Oracle® Virtual Compute Appliance

Release Notes for Release 1.1.1
Table of Contents

Preface .. v
1 About Oracle Virtual Compute Appliance ... 1
1.1 Introduction ... 1
1.2 Components ... 1
2 Feature Overview .. 3
2.1 Changes and Improvements in Release 1.1.1 ... 3
2.2 Changes and Improvements in Release 1.0.2 ... 4
2.3 Key Features in Release 1.0.1 .. 6
3 Known Limitations and Workarounds .. 9
3.1 Oracle Virtual Compute Appliance Hardware ... 9
3.1.1 Compute Node Boot Sequence Interrupted by LSI Bios Battery Error .. 9
3.1.2 Management Node Network Interfaces Are Down After System Restart 9
3.1.3 ILOM Service Processor Clocks Are Out-of-Sync .. 10
3.2 Oracle Virtual Compute Appliance Software ... 10
3.2.1 OpenSSL 'Heartbleed' Vulnerability Affects Management Nodes ... 10
3.2.2 Do Not Reconfigure Network During Compute Node Provisioning or Upgrade 10
3.2.3 Nodes Attempt to Synchronize Time with the Wrong NTP Server ... 11
3.2.4 Unknown Symbol Warning during InfiniBand Driver Installation ... 11
3.2.5 Do Not Add Compute Node When Management Node Services Are Restarted 11
3.2.6 Do Not Execute **ovca-node-db** from the Command Line .. 11
3.2.7 Node Manager Does Not Show Node Offline Status ... 12
3.2.8 Update Functionality Not Available in Dashboard ... 12
3.2.9 Interrupting Download of Software Update Leads to Inconsistent Image Version and Leaves Image Mounted and Stored in Temporary Location ... 12
3.2.10 Oracle VM Manager Tuning Settings Are Lost During Software Update 12
3.2.11 Compute Nodes Lose Oracle VM iSCSI LUNs During Software Update 13
3.2.12 External Storage Cannot Be Discovered Over Data Center Network 13
4 Feedback and Support ... 15
4.1 Providing Feedback and Reporting Problems ... 15
4.2 Contacting Oracle Specialist Support ... 15
4.3 Data Collection for Service and Support ... 16
Preface

This document is part of the documentation library for Oracle Virtual Compute Appliance Release 1.1, which is available at:

http://docs.oracle.com/cd/E52085_01.

The documentation library consists of the following items:

Oracle Virtual Compute Appliance Release Notes

The release notes provide a summary of the new features, changes, fixed bugs and known issues in Oracle Virtual Compute Appliance.

Oracle Virtual Compute Appliance Installation Guide

The installation guide provides detailed instructions to prepare the installation site and install Oracle Virtual Compute Appliance. It also includes the procedure to install an additional compute node.

Oracle Virtual Compute Appliance Safety and Compliance Guide

The safety and compliance guide is a supplemental guide to the safety aspects of Oracle Virtual Compute Appliance. It conforms to Compliance Model No. OCA1A.

Oracle Virtual Compute Appliance Administrator's Guide

The administrator's guide provides instructions for using the management software. It is a comprehensive guide to how to configure, monitor and administrate Oracle Virtual Compute Appliance.

Oracle Virtual Compute Appliance Quick Start Poster

The quick start poster provides a step-by-step description of the hardware installation and initial software configuration of Oracle Virtual Compute Appliance. A printed quick start poster is shipped with each Oracle Virtual Compute Appliance base rack, and is intended for data center operators and administrators who are new to the product.

The quick start poster is also available in the documentation library as an HTML guide, which contains alternate text for ADA 508 compliance.

Oracle Virtual Compute Appliance Expansion Node Setup Poster

The expansion node setup poster provides a step-by-step description of the installation procedure for an Oracle Virtual Compute Appliance expansion node. A printed expansion node setup poster is shipped with each Oracle Virtual Compute Appliance expansion node.

The expansion node setup poster is also available in the documentation library as an HTML guide, which contains alternate text for ADA 508 compliance.

Audience

The Oracle Virtual Compute Appliance documentation is written for technicians, authorized service providers, data center operators and system administrators who want to install, configure and maintain a virtual compute environment in order to deploy virtual machines for users. It is assumed that readers have experience installing and troubleshooting hardware, are familiar with web and virtualization technologies and have a general understanding of operating systems such as UNIX (including Linux) and Windows.

The Oracle Virtual Compute Appliance makes use of Oracle Linux and Oracle Solaris operating systems within its component configuration. It is advisable that administrators have experience of these operating systems at the very least. Oracle Virtual Compute Appliance is capable of running virtual machines with a variety of operating systems including Oracle Solaris and other UNIXes, Linux and Microsoft Windows. The selection of operating systems deployed in guests on Oracle Virtual Compute Appliance determines the requirements of your administrative knowledge.
Related Documentation

Additional documentation for components related to Oracle Virtual Compute Appliance is available as follows:

- All Oracle products
 http://www.oracle.com/documentation
- Sun Rack II 1042 and 1242
 http://docs.oracle.com/cd/E19844-01/index.html
- Sun Server X4-2
 http://docs.oracle.com/cd/E36975_01/index.html
- Sun Server X3-2
 http://docs.oracle.com/cd/E22368_01/index.html
- Oracle ZFS Storage Appliance ZS3-ES
 http://docs.oracle.com/cd/E27998_01/index.html
- Sun ZFS Storage Appliance 7320
 http://docs.oracle.com/cd/E28317_01/index.html
- Oracle Switch ES1-24
 http://docs.oracle.com/cd/E39109_01/index.html
- NM2-36P Sun Datacenter InfiniBand Expansion Switch
 http://docs.oracle.com/cd/E26698_01/index.html
- Oracle Fabric Interconnect F1-15 Director Switch
 http://docs.oracle.com/cd/E38500_01/index.html
- Oracle Integrated Lights Out Manager (ILOM) 3.1
 http://docs.oracle.com/cd/E24707_01/index.html
- Oracle VM
 http://docs.oracle.com/cd/E35328_01/index.html

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Feedback

Provide feedback about this documentation at:

http://www.oracle.com/goto/docfeedback

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>

Document Revision

Document generated on: 2014-04-23 (revision: 489)
Chapter 1 About Oracle Virtual Compute Appliance

Table of Contents

1.1 Introduction .. 1
1.2 Components .. 1

This chapter provides a quick overview of the product and its components.

1.1 Introduction

Oracle Virtual Compute Appliance is an Oracle Engineered System designed for virtualization. It is an offering that industry analysts refer to as a Converged Infrastructure Appliance: an infrastructure solution in the form of a hardware appliance that comes from the factory pre-configured. Compute resources, network hardware, storage providers, operating systems and applications are engineered to work together but are managed and operated as a single unit.

Installation, configuration, high availability, expansion and upgrading are automated and orchestrated as much as possible. The minimum configuration consists of a base rack with infrastructure components, a pair of management nodes, and two compute nodes. This configuration can be extended by one compute node at a time. All rack units, whether populated or not, are pre-cabled and pre-configured at the factory in order to facilitate the installation of expansion compute nodes on-site at a later time. Within approximately one hour after power-on, the appliance is ready to create virtual servers. Virtual servers are commonly deployed from Oracle VM templates (individual pre-configured VMs) and assemblies (interconnected groups of pre-configured VMs).

The primary value proposition of Oracle Virtual Compute Appliance is the integration of components and resources for the purpose of ease of use and rapid deployment. It should be considered a general purpose solution in the sense that it supports the widest variety of operating systems, including Windows, and any application they might host. Customers can attach their existing storage or provide storage solutions from Oracle or third parties.

1.2 Components

The Oracle Virtual Compute Appliance consists of a Sun Rack II 1242 base, populated with the hardware components identified in Figure 1.1.

Note

Oracle Virtual Compute Appliance Release 1.1 software has support for Sun Server X4-2 and Sun Server X3-2 nodes. A Release 1.0 base rack system is factory-installed with Sun Server X3-2 nodes. The Oracle Virtual Compute Appliance controller software must be upgraded to Release 1.1 in order to support Sun Server X4-2 nodes. A Release 1.1 base rack is factory-installed with Sun Server X4-2 nodes.

Note

Oracle Virtual Compute Appliance Release 1.1 software has support for two built-in ZFS storage appliance models: Oracle ZFS Storage Appliance ZS3-ES and Sun ZFS Storage Appliance 7320. A Release 1.0 base rack system is factory-installed with a Sun ZFS Storage Appliance 7320. A Release 1.1 base rack is factory-installed with an Oracle ZFS Storage Appliance ZS3-ES.
Figure 1.1 Components of an Oracle Virtual Compute Appliance Rack

Table 1.1 Figure Legend

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
</table>
| A | 1 | Oracle ZFS Storage Appliance ZS3-ES
 | | (for Release 1.0 base rack: Sun ZFS Storage Appliance 7320) |
| B | 2 | Sun Server X4-2, used as management nodes
 | | (for Release 1.0 base rack: Sun Server X3-2) |
| C | 2-25 | Sun Server X4-2, used as virtualization computing nodes
 | | (for Release 1.0 base rack: Sun Server X3-2) | |
| D | 2 | Oracle Fabric Interconnect F1-15 Director Switch |
| E | 2 | NM2-36P Sun Datacenter InfiniBand Expansion Switch |
| F | 2 | Oracle Switch ES1-24 |

At the software level, Oracle Virtual Compute Appliance leverages the virtualization technology of Oracle VM and Oracle Virtual Networking. Management, including updates, of the underlying hardware and software is orchestrated and largely automated by the Oracle Virtual Compute Appliance controller software.
Chapter 2 Feature Overview

Table of Contents

2.1 Changes and Improvements in Release 1.1.1 ... 3
2.2 Changes and Improvements in Release 1.0.2 ... 4
2.3 Key Features in Release 1.0.1 ... 6

This chapter provides an overview of the key features in each release of Oracle Virtual Compute Appliance.

2.1 Changes and Improvements in Release 1.1.1

This section describes functional changes, improvements and bug fixes compared to the previous release.

Support for Next-Generation Hardware

Oracle Virtual Compute Appliance Release 1.1.1 software adds provisioning and orchestration support for Sun Server X4-2 nodes and the Oracle ZFS Storage Appliance ZS3-ES. Both are standard components in new Release 1.1.1 systems and offer practically the same functionality and performance as their predecessors, but with more up-to-date internal components such as faster CPUs and slightly larger system disks. The new storage appliance uses the exact same disk shelf as the previous model, thus offering the same amount of usable space.

Sun Server X4-2 expansion nodes can be installed in Release 1.0.x base racks, provided the software stack is updated to Release 1.1.1 or a future release. Sun Server X4-2 and Sun Server X3-2 compute nodes can be used within the same rack in the same Oracle VM server pool. The only functional implication is that virtual machines cannot be live-migrated between both server types because they belong to separate CPU compatibility groups. In that situation, a virtual machine would need to be shut down on one server and restarted on the other server.

Oracle Auto Service Request

Oracle Virtual Compute Appliance is qualified for Oracle Auto Service Request (ASR). ASR is a customer-installable software feature for support purposes. It is integrated with My Oracle Support and helps resolve problems faster by automatically opening service requests when specific hardware failures occur. Using ASR is optional: the components are available in the Release 1.1.1 software image but you must install and configure them in order to enable ASR for your appliance.

Details about the installation, configuration and usage of ASR can be found in the chapter Automating Oracle Virtual Compute Appliance Service Requests of the Oracle Virtual Compute Appliance Administrator's Guide.

Improved Diagnostics

The collection of diagnostic data for troubleshooting has been improved significantly in the Oracle Virtual Compute Appliance Release 1.1.1 software. Dedicated command line tools are now installed on the management and compute nodes. They collect specific Oracle Virtual Compute Appliance logs and related files, or Oracle VM troubleshooting data, depending on the selected command line arguments. The health status of each server, its configuration and its main components can be retrieved through the ILOM.
The new diagnostic functionality offers customers and field service engineers the same level of troubleshooting capability and serviceability as with other Oracle Engineered Systems. Details about the new diagnostic tools can be found in the section Oracle Virtual Compute Appliance Diagnostics Tool of the Oracle Virtual Compute Appliance Administrator's Guide.

Bugs Fixed in Release 1.1.1

The following table lists bugs that have been fixed in Oracle Virtual Compute Appliance Release 1.1.1.

Table 2.1 List of Fixed Bugs

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17895011</td>
<td>“Backup to storage appliance fails because too many old backups exist”</td>
</tr>
<tr>
<td></td>
<td>A new mechanism is in place to delete stale, unused backup data after it is exported successfully. It is no longer required to manually clean up the backups on the ZFS storage appliance.</td>
</tr>
<tr>
<td>17607389</td>
<td>“Network View tab partially displayed in Internet Explorer”</td>
</tr>
<tr>
<td></td>
<td>Display issues with the Oracle Virtual Compute Appliance Dashboard in Internet Explorer 8 and 9 have been resolved.</td>
</tr>
<tr>
<td>17192103</td>
<td>“Compute node falls through PXE boot and cannot be provisioned”</td>
</tr>
<tr>
<td></td>
<td>The Reprovision button in the Dashboard was implemented to recover compute nodes that failed during provisioning. Further enhancements to the reprovisioning functionality now help detect compute nodes in error state and automatically clean up their configuration. Reprovisioning has been made unavailable for correctly provisioned, running compute nodes.</td>
</tr>
<tr>
<td>17389234</td>
<td>“Compute node installed but provisioning failed; network not set correctly”</td>
</tr>
<tr>
<td></td>
<td>The reprovisioning functionality has an improved mechanism to detect the point at which provisioning failed. As a result, it can clean up the compute node configuration in Oracle VM and allow the provisioning to start over. Reprovisioning has been made unavailable for correctly provisioned, running compute nodes.</td>
</tr>
<tr>
<td>17430135</td>
<td>“Reprovision button does not work after compute node is discovered in Oracle VM”</td>
</tr>
<tr>
<td></td>
<td>The reprovisioning functionality can detect compute nodes in error state and automatically clean up their configuration in Oracle VM. Manual clean-up in Oracle VM should no longer be required. Reprovisioning has been made unavailable for correctly provisioned, running compute nodes.</td>
</tr>
</tbody>
</table>

2.2 Changes and Improvements in Release 1.0.2

Oracle Virtual Compute Appliance Release 1.0.2 is a maintenance release. This section describes functional changes, improvements and bug fixes compared to the previous release.

Compute Node Provisioning

Release 1.0.2 is a mandatory update of the Release 1.0.1 software stack installed during manufacturing. It enables the provisioning of compute nodes once the appliance is installed and updated on-site. A number of enhancements and bug fixes add more robustness and better serviceability of the functionality offered in this release.
Bugs Fixed in Release 1.0.2

The following table lists bugs that have been fixed in Oracle Virtual Compute Appliance Release 1.0.2.

<table>
<thead>
<tr>
<th>Bug ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17704931</td>
<td>“Dashboard does not support simultaneous users”</td>
</tr>
<tr>
<td></td>
<td>Multiple users can now log in to the Dashboard UI simultaneously without issues.</td>
</tr>
<tr>
<td>17703144</td>
<td>“Appliance is connected to data center network but external connectivity fails”</td>
</tr>
<tr>
<td></td>
<td>Both tagged and untagged VLAN traffic is supported for virtual machine networking.</td>
</tr>
<tr>
<td></td>
<td>Next-level data center switches must be configured accordingly, as described in the section Configuring Data Center Switches for VLAN Traffic of the Oracle Virtual Compute Appliance Administrator’s Guide.</td>
</tr>
<tr>
<td></td>
<td>VLAN traffic is not supported for management node external networking.</td>
</tr>
<tr>
<td>17626460</td>
<td>“DNS configuration cannot be modified due to field validation error”</td>
</tr>
<tr>
<td></td>
<td>Field validation has been corrected. DNS entries can be removed from the user-configurable network settings in the Dashboard UI.</td>
</tr>
<tr>
<td>17542460</td>
<td>“Inconsistent password change behavior in Dashboard”</td>
</tr>
<tr>
<td></td>
<td>Password changes through the Dashboard UI are applied as designed in a reliable and consistent way.</td>
</tr>
<tr>
<td>17535669</td>
<td>“Dashboard login screen reports no error for invalid credentials”</td>
</tr>
<tr>
<td></td>
<td>Error messages are displayed when a user attempts to log in with an incorrect user name or password.</td>
</tr>
<tr>
<td>17475229</td>
<td>“Network configuration update is not applied; Dashboard UI provides no feedback”</td>
</tr>
<tr>
<td></td>
<td>User-configurable network settings are applied as designed in a reliable and consistent way. The Dashboard UI does not reload until the services affected by the configuration changes have restarted.</td>
</tr>
<tr>
<td>17457001</td>
<td>“Applying the dummy network configuration from the Quick Start Poster breaks rack connectivity”</td>
</tr>
<tr>
<td></td>
<td>IP addresses are verified before they are applied. Internally used subnets and reserved addresses are rejected.</td>
</tr>
<tr>
<td>17449881</td>
<td>“Choosing Network in Network View causes Java exception”</td>
</tr>
<tr>
<td></td>
<td>The exception – which had no adverse effects – no longer appears.</td>
</tr>
<tr>
<td>17415171</td>
<td>“Virtual machines are assigned to compute nodes in initializing state”</td>
</tr>
<tr>
<td></td>
<td>Oracle VM does not allow compute nodes to join the server pool before they are completely provisioned and ready to use. If a compute node fails after joining the server pool, Oracle VM is unaware of the failure. This is considered normal behavior and is not harmful to the physical or virtual environment. If the issue is not resolved automatically by Oracle VM and the virtual machine will not start, you can log into Oracle VM Manager and move or migrate the virtual machine to a correctly operating compute node.</td>
</tr>
</tbody>
</table>
2.3 Key Features in Release 1.0.1

This section describes the key features offered in Release 1.0.1 of Oracle Virtual Compute Appliance.

Speed and Ease of Use

The Oracle Virtual Compute Appliance is assembled, cabled and pre-installed at the factory, thus eliminating configuration errors and reducing setup time. Administrators are free to focus on transforming the IT infrastructure and delivering flexible services to respond to the organization's requirements. By leveraging the advantages of an integrated system, they save the time normally required for planning and configuring the infrastructure from scratch. Provisioning new applications into flexible virtualized environments, in a fraction of the time required for physical deployments, generates substantial financial benefits. Within approximately one hour after power-on, the appliance is ready to create virtual servers.

Automated Deployment

With the Oracle Virtual Compute Appliance, users only need to move the rack into place in the data center, connect power, network and management Ethernet cables, and power on the system. The controller software orchestrates the installation and configuration of the entire hardware and software environment. At the end of the provisioning process, the user enters the basic configuration properties of the data center environment in the Oracle Virtual Compute Appliance Dashboard, so that the controller software can prepare the appliance for integration with your existing infrastructure.

Compute capacity is extended by adding more compute nodes, one server at a time. The integration of expansion compute nodes is seamless: slide the server into the next available rack unit, connect the cables, and let the controller software discover the new hardware.

For a detailed description of provisioning and orchestration, refer to the section Provisioning and Orchestration in the Oracle Virtual Compute Appliance Administrator's Guide.
Network Virtualization

High-performance, low-latency Oracle Fabric Interconnect with Oracle SDN, two products in the Oracle Virtual Networking family, allow automated configuration of the server and storage networks. Oracle SDN dynamically connects servers to networks and storage. It eliminates the physical storage and networking cards found in every server and replaces them with virtual network interface cards (vNICs) and virtual host bus adapters (vHBAs) that can be deployed on the fly. Applications and operating systems see these virtual resources exactly as they would see their physical counterparts. Oracle Virtual Networking simplifies complex data center deployments with a wire-once solution and simple software-defined network configurations.

Integrated Storage

Oracle Virtual Compute Appliance features a fully integrated, enterprise-grade Sun ZFS Storage Appliance 7320 for centrally storing the management environment as well as providing data storage for VMs. This storage subsystem is built using Oracle’s enterprise-class storage products and technology and is designed to be fully redundant for maximum fault tolerance and serviceability in production. In addition, each compute node offers extra disk space that can be used as local storage for the virtual infrastructure deployed on it.

The storage capacity of Oracle Virtual Compute Appliance can be expanded beyond the internal, included storage, to external data center racks containing more than one Oracle ZFS Storage Appliance or supported storage available from other storage vendors.

High Availability

The Oracle Virtual Compute Appliance is designed for high availability at every level.

During the factory installation of Oracle Virtual Compute Appliance, the two management nodes are configured as a cluster. The cluster relies on an OCFS2 file system exported as a LUN from the ZFS storage to perform the heartbeat function and to store a lock file. The management node that has control over the lock file automatically becomes the master or active node in the cluster. The master management node is always available via the same virtual IP address, thus ensuring continuity of service up to the level of the Dashboard user interface. In case the active management node fails, the cluster detects the failure and the lock is released. Since the standby management node is constantly polling for control over the lock file, it detects when it has control of this file and brings up all the required Oracle Virtual Compute Appliance services. The management node failover process takes up to 5 minutes to complete.

In addition, all configuration databases are stored on the Sun ZFS Storage Appliance 7320, to which components have shared access. The risk of data loss or interruption of service is further reduced by redundant network hardware, clustered storage heads, and a RAID-Z disk configuration that tolerates media failure and automatically detects and corrects bit errors.

For more information about high availability, refer to the section High Availability in the Oracle Virtual Compute Appliance Administrator's Guide.

Templates and Assemblies

Within a matter of hours, the system is ready and users can start adding VMs. These can be created from scratch, or deployed from ready-to-run Oracle VM templates and assemblies. As a result, Oracle Virtual Compute Appliance offers out-of-the-box support for thousands of Oracle and third-party applications. This way, complex Oracle software stacks can be rapidly deployed.

The ability to quickly and easily deploy applications to a highly scalable virtualized environment reduces time to market for the business, and allows IT to rapidly deploy and scale test, development, and staging

Operating System and Application Support

Support for many operating systems and your choice of storage protects your investment and provides easy deployment into your data centers. Getting applications to users requires a lot more than just hardware provisioning. End-users need their applications provisioned as well. Oracle Virtual Compute Appliance accelerates deployment of the full hardware-to-applications stack so you can get applications to users within hours of power-on, rather than days or weeks.

Oracle VM supports up to 128 vCPUs and a variety of guest OSs such as Oracle Linux, Oracle Solaris, and Microsoft Windows. Entire Oracle application stacks can be deployed in minutes to hours using Oracle VM templates and assemblies. By default, all Oracle software that has been certified for use with Oracle VM is certified for Oracle Virtual Compute Appliance, which includes the Oracle Database, Oracle Fusion Middleware, Oracle Applications, and Oracle Real Application Clusters.
Chapter 3 Known Limitations and Workarounds

Table of Contents

3.1 Oracle Virtual Compute Appliance Hardware ... 9
 3.1.1 Compute Node Boot Sequence Interrupted by LSI Bios Battery Error 9
 3.1.2 Management Node Network Interfaces Are Down After System Restart 9
 3.1.3 ILOM Service Processor Clocks Are Out-of-Sync ... 10
3.2 Oracle Virtual Compute Appliance Software .. 10
 3.2.1 OpenSSL 'Heartbleed' Vulnerability Affects Management Nodes 10
 3.2.2 Do Not Reconfigure Network During Compute Node Provisioning or Upgrade 10
 3.2.3 Nodes Attempt to Synchronize Time with the Wrong NTP Server 11
 3.2.4 Unknown Symbol Warning during InfiniBand Driver Installation 11
 3.2.5 Do Not Add Compute Node When Management Node Services Are Restarted 11
 3.2.6 Do Not Execute ovca-node-db from the Command Line ... 11
 3.2.7 Node Manager Does Not Show Node Offline Status ... 12
 3.2.8 Update Functionality Not Available in Dashboard ... 12
 3.2.9 Interrupting Download of Software Update Leads to Inconsistent Image Version and Leaves Image Mounted and Stored in Temporary Location ... 12
 3.2.10 Oracle VM Manager Tuning Settings Are Lost During Software Update 12
 3.2.11 Compute Nodes Lose Oracle VM iSCSI LUNs During Software Update 13
 3.2.12 External Storage Cannot Be Discovered Over Data Center Network 13

This chapter provides information about the known limitations and workarounds for Oracle Virtual Compute Appliance.

3.1 Oracle Virtual Compute Appliance Hardware

This section describes hardware-related limitations and workarounds.

3.1.1 Compute Node Boot Sequence Interrupted by LSI Bios Battery Error

When a compute node is powered off for an extended period of time, a week or longer, the LSI BIOS may stop because of a battery error, waiting for the user to press a key in order to continue.

Workaround: Wait for approximately 10 minutes to confirm that the compute node is stuck in boot. Use the Reprovision button in the Oracle Virtual Compute Appliance Dashboard to reboot the server and restart the provisioning process.

Bug 16985965

3.1.2 Management Node Network Interfaces Are Down After System Restart

If the Oracle Virtual Compute Appliance needs to be powered down and restarted for maintenance or in the event of a power failure, the components should come back up in this order: first networking, then storage, and then the management and compute nodes. For detailed instructions to bring the appliance offline and return it to operation, refer to the section Powering Down Oracle Virtual Compute Appliance in the Oracle Virtual Compute Appliance Administrator's Guide.

It may occur that the management nodes complete their boot sequence before the appliance network configuration is up. In that case, the management nodes are unreachable because their bond0 and bond2 interfaces are down.
Workaround: Reboot the management nodes again. When they come back online, their network interfaces should be correctly configured.

Bug 17648454

3.1.3 ILOM Service Processor Clocks Are Out-of-Sync

Most Oracle Virtual Compute Appliance components are equipped with an Oracle Integrated Lights Out Manager (ILOM). Each ILOM Service Processor (SP) contains its own clock, which is synchronized with the operating system (OS) clock before it leaves the factory. However, when new expansion nodes are installed or when parts in a component have been repaired or replaced, SP clocks could be out-of-sync. The problem may also be the result of a configuration error or normal clock drift.

If necessary, the SP clock can be synchronized manually. There is no need to continually update the hardware clock, because it only serves as a reference point for the host OS. Once the systems are up and running the OS obtains the correct time through NTP.

Workaround: After configuring the NTP server in the Oracle Virtual Compute Appliance Dashboard, synchronize the ILOM SPs with the OS clock. The easiest way is to log into the host and run this command: `hwclock --systohc`.

Bug 17664050

3.2 Oracle Virtual Compute Appliance Software

This section describes software-related limitations and workarounds.

3.2.1 OpenSSL 'Heartbleed' Vulnerability Affects Management Nodes

The Oracle Virtual Compute Appliance software Release 1.1.1 and earlier contains a version of OpenSSL that is compromised by CVE-2014-0160 – commonly known as the 'heartbleed bug'. OpenSSL is installed on both management nodes. It must be upgraded to a version that contains the necessary fix. The fix will be included in the errata Release 1.1.2 of the Oracle Virtual Compute Appliance software stack.

Background information and details about this vulnerability are widely available online. Oracle has published an article on Oracle Technology Network to document the current status of its products with respect to OpenSSL security: http://www.oracle.com/technetwork/topics/security/opensslheartbleedcve-2014-0160-2188454.html.

Workaround: When Oracle Virtual Compute Appliance Release 1.1.2 software is available, download it and update your Oracle Virtual Compute Appliance. In the meantime, eliminate the vulnerability by upgrading OpenSSL on the management nodes. Download and installation instructions are available in the support note with Doc ID 1664138.1.

Bugs 18545030 and 18553479

3.2.2 Do Not Reconfigure Network During Compute Node Provisioning or Upgrade

In the Oracle Virtual Compute Appliance Dashboard, the Network Setup tab becomes available when the first compute node has been provisioned successfully. However, when installing and provisioning a new system, you must wait until all nodes have completed the provisioning process before changing the network configuration. Also, when provisioning new nodes at a later time, or when upgrading the environment, do not apply a new network configuration before all operations have completed. Failure to follow these guidelines is likely to leave your environment in an indeterminate state.
Workaround: Before reconfiguring the system network settings, make sure that no provisioning or upgrade processes are running.

Bug 17475738

3.2.3 Nodes Attempt to Synchronize Time with the Wrong NTP Server

External time synchronization, based on `ntpd`, is left in default configuration at the factory. As a result, NTP does not work when you first power on the Oracle Virtual Compute Appliance, and you may find messages in system logs similar to these:

```
Oct 1 11:20:33 ovcamn06r1 kernel: o2dlm: Joining domain ovca ( 0 1 ) 2 nodes
Oct 1 11:20:53 ovcamn06r1 ntpd_initres[3478]: host name not found:0.rhel.pool.ntp.org
Oct 1 11:20:58 ovcamn06r1 ntpd_initres[3478]: host name not found:1.rhel.pool.ntp.org
Oct 1 11:21:03 ovcamn06r1 ntpd_initres[3478]: host name not found:2.rhel.pool.ntp.org
```

Workaround: Apply the appropriate network configuration for your data center environment, as described in the section **Network Setup** in the Oracle Virtual Compute Appliance Administrator's Guide. When the data center network configuration is applied successfully, the default values for NTP configuration are overwritten and components will synchronize their clocks with the source you entered.

Bug 17548941

3.2.4 Unknown Symbol Warning during InfiniBand Driver Installation

Towards the end of the management node `install.log` file, the following warnings appear:

```
> WARNING:
> /lib/modules/2.6.39-300.32.1.el6uek.x86_64/kernel/drivers/infiniband/ \ 
> hw/ipath/ib_ipath.ko needs unknown symbol ib_wq
> WARNING:
> /lib/modules/2.6.39-300.32.1.el6uek.x86_64/kernel/drivers/infiniband/ \ 
> hw/qib/ib_qib.ko needs unknown symbol ib_wq
> WARNING:
> /lib/modules/2.6.39-300.32.1.el6uek.x86_64/kernel/drivers/infiniband/ \ 
> ulp/srp/ib_srp.ko needs unknown symbol ib_wq
> *** FINISHED INSTALLING PACKAGES ***
```

These warnings have no adverse effects and may be disregarded.

Bug 16946511

3.2.5 Do Not Add Compute Node When Management Node Services Are Restarted

Compute node provisioning fails if services on the management node are shut down or restarted during the process. For example, upgrading management nodes involves restarting services. Adding compute nodes to the system must be avoided at such times.

Workaround: When adding a compute node to the environment, make sure that there are no active processes that may interrupt services on the management node.

Bug 17431002

3.2.6 Do Not Execute `ovca-node-db` from the Command Line

As a rule, you should not run any of the `ovca`-commands at the Oracle Linux prompt, unless Oracle explicitly instructs you to.
Specifically, if you accidentally run `ovca-node-db delete` without any additional arguments, all entries in the node database are deleted.

Bug 18435883

3.2.7 Node Manager Does Not Show Node Offline Status

The role of the Node Manager database is to track the various states a compute node goes through during provisioning. After successful provisioning the database continues to list a node as *running*, even if it is shut down. For nodes that are fully operational, the server status is tracked by Oracle VM Manager. However, the Oracle Virtual Compute Appliance Dashboard displays status information from the Node Manager. This may lead to inconsistent information between the Dashboard and Oracle VM Manager.

Workaround: To verify the status of operational compute nodes, use the Oracle VM Manager user interface.

Bug 17456373

3.2.8 Update Functionality Not Available in Dashboard

The Oracle Virtual Compute Appliance Dashboard cannot be used to perform an update of the software stack.

Workaround: Use the command line tool `ovca-updater` to update the software stack of your Oracle Virtual Compute Appliance. For details, refer to the section *Oracle Virtual Compute Appliance Software Update* in the Oracle Virtual Compute Appliance Administrator's Guide. For step-by-step instructions, refer to the section *Update*. You can use SSH to log in to each management node and check `/etc/ovca-info` for log entries indicating restarted services and new software revisions.

Bug 17476010, 17475976 and 17475845

3.2.9 Interrupting Download of Software Update Leads to Inconsistent Image Version and Leaves Image Mounted and Stored in Temporary Location

The first step of the software update process is to download an image file, which is unpacked in a particular location on the ZFS storage appliance. When the download is interrupted, the file system is not cleaned up or rolled back to a previous state. As a result, contents from different versions of the software image may end up in the source location from where the installation files are loaded. In addition, the downloaded *.iso* file remains stored in `/tmp` and is not unmounted. If downloads are frequently started and stopped, this could cause the system to run out of free loop devices to mount the *.iso* files, or even to run out of free space.

Workaround: The files left behind by previous downloads do not prevent you from running the update procedure again and restarting the download. Download a new software update image. When it completes successfully you can install the new version of the software, as described in the section *Update* in the Oracle Virtual Compute Appliance Administrator's Guide.

Bug 18352512

3.2.10 Oracle VM Manager Tuning Settings Are Lost During Software Update

During the Oracle Virtual Compute Appliance software update from Release 1.0.2 to Release 1.1.1, it may occur that the specific tuning settings for Oracle VM Manager are not applied correctly, and that default settings are used instead.
Workaround: Verify the Oracle VM Manager tuning settings and re-apply them if necessary. Follow the instructions in the section Verifying and Re-applying Oracle VM Manager Tuning after Software Update in the Oracle Virtual Compute Appliance Administrator’s Guide.

Bug 18477228

3.2.11 Compute Nodes Lose Oracle VM iSCSI LUNs During Software Update

Several iSCSI LUNs, including the essential server pool file system, are mapped on each compute node. When you update the appliance software, it may occur that one or more LUNs are missing on certain compute nodes. In addition, there may be problems with the configuration of the clustered server pool, preventing the existing compute nodes from joining the pool and resuming correct operation after the software update.

Workaround: To avoid these software update issues, upgrade all previously provisioned compute nodes by following the procedure described in the section Upgrading Existing Compute Node Configuration to Release 1.1.1 in the Oracle Virtual Compute Appliance Administrator’s Guide.

Bugs 17922555, 18459090, 18433922 and 18397780

3.2.12 External Storage Cannot Be Discovered Over Data Center Network

The default compute node configuration does not allow connectivity to additional storage resources in the data center network. Compute nodes are connected to the data center subnet to enable public connectivity for the virtual machines they host, but the compute nodes’ physical network interfaces have no IP address in that subnet. Consequently, SAN or file server discovery will fail.

Bug 17508885
Chapter 4 Feedback and Support

Note
Customers who use Oracle Auto Service Request (ASR) do not need to submit a service request through My Oracle Support for the specific hardware failure scenarios covered by ASR. For details, refer to the chapter Automating Oracle Virtual Compute Appliance Service Requests of the Oracle Virtual Compute Appliance Administrator's Guide.

4.1 Providing Feedback and Reporting Problems

If you need to report an issue and have an Oracle Premier Support Agreement, you should open a case with Oracle Support at https://support.oracle.com.

If you are reporting an issue, please provide the following information where applicable:

• Description of the problem, including the situation where the problem occurs, and its impact on your operation.

• Machine type, operating system release, browser type and version, locale and product release, including any patches you have applied, and other software that might be affecting the problem.

• Detailed steps on the method you have used, to reproduce the problem.

• Any error logs or core dumps.

4.2 Contacting Oracle Specialist Support

If you have an Oracle Customer Support Identifier (CSI), first try to resolve your issue by using My Oracle Support at https://support.oracle.com. Your Oracle Premier Support CSI does not cover customization support, third-party software support, or third-party hardware support.

If you cannot resolve your issue, open a case with the Oracle specialist support team for technical assistance on break/fix production issues. The responding support engineer will need the following information to get started:

• Your Oracle Customer Support Identifier.

• The product you are calling about.

• A brief description of the problem you would like assistance with.

• Any logs or support data you have, see Section 4.3, “Data Collection for Service and Support” for details.
If your CSI is unknown, find the correct Service Center for your country (http://www.oracle.com/us/support/contact-068555.html), then contact Oracle Services to open a non-technical service request (SR) to get your CSI sorted. Once you have your CSI, you can proceed to open your case through My Oracle Support.

4.3 Data Collection for Service and Support

When submitting a Service Request (SR), please include an archive file with the relevant log files and debugging information as listed in this section. This information can be used by Oracle Support to analyze and diagnose system issues. The support data files can be uploaded for further analysis by Oracle Support.

Tip

Collecting support files involves logging in to the command line on components in your Oracle Virtual Compute Appliance rack and copying files to a storage location external to the appliance environment, in the data center network. This can only be achieved from a system with access to both the internal appliance management network and the data center network. You can set up a physical or virtual system with those connections, or use the master management node.

The most convenient way to collect the necessary files, is to mount the target storage location on the system using `nfs`, and copy the files using `scp` with the appropriate login credentials and file path. The command syntax should be similar to this example:

```
# mkdir /mnt/mynfsshare
# mount -t nfs storage-host-ip:/path-to-share /mnt/mynfsshare
# scp root@component-ip:/path-to-file /mnt/mynfsshare/ovca-support-data/
```

Collecting Oracle Virtual Compute Appliance Support Data

Warning

For more accurate diagnosis of physical server issues, Oracle Support Services require a system memory dump. For this purpose, `kdump` must be installed and configured on the component under investigation. The entire procedure is described in the support note with Doc ID 1520837.1. By default, `kdump` is installed on all Oracle Virtual Compute Appliance compute nodes and configured to write the system memory dump to the ZFS storage appliance at this location: 192.168.4.1:/export/nfs_repository1/.

Caution

For diagnostic data collection, Oracle Support Services recommend that the OSWatcher tool be run for an extended period of time. For details about the use of OSWatcher, please consult the support note with Doc ID 580513.1. OSWatcher is installed by default on all Oracle Virtual Compute Appliance compute nodes.

For diagnostic purposes, Oracle Support Services use a tool called `ovca-diag` that automatically collects vital troubleshooting information from your Oracle Virtual Compute Appliance environment. This tool is part of the Oracle Virtual Compute Appliance controller software installed on both management nodes and on all compute nodes. Its capabilities are described in the section “Oracle Virtual Compute Appliance Diagnostics Tool” in the Oracle Virtual Compute Appliance Administrator’s Guide.

To collect support data from your system, proceed as follows:

1. Log in to the master management node as root.
2. Run `ovca-diag` with the appropriate command line arguments.

Note
Oracle Support teams may request that the tool be run in a specific manner as part of an effort to diagnose and resolve reported hardware or software issues.

For the most complete set of diagnostic data, run the command with both arguments: `ovca-diag ilom vmpinfo`.

- **ovca-diag ilom**

Use this command to detect and diagnose potential component hardware and software problems.

```
[root@ovcamn05r1 ~]# ovca-diag ilom
Oracle Virtual Compute Appliance diagnostics tool
Gathering Linux information...
Gathering system messages...
Gathering OVCA related files...
Gathering OS version information...
Gathering host specific information...
Gathering PCI information...
Gathering SCSI and partition data...
Gathering OS process data...
Gathering network setup information...
Gathering installed packages data...
Gathering disk information...
Gathering ILOM Service Processor data... this may take a while
Generating diagnostics tarball and removing temp directory
==============================================================================
Diagnostics completed. The collected data is available in:
/tmp/ovcadiag_ovcamn05r1_<ID>_<date>_<time>.tar.bz2
==============================================================================
```

- **ovca-diag vmpinfo**

Use this command to detect and diagnose potential problems in the Oracle VM environment.

Note
To collect diagnostic information for a subset of the Oracle VM Servers in the environment, run the command with an additional `servers` parameter, as shown in the example below.

```
[root@ovcamn05r1 ~]# ovca-diag vmpinfo servers='ovcacn07r1,ovcacn08r1'
Oracle Virtual Compute Appliance diagnostics tool
Gathering Linux information...
Gathering system messages...
Gathering OVCA related files...
Gathering OS version information...
Gathering host specific information...
Gathering PCI information...
Gathering SCSI and partition data...
Gathering OS process data...
Gathering network setup information...
Gathering installed packages data...
Gathering disk information...
Gathering FRU data and console history. Use ilom option for complete ILOM data.
```
When the `vmpinfo3` script is called as a sub-process from `ovca-diag`, the console output continues as follows:

Running vmpinfo tool...
Gathering files from servers: ovcacn07r1,ovcacn08r1 This process may take some time.
The following server(s) will get info collected: [ovcacn07r1,ovcacn08r1]
Gathering OVM Model Dump files
Gathering sosreport from ovcacn07r1
Gathering sosreport from ovcacn08r1
Gathering OVM Manager Logs
Gathering manager sosreport.

When all files have been collected, the data is compressed into two tarballs. One is from the `ovca-diag` tool, while `vmpinfo3` writes a separate tarball with its own specific data.

Compressing VMPinfo3 `<date>`-`<time>`.

Please send /tmp/vmpinfo3-<version>-<date>-<time>.tar.gz to Oracle OVM support

Generating diagnostics tarball and removing temp directory

Diagnostics completed. The collected data is available in:
/tmp/ovcadiag_ovcamn05r1_<ID>_<date>_<time>.tar.bz2

3. If necessary, run `ovca-diag`, with or without the `ilom` argument, on some or all compute nodes as well.

4. To allow better analysis of physical server issues, for example hanging, crashing or rebooting, also include the system memory dump file (`vmcore`).

 The location of the file is: `<kdump-partition-mount-point>/var/crash/127.0.0.1-<date>-<time>/vmcore`. The partition and mount point are defined during `kdump` configuration. By default, `kdump` writes to `192.168.4.1:/export/nfs_repository1/`. For details, please consult the support note with Doc ID 1520837.1.

5. When required, collect the OSWatcher logs from the compute nodes. The default location is `/opt/osw`.

For details, please consult the support note with Doc ID 580513.1.

6. Copy all diagnostic files to a location external to the appliance environment.

Uploading Support Data Files

For support data up to 2 GB, upload the file as part of the Service Request (SR) process in My Oracle Support (MOS).

- If you are still in the process of logging the SR, upload the support data in the **Upload Files/Attachments** step of the SR.

- If you have already logged the SR and need to upload files afterwards, proceed as follows:
 1. Log into MOS and open the **Dashboard** or **Service Request** tab.
 2. In the **Service Request** region, click the SR you want to update.
 3. In the **Update** section, select **Add Attachment**.
4. In the pop-up window, select the file for upload, include any notes, and click Attach File.

If uploading the support data with the SR is not an option, or for support data files over 2 GB in size, use the FTPS file upload service from Oracle support at transport.oracle.com. Oracle Support might request that you upload using a different mechanism.

1. Using an FTPS client, for example FileZilla or WinSCP, access the My Oracle Support File Upload Service transport.oracle.com in passive mode.

2. Log in with your Oracle Single Sign-On user name and password.

3. Select the support data file to upload.

4. Select a destination for the file.

 Use the directory path provided by Oracle Support.

 Typically, the directory path is constructed as follows: "/upload/issue/<sr_number>/".

 The use of a SR number ensures that the file is correctly associated with the service request. Write down the full path to the file and the SR number for future reference in communications with Oracle Support.

5. Upload the file.

 When the upload is complete, a confirmation message is displayed.

Note

If you prefer to use a command-line client, for example cURL, you typically enter a single command to connect, authenticate and complete the upload. A cURL command will look similar to this example: `curl -T <path_to_file> -u "<user>" ftps://transport.oracle.com/upload/issue/<sr_number>/`. For security reasons, it is recommended that you leave the password out of the command and be prompted to enter the password.

For detailed information about uploading files to Oracle Support, refer to the support note with Doc ID 1547088.2.