncommitted)> set frequency=week
    frequency = week (uncommitted)
```
dory:maintenance workflow-002 schedule (uncommitted)> set day=Monday
 day = Monday (uncommitted)
dory:maintenance workflow-002 schedule (uncommitted)> set hour=13
 hour = 13 (uncommitted)
dory:maintenance workflow-002 schedule (uncommitted)> set minute=15
 minute = 15 (uncommitted)
dory:maintenance workflow-002 schedule (uncommitted)> commit
 dory:maintenance workflow-002 schedule (uncommitted)> list

NAME FREQUENCY DAY HH:MM
schedule-001 day - 10:05
schedule-002 week Monday 13:15

dory:maintenance workflow-002 schedules>

Each schedule entry consists of the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>String</td>
<td>Name of the schedule, system generated</td>
</tr>
<tr>
<td>frequency</td>
<td>String</td>
<td>minute,halfhour,hour,day,week,month</td>
</tr>
<tr>
<td>day</td>
<td>String</td>
<td>Specifies specific day and can be set to: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday or Sunday. Can be set when frequency is set to a day, week or month.</td>
</tr>
<tr>
<td>hour</td>
<td>String</td>
<td>00-23, Specifies the hour part of the schedule and can be specified when the frequency is set to a day, week or month.</td>
</tr>
<tr>
<td>minute</td>
<td>String</td>
<td>00-59, Specifies the minute part of the schedule.</td>
</tr>
</tbody>
</table>

Coding the Schedule

Schedules can also be specified in the workflow code as a property in the Object workflow. The property syntax used here differs from the CLI schedule creation. Here three properties are used:

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>Number</td>
<td>Determines the starting point in the defined period</td>
</tr>
<tr>
<td>period</td>
<td>Number</td>
<td>Defines the frequency of the Schedule</td>
</tr>
</tbody>
</table>
Using Scheduled Workflows

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>String</td>
<td>Specifies if either seconds or month are used as unit in the offset and period definition</td>
</tr>
</tbody>
</table>

The following code example illustrates the use of the properties. Note that inline arithmetic helps to make the offset and period declarations more readable.

```javascript
// Example of using Schedule definitions within a workflow
var MyTextObject = {
    MyVersion: '1.0',
    MyName:    'Example 9',
    MyDescription: 'Example of use of Timer',
    Origin:     'Oracle'
};
var MySchedules = [
    // half hr interval
    { offset: 0, period: 1800, units: "seconds" },
    // offset 2 days, 4hr, 30min , week interval
    {offset: 2*24*60*60+4*60*60+30*60, period: 604800, units: "seconds" }
];
var workflow = {
    name: MyTextObject.MyName,
    description: MyTextObject.MyDescription,
    version: MyTextObject.MyVersion,
    alert: false,
    setid: true,
    schedules: MySchedules,
    scheduled: true,
    origin: MyTextObject.Origin,
    execute: function () {
        audit('workflow started for timer; ');
    }
};
```

The property units in the Object MySchedules specifies the type of units used for the properties offset and period. They can be set to either seconds or month. The property period specifies the frequency of the event and the offset specifies the units within the period. In the above example the period in the second schedule is set for a week, starting at the second day, at 4:30. Multiple schedules can be defined in the property schedules.

The Object MySchedules in the example uses the following three properties:

- **offset**: This is the starting offset from January 1, 1970 for the schedule. The offset is given in the units defined by the property "units".
- **period**: This is the period between recurrences of the schedule which is also given in the units defined by the property "units."
- **units**: This can be defined in seconds or months.

The starting point for weekly schedules is Thursday. This is due to the fact that the epoch is defined as starting on 1 Jan 1970, which was a Thursday.
In the above example the period in the second schedule uses a starting offset of 2 days + 4 hours + 30 minutes. This results in the starting date being January 3, 1970 at 4:30 am. The schedule recurs weekly indefinitely every Saturday at 4:30 am. Below you can see the display of the schedule in the CLI.

Example: Device Type Selection

Here is an example workflow that creates a worksheet based on a specified drive type:

```javascript
var steps = [ { 
  step: 'Checking for existing worksheet',
  execute: function (params) {
    /*
    * In this step, we're going to see if the worksheet that
    * we're going to create already exists. If the worksheet
    * already exists, we blow it away if the user has indicated
    * that they desire this behavior. Note that we store our
    * derived worksheet name with the parameters, even though
    * it is not a parameter per se; this is explicitly allowed,
    * and it allows us to build state in one step that is
    * processed in another without requiring additional global
    * variables.
    */
    params.worksheet = 'Drilling down on ' + params.type + ' disks';
    try {
      run('analytics worksheets select name="' +
          params.worksheet + '"');
      if (params.overwrite) {
        run('confirm destroy');
        return;
      }
    } catch (err) {
      if (err.code != EAKSH_ENTITY_BADSELECT)
        throw (err);
    }
  }
};
```
Example: Device Type Selection

```javascript
});
} };
step: 'Finding disks of specified type',
execute: function (params) {
    /*
    * In this step, we will iterate over all chassis, and for
    * each chassis iterate over all disks in the chassis,
    * looking for disks that match the specified type.
    */
    var chassis, name, disks;
    var i, j;

    run('cd /');
    run('maintenance hardware');

    chassis = list();
    params.disks = [];
    for (i = 0; i < chassis.length; i++) {
        run('select ' + chassis[i]);
        name = get('name');
        run('select disk');
        disks = list();
        for (j = 0; j < disks.length; j++) {
            run('select ' + disks[j]);
            if (get('use') == params.type) {
                params.disks.push(name + '/' +
                    get('label'));
            }
        }
        run('cd ../..');
    }
    run('cd /');

    if (params.disks.length === 0)
        throw ('No ' + params.type + ' disks found');
});

step: 'Creating worksheet',
execute: function (params) {
    /*
    * In this step, we're ready to actually create the worksheet
    * itself: we have the disks of the specified type and
    * we know that we can create the worksheet. Note that we
    * create several datasets: first, I/O bytes broken down
    * by disk, with each disk of the specified type highlighted
    * as a drilldown. Then, we create a separate dataset for
    * each disk of the specified type. Finally, note that we
    * aren't saving the datasets -- we'll let the user do that
    * from the created worksheet if they so desire. (It would
    * be straightforward to add a boolean parameter to this
    */
```
`* workflow that allows that last behavior to be optionally
* changed.*/

```javascript
var disks = [], i;

run('analytics worksheets');
run('create "' + params.worksheet + '"');
run('select name="' + params.worksheet + '"');
run('dataset');
run('set name=io.bytes[disk]');

for (i = 0; i < params.disks.length; i++)
    disks.push('"' + params.disks[i] + '"');

run('set drilldown=' + disks.join(','));
run('commit');

for (i = 0; i < params.disks.length; i++) {
    run('dataset');
    run('set name="io.bytes[disk=' + params.disks[i] + ']' + '");
    run('commit');
}
```

```javascript
var workflow = {
    name: 'Disk drilldown',
    description: 'Creates a worksheet that drills down on system, ' +
                  'cache, or log devices',
    parameters: {
        type: {
            label: 'Create a new worksheet drilling down on',
            type: 'ChooseOne',
            options: [ 'cache', 'log', 'system' ],
            optionlabels: [ 'Cache', 'Log', 'System' ]
        },
        overwrite: {
            label: 'Overwrite the worksheet if it exists',
            type: 'Boolean'
        }
    },
    execute: function (params) { return (steps); }
}
```

Workflows are uploaded to the Oracle ZFS Storage Appliance by clicking on the plus icon, and they are executed by clicking on the row specifying the workflow.
Workflows are manipulated in the maintenance workflows section of the CLI.

Downloading Workflows

Workflows are downloaded to the Oracle ZFS Storage Appliance via the `download` command, which is similar to the mechanism used for software updates:

```
dory:maintenance workflows> download
dory:maintenance workflows download (uncommitted)> get
    url = (unset)
    user = (unset)
    password = (unset)
```

You must set the "url" property to be a valid URL for the workflow. This may be either local to your network or over the internet. The URL can be either HTTP (beginning with "http://") or FTP (beginning with "ftp://"). If user authentication is required, it may be a part of the URL (for example, "ftp://myusername:mypasswd@myserver/export/foo"), or you may leave the username and password out of the URL and instead set the user and password properties.

```
dory:maintenance workflows download (uncommitted)> set url=ftp://foo/example1.akwf
    url = ftp://foo/example1.akwf
```

```
dory:maintenance workflows download (uncommitted)> set user=bmc
    user = bmc
```

```
dory:maintenance workflows download (uncommitted)> set password
    Enter password:
        password = ********
```

```
dory:maintenance workflows download (uncommitted)> commit
    Transferred 138 of 138 (100%) ... done
```
Viewing Workflows

To list workflows, use the list command from the maintenance workflows context:

```
<small>dory:maintenance workflows> list
WORKFLOW   NAME                               OWNER SETID ORIGIN               VERSION
workflow-000 Configure for Oracle Solaris Cluster NFS root false Oracle Corporation   1.0.0
workflow-001 Unconfigure Oracle Solaris Cluster NFS root false Oracle Corporation   1.0.0
workflow-002 Configure for Oracle Enterprise Manager Monitoring root false Sun Microsystems, Inc. 1.1
workflow-003 Unconfigure Oracle Enterprise Manager Monitoring root false Sun Microsystems, Inc. 1.0</small>
```

To view workflows, use the show command from the maintenance workflows context:

```
dory:maintenance workflows> select workflow-001
<small>dory:maintenance workflow-001> show
Properties:
    name = Configure for Oracle Solaris Cluster NFS
    description = Sets up environment for Oracle Solaris Cluster NFS
    owner = root
    origin = Oracle Corporation
    setid = false
    alert = false
    version = 1.0.0
    scheduled = false
```

To select a workflow, use the select command:

```
dory:maintenance workflows> select workflow-000
```

To get properties for a workflow, use the get command from within the context of the selected workflow:

```
dory:maintenance workflow-000> get
    name = Hello world
    description = Bids a greeting to the world
    owner = root
    origin = <local>
    setid = false
    alert = false
    scheduled = false
```

Executing Workflows

To execute a workflow, use the execute command from within the context of the selected workflow. If the workflow takes no parameters, it simply executes:

```
dory:maintenance workflow-000> execute
hello world!
```
If the workflow takes parameters, the context becomes a captive context in which parameters must be specified:

```
dory:maintenance workflow-000> execute
dory:maintenance workflow-000 execute (uncommitted)> get
   type = (unset)
   overwrite = (unset)
```

Any attempt to commit the execution of the workflow without first setting the requisite parameters results in an explicit failure:

```
dory:maintenance workflow-000 execute (uncommitted)> commit
error: cannot execute workflow without setting property "type"
```

To execute the workflow, set the specified parameters, and then use the commit command:

```
dory:maintenance workflow-000 execute (uncommitted)> set type=system
   type = system

dory:maintenance workflow-000 execute (uncommitted)> set overwrite=true
   overwrite = true

dory:maintenance workflow-000 execute (uncommitted)> commit
```

If the workflow has specified steps, those steps are displayed via the CLI, for example:

```
dory:maintenance workflow-000 execute (uncommitted)> commit
Checking for existing worksheet ... done
Finding disks of specified type ... done
Creating worksheet ... done
```