Oracle[®] Solaris Cluster 소프트웨어 설치 설명 서

부품 번호: E52242-02 2014년 9월

Copyright © 2000, 2014, Oracle and/or its affiliates. All rights reserved.

본 소프트웨어와 관련 문서는 사용 제한 및 기밀 유지 규정을 포함하는 라이센스 계약서에 의거해 제공되며, 지적 재산법에 의해 보호됩니다. 라이센스 계약서 상에 명시적으로 허용되어 있는 경우나 법규에 의해 허용된 경우를 제외하고, 어떠한 부분도 복사, 재생, 번역, 방송, 수정, 라이센스, 전송, 배포, 진열, 실행, 발행, 또는 전시될 수 없습니다. 본 소프트웨어를 리버스 엔지니어링, 디스어셈블리 또는 디컴파일하는 것은 상호 운용에 대한 법규에 의해 명시된 경우를 제외하고는 금지되어 있습니다.

이 안의 내용은 사전 공지 없이 변경될 수 있으며 오류가 존재하지 않음을 보증하지 않습니다. 만일 오류를 발견하면 서면으로 통지해 주기 바랍니다.

만일 본 소프트웨어나 관련 문서를 미국 정부나 또는 미국 정부를 대신하여 라이센스한 개인이나 법인에게 배송하는 경우, 다음 공지 사항이 적용됩니다.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

본 소프트웨어 혹은 하드웨어는 다양한 정보 관리 애플리케이션의 일반적인 사용을 목적으로 개발되었습니다. 본 소프트웨어 혹은 하드웨어는 개인적인 상해를 초래할 수 있 는 애플리케이션을 포함한 본질적으로 위험한 애플리케이션에서 사용할 목적으로 개발되거나 그 용도로 사용될 수 없습니다. 만일 본 소프트웨어 혹은 하드웨어를 위험한 애 플리케이션에서 사용할 경우, 라이센스 사용자는 해당 애플리케이션의 안전한 사용을 위해 모든 적절한 비상-안전, 백업, 대비 및 기타 조치를 반드시 취해야 합니다. Oracle Corporation과 그 자회사는 본 소프트웨어 혹은 하드웨어를 위험한 애플리케이션에서의 사용으로 인해 발생하는 어떠한 손해에 대해서도 책임지지 않습니다.

Oracle과 Java는 Oracle Corporation 및/또는 그 자회사의 등록 상표입니다. 기타의 명칭들은 각 해당 명칭을 소유한 회사의 상표일 수 있습니다.

Intel 및 Intel Xeon은 Intel Corporation의 상표 내지는 등록 상표입니다. SPARC 상표 일체는 라이센스에 의거하여 사용되며 SPARC International, Inc.의 상표 내지는 등록 상표입니다. AMD, Opteron, AMD 로고, 및 AMD Opteron 로고는 Advanced Micro Devices의 상표 내지는 등록 상표입니다. UNIX는 The Open Group의 등록상표입니 다.

본 소프트웨어 혹은 하드웨어와 관련문서(설명서)는 제 3자로부터 제공되는 컨텐츠, 제품 및 서비스에 접속할 수 있거나 정보를 제공합니다. Oracle Corporation과 그 자회사 는 제 3자의 컨텐츠, 제품 및 서비스와 관련하여 어떠한 책임도 지지 않으며 명시적으로 모든 보증에 대해서도 책임을 지지 않습니다. Oracle Corporation과 그 자회사는 제 3 자의 컨텐츠, 제품 및 서비스에 접속하거나 사용으로 인해 초래되는 어떠한 손실, 비용 또는 손해에 대해 어떠한 책임도 지지 않습니다.

목차

이 설명서 사용	9
1. Oracle Selaric Cluster 그서 개희	1 1
이 Oracle Solaris Cluster 거경 계획	11
Oracle Solaris OE 계회	II 12
Oracle Solaris 선키 바비 서태 기기	12
Oracle Solaris 알지 당합 전택 지점 Oracle Solaris OS 기도 요구 나하 미 개하 나하	12
이러디면 Soldiis OS 기능 표구 사양 및 세인 사양	12
시스템 니스크 군일 영역	13
슬큠 끈디 오프느웨어 Oracle Celerie Cluster 친겨 계회	IS
Oracle Soldris Cluster 환경 계획	
Oracle Solaris Cluster 소프드웨어 며신 메미지 이기 시험	
메모디 요구 사양 고이세시	
다이엔깅	
조프드웨어 입네이드	
중풍 네드쿼그 IP 구소 코소 에네네스 7년리	17
곤놀 액세스 경시 고요 네트이그 그셔	18 10
강풍 네드쿼그 구성 키러 니비 그서	
처럼 지미 구성	
NFS 시점	
저미스 세안 사양 NTD(Naturaly Time Drate cal)	
NTP(Network Time Protocol)	22
Oracle Solaris Cluster 구성 가능 구성 표소	
SPARC, 클러스터의 Oracle VIVI Server for SPARC에 내한 시점 에어 크고스티	
경역 코디스디 개여 가리 가리 그리마 크게지다 파이 내지테 계회	
전역 장시, 장시 그룹 및 글디스터 파일 시스템 계획 거여 가리 게히	
신역 상시 계획	
장시 그룹 계획	
글디스터 파일 시스템 계획	
UFS 클러스터 파일 시스템의 마운트 옵션 선택	
글려스터 파일 시스템의 바꾼트 성모	

	볼륨 관리 계획 볼륨 관리자 소프트웨어에 대한 지침 Solaris Volume Manager 소프트웨어에 대한 지침 <i>UFS</i> 클러스터 파일 시스템 로깅 미러링 지침	40 40 41 42 42
2	전역 클러스터 노드에 소프트웨어 설치 소프트웨어 설치 개요 설치 고려 사항 소프트웨어 설치 * 클러스터 소프트웨어 설치를 준비하는 방법 * Oracle Solaris 소프트웨어를 설치하는 방법 * 관리 콘솔에 pconsole 소프트웨어를 설치하는 방법 * Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방	45 46 46 47 48 52
	 UH부 디스크 미러링을 구성하는 방법 ✓ SPARC: Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 ✓ Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 ✓ Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치하는 방법 ✓ Sun QFS 소프트웨어를 설치하는 방법 ✓ 루트 환경을 설정하는 방법 ✓ IP 필터를 구성하는 방법 	54 57 58 58 63 64 64 65
3	전역 클러스터 설정	67 69 69 78 86 10

▼ 도드 또는 개인 네드워크를 주가일 때 개인 네드워크 구성을 면정하는 잉	
법	113
추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어 구성	
(scinstall)	118
▼ 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하	
는 방법(XML 파일)	125
▼ 전역 클러스터에 노드를 추가한 후 쿼럼 장치를 업데이트하는 방법	129

▼ 쿼럼 장치를 구성하는 방법	132
▼ 쿼럼 구성 및 설치 모드를 확인하는 방법	137
▼ 개인 호스트 이름을 변경하는 방법	138
NTP(Network Time Protocol) 구성	139
▼ 클러스터의 유효성을 검사하는 방법	142
▼ 클러스터 구성의 진단 데이터를 기록하는 방법	143
4 Solaris Volume Manager 소프트웨어 구서	1/15
Solaris Volume Manager 소프트웨어 구서	1/15
Solaris Volume Manager エーー케이 T 8	1/15
▼ 501alis volume Manager을 물지하는 중급	145
▼ 경대 데이티메이드 국제근 경경 경급 크러스터에 디스크 바트 마드기	140
글니스니에 니스크 세트 한글기	147
▼ 니스크 세트를 만드는 경합	147
니스크 세드에 드다이브 주가	149
▼ 니스크 세드의 드다이므늘 다시 군일이는 영립	101
▼ md.tab 파일술 만드는 방법	152
▼ 돌뮴을 왈싱와이는 방법	153
이중 군사열 중개사 구장	155
이중 문사열 중새사 요구 사양	155
▼ 중새사 오스트들 주가하는 방법	156
▼ 잘못된 중새사 네이터들 검사하고 주성하는 망법	157
5 클러스터 파일 시스템 만들기	159
클러스터 파일 시스템 만들기	159
▼ 클러스터 파일 시스템을 만드는 방법	159
Oracle ACFS 파일 시스템 만들기	162
Oracle ACFS 파일 시스템의 샘플 구성	163
▼ 프레임워크 리소스 그룹 등록 및 구성 방법	166
▼ Oracle ACFS 파일 시스템을 만드는 방법	169
▼ 확장 가능한 장치-그룹 리소스 그룹 등록 및 구성 방법	171
▼ Oracle ASM 리소스 그룹 등록 및 구성 방법	172
▼ Oracle ACFS 프록시 리소스 그룹 등록 및 구성 방법	174
▼ Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리	
소스를 만드는 방법	176
6 영역 클러스터 만들기	179
영역 클러스터 만들기 및 구성 개요	179
영역 클러스터 만들기 및 구성	180
영역 클러스터 만들기	180

영역 클러스터에 파일 시스템 추가	195
특정 영역 클러스터 노드에 로컬 파일 시스템 추가	208
영역 클러스터에 저장 장치 추가	211
7 클러스터에서 소프트웨어 제거	210
/ 걸디그디에지 포크크케이 제기	219
소프트웨어 설지 세거	219
▼ Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하	
는 방법	219
▼ Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 제거하는 방법	222
▼ 영역 클러스터 구성을 해제하는 방법	223
▼ Oracle Solaris 소프트웨어의 Availability Suite 기능을 제거하는 방	
법	224
_	
색인	225

이 설명서 사용

- **개요** Oracle Solaris Cluster 소프트웨어 설치 및 구성에 대한 지침과 절차를 포함합니다.
- 대상 Oracle 소프트웨어 및 하드웨어에 대한 지식이 많은 숙련된 시스템 관리자를 대상 으로 합니다.
- 필요한 지식 Oracle Solaris Cluster 소프트웨어의 Oracle Solaris 운영 체제에 대한 지 식과 Oracle Solaris Cluster 소프트웨어에서 사용되는 Volume Manager 소프트웨어에 대한 전문 지식이 필요합니다.
- 이 문서는 계획이나 판촉용 안내서가 아닙니다.

제품 설명서 라이브러리

이 제품에 대한 최신 정보 및 알려진 문제는 설명서 라이브러리(http://www.oracle.com/ pls/topic/lookup?ctx=E52213)에서 확인할 수 있습니다.

Oracle 지원 액세스

Oracle 고객은 My Oracle Support를 통해 온라인 지원에 액세스할 수 있습니다. 자세한 내 용은 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info를 참조하거나, 청각 장 애가 있는 경우 http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs를 방문하십시 오.

설명서 접근성

Oracle의 접근성 개선 노력에 대한 자세한 내용은 http://www.oracle.com/pls/topic/ lookup?ctx=acc&id=docacc에서 Oracle Accessibility Program 웹 사이트를 방문하십시오.

피드백

http://www.oracle.com/goto/docfeedback에서 이 설명서에 대한 피드백을 보낼 수 있습니 다. ★ ◆ ◆ 1 장

Oracle Solaris Cluster 구성 계획

이 장에서는 Oracle Solaris Cluster 4.2 구성과 관련된 계획 정보 및 지침을 제공합니다.

이 장은 다음 개요 정보를 포함합니다.

- "Oracle Solaris Cluster 설치 작업 찾기" [11]
- "Oracle Solaris OS 계획" [12]
- "Oracle Solaris Cluster 환경 계획" [15]
- "전역 장치, 장치 그룹 및 클러스터 파일 시스템 계획" [35]
- "볼륨 관리 계획" [40]

Oracle Solaris Cluster 설치 작업 찾기

다음 표에서는 Oracle Solaris Cluster 소프트웨어 설치를 위한 다양한 설치 작업에 대한 지 침이 있는 위치와 작업 순서를 보여 줍니다.

표 1-1 Oracle Solaris Cluster 소프트웨어 설치 작업 정보

작업	지침
클러스터 하드웨어를 설치합니다.	Unresolved link to " Oracle Solaris Cluster 4.2 Hardware Administration Manual "
	서버 및 저장 장치와 함께 제공되는 설명서
전역 클러스터 소프트웨어 설치를 계획합니다.	1장. Oracle Solaris Cluster 구성 계획
소프트웨어 패키지를 설치합니다. 선택적으로 Sun QFS 소프트웨어를 설 치하고 구성합니다.	"소프트웨어 설치" [46]
	Sun QFS 설명서
새 전역 클러스터 또는 새 전역 클러스터 노드를 설정합니다.	"새 전역 클러스터 또는 새 전역 클러스터 노드 설 정" [69]
Solaris Volume Manager 소프트웨어를 구성합니다.	"Solaris Volume Manager 소프트웨어 구성" [145]
	Unresolved link to " Solaris Volume Manager Administration Guide "
사용된 경우 클러스터 파일 시스템을 구성합니다.	클러스터 파일 시스템을 만드는 방법 [159]
(선택 사항) 영역 클러스터를 만듭니다.	"영역 클러스터 만들기 및 구성" [180]

작업	지침
자원 그룹과 데이터 서비스를 계획, 설치 및 구성합니다. 사용된 경우, 고가 용성 로컬 파일 시스템을 만듭니다.	Unresolved link to " Oracle Solaris Cluster 데이터 서 비스 계획 및 관리 설명서 "
사용자 정의 데이터 서비스를 개발합니다.	Unresolved link to " Oracle Solaris Cluster Data Services Developer's Guide "

Oracle Solaris OS 계획

이 절에서는 클러스터 구성에서 Oracle Solaris 소프트웨어 설치를 계획하기 위한 다음 지침 을 제공합니다.

- "Oracle Solaris 설치 방법 선택 지침" [12]
- "Oracle Solaris OS 기능 요구 사항 및 제한 사항" [12]
- "시스템 디스크 분할 영역" [13]

Oracle Solaris 소프트웨어에 대한 자세한 내용은 Oracle Solaris 설치 설명서를 참조하십시 오.

Oracle Solaris 설치 방법 선택 지침

로컬 DVD-ROM에서 Oracle Solaris 소프트웨어를 설치하거나 네트워크 설치 서버에서 AI(자동 설치 프로그램) 설치 방법을 사용하여 설치할 수 있습니다. 또한 Oracle Solaris Cluster 소프트웨어는 AI 설치 방법을 사용하여 Oracle Solaris OS와 Oracle Solaris Cluster 소프트웨어를 설치할 수 있는 사용자 정의 방법을 제공합니다. Oracle Solaris 소프 트웨어의 AI 설치 중 기본값을 적용하여 OS를 설치하거나, 대화식 OS 설치를 실행하여 부트 디스크 및 ZFS 루트 풀과 같은 구성 요소의 설치를 사용자 정의할 수 있습니다. 여러 개의 클 러스터 노드를 설치할 경우에는 네트워크 설치를 고려해 보십시오.

scinstall AI 설치 방법에 대한 자세한 내용은 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장소) [92]을 참조하십시오. 표준 Oracle Solaris 설치 방법과 OS 설치 중 선택할 수 있는 구성 옵션은 Oracle Solaris 설치 설명서를 참조하십시오.

Oracle Solaris OS 기능 요구 사항 및 제한 사항

Oracle Solaris Cluster 구성에서 Oracle Solaris OS의 사용을 계획할 때 다음 사항을 고려 하십시오.

- 최소 Oracle Solaris 패키지 Oracle Solaris Cluster 소프트웨어를 사용하려면 최소한 Oracle Solaris 소프트웨어의 solaris-small-server 패키지가 필요합니다.
- Oracle Solaris 운영 체제 Oracle Solaris Cluster 4.2 핵심 소프트웨어 및 Oracle Solaris Cluster 4.2 쿼럼 서버 소프트웨어에는 최소 Oracle Solaris 11.1 소프트웨어가

필요합니다. Oracle Solaris 11.0 릴리스는 Oracle Solaris Cluster 4.2 소프트웨어에 지 원되지 않습니다.

- Oracle Solaris 영역 Oracle Solaris Cluster 프레임워크 소프트웨어를 전역 영역에만 설치합니다.
- LOFS(Loopback File System) 클러스터를 만드는 동안에는 기본적으로 LOFS 기능이 사용으로 설정됩니다. 클러스터가 다음 두 조건 모두를 충족할 경우 스위치오버 문제 또 는 기타 오류를 방지하려면 LOFS를 비활성화해야 합니다.
 - HA for NFS는 고가용성 로컬 파일 시스템에 구성됩니다.
 - automountd 데몬이 실행 중입니다.

클러스터가 이러한 조건 중 하나만 충족할 경우 LOFS를 안전하게 활성화할 수 있습니다. LOFS와 automountd 데몬을 모두 사용으로 설정해야 하는 경우 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 파일을 automounter 맵에서 제외시킵니다.

- **절전 효과 종료** 자동 절전 효과 종료는 Oracle Solaris Cluster 구성에서 지원되 지 않으며 사용으로 설정되지 않아야 합니다. 자세한 내용은 Unresolved link to " poweradm1M" 매뉴얼 페이지를 참조하십시오.
- NWAM(Network Auto-Magic) Oracle Solaris NWAM(Network Auto-Magic) 기 능은 단일 네트워크 인터페이스를 활성화하고 다른 모든 항목을 사용 안함으로 설정합니 다. 이러한 이유로 NWAM은 Oracle Solaris Cluster 소프트웨어와 공존할 수 없으므로 클러스터를 구성하거나 실행하기 전에 사용 안함으로 설정해야 합니다.
- IP 필터 기능 Oracle Solaris Cluster는 공용 네트워크 모니터링을 위해 IPMP(IP Network Multipathing)를 사용합니다. IP 필터에 관한 IPMP 구성 지침 및 제한 사항에 따라 IP 필터를 구성해야 합니다.
- fssnap Oracle Solaris Cluster 소프트웨어에서는 UFS의 기능인 fssnap 명령을 지원하 지 않습니다. 그러나 Oracle Solaris Cluster 소프트웨어에서 제어하지 않는 로컬 시스템 에서는 fssnap 명령을 사용할 수 있습니다. fssnap 지원에는 다음 제한 사항이 적용됩니 다.
 - fssnap 명령은 Oracle Solaris Cluster 소프트웨어가 관리하지 않는 로컬 파일 시스템 에서 지원됩니다.
 - fssnap 명령은 클러스터 파일 시스템에서 지원되지 않습니다.
 - fssnap 명령은 HAStoragePlus에서 제어하는 로컬 파일 시스템에서 지원되지 않습니다.
- 최소 Java 버전 Java 1.7은 Oracle Solaris Cluster 소프트웨어 실행에 필요한 최소 버 전입니다.

시스템 디스크 분할 영역

Oracle Solaris OS를 설치하는 경우 필요한 Oracle Solaris Cluster 분할 영역을 만들고 모 든 분할 영역이 최소 공간 요구 사항을 충족하는지 확인하십시오.

■ 루트(/) - 루트(/) 파일 시스템의 주요 공간 요구 사항은 다음과 같습니다.

- Oracle Solaris Cluster 소프트웨어 자체는 루트(/) 파일 시스템에서 40MB 미만의 공간을 차지합니다.
- 각 Oracle Solaris Cluster 데이터 서비스는 1MB 5MB 정도 사용할 수 있습니다.
- Solaris Volume Manager 소프트웨어에는 5MB 미만의 공간이 필요합니다.
- 충분한 추가 공간과 inode 용량을 구성하려면 루트(/) 파일 시스템에 일반적으로 할 당하는 공간에 100MB 이상을 추가하십시오. 이 공간은 볼륨 관리 소프트웨어에 사 용되는 블록 특수 장치 및 문자 특수 장치를 만들 때 사용됩니다. 특히 클러스터에 많 은 수의 공유 디스크가 있는 경우 이 추가 공간을 할당해야 합니다.
- 로그 파일을 기록할 수 있도록 충분한 공간을 따로 설정해야 합니다. 또한 클러스터 노드에서는 일반 독립형 서버에서 기록되는 것보다 많은 메시지가 로그 파일에 기록 될 수 있습니다. 따라서 로그 파일에 최소한 100MB가 허용됩니다.
- 전역 장치 이름 공간에 lofi 장치를 사용하려면 100MB의 사용 가능한 공간이 있어 야 합니다. Oracle Solaris Cluster 4.2부터 전역 장치 이름 공간에 더 이상 전용 분할 영역이 사용되지 않습니다.

참고 - 전역 장치 이름 공간용으로 만든 lofi 장치는 해당 용도로만 사용할 수 있습니다. 이 장 치를 다른 목적에 사용하지 마십시오. 그리고 절대로 마운트 해제하면 안됩니다.

- /var Oracle Solaris Cluster 소프트웨어는 설치 시 /var 파일 시스템에서 매우 작은 공 간을 차지합니다. 그러나 로그 파일을 기록할 수 있도록 충분한 공간을 따로 설정해야 합 니다. 또한 클러스터 노드에서는 일반 독립형 서버에서 기록되는 것보다 많은 메시지가 로그 파일에 기록될 수 있습니다. 따라서 100MB 이상의 공간을 /var 파일 시스템에 할 당하는 것이 좋습니다.
- 스왑 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어에 대해 할당되는 결합된 총 swap 공간은 750MB 이상이어야 합니다. 최상의 결과를 얻으려면 Oracle Solaris OS에 필요한 크기에 Oracle Solaris Cluster 소프트웨어용으로 최소한 512MB를 추가하십시 오. 또한 Oracle Solaris 호스트에서 실행할 응용 프로그램에 필요한 추가 swap 공간을 할 당하십시오.

참고 - 추가 swap 파일을 만드는 경우 전역 장치에 swap 파일을 만들지 마십시오. 로컬 디스크 만 호스트용 swap 장치로 사용합니다.

볼륨 관리자 - 볼륨 관리자에서 사용할 수 있도록 슬라이스 6에 20MB의 분할 영역을 만듭니다.

Solaris Volume Manager를 지원하려는 경우 다음 위치 중 하나에 이 분할 영역을 만들 수 있습니다.

- ZFS 루트 풀이 아닌 로컬 디스크
- ZFS 루트 풀이 디스크가 아닌 분할 영역에 있는 경우 ZFS 루트 풀

로컬 디스크마다 이러한 용도로 사용할 슬라이스를 별도로 설정해야 합니다. 그러나 Oracle Solaris 호스트에 로컬 디스크가 하나만 있는 경우에는 Solaris Volume Manager 소프

트웨어의 올바른 작동을 위해 동일한 슬라이스에 3개의 상태 데이터베이스 복제본을 만 들어야 할 수 있습니다. 자세한 내용은 Unresolved link to " Solaris Volume Manager Administration Guide "를 참조하십시오.

이러한 요구 사항을 충족하려면 Oracle Solaris OS의 대화식 설치를 수행하는 경우 분할 영 역을 사용자 정의해야 합니다.

볼륨 관리 소프트웨어

다음 표에서는 SPARC 및 x86 플랫폼에서 Oracle Solaris와 함께 작동하는 볼륨 관리자에 대해 설명합니다.

Volume Manager	클러스터 기능
Solaris Volume Manager	Sun Cluster용 Solaris Volume Manager
Oracle Solaris ZFS Volume Manager	해당 사항 없음

Oracle Solaris Cluster 환경 계획

이 절에서는 Oracle Solaris Cluster 소프트웨어 설치 및 구성을 위해 다음 구성 요소를 계획 하고 준비하는 지침을 제공합니다.

- "Oracle Solaris Cluster 소프트웨어 버전" [16]
- "메모리 요구 사항" [16]
- "라이센싱" [16]
- "소프트웨어 업데이트" [16]
- "Geographic Edition" [16]
- "공용 네트워크 IP 주소" [17]
- "콘솔 액세스 장치" [18]
- "공용 네트워크 구성" [18]
- "쿼럼 서버 구성" [19]
- "NFS 지침" [20]
- "서비스 제한 사항" [21]
- "NTP(Network Time Protocol)" [22]
- "Oracle Solaris Cluster 구성 가능 구성 요소" [22]
- "SPARC: 클러스터의 Oracle VM Server for SPARC에 대한 지침" [30]
- "영역 클러스터" [31]

Oracle Solaris Cluster 구성 요소에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide "를 참조하십시오.

Oracle Solaris Cluster 소프트웨어 버전

클러스터의 모든 노드는 Oracle Solaris Cluster 소프트웨어의 동일한 버전을 실행해야 합니다.

메모리 요구 사항

Oracle Solaris Cluster 4.2 소프트웨어를 사용하려면 모든 클러스터 노드에 대해 다음 메모 리 요구 사항을 충족해야 합니다.

- 물리적 RAM 최소 1.5GB(일반적으로 2GB)
- 사용 가능한 하드 드라이브 공간 최소 6GB

실제 물리적 메모리 및 하드 드라이브 요구 사항은 설치되어 있는 응용 프로그램에 따라 결정 됩니다. 추가 메모리 및 하드 드라이브 요구 사항을 계산하려면 응용 프로그램 설명서를 참조 하거나 응용 프로그램 공급업체에 문의하십시오.

라이센싱

소프트웨어를 설치하려면 먼저 필요한 라이센스 인증서를 모두 사용할 수 있는지 확인합니다. Oracle Solaris Cluster 소프트웨어에는 라이센스 인증서가 필요 없지만 Oracle Solaris Cluster 소프트웨어와 함께 설치되는 각 노드는 Oracle Solaris Cluster 소프트웨어 라이센스 계약을 따라야 합니다.

볼륨 관리자 소프트웨어 및 응용 프로그램 소프트웨어에 대한 라이센스 요구 사항은 해당 제 품의 설치 설명서를 참조하십시오.

소프트웨어 업데이트

각 소프트웨어 제품을 설치한 후 필요한 소프트웨어 업데이트도 설치해야 합니다. 올바른 클 러스터 작업을 위해 모든 클러스터 노드에서 동일한 업데이트 수준을 유지해야 합니다.

소프트웨어 업데이트를 적용하는 일반 지침 및 절차는 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"를 참조하십시오.

Geographic Edition

영역 클러스터가 Oracle Solaris Cluster Geographic Edition(Geographic Edition) 구성 에서 구성되면 영역 클러스터가 다음 요구 사항을 충족해야 합니다.

- 각 영역 클러스터 노드에는 영역 클러스터 노드의 호스트 이름에 해당하는 공용 네트워크 IP 주소가 있어야 합니다.
- Geographic Edition 구성의 파트너 클러스터에 있는 모든 노드에서 영역 클러스터 노드 의 공용 네트워크 IP 주소에 액세스할 수 있어야 합니다.
- 각 영역 클러스터 노드에는 영역 클러스터 이름에 해당하는 호스트 이름과 매핑되는 페일 오버 IP 주소가 있어야 합니다.

Oracle Solaris Cluster Manager GUI를 사용하여 Geographic Edition 구성 요소를 관 리하려면 모든 클러스터 노드의 루트 암호가 동일해야 합니다. Oracle Solaris Cluster Manager에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 13 장, Oracle Solaris Cluster GUI 사용"을 참조하십시오.

공용 네트워크 IP 주소

클러스터에서 공용 네트워크 사용에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Public Network Adapters and IP Network Multipathing"를 참조하십시오.

다양한 Oracle Solaris Cluster 구성 요소에 여러 가지 공용 네트워크 IP 주소를 설정해야 합니다. 필요한 주소 수는 클러스터 구성에 포함할 구성 요소에 따라 다릅니다. 클러스터 구성에 포함된 각 Oracle Solaris 호스트에는 동일한 공용 서브넷 세트에 대한 공용 네트워크 연결이 하나 이상 있어야 합니다.

다음 표에는 공용 네트워크 IP 주소가 지정되어야 하는 구성 요소가 나열되어 있습니다. 이들 IP 주소를 다음 위치에 추가하십시오.

- 사용된 모든 이름 지정 서비스
- Oracle Solaris 소프트웨어 설치 후 각 전역 클러스터 노드의 로컬 /etc/inet/hosts 파일
- 독점적 IP 비전역 영역의 로컬 /etc/inet/hosts 파일

구성 요소	필요한 IP 주소 수
관리 콘솔	서브넷당 IP 주소 1개
전역 클러스터 노드	노드 및 서브넷당 IP 주소 1개
영역 클러스터 노드	노드 및 서브넷당 IP 주소 1개
도메인 콘솔 네트워크 인터페이스	도메인당 IP 주소 1개
(선택 사항) 비전역 영역	서브넷당 IP 주소 1개
콘솔 액세스 장치	IP 주소 1개
논리 주소	논리 호스트 자원 및 서브넷당 IP 주소 1개

표 1-2 공용 네트워크 IP 주소를 사용하는 Oracle Solaris Cluster 구성 요소

IP 주소 계획에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 네트워크 배치 계획 "을 참조하십시오.

콘솔 액세스 장치

모든 클러스터 노드에 대해 콘솔 액세스가 있어야 합니다. 서비스 프로세서(SP)는 관리 콘솔 과 전역 클러스터 노드 콘솔 간 통신에 사용됩니다.

콘솔 액세스에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide "를 참조하십시오.

Oracle Solaris pconsole 유틸리티를 사용하여 클러스터 노드에 연결할 수 있습니다. 또한 사용자 입력을 모든 열린 연결에 전파할 수 있는 마스터 콘솔 창을 제공합니다. 자세한 내용 은 Oracle Solaris terminal/pconsole 패키지를 설치할 때 제공되는 pconsole(1) 매뉴얼 페 이지를 참조하십시오.

공용 네트워크 구성

공용 네트워크는 클러스터 외부에서 통신합니다. 공용 네트워크 구성을 계획할 때는 다음 사 항을 고려하십시오.

공용 네트워크와 개인 네트워크 구분 - 공용 네트워크와 개인 네트워크(클러스터 상호 연 결)는 별도의 어댑터를 사용해야 합니다. 그렇지 않고 개인 상호 연결과 공용 네트워크에 동일한 어댑터를 사용하려면 태그가 지정된 VLAN 지원 어댑터 및 VLAN 지원 스위치에 태그가 지정된 VLAN을 구성해야 합니다.

다른 방법으로, 동일한 물리적 인터페이스에 가상 NIC을 만들고 개인 및 공용 네트워크에 서로 다른 가상 NIC을 지정합니다.

- 최소 모든 클러스터 노드가 최소한 하나의 공용 네트워크에 연결되어 있어야 합니다. 공
 용 네트워크 연결에서는 노드마다 다른 서브넷을 사용할 수 있습니다.
- 최대 하드웨어 구성에서 허용하는 만큼 많은 공용 네트워크 연결을 추가할 수 있습니다.
- 확장 가능 서비스 확장 가능 서비스를 실행하는 모든 노드는 동일한 서브넷 또는 서브넷 세트를 사용하거나 그 중에서 경로 지정 가능한 다른 서브넷을 사용해야 합니다.
- 논리 주소 논리 주소를 사용하는 각 데이터 서비스 리소스 그룹에는 논리 주소에 액 세스할 수 있는 각 공용 네트워크에 대한 호스트 이름이 지정되어 있어야 합니다. 데이 터 서비스 및 리소스에 대한 추가 정보는 Unresolved link to "Oracle Solaris Cluster Concepts Guide "를 참조하십시오.
- IPv4 Oracle Solaris Cluster 소프트웨어는 공용 네트워크에서 IPv4 주소를 지원합니다.
- IPv6 Oracle Solaris Cluster 소프트웨어는 공용 네트워크에서 페일오버 및 확장 가능 데이터 서비스에 대해 IPv6 주소를 지원합니다.
- IPMP 그룹 데이터 서비스 트래픽에 사용되는 각 공용 네트워크 어댑터는 IPMP(IP Network Multipathing) 그룹에 속해야 합니다. 공용 네트워크 어댑터가 데이터 서비스 트래픽에 사용되지 않을 경우에는 IPMP 그룹에 구성할 필요가 없습니다.

공용 네트워크 구성에 하나 이상의 non-link-local IPv6 공용 네트워크 인터페이스가 없 는 한, scinstall 유틸리티는 동일한 서브넷을 사용하는 클러스터의 각 공용 네트워크 어 댑터 세트에 대해 여러 어댑터 IPMP 그룹을 자동으로 구성합니다. 이러한 그룹은 전이성 프로브를 사용하는 링크 기반 그룹입니다.

구성에 non-link-local IPv6 공용 네트워크 인터페이스가 있는 경우 데이터 서비스 트래 픽에 사용될 모든 인터페이스에서 IPMP 그룹을 수동으로 구성해야 합니다. 클러스터를 설정하기 전후에 IPMP 그룹을 구성할 수 있습니다.

scinstall 유틸리티는 IPMP 그룹에 이미 구성되어 있는 어댑터를 무시합니다. 클러스 터에서 프로브 기반 IPMP 그룹이나 링크 기반 IPMP 그룹을 사용할 수 있습니다. 대상 IP 주소를 테스트하는 프로브 기반 IPMP 그룹은 가용성을 손상시킬 수 있는 더 많은 조건을 인식하여 최상의 보호 기능을 제공합니다.

scinstall 유틸리티가 구성하는 IPMP 그룹의 어댑터가 데이터 서비스 트래픽에 사용되지 않을 경우 그룹에서 해당 어댑터를 제거할 수 있습니다.

IPMP 그룹에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 TCP/IP 네트워크, IPMP 및 IP 터널 관리 의 2 장, IPMP 관리 정보"를 참조하십시오. 클러스터 설 치 후 IPMP 그룹을 수정하려면 Unresolved link to "Oracle Solaris Cluster 시스템 관 리 설명서 의 클러스터에서 IP Network Multipathing 그룹을 관리하는 방법"의 지침과 Unresolved link to "Oracle Solaris 11.2의 TCP/IP 네트워크, IPMP 및 IP 터널 관리 의 3 장, IPMP 관리"의 절차를 따르십시오.

- 로컬 MAC 주소 지원 모든 공용 네트워크 어댑터는 로컬 MAC 주소 지정을 지원하는 NIC(네트워크 인터페이스 카드)를 사용해야 합니다. 로컬 MAC 주소 지정은 IPMP의 요 구 사항입니다.
- local-mac-address **설정** local-mac-address? 변수는 이더넷 어댑터에 대해 기본값인 true를 사용해야 합니다. Oracle Solaris Cluster 소프트웨어는 이더넷 어댑터에 대해 local-mac-address? 값으로 false를 지원하지 않습니다.

공용 네트워크 인터페이스에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide "를 참조하십시오.

쿼럼 서버 구성

Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 사용하여 시스템을 쿼럼 서버로 구성한 다음 쿼럼 서버를 클러스터의 쿼럼 장치로 구성할 수 있습니다. 공유 디스크 및 NAS 파일러와 함께 또는 대신에 쿼럼 서버를 사용할 수 있습니다.

Oracle Solaris Cluster 구성에서 쿼럼 서버의 사용을 계획할 때 다음 사항을 고려하십시오.

- 네트워크 연결 쿼럼 서버 컴퓨터는 제공된 클러스터 노드에 사용되는 동일한 서브넷에 있는 공용 네트워크를 통해 클러스터에 연결해야 합니다. 그렇지 않으면 노드 재부트 중 클러스터에서 쿼럼 서버를 사용하지 못할 수 있으며 쿼럼 서버로 인해 클러스터가 구성되 지 않을 수 있습니다.
- 지원되는 하드웨어 쿼럼 서버에 대해 지원되는 하드웨어 플랫폼은 전역 클러스터 노드 의 경우와 동일합니다.
- 운영 체제 Oracle Solaris Cluster 소프트웨어에 대한 Oracle Solaris 소프트웨어 요구 사항은 쿼럼 서버 소프트웨어에도 적용됩니다.

- 비전역 영역에 대한 제한 사항 Oracle Solaris Cluster 4.2 릴리스에서는 비전역 영역에 쿼럼 서버를 설치하고 구성할 수 없습니다.
- 여러 클러스터에 대한 서비스 쿼럼 서버를 둘 이상의 클러스터에 대한 쿼럼 장치로 구성 할 수 있습니다.
- 혼합 하드웨어 및 소프트웨어 쿼럼을 제공하는 클러스터와 동일한 하드웨어 및 소프트 웨어 플랫폼에는 쿼럼 서버를 구성할 필요가 없습니다. 예를 들어 Oracle Solaris 10 OS 가 실행되는 SPARC 기반 시스템은 Oracle Solaris 11 OS가 실행되는 x86 기반 클러스 터에 대한 쿼럼 서버로 구성할 수 있습니다.
- 확장 트리 알고리즘 쿼럼 서버가 실행될 클러스터 공용 네트워크에 연결되어 있는 포트 의 이더넷 스위치에서는 확장 트리 알고리즘을 사용 안함으로 설정해야 합니다.
- 클러스터 노드를 쿼럼 서버로 사용 노드가 속한 클러스터가 아닌 다른 클러스터에 대해 쿼럼을 제공하기 위해 클러스터 노드에서 쿼럼 서버를 구성할 수 있습니다. 그러나 클러 스터 노드에서 구성되는 쿼럼 서버는 가용성이 높지 않습니다.

NFS 지침

Oracle Solaris Cluster 구성에서 NFS(네트워크 파일 시스템)의 사용을 계획할 때 다음 사항을 고려하십시오.

- NFS 클라이언트 Oracle Solaris Cluster 노드는 동일한 클러스터에 있는 노드에서 마스 터되고 있는 HA for NFS에서 내보낸 파일 시스템의 NFS 클라이언트가 될 수 없습니다. 이러한 HA for NFS의 상호 마운트는 금지됩니다. 전역 클러스터 노드 간에 파일을 공유 하려면 클러스터 파일 시스템을 사용하십시오.
- NFSv3 프로토콜 NAS 파일러와 같은 외부 NFS 서버에서 클러스터 노드의 파일 시스템 을 마운트하고 NFSv3 프로토콜을 사용 중인 경우 동일한 클러스터 노드에서 NFS 클라이 언트 마운트 및 HA for NFS 데이터 서비스를 실행할 수 없습니다. 그렇게 할 경우, 특정 HA for NFS 데이터 서비스 작동으로 인해 NFS 서비스를 방해하면서 NFS 데몬이 중지되 고 다시 시작될 수 있습니다. 그러나 NFSv4 프로토콜을 사용하여 클러스터 노드에 외부 NFS 파일 시스템을 마운트할 경우, HA for NFS 데이터 서비스를 안전하게 실행할 수 있 습니다.
- 잠금 클러스터에서 로컬로 실행되는 응용 프로그램에서 NFS를 통해 내보내진 파일 시 스템의 파일을 잠그면 안 됩니다. 그렇지 않으면 로컬 블록화(예: flock 또는 fcntl)로 인 해 잠금 관리자(lockd)를 다시 시작하지 못할 수 있습니다. 다시 시작할 때 원격 클라이언 트에서 사용하려고 했던 잠금이 블록화된 로컬 프로세스에 부여될 수 있습니다. 그러면 예상하지 못한 동작이 발생할 수 있습니다.
- NFS 보안 기능 Oracle Solaris Cluster 소프트웨어는 Unresolved link to " share_nfs1M" 명령의 다음 옵션을 지원하지 않습니다.
 - secure
 - sec=dh

하지만 Oracle Solaris Cluster 소프트웨어는 다음과 같은 NFS 보안 기능기능을 지원합니다.

- NFS용 보안 포트 사용. 항목 설정 nfssrv:nfs_portmon=1을 클러스터 노드의 /etc/ system 파일에 추가하여 NFS용 보안 포트를 사용으로 설정합니다.
- NFS에서 커버로스 사용.
- 보호(Fencing) 영역 클러스터에서는 지원되는 모든 NAS 장치, 공유 디스크 및 저장소 어레이에 대해 보호(fencing)를 지원합니다.

서비스 제한 사항

Oracle Solaris Cluster 구성에 대한 다음 서비스 제한 사항을 준수하십시오.

- 라우터 다음과 같은 이유로 인해 클러스터 노드를 라우터(게이트웨이)로 구성하지 마십 시오.
 - 라우팅 프로토콜에서 상호 연결 인터페이스의 IFF_PRIVATE 플래그 설정에 관계없이 실수로 클러스터 상호 연결을 공개적으로 연결 가능한 네트워크로 다른 라우터에 브 로드캐스트할 수 있습니다.
 - 경로 지정 프로토콜에서 클라이언트 액세스에 영향을 주는 클러스터 노드 간의 IP 주 소 페일오버를 간섭할 수 있습니다.
 - 경로 지정 프로토콜에서 다른 클러스터 노드로 패킷을 전달하는 대신 클라이언트 네 트워크 패킷을 허용하고 배치하여 확장 가능 서비스의 올바른 기능을 손상시킬 수 있 습니다.
- NIS+ 서버 클러스터 노드를 NIS 또는 NIS+ 서버로 구성하지 마십시오. NIS 또는 NIS +에 사용할 수 있는 데이터 서비스가 없습니다. 그러나 클러스터 노드가 NIS 또는 NIS+ 클라이언트가 될 수는 있습니다.
- 설치 서버 Oracle Solaris Cluster 구성을 사용하여 클라이언트 시스템에 고가용성 설치 서비스를 제공하지 마십시오.
- RARP Oracle Solaris Cluster 구성을 사용하여 rarpd 서비스를 제공하지 마십시오.
- RPC(원격 프로시저 호출) 프로그램 번호 클러스터에 RPC 서비스를 설치하는 경우 서비스에서 다음 프로그램 번호를 사용하면 안됩니다.
 - **1**00141
 - 100142
 - 100248

이러한 번호는 각각 Oracle Solaris Cluster 데몬 rgmd_receptionist, fed 및 pmfd용으로 예약되어 있습니다.

설치하는 RPC 서비스에서도 이러한 프로그램 번호 중 하나를 사용하는 경우에는 RPC 서 비스에서 다른 프로그램 번호를 사용하도록 변경해야 합니다.

- 예약 클래스 Oracle Solaris Cluster 소프트웨어는 클러스터 노드에서 우선 순위가 높은 프로세스 예약 클래스의 실행을 지원하지 않습니다. 클러스터 노드에서는 다음 유형의 프로세스를 실행하지 마십시오.
 - 우선 순위가 높은 시간 공유 예약 클래스로 실행되는 프로세스
 - 실시간 예약 클래스로 실행되는 프로세스

Oracle Solaris Cluster 소프트웨어는 실시간 예약 클래스로 실행되지 않는 커널 스레드 를 사용합니다. 실시간 프로세스나 일반적인 우선 순위보다 높은 우선 순위로 실행되는 다른 시간 공유 프로세스를 실행하면 Oracle Solaris Cluster 커널 스레드에서 필요한 CPU 주기를 가져오지 못할 수 있습니다.

NTP(Network Time Protocol)

NTP에 대한 다음 지침을 준수하십시오.

- **동기화** 클러스터에서 NTP를 구성할 때나 동기화 기능을 수행할 때는 기본적으로 모든 클러스터 노드가 동일한 시간으로 동기화되어야 합니다.
- 정확성 노드 사이의 시간 동기화 다음으로 중요한 요구 사항은 각 노드 시간의 정확성입니다. 동기화에 대한 이러한 기본 요구 사항이 충족되면 사용자가 필요한 대로 NTP를 구성할 수 있습니다.

클러스터 시간에 대한 추가 정보는 Unresolved link to "Oracle Solaris Cluster Concepts Guide "를 참조하십시오. NTP에 대한 자세한 내용은 Oracle Solaris service/network/ntp 패키지에 제공된 ntpd(1M) 매뉴얼 페이지를 참조하십시오.

Oracle Solaris Cluster 구성 가능 구성 요소

이 절에서는 사용자가 구성할 수 있는 다음과 같은 Oracle Solaris Cluster 구성 요소에 대한 지침을 제공합니다.

- "전역 클러스터 이름" [22]
- "전역 클러스터 노드 이름 및 노드 ID" [23]
- "개인 네트워크 구성" [23]
- "개인 호스트 이름" [25]
- "클러스터 상호 연결" [25]
- "전역 보호(fencing)" [27]
- "쿼럼 장치" [29]

전역 클러스터 이름

Oracle Solaris Cluster를 구성하는 동안 전역 클러스터에 대한 이름을 지정합니다. 전역 클 러스터 이름은 전체 엔터프라이즈에서 고유해야 합니다.

영역 클러스터 이름 지정에 대한 자세한 내용은 "영역 클러스터" [31]를 참조하십시오.

전역 클러스터 노드 이름 및 노드 ID

전역 클러스터 노드의 이름은 Oracle Solaris OS와 함께 설치할 때 물리적 호스트나 가 상 호스트에 지정하는 이름과 동일합니다. 이름 지정 요구 사항에 대한 자세한 내용은 Unresolved link to " hosts4" 매뉴얼 페이지를 참조하십시오.

단일 호스트 클러스터 설치에서 기본 클러스터 이름은 노드의 이름입니다.

Oracle Solaris Cluster 구성 중에 전역 클러스터에 설치할 모든 노드의 이름을 지정합니다. 노드 이름은 uname -n 명령의 출력과 동일해야 합니다.

노드 ID 번호는 번호 1에서 시작하여, 클러스터 내에서 사용할 수 있도록 각 클러스터 노드에 지정됩니다. 노드 ID 번호는 해당 노드가 클러스터 구성원이 되는 순서로 각 클러스터 노드 에 할당됩니다. 한 번의 작업으로 모든 클러스터 노드를 구성하는 경우 scinstall 유틸리티 가 실행되는 노드에는 노드 ID 번호가 마지막으로 할당됩니다. 클러스터 노드에 할당된 후에 는 노드 ID 번호를 변경할 수 없습니다.

클러스터 구성원이 되는 노드에는 사용 가능한 노드 ID 번호 중 가장 낮은 번호가 할당됩니 다. 클러스터에서 노드를 제거하면 해당 노드 ID를 새 노드에 할당할 수 있습니다. 예를 들어 4노드 클러스터에서 노드 ID 3이 할당된 노드를 제거할 경우 새 노드에 노드 ID 5가 아닌 3이 할당됩니다.

할당된 노드 ID 번호가 특정 클러스터 노드에 해당되도록 하려면 노드 ID 번호를 할당하려는 순서로 한 번에 하나씩 클러스터 노드를 구성합니다. 예를 들어 클러스터 소프트웨어에서 노 드 ID 1을 phys-schost-1에 할당하도록 하려면 해당 노드를 클러스터의 스폰서 노드로 구성 합니다. 다음으로 phys-schost-1에서 설정한 클러스터에 phys-schost-2를 추가하면 physschost-2에 노드 ID 2가 지정됩니다.

영역 클러스터의 노드 이름에 대한 자세한 내용은 "영역 클러스터" [31]를 참조하십시오.

개인 네트워크 구성

참고 - 단일 호스트 전역 클러스터에는 개인 네트워크를 구성할 필요가 없습니다. 개인 네트 워크가 클러스터에서 사용되지 않는 경우에도 scinstall 유틸리티는 기본 개인 네트워크 주 소 및 넷마스크를 자동으로 지정합니다.

Oracle Solaris Cluster 소프트웨어는 노드 간 및 Oracle Solaris Cluster 소프트웨어에 의해 관리되는 비전역 영역 간 내부 통신에 개인 네트워크를 사용합니다. Oracle Solaris Cluster 구성의 개인 네트워크에는 클러스터 상호 연결에 대한 연결이 두 개 이상 있어야 합니다. 클 러스터의 첫번째 노드에서 Oracle Solaris Cluster 소프트웨어를 구성할 경우 다음 방법 중 하나로 개인 네트워크 주소 및 넷마스크를 지정합니다.

기본 개인 네트워크 주소(172.16.0.0) 및 기본 넷마스크(255.255.240.0)를 수락합니다. 이 IP 주소 범위에서는 결합된 최대 64개의 노드와 비전역 영역, 최대 12개의 영역 클러 스터 및 최대 10개의 개인 네트워크를 지원합니다. 참고 - IP 주소 범위에서 지원할 수 있는 최대 노드 수에는 하드웨어 또는 소프트웨어 구성에 서 현재 지원할 수 있는 최대 노드 수가 반영되지 않습니다.

- 다른 허용 가능한 개인 네트워크 주소를 지정하고 기본 넷마스크를 수락합니다.
- 기본 개인 네트워크 주소를 수락하고 다른 넷마스크를 지정합니다.
- 다른 개인 네트워크 주소와 다른 넷마스크를 모두 지정합니다.

다른 넷마스크를 지정하도록 선택하는 경우 scinstall 유틸리티는 IP 주소 범위에서 지원할 노드 수 및 개인 네트워크 수에 대해 묻는 메시지를 표시합니다. 또한 지원할 영역 클러스터 수도 묻는 메시지를 표시합니다. 지정하는 전역 클러스터 노드 수에는 개인 네트워크를 사용 할 클러스터되지 않은 비전역 영역의 예상되는 수도 포함되어야 합니다.

유틸리티는 지정한 노드, 영역 클러스터 및 개인 네트워크 수를 지원할 최소 IP 주소 범위에 대한 넷마스크를 계산합니다. 계산된 넷마스크는 비전역 영역, 영역 클러스터 및 개인 네트워 크를 포함하여 제공된 노드 수 이상을 지원할 수 있습니다. 또한 scinstall 유틸리티는 노드, 영역 클러스터 및 개인 네트워크 수의 두 배를 지원하도록 최소가 되는 두번째 넷마스크를 계 산합니다. 이 두번째 넷마스크를 사용하면 IP 주소 범위를 재구성할 필요 없이 클러스터에서 향후 증가를 수용할 수 있습니다.

그런 다음 유틸리티에서 선택할 넷마스크를 묻습니다. 계산된 넷마스크 중 하나를 지정하거 나 다른 넷마스크를 제공할 수 있습니다. 지정한 넷마스크는 유틸리티에 지정한 노드 및 개인 네트워크 수를 최소한으로 지원해야 합니다.

참고 - 노드, 비전역 영역, 영역 클러스터 또는 개인 네트워크를 추가로 지원하려면 클러스터 개인 IP 주소 범위를 변경해야 할 수 있습니다.

클러스터가 설정된 후 개인 네트워크 주소 및 넷마스크를 변경하려면 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기존 클러스터의 개인 네트워크 주소 또는 주 소 범위를 변경하는 방법"을 참조하십시오. 이렇게 변경하려면 클러스터를 종료해야 합니다.

그러나 cluster set-netprops 명령을 사용하여 넷마스크만 변경하면 클러스터는 클러스터 모드로 유지될 수 있습니다. 클러스터에 이미 구성되어 있는 영역 클러스터의 경우 해당 영역 클러스터에 할당되는 개인 IP 서브넷 및 해당되는 개인 IP 주소도 업데이트됩니다.

기본값이 아닌 개인 네트워크 주소를 지정할 경우 주소는 다음 요구 사항을 충족해야 합니다.

- 주소 및 넷마스크 크기 개인 네트워크 주소는 넷마스크보다 작을 수 없습니다. 예를 들 어 255.255.255.0의 넷마스크에 172.16.10.0의 개인 네트워크 주소를 사용할 수 있습니 다. 그러나 넷마스크 255.255.0.0에 개인 네트워크 주소 172.16.10.0을 사용할 수는 없 습니다.
- 허용 가능한 주소 주소는 개인 네트워크에서 사용하기 위해 RFC 1918에서 예약한 주소 블록에 포함되어 있어야 합니다. InterNIC에 문의하여 RFC 복사본을 얻거나 http:// www.rfcs.org에서 온라인으로 RFC를 볼 수 있습니다.

- 여러 클러스터에서 사용 클러스터가 다른 개인 네트워크에 있는 경우 동일한 개인 네트 워크 주소를 둘 이상의 클러스터에서 사용할 수 있습니다. 개인 IP 네트워크 주소는 물리 적 클러스터 외부에서 액세스할 수 없습니다.
- Oracle VM Server for SPARC 게스트 도메인이 동일한 물리적 시스템에 만들어지고 동일한 가상 스위치에 연결되는 경우 개인 네트워크는 해당 게스트 도메인에서 공유되며 이러한 도메인에 모두 표시됩니다. 게스트 도메인의 클러스터에서 사용하도록 scinstall 유틸리티에 개인 네트워크 IP 주소 범위를 지정하기 전에는 주의합니다. 주소 범위가 동 일한 물리적 시스템에 있고 가상 스위치를 공유하는 다른 도메인 게스트에서 이미 사용되 고 있지 않은지 확인하십시오.
- 여러 클러스터에서 공유되는 VLAN Oracle Solaris Cluster 구성에서는 여러 클러스 터 간의 동일한 개인 상호 연결 VLAN 공유를 지원합니다. 각 클러스터에 대해 별도의 VLAN을 구성할 필요는 없습니다. 그러나 가장 높은 수준의 결함 격리 및 상호 연결 복원 성을 제공하려면 VLAN의 사용을 단일 클러스터로 제한하십시오.
- IPv6 Oracle Solaris Cluster 소프트웨어는 개인 상호 연결에 대해 IPv6 주소를 지원하지 않습니다. 시스템에서는 IPv6 주소를 사용하는 확장 가능 서비스를 지원하기 위해 개인 네트워크 어댑터에 IPv6 주소를 구성합니다. 그러나 개인 네트워크의 노드 간 통신에 서는 이러한 IPv6 주소를 사용하지 않습니다.

개인 네트워크에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 네트워크 배치 계획 "을 참조하십시오.

개인 호스트 이름

개인 호스트 이름은 개인 네트워크 인터페이스를 통한 노드 간 통신에 사용되는 이름입니다. 개인 호스트 이름은 전역 클러스터 또는 영역 클러스터의 Oracle Solaris Cluster 구성 중에 자동으로 만들어집니다. 이러한 개인 호스트 이름은 이름 지정 규약 clusternodenode-id priv를 따릅니다. 여기서 node-id는 내부 노드 ID 번호입니다. Oracle Solaris Cluster 구성 중 노드 ID 번호는 노드가 클러스터 구성원이 될 때 각 노드에 자동으로 지정됩니다. 전역 클 러스터의 노드와 영역 클러스터의 노드에 모두 동일한 개인 호스트 이름이 있을 수 있지만 각 호스트 이름은 서로 다른 개인 네트워크 IP 주소로 확인됩니다.

전역 클러스터가 구성된 후 Unresolved link to " clsetup1CL" 유틸리티를 사용하여 개인 호스트 이름을 바꿀 수 있습니다. 현재는 영역 클러스터 노드의 개인 호스트 이름을 변경할 수 없습니다.

비전역 영역에 대한 개인 호스트 이름의 생성은 선택 사항입니다. 비전역 영역의 개인 호스트 이름에는 필요한 이름 지정 규약이 없습니다.

클러스터 상호 연결

클러스터 상호 연결은 클러스터 노드 간의 개인 네트워크 통신을 위한 하드웨어 경로를 제공 합니다. 각 상호 연결은 다음 중 하나의 방법으로 연결되는 케이블로 구성됩니다.

■ 두 전송 어댑터 간

■ 전송 어댑터와 전송 스위치 간

클러스터 상호 연결의 용도 및 기능에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide 의 Cluster Interconnect"을 참조하십시오.

참고 - 단일 호스트 클러스터에는 클러스터 상호 연결을 구성할 필요가 없습니다. 그러나 단 일 호스트 클러스터 구성에 노드를 더 추가하려는 경우에는 이후의 사용을 위해 클러스터 상 호 연결을 구성할 수도 있습니다.

Oracle Solaris Cluster 구성 중에 하나 또는 두 개의 클러스터 상호 연결에 대한 구성 정보를 지정합니다.

- 사용 가능한 어댑터 포트 수가 제한된 경우 개인 및 공용 네트워크와 동일한 어댑터 를 공유하도록 태그가 지정된 VLAN을 사용할 수 있습니다. 자세한 내용은 "전송 어댑 터" [26]에서 태그가 지정된 VLAN에 대한 지침을 참조하십시오.
- 한 개의 클러스터에 클러스터 상호 연결을 한 개에서 여섯 개까지 설정할 수 있습니다. 단 일 클러스터 상호 연결을 설정하면 개인 상호 연결에 사용되는 어댑터 포트 수는 줄지만 중복을 제공하지 않고 가용성이 저하됩니다. 단일 상호 연결에서 오류가 발생할 경우 클 러스터는 자동 복구를 수행해야 하는 위험이 증가합니다. 가능하면 둘 이상의 클러스터 상호 연결을 설치하여 중복 및 확장 가능성을 제공하고 단일 지점 실패를 방지함으로써 보다 높은 가용성을 제공하십시오.

clsetup 유틸리티를 사용하여 클러스터를 설정한 후 추가 클러스터 상호 연결을 최대 6개까 지 구성할 수 있습니다.

클러스터 상호 연결 하드웨어에 대한 지침은 Unresolved link to "Oracle Solaris Cluster 4.2 Hardware Administration Manual 의 Interconnect Requirements and Restrictions"을 참조하십시오. 클러스터 상호 연결에 대한 일반적인 정보는 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Cluster Interconnect"을 참조하십시 오.

전송 어댑터

네트워크 인터페이스의 포트와 같은 전송 어댑터의 경우 전송 어댑터 이름 및 전송 유형을 지 정합니다. 구성이 2호스트 클러스터인 경우 상호 연결이 지점 간 연결(어댑터 대 어댑터)인 지 전송 스위치를 사용하는지도 지정합니다.

다음 지침과 제한 사항을 고려하십시오.

- IPv6 Oracle Solaris Cluster 소프트웨어는 개인 상호 연결을 통한 IPv6 통신을 지원하 지 않습니다.
- 로컬 MAC 주소 지정 모든 개인 네트워크 어댑터에서는 로컬 MAC 주소 지정을 지원하는 네트워크 인터페이스 카드(Network Interface Card, NIC)를 사용해야 합니다. 확장 가능한 데이터 서비스를 위해 IPv6 공용 네트워크 주소를 지원하기 위해 개인 네트워크 어댑터에 필요한 링크 로컬 IPv6 주소는 로컬 MAC 주소에서 파생됩니다.
- 태그가 지정된 VLAN 어댑터 Oracle Solaris Cluster 소프트웨어는 태그가 지정된 VLAN(Virtual Local Area Network)을 지원하여 개인 클러스터 상호 연결과 공용 네

트워크 간에 어댑터를 공유합니다. 클러스터로 어댑터를 구성하기 전에 dladm createvlan 명령을 사용하여 태그가 지정된 VLAN 어댑터로 구성해야 합니다.

클러스터 상호 연결을 위해 태그가 지정된 VLAN 어댑터를 구성하려면 VLAN 가상 장치 이름으로 어댑터를 지정합니다. 이 이름은 어댑터 이름과 VLAN 인스턴스 번호로 구성됩 니다. VLAN 인스턴스 번호는 수식(1000*V)+N에서 파생됩니다. 여기서 V는 VID 번호 이고 N은 PPA입니다.

예를 들어 어댑터 net2에서 VID가 73인 경우 VLAN 인스턴스 번호는 (1000*73)+2로 계산됩니다. 따라서 어댑터 이름을 net73002로 지정하여 공유된 가상 LAN의 일부임을 나타냅니다.

클러스터의 VLAN 구성에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster 4.2 Hardware Administration Manual 의 Configuring VLANs as Private Interconnect Networks"을 참조하십시오. VLAN 만들기 및 관리에 대한 자세한 내용 은 Unresolved link to "dladm1M" 매뉴얼 페이지 및 Unresolved link to "Oracle Solaris 11.2의 네트워크 데이터 링크 관리 의 3 장, 가상 LAN을 사용하여 가상 네트워크 구성"을 참조하십시오.

- SPARC: Oracle VM Server for SPARC 게스트 도메인 해당 가상 이름인 vnetN(예: vnet0 및 vnet1)으로 어댑터 이름을 지정합니다. 가상 어댑터 이름은 /etc/path_to_inst 파일에 기록됩니다.
- 논리 네트워크 인터페이스 논리 네트워크 인터페이스는 Oracle Solaris Cluster 소프트 웨어에서 사용하도록 예약되어 있습니다.

전송 스위치

네트워크 스위치와 같은 전송 스위치를 사용하는 경우 각 상호 연결에 대해 전송 스위치 이름 을 지정합니다. 기본 이름 switchN을 사용하거나 다른 이름을 만들 수 있습니다. 여기서 N은 구성 시 자동으로 지정되는 번호입니다.

또한 스위치 포트 이름을 지정하거나 기본 이름을 수락합니다. 기본 포트 이름은 케이블 끝에 있는 어댑터를 호스트하는 Oracle Solaris 호스트의 내부 노드 ID 번호와 동일합니다. 그러나 특정 어댑터 유형에 대해서는 기본 포트 이름을 사용할 수 없습니다.

노드가 세 개 이상인 클러스터에서는 전송 스위치를 반드시 사용해야 합니다. 클러스터 노드 사이의 직접 연결은 2호스트 클러스터에서만 지원됩니다. 2호스트 클러스터가 직접 연결된 경우에도 상호 연결을 위한 전송 스위치를 지정할 수 있습니다.

작은 정보 - 전송 스위치를 지정하면 나중에 쉽게 다른 노드를 클러스터에 추가할 수 있습니 다.

전역 보호(fencing)

보호(fencing)는 정보 분리(split-brain) 상황에서 공유 디스크의 데이터 무결성을 보호하기 위해 클러스터에서 사용하는 메커니즘입니다. 기본적으로 표준 모드의 scinstall 유틸리티 에서는 전역 보호(fencing)가 사용으로 설정된 상태로 유지되며 구성의 각 공유 디스크에서 는 기본 전역 보호(fencing) 설정 prefer3를 사용합니다. prefer3 설정과 함께 SCSI-3 프로 토콜이 사용됩니다.

어떤 장치가 SCSI-3 프로토콜을 사용할 수 없는 경우 pathcount 설정을 대신 사용해야 합니 다. 그러면 디스크에 연결되는 DID 경로 수를 기반으로 공유 디스크에 대한 보호(fencing) 프로토콜이 선택됩니다. SCSI-3 불가능 장치는 클러스터 내에서 두 개의 DID 장치 경로로 제 한됩니다. SCSI-3 또는 SCSI-2 보호(fencing)를 지원하지 않는 장치에 대해 보호 기능을 끌 수 있습니다. 그러나 정보 분리(split-brain) 상황에서 이러한 장치에 대한 데이터 무결성을 보장할 수 없습니다.

사용자 정의 모드의 scinstall 유틸리티에서는 전역 보호(fencing)를 비활성화할지를 묻는 메시지를 표시합니다. 대부분의 경우 №로 응답하여 전역 보호(fencing)를 활성화된 상태로 유지합니다. 그러나 특정 상황에서 전역 보호(fencing)를 사용 안함으로 설정할 수 있습니 다.

주의 - 설명된 경우를 제외한 다른 상황에서 보호(fencing)를 사용 안함으로 설정하면 응용 프로그램 페일오버 중에 데이터가 더 쉽게 손상될 수 있습니다. 보호(fencing) 해제를 고려 할 때는 이러한 데이터 손상 가능성을 주의 깊게 검토하십시오.

전역 보호(fencing)를 사용 안함으로 설정할 수 있는 상황은 다음과 같습니다.

■ 공유 저장소에서 SCSI 예약을 지원하지 않습니다.

공유 디스크에 대한 보호(fencing)를 해제한 다음 쿼럼 장치로 구성하면 해당 장치에 서 소프트웨어 쿼럼 프로토콜을 사용합니다. 이것은 디스크에서 SCSI-2 또는 SCSI-3 프 로토콜을 지원하는지 여부에 관계없이 적용됩니다. 소프트웨어 쿼럼은 Oracle Solaris Cluster 소프트웨어의 프로토콜로, SCSI PGR(Persistent Group Reservations)의 형식 을 에뮬레이트합니다.

 클러스터 외부에 있는 시스템을 활성화하여 클러스터에 연결된 저장소에 액세스하려고 합니다.

클러스터 구성 중에 전역 보호(fencing)를 비활성화하면 보호(fencing)가 클러스터의 모든 공유 디스크에 대해 해제됩니다. 클러스터가 구성된 후 전역 보호(fencing) 프로토콜을 변경 하거나 개별 공유 디스크의 보호(fencing) 프로토콜을 대체할 수 있습니다. 그러나 쿼럼 장 치의 보호(fencing) 프로토콜을 변경하려면 먼저 쿼럼 장치를 구성 해제해야 합니다. 그런 다음 디스크의 새 보호(fencing) 프로토콜을 설정하고 해당 디스크를 쿼럼 장치로 다시 구성 합니다.

보호 동작에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Failfast Mechanism"를 참조하십시오. 개별 공유 디스크의 보호(fencing) 프로토 콜 설정에 대한 자세한 내용은 Unresolved link to " cldevice1CL" 매뉴얼 페이지를 참조하 십시오. 전역 보호(fencing) 설정에 대한 자세한 내용은 Unresolved link to " cluster1CL" 매뉴얼 페이지를 참조하십시오.

쿼럼 장치

Oracle Solaris Cluster 구성에서는 쿼럼 장치를 사용하여 데이터 및 자원 무결성을 유지 관 리합니다. 클러스터와 노드 사이의 연결이 일시적으로 끊어지면 클러스터 노드가 클러스터 에 다시 연결하려고 시도할 때 쿼럼 장치가 정보 유실이나 정보 분리(split-brain) 문제를 방 지합니다. 쿼럼 장치의 용도 및 기능에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Quorum and Quorum Devices"를 참조하십시오.

2호스트 클러스터의 Oracle Solaris Cluster 설치 중에는 scinstall 유틸리티가 구성에서 사 용 가능한 공유 디스크를 쿼럼 장치로 자동으로 구성하도록 선택할 수 있습니다. scinstall 유틸리티는 사용 가능한 모든 공유 디스크가 쿼럼 장치로 지원되는 것으로 가정합니다.

쿼럼 서버 또는 Oracle ZFS Storage Appliance NAS 장치를 쿼럼 장치로 사용하려면 scinstall 처리가 완료된 후 구성합니다.

설치 후에는 clsetup 유틸리티를 사용하여 추가 쿼럼 장치를 구성할 수도 있습니다.

참고 - 단일 호스트 클러스터에는 쿼럼 장치를 구성할 필요가 없습니다.

클러스터 구성에 쿼럼 장치로 사용할 수 없는 타사 공유 저장 장치가 포함되어 있으면 clsetup 유틸리티를 사용하여 쿼럼을 수동으로 구성해야 합니다.

쿼럼 장치를 계획할 때는 다음 사항을 고려하십시오.

- 최소 2호스트 클러스터에는 공유 디스크, 쿼럼 서버 또는 NAS 장치가 될 수 있는 쿼럼 장치가 하나 이상 있어야 합니다. 다른 토폴로지의 경우에는 쿼럼 장치가 선택 사항입니 다.
- 홀수 규칙 둘 이상의 쿼럼 장치가 2호스트 클러스터나 쿼럼 장치에 직접 연결된 호스트 쌍에 구성되어 있는 경우 쿼럼 장치를 홀수로 구성합니다. 이 구성을 사용하면 각 쿼럼 장 치가 완전히 독립된 실패 경로를 가집니다.
- 쿼럼 투표 분산 클러스터의 최대 가용성을 제공하려면 쿼럼 장치의 영향을 받는 전체 투표 수가 노드의 영향을 받는 전체 투표 수보다 적어야 합니다. 그렇지 않은 경우 모든 쿼 럼 장치를 사용할 수 없으면 모든 노드가 작동하고 있더라도 노드가 클러스터를 형성할 수 없습니다.
- 연결 쿼럼 장치를 둘 이상의 노드에 연결해야 합니다.
- SCSI 보호(fencing) 프로토콜- SCSI 공유 디스크 쿼럼 장치가 구성된 경우에는 해당 보 호(fencing) 프로토콜이 2호스트 클러스터에서는 SCSI-2로, 3개 이상의 노드가 있는 클 러스터에서는 SCSI-3으로 자동 설정됩니다.
- 쿼럼 장치의 보호(fencing) 프로토콜 변경 쿼럼 장치로 구성된 SCSI 디스크의 경우 해 당 SCSI 보호(fencing) 프로토콜을 활성화하거나 비활성화하기 전에 쿼럼 장치를 구성 해제해야 합니다.
- 소프트웨어 쿼럼 프로토콜 SATA 디스크와 같은 SCSI 프로토콜을 지원하지 않는 지원 되는 공유 디스크를 쿼럼 장치로 구성할 수 있습니다. 이러한 디스크에 대해서는 보호

(fencing)를 비활성화해야 합니다. 그러면 해당 디스크에서 소프트웨어 쿼럼 프로토콜을 사용하여 SCSI PGR을 에뮬레이트합니다.

소프트웨어 쿼럼 프로토콜은 SCSI 공유 디스크에 대해 보호(fencing)가 사용 안함으로 설정된 경우 해당 디스크에서도 사용됩니다.

- 복제된 장치 Oracle Solaris Cluster 소프트웨어는 복제된 장치를 쿼럼 장치로 지원하 지 않습니다.
- ZFS 저장소 풀 구성된 쿼럼 장치를 ZFS 저장소 풀에 추가하지 마십시오. ZFS 저장소 풀에 구성된 쿼럼 장치를 추가하면 디스크가 EFI 디스크로 다시 표시되고 쿼럼 구성 정보가 손실됩니다. 그러면 디스크에서 클러스터에 쿼럼 투표를 더 이상 제공할 수 없습니다.

디스크가 저장소 풀에 있게 되면 해당 디스크를 쿼럼 장치로 구성할 수 있습니다. 또는 쿼 럼 장치를 구성 해제하고 저장소 풀에 추가한 다음 디스크를 쿼럼 장치로 다시 구성할 수 있습니다.

쿼럼 장치에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Quorum and Quorum Devices"를 참조하십시오.

SPARC: 클러스터의 Oracle VM Server for SPARC에 대 한 지침

SPARC 하이퍼바이저를 사용할 수 있는, 물리적으로 클러스터화된 시스템에서 Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 만드는 경우 다음 사항을 고려하십시 오.

- SR-IOV 장치 SR-IOV 장치는 클러스터 노드로 실행하도록 구성된 논리적 도메인에 서 지원됩니다. 지원되는 SR-IOV 장치에 대한 자세한 내용은 Oracle Solaris Cluster 4 Compatibility Guide (http://www.oracle.com/technetwork/server-storage/ solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf)를 참 조하십시오.
- SCSI LUN 요구 사항 Oracle VM Server for SPARC 게스트 도메인의 가상 공유 저장 장치 또는 가상 디스크 백엔드는 I/O 도메인에서 전체 SCSI LUN이어야 합니다. 임의 가 상 장치는 사용할 수 없습니다.
- 보호(Fencing) 해당 장치에 대한 보호(fencing)를 사용 안함으로 설정할 수 없는 경우 동일한 물리적 시스템에 있는 둘 이상의 게스트 도메인으로 저장소 LUN을 내보내지 마십 시오. 그렇지 않으면 같은 시스템에 있는 두 개의 다른 게스트 도메인이 모두 장치에 표시 될 경우 해당 장치는 게스트 도메인 중 하나가 정지할 때마다 보호(fencing)됩니다. 장치 의 보호(fencing)로 인해 이후에 장치에 액세스하려고 하는 다른 게스트 도메인에서 패 닉 상태가 발생합니다.
- 네트워크 격리 동일한 물리적 시스템에 있지만 다른 클러스터에 구성된 게스트 도메인
 은 네트워크에서 서로 격리되어야 합니다. 다음 방법 중 하나를 사용합니다.
 - 개인 네트워크에 I/O 도메인의 다른 네트워크 인터페이스를 사용하도록 클러스터를 구성합니다.
 - 클러스터의 초기 구성을 수행할 때 각 클러스터에 다른 네트워크 주소를 사용합니다.

- 게스트 도메인의 네트워킹 게스트 도메인 간에 전달되는 네트워크 패킷이 가상 스위치 를 통해 네트워크 드라이버에 연결하려면 서비스 도메인을 통과해야 합니다. 가상 스위치 는 시스템 우선 순위에 따라 실행되는 커널 스레드를 사용합니다. 가상 스위치 스레드는 하트비트, 구성원, 검사점 등 중요한 클러스터 작업을 수행하려면 필요한 CPU 자원을 획 득할 수 있어야 합니다. mode=sc 설정으로 가상 스위치를 구성하면 클러스터 하트비트 패 킷을 신속하게 처리할 수 있습니다. 그러나 다음과 같은 작업 부하에서 서비스 도메인에 더 많은 CPU 자원을 추가하면 다른 중요한 클러스터 작업의 안정성을 향상시킬 수 있습 니다.
 - 네트워크 또는 디스크 I/O로 인한 높은 인터럽트 부하. 극심한 부하 상황에서는 가상 스위치 스레드를 포함한 시스템 스레드가 장시간 실행되지 못할 수 있습니다.
 - CPU 자원을 유지할 때 지나치게 공격적인 실시간 스레드. 실시간 스레드는 가상 스위 치 스레드보다 더 높은 우선 순위로 실행되며 연장된 시간 동안 가상 스위치 스레드에 대해 CPU 자원을 제한할 수 있습니다.
- 비공유 저장소 Oracle VM Server for SPARC 게스트 도메인 OS 이미지와 같은 비공유 저장소에 대해 모든 유형의 가상 장치를 사용할 수 있습니다. 파일 또는 볼륨과 같은 I/O 도메인의 구현을 통해 이러한 가상 장치를 백업할 수 있습니다. 그러나 같은 클러스터에 있는 다른 게스트 도메인에 매핑하기 위해 I/O 도메인에서 파일을 복사하거나 볼륨을 복 제하지 마십시오. 이렇게 복사하거나 복제하면 결과 가상 장치의 장치 ID가 다른 게스트 도메인의 장치와 동일해지므로 문제가 발생할 수 있습니다. 항상 I/O 도메인에 새 파일이나 장치를 만들어 고유한 장치 ID를 할당한 다음 새 파일이나 장치를 다른 게스트 도메인 에 매핑하십시오.
- I/O 도메인에서 저장소 내보내기 Oracle VM Server for SPARC I/O 도메인으로 구성 되는 클러스터를 구성하는 경우 해당 저장 장치를 Oracle Solaris Cluster 소프트웨어에 서도 실행되는 다른 게스트 도메인으로 내보내지 마십시오.
- Oracle Solaris I/O 다중 경로 게스트 도메인에서 Oracle Solaris I/O 다중 경로 소프트 웨어(MPxIO)를 실행하지 마십시오. 대신 I/O 도메인에서 Oracle Solaris I/O 다중 경로 소프트웨어를 실행하고 게스트 도메인으로 내보내십시오.
- 가상 디스크 다중 경로 클러스터 노드로 구성된 논리적 도메인에서 Oracle VM Server for SPARC의 가상 디스크 다중 경로 기능을 구성하지 마십시오.
- 라이브 마이그레이션 제한 사항 클러스터 노드로 실행하도록 구성된 논리적 도메인에 대해서는 라이브 마이그레이션이 지원되지 않습니다. 그러나 HA for Oracle VM Server for SPARC 데이터 서비스에서 관리하도록 구성된 논리적 도메인은 라이브 마이그레이션 을 사용할 수 있습니다.

Oracle VM Server for SPARC에 대한 자세한 내용은 Unresolved link to "Oracle VM Server for SPARC 3.1 관리 설명서 "를 참조하십시오.

영역 클러스터

영역 클러스터는 Oracle Solaris 비전역 영역을 클러스터링한 것입니다. clsetup 유틸리 티를 사용하여 영역 클러스터를 만들고 네트워크 주소, 파일 시스템, ZFS 저장소 풀 또 는 저장 장치를 추가할 수 있습니다. 명령줄 인터페이스(clzonecluster 유틸리티)를 사 용하여 영역 클러스터를 만들고, 구성 변경 작업을 수행하고, 영역 클러스터를 제거할 수 도 있습니다. clzonecluster 유틸리티 사용에 대한 자세한 내용은 Unresolved link to " clzonecluster1CL" 매뉴얼 페이지를 참조하십시오.

영역 클러스터에 대해 지원되는 브랜드는 solaris, solaris10 및 labeled입니다. labeled 브 랜드는 Trusted Extensions 환경에서만 사용됩니다. Oracle Solaris의 Trusted Extensions 기능을 사용하려면 영역 클러스터에서 사용할 Trusted Extensions 기능을 구성해야 합니다. Oracle Solaris Cluster 구성에서는 다른 Trusted Extensions 사용이 지원되지 않습니다.

clsetup 유틸리티를 실행할 때 공유 IP 영역 클러스터 또는 배타적 IP 영역 클러스터를 지정 할 수도 있습니다.

- 공유 IP 영역 클러스터는 solaris 또는 solaris10 브랜드 영역에서 작동합니다. 공유 IP 영역 클러스터는 노드에 있는 모든 영역 간에 단일 IP 스택을 공유하며 각 노드에는 IP 주 소가 할당됩니다.
- 배타적 IP 영역 클러스터는 solaris 및 solaris10 브랜드 영역에서 작동합니다. 배타적 IP 영역 클러스터는 별도의 IP 인스턴스 스택을 지원합니다.

영역 클러스터 만들기를 계획할 때는 다음 사항을 고려하십시오.

- "전역 클러스터 요구 사항 및 지침" [32]
- "영역 클러스터 요구 사항 및 지침" [33]
- "영역 클러스터의 Trusted Extensions에 대한 지침" [34]

전역 클러스터 요구 사항 및 지침

- 전역 클러스터 영역 클러스터는 전역 Oracle Solaris Cluster 구성에 구성해야 합니다. 영역 클러스터는 기본 전역 클러스터가 없으면 구성할 수 없습니다.
- 클러스터 모드 영역 클러스터를 만들거나 수정하는 전역 클러스터 노드는 클러스터 모 드에 있어야 합니다. 영역 클러스터를 관리할 때 다른 모든 노드가 비클러스터 모드에 있 으면 클러스터 모드로 돌아갈 때 변경 사항이 해당 노드에 전파됩니다.
- 적합한 개인 IP 주소 전역 클러스터의 개인 IP 주소 범위에는 새 영역 클러스터에서 사용 할 만큼 충분히 사용 가능한 IP 주소 서브넷이 있어야 합니다. 사용 가능한 서브넷 수가 부 족하면 영역 클러스터 만들기가 실패합니다.
- 개인 IP 주소 범위 변경 사항 영역 클러스터에 사용할 수 있는 개인 IP 서브넷 및 해당 개인 IP 주소는 전역 클러스터의 개인 IP 주소 범위가 변경되는 경우 자동으로 업데이트됩니다. 영역 클러스터가 삭제되면 클러스터 인프라는 해당 영역 클러스터에서 사용하던 개인 IP 주소를 해제하여 전역 클러스터 내에서 다른 용도로 주소를 사용하고 전역 클러스터에 따라 달라지는 다른 영역 클러스터에서 주소를 사용할 수 있도록 합니다.
- 지원되는 장치 Oracle Solaris 영역에서 지원되는 장치는 영역 클러스터로 내보낼 수 있습니다. 이러한 장치는 다음과 같습니다.
 - Oracle Solaris 디스크 장치(cNtXdYsZ)
 - DID 장치(/dev/did/*dsk/dN)

■ Solaris Volume Manager 및 Sun Cluster용 Solaris Volume Manager 다중 소유 자 디스크 세트(/dev/md/setname/*dsk/dN)

영역 클러스터 요구 사항 및 지침

- 노드의 분산 동일한 호스트 시스템에서 동일한 영역 클러스터의 여러 노드를 호스트할 수 없습니다. 호스트는 해당 호스트의 각 영역 클러스터 노드가 다른 영역 클러스터의 구 성원인 한 여러 영역 클러스터 노드를 지원할 수 있습니다.
- 노드 만들기 영역 클러스터를 만들 때 하나 이상의 영역 클러스터 노드를 만들어야 합니다. clsetup 유틸리티 또는 clzonecluster 명령을 사용하여 영역 클러스터를 만들 수 있습니다. 영역 클러스터 노드의 이름은 영역 클러스터 내에서 고유해야 합니다. 인프라는 영역 클러스터를 지원하는 각 호스트에 기본 비전역 영역을 자동으로 만듭니다. 각 비 전역 영역에는 동일한 영역 이름이 지정되며, 이 이름은 클러스터를 만들 때 영역 클러스터에 할당하는 이름에서 파생되고 해당 이름과 동일합니다. 예를 들어 이름이 zc1인 영역 클러스터를 만들면 영역 클러스터를 지원하는 각 호스트에 있는 해당 비전역 영역 이름도 zc1입니다.
- 클러스터 이름 각 영역 클러스터 이름은 전역 클러스터를 호스트하는 시스템의 클러스 터 전체에서 고유해야 합니다. 또한 전역 클러스터 이름은 시스템 클러스터의 다른 위치 에 있는 비전역 영역에서 사용할 수 없으며 영역 클러스터 이름은 전역 클러스터 노드의 이름과 동일할 수 없습니다. "all" 또는 "global"은 예약된 이름이므로 영역 클러스터 이 름으로 사용할 수 없습니다.
- 공용 네트워크 IP 주소 각 영역 클러스터 노드에 특정 공용 네트워크 IP 주소를 선택적으로 할당할 수 있습니다.

참고 - 각 영역 클러스터 노드에 대해 IP 주소를 구성하지 않으면 다음과 같은 두 가지 상황이 발생합니다.

- 특정 영역 클러스터에서 영역 클러스터에 사용할 NAS 장치를 구성할 수 없습니다. 클러 스터에서는 NAS 장치와 통신할 때 영역 클러스터 노드의 IP 주소를 사용하므로 IP 주소 가 없으면 클러스터에서 NAS 장치 보호(fencing)를 지원하지 못합니다.
- 클러스터 소프트웨어가 모든 NIC에서 논리 호스트 IP 주소를 활성화합니다.
- 개인 호스트 이름 개인 호스트 이름은 전역 클러스터에서 호스트 이름이 만들어지는 것 과 동일한 방식으로 영역 클러스터를 만드는 중 영역 클러스터의 각 노드에 대해 자동으 로 만들어집니다. 현재는 영역 클러스터 노드의 개인 호스트 이름을 변경할 수 없습니다. 개인 호스트 이름에 대한 자세한 내용은 "개인 호스트 이름" [25]을 참조하십시오.
- Oracle Solaris 영역 브랜드 영역 클러스터의 모든 노드는 cluster 속성을 사용하여 설 정되는 solaris, solaris10 또는 labeled 브랜드의 비전역 영역으로 구성됩니다. 다른 브랜드 유형은 영역 클러스터에서 허용되지 않습니다.

Trusted Extensions의 경우 labeled 브랜드만 사용해야 합니다.

■ IP 유형 - shared IP 유형 또는 exclusive IP 유형인 영역 클러스터를 만들 수 있습니다. IP 유형이 지정되지 않은 경우 기본적으로 공유 IP 영역 클러스터가 만들어집니다.

- Global_zone=TRUE 리소스 유형 등록 정보 Global_zone=TRUE 리소스 유형 등록 정보를 사용하는 리소스 유형을 등록하려면 리소스 유형 파일이 영역 클러스터의 /usr/cluster/ global/rgm/rtreg/ 디렉토리에 있어야 합니다. 해당 자원 유형 파일이 다른 위치에 있는 경우 자원 유형을 등록하는 명령이 거부됩니다.
- 영역 클러스터 노드로 변환 영역 클러스터 외부에 있는 비전역 영역을 해당 영역 클러스 터에 추가할 수 없습니다. 영역 클러스터에 새 노드를 추가하려면 clzonecluster 명령만 사용해야 합니다.
- 파일 시스템 clsetup 유틸리티 또는 clzonecluster 명령을 사용하여 영역 클러스터에 서 사용할 다음 유형의 파일 시스템을 추가할 수 있습니다. 파일 시스템은 직접 마운트나 루프백 마운트를 사용하여 영역 클러스터로 내보냅니다. clsetup 유틸리티를 사용하여 파일 시스템을 추가하는 작업이 전체 영역 클러스터에 영향을 주는 클러스터 범위에서 수 행됩니다.
 - 직접 마운트 사용:
 - UFS 로컬 파일 시스템
 - Sun QFS 독립형 파일 시스템
 - Sun QFS 공유 파일 시스템(Oracle RAC 지원에 사용되는 경우에만)
 - Oracle Solaris ZFS(데이터 세트로 내보냄)
 - 지원되는 NAS 장치의 NFS
 - 루프백 마운트 사용:
 - UFS 로컬 파일 시스템
 - Sun QFS 독립형 파일 시스템
 - Sun QFS 공유 파일 시스템 (Oracle RAC 지원에 사용되는 경우에만)
 - UFS 클러스터 파일 시스템

HAStoragePlus 또는 ScalMountPoint 자원을 구성하여 파일 시스템의 마운트를 관리합 니다.

영역 클러스터의 Trusted Extensions에 대한 지침

영역 클러스터에서 Oracle Solaris의 Trusted Extensions 기능을 사용할 때 다음 사항을 고 려하십시오.

- 영역 클러스터 지원만 Trusted Extensions가 사용으로 설정된 Oracle Solaris Cluster 구성에서 응용 프로그램은 영역 클러스터에서만 실행해야 합니다. 다른 비전역 영역은 클 러스터에서 사용할 수 없습니다. 영역 클러스터를 추가하려면 clzonecluster 명령만 사 용해야 합니다. Trusted Extensions가 사용으로 설정된 클러스터에서 비전역 영역을 만 들려면 txzonemgr 명령을 사용하지 마십시오.
- Trusted Extensions 범위 전체 클러스터 구성에 대해 Trusted Extensions를 사용으로 설정하거나 사용 안함으로 설정할 수 있습니다. Trusted Extensions가 사용으로 설정되면 클러스터 구성의 모든 비전역 영역이 영역 클러스터 중 하나에 속해야 합니다. 보안이 손상되지 않고 어떤 종류의 비전역 영역도 구성할 수 없습니다.

- IP 주소 Trusted Extensions를 사용하는 각 영역 클러스터에는 고유 IP 주소가 사용 되어야 합니다. 다중 비전역 영역 간에 IP 주소를 공유할 수 있도록 설정하는 Trusted Extensions의 특수 네트워킹 기능은 Oracle Solaris Cluster 소프트웨어에서 지원되지 않습니다.
- 루프백 마운트 Trusted Extensions를 사용하는 영역 클러스터에서 쓰기 권한이 있는 루프백 마운트를 사용할 수 없습니다. 쓰기 액세스를 허용하는 파일 시스템의 직접 마운 트만 사용하거나 읽기 권한만 있는 루프백 마운트를 사용합니다.
- 파일 시스템 영역 클러스터에서 파일 시스템의 기준이 되는 전역 장치를 구성하지 마십 시오. 영역 클러스터에서 파일 시스템 자체만 구성합니다.
- 저장 장치 이름 저장 장치의 개별 슬라이스를 영역 클러스터에 추가하지 마십시오. 전체 장치를 단일 영역 클러스터에 추가해야 합니다. 서로 다른 영역 클러스터에서 동일한 저 장 장치의 슬라이스를 사용하는 경우 해당 영역 클러스터의 보안이 손상됩니다.
- 응용 프로그램 설치 응용 프로그램을 영역 클러스터 또는 전역 클러스터에서만 설치한 다음 읽기 전용 루프백 마운트를 사용하여 영역 클러스터로 내보냅니다.
- 영역 클러스터 격리 Trusted Extensions가 사용되면 영역 클러스터의 이름이 보안 레 이블입니다. 보안 레이블 자체가 공개될 수 없는 정보일 수 있으며 리소스 또는 리소스 그 룹의 이름이 공개될 수 없는 중요한 정보 부분일 수 있습니다. 클러스터 간 리소스 종속성 또는 클러스터 간 리소스 그룹 유사성이 구성되면 다른 클러스터의 이름은 물론 영향을 받는 모든 리소스 또는 리소스 그룹의 이름도 표시됩니다. 따라서 클러스터 간 관계를 설 정하기 전에 요구 사항에 따라 이 정보를 볼 수 있는지 여부를 평가합니다.

전역 장치, 장치 그룹 및 클러스터 파일 시스템 계획

이 절은 다음 내용으로 구성되어 있습니다.

- "전역 장치 계획" [35]
- "장치 그룹 계획" [36]
- "클러스터 파일 시스템 계획" [36]
- "UFS 클러스터 파일 시스템의 마운트 옵션 선택" [37]
- "클러스터 파일 시스템의 마운트 정보" [39]

전역 장치 계획

전역 장치의 용도 및 기능에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Global Devices"를 참조하십시오.

Oracle Solaris Cluster 소프트웨어에는 특정 디스크 레이아웃이나 파일 시스템 크기가 지정 되어 있지 않습니다. 전역 장치에 대한 레이아웃을 계획할 때 다음 사항을 고려하십시오.

미러링 - 전역 장치의 가용성을 높이려면 모든 전역 장치를 미러링해야 합니다. 저장 장치에서 디스크에 대한 중복 경로뿐 아니라 하드웨어 RAID를 제공하면 소프트웨어 미러링을 사용하지 않아도 됩니다.

- 디스크 미러링할 때에는 파일 시스템이 서로 다른 디스크 어레이 간에 미러링되도록 레 이아웃합니다.
- 가용성 전역 장치의 가용성을 높이려면 클러스터에 있는 두 개 이상의 노드에 물리적으로 전역 장치를 연결해야 합니다. 전역 장치가 물리적으로 많이 연결되면 하나의 노드에서 장애가 발생해도 계속 작동할 수 있습니다. 물리적 연결이 하나밖에 없는 전역 장치를 사용할 수도 있지만 연결된 노드가 중단되면 다른 노드에서 전역 장치에 액세스할 수 없습니다.
- **스왑 장치** 전역 장치에는 스왑 파일을 만들지 마십시오.
- 비전역 영역 전역 장치는 비전역 영역에서 직접 액세스할 수 없습니다. 클러스터 파일 시스템 데이터만 비전역 영역에서 액세스할 수 있습니다.

장치 그룹 계획

장치 그룹의 용도 및 기능에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide 의 Device Groups"을 참조하십시오.

장치 그룹을 계획할 때는 다음 사항을 고려하십시오.

- 페일오버 다중 호스트 디스크와 완전하게 구성된 볼륨 관리자 장치를 페일오버 장치로 구성할 수 있습니다. 볼륨 관리자 장치의 적절한 구성에는 다중 호스트 디스크와 올바른 볼륨 관리자 설정이 포함됩니다. 이 구성을 사용하면 여러 노드에서 내보낸 장치를 호스 트할 수 있습니다. 테이프 드라이브, CD-ROM이나 DVD-ROM 또는 단일 포트 장치는 페일오버 장치로 구성할 수 없습니다.
- 미러링 디스크 장애가 발생할 경우 데이터를 보호하려면 디스크를 미러링해야 합니다. 추가 지침은 "미러링 지침" [42]을 참조하십시오. 미러링에 대한 지침은 "Solaris Volume Manager 소프트웨어 구성" [145] 및 볼륨 관리자 설명서를 참조하십시오.
- 저장소 기반 복제 장치 그룹에 있는 디스크는 모두 복제되거나 아무것도 복제되지 않아 야 합니다. 장치 그룹에서는 복제된 디스크와 복제되지 않은 디스크를 혼합하여 사용할 수 없습니다.

클러스터 파일 시스템 계획

클러스터 파일 시스템의 용도 및 기능에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide 의 Cluster File Systems"을 참조하십시오.

참고 - 고가용성 로컬 파일 시스템을 구성할 수도 있습니다. 이렇게 하면 보다 향상된 성능을 제공하여 높은 I/O를 사용하여 데이터 서비스를 지원하거나 클러스터 파일 시스템에서 지원 되지 않는 특정 파일 시스템 기능의 사용을 허용할 수 있습니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스템을 사용으로 설정"를 참조하십시오.

클러스터 파일 시스템을 계획할 때는 다음 사항을 고려하십시오.
- **할당량** 할당량은 클러스터 파일 시스템에서 지원되지 않습니다. 그러나 고가용성 로컬 파일 시스템에서는 할당량이 지원됩니다.
- 영역 클러스터 UFS를 사용하는 클러스터 파일 시스템을 영역 클러스터에 사용하도록 구성할 수 없습니다. 대신 고가용성 로컬 파일 시스템을 사용하십시오. Oracle RAC를 지 원하는 영역 클러스터에서만 Sun QFS 공유 파일 시스템을 사용할 수 있습니다.
- LOFS(루프백 파일 시스템) 클러스터를 만드는 중 기본적으로 LOFS가 사용으로 설정됩니다. 클러스터가 다음 조건 모두를 충족할 경우 각 클러스터 노드에서 LOFS를 수동으로 사용 안함으로 설정해야 합니다.
 - HA for NFS(HA for NFS)는 고가용성 로컬 파일 시스템에 구성됩니다.
 - automountd 데몬이 실행 중입니다.

클러스터가 이러한 두 조건을 모두 충족할 경우 스위치오버 문제 또는 기타 오류를 방지 하려면 LOFS를 비활성화해야 합니다. 클러스터가 이러한 조건 중 하나만 충족할 경우 LOFS를 안전하게 활성화할 수 있습니다.

LOFS와 automountd 데몬을 모두 사용으로 설정해야 하는 경우 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 파일을 automounter 맵에서 제외시킵니다.

- 프로세스 계정 로그 파일 클러스터 파일 시스템 또는 고가용성 로컬 파일 시스템에서 프로세스 계정 로그 파일을 찾을 수 없습니다. 로그 파일에 대한 쓰기 작업으로 인해 스위 치오버가 차단되며, 이로 인해 노드가 중단됩니다. 프로세스 계정 로그 파일을 포함하려 면 로컬 파일 시스템만 사용합니다.
- 통신 끝점 클러스터 파일 시스템에서는 파일 시스템 이름 공간에 통신 끝점을 배치하는 Oracle Solaris 소프트웨어의 파일 시스템 기능을 지원하지 않습니다. 따라서 로컬 노드 가 아닌 다른 노드에서 fattach 명령을 사용하지 마십시오.
 - 이름이 경로 이름인 UNIX 도메인 소켓을 클러스터 파일 시스템에 만들 수 있지만 노 드 페일오버 후에는 소켓이 작동하지 않습니다.
 - 클러스터 파일 시스템에 만드는 FIFO 또는 이름이 지정된 파이프에는 전역으로 액세 스할 수 없습니다.
- 장치 특수 파일 클러스터 파일 시스템에서는 블록 특수 파일 또는 문자 특수 파일이 지 원되지 않습니다. 클러스터 파일 시스템의 장치 노드에 경로 이름을 지정하려면 /dev 디 렉토리에서 장치 이름에 대한 심볼릭 링크를 만듭니다. 이러한 용도로 mknod 명령을 사용 하지 마십시오.
- atime 클러스터 파일 시스템은 atime을 유지 관리하지 않습니다.
- ctime 클러스터 파일 시스템의 파일에 액세스할 때 파일의 ctime 업데이트가 지연될 수 있습니다.
- 응용 프로그램 설치 고가용성 응용 프로그램의 이진이 클러스터 파일 시스템에 상주하 도록 하려면 클러스터 파일 시스템이 구성된 후 응용 프로그램이 설치될 때까지 기다립니 다.

UFS 클러스터 파일 시스템의 마운트 옵션 선택

이 절에서는 다음 UFS 클러스터 파일 시스템 유형의 마운트 옵션에 대한 요구 사항 및 제한 사항을 설명합니다. **참고** - 또는 고가용성 로컬 파일 시스템으로 파일 시스템의 이 유형 및 기타 유형을 구성할 수 있습니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스템을 사용으로 설정"를 참조하십시오.

다음 마운트 옵션 목록의 지침 다음 마운트 옵션 목록의 지침에 따라 UFS 클러스터 파일 시스템을 만들 때 사용할 마운트 옵션을 결정합니다.

global

필수. 이 옵션은 파일 시스템이 클러스터의 모든 노드에서 전역으로 표시되도록 합니다.

logging

필수. 이 옵션을 로깅을 활성화합니다.

forcedirectio

조건부. 이 옵션은 Oracle RAC RDBMS 데이터 파일, 로그 파일 및 제어 파일을 호스트 할 클러스터 파일 시스템에만 필요합니다.

onerror=panic

필수. /etc/vfstab 파일에서 onerror=panic 마운트 옵션을 명시적으로 지정할 필요는 없습니다. 이 마운트 옵션은 다른 onerror 마운트 옵션을 지정하지 않은 경우 이미 기본 값으로 지정되어 있습니다.

참고 - onerror=panic 마운트 옵션만 Oracle Solaris Cluster 소프트웨어에서 지원됩니다. onerror=umount 또는 onerror=lock 마운트 옵션을 사용하지 마십시오. 이러한 마운트 옵션 은 다음과 같은 이유로 클러스터 파일 시스템에서 지원되지 않습니다.

- onerror=umount 또는 onerror=lock 마운트 옵션을 사용하면 클러스터 파일 시스템이 잠 기거나 클러스터 파일 시스템에 액세스하지 못할 수 있습니다. 이러한 조건은 클러스터 파일 시스템에서 파일 손상이 있는 경우에 발생할 수 있습니다.
- onerror=umount 또는 onerror=lock 마운트 옵션은 클러스터 파일 시스템이 마운트되지 않도록 할 수 있습니다. 이러한 조건에서는 클러스터 파일 시스템을 사용하는 응용 프로 그램이 중단되거나 응용 프로그램이 종료되지 않을 수 있습니다.

이러한 상태에서 복구하려면 노드를 재부트해야 할 수 있습니다.

syncdir

선택 사항. syncdir을 지정하면 write() 시스템 호출에 대해 POSIX 호환 파일 시스템 동 작이 보장됩니다. write()가 성공할 경우 이 마운트 옵션을 사용하면 디스크에서 충분한 공간이 확보됩니다.

syncdir을 지정하지 않으면 UFS 파일 시스템에서 표시되는 동작이 동일하게 발생합니다. syncdir을 지정하지 않으면 데이터를 파일에 추가하는 경우 등 디스크 블록을 할당하는 쓰기의 성능이 크게 향상됩니다. 그러나 경우에 따라 syncdir을 사용하지 않으면 파일을 닫은 다음에야 공간 부족 상태(ENOSPC)가 발견됩니다.

ENOSPC는 페일오버가 발생한 후 매우 짧은 시간 동안만 표시된 후 닫힙니다. syncdir을 사용하면 POSIX 동작과 마찬가지로 파일을 닫기 전에 공간 부족 상태가 발견됩니다.

UFS 마운트 옵션에 대한 자세한 내용은 Unresolved link to "mount_ufs1M" 매뉴얼 페이 지를 참조하십시오.

UFS 클러스터 파일 시스템

마운트 옵션	사용	설명
global	필수	이 옵션은 파일 시스템이 클러스터의 모든 노드에서 전역으로 표시되도록 합니다.
logging	필수	이 옵션을 로깅을 활성화합니다.
forcedirectio	조건부	이 옵션은 Oracle RAC RDBMS 데이터 파일, 로그 파일 및 제어 파일을 호스트할 클러스 터 파일 시스템에만 필요합니다.
onerror=panic	필수	/etc/vfstab 파일에서 onerror=panic 마운트 옵션을 명시적으로 지정할 필요는 없습니 다. 이 마운트 옵션은 다른 onerror 마운트 옵션을 지정하지 않은 경우 이미 기본값으로 지 정되어 있습니다. 참고 - onerror=panic 마운트 옵션만 Oracle Solaris Cluster 소프트웨어에서 지원됩니다. onerror=umount 또는 onerror=lock 마운트 옵션을 사용하지 마십시오. 이러한 마운트 옵 션은 다음과 같은 이유로 클러스터 파일 시스템에서 지원되지 않습니다.
		 onerror=umount 또는 onerror=lock 마운트 옵션을 사용하면 클러스터 파일 시스템이 잠기거나 클러스터 파일 시스템에 액세스하지 못할 수 있습니다. 이러한 조건은 클러 스터 파일 시스템에서 파일 손상이 있는 경우에 발생할 수 있습니다. onerror=umount 또는 onerror=lock 마운트 옵션은 클러스터 파일 시스템이 마운트되지 않도록 할 수 있습니다. 이러한 조건에서는 클러스터 파일 시스템을 사용하는 응용 프로그램이 중단되거나 응용 프로그램이 종료되지 않을 수 있습니다.
		이러한 상태에서 복구하려면 노드를 재부트해야 할 수 있습니다.
syncdir	선택 사항	syncdir을 지정하면 write() 시스템 호출에 대해 POSIX 호환 파일 시스템 동작이 보장됩 니다. write()가 성공할 경우 이 마운트 옵션을 사용하면 디스크에서 충분한 공간이 확보 됩니다.
		syncdir을 지정하지 않으면 UFS 파일 시스템에서 표시되는 동작이 동일하게 발생합니다. syncdir을 지정하지 않으면 데이터를 파일에 추가하는 경우 등 디스크 블록을 할당하는 쓰기의 성능이 크게 향상됩니다. 그러나 경우에 따라 syncdir을 사용하지 않으면 파일을 닫은 다음에야 공간 부족 상태(ENOSPC)가 발견됩니다.
		ENOSPC는 페일오버가 발생한 후 매우 짧은 시간 동안만 표시된 후 닫힙니다. syncdir을 사 용하면 POSIX 동작과 마찬가지로 파일을 닫기 전에 공간 부족 상태가 발견됩니다.

UFS 마운트 옵션에 대한 자세한 내용은 Unresolved link to "mount_ufs1M" 매뉴얼 페이 지를 참조하십시오.

클러스터 파일 시스템의 마운트 정보

클러스터 파일 시스템의 마운트 지점을 계획할 때는 다음 사항을 고려하십시오.

- 마운트 지점 위치 다른 소프트웨어 제품에서 금지하지 않는 한 /global 디렉토리에 클 러스터 파일 시스템의 마운트 지점을 만듭니다. /global 디렉토리를 사용하면 전역적으 로 사용할 수 있는 클러스터 파일 시스템을 로컬 파일 시스템과 쉽게 구별할 수 있습니다.
- 마운트 지점 중첩 일반적으로 클러스터 파일 시스템의 마운트 지점은 중첩하지 않아야 합니다. 예를 들어 /global/a에 마운트되는 파일 시스템과 /global/a/b에 마운트되는 다 른 파일 시스템을 함께 설정하지 마십시오. 이 규칙을 무시하면 가용성 및 노드 부트 순서 문제가 발생할 수 있습니다. 이러한 문제는 하위 파일 시스템을 마운트하려고 할 때 상위 마운트 지점이 없는 경우에 발생합니다.

단, UFS의 클러스터 파일 시스템에는 이 규칙이 적용되지 않습니다. 두 개의 파일 시스템 장치에 동일한 물리적 호스트 연결이 있는 경우(예: 같은 디스크의 다른 슬라이스) 마운트 지점을 중첩할 수 있습니다.

참고 - 이러한 제한 사항은 두 개의 파일 시스템 장치에 동일한 물리적 호스트 연결이 있는 경 우에도 Sun QFS 공유 파일 시스템에 적용됩니다.

■ forcedirectio - Oracle Solaris Cluster 소프트웨어에서는 forcedirectio 마운트 옵션 을 사용하여 마운트되는 클러스터 파일 시스템의 이진 실행을 지원하지 않습니다.

볼륨 관리 계획

이 절에서는 클러스터 구성의 볼륨 관리 계획을 위한 지침을 제공합니다.

- "볼륨 관리자 소프트웨어에 대한 지침" [40]
- "Solaris Volume Manager 소프트웨어에 대한 지침" [41]
- "UFS 클러스터 파일 시스템 로깅" [42]
- "미러링 지침" [42]

Oracle Solaris Cluster 소프트웨어는 볼륨 관리자 소프트웨어를 사용하여 디스크를 장치 그 룹으로 묶어서 하나의 단위로 관리할 수 있습니다. 클러스터의 모든 노드에 Solaris Volume Manager 소프트웨어를 설치해야 합니다.

볼륨 관리자 소프트웨어 설치 및 구성 방법에 대한 지침은 볼륨 관리자 설명서 및 "Solaris Volume Manager 소프트웨어 구성" [145]을 참조하십시오. 클러스터 구성에서 볼륨 관리 사용에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Multihost Devices" 및 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Device Groups"을 참조하십시오.

볼륨 관리자 소프트웨어에 대한 지침

볼륨 관리자 소프트웨어를 사용하여 디스크를 구성할 경우 다음 일반 지침을 고려하십시오.

- **소프트웨어 RAID** Oracle Solaris Cluster 소프트웨어는 소프트웨어 RAID 5를 지원하 지 않습니다.
- 미러된 다중 호스트 디스크 디스크 확장 장치에서 모든 다중 호스트 디스크를 미러링 해야 합니다. 다중 호스트 디스크 미러링에 대한 지침은 "다중 호스트 디스크 미러링 지 침" [42]을 참조하십시오. 저장 장치에서 장치에 대한 중복 경로뿐 아니라 하드웨어 RAID를 제공하는 경우에는 소프트웨어 미러링을 사용하지 않아도 됩니다.
- 미러된 루트 ZFS 루트 풀을 미러링하면 가용성이 높아지지만 이러한 미러링은 필수 사 항이 아닙니다. ZFS 루트 풀을 미러링할지를 결정하는 지침은 "미러링 지침" [42]을 참조하십시오.
- 노드 목록 장치 그룹의 가용성을 높이려면 마스터가 될 수 있는 노드 목록 및 해당 페 일백 정책을 연결된 리소스 그룹과 동일하게 지정합니다. 또는 확장 가능한 자원 그룹에 서 연결된 장치 그룹보다 많은 노드를 사용할 경우에는 확장 가능한 자원 그룹의 노드 목 록을 장치 그룹의 노드 목록보다 수퍼 세트로 만듭니다. 노드 목록에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "의 자 원 그룹 계획 정보를 참조하십시오.
- 다중 호스트 디스크 해당 장치 그룹에 대한 노드 목록에 구성된 모든 노드로 장치 그 룹을 구성하는 데 사용되는 모든 장치를 연결하거나 이식해야 합니다. Solaris Volume Manager 소프트웨어는 장치가 디스크 세트에 추가될 때 이 연결을 자동으로 검사할 수 있습니다.
- **핫 스페어 디스크** 핫 스페어 디스크를 사용하면 가용성을 높일 수 있지만 핫 스페어 디 스크는 필수 사항이 아닙니다.

디스크 레이아웃 권장 사항과 추가 제한 사항에 대한 내용은 볼륨 관리자 소프트웨어 설명서 를 참조하십시오.

Solaris Volume Manager 소프트웨어에 대한 지침

Solaris Volume Manager 구성을 계획할 때는 다음 사항을 고려하십시오.

- **고유한 이름 지정** 디스크 세트 이름은 클러스터 전체에서 고유해야 합니다.
- 디스크 세트 예약된 이름 디스크 세트 이름을 admin 또는 shared로 지정하지 마십시오.
- 이중 문자열 중개자 디스크 문자열은 디스크 외장 장치, 물리적 디스크, 외장 장치와 호 스트를 연결하는 케이블 및 인터페이스 어댑터 카드로 구성됩니다. 정확히 2개의 디스크 문자열로 구성되고 정확히 2-3개의 Oracle Solaris 호스트에서 마스터하는 각 디스크 세 트를 이중 문자열 디스크 세트라고 합니다. 이 유형의 디스크 세트에는 Solaris Volume Manager 이중 문자열 중개자가 구성되어 있어야 합니다. 이중 문자열 중재자를 구성할 때는 다음 규칙을 준수하십시오.
 - 각 디스크 세트가 중재자 호스트 역할을 하는 호스트 두 개 또는 세 개를 갖도록 구성 해야 합니다.
 - 해당 디스크 세트에 대한 중재자로 디스크 세트를 마스터할 수 있는 호스트를 사용해 야 합니다. 캠퍼스 클러스터가 있는 경우 클러스터 네트워크에서 세번째 노드 또는 클 러스터되지 않은 호스트를 세번째 중재자 호스트로 구성하여 가용성을 향상시킬 수도 있습니다.

2문자열 및 2호스트 요구 사항을 충족하지 않는 디스크 세트에는 중재자를 구성할 수 없습니다.

자세한 내용은 Unresolved link to " mediator7D" 매뉴얼 페이지를 참조하십시오.

UFS 클러스터 파일 시스템 로깅

UFS 클러스터 파일 시스템의 경우 로깅이 필요합니다. Oracle Solaris Cluster 소프트웨 어는 Oracle Solaris UFS 로깅을 지원합니다. 자세한 내용은 Unresolved link to " mount_ufs1M" 매뉴얼 페이지를 참조하십시오.

미러링 지침

이 절에서는 클러스터 구성의 미러링 계획을 위한 다음과 같은 지침을 제공합니다.

- "다중 호스트 디스크 미러링 지침" [42]
- "ZFS 루트 풀 미러링 지침" [43]

다중 호스트 디스크 미러링 지침

Oracle Solaris Cluster 구성에서 모든 다중 호스트 디스크를 미러링하면 단일 장치에 장애 가 발생해도 문제가 되지 않습니다. Oracle Solaris Cluster 소프트웨어를 사용하려면 확장 장치 사이에서 모든 다중 호스트 디스크를 미러링해야 합니다. 저장 장치에서 장치에 대한 중 복 경로뿐 아니라 하드웨어 RAID를 제공하는 경우에는 소프트웨어 미러링을 사용하지 않아 도 됩니다.

다중 호스트 디스크를 미러링할 때는 다음 사항을 고려하십시오.

- 별도의 디스크 확장 장치 지정된 미러의 각 하위 미러 또는 플렉스가 서로 다른 다중 호 스트 확장 장치에 있어야 합니다.
- 디스크 공간 미러링하려면 두 배의 디스크 공간이 필요합니다.
- 3중 미러링 Solaris Volume Manager 소프트웨어는 3중 미러링을 지원합니다지원합 니다. 그러나 Oracle Solaris Cluster 소프트웨어에서는 양방향 미러링만 사용해야 합니 다.
- 다양한 장치 크기 다양한 크기의 장치를 미러링하면 미러 용량이 가장 작은 하위 미러 또는 플렉스로 제한됩니다.

다중 호스트 디스크에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster Concepts Guide 의 Multihost Devices"를 참조하십시오.

ZFS 루트 풀 미러링 지침

Oracle Solaris ZFS는 Oracle Solaris 릴리스의 기본 루트 파일 시스템입니다. ZFS 루트 풀 을 미러링하는 방법은 Unresolved link to "Oracle Solaris 11.2의 ZFS 파일 시스템 관리 의 미러링된 루트 풀을 구성하는 방법(SPARC 또는 x86/VTOC)"을 참조하십시오. 또한 다양 한 루트 풀 구성 요소를 관리하는 방법에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 ZFS 파일 시스템 관리 의 4 장, ZFS 루트 풀 구성 요소 관리"를 참조하십시 오.

가용성을 최대로 높이려면 로컬 디스크에서 루트(/), /usr, /var, /opt, swap을 미러링하십시 오. 그러나 Oracle Solaris Cluster 소프트웨어를 사용할 경우에는 ZFS 루트 풀을 미러링하 지 않아도 됩니다.

ZFS 루트 풀을 미러링할지 여부를 결정할 때는 다음 사항을 고려하십시오.

- 부트 디스크 미러를 부트 가능한 루트 풀로 설정할 수 있습니다. 그런 다음 기본 부트 디 스크가 실패할 경우 미러에서 부트할 수 있습니다.
- 백업 루트 풀의 미러링 여부에 관계없이 정기적으로 루트를 백업해야 합니다. 관리 오류 가 발생할 경우에 미러링만으로는 보호할 수 없습니다. 백업 계획을 세워야만 사고로 변 경되거나 삭제된 파일을 복구할 수 있습니다.
- **쿼럼 장치** 쿼럼 장치로 구성된 디스크를 사용하여 루트 풀을 미러링하지 마십시오.
- 별도의 컨트롤러 가용성을 최대로 높이는 방법으로 별도의 컨트롤러에 루트 풀을 미러 링하는 방법이 있습니다.

44 Oracle Solaris Cluster 소프트웨어 설치 설명서 • 2014년 9월

◆ ◆ ◆ 2 장

전역 클러스터 노드에 소프트웨어 설치

이 장에서는 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 설치하는 작업에 대한 다음 정보를 제공합니다.

- "소프트웨어 설치 개요" [45]
- "소프트웨어 설치" [46]

소프트웨어 설치 개요

다음 작업 맵에는 다중 호스트 또는 단일 호스트 클러스터에 소프트웨어를 설치하기 위해 수 행해야 하는 작업이 나열되어 있습니다. 표시된 순서대로 절차를 완료하십시오.

표 2-1 작업 맵: 소프트웨어 설치

작업	지침
클러스터 구성의 레이아웃을 계획하고 소프트웨어 설치를 준비합 니다.	클러스터 소프트웨어 설치를 준비하는 방법 [47]
모든 노드, 그리고 선택적으로 관리 콘솔 및 쿼럼 서버에 Oracle Solaris OS를 설치합니다. 선택적으로 노드에서 Oracle Solaris I/ O 다중 경로를 사용으로 설정합니다.	Oracle Solaris 소프트웨어를 설치하는 방법 [48]
(선택 사항) 관리 콘솔에 pconsole 소프트웨어를 설치합니다.	관리 콘솔에 pconsole 소프트웨어를 설치하는 방법 [52]
(선택 사항) 쿼럼 서버를 설치 및 구성합니다.	Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하 는 방법 [54]
(선택 사항) 내부 디스크 미러링을 구성합니다.	내부 디스크 미러링을 구성하는 방법 [57]
(선택 사항) Oracle VM Server for SPARC 소프트웨어를 설치하 고 도메인을 만듭니다.	Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만 드는 방법 [58]
사용할 Oracle Solaris Cluster 소프트웨어 및 데이터 서비스를 설 치합니다.	Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방 법 [58]
(선택 사항) Oracle Solaris 소프트웨어의 Availability Suite 기능 을 설치하고 구성합니다.	Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치하는 방법 [63]
(선택 사항) Sun QFS 소프트웨어를 설치합니다.	Sun QFS 소프트웨어를 설치하는 방법 [64]
디렉토리 경로를 설정합니다.	루트 환경을 설정하는 방법 [64]
(선택 사항) Oracle Solaris의 IP 필터 기능을 구성합니다.	IP 필터를 구성하는 방법 [65]

설치 고려 사항

다음 표에서는 SPARC 및 x86 플랫폼에서 Oracle Solaris Cluster 4.2 소프트웨어와 함께 작동하는 파일 시스템에 대해 설명합니다.

파일 시스템	추가 정보
Oracle Solaris UFS	
Sun QFS - 독립형 파일 시스템	지원되는 데이터 서비스: 모든 페일오버 데이터 서비스
	외부 볼륨 관리: Solaris Volume Manager만
Sun QFS - 공유 QFS 파일 시스템	지원되는 데이터 서비스: Oracle RAC
	외부 볼륨 관리: Sun Cluster용 Solaris Volume Manager
Sun QFS - 클러스터 외부의 공유 QFS 클라이언트(SC- COTC)	지원되는 데이터 서비스: 없음, 공유 파일 시스템만 지 원됨
	외부 볼륨 관리: 외부 볼륨 관리자가 지원되지 않음
Sun QFS - HA-SAM 페일오버	지원되는 데이터 서비스: 없음, 공유 파일 시스템만 지 원됨
	외부 볼륨 관리: 외부 볼륨 관리자가 지원되지 않음
Oracle Solaris ZFS	
네트워크 파일 시스템(NFS)	
Oracle Solaris Cluster PxFS(Proxy File System)	UFS 파일 시스템만 클러스터 파일 시스템으로 구성할 수 있습니다.

이 릴리스에 지원되는 버전의 파일 시스템에 대한 자세한 내용은 Oracle Solaris Cluster 4 Compatibility Guide (http://www.oracle.com/technetwork/server-storage/solariscluster/overview/solariscluster4-compatibilityguide-1429037.pdf)를 참조하십시오.

소프트웨어 설치

이 절에서는 클러스터 노드에 소프트웨어를 설치하는 정보 및 절차에 대해 설명합니다.

- 클러스터 소프트웨어 설치를 준비하는 방법 [47]
- Oracle Solaris 소프트웨어를 설치하는 방법 [48]
- 관리 콘솔에 pconsole 소프트웨어를 설치하는 방법 [52]
- Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]
- 내부 디스크 미러링을 구성하는 방법 [57]
- Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]
- Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]

- Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치하는 방법 [63]
- Sun QFS 소프트웨어를 설치하는 방법 [64]
- 루트 환경을 설정하는 방법 [64]
- IP 필터를 구성하는 방법 [65]

▼ 클러스터 소프트웨어 설치를 준비하는 방법

- 1. 클러스터용으로 선택한 하드웨어와 소프트웨어가 현재 Oracle Solaris Cluster 구성을 지원 하는지 확인합니다.
 - 클러스터 노드로 지원되는 물리적 및 가상 시스템에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster Concepts Guide 의 Cluster Nodes"를 참조하십시오.
 - 이 릴리스에 대해 지원되는 소프트웨어 및 하드웨어에 대한 자세한 내용은 Oracle Solaris Cluster 4 Compatibility Guide (http://www.oracle.com/ technetwork/server-storage/solaris-cluster/overview/solariscluster4compatibilityguide-1429037.pdf)를 참조하십시오.
 - 지원되는 클러스터 구성에 대한 최신 정보는 Oracle 영업 센터에 문의하십시오.
- 2. 클러스터 구성 계획 및 설치 전략 준비에 도움이 되도록 다음 설명서를 검토합니다.
 - Unresolved link to " Oracle Solaris Cluster 4.2 릴리스 노트 " 제한 사항, 버그 해결 방법 및 기타 최신 정보를 제공합니다.
 - Unresolved link to "Oracle Solaris Cluster Concepts Guide " Oracle Solaris Cluster 제품의 개요입니다.
 - Oracle[®] Solaris Cluster 소프트웨어 설치 설명서(본 설명서) Oracle Solaris, Oracle Solaris Cluster 및 Volume Manager 소프트웨어 설치/구성과 관련된 계획 지침과 절차 입니다.
 - Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 " 데 이터 서비스를 설치하고 구성하기 위한 계획 지침 및 절차입니다.

3. 타사 설명서를 포함하여 모든 관련 설명서를 준비합니다.

다음은 클러스터 설치 중에 참조해야 할 제품 설명서 목록 중 일부입니다.

- Oracle Solaris OS
- Solaris Volume Manager 소프트웨어
- Sun QFS 소프트웨어
- 타사 응용 프로그램
- 4. 클러스터 구성을 계획합니다.

1장. Oracle Solaris Cluster 구성 계획 및 Unresolved link to "Oracle Solaris Cluster 데 이터 서비스 계획 및 관리 설명서 "의 계획 지침을 사용하여 클러스터를 설치하고 구성하는 방법을 결정합니다.

주의 - 클러스터 설치를 완벽하게 계획합니다. Oracle Solaris 및 Oracle Solaris Cluster 소 프트웨어 설치를 시작하기 **전** 모든 데이터 서비스 및 타사 제품의 요구 사항을 확인합니다. 그렇게 하지 않으면 설치 오류가 발생하여 Oracle Solaris 및 Oracle Solaris Cluster 소프트 웨어를 완전히 다시 설치해야 할 수도 있습니다.

5. 클러스터 구성에 필요한 모든 업데이트를 얻습니다. 소프트웨어 업데이트에 대한 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"를 참조하십시오.

다음 순서 ■ 시스템을 쿼럼 서버로 설치하여 클러스터에서 쿼럼 장치로 사용하려면 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]으로 이동합니다.

- 그렇지 않고 관리 콘솔을 사용하여 클러스터 노드와 통신하려면 관리 콘솔에 pconsole 소 프트웨어를 설치하는 방법 [52]으로 이동합니다.
- 그렇지 않으면 사용할 Oracle Solaris 설치 절차를 선택합니다.
 - Unresolved link to " scinstall1M" 유틸리티를 사용하여 Oracle Solaris Cluster 소 프트웨어를 구성하려면 Oracle Solaris 소프트웨어를 설치하는 방법 [48]으로 이 동하여 Oracle Solaris 소프트웨어를 먼저 설치합니다.
 - Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 동일한 작업으로(자동 설치 프로그램 방법) 설치하고 구성하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프 트웨어를 설치 및 구성하는 방법(IPS 저장소) [92]으로 이동합니다.

Oracle Solaris 소프트웨어를 설치하는 방법

이 절차를 사용하여 클러스터 구성에 맞게 다음 시스템에 Oracle Solaris OS를 설치합니다.

1. (선택 사항) pconsole 소프트웨어와 함께 설치할 관리 콘솔. 자세한 내용은 관리 콘솔 에 pconsole 소프트웨어를 설치하는 방법 [52]을 참조하십시오.

2. (선택 사항) 쿼럼 서버. 자세한 내용은 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]을 참조하십시오.

3. 전역 클러스터의 각 노드(소프트웨어 설치에 scinstall 사용자 정의 자동 설치 프로그 램 방법을 사용하지 않을 경우). 클러스터의 자동 설치 프로그램 설치에 대한 자세한 내 용은 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장소) [92]을 참조하십시오.

노드에 Oracle Solaris OS가 이미 설치되어 있지만 해당 노드가 Oracle Solaris Cluster 설치 요구 사항에 맞지 않으면 Oracle Solaris 소프트웨어를 다시 설치해야 할 수 있습니 다. 후속 Oracle Solaris Cluster 소프트웨어를 성공적으로 설치하려면 이 절차의 단계를 따르십시오. 필수적인 루트 디스크 분할 및 기타 Oracle Solaris Cluster 설치 요구 사항 에 대한 자세한 내용은 "Oracle Solaris OS 계획" [12]을 참조하십시오.

시작하기전에 다음 작업을 수행합니다.

- Oracle Solaris 소프트웨어를 설치하기 전에 하드웨어 설치가 완료되고 제대로 연결되 었는지 확인합니다. 자세한 내용은 Unresolved link to "Oracle Solaris Cluster 4.2 Hardware Administration Manual "과 서버 및 저장 장치 설명서를 참조하십시오.
- 클러스터 구성 계획이 완료되었는지 확인합니다. 요구 사항 및 지침은 클러스터 소프트웨 어 설치를 준비하는 방법 [47]을 참조하십시오.
- 이름 지정 서비스를 사용하는 경우 모든 공용 호스트 이름 및 논리 주소에 대한 주소-이 름 매핑을 클라이언트에서 클러스터 서비스에 액세스하는 데 사용하는 모든 이름 지정 서 비스에 추가합니다. 계획 지침은 "공용 네트워크 IP 주소" [17]를 참조하십시오. Oracle Solaris 이름 지정 서비스 사용에 대한 자세한 내용은 Oracle Solaris 시스템 관리자 설명 서를 참조하십시오.
- 1. 각 노드의 콘솔에 연결합니다.
- 2. Oracle Solaris OS를 설치합니다.

Unresolved link to " Oracle Solaris 11.2 시스템 설치 "의 설치 지침을 따릅니다.

참고 - 클러스터의 모든 노드에 동일한 Oracle Solaris OS 버전을 설치해야 합니다.

Oracle Solaris 소프트웨어를 설치하는 데 일반적으로 사용되는 방법을 사용할 수 있습니다. Oracle Solaris 소프트웨어를 설치하는 동안 다음 단계를 수행합니다.

- a. (클러스터 노드) 수동 배열을 선택하여 파일 시스템을 설정합니다.
 - 슬라이스 크기가 20MB 이상이 되도록 지정합니다.
 - "시스템 디스크 분할 영역" [13]에 설명된 대로 기타 필요한 파일 시스템 분할 영역 을 만듭니다.
- b. (클러스터 노드) 관리를 쉽게 하려면 각 노드에서 루트 암호를 동일하게 설정합니다.

참고 - Oracle Solaris Cluster Manager GUI를 사용하여 Geographic Edition 구성 요소를 관리하려면 이 단계가 필요합니다. Oracle Solaris Cluster Manager에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 13 장, Oracle Solaris Cluster GUI 사용"을 참조하십시오.

3. solaris 게시자가 유효한지 확인합니다.

# pkg publisher			
PUBLISHER	TYPE	STATUS	URI
solaris	origin	online	solaris-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 소 프트웨어 추가 및 업데이트 "를 참조하십시오. (클러스터 노드) root 역할 대신 역할 기반 액세스 제어(RBAC)를 사용하여 클러스터 노드에 액세스하는 경우 모든 Oracle Solaris Cluster 명령에 대해 권한 부여를 제공하는 RBAC 역 할을 설정합니다.

사용자가 root 역할이 아닌 경우 이 설치 절차를 수행하려면 다음과 같은 Oracle Solaris Cluster RBAC 권한 부여가 필요합니다.

- solaris.cluster.modify
- solaris.cluster.admin
- solaris.cluster.read

RBAC 역할 사용에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 사용자 및 프로세스 보안 의 사용자 권한 관리"를 참조하십시오. 각 Oracle Solaris Cluster 하위 명 령에 필요한 RBAC 인증에 대해서는 Oracle Solaris Cluster 매뉴얼 페이지를 참조하십시오.

- 5. (클러스터 노드) 기존 클러스터에 노드를 추가하려면 클러스터 파일 시스템에 대한 마운트 지점을 새 노드에 추가합니다.
 - a. 활성 클러스터 노드에서 모든 클러스터 파일 시스템의 이름을 표시합니다.

phys-schost-1# mount | grep global | egrep -v node@ | awk '{print \$1}'

b. 새 노드에서 클러스터의 각 파일 시스템에 대한 마운트 지점을 만듭니다.

phys-schost-new# mkdir -p mountpoint

예를 들어 mount 명령에서 파일 시스템 이름 /global/dg-schost-1을 반환한 경우 클 러스터에 추가하려는 새 노드에서 mkdir -p /global/dg-schost-1을 실행합니다.

6. 필요한 Oracle Solaris OS 소프트웨어 업데이트와 하드웨어 관련 펌웨어 및 업데이트를 설 치합니다.

저장소 어레이를 지원하기 위해 이러한 업데이트를 포함합니다. 또한 하드웨어 업데이트에 포함된 필요한 펌웨어를 모두 다운로드합니다.

소프트웨어 업데이트에 대한 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"를 참조하십시오.

7. (x86 only) (클러스터 노드) 기본 부트 파일을 설정합니다.

이 값의 설정을 사용하면 로그인 프롬프트에 액세스할 수 없는 경우 노드를 재부트할 수 있습 니다.

grub edit> kernel /platform/i86pc/kernel/amd64/unix -B \$ZFS-BOOTFS -k

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 커널 디버 거(kmdb)를 사용으로 설정하여 시스템을 부트하는 방법"을 참조하십시오.

8. (클러스터 노드) 각 노드의 /etc/inet/hosts 파일을 클러스터에서 사용되는 모든 공용 IP 주 소로 업데이트합니다.

이름 지정 서비스를 사용하고 있는지 여부에 관계없이 이 단계를 수행합니다.

참고 - 새 클러스터 또는 새 클러스터 노드를 설정하는 동안 scinstall 유틸리티에서 구성되는 각 노드의 공용 IP 주소를 /etc/inet/hosts 파일에 자동으로 추가합니다.

9. (옵션) (클러스터 노드) IPMP 그룹에 공용 네트워크 어댑터를 구성합니다.

클러스터를 만드는 동안 scinstall 유틸리티에서 구성하는 다중 어댑터 IPMP 그룹을 사용 하지 않으려면 독립형 시스템과 같이 사용자 정의 IPMP 그룹을 구성합니다. 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 TCP/IP 네트워크, IPMP 및 IP 터널 관리 의 3 장, IPMP 관리"를 참조하십시오.

클러스터를 만드는 동안, scinstall 유틸리티에서는 동일한 서브넷을 사용하고 IPMP 그룹 에 아직 구성되지 않은 공용 네트워크 어댑터의 각 세트를 단일 다중 어댑터 IPMP 그룹으로 구성합니다. scinstall 유틸리티는 기존의 IPMP 그룹을 무시합니다.

10. (옵션) (클러스터 노드) Oracle Solaris Cluster 소프트웨어가 설치되지 않은 경우 Oracle Solaris I/O 다중 경로를 사용하려면 각 노드에서 다중 경로를 사용으로 설정합니다.

주의 - Oracle Solaris Cluster 소프트웨어가 이미 설치된 경우에는 이 명령을 실행하지 마십 시오. 활성 클러스터 노드에서 stmsboot 명령을 실행하면 Oracle Solaris 서비스가 유지 보 수 상태로 전환될 수 있습니다. 대신 Unresolved link to "stmsboot1M" 매뉴얼 페이지의 지침에 따라 Oracle Solaris Cluster 환경에서 stmsboot 명령을 사용합니다.

phys-schost# /usr/sbin/stmsboot -e

-e

Oracle Solaris I/O 다중 경로를 사용으로 설정합니다.

자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 SAN 장치 및 다중 경로 지정 의 다중 경로를 사용으로 설정하는 방법" 및 Unresolved link to "stmsboot1M" 매뉴얼 페이 지를 참조하십시오.

다음 순서 pconsole 유틸리티를 사용하려면 관리 콘솔에 pconsole 소프트웨어를 설치하는 방법 [52]으로 이동합니다.

쿼럼 서버를 사용하려면 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]으로 이동합니다.

클러스터 노드에서 내부 하드 드라이브의 미러링을 지원하는 경우 내부 디스크 미러링을 구 성하려면 내부 디스크 미러링을 구성하는 방법 [57]으로 이동합니다.

SPARC: Oracle VM Server for SPARC를 설치하려면 Oracle VM Server for SPARC 소프 트웨어 설치 및 도메인을 만드는 방법 [58]으로 이동합니다.

그렇지 않으면 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 설치합니다.

- 클러스터 노드에 Oracle Solaris OS를 이미 설치한 경우 Oracle Solaris Cluster 소프트 웨어 패키지를 설치하는 방법 [58]으로 이동합니다.
- scinstall 사용자 정의 AI(자동 설치 프로그램) 방법을 사용하여 클러스터 노드에 Oracle Solaris OS 및 Oracle Solaris Cluster 소프트웨어를 모두 설치하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장 소) [92]으로 이동합니다.
- 참조 Oracle Solaris Cluster 구성에서 동적 재구성 작업을 수행하는 절차는 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 "를 참조하십시오.

▼ 관리 콘솔에 pconsole 소프트웨어를 설치하는 방법

참고 - 반드시 관리 콘솔을 사용할 필요는 없습니다. 관리 콘솔을 사용하지 않을 경우 지정된 클러스터 노드에서 관리 작업을 수행하십시오.

이 소프트웨어를 사용하여 Oracle VM Server for SPARC 게스트 도메인에 연결할 수 없습니다.

이 절차에서는 관리 콘솔에 병렬 콘솔 액세스(pconsole) 소프트웨어를 설치하는 방법에 대해 설명합니다. pconsole 유틸리티는 Oracle Solaris terminal/pconsole 패키지의 일부입니다.

pconsole 유틸리티는 사용자가 명령줄에 지정하는 각 원격 호스트에 대해 호스트 단말기 창 을 만듭니다. 또한 중앙(마스터) 콘솔 창을 열어서 사용자 입력을 모든 노드로 동시에 전송할 수 있습니다. 추가 정보는 terminal/pconsole 패키지와 함께 설치된 Unresolved link to " pconsole1" 매뉴얼 페이지를 참조하십시오.

Oracle Solaris Cluster 4.2 소프트웨어에서 지원하는 Oracle Solaris OS 버전을 관리 콘솔 로 실행하는 모든 데스크탑 컴퓨터를 사용할 수 있습니다.

- 시작하기 전에 지원되는 버전의 Oracle Solaris OS 및 Oracle Solaris 소프트웨어 업데이트가 관리 콘솔에 설치되어 있는지 확인합니다.
 - 1. 관리 콘솔에서 root 역할을 수행합니다.
 - 2. 구성된 게시자에서 데이터 서비스 패키지를 사용할 수 있으며 solaris 및 ha-cluster 게시자 가 유효한지 확인합니다.

pkg list -a package-name
pkg publisher
PUBLISHER TYPE STATUS P LOCATION
solaris origin online F solaris-repository
ha-cluster origin online F ha-cluster-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 소 프트웨어 추가 및 업데이트 의 패키지 게시자 추가, 수정 또는 제거"를 참조하십시오. **작은 정보** - 설치 또는 업데이트를 수행할 때마다 -nv 옵션을 사용하여 적용할 변경 사항(예: 설치 또는 업데이트할 패키지의 버전 및 새 BE를 만들지 여부)을 확인하십시오.

-nv 옵션을 사용할 때 오류 메시지가 표시되지 않으면 -n 옵션 없이 명령을 다시 실행하여 실 제로 설치 또는 업데이트를 수행합니다. 오류 메시지가 표시되면 추가 -v 옵션(예: -nvv) 또는 패키지 FMRI 패턴으로 명령을 다시 실행하여 진단 및 문제 해결에 유용한 추가 정보를 확인 합니다. 문제 해결 정보는 Unresolved link to " Oracle Solaris 11.2의 소프트웨어 추가 및 업데이트 의 부록 A, 패키지 설치 및 업데이트 문제 해결"을 참조하십시오.

3. terminal/pconsole 패키지를 설치합니다.

adminconsole# pkg install terminal/pconsole

4. (옵션) Oracle Solaris Cluster 매뉴얼 페이지 패키지를 설치합니다.

adminconsole# pkg install pkgname ...

패키지 이름	설명
ha-cluster/system/manual	Oracle Solaris Cluster 프레임워크 매뉴얼 페이지
ha-cluster/system/manual/data-services	Oracle Solaris Cluster 데이터 서비스 매뉴얼 페이지
ha-cluster/service/quorum-server/manual	Oracle Solaris Cluster 쿼럼 서버 매뉴얼 페이지
ha-cluster/geo/manual	Oracle Solaris Cluster Geographic Edition 매뉴얼 페이지

관리 콘솔에 Oracle Solaris Cluster 매뉴얼 페이지 패키지를 설치할 경우 클러스터 노드나 쿼럼 서버에 Oracle Solaris Cluster 소프트웨어를 설치하기 전에 관리 콘솔에서 이러한 패 키지를 볼 수 있습니다.

- 5. (옵션) 편의상, 관리 콘솔에 디렉토리 경로를 설정합니다.
 - a. ha-cluster/system/manual/data-services 패키지를 설치한 경우 /opt/SUNWcluster/ bin/ 디렉토리가 PATH에 있는지 확인합니다.
 - b. 다른 매뉴얼 페이지 패키지를 설치한 경우 /usr/cluster/bin/ 디렉토리가 PATH에 있는 지 확인합니다.
- pconsole 유틸리티를 시작합니다.
 연결할 각 노드를 명령에 지정합니다.

adminconsole# pconsole host[:port] [...] &

Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 클러스터에 원격 로그 인"Oracle Solaris Cluster System Administration Guide Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 클러스터 콘솔에 보안 연결을 설정하는 방법"Oracle Solaris Cluster System Administration Guide의 절차를 참조하십시오. 또한 Oracle Solaris terminal/pconsole 패키지의 일부로 설치된 Unresolved link to "pconsole1" 매 뉴얼 페이지를 참조하십시오.

다음 순서 쿼럼 서버를 사용하려면 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]으로 이동합니다.

클러스터 노드에서 내부 하드 드라이브의 미러링을 지원하는 경우 내부 디스크 미러링을 구 성하려면 내부 디스크 미러링을 구성하는 방법 [57]으로 이동합니다.

SPARC: Oracle VM Server for SPARC를 설치하려면 Oracle VM Server for SPARC 소프 트웨어 설치 및 도메인을 만드는 방법 [58]으로 이동합니다.

그렇지 않으면 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 설치합니다.

- 클러스터 노드에 Oracle Solaris OS를 이미 설치한 경우 Oracle Solaris Cluster 소프트 웨어 패키지를 설치하는 방법 [58]으로 이동합니다.
- scinstall 사용자 정의 AI(자동 설치 프로그램) 방법을 사용하여 클러스터 노드에 Oracle Solaris OS 및 Oracle Solaris Cluster 소프트웨어를 모두 설치하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장 소) [92]으로 이동합니다.

▼ Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법

호스트 서버를 쿼럼 서버로 구성하려면 이 절차를 수행합니다.

시작하기전에 다음 작업을 수행합니다.

- 쿼럼 서버 시스템이 클러스터 노드에서 액세스할 수 있으며 클러스터 노드에 사용되는 동 일한 서브넷에 있는 공용 네트워크에 연결되어 있는지 확인합니다.
- 쿼럼 서버가 실행될 클러스터 공용 네트워크에 연결된 포트에 대한 이더넷 스위치에서 확 장 트리 알고리즘을 사용 안함으로 설정합니다.
- 1. Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치할 시스템에서 root 역할을 수행합니다.
- 2. 구성된 게시자에서 데이터 서비스 패키지를 사용할 수 있으며 solaris 및 ha-cluster 게시자 가 유효한지 확인합니다.

<pre># pkg list -a package-name</pre>				
# pkg publisher				
PUBLISHER	TYPE	STATUS	Ρ	LOCATION
solaris	origin	online	F	solaris-repository
ha-cluster	origin	online	F	ha-cluster-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 소 프트웨어 추가 및 업데이트 의 패키지 게시자 추가, 수정 또는 제거"를 참조하십시오.

작은 정보 - 설치 또는 업데이트를 수행할 때마다 -nv 옵션을 사용하여 적용할 변경 사항(예: 설치 또는 업데이트할 패키지의 버전 및 새 BE를 만들지 여부)을 확인하십시오.

-nv 옵션을 사용할 때 오류 메시지가 표시되지 않으면 -n 옵션 없이 명령을 다시 실행하여 실 제로 설치 또는 업데이트를 수행합니다. 오류 메시지가 표시되면 추가 -v 옵션(예: -nvv) 또는 패키지 FMRI 패턴으로 명령을 다시 실행하여 진단 및 문제 해결에 유용한 추가 정보를 확인 합니다. 문제 해결 정보는 Unresolved link to " Oracle Solaris 11.2의 소프트웨어 추가 및 업데이트 의 부록 A, 패키지 설치 및 업데이트 문제 해결"을 참조하십시오.

3. 쿼럼 서버 그룹 패키지를 설치합니다.

quorumserver# pkg install ha-cluster-quorum-server-full

4. (옵션) Oracle Solaris Cluster 쿼럼 서버 이진 위치를 PATH 환경 변수에 추가합니다.

quorumserver# PATH=\$PATH:/usr/cluster/bin

- 다음 항목을 /etc/scqsd/scqsd.conf 파일에 추가하여 쿼럼 서버를 구성하여 쿼럼 서버에 대 한 구성 정보를 지정합니다.
 포트 번호와 선택적으로 인스턴스 이름을 지정하여 쿼럼 서버를 식별합니다.
 - 인스턴스 이름을 제공할 경우 해당 이름은 쿼럼 서버에서 고유해야 합니다.
 - 인스턴스 이름을 제공하지 않을 경우 항상 이 쿼럼 서버가 수신하는 포트별로 쿼럼 서버 를 참조합니다.

항목의 형식은 다음과 같습니다.

/usr/cluster/lib/sc/scqsd [-d quorum-directory] [-i instance-name] -p port

-d quorum-directory

쿼럼 서버가 쿼럼 데이터를 저장할 수 있는 디렉토리에 대한 경로입니다.

쿼럼 서버 프로세스에서는 클러스터별 쿼럼 정보를 저장하기 위해 이 디렉토리에 클러스 터당 하나의 파일을 만듭니다.

기본적으로 이 옵션의 값은 /var/scqsd입니다. 이 디렉토리는 구성하는 각 쿼럼 서버에 대해 고유해야 합니다.

-i instance-name

쿼럼 서버 인스턴스에 대해 사용자가 선택하는 고유한 이름입니다.

-p port

쿼럼 서버가 클러스터로부터 요청을 수신하는 포트 번호입니다.

- (옵션) 다른 포트 번호나 인스턴스를 사용하여 둘 이상의 클러스터를 제공하려면 필요한 쿼 럼 서버의 각 추가 인스턴스에 대한 추가 항목을 구성합니다.
- 7. /etc/scqsd/scqsd.conf 파일을 저장하고 닫습니다.
- 8. 새로 구성한 쿼럼 서버를 시작합니다.

quorumserver# /usr/cluster/bin/clquorumserver start quorum-server

quorum-server

쿼럼 서버를 식별합니다. 쿼럼 서버가 수신하는 포트 번호를 사용할 수 있습니다. 구성 파일에서 인스턴스 이름을 제공한 경우 해당 이름을 대신 사용할 수 있습니다.

- 단일 쿼럼 서버를 시작하려면 인스턴스 이름이나 포트 번호를 제공합니다.
- 여러 개의 쿼럼 서버를 구성한 경우 모든 쿼럼 서버를 시작하려면 + 피연산자를 사용 합니다.
- 일반오류 Oracle Solaris Cluster 쿼럼 서버 소프트웨어는 다음 패키지로 구성됩니다.
 - ha-cluster/service/quorum-server
 - ha-cluster/service/quorum-server/locale
 - ha-cluster/service/quorum-server/manual
 - ha-cluster/service/quorum-server/manual/locale

해당 패키지는 ha-cluster/group-package/ha-cluster-quorum-server-full 및 hacluster/group-package/ha-cluster-quorum-server-l10n 그룹 패키지에 포함되어 있습니 다.

해당 패키지를 설치하면 /usr/cluster 및 /etc/scqsd 디렉토리에 소프트웨어가 추가됩니다. Oracle Solaris Cluster 쿼럼 서버 소프트웨어 위치는 수정할 수 없습니다.

Oracle Solaris Cluster 쿼럼 서버 소프트웨어에 대한 설치 오류 메시지가 표시될 경우 패키 지가 올바르게 설치되었는지 확인합니다.

다음 순서 클러스터 노드에서 내부 하드 드라이브의 미러링을 지원하는 경우 내부 디스크 미러링을 구 성하려면 내부 디스크 미러링을 구성하는 방법 [57]으로 이동합니다.

SPARC: Oracle VM Server for SPARC를 설치하려면 Oracle VM Server for SPARC 소프 트웨어 설치 및 도메인을 만드는 방법 [58]으로 이동합니다.

그렇지 않으면 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 설치합니다.

- 클러스터 노드에 Oracle Solaris OS를 이미 설치한 경우 Oracle Solaris Cluster 소프트 웨어 패키지를 설치하는 방법 [58]으로 이동합니다.
- scinstall 사용자 정의 AI(자동 설치 프로그램) 방법을 사용하여 클러스터 노드에 Oracle Solaris OS 및 Oracle Solaris Cluster 소프트웨어를 모두 설치하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장 소) [92]으로 이동합니다.

▼ 내부 디스크 미러링을 구성하는 방법

시스템 디스크를 미러링하도록 내부 하드웨어 RAID 디스크 미러링을 구성하려면 전역 클러 스터의 각 노드에서 이 절차를 수행합니다. 이 절차는 선택 사항입니다.

- 서버에서 내부 하드 드라이브의 미러링을 지원하지 않습니다.
- 클러스터가 이미 설정되었습니다.

대신 Unresolved link to "Oracle Solaris Cluster 4.2 Hardware Administration Manual 의 Mirroring Internal Disks on Servers that Use Internal Hardware Disk Mirroring or Integrated Mirroring"을 수행합니다.

시작하기 전에 Oracle Solaris 운영 체제 및 필요한 업데이트가 설치되어 있는지 확인합니다.

- 1. root 역할을 수행합니다.
- 2. 내부 미러를 구성합니다.

phys-schost# raidctl -c clt0d0 clt1d0

-c clt0d0 clt1d0

미러 디스크에 기본 디스크의 미러를 생성합니다. 기본 디스크의 이름을 첫번째 인수로, 미러 디스크의 이름을 두번째 인수로 제공합니다.

서버의 내부 디스크 미러링을 구성하는 방법에 대한 자세한 내용은 서버와 함께 제공된 설명 서 및 Unresolved link to " raidctl1M" 매뉴얼 페이지를 참조하십시오.

다음 순서 SPARC: Oracle VM Server for SPARC를 설치하려면 Oracle VM Server for SPARC 소프 트웨어 설치 및 도메인을 만드는 방법 [58]으로 이동합니다.

그렇지 않으면 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 설치합니다.

- 클러스터 노드에 Oracle Solaris OS를 이미 설치한 경우 Oracle Solaris Cluster 소프트 웨어 패키지를 설치하는 방법 [58]으로 이동합니다.
- scinstall 사용자 정의 AI(자동 설치 프로그램) 방법을 사용하여 클러스터 노드에 Oracle Solaris OS 및 Oracle Solaris Cluster 소프트웨어를 모두 설치하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장 소) [92]으로 이동합니다.

▼ SPARC: Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법

물리적으로 클러스터화된 시스템에 Oracle VM Server for SPARC 소프트웨어를 설치하고 I/O 및 게스트 도메인을 만들려면 이 절차를 수행합니다.

시작하기전에 다음 작업을 수행합니다.

- 시스템에서 SPARC 하이퍼바이저를 사용할 수 있는지 확인합니다.
- Unresolved link to " Oracle VM Server for SPARC 3.1 관리 설명서 " 및 Unresolved link to " Oracle VM Server for SPARC 3.1.1.2, 3.1.1.1, 3.1.1 및 3.1 릴리스 노트 "를 준비합니다.
- "SPARC: 클러스터의 Oracle VM Server for SPARC에 대한 지침" [30]의 요구 사항 및 지침을 검토합니다.
- 1. 시스템에서 root 역할을 수행합니다.
- Unresolved link to "Oracle VM Server for SPARC 3.1 관리 설명서 의 2 장, 소프트웨어 설치 및 사용으로 설정"의 지침에 따라 Oracle VM Server for SPARC 소프트웨어를 설치하 고 도메인을 구성합니다.

다음 특별 지침을 준수하십시오.

- 게스트 도메인을 만드는 경우 클러스터에서 게스트 도메인을 만드는 것에 대한 Oracle Solaris Cluster 지침을 준수합니다.
- 클러스터 상호 연결로 사용되는 가상 네트워크 장치를 연결하는 모든 가상 스위치 장치에 대해 mode=sc 옵션을 사용합니다.
- 공유 저장소의 경우 전체 SCSI 디스크만 게스트 도메인에 매핑합니다.
- 다음 순서 서버에서 내부 하드 드라이브의 미러링을 지원하는 경우 내부 디스크 미러링을 구성하려면 내부 디스크 미러링을 구성하는 방법 [57]으로 이동합니다.

그렇지 않으면 Oracle Solaris Cluster 소프트웨어 패키지를 설치합니다. Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]으로 이동합니다.

▼ Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방 법

다음 설치 작업 중 하나 이상을 수행하려면 이 절차를 따릅니다.

■ 전역 클러스터의 각 노드에 Oracle Solaris Cluster 프레임워크 및 데이터 서비스 소프트 웨어 패키지를 설치합니다. 이러한 노드는 물리적 시스템, (SPARC만 해당) Oracle VM

Server for SPARC I/O 도메인이나 게스트 도메인 또는 이러한 노드 유형의 조합이 될 수 있습니다.

참고 - 물리적으로 클러스터링된 시스템에 Oracle VM Server for SPARC가 구성된 경우에는 I/O 도메인이나 게스트 도메인에만 Oracle Solaris Cluster 소프트웨어를 설치합니다.

■ 데이터 서비스를 설치합니다.

참고 - 전체 재설치나 제거를 제외하고는, ha-cluster-minimal 그룹 패키지에 속한 개별 패 키지를 추가하거나 제거할 수 없습니다. 클러스터 프레임워크 패키지를 제거하는 절차는 Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방법 [219] 및 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 클러스터 노드에서 Oracle Solaris Cluster 소프트웨어를 제거하는 방법"을 참조하십시오.

그러나 ha-cluster-minimal 그룹 패키지를 제거하지 않고 다른 선택적 패키지를 추가하거나 제거할 수 있습니다.

ha-cluster-full 패키지를 설치하도록 선택하면 자동으로 GUI가 설치됩니다. 다른 패키지 를 설치하도록 선택할 경우 나중에 수동으로 GUI를 설치할 수 있습니다.

시작하기전에 다음 작업을 수행합니다.

 Oracle Solaris Cluster 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오.

노드에 Oracle Solaris 소프트웨어가 이미 설치된 경우에도 설치된 Oracle Solaris 소프 트웨어가 Oracle Solaris Cluster 소프트웨어와 클러스터에 설치할 다른 소프트웨어의 요구 사항을 충족시켜야 합니다. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하 도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하 는 방법 [48]을 참조하십시오.

■ 설치할 Oracle Solaris Cluster 소프트웨어 패키지를 선택합니다.

다음 표에는 Oracle Solaris Cluster 4.2 소프트웨어의 기본 그룹 패키지와 각 그룹 패키 지에 포함된 주요 기능이 나열되어 있습니다. 최소한 ha-cluster-framework-minimal 그 룹 패키지를 설치해야 합니다.

기능	ha-cluster- full	ha-cluster- framework-full	ha-cluster-data- services-full	ha-cluster-geo -full	ha-cluster-minimal	ha-cluster- framework- minimal
프레임워크	Х	Х	Х	Х	Х	Х
에이전트	Х		Х			
지역화	Х	Х				
프레임워크 매뉴얼 페이 지	X	Х				

기능	ha-cluster- full	ha-cluster- framework-full	ha-cluster-data- services-full	ha-cluster-geo -full	ha-cluster-minimal	ha-cluster- framework- minimal
데이터 서비 스 매뉴얼 페이지	Х		Х			
에이전트 빌 더	Х	Х				
일반 데이터 서비스	Х	Х	Х			
그래픽 사용 자 인터페이 스	Х					
Geographic Edition	Х			Х		

- 클러스터 관리 콘솔을 사용하고 있는 경우 클러스터의 각 노드에 대해 콘솔 화면을 표시합니다.
 - pconsole 소프트웨어를 관리 콘솔에 설치 및 구성한 경우 pconsole 유틸리티를 사용하 여 개별 콘솔 화면을 표시합니다.

root 역할로 다음 명령을 사용하여 pconsole 유틸리티를 시작합니다.

adminconsole# pconsole host[:port] [...] &

pconsole 유틸리티를 사용하면 사용자 입력을 모든 개별 콘솔 창으로 동시에 전송할 수 있는 마스터 창도 열립니다.

- pconsole 유틸리티를 사용하지 않는 경우 각 노드의 콘솔에 개별적으로 연결합니다.
- 원격 프로시저 호출(RPC) 통신에 대한 외부 액세스를 복원합니다.

Oracle Solaris OS 설치 중에는 특정 네트워크 서비스에 대한 외부 액세스를 사용 안함으로 설정하는 제한된 네트워크 프로파일이 사용됩니다. 제한된 서비스에는 클러스터 통신에 필 요한 RPC 통신 서비스가 포함됩니다.

RPC 통신에 대한 외부 액세스를 복원하려면 다음 명령을 수행합니다.

svccfg

svc:> select network/rpc/bind
svc:/network/rpc/bind> setprop config/local_only=false
svc:/network/rpc/bind> quit
svcadm refresh network/rpc/bind:default
svcprop network/rpc/bind:default | grep local_only

마지막 명령의 출력에는 local only 등록 정보가 false로 설정된 것으로 표시되어야 합니다.

3. 설치할 클러스터 노드에서 root 역할을 수행합니다.

다른 방법으로, 사용자 계정이 System Administrator 프로파일에 할당된 경우 프로파일 셸 을 통해 비루트로 명령을 실행하거나 pfexec 명령을 사용하여 앞에 접두어를 붙입니다. 4. NWAM(Network Auto-Magic)을 사용 안함으로 설정합니다.

NWAM은 단일 네트워크 인터페이스를 활성화하고 다른 모든 항목은 사용 안함으로 설정합 니다. 이러한 이유로 NWAM은 Oracle Solaris Cluster 소프트웨어와 공존할 수 없으므로 클 러스터를 구성하거나 실행하기 전에 사용 안함으로 설정해야 합니다. NWAM을 사용 안함으 로 설정하려면 defaultfixed 프로파일을 사용으로 설정합니다.

netadm enable -p ncp defaultfixed
netadm list -p ncp defaultfixed

- 5. Oracle Solaris Cluster 소프트웨어 패키지에 대한 저장소를 설정합니다.
 - 클러스터 노드에서 인터넷에 직접 액세스하거나 웹 프록시로 액세스할 수 있는 경우 다 음 단계를 수행합니다.
 - a. https://pkg-register.oracle.com으로 이동합니다.
 - b. Oracle Solaris Cluster software를 선택합니다.
 - c. 라이센스를 수락합니다.
 - d. Oracle Solaris Cluster software를 선택하고 요청을 제출하여 새 인증서를 요청 합니다.
 인증서 페이지가 키 및 인증서에 대한 다운로드 버튼과 함께 표시됩니다.
 - e. 키 및 인증서 파일을 다운로드하고 반환된 인증 페이지에 설명된 대로 설치합니다.
 - f. 다운로드된 SSL 키로 ha-cluster 게시자를 구성하고 Oracle Solaris Cluster 4.2 저장소의 위치를 설정합니다.

다음 예에서 저장소 이름은 https://pkg.oracle.com/repository-location/입니다.

pkg set-publisher \

- -k /var/pkg/ssl/Oracle_Solaris_Cluster_4.0.key.pem \
- -c /var/pkg/ssl/Oracle_Solaris_Cluster_4.0.certificate.pem \

-0 https://pkg.oracle.com/repository-location/ ha-cluster

- -k /var/pkg/ssl/Oracle_Solaris_Cluster_4.0.key.pem 다운로드된 SSL 키 파일의 전체 경로를 지정합니다.
- -c /var/pkg/ssl/Oracle_Solaris_Cluster_4.0.certificate.pem 다운로드된 인증서 파일의 전체 경로를 지정합니다.

-O https://pkg.oracle.com/repository-location/

Oracle Solaris Cluster 4.2 패키지 저장소의 URL을 지정합니다.

자세한 내용은 Unresolved link to " pkg1" 매뉴얼 페이지를 참조하십시오.

- 소프트웨어의 ISO 이미지를 사용하는 경우 다음 단계를 수행합니다.
 - a. Oracle Software Delivery Cloud 사이트 https://edelivery.oracle.com/에서 Oracle Solaris Cluster 4.2 ISO 이미지를 다운로드합니다.

참고 - Oracle Software Delivery Cloud에 액세스하려면 유효한 Oracle 라이센스가 필요합 니다.

Oracle Solaris Cluster 소프트웨어는 Oracle Solaris Product Pack의 일부입니다. 온라인 지침에 따라 매체 팩의 선택을 완료하고 소프트웨어를 다운로드합니다.

b. Oracle Solaris Cluster 4.2 ISO 이미지를 사용 가능하게 만듭니다.

lofiadm -a path-to-iso-image
/dev/lofi/N
mount -F hsfs /dev/lofi/N /mnt

-a path-to-iso-image

ISO 이미지의 전체 경로 및 파일 이름을 지정합니다.

- c. Oracle Solaris Cluster 4.2 패키지 저장소의 위치를 설정합니다.
 - # pkg set-publisher -g file:///mnt/repo ha-cluster
- 구성된 게시자에서 데이터 서비스 패키지를 사용할 수 있으며 solaris 및 ha-cluster 게시자 가 유효한지 확인합니다.

pkg list -a package-name
pkg publisher
PUBLISHER TYPE STATUS P LOCATION
solaris origin online F solaris-repository
ha-cluster origin online F ha-cluster-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 소 프트웨어 추가 및 업데이트 의 패키지 게시자 추가, 수정 또는 제거"를 참조하십시오.

작은 정보 - 설치 또는 업데이트를 수행할 때마다 -nv 옵션을 사용하여 적용할 변경 사항(예: 설치 또는 업데이트할 패키지의 버전 및 새 BE를 만들지 여부)을 확인하십시오.

-nv 옵션을 사용할 때 오류 메시지가 표시되지 않으면 -n 옵션 없이 명령을 다시 실행하여 실 제로 설치 또는 업데이트를 수행합니다. 오류 메시지가 표시되면 추가 -v 옵션(예: -nvv) 또는 패키지 FMRI 패턴으로 명령을 다시 실행하여 진단 및 문제 해결에 유용한 추가 정보를 확인 합니다. 문제 해결 정보는 Unresolved link to " Oracle Solaris 11.2의 소프트웨어 추가 및 업데이트 의 부록 A, 패키지 설치 및 업데이트 문제 해결"을 참조하십시오.

7. Oracle Solaris Cluster 4.2 소프트웨어를 설치합니다.

/usr/bin/pkg install ha-cluster-package

8. 패키지가 성공적으로 설치되었는지 확인합니다.

\$ pkg info -r ha-cluster-package

Installed 상태이면 패키지 설치를 성공한 것입니다.

9. Oracle Solaris Cluster 소프트웨어에 필요한 업데이트를 수행합니다.

소프트웨어 업데이트에 대한 지침은 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"를 참조하십시오.

다음 순서 Sun QFS 파일 시스템 소프트웨어를 설치하려면 초기 설치 절차를 따릅니다. Sun QFS 소프 트웨어를 설치하는 방법 [64]을 참조하십시오.

Oracle Solaris 소프트웨어의 Availability Suite 기능을 사용하려는 경우 Availability Suite 소프트웨어를 설치합니다. Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치하는 방법 [63]으로 이동합니다.

그렇지 않고 루트 사용자 환경을 설정하려면 루트 환경을 설정하는 방법 [64]으로 이동 합니다

- ▼ Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치하는 방법
- 1. root 역할을 수행합니다.
- 2. solaris 게시자가 유효한지 확인합니다.

pkg publisher
PUBLISHER
solaris

TYPE STATUS URI origin online solaris-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2 패키 지 저장소 복사 및 만들기 "를 참조하십시오.

3. Oracle Solaris 소프트웨어의 Availability Suite 기능에 대한 IPS 패키지를 설치합니다.

/usr/bin/pkg install storage/avs

4. Availability Suite 기능을 구성합니다.

자세한 내용은 Sun StorageTek Availability Suite 4.0 Software Installation and Configuration Guide의 "Initial Configuration Settings" (http://docs.oracle.com/cd/ E19359-01/819-6147-10/config_proc.html#pgfId-998170)를 참조하십시오.

- 5. 패키지가 성공적으로 설치되었는지 확인합니다.
 - # pkg info group/features/storage-avs \
 storage/avs/avs-cache-management \
 storage/avs/avs-point-in-time-copy \
 storage/avs/avs-remote-mirror \
 driver/storage/sv
- 다음 순서 Sun QFS 파일 시스템 소프트웨어를 설치하려면 초기 설치 절차를 따릅니다. Sun QFS 소프 트웨어를 설치하는 방법 [64]을 참조하십시오.

그렇지 않고 루트 사용자 환경을 설정하려면 루트 환경을 설정하는 방법 [64]으로 이동 합니다

▼ Sun QFS 소프트웨어를 설치하는 방법

전역 클러스터의 각 노드에서 이 절차를 수행합니다.

- Oracle Solaris Cluster 소프트웨어가 설치되어 있는지 확인합니다.

 Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]을 참조하십시오.
- 2. 클러스터 노드에서 root 역할을 수행합니다.
- 3. Sun QFS 파일 시스템 소프트웨어를 설치합니다. Sun QFS 설명서의 초기 설치 절차를 따릅니다.
- 다음 순서 루트 사용자 환경을 설정합니다. 루트 환경을 설정하는 방법 [64]으로 이동합니다.

▼ 루트 환경을 설정하는 방법

참고 - Oracle Solaris Cluster 구성에서 다양한 셸에 대한 사용자 초기화 파일은 대화식 셸에 서 실행되도록 확인되어야 합니다. 이러한 파일은 단말기에 출력을 시도하기 전에 확인되어 야 합니다. 그렇지 않으면 데이터 서비스에서 예상하지 않은 동작이나 장애가 발생할 수 있습 니다. 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 사용자 계정 및 사용자 환 경 관리 의 사용자 작업 환경 정보"를 참조하십시오.

전역 클러스터의 각 노드에서 이 절차를 수행합니다.

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 2. /usr/cluster/bin/ 및 /usr/sbin/을 PATH에 추가합니다.

참고 - /usr/cluster/bin이 항상 PATH의 첫번째 항목이 되도록 하십시오. 이렇게 하면 Oracle Solaris Cluster 명령이 동일한 이름의 다른 이진보다 우선하므로 예상치 않은 동작 을 방지할 수 있습니다.

추가 파일 경로 설정에 대해서는 Oracle Solaris OS 설명서, 볼륨 관리자 설명서 및 기타 응용 프로그램 설명서를 참조하십시오.

- 3. (옵션) 관리를 쉽게 하려면 각 노드에서 루트 암호를 동일하게 설정합니다.
- 다음 순서 Oracle Solaris의 IP 필터 기능을 사용하려면 IP 필터를 구성하는 방법 [65]으로 이동합니다.

그렇지 않으면 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성합니다. "새 전역 클러스터 또는 새 전역 클러스터 노드 설정" [69]으로 이동합니다.

▼ IP 필터를 구성하는 방법

전역 클러스터에서 Oracle Solaris 소프트웨어의 IP 필터 기능을 구성하려면 이 절차를 수행 합니다.

참고 - 페일오버 데이터 서비스가 있는 IP 필터만 사용합니다. 확장 가능 데이터 서비스가 있는 IP 필터는 사용할 수 없습니다.

IP 필터 기능에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 네트워크 보안 의 4 장, Oracle Solaris의 IP 필터 정보"를 참조하십시오.

- 시작하기 전에 클러스터에 IP 필터를 구성할 때 따라야 하는 지침 및 제한 사항을 검토합니다. "Oracle Solaris OS 기능 요구 사항 및 제한 사항" [12]에서 "IP 필터" 게시 항목을 참조하십시오.
 - 1. root 역할을 수행합니다.
 - 2. 영향을 받는 모든 노드의 /etc/ipf/ipf.conf 파일에 필터 규칙을 추가합니다.

필터 규칙을 Oracle Solaris Cluster 노드에 추가할 때는 다음 지침과 요구 사항을 준수하십 시오.

각 노드의 ipf.conf 파일에서 클러스터 상호 연결 트래픽이 필터링되지 않고 통과하도록 명시적으로 허용하는 규칙을 추가합니다. 인터페이스와 관련되지 않은 규칙은 클러스터 상호 연결을 비롯한 모든 인터페이스에 적용됩니다. 이러한 인터페이스의 트래픽이 실수 로 차단되지 않는지 확인합니다. 상호 연결 트래픽이 차단되면 IP 필터 구성이 클러스터 핸드셰이크 및 인프라 작업을 방해합니다.

예를 들어 다음 규칙이 현재 사용된다고 가정합니다.

Default block TCP/UDP unless some later rule overrides block return-rst in proto tcp/udp from any to any

Default block ping unless some later rule overrides block return-rst in proto icmp all

클러스터 상호 연결 트래픽을 차단 해제하려면 다음 규칙을 추가합니다. 사용된 서브넷은 예제용입니다. ifconfig show-addr | grep *interface* 명령을 사용하여 사용할 서브넷을 가져옵니다.

Unblock cluster traffic on 172.16.0.128/25 subnet (physical interconnect)
pass in quick proto tcp/udp from 172.16.0.128/25 to any
pass out quick proto tcp/udp from 172.16.0.128/25 to any

Unblock cluster traffic on 172.16.1.0/25 subnet (physical interconnect)
pass in quick proto tcp/udp from 172.16.1.0/25 to any
pass out quick proto tcp/udp from 172.16.1.0/25 to any

Unblock cluster traffic on 172.16.4.0/23 (clprivnet0 subnet)
pass in quick proto tcp/udp from 172.16.4.0/23 to any
pass out quick proto tcp/udp from 172.16.4.0/23 to any

클러스터 개인 네트워크의 어댑터 이름이나 IP 주소를 지정할 수 있습니다. 예를 들어 다 음 규칙에서는 어댑터의 이름별로 클러스터 개인 네트워크를 지정합니다.

```
# Allow all traffic on cluster private networks.
pass in quick on net1 all
```

- Oracle Solaris Cluster 소프트웨어는 네트워크 주소를 한 노드에서 다른 노드로 페일오 버합니다. 페일오버 시에 특수한 프로시저나 코드는 필요하지 않습니다.
- 논리 호스트 이름 및 공유 주소 자원의 IP 주소를 참조하는 모든 필터링 규칙은 모든 클러 스터 노드에서 동일해야 합니다.
- 대기 노드의 규칙은 존재하지 않는 IP 주소를 참조합니다. 이 규칙은 여전히 IP 필터의 활 성 규칙 집합의 일부이며 페일오버 후에 노드에서 주소를 수신할 때 적용됩니다.
- 모든 필터링 규칙은 동일한 IPMP 그룹의 모든 NIC에 대해 동일해야 합니다. 즉, 규칙이 인터페이스와 관련된 경우 동일한 IPMP 그룹의 다른 모든 인터페이스에 대해서도 동일 한 규칙이 존재해야 합니다.

IP 필터 규칙에 대한 자세한 내용은 Unresolved link to " ipf4" 매뉴얼 페이지를 참조하십시 오.

ipfilter SMF 서비스를 활성화합니다.

phys-schost# svcadm enable /network/ipfilter:default

다음 순서 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성합니다. "새 전역 클러스터 또는 새 전역 클러스터 노드 설정" [69]으로 이동합니다.

◆ ◆ ◆ 3 장

전역 클러스터 설정

이 장에서는 새 전역 클러스터 또는 새 전역 클러스터 노드를 설정하는 방법에 대한 정보를 제공합니다.

참고 - 영역 클러스터를 만들려면 "영역 <mark>클러스터 만들기 및 구성</mark>" [180]을 참조하십시오. 영역 클러스터를 만들려면 먼저 전역 클러스터를 설정해야 합니다.

이 장은 다음 내용으로 구성됩니다.

- "새 클러스터 또는 클러스터 노드 설정 개요" [67]
- "새 전역 클러스터 또는 새 전역 클러스터 노드 설정" [69]

새 클러스터 또는 클러스터 노드 설정 개요

다음 작업 맵에는 새 전역 클러스터 또는 기존 전역 클러스터에 추가할 노드에 대해 수행할 작업이 나열되어 있습니다. 표시된 순서대로 절차를 완료하십시오.

- 표 3-1. "작업 맵: 새 전역 클러스터 설정"
- 표 3-2. "작업 맵: 기존 전역 클러스터에 노드 추가"

표 3-1 작업 맵: 새 전역 클러스터 설정

방법	지침
다음 방법 중 하나를 사용하여 새 전역 클러스터를 설정합니다.	
■ scinstall 유틸리티를 사용하여 클러스터를 설정합니다.	"모든 노드에 Oracle Solaris Cluster 소프트웨어 구성 (scinstall)" [69]
■ XML 구성 파일을 사용하여 클러스터를 설정합니다.	모든 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법 (XML) [78]
■ AI(자동 설치 프로그램) 설치 서버를 설정합니다. 그런 다음 scinstall AI 옵션을 사용하여 각 노드에 소프트웨어를 설치하 고 클러스터를 설정합니다.	"자동 설치 프로그램으로 새 Oracle Solaris Cluster 설 정" [86]
이 작업을 아직 수행하지 않은 경우 쿼럼 투표를 할당하고 설치 모 드에서 클러스터를 제거합니다.	쿼럼 장치를 구성하는 방법 [132]

방법	지침
쿼럼 구성의 유효성을 검사합니다.	쿼럼 구성 및 설치 모드를 확인하는 방법 [137]
(선택 사항) 노드의 개인 호스트 이름을 변경합니다.	개인 호스트 이름을 변경하는 방법 [138]
아직 구성하지 않은 경우 NTP 구성 파일을 만들거나 수정합니다.	"NTP(Network Time Protocol) 구성" [139]
볼륨 관리자를 사용하는 경우 볼륨 관리 소프트웨어를 설치합니다.	4장. Solaris Volume Manager 소프트웨어 구성
필요에 따라 클러스터 파일 시스템 또는 가용성이 높은 로컬 파일 시스템을 만듭니다.	5장. 클러스터 파일 시스템 만들기 또는 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고 가용성 로컬 파일 시스템을 사용으로 설정"
타사 응용 프로그램을 설치하고 자원 유형을 등록하며 자원 그룹을 설정하고 데이터 서비스를 구성합니다.	Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계 획 및 관리 설명서 "
	응용 프로그램 소프트웨어와 함께 제공되는 설명서
클러스터의 유효성을 검사합니다.	클러스터의 유효성을 검사하는 방법 [142]
완료된 클러스터 구성의 기본 기록을 가져옵니다.	클러스터 구성의 진단 데이터를 기록하는 방법 [143]

표 3-2 작업 맵: 기존 전역 클러스터에 노드 추가

방법	지침
clsetup 명령을 사용하여 클러스터 인증 노드 목록에 새 노드를 추 가합니다. 필요한 경우 클러스터 상호 연결을 구성하고 개인 네트 워크 주소 범위도 다시 구성합니다.	클러스터에서 전역 클러스터 노드 추가를 준비하는 방법 [110]
추가된 노드를 수용하도록 필요에 따라 클러스터 상호 연결 및 개 인 네트워크 주소 범위를 다시 구성합니다.	노드 또는 개인 네트워크를 추가할 때 개인 네트워크 구성을 변경 하는 방법 [113]
다음 방법 중 하나를 사용하여 기존 전역 클러스터에 노드를 추가 합니다.	
■ scinstall 유틸리티를 사용하여 새 노드에 Oracle Solaris Cluster 소프트웨어를 구성합니다.	"추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어 구성(scinstall)" [118]
■ XML 구성 파일을 사용하여 새 노드에 Oracle Solaris Cluster 소프트웨어를 구성합니다.	추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(XML 파일) [125]
쿼럼 구성 정보를 업데이트합니다.	전역 클러스터에 노드를 추가한 후 쿼럼 장치를 업데이트하는 방 법 [129]
쿼럼 구성의 유효성을 검사합니다.	쿼럼 구성 및 설치 모드를 확인하는 방법 [137]
(선택 사항) 노드의 개인 호스트 이름을 변경합니다.	개인 호스트 이름을 변경하는 방법 [138]
NTP 구성을 수정합니다.	"NTP(Network Time Protocol) 구성" [139]
볼륨 관리자를 사용하는 경우 볼륨 관리 소프트웨어를 설치합니다.	4장. Solaris Volume Manager 소프트웨어 구성
필요에 따라 클러스터 파일 시스템 또는 가용성이 높은 로컬 파일 시스템을 만듭니다.	5장. 클러스터 파일 시스템 만들기 또는 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고 가용성 로컬 파일 시스템을 사용으로 설정"
타사 응용 프로그램을 설치하고 자원 유형을 등록하며 자원 그룹을 설정하고 데이터 서비스를 구성합니다.	Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계 획 및 관리 설명서 "
	응용 프로그램 소프트웨어와 함께 제공되는 설명서
클러스터의 유효성을 검사합니다.	클러스터의 유효성을 검사하는 방법 [142]
완료된 클러스터 구성의 기본 기록을 가져옵니다.	클러스터 구성의 진단 데이터를 기록하는 방법 [143]

새 전역 클러스터 또는 새 전역 클러스터 노드 설정

이 절에서는 새 전역 클러스터를 설정하거나 기존 클러스터에 노드를 추가하는 방법을 설명 합니다. 전역 클러스터 노드는 물리적 시스템, Oracle VM Server for SPARC I/O 도메인 또 는 Oracle VM Server for SPARC 게스트 도메인일 수 있습니다. 클러스터는 이러한 유형의 노드 조합으로 구성될 수 있습니다. 이러한 작업을 수행하기 전에 "소프트웨어 설치" [46]에 설명된 대로 Oracle Solaris OS용 소프트웨어 패키지, Oracle Solaris Cluster 프레임워크 및 기타 제품을 설치했는지 확인합니다.

이 절은 다음 정보 및 절차로 구성되어 있습니다.

- "모든 노드에 Oracle Solaris Cluster 소프트웨어 구성(scinstall)" [69]
- 모든 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(XML) [78]
- "자동 설치 프로그램으로 새 Oracle Solaris Cluster 설정" [86]
- 클러스터에서 전역 클러스터 노드 추가를 준비하는 방법 [110]
- 노드 또는 개인 네트워크를 추가할 때 개인 네트워크 구성을 변경하는 방법 [113]
- "추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어 구성 (scinstall)" [118]
- 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(XML 파일) [125]
- 전역 클러스터에 노드를 추가한 후 쿼럼 장치를 업데이트하는 방법 [129]
- 쿼럼 장치를 구성하는 방법 [132]
- 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]
- 개인 호스트 이름을 변경하는 방법 [138]
- "NTP(Network Time Protocol) 구성" [139]
- 클러스터의 유효성을 검사하는 방법 [142]
- 클러스터 구성의 진단 데이터를 기록하는 방법 [143]

모든 노드에 Oracle Solaris Cluster 소프트웨어 구성 (scinstall)

scinstall 유틸리티는 표준 또는 사용자 정의의 두 가지 설치 모드로 실행됩니다. Oracle Solaris Cluster 소프트웨어 표준 설치의 경우 scinstall에서 다음 구성 기본값을 자동으로 지정합니다.

개인 네트워크 주소

172.16.0.0

개인 네트워크 넷마스크

255.255.240.0

클러스터 전송 어댑터 정확히 2개의 어댑터

클러스터 전송 스위치 switch1 및 switch2

전역 보호(fencing)

사용

설치 보안(DES)

제한됨

표준 모드 또는 사용자 정의 모드 설치를 계획하려면 다음 클러스터 구성 워크시트 중 하나를 완료합니다.

표준 모드 워크시트 - 표준 모드를 사용하고 기본값을 모두 적용할 경우 다음 워크시트를 완성합니다.

구성 요소	설명/예	대답		
클러스터 이름	설정할 클러스터의 이름은 무엇입니까?			
클러스터 노드	초기 클러스터 구성을 위해 계획한 다른 클러스터 노드의 이름을 나열합니다. (단 일 노드 클러스터의 경우 Ctrl-D만 누릅니다.)			
클러스터 전송 어댑터 및	개인 상호 연결에 노드를 연결하는 두 개의 클러스터 전송 어댑터 이름은 무엇입	첫번째:		
케이글		두번째:		
쿼럼 구성	자동 쿼럼 장치 선택을 비활성화하시겠습니까? (공유 저장소가 쿼럼 장치의 자	예ㅣ아니오		
(2 노드 클러스터만 해당)	역이 없는 경우 또는 처럼 서미를 처럼 정시도 구정하더는 경우 에도 응답합 니다.)			
확인	cluster check 오류의 경우 클러스터 만들기를 중단하시겠습니까?	예ㅣ아니오		
사용자 정의 모드 워크시트 - 사용자 정의 모드를 사용하고 구성 데이터를 사용자 정의할				

경우 다음 워크시트를 완성합니다.

참고 - 단일 노드 클러스터를 설치하는 경우 클러스터에서 개인 네트워크를 사용하지 않아도 scinstall 유틸리티에서 기본 개인 네트워크 주소 및 넷마스크를 자동으로 할당합니다.

구성 요소	설명/예	대답
클러스터 이름	설정할 클러스터의 이름은 무엇입니까?	
클러스터 노드	초기 클러스터 구성을 위해 계획한 다른 클러스터 노드의 이름을 나열합니다. (단일 노드 클러스터의 경우 <i>Ctrl-D</i> 만 누릅니다.)	
노드 추가 요청 인증	DES 인증을 사용해야 합니까?	
(다중 노드 클러스터만 해 당)		아니오 예

구성 요소	설명/예	대답
개인 네트워크의 최소 수	이 클러스터에 두 개 이상의 개인 네트워크를 사용하시겠습니까?	
(다중 노드 클러스터만 해 당)		예ㅣ아니오
지점간 케이블	2 노드 클러스터인 경우 이 클러스터에서 스위치를 사용합니까?	
(다중 노드 클러스터만 해 당)		예ㅣ아니오
클러스터 스위치		첫번째:
(다중 노드 클러스터만 해 당)	전송 스위치 이름: 기본값: switch1 및 switch2	두번째:
클러스터 전송 어댑터 및 케 이블	노드 이름(scinstall을 실행하는 노드):	
(다중 노드 클러스터만 해 당)		
	전송 어댑터 이름:	첫번째:
		두번째:
	이 어댑터가 전용 클러스터 전송 어댑터입니까? (태그된 VLAN 어댑터를 사	첫번째: 예ㅣ아니오
	용하는 경우 아니오 선택)	두번째: 예ㅣ아니오
	아니오인 경우 이 어댑터의 VLAN ID는 무엇입니까?	첫번째:
		두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:
	스위치 기본값: switch1 및 switch2	두버째·
	정송 스위치의 경우 기보 포트 이름을 사용하시겠습니까?	치번째·예ㅣ아니오
	아니요일 경은 사요한 포트이 이르은 무엇인니까?	구민째. 에 이디오 처버패·
		· · · · · · · · · · · · · · · · · · ·
	기도 건생은 사용된어 다르고 도에 사용 가득히 어때다르고 여러시겠스니까?	누면째:
	지승 점객을 지승하여 다른 모르에 지승 가능한 하랍다를 다들하지겠습니까? 아니요일 경우 각 추가 노드에 대해 다음 정보를 제공하십시오.	에이어파
각 추가 노드에 대해 지정	노드 이름:	
(다중 노드 클러스터만 해 당)		
	전송 어댑터 이름:	첫번째:
		두번째 <i>:</i>
	이 어댑터가 전용 클러스터 전송 어댑터입니까? (태그된 VLAN 어댑터를 사	첫번째: 예ㅣ아니오
	용야근 경우 아니오 선택/	두번째: 예ㅣ아니오
	아니오인 경우 이 어댑터의 VLAN ID는 무엇입니까?	첫번째:
		두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:

구성 요소	설명/예	대답
	기본값: switch1 및 switch2	두번째:
	전송 스위치일 경우 기본 포트 이름을 사용하시겠습니까?	첫번째: 예ㅣ아니오
		두번째: 예ㅣ아니오
	아니요일 경우 사용할 포트의 이름은 무엇입니까?	첫번째:
		두번째:
클러스터 전송을 위한 네트워 크 주소	기본 네트워크 주소(172.16.0.0)를 적용하시겠습니까?	
(다중 노드 클러스터만 해 당)		예 아니오
	아니요일 경우 사용할 개인 네트워크 주소는 무엇입니까?	···
	기본 넷마스크(255.255.240.0)를 적용하시겠습니까?	예 아니오
	아니요일 경우 클러스터에 구성할 노드, 개인 네트워크 및 영역 클러스터	노드
	그 피네 푸른 푸잣입니까?	네트워크
		영역 클러스터
	사용할 넷마스크는 무엇입니까? (scinstall에서 계산한 값에서 선택하거나 직접 지정합니다.)	·
공유 IP 또는 배타적 IP 영역 클러스터	물리적 클러스터에서 만들 배타적 IP 또는 공유 IP 영역 클러스터의 수 (배타 적 IP 영역 클러스터의 수와 공유 IP 영역 클러스터의 수를 합한 수가 물리 저 클러스터에서 만든 수 있는 최대 영역 클러스터 수비다 자기나 2000	배타적 IP 영역 클러스터
	역 필디드디에지 친절 두 있는 되네 공격 필디드디 두도디 적기더 짙어야 합니다. 최대 배타적 IP 영역 클러스터 수는 3개입니다.)	공유 IP 영역 클러스터
전역 보호(fencing)	전역 보호(fencing)를 비활성화하시겠습니까? (공유 저장소가 SCSI 예약을	첫번째: 예ㅣ아니오
	세스하지 않는 경우 아니요로 응답합니다.)	두번째: 예ㅣ아니오
쿼럼 구성	자동 쿼럼 장치 선택을 비활성화하시겠습니까? (공유 저장소가 쿼럼 장치의 자격이 없는 경우 또는 퀵런 서버를 퀴런 장치로 구성하려는 경우 예로 우	첫번째: 예ㅣ아니오
(2 노드 클러스터만 해당)	답합니다.)	두번째: 예ㅣ아니오
확인	cluster check 오류의 경우 클러스터 만들기를 중단하시겠습니까?	
(다중 노드 클러스터만 해 당)		예ㅣ아니오
(단일 노드 클러스터만 해 당)	cluster check 유틸리티를 실행하여 클러스터의 유효성을 검사하시겠습니 까?	예ㅣ아니오
자동 재부트 (단일 노드 클러스터만 해 당)	설치 후 scinstall에서 노드를 자동으로 재부트하도록 하시겠습니까?	예ㅣ아니오
▼ 모든 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법 (scinstall)

클러스터의 모든 노드에 Oracle Solaris Cluster 소프트웨어를 구성하려면 전역 클러스터의 한 노드에서 이 절차를 수행합니다.

이 절차에서는 대화식 scinstall 명령을 사용합니다. 설치 스크립트를 개발하는 경우 등에 서 비대화식 scinstall 명령을 사용하는 방법에 대한 자세한 내용은 Unresolved link to " scinstall1M" 매뉴얼 페이지를 참조하십시오.

이 절차에서 대화식 scinstall 유틸리티를 사용하려면 다음 지침을 준수하십시오.

- 대화식 scinstall 유틸리티에서는 사용자가 먼저 입력할 수 있습니다. 따라서 다음 메뉴 화면이 즉시 나타나지 않을 경우에 Enter 키를 두 번 이상 누르지 마십시오.
- 다른 지시가 없는 한 Ctrl-D를 눌러 관련 질문의 시작 부분이나 주 메뉴로 돌아갈 수 있습니다.
- 질문의 끝에 기본 응답이나 이전 세션에 대한 응답이 괄호([]) 안에 표시됩니다. Enter 키 를 누르면 별도의 입력 없이 괄호 안의 응답을 선택할 수 있습니다.

시작하기전에 다음 작업을 수행합니다.

 Oracle Solaris Cluster 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오.

노드에 Oracle Solaris 소프트웨어가 이미 설치된 경우에도 설치된 Oracle Solaris 소프 트웨어가 Oracle Solaris Cluster 소프트웨어와 클러스터에 설치할 다른 소프트웨어의 요구 사항을 충족시켜야 합니다. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하 도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하 는 방법 [48]을 참조하십시오.

- NWAM이 사용 안함으로 설정되었는지 확인합니다. 지침은 Oracle Solaris Cluster 소프 트웨어 패키지를 설치하는 방법 [58]을 참조하십시오.
- SPARC: Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 클러스터 노 드로 구성하려는 경우 Oracle VM Server for SPARC 소프트웨어가 각 물리적 시스템에 설치되어 있으며 도메인이 Oracle Solaris Cluster 요구 사항을 충족하는지 확인합니다. Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]을 참조하 십시오.
- Oracle Solaris Cluster 소프트웨어 패키지 및 업데이트가 각 노드에 설치되어 있는지 확 인합니다. Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]을 참조하십 시오.
- 태그가 지정된 VLAN 어댑터로 사용할 어댑터가 구성되어 있고 해당 VLAN ID를 가지고 있는지 확인합니다.
- 완성된 표준 모드 또는 사용자 정의 모드 설치 워크시트를 사용할 수 있도록 준비합니다. "모든 노드에 Oracle Solaris Cluster 소프트웨어 구성(scinstall)" [69]을 참조하십 시오.
- 1. 새 클러스터의 개인 상호 연결에서 스위치를 사용하고 있는 경우 인접 노드 탐색 프로토콜 (Neighbor Discovery Protocol, NDP)이 비활성화되었는지 확인합니다.

사용하는 스위치의 설명서에 포함된 절차에 따라 NDP가 사용으로 설정되어 있는지 확인하고 그럴 경우 NDP를 사용 안함으로 설정합니다.

클러스터 구성 중에 소프트웨어에서 개인 상호 연결에 트래픽이 없는지 검사합니다. 개인 상 호 연결에서 트래픽을 검사할 때 NDP가 개인 어댑터에 패키지를 보내면 상호 연결은 개인 상호 연결이 아닌 것으로 간주되고 클러스터 구성은 중단됩니다. 따라서 클러스터 생성 중에 는 NDP를 비활성화해야 합니다.

클러스터가 설정된 후 NDP 기능을 사용하려면 개인 상호 연결 스위치에서 NDP를 다시 활성 화할 수 있습니다.

2. 클러스터에서 구성할 각 노드에서 root 역할을 수행합니다.

다른 방법으로, 사용자 계정이 System Administrator 프로파일에 할당된 경우 프로파일 셸 을 통해 비루트로 명령을 실행하거나 pfexec 명령을 사용하여 앞에 접두어를 붙입니다.

3. 클러스터의 모든 노드에서 RPC용 TCP 래퍼가 사용 안함으로 설정되었는지 확인합니다.

Oracle Solaris의 RPC용 TCP 래퍼 기능은 클러스터 구성에 필요한 노드 간 통신을 막습니다.

a. 각 노드에서 RPC용 TCP 래퍼의 상태를 표시합니다.

다음 예제 명령 출력에 표시된 대로 config/enable_tcpwrappers를 true로 설정하면 TCP 래퍼가 사용으로 설정됩니다.

svccfg -s rpc/bind listprop config/enable_tcpwrappers
config/enable_tcpwrappers boolean true

- b. RPC용 TCP 래퍼가 노드에 사용으로 설정된 경우 TCP 래퍼를 사용 안함으로 설정하고 RPC 바인드 서비스를 새로 고칩니다.
 - # svccfg -s rpc/bind setprop config/enable_tcpwrappers = false
 - # svcadm refresh rpc/bind
 - # svcadm restart rpc/bind
- 4. 공용 네트워크 인터페이스를 준비합니다.
 - a. 각 공용 네트워크 인터페이스에 대한 정적 IP 주소를 만듭니다.
 - # ipadm create-ip interface
 - # ipadm create-addr -T static -a local=address/prefix-length addrobj

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 네트워크 구성 요소의 구성 및 관리 의 IPv4 인터페이스를 구성하는 방법"을 참조하십시오.

b. (옵션) 공용 네트워크 인터페이스에 대한 IPMP 그룹을 만듭니다.

초기 클러스터 구성 중 non-link-local IPv6 공용 네트워크 인터페이스가 클러스터에 존 재하지 않는 경우 IPMP 그룹이 일치하는 서브넷에 따라 자동으로 만들어집니다. 이러한

그룹은 인터페이스 모니터링을 위해 전이성 프로브를 사용하고 테스트 주소는 필요하지 않습니다.

이와 같이 자동으로 만들어진 IPMP 그룹이 사용자 요구 사항을 충족하지 않는 경우 또 는 사용자 구성에 하나 이상의 non-link-local IPv6 공용 네트워크 인터페이스가 있어 IPMP 그룹이 만들어지지 않는 경우 다음 중 하나를 수행합니다.

■ 클러스터를 설정하기 전에 필요한 IPMP 그룹을 만듭니다.

■ 클러스터가 설정된 후에 ipadm 명령을 사용하여 IPMP 그룹을 편집합니다.

자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 TCP/IP 네트워크, IPMP 및 IP 터널 관리 의 IPMP 그룹 구성"을 참조하십시오.

5. 하나의 클러스터 노드에서 scinstall 유틸리티를 시작합니다.

phys-schost# **scinstall**

 새 클러스터 만들기 또는 클러스터 노드 추가에 대한 옵션 번호를 입력하고 Enter 키를 누릅 니다.

*** Main Menu ***

Please select from one of the following (*) options:

* 1) Create a new cluster or add a cluster node

- \ast 2) Print release information for this cluster node
- * ?) Help with menu options
- * q) Quit

Option: 1

New Cluster and Cluster Node(새 클러스터 및 클러스터 노드) 메뉴가 표시됩니다.

7. 새 클러스터 만들기에 대한 옵션 번호를 입력하고 Enter 키를 누릅니다.

Typical or Custom Mode(일반 또는 사용자 정의 모드) 메뉴가 표시됩니다.

- 8. 표준 또는 사용자 정의에 대한 옵션 번호를 입력하고 Enter 키를 누릅니다. Create a New Cluster(새 클러스터 만들기) 화면이 표시됩니다. 요구 사항을 읽은 다음 Ctrl-D를 눌러 계속합니다.
- 9. 메뉴 프롬프트에 따라 구성 계획 워크시트에서 응답을 제공합니다.

scinstall 유틸리티는 모든 클러스터 노드를 설치 및 구성하고 클러스터를 재부트합니다. 모 든 노드가 성공적으로 클러스터에 부트되면 클러스터가 설정됩니다. Oracle Solaris Cluster 설치 출력은 /var/cluster/logs/install/scinstall.log.N 파일에 기록됩니다.

10. 각 노드에서 SMF(서비스 관리 기능)에 대한 다중 사용자 서비스가 온라인 상태인지 확인합니다.

노드에 대해 서비스가 아직 온라인 상태가 아닌 경우 온라인 상태가 될 때까지 기다린 후 다음 단계로 진행합니다.

phys-schost# svcs multi-user-server node
STATE STIME FMRI
online 17:52:55 svc:/milestone/multi-user-server:default

11. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# clnode status

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
ohys-schost-1	Online
ohys-schost-2	Online
ohys-schost-3	Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

12. 클러스터를 installmode에서 제외합니다.

phys-schost# clquorum reset

13. (옵션) 자동 노드 재부트 기능을 사용으로 설정합니다.

클러스터의 서로 다른 노드에서 하나 이상의 디스크에 액세스할 수 있는 경우 이 기능을 사용 하면 모니터링된 모든 공유 디스크 경로에서 오류가 발생할 때 노드가 자동으로 재부트됩니 다.

참고 - 초기 구성 시 기본적으로 검색된 모든 장치에 대한 디스크 경로 모니터링이 사용으로 설정됩니다.

a. 자동 재부트를 사용으로 설정합니다.

phys-schost# clnode set -p reboot_on_path_failure=enabled

- p

설정할 등록 정보를 지정합니다.

reboot_on_path_failure=enable

모니터된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

b. 디스크 경로 실패 시 자동 재부트가 활성화되는지 확인합니다.

phys-schost# clnode show === Cluster Nodes ===
Node Name:
 reboot_on_path_failure:

node

enabled

14. RPC에 TCP 래퍼를 사용하려면 각 클러스터 노드에서 /etc/hosts.allow 파일에 모든 clprivnet0 IP 주소를 추가합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 노드의 모든 clprivnet0 장치에 대한 IP 주소를 표시합니다.

# /usr/sbin/ipadm show-addr					
ADDROBJ	TYPE	STATE	ADDR		
clprivnet0/N	static	ok	ip-address/netmask-length		

- b. 각 클러스터 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소를 /etc/ hosts.allow 파일에 추가합니다.
- 15. 고가용성 로컬 파일 시스템에서 HA for NFS 데이터 서비스(HA for NFS)를 사용하려면 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 공유 사항을 automounter 맵에서 제외시킵니다.

automounter 맵 수정에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 네트워크 파일 시스템 관리 의 맵 관련 관리 작업"을 참조하십시오.

예 3-1 모든 노드에 Oracle Solaris Cluster 소프트웨어 구성

다음 예에서는 scinstall이 2 노드 클러스터 schost에서 구성 작업을 완료하면 기록되는 scinstall 진행률 메시지를 보여 줍니다. 클러스터는 표준 모드로 scinstall 유틸리티를 사 용하여 phys-schost-1에서 설치됩니다. 다른 클러스터 노드는 phys-schost-2입니다. 어댑 터 이름은 net2 및 net3입니다. 쿼럼 장치의 자동 선택이 활성화되어 있습니다.

Log file - /var/cluster/logs/install/scinstall.log.24747

Configuring global device using lofi on pred1: done Starting discovery of the cluster transport configuration.

The following connections were discovered:

phys-schost-1:net2 switch1 phys-schost-2:net2
phys-schost-1:net3 switch2 phys-schost-2:net3

Completed discovery of the cluster transport configuration.

Started cluster check on "phys-schost-1".
Started cluster check on "phys-schost-2".
cluster check completed with no errors or warnings for "phys-schost-1".
cluster check completed with no errors or warnings for "phys-schost-2".

Configuring "phys-schost-2" … done Rebooting "phys-schost-2" … done

Configuring "phys-schost-1" ... done Rebooting "phys-schost-1" ...

Log file - /var/cluster/logs/install/scinstall.log.24747

- 일반 오류 구성 실패 하나 이상의 노드에서 클러스터를 결합할 수 없거나 잘못된 구성 정보가 지정 된 경우 먼저 이 절차를 다시 수행하십시오. 그래도 문제가 해결되지 않으면 잘못 구성된 각 노드에서 Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방 법 [219]의 절차를 수행하여 해당 노드를 클러스터 구성에서 제거합니다. Oracle Solaris Cluster 소프트웨어 패키지를 제거할 필요는 없습니다. 그런 다음 이 절차를 다시 수행합니 다.
- 다음 순서 단일 노드 클러스터를 설치했으면 클러스터 설정이 완료된 것입니다. 볼륨 관리 소프트웨 어를 설치하고 클러스터를 구성하려면 "클러스터 파일 시스템 만들기" [159]로 이동합 니다.
 - 다중 노드 클러스터를 설치하고 자동 쿼럼 구성을 선택한 경우에는 설치 후 설정이 완료 된 것입니다. 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.
 - 다중 노드 클러스터를 설치하고 자동 쿼럼 구성을 거부한 경우에는 설치 후 설정을 수행 합니다. 쿼럼 장치를 구성하는 방법 [132]으로 이동합니다.

클러스터에 쿼럼 장치를 구성하려면 쿼럼 장치를 구성하는 방법 [132]으로 이동합니다.

그렇지 않으면 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.

▼ 모든 노드에 Oracle Solaris Cluster 소프트웨어를 구성하 는 방법(XML)

XML 클러스터 구성 파일을 사용하여 새 전역 클러스터를 구성하려면 이 절차를 수행합니다. 새 클러스터는 Oracle Solaris Cluster 4.1 소프트웨어가 실행되는 기존 클러스터와 중복될 수 있습니다.

이 절차에서는 다음과 같은 클러스터 구성 요소를 구성합니다.

- 클러스터 이름
- 클러스터 노드 멤버쉽
- 클러스터 상호 연결

시작하기전에 다음 작업을 수행합니다.

 Oracle Solaris Cluster 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오.

노드에 Oracle Solaris 소프트웨어가 이미 설치된 경우에도 설치된 Oracle Solaris 소프 트웨어가 Oracle Solaris Cluster 소프트웨어와 클러스터에 설치할 다른 소프트웨어의 요구 사항을 충족시켜야 합니다. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하 도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하 는 방법 [48]을 참조하십시오.

- NWAM이 사용 안함으로 설정되었는지 확인합니다. 지침은 Oracle Solaris Cluster 소프 트웨어 패키지를 설치하는 방법 [58]을 참조하십시오.
- SPARC: Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 클러스터 노 드로 구성하려는 경우 Oracle VM Server for SPARC 소프트웨어가 각 물리적 시스템에 설치되어 있으며 도메인이 Oracle Solaris Cluster 요구 사항을 충족하는지 확인합니다. Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]을 참조하 십시오.
- 태그가 지정된 VLAN 어댑터로 사용할 어댑터가 구성되어 있고 해당 VLAN ID를 가지고 있는지 확인합니다.
- Oracle Solaris Cluster 4.2 소프트웨어 및 업데이트가 구성할 각 노드에 설치되어 있는 지 확인합니다. Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]을 참조 하십시오.
- 1. Oracle Solaris Cluster 4.2 소프트웨어가 각각의 잠재적 클러스터 노드에 아직 구성되어 있 지 않은지 확인합니다.
 - a. 새 클러스터에 구성할 잠재적 노드에서 root 역할을 수행합니다.
 - b. Oracle Solaris Cluster 소프트웨어가 잠재적 노드에 이미 구성되어 있는지 여부를 확인 합니다.

phys-schost# /usr/sbin/clinfo -n

■ 명령에서 다음 메시지를 반환하는 경우 c단계로 계속 진행합니다.

clinfo: node is not configured as part of a cluster: Operation not applicable

이 메시지는 Oracle Solaris Cluster 소프트웨어가 잠재적 노드에 아직 구성되어 있지 않음을 나타냅니다.

■ 명령에서 노드 ID 번호를 반환하는 경우 이 절차를 수행하지 마십시오.

노드 ID 반환은 Oracle Solaris Cluster 소프트웨어가 노드에 이미 구성되어 있음 을 나타냅니다.

클러스터에서 이전 버전의 Oracle Solaris Cluster 소프트웨어를 실행 중이며 사용 자가 Oracle Solaris Cluster 4.2 소프트웨어를 설치할 경우 대신 Unresolved link to " Oracle Solaris Cluster Upgrade Guide "의 업그레이드 절차를 수행합니다.

- c. **새 클러스터에 구성할 나머지 잠재적 노드 각각에서 a단계와 b단계를 반복합니다.** Oracle Solaris Cluster 소프트웨어가 잠재적 클러스터 노드에 아직 구성되지 않은 경우 2단계로 계속 진행합니다.
- 클러스터의 모든 노드에서 RPC용 TCP 래퍼가 사용 안함으로 설정되었는지 확인합니다.
 Oracle Solaris의 RPC용 TCP 래퍼 기능은 클러스터 구성에 필요한 노드 간 통신을 막습니다.
 - a. 각 노드에서 RPC용 TCP 래퍼의 상태를 표시합니다. 다음 예제 명령 출력에 표시된 대로 config/enable_tcpwrappers를 true로 설정하면 TCP 래퍼가 사용으로 설정됩니다.

svccfg -s rpc/bind listprop config/enable_tcpwrappers
config/enable_tcpwrappers boolean true

b. RPC용 TCP 래퍼가 노드에 사용으로 설정된 경우 TCP 래퍼를 사용 안함으로 설정하고 RPC 바인드 서비스를 새로 고칩니다.

svccfg -s rpc/bind setprop config/enable_tcpwrappers = false

- # svcadm refresh rpc/bind
- # svcadm restart rpc/bind
- 3. 새 클러스터의 개인 상호 연결에서 스위치를 사용하고 있는 경우 인접 노드 탐색 프로토콜 (Neighbor Discovery Protocol, NDP)이 비활성화되었는지 확인합니다. 사용하는 스위치의 설명서에 포함된 절차에 따라 NDP가 사용으로 설정되어 있는지 확인하고 그럴 경우 NDP를 사용 안함으로 설정합니다. 클러스터 구성 중에 소프트웨어에서 개인 상호 연결에 트래픽이 없는지 검사합니다. 개인 상 호 연결에서 트래픽을 검사할 때 NDP가 개인 어댑터에 패키지를 보내면 상호 연결은 개인 상호 연결이 아닌 것으로 간주되고 클러스터 구성은 중단됩니다. 따라서 클러스터 생성 중에 는 NDP를 비활성화해야 합니다. 클러스터가 설정된 후 NDP 기능을 사용하려면 개인 상호 연결 스위치에서 NDP를 다시 활성 화할 수 있습니다.
- 4. Oracle Solaris Cluster 4.2 소프트웨어를 실행하는 기존 클러스터를 복제하려는 경우 해당 클러스터의 노드를 사용하여 클러스터 구성 XML 파일을 만듭니다.
 - a. 복제할 클러스터의 활성 구성원에서 root 역할을 수행합니다.
 - b. 기존 클러스터의 구성 정보를 파일로 내보냅니다.

phys-schost# cluster export -o clconfigfile

-0

출력 대상을 지정합니다.

clconfigfile

클러스터 구성 XML 파일의 이름입니다. 지정한 파일 이름은 기존 파일 또는 명령에 서 만들 새 파일이 될 수 있습니다.

자세한 내용은 Unresolved link to " cluster1CL" 매뉴얼 페이지를 참조하십시오.

c. 새 클러스터를 구성할 잠재적 노드로 구성 파일을 복사합니다.

클러스터 노드로 구성할 다른 호스트에서 액세스할 수 있는 디렉토리에 파일을 저장할 수 있습니다.

- 5. 새 클러스터를 구성할 잠재적 노드에서 root 역할을 수행합니다.
- 6. 필요에 따라 클러스터 구성 XML 파일을 수정하거나 만듭니다.

XML 요소의 값을 넣거나 수정하여 만들려는 클러스터 구성을 반영합니다.

- 기존 클러스터를 복제하려는 경우 cluster export 명령으로 만든 파일을 엽니다.
- 기존 클러스터를 복제하지 않으려는 경우 새 파일을 만듭니다.

파일은 Unresolved link to " clconfiguration5CL" 매뉴얼 페이지에 표시된 요소 계층 을 기반으로 합니다. 클러스터 노드로 구성할 다른 호스트에서 액세스할 수 있는 디렉토 리에 파일을 저장할 수 있습니다.

- 클러스터를 설정하려면 다음 구성 요소의 올바른 값이 클러스터 구성 XML 파일에 있어 야 합니다.
 - 클러스터 이름
 - 클러스터 노드
 - 클러스터 전송
- 기존 클러스터에서 내보낸 구성 정보를 수정할 경우 새 클러스터를 반영하도록 변경해야 하는 일부 값(예: 노드 이름)이 둘 이상의 클러스터 객체에 대한 정의에 사용됩니다.

클러스터 구성 XML 파일의 구조 및 내용에 대한 자세한 내용은 Unresolved link to " clconfiguration5CL" 매뉴얼 페이지를 참조하십시오.

7. 클러스터 구성 XML 파일의 유효성을 검사합니다.

phys-schost# /usr/share/src/xmllint --valid --noout clconfigfile

자세한 내용은 Unresolved link to " xmllint1" 매뉴얼 페이지를 참조하십시오.

8. 클러스터 구성 XML 파일이 포함된 잠재적 노드에서 클러스터를 만듭니다.

phys-schost# cluster create -i clconfigfile

-i clconfigfile

입력 소스로 사용할 클러스터 구성 XML 파일의 이름을 지정합니다.

 각 노드에서 SMF(서비스 관리 기능)에 대한 다중 사용자 서비스가 온라인 상태인지 확인합 니다.

노드에 대해 서비스가 아직 온라인 상태가 아닌 경우 온라인 상태가 될 때까지 기다린 후 다음 단계로 진행합니다.

 phys-schost#
 svcs
 multi-user-server
 node

 STATE
 STIME
 FMRI

 online
 17:52:55
 svc:/milestone/multi-user-server:default

10. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# **clnode status**

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
phys-schost-1	Online
phys-schost-2	Online
phys-schost-3	Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

11. Oracle Solaris Cluster 소프트웨어에 필요한 업데이트를 수행합니다.

소프트웨어 업데이트에 대한 지침은 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"를 참조하십시오.

12. RPC에 TCP 래퍼를 사용하려면 각 클러스터 노드에서 /etc/hosts.allow 파일에 모든 clprivnet0 IP 주소를 추가합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 노드의 모든 clprivnet0 장치에 대한 IP 주소를 표시합니다.

# /usr/sbin/ipadm show-addr				
ADDROBJ	TYPE	STATE	ADDR	
clprivnet0/N	static	ok	ip-address/netmask-length	

- b. 각 클러스터 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소를 /etc/ hosts.allow 파일에 추가합니다.
- 13. 고가용성 로컬 파일 시스템에서 HA for NFS 데이터 서비스(HA for NFS)를 사용하려면 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 공유 사항을 automounter 맵에서 제외시킵니다.

automounter 맵 수정에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 네트워크 파일 시스템 관리 의 맵 관련 관리 작업"을 참조하십시오.

14. 기존 클러스터에서 쿼럼 정보를 복제하려면 클러스터 구성 XML 파일을 사용하여 쿼럼 장치 를 구성합니다.

2 노드 클러스터를 만든 경우 쿼럼 장치를 구성해야 합니다. 필요한 쿼럼 장치를 만드는 데 클러스터 구성 XML 파일을 사용하지 않으려면 쿼럼 장치를 구성하는 방법 [132]으로 이 동합니다.

 a. 쿼럼 장치에 쿼럼 서버를 사용하고 있는 경우 쿼럼 서버가 설정되어 실행 중인지 확인합 니다.

Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]의 지침에 따릅니다.

- b. 쿼럼 장치에 NAS 장치를 사용하고 있는 경우 NAS 장치가 설정되어 작동 중인지 확인합 니다.
 - i. NAS 장치를 쿼럼 장치로 사용할 때의 요구 사항을 준수하십시오. Unresolved link to " Oracle Solaris Cluster With Network-Attached Storage Device Manual "을 참조하십시오.
 - ii. 사용 중인 장치의 설명서에 있는 지침에 따라 NAS 장치를 설정합니다.
- c. 클러스터 구성 XML 파일의 쿼럼 구성 정보에 만든 클러스터에 유효한 값이 반영되는지 확인합니다.
- d. 클러스터 구성 XML 파일을 변경한 경우 파일의 유효성을 검사합니다.

phys-schost# xmllint --valid --noout clconfigfile

e. 쿼럼 장치를 구성합니다.

phys-schost# clquorum add -i clconfigfile device-name

device-name

쿼럼 장치로 구성할 장치의 이름을 지정합니다.

15. 설치 모드에서 클러스터를 제거합니다.

phys-schost# clquorum reset

16. 클러스터 구성원으로 구성되지 않은 시스템에서 클러스터 구성에 대한 액세스를 닫습니다.

phys-schost# claccess deny-all

17. (옵션) 모니터링된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

참고 - 처음 구성 시 검색된 모든 장치에 대해 디스크 경로 모니터링이 기본값으로 사용으로 설정됩니다.

a. 자동 재부트를 사용으로 설정합니다.

phys-schost# clnode set -p reboot_on_path_failure=enabled

- p

설정할 등록 정보를 지정합니다.

reboot_on_path_failure=enable

모니터된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

b. 디스크 경로 실패 시 자동 재부트가 활성화되는지 확인합니다.

phys-schost# clnode show
=== Cluster Nodes ===

Node Name: … reboot_on_path_failure:

node

enabled

예 3-2 XML 파일을 사용하여 모든 노드에 Oracle Solaris Cluster 소프트웨어 구성

다음 예에서는 기존 2 노드 클러스터의 클러스터 구성 및 쿼럼 구성을 새로운 2 노드 클러스 터에 복제합니다. 새 클러스터가 Solaris 11.1 OS로 설치됩니다. 기존 클러스터 노드 physoldhost-1에서 클러스터 구성 XML 파일 clusterconf.xml로 클러스터 구성을 내보냅니다. 새 클러스터의 노드 이름은 phys-newhost-1 및 phys-newhost-2입니다. 새 클러스터에서 쿼 럼 장치로 구성되는 장치는 d3입니다.

이 예에서 프롬프트 이름 phys-newhost-N은 명령이 두 클러스터 노드에서 모두 수행됨을 나 타냅니다.

phys-newhost-N# /usr/sbin/clinfo -n clinfo: node is not configured as part of a cluster: Operation not applicable

phys-oldhost-1# cluster export -o clusterconf.xml Copy clusterconf.xml to phys-newhost-1 and modify the file with valid values

phys-newhost-1# xmllint --valid --noout clusterconf.xml
 No errors are reported

phys-newhost-1# cluster create -i clusterconf.xml

```
phys-newhost-N# svcs multi-user-server

STATE STIME FMRI

online 17:52:55 svc:/milestone/multi-user-server:default

phys-newhost-1# clnode status

Output shows that both nodes are online
```

```
phys-newhost-1# clquorum add -i clusterconf.xml d3
phys-newhost-1# clquorum reset
```

추가 구성 요소 구성

클러스터가 완전히 설정된 후 기존 클러스터에서 다른 클러스터 구성 요소의 구성을 복 제할 수 있습니다. 아직 수행하지 않은 경우 복제하려는 XML 요소의 값을 수정하여 구 성 요소를 추가할 클러스터 구성을 반영합니다. 예를 들어, 리소스 그룹을 복제하려면 resourcegroupNodeList 항목이 새 클러스터에 유효한 노드 이름은 포함하며 복제한 클러스 터의 노드 이름은 포함하지 않는지(노드 이름이 동일하지 않은 경우) 확인합니다.

클러스터 구성 요소를 복제하려면 복제할 클러스터 구성 요소에 대해 객체 지향 명령의 export 하위 명령을 실행합니다. 명령 구문 및 옵션에 대한 자세한 내용은 복제할 클러스터 객체에 대한 매뉴얼 페이지를 참조하십시오.

다음은 클러스터가 설정된 후 클러스터 구성 XML 파일에서 만들 수 있는 클러스터 구성 요 소 목록을 설명합니다. 구성 요소를 복제하는 데 사용할 명령에 대한 매뉴얼 페이지를 포함합 니다.

- 장치 그룹: Solaris Volume Manager: Unresolved link to " cldevicegroup1CL" Solaris Volume Manager의 경우 먼저 클러스터 구성 XML 파일에 지정된 디스크 세트 를 만듭니다.
- Resource Group Manager 구성 요소
 - 리소스: Unresolved link to " clresource1CL"
 - 공유 주소 리소스: Unresolved link to " clressharedaddress1CL"
 - 논리 호스트 이름 리소스: Unresolved link to " clreslogicalhostname1CL "
 - 리소스 유형: Unresolved link to " clresourcetype1CL"
 - 리소스 그룹: Unresolved link to " clresourcegroup1CL"

clresource, clressharedaddress 또는 clreslogicalhostname 명령의 -a 옵션을 사용하 면 복제하는 리소스와 연결된 리소스 유형 및 리소스 그룹을 복제할 수도 있습니다. 그렇 지 않으면 자원을 추가하기 전에 먼저 자원 유형 및 자원 그룹을 클러스터에 추가해야 합 니다.

■ NAS 장치: Unresolved link to " clnasdevice1CL"

먼저 장치 설명서에 따라 NAS 장치를 설정해야 합니다.

- SNMP 호스트: Unresolved link to " clsnmphost1CL"
 clsnmphost create -i 명령을 사용하려면 -f 옵션을 사용하여 사용자 암호 파일을 지정 해야 합니다.
- SNMP 사용자: Unresolved link to " clsnmpuser1CL"

- 클러스터 객체의 시스템 리소스를 모니터하기 위한 임계값: Unresolved link to " cltelemetryattribute1CL"
- 일반 2류 **구성 실패** 하나 이상의 노드에서 클러스터를 결합할 수 없거나 잘못된 구성 정보가 지정 된 경우 먼저 이 절차를 다시 수행하십시오. 그래도 문제가 해결되지 않으면 잘못 구성된 각 노드에서 Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방 법 [219]의 절차를 수행하여 해당 노드를 클러스터 구성에서 제거합니다. Oracle Solaris Cluster 소프트웨어 패키지를 제거할 필요는 없습니다. 그런 다음 이 절차를 다시 수행합니 다.
- 다음 순서 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.

자동 설치 프로그램으로 새 Oracle Solaris Cluster 설정

대화식 scinstall 유틸리티는 두 가지 설치 모드(표준 또는 사용자 정의)로 실행됩니다. Oracle Solaris Cluster 소프트웨어 표준 설치의 경우 scinstall에서 다음 구성 기본값을 자 동으로 지정합니다.

개인 네트워크 주소

172.16.0.0

개인 네트워크 넷마스크

255.255.240.0

- 클러스터 전송 어댑터 정확히 2개의 어댑터
- 클러스터 전송 스위치 switch1 및 switch2
- 전역 보호(fencing)

사용

설치 보안(DES)

제한됨

IPS 저장소 또는 기존 클러스터에 만들어진 Oracle Solaris 통합 아카이브에서 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어 패키지를 설치하여 새 클러스터를 설치 및 구 성할 수 있습니다.

새 클러스터 구성 외에 AI 및 통합 아카이브를 사용하여 아카이브에서 클러스터를 복제하 고 기존 클러스터 노드를 복원할 수도 있습니다. 또한 clzonecluster 명령을 사용하여 통 합 아카이브에서 새 영역 클러스터를 설치할 수 있습니다. 자세한 내용은 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(통합 아카이브) [99], 통 합 아카이브에서 클러스터를 복제하는 방법 [104], Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 통합 아카이브에서 노드를 복원하는 방법" 및 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 통합 아카이브에서 영역 클러스터를 설치하는 방법"을 참조하십시오.

이러한 노드는 물리적 시스템, (SPARC만 해당) Oracle VM Server for SPARC I/O 도메인 이나 게스트 도메인 또는 이러한 노드 유형의 조합이 될 수 있습니다.

AI는 최소 부트 이미지를 사용하여 클라이언트를 부트합니다. IPS 저장소에서 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 경우 부트 이미지를 얻으 려면 설치 소스를 제공해야 합니다. 부트 이미지 컨텐츠는 install-image/solaris-autoinstall 패키지에 게시됩니다. 다운로드한 부트 이미지 ISO 파일에도 부트 이미지가 포함됩 니다. 패키지를 검색할 수 있는 저장소를 지정할 수도 있고, 다운로드한 부트 이미지 ISO 파 일의 위치를 지정할 수도 있습니다.

- 저장소에서 부트 이미지를 얻으려면 게시자, 저장소 URL 및 클러스터 노드 구조를 지정 해야 합니다. 저장소에 HTTPS가 사용되는 경우 SSL 인증서 및 개인 키를 지정하고 파일 위치를 제공해야 합니다. http://pkg-register.oracle.com 사이트에서 키 및 인증서를 요청하고 다운로드할 수 있습니다.
- 다운로드한 부트 이미지 ISO 파일을 사용하려면 AI 설치 서버에서 액세스할 수 있는 디렉 토리에 저장해야 합니다. AI 부트 이미지는 클러스터 노드에 설치할 Oracle Solaris 소프 트웨어 릴리스와 동일한 버전이어야 합니다. 또한 부트 이미지 파일의 구조는 클러스터 노드와 동일해야 합니다.

Oracle 통합 아카이브에서 새 클러스터를 설정하려는 경우 새 클러스터를 설치 및 구성 하거나 아카이브에서 클러스터를 복제하기 위해 최소 부트 이미지를 제공할 필요가 없습 니다. 통합 아카이브에는 사용 가능한 이미지가 포함되어 있습니다. 통합 아카이브에 액 세스하기 위한 경로는 제공해야 합니다.

IPS 저장소 또는 통합 아카이브에서 새 클러스터를 설치 및 구성하는 경우 다음 클러스터 구 성 워크시트 중 하나를 완료하여 표준 모드 또는 사용자 정의 모드 설치를 계획하십시오.

표준 모드 워크시트 - 표준 모드를 사용하고 기본값을 모두 적용할 경우 다음 워크시트를 완성합니다.

구성 요소	설명/예	대답
사용자 정의 자동 설치 프로그 래 브트 이미지 소스	다운로드한 AI ISO 이미지 파일을 사용하려면 다음 정보가 필요합니다.	
	자동 설치 프로그램 부트 이미지 ISO 파일의 전체 경로 이름은 무엇입니까?	
	저장소를 사용하여 AI 부트 이미지를 가져오려면 다음 정보가 필요합니다.	
	부트 이미지 install-image/solaris-auto-install 패키지의 게시자는 누 구입니까?	
	게시자의 저장소는 무엇입니까?	
	클러스터 노드의 구조는 무엇입니까?	
	HTTPS를 사용하는 저장소:	
	저장소에 대한 인증서 파일의 전체 경로는 무엇입니까?	

구성 요소	설명/예	대답
	저장소에 대한 개인 키 파일의 전체 경로는 무엇입니까?	
	http://pkg-register.oracle.com 사이트에서 키 및 인증서를 요청하고 다 운로드할 수 있습니다.	
통합 아카이브	통합 아카이브를 사용하여 설치하려면 다음 정보가 필요합니다.	
	통합 아카이브의 위치는 무엇입니까?	
사용자 정의 자동 설치 프로그 램 사용자 루트 암호	클러스터 노드의 루트 계정에 대한 암호는 무엇입니까?	
사용자 정의 자동 설치 프로그 램 저장소(통합 아카이브를 사 용하지 않는 경우)	solaris 게시자의 저장소는 무엇입니까?	
	ha-cluster 게시자의 저장소는 무엇입니까?	
	HTTPS를 사용하는 저장소:	
	저장소에 대한 인증서 파일의 전체 경로는 무엇입니까?	
	저장소에 대한 개인 키 파일의 전체 경로는 무엇입니까?	
	http://pkg-register.oracle.com 사이트에서 키 및 인증서를 요청하고 다 운로드할 수 있습니다.	
	설치할 Oracle Solaris Cluster 구성 요소를 선택합니다. (설치할 그룹 패키 지를 하나 이상 선택합니다.)	
	이러한 그룹 패키지에 포함된 개별 구성 요소를 선택하겠습니까?	예 아니오
클러스터 이름	설정할 클러스터의 이름은 무엇입니까?	
클러스터 노드	초기 클러스터 구성을 위해 계획된 클러스터 노드의 이름을 나열합니다. (단 일 노드 클러스터의 경우 Ctrl-D만 누릅니다.)	
	각 노드에 대해 자동 검색된 MAC 주소가 올바른지 확인합니다.	
클러스터 전송 어댑터 및 케이 블	첫번째 노드 이름:	
	전송 어댑터 이름:	첫번째:
		두번째:
VLAN 어댑터만 해당	이 어댑터가 전용 클러스터 전송 어댑터입니까? (태그된 VLAN 어댑터를	첫번째: 예ㅣ아니오
	자중하는 경구 아니노 선택/	두번째: 예ㅣ아니오
	아니오인 경우 이 어댑터의 VLAN ID는 무엇입니까?	첫번째:
		두번째:
각 추가 노드에 대해 지정	노드 이름:	
	전송 어댑터 이름:	첫번째:
		두번째:
쿼럼 구성	자동 쿼럼 장치 선택을 비활성화하시겠습니까? (공유 저장소가 쿼럼 장치	첫번째: 예ㅣ아니오
(2 노드 클러스터만 해당)	의 사격이 없는 경우 또는 쿼덤 서머들 쿼덤 상지도 구성하려는 경우 예 로 응답합니다.)	두번째: 예ㅣ아니오

■ **사용자 정의 모드 워크시트** - 사용자 정의 모드를 사용하고 구성 데이터를 사용자 정의할 경우 다음 워크시트를 완성합니다.

참고 - 단일 노드 클러스터를 설치하는 경우 클러스터에서 개인 네트워크를 사용하지 않아도 scinstall 유틸리티에서 기본 개인 네트워크 주소 및 넷마스크를 자동으로 사용합니다.

구성 요소	설명/예	대답
사용자 정의 자동 설치 프로그	다운로드한 AI ISO 이미지 파일을 사용하려면 다음 정보가 필요합니다.	
댐 부트 이미지 ISO 조스 	자동 설치 프로그램 부트 이미지 ISO 파일의 전체 경로 이름은 무엇입니까?	
	저장소를 사용하여 AI 부트 이미지를 가져오려면 다음 정보가 필요합니다.	
	부트 이미지 install-image/solaris-auto-install 패키지의 게시자는 누 구입니까?	
	게시자의 저장소는 무엇입니까?	
	클러스터 노드의 구조는 무엇입니까?	
	HTTPS를 사용하는 저장소:	
	저장소에 대한 인증서 파일의 전체 경로는 무엇입니까?	
	저장소에 대한 개인 키 파일의 전체 경로는 무엇입니까?	
	http://pkg-register.oracle.com 사이트에서 키 및 인증서를 요청하고 다 운로드할 수 있습니다.	
통합 아카이브	통합 아카이브를 사용하여 설치하려면 다음 정보가 필요합니다.	
	통합 아카이브의 위치는 무엇입니까?	
사용자 정의 자동 설치 프로그 램 사용자 루트 암호	클러스터 노드의 루트 계정에 대한 암호는 무엇입니까?	
사용자 정의 자동 설치 프로그 램 저장소(통합 아카이브를 사 용하지 않는 경우)	solaris 게시자의 저장소는 무엇입니까?	
	ha-cluster 게시자의 저장소는 무엇입니까?	
	HTTPS를 사용하는 저장소:	
	저장소에 대한 인증서 파일의 전체 경로는 무엇입니까?	
	저장소에 대한 개인 키 파일의 전체 경로는 무엇입니까?	
	http://pkg-register.oracle.com 사이트에서 키 및 인증서를 요청하고 다 운로드할 수 있습니다.	
	설치할 Oracle Solaris Cluster 구성 요소를 선택합니다. (설치할 그룹 패키 지를 하나 이상 선택합니다.)	
	이러한 그룹 패키지에 포함된 개별 구성 요소를 선택하겠습니까?	예 아니오
클러스터 이름	설정할 클러스터의 이름은 무엇입니까?	

구성 요소	설명/예	대답
클러스터 노드	초기 클러스터 구성을 위해 계획된 클러스터 노드의 이름을 나열합니다. (단 일 노드 클러스터의 경우 <i>Ctrl-D</i> 만 누릅니다.)	
	각 노드에 대해 자동 검색된 MAC 주소가 올바른지 확인합니다.	
노드 추가 요청 인증	DES 인증을 사용해야 합니까?	아니오 예
(다중 노드 클러스터만 해당)		
클러스터 전송을 위한 네트워 크 주소	기본 네트워크 주소(172.16.0.0)를 적용하시겠습니까?	예 아니오
(다중 노드 클러스터만 해당)		
	아니요일 경우 사용할 개인 네트워크 주소는 무엇입니까?	···
	기본 넷마스크를 적용하시겠습니까?	예 아니오
	아니요일 경우 클러스터에 구성할 노드, 개인 네트워크 및 영역 클러스터	노드
	의 최대 수는 무엇입니까? (최대 배타적 IP 영역 클러스터 수는 3개입 니다. 배타적 IP 영역 클러스터의 수와 공유 IP 영역 클러스터의 수를	네트워크
	합한 수가 최대 영역 클러스터 수보다 작거나 같아야 합니다.)	영역 클러스터
		배타적 IP 영역 클러스터
	사용할 넷마스크는 무엇입니까? scinstall에서 계산한 값에서 선택하거나 직접 지정합니다.	
개인 네트워크의 최소 수	이 클러스터에 두 개 이상의 개인 네트워크를 사용하시겠습니까?	예ㅣ아니오
(다중 노드 클러스터만 해당)		
지점간 케이블	이 클러스터에서 스위치를 사용합니까?	예ㅣ아니오
(2 노드 클러스터만 해당)		
클러스터 스위치	저송 스위치 이름(사용되 경우):	첫번째:
(다중 노드 클러스터만 해당)	기본값: switch1 및 switch2	두번째:
클러스터 전송 어댑터 및 케이 블	첫번째 노드 이름:	
(다중 노드 클러스터만 해당)		
	전송 어댑터 이름:	첫번째:
		두번째:
<i>(VLAN</i> 어댑터만 해당)	이 어댑터가 전용 클러스터 전송 어댑터입니까? (태그된 VLAN 어댑터를	첫번째: 예ㅣ아니오
	사용하는 경우 아니오 선택) 	두번째: 예ㅣ아니오
	아니오인 경우 이 어댑터의 VLAN ID는 무엇입니까?	첫번째:
		두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:
	스위치 기본값: switch1 및 switch2	두번째:
	전송 스위치일 경우 기본 포트 이름을 사용하시겠습니까?	첫번째: 예ㅣ아니오
		두번째: 예ㅣ아니오

구성 요소	설명/예	대답
	아니요일 경우 사용할 포트의 이름은 무엇입니까?	첫번째:
		두번째:
각 추가 노드에 대해 지정	노드 이름:	
(다중 노드 클러스터만 해당)		
	전송 어댑터 이름:	첫번째:
		두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:
	스위치 기본값: switch1 및 switch2	두번째:
	전송 스위치일 경우 기본 포트 이름을 사용하시겠습니까?	
		두번째: 예ㅣ아니오
	아니요일 경우 사용할 포트의 이름은 무엇입니까?	첫번째:
		두번째:
전역 보호(fencing)	전역 보호(fencing)를 비활성화하시겠습니까? 공유 저장소가 SCSI 예약	첫번째: 예ㅣ아니오
	을 지원하는 경구 또는 물더스터 죄주에 있는 지스템에서 공유 세정소에 액세스하지 않는 경우 아니요로 응답합니다.	두번째: 예ㅣ아니오
쿼럼 구성	자동 쿼럼 장치 선택을 비활성화하시겠습니까? (공유 저장소가 쿼럼 장치 이 자격이 없는 경우 또는 쾨러 서비를 키러 자키로 구성하려는 경우 에	첫번째: 예ㅣ아니오
(2 노드 클러스터만 해당)	ㅋ 지역의 ᆹ는 영구 또는 처럼 지미를 처럼 영지도 구경하려는 영구 에 로 응답합니다.)	두번째: 예ㅣ아니오

참고 - 물리적으로 클러스터링된 시스템에 Oracle VM Server for SPARC가 구성된 경우에는 I/O 도메인이나 게스트 도메인에만 Oracle Solaris Cluster 소프트웨어를 설치합니다.

이 절차에서 대화식 scinstall 유틸리티를 사용하려면 다음 지침을 준수하십시오.

- 대화식 scinstall 유틸리티에서는 사용자가 먼저 입력할 수 있습니다. 따라서 다음 메뉴 화면이 즉시 나타나지 않을 경우에 Enter 키를 두 번 이상 누르지 마십시오.
- 다른 지시가 없는 한 Ctrl-D를 눌러 관련 질문의 시작 부분이나 주 메뉴로 돌아갈 수 있습니다.
- 질문의 끝에 기본 응답이나 이전 세션에 대한 응답이 괄호([]) 안에 표시됩니다. Enter 키 를 누르면 별도의 입력 없이 괄호 안의 응답을 선택할 수 있습니다.

다음 작업을 수행합니다.

- Solaris 소프트웨어를 설치하기 전에 하드웨어 설정을 완료하고 연결을 확인해야 합니다. 하드웨어 설정 방법에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 4.2 Hardware Administration Manual "과 서버 및 저장 장치 설명서를 참조하십시오.
- 자동 설치 프로그램 설치 서버 및 DHCP 서버가 구성되었는지 확인합니다. Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 제Ⅲ부, 설치 서버를 사용하여 설치"를 참 조하십시오.
- 클러스터 노드의 이더넷 주소와 주소가 속한 서브넷의 서브넷 마스크 길이를 확인합니다.
- 각 클러스터 노드의 MAC 주소를 확인합니다.

- 클러스터 구성 계획이 완료되었는지 확인합니다. 요구 사항 및 지침은 클러스터 소프트웨 어 설치를 준비하는 방법 [47]을 참조하십시오.
- 클러스터 노드에 대한 루트 사용자 암호를 사용할 수 있도록 준비합니다.
- SPARC: Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 클러스터 노 드로 구성하려는 경우 Oracle VM Server for SPARC 소프트웨어가 각 물리적 시스템에 설치되어 있으며 도메인이 Oracle Solaris Cluster 요구 사항을 충족하는지 확인합니다. Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]을 참조하 십시오.
- 기존 클러스터에 만들어진 통합 아카이브에서 설치하려면 아카이브 파일에 대한 경로를 준비하고 AI 서버에서 해당 경로에 액세스할 수 있는지 확인합니다.
- IPS 저장소에서 설치하려면 설치할 Oracle Solaris Cluster 소프트웨어 패키지를 결정합 니다.

다음 표에는 AI 설치 중 선택할 수 있는 Oracle Solaris Cluster 4.2 소프트웨어의 그룹 패키지와 각 그룹 패키지에 포함된 주요 기능이 나열되어 있습니다. 최소한 ha-clusterframework-minimal 그룹 패키지를 설치해야 합니다.

기능	ha-cluster- framework-full	ha-cluster-data- services-full	ha-cluster- framework-minimal	ha-cluster- geo-full	manager
프레임워크	Х	Х	Х	Х	Х
에이전트		Х			
지역화	Х				
프레임워크 매 뉴얼 페이지	Х				
데이터 서비스 매뉴얼 페이지		Х			
에이전트 빌더	Х				
일반 데이터 서 비스	Х	X			
그래픽 사용자 인터페이스					Х
Geographic Edition				Х	

완성된 표준 모드 또는 사용자 정의 모드 설치 워크시트를 사용할 수 있도록 준비합니다. "자동 설치 프로그램으로 새 Oracle Solaris Cluster 설정" [86]을 참조하십시오.

 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성 하는 방법(IPS 저장소)

모든 전역 클러스터 노드에서는 AI 서버를 설정하여 IPS 저장소 또는 통합 아카이브에서 Oracle Solaris OS와 Oracle Solaris Cluster 프레임워크 및 데이터 서비스 소프트웨어를 설 치하고 클러스터를 설정할 수 있습니다. 이 절차에서는 Unresolved link to " scinstall1M" 사용자 정의 자동 설치 프로그램 설치 방법을 설정/사용하여 IPS 저장소에서 클러스터를 설 치 및 구성하는 방법에 대해 설명합니다.

1. AI(자동 설치 프로그램) 설치 서버 및 DHCP 서버를 설정합니다.

AI 설치 서버가 다음 요구 사항을 충족하는지 확인합니다.

- 설치 서버가 클러스터 노드와 동일한 서브넷에 있습니다.
- 설치 서버 자체가 클러스터 노드가 아닙니다.
- 설치 서버가 Oracle Solaris Cluster 소프트웨어에서 지원하는 Oracle Solaris OS 릴리 스를 실행합니다.
- 각각의 새 클러스터 노드가 Oracle Solaris Cluster 설치를 위해 설정한 사용자 정의 AI 디렉토리를 사용하는 사용자 정의 AI 설치 클라이언트로 구성됩니다.

소프트웨어 플랫폼 및 OS 버전에 대한 해당 지침에 따라 AI 설치 서버 및 DHCP 서버를 설정 합니다. Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 8 장, AI 서버 설정" 및 Unresolved link to " Oracle Solaris 11.2의 DHCP 작업 "을 참조하십시오.

- 2. AI 설치 서버에서 root 역할을 수행합니다.
- 3. AI 설치 서버에서 Oracle Solaris Cluster AI 지원 패키지를 설치합니다.
 - a. solaris 및 ha-cluster 게시자가 유효한지 확인합니다.

installserver#	pkg publi	sher	
PUBLISHER	TYPE	STATUS	URI
solaris	origin	online	solaris-repository
ha-cluster	origin	online	ha-cluster-repository

b. 클러스터 AI 지원 패키지를 설치합니다.

installserver# pkg install ha-cluster/system/install

4. AI 설치 서버에서 scinstall 유틸리티를 시작합니다.

installserver# /usr/cluster/bin/scinstall

scinstall 주 메뉴가 표시됩니다.

5. 주 메뉴에서 옵션 1 또는 2를 선택합니다.

*** Main Menu ***

Please select from one of the following (*) options:

 \ast 1) Install, restore, replicate, and configure a cluster from this Automated Installer install server

 \ast 2) Securely install, restore, replicate, and configure a cluster from this Automated Installer install server

st 3) Print release information for this Automated Installer install server

```
* ?) Help with menu options
* q) Quit
```

Option:

- 6. 메뉴 프롬프트에 따라 구성 계획 워크시트에서 응답을 제공합니다.
- scinstall 유틸리티가 이 AI 서버에서 클러스터 노드를 설치하는 데 필요한 구성을 수행하도 록 각 노드에 대해 선택한 옵션을 확인합니다.

또한 유틸리티는 DHCP 서버에서 DHCP 매크로를 추가하기 위한 지침을 인쇄하고 SPARC 노드에 대한 보안 키를 추가(보안 설치를 선택한 경우)하거나 지웁니다(비보안 설치를 선택 한 경우). 해당 지침을 따릅니다.

 (선택 사항) 추가 소프트웨어 패키지를 설치하거나 대상 장치를 사용자 정의하려면 각 노드 에 대한 AI 매니페스트를 업데이트합니다.

AI 매니페스트는 다음 디렉토리에 있습니다.

/var/cluster/logs/install/autoscinstall.d/ \
cluster-name/node-name_node-name_aimanifest.xml

- a. 추가 소프트웨어 패키지를 설치하려면 다음과 같이 AI 매니페스트를 편집합니다.
 - 게시자 이름 및 저장소 정보를 추가합니다. 예를 들면 다음과 같습니다.

<publisher name="aie">
<origin name="http://aie.us.oracle.com:12345"/>
</publisher>

■ AI 매니페스트의 software_data 항목에서 설치할 패키지 이름을 추가합니다.

b. 대상 장치를 사용자 정의하려면 매니페스트 파일에서 target 요소를 업데이트합니다.

scinstall에서는 매니페스트 파일의 기존 부트 디스크가 대상 장치가 된다고 가정합니다. 대상 장치를 사용자 정의하려면 설치 대상 장치를 찾기 위해 지원되는 조건의 사용 방법에 따라 매니페스트 파일에서 target 요소를 업데이트합니다. 예를 들어, disk name 하위 요소를 지정할 수 있습니다.

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 제Ⅲ부, 설치 서버를 사용하여 설치" 및 Unresolved link to " ai_manifest4" 매뉴얼 페이지를 참조 하십시오.

c. 각 노드에 대해 installadm 명령을 실행합니다.

installadm update-manifest -n cluster-name-{sparc|i386} \
-f /var/cluster/logs/install/autoscinstall.d/cluster-name/nodename_aimanifest.xml \
-m node-name manifest

SPARC 및 i386은 클러스터 노드의 구조입니다.

- 클러스터 관리 콘솔을 사용하고 있는 경우 클러스터의 각 노드에 대해 콘솔 화면을 표시합니다.
 - pconsole 소프트웨어를 관리 콘솔에 설치 및 구성한 경우 pconsole 유틸리티를 사용하 여 개별 콘솔 화면을 표시합니다.

root 역할로 다음 명령을 사용하여 pconsole 유틸리티를 시작합니다.

adminconsole# pconsole host[:port] [...] &

pconsole 유틸리티를 사용하면 사용자 입력을 모든 개별 콘솔 창으로 동시에 전송할 수 있는 마스터 창도 열립니다.

■ pconsole 유틸리티를 사용하지 않는 경우 각 노드의 콘솔에 개별적으로 연결합니다.

10. 각 노드를 종료 후 부트하여 AI 설치를 시작합니다.

Oracle Solaris 소프트웨어가 기본 구성으로 설치됩니다.

참고 - Oracle Solaris 설치를 사용자 정의하려면 이 방법을 사용할 수 없습니다. Oracle Solaris 대화식 설치를 선택하면 자동 설치 프로그램이 무시되고 Oracle Solaris Cluster 소프트웨어가 설치 및 구성되지 않습니다. 설치 중 Oracle Solaris를 사용자 정의하려면 Oracle Solaris 소프트웨어를 설치하는 방법 [48]의 지침을 따른 다음 Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]의 지침에 따라 클러스터를 설치 및 구성하 십시오.

SPARC:

a. 각 노드를 종료합니다.

phys-schost# shutdown -g0 -y -i0

b. 다음 명령으로 노드를 부트합니다.

ok boot net:dhcp - install

참고 - 명령의 양쪽에 대시(-)를 표시하고 대시의 앞뒤를 한 칸씩 띄우십시오.

■ x86:

a. 노드를 재부트합니다.

reboot -p

b. **PXE 부트 중 Ctrl-N을 누릅니다.** GRUB 메뉴가 표시됩니다.

3장. 전역 클러스터 설정 95

c. Automated Install(자동 설치) 항목을 즉시 선택하고 Enter 키를 누릅니다.

참고 - Automated Install(자동 설치) 항목을 20초 내에 선택하지 않으면 기본 대화식 텍스 트 설치 프로그램 방법으로 설치가 진행됩니다. 그러면 Oracle Solaris Cluster 소프트웨어 를 설치 및 구성할 수 없습니다.

> 각 노드에 새 부트 환경(BE)이 생성되고 자동 설치 프로그램이 Oracle Solaris OS 및 Oracle Solaris Cluster 소프트웨어를 설치합니다. 설치가 성공적으로 완료되면 각 노드가 새 클러스터 노드로 완전히 설치됩니다. Oracle Solaris Cluster 설치 출력은 각 노드의 /var/cluster/logs/install/scinstall.log.N 파일 및 /var/ cluster/logs/install/sc_ai_config.log 파일에 기록됩니다.

11. 고가용성 로컬 파일 시스템에서 HA for NFS 데이터 서비스(HA for NFS)를 사용하려면 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 공유 사항을 automounter 맵에서 제외시킵니다.

automounter 맵 수정에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 네트워크 파일 시스템 관리 의 맵 관련 관리 작업"을 참조하십시오.

12. (x86 only) 기본 부트 파일을 설정합니다.

이 값의 설정을 사용하면 로그인 프롬프트에 액세스할 수 없는 경우 노드를 재부트할 수 있습 니다.

grub edit> kernel /platform/i86pc/kernel/amd64/unix -B \$ZFS-BOOTFS -k

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 커널 디버 거(kmdb)를 사용으로 설정하여 시스템을 부트하는 방법"을 참조하십시오.

- 13. 클러스터 재부트가 필요한 작업을 수행한 경우 클러스터를 재부트합니다. 다음 작업은 재부트가 필요합니다.
 - 노드나 클러스터 재부트가 필요한 소프트웨어 업데이트 설치
 - 활성화하려면 재부트가 필요한 구성 변경
 - a. 하나의 노드에서 root 역할을 수행합니다.
 - b. 클러스터를 종료합니다.

phys-schost-1# cluster shutdown -y -g0 cluster-name

참고 - 처음으로 설치된 클러스터 노드는 클러스터가 종료된 다음에 재부트하십시오. 클러스 터 설치 모드가 비활성화될 때까지는 클러스터를 설정한, 처음 설치된 노드에만 쿼럼 투표가 있습니다. 계속 설치 모드에 있는 설정된 클러스터에서, 처음 설치된 노드가 재부트되기 전에 클러스터가 종료되지 않으면 나머지 클러스터 노드에서 쿼럼을 얻을 수 없습니다. 그러면 전 체 클러스터가 종료됩니다.

클러스터 노드는 처음으로 clsetup 명령을 실행할 때까지 설치 모드로 유지됩니다. 쿼럼 장 치를 구성하는 방법 [132] 절차를 수행하는 동안 이 명령을 실행합니다.

- c. 클러스터의 각 노드를 재부트하십시오.
 - SPARC:

ok **boot**

■ x86:

GRUB 메뉴가 표시되면 적절한 Oracle Solaris 항목을 선택하고 Enter 키를 누릅 니다.

GRUB 기반 부트에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 시스템 부트"을 참조하십시오.

모든 노드가 클러스터로 성공적으로 부트되면 클러스터가 설정됩니다. Oracle Solaris Cluster 설치 출력은 /var/cluster/logs/install/scinstall.log.N 파일에 기록됩니다.

14. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# clnode status

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
phys-schost-1	Online
phys-schost-2	Online
phys-schost-3	Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

15. RPC에 TCP 래퍼를 사용하려면 각 클러스터 노드에서 /etc/hosts.allow 파일에 모든 clprivnet0 IP 주소를 추가합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 노드의 모든 clprivnet0 장치에 대한 IP 주소를 표시합니다.

# /usr/sbin/ipa	dm show-a	ldr
ADDROBJ	TYPE	STATE
clprivnet0/N	static	ok

ADDR *ip-address/netmask-length*

- b. 각 클러스터 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소를 /etc/ hosts.allow 파일에 추가합니다.
- 16. (옵션) 각 노드에서 모니터링된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재 부트를 활성화합니다.

참고 - 처음 구성 시 검색된 모든 장치에 대해 디스크 경로 모니터링이 기본값으로 사용으로 설정됩니다.

a. 자동 재부트를 사용으로 설정합니다.

phys-schost# clnode set -p reboot_on_path_failure=enabled

- p

설정할 등록 정보를 지정합니다.

reboot_on_path_failure=enable

모니터된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

b. 디스크 경로 실패 시 자동 재부트가 활성화되는지 확인합니다.

phys-schost# clnode show
=== Cluster Nodes ===

Node Name:

node

reboot_on_path_failure:

enabled

- LDAP 이름 지정 서비스를 사용하는 경우 부트 후 클러스터 노드에서 수동으로 구성해야 합니다.
- 다음 순서 1. 클러스터 구성에 맞게 다음 절차를 모두 수행합니다.
 - 내부 디스크 미러링을 구성하는 방법 [57]
 - Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]
 - Sun QFS 소프트웨어를 설치하는 방법 [64]
 - 루트 환경을 설정하는 방법 [64]

- IP 필터를 구성하는 방법 [65]
- 2. 아직 구성되지 않은 경우 쿼럼을 구성하고 설치 후 작업을 수행합니다.
- 다중 노드 클러스터를 설치하고 자동 쿼럼 구성을 수락한 경우에는 설치 후 설정이 완료 된 것입니다. 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.
- 다중 노드 클러스터를 설치하고 자동 쿼럼 구성을 거부한 경우에는 설치 후 설정을 수행 합니다. 쿼럼 장치를 구성하는 방법 [132]으로 이동합니다.
- 기존 2 노드 클러스터에 노드를 추가한 경우 전역 클러스터에 노드를 추가한 후 쿼럼 장 치를 업데이트하는 방법 [129]으로 이동합니다.
- 쿼럼 장치를 사용하는 최소한 3 노드의 기존 클러스터에 새 노드를 추가한 경우 전역 클 러스터에 노드를 추가한 후 쿼럼 장치를 업데이트하는 방법 [129]으로 이동합니다.
- 쿼럼 장치를 사용하지 않는 최소한 3 노드의 기존 클러스터에 새 노드를 추가한 경우 클 러스터의 상태를 확인합니다. 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이 동합니다.
- 단일 노드 클러스터를 설치했으면 클러스터 설정이 완료된 것입니다. 볼륨 관리 소프트웨 어를 설치하고 클러스터를 구성하려면 "클러스터 파일 시스템 만들기" [159]로 이동합 니다.
- ^{일반 오류} 사용 안함으로 설정된 scinstall 옵션 scinstall 명령의 AI 옵션 앞에 별표가 없는 경우 해 당 옵션은 사용 안함으로 설정된 것입니다. 이 상태는 AI 설정이 완료되지 않았거나 설정에 오류가 있음을 나타냅니다. 이 상태를 해결하려면 먼저 scinstall 유틸리티를 종료합니다. 1 단계부터 8단계까지를 반복하여 AI 설정을 수정한 다음 scinstall 유틸리티를 다시 시작합 니다.

▼ Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성 하는 방법(통합 아카이브)

AI 서버를 사용하여 통합 아카이브에서 클러스터를 설치하고 해당 노드를 구성합니다. 이 절 차에서는 통합 아카이브에 포함된 모든 소프트웨어 패키지가 유지되지만 워크시트에서 설계 한 새 클러스터 구성을 제공해야 합니다. 이 절차를 수행하기 전에 먼저 아카이브를 만들어야 합니다. 복구 아카이브 만들기 지침은 1단계를 참조하십시오.

AI 서버는 통합 아카이브에서 노드 설치를 설정하고 새 구성으로 클러스터를 만듭니다. 전역 영역에서 만들어진 통합 아카이브만 수락됩니다. 복제 아카이브 또는 복구 아카이브를 사용 할 수 있습니다. 다음 목록에서는 두 아카이브의 차이점에 대해 설명합니다.

- 복제 아카이브에서 설치하는 경우 전역 영역만 설치됩니다. 아카이브의 영역은 설치되지 않습니다. 복구 아카이브에서 설치하는 경우 전역 영역과 아카이브에 포함된 영역이 설치 됩니다.
- 복제 아카이브에는 IPMP, VLAN, VNIC 등의 시스템 구성이 포함되지 않습니다.
- 복제 아카이브에는 아카이브가 만들어질 때 활성 상태인 BE만 포함되므로 해당 BE만 설 치됩니다. 복구 아카이브에는 다중 BE가 포함될 수 있지만 활성 BE만 새 클러스터 구성 으로 업데이트됩니다.

이 절차에서는 클러스터 이름, 노드 이름 및 해당 MAC 주소, 통합 아카이브 경로, 워크시트 에서 설계한 클러스터 구성을 묻습니다.

1. 전역 클러스터의 노드에서 root 역할을 수행하고 아카이브를 만듭니다.

phys-schost# archiveadm create -r archive-location

create 명령을 사용하여 복제 아카이브를 만들거나 create -r 옵션을 사용하여 복구 아 카이브를 만듭니다. archiveadm 명령 사용에 대한 자세한 내용은 Unresolved link to " archiveadm1M" 매뉴얼 페이지를 참조하십시오.

2. AI(자동 설치 프로그램) 설치 서버 및 DHCP 서버를 설정합니다. AI 설치 서버가 다음 요구 사항을 충족하는지 확인합니다.

- 설치 서버가 클러스터 노드와 동일한 서브넷에 있습니다.
- 설치 서버 자체가 클러스터 노드가 아닙니다.
- 설치 서버가 Oracle Solaris Cluster 소프트웨어에서 지원하는 Oracle Solaris OS 릴리 스를 실행합니다.
- 각각의 새 클러스터 노드가 Oracle Solaris Cluster 설치를 위해 설정한 사용자 정의 AI 디렉토리를 사용하는 사용자 정의 AI 설치 클라이언트로 구성됩니다.

소프트웨어 플랫폼 및 OS 버전에 대한 해당 지침에 따라 AI 설치 서버 및 DHCP 서버를 설정 합니다. Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 8 장, AI 서버 설정" 및 Unresolved link to " Oracle Solaris 11.2의 DHCP 작업 "을 참조하십시오.

3. 자동 설치 프로그램 서버에 로그인하고 root 역할을 수행합니다.

- 4. AI 설치 서버에서 Oracle Solaris Cluster AI 지원 패키지를 설치합니다.
 - a. solaris 및 ha-cluster 게시자가 유효한지 확인합니다.

installserver#	pkg publis	sher	
PUBLISHER	TYPE	STATUS	URI
solaris	origin	online	solaris-repository
ha-cluster	origin	online	ha-cluster-repository

b. 클러스터 AI 지원 패키지를 설치합니다.

installserver# pkg install ha-cluster/system/install

5. AI 설치 서버에서 scinstall 유틸리티를 시작합니다.

installserver# /usr/cluster/bin/scinstall

scinstall 주 메뉴가 표시됩니다.

6. 옵션 번호를 입력하고 Return 키를 누릅니다.

*** Main Menu ***

Please select from one of the following (*) options:

- * 1) Install, restore, or replicate a cluster from this Automated Installer server
- st 2) Securely install, restore, or replicate a cluster from this Automated Installer server
- st 3) Print release information for this Automated Installer install server
- * ?) Help with menu options
- * q) Quit

Option: 2

비보안 AI 서버 설치를 사용하여 클러스터를 설치하려면 옵션 1을 선택합니다. 보안 AI 설치 의 경우 옵션 2를 선택합니다.

Custom Automated Installer(사용자 정의 자동 설치 프로그램) 메뉴나 Custom Secure Automated Installer(사용자 정의 보안 자동 설치 프로그램) 메뉴가 표시됩니다.

7. 통합 아카이브에서 새 클러스터를 설치 및 구성할 옵션 번호를 입력하고 Return 키를 누릅니다.

Custom Automated Installer User(사용자 정의 자동 설치 프로그램 사용자) 화면이 표시 됩니다.

8. 암호를 입력하고 Return 키를 누릅니다.

확인을 위해 암호를 다시 한 번 입력합니다. Typical or Custom Mode(표준 또는 사용자 정의 모드) 화면이 표시됩니다.

9. 사용할 설치 모드에 대한 옵션 번호를 입력합니다.

Cluster Name(클러스터 이름) 화면이 표시됩니다.

- 10. 설치할 클러스터의 이름을 입력하고 Return 키를 누릅니다. Cluster Nodes(클러스터 노드) 화면이 표시됩니다.
- 11. 통합 아카이브에서 설치할 클러스터 노드의 이름을 입력하고 Return 키를 누릅니다.

scinstall 유틸리티가 노드의 MAC 주소를 찾을 수 없을 때 프롬프트가 표시되면 각 주소를 입력하고 Return 키를 누릅니다. 그런 다음 동일한 아카이브에서 모든 노드를 설치하거나 각 노드에 대해 다른 아카이브를 사용하도록 선택할 수 있습니다.

12. 아카이브의 전체 경로를 입력하고 Return 키를 누릅니다.

아카이브는 복구 아카이브 또는 복제 아카이브일 수 있습니다.

Cluster Transport Adapters and Cables(클러스터 전송 어댑터 및 케이블) 화면이 표시됩 니다.

13. 클러스터 전송 어댑터의 이름을 입력하고 Return 키를 누릅니다.

각 전송 어댑터의 유형을 선택합니다. Resource Security Configuration(리소스 보안 구성) 화면이 표시됩니다.

자동 쿼럼 장치 선택을 사용 또는 사용 안함으로 설정하도록 선택하고 Return 키를 누릅니다.

Confirmation(확인) 화면이 표시됩니다.

15. scinstall 유틸리티가 이 AI 서버에서 클러스터 노드를 설치하는 데 필요한 구성을 수행하도 록 각 노드에 대해 선택한 옵션을 확인합니다.

또한 유틸리티는 DHCP 서버에서 DHCP 매크로를 추가하기 위한 지침을 인쇄하고 SPARC 노드에 대한 보안 키를 추가(보안 설치를 선택한 경우)하거나 지웁니다(비보안 설치를 선택 한 경우). 해당 지침을 따릅니다.

16. (선택 사항) 대상 장치를 사용자 정의하려면 각 노드에 대한 AI 매니페스트를 업데이트합니다.

AI 매니페스트는 다음 디렉토리에 있습니다.

/var/cluster/logs/install/autoscinstall.d/ \
cluster-name/node-name/node-name_aimanifest.xml

a. 대상 장치를 사용자 정의하려면 매니페스트 파일에서 target 요소를 업데이트합니다.

scinstall에서는 매니페스트 파일의 기존 부트 디스크가 대상 장치가 된다고 가정합니다. 대상 장치를 사용자 정의하려면 설치 대상 장치를 찿기 위해 지원되는 조건의 사용 방법에 따라 매니페스트 파일에서 target 요소를 업데이트합니다. 예를 들어, disk_name 하위 요소를 지정할 수 있습니다.

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 제III부, 설치 서버를 사용하여 설치" 및 Unresolved link to " ai_manifest4" 매뉴얼 페이지를 참조 하십시오.

b. 각 노드에 대해 installadm 명령을 실행합니다.

installadm update-manifest -n cluster-name-{sparc|i386} \
-f /var/cluster/logs/install/autoscinstall.d/cluster-name/nodename_aimanifest.xml \
-m node-name manifest

SPARC 및 i386은 클러스터 노드의 구조입니다.

- 17. 클러스터 관리 콘솔을 사용하고 있는 경우 클러스터의 각 노드에 대해 콘솔 화면을 표시합니다.
 - pconsole 소프트웨어를 관리 콘솔에 설치 및 구성한 경우 pconsole 유틸리티를 사용하 여 개별 콘솔 화면을 표시합니다.

root 역할로 다음 명령을 사용하여 pconsole 유틸리티를 시작합니다.

adminconsole# pconsole host[:port] [...] &

pconsole 유틸리티를 사용하면 사용자 입력을 모든 개별 콘솔 창으로 동시에 전송할 수 있는 마스터 창도 열립니다.

■ pconsole 유틸리티를 사용하지 않는 경우 각 노드의 콘솔에 개별적으로 연결합니다.

18. 각 노드를 종료 후 부트하여 AI 설치를 시작합니다.

Oracle Solaris 소프트웨어가 기본 구성으로 설치됩니다.

참고 - Oracle Solaris 설치를 사용자 정의하려면 이 방법을 사용할 수 없습니다. Oracle Solaris 대화식 설치를 선택하면 자동 설치 프로그램이 무시되고 Oracle Solaris Cluster 소프트웨어가 설치 및 구성되지 않습니다. 설치 중 Oracle Solaris를 사용자 정의하려면 Oracle Solaris 소프트웨어를 설치하는 방법 [48]의 지침을 따른 다음 Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]의 지침에 따라 클러스터를 설치 및 구성하 십시오.

■ SPARC:

a. 각 노드를 종료합니다.

phys-schost# **shutdown -g0 -y -i0**

b. 다음 명령으로 노드를 부트합니다.

ok boot net:dhcp - install

참고 - 명령의 양쪽에 대시(-)를 표시하고 대시의 앞뒤를 한 칸씩 띄우십시오.

■ x86:

- a. 노드를 재부트합니다.
 - # reboot -p
- b. **PXE 부트 중 Ctrl-N을 누릅니다.** GRUB 메뉴가 표시됩니다.
- c. Automated Install(자동 설치) 항목을 즉시 선택하고 Enter 키를 누릅니다.

참고 - Automated Install(자동 설치) 항목을 20초 내에 선택하지 않으면 기본 대화식 텍스 트 설치 프로그램 방법으로 설치가 진행됩니다. 그러면 Oracle Solaris Cluster 소프트웨어 를 설치 및 구성할 수 없습니다.

> 노드가 완전히 클러스터를 결합하기 전에 몇 번 각 노드가 자동으로 재부트됩니다. 콘솔에서 SMF 서비스의 오류 메시지를 무시합니다. 각 노드에서 자동 설치 프로그 램이 통합 아카이브에 포함된 소프트웨어를 설치합니다. 설치가 성공적으로 완료되 면 각 노드가 새 클러스터 노드로 완전히 설치됩니다. Oracle Solaris Cluster 설치

출력은 각 노드의 /var/cluster/logs/install/scinstall.log.N 파일 및 /var/ cluster/logs/install/sc_ai_config.log 파일에 기록됩니다.

19. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# clnode status

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
phys-schost-1	Online
phys-schost-2	Online
phys-schost-3	Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

20. RPC에 TCP 래퍼를 사용하려면 각 클러스터 노드에서 /etc/hosts.allow 파일에 모든 clprivnet0 IP 주소를 추가합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 노드의 모든 clprivnet0 장치에 대한 IP 주소를 표시합니다.

# /usr/sbin/ipadm show-addr			
ADDROBJ	TYPE	STATE	ADDR
clprivnet0/N	static	ok	ip-address/netmask-length

- b. 각 클러스터 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소를 /etc/ hosts.allow 파일에 추가합니다.
- 21. LDAP 이름 지정 서비스를 사용하는 경우 부트 후 클러스터 노드에서 수동으로 구성해야 합니다.

▼ 통합 아카이브에서 클러스터를 복제하는 방법

통합 아카이브를 사용하여 클러스터 및 해당 노드를 복제할 수 있습니다. 이 절차에서는 아카 이브의 모든 소프트웨어 패키지가 유지됩니다. 또한 이 새 클러스터에 아카이브 클러스터와 정확히 동일한 구성을 사용할 수도 있고, 개인 네트워크 등록 정보 및 호스트 ID(예: 클러스터 리소스의 영역 호스트 이름 및 논리적 호스트 이름)를 사용자 정의할 수도 있습니다.

전역 영역에서 만들어진 통합 아카이브만 수락됩니다. 복제 아카이브 또는 복구 아카이브를 사용할 수 있습니다. 다음 목록에서는 두 아카이브의 차이점에 대해 설명합니다.

- 복제 아카이브에서 설치하는 경우 전역 영역만 설치됩니다. 아카이브의 영역은 설치되지 않습니다. 복구 아카이브에서 설치하는 경우 전역 영역과 아카이브에 포함된 영역이 설치 됩니다.
- 복제 아카이브에는 IPMP, VLAN, VNIC 등의 시스템 구성이 포함되지 않습니다.
- 복제 아카이브에는 아카이브가 만들어질 때 활성 상태인 BE만 포함되므로 해당 BE만 설 치됩니다. 복구 아카이브에는 다중 BE가 포함될 수 있지만 활성 BE만 새 클러스터 구성 으로 업데이트됩니다.

기존 클러스터에 만들어진 통합 아카이브에서 클러스터를 복제하려면 새 클러스터의 하드웨 어 구성이 소스 클러스터와 동일해야 합니다. 새 클러스터의 노드 수는 소스 클러스터에서와 동일해야 하며 전송 어댑터도 소스 클러스터에서와 동일해야 합니다.

1. 전역 클러스터의 노드에서 root 역할을 수행하고 아카이브를 만듭니다.

phys-schost# archiveadm create -r archive-location

create 명령을 사용하여 복제 아카이브를 만들거나 -r 옵션을 사용하여 복구 아카이브를 만 듭니다. 아카이브를 만들 때 공유 저장소에 있는 ZFS 데이터 세트를 제외합니다. 공유 저장 소의 데이터를 소스 클러스터에서 새 클러스터로 마이그레이션하려면 기존 방법을 사용합니 다.

archiveadm 명령 사용에 대한 자세한 내용은 Unresolved link to " archiveadm1M" 매뉴얼 페이지를 참조하십시오.

2. AI(자동 설치 프로그램) 설치 서버 및 DHCP 서버를 설정합니다.

AI 설치 서버가 다음 요구 사항을 충족하는지 확인합니다.

- 설치 서버가 클러스터 노드와 동일한 서브넷에 있습니다.
- 설치 서버 자체가 클러스터 노드가 아닙니다.
- 설치 서버가 Oracle Solaris Cluster 소프트웨어에서 지원하는 Oracle Solaris OS 릴리 스를 실행합니다.
- 각각의 새 클러스터 노드가 Oracle Solaris Cluster 설치를 위해 설정한 사용자 정의 AI 디렉토리를 사용하는 사용자 정의 AI 설치 클라이언트로 구성됩니다.

소프트웨어 플랫폼 및 OS 버전에 대한 해당 지침에 따라 AI 설치 서버 및 DHCP 서버를 설정 합니다. Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 8 장, AI 서버 설정" 및 Unresolved link to " Oracle Solaris 11.2의 DHCP 작업 "을 참조하십시오.

3. 자동 설치 프로그램 서버에 로그인하고 root 역할을 수행합니다.

- 4. AI 설치 서버에서 Oracle Solaris Cluster AI 지원 패키지를 설치합니다.
 - a. solaris 및 ha-cluster 게시자가 유효한지 확인합니다.

installserver# pkg publisher			
PUBLISHER	TYPE	STATUS	URI
solaris	origin	online	solaris-repository

ha-cluster origin online ha-cluster-repository

b. 클러스터 AI 지원 패키지를 설치합니다.

installserver# pkg install ha-cluster/system/install

5. AI 설치 서버에서 scinstall 유틸리티를 시작합니다.

phys-schost# scinstall

scinstall 주 메뉴가 표시됩니다.

6. 옵션 번호를 입력하고 Return 키를 누릅니다.

*** Main Menu ***

Please select from one of the following (*) options:

- * 1) Install, restore, or replicate a cluster from this Automated Installer server
- st 2) Securely install, restore, or replicate a cluster from this Automated Installer server
- st 3) Print release information for this Automated Installer install server
- \ast ?) Help with menu options
- * q) Quit

Option: 2

비보안 AI 서버 설치를 사용하여 클러스터를 복제하려면 옵션 1을 선택합니다. 보안 AI 복제 의 경우 옵션 2를 선택합니다.

Custom Automated Installer(사용자 정의 자동 설치 프로그램) 메뉴나 Custom Secure Automated Installer(사용자 정의 보안 자동 설치 프로그램) 메뉴가 표시됩니다.

7. Replicate a Cluster from Unified Archives(통합 아카이브에서 클러스터 복제)에 해당하는
옵션 번호를 입력하고 Return 키를 누릅니다.Custom Automated Installer User(사용자 정의 자동 설치 프로그램 사용자) 화면이 표시

집니다.

- 암호를 입력하고 Return 키를 누릅니다.
 확인을 위해 암호를 다시 한 번 입력합니다.
 Cluster Name(클러스터 이름) 화면이 표시됩니다.
- 9. 복제할 클러스터의 이름을 입력하고 Return 키를 누릅니다. Cluster Nodes(클러스터 노드) 화면이 표시됩니다.
- 10. 통합 아카이브에서 복제할 클러스터 노드의 이름을 입력합니다. 노드 이름을 입력한 후 Control-D를 누르고 Return 키를 누릅니다. scinstall 유틸리티가 노드의 MAC 주소를 찾을 수 없을 때 프롬프트가 표시되면 각 주소를 입력하고 Return 키를 누릅니다.

11. 각 노드에 대해 아카이브의 전체 경로를 입력합니다.

소스 클러스터의 각 노드에 대해 통합 아카이브 파일을 만들어야 하며 새 클러스터의 노드당 아카이브를 하나만 지정할 수 있습니다. 이 1:1 매핑을 통해 하나의 아카이브가 소스 클러스 터의 한 노드에 매핑됩니다. 마찬가지로 한 소스 노드의 아카이브는 새 클러스터의 노드 하나 에만 매핑되어야 합니다.

Return 키를 눌러 아카이브 파일을 확인합니다.

12. 다른 개인 네트워크 주소 및 넷마스크를 사용하려면 Cluster Transport(클러스터 전송) 메뉴 에 대한 Network Address(네트워크 주소)에 지정합니다.

13. 소스 클러스터의 기존 호스트 ID와 새 클러스터의 새 호스트 ID 간의 매핑이 포함된 텍스트 파일의 경로를 제공합니다.

새 클러스터의 호스트 ID가 소스 클러스터와 동일하지 않도록 하려는 경우 소스 클러스터의 기존 호스트 ID와 새 클러스터에서 사용할 새 호스트 ID 간의 1:1 매핑이 포함된 텍스트 파일 을 만들어 제공할 수 있습니다. 텍스트 파일에는 여러 행이 포함될 수 있으며 각 행의 열은 2 개입니다. 첫번째 열은 소스 클러스터에 사용된 호스트 이름이고, 두번째 열은 새 클러스터에 해당하는 새 호스트 이름입니다. 호스트 이름은 논리 호스트 이름, 공유 주소 리소스, 영역 클 러스터에 사용됩니다. 예를 들면 다음과 같습니다.

old-cluster-zc-host1new-cluster-zc-host1old-cluster-zc-host2new-cluster-zc-host2old-cluster-lh-1new-cluster-lh1old-cluster-lh-2new-cluster-lh2

Confirmation(확인) 화면이 표시됩니다.

14. scinstall 유틸리티가 이 AI 서버에서 클러스터 노드를 설치하는 데 필요한 구성을 수행하도 록 각 노드에 대해 선택한 옵션을 확인합니다.

또한 유틸리티는 DHCP 서버에서 DHCP 매크로를 추가하기 위한 지침을 인쇄하고 SPARC 노드에 대한 보안 키를 추가하거나 지웁니다(보안 설치를 선택한 경우). 해당 지침을 따릅니 다.

15. (선택 사항) 대상 장치를 사용자 정의하려면 각 노드에 대한 AI 매니페스트를 업데이트합니다.

AI 매니페스트는 다음 디렉토리에 있습니다.

/var/cluster/logs/install/autoscinstall.d/ \
cluster-name/node-name_node-name_aimanifest.xml

a. 대상 장치를 사용자 정의하려면 매니페스트 파일에서 target 요소를 업데이트합니다.

scinstall에서는 매니페스트 파일의 기존 부트 디스크가 대상 장치가 된다고 가정합니다. 대상 장치를 사용자 정의하려면 설치 대상 장치를 찾기 위해 지원되는 조건의 사용 방법에 따라 매니페스트 파일에서 target 요소를 업데이트합니다. 예를 들어, disk_name 하위 요소를 지정할 수 있습니다.

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 설치 의 제III부, 설치 서버를 사용하여 설치" 및 Unresolved link to " ai_manifest4" 매뉴얼 페이지를 참조 하십시오.

b. 각 노드에 대해 installadm 명령을 실행합니다.

```
# installadm update-manifest -n cluster-name-{sparc|i386} \
-f /var/cluster/logs/install/autoscinstall.d/cluster-name/node-name/node-
name_aimanifest.xml \
-m node-name_manifest
```

SPARC 및 i386은 클러스터 노드의 구조입니다.

- 클러스터 관리 콘솔을 사용하고 있는 경우 클러스터의 각 노드에 대해 콘솔 화면을 표시합니다.
 - pconsole 소프트웨어를 관리 콘솔에 설치 및 구성한 경우 pconsole 유틸리티를 사용하 여 개별 콘솔 화면을 표시합니다.

root 역할로 다음 명령을 사용하여 pconsole 유틸리티를 시작합니다.

adminconsole# pconsole host[:port] [...] &

pconsole 유틸리티를 사용하면 사용자 입력을 모든 개별 콘솔 창으로 동시에 전송할 수 있는 마스터 창도 열립니다.

- pconsole 유틸리티를 사용하지 않는 경우 각 노드의 콘솔에 개별적으로 연결합니다.
- 17. 각 노드를 종료 후 부트하여 AI 설치를 시작합니다.

Oracle Solaris 소프트웨어가 기본 구성으로 설치됩니다.

참고 - Oracle Solaris 설치를 사용자 정의하려면 이 방법을 사용할 수 없습니다. Oracle Solaris 대화식 설치를 선택하면 자동 설치 프로그램이 무시되고 Oracle Solaris Cluster 소프트웨어가 설치 및 구성되지 않습니다. 설치 중 Oracle Solaris를 사용자 정의하려면 Oracle Solaris 소프트웨어를 설치하는 방법 [48]의 지침을 따른 다음 Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]의 지침에 따라 클러스터를 설치 및 구성하 십시오.

■ SPARC:

a. 각 노드를 종료합니다.

phys-schost# **shutdown -g0 -y -i0**

b. 다음 명령으로 노드를 부트합니다.

ok boot net:dhcp - install
참고 - 명령의 양쪽에 대시(-)를 표시하고 대시의 앞뒤를 한 칸씩 띄우십시오.

■ x86:

a. 노드를 재부트합니다.

reboot -p

- **b. PXE 부트 중 Ctrl-N을 누릅니다.** GRUB 메뉴가 표시됩니다.
- c. Automated Install(자동 설치) 항목을 즉시 선택하고 Enter 키를 누릅니다.

참고 - Automated Install(자동 설치) 항목을 20초 내에 선택하지 않으면 기본 대화식 텍스 트 설치 프로그램 방법으로 설치가 진행됩니다. 그러면 Oracle Solaris Cluster 소프트웨어 를 설치 및 구성할 수 없습니다.

> 노드가 완전히 클러스터를 결합하기 전에 몇 번 각 노드가 자동으로 재부트됩니다. 콘솔에서 SMF 서비스의 오류 메시지를 무시합니다. 통합 아카이브에 포함된 소프 트웨어로 각 노드가 설치됩니다. 설치가 성공적으로 완료되면 새 클러스터의 멤버 로 각 노드가 부트됩니다. 이때 클러스터 구성은 아카이브와 동일하지만 시스템 ID 및 시스템 구성은 다릅니다. Oracle Solaris Cluster 설치 출력은 각 노드의 /var/ cluster/logs/install/scinstall.log.N 파일 및 /var/cluster/logs/install/ sc_ai_config.log 파일에 기록됩니다.

18. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# clnode status

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Status
Online
Online
Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

마지막 재부트 후 리소스 그룹, 영역 클러스터 등의 클러스터 객체는 오프라인으로 설정됩니
 다. 구성을 확인하고 새 환경에서 필요한 내용을 변경한 후 온라인으로 전환합니다.

소스 클러스터에서 클러스터 객체로 다른 시스템이 사용되는 경우(예: quorum server 유형 의 쿼럼 장치로 시스템이 사용되는 경우) 새 클러스터와 쿼럼 서버에서 수동으로 구성을 조정 해야만 장치가 작동합니다. 쿼럼 서버의 경우 새 쿼럼 서버 쿼럼 장치를 추가하고 아카이브에 서 가져온 쿼럼 장치를 제거할 수 있습니다.

참고 - 소스 클러스터에서 Oracle Solaris Cluster Geographic Edition이 사용되는 경우 Unresolved link to "Oracle Solaris Cluster Geographic Edition System Administration Guide 의 5 장, Administering Cluster Partnerships"의 절차에 따라 클러 스터의 이름을 바꾸고 파트너쉽을 재구성하십시오.

클러스터의 리소스 그룹 또는 영역 클러스터 구성을 변경해야 하는 경우 오프라인 실행 모드 로 영역 클러스터를 재부트합니다.

phys-schost#clzonecluster reboot -o zoneclustername

영역 클러스터 구성을 변경하지 않으려는 경우 온라인 실행 모드로 클러스터를 재부트할 수 있습니다.

phys-schost #clzonecluster reboot zoneclustername

로그 파일 /var/cluster/logs/install/sc_ai_config에서 자세한 내용을 확인할 수도 있습 니다.

▼ 클러스터에서 전역 클러스터 노드 추가를 준비하는 방법

새 클러스터 노드를 추가하기 위해 클러스터를 준비하려면 기존 전역 클러스터 노드에서 이 절차를 수행합니다.

시작하기전에 다음 작업을 수행합니다.

- 필요한 하드웨어가 모두 설치되어 있는지 확인합니다.
 - 호스트 어댑터가 새 노드에 설치되어 있는지 확인합니다. Unresolved link to " Oracle Solaris Cluster 4.2 Hardware Administration Manual "을 참조하십시오.
 - 기존 클러스터 상호 연결이 새 노드를 지원할 수 있는지 확인합니다. Unresolved link to " Oracle Solaris Cluster 4.2 Hardware Administration Manual "을 참조 하십시오.
 - 추가 저장소가 설치되어 있는지 확인합니다.
- 1. 새 노드 이름을 클러스터의 인증된 노드 목록에 추가합니다.
 - a. 임의의 노드에서 root 역할을 수행합니다.
 - b. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

주 메뉴가 표시됩니다.

- c. New Nodes(새 노드) 메뉴 항목을 선택합니다.
- d. Specify the Name of a Machine Which May Add Itself(추가할 시스템 이름 지정) 메뉴 항목을 선택합니다.
- e. **화면에 표시되는 메시지에 따라 인식된 시스템 목록에 노드 이름을 추가합니다.** 작업이 오류 없이 완료된 경우 clsetup 유틸리티에 명령이 성공적으로 완료되었습니 다라는 메시지가 표시됩니다.
- f. clsetup 유틸리티를 종료합니다.
- 단일 노드 클러스터에 노드를 추가하는 경우 상호 연결 구성을 표시하여 두 개의 클러스터 상 호 연결이 이미 있는지 확인합니다.

phys-schost# clinterconnect show

노드를 추가하려면 최소한 두 개의 케이블 또는 두 개의 어댑터가 구성되어 있어야 합니다.

- 출력에 두 개의 케이블 또는 두 개의 어댑터에 대한 구성 정보가 표시되면 3단계로 계속 진행합니다.
- 출력에 케이블 또는 어댑터에 대한 구성 정보가 표시되지 않거나 하나의 케이블 또는 어 댑터에 대해서만 구성 정보가 표시되면 새 클러스터 상호 연결을 구성합니다.
 - a. 하나의 노드에서 clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

- b. Cluster Interconnect(클러스터 상호 연결) 메뉴 항목을 선택합니다.
- c. Add a Transport Cable(전송 케이블 추가) 메뉴 항목을 선택합니다. 지시에 따라 클러스터에 추가할 노드의 이름, 전송 어댑터 이름, 전송 스위치 사용 여부를 지정합니다.
- d. 필요한 경우 2.2.c단계를 반복하여 두번째 클러스터 상호 연결을 구성합니다.
- e. 완료되면 clsetup 유틸리티를 종료합니다.
- f. 클러스터에 두 개의 클러스터 상호 연결이 구성되어 있는지 확인합니다.

phys-schost# clinterconnect show

이 명령은 최소한 두 개의 클러스터 상호 연결에 대한 구성 정보를 출력해야 합니 다.

- 3. 추가할 노드 및 개인 네트워크를 개인 네트워크 구성에서 지원하는지 확인합니다.
 - a. 현재 개인 네트워크 구성에서 지원하는 노드, 개인 네트워크 및 영역 클러스터의 최대 수를 표시합니다.

phys-schost# cluster show-netprops

출력이 다음과 같이 표시됩니다.

=== Private Network ===

private_netaddr:	172.16.0.0
private_netmask:	255.255.240.0
max_nodes:	64
max_privatenets:	10
max_zoneclusters:	12

- b. 현재 개인 네트워크 구성이 비전역 영역 및 개인 네트워크를 포함하여 증가한 노드 수를 지원하는지 여부를 확인합니다.
 - 현재 IP 주소 범위가 충분한 경우 새 노드를 설치할 준비가 되었습니다. 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법 (scinstall) [119]으로 이동합니다.
 - 현재 IP 주소 범위가 충분하지 않은 경우 개인 IP 주소 범위를 재구성합니다. 노드 또는 개인 네트워크를 추가할 때 개인 네트워크 구성을 변경하는 방 법 [113]으로 이동합니다. 개인 IP 주소 범위를 변경하려면 클러스터를 종료해 야 합니다. 여기에는 IP 주소 범위를 재구성하기 전에 각 자원 그룹을 오프라인으로 전환하고 클러스터의 모든 자원을 비활성화한 다음 비클러스터 모드로 재부트하는 것이 포함됩니다.
- 다음 순서 새 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성합니다. 추가 전역 클러스 터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(scinstall) [119] 또는 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(XML 파 일) [125]으로 이동합니다.

▼ 노드 또는 개인 네트워크를 추가할 때 개인 네트워크 구성 을 변경하는 방법

다음 클러스터 구성 요소 중 하나 이상에서 증가하는 범위를 수용하도록 전역 클러스터의 개 인 IP 주소 범위를 변경하려면 이 작업을 수행합니다.

- 노드 또는 비전역 영역의 수
- 개인 네트워크 수
- 영역 클러스터 수

또한 이 절차를 사용하여 개인 IP 주소 범위를 감소시킬 수 있습니다.

참고 - 이 절차에서는 전체 클러스터를 종료해야 합니다. 영역 클러스터에 대한 지원을 추가 하는 경우처럼 넷마스크만 변경해야 하는 경우에는 이 절차를 수행하지 마십시오. 대신 클러 스터 모드로 실행되는 전역 클러스터 노드에서 다음 명령을 실행하여 예상 영역 클러스터 수 를 지정하십시오.

phys-schost# cluster set-netprops num_zoneclusters=N

이 명령에서는 클러스터를 종료할 필요가 없습니다.

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 2. 한 노드에서 clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

clsetup 주 메뉴가 표시됩니다.

- 3. 각 자원 그룹을 오프라인으로 전환합니다.
 - a. **Resource Groups(자원 그룹) 메뉴 항목을 선택합니다.** Resource Group(자원 그룹) 메뉴가 표시됩니다.
 - b. Online/Offline or Switchover a Resource Group(자원 그룹 온라인/오프라인화 또는 스위치오버) 메뉴 항목을 선택합니다.
 - c. 화면에 표시되는 메시지에 따라 모든 자원 그룹을 오프라인으로 전환하고 관리 해제 상 태로 놓습니다.
 - d. 모든 자원 그룹이 오프라인으로 전환되면 q를 입력하여 자원 그룹 메뉴로 돌아갑니다.
- 4. 클러스터의 모든 자원을 사용 안함으로 설정합니다.
 - a. Enable/Disable a Resource(자원 사용/사용 안함) 메뉴 항목을 선택합니다.

- b. 비활성화할 자원을 선택하고 화면에 표시되는 메시지에 따릅니다.
- c. 비활성화하려는 각 자원에 대해 위의 단계를 반복합니다.
- d. 모든 자원이 비활성화되면 q를 입력하여 자원 그룹 메뉴로 돌아갑니다.
- 5. clsetup 유틸리티를 종료합니다.
- 6. 모든 노드의 모든 자원이 Offline 상태이고 모든 자원 그룹이 Unmanaged 상태인지 확인합니다.

cluster status -t resource, resourcegroup

-t

지정된 클러스터 객체로 출력을 제한합니다.

resource

리소스를 지정합니다.

```
resourcegroup
```

리소스 그룹을 지정합니다.

7. 하나의 노드에서 클러스터를 종료하십시오.

```
# cluster shutdown -g0 -y
```

-g

대기 시간을 초 단위로 지정합니다.

-у

시스템 종료 확인을 요청하는 메시지가 나타나지 않도록 합니다.

- 8. 각 노드를 비클러스터 모드로 부트합니다.
 - SPARC:

ok **boot -x**

- x86:
 - a. GRUB 메뉴에서 화살표 키를 사용하여 적절한 Oracle Solaris 항목을 선택하고 e를 입력하여 해당 명령을 편집합니다. GRUB 기반 부트에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 시스템 부트"을 참조하십시오.

- b. 부트 매개변수 화면에서 화살표 키를 사용하여 kernel 항목을 선택하고 e를 입력하 여 항목을 편집합니다.
- c. multiboot 명령에 -x를 추가하여 시스템 부트를 비클러스터 모드로 지정합니다.
- d. Enter **키를 눌러 변경 사항을 적용하고 부트 매개 변수 화면으로 돌아갑니다.** 화면에 편집된 명령이 표시됩니다.
- e. b를 입력하여 비클러스터 모드로 노드를 부트합니다.

참고 - 커널 부트 매개 변수 명령에 대한 변경 사항은 시스템을 재부트하면 사라집니다. 다음 에 노드를 재부트하면 클러스터 모드로 부트됩니다. 비클러스터 모드로 부트하려면 이 단계 를 다시 실행하여 -x 옵션을 커널 부트 매개 변수 명령에 추가합니다.

- 9. 한 노드에서 clsetup 유틸리티를 시작합니다. 비클러스터 모드로 실행되는 경우 clsetup 유틸리티에 비클러스터 모드 작업을 위한 주 메뉴 가 표시됩니다.
- 10. Change Network Addressing and Ranges for the Cluster Transport(클러스터 전송에 대한 네트워크 주소 지정 및 범위 변경) 메뉴 항목을 선택합니다. clsetup 유틸리티에 현재의 개인 네트워크 구성이 표시되고 이 구성을 변경할지 묻는 메시지 가 표시됩니다.
- 11.
 개인 네트워크 IP 주소 또는 IP 주소 범위를 변경하려면 yes를 입력하고 Enter 키를 누릅니다.

 Clsetup 유틸리티에 기본 개인 네트워크 IP 주소(172.16.0.0)가 표시되고 이 기본값을 사용
- 12. 해당 개인 네트워크 IP 주소를 변경하거나 사용합니다.
 - 기본 개인 네트워크 IP 주소를 사용하고 IP 주소 범위 변경을 진행하려면 yes를 입력하 고 Enter 키를 누릅니다.
 - 기본 개인 네트워크 IP 주소를 변경하려면:

할지를 묻는 메시지가 표시됩니다.

- a. clsetup 유틸리티에서 기본 주소를 사용할지를 물으면 그에 대한 응답으로 no를 입 력한 후 Enter 키를 누릅니다. clsetup 유틸리티에 새 개인 네트워크 IP 주소를 묻는 메시지가 표시됩니다.
- b. **새 IP 주소를 입력하고 Enter 키를 누릅니다.** clsetup 유틸리티에 기본 넷마스크가 표시되고 이 기본 넷마스크를 사용할지를 묻 는 메시지가 표시됩니다.

- 13. 기본 개인 네트워크 IP 주소 범위를 변경하거나 사용합니다. 기본 넷마스크는 255.255.240.0입니다. 이 기본 IP 주소 범위는 클러스터에서 최대 64개의 노드, 12개의 영역 클러스터 및 10개의 개인 네트워크를 지원합니다.
 - 기본 IP 주소 범위를 사용하려면 yes를 입력하고 Enter 키를 누릅니다.
 - IP 주소 범위를 변경하려면:
 - a. clsetup 유틸리티에서 기본 주소 범위를 사용할지를 물으면 그에 대한 응답으로 no를 입력한 후 Enter 키를 누릅니다. 기본 넷마스크의 사용을 거부할 경우 클러스터에 구성할 노드, 개인 네트워크 및 영 역 클러스터 수를 묻는 메시지가 clsetup 유틸리티에서 표시됩니다.
 - b. 클러스터에 구성할 노드, 개인 네트워크 및 영역 클러스터의 수를 제공합니다. clsetup 유틸리티는 이러한 숫자로 계산하여 두 개의 넷마스크를 제안합니다.
 - 첫번째 넷마스크는 지정한 노드, 개인 네트워크 및 영역 클러스터 수를 지원하는 최소 넷마스크입니다.
 - 두번째 넷마스크는 지정한 노드, 개인 네트워크 및 영역 클러스터 수의 두 배를 지원하여 향후 확대될 경우에도 수용할 수 있도록 합니다.
 - c. 계산된 넷마스크 중 하나를 지정하거나 예상 노드, 개인 네트워크 및 영역 클러스터 수를 지원하는 다른 넷마스크를 지정합니다.
- 14. clsetup 유틸리티에서 업데이트를 진행할지를 물으면 그에 대한 응답으로 yes를 입력합니다.
- 15. 모두 완료되면 clsetup 유틸리티를 종료합니다.
- 16. 각 노드를 클러스터로 다시 재부트합니다.
 - a. 각 노드를 종료합니다.

shutdown -g0 -y

- b. 각 노드를 클러스터 모드로 부트하십시오.
 - SPARC:

ok **boot**

■ x86:

GRUB 메뉴가 표시되면 적절한 Oracle Solaris 항목을 선택하고 Enter 키를 누릅 니다. GRUB 기반 부트에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2 시스템 부트 및 종료 의 시스템 부트"을 참조하십시오.

17. 한 노드에서 clsetup 유틸리티를 시작합니다.

clsetup

clsetup 주 메뉴가 표시됩니다.

- 18. 모든 비활성화된 자원을 다시 활성화합니다.
 - a. **Resource Groups(자원 그룹) 메뉴 항목을 선택합니다.** Resource Group(자원 그룹) 메뉴가 표시됩니다.
 - b. Enable/Disable a Resource(자원 사용/사용 안함) 메뉴 항목을 선택합니다.
 - c. 활성화할 자원을 선택하고 화면에 표시되는 메시지에 따릅니다.
 - d. 비활성화된 각 자원에 대해 반복합니다.
 - e. 모든 자원이 다시 활성화되면 q를 입력하여 자원 그룹 메뉴로 돌아갑니다.
- **19. 각 자원 그룹을 다시 온라인으로 전환합니다.** 노드에 비전역 영역이 포함된 경우 이 영역의 모든 자원 그룹도 온라인으로 전환됩니다.
 - a. Online/Offline or Switchover a Resource Group(자원 그룹 온라인/오프라인화 또는 스위치오버) 메뉴 항목을 선택합니다.
 - b. 화면에 표시되는 메시지에 따라 각 자원 그룹을 관리 상태로 변경한 다음 해당 자원 그 룹을 온라인으로 전환합니다.
- 20. 모든 리소스 그룹이 다시 온라인으로 전환되면 clsetup 유틸리티를 종료합니다. q를 입력하여 각 하위 메뉴를 마치거나 Ctrl-C를 누릅니다.
- 다음 순서 기존 클러스터에 노드를 추가하려면 다음 절차 중 하나로 이동합니다.
 - 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법 (scinstall) [119]
 - Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장 소) [92]
 - 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성하는 방법(XML 파일) [125]

추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프 트웨어 구성(scinstall)

scinstall 유틸리티는 표준 또는 사용자 정의의 두 가지 설치 모드로 실행됩니다. Oracle Solaris Cluster 소프트웨어의 표준 설치의 경우 scinstall이 자동으로 클러스터 전송 스위 치를 switch1 및 switch2로 지정합니다.

다음 구성 계획 워크시트 중 하나를 완성합니다. 계획 지침은 "Oracle Solaris OS 계획" [12] 및 "Oracle Solaris Cluster 환경 계획" [15]을 참조하십시오.

구성 요소	설명/예	대답
스폰서 노드	스폰서 노드의 이름은 무엇입니까?	
	클러스터에서 활성화된 노드를 선택하십시오.	
클러스터 이름	노드를 결합할 클러스터의 이름은 무엇입니까?	
확인	cluster check 유효성 검사 유틸리티를 실행하시겠습니까?	예ㅣ아니오
클러스터 전송 자동 검색	자동 검색을 사용하여 클러스터 전송을 구성하시겠습니까? 아니요일 경우 다음 추가 정보를 제공하십시오.	예ㅣ아니오
지점간 케이블	클러스터에 추가할 노드가 2-노드 클러스터를 구성합니까?	예ㅣ아니오
	클러스터가 스위치를 사용합니까?	예ㅣ아니오
클러스터 스위치	사용한 경우 두 스위치의 이름은 무엇입니까?	첫번째:
	기본값: switch1 및 switch2	두번째:
클러스터 전송 어댑터 및 케이브		첫번째:
	전송 어댑터 이름:	두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:
	스위지 기본값: switch1 및 switch2	두번째:
	전송 스위치의 경우 기본 포트 이름을 사용하시겠습니까?	첫번째: 예ㅣ아니오
		두번째: 예ㅣ아니오
	아니요일 경우 사용할 포트의 이름은 무엇입니까?	첫번째:
		두번째:
자동 재부트	설치 후 scinstall에서 노드를 자동으로 재부트하도록 하시겠습니까?	예ㅣ아니오

 표준 모드 워크시트 - 표준 모드를 사용하고 기본값을 모두 적용할 경우 다음 워크시트를 완성합니다.

사용자 정의 모드 워크시트 - 사용자 정의 모드를 사용하고 구성 데이터를 사용자 정의할 경우 다음 워크시트를 완성합니다.

구성 요소	설명/예	대답
스폰서 노드	스폰서 노드의 이름은 무엇입니까?	
	클러스터에서 활성화된 노드를 선택하십시오.	
클러스터 이름	노드를 결합할 클러스터의 이름은 무엇입니까?	
확인	cluster check 유효성 검사 유틸리티를 실행하시겠습니까?	예 아니오
클러스터 전송 자동 검색	자동 검색을 사용하여 클러스터 전송을 구성하시겠습니까? 아니요일 경우 다음 추가 정보를 제공하십시오.	예ㅣ아니오
지점간 케이블	클러스터에 추가할 노드가 2-노드 클러스터를 구성합니까?	예ㅣ아니오
	클러스터가 스위치를 사용합니까?	예ㅣ아니오
클러스터 스위치	전송 스위치 이름(사용된 경우):	첫번째:
	기본값: switch1 및 switch2	두번째 <i>:</i>
클러스터 전송 어댑터 및 케이 븍	전송 어댑터 이름:	첫번째:
		두번째:
	각 전송 어댑터는 어디에 연결됩니까(스위치 또는 다른 어댑터)?	첫번째:
	스위치 기본값: switch1 및 switch2	두번째:
	전송 스위치일 경우 기본 포트 이름을 사용하시겠습니까?	첫번째: 예ㅣ아니오
		두번째: 예ㅣ아니오
	아니요일 경우 사용할 포트의 이름은 무엇입니까?	첫번째:
		두번째:
자동 재부트	설치 후 scinstall에서 노드를 자동으로 재부트하도록 하시겠습니까?	예ㅣ아니오

▼ 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어를 구성 하는 방법(scinstall)

기존 전역 클러스터에 새 노드를 추가하려면 이 절차를 수행합니다. 자동 설치 프로그램을 사용하여 새 노드를 추가하려면 Oracle Solaris 및 Oracle Solaris Cluster 소프트웨어를 설치 및 구성하는 방법(IPS 저장소) [92]의 지침을 따릅니다.

이 절차에서는 대화식 scinstall 명령을 사용합니다. 설치 스크립트를 개발하는 경우 등에 서 비대화식 scinstall 명령을 사용하는 방법에 대한 자세한 내용은 Unresolved link to " scinstall1M" 매뉴얼 페이지를 참조하십시오.

이 절차에서 대화식 scinstall 유틸리티를 사용하려면 다음 지침을 준수하십시오.

- 대화식 scinstall 유틸리티에서는 사용자가 먼저 입력할 수 있습니다. 따라서 다음 메뉴 화면이 즉시 나타나지 않을 경우에 Enter 키를 두 번 이상 누르지 마십시오.
- 다른 지시가 없는 한 Ctrl-D를 눌러 관련 질문의 시작 부분이나 주 메뉴로 돌아갈 수 있습 니다.

■ 질문의 끝에 기본 응답이나 이전 세션에 대한 응답이 괄호([]) 안에 표시됩니다. Enter 키 를 누르면 별도의 입력 없이 괄호 안의 응답을 선택할 수 있습니다.

시작하기전에 다음 작업을 수행합니다.

 Oracle Solaris Cluster 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오.

노드에 Oracle Solaris 소프트웨어가 이미 설치된 경우에도 설치된 Oracle Solaris 소프 트웨어가 Oracle Solaris Cluster 소프트웨어와 클러스터에 설치할 다른 소프트웨어의 요구 사항을 충족시켜야 합니다. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하 도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하 는 방법 [48]을 참조하십시오.

- NWAM이 사용 안함으로 설정되었는지 확인합니다. 지침은 Oracle Solaris Cluster 소프 트웨어 패키지를 설치하는 방법 [58]을 참조하십시오.
- SPARC: Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 클러스터 노 드로 구성하려는 경우 Oracle VM Server for SPARC 소프트웨어가 각 물리적 시스템에 설치되어 있으며 도메인이 Oracle Solaris Cluster 요구 사항을 충족하는지 확인합니다. Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]을 참조하 십시오.
- Oracle Solaris Cluster 소프트웨어 패키지 및 업데이트가 노드에 설치되어 있는지 확인 합니다. Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]을 참조하십시 오.
- 클러스터가 새 노드를 추가할 준비가 되어 있는지 확인합니다. 클러스터에서 전역 클러스 터 노드 추가를 준비하는 방법 [110]을 참조하십시오.
- 완성된 표준 모드 또는 사용자 정의 모드 설치 워크시트를 사용할 수 있도록 준비합니다. "추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프트웨어 구성 (scinstall)" [118]을 참조하십시오.
- 1. 구성할 클러스터 노드에서 root 역할을 수행합니다.
- 클러스터의 모든 노드에서 RPC용 TCP 래퍼가 사용 안함으로 설정되었는지 확인합니다.
 Oracle Solaris의 RPC용 TCP 래퍼 기능은 클러스터 구성에 필요한 노드 간 통신을 막습니다.
 - a. 각 노드에서 RPC용 TCP 래퍼의 상태를 표시합니다.

다음 예제 명령 출력에 표시된 대로 config/enable_tcpwrappers를 true로 설정하면 TCP 래퍼가 사용으로 설정됩니다.

svccfg -s rpc/bind listprop config/enable_tcpwrappers
config/enable_tcpwrappers boolean true

b. RPC용 TCP 래퍼가 노드에 사용으로 설정된 경우 TCP 래퍼를 사용 안함으로 설정하고 RPC 바인드 서비스를 새로 고칩니다.

svccfg -s rpc/bind setprop config/enable_tcpwrappers = false

- # svcadm refresh rpc/bind
- # svcadm restart rpc/bind
- 3. 공용 네트워크 인터페이스를 준비합니다.
 - a. 각 공용 네트워크 인터페이스에 대한 정적 IP 주소를 만듭니다.
 - # ipadm create-ip interface
 - # ipadm create-addr -T static -a local=address/prefix-length addrobj

자세한 내용은 Unresolved link to " Oracle Solaris 11.2 네트워크 구성 요소의 구성 및 관리 의 IPv4 인터페이스를 구성하는 방법"을 참조하십시오.

b. (옵션) 공용 네트워크 인터페이스에 대한 IPMP 그룹을 만듭니다.

초기 클러스터 구성 중 non-link-local IPv6 공용 네트워크 인터페이스가 클러스터에 존 재하지 않는 경우 IPMP 그룹이 일치하는 서브넷에 따라 자동으로 만들어집니다. 이러한 그룹은 인터페이스 모니터링을 위해 전이성 프로브를 사용하고 테스트 주소는 필요하지 않습니다.

이와 같이 자동으로 만들어진 IPMP 그룹이 사용자 요구 사항을 충족하지 않는 경우 또 는 사용자 구성에 하나 이상의 non-link-local IPv6 공용 네트워크 인터페이스가 있어 IPMP 그룹이 만들어지지 않는 경우 다음 중 하나를 수행합니다.

- 클러스터를 설정하기 전에 필요한 IPMP 그룹을 만듭니다.
- 클러스터가 설정된 후에 ipadm 명령을 사용하여 IPMP 그룹을 편집합니다.

자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 TCP/IP 네트워크, IPMP 및 IP 터널 관리 의 IPMP 그룹 구성"을 참조하십시오.

4. scinstall 유틸리티를 시작합니다.

phys-schost-new# /usr/cluster/bin/scinstall

scinstall 주 메뉴가 표시됩니다.

새 클러스터 만들기 또는 클러스터 노드 추가에 대한 옵션 번호를 입력하고 Enter 키를 누릅 니다.

*** Main Menu ***

Please select from one of the following (*) options:

- \ast 1) Create a new cluster or add a cluster node
- \ast 2) Print release information for this cluster node
- * ?) Help with menu options
- * q) Quit

Option: 1

New Cluster and Cluster Node(새 클러스터 및 클러스터 노드) 메뉴가 표시됩니다.

- 이 시스템을 기존 클러스터의 노드로 추가합니다에 대한 옵션 번호를 입력하고 Enter 키를 누릅니다.
- 7. 메뉴 프롬프트에 따라 구성 계획 워크시트에서 응답을 제공합니다. scinstall 유틸리티가 노드를 구성하고 노드를 클러스터로 부트합니다.
- 8. 추가 노드가 모두 구성될 때까지 클러스터에 추가할 다른 노드에 대해 이 절차를 반복합니다.
- 각 노드에서 SMF(서비스 관리 기능)에 대한 다중 사용자 서비스가 온라인 상태인지 확인합 니다.

노드에 대해 서비스가 아직 온라인 상태가 아닌 경우 온라인 상태가 될 때까지 기다린 후 다음 단계로 진행합니다.

 phys-schost#
 svcs multi-user-server NOde

 STATE
 STIME

 online
 17:52:55

 svc:/milestone/multi-user-server:default

10. 활성 클러스터 멤버에서 다른 노드가 클러스터를 결합할 수 없도록 합니다.

phys-schost# claccess deny-all

또는 clsetup 유틸리티를 사용할 수 있습니다. 절차는 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기존 클러스터 또는 영역 클러스터에 노드를 추가하는 방 법"을 참조하십시오.

11. 한 노드에서 모든 노드가 클러스터를 결합했는지 확인합니다.

phys-schost# clnode status

다음과 비슷한 결과가 출력됩니다:

=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
phys-schost-1	Online
phys-schost-2	Online
phys-schost-3	Online

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

12. TCP 래퍼가 클러스터에 사용된 경우 모든 추가된 노드에 대한 clprivnet0 IP 주소가 각 클러 스터 노드의 /etc/hosts.allow 파일에 추가되었는지 확인합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 clprivnet0 장치에 대한 IP 주소를 표시합니다.

<pre># /usr/sbin/ipadm</pre>	n show-ad	dr
ADDROBJ	TYPE	STATE
clprivnet0/N	static	ok

ADDR *ip-address/netmask-length*

- b. 각 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소로 /etc/hosts.allow 파일을 편집합니다.
- 13. 모든 필요한 소프트웨어 업데이트가 설치되어 있는지 확인합니다.

phys-schost# **pkg list**

14. (옵션) 모니터링된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

참고 - 처음 구성 시 검색된 모든 장치에 대해 디스크 경로 모니터링이 기본값으로 사용으로 설정됩니다.

a. 자동 재부트를 사용으로 설정합니다.

phys-schost# clnode set -p reboot_on_path_failure=enabled

- p

설정할 등록 정보를 지정합니다.

reboot_on_path_failure=enable

모니터된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

b. 디스크 경로 실패 시 자동 재부트가 활성화되는지 확인합니다.

phys-schost# clnode show === Cluster Nodes === Node Name: ... reboot_on_path_failure:

node

enabled

15. 고가용성 로컬 파일 시스템에서 HA for NFS 데이터 서비스(HA for NFS)를 사용하려면 HA for NFS에서 내보낸 고가용성 로컬 파일 시스템에 포함된 모든 공유 사항을 automounter 맵에서 제외시킵니다.

automounter 맵 수정에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 네트워크 파일 시스템 관리 의 맵 관련 관리 작업"을 참조하십시오.

예 3-3 추가 노드에 Oracle Solaris Cluster 소프트웨어 구성

다음 예에서는 phys-schost-3 노드가 schost 클러스터에 추가되는 것을 보여 줍니다. 스폰 서 노드는 phys-schost-1입니다.

Adding node "phys-schost-3" to the cluster configuration ... done Adding adapter "net2" to the cluster configuration ... done Adding adapter "net3" to the cluster configuration ... done Adding cable to the cluster configuration ... done Adding cable to the cluster configuration ... done

Copying the config from "phys-schost-1" ... done

Copying the postconfig file from "phys-schost-1" if it exists ... done Setting the node ID for "phys-schost-3" ... done (id=1)

Verifying the major number for the "did" driver from "phys-schost-1" ... done Initializing NTP configuration ... done

Updating nsswitch.conf ... done

Adding cluster node entries to /etc/inet/hosts ... done

Configuring IP Multipathing groups in "/etc/hostname.<adapter>" files

Updating "/etc/hostname.hme0".

Verifying that power management is NOT configured ... done

Ensure that the EEPROM parameter "local-mac-address?" is set to "true" ... done

Ensure network routing is disabled ... done Network routing has been disabled on this node by creating /etc/notrouter. Having a cluster node act as a router is not supported by Oracle Solaris Cluster. Please do not re-enable network routing. Updating file ("ntp.conf.cluster") on node phys-schost-1 ... done Updating file ("hosts") on node phys-schost-1 ... done

Log file - /var/cluster/logs/install/scinstall.log.6952

Rebooting ...

- 일반 오류 **구성 실패** 하나 이상의 노드에서 클러스터를 결합할 수 없거나 잘못된 구성 정보가 지정 된 경우 먼저 이 절차를 다시 수행하십시오. 그래도 문제가 해결되지 않으면 잘못 구성된 각 노드에서 Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방 법 [219]의 절차를 수행하여 해당 노드를 클러스터 구성에서 제거합니다. Oracle Solaris Cluster 소프트웨어 패키지를 제거할 필요는 없습니다. 그런 다음 이 절차를 다시 수행합니 다.
- 다음 순서 쿼럼 장치를 사용하는 기존 클러스터에 노드를 추가한 경우 전역 클러스터에 노드를 추가한 후 쿼럼 장치를 업데이트하는 방법 [129]으로 이동합니다.

그렇지 않으면 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.

▼ 추가 전역 클러스터 노드에 Oracle Solaris Cluster 소프 트웨어를 구성하는 방법(XML 파일)

XML 클러스터 구성 파일을 사용하여 새 전역 클러스터 노드를 구성하려면 이 절차를 수행합 니다. 새 노드는 Oracle Solaris Cluster 4.2 소프트웨어가 실행되는 기존 클러스터 노드와 중복될 수 있습니다.

이 절차에서는 새 노드에 다음 클러스터 구성 요소를 구성합니다.

- 클러스터 노드 멤버쉽
- 클러스터 상호 연결
- 전역 장치

시작하기전에 다음 작업을 수행합니다.

 Oracle Solaris Cluster 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오.

노드에 Oracle Solaris 소프트웨어가 이미 설치된 경우에도 설치된 Oracle Solaris 소프 트웨어가 Oracle Solaris Cluster 소프트웨어와 클러스터에 설치할 다른 소프트웨어의 요구 사항을 충족시켜야 합니다. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하 도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하 는 방법 [48]을 참조하십시오.

- NWAM이 사용 안함으로 설정되었는지 확인합니다. 지침은 Oracle Solaris Cluster 소프 트웨어 패키지를 설치하는 방법 [58]을 참조하십시오.
- SPARC: Oracle VM Server for SPARC I/O 도메인 또는 게스트 도메인을 클러스터 노 드로 구성하려는 경우 Oracle VM Server for SPARC 소프트웨어가 각 물리적 시스템에 설치되어 있으며 도메인이 Oracle Solaris Cluster 요구 사항을 충족하는지 확인합니다. Oracle VM Server for SPARC 소프트웨어 설치 및 도메인을 만드는 방법 [58]을 참조하 십시오.
- Oracle Solaris Cluster 소프트웨어 패키지 및 필요한 업데이트가 노드에 설치되어 있는 지 확인합니다. Oracle Solaris Cluster 소프트웨어 패키지를 설치하는 방법 [58]을 참조 하십시오.
- 클러스터가 새 노드를 추가할 준비가 되어 있는지 확인합니다. 클러스터에서 전역 클러스 터 노드 추가를 준비하는 방법 [110]을 참조하십시오.
- 1. Oracle Solaris Cluster 소프트웨어가 클러스터에 추가할 잠재적 노드에 아직 구성되지 않았는지 확인합니다.
 - a. 잠재적 노드에서 root 역할을 수행합니다.

b. Oracle Solaris Cluster 소프트웨어가 잠재적 노드에 구성되어 있는지 여부를 확인합니다.

phys-schost-new# /usr/sbin/clinfo -n

■ 명령이 실패할 경우 2단계로 이동합니다.

Oracle Solaris Cluster 소프트웨어가 노드에 아직 구성되어 있지 않습니다. 클러 스터에 잠재적 노드를 추가할 수 있습니다.

- 명령이 노드 ID 번호를 반환하면 Oracle Solaris Cluster 소프트웨어가 노드에 이 미 구성되어 있는 것입니다. 다른 클러스터에 노드를 추가하기 전에 기존 클러스터 구성 정보를 제거해야 합니
- c. 잠재적 노드를 비클러스터 모드로 부트합니다.

■ SPARC:

다

ok **boot -x**

- x86:
 - i GRUB 메뉴에서 화살표 키를 사용하여 적절한 Oracle Solaris 항목을 선택하고 e를 입력하여 해당 명령을 편집합니다. GRUB 기반 부트에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 시스템 부트"을 참조하십시오.
 - ii 부트 매개변수 화면에서 화살표 키를 사용하여 kernel 항목을 선택하고 e를 입 력하여 항목을 편집합니다.
 - iii multiboot 명령에 -x를 추가하여 시스템 부트를 비클러스터 모드로 지정합니다.
 - iv Enter 키를 눌러 변경 사항을 적용하고 부트 매개 변수 화면으로 돌아갑니다. 화면에 편집된 명령이 표시됩니다.
 - ᢦ b를 입력하여 비클러스터 모드로 노드를 부트합니다.

참고 - 커널 부트 매개 변수 명령에 대한 변경 사항은 시스템을 재부트하면 사라집니다. 다음 에 노드를 재부트하면 클러스터 모드로 부트됩니다. 비클러스터 모드로 부트하려면 이 단계 를 다시 실행하여 -x 옵션을 커널 부트 매개 변수 명령에 추가합니다. d. 잠재적 노드에서 Oracle Solaris Cluster 소프트웨어를 구성 해제합니다.

phys-schost-new# /usr/cluster/bin/clnode remove

- 2. Oracle Solaris Cluster 4.2 소프트웨어가 실행되는 노드를 복제하려면 클러스터 구성 XML 파일을 만듭니다.
 - a. 복제할 클러스터 노드에서 root 역할을 수행합니다.
 - b. 기존 노드의 구성 정보를 파일로 내보냅니다.

phys-schost# clnode export -o clconfigfile

-0

출력 대상을 지정합니다.

clconfigfile

클러스터 구성 XML 파일의 이름입니다. 지정한 파일 이름은 기존 파일 또는 명령에 서 만들 새 파일이 될 수 있습니다.

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

- c. 클러스터 구성 XML 파일을 새 클러스터 노드로 구성할 잠재적 노드에 복사합니다.
- 3. 잠재적 노드에서 root 역할을 수행합니다.
- 클러스터의 모든 노드에서 RPC용 TCP 래퍼가 사용 안함으로 설정되었는지 확인합니다.
 Oracle Solaris의 RPC용 TCP 래퍼 기능은 클러스터 구성에 필요한 노드 간 통신을 막습니다.
 - a. 각 노드에서 RPC용 TCP 래퍼의 상태를 표시합니다. 다음 예제 명령 출력에 표시된 대로 config/enable_tcpwrappers를 true로 설정하면 TCP 래퍼가 사용으로 설정됩니다.

svccfg -s rpc/bind listprop config/enable_tcpwrappers
config/enable_tcpwrappers boolean true

b. RPC용 TCP 래퍼가 노드에 사용으로 설정된 경우 TCP 래퍼를 사용 안함으로 설정하고 RPC 바인드 서비스를 새로 고칩니다.

svccfg -s rpc/bind setprop config/enable_tcpwrappers = false
svcadm refresh rpc/bind

- # svcadm restart rpc/bind
- 5. 필요에 따라 클러스터 구성 XML 파일을 수정하거나 만듭니다.

- 기존 클러스터 노드를 복제하려면 clnode export 명령을 사용하여 만든 파일을 엽니다.
- 기존 클러스터 노드를 복제하지 않으려는 경우 새 파일을 만듭니다. 피임은 Upgeselved link to " deepfinguration FCL" 메노업 페이지에 프레티 오
 - 파일은 Unresolved link to " clconfiguration5CL" 매뉴얼 페이지에 표시된 요소 계층 을 기반으로 합니다. 모든 디렉토리에 파일을 저장할 수 있습니다.
- XML 요소의 값을 수정하여 만들려는 노드 구성을 반영합니다. 클러스터 구성 XML 파일의 구조 및 내용에 대한 자세한 내용은 Unresolved link to " clconfiguration5CL" 매뉴얼 페이지를 참조하십시오.
- 6. 클러스터 구성 XML 파일의 유효성을 검사합니다.

phys-schost-new# xmllint --valid --noout clconfigfile

7. 새 클러스터 노드를 구성합니다.

phys-schost-new# clnode add -n sponsor-node -i clconfigfile

-n sponsor-node

새 노드에 대한 스폰서로 작동하도록 기존 클러스터 구성원의 이름을 지정합니다.

-i clconfigfile

입력 소스로 사용할 클러스터 구성 XML 파일의 이름을 지정합니다.

8. TCP 래퍼가 클러스터에 사용된 경우 모든 추가된 노드에 대한 clprivnet0 IP 주소가 각 클러 스터 노드의 /etc/hosts.allow 파일에 추가되었는지 확인합니다.

이와 같이 /etc/hosts.allow 파일에 추가하지 않으면 TCP 래퍼가 클러스터 관리 유틸리티 에 대해 RPC를 통한 노드 간 통신을 막습니다.

a. 각 노드에서 clprivnet0 장치에 대한 IP 주소를 표시합니다.

# /usr/sbin/ipa	dm show-a	ddr	
ADDROBJ	TYPE	STATE	ADDR
clprivnet0/N	static	ok	ip-address/netmask-length

- b. 각 노드에서 클러스터의 모든 clprivnet0 장치의 IP 주소로 /etc/hosts.allow 파일을 편집합니다.
- (옵션) 모니터링된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

참고 - 처음 구성 시 검색된 모든 장치에 대해 디스크 경로 모니터링이 기본값으로 사용으로 설정됩니다.

a. 자동 재부트를 사용으로 설정합니다.

phys-schost# clnode set -p reboot_on_path_failure=enabled

- p

설정할 등록 정보를 지정합니다.

reboot_on_path_failure=enable

모니터된 모든 공유 디스크 경로에서 오류가 발생할 경우 자동 노드 재부트를 활성 화합니다.

b. 디스크 경로 실패 시 자동 재부트가 활성화되는지 확인합니다.

phys-schost# clnode show
=== Cluster Nodes ===

Node Name: ... reboot_on_path_failure: node

enabled

- 일반 오류 구성 실패 하나 이상의 노드에서 클러스터를 결합할 수 없거나 잘못된 구성 정보가 지정 된 경우 먼저 이 절차를 다시 수행하십시오. 그래도 문제가 해결되지 않으면 잘못 구성된 각 노드에서 Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방 법 [219]의 절차를 수행하여 해당 노드를 클러스터 구성에서 제거합니다. Oracle Solaris Cluster 소프트웨어 패키지를 제거할 필요는 없습니다. 그런 다음 이 절차를 다시 수행합니 다.
- 다음 순서 쿼럼 장치를 사용하는 클러스터에 노드를 추가한 경우 전역 클러스터에 노드를 추가한 후 쿼 럼 장치를 업데이트하는 방법 [129]으로 이동합니다.

그렇지 않으면 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.

▼ 전역 클러스터에 노드를 추가한 후 쿼럼 장치를 업데이트 하는 방법

전역 클러스터에 노드를 추가한 경우 공유 디스크, NAS 장치, 쿼럼 서버 또는 조합을 사용하는지 여부에 관계없이 쿼럼 장치의 구성 정보를 업데이트해야 합니다. 이를 수행하려면 모든 쿼럼 장치를 제거하고 전역 장치 이름 공간을 업데이트합니다. 계속 사용하려는 쿼럼 장치를 선택적으로 재구성할 수 있습니다. 이 업데이트로 각 쿼럼 장치에 새 노드가 등록되고 각 장 치는 클러스터의 새 노드 수를 기반으로 해당 투표 수를 다시 계산할 수 있습니다.

새로 구성된 SCSI 쿼럼 장치는 SCSI-3 예약으로 설정됩니다.

시작하기 전에 추가된 노드에서 Oracle Solaris Cluster 소프트웨어 설치를 완료했는지 확인합니다.

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 2. 모든 클러스터 노드가 온라인 상태인지 확인합니다.

phys-schost# cluster status -t node

3. 현재 쿼럼 구성을 확인합니다.

명령 출력에는 각 쿼럼 장치와 각 노드가 나열됩니다. 다음 출력 예에서는 현재 SCSI 쿼럼 장 치 d3을 보여 줍니다.

```
phys-schost# clquorum list
d3
```

- 4. 나열된 각 쿼럼 장치의 이름을 적어둡니다.
- 5. 원본 쿼럼 장치를 제거합니다.

구성되는 각 쿼럼 장치에 대해 이 단계를 수행합니다.

phys-schost# clquorum remove device-name

```
device-name
쿼럼 장치의 이름을 지정합니다.
```

8. 원본 쿼럼 장치가 모두 제거되었는지 확인합니다.
 쿼럼 장치가 성공적으로 제거되면 쿼럼 장치가 나열되지 않습니다.

phys-schost# **clquorum status**

7. 전역 장치 이름 공간을 업데이트합니다.

phys-schost# cldevice populate

참고 - 이 단계는 잠재적 노드 패닉을 예방하는 데 필수적입니다.

쿼럼 장치를 추가하기 전에 각 노드에서 cldevice populate 명령의 처리가 완료되었는지 확 인합니다.

cldevice populate 명령은 하나의 노드에서만 실행해도 모든 노드에서 원격으로 실행됩니다. cldevice populate 명령이 프로세스를 완료했는지 확인하려면 클러스터의 각 노드에서다음 명령을 실행합니다.

phys-schost# ps -ef | grep scgdevs

 (옵션) 쿼럼 장치를 추가합니다.
 처음에 쿼럼 장치로 구성된 것과 동일한 장치를 구성하거나 구성할 새 공유 장치를 선택할 수 있습니다.

a. (옵션) 새 공유 장치를 쿼럼 장치로 구성하도록 선택하려면 시스템에서 검사한 모든 장 치를 표시하고 출력에서 공유 장치를 선택합니다.

phys-schost# **cldevice list -v**

다음과 비슷한 결과가 출력됩니다:

DID Device	Full Device Path
dl	phys-schost-1:/dev/rdsk/c0t0d0
d2	phys-schost-1:/dev/rdsk/c0t6d0
d3	phys-schost-2:/dev/rdsk/cltld0
d3	phys-schost-1:/dev/rdsk/c1t1d0

b. 공유 장치를 쿼럼 장치로 구성합니다.

phys-schost# clquorum add -t type device-name

-t *type*

쿼럼 장치의 유형을 지정합니다. 이 옵션을 지정하지 않으면 기본 유형 shared_disk가 사용됩니다.

- c. 구성할 각 쿼럼 장치에 대해 반복합니다.
- d. 새 쿼럼 구성을 확인합니다.

phys-schost# clquorum list

각 쿼럼 장치 및 각 노드가 출력되어야 합니다.

예 3-4 2 노드 클러스터에 노드를 추가한 후 SCSI 쿼럼 장치 업데이트

다음 예에서는 원본 SCSI 쿼럼 장치 d2를 식별하고 해당 쿼럼 장치를 제거하여 사용 가능한 공유 장치를 나열하며 전역 장치 이름 공간을 업데이트하고 d3을 새 SCSI 쿼럼 장치로 구성 한 후 새 장치를 확인합니다.

Status

.

```
phys-schost# clquorum list
d2
phys-schost-1
phys-schost-2
phys-schost# clquorum remove d2
phys-schost# clquorum status
...
--- Quorum Votes by Device ---
Device Name Present Possible
```

다음 순서 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]으로 이동합니다.

▼ 쿼럼 장치를 구성하는 방법

참고 - 다음과 같은 환경에서는 쿼럼 장치를 구성하지 않아도 됩니다.

- Oracle Solaris Cluster 소프트웨어 구성 중에 자동 쿼럼 구성을 선택한 경우
- 단일 노드 전역 클러스터를 설치한 경우
- 기존 전역 클러스터에 노드를 추가하고 이미 충분한 쿼럼 투표 수가 할당된 경우

클러스터를 설정할 때 자동 쿼럼 구성을 선택한 경우 이 절차를 수행하지 마십시오. 대신 쿼 럼 구성 및 설치 모드를 확인하는 방법 [137]을 진행합니다.

이 절차는 새 클러스터가 완전히 구성된 후 한 번만 수행하면 됩니다. 이 절차를 사용하여 쿼 럼 투표 수를 할당한 다음 설치 모드에서 클러스터를 제거합니다.

시작하기 전에

- **쿼럼 서버** 쿼럼 서버를 쿼럼 장치로 구성하려면 다음을 수행합니다.
 - 쿼럼 서버 호스트 시스템에 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 쿼럼 서버를 시작합니다. 쿼럼 서버 설치 및 시작에 대한 자세한 내용은 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 설치하고 구성하는 방법 [54]을 참조하십시오.
 - 클러스터 노드와 바로 연결되는 네트워크 스위치가 다음 조건 중 하나를 충족하는지 확인합니다.
 - 이 스위치는 RSTP(Rapid Spanning Tree Protocol)를 지원합니다.
 - 스위치에 고속 포트 모드가 활성화되어 있습니다.

이 기능 중 하나는 클러스터 노드와 쿼럼 서버 사이의 즉각적인 통신을 확인하는 데 필요합니다. 스위치에 의해 이 통신이 두드러지게 지연되는 경우 클러스터는 이러한 통신 장애를 쿼럼장치의 손실로 해석합니다.

- 다음 정보를 사용할 수 있도록 준비합니다.
 - 구성된 쿼럼 장치에 할당할 이름
 - 쿼럼 서버 호스트 시스템의 IP 주소
 - 쿼럼 서버의 포트 번호
- NAS 장치 NAS(Network Attached Storage) 장치를 쿼럼 장치로 구성하려면 다음을 수행합니다.
 - NAS 장치 하드웨어 및 소프트웨어를 설치합니다. NAS 하드웨어 및 소프트웨어의 요구 사항과 설치 절차에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster With Network-Attached Storage Device Manual " 및 해당 장치 설명서 를 참조하십시오.
- 다음 조건이 모두 적용되면 공용 네트워크 주소에 올바른 접두어 길이가 설정되어 있는지 확 인합니다.
 - 쿼럼 서버를 사용하려는 경우
 - 공용 네트워크에서 CIDR(Classless Inter Domain Routing)이라고도 하는 가변 길이 서 브넷 마스크를 사용하는 경우

ipadm show-addr

-			
ADDROBJ	TYPE	STATE	ADDR
lo0/v4	static	ok	127.0.0.1/8
ipmp0/v4	static	ok	10.134.94.58/24

참고 - 쿼럼 서버를 사용하지만 공용 네트워크에서 RFC 791에 정의된 classful 서브넷을 사용하는 경우 이 단계를 수행할 필요가 없습니다.

2. 하나의 노드에서 root 역할을 수행합니다. 다른 방법으로, 사용자 계정이 System Administrator 프로파일에 할당된 경우 프로파일 셸 을 통해 비루트로 명령을 실행하거나 pfexec 명령을 사용하여 앞에 접두어를 붙입니다.

3. 모든 클러스터 노드가 온라인 상태인지 확인합니다.

phys-schost# cluster status -t node

- 공유 디스크를 쿼럼 장치로 사용하려면 클러스터 노드와의 장치 연결을 확인하고 구성할 장 치를 선택합니다.
 - a. 시스템에서 검사한 모든 장치 목록을 클러스터의 한 노드에서 표시합니다. 이 명령을 실행하기 위해 root 역할로 로그인할 필요가 없습니다.

phys-schost-1# **cldevice list -v**

다음과 비슷한 결과가 출력됩니다:

DID Device	Full Device Path
d1	phys-schost-1:/dev/rdsk/c0t0d0

....

d2	phys-schost-1:/dev/rdsk/c0t6d0
d3	<pre>phys-schost-2:/dev/rdsk/cltld0</pre>
d3	<pre>phys-schost-1:/dev/rdsk/clt1d0</pre>

- b. 클러스터 노드 및 저장 장치 간의 모든 연결이 출력되는지 확인합니다.
- c. 쿼럼 장치로 구성할 각 공유 디스크의 전역 장치 ID를 확인합니다.

참고 - 선택한 공유 디스크가 쿼럼 장치로 사용하는 데 적합해야 합니다. 쿼럼 장치 선택에 대 한 자세한 내용은 "쿼럼 장치" [29]를 참조하십시오.

Step a의 4.a단계 출력을 사용하여 쿼럼 장치로 구성할 각 공유 디스크의 장치 ID를 식별합니다. 예를 들어 4.a단계의 출력에는 전역 장치 d3이 phys-schost-1과 physschost-2에서 공유되는 것으로 표시됩니다.

- 5. SCSI 프로토콜을 지원하지 않는 공유 디스크를 사용하려면 해당 공유 디스크에 대해 보호 (fencing)가 사용 안함으로 설정되어 있어야 합니다.
 - a. 개별 디스크의 보호(fencing) 설정을 표시합니다.

phys-schost# cldevice show device

=== DID Device Instances === DID Device Name:

/dev/did/rdsk/dN

default_fencing:

nofencing

- 디스크에 대한 보호(fencing)가 nofencing 또는 nofencing-noscrub으로 설정되어 있으면 해당 디스크에 대해 보호(fencing)가 사용 안함으로 설정됩니다. 6단계로 이동합니다.
- 디스크에 대한 보호(fencing)가 pathcount 또는 scsi로 설정되어 있으면 해당 디 스크에 대해 보호(fencing)를 사용 안함으로 설정합니다. 5.c단계로 건너 뜁니다.
- 디스크에 대해 보호(fencing)가 global로 설정되어 있으면 보호(fencing)가 전역 으로 비활성화되었는지 여부도 확인합니다. 5.b단계를 진행합니다. 또는 개별 디스크에 대해서만 보호(fencing)를 사용 안함으로 설정하여 global_fencing 등록 정보가 설정된 값에 관계없이 해당 디스크에 대한 값을 대체 할 수 있습니다. 개별 디스크에 대해 보호(fencing)를 사용 안함으로 설정하려면 5.c단계로 건너 뜁니다.
- b. 보호(fencing)가 전역으로 비활성화되었는지 여부를 확인합니다.

phys-schost# cluster show -t global

=== Cluster ===
Cluster name:
alobal fencing:
geobalencing.

cluster

nofencing

- 전역 보호(fencing)가 nofencing 또는 nofencing-noscrub으로 설정되어 있으면 default_fencing 등록 정보가 global로 설정된 공유 디스크에 대한 보호(fencing) 가 사용 안함으로 설정됩니다. 6단계로 이동합니다.
- 전역 보호(fencing)가 pathcount 또는 prefer3으로 설정되어 있으면 공유 디스크 에 대한 보호(fencing)를 사용 안함으로 설정합니다. 5.c단계를 진행합니다.

참고 - 개별 디스크의 default_fencing 등록 정보가 global로 설정된 경우 해당 개별 디스 크에 대한 보호(fencing)는 클러스터 전체의 global_fencing 등록 정보가 nofencing 또는 nofencing-noscrub으로 설정된 경우에만 비활성화됩니다. global_fencing 등록 정보를 보 호(fencing)를 사용으로 설정하는 값으로 변경하면 default_fencing 등록 정보가 global로 설정된 모든 디스크에 대해 보호(fencing)가 사용으로 설정됩니다.

c. 공유 디스크에 대해 보호(fencing)를 비활성화합니다.

phys-schost# cldevice set \
-p default_fencing=nofencing-noscrub device

d. 공유 디스크에 대해 보호(fencing)가 비활성화되어 있는지 확인합니다.

phys-schost# cldevice show device

6. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

Initial Cluster Setup(초기 클러스터 설정) 화면이 표시됩니다.

참고 - 주 메뉴가 대신 표시되면 초기 클러스터 설정이 이미 성공적으로 수행된 것입니다. 11 단계로 건너 뜁니다.

- 7. 쿼럼 장치를 추가할지 여부를 나타냅니다.
 - 클러스터가 2 노드 클러스터인 경우 하나 이상의 공유 쿼럼 장치를 구성해야 합니다. 하나 이상의 쿼럼 장치를 구성하려면 Yes를 입력합니다.
 - 클러스터에 세 개 이상의 노드가 있으면 쿼럼 장치 구성은 선택 사항입니다.
 - 추가 쿼럼 장치를 구성하지 않으려면 №를 입력합니다. 그런 다음 10단계로 건너뜁 니다.

■ 추가 쿼럼 장치를 구성하려면 Yes를 입력합니다.

8. 쿼럼 장치로 구성할 장치 유형을 지정합니다.

쿼럼 장치 유형 설명	
shared_disk 나음 위지의 공유	LUN:
■ 공유 SCSI 디스 ■ SATA(Serial A ■ Oracle ZFS 저	≥크 Attached Technology Attachment) 저장소 장소 어플라이언스
quorum_server 쿼럼 서버	

- 9. 쿼럼 장치로 구성할 장치의 이름을 지정하고 필요한 추가 정보를 제공합니다.
 - 쿼럼 서버의 경우에도 다음 정보를 지정합니다.
 - 쿼럼 서버 호스트의 IP 주소
 - 클러스터 노드와 통신하기 위해 쿼럼 서버에서 사용하는 포트 번호

10. installmode를 재설정할지 물으면 Yes를 입력합니다.

clsetup 유틸리티에서 클러스터에 대해 쿼럼 구성 및 투표 수를 설정하면 클러스터 초기화 가 완료되었습니다라는 메시지가 표시됩니다. 주 메뉴로 돌아갑니다.

- 11. clsetup 유틸리티를 종료합니다.
- 다음 순서 쿼럼 구성을 확인하고 설치 모드가 비활성화되어 있는지 확인합니다. 쿼럼 구성 및 설치 모드 를 확인하는 방법 [137]으로 이동합니다.
- 일반오류 scinstall에서 자동 구성 실패 scinstall에서 공유 디스크를 쿼럼 장치로 자동으로 구성하 지 못하거나 클러스터의 installmode 상태가 계속 enabled인 경우 scinstall 처리가 완료된 후 clsetup 유틸리티를 사용하여 쿼럼 장치를 구성하고 installmode를 재설정할 수 있습니 다.

중단된 clsetup 처리 - 쿼럼 설치 프로세스가 중단되거나 성공적으로 완료되지 않으면 clsetup을 다시 실행합니다.

쿼럼 투표 수 변경 - 쿼럼 장치에 첨부되는 노드 수를 나중에 늘리거나 줄이면 쿼럼 투표 수 가 자동으로 다시 계산되지 않습니다. 각 쿼럼 장치를 제거한 다음 한 번에 쿼럼 장치 하나씩 구성에 다시 추가하여 정확한 쿼럼 투표 수를 재설정할 수 있습니다. 2 노드 클러스터의 경우 원래 쿼럼 장치를 제거했다가 다시 추가하기 전에 새 쿼럼 장치를 임시로 추가합니다. 그런 다음 임시 쿼럼 장치를 제거합니다. Unresolved link to "Oracle Solaris Cluster 시스템 관 리 설명서 의 6 장, 쿼럼 관리"에서 "How to Modify a Quorum Device Node List" 절차를 참조하십시오.

연결할 수 없는 쿼럼 장치 - 쿼럼 장치에 연경할 수 없다는 메시지가 클러스터 노드에 표시되 거나 클러스터 노드 오류가 CMM: Unable to acquire the quorum device라는 메시지와 함 께 표시되면 쿼럼 장치 또는 해당 장치 경로에 문제가 있을 수 있습니다. 쿼럼 장치와 해당 장 치 경로가 작동하는지 확인하십시오.

문제가 지속되면 다른 쿼럼 장치를 사용하십시오. 또는 동일한 쿼럼 장치를 사용하려면 다음 과 같이 쿼럼 시간 초과를 높은 값으로 늘리십시오.

참고 - Oracle RAC(Oracle RAC)의 경우 기본 쿼럼 시간 초과 25초를 변경하지 마십시오. 특 정 정보 분리(split-brain) 시나리오에서는 시간 초과 기간이 길어지면 VIP 자원 시간이 초과 되어 Oracle RAC VIP 페일오버가 실패할 수 있습니다. 사용 중인 쿼럼 장치에서 기본 25초 시간 초과를 준수하지 않는 경우 다른 쿼럼 장치를 사용하십시오.

```
1. root 역할을 수행합니다.
```

2. 각 클러스터 노드에서 root 역할로 /etc/system 파일을 편집하여 시간 초과를 높은 값 으로 설정합니다.

다음 예에서는 시간 초과를 700초로 설정합니다.

phys-schost# pfedit /etc/system

set cl_haci:qd_acquisition_timer=700 3. 하나의 노드에서 클러스터를 종료합니다.

phys-schost-1# cluster shutdown -g0 -y

4. 각 노드를 클러스터로 다시 부트합니다.

재부트 후에는 /etc/system 파일 변경 사항이 초기화됩니다.

▼ 쿼럼 구성 및 설치 모드를 확인하는 방법

쿼럼 구성이 성공적으로 완료되었는지, 클러스터 설치 모드가 사용 안함으로 설정된 상태인 지 확인하려면 이 절차를 수행합니다.

이러한 명령을 실행하기 위해 root 역할로 전환할 필요가 없습니다.

1. 전역 클러스터 노드에서 장치 및 노드 쿼럼 구성을 확인합니다.

phys-schost\$ clquorum list

각 쿼럼 장치 및 각 노드가 출력됩니다.

2. 노드에서 클러스터 설치 모드가 사용 안함으로 설정되어 있는지 확인합니다.

phys-schost\$ cluster show -t global | grep installmode installmode: disabled

클러스터 설치 및 만들기가 완료되었습니다.

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다. 이 목 록에서 둘 이상의 작업을 수행해야 하는 경우 해당 작업 중 첫번째 작업으로 이동합니다.
 - 개인 호스트 이름을 변경하려면 개인 호스트 이름을 변경하는 방법 [138]으로 이동합 니다.
 - NTP 구성 파일을 설치하거나 수정하려면 "NTP(Network Time Protocol) 구 성" [139]으로 이동합니다.
 - 볼륨 관리자를 설치하려면 4장. Solaris Volume Manager 소프트웨어 구성으로 이동합 니다.
 - 클러스터 파일 시스템을 만들려면 클러스터 파일 시스템을 만드는 방법 [159]으로 이 동합니다.
 - 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참 조하십시오.
 - 클러스터가 완전히 구성된 경우 구성 유효성을 검사합니다. 클러스터의 유효성을 검사하는 방법 [142]으로 이동합니다.
 - 클러스터를 생산 환경으로 전환하기 전에 나중에 진단에 사용할 수 있도록 클러스터 구 성의 기본 기록을 만듭니다. 클러스터 구성의 진단 데이터를 기록하는 방법 [143]으로 이동합니다.
 - 참조 클러스터 구성을 백업합니다.

클러스터 구성의 아카이브된 백업을 사용하면 클러스터 구성을 더 쉽게 복구할 수 있습니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 클러스 터 구성을 백업하는 방법"을 참조하십시오.

▼ 개인 호스트 이름을 변경하는 방법

Oracle Solaris Cluster 소프트웨어를 설치할 때 지정되는 기본 개인 호스트 이름 clusternode*nodeID*-priv를 사용하지 않으려면 이 작업을 수행합니다.

참고 - 응용 프로그램과 데이터 서비스가 구성되어 시작된 후에는 이 절차를 수행하지 마십시 오. 구성되어 시작된 후 이 작업을 수행하면 개인 호스트 이름이 변경된 후에도 응용 프로그 램이나 데이터 서비스에서 이전의 개인 호스트 이름을 계속 사용하여 호스트 이름 충돌이 발 생할 수 있습니다. 응용 프로그램이나 데이터 서비스가 실행되고 있으면 중지한 후 이 절차를 수행하십시오.

클러스터의 한 활성 노드에 대해 이 절차를 수행합니다.

- 1. 전역 클러스터 노드에서 root 역할을 수행합니다.
- 2. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

clsetup 주 메뉴가 표시됩니다.

- 3. 개인 호스트 이름에 대한 옵션 번호를 입력하고 Enter 키를 누릅니다. Private Hostname(개인 호스트 이름) 메뉴가 표시됩니다.
- 4. 노드 개인 호스트이름 변경에 대한 옵션 번호를 입력하고 Enter 키를 누릅니다.
- 5. **화면의 지시에 따라 개인 호스트 이름을 변경합니다.** 변경할 각 개인 호스트 이름에 대해 반복합니다.
- 6. 새 개인 호스트 이름을 확인합니다.

<pre>phys-schost# clnode show -t node</pre>	grep privatehostname
privatehostname:	clusternodel-priv
privatehostname:	clusternode2-priv
privatehostname:	clusternode3-priv

다음 순서 NTP 구성을 변경된 개인 호스트 이름으로 업데이트합니다. 개인 호스트 이름을 변경한 후에 NTP를 업데이트하는 방법 [141]으로 이동합니다.

NTP(Network Time Protocol) 구성

이 절에서는 다음 절차에 대해 설명합니다.

- 고유의 /etc/inet/ntp.conf 파일을 사용하는 방법 [139]
- 단일 노드 클러스터에 노드를 추가한 후에 NTP를 설치하는 방법 [140]
- 개인 호스트 이름을 변경한 후에 NTP를 업데이트하는 방법 [141]
- ▼ 고유의 /etc/inet/ntp.conf 파일을 사용하는 방법

참고 - Oracle Solaris Cluster 소프트웨어를 설치하기 전에 사용자 고유의 /etc/inet/ ntp.conf 파일을 설치한 경우에는 이 절차를 수행할 필요가 없습니다. 클러스터의 유효성을 검사하는 방법 [142]으로 진행합니다.

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 2. 클러스터의 각 노드에 /etc/inet/ntp.conf 파일을 추가합니다.
- 3. 각 노드에서 NTP 서비스의 상태를 확인합니다.

phys-schost# svcs svc:/network/ntp:default

4. 각 노드에서 NTP 데몬을 시작합니다.

■ NTP 서비스가 disabled인 경우 서비스를 사용으로 설정합니다.

phys-schost# svcadm enable svc:/network/ntp:default

■ NTP 서비스가 online인 경우 서비스를 다시 시작합니다.

phys-schost# svcadm restart svc:/network/ntp:default

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다. 이 목 록에서 둘 이상의 작업을 수행해야 하는 경우 해당 작업 중 첫번째 작업으로 이동합니다.
 - 볼륨 관리자를 설치하려면 4장. Solaris Volume Manager 소프트웨어 구성으로 이동합 니다.
 - 클러스터 파일 시스템을 만들려면 클러스터 파일 시스템을 만드는 방법 [159]으로 이 동합니다.
 - 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to "Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참 조하십시오.
 - 클러스터가 완전히 구성된 경우 구성 유효성을 검사합니다. 클러스터의 유효성을 검사하는 방법 [142]으로 이동합니다.
 - 클러스터를 생산 환경으로 전환하기 전에 나중에 진단에 사용할 수 있도록 클러스터 구성의 기본 기록을 만듭니다. 클러스터 구성의 진단 데이터를 기록하는 방법 [143]으로 이동합니다.

▼ 단일 노드 클러스터에 노드를 추가한 후에 NTP를 설치하는 방법

단일 노드 클러스터에 노드를 추가한 경우에는 사용한 NTP 구성 파일이 새 노드 및 원래 클 러스터 노드에 복사되었는지 확인해야 합니다.

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 추가된 노드에서 원래 클러스터 노드로 /etc/inet/ntp.conf 및 /etc/inet/ntp.conf.sc 파 일을 복사합니다.
 이러한 파일은 추가된 노드가 클러스터로 구성되었을 때 추가된 노드에 생성되었습니다.
- 3.
 원래 클러스터 노드에서 /etc/inet/ntp.conf.sc 파일을 가리키는 /etc/inet/

 ntp.conf.include라는 심볼릭 링크를 만듭니다.

phys-schost# ln -s /etc/inet/ntp.conf.sc /etc/inet/ntp.conf.include

각 노드에서 NTP 서비스의 상태를 확인합니다.

phys-schost# svcs svc:/network/ntp:default

- 5. 각 노드에서 NTP 데몬을 시작합니다.
 - NTP 서비스가 disabled인 경우 서비스를 사용으로 설정합니다.

phys-schost# svcadm enable svc:/network/ntp:default

■ NTP 서비스가 online인 경우 서비스를 다시 시작합니다.

phys-schost# svcadm restart svc:/network/ntp:default

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다. 이 목 록에서 둘 이상의 작업을 수행해야 하는 경우 해당 작업 중 첫번째 작업으로 이동합니다.
 - 볼륨 관리자를 설치하려면 4장. Solaris Volume Manager 소프트웨어 구성으로 이동합 니다.
 - 클러스터 파일 시스템을 만들려면 클러스터 파일 시스템을 만드는 방법 [159]으로 이 동합니다.
 - 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to "Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참 조하십시오.
 - 클러스터가 완전히 구성된 경우 구성 유효성을 검사합니다. 클러스터의 유효성을 검사하는 방법 [142]으로 이동합니다.
 - 클러스터를 생산 환경으로 전환하기 전에 나중에 진단에 사용할 수 있도록 클러스터 구성의 기본 기록을 만듭니다. 클러스터 구성의 진단 데이터를 기록하는 방법 [143]으로 이동합니다.

▼ 개인 호스트 이름을 변경한 후에 NTP를 업데이트하는 방법

- 1. 클러스터 노드에서 root 역할을 수행합니다.
- 2. 클러스터의 각 노드에서 /etc/inet/ntp.conf.sc 파일을 변경된 개인 호스트 이름으로 업데 이트합니다.
- 3. 각 노드에서 NTP 서비스의 상태를 확인합니다.

phys-schost# svcs svc:/network/ntp:default

- 4. 각 노드에서 NTP 데몬을 시작합니다.
 - NTP 서비스가 disabled인 경우 서비스를 사용으로 설정합니다.

phys-schost# svcadm enable svc:/network/ntp:default

■ NTP 서비스가 online인 경우 서비스를 다시 시작합니다.

phys-schost# svcadm restart svc:/network/ntp:default

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다. 이 목 록에서 둘 이상의 작업을 수행해야 하는 경우 해당 작업 중 첫번째 작업으로 이동합니다.
 - 볼륨 관리자를 설치하려면 4장. Solaris Volume Manager 소프트웨어 구성으로 이동합 니다.
 - 클러스터 파일 시스템을 만들려면 클러스터 파일 시스템을 만드는 방법 [159]으로 이 동합니다.
 - 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to "Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참 조하십시오.
 - 클러스터가 완전히 구성된 경우 구성 유효성을 검사합니다. 클러스터의 유효성을 검사하는 방법 [142]으로 이동합니다.
 - 클러스터를 생산 환경으로 전환하기 전에 나중에 진단에 사용할 수 있도록 클러스터 구 성의 기본 기록을 만듭니다. 클러스터 구성의 진단 데이터를 기록하는 방법 [143]으로 이동합니다.

▼ 클러스터의 유효성을 검사하는 방법

클러스터의 모든 구성을 완료한 후 cluster check 명령을 사용하여 클러스터 구성 및 기능의 유효성을 검사합니다. 자세한 내용은 Unresolved link to " cluster1CL" 매뉴얼 페이지를 참 조하십시오.

- 시작하기 전에 펌웨어 및 소프트웨어 업데이트를 포함하여 클러스터의 모든 하드웨어 및 소프트웨어 구성 요소의 설치와 구성을 완료했는지 확인합니다.
 - 1. 클러스터 노드에서 root 역할을 수행합니다.
 - 2. 유효성 검사를 수행합니다.

Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기본 클러스터 구성을 검증하는 방법"의 절차를 수행합니다.

다음 순서 클러스터를 생산 환경으로 전환하기 전에 나중에 진단에 사용할 수 있도록 클러스터 구성의 기본 기록을 만듭니다. 클러스터 구성의 진단 데이터를 기록하는 방법 [143]으로 이동합 니다.

▼ 클러스터 구성의 진단 데이터를 기록하는 방법

전역 클러스터 구성을 완료한 후 생산 환경으로 전환하기 전에 Oracle Explorer 유틸리티를 사용하여 클러스터에 대한 기본 정보를 기록합니다. 이 데이터는 나중에 클러스터 문제를 해 결해야 할 경우에 사용할 수 있습니다.

- 1. root 역할을 수행합니다.
- 2. 아직 설치되지 않은 경우 Oracle Explorer 소프트웨어를 설치합니다.

서비스 도구 번들에는 Oracle Explorer 패키지 SUNWexplo 및 SUNWexplu가 들어 있습니 다. 소프트웨어 다운로드 및 설치 정보는 http://www.oracle.com/us/support/systems/ premier/services-tools-bundle-sun-systems-163717.html을 참조하십시오.

3. 클러스터의 각 노드에서 explorer 유틸리티를 실행합니다.

플랫폼에 적합한 명령을 사용합니다. 예를 들어, Oracle의 Sun Fire T1000 서버에 대한 정 보를 수집하려면 다음 명령을 실행합니다.

explorer -i -w default,Tx000

자세한 내용은 /opt/SUNWexplo/man/man1m/ 디렉토리의 explorer(1M) 매뉴얼 페이지와 My Oracle Support (https://support.oracle.com)에서 노트 1153444.1을 통해 제공되는 Oracle Explorer Data Collector User Guide를 참조하십시오.

explorer 출력 파일은 /opt/SUNWexplo/output/ 디렉토리에 explorer.*hostid*. *hostname-date*.tar.gz로 저장됩니다.

4. 전체 클러스터가 다운된 경우 액세스할 수 있는 위치에 파일을 저장합니다.

5. 사용자의 거주 지역에 해당하는 Oracle Explorer 데이터베이스로 explorer 파일을 모두 전 송합니다.

*Oracle Explorer Data Collector User's Guide*의 절차에 따라 FTP 또는 HTTPS를 사용하여 Oracle Explorer 파일을 제출합니다.

사용자 클러스터의 기술 문제를 진단하는 데 데이터가 필요한 경우 Oracle 기술 지원부는 Oracle Explorer 데이터베이스의 explorer 출력을 사용할 수 있습니다.

144 Oracle Solaris Cluster 소프트웨어 설치 설명서 • 2014년 9월
◆ ◆ ◆ 4 장

Solaris Volume Manager 소프트웨어 구성

"볼륨 관리 계획" [40]의 계획 정보와 함께 이 장의 절차를 사용하여 Solaris Volume Manager 소프트웨어의 로컬 및 다중 호스트 디스크를 구성합니다. 자세한 내용은 Solaris Volume Manager 설명서를 참조하십시오.

이 장은 다음 절로 구성됩니다.

- "Solaris Volume Manager 소프트웨어 구성" [145]
- "클러스터에 디스크 세트 만들기" [147]
- "이중 문자열 중개자 구성" [155]

Solaris Volume Manager 소프트웨어 구성

다음 표에는 Oracle Solaris Cluster 구성에 필요한 Solaris Volume Manager 소프트웨어 를 구성하기 위해 수행해야 하는 작업이 나열되어 있습니다. 표시된 순서대로 절차를 완료하 십시오.

표 4-1	작업 맵: Solaris Volume Manager 소프트웨어 구성
-------	---------------------------------------

작업	지침
Solaris Volume Manager 구성 레이아웃을 계획합니다.	"볼륨 관리 계획" [40]
Solaris Volume Manager 소프트웨어를 설치합니다.	Solaris Volume Manager를 설치하는 방법 [145]
로컬 디스크에 상태 데이터베이스 복제본을 만듭니다.	상태 데이터베이스 복제본 생성 방법 [146]

▼ Solaris Volume Manager를 설치하는 방법

전역 클러스터의 각 노드에서 이 절차를 수행합니다.

- 1. root 역할을 수행합니다.
- 2. solaris 게시자가 유효한지 확인합니다.

# pkg publisher			
PUBLISHER	TYPE	STATUS	URI
solaris	origin	online	solaris-repository

solaris 게시자 설정에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2 패키 지 저장소 복사 및 만들기 "를 참조하십시오.

Solaris Volume Manager 패키지를 설치합니다.

pkg install system/svm

상태 데이터베이스 복제본 생성 방법 V

전역 클러스터의 각 노드에서 이 절차를 수행합니다.

- 1. root 역할을 수행합니다.
- 2. 각 클러스터 노드에 대한 하나 이상의 로컬 장치에 상태 데이터베이스 복제본을 만듭니다. 장치 ID 이름(dN)이 아닌 실제 이름(cNtXdY sZ)을 사용하여 사용할 슬라이스를 지정합니 다.

phys-schost# metadb -af slice-1 slice-2 slice-3

작은 정보 - Solaris Volume Manager 소프트웨어를 실행하는 데 필요한 상태 데이터를 보호. 하려면 각 노드에 대한 복제본을 세 개 이상 만듭니다. 또한 두 개 이상의 장치에 복제본을 만 들면 장치 중 하나에 오류가 발생할 경우에도 보호할 수 있습니다.

자세한 내용은 Unresolved link to " metadb1M" 매뉴얼 페이지 및 Unresolved link to " Solaris Volume Manager Administration Guide 의 Creating State Database Replicas"를 참조하십시오.

3. 복제본을 확인합니다.

phys-schost# metadb

metadb 명령을 실행하면 복제본 목록이 표시됩니다.

예 4-1 상태 데이터베이스 복제본 만들기

다음 예에서는 세 개의 상태 데이터베이스 복제본을 보여 줍니다. 각 복제본은 서로 다른 장 치에 만들어집니다.

phys-schost# metadb -af c0t0d0s7 c0t1d0s7 c1t0d0s7 phys-schost# **metadb** first blk block count flags

а	u	16	8192	/dev/dsk/c0t0d0s7
а	u	16	8192	/dev/dsk/c0t1d0s7
а	u	16	8192	/dev/dsk/c1t0d0s7

다음 순서 "클러스터에 디스크 세트 만들기" [147]로 이동하여 Solaris Volume Manager 디스크 세 트를 만듭니다.

클러스터에 디스크 세트 만들기

이 절에서는 클러스터 구성을 위해 디스크 세트를 만드는 방법을 설명합니다. Oracle Solaris Cluster 환경에서 Solaris Volume Manager 디스크 세트를 만들면 디스크 세트는 svm 유형 의 장치 그룹으로 Oracle Solaris Cluster 소프트웨어에 자동으로 등록됩니다. svm 장치 그룹 을 만들거나 삭제하려면 Solaris Volume Manager 명령 및 유틸리티를 사용하여 장치 그룹 의 기본 디스크 세트를 만들거나 삭제해야 합니다.

다음 표에는 디스크 세트를 만들기 위해 수행해야 하는 작업이 나열되어 있습니다. 표시된 순 서대로 절차를 완료하십시오.

표 4-2 작업 맵: Solaris Volume Manager 디스크 세트 구성

작업	지침
metaset 명령을 사용하여 디스크 세트를 만듭니다.	디스크 세트를 만드는 방법 [147]
디스크 세트에 드라이브를 추가합니다.	디스크 세트에 드라이브를 추가하는 방법 [150]
(선택 사항) 디스크 세트의 드라이브를 다시 분할하여 다른 슬라이 스에 공간을 할당합니다.	디스크 세트의 드라이브를 다시 분할하는 방법 [151]
/etc/lvm/md.tab 파일에 DID 의사 드라이버 매핑 목록을 표시하 고 볼륨을 정의합니다.	md.tab 파일을 만드는 방법 [152]
md.tab 파일을 초기화합니다.	볼륨을 활성화하는 방법 [153]

▼ 디스크 세트를 만드는 방법

시작하기 전에 만들려는 디스크 세트가 다음 요구 사항 중 하나를 충족해야 합니다.

- 디스크 세트가 정확히 2개의 디스크 문자열로 구성된 경우 디스크 세트는 정확히 2개의 노드에 연결되어야 하며 2개 또는 3개의 중재자 호스트를 사용해야 합니다. 이러한 중 재자 호스트에는 디스크 세트를 포함하는 외장 장치에 연결된 2개의 호스트가 포함되어 야 합니다. 이중 문자열 중재자 구성 방법에 대한 자세한 내용은 "이중 문자열 중개자 구 성" [155]을 참조하십시오.
- 디스크 세트가 3개 이상의 디스크 문자열로 구성된 경우에는 두 디스크 문자열 S1 및 S2 의 총 드라이브 수가 세번째 문자열 S3의 드라이브 수보다 많아야 합니다. 요구 사항을 공식으로 표현하면 개수(S1) + 개수(S2) 〉개수(S3)가 됩니다.
- 1. 클러스터의 각 노드에서 devfsadm 명령을 실행합니다.

클러스터의 모든 노드에서 동시에 이 명령을 실행할 수 있습니다.

2. 클러스터의 한 노드에서 전역 장치 이름 공간을 업데이트합니다.

phys-schost# cldevice populate

자세한 내용은 Unresolved link to " cldevice1CL" 매뉴얼 페이지를 참조하십시오.

 각 노드에서 디스크 세트를 만들기 전에 명령 처리가 완료되었는지 확인합니다.
 이 명령이 하나의 노드에서 실행되더라도 모든 노드에서 원격으로 실행됩니다. 명령 처리가 완료되었는지 판별하려면 클러스터의 각 노드에서 다음 명령을 실행하십시오.

phys-schost# ps -ef | grep scgdevs

- 로컬 상태 데이터베이스 복제본이 있는지 확인합니다.
 지침은 상태 데이터베이스 복제본 생성 방법 [146]을 참조하십시오.
- 5. 디스크 세트를 마스터할 클러스터 노드에서 root 역할을 수행합니다.
- 6. 디스크 세트를 만듭니다.

다음 명령은 디스크 세트를 만들고 해당 디스크 세트를 Oracle Solaris Cluster 장치 그룹으 로 등록합니다.

phys-schost# metaset -s setname -a -h node1 node2

-s setname

디스크 세트 이름을 지정합니다.

-a

디스크 세트를 추가(생성)합니다.

-h *node1*

디스크 세트를 마스터할 기본 노드의 이름을 지정합니다.

node2

디스크 세트를 마스터할 보조 노드의 이름을 지정합니다.

7. 복제된 Solaris Volume Manager 장치 그룹을 구성하려는 경우 장치 그룹에 대한 복제 등록 정보를 설정합니다.

참고 - metaset 명령을 실행하여 클러스터에 Solaris Volume Manager 장치 그룹을 구성 하면 기본적으로 하나의 보조 노드가 지정됩니다. 장치 그룹을 만든 후 clsetup 유틸리티를 사용하여 장치 그룹에서 보조 노드 수를 원하는 대로 변경할 수 있습니다. Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 장치 그룹 관리"Oracle Solaris Cluster System Administration Guide 를 참조하십시오.

phys-schost# cldevicegroup sync device-group-name

데이터 복제에 대한 자세한 내용은 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 4 장, 데이터 복제 접근 방식"를 참조하십시오.

8. 새 디스크 세트의 상태를 확인합니다.

phys-schost# metaset -s Setname

9. 필요에 따라 장치 그룹 등록 정보를 설정합니다.

phys-schost# cldevicegroup set -p name=value device-group

-p

장치 그룹 등록 정보를 지정합니다.

name

등록 정보 이름을 지정합니다.

value

등록 정보의 값 또는 설정을 지정합니다.

device-group

장치 그룹의 이름을 지정합니다. 장치 그룹 이름은 디스크 세트 이름과 동일합니다. 장치 그룹 등록 정보에 대한 자세한 내용은 Unresolved link to " cldevicegroup1CL"을 참 조하십시오.

예 4-2 디스크 세트 만들기

다음 명령을 실행하면 phys-schost-1 및 phys-schost-2 노드가 잠재적 기본 노드로 지정된 두 개의 디스크 세트 dg-schost-1 및 dg-schost-2가 만들어집니다.

phys-schost# metaset -s dg-schost-1 -a -h phys-schost-1 phys-schost-2
phys-schost# metaset -s dg-schost-2 -a -h phys-schost-1 phys-schost-2

다음 순서 디스크 세트에 드라이브를 추가합니다. "디스크 세트에 드라이브 추가" [149]로 이동합니다.

디스크 세트에 드라이브 추가

디스크 세트에 드라이브를 추가하면 볼륨 관리 소프트웨어에서 드라이브를 다시 분할하여 디 스크 세트의 상태 데이터베이스가 드라이브에 배치되도록 합니다.

- 각 드라이브의 작은 공간은 Solaris Volume Manager 소프트웨어에서 사용할 수 있도록 예약됩니다. EFI(Extensible Firmware Interface) 레이블이 지정된 장치에서는 슬라이 스 6이 사용됩니다. 각 드라이브의 나머지 공간은 슬라이스 0에 배치됩니다.
- 대상 슬라이스가 올바르게 구성되지 않은 경우에만 드라이브가 디스크 세트에 추가될 때 다시 분할됩니다.
- 드라이브를 다시 분할하면 기존 데이터가 삭제됩니다.
- 대상 슬라이스가 실린더 0에서 시작되고 드라이브 분할 영역이 상태 데이터베이스 복제 본을 포함할 수 있을 만큼 크면 드라이브가 다시 분할되지 않습니다.

▼ 디스크 세트에 드라이브를 추가하는 방법

- 시작하기 전에 디스크 세트가 만들어졌는지 확인합니다. 지침은 디스크 세트를 만드는 방법 [147]을 참 조하십시오.
 - 1. root 역할을 수행합니다.
 - 2. DID 매핑을 나열합니다.

phys-schost# cldevice show | grep Device

- 디스크 세트를 마스터하거나 마스터할 수도 있는 클러스터 노드가 공유하는 드라이브를 선택하십시오.
- 디스크 세트에 드라이브를 추가할 때 /dev/did/rdsk/dN 형식의 전체 DID 장치 이름을 사용합니다.

다음 예에서 DID 장치 /dev/did/rdsk/d3에 대한 항목은 드라이브가 phys-schost-1 및 phys-schost-2에 의해 공유됨을 나타냅니다.

=== DID Device Instances === DID Device Name: Full Device Path: DID Device Name: Full Device Path: DID Device Name: Full Device Path: Full Device Path:

/dev/did/rdsk/d1
phys-schost-1:/dev/rdsk/c0t0d0
/dev/did/rdsk/d2
phys-schost-1:/dev/rdsk/c0t6d0
/dev/did/rdsk/d3
phys-schost-1:/dev/rdsk/c1t1d0
phys-schost-2:/dev/rdsk/c1t1d0

3. 디스크 세트의 소유자로 전환합니다.

phys-schost# cldevicegroup switch -n node devicegroup

-n node

장치 그룹의 소유권을 가지도록 노드를 지정합니다.

devicegroup

디스크 세트 이름과 동일하게 장치 그룹 이름을 지정합니다.

4. 디스크 세트에 드라이브를 추가합니다.

전체 DID 경로 이름을 사용합니다.

phys-schost# metaset -s Setname -a /dev/did/rdsk/dN

-s setname

디스크 세트 이름을 장치 그룹 이름과 동일하게 지정합니다.

-a

디스크 세트에 드라이브를 추가합니다.

참고 - 디스크 세트에 드라이브를 추가할 때 하위 레벨 장치 이름(cNtXdY)을 사용하지 마십 시오. 하위 수준 장치 이름은 로컬 이름이므로 클러스터 전체에서 고유하지 않기 때문에 이 이름을 사용하면 메타 세트가 전환되지 않을 수도 있습니다.

5. 디스크 세트와 드라이브의 상태를 확인합니다.

phys-schost# metaset -s setname

예 4-3 디스크 세트에 드라이브 추가

metaset 명령을 사용하면 디스크 세트 dg-schost-1에 드라이브 /dev/did/rdsk/d1 및 /dev/ did/rdsk/d2가 추가됩니다.

phys-schost# metaset -s dg-schost-1 -a /dev/did/rdsk/d1 /dev/did/rdsk/d2

다음 순서 볼륨에서 사용하기 위해 드라이브를 다시 분할하려면 디스크 세트의 드라이브를 다시 분할하는 방법 [151]으로 이동합니다.

그렇지 않으면 md.tab 파일을 만드는 방법 [152]으로 이동하여 md.tab 파일로 메타 장치 또는 볼륨을 정의하는 방법을 알아봅니다.

▼ 디스크 세트의 드라이브를 다시 분할하는 방법

Unresolved link to " metaset1M" 명령을 실행하면 디스크 세트에서 드라이브를 다시 분 할하여 각 드라이브의 작은 공간을 Solaris Volume Manager 소프트웨어에 사용할 수 있도 록 예약합니다. EFI(Extensible Firmware Interface) 레이블이 지정된 장치에서는 슬라이스 6이 사용됩니다. 각 드라이브의 나머지 공간은 슬라이스 0에 배치됩니다. 드라이브를 보다 효율적으로 사용하려면 이 절차를 사용하여 디스크 레이아웃을 수정합니다. EFI 슬라이스 1 - 5에 공간을 할당하면 Solaris Volume Manager 볼륨을 설치할 때 이러한 슬라이스를 사용 할 수 있습니다.

1. root 역할을 수행합니다.

- format 명령을 사용하여 디스크 세트의 각 드라이브에 대한 디스크 분할을 변경합니다.
 드라이브를 다시 분할할 때 metaset 명령이 드라이브를 다시 분할하지 못하도록 조치를 취합 니다.
 - a. 실린더 0에서 시작하여 EFI용 슬라이스 6을 상태 데이터베이스 복제본을 유지할 만큼 충분히 크게 만듭니다.

대상 슬라이스가 드라이브의 다른 슬라이스와 겹치지 않도록 하십시오. Volume Manager 소프트웨어 버전에 맞는 상태 데이터베이스 복제본 크기를 결정하 려면 Solaris Volume Manager 관리 설명서를 참조하십시오.

b. 대상 슬라이스의 Flag 필드를 wu(읽기-쓰기, 마운트 해제 가능)로 설정합니다. 이 필드를 읽기 전용으로 설정하지 마십시오.

자세한 내용은 Unresolved link to " format1M" 매뉴얼 페이지를 참조하십시오.

다음 순서 md.tab 파일을 사용하여 볼륨을 정의합니다. md.tab 파일을 만드는 방법 [152]으로 이동 합니다.

▼ md.tab 파일을 만드는 방법

클러스터의 각 노드에 /etc/lvm/md.tab 파일을 만듭니다. md.tab 파일을 사용하여 만든 디 스크 세트에 대해 Solaris Volume Manager 볼륨을 정의합니다.

참고 - 로컬 볼륨을 사용하고 있는 경우 로컬 볼륨 이름이 디스크 세트를 만드는 데 사용되는 장치 ID와 다른지 확인합니다. 예를 들어 장치 ID /dev/did/dsk/d3이 디스크 세트에서 사용 되는 경우 로컬 볼륨에 /dev/md/dsk/d3 이름을 사용하지 마십시오. 이 요구 사항은 이름 지 정 규약 /dev/md/setname/{r}dsk/d#을 사용하는 공유 볼륨에는 적용되지 않습니다.

1. root 역할을 수행합니다.

md.tab 파일을 만들 때 참조할 수 있도록 DID 매핑을 나열합니다.

md.tab 파일에서 하위 레벨 장치 이름(cN tXdY) 대신 전체 DID 장치 이름을 사용합니다. DID 장치 이름은 /dev/did/rdsk/dN 형식을 사용합니다.

phys-schost# cldevice show | grep Device

=== DID Device Instances === DID Device Name: Full Device Path: DID Device Name: Full Device Path: DID Device Name: Full Device Path:

/dev/did/rdsk/d1
phys-schost-1:/dev/rdsk/c0t0d0
/dev/did/rdsk/d2
phys-schost-1:/dev/rdsk/c0t6d0
/dev/did/rdsk/d3
phys-schost-1:/dev/rdsk/c1t1d0

Full Device Path:

phys-schost-2:/dev/rdsk/clt1d0

3. 만든 디스크 세트에 대한 볼륨 정의를 포함하는 /etc/lvm/md.tab 파일을 만듭니다. 샘플 예 4-4. "샘플 md.tab 파일" 파일은 Example 4-4를 참조하십시오.

<mark>참고</mark> - 하위 미러에 사용할 드라이브에 기존 데이터가 있는 경우에는 볼륨을 설정하기 전에 데 이터를 백업해야 합니다. 그런 다음 데이터를 미러로 복원합니다.

클러스터 환경의 서로 다른 노드에 있는 로컬 볼륨 사이에서 혼동이 발생하지 않도록 하려면 클러스터 전체에서 각 로컬 볼륨의 이름을 고유하게 설정하는 이름 지정 체계를 사용합니다. 예를 들어 노드 1의 경우 d100에서 d199 사이의 이름을 선택합니다. 노드 2의 경우 d200에서 d299 사이를 사용합니다.

md.tab 파일을 만드는 방법에 대한 자세한 내용은 Solaris Volume Manager 설명서 및 md.tab(4) 매뉴얼 페이지를 참조하십시오.

예 4-4 샘플 md.tab 파일

다음 샘플 md.tab 파일에서는 dg-schost-1이라는 디스크 세트를 정의합니다. md.tab 파일에 서 행의 순서는 중요하지 않습니다.

dg-schost-1/d0 -m dg-schost-1/d10 dg-schost-1/d20
dg-schost-1/d10 1 1 /dev/did/rdsk/d1s0
dg-schost-1/d20 1 1 /dev/did/rdsk/d2s0

샘플 md.tab 파일은 다음과 같이 구성되어 있습니다.

1. 첫번째 행에서는 장치 d0을 볼륨 d10 및 d20의 미러로 정의합니다. -m은 이 장치가 미러 장치임을 나타냅니다.

dg-schost-1/d0 -m dg-schost-1/d0 dg-schost-1/d20

2. 두번째 행에서는 볼륨 d10(d0의 첫번째 하위 미러)을 단방향 스트라이프로 정의합니다.

dg-schost-1/d10 1 1 /dev/did/rdsk/d1s0

- 세번째 행에서는 볼륨 d20(d0의 두번째 하위 미러)을 단방향 스트라이프로 정의합니다. dq-schost-1/d20 1 1 /dev/did/rdsk/d2s0
- 다음 순서 md.tab 파일에 정의된 볼륨을 활성화합니다. 볼륨을 활성화하는 방법 [153]으로 이동합니다.

▼ 볼륨을 활성화하는 방법

md.tab 파일에 정의된 Solaris Volume Manager 볼륨을 활성화하려면 이 절차를 수행합니 다.

- 1. root 역할을 수행합니다.
- 2. md.tab 파일이 /etc/lvm 디렉토리에 있는지 확인합니다.
- 명령이 실행될 노드의 디스크 세트에 대한 소유권이 있는지 확인합니다.
- 4. 디스크 세트의 소유권을 가져옵니다.

phys-schost# cldevicegroup switch -n node device-group

-n *node*

소유권을 갖는 노드를 지정합니다.

device-group

디스크 세트 이름을 지정합니다.

5. md.tab 파일에 정의된 디스크 세트의 볼륨을 활성화합니다.

phys-schost# metainit -s Setname -a

-s setname

디스크 세트 이름을 지정합니다.

-a

md.tab 파일에 있는 모든 볼륨을 활성화합니다.

6. 클러스터의 각 디스크 세트에 대해 3단계 - 5단계를 반복합니다.

필요한 경우 드라이브에 연결된 다른 노드에서 Unresolved link to "metainit1M" 명령을 실행합니다. 클러스터 쌍 토폴로지의 경우 일부 노드에서 드라이브에 액세스하지 못할 수도 있기 때문에 이 단계가 필요합니다.

7. 볼륨의 상태를 확인합니다.

phys-schost# metastat -s Setname

자세한 내용은 Unresolved link to "metastat1M" 매뉴얼 페이지를 참조하십시오.

8. (옵션) 클러스터 구성을 백업합니다.

클러스터 구성의 아카이브된 백업을 사용하면 클러스터 구성을 더 쉽게 복구할 수 있습니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 클러스 터 구성을 백업하는 방법"을 참조하십시오.

예 4-5 md.tab 파일에서 볼륨 활성화

다음 예에서는 md.tab 파일에서 디스크 세트 dg-schost-1에 대해 정의된 모든 볼륨을 활성화 합니다. phys-schost# metainit -s dg-schost-1 -a

다음 순서 클러스터에 정확히 디스크 외장 장치 2개와 노드 2개로 구성된 디스크 세트가 포함된 경우 이중 문자열 중재자를 추가합니다. "이중 문자열 중개자 구성" [155]으로 이동합니다.

그렇지 않으면 클러스터 파일 시스템을 만드는 방법 [159]으로 이동하여 클러스터 파일 시스템을 만드는 방법을 알아봅니다.

이중 문자열 중개자 구성

이 절에서는 이중 문자열 중재자 호스트를 구성하는 정보 및 절차에 대해 설명합니다.

단일 디스크 문자열은 디스크 외장 장치, 물리적 드라이브, 외장 장치와 노드 사이의 케이 블, 인터페이스 어댑터 카드 등으로 구성됩니다. 이중 문자열 디스크 세트는 디스크 문자열 2개에 디스크를 포함하며 정확히 2개의 노드에 연결됩니다. 이중 문자열 디스크 세트의 단 일 디스크 문자열에서 오류가 발생할 경우 Solaris Volume Manager 복제본의 정확히 1/2 만 계속 사용할 수 있으며 디스크 세트는 작동을 중지합니다. 따라서 모든 Solaris Volume Manager 이중 문자열 디스크 세트에 이중 문자열 중개자가 필요합니다. 중재자를 사용하면 이중 문자열 구성에서 하나의 문자열에 오류가 발생하는 경우에도 Oracle Solaris Cluster 소프트웨어에서 최신 데이터를 유지할 수 있습니다.

이중 문자열 중재자 또는 중재자 호스트는 중재자 데이터를 저장하는 클러스터 노드입니다. 중재자 데이터는 다른 중재자의 위치에 대한 정보를 제공하고 데이터베이스 복제본에 저장된 완결 개수와 동일한 완결 개수를 포함합니다. 이 완결 개수는 중재자 데이터가 데이터베이스 복제본의 데이터와 동기화되어 있는지 확인하는 데 사용됩니다.

다음 표에는 이중 문자열 중재자 호스트를 구성하기 위해 수행해야 하는 작업이 나열되어 있 습니다. 표시된 순서대로 절차를 완료하십시오.

표 4-3 작업 맵: Solaris Volume Manager 이중 문자열 중개자 구성

작업	지침	
이중 문자열 중재자 호스트를 구성합니다.	"이중 문자열 중재자 요구 사항" [155]	
	중재자 호스트를 추가하는 방법 [156]	
중재자 데이터의 상태를 검사하고, 필요한 경우 잘못된 중재자 데 이터를 수정합니다.	잘못된 중재자 데이터를 검사하고 수정하는 방법 [157]	

이중 문자열 중재자 요구 사항

다음 규칙은 중재자를 사용하는 이중 문자열 구성에 적용됩니다.

- 디스크 세트는 두 개 또는 세 개의 중재자 호스트로 구성되어야 합니다. 이러한 중재자 호 스트 중 두 개는 디스크 세트에 사용되는 것과 동일한 두 개의 클러스터 노드여야 합니다. 세 번째는 쿼럼 서버와 같이 클러스터의 공용 네트워크에 있는 클러스터 또는 비클러스터 호스트의 다른 노드가 될 수 있습니다.
- 두 개의 문자열 및 두 개의 호스트 기준에 맞지 않는 디스크 세트에는 중재자를 구성할 수 없습니다.

이 규칙을 적용하기 위해 전체 클러스터가 두 개의 노드로만 구성될 필요는 없습니다. 이러한 규칙에 따라 N+1 클러스터 및 여러 가지 다른 토폴로지를 구성할 수 있습니다.

▼ 중재자 호스트를 추가하는 방법

구성에 이중 문자열 중재자가 필요한 경우 이 절차를 수행합니다.

- 1. 이중 문자열 디스크 세트에 세번째 중재자 호스트를 사용할 경우 해당 호스트에 디스크 세트 가 구성되어 있지 않으면 /etc/group 파일을 수정하고 더미 디스크 세트를 만듭니다.
 - a. /etc/group 파일의 sysadmin 그룹에 root 항목을 추가합니다.
 - b. metaset 명령을 사용하여 더미 디스크 세트를 만듭니다.

phys-schost-3# metaset -s dummy-diskset-name -a -h hostname

-s dummy-diskset-net

더미 디스크 세트 이름을 지정합니다.

-a

디스크 세트에 추가합니다.

-h hostname

노드의 이름을 지정합니다.

- 중재자 호스트를 추가할 대상 디스크 세트를 현재 마스터하는 노드에서 root 역할을 수행합 니다.
- 3. 디스크 세트와 연결된 각 노드를 해당 디스크 세트의 중재자 호스트로 추가합니다.

phys-schost# metaset -s setname -a -m mediator-host-list

-s setname

디스크 세트 이름을 지정합니다.

-m mediator-host-list

디스크 세트의 중재자 호스트로 추가할 노드의 이름을 지정합니다.

metaset 명령의 중개자 관련 옵션에 대한 자세한 내용은 Unresolved link to " mediator7D" 매뉴얼 페이지를 참조하십시오.

예 4-6 중개자 호스트 추가

다음 예에서는 phys-schost-1 및 phys-schost-2 노드를 디스크 세트 dg-schost-1의 중개 자 호스트로 추가합니다. 필요한 경우 세번째 중재자 호스트에 대해 명령을 세 번 반복합 니다. 모든 명령은 중재자 호스트를 추가할 디스크 세트를 마스터하는 노드(이 경우 physschost-1)에서 실행됩니다.

phys-schost# metaset -s dg-schost-1 -a -m phys-schost-1
phys-schost# metaset -s dg-schost-1 -a -m phys-schost-2
phys-schost# metaset -s dg-schost-1 -a -m phys-schost-3

다음 순서 중재자 데이터의 상태를 확인합니다. 갈못된 중재자 데이터를 검사하고 수정하는 방법 [157]으로 이동합니다.

▼ 잘못된 중재자 데이터를 검사하고 수정하는 방법

잘못된 중재자 데이터를 복구하려면 이 절차를 수행합니다.

시작하기 전에 중재자 호스트를 추가하는 방법 [156]에 설명된 대로 중재자 호스트를 추가했는지 확인합니다.

1. 중재자 데이터의 상태를 표시합니다.

phys-schost# medstat -s setname

-s setname

디스크 세트 이름을 지정합니다.

자세한 내용은 Unresolved link to " medstat1M" 매뉴얼 페이지를 참조하십시오.

- 2. 각 중재자 호스트에 대해 medstat 출력의 상태 필드를 확인합니다.
 - 0k 상태이면 오류 조건이 없습니다.
 - Bad 상태이면 영향을 받는 중재자 호스트를 복구합니다.
- 3. 영향을 받는 디스크 세트가 있는 노드에서 root 역할을 수행합니다.
- 영향을 받는 모든 디스크 세트에서 잘못된 중재자 데이터가 있는 중재자 호스트를 모두 제거 합니다.

phys-schost# metaset -s setname -d -m mediator-host-list

-s setname

디스크 세트 이름을 지정합니다.

-d

디스크 세트에서 삭제합니다.

-m mediator-host-list

디스크 세트의 중재자 호스트로 제거할 노드의 이름을 지정합니다.

5. 4단계에서 제거한 각 중개자 호스트를 복원합니다.

phys-schost# metaset -s setname -a -m mediator-host-list

-a

디스크 세트에 추가합니다.

-m mediator-host-list

디스크 세트의 중재자 호스트로 추가할 노드의 이름을 지정합니다.

metaset 명령의 중개자 관련 옵션에 대한 자세한 내용은 Unresolved link to " mediator7D" 매뉴얼 페이지를 참조하십시오.

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다.
 - 클러스터 파일 시스템을 만들려면 클러스터 파일 시스템을 만드는 방법 [159]으로 이 동합니다.
 - 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to "Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참 조하십시오.

◆ ◆ ◆ 5 장

클러스터 파일 시스템 만들기

이 장에서는 클러스터 파일 시스템을 만들어 데이터 서비스를 지원하는 방법에 대해 설명합 니다.

또는 가용성이 높은 로컬 파일 시스템을 사용하여 데이터 서비스를 지원할 수 있습니다. 특정 데이터 서비스를 지원하기 위해 클러스터 파일 시스템을 만들지 가용성이 높은 로컬 파일 시스템을 사용할지를 선택하는 방법에 대한 자세한 내용은 해당 데이터 서비스에 대 한 설명서를 참조하십시오. 가용성이 높은 로컬 파일 시스템 만들기에 대한 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용 성 로컬 파일 시스템을 사용으로 설정"를 참조하십시오.

이 장은 다음과 같은 절로 구성되어 있습니다.

- "클러스터 파일 시스템 만들기" [159]
- "Oracle ACFS 파일 시스템 만들기" [162]

클러스터 파일 시스템 만들기

이 절에서는 데이터 서비스를 지원하기 위해 클러스터 파일 시스템을 만드는 절차에 대해 설 명합니다.

▼ 클러스터 파일 시스템을 만드는 방법

만들려는 각 클러스터 파일 시스템에 대해 이 절차를 수행합니다. 로컬 파일 시스템과 달리 클러스터 파일 시스템은 전역 클러스터의 모든 노드에서 액세스할 수 있습니다.

시작하기전에 다음 작업을 수행합니다.

- "소프트웨어 설치" [46]에 설명된 대로 Oracle Solaris OS용 소프트웨어 패키지, Oracle Solaris Cluster 프레임워크 및 기타 제품을 설치했는지 확인합니다.
- "새 전역 클러스터 또는 새 전역 클러스터 노드 설정" [69]에 설명된 대로 새 클러스터 또 는 클러스터 노드를 설정했는지 확인합니다.

- 볼륨 관리자를 사용하고 있는 경우 볼륨 관리 소프트웨어가 설치되고 구성되어 있는지 확 인합니다.
- 만들려는 각 클러스터 파일 시스템에 사용할 마운트 옵션을 결정합니다. "UFS 클러스터 파일 시스템의 마운트 옵션 선택" [37]을 참조하십시오.
- 1. 클러스터 노드에서 root 역할을 수행합니다.

작은 정보 - 더 빨리 파일 시스템을 만들려면 파일 시스템을 만드는 현재 기본 전역 장치에서 root 역할을 수행합니다.

2. newfs 명령을 사용하여 UFS 파일 시스템을 만듭니다.

주의 - 파일 시스템을 만들면 디스크의 데이터가 모두 삭제됩니다. 정확한 디스크 장치 이름 을 지정해야 합니다. 잘못된 장치 이름을 지정하면 삭제하지 않으려는 데이터가 지워질 수 있 습니다.

phys-schost# **newfs** raw-disk-device

다음 표에서는 raw-disk-device 인수 이름의 예를 보여 줍니다. 이름 지정 규칙은 볼륨 관리 자마다 다릅니다.

Volume Manager	샘플 디스크 장치 이름	설명
Solaris Volume Manager	/dev/md/nfs/rdsk/d1	nfs 디스크 세트에 있는 원시 디스크 장 치 d1
없음	/dev/global/rdsk/d1s3	원시 디스크 장치 d1s3

 클러스터의 각 노드에서 클러스터 파일 시스템의 마운트 지점 디렉토리를 만듭니다. 해당 노드에서 클러스터 파일 시스템에 액세스하지 않는 경우에도 각 노드에 마운트 지점이 필요합니다.

작은 정보 - 쉽게 관리하려면 /global/device-group/ 디렉토리에 마운트 지점을 만듭니다. 이 위치를 사용하면 로컬 파일 시스템에서 전역으로 사용 가능한 클러스터 파일 시스템을 쉽게 구별할 수 있습니다.

phys-schost# mkdir -p /global/device-group/mount-point/

device-group

장치를 포함하는 장치 그룹의 이름에 해당되는 디렉토리 이름

mount-point

클러스터 파일 시스템을 마운트할 디렉토리의 이름

4. 클러스터의 각 노드에서 /etc/vfstab 파일에 마운트 지점에 대한 항목을 추가합니다.

자세한 내용은 vfstab(4) 매뉴얼 페이지를 참조하십시오.

- a. 각 항목에서 사용하는 파일 시스템 유형에 대한 필수 마운트 옵션을 지정합니다.
- b. 클러스터 파일 시스템을 자동으로 마운트하려면 mount at boot 필드를 yes로 설정합니다.
- c. 각 클러스터 파일 시스템에 대해 /etc/vfstab 항목의 정보가 각 노드에서 동일한지 확 인합니다.
- d. 각 노드의 /etc/vfstab 파일에 있는 장치 항목 순서가 동일한지 확인합니다.
- e. 파일 시스템의 부트 순서 종속성을 확인하십시오.

예를 들어 phys-schost-1은 디스크 장치 d0을 /global/oracle/에 마운트하고 physschost-2는 디스크 장치 d1을 /global/oracle/logs/에 마운트하는 시나리오를 가정합 니다. 이 구성에서는 phys-schost-1이 부트되어 /global/oracle/을 마운트한 후에만 phys-schost-2가 부트되어 /global/oracle/logs/를 마운트할 수 있습니다.

5. 클러스터의 노드에서 구성 검사 유틸리티를 실행합니다.

phys-schost# cluster check -k vfstab

구성 검사 유틸리티에서는 마운트 지점이 있는지 확인합니다. 또한 /etc/vfstab 파일 항목이 클러스터의 모든 노드에서 올바른지 확인합니다. 오류가 발생하지 않으면 아무 출력도 반환 되지 않습니다.

자세한 내용은 Unresolved link to " cluster1CL" 매뉴얼 페이지를 참조하십시오.

6. 클러스터의 노드에서 클러스터 파일 시스템을 마운트합니다.

phys-schost# mount /global/device-group/mountpoint/

7. 클러스터의 각 노드에서 클러스터 파일 시스템이 마운트되는지 확인합니다.

df 명령이나 mount 명령을 사용하여 마운트된 파일 시스템을 나열할 수 있습니다. 자세한 내 용은 Unresolved link to " df1M" 매뉴얼 페이지 또는 Unresolved link to " mount1M" 매뉴얼 페이지를 참조하십시오.

예 5-1 UFS 클러스터 파일 시스템 만들기

다음 예에서는 Solaris Volume Manager 볼륨 /dev/md/oracle/rdsk/d1에 UFS 클러스터 파일 시스템을 만듭니다. 클러스터 파일 시스템에 대한 항목이 각 노드의 vfstab 파일에 추가 됩니다. 그런 다음 한 노드에서 cluster check 명령이 실행됩니다. 구성 검사 처리가 성공적 으로 완료되면 클러스터 파일 시스템이 하나의 노드에서 마운트되고 모든 노드에서 확인됩니 다.

phys-schost# newfs /dev/md/oracle/rdsk/d1

```
phys-schost# mkdir -p /global/oracle/d1
phys-schost# vi /etc/vfstab
#device
                device
                              mount FS
                                             fsck
                                                     mount mount
                              point type
#to mount
                to fsck
                                             pass
                                                   at boot options
#
/dev/md/oracle/dsk/d1 /dev/md/oracle/rdsk/d1 /global/oracle/d1 ufs 2 yes global,logging
phys-schost# cluster check -k vfstab
phys-schost# mount /global/oracle/d1
phys-schost# mount
/global/oracle/d1 on /dev/md/oracle/dsk/d1 read/write/setuid/global/logging/largefiles
on Sun Oct 3 08:56:16 2005
```

다음 순서 타사 응용 프로그램 설치 방법을 알아보려면 자원 유형을 등록하고, 자원 그룹을 설정하고, 데이터 서비스를 구성하고, 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참조 하십시오.

Oracle ACFS 파일 시스템 만들기

이 절에서는 데이터 서비스를 지원하기 위해 Oracle ACFS(Oracle Automatic Storage Management Cluster File System) 파일 시스템을 만드는 절차에 대해 설명합니다. 이 파 일 시스템은 일반용 파일 시스템으로 사용하거나 Oracle 데이터베이스용 데이터베이스 홈으 로 사용할 수 있습니다. Oracle ACFS 파일 시스템은 전역 클러스터 및 영역 클러스터에서 사 용할 수 있습니다.

참고 - 최소 Oracle ASM 버전 11g 릴리스 2가 필요합니다.

다음 표에는 Oracle ACFS 파일 시스템을 만들기 위해 수행할 작업이 나열되어 있습니다. 표 시된 순서대로 절차를 완료하십시오.

표 5-1 작업 맵: Oracle ACFS 파일 시스템 만들기

작업	지침
Oracle ACFS 구성 다이어그램을 검토합니다.	"Oracle ACFS 파일 시스템의 샘플 구성" [163]
프레임워크 리소스 그룹을 등록 및 구성합니다.	프레임워크 리소스 그룹 등록 및 구성 방법 [166]
Oracle ACFS 파일 시스템을 만듭니다.	Oracle ACFS 파일 시스템을 만드는 방법 [169]
확장 가능한 장치-그룹 리소스 그룹을 등록하고 구성합니다.	확장 가능한 장치-그룹 리소스 그룹 등록 및 구성 방법 [171]
Oracle ASM 리소스 그룹을 등록 및 구성합니다.	Oracle ASM 리소스 그룹 등록 및 구성 방법 [172]
Oracle Grid Infrastructure와 Oracle Solaris Cluster의 상호 운 용성 구성	Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리소스를 만드는 방법 [176]

작업	지침
Oracle ACFS 프록시 리소스 그룹을 등록 및 구성합니다.	Oracle ACFS 프록시 리소스 그룹 등록 및 구성 방법 [174]

Oracle ACFS 파일 시스템의 샘플 구성

다음 다이어그램에서는 Solaris Volume Manager 또는 하드웨어 RAID를 사용하여 전역 영 역 및 전역 클러스터의 Oracle ACFS 파일 시스템 구성을 보여 줍니다.

그림 5-1 Solaris Volume Manager를 사용하여 전역 영역에 Oracle ACFS 구성

그림 5-2 하드웨어 RAID를 사용하여 전역 영역에 Oracle ACFS 구성

다른 리소스에 대한 한 리소스의 강력한 종속성을 나타냅니다.

확장 가능한 리소스 그룹을 나타냅니다.

그림 5-3 Solaris Volume Manager를 사용하여 영역 클러스터에 Oracle ACFS 구성

그림 5-4 하드웨어 RAID를 사용하여 영역 클러스터에 Oracle ACFS 구성

▼ 프레임워크 리소스 그룹 등록 및 구성 방법

이 절차에 따라 확장 가능한 Oracle RAC 프레임워크 리소스 그룹 및 다중 소유자 볼륨 관리 자 프레임워크 리소스 그룹(Sun Cluster용 Solaris Volume Manager가 사용된 경우)을 구 성할 수 있습니다.

전역 클러스터의 한 노드에서 모든 단계를 수행합니다.

1. root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.

2. 확장 가능한 Oracle RAC 프레임워크 리소스 그룹을 만듭니다.

이 프레임워크 리소스 그룹은 파일 시스템이 일반용 또는 데이터베이스 홈용인지 여부에 관 계없이 사용됩니다.

a. Oracle RAC 프레임워크 리소스 그룹을 만듭니다.

clresourcegroup create -S \
-p rg_description="description"] \
rac-fmwk-rg

-p rg_description="description"

리소스 그룹에 대한 간략한 설명을 선택적으로 지정합니다. Oracle Solaris Cluster 유지 관리 명령을 사용하여 리소스 그룹에 대한 정보를 가져올 때 이 설명이 표시됩 니다.

rac-fmwk-rg

Oracle RAC 프레임워크 리소스 그룹에 지정할 이름을 지정합니다.

b. SUNW.rac_framework 리소스 유형을 등록합니다.

clresourcetype register SUNW.rac_framework

- SUNW.rac_framework 리소스 유형의 인스턴스를 Oracle Real Application Clusters 프 레임워크 리소스 그룹에 추가합니다.
 - # clresource create -g rac-fmwk-rg -t SUNW.rac_framework rac-fmwk-rs

-g rac-fmwk-rg 리소스를 추가할 Oracle RAC 프레임워크 리소스 그룹을 지정합니다.

rac-fmwk-rs SUNW.rac framework 리소스에 지정할 이름을 지정합니다.

d. Oracle Clusterware 프레임워크 리소스 유형을 등록합니다.

clresourcetype register SUNW.crs_framework

e. SUNW.crs_framework 리소스 유형의 인스턴스를 Oracle Real Application Clusters 프 레임워크 리소스 그룹에 추가합니다.

```
# clresource create -g rac-fmwk-rg \
-p resource_dependencies=rac-fmwk-rs \
-t SUNW.crs_framework \
crs-fmwk-rs
```

crs-fmwk-rs SUNW.crs_framework 리소스에 지정할 이름을 지정합니다.

 Sun Cluster용 Solaris Volume Manager를 사용하는 경우 확장 가능한 다중 소유자 볼륨 관리자 프레임워크 리소스 그룹을 만듭니다.

이 리소스 그룹은 Sun Cluster용 Solaris Volume Manager를 관리합니다.

하드웨어 RAID를 사용하는 경우 4단계로 건너 뜁니다.

a. 리소스 그룹을 만듭니다.

clresourcegroup create -n nodelist -S vucmm-fmwk-rg

-n nodelist=nodelist

확장 가능한 Oracle Real Application Clusters 프레임워크 리소스 그룹에 대해 구 성한 것과 동일한 노드 목록을 지정합니다.

vucmm-fmwk-rg

다중 소유자 볼륨 관리자 프레임워크 리소스 그룹에 지정할 이름을 지정합니다.

b. SUNW.vucmm_framework 리소스 유형을 등록합니다.

clresourcetype register SUNW.vucmm_framework

- SUNW.vucmm_framework 리소스 유형의 인스턴스를 다중 소유자 볼륨 관리자 리소스 그 룹에 추가합니다.
 - # clresource create -g vucmm-fmwk-rg -t SUNW.vucmm_framework vucmm-fmwk-rs

-g vucmm-fmwk- 리소스를 추가할 다중 소유자 볼륨 관리자 리소스 그룹을 지정합 rg 니다.

- *vucmm-fmwk-rs* SUNW.vucmm_framework 리소스에 지정할 이름을 지정합니다.
- d. SUNW.vucmm_svm 리소스 유형을 등록합니다.

clresourcetype register SUNW.vucmm_svm

- e. SUNW.vucmm_svm 리소스 유형의 인스턴스를 SUNW.vucmm_framework 리소스 그룹에 추가 합니다.
 - 이 인스턴스가 사용자가 만든 SUNW.vucmm framework 리소스에 종속되는지 확인합니다.
 - # clresource create -g vucmm-fmwk-rg \
 - -t SUNW.vucmm_svm \
 - -p resource_dependencies=vucmm-fmwk-rs svm-rs

-g vucmm-fmwk-rg

다중 소유자 볼륨 관리자 리소스 그룹을 지정합니다.

-p resource_dependencies=vucmm-fmwk-rs

이 인스턴스가 SUNW.vucmm framework 리소스에 종속되도록 지정합니다.

svm-rs

SUNW.vucmm svm 리소스에 지정할 이름을 지정합니다.

4. Oracle RAC 프레임워크 리소스 그룹, 다중 소유자 볼륨 관리자 프레임워크 리소스 그룹(사 용된 경우) 및 해당 리소스를 온라인 및 관리 상태로 전환합니다.

clresourcegroup online -emM rac-fmwk-rg vucmm-fmwk-rg]

rac-fmwk-rg	Oracle RAC 프레임워크 리소스 그룹이 MANAGED 상태 및 온라인으로 전환되도록 지정합니다.
vucmm-fmwk-rg	다중 소유자 볼륨 관리자 프레임워크 리소스 그룹이 MANAGED 상태 및 온라인으로 전환되도록 지정합니다.

다음 순서 Oracle ACFS 파일 시스템을 만드는 방법 [169]으로 이동합니다.

▼ Oracle ACFS 파일 시스템을 만드는 방법

이 절차에 따라 Oracle ACFS 파일 시스템을 만듭니다. 전역 클러스터의 한 노드에서 모든 단 계를 수행합니다.

- 시작하기 전에 🔳 리소스 프레임워크 그룹이 구성되었는지 확인합니다. 프레임워크 리소스 그룹 등록 및 구 성 방법 [166]을 참조하십시오.
 - Oracle Solaris Cluster 구성에서 Oracle ACFS 파일 시스템 구성에 대한 다음 지침 및 제 한 사항을 확인하십시오.
 - 최소 Oracle ASM 버전 11g 버전 2가 설치되었는지 확인합니다.
 - Oracle ACFS 파일 시스템은 전역 클러스터 및 영역 클러스터에서 지원되지만 개별 비전역 영역에서 지원되지 않습니다.
 - Oracle ACFS 파일 시스템은 Oracle Clusterware 리소스에서 관리해야 합니다.
 - Oracle ACFS 파일 시스템을 만듭니다. 1.

Oracle Automatic Storage Management Administrator's Guide의 "Creating an Oracle ACFS File System" 절차를 수행합니다.

다음 특별 지침을 준수하십시오.

■ 파일 시스템을 일반 용도의 파일 시스템으로 사용하려는 경우에는 Oracle ACFS 파일 시 스템 마운트 지점을 Oracle ACFS 레지스트리에 등록하지 마십시오. 파일 시스템을 데이 터베이스 홈으로 사용할 경우에는 마운트 지점을 Oracle ACFS 레지스트리에만 등록하 십시오.

- 전역 영역에서만 Oracle ACFS 파일 시스템을 구성합니다. 영역 클러스터에서 파일 시스 템을 사용하려면 파일 시스템을 영역 클러스터에 직접 마운트합니다.
- Oracle ACFS 볼륨이 포함된 Oracle ASM 디스크 그룹에 대해 클러스터화된 Oracle ASM 디스크 그룹 프록시 리소스를 구성하는 것과 동일한 노드에서 Oracle ACFS 리소 스를 구성합니다.
- 2. Oracle ACFS 파일 시스템에 대한 마운트 지점을 만듭니다.

· 참고 - 영역 클러스터의 경우 영역 루트 경로 아래에 마운트 지점을 만듭니다.

mkdir -p /zonepath/root/path-to-filesystem

3. 영역 클러스터의 경우 영역 클러스터가 온라인 상태인지 확인합니다.

clzonecluster status zonecluster

- 4. Oracle ACFS 파일 시스템을 시작하고 마운트합니다.
 - # /Grid_home/bin/srvctl add filesystem -d /dev/asm/volume-dev-path
 - # /Grid_home/bin/srvctl start filesystem -d /dev/asm/volume-dev-path
- 영역 클러스터의 경우 파일 시스템을 영역 클러스터에 추가합니다.
 한 노드의 전역 영역에서 다음 단계를 수행합니다.
 - a. Oracle ACFS 파일 시스템을 영역 클러스터에 추가합니다.

clzonecluster configure zonecluster
clzc:zonecluster> add fs
clzc:zonecluster:fs> set dir=mountpoint
clzc:zonecluster:fs> set special=/dev/asm/volume-dev-path
clzc:zonecluster:fs> set type=acfs
clzc:zonecluster:fs> end
clzc:zonecluster> exit

b. Oracle ACFS 파일 시스템이 영역 클러스터에 추가되었는지 확인합니다.

clzonecluster show zonecluster

Resource Name:	fs
dir:	mountpoint
special	volume
type:	acfs
options:	[]
cluster-control:	true

다음 순서 Sun Cluster용 Solaris Volume Manager를 사용하는 경우 확장 가능한 장치-그룹 리소스 그룹 등록 및 구성 방법 [171]으로 이동합니다.

그렇지 않으면 Oracle ASM 리소스 그룹 등록 및 구성 방법 [172]으로 이동합니다.

▼ 확장 가능한 장치-그룹 리소스 그룹 등록 및 구성 방법

Sun Cluster용 Solaris Volume Manager를 사용하는 경우 확장 가능한 장치 그룹 리소스 그룹을 등록하고 구성합니다. 전역 클러스터의 한 노드에서 모든 단계를 수행합니다.

구성에 Sun Cluster용 Solaris Volume Manager가 사용되지 않은 경우 이 절차를 수행하지 마십시오. Oracle ASM 리소스 그룹 등록 및 구성 방법 [172]을 진행하십시오.

- 시작하기 전에 Oracle ACFS 파일 시스템이 만들어졌는지 확인합니다. Oracle ACFS 파일 시스템을 만드는 방법 [169]을 참조하십시오.
 - 1. root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.
 - 확장 가능한 장치-그룹 리소스를 포함할 확장 가능한 리소스 그룹을 만듭니다.
 다중 소유자 볼륨 관리자 프레임워크 리소스 그룹에 대해 리소스 그룹별로 강한 긍정적 유사 성을 설정합니다.

clresourcegroup create -S \
-p rg_affinities=++vucmm-fmwk-rg \
-p rg_description="description"] \
scal-dg-rg

3. SUNW. Scal Device Group 리소스 유형을 등록합니다.

clresourcetype register SUNW.ScalDeviceGroup

4. SUNW.ScalDeviceGroup 리소스 유형의 인스턴스를 SUNW.ScalDeviceGroup 리소스 그룹에 추 가합니다.

SUNW.vucmm_svm 프레임워크 리소스 그룹의 svm-rs 리소스에 SUNW.ScalDeviceGroup의 인스 턴스에 대한 강력한 종속성을 설정합니다. 이 종속성의 범위를 SUNW.ScalDeviceGroup 리소 스가 실행 중인 노드로 제한합니다.

clresource create -t SUNW.ScalDeviceGroup -g Scal-dg-rg \
-p resource_dependencies=SVM-rS{local_node} \
-p diskgroupname=disk-group scal-dg-rs

5. 확장 가능한 장치-그룹 리소스 그룹을 온라인 및 관리 상태로 전환합니다.

clresourcegroup online -emM scal-dg-rg

6. scal-dg-rs로 crs-fmwk-rs에 오프라인 다시 시작 종속성을 설정합니다.

E clresource set -p resource_dependency_offline_restart=Scal-dg-rs crs-fmwk-rs

다음 순서 Oracle ASM 리소스 그룹 등록 및 구성 방법 [172]으로 이동합니다.

▼ Oracle ASM 리소스 그룹 등록 및 구성 방법

이 절차에서는 Oracle ASM(Oracle Automatic Storage Management) 리소스 그룹을 등 록 및 구성할 수 있습니다. 전역 클러스터의 한 노드에서 모든 단계를 수행합니다.

- 시작하기 전에 프레임워크 리소스 그룹이 만들어졌는지 확인합니다. 프레임워크 리소스 그룹 등록 및 구 성 방법 [166]을 참조하십시오.
 - Sun Cluster용 Solaris Volume Manager를 사용하는 경우에는 확장 가능한 장치 그룹 리소스 그룹이 만들어졌는지 확인합니다. 확장 가능한 장치-그룹 리소스 그룹 등록 및 구 성 방법 [171]을 참조하십시오.
 - root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.
 - 2. 데이터 서비스에 대한 Oracle ASM 리소스 유형을 등록합니다.
 - a. 확장 가능한 Oracle ASM 인스턴스 프록시 리소스 유형을 등록합니다.

clresourcetype register SUNW.scalable_asm_instance_proxy

b. Oracle ASM 디스크 그룹 리소스 유형을 등록합니다.

clresourcetype register SUNW.scalable_asm_diskgroup_proxy

3. 리소스 그룹 asm-inst-rg 및 asm-dg-rg를 만듭니다.

clresourcegroup create -S asm-inst-rg asm-dg-rg

asm-inst-rg

Oracle ASM 인스턴스 리소스 그룹의 이름을 지정합니다.

asm-dg-rg

Oracle ASM 디스크 그룹 리소스 그룹의 이름을 지정합니다.

asm-inst-rg별로 rac-fmwk-rg에 대한 강한 긍정적 유사성을 설정합니다.

clresourcegroup set -p rg_affinities=++rac-fmwk-rg asm-inst-rg

5. asm-dg-rg로 강한 긍정적 유사성을 설정합니다.

- 하드웨어 RAID를 사용하는 경우 asm-inst-rg에 유사성을 설정합니다.
 - # clresourcegroup set -p rg_affinities=++asm-inst-rg asm-dg-rg
- Sun Cluster용 Solaris Volume Manager를 사용하는 경우 scal-dg-rg 및 asm-instrg에 유사성을 설정합니다.
 - # clresourcegroup set -p rg_affinities=++asm-inst-rg,++scal-dg-rg asm-dg-rg
- SUNW.scalable asm instance proxy 리소스를 만들고 리소스 종속성을 설정합니다. 6.
 - # clresource create -g asm-inst-rg \ -t SUNW.scalable_asm_instance_proxy \ -p ORACLE_HOME=Grid_home \ -p CRS_HOME=Grid_home ∖ -p "ORACLE_SID{node1}"=+ASM1 \ -p "ORACLE_SID{node2}"=+ASM2 \ -p resource_dependencies_offline_restart=CrS-fmwk-rS \ -d asm-inst-rs
 - -t SUNW.scalable_asm_instance_proxy

추가할 리소스의 유형을 지정합니다.

-p ORACLE HOME=Grid_home

Oracle ASM이 설치된 Oracle Grid Infrastructure 홈 디렉토리로 경로를 설정합니다.

-p CRS_HOME=Grid_home

Oracle Clusterware가 설치된 Oracle Grid Infrastructure 홈 디렉토리로 경로를 설정 합니다.

-p ORACLE SID=+ASMn

Oracle ASM 시스템 식별자를 설정합니다.

-d asm-inst-rs

만든 Oracle ASM 인스턴스 리소스의 이름을 지정합니다.

7. 클러스터 노드에서 관리 상태인 asm-inst-rg 리소스 그룹을 온라인으로 전환합니다.

clresourcegroup online -eM asm-inst-rg

- 8. asm-dg-rg 리소스 그룹에 Oracle ASM 디스크 그룹 리소스를 추가합니다.
 - 하드웨어 RAID의 경우 다음 명령을 사용합니다.

```
# clresource create -g asm-dg-rg \
-t SUNW.scalable_asm_diskgroup_proxy \
-p asm_diskgroups=dg[,dg...] ∖
```

```
-p resource_dependencies_offline_restart=asm-inst-rs \
```

-d asm-dg-rs

- Sun Cluster용 Solaris Volume Manager의 경우 다음 명령을 사용합니다.
 - # clresource create -g asm-dg-rg \
 - -t SUNW.scalable_asm_diskgroup_proxy \
 - -p asm_diskgroups=dg[,dg…] ∖
 - -p resource_dependencies_offline_restart=asm-inst-rs,scal-dg-rs \
 - -d asm-dg-rs
- 9. 클러스터 노드에서 관리 상태인 asm-dg-rg 리소스 그룹을 온라인으로 전환합니다.

```
# clresourcegroup online -eM asm-dg-rg
```

10. 영역 클러스터의 경우 한 노드의 전역 영역에서 SUNW.wait_zc_boot 리소스 그룹을 만듭니다.

Oracle ACFS 파일 시스템이 영역 클러스터에서 사용되지 않을 경우 이 단계를 생략합니다.

```
# clresourcetype register SUNW.wait_zc_boot
# clresourcegroup create -S scal-wait-zc-rg
# clresource create -g scal-wait-zc-rg \
-t SUNW.wait_zc-boot \
-p zcname=zonecluster \
wait-zc-rs
# clresourcegroup online -eM scal-wait-zc-rg
```

다음 순서 Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리소스를 만드는 방법 [176]으로 이동합니다.

▼ Oracle ACFS 프록시 리소스 그룹 등록 및 구성 방법

이 절차에서는 Oracle ACFS 프록시 리소스 그룹을 등록 및 구성할 수 있습니다. 전역 클러스 터의 한 노드에서 모든 단계를 수행합니다.

- 시작하기 전에 Oracle Grid Infrastructure 리소스를 등록 및 구성했는지 확인합니다. Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리소스를 만드는 방법 [176]을 참 조하십시오.
 - root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.
 - 2. SUNW.scalable_acfs_proxy 리소스 유형을 등록합니다.
 - 파일 시스템이 전역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

- # clresourcetype register SUNW.scalable_acfs_proxy
- 파일 시스템이 영역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

clresourcetype register -Z zonecluster SUNW.scalable_acfs_proxy

- 오프라인 다시 시작 리소스 종속성을 사용하여 Oracle ACFS 리소스 그룹을 만듭니다.
 - 파일 시스템이 전역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

clresourcegroup create -S -p rg_affinities=++asm-dg-rg /
acfs-rg

asm-dg-rg Oracle ASM 디스크 그룹 리소스 그룹의 이름을 지정합니다.

acfs-rg Oracle ACFS 리소스 그룹의 이름을 지정합니다.

■ 파일 시스템이 영역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

```
# clresourcegroup create -Z zonecluster -S
-p rg_affinities=++global:asm-dg-rg,++global:scal-wait-zc-rg /
acfs-rg
```

```
scal-wait-zc-rg
```

영역 클러스터의 경우 SUNW.wait_zc_boot 리소스 그룹을 지정합 니다.

4. SUNW.scalable_acfs_proxy 리소스 유형의 인스턴스를 Oracle ACFS 리소스 그룹에 추가합니다.

■ 파일 시스템이 전역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

```
# clresource create -g aCfs-rg \
-t SUNW.scalable_acfs_proxy \
-p acfs_mountpoint=/aCfs-mountpoint \
-p resource_dependencies_offline_restart=asm-dg-rs \
-d aCfs-rs
```

■ 파일 시스템이 영역 클러스터에 사용되는 경우 다음 명령을 사용합니다.

```
# clresource create -Z zonecluster -g acfs-rg \
```

-t SUNW.scalable_acfs_proxy \

```
-p acfs_mountpoint=/acfs-mountpoint \
```

- -p resource_dependencies_offline_restart=global:asm-dg-rs \
- -p resource_dependencies=global:Wait-ZC-rS \
- -d acfs-rs
- 5. 클러스터 노드에서 관리 상태인 acfs-rg 리소스 그룹을 온라인으로 전환합니다.

```
# clresourcegroup online -eM acfs-rg
```

6. Oracle ACFS 구성을 확인합니다.

clresource status +

- 다음 순서 아래 목록에서, 다음으로 수행할 사용자 클러스터 구성에 적용되는 작업을 확인합니다. 이 목 록에서 둘 이상의 작업을 수행해야 하는 경우 해당 작업 중 첫번째 작업으로 이동합니다.
 - 영역 클러스터를 만들려면 "영역 클러스터 만들기 및 구성" [180]으로 이동합니다.
 - 타사 응용 프로그램을 설치하고 자원 유형을 등록하며 자원 그룹을 설정하고 데이터 서 비스를 구성합니다. 응용 프로그램 소프트웨어와 함께 제공되는 설명서 및 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 "를 참조하십시오.
 - Oracle Grid Infrastructure 리소스를 만들려면 Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리소스를 만드는 방법 [176]으로 이동합니다.

▼ Oracle Solaris Cluster와 상호 운용되는 Oracle Grid Infrastructure 리소스를 만드는 방법

이 절차에 따라 Oracle Grid Infrastructure 리소스를 만들 수 있습니다. 이 리소스는 Oracle Clusterware에서 관리되는 작업을 Oracle Solaris Cluster로 관리되는 작업과 조정합니다.

- 시작하기 전에 Oracle ASM 리소스 그룹을 등록 및 구성했는지 확인합니다. Oracle ASM 리소스 그룹 등록 및 구성 방법 [172]을 참조하십시오.
 - 1. root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.
 - 파일 시스템이 영역 클러스터에서 사용되는 경우 한 노드의 전역 영역에서 Oracle Clusterware 프록시 리소스를 만듭니다.
 - a. 리소스를 만듭니다.

```
# /Grid_home/bin/crsctl add type sun.zcboot_proxy.type -basetype local_resource
# /Grid_home/bin/crsctl add res SUN.Wait-ZC-rS \
-type sun.zcboot_proxy.type \
-attr "ACTION_SCRIPT='/opt/SUNWscor/dsconfig/bin/scproxy_crs_action' \
ACL='owner:root:rwx,pgrp:oinstall:rwx,other::r--' \
SCRIPT_TIMEOUT='20' \
RESTART ATTEMPTS='60' "
```

b. 리소스를 확인합니다.

/Grid_home/bin/crsctl stat res SUN.Wait-zc-rs -p
NAME=SUN.Wait-zc-rs
TYPE=sun.zcboot_proxy.type
ACL=owner:root:rwx,pgrp:oinstall:rwx,other::r-

c. 리소스를 온라인으로 전환합니다.

....

/Grid_home/bin/crsctl start res sun.wait-zc-rs

3. Oracle Grid Infrastructure sun.storage_proxy.type 리소스 유형을 만듭니다.

sun.storage_proxy.type 리소스 유형을 만든 위치에서 이 단계를 수행합니다.

```
# /Grid_home/bin/crsctl \
add type sun.storage_proxy.type \
-basetype local_resource \
-attr \
"ATTRIBUTE=ACTION_SCRIPT,TYPE=string", \
"ATTRIBUTE=HOSTING_MEMBERS,TYPE=string", \
"ATTRIBUTE=CARDINALITY,TYPE=string", \
"ATTRIBUTE=PLACEMENT,TYPE=string", \
"ATTRIBUTE=RESTART_ATTEMPTS,TYPE=int", \
"ATTRIBUTE=ACL,TYPE=string", \
"ATTRIBUTE=VERSION,TYPE=string"
```

4. sun.storage_proxy.type 유형의 Oracle Grid Infrastructure sun.resource 리소스를 만듭니다.

sun.storage proxy.type 리소스 유형을 만든 위치에서 이 단계를 수행합니다.

Oracle Grid Infrastructure 리소스 이름은 sun.*resource* 형식을 사용합니다. 여기서 *resource*는 SUNW.ScalDeviceGroup, SUNW.ScalMountPoint 또는 SUNW.scalable_acfs_proxy 리소스의 이름입니다.

```
# /Grid_home/bin/crsctl add resource sun.resource \
-type sun.storage_proxy.type \
-attr "ACTION_SCRIPT='/opt/SUNWscor/dsconfig/bin/scproxy_crs_action' \
CARDINALITY='number-nodes' \
SCRIPT_TIMEOUT='timeout' \
PLACEMENT='restricted' \
RESTART_ATTEMPTS='restarts' \
HOSTING_MEMBERS='nodelist' \
VERSION='1' "
```

CARDINALITY 클러스터 구성원으로 속해 있는 노드 수입니다.

```
HOSTING_MEMBERS 클러스터 구성원의 노드 목록입니다.
```

- 5. Oracle Grid Infrastructure storage_proxy 리소스를 온라인으로 전환합니다.
 - # /Grid_home/bin/crsctl start resource sun.resource
- 6. Oracle Solaris Cluster ACFS 프록시 리소스에 대한 Oracle Grid Infrastructure 중지 트리 거를 만듭니다.

전역 클러스터의 한 노드에서 이 단계를 수행합니다.

a. 중지 트리거 리소스를 만듭니다.

```
# /Grid_home/bin/crsctl add type sun.stoptrigger.type -basetype cluster_resource
# /Grid_home/bin/crsctl add res sun.acfs-rs -type sun.stoptrigger.type \
-attr "action_script='/opt/SUNWscor/dsconfig/bin/crs_stoptrigger_action' \
HOSTING_MEMBERS='node1 node2[...]' \
CARDINALITY='number-nodes' \
placement='restricted' \
ACL='owner:root:rwx,pgrp:oinstall:rwx,other::r--' \
SCRIPT_TIMEOUT='20' \
RESTART_ATTEMPTS='60' \
START_DEPENDENCIES='hard(ora.appdg.ASMvolume.acfs)
pullup:always(ora.appdg.ASMvolume.acfs)' \
STOP_DEPENDENCIES='hard(ora.appdg.ASMvolume.acfs)' "
```

b. 중지 트리거 리소스를 확인합니다.

```
# /Grid_home/bin/crsctl stat res sun.acfs-rs -p
NAME=sun.resource
TYPE=sun.stoptrigger.type
```

- c. 중지 트리거 리소스를 시작합니다.
 - # /Grid_home/bin/crsctl start res sun.acfs-rs
- d. 리소스가 모든 노드에서 온라인 상태인지 확인합니다.
 - # /Grid_home/bin/crsctl stat res sun.acfs-rs

영역 클러스터 만들기

이 장에서는 클러스터 노드를 만들고 구성하는 작업에 대한 정보를 제공합니다.

- "영역 클러스터 만들기 및 구성 개요" [179]
- "영역 클러스터 만들기 및 구성" [180]

영역 클러스터 만들기 및 구성 개요

다음 작업 맵에는 영역 클러스터를 구성하기 위해 수행해야 하는 작업이 나열되어 있습니다. 표시된 순서대로 절차를 완료하십시오.

표 6-1	작업 맵:	영역 클러스터	만들기
-------	-------	---------	-----

작업	지침
영역 클러스터 구성을 계획합니다.	"영역 클러스터" [31]
Trusted Extensions를 사용하는 경우 Trusted Extensions 소프트웨어를 설치 및 구성합니다.	Trusted Extensions를 설치하고 구성하는 방 법 [180]
영역 클러스터를 만듭니다.	영역 클러스터를 만드는 방법(clsetup) [182]
(선택 사항) 영역 클러스터의 다중 노드에서 사용할 파 일 시스템을 추가합니다.	"영역 클러스터에 파일 시스템 추가" [195]
(선택 사항) 영역 클러스터의 단일 노드에 전용 파일 시 스템을 추가합니다.	"특정 영역 클러스터 노드에 로컬 파일 시스템 추 가" [208]
(선택 사항) 영역 클러스터의 다중 노드 또는 단일 노드 에서 사용할 저장 장치를 추가합니다.	"영역 클러스터에 저장 장치 추가" [211]
(선택 사항) Oracle Solaris 10 시스템을 solaris10 브 랜드 영역 클러스터의 노드로 마이그레이션합니다. 참고 - 마이그레이션할 시스템에서는 마이그레이션 하기 전에 최소한 Oracle Solaris Cluster 3.3 패치 145333-15 for SPARC 및 145334-15 for x86을 실 행해야 합니다.	Unresolved link to " Oracle Solaris 10 영역 만들기 및 사용 의 Oracle Solaris 10 시스템을 영역으로 직접 마이그레이션하기 위한 이미지 만들기"
<i>(solaris10</i> 브랜드 영역 클러스터) Oracle Solaris Cluster 3.3 데이터 서비스를 구성합니다.	영역 클러스터에 대해 적용 가능한 데이터 서 비스 절차입니다. Oracle Solaris Cluster 3. 3 Documentation (http://www.oracle.com/ technetwork/documentation/solaris-cluster-33- 192999.html)을 참조하십시오.
(선택 사항) 영역 클러스터를 검증합니다.	Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기본 클러스터 구성을 검증하는 방법"

영역 클러스터 만들기 및 구성

이 절에서는 영역 클러스터를 만들고 구성하는 작업에 대한 절차 및 정보를 제공합니다.

- "영역 클러스터 만들기" [180]
- "영역 클러스터에 파일 시스템 추가" [195]
- "특정 영역 클러스터 노드에 로컬 파일 시스템 추가" [208]
- "영역 클러스터에 저장 장치 추가" [211]

영역 클러스터 만들기

이 절에서는 clsetup 유틸리티를 사용하여 영역 클러스터를 만들고, 네트워크 주소, 파일 시 스템, ZFS 저장소 풀 및 저장 장치를 새 영역 클러스터에 추가하는 방법에 대한 절차를 제공 합니다.

노드가 비클러스터 모드에 있을 경우 변경 사항은 노드가 클러스터 모드로 돌아갈 때 전파됩 니다. 따라서 일부 전역 클러스터 노드가 비클러스터 모드에 있는 경우에도 영역 클러스터를 만들 수 있습니다. 해당 노드가 클러스터 모드로 돌아가면 시스템이 해당 노드에서 영역 클러 스터 만들기 작업을 수행합니다.

또는 clzonecluster 유틸리티를 사용하여 클러스터를 만들고 구성할 수 있습니다. 자세한 내 용은 Unresolved link to " clzonecluster1CL" 매뉴얼 페이지를 참조하십시오.

참고 - 영역 클러스터가 만들어진 후에는 영역 클러스터 이름을 변경할 수 없습니다.

이 절에서는 다음 절차에 대해 설명합니다.

- Trusted Extensions를 설치하고 구성하는 방법 [180]
- 영역 클러스터를 만드는 방법(clsetup) [182]
- 영역 클러스터에서 Trusted Extensions를 사용하도록 구성하는 방법 [193]

▼ Trusted Extensions를 설치하고 구성하는 방법

이 절차에서는 Oracle Solaris의 Trusted Extensions 기능을 영역 클러스터에서 사용할 수 있도록 전역 클러스터를 준비합니다. Trusted Extensions를 사용하도록 계획하지 않는 경우 "영역 클러스터 만들기" [180]로 진행합니다.

전역 클러스터의 각 노드에서 이 절차를 수행합니다.

시작하기전에 다음 작업을 수행합니다.
- Oracle Solaris Cluster 및 Trusted Extensions 소프트웨어를 지원하는 Oracle Solaris OS가 설치되어 있는지 확인하십시오. Oracle Solaris Cluster 소프트웨어 요구 사항을 충족하도록 Oracle Solaris 소프트웨어를 설치하는 방법은 Oracle Solaris 소프트웨어를 설치하는 방법 [48]을 참조하십시오.
- 외부 이름 서비스가 사용되는 경우 LDAP 이름 지정 서비스가 Trusted Extensions에 서 사용할 수 있도록 구성되어 있는지 확인하십시오. Unresolved link to " Trusted Extensions 구성 및 관리 의 5 장, Trusted Extensions에 대한 LDAP 구성"을 참조하십 시오.
- 영역 클러스터의 Trusted Extensions에 대한 요구 사항 및 지침을 검토합니다. "영역 클 러스터의 Trusted Extensions에 대한 지침" [34]을 참조하십시오.
- 1. 전역 클러스터 노드에서 root 역할을 수행합니다.

2. Trusted Extensions 소프트웨어를 설치 및 구성합니다.

Unresolved link to " Trusted Extensions 구성 및 관리 의 3 장, Oracle Solaris에 Trusted Extensions 기능 추가"의 절차를 수행합니다.

3. Trusted Extensions zoneshare 및 zoneunshare 스크립트를 사용 안함으로 설정합니다.

Trusted Extensions zoneshare 및 zoneunshare 스크립트는 시스템에서 홈 디렉토리를 내 보내는 기능을 지원합니다. Oracle Solaris Cluster 구성은 이 기능을 지원하지 않습니다.

각 스크립트를 /bin/true 유틸리티에 대한 심볼릭 링크로 대체하여 이 기능을 사용 안함으로 설정합니다.

phys-schost# ln -s /usr/lib/zones/zoneshare /bin/true
phys-schost# ln -s /usr/lib/zones/zoneunshare /bin/true

4. 영역 클러스터에서 사용할 모든 논리적 호스트 이름 및 공유 IP 주소를 구성합니다.

Unresolved link to "Trusted Extensions 구성 및 관리 의 기본 Trusted Extensions 시스 템을 만드는 방법"을 참조하십시오.

- 5. (옵션) LDAP 서버의 전역 클러스터 노드에 대한 원격 로그인을 사용으로 설정합니다.
 - a. /etc/default/login 파일에서 CONSOLE 항목을 주석 처리합니다.
 - b. 원격 로그인을 사용으로 설정합니다.

phys-schost# **svcadm enable rlogin**

c. /etc/pam.conf 파일을 수정합니다.

아래에 나와 있는 대로 탭을 추가한 다음 각각 allow_remote 또는 allow_unlabeled를 입력하여 계정 관리 항목을 수정합니다.

other	account requisite	pam_roles.so.1	Tab	allow_remote
other	account required	pam_unix_account.so.1	Tab	allow_unlabeled

- 6. admin_low 템플리트를 수정합니다.
 - a. 전역 영역에서 사용하는 Trusted Extensions 시스템에 속하지 않는 각 IP 주소에 admin_low 템플리트를 지정합니다.

```
# tncfg -t admin_low
tncfg:admin_low> add host=ip-address1
tncfg:admin_low> add host=ip-address2
...
tncfg:admin_low> exit
```

b. tncfg 템플리트에서 와일드카드 주소 0.0.0.0/32를 제거합니다.

```
# tncfg -t admin_low remove host=0.0.0.0
```

7. 전역 영역에서 사용하는 Trusted Extensions 시스템에 속하는 각 IP 주소에 cipso 템플리트 를 지정합니다.

```
# tncfg -t cipso
tncfg:cipso> add host=ip-address1
tncfg:cipso> add host=ip-address2
```

tncfg:cipso> exit

- 전역 클러스터의 각 남은 노드에서 1단계부터 7단계까지를 반복합니다.
 모든 전역 클러스터 노드에서 모든 단계가 완료되면 전역 클러스터의 각 노드에서 이 절차의 남은 단계를 수행합니다.
- 9. 각 전역 클러스터 노드에서 Trusted Extensions 사용 LDAP 서버의 IP 주소를 /etc/inet/ hosts 파일에 추가합니다. LDAP 서버는 전역 영역 및 영역 클러스터의 노드에서 사용됩니다.
- 10.(옵션) 전역 클러스터 노드를 LDAP 클라이언트로 만듭니다.Unresolved link to " Trusted Extensions 구성 및 관리 의 Trusted Extensions에서 전역
영역을 LDAP 클라이언트로 만들기"를 참조하십시오.
- 11.Trusted Extensions 사용자를 추가합니다.Unresolved link to " Trusted Extensions 구성 및 관리 의 Trusted Extensions의 역할 및
사용자 만들기"를 참조하십시오.

다음 순서 영역 클러스터를 만듭니다. "영역 클러스터 만들기" [180]로 이동합니다.

▼ 영역 클러스터를 만드는 방법(clsetup)

clsetup 유틸리티를 사용하여 영역 클러스터를 만들려면 이 절차를 수행합니다.

영역 클러스터를 설치한 후 수정하려면 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 영역 클러스터 관리 작업 수행" 및 Unresolved link to " clzonecluster1CL" 매뉴얼 페이지를 참조하십시오.

참고 - 영역 클러스터가 만들어진 후에는 영역 클러스터 이름을 변경할 수 없습니다.

- 시작하기전에 저역 클러스터를 만듭니다. 3장, 전역 클러스터 설정을 참조하십시오.
 - 영역 클러스터 만들기의 지침 및 요구 사항을 검토합니다. "영역 클러스터" [31]를 참조 하십시오.
 - 영역 클러스터가 Trusted Extensions를 사용할 경우 Trusted Extensions를 설치하고 구 성하는 방법 [180]에 나와 있듯이 Trusted Extensions를 설치, 구성 및 사용으로 설정 했는지 확인하십시오.
 - 클러스터에 영역 클러스터를 추가하는 데 사용 가능하 서브넷이 충분하지 않으면 개인 IP 주소 범위를 수정하여 필요한 서브넷을 제공해야 합니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기존 클러스터의 개인 네트워크 주소 또는 주소 범위를 변경하는 방법"을 참조하십시오.
 - 다음 정보를 사용할 수 있도록 준비합니다.
 - 영역 클러스터에 할당할 고유한 이름

참고 - Trusted Extensions가 사용으로 설정된 경우 영역 클러스터 이름은 영역 클러스터에 지정할 보안 레벨이 설정된 Trusted Extensions 보안 레이블과 동일한 이름이어야 합니다. 사용할 각 Trusted Extensions 보안 레이블에 대해 별도의 영역 클러스터를 만듭니다.

- 영역 클러스터의 노드에서 사용할 영역 경로. 자세한 내용은 Unresolved link to " Oracle Solaris 영역 소개 의 리소스 유형과 등록 정보"의 zonepath 등록 정보 설명을 참조하십시오. 기본적으로 전체 루트 영역이 만들어집니다.
- 영역 클러스터 노드를 만들 전역 클러스터에 있는 각 노드의 이름
- 각 영역 클러스터 노드에 할당하는 영역 공용 호스트 이름 또는 호스트 별칭
- 해당되는 경우 각 영역 클러스터 노드에서 사용하는 공용 네트워크 IP 주소, 영역 클러스터가 Geographic Edition 구성에 사용되는 경우 각 영역 클러스터 노드에 대한 IP 주소 및 NIC를 지정해야 합니다. 그렇지 않은 경우 이 요구 사항은 선택 사 항입니다. Geographic Edition 요구 사항에 대한 자세한 내용은 "Geographic Edition" [16]을 참조하십시오.
- 해당되는 경우 각 영역 클러스터 노드에서 공용 네트워크에 연결하는 데 사용하는 공 용 네트워크 IPMP 그룹의 이름

참고 - 각 영역 클러스터 노드에 대해 IP 주소를 구성하지 않으면 다음과 같은 두 가지 상황이 발생합니다.

- 특정 영역 클러스터에서 영역 클러스터에 사용할 NAS 장치를 구성할 수 없습니다. 클러 스터에서는 NAS 장치와 통신할 때 영역 클러스터 노드의 IP 주소를 사용하므로 IP 주소 가 없으면 클러스터에서 NAS 장치 보호(fencing)를 지원하지 못합니다.
- 클러스터 소프트웨어가 모든 NIC에서 논리 호스트 IP 주소를 활성화합니다.

작은 정보 - clsetup 유틸리티에서는 < 키를 눌러 이전 화면으로 돌아갈 수 있습니다.

Oracle Solaris Cluster Manager GUI를 통해서도 영역 클러스터를 만들 수 있습니다. GUI 로그인 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 Oracle Solaris Cluster Manager에 액세스하는 방법"을 참조하십시오.

- 1. 전역 클러스터의 활성 구성원 노드에서 root 역할을 수행합니다. 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 전역 클러스터의 노드가 클러스터 모드에 있는지 확인합니다.

phys-schost# clnode status
=== Cluster Nodes ===

--- Node Status ---

Node Name	Status
phys-schost-2	Online
phys-schost-1	Online

3. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

주 메뉴가 표시됩니다.

- 4. Zone Cluster(영역 클러스터) 메뉴 항목을 선택합니다.
- 5. Create a Zone Cluster(영역 클러스터 만들기) 메뉴 항목을 선택합니다.
- 6. 추가할 영역 클러스터의 이름을 입력합니다. 영역 클러스터 이름은 ASCII 문자(a-z 및 A-Z), 숫자, 대시 또는 밑줄을 포함할 수 있습니다. 최대 이름 길이는 20자입니다.
- 7. 변경할 등록 정보를 선택합니다. 다음 등록 정보를 설정할 수 있습니다.

5	
등록 정보	설명
zonepath=zone-cluster-node-path	영역 클러스터 노드에 대한 경로를 지정합니다. 예를 들어 /zones/ sczone입니다.
brand= <i>brand-type</i>	영역 클러스터에 사용되는 solaris, solaris10 또는 labeled 영역 브랜드 를 지정합니다. 참고 - Trusted Extensions를 사용하려면 labeled 브랜드만 사용해야 합 니다. 배타적 IP 영역 클러스터를 만들려면 solaris 브랜드만 사용해야 합 니다.
	배타적 IP solaris10 브랜드 영역 클러스터를 만들려면 다음과 같이 clzonecluster create 명령을 사용하여 등록 정보를 설정합니다.
	<pre>cz1> set brand=solaris10 cz1> set ip-type=exclusive</pre>
ip-type=Value	영역 클러스터에서 사용되는 네트워크 IP 주소의 유형을 지정합니다. 유효 한 ip-type 값은 shared 및 exclusive입니다.
	배타적 IP 영역 클러스터의 최대 수는 초기 클러스터 설치 시 설정할 수 있 는 cluster 등록 정보 num_xip_zoneclusters의 제약을 받습니다. 이 값의 기본값은 3입니다. 자세한 내용은 Unresolved link to " cluster1CL" 매 뉴얼 페이지를 참조하십시오.
enable_priv_net= <i>value</i>	true로 설정되면 영역 클러스터 노드 간에 Oracle Solaris Cluster 개인 네 트워크 통신이 사용으로 설정됩니다. 영역 클러스터 노드에 대한 Oracle Solaris Cluster 개인 호스트 이름 및 IP 주소는 시스템에서 자동으로 생성 됩니다. 값이 false로 설정된 경우 개인 네트워크 통신이 사용 안함으로 설 정됩니다. 기본값은 true입니다.
	enable_priv_net 등록 정보가 다음 등록 정보와 함께 true로 설정되면 다 음 방법으로 개인 통신이 수행됩니다.
	■ ip-type=shared - 영역 클러스터 노드 간 통신은 전역 클러스터의 개 인 네트워크를 사용합니다.
	■ ip-type=exclusive(solaris 브랜드 전용) - 영역 클러스터 노드 간 통신은 지정된 privnet 리소스를 사용합니다. privnet 리소스는 이 더넷 유형의 개인 네트워크 어댑터에 대해 VNIC(Virtual Network Interfaces) 또는 IB 유형의 개인 네트워크 어댑터에 대해 IB(Infini Band) 분할 영역입니다. VNIC 또는 IB 분할 영역은 전역 클러스터의 각 개인 네트워크 어댑터에서 마법사에 의해 자동으로 만들어지고 영 역 클러스터를 구성하는 데 사용됩니다.
	마법사에서 생성하는 VNIC 또는 IB 분할 영역은 다음 이름 지정 규약을 사용합니다.
	이더넷 유형의 경우: private-network-interface-name_zone-cluster- name_vnic0
	IB 유형의 경우: private-network-interface-name_zone-cluster- name_ibp0
	예를 들어 전역 클러스터의 개인 네트워크 인터페이스는 net2 및 net3이며 영역 클러스터 이름은 zone1입니다. net2 및 net3이 이더넷 유형 네트워크 인터페이스인 경우 영역 클러스터에 대해 만들어진 두 개의 VNIC 이름이 net2_zone1_vnic0 및 net3_zone1_vnic0으로 지정됩니다.

등록 정보	설명
	net2 및 net3이 IB 유형 네트워크 인터페이스인 경우 영역 클러스터에 대해 만들어진 두 개의 IB 분할 영역 이름이 net2_zone1_ibp0 및 net3_ zone1_ibp0으로 지정됩니다.

- 8. solaris10 브랜드 영역 클러스터의 경우 영역 루트 암호를 입력합니다. solaris10 브랜드 영역의 경우 루트 계정 암호가 필요합니다.
- 9. (옵션) 변경할 Zone System Resource Control 등록 정보를 선택합니다.

 다음 등록 정보를 설정할 수 있습니다.

등록 정보	설명
max-lwps= <i>value</i>	이 영역 클러스터에서 동시에 사용할 수 있는 최대 LWP(경량 프로세스) 수를 지정합니다.
<pre>max-shm-memory=Value</pre>	이 영역 클러스터에 허용되는 최대 공유 메모리(GB)를 지정합니다.
max-shm-ids= <i>value</i>	이 영역 클러스터에 허용되는 최대 공유 메모리 ID 수를 지정합니다.
max-msg-ids=Value	이 영역 클러스터에 허용되는 최대 메시지 대기열 ID 수를 지정합니다.
max-sem-ids= <i>Value</i>	이 영역 클러스터에 허용되는 최대 세마포 ID 수를 지정합니다.
cpu-shares=Value	이 영역 클러스터에 할당할 FSS(페어 쉐어 스케줄러) 공유 수를 지정합니 다.

 10.
 (옵션) 변경할 Zone CPU Resource Control 등록 정보를 선택합니다.

 다음 등록 정보를 설정할 수 있습니다.

등록 정보	설명
scope=SCOpe-type	영역 클러스터에 사용되는 ncpus 등록 정보가 dedicated-cpu 또는 capped-cpu인지 여부를 지정합니다.
ncpus= <i>Value</i>	범위 유형에 대한 한계를 지정합니다. ■ scope 등록 정보가 dedicated-cpu로 설정된 경우 ncpus 등록 정보는 이 영역의 배타적 사용을 위해 지정해야 할 CPU 수에 대한 한계를 설 정합니다. 영역은 부트할 때 풀 및 프로세서 세트를 만듭니다. 리소 스 풀에 대한 자세한 내용은 Unresolved link to " pooladm1M" 및 Unresolved link to " poolcfg1M" 매뉴얼 페이지를 참조하십시오. ■ scope 등록 정보가 capped-cpu로 설정된 경우 ncpus 등록 정보는 영 역 클러스터에서 사용할 수 있는 CPU 시간에 대한 한계를 설정합 니다. 사용된 단위는 영역의 모든 사용자 스레드에서 사용할 수 있 는 단일 CPU의 백분율(소수(예: .75) 또는 혼합 수(1.25와 같은 정 수와 소수)로 표현)로 변환됩니다. ncpus 값 1은 CPU 10%를 의 미합니다. 리소스 풀에 대한 자세한 내용은 Unresolved link to " pooladm1M", Unresolved link to " pooladm1M" 및 Unresolved link to " poolcfg1M" 매뉴얼 페이지를 참조하십시오

11. (옵션) 변경할 capped-memory 등록 정보를 선택합니다.

다음 등록 정보를 설정할 수 있습니다.

등록 정보	설명
physical= <i>value</i>	물리적 메모리에 대한 GB 한계를 지정합니다.
swap=value	스왑 메모리에 대한 GB 한계를 지정합니다.
locked= <i>value</i>	잠긴 메모리에 대한 GB 한계를 지정합니다.

Oracle Solaris Cluster Manager GUI를 통해서도 영역 클러스터의 capped-cpu 메모리 구 성 및 전용 CPU 구성을 볼 수 있습니다. GUI 로그인 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 Oracle Solaris Cluster Manager에 액세스하는 방 법"을 참조하십시오.

12. 사용 가능한 물리적 호스트 목록에서 물리적 호스트를 선택합니다.

사용 가능한 물리적 노드 또는 호스트 모두 또는 하나를 선택한 다음 한 번에 하나의 영역 클 러스터 노드를 구성할 수 있습니다.

다음 등록 정보를 설정할 수 있습니다.

등록 정보	설명
hostname= <i>hostname</i>	영역 클러스터 노드 호스트 이름을 지정합니다. 예를 들어 zc-host-1입니 다.
address=public-network-address	공유 IP 유형 영역 클러스터의 영역 클러스터 노드에 대한 공용 네트워크 주소를 지정합니다. 예를 들어 172.1.1.1입니다.
physical=physical-interface	물리적 노드에서 검색되는 사용 가능한 네트워크 인터페이스에서 공용 네 트워크에 대한 네트워크 물리적 인터페이스를 지정합니다. 예를 들어 sc_ ipmp0 또는 net0입니다.
defrouter= <i>default-router</i>	영역이 다른 서브넷에 구성된 경우 네트워크 주소에 대한 기본 라우터를 지 정합니다. 서로 다른 defrouter 설정을 사용하는 각 영역 또는 영역 세트는 서로 다른 서브넷에 있어야 합니다(예: 192.168.0.1). defrouter 등록 정 보에 대한 자세한 내용은 Unresolved link to " zonecfg1M" 매뉴얼 페이 지를 참조하십시오.

- 13. 영역 클러스터에 대한 네트워크 주소를 지정합니다. 네트워크 주소를 사용하면 영역 클러스터의 논리적 호스트 이름 또는 공유 IP 클러스터 리소 스를 구성할 수 있습니다. 네트워크 주소가 영역 클러스터 전역 범위에 있습니다.
- 14. Review Configuration(구성 검토) 화면에서 Return 키를 눌러 계속하고 c를 입력하여 영역 클러스터를 만듭니다.

다음과 비슷한 구성 변경 결과가 표시됩니다.

>>> Result of the Creation for the Zone Cluster(sczone) <<<

The zone cluster is being created with the following configuration

```
/usr/cluster/bin/clzonecluster configure sczone
create
set brand=solaris
set zonepath=/zones/sczone
set ip-type=shared
set enable_priv_net=true
add capped-memory
set physical=2G
end
add node
set physical-host=phys-schost-1
set hostname=zc-host-1
add net
set address=172.1.1.1
set physical=net0
end
end
add net
set address=172.1.1.2
end
```

Zone cluster, zc2 has been created and configured successfully.

Continue to install the zone cluster(yes/no) ?

15. 계속하려면 yes를 입력합니다.

clsetup 유틸리티는 영역 클러스터의 표준 설치를 수행하며 사용자가 옵션을 지정할 수 없습니다.

16. 모두 완료되면 clsetup 유틸리티를 종료합니다.

17. 영역 클러스터 구성을 확인합니다.

verify 하위 명령은 지정된 리소스의 가용성을 확인합니다. clzonecluster verify 명령을 성공하면 아무 출력도 표시되지 않습니다.

phys-schost-1# clzonecluster verify zone-cluster-name
phys-schost-1# clzonecluster status zone-cluster-name
=== Zone Clusters ===

--- Zone Cluster Status ---

Name	Node Name	Zone HostName	Status	Zone	Status
zone	basenode1	zone-1	0f	fline	Configured
	basenode2	2 zone-2	0f	fline	Configured

18. Trusted Extensions의 경우 각 영역 클러스터 노드에서 암호 파일을 쓰기 가능한 파일로 만 듭니다.

전역 영역의 경우 txzonemgr GUI를 실행합니다.

phys-schost# **txzonemgr**

전역 영역을 선택한 다음 Configure per-zone name service(영역별 이름 서비스 구성) 항 목을 선택합니다.

19. 영역 클러스터를 설치합니다.

phys-schost-1# **clzonecluster install** *options zone-cluster-name* Waiting for zone install commands to complete on all the nodes of the zone cluster "*zone-cluster-name*"...

■ solaris 또는 labeled 브랜드 영역 클러스터의 경우 다음 옵션이 유효합니다.

옵션	설명
-c config-profile.xml	시스템 구성 정보를 포함합니다c config-profile.xml 옵션은 영역 클러 스터의 모든 비전역 영역에 대한 구성 프로파일을 제공합니다. 이 옵션을 사용하면 영역 클러스터의 각 영역에 고유하도록 영역의 호스트 이름만 변경됩니다. 모든 프로파일에는 .xml 확장자가 있어야 합니다.
-M <i>manifest</i> .xml	모든 영역 클러스터 노드에서 필요한 패키지를 설치하도록 구성하는 사 용자 정의 자동 설치 프로그램 매니페스트를 지정합니다. 영역 클러스 터에 대한 기본 전역 클러스터 노드 중 일부가 동일한 Oracle Solaris Cluster 패키지로 설치되지 않았지만 기본 노드에 놓을 패키지를 변경하 지 않으려면 이 옵션을 사용합니다. clzonecluster install 명령을 -M 옵션 없이 실행할 경우 기본 노드에 설치된 패키지가 누락되면 기본 노드 에서 영역 클러스터 설치를 실패합니다.

■ solaris10 브랜드 영역 클러스터의 경우 다음 옵션이 유효합니다.

-a 또는 -d 옵션을 사용하여 영역 클러스터에서 지원되는 Geographic Edition 소프트 웨어, 주요 패키지 및 에이전트를 설치합니다. 또한 동일한 명령에 -d 및 -p 옵션을 사용 할 수 있습니다.

참고 - 현재 solaris10 브랜드 영역 클러스터에서 지원되는 에이전트 목록은 Oracle Solaris Cluster 4 Compatibility Guide (http://www.oracle.com/technetwork/server-storage/ solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf)를 참조 하십시오.

옵션	설명
Oracle Solaris Cluster 패치 145333-15 for SPARC 및 145334-15 for x86	참고 - Oracle Solaris Cluster 3.3 소프트웨어 또는 Oracle Solaris Cluster 3.3 5/11 소프트웨어로 영역 클러스터를 설치 중인 경우에만 해당 패치가 필요합니다.
	solaris10 브랜드 영역 클러스터를 설치하기 전에 최소 Oracle Solaris Cluster 3.3 패치 145333-15 for SPARC 또는 145334- 15 for x86을 설치해야 합니다. 패치를 검색하려면 My Oracle Support에 로그인합니다. 그런 다음 전역 영역에서 -p 옵션을 사용하 여 패치를 설치합니다. patchdir 디렉토리가 필요하며 영역 클러스터 에 있는 모든 노드의 solaris10 브랜드 영역에서 해당 디렉토리에 액 세스할 수 있어야 합니다.

옵션	설명
	<pre># clzonecluster install-cluster \ -p patchdir=patchdir[,patchlistfile=filename] \ [-n phys-schost-1[,]] \ [-v] \ zone-cluster-name</pre>
	패치 설치에 대한 자세한 내용을 보려면 My Oracle Support (https: //support.oracle.com)에 로그인하여 ID 1278636.1, <i>Solaris</i> 패치 의 모든 개정을 찾고 다운로드하는 방법을 검색하십시오.
-a absolute_path_to_archive zone-cluster-name	소스 이미지로 사용할 이미지 아카이브에 대한 절대 경로를 지정합니 다.
	<pre># clzonecluster install \</pre>
	[-n nodename] \
	zone-cluster-name
-d dvd-image zone-cluster- name	설치된 solaris10 비전역 영역의 루트 디렉토리에 대한 전체 디렉토리 경로를 지정합니다. 명령을 실행할 노드의 전역 영역에서 클러스터 소 프트웨어 DVD 디렉토리에 액세스할 수 있습니다.
	<pre># clzonecluster install-cluster \</pre>
	-d dvd-image \
	zoneciustername

자세한 내용은 Unresolved link to " clzonecluster1CL" 매뉴얼 페이지를 참조하십시오.

20. 영역 클러스터가 설치된 상태에서 -c *config-profile*.xml 옵션을 사용하지 않은 경우 sysid 구성을 수행합니다.

그렇지 않으면 21단계로 건너뜁니다.

참고 - 다음 단계에서 비전역 영역 zcnode 및 zone-cluster-name은 동일한 이름을 공유합니다.

- 배타적 IP LabeLed 브랜드 영역 클러스터의 경우 다음 단계를 수행합니다. 한 번에 하나의 영역 클러스터 노드만 구성합니다.
 - a. 하나의 영역 클러스터 노드의 비전역 영역을 부트합니다.

phys-schost# zoneadm -z ZCNOde boot

b. Oracle Solaris 인스턴스의 구성을 해제하고 영역을 재부트합니다.

phys-schost# zlogin ZCNOde
ZCNOde# sysconfig unconfigure
ZCNOde# reboot

재부트 시 zlogin 세션이 종료됩니다.

c. zlogin 명령을 실행하고 대화식 명령을 통해 진행합니다.

phys-schost# **zlogin** -C zcnode

d. 완료되면 영역 콘솔을 종료합니다.

비전역 영역에서 종료하는 방법에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 영역 만들기 및 사용 의 비전역 영역 종료 방법"을 참조하십시오.

e. 전역 영역에서 영역 클러스터 노드를 정지합니다.

phys-schost# zoneadm -z zcnode halt

- f. 남은 각 영역 클러스터 노드에 대해 이전 단계를 반복합니다.
- 공유 IP labeled 브랜드 영역 클러스터의 경우 각 영역 클러스터 노드에 대해 다음 단계 를 수행합니다.
 - a. 하나의 전역 클러스터 노드에서 영역 클러스터를 부트합니다.

phys-schost# clzonecluster boot zone-cluster-name

b. Oracle Solaris 인스턴스의 구성을 해제하고 영역을 재부트합니다.

phys-schost# zlogin ZCNOde
ZCNOde# sysconfig unconfigure
ZCNOde# reboot

재부트 시 zlogin 세션이 종료됩니다.

c. zlogin 명령을 실행하고 대화식 명령을 통해 진행합니다.

phys-schost# **zlogin** -C zcnode

d. 완료되면 영역 콘솔을 종료합니다.

비전역 영역에서 종료하는 방법에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 영역 만들기 및 사용 의 비전역 영역 종료 방법"을 참조하십시오.

- e. 남은 각 영역 클러스터 노드에 대해 20.2.b단계부터 20.2.d단계까지를 반복합니다.
- solaris 또는 solaris10 브랜드 영역 클러스터의 경우 각 영역 클러스터 노드에 대해 다 음 단계를 수행합니다.
 - a. 하나의 전역 클러스터 노드에서 영역 클러스터를 부트합니다.

phys-schost# clzonecluster boot zone-cluster-name

b. zlogin 명령을 실행하고 대화식 명령을 통해 진행합니다.

phys-schost# **zlogin** -C zcnode

c. 완료되면 영역 콘솔을 종료합니다.

비전역 영역에서 종료하는 방법에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 영역 만들기 및 사용 의 비전역 영역 종료 방법"을 참조하십시오.

d. 남은 각 영역 클러스터 노드에 대해 20.3.b단계부터 20.3.c단계까지를 반복합니다.

21. 영역 클러스터를 부트합니다.

영역 클러스터를 설치하는 데 몇 분이 걸릴 수 있습니다.

phys-schost# clzonecluster boot zone-cluster-name

22. (배타적 IP 영역 클러스터) IPMP 그룹을 수동으로 구성합니다.

clsetup 유틸리티는 배타적 IP 영역 클러스터에 대한 IPMP 그룹을 자동으로 구성하지 않습 니다. 논리 호스트 이름 또는 공유 주소 리소스를 만들기 전에 수동으로 IPMP 그룹을 만들어 야 합니다.

phys-schost# ipadm create-ipmp -i interface sc_ipmp0
phys-schost# ipadm delete-addr interface/name
phys-schost# ipadm create-addr -T static -a IPaddress/prefix sc_ipmp0/name

다음 순서 solaris10 브랜드 영역 클러스터에 설치한 Oracle Solaris Cluster 3.3 데이터 서비스를 구 성하려면 해당되는 데이터 서비스 설명서에 있는 영역 클러스터에 대한 절차를 수행합니 다. Oracle Solaris Cluster 3.3 Documentation (http://www.oracle.com/technetwork/ documentation/solaris-cluster-33-192999.html)을 참조하십시오.

Trusted Extensions 구성을 완료하려면 영역 클러스터에서 Trusted Extensions를 사용하도 록 구성하는 방법 [193]으로 이동합니다.

그렇지 않으면 영역 클러스터에 파일 시스템 또는 저장 장치를 추가합니다. 다음 절을 참조하 십시오.

- "영역 클러스터에 파일 시스템 추가" [195]
- "특정 영역 클러스터 노드에 로컬 파일 시스템 추가" [208]
- "영역 클러스터에 저장 장치 추가" [211]

▼ 영역 클러스터에서 Trusted Extensions를 사용하도록 구성하는 방법

labeled 브랜드 영역 클러스터를 만든 후 다음 단계를 수행하여 Trusted Extensions를 사용 하는 구성을 완료합니다.

1. 영역 클러스터에 대한 IP 주소 매핑을 완료합니다.

영역 클러스터의 각 노드에서 이 단계를 수행하십시오.

a. 전역 클러스터의 노드에서 노드 ID를 표시합니다.

phys-schost# **cat /etc/cluster/nodeid** N

b. 동일한 전역 클러스터 노드의 영역 클러스터 노드에 로그인합니다.

로그인하기 전에 SMF 서비스를 가져왔으며 모든 서비스가 작동 중인지 확인합니다.

c. 개인 상호 연결을 위해 이 영역 클러스터 노드에서 사용되는 IP 주소를 확인합니다.

클러스터 소프트웨어에서 영역 클러스터를 구성할 때 해당 클러스터 소프트웨어는 이러 한 IP 주소를 자동으로 지정합니다.

ifconfig -a 출력에서 영역 클러스터에 속한 clprivnet0 논리적 인터페이스를 찾습니다. inet의 값은 이 영역 클러스터에서의 클러스터 개인 상호 연결의 사용을 지원하도록 지정된 IP 주소입니다.

zc1# ifconfig -a lo0:3: flags=20010008c9<UP,LOOPBACK,RUNNING,NOARP,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 zone zcl inet 127.0.0.1 netmask ff000000 net0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2 inet 10.11.166.105 netmask ffffff00 broadcast 10.11.166.255 groupname sc_ipmp0 ether 0:3:ba:19:fa:b7 ce0: flags=9040843<UP,BROADCAST,RUNNING,MULTICAST,DEPRECATED,IPv4,NOFAILOVER> mtu 1500 index 4 inet 10.11.166.109 netmask ffffff00 broadcast 10.11.166.255 groupname sc ipmp0 ether 0:14:4f:24:74:d8 ce0:3: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 4 zone zcl inet 10.11.166.160 netmask ffffff00 broadcast 10.11.166.255 clprivnet0: flags=1009843<UP,BROADCAST,RUNNING,MULTICAST,MULTI BCAST,PRIVATE,IPv4> mtu 1500 index 7 inet 172.16.0.18 netmask fffffff8 broadcast 172.16.0.23 ether 0:0:0:0:0:2 clprivnet0:3: flags=1009843<UP,BROADCAST,RUNNING,MULTICAST,MULTI_BCAST,PRIVATE,IPv4> mtu 1500 index 7 zone zcl inet 172.16.0.22 netmask fffffffc broadcast 172.16.0.23

- d. 영역 클러스터 노드의 /etc/inet/hosts 파일에 영역 클러스터 노드의 다음 주소를 추가 합니다.
 - clusternodeN-priv(여기서 N은 전역 클러스터 노드 ID임)인 개인 상호 연결의 호스 트 이름입니다.

172.16.0.22 clusternodeN-priv

- 영역 클러스터를 만들 때 clzonecluster 명령에 지정된 각 net 리소스
- e. 남은 영역 클러스터 노드에서 반복합니다.
- 2. 영역 클러스터 구성 요소와의 통신에 권한을 부여합니다.

영역 클러스터 구성 요소에서 사용하는 IP 주소에 대한 새 항목을 만들고 각 항목에 CIPSO 템플리트를 지정합니다. 영역 클러스터 노드의 /etc/inet/hosts 파일에 존재하는 이러한 IP 주소는 다음과 같습니다.

- 각 영역 클러스터 노드 개인 IP 주소
- 영역 클러스터의 모든 cl_privnet IP 주소
- 영역 클러스터에 대한 각 논리 호스트 이름 공용 IP 주소
- 영역 클러스터에 대한 각 공유 주소 공용 IP 주소

phys-schost# tncfg -t cipso
tncfg:cipso> add host=ipaddress1
tncfg:cipso> add host=ipaddress2

tncfg:cipso> exit

CIPSO 템플리트에 대한 자세한 내용은 Unresolved link to "Trusted Extensions 구성 및 관리 의 DOI(Domain of Interpretation)를 구성하는 방법"을 참조하십시오.

3. IP 엄격한 다중 홈 지정을 weak로 설정합니다.

영역 클러스터의 각 노드에서 다음 명령을 수행합니다.

phys-schost# ipadm set-prop -p hostmodel=weak ipv4
phys-schost# ipadm set-prop -p hostmodel=weak ipv6

hostmodel 등록 정보에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2 조정 가능 매개변수 참조 설명서 의 hostmodel(ipv4 또는 ipv6)"을 참조하십시오.

다음 순서 영역 클러스터에 파일 시스템 또는 저장 장치를 추가합니다. 다음 절을 참조하십시오.

- "영역 클러스터에 파일 시스템 추가" [195]
- "특정 영역 클러스터 노드에 로컬 파일 시스템 추가" [208]
- "영역 클러스터에 저장 장치 추가" [211]

참조 영역 클러스터에서 소프트웨어를 업데이트하는 경우 Unresolved link to "Oracle Solaris Cluster 시스템 관리 설명서 의 11 장, 소프트웨어 업데이트"에 포함된 절차를 수행합니다. 이러한 절차에는 필요한 경우 영역 클러스터에 대한 특정 지침이 포함되어 있습니다.

영역 클러스터에 파일 시스템 추가

파일 시스템을 영역 클러스터에 추가하고 온라인 상태로 전환하면 해당 영역 클러스터 내 에서 사용할 수 있도록 파일 시스템이 인증됩니다. 사용할 파일 시스템을 마운트하려면 SUNW.HAStoragePlus 또는 SUNW.ScalMountPoint와 같은 클러스터 자원을 사용하여 파일 시 스템을 구성하십시오.

참고 - 단일 영역 클러스터 노드에서만 사용되는 파일 시스템을 추가하려면 대신 "특정 영역 클러스터 노드에 로컬 파일 시스템 추가" [208]를 참조하십시오.

이 절에서는 영역 클러스터에서 사용할 파일 시스템을 추가하는 절차를 제공합니다.

- 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(clsetup) [195]
- 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(CLI) [197]
- 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(clsetup) [199]
- 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(CLI) [200]
- 영역 클러스터에 Sun QFS 공유 파일 시스템을 추가하는 방법(CLI) [206]
- 영역 클러스터에 클러스터 파일 시스템을 추가하는 방법(clsetup) [202]
- 영역 클러스터에 UFS 클러스터 파일 시스템을 추가하는 방법(CLI) [204]
- 영역 클러스터에 Oracle ACFS 파일 시스템을 추가하는 방법(CLI) [207]

Oracle Solaris Cluster Manager GUI를 통해서도 영역 클러스터에 파일 시스템을 추가할 수 있습니다. GUI 로그인 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 Oracle Solaris Cluster Manager에 액세스하는 방법"을 참조하십시오.

▼ 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(clsetup)

영역 클러스터에서 사용할 전역 클러스터의 고가용성 로컬 파일 시스템을 구성하려면 이 절 차를 수행합니다. 파일 시스템이 영역 클러스터에 추가되고 HAStoragePlus 리소스로 구성 되어 고가용성 로컬 파일 시스템을 만듭니다.

참고 - 또는 명령줄을 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(CLI) [197]을 참조하십시오.

전역 클러스터의 한 노드에서 절차의 모든 단계를 수행합니다.

- 1. 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
- 2. 전역 클러스터에서, 영역 클러스터에서 사용할 파일 시스템을 만듭니다. 파일 시스템이 공유 디스크에 만들어지는지 확인합니다.
- 3. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

주 메뉴가 표시됩니다.

작은 정보 - 이전 화면으로 돌아가려면 < 키를 입력하고 Return 키를 누릅니다.

- **4. Zone Cluster(영역 클러스터) 메뉴 항목을 선택합니다.** Zone Cluster Tasks(영역 클러스터 작업) 메뉴가 표시됩니다.
- Add File System/Storage Device to a Zone Cluster(영역 클러스터에 파일 시스템/저장 장치 추가) 메뉴 항목을 선택합니다.
 Select Zone Cluster(영역 클러스터 선택) 메뉴가 표시됩니다.
- 6. 파일 시스템을 추가할 영역 클러스터를 선택합니다. Storage Type Selection(저장소 유형 선택) 메뉴가 표시됩니다.
- 7. File System(파일 시스템) 메뉴 항목을 선택합니다. File System Selection for the Zone Cluster(영역 클러스터에 대한 파일 시스템 선택) 메뉴 가 표시됩니다.
- 영역 클러스터에 추가할 파일 시스템을 선택합니다.
 목록의 파일 시스템은 공유 디스크에서 구성되며 영역 클러스터가 구성되는 노드에서 액세스 할 수 있는 파일 시스템입니다. 또한 e를 입력하여 파일 시스템에 대한 모든 등록 정보를 수동 으로 지정할 수 있습니다.

Mount Type Selection(마운트 유형 선택) 메뉴가 표시됩니다.

- 9. Loopback(루프백) 마운트 유형을 선택합니다. File System Properties for the Zone Cluster(영역 클러스터에 대한 파일 시스템 등록 정 보) 메뉴가 표시됩니다.
- 10. 추가 중인 파일 시스템에 대해 변경할 수 있는 등록 정보를 변경합니다.

참고 - UFS 파일 시스템의 경우 로깅을 사용으로 설정합니다.

완료되면 d를 입력하고 Return 키를 누릅니다.

11. 구성 변경을 저장하려면 c를 입력합니다.

구성 변경 결과가 표시됩니다.

- 12. 모두 완료되면 clsetup 유틸리티를 종료합니다.
- 13. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

다음 순서 HAStoragePlus 리소스를 사용하여 파일 시스템이 고가용성을 제공하도록 구성합니다. HAStoragePlus 자원은 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트 하는 영역 클러스터 노드에서 파일 시스템의 마운트를 관리합니다. Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스템을 사용으로 설정"를 참조하십시오.

▼ 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(CLI)

영역 클러스터에서 사용할 전역 클러스터의 고가용성 로컬 파일 시스템을 추가하려면 이 절 차를 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(clsetup) [195]을 참조하십시오.

영역 클러스터에 ZFS 풀을 추가하려면 대신 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(clsetup) [199]의 절차를 수행합니다. 또는 영역 클러스터에서 고가용성을 제공 하도록 ZFS 저장소 풀을 구성하려면 Unresolved link to " Oracle Solaris Cluster 데이 터 서비스 계획 및 관리 설명서 의 로컬 Solaris ZFS 파일 시스템에 고가용성이 제공되도록 HAStoragePlus 리소스 유형을 설정하는 방법"을 참조하십시오.

- 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
 전역 클러스터의 한 노드에서 절차의 모든 단계를 수행합니다.
- 2. 전역 클러스터에서, 영역 클러스터에서 사용할 파일 시스템을 만듭니다. 파일 시스템이 공유 디스크에 만들어지는지 확인합니다.
- 3. 영역 클러스터 구성에 파일 시스템을 추가합니다.

phys-schost# clzonecluster configure zone-cluster-name clzc:zone-cluster-name> add fs clzc:zone-cluster-name:fs> set dir=mount-point clzc:zone-cluster-name:fs> set special=disk-device-name clzc:zone-cluster-name:fs> set raw=raw-disk-device-name clzc:zone-cluster-name:fs> set type=FS-type clzc:zone-cluster-name:fs> end clzc:zone-cluster-name:fs> end clzc:zone-cluster-name clzc:zone-cluster-name> commit
clzc:zone-cluster-name> exit

dir=*mount-point*

파일 시스템 마운트 지점을 지정합니다.

special=disk-device-name

디스크 장치의 이름을 지정합니다.

raw=*raw-disk-device-name*

원시 디스크 장치의 이름을 지정합니다.

type=FS-type

파일 시스템 유형을 지정합니다.

참고 - UFS 파일 시스템의 경우 로깅을 사용으로 설정하십시오.

4. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

예 6-1 영역 클러스터에 고가용성 로컬 파일 시스템 추가(CLI)

이 예에서는 sczone 영역 클러스터에서 사용할 로컬 파일 시스템 /global/oracle/d1을 추가 합니다.

phys-schost-1# clzonecluster configure sczone clzc:sczone> add fs clzc:sczone:fs> set dir=/global/oracle/d1 clzc:sczone:fs> set special=/dev/md/oracle/dsk/d1 clzc:sczone:fs> set raw=/dev/md/oracle/rdsk/d1 clzc:sczone:fs> set type=ufs clzc:sczone:fs> add options [logging] clzc:sczone:fs> end clzc:sczone> verify clzc:sczone> commit clzc:sczone> exit phys-schost-1# clzonecluster show -v sczone Resource Name: fs dir: special:

/global/oracle/d1 /dev/md/oracle/dsk/d1 /dev/md/oracle/rdsk/d1 ufs [logging] [true]

raw:

type:

....

options:
cluster-control:

다음 순서 HAStoragePlus 리소스를 사용하여 파일 시스템이 고가용성을 제공하도록 구성합니다. HAStoragePlus 자원은 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트 하는 영역 클러스터 노드에서 파일 시스템의 마운트를 관리합니다. Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스템을 사용으로 설정"를 참조하십시오.

▼ 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(clsetup)

영역 클러스터에 ZFS 저장소 풀을 추가하려면 이 절차를 수행합니다. 풀은 단일 영역 클러스 터 노드에 대한 로컬이거나 고가용성을 제공하도록 HAStoragePlus로 구성될 수 있습니다.

clsetup 유틸리티는 선택된 영역 클러스터가 구성된 노드에서 액세스할 수 있는 공용 디스크 에 구성된 모든 ZFS 풀을 검색하고 표시합니다. clsetup 유틸리티를 사용하여 클러스터 범위 의 ZFS 저장소 풀을 기존 영역 클러스터에 추가한 후 clzonecluster 명령을 사용하여 구성을 수정하거나 노드 범위의 ZFS 저장소 풀을 추가할 수 있습니다.

참고 - 또는 명령줄을 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(CLI) [200]을 참조하십시오.

- 시작하기 전에 ZFS 풀이 영역 클러스터의 모든 노드에 연결된 공유 디스크에서 연결되어 있는지 확인합니다. ZFS 풀을 만드는 절차는 Unresolved link to "Oracle Solaris 11.2의 ZFS 파일 시스템 관리 "를 참조하십시오.
 - 1. **영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.** 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
 - 2. clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

주 메뉴가 표시됩니다.

작은 정보 - 이전 화면으로 돌아가려면 < 키를 입력하고 Return 키를 누릅니다.

- Zone Cluster(영역 클러스터) 메뉴 항목을 선택합니다.
 Zone Cluster Tasks(영역 클러스터 작업) 메뉴가 표시됩니다.
- Add File System/Storage Device to a Zone Cluster(영역 클러스터에 파일 시스템/저장 장치 추가) 메뉴 항목을 선택합니다.
 Select Zone Cluster(영역 클러스터 선택) 메뉴가 표시됩니다.
- 5. ZFS 저장소 풀을 추가할 영역 클러스터를 선택합니다. Storage Type Selection(저장소 유형 선택) 메뉴가 표시됩니다.

6. ZFS 메뉴 항목을 선택합니다.

ZFS Pool Selection for the Zone Cluster(영역 클러스터에 대한 ZFS 풀 선택) 메뉴가 표시 됩니다.

7. 영역 클러스터에 추가할 ZFS 풀을 선택합니다.

목록의 ZFS 풀은 공유 디스크에서 구성되며 영역 클러스터가 구성되는 노드에서 액세스할 수 있는 풀입니다. 또한 e를 입력하여 ZFS 풀에 대한 등록 정보를 수동으로 지정할 수 있습니다.

ZFS Pool Dataset Property for the Zone Cluster(영역 클러스터에 대한 ZFS 풀 데이터 세 트 등록 정보) 메뉴가 표시됩니다. 선택한 ZFS 풀이 name 등록 정보에 지정됩니다.

8. d를 입력하고 Enter 키를 누릅니다.

Review File Systems/Storage Devices for the Zone Cluster(영역 클러스터에 대한 파일 시스템/저장 장치 검토) 메뉴가 표시됩니다.

9. 구성 변경을 저장하려면 c를 입력합니다.

구성 변경 결과가 표시됩니다. 예를 들면 다음과 같습니다.

>>> Result of Configuration Change to the Zone Cluster(sczone) <<<

Adding file systems or storage devices to sczone zone cluster...

The zone cluster is being created with the following configuration

/usr/cluster/bin/clzonecluster configure sczone
add dataset
set name=myzpool5
end

Configuration change to sczone zone cluster succeeded.

10. 모두 완료되면 clsetup 유틸리티를 종료합니다.

11. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zoneclustername

12. 고가용성 ZFS 저장소 풀을 만들려면 HAStoragePlus 리소스로 풀을 구성합니다.

HAStoragePlus 자원은 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트하는 영역 클러스터 노드의 풀에 있는 파일 시스템의 마운트를 관리합니다. Unresolved link to "Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스 템을 사용으로 설정"를 참조하십시오.

▼ 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(CLI)

영역 클러스터에 ZFS 저장소 풀을 추가하려면 이 절차를 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 ZFS 저장소 풀을 추가하는 방법(clsetup) [199]을 참조하십시오.

영역 클러스터에서 고가용성을 제공하도록 ZFS 저장소 풀을 구성하려면 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 로컬 Solaris ZFS 파일 시스 템에 고가용성이 제공되도록 HAStoragePlus 리소스 유형을 설정하는 방법"을 참조하십시 오.

- 1. **영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.** 전역 영역의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 건역 클러스터에 ZFS 저장소 풀을 만듭니다. 풀이 영역 클러스터의 모든 노드에 연결된 공유 디스크에서 연결되어 있는지 확인합니다.
 ZFS 풀을 만드는 절차는 Unresolved link to " Oracle Solaris 11.2의 ZFS 파일 시스템 관리 "를 참조하십시오.

3. 영역 클러스터 구성에 풀을 추가합니다.

phys-schost# clzonecluster configure zone-cluster-name clzc:zone-cluster-name> add dataset clzc:zone-cluster-name:dataset> set name=ZFSpoolname clzc:zone-cluster-name:dataset> end clzc:zone-cluster-name> verify clzc:zone-cluster-name> commit clzc:zone-cluster-name> exit

4. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

예 6-2 영역 클러스터에 ZFS 저장소 풀 추가(CLI)

다음 예에서는 영역 클러스터 sczone에 추가된 ZFS 저장소 풀 zpool1을 보여 줍니다.

phys-schost-1# clzonecluster configure sczor	ie
clzc:sczone> add dataset	
clzc:sczone:dataset> set name=zpool1	
clzc:sczone:dataset> end	
clzc:sczone> verify	
clzc:sczone> commit	
clzc:sczone> exit	
phys-schost-1# clzonecluster show -v sczone 	
Resource Name:	dataset
name:	zpool1

다음 순서 HAStoragePlus 자원을 사용하여 고가용성을 제공하도록 ZFS 저장소 풀을 구성합니다. HAStoragePlus 자원은 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트하 는 영역 클러스터 노드의 풀에 있는 파일 시스템의 마운트를 관리합니다. Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 고가용성 로컬 파일 시스 템을 사용으로 설정"를 참조하십시오.

▼ 영역 클러스터에 클러스터 파일 시스템을 추가하는 방법(clsetup)

clsetup 유틸리티는 선택된 영역 클러스터가 구성된 클러스터 노드에서 구성된 사용 가능한 파일 시스템을 검색하고 표시합니다. clsetup 유틸리티를 사용하여 파일 시스템을 추가할 때 파일 시스템은 클러스터 범위에 추가됩니다.

다음 유형의 클러스터 파일 시스템을 영역 클러스터에 추가할 수 있습니다.

- UFS 클러스터 파일 시스템 global 마운트 옵션을 사용하여 /etc/vfstab 파일에서 파일 시스템 유형을 지정합니다. 이 파일 시스템은 공유 디스크 또는 Solaris Volume Manager 장치에 배치될 수 있습니다.
- Sun QFS 공유 파일 시스템 shared 마운트 옵션을 사용하여 /etc/vfstab 파일에서 파일 시스템 유형을 지정합니다.
- ACFS 제공한 ORACLE_HOME 경로에 따라 자동으로 검색됩니다.

참고 - 또는 명령줄을 사용하여 이 작업을 수행할 수도 있습니다. 다음 절차 중 하나를 참조하 십시오.

- 영역 클러스터에 UFS 클러스터 파일 시스템을 추가하는 방법(CLI) [204]
- 영역 클러스터에 Sun QFS 공유 파일 시스템을 추가하는 방법(CLI) [206]
- 영역 클러스터에 Oracle ACFS 파일 시스템을 추가하는 방법(CLI) [207]

시작하기 전에 영역 클러스터에 추가할 클러스터 파일 시스템이 구성되었는지 확인합니다. "클러스터 파일 시스템 계획" [36] 및 5장. 클러스터 파일 시스템 만들기를 참조하십시오.

- 1. **영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.** 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 영역 클러스터 노드를 호스트하는 전역 클러스터의 각 노드에서 /etc/vfstab 파일에 영역 클 러스터에서 마운트할 파일 시스템에 대한 항목을 추가합니다.

phys-schost# **vi /etc/vfstab**

■ UFS 항목의 경우 다음 예와 비슷하게 global 마운트 옵션을 포함합니다.

/dev/md/datadg/dsk/d0 /dev/md/datadg/rdsk/d0 /global/fs ufs 2 no global, logging

■ 공유 QFS 항목의 경우 다음 예와 비슷하게 shared 마운트 옵션을 포함합니다.

Data-cz1 - /db_qfs/Data1 samfs - no shared,notrace

3. 전역 클러스터에서 clsetup 유틸리티를 시작합니다.

phys-schost# **clsetup**

주 메뉴가 표시됩니다.

작은 정보 - 이전 화면으로 돌아가려면 < 키를 입력하고 Return 키를 누릅니다.

- **4. Zone Cluster(영역 클러스터) 메뉴 항목을 선택합니다.** Zone Cluster Tasks(영역 클러스터 작업) 메뉴가 표시됩니다.
- 5. Add File System/Storage Device to a Zone Cluster(영역 클러스터에 파일 시스템/저장 장치 추가) 메뉴 항목을 선택합니다. Select Zone Cluster(영역 클러스터 선택) 메뉴가 표시됩니다.
- **파일 시스템을 추가할 영역 클러스터를 선택합니다.** Storage Type Selection(저장소 유형 선택) 메뉴가 표시됩니다.
- 7. File System(파일 시스템) 메뉴 항목을 선택합니다. File System Selection for the Zone Cluster(영역 클러스터에 대한 파일 시스템 선택) 메뉴 가 표시됩니다.
- 8. 목록에서 파일 시스템을 선택합니다. 또한 e를 입력하여 파일 시스템에 대한 모든 등록 정보를 수동으로 지정할 수 있습니다. ACFS 파일 시스템을 사용하는 경우 Discover ACFS를 선택한 다음 ORACLE_HOME 디렉토리를 지정할 수 있습니다. Mount Type Selection(마운트 유형 선택) 메뉴가 표시됩니다.

9. 영역 클러스터에 대한 루프백 파일 시스템 마운트 유형을 선택합니다.

7단계에서 ACFS를 선택한 경우 ACFS에서 직접 마운트 유형만 지원되므로 clsetup 유틸리 티가 이 단계를 건너 뜁니다. 루프백 파일 시스템 만들기에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2의 파일 시스템 관리 의 LOFS 파일 시스템을 만들고 마운트하는 방법"을 참조하십시오.

File System Properties for the Zone Cluster(영역 클러스터에 대한 파일 시스템 등록 정 보) 메뉴가 표시됩니다.

10. 마운트 지점 디렉토리를 지정합니다.

dir 등록 정보에 대한 숫자를 입력하고 Enter 키를 누릅니다. 그런 다음 New Value(새 값) 필드에 LOFS 마운트 지점 디렉토리 이름을 입력하고 Return 키를 누릅니다. 완료되면 d를 입력하고 Return 키를 누릅니다. Review File Systems/Storage Devices for the Zone Cluster(영역 클러스터에 대한 파일 시스템/저장 장치 검토) 메뉴가 표시됩니다.

11. 구성 변경을 저장하려면 c를 입력합니다. 구성 변경 결과가 표시됩니다. 예를 들면 다음과 같습니다.

>>> Result of Configuration Change to the Zone Cluster(sczone) <<<

Adding file systems or storage devices to sczone zone cluster...

The zone cluster is being created with the following configuration

/usr/cluster/bin/clzonecluster configure sczone
add fs
set dir=/zones/sczone/dsk/d0
set special=/global/fs
set type=lofs
end

Configuration change to sczone zone cluster succeeded.

12. 모두 완료되면 clsetup 유틸리티를 종료합니다.

13. LOFS 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

다음 순서 (선택 사항) 클러스터 파일 시스템을 HAStoragePlus 리소스에서 관리하도록 구성합니다. HAStoragePlus 자원은 전역 클러스터에서 파일 시스템의 마운트를 관리하고, 나중에 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트하는 영역 클러스터 노드에서 루프 백 마운트를 수행합니다. 자세한 내용은 Unresolved link to "Oracle Solaris Cluster 데이 터 서비스 계획 및 관리 설명서 의 클러스터 파일 시스템에 대한 HAStoragePlus 리소스 구 성"을 참조하십시오.

▼ 영역 클러스터에 UFS 클러스터 파일 시스템을 추가하는 방법(CLI)

영역 클러스터에서 사용할 UFS 클러스터 파일 시스템을 추가하려면 이 절차를 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 클러스터 파일 시스템을 추가하는 방법(clsetup) [202]을 참조하십시오.

- 영역 클러스터를 호스트하는 전역 클러스터의 투표 노드에서 root 역할을 수행합니다.
 전역 클러스터의 투표 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 전역 클러스터에서, 영역 클러스터에서 사용할 클러스터 파일 시스템을 구성합니다.
- 영역 클러스터 노드를 호스트하는 전역 클러스터의 각 노드에서 /etc/vfstab 파일에 영역 클 러스터에서 마운트할 파일 시스템에 대한 항목을 추가합니다.

phys-schost# vi /etc/vfstab

/dev/global/dsk/d12s0 /dev/global/rdsk/d12s0/ /global/fs ufs 2 no global, logging

4. 클러스터 파일 시스템을 영역 클러스터에 대한 루프백 파일 시스템으로 구성합니다.

phys-schost# clzonecluster configure zone-cluster-name clzc:zone-cluster-name> add fs clzc:zone-cluster-name:fs> set dir=zone-cluster-lofs-mountpoint clzc:zone-cluster-name:fs> set special=global-cluster-mount-point clzc:zone-cluster-name:fs> set type=lofs clzc:zone-cluster-name> set type=lofs clzc:zone-cluster-name> verify clzc:zone-cluster-name> commit clzc:zone-cluster-name> exit

dir=zone-cluster-lofs-mount-point

LOFS에 대한 파일 시스템 마운트 지점을 지정하여 영역 클러스터에서 클러스터 파일 시 스템을 사용할 수 있도록 합니다.

special=global-cluster-mount-point

전역 클러스터에서 원래 클러스터 파일 시스템의 파일 시스템 마운트 지점을 지정합니 다.

루프백 파일 시스템 만들기에 대한 자세한 내용은 Unresolved link to "Oracle Solaris 11.2의 파일 시스템 관리 의 LOFS 파일 시스템을 만들고 마운트하는 방법"을 참조하십시오.

5. LOFS 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

예 6-3 영역 클러스터에 UFS 클러스터 파일 시스템 추가(CLI)

다음 예에서는 마운트 지점 /global/apache를 사용하여 영역 클러스터에 클러스터 파일 시 스템을 추가하는 방법을 보여 줍니다. 파일 시스템은 마운트 지점 /zone/apache에서 루프백 마운트 방식을 사용하는 영역 클러스터에서 사용할 수 있습니다.

phys-schost-1# vi /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/dev/md/oracle/dsk/d1 /dev/md/oracle/rdsk/d1 /global/apache ufs 2 yes global, logging

```
phys-schost-1# clzonecluster configure zone-cluster-name
clzc:zone-cluster-name> add fs
clzc:zone-cluster-name:fs> set dir=/zone/apache
clzc:zone-cluster-name:fs> set special=/global/apache
clzc:zone-cluster-name:fs> set type=lofs
clzc:zone-cluster-name:fs> end
clzc:zone-cluster-name> verify
clzc:zone-cluster-name> commit
```

clzc:zone-cluster-name> exit phys-schost-1# clzonecluster show -v sczone ... Resource Name: fs dir: /zone/apache special: /global/apache raw: type: lofs options: [] cluster-control: true

다음 순서 HAStoragePlus 자원을 사용하여 영역 클러스터에서 사용 가능하도록 클러스터 파일 시 스템을 구성합니다. HAStoragePlus 자원은 전역 클러스터에서 파일 시스템의 마운트를 관리하고, 나중에 파일 시스템을 사용하도록 구성된 응용 프로그램을 현재 호스트하는 영 역 클러스터 노드에서 루프백 마운트를 수행합니다. 자세한 내용은 Unresolved link to " Oracle Solaris Cluster 데이터 서비스 계획 및 관리 설명서 의 클러스터 파일 시스템에 대한 HAStoragePlus 리소스 구성"을 참조하십시오.

▼ 영역 클러스터에 Sun QFS 공유 파일 시스템을 추가하는 방법(CLI)

영역 클러스터에서 사용할 Sun QFS 공유 파일 시스템을 추가하려면 이 작업을 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 클러스터 파일 시스템을 추가하는 방법(clsetup) [202]을 참조하십시오.

현재 Sun QFS 공유 파일 시스템은 Oracle RAC로 구성된 클러스터에서만 사용할 수 있습니다. Oracle RAC로 구성되지 않은 클러스터에서는 고가용성 로컬 파일 시스템으로 구성되는 단일 시스템 Sun QFS 파일 시스템을 사용할 수 있습니다.

- 1. **영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.** 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 전역 클러스터에서, 영역 클러스터에서 사용할 Sun QFS 공유 파일 시스템을 구성합니다. Sun QFS 설명서의 공유 파일 시스템에 대한 절차를 수행합니다.
- 영역 클러스터 노드를 호스트하는 전역 클러스터의 각 노드에서 /etc/vfstab 파일에 영역 클 러스터에서 마운트할 파일 시스템에 대한 항목을 추가합니다.
- 4. 영역 클러스터 구성에 파일 시스템을 추가합니다.

phys-schost# clzonecluster configure zone-cluster-name clzc:zone-cluster-name> add fs clzc:zone-cluster-name:fs> set dir=mount-point clzc:zone-cluster-name:fs> set special=QFS-file-system-name clzc:zone-cluster-name:fs> set type=samfs clzc:zone-cluster-name:fs> end clzc:zone-cluster-name> verify clzc:zone-cluster-name> commit clzc:zone-cluster-name> exit

5. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zone-cluster-name

예 6-4 Sun QFS 공유 파일 시스템을 직접 마운트로 영역 클러스터에 추가(CLI)

다음 예에서는 영역 클러스터 sczone에 추가된 Sun QFS 공유 파일 시스템 Data-cz1을 보 여 줍니다. 전역 클러스터에서 파일 시스템의 마운트 지점은 /zones/sczone/root/db_qfs/ Data1입니다. 여기서 /zones/sczone/root/는 영역의 루트 경로입니다. 영역 클러스터 노드 에서 파일 시스템의 마운트 지점은 /db_qfs/Data1입니다.

```
phys-schost-1# vi /etc/vfstab
         device mount FS
#device
                                    fsck
                                            mount
                                                      mount
#to mount to fsck point type
                                    pass
                                            at boot options
#
Data-cz1
                 /zones/sczone/root/db_qfs/Data1 samfs - no shared,notrace
phys-schost-1# clzonecluster configure sczone
clzc:sczone> add fs
clzc:sczone:fs> set dir=/db_qfs/Data1
clzc:sczone:fs> set special=Data-cz1
clzc:sczone:fs> set type=samfs
clzc:sczone:fs> end
clzc:sczone> verify
clzc:sczone> commit
clzc:sczone> exit
phys-schost-1# clzonecluster show -v sczone
Resource Name:
                                         fs
dir:
                                         /db_qfs/Data1
special:
                                         Data-cz1
raw:
                                         samfs
type:
options:
                                         []
....
```


영역 클러스터에서 사용할 Oracle ACFS 파일 시스템을 추가하려면 이 절차를 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 클러스터 파일 시스템을 추가하는 방법(clsetup) [202]을 참조하십시오.

- 시작하기 전에 Oracle ACFS 파일 시스템이 만들어졌으며 영역 클러스터에서 사용할 준비가 되었는지 확인 합니다. Oracle ACFS 파일 시스템을 만드는 방법 [169]을 참조하십시오.
 - root 역할을 수행하거나 solaris.cluster.admin 및 solaris.cluster.modify 권한 부여를 제공하는 관리자로 전환합니다.
 - 2. Oracle ACFS 파일 시스템을 영역 클러스터에 추가합니다. 한 노드의 전역 영역에서 이 단계를 수행합니다.

clzonecluster configure zonecluster
clzc:zonecluster> add fs
clzc:zonecluster:fs> set dir=mountpoint
clzc:zonecluster:fs> set special=/dev/asm/volume-dev-path
clzc:zonecluster:fs> set type=acfs
clzc:zonecluster:fs> end
clzc:zonecluster> exit

3. 파일 시스템이 영역 클러스터에 추가되었는지 확인합니다.

clzonecluster show zonecluster

Resource Name:	fs
dir:	mountpoint
special	/dev/asm/ <i>volume-dev-path</i>
raw:	
type:	acfs
options:	[]
cluster-control:	true

특정 영역 클러스터 노드에 로컬 파일 시스템 추가

이 절에서는 단일 영역 클러스터 노드 전용 파일 시스템을 추가하는 방법을 설명합니다. 대신 전체 영역 클러스터에서 사용할 파일 시스템을 구성하려면 "영역 클러스터에 파일 시스템 추 가" [195]로 이동합니다.

이 절에서는 다음 절차에 대해 설명합니다.

- 특정 영역 클러스터 노드에 로컬 파일 시스템을 추가하는 방법(CLI) [208]
- 특정 영역 클러스터 노드에 로컬 ZFS 저장소 풀을 추가하는 방법(CLI) [210]

▼ 특정 영역 클러스터 노드에 로컬 파일 시스템을 추가하는 방법(CLI)

특정 영역 클러스터의 단일 특정 영역 클러스터 노드에 로컬 파일 시스템을 추가하려면 이 절 차를 수행합니다. 파일 시스템은 Oracle Solaris Cluster 소프트웨어에서 관리되지 않지만 대신 기본 Oracle Solaris 영역에 전달됩니다. 참고 - 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하려면 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(clsetup) [195] 또는 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(CLI) [197]의 절차를 수행합니다.

1. 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.

참고 - 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.

- 특정 영역 클러스터 노드에 구성할 로컬 파일 시스템을 만듭니다.
 예정된 영역 클러스터 노드를 호스트하는 전역 클러스터 노드의 로컬 디스크를 사용합니다.
- 3. 노드 범위의 영역 클러스터 구성에 파일 시스템을 추가합니다.

phys-schost# clzonecluster configure zoneclustername clzc:zoneclustername> select node physical-host=baseclusternode clzc:zoneclustername:node> add fs clzc:zoneclustername:node:fs> set dir=mountpoint clzc:zoneclustername:node:fs> set special=disk-device-name clzc:zoneclustername:node:fs> set raw=raw-disk-device-name clzc:zoneclustername:node:fs> set type=FS-type clzc:zoneclustername:node:fs> end clzc:zoneclustername:node> end clzc:zoneclustername> verify clzc:zoneclustername> commit clzc:zoneclustername> exit

dir=mountpoint

파일 시스템 마운트 지점을 지정합니다.

special=disk-device-name

디스크 장치의 이름을 지정합니다.

raw=raw-disk-device-name

원시 디스크 장치의 이름을 지정합니다.

type=FS-type

파일 시스템 유형을 지정합니다.

참고 - UFS 파일 시스템의 경우 로깅을 사용으로 설정하십시오.

4. 파일 시스템 추가를 확인합니다.

phys-schost# clzonecluster show -v zoneclustername

예 6-5 영역 클러스터 노드에 로컬 파일 시스템 추가(CLI)

이 예에서는 sczone 영역 클러스터의 노드에서 사용할 로컬 UFS 파일 시스템 /local/data를 추가합니다. 이 영역 클러스터 노드는 전역 클러스터 노드 phys-schost-1에서 호스트됩니다.

```
phys-schost-1# clzonecluster configure sczone
clzc:sczone> select node physical-host=phys-schost-1
clzc:sczone:node> add fs
clzc:sczone:node:fs> set dir=/local/data
clzc:sczone:node:fs> set special=/dev/md/localdg/dsk/d1
clzc:sczone:node:fs> set raw=/dev/md/localdg/rdsk/d1
clzc:sczone:node:fs> set type=ufs
clzc:sczone:node:fs> add options [logging]
clzc:sczone:node:fs> end
clzc:sczone:node> end
clzc:sczone> verify
clzc:sczone> commit
clzc:sczone> exit
phys-schost-1# clzonecluster show -v sczone
--- Solaris Resources for phys-schost-1 ---
Resource Name:
                                             fs
dir:
                                              /local/data
special:
                                              /dev/md/localdg/dsk/d1
                                              /dev/md/localdg/rdsk/d1
raw:
type:
                                              ufs
options:
                                               [logging]
cluster-control:
                                               false ...
```


▼ 특정 영역 클러스터 노드에 로컬 ZFS 저장소 풀을 추가하는 방법(CLI)

로컬 ZFS 저장소 풀을 특정 영역 클러스터 노드에 추가하려면 이 절차를 수행합니다. 로 컬 ZFS 풀은 Oracle Solaris Cluster 소프트웨어에서 관리되지 않지만 대신 기본 Oracle Solaris 영역에 전달됩니다.

참고 - 영역 클러스터에 고가용성 로컬 ZFS 풀을 추가하려면 영역 클러스터에 고가용성 로컬 파일 시스템을 추가하는 방법(clsetup) [195] 또는 영역 클러스터에 ZFS 저장소 풀을 추 가하는 방법(CLI) [200]을 참조하십시오.

전역 클러스터의 한 노드에서 절차의 모든 단계를 수행합니다.

- 1. 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
- 특정 영역 클러스터 노드에 구성할 로컬 ZFS 풀을 만듭니다.
 예정된 영역 클러스터 노드를 호스트하는 전역 클러스터 노드의 로컬 디스크를 사용합니다.

3. 노드 범위의 영역 클러스터 구성에 풀을 추가합니다.

phys-schost# clzonecluster configure zoneclustername clzc:zoneclustername> select node physical-host=baseclusternode clzc:zoneclustername:node> add dataset clzc:zoneclustername:node:dataset> set name=localZFSpoolname clzc:zoneclustername:node> end clzc:zoneclustername> verify clzc:zoneclustername> commit clzc:zoneclustername> exit

set name=localZFSpoolname 로컬 ZFS 풀의 이름을 지정합니다.

4. ZFS 풀 추가를 확인합니다.

phys-schost# clzonecluster show -v zoneclustername

예 6-6 영역 클러스터 노드에 로컬 ZFS 풀 추가(CLI)

이 예에서는 sczone 영역 클러스터의 노드에서 사용할 로컬 ZFS 풀 local_pool을 추가합니다. 이 영역 클러스터 노드는 전역 클러스터 노드 phys-schost-1에서 호스트됩니다.

phys-schost-1# clzonecluster configure sczone clzc:sczone> select node physical-host=phys-schost-1 clzc:sczone:node> add dataset clzc:sczone:node:dataset> set name=local_pool clzc:sczone:node> end clzc:sczone> verify clzc:sczone> commit clzc:sczone> exit phys-schost-1# clzonecluster show -v sczone

--- Solaris Resources for phys-schost-1 ---

Resource Name: name: dataset
 local_pool

영역 클러스터에 저장 장치 추가

이 절에서는 영역 클러스터에서 직접 사용할 수 있도록 전역 저장 장치를 추가하거나 단일 영 역 클러스터 노드 전용 저장 장치를 추가하는 방법에 대해 설명합니다. 전역 장치는 클러스터 에 있는 둘 이상의 노드에서 한 번에 한 노드씩 또는 동시에 여러 노드에서 액세스할 수 있는 장치입니다. 영역 클러스터에 장치를 추가하면 해당 영역 클러스터 내에서만 장치가 표시됩니다.

Oracle Solaris Cluster Manager GUI를 통해서도 영역 클러스터에 저장 장치를 추가할 수 있습니다. GUI 로그인 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설 명서 의 Oracle Solaris Cluster Manager에 액세스하는 방법"을 참조하십시오.

이 절에서는 다음 절차에 대해 설명합니다.

- 영역 클러스터에 전역 저장 장치를 추가하는 방법(clsetup) [212]
- 영역 클러스터에 DID 장치를 추가하는 방법(CLI) [214]
- 영역 클러스터에 디스크 세트를 추가하는 방법(CLI) [215]
- 특정 영역 클러스터 노드에 원시 디스크 장치를 추가하는 방법(CLI) [216]

▼ 영역 클러스터에 전역 저장 장치를 추가하는 방법(clsetup)

클러스터 범위에서 다음 유형의 저장 장치 중 하나를 추가하려면 이 절차를 수행합니다.

- 원시 디스크 장치
- Solaris Volume Manager 디스크 세트(다중 소유자 포함 안함)

참고 - 또는 명령줄을 사용하여 이 작업을 수행할 수도 있습니다. 다음 절차를 참조하십시오.

- 영역 클러스터에 DID 장치를 추가하는 방법(CLI) [214]
- 영역 클러스터에 디스크 세트를 추가하는 방법(CLI) [215]

특정 영역 클러스터 노드에 원시 디스크 장치를 추가하려면 대신 특정 영역 클러스터 노드에 원시 디스크 장치를 추가하는 방법(CLI) [216]으로 이동합니다.

clsetup 유틸리티는 선택된 영역 클러스터가 구성된 클러스터 노드에서 구성된 사용 가능 한 저장 장치를 검색하고 표시합니다. clsetup 유틸리티를 사용하여 저장 장치를 기존 영역 클러스터에 추가한 후 clzonecluster 명령을 사용하여 구성을 수정합니다. clzonecluster 명령을 사용하여 영역 클러스터에서 저장 장치를 제거하는 방법에 대한 지침은 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 영역 클러스터에서 저장 장치를 제 거하는 방법"을 참조하십시오.

- 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 영역 클러스터에 추가할 장치를 식별하고 온라인 상태인지 확인합니다.

phys-schost# cldevicegroup status

3. 추가할 장치가 온라인 상태가 아닌 경우 온라인 상태로 전환합니다.

phys-schost# cldevicegroup online device

4. clsetup 유틸리티를 시작합니다.

phys-schost# clsetup

주 메뉴가 표시됩니다.

작은 정보 - 이전 화면으로 돌아가려면 < 키를 입력하고 Return 키를 누릅니다.

- 5. **Zone Cluster(영역 클러스터) 메뉴 항목을 선택합니다.** Zone Cluster Tasks(영역 클러스터 작업) 메뉴가 표시됩니다.
- Add File System/Storage Device to a Zone Cluster(영역 클러스터에 파일 시스템/저장 장치 추가) 메뉴 항목을 선택합니다.
 Select Zone Cluster(영역 클러스터 선택) 메뉴가 표시됩니다.
- 저장 장치를 추가할 영역 클러스터를 선택합니다.
 Storage Type Selection(저장소 유형 선택) 메뉴가 표시됩니다.
- 8. Device(장치) 메뉴 항목을 선택합니다. 사용 가능한 장치 목록이 표시됩니다.
- 9. 목록에서 저장 장치를 선택합니다.
 또한 e를 입력하여 저장 장치에 대한 등록 정보를 수동으로 지정할 수 있습니다.
 Storage Device Property for the Zone Cluster(영역 클러스터에 대한 저장 장치 등록 정 보) 메뉴가 표시됩니다.
- 10. 추가 중인 저장 장치에 대한 등록 정보를 추가하거나 변경합니다.

참고 - 별표(*)는 경로 이름에서 와일드카드 문자로 사용됩니다.

완료되면 d를 입력하고 Return 키를 누릅니다. Review File Systems/Storage Devices for the Zone Cluster(영역 클러스터에 대한 파일 시스템/저장 장치 검토) 메뉴가 표시됩니다.

11. 구성 변경을 저장하려면 c를 입력합니다.

구성 변경 결과가 표시됩니다. 예를 들면 다음과 같습니다.

>>> Result of Configuration Change to the Zone Cluster(sczone) <---

Adding file systems or storage devices to sczone zone cluster...

The zone cluster is being created with the following configuration

/usr/cluster/bin/clzonecluster configure sczone
add device
set match=/dev/md/ddg/*dsk/*
end

```
add device
set match=/dev/md/shared/l/*dsk/*
end
```

Configuration change to sczone zone cluster succeeded. The change will become effective after the zone cluster reboots.

12. 모두 완료되면 clsetup 유틸리티를 종료합니다.

13. 장치 추가를 확인합니다.

phys-schost# clzonecluster show -v zoneclustername

▼ 영역 클러스터에 DID 장치를 추가하는 방법(CLI)

영역 클러스터에 DID 장치를 추가하려면 이 절차를 수행합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 전역 저장 장치를 추가하는 방법(clsetup) [212]을 참조하십시오.

- 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 영역 클러스터에 추가할 DID 장치를 식별합니다.

추가하는 장치는 영역 클러스터의 모든 노드에 연결되어야 합니다.

phys-schost# cldevice list -v

3. 영역 클러스터에서 사용할 DID 장치를 추가합니다.

참고 - 별표(*)는 경로 이름에서 와일드카드 문자로 사용됩니다.

```
phys-schost# clzonecluster configure zone-cluster-name
clzc:zone-cluster-name> add device
clzc:zone-cluster-name:device> set match=/dev/did/*dsk/dNs*
clzc:zone-cluster-name:device> end
clzc:zone-cluster-name> verify
clzc:zone-cluster-name> commit
clzc:zone-cluster-name> exit
```

```
match=/dev/did/*dsk/dNs*
DID 장치의 전체 장치 경로를 지정합니다.
```

영역 클러스터를 재부트합니다.
 변경 사항은 영역 클러스터가 재부트된 후에 적용됩니다.

phys-schost# clzonecluster reboot zone-cluster-name

예 6-7 영역 클러스터에 DID 장치 추가(CLI)

다음 예에서는 DID 장치 d10을 sczone 영역 클러스터에 추가합니다.

```
phys-schost-1# clzonecluster configure sczone
clzc:sczone> add device
clzc:sczone:device> set match=/dev/did/*dsk/dl0s*
clzc:sczone:device> end
clzc:sczone> verify
clzc:sczone> commit
clzc:sczone> exit
```

phys-schost-1# clzonecluster reboot sczone

🗸 영역 클러스터에 디스크 세트를 추가하는 방법(CLI)

영역 클러스터에 전체 Solaris Volume Manager 디스크 세트를 추가하려면 이 절차를 수행 합니다.

참고 - 또는 clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 영역 클러스터에 전역 저장 장치를 추가하는 방법(clsetup) [212]을 참조하십시오.

- 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 영역 클러스터에 추가할 디스크 세트를 식별하고 온라인 상태인지 확인합니다.

phys-schost# cldevicegroup status

3. 추가할 디스크 세트가 온라인 상태가 아닌 경우 온라인 상태로 전환합니다.

phys-schost# cldevicegroup online diskset

4. 추가할 디스크 세트에 해당하는 세트 번호를 확인합니다.

phys-schost# ls -l /dev/md/diskset lrwxrwxrwx 1 root root 8 Jul 22 23:11 /dev/md/diskset -> shared/set-number

5. **영역 클러스터에서 사용할 디스크 세트를 추가합니다.** 각 set match= 항목에 대해 별도의 add device 세션을 사용해야 합니다.

참고 - 별표(*)는 경로 이름에서 와일드카드 문자로 사용됩니다.

```
phys-schost# clzonecluster configure ZONE-Cluster-name
clzc:ZONE-Cluster-name> add device
clzc:ZONE-Cluster-name:device> set match=/dev/md/diskSet/*dsk/*
clzc:ZONE-Cluster-name:device> end
clzc:ZONE-Cluster-name:device> set match=/dev/md/shared/Set-number/*dsk/*
clzc:ZONE-Cluster-name:device> end
clzc:ZONE-Cluster-name:device> end
clzc:ZONE-Cluster-name:device> end
clzc:ZONE-Cluster-name> verify
clzc:ZONE-Cluster-name> commit
clzc:ZONE-Cluster-name> exit
```

match=/dev/md/diskset/*dsk/*

디스크 세트의 전체 논리 장치 경로를 지정합니다.

match=/dev/md/shared/N/*dsk/*

디스크 세트 번호의 전체 물리적 장치 경로를 지정합니다.

6. 영역 클러스터를 재부트합니다.

변경 사항은 영역 클러스터가 재부트된 후에 적용됩니다.

phys-schost# clzonecluster reboot zone-cluster-name

예 6-8 영역 클러스터에 디스크 세트 추가(CLI)

다음 예에서는 디스크 세트 oraset를 sczone 영역 클러스터에 추가합니다. 디스크 세트의 세 트 번호는 3입니다.

phys-schost-1# clzonecluster configure sczone clzc:sczone> add device clzc:sczone:device> set match=/dev/md/oraset/*dsk/* clzc:sczone:device> end clzc:sczone:device> set match=/dev/md/shared/3/*dsk/* clzc:sczone:device> end clzc:sczone> verify clzc:sczone> commit clzc:sczone> exit

phys-schost-1# clzonecluster reboot sczone

▼ 특정 영역 클러스터 노드에 원시 디스크 장치를 추가하는 방법(CLI)

특정 영역 클러스터 노드에 원시 디스크 장치를 추가하려면 이 절차를 수행합니다. 이 장치는 Oracle Solaris Cluster에서 제어하지 않습니다. 전역 클러스터의 한 노드에서 절차의 모든 단계를 수행합니다.
참고 - 전체 영역 클러스터에서 사용할 원시 디스크 장치를 추가하려면 대신 영역 클러스터에 전역 저장 장치를 추가하는 방법(clsetup) [212] 또는 영역 클러스터에 DID 장치를 추가 하는 방법(CLI) [214]으로 이동합니다.

- 영역 클러스터를 호스트하는 전역 클러스터의 노드에서 root 역할로 전환합니다.
 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 2. 영역 클러스터에 추가할 장치(cNtXdYsZ)를 식별하고 온라인 상태인지 확인합니다.
- 3. 노드 범위의 영역 클러스터 구성에 장치를 추가합니다.

참고 - 별표(*)는 경로 이름에서 와일드카드 문자로 사용됩니다.

phys-schost# clzonecluster configure zone-cluster-name clzc:zone-cluster-name> select node physical-host=baseclusternode clzc:zone-cluster-name:node> add device clzc:zone-cluster-name:node:device> set match=/dev/*dsk/cNtXdYs* clzc:zone-cluster-name:node:device> end clzc:zone-cluster-name:node> end clzc:zone-cluster-name> verify clzc:zone-cluster-name> commit clzc:zone-cluster-name> exit

match=/dev/*dsk/cNtXdYs*

원시 디스크 장치의 전체 장치 경로를 지정합니다.

4. 장치 추가를 확인합니다.

phys-schost# clzonecluster show -v zoneclustername

예 6-9 특정 영역 클러스터 노드에 원시 디스크 장치 추가(CLI)

다음 예에서는 sczone 영역 클러스터의 노드에서 사용할 원시 디스크 장치 c1t1d0s0을 추가 합니다. 이 영역 클러스터 노드는 전역 클러스터 노드 phys-schost-1에서 호스트됩니다.

```
phys-schost-1# clzonecluster configure sczone
clzc:sczone> select node physical-host=phys-schost-1
clzc:sczone:node> add device
clzc:sczone:node:device> set match=/dev/*dsk/cltld0s0
clzc:sczone:node> end
clzc:sczone> verify
clzc:sczone> commit
clzc:sczone> exit
```

phys-schost-1# clzonecluster show -v sczone

특정 영역 클러스터 노드에 원시 디스크 장치를 추가하는 방법(CLI)

... --- Solaris Resources for phys-schost-1 ---

Resource Name: name:

....

device /dev/*dsk/cltld0s0 ◆ ◆ ◆ 7 장

클러스터에서 소프트웨어 제거

이 장에서는 Oracle Solaris Cluster 구성에서 특정 소프트웨어를 설치 제거 또는 제거하는 절차를 제공합니다.

참고 - 설정된 클러스터에서 노드를 제거하려면 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 클러스터에서 노드 제거"를 참조하십시오.

소프트웨어 설치 제거

이 절에서는 전역 클러스터에서 특정 소프트웨어 제품을 설치 제거 또는 제거하는 다음 절차 를 제공합니다.

- Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방 법 [219]
- Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 제거하는 방법 [222]
- 영역 클러스터 구성을 해제하는 방법 [223]
- Oracle Solaris 소프트웨어의 Availability Suite 기능을 제거하는 방법 [224]

▼ Oracle Solaris Cluster 소프트웨어를 구성 해제하여 설치 문제를 해결하는 방법

설치한 노드에서 클러스터를 연결할 수 없거나 구성 정보를 수정해야 하는 경우 이 절차를 수 행합니다. 예를 들어 모든 노드에서 이 절차를 수행하여 전송 어댑터 또는 개인 네트워크 주 소를 다시 구성합니다.

참고 - 쿼럼 구성 및 설치 모드를 확인하는 방법 [137]의 2단계에서 설명한 대로 노드에서 클러스터를 이미 결합했고 더 이상 설치 모드가 아니면 이 절차를 수행하지 마십시오. 대신 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 클러스터 노드에서 Oracle Solaris Cluster 소프트웨어를 제거하는 방법"으로 이동하십시오.

- 시작하기 전에 scinstall 유틸리티를 사용하여 노드의 클러스터 구성을 다시 실행합니다. 노드에서 Oracle Solaris Cluster 소프트웨어 구성을 반복하여 특정 클러스터 노드 구성 오류를 수정할 수 있 습니다.
 - 1. 구성을 해제하려는 각 노드를 클러스터의 노드 인증 목록에 추가합니다. 단일 노드 클러스터를 구성 해제하려면 2단계로 건너뜁니다.
 - a. 구성을 해제하려는 노드가 아닌 다른 활성 클러스터 멤버에서 root 역할을 수행합니다.
 - b. 인증 목록에 추가할 노드의 이름을 지정합니다.

phys-schost# /usr/cluster/bin/claccess allow -h nodename

-h nodename

인증 목록에 추가할 노드의 이름을 지정합니다.

clsetup 유틸리티를 사용하여 이 작업을 수행할 수도 있습니다. 절차는 Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 기존 클러스터 또는 영역 클러 스터에 노드를 추가하는 방법"을 참조하십시오.

- 2. 구성을 해제할 노드에서 root 역할을 수행합니다.
- 3. 노드를 종료합니다.

phys-schost# **shutdown -g0 -y -i0**

- 4. 비클러스터 모드로 노드를 재부트합니다.
 - SPARC:

ok boot -x

- x86:
 - a. GRUB 메뉴에서 화살표 키를 사용하여 적절한 Oracle Solaris 항목을 선택하고 e를 입력하여 해당 명령을 편집합니다.
 GRUB 기반 부트에 대한 자세한 내용은 Unresolved link to " Oracle Solaris 11.2 시스템 부트 및 종료 의 시스템 부트"을 참조하십시오.
 - b. 부트 매개변수 화면에서 화살표 키를 사용하여 kernel 항목을 선택하고 e를 입력하 여 항목을 편집합니다.
 - c. multiboot 명령에 -x를 추가하여 시스템 부트를 비클러스터 모드로 지정합니다.
 - d. Enter 키를 눌러 변경 사항을 적용하고 부트 매개 변수 화면으로 돌아갑니다. 화면에 편집된 명령이 표시됩니다.

e. b를 입력하여 비클러스터 모드로 노드를 부트합니다.

참고 - 커널 부트 매개 변수 명령에 대한 변경 사항은 시스템을 재부트하면 사라집니다. 다음 에 노드를 재부트하면 클러스터 모드로 부트됩니다. 비클러스터 모드로 부트하려면 이 단계 를 다시 실행하여 -x 옵션을 커널 부트 매개 변수 명령에 추가합니다.

5. Oracle Solaris Cluster 패키지에서 제공하는 파일이 없는 디렉토리(예: 루트(/) 디렉토리)로 변경합니다.

phys-schost# cd /

- 6. 클러스터 구성에서 노드를 제거합니다.
 - 노드 구성을 해제하되 Oracle Solaris Cluster 소프트웨어는 설치된 채 두려면 다음 명 령을 실행합니다.

phys-schost# /usr/cluster/bin/clnode remove

노드는 클러스터 구성에서 제거되지만 Oracle Solaris Cluster 소프트웨어는 노드에서 제거되지 않습니다.

자세한 내용은 Unresolved link to " clnode1CL" 매뉴얼 페이지를 참조하십시오.

■ 노드 구성을 해제하고 Oracle Solaris Cluster 소프트웨어도 제거하려면 다음 명령을 실 행합니다.

phys-schost# /usr/cluster/bin/scinstall -r [-b BE-name]

-r

클러스터 구성 정보를 제거하고 클러스터 노드에서 Oracle Solaris Cluster 프레임 워크 및 데이터 서비스 소프트웨어를 제거합니다. 그런 다음 노드를 다시 설치하거 나 클러스터에서 노드를 제거할 수 있습니다.

-b BE-name

새 부트 환경(제거 프로세스를 완료한 후에 부트할 위치)의 이름을 지정합니다. 이 름 지정은 선택 사항입니다. 부트 환경의 이름을 지정하지 않으면 자동으로 생성됩 니다.

자세한 내용은 Unresolved link to " scinstall1M" 매뉴얼 페이지를 참조하십시오.

- 7. 구성을 해제할 각 추가 노드에 대해 2단계 6단계를 반복합니다.
- 일반 오류 제거하려는 클러스터 노드가 클러스터에 부분적으로 구성된 경우 clnode remove 명령을 실 행하면 Node is still enabled와 같은 오류와 함께 종료될 수 있습니다. 이러한 오류가 발 생하면 clnode remove 명령에 -F 옵션을 추가합니다.

다음 순서 노드에서 Oracle Solaris Cluster 소프트웨어를 다시 설치하거나 다시 구성하기 전에 표 2-1. "작업 맵: 소프트웨어 설치"을 참조하십시오. 이 표에는 모든 설치 작업 및 작업을 수 행하는 순서가 나열되어 있습니다.

클러스터에서 실제로 노드를 제거하려면 Unresolved link to "Oracle Solaris Cluster 4.2 Hardware Administration Manual 의 How to Remove an Interconnect Component" 및 해당 저장소 어레이의 Oracle Solaris Cluster 설명서에서 제거 절차를 참조하십시오.

▼ Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 제거하는 방법

- 시작하기 전에 Oracle Solaris Cluster 쿼럼 서버 소프트웨어를 제거하기 전에 다음 작업을 완료했는지 확 인합니다.
 - 쿼럼 서버를 사용하는 각 클러스터에서 쿼럼 서버를 쿼럼 장치로 제거합니다. Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 쿼럼 장치를 제거하는 방법"에 나오는 단계를 수행합니다.
 정상적으로 수행될 경우 이 단계에서는 쿼럼 서버 호스트의 쿼럼 서버 정보도 제거합니다. 이 단계를 수행하는 동안 클러스터 및 쿼럼 서버 호스트 컴퓨터 간의 통신이 다운될 경우 쿼럼 서버 호스트 컴퓨터에서 잘못된 쿼럼 서버 정보를 정리해야 합니다. Unresolved link to " Oracle Solaris Cluster 시스템 관리 설명서 의 오래된 쿼럼 서버 클러스터 정보 정리"에 나오는 단계를 수행합니다.
 - 각 쿼럼 서버 호스트 컴퓨터에서 Unresolved link to " Oracle Solaris Cluster 시스템 관 리 설명서 의 쿼럼 서버를 중지하는 방법"에 나오는 단계에 따라 쿼럼 서버를 중지합니다.
 - (옵션) 대화식 그래픽 인터페이스를 사용하려면 설치 제거할 호스트 서버의 표시 환경이 GUI 를 표시하도록 설정되어 있는지 확인합니다.

```
% xhost +
% setenv DISPLAY nodename:0.0
```

2. 제거할 쿼럼 서버 호스트 컴퓨터에서 root 역할을 수행합니다.

다른 방법으로, 사용자 계정이 System Administrator 프로파일에 할당된 경우 프로파일 셸 을 통해 비루트로 명령을 실행하거나 pfexec 명령을 사용하여 앞에 접두어를 붙입니다.

3. 쿼럼 서버 소프트웨어를 제거합니다.

quorumserver# pkg uninstall ha-cluster/group-package/ha-cluster-quorum-server* \
ha-cluster/service/quorum-server*

4. (옵션) 쿼럼 서버 디렉토리를 정리하거나 제거합니다. 기본적으로 이 디렉토리는 /var/scqsd입니다.

▼ 영역 클러스터 구성을 해제하는 방법

- 건역 클러스터 노드에서 root 역할을 수행합니다.
 전역 클러스터의 한 노드에서 이 절차의 모든 단계를 수행합니다.
- 영역 클러스터에서 각 리소스 그룹을 오프라인 상태로 전환하고 해당 리소스를 사용 안함으 로 설정합니다.

참고 - 다음 단계는 전역 클러스터 노드에서 수행됩니다. 이러한 단계를 영역 클러스터의 노 드에서 대신 수행하려면 영역 클러스터 노드에 로그인하고 각 명령에서 "-z zone-cluster"를 생략합니다.

a. 각 자원을 오프라인 상태로 전환합니다.

phys-schost# clresource offline -Z zone-cluster resource-group

b. 영역 클러스터에서 사용으로 설정된 모든 리소스를 나열합니다.

phys-schost# clresource show -Z ZONE-Cluster -p Enabled === Resources ===

Resource: resource Enabled{nodename1}: True Enabled{nodename2}: True

c. 다른 자원에 따라 달라지는 자원을 식별합니다.

phys-schost# clresource show -Z ZONE-cluster -p resource_dependencies
=== Resources ===

Resource: node Resource_dependencies: node

종속 자원을 먼저 비활성화한 후 해당 자원이 종속된 자원을 비활성화해야 합니다.

d. 클러스터에서 사용으로 설정된 각 리소스를 사용 안함으로 설정합니다.

phys-schost# clresource disable -Z zone-cluster resource

자세한 내용은 Unresolved link to " clresource1CL" 매뉴얼 페이지를 참조하십시오.

e. 모든 자원이 비활성화되었는지 확인합니다.

```
phys-schost# clresource show -Z ZONE-cluster -p Enabled
=== Resources ===
```

Resource:	resource
Enabled{ <i>nodename1</i> }:	False
Enabled{ <i>nodename2</i> }:	False

f. 각 리소스 그룹을 관리되지 않는 상태로 전환합니다.

phys-schost# clresourcegroup unmanage -Z zone-cluster resource-group

g. 모든 노드의 모든 자원이 Offline 상태이고 모든 자원 그룹이 Unmanaged 상태인지 확인 합니다.

phys-schost# cluster status -Z ZONE-Cluster -t resource, resourcegroup

h. 모든 리소스 그룹과 해당 리소스를 영역 클러스터에서 삭제합니다.

phys-schost# clresourcegroup delete -F -Z zone-cluster +

3. 영역 클러스터를 중지합니다.

phys-schost# clzonecluster halt zone-cluster-name

4. 영역 클러스터를 제거합니다.

phys-schost# clzonecluster uninstall zone-cluster-name

5. 영역 클러스터를 구성 해제합니다.

phys-schost# clzonecluster delete zone-cluster-name

▼ Oracle Solaris 소프트웨어의 Availability Suite 기능을 제거하는 방법

Oracle Solaris 소프트웨어의 Availability Suite 기능을 설치 제거할 각 노드에서 다음 단계 를 수행합니다.

- 1. root 역할을 수행합니다.
- 2. 모든 Availability Suite 기능 패키지를 설치 제거합니다.

```
phys-schost# pkg uninstall group/feature/storage-avs \
storage/avs/avs-cache-management \
storage/avs/avs-point-in-time-copy \
storage/avs/avs-remote-mirror \
driver/storage/sv
```

색인

번호와 기호 /etc/hosts.allow 설정, 77, 82, 97, 104 /etc/inet/hosts 파일 계획, 17 구성, 50 /etc/inet/ntp.conf 파일 구성, 139 /etc/inet/ntp.conf.include 파일 만들기, 140, 141 /etc/inet/ntp.conf.sc 파일 구성, 140, 141 /etc/lvm/md.tab 파일, 152 /etc/vfstab 파일 구성 확인, 161 마운트 지점 추가, 160 /global 디렉토리, 40 /opt/SUNWcluster/bin/ 디렉토리, 53 /opt/SUNWcluster/bin/pconsole 유틸리티, 53 소프트웨어 설치, 52 /usr/cluster/bin/ 디렉토리, 64 /usr/cluster/bin/claccess 명령 권한이 부여된 노드 목록에 노드 추가, 220 권한이 부여된 노드 목록에서 노드 제거, 122 /usr/cluster/bin/cldevice 명령 명령 처리 확인, 148 장치 ID 이름 확인, 133 전역 장치 이름 공간 업데이트, 148 /usr/cluster/bin/clnode 명령 개인 호스트 이름 보기, 139 /usr/cluster/bin/clquorumserver 명령 쿼럼 서버 시작, 56 /usr/cluster/bin/clresource 명령 리소스 그룹을 오프라인 상태로 전환, 223 리소스 나열, 223 리소스를 사용 안함으로 설정, 223 /usr/cluster/bin/clresourcegroup 명령

관리하지 않는 리소스 그룹, 224 리소스 그룹 삭제, 224 /usr/cluster/bin/clsetup 유틸리티 개인 호스트 이름 변경, 138 설치 후 설정, 135 영역 클러스터 만들기, 182 추가 영역 클러스터에 ZFS 저장소 풀, 199 영역 클러스터에 고가용성 로컬 파일 시스템, 195 영역 클러스터에 전역 저장 장치, 212 영역 클러스터에 파일 시스템, 202 클러스터 상호 연결, 111 탐색 팁, 184 /usr/cluster/bin/cluster 명령 개인 네트워크 설정 표시, 112 새 전역 클러스터 만들기, 78 설치 모드 확인, 137 추가 개인 IP 주소 범위에 영역 클러스터, 24, 113 노드, 125 /usr/cluster/bin/cluster check 명령 vfstab 파일 검사, 161 클러스터 유효성 검사, 142 /usr/cluster/bin/clzonecluster 명령 영역 클러스터 부트, 192 영역 클러스터 설치, 189 영역 클러스터 중지, 224 /usr/cluster/bin/scinstall 명령 Oracle Solaris Cluster 소프트웨어 구성 해제, 219 노드 추가, 118 자동 설치 프로그램을 사용하여 전역 클러스터 만 들기, 86 전역 클러스터 만들기, 69 3중 미러링, 42

address 등록 정보, 187 admin low 템플리트 Trusted Extensions, 182 AI 살펴볼 내용 자동 설치 프로그램 archiveadm 아카이브 만들기, 99, 104 brand 등록 정보, 185 capped-cpu 범위 유형 영역 클러스터, 186 cipso 템플리트 영역 클러스터 IP 주소, 194 전역 클러스터 IP 주소, 182 claccess 명령 권한이 부여된 노드 목록에 노드 추가, 220 권한이 부여된 노드 목록에서 노드 제거, 122 cldevice 명령 명령 처리 확인, 148 장치 ID 이름 확인, 133 전역 장치 이름 공간 업데이트, 148 clnode 명령 개인 호스트 이름 보기, 139 clquorumserver 명령 쿼럼 서버 시작, 56 clresource 명령 리소스 그룹을 오프라인 상태로 전환, 223 리소스 나열, 223 리소스를 사용 안함으로 설정, 223 clresourcegroup 명령 관리하지 않는 리소스 그룹, 224 리소스 그룹 삭제, 224 리소스 그룹을 온라인으로 전환, 169 만들기 Oracle ACFS 리소스 그룹, 175 Oracle RAC 프레임워크 리소스 그룹, 167 SUNW.wait zc boot 리소스 그룹, 174 다중 소유자 볼륨 관리자 프레임워크 리소스 그 룹, 168 확장 가능한 리소스 그룹, 171 clsetup 유틸리티 개인 호스트 이름 변경, 138 설치 후 설정, 135 영역 클러스터 만들기, 182 추가 영역 클러스터에 ZFS 저장소 풀, 199 영역 클러스터에 고가용성 로컬 파일 시스템,

영역 클러스터에 전역 저장 장치, 212 영역 클러스터에 파일 시스템, 202 클러스터 상호 연결, 111 탐색 팁, 184 cluster 명령 개인 네트워크 설정 표시, 112 새 전역 클러스터 만들기, 78 설치 모드 확인, 137 추가 개인 IP 주소 범위에 영역 클러스터, 24, 113 노드, 125 cluster check 명령 vfstab 파일 검사, 161 클러스터 유효성 검사, 142 clzonecluster 명령 영역 클러스터 부트, 192 영역 클러스터 설치, 189 영역 클러스터 중지, 224 config/enable tcpwrappers 사용, 122, 128 config/enable tcpwrappers 사용 안함, 74, 80, 120, 127 cpu-shares 등록 정보, 186 dedicated-cpu 범위 유형 영역 클러스터, 186 defrouter 등록 정보, 187 DID 장치 매핑 나열, 150 영역 클러스터에 추가, 214 enable priv net 등록 정보, 185 exclusive IP 유형 영역 클러스터에 대한 제한 사항, 33 explorer 명령, 143 fattach 명령 제한 사항, 37 forcedirectio 명령 제한 사항, 40 Global zone 리소스 유형 등록 정보, 34 GUI 수행 가능한 작업 영역 클러스터 만들기, 184 영역 클러스터에 대한 캡 메모리 보기, 187 영역 클러스터에 저장소 추가, 212 영역 클러스터에 파일 시스템 추가, 195 HA for NFS LOFS 제한 사항, 13, 37 고가용성 로컬 파일 시스템과 공존, 77, 82, 96, 123

195

HAStoragePlus, 34 살펴볼 다른 내용 고가용성 로컬 파일 시스템 영역 클러스터에 파일 시스템 마운트, 34 hostmodel 등록 정보, 194 hostname 등록 정보, 187 hosts 파일 계획, 17 구성, 50 I/O 다중 경로 소프트웨어 Oracle VM Server for SPARC 제한 사항, 31 IP 엄격한 다중 홈 지정, 194 IP 유형 영역 클러스터, 33 IP 주소 개인 IP 주소 범위 변경, 113 개인 네트워크 계획, 23 공용 네트워크 계획, 17 영역 클러스터에 대한 지침, 32 이름 지정 서비스에 추가, 49 IP 필터 구성, 65 제한 사항, 13 확장 가능 데이터 서비스에 대한 제한 사항, 65 ip-type 등록 정보, 185 **IPMP** 공용 네트워크 계획, 18 그룹 구성, 51 설치 중 자동 그룹 만들기, 18 IPMP(IP Network Multipathing) 살펴볼 내용 IPMP IPv6 주소 개인 네트워크 제한 사항, 25, 26 공용 네트워크 사용, 18 java 최소 버전, 13 labeled 브랜드 영역 클러스터 Trusted Extensions로 구성, 193 계획, 32 옵션, 189 locked 등록 정보, 187 lofi 장치 공간 요구 사항, 14 사용 제한 사항, 14 LOFS 제한 사항, 13, 37 LOFS(루프백 파일 시스템)

제한 사항, 37 LOFS(Loopback File System) 제한 사항, 13 LWP 영역 클러스터, 186 max-lwps 등록 정보, 186 max-msg-ids 등록 정보, 186 max-sem-ids 등록 정보, 186 max-shm-ids 등록 정보, 186 max-shm-memory 등록 정보, 186 md.tab 파일 구성, 152 MPxIO 살펴볼 내용 Oracle Solaris I/O 다중 경로 NAS 장치 보호(fencing), 21 영역 클러스터 설치의 문제 해결, 184 쿼럼 장치로 구성, 132 NAT 및 Oracle Solaris 소프트웨어의 IP 필터 기능, 13 ncpus 등록 정보, 186 Network Attached Storage 살펴볼 내용 NAS NFS 살펴볼 내용 NFS(네트워크 파일 시스템) NFS(네트워크 파일 시스템) LOFS의 HA for NFS 제한 사항, 20 클러스터 노드에 대한 지침, 20 NIS 서버 클러스터 노드에 대한 제한 사항, 21 NTP 구성, 139 다시 시작, 140 사용으로 설정, 140 시작, 140 지침, 22 ntp.conf 파일 구성, 139 ntp.conf.include 파일 만들기, 140, 141 ntp.conf.sc 파일 구성, 140, 141 NTP(Network Time Protocol) 구성, 139 다시 시작, 140 사용으로 설정, 140 시작, 140 지침, 22

num xip zoneclusters 등록 정보, 185 NWAM(Network Auto-Magic) 사용 안함으로 설정, 61 제한 사항, 13 Oracle ACFS 파일 시스템 구성 다이어그램, 163 만들기, 162, 169 영역 클러스터에 추가, 207 프레임워크 리소스 그룹, 166 Oracle Explorer 소프트웨어, 143 Oracle RAC 프레임워크 리소스 그룹 Oracle ACFS 구성, 167 **Oracle Solaris** 최소 패키지, 12 Oracle Solaris 소프트웨어 SMF, 75, 82, 122 Trusted Extensions 기능 살펴볼 내용 Trusted Extensions 게시자, 49, 63, 145 계획, 12 /var 파일 시스템, 14 루트(/) 파일 시스템, 13 볼륨 관리자, 14 분할 영역, 13 설치 Availability Suite 기능, 63 Oracle Solaris Cluster 소프트웨어와 함께, 86 Trusted Extensions 기능, 180 단독, 48 설치 제거 Availability Suite 기능, 224 제한 사항 IP 필터 기능, 13 NWAM(Network Auto-Magic), 13 자동 절전 효과 종료, 13 Oracle Solaris 소프트웨어의 Availability Suite 기능 설치, 63 설치 제거, 224 Oracle Solaris 영역 NAS 장치에 대한 보호(fencing), 21 쿼럼 서버, 20 Oracle Solaris 통합 아카이브 Oracle Solaris 및 Oracle Solaris Cluster 소프트 웨어 설치, 86

Oracle Solaris 및 Oracle Solaris Cluster 소프트 웨어 설치와 구성, 99 복제, 복원, 86 Oracle Solaris Cluster 소프트웨어 게시자, 49, 52, 52, 54, 54, 62, 62, 63, 145 그룹 패키지, 59, 92 소프트웨어 설치 제거, 219 Oracle Solaris Cluster Manager 살펴볼 내용 GUI Oracle Solaris I/O 다중 경로 소프트웨어 Oracle VM Server for SPARC 제한 사항, 31 사용으로 설정, 51 Oracle VM Server for SPARC 소프트웨어 I/O 다중 경로 소프트웨어 제한 사항, 31 가상 디스크 다중 경로 제한 사항, 31 게스트 도메인 가상 어댑터 이름, 27 병렬 콘솔 액세스(pconsole) 제한 사항, 52 주소 범위 계획, 25 라이브 마이그레이션 제한 사항, 31 설치, 58 지침, 30 클러스터 노드로 도메인, 47 PATH 관리 콘솔, 53 클러스터 노드, 64 pconsole 유틸리티 사용, 60, 95, 102, 108 소프트웨어 설치, 52 시작, 53 physical 등록 정보, 187, 187 pkg 프로그램 소프트웨어 패키지 설치, 58 QFS 살펴볼 내용 Sun QFS 소프트웨어 rac framework 리소스 유형 등록, 167 인스턴스화, 167 RAID 제한 사항, 41 raidctl 명령, 57 rarpd 서비스 클러스터 노드에 대한 제한 사항, 21 RPC 서비스 TCP 래퍼를 사용 안함으로 설정, 74, 80, 120, 127 TCP 래퍼를 사용으로 설정, 122, 128 외부 액세스 복원, 60

방법, 92

제한된 프로그램 번호, 21 RPC용 TCP 래퍼 /etc/hosts.allow 수정, 77, 82, 97, 104 사용 안함으로 설정, 74, 80, 120, 127 사용으로 설정, 122, 128 SATA 디스크 쿼럼 장치로 구성, 29 ScalDeviceGroup 리소스 유형 등록, 171 인스턴스화, 171 종속성, 171 scinstall 명령 Oracle Solaris Cluster 소프트웨어 구성 해제, 219 노드 추가, 118 자동 설치 프로그램을 사용하여 전역 클러스터 만 들기, 86 전역 클러스터 만들기, 69 scope 등록 정보, 186 SCSI 장치 세번째 노드를 추가한 후 예약 수정, 129 쿼럼 장치의 보호(fencing) 프로토콜 설정, 29 shared IP 유형 영역 클러스터, 33 SMF 온라인 서비스 확인, 75, 82, 122 solaris 브랜드 영역 클러스터 계획, 32 옵션, 189 Solaris Volume Manager md.tab 파일, 152 계획, 41 고유한 이름 지정, 41 구성, 145 디스크 세트 구성, 147 드라이브 다시 분할, 151 드라이브 추가, 149 영역 클러스터에 추가, 215 디스크 세트 예약된 이름, 41 볼륨 활성화, 153 상태 데이터베이스 복제본, 146 소프트웨어 설치, 145 원시 디스크 장치 이름, 160 이중 문자열 중개자

개요, 155 상태, 157 잘못된 데이터 복구, 157 호스트 추가, 156 중개자 살펴볼 내용 이중 문자열 중개자 solaris10 브랜드 영역 클러스터 계획, 32 영역 루트 암호, 186 옵션, 189 지원되는 버전, 189 Sun Explorer 소프트웨어 살펴볼 내용 Oracle Explorer 소프트웨어 Sun QFS 영역 클러스터에 공유 파일 시스템 추가, 206 Sun OFS 소프트웨어 마운트 옵션, 202 소프트웨어 설치, 64 제한 사항, 40 제한된 사용, 37 Sun StorageTek Availability Suite 살펴볼 내용 Oracle Solaris 소프트웨어의 Availability Suite 기능 SUNW.crs framework 리소스 유형 등록, 167 SUNW.rac framework 리소스 그룹 Oracle ACFS 구성, 167 SUNW.rac framework 리소스 유형 등록, 167 인스턴스화, 167 SUNW.ScalDeviceGroup 리소스 유형 등록, 171 인스턴스화, 171 종속성, 171 SUNW.vucmm_framework 리소스 유형 등록, 168 인스턴스화, 168 SUNW.vucmm svm 리소스 유형 등록, 168 <u>인</u>스턴스화, 168 종속성, 168 swap swap 등록 정보, 187 tncfg 템플리트, 182 Trusted Extensions admin low 템플리트, 182 cipso 템플리트 영역 클러스터, 194

전역 클러스터, 182 IP 엄격한 다중 홈 지정, 194 labeled 브랜드, 32 LDAP, 182 tncfg 템플리트, 182 txzonemgr GUI, 188 zoneshare 스크립트, 181 구성, 180 설치, 180, 181 암호 파일, 188 영역 클러스터 구성, 193 원격 로그인, 181 지침, 34 Trusted Extensions에 대한 LDAP 구성, 182 UFS 로깅 계획, 42 vfstab 파일 구성 확인, 161 마운트 지점 추가, 160 VLAN 어댑터 개인 네트워크 지침, 25 공용 네트워크 지침, 18 클러스터 상호 연결 지침, 26 Volume Manager, 40 살펴볼 다른 내용 Solaris Volume Manager 계획 일반, 40 vucmm framework 리소스 유형 등록, 168 인스턴스화, 168 vucmm svm 리소스 유형 등록, 168 인스턴스화, 168 종속성, 168 ZFS 루트 풀 내부 디스크 미러링, 57 미러링계획,43 ZFS 저장소 풀 영역 클러스터 노드에 로컬 풀 추가, 210 영역 클러스터에 추가, 199, 200 제한 사항, 30 zonepath 등록 정보, 185 zoneshare Trusted Extension 스크립트, 181

가상 디스크 다중 경로 제한 사항, 31 개인 네트워크 IP 주소 범위 변경, 113 IP 주소 범위에 영역 클러스터 추가, 24, 113 IPv6 주소 제한 사항, 26 Oracle VM Server for SPARC 게스트 도메인, 25 계획, 23 설정 표시, 112 영역 클러스터에 사용, 32 개인 호스트 이름 계획, 25 변경, 138 영역 클러스터, 33 확인, 139 개인 IP 주소 ipadm으로 나열, 77, 82, 97, 104, 122, 128 개인 IP 주소를 나열하는 ipadm, 77, 82, 97, 104, 122, 128 게시자 Oracle Solaris Cluster 소프트웨어, 49, 52, 52, 54, 54, 62, 62, 63, 145 Oracle Solaris 소프트웨어, 49, 63, 145 경량 프로세스 영역 클러스터, 186 고가용성 로컬 파일 시스템, 34 살펴볼 다른 내용 HAStoragePlus HA for NFS와 공존, 77, 82, 96, 123 HA for NFS의 LOFS 제한 사항, 13 영역 클러스터에 추가, 195 클러스터 파일 시스템 대체, 36 할당량 지원, 37 고가용성 ZFS 저장소 풀 영역 클러스터에 추가, 199 고유한 이름 지정 Solaris Volume Manager, 41 공용 네트워크 IPv6 지원, 18 계획, 18 이름 지정 서비스에 IP 주소 추가, 49 공유 메모리 영역 클러스터, 186 공유 메모리 ID 영역 클러스터, 186 공유 장치

쿼럼 장치 설치, 132 관리 콘솔 IP 주소, 17 PATH, 53 pconsole 소프트웨어 설치, 52 구성 IPMP 그룹, 51 md.tab 파일, 152 NTP(Network Time Protocol), 139 Oracle ACFS 파일 시스템, 162 Oracle Solaris의 IP 필터 기능, 65 Solaris Volume Manager, 145 Trusted Extensions 소프트웨어, 181 단일 호스트 클러스터의 클러스터 상호 연결, 111 디스크 세트, 147 문제 해결, 78, 86, 124, 129 사용자 작업 환경, 64 상태 데이터베이스 복제본, 146 새 전역 클러스터 scinstall 사용, 69 XML 파일 사용, 78 자동 설치 프로그램 사용, 86 영역 클러스터, 180 영역 클러스터에 사용할 Trusted Extensions, 180 영역 클러스터에서 사용할 Trusted Extensions, 193 추가 전역 클러스터 노드 scinstall 사용, 118 XML 파일 사용, 125 쿼럼 서버 소프트웨어, 54 쿼럼 장치, 132 클러스터 파일 시스템, 159 구성 설명서, 47 구성 해제, 219, 219 살펴볼 다른 내용 설치 제거 살펴볼 다른 내용 제거 Oracle Solaris Cluster 소프트웨어, 219 영역 클러스터, 223 권한이 부여된 노드 목록 노드 제거, 122 노드 추가, 220 기본 라우터, 187

L 내부 하드웨어 디스크 미러링, 57 넷마스크 개인 네트워크 계획, 23 개인 넷마스크 변경, 113 개인 넷마스크 표시, 112 쿼럼 서버 요구 사항, 133 노드 살펴볼 내용 전역 클러스터 노드 노드 목록 장치 그룹, 41 노드 ID, 23 번호 지정, 23 논리 네트워크 인터페이스 제한 사항, 27 논리 주소 계획, 18 높은 우선 순위 프로세스 제한 사항, 21

다시 시작 NTP, 140 다중 사용자 서비스 확인, 75, 82, 122 다중 소유자 볼륨 관리자 프레임워크 리소스 그룹 구성, 168 다중 포트 디스크 살펴볼 내용 다중 호스트 디스크 다중 호스트 디스크 계획, 41 미러링, 42 단일 노드 클러스터 살펴볼 내용 단일 호스트 클러스 터 단일 호스트 클러스터 이름 지정, 23 클러스터 상호 연결 구성, 111 데이터 서비스 solaris10 브랜드 영역 클러스터의 지원, 189 데이터 서비스 설치 pkg 명령 사용, 58 도메인 콘솔 네트워크 인터페이스 IP 주소, 17 드라이브 다시 분할, 151 다양한 장치 크기 미러링, 42 디스크 세트에 추가, 149

등록

ScalDeviceGroup 리소스 유형, 171 SUNW.rac framework 리소스 유형, 167 SUNW.ScalDeviceGroup 리소스 유형, 171 SUNW.vucmm_framework 리소스 유형, 168 SUNW.vucmm svm 리소스 유형, 168 디스크 살펴볼 내용 드라이브 디스크 경로 모니터링 기본값, 76 디스크 경로 오류 자동 재부트를 사용으로 설정, 76 디스크 경로 오류 시 자동 재부트, 76 디스크 드라이브 살펴볼 내용 드라이브 디스크 문자열 이중 문자열 중개자 요구 사항, 155 디스크 세트 살펴볼 내용 디스크 세트 구성, 147 드라이브 다시 분할, 151 드라이브 추가, 149 영역 클러스터에 추가, 215 예약된 이름, 41

2

라우터 클러스터 노드에 대한 제한 사항, 21 라이브 마이그레이션 Oracle VM Server for SPARC 소프트웨어에 대한 제한 사항, 31 라이센스 계획, 16 로그 파일 Oracle Solaris Cluster 설치, 75 로컬 MAC 주소, 19 파일 시스템 영역 클러스터에 추가, 197 로컬 파일 시스템 영역 클러스터에 추가, 208, 208 살펴볼 다른 내용 파일 시스템, 영역 클러스터 에 추가 특정 영역 클러스터 노드에 추가, 208 로컬 MAC 주소에 대해 NIC 지원, 19 로컬 MAC 주소에 대해 NIC(네트워크 인터페이스 카 드) 지원, 19 로컬 ZFS 저장소 풀

특정 영역 클러스터 노드에 추가, 210 루트 풀 미러링 계획 43 루트 환경 구성, 64 리소스 나열, 223 사용 안함으로 설정, 223, 223 리소스 그룹 관리되지 않는 상태로 지정, 224 다중 소유자 볼륨 관리자 프레임워크, 168 확장 가능한 장치 그룹 유사성, 171 리소스 유형 ScalDeviceGroup 등록, 171 인스턴스화, 171 종속성, 171 SUNW.crs framework, 167 SUNW.rac framework, 167, 167 SUNW.ScalDeviceGroup 등록, 171 인스턴스화, 171 종속성, 171 SUNW.vucmm framework, 168, 168 SUNW.vucmm svm, 168, 168 종속성, 168 링크 기반 IPMP 그룹, 19

0

마운트 지점 /etc/vfstab 파일 수정, 160 새 노드에 추가, 50 중첩, 40 클러스터 파일 시스템, 39 만들기 아카이브, 99 영역 클러스터, 182 매뉴얼 페이지 설치, 53 매니페스트 자동 설치 프로그램, 94, 102, 107 메시지 대기열 ID 영역 클러스터, 186 문제 해결

구성 새 전역 클러스터, 78, 86, 124, 129 추가 노드, 124 구성의 explorer 기본 레코드, 143 부분적으로 구성된 노드 제거, 221 영역 클러스터의 NAS 장치, 184 자동 설치 프로그램 설치, 99 쿼럼 서버 설치, 56 쿼럼 장치 clsetup 오류, 136 scinstall 실패, 136 투표 수, 136 물리적 메모리 영역 클러스터, 187 미러링 계획, 42 내부 디스크, 57 다양한 장치 크기, 42 다중 호스트 디스크, 42 루트 풀 계획, 43

ы

변경 개인 IP 주소 범위, 113 개인 호스트 이름, 138 병렬 콘솔 액세스(pconsole) 소프트웨어 Oracle VM Server for SPARC 제한 사항, 52 설치, 52 보호(fencing) 프로토콜, 27 NAS 장치, 21 SCSI 쿼럼 장치, 29 사용 안함으로 설정, 134 소프트웨어 쿼럼, 29 복구 중개자 데이터, 157 클러스터 노드 만들기 실패, 78, 86, 124, 129 복제 영역 클러스터 통합 아카이브에서, 104 영역 클러스터 노드 통합 아카이브에서, 104 복제된 장치 디스크 요구 사항, 36 복제 등록 정보 설정, 148 쿼럼 장치로 제한 사항, 30

볼륨

Solaris Volume Manager 활성화, 153 볼륨 관리자 계획 Solaris Volume Manager, 41 분할 영역, 14 부트 비클러스터 모드, 220 분할 영역 /var 파일 시스템, 14 드라이브 다시 분할, 151 루트(/) 파일 시스템, 13 볼륨 관리자, 14 스왑, 14 브랜드 영역 영역 클러스터, 33 비클러스터 모드 부트, 220

ヽ

사용 안함으로 설정 NWAM, 61 리소스, 223, 223 보호(fencing) 프로토콜, 134 설치 모드, 136 사용으로 설정 LOFS 요구 사항, 13 NTP, 140 Oracle Solaris I/O 다중 경로, 51 디스크 경로 오류 시 자동 재부트, 76 원격 로그인, 181 사용자 초기화 파일 수정, 64 상태 이중 문자열 중개자, 157 확인, 137 상태 데이터베이스 복제본 구성, 146 설치, 46, 46 살펴볼 다른 내용 구성 살펴볼 다른 내용 추가 Oracle Solaris Cluster 소프트웨어, 58 Oracle Solaris 소프트웨어 Oracle Solaris Cluster 소프트웨어와 함께, 86

단독, 48 Oracle Solaris 소프트웨어의 Availability Suite 기능 63 Oracle VM Server for SPARC 소프트웨어, 58 pconsole 소프트웨어, 52 Solaris Volume Manager 소프트웨어, 145 Sun QFS 소프트웨어, 64 Trusted Extensions 소프트웨어, 181 데이터 서비스 pkg 명령 사용, 58 매뉴얼 페이지, 53 쿼럼 서버 소프트웨어, 54 설치 모드 사용 안함으로 설정, 136 확인, 137 설치 및 구성 Oracle Solaris 및 Oracle Solaris Cluster 통합 아카이브에서, 99 설치 제거, 219, 219 살펴볼 다른 내용 구성 해제 살펴볼 다른 내용 제거 Oracle Solaris Cluster 소프트웨어, 219 Oracle Solaris 소프트웨어의 Availability Suite 기능, 224 쿼럼 서버, 222 세마포 ID 영역 클러스터, 186 소프트웨어 업데이트 계획, 16 영역 클러스터, 195 소프트웨어 쿼럼 프로토콜, 29 소프트웨어 RAID 제한 사항, 41 스왑 계획, 14 영역 클러스터에 대한 메모리, 187 스위치 계획, 27 시작 clsetup 유틸리티, 111 NTP, 140, 141 pconsole 유틸리티, 53, 60, 95, 102, 108 scinstall 유틸리티, 75 쿼럼 서버, 56

어댑터 Oracle VM Server for SPARC 게스트 도메인, 27 VLAN 개인 네트워크 지침, 25 로컬 MAC 주소, 19 태그가 지정된 VLAN 공용 네트워크 지침, 18 클러스터 상호 연결 지침, 26 영역 루트 암호 solaris10 브랜드 영역 클러스터, 186 영역 클러스터 address 등록 정보, 187 brand 등록 정보, 185 capped-cpu, 186 dedicated-cpu, 186 defrouter 등록 정보, 187 enable priv net 등록 정보, 185 Global_zone 리소스 유형 등록 정보 설정, 34 HAStoragePlus로 파일 시스템 마운트. 34 hostmodel 등록 정보, 194 hostname 등록 정보, 187 IP 엄격한 다중 홈 지정, 194 IP 주소, 17 ip-type 등록 정보, 185 labeled 브랜드 옵션, 189 locked 등록 정보, 187 ncpus 등록 정보, 186 num xip zoneclusters 등록 정보, 185 Oracle ACFS 파일 시스템, 169 Oracle ACFS 파일 시스템 추가, 207 physical 등록 정보, 187, 187 scope 등록 정보, 186 solaris 브랜드 옵션, 189 solaris10 브랜드 영역 루트 암호, 186 지원되는 버전, 189 solaris10 브랜드 옵션, 189 swap 등록 정보, 187 sysid 구성, 190 Trusted Extensions를 사용하도록 구성, 193 zonepath 등록 정보, 185 개인 IP 주소 범위에 추가, 24 경량 프로세스, 186 계획, 31 공유 메모리, 186

Ο

공유 메모리 ID, 186 구성, 180, 180 구성 해제, 223 기본 IP 유형, 33 기본 라우터, 187 로컬 파일 시스템 추가, 208 만들기, 182 메시지 대기열 ID, 186 물리적 메모리, 187 브랜드, 32 세마포 ID, 186 소프트웨어 업데이트, 195 스왑 메모리, 187 이름 지정, 33 잠긴 메모리, 187 장치 추가 DID 장치, 214 디스크 세트, 215 원시 디스크 장치, 216 전역 저장 장치, 212 저장 장치 추가, 211 중지, 224 파일 시스템 추가, 195 Sun OFS, 206 ZFS 저장소 풀, 199, 200 고가용성 ZFS 저장소 풀, 199 고가용성 로컬 파일 시스템, 195 로컬 ZFS 저장소 풀, 210 로컬 파일 시스템, 197 클러스터 파일 시스템, 202, 204 특정 영역 클러스터 노드에 대한 로컬 파일 시스 템, 208 페어 쉐어 스케줄러 공유, 186 영역 클러스터에 대한 sysid 구성, 190 예 md.tab 파일, 153 md.tab 파일에서 볼륨 활성화, 154 Oracle Solaris Cluster 소프트웨어 구성 scinstall을 사용하여 모든 노드에서, 77 scinstall을 사용하여 추가 노드에서, 124 XML 파일을 사용하여 모든 노드에서, 84 노드를 추가한 후 SCSI 쿼럼 장치 업데이트, 131 디스크 세트 만들기, 149 상태 데이터베이스 복제본 만들기, 146 영역 클러스터에 장치 추가 DID 장치, 215

디스크 세트, 216 영역 클러스터에 파일 시스템 추가 Sun QFS 공유 파일 시스템, 207 ZFS 저장소 풀, 201 고가용성 로컬 파일 시스템, 198 클러스터 파일 시스템, 205 추가 디스크 세트에 드라이브, 151 영역 클러스터 노드에 로컬 ZFS 풀, 211 영역 클러스터 노드에 로컬 파일 시스템, 210 영역 클러스터 노드에 원시 디스크 장치, 217 중개자 호스트, 157 클러스터 파일 시스템 만들기, 161 원격 로그인 Trusted Extensions, 181 원시 디스크 장치 영역 클러스터에 추가, 216 이름 지정 규약, 160 유사성 확장 가능한 장치 그룹 리소스 그룹, 171 응용 프로그램 클러스터 파일 시스템에 설치, 37 이름 지정 규약 개인 호스트 이름, 25 영역 클러스터, 33 원시 디스크 장치, 160 전역 클러스터 노드, 23 클러스터, 22 태그가 지정된 VLAN 어댑터, 26 이름 지정 서비스 IP 주소 매핑 추가, 49 이중 문자열 중개자 개요, 155 계획, 41 데이터 복구, 157 상태. 157 호스트 추가, 156 인증 살펴볼 내용 권한이 부여된 노드 목록

ス

자동 설치 프로그램 Oracle Solaris 및 Oracle Solaris Cluster 소프트 웨어 설치, 86 매니페스트, 94, 102, 107 설치 문제 해결, 99

자동 절전 효과 종료 제한 사항, 13 잠긴 메모리, 187 장치 그룹 계획, 36 리소스 그룹 유사성, 171 복제 등록 정보 설정, 148 복제된 디스크, 36 장치 ID 이름 확인, 133 재부트 비클러스터 모드, 220 저장 장치 영역 클러스터에 원시 디스크 장치 추가, 216 영역 클러스터에 전역 저장 장치 추가, 212 영역 클러스터에 추가, 211 전송 스위치 계획, 27 전송 어댑터 살펴볼 내용 어댑터 전역 보호(fencing), 27 전역 장치 lofi 장치의 공간 요구 사항, 14 lofi 장치의 제한 사항, 14 UFS에 대한 파일 시스템 제한, 14 계획, 35 이름 공간 업데이트, 148 전역 저장 장치 영역 클러스터에 추가, 212 전역 클러스터 노드 IP 주소, 17 Oracle VM Server for SPARC 도메인, 47 계획, 23 노드 ID 번호 지정, 23 노드 추가 scinstall 사용, 118 XML 파일 사용, 125 이후 쿼럼 장치 업데이트, 129 영역 클러스터에 대한 계획, 32 이름 지정, 23 전역 클러스터 만들기 scinstall 사용, 69 XML 파일 사용, 78 자동 설치 프로그램 사용, 86 확이 상태, 76, 82, 97, 104, 109, 122

설치 모드, 137 전역 파일 시스템 살펴볼 내용 클러스터 파일 시스템 제거, 219, 219 살펴볼 다른 내용 구성 해제 살펴볼 다른 내용 설치 제거 Oracle Solaris Cluster 소프트웨어, 219 부분적으로 구성된 노드, 219 영역 클러스터, 223 쿼럼 서버, 222 제한 사항 lofi 장치, 14 가상 디스크 다중 경로, 31 라이브 마이그레이션, 31 종속성 ScalDeviceGroup 리소스 유형, 171 SUNW.ScalDeviceGroup 리소스 유형, 171 SUNW.vucmm svm 리소스 유형, 168 vucmm svm 리소스 유형, 168 중개자 살펴볼 내용 이중 문자열 중개자 지원되는 구성, 47

ネ

초기화 파일, 64 추가, 46, 46 살펴볼 다른 내용 구성 살펴볼 다른 내용 설치 디스크 세트에 드라이브, 149 새 노드에 클러스터 파일 시스템 마운트 지점, 50 영역 클러스터에 로컬 파일 시스템, 208 영역 클러스터에 저장 장치, 211 영역 클러스터에 파일 시스템, 195 중개자 호스트, 156

7

콘솔 액세스 장치 IP 주소, 17 계획, 18 쿼럼 서버, 54 살펴볼 다른 내용 쿼럼 장치 /etc/scqsd/scqsd.conf 파일, 56 문제 해결, 56 비전역 영역, 20 설치 디렉토리, 56 설치 제거, 222

설치된 패키지, 56 시작, 56 제거, 222 지침, 19 쿼럼 서버 소프트웨어 설치, 54 쿼럼 장치 요구 사항, 132 쿼럼 장치로 구성, 132 쿼럼 장치. 29 살펴볼 다른 내용 쿼럼 서버 및 미러링, 43 NAS 장치, 133 SATA 디스크, 29 SCSI 프로토콜 설정, 29 ZFS 제한 사항, 30 계획, 29 노드 추가 후 업데이트, 129 문제 해결 clsetup 오류, 136 scinstall 실패, 136 투표 수, 136 복제된 장치에 대한 제한 사항, 30 소프트웨어 쿼럼 프로토콜, 29 초기 구성, 132 쿼럼 서버, 132 확인 137 클러스터 노드 살펴볼 내용 영역 클러스터 살펴볼 내 용 전역 클러스터 노드 클러스터 상호 연결 개인 IP 주소 범위 변경, 113 계획, 25 단일 호스트 클러스터에 구성, 111 클러스터 유효성 검사, 142 클러스터 이름, 22 클러스터 파일 시스템 clsetup으로 영역 클러스터에 추가, 202 LOFS 제한 사항, 37 계획, 35, 39 구성, 159 구성 확인, 161 마운트 옵션, 161 새 노드에 추가, 50 영역 클러스터에 추가, 204 응용 프로그램 설치, 37 제한 사항 fattach 명령, 37 forcedirectio, 40

LOFS, 13 영역 클러스터, 37 통신 끝점, 37 할당량, 37 클러스터 파일 시스템 로깅 계획, 42 클러스터 파일 시스템에 대한 마운트 옵션 Sun QFS 소프트웨어, 202 UFS, 196, 202 클러스터 파일 시스템의 마운트 옵션 UFS, 38, 39 요구 사항, 161

E

태그가 지정된 VLAN 어댑터 공용 네트워크 지침, 18 클러스터 상호 연결 지침, 26 통신 끝점 클러스터 파일 시스템에 대한 제한 사항, 37 통합 미러링, 57 통합 아카이브 archiveadm, 99 영역 클러스터 복제, 104

ш

파일 시스템 영역 클러스터에 추가, 195 ZFS 저장소 풀, 199 고가용성 로컬 파일 시스템, 195 파일 시스템 로깅 계획, 42 패치 살펴볼 내용 소프트웨어 업데이트 패키지 설치 Oracle Solaris Cluster 매뉴얼 페이지, 53 Oracle Solaris Cluster 매뉴얼 페이지, 53 Oracle Solaris Cluster 소프트웨어, 58 pconsole 소프트웨어, 52 페어 쉐어 스케줄러 공유, 186 페일오버 파일 시스템 살펴볼 내용 고가용성 로컬 파 일 시스템 프로브 기반 IPMP 그룹, 19

ㅎ

하드웨어 RAID

색인

내부 디스크 미러링, 57 할당량 클러스터 파일 시스템에 대한 제한 사항, 37 핫 스페어 디스크 계획, 41 호환성 설명서, 47 확인 cldevice 명령 처리, 148 Oracle Solaris Cluster 소프트웨어 설치, 137 SMF, 75, 82, 122 vfstab 구성, 161 개인 호스트 이름, 139 디스크 경로 오류 시 자동 재부트, 76 설치 모드, 137 쿼럼 구성, 137 클러스터 구성, 142 클러스터 노드 상태, 76, 82, 97, 104, 109, 122 확장 가능 데이터 서비스 IP 필터 제한 사항, 65 확장 가능한 장치 그룹 리소스 그룹 유사성, 171 확장 트리 알고리즘 쿼럼 서버에 대해 사용 안함으로 설정, 20