
Oracle® Tuxedo Message Queue (OTMQ)
Programming Guide
12c Release 2 (12.1.3)

December 2014

Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 2 (12.1.3)

Copyright © 2012, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle Tuxedo Message Queue Programming Guide i

Oracle Tuxedo Message Queue Programming Guide
Programmer Tasks . 1-1

Sending and Receiving Messages. 1-2

Using Filters . 1-8

Filter Type . 1-8

Simple Filter . 1-8

Compound Filter. 1-9

Filter Format . 1-9

Simple Filter . 1-9

Compound Filter. 1-11

Using Publish/Subscribe . 1-13

Sending Broadcast Messages. 1-14

Receiving Broadcast Messages . 1-14

Subscribing to Receive Broadcast Messages . 1-14

Subscribing to Receive Selected Broadcast Messages. 1-15

Subscription Acknowledgement. 1-17

Reading Broadcast Messages . 1-17

Unsubscribing Receiving Broadcast Messages . 1-17

Using Recoverable Messaging . 1-18

Choosing a Message Delivery Mode. 1-19

Choosing Recoverable or Non-recoverable Delivery Mode 1-20

Choosing an Undeliverable Message Action . 1-23

How to Send a Recoverable Message . 1-24

How to Receive a Recoverable Message. 1-25

Using UMAs for Exception Processing. 1-25

Using Discard UMA. 1-25

Using the Return-to-Sender UMA . 1-26

Oracle Tuxedo Message Queue Programming Guide ii

Using the SAF UMA . 1-26

Using the Dead Letter Queue UMA. 1-26

Using the Dead Letter Journal . 1-27

The DIP and UMA Support List . 1-29

Using Naming. 1-30

Naming Service . 1-31

Name Scope. 1-31

Name Space . 1-31

Process Level Name Space. 1-31

Local Name Space . 1-31

Global Name Space . 1-32

Attaching and Locating Queues . 1-33

Static and Dynamic Binding of Queue Aliases . 1-34

Using WS SAF . 1-35

Building Applications . 1-36

Oracle Tuxedo Message Queue PAMS Programming Guide
PAMS Application Programming Interface . 2-1

Oracle MessageQ API Description Format . 2-2

Oracle MessageQ API Data Types . 2-2

pams_attach_q . 2-3

Argument Definitions . 2-4

pams_bind_q . 2-11

Argument Definitions . 2-12

pams_cancel_get . 2-16

Argument Definition . 2-17

pams_cancel_select . 2-17

Argument Definitions . 2-18

Oracle Tuxedo Message Queue Programming Guide iii

pams_cancel_timer. 2-19

Argument Definitions . 2-19

pams_close_jrn. 2-20

Argument Definitions . 2-21

pams_confirm_msg . 2-21

Argument Definitions . 2-23

pams_detach_q . 2-25

Argument Definitions . 2-26

pams_exit . 2-28

pams_get_msg . 2-29

Argument Definitions . 2-31

pams_get_msga . 2-44

Argument Definitions . 2-46

pams_get_msgw . 2-59

Argument Definitions . 2-61

pams_locate_q . 2-74

Argument Definitions . 2-75

pams_open_jrn . 2-79

Argument Definitions . 2-80

pams_put_msg . 2-81

Argument Definitions . 2-83

pams_read_jrn . 2-92

Argument Definitions . 2-94

pams_set_select . 2-98

Argument Definitions . 2-99

pams_set_timer. 2-106

Argument Definitions . 2-107

pams_status_text . 2-109

iv Oracle Tuxedo Message Queue Programming Guide

putil_show_pending. .2-111

Argument Definitions . 2-112

Using Message-Based Services . 2-113

Receiving a Response . 2-115

Obtaining the Status of a Queue . 2-116

Monitoring and Controlling Link Status . 2-117

Listing Cross-Group Connections, Entries, and Groups 2-118

Obtain Notification of Cross-Group Links Established and Lost 2-119

Controlling Cross-Group Links . 2-120

Link Management Control Functions. 2-121

Request Message Format for the Inquire Function. 2-122

Determining the Status of the Inquire Request. 2-122

Response Message Format for Successful Inquire Requests 2-124

Request Message Format for the Enable Function 2-126

Determining the Status of the Enable Request 2-127

Response Message Format for Successful Enable Requests 2-128

Request Message Format for the Disable Function 2-129

Determining the Status of the Disable Request 2-130

Response Message Format for Successful Disable Requests 2-132

Request Message Format for the Connect Function. 2-133

Determining the Status of the Connect Request 2-134

Response Message Format for Successful Connect Requests 2-136

Disconnect Function . 2-136

Request Message Format for the Disconnect Function 2-137

Determining the Status of the Disconnect Request 2-137

Response Message Format for Successful Disconnect Functions 2-139

Link Management Design Considerations . 2-140

Learning the Current Status of Queues . 2-141

Oracle Tuxedo Message Queue Programming Guide v

Listing Attached Queues in a Group . 2-141

Receiving Attachment Notifications . 2-142

Managing Message Recovery Files. 2-143

Controlling Journaling to the PCJ File . 2-144

Message Reference . 2-145

AVAIL. 2-146

AVAIL_DEREG . 2-148

AVAIL_REG. 2-150

AVAIL_REG_REPLY . 2-151

DISABLE_NOTIFY . 2-153

DISABLE_Q_NOTIFY_REQ . 2-154

DISABLE_Q_NOTIFY_RESP . 2-155

ENABLE_NOTIFY . 2-157

ENABLE_Q_NOTIFY_REQ. 2-159

ENABLE_Q_NOTIFY_RESP . 2-160

LINKMGT_REQ . 2-162

LINKMGT_RESP . 2-165

LINK_COMPLETE . 2-169

LINK_LOST . 2-171

LIST_ALL_CONNECTIONS (Request) . 2-172

LIST_ALL_CONNECTIONS (Response). 2-173

LIST_ALL_ENTRIES (Request). 2-175

LIST_ALL_ENTRIES (Response) . 2-176

LIST_ALL_GROUPS (Request) . 2-178

LIST_ALL_GROUPS (Response) . 2-179

LIST_ALL_Q_REQ. 2-181

LIST_ALL_Q_RESP . 2-182

LOCATE_Q_REP . 2-184

vi Oracle Tuxedo Message Queue Programming Guide

MRS_ACK. 2-186

MRS_JRN_DISABLE . 2-189

MRS_JRN_DISABLE_REP . 2-191

MRS_JRN_ENABLE . 2-193

MRS_JRN_ENABLE_REP. 2-196

Q_UPDATE . 2-198

SBS_DEREGISTER_REQ . 2-200

SBS_DEREGISTER_RESP . 2-202

SBS_REGISTER_REQ . 2-203

SBS_REGISTER_RESP . 2-206

SBS_STATUS_REQ . 2-207

SBS_STATUS_RESP. 2-209

TIMER_EXPIRED . 2-214

UNAVAIL . 2-215

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-1

C H A P T E R 1

Oracle Tuxedo Message Queue
Programming Guide

This chapter contains the following topics:

Programmer Tasks

Sending and Receiving Messages

Using Filters

Using Publish/Subscribe

Using Recoverable Messaging

Using Naming

Using WS SAF

Building Applications

Programmer Tasks
Oracle Tuxedo Message Queue (OTMQ) provides the following features to Oracle Tuxedo
application programmers:

A set of application programming interfaces to enqueue messages for subsequent process.
The queuing service guarantees to execute the enqueue request successfully. A serial of
application programming interfaces are provided to dequeue messages in synchronous or
asynchronous way.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-2 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

The application program can use the same application programming interface as P2P
messaging to do publish/subscribe operations. For more information, see Using
Publish/Subscribe.

Besides the message order pre-defined for one queue, the application program can filter the
messages being dequeued from the queue by setting filters. For more information, see
Using Filters.

The application program can choose to ensure message delivery to the target queue. For
more information, see Using Recoverable Messaging.

Also the OTMQ supports flexible way to bind queue name and alias, which allows the
programmer to decouple the programming and the configurations of queues. For more
information, see Using Naming.

Sending and Receiving Messages
OTMQ provides the basic queuing features.

Application should first attach to a queue using tpqattach(3c) before using queuing
features and other advanced features provided by OTMQ.

For message sending, application calls standard enqueue API tpenqplus(3c) with
specified block, DIP and UMA, to determine whether messaging is synchronous or
asynchronous, recoverable or not, and action to take when delivery failed as shown in
Listing 1-1.

Listing 1-1 Synchronous OTMQ Queue and Enqueue Message Attachment

#define MSG_CLAS_EXAMPLES 2000

#define MSG_TYPE_CLIENT_REQ 1

TPQCTL ctl;

Q_ATTACH_CTL qattachctl;

char q_space[16] = "QSPACE";

char q_name[128] = "myqueue1";

long flags;

/* join the application */

if (tpinit(NULL) == -1)

Sending and Rece iv ing Messages

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-3

{

(void) fprintf(stderr, "failed to join application: %s\n",

tpstrerror(tperrno));

exit(1);

}

memset(&qattachctl, 0x0, sizeof(qattachctl));

qattachctl.attachmode = TMQ_ATTACH_BY_NAME;

qattachctl.qtype = TMQ_ATTACH_PQ;

qattachctl.namespace_list = NULL;

qattachctl.namespace_list_len = 0;

qattachctl.timeout = 30;

memset(&ctl, 0x0, sizeof(ctl));

ctl.flags |= OTMQ;

flags = TPNOTRAN;

if (tpqattach(q_space, q_name, &ctl, &qattachctl, flags) == -1)

{

(void) fprintf(stderr, "failed to attach q[%s.%s]: %s\n", q_space,

q_name, tpstrerror(tperrno));

(void) tpterm();

exit(1);

}

/* get request buffer */

if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)

{

(void) fprintf(stderr, "unable to allocate STRING buffer: %s",

tpstrerror(tperrno));

exit(1);

}

ctl.msg_class = MSG_CLAS_EXAMPLES; /* user defined message class */

ctl.msg_type = MSG_TYPE_CLIENT_REQ; /* user defined message type */

ctl.block = OTMQ_DEL_WF; /* use synchronous way */

ctl.DIP = OTMQ_DIP_MEM; /* interest point */

Orac le Tuxedo Message Queue P rogramming Gu ide

1-4 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

ctl.uma = OTMQ_UMA_RTS; /* undelivered message action - return

to sender */

ctl.timeout = 30;

/* enqueue the message into the destination queue */

if (tpenqplus(target_qspace, target_qname, &ctl, reqstr, 0, 0) == -1)

{

(void) fprintf(stderr, "Failure to enqueue %s\n",

tpstrerror(tperrno)); if (tperrno == TPEDIAGNOSTIC)

{

(void) fprintf(stderr, "Diagnostic code=[%d]\t",

ctl.diagnostic);

}

tpfree((char *) reqstr);

(void) tpterm();

exit(1);

}

/* detach from queue */

/* tpqdetach() */

…

For synchronous message receiving, application calls standard dequeue API tpdeqplus(3c)
as shown in Listing 1-2.

Listing 1-2 Synchronous Message Dequeue

char qspacename[16] = "QSPACE";

char qname[128] = "myqueue2";

/* call tpinit to join the application */

/* tpinit() */

…

/* attach to the queue to dequeue message from, then do the dequeue action */

Sending and Rece iv ing Messages

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-5

/* tpqattach() */

…

memset(&ctl, 0x0, sizeof(ctl));

ctl.flags |= OTMQ;

flags = TPNOTRAN;

/* get request buffer, allocate a buffer to store the dequeued message */

len = 100;

if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)

{

(void) fprintf(stderr, "unable to allocate STRING buffer: %s",

tpstrerror(tperrno));

(void) tpterm();

exit(1);

}

/* dequeue the message from the queue */

ctl.timeout = 30;

if (tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)

{

if (tperrno == TPEDIAGNOSTIC)

{

(void) fprintf(stderr, "Diagnostic code=[%d]\t",

ctl.diagnostic);

} else

{

(void) fprintf(stderr, "Failure to dequeue %s\n",

tpstrerror(tperrno));

}

tpfree((char *) reqstr);

(void) tpterm();

exit(1);

}

/* detach from queue */

Orac le Tuxedo Message Queue P rogramming Gu ide

1-6 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

/* tpqdetach() */

…

For asynchronous message receiving, application calls tpqgetmsga(3c)as shown in
Listing 1-3.

Listing 1-3 Asynchonous Dequeue Message

/* first define the user action to be done when message arrive */

int gotMessage = 0;

int msgAction(long * flag)

{

printf("Get asynchronous message [%s],flag=0x%X\n",reqstr,flag);

gotMessage = 1;

}

int main(int argc, char **argv)

{

char qspacename[16] = "QSPACE";

char qname[128] = "myqueue1";

...

/* join the application */

/* tpinit() */

…

/* attach to the queue to dequeue message from */

/* tpqattach() */

…

memset(&qctl,0,sizeof(qctl));

qctl.flags |= OTMQ;

qctl.filter_idx = -1; /* no message filter designated, get the first

available message in queue */

size_user_data=100;

Sending and Rece iv ing Messages

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-7

if(tpqgetmsga(qspacename,

qname,

(TPQCTL *)&qctl,

(char **)&reqstr,

(long *)&size_user_data,

(long *)&msgAction,

(long *)0,

(long *)0,

TPNOTIME) != 0)

{

/* print out the error message string or diagnostic code */

…

tpfree((char *) reqstr);

(void) tpterm();

exit(1);

}

/* continue to do other actions, when message arrived in queue,

* user action "msgAction" will be called */

…

}

If received message requires confirmation, application calls tpqconfirmmsg(3c) to
confirm receipt of the message as shown in Listing 1-4.

Listing 1-4 Explicit Confirmation for a Dequeued message

/* join the application */

/* tpinit() */

…

/* attach to the queue to dequeue message from, then do the dequeue action */

/* tpqattach() */

…

/* dequeue message */

/* tpdeqplus() */

Orac le Tuxedo Message Queue P rogramming Gu ide

1-8 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

…

/* check the message delivery status stored in TPQCTL */

if(ctl.status_block.del_psb_status == OTMQ__CONFIRMREQ)

{

/* This is a message need to be confirmed explicitly,

* use the dequeued message sequence to confirm */

if(tpqconfirmmsg(ctl.seq_number, 0) < 0)

{

/* print out the error message string or diagnostic code */

…

tpfree((char *) reqstr);

(void) tpterm();

exit(1);

}

}

Using Filters
OTMQ provides message filter which allows user to retrieve message that matching the selection
criteria defined by the message filter. Application can designate message filter when calling
standard dequeue API tpdeqplus(3c), or when calling subscription API tpqsubscribe(3c).

Filter Type
OTMQ supports two types of message filter: simple filter and compound filter. Simple filter has
lifecycle of only one-time operation (dequeue or subscription). While the compound filter can be
pre-defined and re-used in the subsequent dequeue operations.

Simple Filter
Filter per subscription

Message filter can be specified when subscribing the user broadcast message. It only
impacts the messages retrieved according to this subscription.

Using F i l t e rs

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-9

Filter per operation

Message filter can be specified when executing a tpdeqplus/tpdequeue. It only impacts the
result of this operation itself. For simple filter use, you must set filter_idx=-1 and
flags|=TPQGETBYFILTER, otherwise it reports an error.

Compound Filter
Filter per queue

Message filter can be defined or canceled via a pair of APIs: tpqsetselect
/tpqcancelselect. Once a filter is defined, the user can use it in a serial of dequeue or
subscription operations.

Filter Format
Different types of message filter have different kinds of format. Following sections describe the
selection criteria that can be specified for the simple filter or the compound filter.

Simple Filter
For simple filter, it consists of one of the following selection criteria:

Default Selection

Enables application to read messages from the queue based on the order in which they
arrived. Applications using default selection will read the next pending message from the
message queue. Messages are stored by pre-defined queue orders (FIFO, LIFO, priority,
etc.).

Selection by Message Attribute

Enables the application to select messages based on the message type, message class or
message priority, etc.

Table 1-1 shows how the selection criteria can be defined as select mode and value pairs.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-10 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Listing 1-5 Dequeue Message with Simple Message Filter

#define MSG_CLAS_EXAMPLES 2000

#define MSG_TYPE_CLIENT_REQ 1

TPQCTL ctl;

Table 1-1 Select Mode

Selection Mode Selection Variable Mode Description

OTMQ_PQ_TYPE Message type value Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message type value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER|TPQGETBYMS
GTYPE

OTMQ_PQ_CLASS Message class value Selects the first pending message from the
attached Primary Queue (PQ) that matches the
message class value being specified in the
selection variable.

TPQCTL->flags must set
OTMQ|TPQGETBYFILTER|TPQGETBYMS
GCLASS

OTMQ_PQ_PRI • Integer value between
0 and 99

• OTMQ_PRI_ANY
• OTMQ_PRI_P0
• OTMQ_PRI_P1

Selects the first pending message with a priority
equal to an integer between 0 and 99 inclusive
(or equal to the selection variable value) from
the attached Primary Queue (PQ). Specifying
the direct integer value is the preferred method
of selecting message by priority

Using OTMQ_PRI_ANY enables the reading
of any pending messages of all priorities.

Using OTMQ_PRI_P0 enables the application
to retrieve pending messages of priority 0 only.

Using OTMQ_PRI_P1 enables the strict
retrieval of pending messages with a priority of
1.

Using F i l t e rs

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-11

….

/* join the application */

/* tpinit() */

…

/* attach to the Qspace */

/* tpqattach() */

…

/* select by message attributes */

ctl.flags |= TPQGETBYMSGCLASS;

ctl.msg_class = MSG_CLAS_EXAMPLES;

ctl.flags |= TMQGETBYMSGTYPE;

ctl.msg_type = MSG_TYPE_CLIENT_REQ;

ctl.flags |= TPQGETBYPRIORITY;

ctl.priority = 50;

…

/* call tpdeqplus to dequeue a message with

* message class is "MSG_CLAS_EXAMPLES",

* message type is "MSG_TYPE_CLIENT_REQ" and

* message priority is 50 */

if (tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)

{

/* deal with failed scenario */

……

}

…

/* detach from Qspace */

/* tpqdetach() */

…

Compound Filter
The compound filter allows application to define complex selection criteria for message
reception. The selection criteria array can specifies the queues to search, the priority order of
message reception, two comparison keys for range checking, and an order key to determine the
order in which messages are selected from the queue.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-12 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Application calls tpqsetselect(3c) function first to define a filter and gets an index handle as
return, which can be used later in the standard dequeue API to retrieve messages.

Also the application can call tpqcancelselect(3c) to cancel the compound filter defined
before as shown in Listing 1-6.

Listing 1-6 Dequeue Message Using Compund Message Filter

char qspacename[16] = "QSPACE";

char qname[128] = "myqueue1";

char src_qname[128] = "from_que";

TPQctl ctl;

selection_array_component_tp selection_array;

short num_masks = 1;

int index_handle = -1;

/* join the application */

/* tpinit() */

/* attach to the Qspace */

/* tpqattach() */

/* set complex filter to dequeue message with specific message class,

* and from specific queue*/

memset(&selection_array, 0x0, sizeof(selection_array));

selection_array.key_1_offset = OTMQ_CLASS;

selection_array.key_1_size = 4;

selection_array.key_1_value = MSG_CLAS_EXAMPLES;

selection_array.key_1_oper = OTMQ_OPER_EQ;

selection_array.key_2_offset = OTMQ_SOURCE;

selection_array.key_2_size = 4;

selection_array.key_value_qspace = qspacename;

selection_array.key_value_queue = src_qname;

selection_array.key_2_oper = OTMQ_OPER_EQ;

if(tpqsetselect(&selection_array, &num_masks, &index_handle) == -1)

{

Us ing Publ i sh /Subscr ibe

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-13

/* deal with failed scenario */

…

}

ctl.filter_idx = index_handle; /* using the filter to dequeue */

if(tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)

{

/* deal with failed scenario */

…

}

/* need to cancel the filter using the index */

if(tpqcancelselect(&index_handle)== -1)

{

/* deal with failed scenario */

…

}

/* detach from Qspace */

/* tpqdetach() */

…

For more information, see tpqsetselect() and tpqcancelselect() in the Oracle Tuxedo
Message Queue Reference Guide.

Using Publish/Subscribe
The publisher broadcast a message by sending the message to a special "topic". Each topic
represents a broadcast stream. A broadcast stream is the set of target queues registered to receive
messages directed to a particular topic. The subscriber should register first for a topic to receive
the specific broadcasting messages.

The OTMQ Message Queue Manager Server is responsible for maintaining lists of user processes
that are interested in the specific topic. In addition, the server is responsible for maintaining the
various user definable rules (also known as pub/sub filter) that can be used to selectively extract
messages from the broadcast stream that are set by the application using the tpqsubscribe(3c).

../ref/functions.html#wp1076053
../ref/functions.html#wp1076082

Orac le Tuxedo Message Queue P rogramming Gu ide

1-14 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

A publisher can send a broadcast message using tpqpublish(3c), and a subscriber can retrieve
the subscribed message from its attached queue.

Sending Broadcast Messages
To broadcast a message, a publisher program directs the message to the topic that identifies the
broadcast stream to use for message distribution. When the application issues the
tpqpublish(3c) function, OTMQ Message Queue Manager Server deals with the
tpqpublish(3c) call and transparently redirects the message to all corresponding recipients.

OTMQ Message Queue Manager Server delivers only one copy of each message on the broadcast
stream to each target queue, regardless of how many selection matches are made by separate
subscription rule entries.

Broadcast messages cannot be stored for automatic message recovery.

Receiving Broadcast Messages
To receive broadcast messages, applications use a standard API tpqsubscribe(3c) to register
for receipt with the local or remote OTMQ Message Queue Manager Server.

The following topics describe:

Subscribing to Receive Broadcast Messages

Subscribing to Receive Selected Broadcast Messages

Subscription Acknowledgement

Reading Broadcast Messages

Unsubscribing Receiving Broadcast Messages

Subscribing to Receive Broadcast Messages
To receive broadcast messages, an application registers a queue with a broadcast stream (topic)
that managed by the OTMQ Message Queue Manager Server.

The receiver/subscribing applications register for broadcast messages using the function
tpqsubscribe(3c). The registration contains the string formatted topic plus any selection
criteria (filter) related to messages that the application wishes to receive.

The application subscribe the broadcast messages using the function tpqsubscribe(3c)
supplied with the following information:

Us ing Publ i sh /Subscr ibe

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-15

The topic: the broadcast stream that wants to subscribe

The target: the target OTMQ Message Queue Manager Server, and the special flag which
means Pub/Sub service.

The source: the queue name which the requesting application is attaching.

Subscribing to Receive Selected Broadcast Messages
Use the message filter of tpqsubscribe(3c) to register for selective reception of broadcast
messages. This subscription request registers a target queue to receive a copy of all messages on
a broadcast stream that meet a single selection rule.

Filter is a string containing a Boolean filter rule that must be evaluated successfully before the
OTMQ Message Queue Server distributing the broadcast messages to the subscriber. Filter rules
are specific to the types buffers to which they are applied. For messages of string type, the filter
rule is a regular expression. For messages of FML buffers, the filter rule is a string that can be
passed to the FML Boolean compiler (see Tuxedo ATMI FML function Fboolco).

Table 1-2 shows how the Filter Regular Expression Rules can be defined.

Table 1-2 Regular Expression Rules

Rule Matching Text

character Itself (character is any ASCII character except the special ones mentioned below).

\ character Itself except as follows:

\\-newline

\\t-tab

\\b-backspace

\\r-carriage return

\\f-formfeed

\ special-character Its un-special self. The special characters are . * + ? | () [{ and \\.

-Any character except the end-of-line character (usually newline or NULL).

^-Beginning of the line.

$-End-of-line character.

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/fml/fml05.html#wp1058113

Orac le Tuxedo Message Queue P rogramming Gu ide

1-16 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

There are three levels of precedence. In order of decreasing binding strength they are:

catenation closure (*,+,?,{...})

catenation

alternation (|)

As indicated above, parentheses are used to give explicit precedence.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or "_". To be included in
the class, a hyphen, "-", must be escaped (preceded by a "\\") or appear first or last
in the class. A literal "]" must be escaped or appear first in the class. A literal "^"
must be escaped if it appears first in the class.

[^ class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or the right RE. (left to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE { n } n occurrences of RE. n must be between 0 and 255, inclusive.

RE { m, n } m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE) $ n The text matching RE is copied into the nth user buffer. n may be 0 through 9. User
buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

Table 1-2 Regular Expression Rules

Rule Matching Text

Us ing Publ i sh /Subscr ibe

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-17

Subscription Acknowledgement
The tpqsubscribe(3c) returns a subscription handle back to the subscriber. This handle
should be used to unsubscribe the specific subscription.

Reading Broadcast Messages
When a message is sent to a broadcast stream, the OTMQ Message Queue Manager Server will
determine which applications have registered to receive that kind of message. Then it
automatically sends these messages to the distribution of all matching applications. The receiving
application reads the broadcast message from its target queue using the standard dequeue
functions. The source queue address of the sender is also provided to the receiving application in
the message.

Unsubscribing Receiving Broadcast Messages
An application can withdraw subscribing messages from a broadcast stream by calling the
tpqunsubscribe(3c). This action removes the subscription entry from the internal registration
tables as shown in Listing 1-7

Listing 1-7 Subscribe and Unsubscribe Messages

TPEVCTL evctl;

long evt_handle = 0L ; /* Event Subscription handles */

…

/* join the application */

/* tpinit() */

…

/* attach to the Qspace */

/* tpqattach() */

…

evctl.flags = TPEVQUEUE ;

(void)strcpy (evctl.name1, "QSPACE") ;

(void)strcpy (evctl.name1, "myqueue1") ;

evctl.qctl.flags |= OTMQ;

/* Subscribe */

Orac le Tuxedo Message Queue P rogramming Gu ide

1-18 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

evt_handle = tpqsubscribe ("TMQ:QNOT:QSPACE:mytopic",

NULL,&evctl,TPSIGRSTRT) ;

if (evt_handle == -1L) {

/* deal with failed scenario */

…

}

…

/* dequeue subscribed message */

if(tpdeqplus(qspacename, qname, &ctl, &reqstr, &len, 0) == -1)

{

/* deal with failed scenario */

…

}

/* Unsubscribe to the subscribed topic */

if (tpqunsubscribe (evt_handle, TPSIGRSTRT) == -1)

{

/* deal with failed scenario */

…

}

For more information, see tpqsubscribe() and tpqunsubscribe() in the Oracle Tuxedo
Message Queue Reference Guide.

Using Recoverable Messaging
Applications send messages using the OTMQ standard enqueue function tpenqplus(3c) and
one of two types of delivery modes: recoverable or non-recoverable. If a message is sent as
non-recoverable, the message is lost if it cannot be delivered to the target queue unless the
application incorporates an error recovery procedure. If the message is sent as recoverable,
OTMQ Message Queue Manager Server and Offline Trade Driver can automatically guarantee
delivery to the target queue in spite of system, process, and network failures.

To ensure guaranteed delivery, the OTMQ Message Queue Manager Server writes recoverable
messages to nonvolatile storage on the sender or receiver system. Then, if a message cannot be

../ref/functions.html#wp1075976
../ref/functions.html#wp1075999

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-19

delivered due to an error condition, the OTMQ Offline Trade Driver attempts redelivery of the
message by reading it from the recovery journal and redelivering the message to the target queue
until delivery is confirmed.

Application developers determine which messages should be sent as recoverable depending upon
the needs of the application. Because recoverable messaging requires the extra step of storing the
messages on disk, it requires additional processing time and power. To maximize performance,
recoverable messaging should only be used when it is critical to application processing.

The OTMQ recoverable messaging feature offers the following benefits:

Reduces development time by eliminating the need for designing applications to recover
messages that cannot be delivered.

Prevents applications from losing data when applications, systems, or network links fail.

Simplifies the implementation of an event-driven store and forward capability in networked
applications.

OTMQ also offers error recovery features for non-recoverable messages such as the dead letter
queue (DLQ) and the ability to return a message to the sender if the message cannot be delivered.
This topic describes all of the OTMQ delivery modes to enable you to understand the right choice
for your application.

This section contains the following topics

Choosing a Message Delivery Mode

How to Send a Recoverable Message

How to Receive a Recoverable Message

Using UMAs for Exception Processing

Choosing a Message Delivery Mode
The choice between recoverable and non-recoverable delivery is based upon the needs of the
application. To determine the appropriate method for sending a message, the application
developer decides:

Does the application need to know if the message arrived at the target queue?

If notification is required, how far must the message get before the sender program
receives notification that the message has arrived?

Orac le Tuxedo Message Queue P rogramming Gu ide

1-20 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Should the application wait for notification or should it continue processing and receive
notification through an asynchronous acknowledgment message?

If the message is designated as recoverable, does the application need to know if the
message has been stored by the recovery system?

If the message is designated as recoverable, what should happen if it cannot be stored by
the recovery system?

The delivery mode specified in tpenqplus(3c) function determines:

Whether the message is sent as recoverable or non-recoverable

Whether a blocking or non-blocking mode is selected

Whether the sender program receives notification and how it is received

The point in the message flow at which the notification is sent

OTMQ uses message recovery journals to store messages that are designated as recoverable. The
message recovery journal on the local system is called the store and forward (SAF). The message
recovery journal on the remote system is called the destination queue file (DQF). If a recoverable
message cannot be delivered, it is stored in either the SAF or DQF queue and is automatically
re-sent once communication with the target group is restored.

OTMQ uses auxiliary journals to provide additional message recovery capabilities. The dead
letter queue (DLQ) is a memory-based queue for storing undeliverable messages. The dead letter
journal (DLJ) provides disk storage for messages that could not be stored for automatic recovery.
Undelivered messages stored in the DLQ or DLJ can be retrieved under user or application
control by using OTMQ's Journal API tpqreadjrn(3c).

The post confirmation journal (PCJ) stores successfully confirmed recoverable messages.

If the OTMQ message recovery system is unable to store the message, the undeliverable message
action (UMA) is taken. Some UMAs enable the message to be recovered at a later time under user
or application control.

Choosing Recoverable or Non-recoverable Delivery Mode
The delivery mode consists of two components, the block type (block) and the delivery interest
point (DIP). Specify the block and DIP in the TPQCTL structure.

block - indicates how the sender program wants to receive information about the delivery
of the message. You can either wait for the operation to complete (WF), or receive

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-21

notification in an asynchronous message (AK), or choose not to receive notification (NN)
at all.

DIP - determines whether the message is designated as recoverable. When the message
reaches the delivery interest point, a notification message is sent (if requested) and the call
returns control to the sender program or OTMQ Message Queue Manager Server delivers
the asynchronous acknowledgment message.

Non-recoverable delivery interest points enable the sender program to receive notification when
the message is stored in the target queue (MEM), when the message is read from the target queue
(DEQ), or when the message is read from the target queue and explicitly confirmed by the
receiver program using the tpqconfirmmsg(3c) function (ACK).

When a recoverable delivery interest point is selected, the message is stored on disk for automatic
recovery. Recoverable delivery interest points enable the sender program to store the message in
the local recovery journal (SAF), store the message in the remote recovery journal (DQF), or
store the message in the remote recovery journal and receive notification when the message is
confirmed by the target application (CONF).

OTMQ does not support all possible combinations of block type and delivery interest points.
Table 1-3 lists the valid delivery modes and their meanings.

Table 1-3 Delivery Modes

Delivery Mode Description

(Recoverable Delivery Modes)

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_CONF

Send acknowledgment message when the message recovery system confirms
message delivery from the remote recovery journal.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DQF

Send acknowledgment message when the message is stored in the remote recovery
journal.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_SAF

Send acknowledgment message when the message is stored in the local recovery
journal.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_DQF

Deliver message to the remote recovery journal but do not block and do not send
notification.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_SAF

Deliver message to the local recovery journal but do not block and do not send
notification.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-22 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Non-recoverable message delivery is the fastest and most efficient way to send messages. Use
non-recoverable delivery modes if:

High messaging rates are required by the application (hundreds or thousands of messages
per second).

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_CONF

Block until the message is stored in the remote recovery journal and confirmed by
the target application.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_DQF

Block until the message is stored in the remote recovery journal.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_SAF

Block until the message is stored in the local recovery journal.

(Non-Recoverable Delivery Modes)

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_ACK

Send acknowledgment message when the receiver program explicitly confirms
delivery using tpqconfirmmsg(3c).

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DEQ

Send acknowledgment message when the message is removed from the target
queue.

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_MEM

Send acknowledgment message when the message is stored in the target queue.

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_MEM

Deliver message to the target queue but do not block and do not send notification.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_ACK

Block until the receiver program explicitly confirms delivery using
tpqconfirmmsg(3c)

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_DEQ

Block until the message is removed from the target queue.

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_MEM

Block until the message is stored in the target queue.

Table 1-3 Delivery Modes

Delivery Mode Description

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-23

The message content has a finite lifetime; therefore, the value of the information is stale if
not received and processed quickly.

The message is sent locally between two applications in the same message queuing group
that tightly cooperate in the processing of an event.

The message is a control message that causes a component of an application to change
state.

Recoverable message delivery is the safest way to send a message; however, it adds significant
processing overhead because each message must be stored before it is sent. Use recoverable
delivery modes if:

It is useful to know that the message has arrived; however, the sender does not need to
know the state of the receiver.

The message content should not be lost by the application system.

The application can tolerate the increased system load and slower messaging rate caused
by sending the message

Choosing an Undeliverable Message Action
Using the tpenqplus(3c) function in conjunction with the delivery argument, you can use the
UMA argument to specify what should happen to the message if it cannot be delivered to the
delivery interest point.

With non-recoverable messaging, the UMA indicates the action to be taken if the message cannot
be stored in target queue. If a UMA is not specified, OTMQ will take the default action of
discarding the message.

With recoverable messaging, the UMA indicates the action to be taken if the message cannot be
stored in either the SAF or DQF queues. You must specify a UMA with recoverable delivery
modes because your application must perform the exception processing when the message cannot
be guaranteed for delivery by OTMQ Message Queue Manager Server.

With recoverable messaging, the UMA may be taken when:

OTMQ is unable to write to the local SAF queue where the message is designated to be
recoverable.

The cross-group connection to the remote target group is down and the message designated
as recoverable on the remote node (DQF) cannot be stored.

The system resources used by the message recovery system are exhausted.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-24 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Table 1-4 lists the five valid UMAs.

How to Send a Recoverable Message
To send a recoverable message, use the tpenqplus(3c) function supplying the appropriate
block type, DIP and UMA in the TPQCTL structure.

In addition, the application should:

Specify a timeout value when sending recoverable messages with blocking delivery modes.

Verify the delivery outcome of a send operation from PSB in TPQCTL structure. If the
message was failed to be stored by the OTMQ Message Queue Manager Server, the
application must check to make sure that the UMA was successfully executed.

The message flow for sending a recoverable message is:

The application sends a message using tpenqplus(3c) function and with the appropriate
block, DIP and UMA arguments.

The OTMQ Message Queue Manager Server first writes the message to the recovery
journal queue on the local (SAF) or remote system (DQF) depending upon the delivery
mode specified.

If the sender is blocked, it continues processing once the message reaches the delivery
interest point. If the sender requests notification, it received an acknowledgement message
once the message reaches the delivery interest point.

For more information, see tpenqplus() in the Oracle Tuxedo Message Queue Reference Guide.

Table 1-4 UMAs

UMA Description

OTMQ_UMA_DISC Discard - the message is deleted.

OTMQ_UMA_RTS Return to sender - the message is delivered to the sender's response queue.

OTMQ_UMA_SAF Store and forward - the message is written to the message recovery journal on the
sender system.

OTMQ_UMA_DLQ Dead letter queue - the message is written to the dead letter queue.

OTMQ_UMA_DLJ Dead letter journal - the message is written to the DLJ.

../ref/index.html

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-25

How to Receive a Recoverable Message
To receive a recoverable message, use the tpdeqplus(3c) function. When a recoverable
message is delivered to the target queue, the application must perform the following:

Confirm message receipt, which allows the Offline Trade Driver (TuxMQFWD(5)) to delete
the message being stored in the recovery journal queue before delivery.

Check for duplicate messages via return code. Duplicate messages may be sent by the
Offline Trade Driver if the application didn't confirm message receipt in time. For more
information, see tpdeqplus() in the Oracle Tuxedo Message Queue Reference Guide.

The message flow for receipt of a recoverable message is as follows:

A message is read from the message recovery journal queue by the Offline Trade Driver
and sent to the target queue of the receiver.

The receiver reads the message by calling tpdeqplus(3c) function.

If the queue is configured for explicit confirmation, the receiver should call the
tpqconfirmmsg(3c) function to acknowledge receipt of the recoverable message using
the message sequence number assigned by the OTMQ Message Manager Server when the
message was sent. If the queue is configured for implicit confirmation, the acknowledge
message will be sent by tpdeqplus(3c) automatically after the recoverable message is
dequeued successfully. For more information, see tmqadmin in the Oracle Tuxedo Message
Queue Reference Guide.

The tpqconfirmmsg(3c) function sends acknowledge notification to the Offline Trade
Driver to notify the successful message delivery, which allows the Offline Trade Driver to
remove the message from the message recovery journal queues.

Using UMAs for Exception Processing

Using Discard UMA
When the DISC UMA is used, the message is discarded if it cannot be delivered to the delivery
interest point specified in the delivery mode argument. The DISC UMA is used when the sender
program will handle each exception as it occurs. OTMQ can discard the undeliverable message
because the message content is still available in the context of the sender program.

../ref/functions.html#wp1075920
../ref/comands.html#wp1117381

Orac le Tuxedo Message Queue P rogramming Gu ide

1-26 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Using the Return-to-Sender UMA
When the RTS UMA is used, the message is redirected to the response queue of the sender
program if it cannot be delivered to the delivery interest point specified in the delivery mode
argument. The RTS UMA is used when the sender program does not want to process each
exception as it occurs. Instead, the sender program redirects undeliverable messages to its main
input stream for error handling.

The advantage of using the RTS UMA is that the sender program attaches to one queue and acts
upon each message as it is read. The sender program must read the PSB status delivery value of
each message to determine if the message is new or an undeliverable message. Messages that
could not be stored by the message recovery system and require error handling have a return
status of OTMQ__MSGUNDEL.

Using the SAF UMA
When the SAF UMA is used, the message is stored in the local journal queue if the message
recovery system is unable to store it in the remote journal queue. The SAF UMA can be used with
recoverable delivery interest points of DQF and CONF; however, it does not work with the
WF_SAF delivery mode.

Use of the SAF UMA helps to manage the flow control between the sender and receiver systems.
If the message cannot be written to the remote journal queue due to insufficient resources or a
cross-group link failure, the message will be written to the local journal queue.

Note: SAF here means nearly the same as "SAF" DIP. Once message cannot be delivered, store
message into SAF queue.

Using the Dead Letter Queue UMA
When the DLQ UMA is used, the message is redirected to the dead letter queue if it cannot be
delivered to the delivery interest point specified in the delivery mode argument. The DLQ UMA
is used when the sender program wants to centralize error handling for undeliverable messages
in a designated queue while allowing each message to be handled separately.

A dead letter queue is part of the standard group configuration for each OTMQ message queuing
group. It provides memory-based storage of all undeliverable messages for the group that could
not be stored for automatic recovery. The dead letter queue is defined as queue number 96 It is
created automatically by tmqadmin(1) qspacecreate command.

To use the dead letter queue, the sender program calls the tpenqplus(3c) function specifying
the appropriate delivery argument and using OTMQ_UMA_DLQ as the UMA argument. Any

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-27

messages that cannot be delivered to the receiver program are written to the dead letter queue of
the sender's group. An application program can use tpqreadjrn(3c) function to retrieve
undelivered messages and use the tpenqplus(3c) function to attempt redelivery.

An advantage of using the dead letter queue is the ability to recover undeliverable messages on a
one-by-one basis. The sender program or another process within the application can attach to the
DLQ and handle error recovery for each undeliverable message. A disadvantage of using the dead
letter queue is the lack of disk storage for undelivered messages. A system failure on the sending
node will cause all undelivered messages in the dead letter queue to be lost.

Using the Dead Letter Journal
When the DLJ UMA is used, the message is written to an auxiliary journal, queue number is 196
(the dead letter journal) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. This UMA can only be used for recoverable messages. The DLJ UMA
is used when the sender program needs to centralize error handling procedures and the application
can support the resending of many messages from DLJ queue at a delayed interval. Storing
undeliverable messages in DLJ queue ensures that they will not be lost if the system goes down,
and allows redelivery attempts under user or application control.

The dead letter journal provides disk storage for messages that could not be stored for automatic
recovery. It is created automatically by tmqadmin(1) qspacecreate command.

To use the dead letter journal, the sender program uses the tpenqplus(3c) function specifying
the appropriate delivery argument and OTMQ_UMA_DLJ as the UMA argument. Any messages
that cannot be stored by the message recovery system are written to the dead letter journal of the
sender's group. An application program can use tpqreadjrn(3c) function to retrieve
undelivered messages and use the tpenqplus(3c) function to attempt redelivery as shown in
Listing 1-8.

Listing 1-8 Using UMA with Undelivered Message Example

TPQCTL ctl;

int type;

…

/* join the application */

/* tpinit() */

/* attach to the QSpace */

Orac le Tuxedo Message Queue P rogramming Gu ide

1-28 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

/* tpqattach() */

/* get request buffer */

if ((reqstr = tpalloc("STRING", NULL, len)) == NULL)

{

(void) fprintf(stderr, "unable to allocate STRING buffer: %s",

tpstrerror(tperrno));

exit(1);

}

ctl.block = OTMQ_DEL_WF; /* use synchronous way */

ctl.DIP = OTMQ_DIP_SAF; /* interest point */

ctl.uma = OTMQ_UMA_DLJ; /* undelivered message action - Dead

Letter Journal*/

/* enqueue the message into the destination queue */

if (tpenqplus(target_qspace, target_qname, &ctl, reqstr, 0, 0) == -1)

{

/* deal with failed scenario */

…

}

…

…

/* done other works, handle failed message in DLJ before exit */

ctl.flags |=OTMQ;

ctl.flags |= TPQREADJRN;

type = DLJ_HANDLE;

if (tpqreadjrn(myqspace, myqueue, &ctl, &rcv_buf, &len, 0) == -1)

{

/* deal with failed scenario */

…

}

/* enqueue the failed message again */

if (tpenqplus(target_qspace, target_qname, &ctl, rcv_buf, 0, 0) == -1)

{

/* deal with failed scenario */

…

Using Recoverab le Messag ing

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-29

}

…

/* detach from the Qspace */

/* tpqdetach() */

…

The DIP and UMA Support List
Table 1-5 lists the valid delivery modes and UMA combinations.

Table 1-5 DIP and UMA Support List

UMA

Delivery Mode SAF DLJ DLQ RTS DISC

block = OTMQ_DEL_NN

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_MEM

N N Y Y Y

block = OTMQ_DEL_AK

DIP = OTMQ_DIP_DEQ

N N Y Y Y

block = OTMQ_DEL_WF

DIP = OTMQ_DIP_ACK

N N Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_ACK

N N Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_DEQ

N N Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_SAF

N Y Y Y Y

Orac le Tuxedo Message Queue P rogramming Gu ide

1-30 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Using Naming
In OTMQ configuration, each message queue gets a name when created, and also can get an alias
at runtime. Naming is a powerful feature that enables OTMQ applications to identify message
queues by name/alias whether they reside on the local system or on another system.

Application developers use the OTMQ naming feature to separate their applications from the
underlying OTMQ environment configuration. By referring to message queues by name/alias in
the applications, developers do not have to modify their applications code when the OTMQ
environment configuration changes.

The user must configure TMQ_NA(5) server in UBB to take advantage of the naming service.

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_SAF

N Y Y Y Y

block = OTMQ_DEL _NN

DIP = OTMQ_DIP_SAF

N Y Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_CONF

Y Y Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_CONF

Y Y Y Y Y

block = OTMQ_DEL _NN

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

block = OTMQ_DEL _WF

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

block = OTMQ_DEL _AK

DIP = OTMQ_DIP_DQF

Y Y Y Y Y

Table 1-5 DIP and UMA Support List

UMA

Using Naming

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-31

Naming Service
Naming service is provided by the OTMQ Naming Server. It can access and manage both the
local namespace and global namespace for the runtime queue lookup when an application refers
to a queue by alias, or dynamic binding a queue alias to a specified queue name. OTMQ Naming
Server provides two services: one for the local scope alias lookup (Local Naming Service),
another for the global's (Global Naming Service).

Name Scope
When a name or alias is defined for message queue, it is assigned a name scope. Queue name or
alias can have a local (intra-qspace) or global (inter-qspace) scope. A local alias can be used by
applications running in the same queue space in which the alias was defined. A global alias can
be used by any applications.

Name Space
A name space is the repository where message queue alias and their associated message queue
address (queue space and queue name) are stored. OTMQ Naming Server must look up the alias
in the name space to find its associated actual queue address in order to send a message to the
named queue.

OTMQ Naming Server uses three levels of name spaces: process, local (qspace-wide) and global
(cross qspace wide). When OTMQ Naming Server start up, the local scope alias will be stored in
local name space. The global scope alias will be stored in global name space. The process name
space is an application cache used to improve performance. The alias can be cached at different
level name space, user can bypass caching when using tpqlocate(3c) if they prefer accuracy
over performance.

Process Level Name Space
When application attaches to the OTMQ, application automatically creates the empty process
name space. When this process locates/binds an alias for the first time, it is cached in the process
name space.

Local Name Space
When OTMQ Naming Server starts up, it automatically creates the local name space. Also local
scope queue alias defined by applications will be cached in the local name space.

Orac le Tuxedo Message Queue P rogramming Gu ide

1-32 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Global Name Space
To create the global name space, use a flat file system by creating the directory in which the
OTMQ naming service will maintain the name space.

To use global naming, you must create a global namespace on the nodes on which the Naming
Server runs. OTMQ allows user to configure at most two global naming services (primary and
backup). To enable the backup naming service to take responsibility when the primary one is
down, all the global naming services must be configured to use the same global name space.
Therefore, when configured naming services run on different systems, they must use a shared file
system.

After creating the name space, you must set the DMQNS_DEVICE environment variable to specify
a device name for the name space because access to the name space for global naming is system
dependent. Therefore, when a global naming service is configured, it must be told what device
name to be used when it accesses this name space. This is done by setting the environment
variable DMQNS_DEVICE as follows:

For Windows NT, it should be set to a drive letter followed by a colon (for example, c:> o
a full qualified share name (e.g. \\machine\share)

For UNIX, it should be set to a file system specification (for example, / or /usr or
/mnt/dmqns)

Note: this environment variable need only be set for the OTMQ Naming Server which provides
the naming services. To use the global naming service, at least some portion of the global
namespace file path must be specified. For example on UNIX, you can define it as
"/u/mydir".

When an application refers to a queue by alias using the tpqlocate(3c) or the tpqbind(3c)
functions, it can specify the alias as one of the following:

unqualified name: The application uses only the queue alias such as "widgets" and does not
specify the path. The naming service automatically prefixes the name with the value of the
environment variable DMQNS_DEVICE. Furthermore, it prefix the value of the environment
variable DMQNS_DEFAULTPATH begins with a "/". For example, if the DMQNS_DEVICE
environment variable is set to "dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service would search for the name "widgets" in:
/dev/inventory/widgets

partially qualified name: The application specifies the queue alias and a portion of the path
name. The naming service automatically prefixes the pathname and queue alias with the
device specified as the DMQNS_DEVICE environment variable and the setting of the
DMQNS_DEFAULTPATH environment variable. For example, if the DMQNS_DEVICE

Using Naming

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-33

environment variable is set to "/dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service would search for the name "test/widgets" in:
/dev/inventory/test/widgets.

fully qualified name: The application specifies that the alias is a fully qualified name using
"/" as the first character of the name. When the first character of a name begins with "/",
the naming service does not prefix any information to the name other than the device name
specified by the DMQNS_DEVICE environment variable. This means that a fully qualified
name includes the full path name and queue name. For example, if the DMQNS_DEVICE
environment variable is set to "dev" and the DMQNS_DEFAULTPATH is set to
"/inventory", the naming service will search for the name "/production/test/widgets" in:
/dev/production/test/widgets. Listing 1-9 shows a global namespace file example.

Listing 1-9 Global Namespace File Example

PrimaryQ_1 0.0 L

myqueue1 0.0 G

MRQ13_1 1.13 L

SQ14_2 0.0 G

Attaching and Locating Queues
An application must attach to a queue using the tpqattach(3c) function before reading
message from or sending message to a queue. It can identify the queue by its alias or its name.
When sending a message, the target queue is always identified by its name. An application can
directly use the queue name or it can use the tpqlocate(3c) function to derive the queue name
from its alias.Listing 1-10 shows locating queue example.

Listing 1-10 Locating Queue Example

static char q_space[16] = "QSPACE";

static char q_name[128] = "myqueue1";

…

Q_NAME_CTL name_ctl;

long scope = NAME_SCOPE_P;

Orac le Tuxedo Message Queue P rogramming Gu ide

1-34 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

/* join the application */

/* tpinit() */

/* attach to the QSpace */

/* tpqattach() */

/* locate queue named "Primary_queue" */

name_ctl.pName = "Primary_queue";

wait_mode = OTMQ_WF_RESP; /* use synchronous way to get response */

if(tpqlocate(q_space, &name_ctl, 0, NULL, &scope, wait_mode, 0) == -1)

{

/* deal with failed scenario */

…

}

Static and Dynamic Binding of Queue Aliases
OTMQ offers two approaches to associating a queue alias with a queue address: static and
dynamic.

Static binding refers to associating a queue name with a queue alias using the name space file. To
enable such association, you can specify the name space file when creating the queue space; or
you can stop the Naming Server, then update the queue space to specify a name space file, then
restart the Naming Server again. For more information, see tmqadmin in the Oracle Tuxedo
Message Queue Reference Guide.

Dynamic binding refers to the use of tpqbind(3c) to associate a queue alias to a queue name at
application runtime. The queue alias will not be bound to a specific queue name until the
tpqbind(3c) successfully return. To modify such association, the application must first unbind
the queue alias from the specific queue name using tpqbind(3c), and use the same API to
associate another queue alias to the queue name again. When the application detach from the
queue or exit the queue space, the Naming Server will unbind the association for this application
automatically. shows a dynamic binding queue example.

../ref/comands.html#wp1117381

Using WS SAF

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 1-35

Listing 1-11 Dynamic Binding Queue Example

static char q_space[16] = "QSPACE";

static char q_name[128] = "myqueue1";

…

Q_NAME_CTL name_ctl;

long scope = NAME_SCOPE_G;

name_ctl.pName = "Primary_queue";

name_ctl.pGroup = q_space;

name_ctl.pQueue = q_name;

bind_time_out = 30;

if(tpqbind(q_space, &name_ctl, &scope, bind_time_out) == -1)

{

/* deal with failed scenario */

…

}

For more information, see tpqlocate() and tpqbind() in the Oracle Tuxedo Message Queue
Reference Guide.

Using WS SAF
In WS mode, OTMQ messages that are sent using a recoverable delivery mode are written to the
local store-and-forward (SAF) journal (tmqsaf.jrn) when the connection to the server system
is not available.

When the feature is enabled, messages sent using the following reliable delivery modes are saved
to the journal:

OTMQ_DIP_MEM & OTMQ_DEL_WF (using OTMQ_UMA_SAF)

OTMQ_DIP_DQF & OTMQ_DEL_WF

OTMQ_DIP_DQF & OTMQ_DEL_AK

OTMQ_DIP_SAF & OTMQ_DEL_WF

../ref/functions.html#wp1075871
../ref/functions.html#wp1075764

Orac le Tuxedo Message Queue P rogramming Gu ide

1-36 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

OTMQ_DIP_SAF & OTMQ_DEL_AK

OTMQ WS configuration options allow the SAF journal to be configured as follows:

A fixed-size file that does not reuse disk blocks

A fixed-size file that reuses (cycles) disk blocks

A dynamic file that grows indefinitely until no more disk blocks are available

These options allow you to determine how disk resources are used for message journals. Journal
files that grow indefinitely periodically allocate an extent of disk blocks as needed to store
messages. When all messages are sent from the SAF and the journal is empty, the disk blocks
used by the journal are freed and the journal file is removed. Journal file size is in units of disk
block size (4096 bytes).

Building Applications
As counterparts of Tuxedo buildclient(1) and buildserver(1) commands, OTMQ provides
buildqclient(1) and buildqserver(1).

buildqclient(1) is used to construct an OTMQ client module. The command combines the
supplied files with the standard Oracle Tuxedo ATMI libraries and OTMQ libraries to form a
load module.

buildqserver(1) is used to construct an OTMQ server load module. The command combines
the supplied files with the standard server main routine, the standard Oracle Tuxedo ATMI
libraries and OTMQ libraries to form a load module.

For more information, see buildqclient and buildqserver in the Oracle Tuxedo Message
Queue Reference Guide.

../ref/comands.html#wp1075755
../ref/comands.html#wp1111443

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-1

C H A P T E R 2

Oracle Tuxedo Message Queue PAMS
Programming Guide

This chapter contains the following topics:

PAMS Application Programming Interface

Using Message-Based Services

Message Reference

PAMS Application Programming Interface
Oracle MessageQ API Description Format

Oracle MessageQ API Data Types

Because the Oracle MessageQ application programming interface (API) is portable, the API is
documented once for all supported platforms. This chapter describes all Oracle MessageQ
callable services in alphabetical order using a standard description -format.

Note: Using APIs starting with "tp" instead of APIs starting with "pams" is highly
recommended.

Oracle Tuxedo Message Queue supports PAMS APIs for Oracle Messageq (OMQ)
compatibility. To migrate OMQ applications to OTMQ, please see Migrating from OMQ
to OTMQ 12c.

../install/migration.html
../install/migration.html

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-2 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Oracle MessageQ API Description Format
The beginning of each description contains the entry-point name and a brief description of the
function performed. Table 2-1 Table 8-1 describes the sections in the description of each
callable service.

Oracle MessageQ API Data Types
Oracle MessageQ API arguments use data types defined by the C programming language and
some data types defined by Oracle MessageQ software. Data types such as short,
-unsigned short, and char are data types defined by the C programming language.
Oracle MessageQ data types such as q_address and the PSB and show_buffer structures
are defined in the p_entry.h include file.

Oracle MessageQ supports data type definitions for signed and -unsigned longwords. The
int32 data type defined by Oracle MessageQ is a 32-bit signed integer. The int32 data type
replaces the use of the integer data type long, the size of which is operating system dependent.
The int32 data type definition guarantees a consistent definition across all platforms and was
added to accommodate next generation 64-bit architectures such as the Compact Alpha AXP

Table 2-1 Callable Service Description Formats

In the section entitled . . . You will find . . .

Syntax The syntax for using the callable service with the entry-point name and
argument list. Square brackets ([]) indicate optional arguments to the service.
The syntax for using the callable

Arguments The data type, passing mechanism, C language prototype, and access for each
argument.

Argument Definition More detailed information on how to use the callable service.

Description More detailed information on how to use the callable service.

Return Values The return codes with the platforms on which they are supported.

See Also A list of related callable services. For more information about these services, see
this "Oracle MessageQ API Data Types" section.

Example A sample program illustrating the use of the callable service. These sample
programs are available in the examples directory of the Oracle MessageQ media
kit.

pams_at tach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-3

systems. The uint32 data type designates a 32-bit unsigned integer and replaces the use of
unsigned long.

Note: The int32 and uint32 data type definitions are not available on Oracle MessageQ
Version 2.0 platforms. Oracle MessageQ Version 2.0 software uses the standard signed
longword and unsigned longword data types defined by the C programming language.

pams_attach_q
Connects an application program to the Oracle MessageQ message queuing bus by attaching it
to a message queue. An application must successfully execute this function before it can send
and receive messages. When an application uses this function to attach to a queue, it becomes
the owner of the queue. Only one application program can attach to a primary queue and read
messages from it. When an application attaches to a permanent primary queue defined with
secondary queue attachments, the secondary queues are also attached by this function.

Syntax
int32 pams_attach_q (attach_mode, q_attached, [q_type], [q_name],

[q_name_len], [name_space_list], [name_space_list_len], [timeout],

[nullarg_2], [nullarg_3])

Arguments

• pams_attach_q • pams_close_jrn • pams_get_msga • pams_read_jrn

• pams_bind_q • pams_confirm_msg • pams_get_msgw • pams_set_select

• pams_cancel_get • pams_detach_q • pams_locate_q • pams_set_timer

• pams_cancel_select • pams_exit • pams_open_jrn • pams_status_text

• pams_cancel_timer • pams_get_msg • pams_put_msg • putil_show_pending

Table 2-2 Arguments

Argument Data Type Mechanism Prototype Access

attach_mode int32 int32 * passed

q_attached q_address q_address * returned

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-4 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Argument Definitions

attach_mode
Supplies the mode for attaching the application to a message queue. The three
predefined constants for this argument are:

PSYM_ATTACH_BY_NAME-Attach by name

PSYM_ATTACH_BY_NUMBER-Attach by number

PSYM_ATTACH_TEMPORARY-Attach as a temporary queue

When attach_mode is PSYM_ATTACH_BY_NAME, the application attaches to the
queue identified by the specified queue or alias name. Oracle MessageQ finds the queue
by implicitly performing a pams_locate_q call for the specified q_name. The
procedure that Oracle MessageQ uses is determined by the name_space_list
argument.

q_attached
Receives the queue address from Oracle MessageQ when an application has successfully
attached to a message queue.

[q_type] int32 reference int32 * passed

[q_name] char reference char * returned

[q_name_len] int32 reference int32 * passed

[name_space_
list]

int32 array reference int32 array
*

passed

[name_space_
list_len]

int32 reference int32 * passed

[timeout] int32 reference int32 * passed

[nullarg_2] char reference char * passed

[nullarg_3] char reference char * passed

Table 2-2 Arguments

Argument Data Type Mechanism Prototype Access

pams_at tach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-5

q_type
Supplies the queue type for the attachment. The two predefined constants for this
argument are:

PSYM_ATTACH_PQ-Primary queue (default)

PSYM_ATTACH_SQ-Secondary queue

q_name
Supplies the name or number of the permanent queue to attach to the application if the
attach_mode argument specifies attachment by queue name or queue number. Queue
names are alphanumeric strings with no embedded spaces and allow the following
special characters: underscore (_), hyphen (-), and dollar sign ($).

References to queue names are case sensitive and must match the queue name entered
in the group initialization file. Some example queue names are: QUEUE_1,
high-priority, and My$Queue.

The q_name argument has the following dependencies with the attach_mode
argument:

If the attach_mode argument is PSYM_ATTACH_BY_NAME, the q_name
argument must contain a valid queue name as specified during Oracle MessageQ
group configuration.

If the attach_mode argument is PSYM_ATTACH_BY_NUMBER, the q_name
argument is specified as an ASCII string of 1 to 3 numeric characters
representing the queue number.

If the attach_mode argument is PSYM_ATTACH_TEMPORARY, the q_name
argument is not used and should be specified by passing a value of 0.

q_name_len
Supplies the number of characters in the q_name argument. The maximum string length
on UNIX, Windows NT is 127 characters.

name_space_list
Supplies a list of name tables to search when the attach_mode argument
PSYM_ATTACH_BY_NAME is specified.

If the name_space_list is specified, then the name_space_list_len
argument must also be specified. If this argument is unspecified, then PSEL_TBL_GRP
is the default.

Possible values in a name_space_list argument are as follows:

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-6 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

The name_space_list argument identifies the scope of the name as follows:

To identify a local queue reference or a queue, an application must include
PSEL_TBL_GRP in name_space_list. (Do not specify PSEL_TBL_BUS in
the list because it would identify a global queue reference.)

To identify a global queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDIUM or PSEL_TBL_BUS_LOW) in the
name_space_list argument and specify its pathname, either explicitly or
implicitly. If the q_name argument contains any slashes (/), or periods (.),
Oracle MessageQ treats it as a pathname. Otherwise, Oracle MessageQ treats
q_name as a name and adds the DEFAULT_NAMESPACE_PATH to the name to
create the pathname to lookup. (The DEFAULT_NAMESPACE_PATH is set in
the %PROFILE section of the group initialization file.)

The name_space_list argument also controls the cache access as follows.

To cause the lookup of a local queue reference or queue name to check the
process cache before looking in the group cache, specify the
name_space_list argument as PSEL_TBL_GRP and PSEL_TBL_PROC.

To cause the lookup of a global queue reference to check the process cache and
then the group cache before looking into the global name space, specify
PSEL_TBL_BUS(or PSEL_TBL_BUS_LOW or PSEL_TBL_BUS_MEDIUM),
PSEL_TBL_GRP and PSEL_TBL_PROC.

To lookup all caches in the global name space before looking in the master
database, specify PSEL_TBL_BUS_LOW

Table 2-3 name_space_list argument values

Location It Represents Symbolic Value

Process Cache PSEL_TBL_PROC

PSEL_TBL_PROC

Group/group cache PSEL_TBL_GRP

PSEL_TBL_GRP

Global name space PSEL_TBL_BUS

(or PSEL_TBL_BUS_MEDIUM

 PSEL_TBL_BUS_LOW)

pams_at tach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-7

instead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify PSEL_TBL_BUS_MEDIUM
instead of PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len
Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, Oracle MessageQ uses PSEL_TBL_GRP
as the default in the name_space_list argument.

timeout
The number of PAMS time units (1/10 second intervals) to allow for the attach to
complete. If a zero is specified, the group's ATTACH_TMO property is used. If the
ATTACH_TMO property is also zero, 600 is used.

nullarg_2
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Description
Before an application can use the pams_attach_q function, the Oracle MessageQ message
queuing bus must be configured. A Oracle MessageQ message queuing bus is a collection of
one or more Oracle MessageQ message queuing groups. A message queuing group is a
collection of message queues that reside on a system, share global memory sections and files,
and are served by the same server processes. A Oracle MessageQ message queue is an area of
memory or disk where messages are stored and retrieved. See the installation and configuration
guide for the platform you are using to learn how to configure the Oracle MessageQ
environment.

To receive Oracle MessageQ messages, an application must attach to at least one message
queue. The pams_attach_q function enables an application to attach in the following ways:

An application can attach to a queue by specifying a number. To attach by number, the
message queue must be configured in the group definition. Attaching by number enables

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-8 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

an application to attach to a specific queue, send messages to the queue, and retrieve
messages sent to that queue.

An application can attach to a queue by specifying the queue name. To attach by name,
the message queue must be configured in the group definition. Attaching by name
enables an application to attach to a specific queue, send messages to the queue, and
retrieve messages sent to that queue. In addition, attaching by name eliminates the need
to change code or recompile if the queue address changes. Therefore, attaching by name
protects applications from changes in the Oracle MessageQ environment configuration.

An application can attach to a temporary queue. To attach to a temporary queue, the
application does not have to give a specific queue name or number. Oracle MessageQ
will assign a queue and return the number of the queue which has been assigned.
Temporary queues allow an application to perform messaging without knowing
configuration details of the group.

Applications can specify an attachment as primary or secondary. All applications must have a
primary queue. In addition, applications can attach to one or more secondary queues. Primary
queues can be configured in the group definition as the owners of secondary queues. When an
application attaches to a primary queue that is the owner of secondary queues, the application
is automatically attached to the secondary queues at the same time it is attached to the primary
queue.

In addition, an application can attach to a multireader queue. A multireader queue can be read
by many applications and is configured as part of the group definition.

Return Values

Table 2-4 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call
arguments has been passed to
this function.

PAMS__BADDECLARE All Queue has already been
attached to this application.

PAMS__BADNAME All Invalid name string was
specified.

PAMS__BADPARAM All Invalid argument in the
argument list.

pams_at tach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-9

PAMS__BADPROCNUM All Queue number out of range.

PAMS__BADQTYPE All Invalid queue type.

PAMS__BADTMPPROC OpenVMS Invalid temporary queue
number.

PAMS__DECLARED All The queue number is already
attached to another
application or process.

PAMS__DUPLQNAME OpenVMS Duplicate queue name.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOACCESS All No access to the resource.
The address of the specified
name is either 0 or it is in
another group.

PAMS__NOACL All The queue access control file
could not be found.

PAMS__NOOBJECT All No such queue name. For a
global queue reference, this
error can be caused by a bad
default pathname in the
group configuration file.

PAMS__NOQUOTA OpenVMS Insufficient receive message
or byte quota to attach.

PAMS__NOTBOUND All The queue name is not bound
to an address.

PAMS__NOTMRQ OpenVMS Attempting to attach to
Multi-reader Queue and
queue type is not an MRQ.

PAMS__NOTPRIMARYQ All Queue name or number is not
a primary queue.

Table 2-4 Return Codes

Return Code Platform Description

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-10 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

PAMS__NOTSECONDARYQ All Queue name or number is not
a secondary queue.

PAMS__PAMSDOWN All The specified Oracle
MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients The previous call to CLS has
not been completed.

PAMS__PNUMNOEXIST OpenVMS Target queue name or
number does not exist.

PAMS__RESRCFAIL All Failed to allocate resources.

PAMS__SUCCESS All Successful completion of an
action.

PAMS__TIMEOUT All The timeout period specified
has expired.

PAMS__NOQUOTA OpenVMS Insufficient receive message
or byte quota to attach.

PAMS__NOTBOUND All The queue name is not bound
to an address.

PAMS__NOTMRQ OpenVMS Attempting to attach to
Multi-reader Queue and
queue type is not an MRQ.

PAMS__NOTPRIMARYQ All Queue name or number is not
a primary queue.

PAMS__NOTSECONDARYQ All Queue name or number is not
a secondary queue.

PAMS__PAMSDOWN All The specified Oracle
MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients The previous call to CLS has
not been completed.

Table 2-4 Return Codes

Return Code Platform Description

pams_bind_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-11

See Also
pams_detach_q

pams_exit

pams_locate_q

Examples

Attach by Name
this example illustrates how to attach to a queue by name. The name "example_q_1"
must be defined in your group configuration information as a primary queue or as a local
queue alias or a primary queue. The complete code example called x_attnam.c is
contained in the examples directory.

Attach by Number
this example illustrates how to attach to a queue by number. A queue numbered 1 must
be defined in your group configuration information file as a primary queue. The
complete code example called x_attnum.c is contained in the examples directory.

Attach as Temporary
this example illustrates how to attach as a temporary queue. The complete code example
called x_atttmp.c is contained in the examples directory.

pams_bind_q
Dynamically associates a queue address to a queue reference at run-time. This enables a server
application to dynamically sign up to service a queue alias at run-time. Thus, an end user can

PAMS__PNUMNOEXIST OpenVMS Target queue name or
number does not exist.

PAMS__RESRCFAIL All Failed to allocate resources.

PAMS__SUCCESS All Successful completion of an
action.

PAMS__TIMEOUT All The timeout period specified
has expired.

Table 2-4 Return Codes

Return Code Platform Description

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-12 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

access a service without having to be aware that its normal host computer is down and that the
service is being provided from another host computer.

Syntax
int32 pams_bind_q (q_addr, q_alias, q_alias_len, [name_space_list],

[name_space_list_len], [timeout], [nullarg_1]);

Arguments

Argument Definitions

q_addr
The value specified to this argument controls whether the queue address is bound or
unbound:

If the queue address is specified, this function binds it to a q_alias.

If 0 is specified, this function unbinds the q_alias from its queue address. The
calling application must be bound to q_alias to set it back to zero.

Table 2-5 Arguments

Argument Data Type Mechanism Prototype Access

q_addr q_address reference q_address * passed

q_alias char reference char * passed

q_alias_len int32 reference int32 * passed

[name_space_list] int32 array reference int32 array * passed

[name_space_list_len] int32 reference int32 * passed

[timeout] int32 reference int32 * passed

[nullarg_1] char reference char * passed

pams_bind_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-13

q_alias
Identifies a global queue reference or a local queue reference. The procedure that Oracle
MessageQ uses to find this alias is controlled by the name_space_list argument, which
is described below.

q_alias_len
Specifies the number of characters in q_alias.

name_space_list
If specified, identifies a one-entry list containing either PSEL_TBL_BUS or
PSEL_TBL_GRP.

To identify a local queue reference, an application must have a name space list of
PSEL_TBL_GRP and pass its name in the q_alias argument. To identify a global queue
reference, an application must have a name space list of PSEL_TBL_BUS and specify
its pathname, either explicitly or implicitly:

If the q_alias argument contains any slashes (/), or periods (.), Oracle
MessageQ treats the q_alias as a pathname.

Otherwise, Oracle MessageQ treats q_alias as a name and adds the group's
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup.
(The DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the
initialization file.)

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len
Specifies the number of entries in name_space_list argument. The number of entries is
either 0 or 1. If the number of entries is 0 (indicating that the name_space_list is
omitted), PSEL_TBL_GRP is assumed.

timeout
Specifies the number of PAMS time units (1/10 second intervals) to allow for the bind
to complete. If 0 is specified, the group's ATTACH_TMO property is used. If the
ATTACH_TMO property is also 0, 600 is used.

nullarg_1
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-14 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Description
Before an application can call pams_bind_q, it must be attached to the specified queue
address. Listing 2-1 shows an attach before the bind call and is typical usage of the two
functions together:

Listing 2-1 Example of Using pams_bind_q

int32 mode = PSYM_ATTACH_BY_NUMBER;

 int32 q_type = PSYM_ATTACH_PQ;

int32 len=1;

int32 status;

q_address qid;

status = pams_attach_q(&mode,&qid,&q_type,"2",&len,0,0,0,0,0);

if (status == pams__SUCCESS {

int32 ns=PSEL_TBL_BUS;

int32 ns_len=1;

len = strlen("Q2");

status = pams_bind_q(&qid,"Q2",&len,&ns,&ns_len,0,0);

Return Values

Table 2-6 Return Code

Return Code Platform Description

PAMS__BADARGLIST All Invalid number of call arguments.

pams_bind_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-15

PAMS__BADNAME All Name contains bad characters.

PAMS__BADPARAM All The name space list is invalid.

PAMS__BOUND All Returned if a non-zero value for q_addr is passed and
the specified q_alias is already assigned to a queue
address.

PAMS__DUPLQNAME All Duplicate queue name.

PAMS__FAIL All Operation failed.

PAMS__NOACCESS All No access to the resource. The address of the specified
name is either 0 or it is in another group.

PAMS__NOOBJECT All For a global reference, this error can be caused by a bad
default pathname in the group configuration file.

PAMS__NOTBOUND All The queue name is not bound to an address.

PAMS__NOTDCL All Not attached to Oracle MessageQ.

PAMS__PAMSDOWN All The specified Oracle MessageQ group is not running.

PAMS__SUCCESS All Indicates successful completion.

PAMS__TIMEOUT All The timeout period specified has expired. In this
situation, Oracle MessageQ internally unbinds the
specified queue alias. Subsequent PAMS_bind_q calls to
the same name will return the PAMS__UNBINDING error
until the internal unbind succeeds.

PAMS__NOACCESS All No access to the resource. The address of the specified
name is either 0 or it is in another group.

PAMS__NOOBJECT All For a global reference, this error can be caused by a bad
default pathname in the group configuration file.

PAMS__NOTBOUND All The queue name is not bound to an address.

Table 2-6 Return Code

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-16 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
pams_attach_q

pams_locate_q

Example
The pams_bind_q example illustrates how to bind a queue reference to a queue address at
runtime. The complete code example called x_bind.c is contained in the examples directory.

pams_cancel_get
Cancels all pending pams_get_msga requests that match the value specified in the sel_filter
argument. When a pending pams_get_msga request is canceled, the PAMS Status Block
(PSB) delivery status is set to pams_CANCEL and the specified action routine is queued. The
pams_cancel_get function waits until completion to allow for proper synchronization
between the pams_cancel_get function and the request for pams_get_msga functions.
Any outstanding pams_get_msga function requests are canceled by the pams_exit
function or at image exit.

Syntax
int32 pams_cancel_get (sel_filter)

PAMS__NOTDCL All Not attached to Oracle MessageQ.

PAMS__PAMSDOWN All The specified Oracle MessageQ group is not running.

PAMS__SUCCESS All Indicates successful completion.

PAMS__TIMEOUT All The timeout period specified has expired. In this
situation, Oracle MessageQ internally unbinds the
specified queue alias. Subsequent PAMS_bind_q calls to
the same name will return the PAMS__UNBINDING error
until the internal unbind succeeds.

PAMS__UNBINDING All The bind cannot be done because Oracle MessageQ is
still in the process of has unbinding the old binding.

Table 2-6 Return Code

pams_cance l_se lec t

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-17

Arguments

Argument Definition

sel_filter
Supplies the criteria that enables the application to selectively cancel outstanding
pams_get_msga requests. For a description of the sel_filter argument, see the
pams_get_msg function. For a description of how to create a complex selection filter,
see the pams_set_select function.

Return Values

See Also
pams_cancel_select

pams_get_msga

pams_set_select

pams_cancel_select
Releases the selection array and index handle associated with a previously generated selection
mask. An index_handle and associated selection mask are created using the

Table 2-7 Arguments

Argument Data Type Mechanism Prototype Access

sel_filter int32 reference int32 * passed

Table 2-8 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Argument list is invalid.

PAMS__SUCCESS OpenVMS Indicates successful completion.

SS$_EXQUOTA OpenVMS Process has exceeded its asynchronous system trap
(AST) quota.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-18 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

pams_set_select function. When the selection mask is used in the OpenVMS
environment with asynchronous read requests, this function also cancels any pending
pams_get_msga requests that use the referenced index_handle.

Syntax
int32 pams_cancel_select (index_handle)

Arguments

Argument Definitions

index_handle
Supplies the index handle of the selection mask to cancel. The index_handle is returned
by the pams_set_select function.

Return Values

Table 2-9 Arguments

Argument Data Type Mechanism Prototype Access

index_handle int32 reference int32 * passed

Table 2-10 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call arguments.

PAMS__BADPARAM UNIX

Windows NT

The value of the selection index is null.

PAMS__BADSELIDX All Invalid or undefined selective receive index.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

pams_cance l_t imer

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-19

See Also
pams_get_msga

pams_set_select

pams_cancel_timer
Deletes the Oracle MessageQ timer identified by the timer_id argument that is passed to this
function. All expired timers with the selected identification code that are waiting in the message
queue are purged and are not delivered.

Syntax
int32 pams_cancel_timer (timer_id)

Arguments

Argument Definitions

timer_id
Supplies the timer ID of the timer to cancel. The timer_id is returned by the
pams_set_timer function.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__SUCCESS All Indicates successful completion.

Table 2-10 Return Codes

Table 2-11 Arguments

Argument Data Type Mechanism Prototype Access

timer_id int32 reference int32 * passed

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-20 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Return Values

See Also

pams_set_timer

pams_close_jrn
Closes the MRS journal file associated with the jrn_handle argument. The two types of journal
files are dead letter journal (DLJ) and post confirmation journal (PCJ). See Using Recoverable
Messaging for a description of how to use the Oracle MessageQ message recovery system.

Syntax
int32 pams_close_jrn (jrn_handle)

Table 2-12 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All The timer_id argument was specified as null.

PAMS__INVALIDNUM All The application has supplied an invalid value for the
timer_id.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOTDCL All The application has not attached to a queue.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__RESRCFAIL All Insufficient resources to complete the operation.

PAMS__SUCCESS All Indicates successful completion.

pams_conf i rm_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-21

Arguments

Argument Definitions

Jrn_handle
Supplies the journal handle of the message recovery journal file to close. The
jrn_handle is returned by the pams_open_jrn function.

Return Values

See Also
pams_confirm_msg

pams_open_jrn

pams_read_jrn

pams_confirm_msg
Confirms receipt of a message that requires explicit confirmation. This can be a recoverable
message sent to a queue that is configured for explicit confirmation or a message sent using the
ACK delivery mode which must be explicitly confirmed upon receipt. Applications should

Table 2-13 Arguments

Argument Data Type Mechanism Prototype Access

jrn_handle int32 reference int32 * passed

Table 2-14 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__INVJH OpenVMS The application has supplied an invalid journal handle.

PAMS__SUCCESS OpenVMS Indicates successful completion.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-22 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

examine the PSB status field of each message received to determine if the message requires
explicit confirmation.

When a recoverable message is received, the application must call the pams_confirm_msg
function in order to delete it from the message recovery journal disk storage. If receipt of a
recoverable message is not confirmed, the message continues to be stored by the recovery
system and will be redelivered if the application detaches and then reattaches to the queue.

Oracle MessageQ can confirm receipt of a recoverable message automatically when the next
consecutive message in the recovery journal is delivered. This feature is called implicit
confirmation.

All queues must be configured for implicit or explicit confirmation. For complete information
on how to configure message queues, see the installation and configuration guide for your
system.

Successfully delivered recoverable messages can be recorded in the post confirmation journal
(PCJ). The pams_confirm_msg function uses the force_j argument to write messages to the
PCJ file if the system is not currently configured to store them. Note that successfully delivered
recoverable messages cannot be written to the PCJ file unless they are explicitly confirmed
using the pams_confirm_msg function.

Syntax
int32 pams_confirm_msg (msg_seq_num, confirmation_status, force_j)

Arguments

Table 2-15 Arguments

Argument Data Type Mechanism Prototype Access

msg_seq_num uint32 array reference uint32 array * passed

confirmation
_status

int32 reference int32 * passed

force_j char reference char * passed

pams_conf i rm_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-23

Argument Definitions

msg_seq_num
Supplies the message sequence number of the recoverable message being confirmed.
The message sequence number is generated by the Oracle MessageQ message recovery
system for each recoverable message. This value is passed to the receiver program in
the PSB of the pams_get_msg function when it reads each recoverable message.

confirmation_status
Supplies the confirmation status value stored with the message in the post confirmation
journal (PCJ) file. The value is set by the calling application. See the Using Recoverable
Messaging topic for more information on using the PCJ file.

force_j
Supplies the journaling action for this message. Following are the predefined constants
for this argument:

Description
The PSB status codes associated with recoverable message delivery are PAMS__CONFIRMREQ
and PAMS__POSSDUPL. The PAMS__CONFIRMREQ PSB status code indicates that it is the
first time the application received the recoverable message. The PAMS_POSSDUPL status code
indicates that the message was retrieved from the recovery journal and may have been sent
previously. This status code allows the application to take extra precautions to handle duplicate
messages if necessary.

The PSB also contains a sequence number that uniquely identifies the message. The
pams_confirm_msg function requires this sequence number. If one of these status codes is

Table 2-16 force_j

Symbol Description

PDEL_DEFAULT_JRN Enables writing the message to the PCJ file if the journaling is configured in
the group initialization file.

PDEL_FORCE_JRN Enables writing to the PCJ only if journaling is configured. It is not possible
to write messages to the PCJ on UNIX and Windows NT systems if a path
was not defined for the PCJ in the group configuration information.

PDEL_NO_JRN Disables journaling regardless of whether journaling is configured.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-24 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

present and the pams_confirm_msg function is not called, the message will continue to be
stored by the message recovery system and will be delivered again if the application exits and
then reattaches.

Return Values

Table 2-17 Return Code

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All Bad argument value.

PAMS__BADSEQ All Journal sequence number is not known to the Message
Recovery Services (MRS).

PAMS__DQF_DEVICE_FA
IL

OpenVMS I/O error writing to the destination queue file for the target
queue.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOMRS All MRS is not available.

PAMS__NOTDCL All Process is not attached to Oracle MessageQ.

PAMS__NOTJRN All Message is not written to the PCJ file.

PAMS__NOTSUPPORTED OpenVMS Attached to the dead letter queue.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__RESRCFAIL OpenVMS Oracle MessageQ resources exhausted.

PAMS__SUCCESS All Indicates successful completion.

pams_detach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-25

See Also
pams_get_msg

pams_get_msga

pams_get_msgw

pams_put_msg

Example
Confirm Receipt of Recoverable Messages

This example demonstrates using recoverable messaging. It attaches to queue_1, puts some
recoverable messages to queue_2, exits, attaches to queue_2, gets the messages, prints them
out, then exits.

The queues named "queue_1" and "queue_2" are defined in your initialization file. On
OpenVMS systems, you must set up a DQF for queue_2. The complete code example called
x_recovr.c is contained in the examples directory.

pams_detach_q
Detaches a selected message queue or all of the application's message queues from the message
queuing bus. When an application detaches from its primary queue, this function automatically
detaches all secondary queue attachments defined for the primary queue. When the last message
queue has been detached, the application is automatically detached from the Oracle MessageQ
message queuing bus.

Syntax
int32 pams_detach_q (q, detach_opt_list, detach_opt_len,msgs_flushed)

Arguments

Table 2-18 Arguments

Argument Data Type Mechanism Prototype Access

q q_address reference q_address passed

detach_opt_list int32 array reference int32 * passed

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-26 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Argument Definitions

q
Supplies the queue address of the queue to be detached. This function can be used to
detach primary, secondary, and multireader queues.

detach_opt_list
Supplies an array of int32 values used to control how the queue is detached. The
predefined constants for this argument are:

PSYM_NOFLUSH_Q-Detaches the queue without flushing the pending messages
stored in memory. The default action is to flush pending messages in the queue
before it is detached. Messages are never flushed from multireader queues.

PSYM_DETACH_ALL-Detaches all of the application's message queues from the
message queuing bus. Using this constant performs the same action as calling
the pams_exit function.

PSYM_CANCEL_SEL_MASK-Cancels all selection masks that reference the
queue or queues that you are detaching. If you do not select this option and you
do not cancel selection masks, Oracle MessageQ invalidates all selection masks
that reference the queue or queues that you are detaching. You must cancel the
invalidated selection masks using the pams_cancel_select function.

detach_opt_len
Supplies the number of int32 values in the detach_opt_list array. The maximum
number of int32 longwords is 32,767.

msgs_flushed
Receives the number of messages that were flushed from the queue. Message count
statistics are enabled on all systems by default; therefore, it is not necessary to enable
statistics on UNIX and Windows NT systems in order to properly return this value.

Description
If you are using implicit confirmation with recoverable messaging, you must ensure that the
last message is confirmed before:

detach_opt_len int32 reference int32 * passed

msg_flushed int32 reference int32 * returned

Table 2-18 Arguments

pams_detach_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-27

Detaching from the queue which received the message by calling pams_detach_q

Detaching from the message queuing bus by calling pams_exit

Exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting, the
message will be redelivered when the queue is reattached. The easiest method to ensure
confirmation is to save the PSB delivery status of the last message received, check it for the
required confirmation status, and then exit after the message has been confirmed.

Return Values

See Also
pams_attach_q

pams_exit

Table 2-19 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All Invalid detach_opt_list.

PAMS__DETACHED All Process has detached from Oracle

MessageQ.

PAMS__NETERROR Clients Network error resulted in a

communications link abort.

PAMS__NOTDCL All Not attached to Oracle MessageQ.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been

completed.

PAMS__PNUMNOEXIST All Invalid queue address or queue not owned

by process.

PAMS__SUCCESS All Queue successfully detached.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-28 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

pams_exit
Terminates all attachments between the application and the Oracle MessageQ message queuing
bus. All pending messages in temporary queues and permanent queues which are not
permanently active multi-reader queues are discarded. Only the messages pending in
permanently active multi-reader queues are retained. To retain messages in permanently active
queues, call pams_detach_q with option PSYM_NOFLUSH_Q before calling pams_exit.

Syntax
int32 pams_exit (void)

Arguments
None.

Description
If you are using implicit confirmation with recoverable messaging, you must ensure that the
last message is confirmed before:

Detaching from the queue which received the message by calling pams_detach_q

Detaching from the message queuing bus by calling pams_exit

Exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting, the
message will be redelivered when the queue is reattached. The easiest method to ensure
confirmation is to save the PSB delivery status of the last message received, check it for the
required confirmation status, and then exit after the message has been confirmed.

Return Values

Table 2-20 Return Codes

Return Code Platform Description

PAMS__NETERROR OpenVMS
Client

Network error resulted in a communications link abort.

PAMS__NOTDCL OpenVMS Not attached to Oracle MessageQ.

PAMS__PREVCALLBUSY OpenVMSClient Previous call to CLS has not been completed.

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-29

See Also
pams_attach_q

pams_detach_q

Example
Exit the Message Queuing Bus

This example shows how to use the pams_exit function. The complete code example called
x_exit.c is contained in the examples directory.

pams_get_msg
Retrieves the next available message from a selected queue and moves it to the location
specified in the msg_area argument. When no selection filter is specified, the function returns
the next available message in first-in/first-out (FIFO) order based on message priority to the
buffer specified in the msg_area argument. Priority ranges from 0 (lowest priority) to 99
(highest priority). For example, priority 1 messages are always placed before priority 0
messages. Messages are placed in first-in/first out order by message priority. If a selection filter
is specified, then only messages that meet the selection criteria are retrieved. If no messages
are available or meet the selection criteria, then the return status is pams__NOMOREMSG.

Applications should check the PSB status field of each message to determine if the message
was sent with a recoverable delivery mode. If an application receives a recoverable message,
it must call the pams_confirm_msg function to delete it from the message recovery journal
disk storage. If receipt of a recoverable message is not confirmed, the message continues to be
stored by the recovery system and will be redelivered if the application detaches and then
reattaches to the queue.

The receiver program determines whether each message is a FML32 buffer or large message
by reading the msg_area_len argument. See the Sending and Receiving Oracle MessageQ
Messages topic for more information on working with FML32 buffers and large messages.

PAMS__PNUMNOEXIST OpenVMS Invalid queue address or queue not owned by process.

PAMS__SUCCESS All Indicates successful completion.

Table 2-20 Return Codes

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-30 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Syntax
int32 pams_get_msg (msg_area, priority, source, class, type, msg_area_len,

len_data, [sel_filter], [psb], [show_buffer], [show_buffer_len],

[large_area_len], [large_size], [nullarg_3])

Arguments

Table 2-21 Arguments

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned

msg_area_len short reference short * passed

len_data short reference short* returned

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb *

[show_buffer] struct show_buffer reference struct

show_buffer

*

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 *

passed/

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-31

Argument Definitions

msg_area
For static buffer-style messaging, receives the address of a memory region where Oracle
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved.

priority
Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority is set to 0, the pams__get_msqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams__get_msqw function gets only messages of that priority.

source
Receives a data structure containing the group ID and queue number of the sender
program's primary queue in the following format:

Figure 2-1

class
Receives the class code of the retrieved message. The class is specified in the
pams_put_msg function. Oracle MessageQ supports the use of symbolic names for

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char* passed

Table 2-21 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-32 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

class argument values. Symbolic class names should begin with MSG_CLAS_. For
information on defining class symbols, see the p_typecl.h include file. On UNIX
and Windows NT systems, the p_typecl.h include file cannot be edited. You must
create an include file to define type and class symbols for use by your application.
Class symbols reserved by Oracle MessageQ are as follows:

type
Receives the type code of the retrieved message. The type is specified in the
pams_put_msg function. Oracle MessageQ supports the use of symbolic names for
type argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, see the p_typecl.h include file.

Oracle MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area_len

Supplies the size of the buffer (in bytes) for static message buffers of up to
32767 bytes. The msg_area buffer is used to store the retrieved message.

Table 2-22 Class symbols

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-33

For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the message
buffer to receive the message. If the retrieved buffer is larger than the space
allocated, space is dynamically reallocated and the new buffer size is stored in
large_area_len.

For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the large_size
argument. The msg_area buffer is used to store the retrieved message. The
large_area_len argument is used to supply the size of the message buffer to
receive the large message.

len_data
For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument. This field also receives the
PSYM_MSG_BUFFER_PTR symbol for double buffer and FML-style messages and
PSYM_MSG_LARGE for buffer-style messages larger than 32767 bytes.

sel_filter
Supplies the criterion to enable the application to selectively retrieve messages. The
argument contains one of the following selection criteria:

Default selection

Selection by message queue

Message attributes

Message source

Compound select using the pams_set_select function .

The sel_filter argument is composed of two words as follows:

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-34 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-2

Default Selection
Enables applications to read messages from the queue based on the order in which they
arrived. The default selection,

PSEL_DEFAULT, reads the next pending message from the message queue.
Messages are stored by priority and then in FIFO order. To specify this explicitly,
both words in the sel_filter argument should be set to 0.

Selection by Message Queue
Allows the application to retrieve messages based upon a queue type or combination of
queue types. This selection criteria is used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained within
each queue. The predefined constants for this argument are as follows:

Table 2-23 Selection by Message Queue

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the primary queue
(PQ) only. The select variable must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an alternate queue
(AQ) only. The queue type can be a secondary queue
(SQ).

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-35

Selection by Message Attribute
Enables the application to select messages based on the message type, class, or priority.
The predefined constants for this argument are as follows:

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary queue
and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an alternate queue
and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), and then from a primary queue.

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), then from a primary queue, and finally from
an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user callback queues
(UCB).

Table 2-23 Selection by Message Queue

Table 2-24 Selection by Message Attribute

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from the
primary queue that matches the type value in the
select variable word.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-36 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Selection by Message Source
Provides for the selection of pending messages from primary and secondary queues, by
source group ID, queue number, or both. The format for selection by source -follows:

Figure 2-3

Some examples of possible sel_filter arguments and their actions are as follows:

PSEL_PQ_CLASS Class Selects the first pending message from the
primary queue that matches the class value in
the select variable word.

PSEL_PQ_PRI PSEL_PRI_ANY

PSEL_PRI_P0

PSEL_PRI_P1

integer value between 0 and
99

Selects the first pending message with a priority
equal to an integer between 0 and 99 inclusive
(or equal to the select variable value) from
within the primary queue. Specifying the direct
integer value is the preferred method of
selectedmessages by priority.

Using PSEL_PRI_ANY enables the reading of
any pending messages of all priorities. Setting
PSEL_PRI_P0 enables the application to
retrieve pending messages of priority 0 only.
Setting PSEL_PRI_P1 enables the strict
retrieval of pending messages with a priority of
1.

Table 2-24 Selection by Message Attribute

Select Mode Select Variable Mode Description

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-37

Compound Selection
Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows:

Figure 2-4

psb
Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Table 2-25 sel_filter arguments

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

Selection mask created with
pams_set_select

Only messages that exactly match the specified selection mask are
retrieved.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-38 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

show_buffer
Receives additional information which Oracle MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

Table 2-26 PSB Structure

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB

Delivery Status

The completion status of the function. For recoverable messages,
this field contains PAMS__CONFIRMREQ or PAMS__POSSDUPL.
For nonrecoverable messages, it may also contain a value of
PAMS__SUCCESS.

8 15 Message
Sequence
Number

A unique number assigned to a message when it is sent and follows
the message to the destination PSB. This number is input to
pams_confirm_msg to release a recoverable message.

16 19 PSB UMA

Status

This field is not used for the pams_get_msg function.

20 23 Function
Return Status

This field is not used for the pams_get_msg function.

24 31 Not Used Not used.

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-39

Table 2-27 show_buffer argument

Longword Contents Description

0 Version The version of the show_buffer structure. Valid values are as follows:

10 = Version 1.0
20 = Version 2.0
50 = Version 5.0

1 Transfer Status The status code associated with the transfer of show_buffer information
into the application's buffer. Valid symbols are as follows:
PAMS__SUCCESS

All available information has been transferred.

PAMS__BUFFEROVF

Information was lost due to receiver buffer overflow. 0-No message
returned. There is no information to transfer.

2 Transfer Size The number of bytes transferred to the application buffer.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-40 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

3 Flags A bit array showing the status of fields in the show_buffer. A set bit
indicates a valid field, while a cleared bit indicates indeterminable data or
the end of the allocated show_buffer memory. The symbols for the
flags field are as follows:
PSYM_SHOW_VERSION

PSYM_SHOW_STATUS

PSYM_SHOW_SIZE

PSYM_SHOW_FLAGS

PSYM_SHOW_TARGET

PSYM_SHOW_ORIGINAL_TARGET

PSYM_SHOW_SOURCE

PSYM_SHOW_ORIGINAL_SOURCE

PSYM_SHOW_DELIVERY D
PSYM_SHOW_PRIORITY

PSYM_SHOW_ENDIAN

PSYM_SHOW_CORRELATION_I

4 Not Used Fills out the Control Section to its maximum 24 bytes.

5 Not Used Fills out the Control Section to its maximum 24 bytes.

6 Not Used Fills out the Control Section to its maximum 24 bytes.

7 Not Used Fills out the Control Section to its maximum 24 bytes.

8 Not Used Fills out the Control Section to its maximum 24 bytes.

9 Not Used Fills out the Control Section to its maximum 24 bytes.

10 Target The q_address of the latest message target.

Table 2-27 show_buffer argument

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-41

show_buffer_len
Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
then the return code PAMS__BUFFEROVF will be in the show_buffer transfer status.

large_area_len
Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER). This argument also stores the length of double
buffers and FML32 buffers after reallocation.

large_size
Returns the actual size of the large message, double buffer message, or FML32 message
written to the message buffer.

11 Original Target The q_address of the original message target.

12 Source The q_address of the latest message source.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message. This is not
necessarily the delivery mode used to generate the message.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte integers. The
possible settings are as follows:

PSYM_UNKNOWN

PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or PSYM_BIG_ENDIAN
PSYM_FML

17 Correlation I The 32 byte correlation ID associated with the message.

Table 2-27 show_buffer argument

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-42 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Values

Table 2-28 Return Code

Return Code Platform Description

PAMS__AREATOSMALL All Received message is larger than the user's message area.

PAMS__BADARGLIST All Wrong number of call arguments have been passed to
this function.

PAMS__BADHANDLE All Invalid message handle.

PAMS__BADPARAM All Bad argument value.

PAMS__BADPRIORITY All Invalid priority value used for receive.

PAMS__BADSELIDX All Invalid or undefined selective receive index.

PAMS__BUFFEROVF UNIX

Windows NT

The size of the show_buffer specified is too
small.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of FML message;
this can be an error in processing or data corruption.

PAMS__INSQUEFAIL All Failed to properly queue a message buffer.

PAMS__MSGTOSMALL All The msg_area_len argument must be positive or zero.

PAMS__MSGUNDEL All Message returned is undeliverable.

pams_get_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-43

PAMS__NEED_BUFFER_PTR UNIX

Windows NT

FML32 buffer received but msg_area_len argument not
set to

PSYM_MSG_BUFFER_PTR.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOACCESS All No access to resource.

PAMS__NOACL All Queue access control file could not be found.

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to reallocate buffer
pointer.

PAMS__NOMRQRESRC All Insufficient multireader queue resources to allow access.

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

PAMS__NOTSUPPORTED UNIX

Windows NT

The supplied delivery mode is not -supported.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__QUECORRUPT OpenVMS Message buffer queue corrupt.

PAMS__REMQUEFAIL All Failed to properly read from a message buffer.

PAMS__STALE All Resource is no longer valid and must be freed by the user.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Indicates successful completion.

Table 2-28 Return Code

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-44 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

PBS Delivery Status

See Also
pams_get_msga

pams_get_msgw

pams_put_msg

pams_set_select

Example
Read a Message

This example uses the pams_get_msg function to retrieve all the messages currently in the
queue and sends them to a print function. The complete code example called x_get.c is
contained in the examples directory.

pams_get_msga
The pams_get_msga function is only available on OpenVMS systems.

Requests asynchronous notification of a message arrival. The pams_get_msga function
triggers an asynchronous system trap (AST) routine when a message arrives in that queue.
Notification to the application occurs by triggering an AST, by setting an event flag, or both.

Table 2-29 PBS Delivery Status

PSB Delivery Status Platform Description

PAMS__CONFIRMREQ All Confirmation required for this message.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__POSSDUPL All Message is a possible duplicate.

PAMS__SUCCESS All Indicates successful completion.

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-45

When no selection filter is specified, the function returns the next available message in
first-in/first-out (FIFO) order based on message priority to the user-supplied msg_area
argument. Priority ranges from 0 (lowest priority) to 99 (highest priority). For example, priority
1 messages are always placed before priority 0 messages. Messages are placed in first-in/first
out order by message priority. If a selection filter is specified, then only messages that meet the
selection criteria are retrieved, and the AST or event flag is triggered only when a matching
message arrives.

If a queue has been sent a recoverable message, the receiver program can confirm receipt of
the message using the pams_confirm_msg function. The pams_confirm_msg function
enables the successfully delivered message to be deleted from the message recovery system.
See the Using Recoverable Messaging topic for a description of the Oracle MessageQ recovery
system.

See the Sending and Receiving Oracle MessageQ Messages topic for more information on
working with FML32 buffers and large messages.

Syntax
int32 pams_get_msga (msg_area, priority, source, class, type,

msg_area_len, len_data, [sel_filter], [psb], [show_buffer],

[show_buffer_len], [large_area_len], [large_size], [actrtn], [actparm],

[flag_id], [nullarg_3])

Arguments

Table 2-30 Arguments

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-46 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Argument Definitions

msg_area
For static buffer-style messaging, receives the address of a memory region where Oracle
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved. When using double buffer pointers with pams_get_msga, the new buffer
size is returned in large_size. (This differs from pams_get_msg[w}, where the
new buffer size is returned in large_area_len.)

msg_area_len short reference short * passed

len_data short reference short * returned

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb * returned

[show_buffer] struct
show_buffer

reference struct
show_buffer *

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 * passed/
returned

[large_size int32 reference int32 * returned

[actrtn] int32 value int32 * passed

[actparm] int32 reference int32 * passed

[flag_id] int32 reference int32 * passed

[nullarg_3] char reference char * passed

Table 2-30 Arguments

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-47

priority
Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority)..

source
Receives a data structure containing the group ID and queue number of the sender
program's primary queue in the following format:

Figure 2-5 Group ID Data Structure

class
Receives the class code of the retrieved message. The class is specified in the
pams_put_msg function. Oracle MessageQ supports the use of symbolic names for
class argument values. Symbolic class names should begin with MSG_CLAS_. For
information on defining class symbols, see the p_typecl.h include file.

Class symbols reserved by Oracle MessageQ are as follows:

Table 2-31 Class Symbols

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-48 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

type
Receives the type code of the retrieved message. The type is specified in the
pams_put_msg function. Oracle MessageQ supports the use of symbolic names for
type argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, see the p_typecl.h include file.

Oracle MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area_len

Supplies the size of the buffer (in bytes) for buffer-style messages of up to 32767
bytes. The msg_area buffer is used to store the retrieved message.

For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the message
buffer to receive the message. If the retrieved buffer is larger than the space
allocated, space is dynamically reallocated and the new buffer size is stored in
large_size.

For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the large_size
argument The msg_area buffer is used to store the retrieved message. The
large_area_len argument is used to supply the size of the message buffer to
receive the large message.

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

Table 2-31 Class Symbols

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-49

len_data
For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument. This field also receives the
PSYM_MSG_BUFFER_PTR symbol for FML-style messages and PSYM_MSG_LARGE
for buffer-style messages larger than 32767 bytes.

sel_filter
Supplies the criteria enabling the application to selectively retrieve messages. The
argument contains one of the following selection criteria:

Default selection

Selection by message queue

Message attributes

Message source

Compound selection using the pams_set_select function

The sel_filter argument is composed of two words as follows:

Figure 2-6 sel_filter argument

Default Selection
Enables applications to read messages from the queue based on the order in
which they arrived. The default selection, PSEL_DEFAULT, reads the next
pending message from the message queue. Messages are stored by priority and
then in FIFO order. To specify this explicitly, both words in the sel_filter
argument should be set to 0.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-50 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Selection by Message Queue
Allows the application to retrieve messages based upon a queue type or
combination of queue types. This selection criteria is used to retrieve the first
pending message that matches the criteria on the first queue it encounters. FIFO
ordering is maintained within each queue.
The predefined constants for this argument are as follows:

Table 2-32 sel_filter argument

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the primary queue
(PQ) only. The select variable must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an alternate queue
(AQ) only. The queue type can be a secondary queue
(SQ).

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary queue
and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an alternate queue
and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), and then from a primary queue.

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), then from a primary queue, and finally from
an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user callback queues
(UCB).

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-51

Selection by Message Attribute
Enables the application to select messages based on the message type, class, or priority.
The predefined constants for this argument are as follows:

Selection by Message Source
Provides for the selection of pending messages from primary and secondary queues, by
source group ID, queue number, or both. The format for selection by source follows:

Table 2-33 Message Atribute Argument

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from the primary queue
that matches the type value in the select variable word.

PSEL_PQ_CLASS Class Selects the first pending message from the primary queue
that matches the class value in the select variable word.

PSEL_PQ_PRI PSEL_PRI_ANY
PSEL_PRI_P0
PSEL_PRI_P1

integer value
between 0 and 99

Selects the first pending message with a priority equal to
an integer between 0 and 99 inclusive (or equal to the
select variable value) from within the primary queue.
Specifying the direct integer value is the preferred
method of selected messages by priority.

Using PSEL_PRI_ANY enables the reading of any
pending messages of all priorities. Setting
PSEL_PRI_P0 enables the application to retrieve
pending messages of priority 0 only. Setting
PSEL_PRI_P1 enables the strict retrieval of pending

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-52 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-7 Selection by Message Source

Some examples of possible sel_filter arguments and their actions are as follows:

Compound Selection
Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows.

Table 2-34 sel_filter Argument

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be
retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

Selection mask created with
pams_set_select

Only messages that exactly match the specified selection
mask are retrieved.

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-53

Figure 2-8 Compound Selection

psb
Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Table 2-35 psb Structure

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB

Delivery Status

The completion status of the function. For recoverable
messages, this field contains PAMS__CONFIRMREQ or
PAMS__POSSDUPL. For nonrecoverable messages, it
may also contain a value of PAMS__SUCCESS.

8 15 Message
Sequence
Number

A unique number assigned to a message when it is sent
and follows the message to the destination PSB. This
number is input to pams_confirm_msg to release a
recoverable message.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-54 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Note: This function utilizes the AST services of OpenVMS; therefore, the application
must check the status information returned in the PSB.

show_buffer
Receives additional information which Oracle MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

16 19 PSB UMA

Status

This field is not used with the pams_get_msga function.

20 23 Function
Return Status

This field is not used with the pams_get_msga function.

24 31 Not Used Not used.

Table 2-35 psb Structure

Table 2-36 show_buffer Argument

Longword Contents Description

0 Version The version of the show_buffer structure. Valid values are as follows:

10 = Version 1.0

20 = Version 2.0

50 = Version 5.0
1 Transfer Status The status code associated with the transfer of show_buffer information

into the application's buffer. Valid symbols are as follows:

PAMS__SUCCESS-All available information has been
transferred.
PAMS__BUFFEROVF-Information was lost due to receiver
buffer overflow. 0-No message returned. There is no
information to transfer.

2 Transfer Size The number of bytes transferred to the application buffer.

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-55

3 Flags A bit array showing the status of fields in the
show_buffer. A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of the
allocated show_buffer memory. The symbols for the
flags field are as follows:
PSYM_SHOW_VERSION PSYM_SHOW_STATUS PSYM_SHOW_SIZE
PSYM_SHOW_FLAGS PSYM_SHOW_TARGET
PSYM_SHOW_ORIGINAL_TARGET PSYM_SHOW_SOURCE
PSYM_SHOW_ORIGINAL_SOURCE PSYM_SHOW_DELIVERY
PSYM_SHOW_PRIORITY PSYM_SHOW_ENDIAN
PSYM_SHOW_CORRELATION_ID

4 Not Used Fills out the Control Section to its maximum 40 bytes.

5 Not Used Fills out the Control Section to its maximum 40 bytes.

6 Not Used Fills out the Control Section to its maximum 40 bytes.

7 Not Used Fills out the Control Section to its maximum 40 bytes.

8 Not Used Fills out the Control Section to its maximum 40 bytes.

9 Not Used Fills out the Control Section to its maximum 40 bytes.

10 Target The q_address of the latest message target.

11 Original Target

The q_address of the original message target.

12 Source The q_address of the latest message source.

Table 2-36 show_buffer Argument

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-56 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

show_buff_len
Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
then the return code PAMS__BUFFEROVF will be in the show_buffer transfer status.

large_area_len
Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER).

large_size
Returns the actual size of the large message, double buffer message, or FML32 message
written to the message buffer. When using double buffer pointers with
pams_get_msga, the new buffer size is returned in large_size. (This differs from
pams_get_msg[w}, where the new buffer size is returned in large_area_len.)

actrtn
Supplies the address of an int32 value that is the entry point to an action routine. This
action routine is executed when the pams_get_msga function completes.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message. This is not
necessarily the delivery mode used to generate the message.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte integers. The
possible settings are as follows:

PSYM_UNKNOWN

PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or PSYM_BIG_ENDIAN
PSYM_FML

17 Correlation ID The 32 byte correlation ID associated with the message.

Table 2-36 show_buffer Argument

pams_get_msga

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-57

actparm
Supplies an int32 value that is passed to the action routine specified in the actrtn
argument when it is invoked.

flag_id
Supplies the int32 value for the flag number to be set when the pams_get_msga
function completes. When the pams_get_msga function executes, it clears this flag.
If this argument value is not supplied, no flag is used.

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Description
Because the pams_get_msga function executes asynchronously, it obtains several argument
values only after the message arrives. These argument values are the message buffer, source,
class, type of the message, and a PAMS Status Block (PSB) status code containing the delivery
status, UMA status, and the sequence number of the message. These values are not set until the
message arrival triggers the AST routine or sets the event flag.

The pams_get_msga function specifies an AST parameter which is passed by value to the
AST routine when the parameter is called. This parameter is used to provide a context for the
information contained in the message and can be used to identify the specific processing
required for the message. Following are some suggestions and rules for programming with
ASTs:

Create a context area, separate from mainline, for each AST that is
simultaneously posted. An address or index associated with the context area
should be used as the AST parameter to ensure the appropriate context is
associated with the data that is delivered by the pams_get_msga function.

Ensure that the addresses of any fields that are filled in asynchronously are valid
throughout the period that the AST is posted. A common error in using ASTs is
to post an AST request that fills in fields on the stack and becomes invalid as
soon as the caller returns.

Data may be passed between AST routines and mainline by the following
mechanisms:

– Oracle MessageQ messages.

– An event queue managed by interlocked queuing instructions.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-58 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

– Shared data fields between mainline and the AST routines such that access
to the data is clear. The use of a context area for each AST request can
accomplish this.

Access to complex data structures shared between mainline and AST routines
should be serialized by placing the access inside an AST safe critical section.
One way to do this is with the $SETAST system service.

Return Values

Table 2-37 Return Code

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call arguments have been passed to this
function.

PAMS__BADPARAM OpenVMS Bad argument value.

PAMS__BADPRIORITY OpenVMS Invalid priority value used for receive.

PAMS__BADSELIDX OpenVMS Invalid or undefined selective receive index.

PAMS__BADHANDLE OpenVMS Invalid message handle.

PAMS__MSGTOSMALL OpenVMS The msg_area_len argument must be positive or zero.

PAMS__NOACCESS OpenVMS No access to the queue.

PAMS__NOACL OpenVMS No access to resource. The ACL check failed.

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to reallocate buffer pointer.

PAMS__NOTDCL OpenVMS The application has not been attached to Oracle MessageQ.

PAMS__NOTSUPPORTED OpenVMS Feature not supported or available.

PAMS__RESRCFAIL OpenVMS Failed to allocate a resource.

PAMS__STALE OpenVMS Resource is no longer valid and must be freed by the user.

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-59

PSB Delivery Status

See Also
pams_cancel_get

pams_get_msg

pams_get_msgw

pams_put_msg

pams_set_select

pams_get_msgw
Retrieves the next available message from a specified queue and moves it to the location
specified in the msg_area

argument. This function waits until a message arrives in the queue or a user-specified timeout
period has elapsed.

When no selection filter is specified, the function returns the next available message in
first-in/first-out (FIFO) order based on message priority to the user-supplied msg_area
argument. Priority ranges from 0 (lowest priority) to 99 (highest priority). If the priority is set
to 0, the pams_get_msqw function gets messages of any priority. If the priority is set to any

PAMS__STOPPED OpenVMS The requested queue has been stopped.

PAMS SUCCESS OpenVMS Indicates successful completion

Table 2-37 Return Code

Table 2-38 PSB Delivery Status

PSB Delivery Status Platform Description

PAMS__CONFIRMREQ OpenVMS Confirmation required for this message.

PAMS__POSSDUPL OpenVMS Message is a possible duplicate.

PAMS__SUCCESS OpenVMS Indicates successful completion.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-60 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

value from 1 to 99, the pams_get_msqw function gets only messages of that priority. Messages
are placed in first-in/first-out order by message priority. If a selection filter is specified, then
only messages that meet the selection criteria are retrieved. If no message arrives, or no
available message meets the selection criteria before the timeout period expires, then the return
status is PAMS_TIMEOUT.

If a queue has been sent a recoverable message, the receiver program can confirm receipt of
the message using the pams_confirm_msg function. The pams_confirm_msg function
enables the successfully delivered message to be deleted from the message recovery system.
See the Using Recoverable Messaging topic for a description of the Oracle MessageQ recovery
system.

See the Sending and Receiving Oracle MessageQ Messages topic for more information on
working with FML32 buffers and large messages.

Syntax
int32 pams_get_msgw (msg_area, priority, source, class, type,

msg_area_len, len_data, timeout, [sel_filter], [psb], [show_buffer],

[show_buffer_len], [large_area_len], [large_size],[nullarg_3])

Argument

Table 2-39 Argument

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned

msg_area_len short reference short * passed

len_data short reference short * returned

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-61

Argument Definitions

msg_area
For buffer-style messaging, receives the address of a memory region where Oracle
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double ponters, receives a pointer to the address of the message being
retrieved.

priority
Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority is set to 0, the pams__get_msqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams__get_msqw function gets only messages of that priority.

source
Receives a structure identifying the group ID and queue number of the sender program's
primary queue in the following format:

timeout int32 reference int32 * passed

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb * returned

[show_buffer] struct
show_buffer

reference struct
show_buffer *

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 * passed/
returned

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char * passed

Table 2-39 Argument

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-62 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-9 group ID and queue number

class
Receives the class code of the retrieved message. The class is specified in the arguments
of the pams_put_msg function. Oracle MessageQ supports the use of symbolic
names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. On UNIX and Windows NT systems, the p_typecl.h include file cannot be
edited. You must create an include file to define type and class symbols for use by your
-application.

Class symbols reserved by Oracle MessageQ are as follows:

Table 2-40 Class symbols

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-63

type
Receives the type code of the retrieved message. The type is specified in the arguments
of the pams_put_msg function. Oracle MessageQ supports the use of symbolic
names for type argument values. Symbolic type names begin with MSG_TYPE_. For
specific information on defining type symbols, see the p_typecl.h include file.

Oracle MessageQ has reserved the symbol value range -1 through -5000. A zero
value for this argument indicates that no processing by message type is expected.

msg_area_len

Supplies the size of the buffer (in bytes) for buffer-style messages of up to 32767
bytes. The msg_area buffer is used to store the retrieved message.

For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the message
buffer to receive the message. If the retrieved buffer is larger than the space
allocated, space is dynamically reallocated and the new buffer size is stored in
large_area_len.

For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the large_size
argument. The msg_area buffer is used to store the retrieved message. The
large_area_len argument is used to supply the size of the message buffer to
receive the large message.

len_data
For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument. This field also receives the

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

Table 2-40 Class symbols

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-64 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

PSYM_MSG_BUFFER_PTR symbol for double buffer and FML-style messages and
PSYM_MSG_LARGE for buffer-style messages larger than 32767 bytes.

timeout
Supplies the maximum amount of time the pams_get_msg function waits for a
message to arrive before returning control to the application. The timeout value is
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seconds. If
the timeout occurs before a message arrives, the status code of PAMS__TIMEOUT is
-returned.

If an unlimited timeout period is required, set this argument to 0. On UNIX and
Windows NT systems, a value of zero for this argument causes this function to block
indefinitely or until it receives a message. On OpenVMS systems, this function waits for
approximately 5 days or until it receives a message.

sel_filter
Supplies the criteria for the application to selectively retrieve messages. The argument
contains one of the following selection criteria:

Default selection

Selection by message queue

Message attributes

Message source

Compound selection using the pams_set_select function

The sel_filter argument is composed of two words as follows:

Figure 2-10 sel_filter argument

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-65

Default Selection
Enables applications to read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. Messages are stored by priority and then in FIFO order. To specify
this explicitly, both words in the sel_filter argument should be set to 0.

Selection by Message Queue
Allows the application to retrieve messages based upon a queue type or combination of
queue types. This selection criteria is used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained within
each queue. The predefined constants for this argument are as follows:

Table 2-41 Selection by Message Queue

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the primary queue
(PQ) only. The select variable must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an alternate queue
(AQ) only. The queue type can be a secondary queue
(SQ).

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary queue
and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an alternate queue
and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), and then from a primary queue.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-66 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Selection by Message Attribute
Enables the application to select messages based on the message type, class, or priority.
The predefined constants for this argument are as follows:

Selection by Message Source
Provides for the selection of pending messages from primary and secondary queues, by
source group ID, queue number, or both. The format for selection by source -follows:

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from a timer
queue (TQ), then from a primary queue, and finally from
an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user callback queues
(UCB).

Table 2-41 Selection by Message Queue

Table 2-42 Selection by Message Attribute

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from the primary queue
that matches the type value in the select variable word.

PSEL_PQ_CLASS Class Selects the first pending message from the primary queue
that matches the class value in the select variable word.

PSEL_PQ_PRI PSEL_PRI_ANY
PSEL_PRI_P0
PSEL_PRI_P1

integer value

between 0

and 99

Selects the first pending message with a priority equal to
an integer between 0 and 99 inclusive (or equal to the
select variable value) from within the primary queue.
Specifying the direct integer value is the preferred
method of selected messages by priority.

Using PSEL_PRI_ANY enables the reading of any
pending messages of all priorities. Setting PSEL_PRI_P0
enables the application to retrieve pending messages of
priority 0 only. Setting PSEL_PRI_P1 enables the strict
retrieval of pending messages with a priority of 1.

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-67

Figure 2-11 Selection by Message Source

Some examples of possible sel_filter arguments and their actions are as follows:

Compound Selection
Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows:

Table 2-43 sel_filter arguments

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be -retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

Selection mask created with
pams_set_select

Only messages that exactly match the specified selection mask are
retrieved.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-68 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-12 Compound Selection

psb
Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Table 2-44 PSB Structure

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB

Delivery Status

The completion status of the function. It contains the status from
MRS. It can also contain a value of PAMS__SUCCESS when the
message is not sent recoverably.

8 15 Message
Sequence
Number

A unique number assigned to a message when it is sent and follows
the message to the destination PSB. This number is input to the
pams_confirm_msg function to release a recoverable message.

16 19 PSB UMA

Status

The completion status of the undeliverable message action (UMA).
The PSB UMA status indicates if the UMA was not executed or
applicable.

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-69

show_buffer
Receives additional information which Oracle MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

20 23 Function
Return Status

After a Oracle MessageQ function completes execution, Oracle
MessageQ software writes the return value to this field.

24 31 Not Used Not used.

Table 2-44 PSB Structure

Table 2-45 show_buffer argument

Longword Contents Description

0 Version The version of the show_buffer structure. Valid values are
as follows: 10 = Version 1.0

20 = Version 2.0

1 Transfer Status The status code associated with the transfer of
show_buffer information into the application's buffer.
Valid symbols are as follows:

PAMS__SUCCESS-All available information has been
transferred.

PAMS__BUFFEROVF-Information was lost due to
receiver buffer overflow. 0-No message returned. There is
no information to transfer.

2 Transfer Size The number of bytes transferred to the application buffer.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-70 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

3 Flags A bit array showing the status of fields in the show_buffer.
A set bit indicates a valid field, while a cleared bit
indicates indeterminable data or the end of the allocated
show_buffer memory. The symbols for the flags field are
as follows:
PSYM_SHOW_VERSION PSYM_SHOW_STATUS
PSYM_SHOW_SIZE PSYM_SHOW_FLAGS
PSYM_SHOW_TARGET
PSYM_SHOW_ORIGINAL_TARGET
PSYM_SHOW_SOURCE
PSYM_SHOW_ORIGINAL_SOURCE
PSYM_SHOW_DELIVERY PSYM_SHOW_PRIORITY
PSYM_SHOW_ENDIAN
PSYM_SHOW_CORRELATION_ID

4 Not Used Fills out the Control Section to its maximum 24 bytes.

5 Not Used Fills out the Control Section to its maximum 24 bytes.

6 Not Used Fills out the Control Section to its maximum 24 bytes.

7 Not Used Fills out the Control Section to its maximum 24 bytes.

8 Not Used Fills out the Control Section to its maximum 24 bytes.

9 Not Used Fills out the Control Section to its maximum 24 bytes.

10 Target The q_address of the latest message target.

11 Original Target The q_address of the original message target.

12 Source The q_address of the latest message source.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message.

15 Priority The priority used to queue the message.

Table 2-45 show_buffer argument

Longword Contents Description

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-71

show_buff_len
Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
the return code PAMS__BUFFEROVF will be in the show_buffer transfer status.

large_area_len
Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER). This argument also stores the length of double
buffers and FML32 buffers after reallocation.

large_size
Returns the actual size of the large message, double buffer message, or FML message
written to the message buffer.

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Codes

16 Endian PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or
PSYM_BIG_ENDIAN PSYM_FML

17 Correlation ID The 32 byte correlation ID associated with the message.

Table 2-45 show_buffer argument

Longword Contents Description

Table 2-46 Return Codes

Return Code Platform Description

PAMS__AREATOSMALL All Received message is larger than the application
message area.

PAMS__BADARGLIST All Wrong number of call arguments have been passed
to this function.

PAMS__BADHANDLE All Invalid message handle.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-72 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

PAMS__BADPARAM All Bad argument value.

PAMS__BADPRIORITY All Invalid priority value used for receive.

PAMS__BADSELIDX All Invalid or undefined selective receive index.

PAMS__BADTIME OpenVMS An invalid time was specified.

PAMS__BUFFEROVF UNIX

Windows NT

The size specified for the show_buffer
argument is too small.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of FML
message; this can be an error in processing or data
corruption.

PAMS__INSQUEFAIL All Failed to properly queue a message buffer.

PAMS__MSGTOSMALL All The msg_area_len argument must be positive or
zero.

PAMS__MSGUNDEL All Message returned is undeliverable.

PAMS__NEED_BUFFER_PTR UNIX

Windows NT

FML32 buffer received but msg_area_len argument
not set to PSYM_MSG_BUFFER_PTR.

PAMS__NETERROR Clients Network error resulted in a communications link
abort.

PAMS__NOACCESS All No access to resource. ACL check failed.

PAMS__NOACL All The queue access control file could not be found.

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to reallocate buffer
pointer.

PAMS__NOMRQRESRC All Insufficient multireader queue resources to allow
access.

Table 2-46 Return Codes

pams_get_msgw

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-73

See Also
pams_get_msga

pams_put_msg

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

PAMS__NOTSUPPORTED UNIX

Windows NT

Specified delivery mode is not supported.

PAMS__PAMSDOWN Windows NT The specified Oracle MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__QUECORRUPT OpenVMS Message buffer queue corrupt.

PAMS__REMQUEFAIL All Failed to properly read a message buffer.

PAMS__STALE All Resource is no longer valid and must be freed by the
user.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Successful completion.

PAMS__TIMEOUT All Timeout period has expired.

PAMS__CONFIRMREQ All Confirmation required for this -message.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not
running.

PAMS__POSSDUPL All Message is a possible duplicate.

PAMS__SUCCESS All Indicates successful completion.

Table 2-46 Return Codes

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-74 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

pams_set_select

Example
Block Until a Message Is Read

This example shows how to use the pams_get_msgw function. It sets an alarm to send
messages to itself every 5 seconds; it uses pams_get_msgw to sit and wait for them. The
queue named "queue_1" must be defined in your initialization file as a primary queue. The
complete code example called x_getw.c is contained in the examples directory.

pams_locate_q
Locates the queue address for the specified queue name or queue alias. By default, this function
waits for the queue address to be returned.

Syntax
int32 pams_locate_q (q_name, q_name_len, q_address, [wait_mode],

[req_id], [resp_q], [name_space_list], [name_space_list_len], [timeout])

Arguments

Table 2-47 Arguments

Argument Data Type Mechanism Prototype Access

q_name char reference char * passed

q_name_len int32 reference int32 * passed

q_address q_address reference q_address * returned

[wait_mode] int32 reference int32 * passed

[req_id] int32 reference int32 * passed

[resp_q] int32 reference int32 * passed

[name_space_list] int32 array reference int32 array * passed

pams_locate_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-75

Argument Definitions

q_name
Supplies the queue name or queue alias whose queue address is requested. The
procedure that Oracle MessageQ uses to find this name is controlled by the
name_space_list argument, described below.

q_name_len
Supplies the number of characters in the q_name argument. The maximum string length
on UNIX, Windows NT, and OpenVMS systems is 255 characters. For all other Oracle
MessageQ environments, the maximum string length is 31.

q_address
Receives the queue address assigned by Oracle MessageQ when an application has
successfully located the queue name.

wait_mode
Supplies the search mode of the pams_locate_q function. The mode indicates
whether the application waits for the search completion or receives the response in an
acknowledgment message. There are two predefined constants for this argument:

PSYM_WF_RESP (default setting)-The application issues the pams_locate_q
request and waits for the queue address to be returned.
PSYM_AK_RESP-The application issues the pams_locate_q address and
continues processing. When the search is completed, the queue address is
returned to the application's primary queue in a LOCATE_Q_REP message. The
response message can be redirected to an alternate queue address using the
resp_q argument.

req_id
Supplies an application-specified transaction ID to associate with the
pams_locate_q function.

[name_space_list_len] int32 reference int32 * passed

[timeout] int32 reference int32 * passed

Table 2-47 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-76 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

resp_q
Supplies an alternate queue to use for receiving the acknowledgment message of the
q_address. If no response queue is specified, the acknowledgment message is sent to
the sender program's primary queue. The resp_q argument has the following format:

Figure 2-13 resp_q argument

Note that the group ID field is always equal to zero because the sender program cannot
specify a response queue outside its group.

name_space_list
If the name_space_list argument is specified, the name_space_list_len argument must
also be specified. If this argument is unspecified, then PSEL_TBL_GRP is the default.

Possible values in a name_space_list argument are as follows:

The name_space_list argument identifies the scope of the name as follows:

Table 2-48 name_space_list argument

Location it represents Symbolic value

Process cache PSEL_TBL_PROC

Group/group cache PSEL_TBL_GRP

Global name space PSEL_TBL_BUS (or PSEL_TBL_BUS_MEDIUM or
PSEL_TBL_BUS_LOW)

pams_locate_q

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-77

To identify a local queue reference or a queue, an application must include
PSEL_TBL_GRP in name_space_list. (Do not specify PSEL_TBL_BUS in the
list because it would identify a global queue reference.)

To identify a global queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDIUM or PSEL_TBL_BUS_LOW) in the name_space_list
argument and specify its pathname, either explicitly or implicitly. If the q_name
argument contains any slashes (/), or periods (.), Oracle MessageQ treats it as a
pathname. Otherwise, Oracle MessageQ treats q_name as a name and adds the
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup.
(The DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the
group initialization file.)

The name_space_list argument also controls the cache access as follows:

To lookup a local queue reference or queue name, specify both PSEL_TBL_GRP
and PSEL_TBL_PROC. This causes the process cache to be checked before
looking into the group cache.

To lookup a global queue reference, specify PSEL_TBL_BUS (or
PSEL_TBL_BUS_LOW or PSEL_TBL_BUS_MEDIUM), PSEL_TBL_GRP and
PSEL_TBL_PROC. This causes the process cache to be checked. Then, the
group cache is checked before looking into the global name space.

Note that to lookup all caches in the global name space before looking in the master
database, specify PSEL_TBL_BUS_LOW instead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space before
looking in the masterdatabase, specify PSEL_TBL_BUS_MEDIUM instead of
PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len
Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, Oracle MessageQ uses PSEL_TBL_GRP as the
default in the name_space_list argument.

timeout
Specifies the number of PAMS time units (1/10 second intervals) to allow for the locate
to complete. If timeout is zero, the group's ATTACH_TMO property is used. If the
ATTACH_TMO is also zero, 600 is used.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-78 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Return Values

Table 2-49 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call arguments.

PAMS__BADNAME UNIX

Windows NT

The queue name contains illegal characters.

PAMS__BADPARAM All Invalid argument in the argument list.

PAMS__BADRESPQ All Invalid response queue specified.

PAMS__BOUND All Queue name in use.

PAMS__BUSNOTSET UNIX

Windows NT

DMQ_BUS_ID environment variable not set.

PAMS__GROUPNOTSET UNIX

Windows NT

DMQ_GROUP_ID environment variable not set.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOACCESS All The address of the specified name is either 0 or is in
another group.

PAMS__NOOBJECT All Could not locate queue name.

PAMS__PAMSDOWN All The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__RESRCFAIL All Failed to allocate resources.

pams_open_j rn

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-79

See Also
pams_attach_q

pams_exit

Example
Locate a Queue Address

This example shows how to use the pams_locate_q function by attaching to queue_1 and
locating queue_3 where a message is being sent. The queues named "queue_1" and
"queue_3" must be defined in your initialization file; queue_1 must be a primary queue.
The complete code example called x_locate.c is contained in the examples directory.

pams_open_jrn
Opens the selected message recovery journal. The Oracle MessageQ dead letter journal (DLJ)
stores messages designated as recoverable that could not be delivered by the recovery system.
The Oracle MessageQ postconfirmation journal (PCJ) stores recoverable messages that were
successfully delivered. See the Using Recoverable Messaging topic for a description of Oracle
MessageQ message recovery services.

Syntax
int32 pams_open_jrn (jrn_filespec, jrn_filename_len, jrn_handle)

PAMS__SUCCESS All Successful completion of an action.

PAMS__TIMEOUT All The timeout period specified has expired.

PAMS__UNBINDING All Queue requested is in the process of unbinding
from a PAMS_bind_q request.

Table 2-49 Return Codes

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-80 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

Argument Definitions

jrn_filespec
Supplies the file name of the message recovery journal from which the application will
read stored messages.

Note: jrn_filespec should use the following format: <group name><queue
name>.< SAF/DQF/ACK/DLQ/PCJ>. The group name length is four, and the
queue name length is 8.

jrn_filename_len
Supplies the length of the file specification entered to the jrn_filespec argument
specified (filename array) in number of bytes.

jrn_handle
Receives the journal handle for the selected message recovery file if this function
completes successfully.

Note: jrn_filespec uses the following format: <group name><queue name>.<
SAF/DQF/ACK/DLQ/PCJ>. The group name length is four, and the queue name
length is 8.

A journal queue is locked by only one application that opens or reads the journal
queue at one time. When the application attempts to open the journal queue, it
tries to attach a temporary queue as a secondary queue at first. If there are not
enough temporary queues left in the queue pool, the journal queue is not opened.
The number of temporary queues can be defined when creating queue space; the
default value is 200.

Table 2-50 Arguments

Argument Data Type Mechanism Prototype Access

jrn_filespec char reference char * passed

jrn_filename_len short reference short * passed

jrn_handle int32 reference int32 * returned

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-81

Return Values

See Also
pams_close_jrn

pams_confirm_msg

pams_put_msg

pams_read_jrn

pams_put_msg
Sends a message to a target queue using a set of standard Oracle MessageQ delivery modes.
Applications specify buffer-style or FML-style messaging using the msg_size argument. For
buffer-style messaging using message buffers up to 32K, this argument supplies the length of
the message in bytes in the user's msg_area buffer. In addition, you can use the msg_size
argument to specify one of the following symbols:

PSYM_MSG_FML-indicates FML-style messaging. The msg_area argument must contain
a pointer to an FML32 buffer.

PSYM_MSG_LARGE-indicates buffer-style message with messages up to 4MB in length.
The pointer to the buffer is contained in the msg_area argument and the size of the
large message buffer is contained in the large_size argument.

The delivery argument of the pams_put_msg function can be used to guarantee message
delivery if a system, process, or network fails. Recoverable messages are stored on disk by the
message recovery system until they can be delivered to the target queue of the receiver program.

Table 2-51 Return Code

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call arguments.

PAMS__NOMEMORY OpenVMS Insufficient virtual memory.

PAMS__NOSUCHPCJ OpenVMS Error occured when attempting to open the specified
journal queue.

PAMS__SUCCESS OpenVMS Indicates successful completion.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-82 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

When sending a recoverable message, you must specify the uma argument if the message
recovery cannot store the message. You must also supply the psb argument to receive the return
status of the operation.

The optional timeout argument lets you set a maximum amount of time for the send operation
to complete before the function times out. The optional resp_q argument allows you to specify
an alternate queue for receiving the response messages rather than directing responses to the
primary queue of the sender program.

To use a pointer to an FML32 buffer when sending a message, the sender program specifies
the symbol PSYM_MSG_FML as the msg_size argument to the pams_put_msg function.

Syntax
int32 pams_put_msg (msg_area, priority, target, class, type, delivery,

msg_size, [timeout], [psb], [uma], [resp_q], [large_size],

[correlation_id],[nullarg_3])

Arguments

Table 2-52 Arguments

Argument Data Type Mechanism Prototype Access

msg_area char reference char * passed

priority char reference char * passed

target q_address reference q_address * passed

class short reference short * passed

type short reference short * passed

delivery char reference char * passed

msg_size short reference short * passed

[timeout] int32 reference int32 * passed

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-83

Argument Definitions

msg_area
For buffer-style messaging, supplies the address of a memory region or a message
pointer containing the message to be delivered to the target queue of the receiver
program. For FML-style messaging, supplies the message pointer that points to an
FML32 buffer containing the message.

priority
Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

target
Supplies the queue number and group ID of the receiver program's queue address in the
following format:

[psb] struct psb reference struct psb * returned

[uma] char reference char * passed

[resp_q] q_address reference q_address * passed

large_size int32 reference int32 * passed

[correlation_id] char reference char * passed

[nullarg_3] char reference char * passed

Table 2-52 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-84 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-14 target

class
Supplies the class code of message being sent. Oracle MessageQ supports the use of
symbolic names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. On UNIX and Windows NT systems, the p_typecl.h include file cannot be
edited. You must create an include file to define type and class symbols for use by your
application.

Class symbols reserved by Oracle MessageQ are as follows:

Table 2-53 Class symbols

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-85

type
Supplies the type code for the message being sent. Oracle MessageQ supports the use
of symbolic names for type argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, see the p_typecl.h include
file.

Oracle MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

delivery
Supplies the delivery mode for the message using the following format:

PDEL_MODE_sn_dip-where sn is one of the following sender notification
constants:

WF-Wait for completion

AK-Asynchronous acknowledgment

NN-No notification

And dip is one of the following delivery interest point constants:

ACK-Read from target queue and explicitly acknowledged using the
pams_confirm_msg function. ACK can also be an implicit acknowledgement
sent after the second pams_get_msg call by the receiving application.

CONF-Delivered from the DQF and explicitly confirmed using the
pams_confirm_msg function (recoverable)

DEQ-Read from the target queue

DQF-Stored in the destination queue file (recoverable)

MEM-Stored in the target queue

SAF-Stored in the store and forward file (recoverable)

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

Table 2-53 Class symbols

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-86 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Note: If temporary queues are used, deleted, and reused quickly, it is possible in
isolated cases for an implicit ACK response from a previous temporary queue to
be placed on the new temporary queue.

msg_size
For buffer-style messaging using message buffers up to 32K, supplies the length of the
message in bytes in the user'smsg_area buffer. In addition, you can specify one of the
following symbols:

PSYM_MSG_FML--indicates FML-style messaging. The msg_area argument
must contain a pointer to an FML32 buffer.

PSYM_MSG_LARGE-indicates buffer-style messaging with messages up to 4MB
in length. The pointer to the buffer is contained in the msg_area argument and
the size of the large message buffer is contained in the large_size argument.

timeout
Supplies the maximum amount of time the pams_put_msg function waits for a
message to arrive before returning control to the application. The timeout value is
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seconds. If
the timeout occurs before a message arrives, the status code PAMS__TIMEOUT is
returned. Specifying 0 as the timeout value sets the timeout to the default value of 30
seconds.

psb
Receives a value in the PAMS Status Block specifying the final completion status. The
psb argument is used when sending or receiving recoverable messages. The PSB
structure stores the status information from the message recovery system and may be
checked after sending or receiving a message.

The structure of the PSB is as follows:

Table 2-54 PSB Structure

Low
Byte

High
Byte

Contents Description

1 0 Type PSB type.

3 2 Call Dependent Currently not used.

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-87

uma
Supplies the action to be performed if the message cannot be stored at the specified
-delivery interest point. The format of this argument is PDEL_UMA_XXX where XXX is
one of the following symbols:

7 4 PSB

Delivery Status

The completion status of the function. It contains the
status from MRS. It can also contain a value of
PAMS__SUCCESS when the message is not sent
recoverably.

15 8 Message
Sequence
Number

A unique number assigned to the message when it is
sent and follows the message to the destination PSB.
This number is input to the pams_confirm_msg function
to release a recoverable message.

19 16 PSB UMA

Status

The completion status of the undeliverable message action (UMA).
The PSB UMA status indicates if the UMA was not executed or
applicable.

23 20 Function
Return Status

After a Oracle MessageQ function completes execution, Oracle
MessageQ software writes the return value to this field.

31 24 Not Used Not used.

Table 2-54 PSB Structure

Table 2-55 UMA Symbols

Symbol Description

DISC Discard message

DISCL Discard after logging message

DLJ Dead letter journal

DLQ Dead letter queue

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-88 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

resp_q
Supplies a q_address to use as the alternate queue for receiving response messages from
the receiver program. The sender program must be attached to the queue specified in the
resp_q argument to receive the response messages. The resp_q argument has the
following format:

Figure 2-15 resp_q argument

The group ID is always specified as zero because the sender program cannot assign a
response queue outside its group.

large_size
Supplies the actual size of the large message written to the message buffer.

correlation_id
Supplies the correlation id, a user-defined identifier stored as a 32-byte value

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

RTS Return to sender

SAF Store and Forward

Table 2-55 UMA Symbols

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-89

Return Values

Table 2-56 Return Codes

Return Code Platform Description

PAMS__BADARGLIST All Wrong number of call arguments have been passed to
this function.

PAMS__BADDELIVERY All Invalid delivery mode.

PAMS__BADHANDLE All Invalid message handle.

PAMS__BADPARAM UNIX

Windows NT

OpenVMS

Attempt to use cross-group connection when cross-group
communication is disabled. On OpenVMS systems,
invalid NULL call argument.

PAMS__BADPRIORITY All Invalid priority value on send operation.

PAMS__BADPROCNUM UNIX

Windows NT

Invalid target queue address specified.

PAMS__BADRESPQ All Response queue not owned by process.

PAMS__BADTIME OpenVMS Invalid time specified.

PAMS__BADUMA All Undeliverable message action (UMA) is invalid.

PAMS__EXCEEDQUOTA All Target process quota exceeded; message was not sent.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of FML message;
this can be an error in processing or data corruption.

PAMS__LINK_UP OpenVMS MRS has reestablished link.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-90 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

PAMS__MSGTOBIG All Message exceeded the size of the largest link list section
(LLS).

PAMS__MSGTOSMALL OpenVMS Invalid (negative) msg_size specified in the
argument list.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOMRS OpenVMS MRS is not available.

PAMS__NOTACTIVE All Target process is not currently active; message not sent.

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

PAMS__NOTFLD All The buffer supplied is not an FML32 buffer.

PAMS__NOTSUPPORTED All The combination of delivery mode and uma selected is
not supported.

PAMS__PNUMNOEXIST OpenVMS Target queue number does not exist.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__REMQUEFAIL All Failed to properly dequeue a message buffer.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Successful completion.

PAMS__TIMEOUT All Timeout period has expired.

PAMS__UNATTACHEDQ All Message successfully sent to unattached queue.

PAMS__WAKEFAIL OpenVMS Failed to wake up the target process.

Table 2-56 Return Codes

pams_put_msg

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-91

Table 2-57 UMA Status

UMA Status Platform Description

PAMS__DISC_FAILED All Message not recoverable in destination queue file
(DQF); undeliverable message action (UMA) was
PDEL_UMA_DISC; message could not be discarded.

PAMS__DISC_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; message - discarded.

PAMS__DISCL_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; recoverability failure could not be
logged or message could not be discarded.

PAMS__DISCL_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded after logging
recoverability -failure.

PAMS__DLJ_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; dead letter journal (DLJ) write
operation failed.

PAMS__DLJ_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to the DLJ.

PAMS__DLQ_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message could not be queued to the
DLQ.

PAMS__DLQ_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message queued to the DLQ.

PAMS__NO_UMA All Message is recoverable; UMA not -executed.

PAMS__RTS_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be returned to
sender.

PAMS__RTS_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned

PAMS__SAF_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; store and forward (SAF) write
operation failed.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-92 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
pams_get_msg

pams_get_msga

pams_get_msgw

Example
Send a Message

This example sends a number of messages to a queue. The complete code example called
x_putslf.c is contained in the examples directory.

pams_read_jrn
Reads a message from a Oracle MessageQ journal file. Use the pams_open_jrn function to
open the dead letter journal or postconfirmation journal for a message queuing group. Use the
pams_close_jrn function to close the journal file after reading selected messages. Note
that on UNIX and Windows NT systems, these functions are performed by running the Journal
Replay utility.

The receiver program determines whether each message is a FML buffer or a large message by
reading the len_data argument. See the Sending and Receiving Oracle MessageQ Messages
topic for more information on working with message handles and large messages.

Syntax
int32 pams_read_jrn (jrn_handle, msg_area, priority, source, class, type,

msg_area_len, len_data, target, write_time, conf_val, msg_seq_num,

mrs_status, [large_area_len], [large_size], [nullarg_3])

PAMS__SAF_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from SAF file.

PAMS__UMA_NA All UMA not applicable.

Table 2-57 UMA Status

pams_read_j rn

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-93

Arguments

Table 2-58 Arguments

Argument Data Type Mechanism Prototype Access

jrn_handle int32 reference int32 * passed

msg_area char reference char * returned

priority char reference char * returned

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned

msg_area_len short reference short * returned

len_data short reference short * returned

target q_address reference q_address * returned

write_time unsigned
int32

reference unsigned
int32 *

returned

conf_val int32 reference int32 * returned

msg_seq_num unsigned
int32

reference unsigned
int32 *

returned

mrs_status int32 reference int32 * returned

[large_area_
len]

int32 reference int32 * returned

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char * returned

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-94 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Argument Definitions

jrn_handle
Supplies the journal handle of the message recovery journal from which the application
has selected to read journal entries. The journal handle is returned to the application by
the pams_open_jrn function.

msg_area
Receives the contents of the message retrieved from the selected message recovery
journal. This argument contains either the address of a memory region or a message
handle where Oracle MessageQ writes.

priority
Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

source
Receives a structure containing the queue number and group ID of the sender program's
primary queue in the following format:

Figure 2-16 queue number and group ID

class
Receives the class code of the retrieved message. The class is specified in the arguments
of the pams_put_msg function. Oracle MessageQ supports the use of symbolic
names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. Class symbols reserved by Oracle MessageQ are as follows:

pams_read_j rn

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-95

type
Receives the type code of the journaled message. The type is specified in the arguments
of the pams_put_msg function. Oracle MessageQ supports the use of symbolic
names for type argument values. Symbolic type names begin with MSG_TYPE_. For
information on defining type symbols, see the p_typecl.h include file. The
OpenVMS symbol values range from -1 through -5000. Use of the type argument
facilitates selective message reception. However, if the receiving application does not
need a specific value for its processing, then use a value of 0.

msg_area_len
Supplies the size of the buffer (in bytes) for buffer-style messages of up to 32K bytes.
The msg_area buffer is used to store the retrieved message.

len_data

For buffer-style messaging with messages of up to 32K, this argument receives
the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument.

Table 2-59 Class symbols

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-96 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

For an FML-style message, this argument contains the symbol
PSYM_MSG_BUFFER_PTR to indicate that the message is a pointer to an
FML32 buffer.

For large messages, this argument contains the symbol PSYM_MSG_LARGE to
indicate that the message buffer is greater than 32K. The size of the message is
returned in the large_size argument.

target
Receives the queue number and group ID of the receiver's queue address in the following
format:

Figure 2-17 target

write_time
Receives the address of the quadword (an array of two int32 values) specifying the date
and time that the recoverable message was confirmed. This parameter uses standard
OpenVMS system time.

conf_val
Receives the message confirmation value.

msg_seq_num
Receives the message sequence number generated by Oracle MessageQ in the PSB of
the received message. This argument should be set to the values in the PSB.

mrs_status
Receives the Message Recovery Services (MRS) status of the message.

large_area_len
Specifies the size of the message buffer to receive messages larger than 32K.

pams_read_j rn

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-97

large_size
Returns the actual size of the large message written to the message buffer.

nullarg_3
Reserved for Oracle MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Values

Table 2-60 Return Codes

Return Code Platform Description

PAMS__AREASTOSMALL OpenVMS Received message is larger than the user message area.

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADHANDLE OpenVMS Invalid message handle.

PAMS__INVJH OpenVMS Invalid journal handle.

PAMS__MSGTOBIG OpenVMS Message in journal file is larger than
GROUP_MAX_MESSAGE_SIZE.

PAMS__NOMEMORY OpenVMS Insufficient virtual memory.

PAMS__NOMOREMSG OpenVMS No more messages in journal.

PAMS__SUCCESS OpenVMS Indicates successful completion.

PAMS NOSUCHPCJ ALL All Error opening specified journal.

PAMS NOACCESS ALL All Invalid rmid parameter

PAMS NOTACTIVE ALL All Cannot access the qspace because it is not available.

PAMS TIMEOUT ALL This error code indicates that either a timeout has occurred.

PAMS STALE ALL An invalid or deleted queue name was specified.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-98 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
pams_close_jrn

pams_open_jrn

pams_set_select
Allows application developers to define complex selection criteria for message reception. The
selection array specifies the queues to search, the priority order of message reception, two
comparison keys for range checking, and an order key to determine the order in which messages
are selected from the queue.

The pams_set_select function creates an index handle that is used as the sel_filter
argument of Oracle MessageQ functions for reading the message. When a selection index
handle is passed to pams_get_msg, pams_get_msga or pams_get_msgw, each message
received is compared against comparison key_1 and then comparison key_2. If the message
matches both keys (a logical AND operation), the message is added to a set of matched
messages. The order in which selected messages are delivered is determined by the order key.

Syntax
int32 pams_set_select (selection_array, num_masks, index_handle)

Arguments

Table 2-61 Arguments

Argument Data Type Mechanism Prototype Access

selection_ar
ray

selection_ar
ray_

reference selection_ar
ray_

passed

num_masks short reference short * passed

index_handle int32 reference int32 * returned

pams_set_se lec t

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-99

Argument Definitions

selection_array
Supplies an array of selection records that contain the selection rules for each queue.
The typedef structures define the C data structure for the selection array. The
structure is defined in p_entry.h as follows:
typedef struct _selection_array_component {

int32 queue;

int32 priority;

int32 key_1_offset;

int32 key_1_size;

int32 key_1_value;

int32 key_1_oper;

int32 key_2_offset;

int32 key 2 size;

int32 key_2_value;

int32 key_2_oper;

int32 order_offset;

int32 order_size;

int32 order_order; union {

pams__correlation_idcorrelation_id;

pams__sequence_number sequence number

} extended_key

} selection_array_component;

The selection_array_component data structure has the following components:

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-100 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

The following tables define the content of each of the components of the
selection_array_component data structure.

Queue and Priority
The following table specifies the valid values that can be applied to the arguments in
this part of the Select_Queue structure:

Table 2-62 selection_array_component data structure

Component Description

Queue and Priority Allows the application to specify the queue number and priority.

Comparison Key 1 Defines the components of the first comparison key used to enable range
checking of messages.

Comparison Key 2 Defines the components of the second comparison key used to enable range
checking of messages.

Order Key Contains the information required to provide selection of messages by FIFO,
Minimum Value, or Maximum Value.

Table 2-63 Select_Queue structure

Field Values Description

Queue Queue Number Specifies the queue number to be searched. The queue number can be
any message queue for which the application has read access. The
queue number can be obtained from the q_attached argument of the
pams_attach_q function or q_address of the pams_locate_q function. A
value of 0 for this argument specifies the application's primary queue.

Priority Specifies the priority, using either an integer between 0 and 99
inclusive or a variable. (Using the direct interger value is the preferred
method of specifying priority.) This argument also accepts the
following predefined constants which are set by the application.

pams_set_se lec t

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-101

Comparison Keys
The following table specifies the arguments and valid values that can be applied to this
part of the Selection_Array_Components structure:

PSEL_PRI_ANY Read priority 1 before reading priority 0 messages.

PSEL_PRI_P0 Read priority 0 messages only.

PSEL_PRI_P1 Read priority 1 messages only.

Table 2-63 Select_Queue structure

Table 2-64 Selection_Array_Components structure

Field Values Description

Offset Contains a value that specifies where the information to be
compared begins inside the message. The following
predefined constants apply:

n User message byte number (0 relative).

PSEL_SOURCE Source address of message.

PSEL_CLASS Class of the message.

PSEL_TYPE Type of the message.

PSEL_CORRELATION_I
D

Correlation ID of the message. May be used for key_1_offset
or key_2_offset but not both. If this symbol is specified, the
Size field must be set to PSEL_CORRELATION_ID_SIZE
(or 32 bytes).

PSEL_SEQUENCE_NUM
BER

Message sequence number acquired from the PAMS Status
Buffer. If this symbol is specified, the Size field must be set
to PSEL_SEQUENCE_NUMBER_SIZE (or 8 bytes).

Size Specifies data type of the key to be compared.

0 Disable use of key.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-102 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Order Key
The Order Key part contains variables described in the following table:

1 Byte (8 bits).

2 Word (16 bits).

4 int32 (32 bits).

PSEL_SEQUENCE_NUM
BER_SIZE

8 bytes

PSEL_CORRELATION_I
D_SIZE

32 bytes

Value n Contains the value for message field comparison field that is
formatted as an integer of 32 bits.

oper Relational operator comparison.

PSEL_OPER_EQ Message field = value.

PSEL_OPER_NEQ Message field <> value.

PSEL_OPER_GTR Message field > value.

PSEL_OPER_LT Message field < value.

PSEL_OPER_GTRE Message field > or = value.

PSEL_OPER_LTE Message field < or = value.

Table 2-64 Selection_Array_Components structure

pams_set_se lec t

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-103

Table 2-65 Order Key

Field Values Description

Offset Byte offset of the message field. The offset variable contains
a value that specifies where the information to be compared
begins inside the message.

n User message byte number (0 relative).

PSEL_SOURCE Source address of the message.

PSEL_CLASS Class of the message.

PSEL_TYPE Type of the message.

PSEL_CORRELATION_ID Correlation ID of the message. If this symbol is specified, the
Size field must be set to PSEL_CORRELATION_ID_SIZE
(or 32 bytes).

PSEL_SEQUENCE_NUMBE
R

Message sequence number acquired from the PAMS Status
Buffer. If this symbol is specified, the Size field must be set
to PSEL_SEQUENCE_NUMBER_SIZE (or 8 bytes).

Size Size of the comparison. The size variable specifies the data
type of the key to be compared.

0 Disable use of key.

1 Byte.

2 Word.

4 int32 (32 bits).

PSEL_SEQUENCE_NUMBE
R_SIZE

8 bytes

PSEL_CORRELATION_ID
_SIZE

32 bytes

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-104 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Correlation ID
The correlation ID is a 32-byte user-defined identifier associated with a message. If
PSEL_CORRELATION_ID is supplied as the value for either the key_1_offset or
key_2_offset field, the correlation ID value is used to match messages with the specified
correlation ID. Since there is a single correlation ID per message,
PSEL_CORRELATION_ID should only be specified for one of the comparison keys;
specifying the correlation ID for both keys results in a PAMS__BADPARAM error.

If PSEL_CORRELATION_ID is supplied as the value for the order_offset field,
messages with the specified correlation ID are returned in the order specified by the
order_order field.

Sequence Number
The message sequence number is a unique value for each message. The sequence
number is stored in the PAMS Status Buffer (PSB). Applications should acquire the
message sequence number from the PSB and not modify it in any way.

Note: An application may specify only one of the two keys to select by correlation
identifier or by sequnce number.

num_masks
Supplies the number of records in the selection array. This argument allows a minimum
of 1 record to a maximum of 256 records in the selection array.

index_handle
Receives a variable containing the index handle for the selection mask as follows:

The high-order word contains PSEL_BY_MASK.

The low-order word contains the index to the selection array.

Order Order operator. The order variable specifies the sequence in
which the select process is to be performed.

PSEL_ORDER_FIFO First pending.

PSEL_ORDER_MIN Minimum value of all pending.

PSEL_ORDER_MAX Maximum value of all pending.

Table 2-65 Order Key

pams_set_se lec t

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-105

The index_handle is passed as the sel_filter argument in pams_get_msg,
pams_get_msga or pams_get_msgw, and pams_cancel_select functions.
OpenVMS allows a maximum number of 500 index handles. Other Oracle MessageQ
implementations offer 16K to 32K index handles.

Return Values

See Also
pams_cancel_get

pams_cancel_select

pams_get_msg

pams_get_msga

pams_get_msgw

Table 2-66 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADPARAM All Bad argument passed in the function call.

PAMS__IDXTBLFULL All Selective receive index table is full.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__SUCCESS All Indicates successful completion.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-106 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Example
Selecting Messages Using a Complex Selection Filter

This example shows the selective reception of messages using pams_set_select to build
a complex message selection filter. The queue named "queue_1" must be defined in your
initialization file as a primary queue. The complete code example called x_select.c is
contained in the examples directory.

pams_set_timer
Creates a timer that sends a message to an application's primary queue when a time interval
expires or a time of day arrives. The message is sent as a priority 1 message with a source of
PAMS__TIMER_QUEUE, a class code of PAMS, and a type code of TIMER_EXPIRED. A
timer_id is returned by this function as the first int32 value in the TIMER_EXPIRED message.

Note: Prior to Oracle MessageQ Version 5.0, the valid priority values were 0 and 1. In Version
5.0, the valid range is 0 to 99 (0 being the lowest priority and 99 the highest priority).
Keep in mind that timer priorities are always 1 and take this into account when
modifying existing programs to take advantage of the expanded priority range.
Messages associated with timers have a priority of 1 and are not sent until all messages
with priorities from 2 to 99 are read.

To act upon the timer message, the application uses the pams_get_msgw function to read its
primary queue, block until the timer expiration message arrives, and then act upon it. To cancel
a Oracle MessageQ timer, use the pams_cancel_timer function with the identification
code of the timer you want to cancel.

Syntax
int32 pams_set_timer (timer_id, timer_format, p_timeout,

s_timeout)

Arguments

Table 2-67 Arguments

Argument Data Type Mechanism Prototype Access

timer_id int32 reference int32 * passed

pams_set_t imer

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-107

Argument Definitions

timer_id
Supplies a unique timer identification value created by the application. Must be greater
than zero.

timer_format
Supplies the time format being used. Following are the two predefined constants for this
argument:

P-selects the time interval in PAMS timer format supplied to the p_timeout
argument. PAMS timer format expresses time in units of one tenth of a second.
Using the PAMS timer format provides an operating system independent way to
represent a time interval.
S-selects the system-dependent time format supplied to the s_timeout argument.
Using a system-dependent time format limits the portability of applications to a
specific operating system environment.

p_timeout
Supplies the amount of time to delay (delta) from the current time before returning a
timer expiration message. If the timer_format argument is set to P, a value greater than
0 must be entered for this argument. This argument uses the PAMS timer format which
expresses time in units of one tenth of one second.

s_timeout
On OpenVMS systems, use this argument to supply a pointer to an array of two int32
values used to set a 64-bit OpenVMS time format. The s_timeout argument can be
specified as an absolute time or a delta time matching the OpenVMS time format rules.
Note that if the caller exceeds the ASTLM or TQELM process quota, the process can enter
the RWAST state.

On UNIX and Windows NT systems, use this argument to supply a two element array
of int32 values. The values represent an absolute time (a UTC time in seconds and

timer_format char reference char * passed

p_timeout int32 reference int32 * passed

s_timeout unsigned
quadword

reference unsigned
quadword *

passed

Table 2-67 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-108 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

microseconds) at which the timer will expire. To use the s_timeout argument,
developers provide a pointer to a "struct timeval" as follows:

struct timeval theTime;

nStatus = pams_set_timer(&timer_id, "S", NULL, (int32 *) &theTime);

Return Values

Table 2-68 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADPARAM All Bad argument value.

PAMS__INVALIDNUM All Invalid timer number passed to PAMS_set_timer.

PAMS__INVFORMAT All Invalid timer format specified in the call. Should be P or
S.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOTDCL All Process has not been attached to Oracle MessageQ.

PAMS__NOTSUPPORTED UNIX

Windows NT

The S timer_format is not supported by Oracle
MessageQ for UNIX and Windows NT systems.

PAMS__PAMSDOWN UNIX

Windows NT

The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__RESRCFAIL All Insufficient resources to complete operation.

PAMS__SUCCESS All Indicates successful completion.

pams_status_text

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-109

See Also
pams_cancel_timer

Example
Set a Timer

This example shows how to use the Oracle MessageQ timer functions by setting a timer to go
off every 5 seconds. When the timer expires, it sends messages to itself. While not handling the
timer event, it sits and waits for other incoming messages. If it is interrupted, it cancels any
outstanding timers. The queue named "queue_1" must be defined in your initialization file as
a primary queue. The complete code example called x_timer.c is contained in the examples
directory.

pams_status_text
Receives the severity level and text description of a user-supplied PAMS API return code and
moves that information to a user-supplied storage area. If the error code is not known, an error
is returned and the call parameters are not filled in.

Syntax
int32 pams_status_text (code, severity, buffer, buflen, retlen)

Arguments

Table 2-69 Arguments

Argument Data Type Mechanism Prototype Access

code int32 reference int32 * passed

severity int32 reference int32 * returned

buffer char reference char * returned

buflen int32 reference int32 * passed

retlen int32 reference int32 * returned

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-110 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Argument Definitions

code
Specifies the return value for which you would like the text description and severity
level returned.

severity
Receives a code indicating the severity level of the message. Severity levels apply to
both success and errormessages. They are designed to provide more information about
the message being returned. The valid codes returned to this argument are as follows:

0 = warning
1 = success
2 = error
3 = informational
4 = fatal error

buffer
Receives the text description for the return status supplied.

buflen
Specifies the length of the buffer to store the text description returned. A buffer length
of 256 bytes is adequate to store the text description for all return status codes. If the
user buffer supplied is large enough, the string is zero terminated. The buffer length must
be entered as a positive integer. Supplying a negative integer value to this argument
causes the function to return a status of PAMS__BADPARAM. If you specify this
argument as zero, no text is returned to the buffer and the function returns the status of
PAMS__TRUNCATED.

retlen
Receives the size of the user-supplied buffer space that was filled by the text description
returned.

Description
Application developers use the pams_status_text function to obtain a text description and
severity level for each API return value. The text description contains both the symbolic name
(as it is defined in the include files and described in the documentation) followed by a comma,
a space, and then a description of the return value in the following format:

PAMS__SUCCESS, normal successful completion

put i l_show_pending

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-111

In addition to the text description, this function returns a code indicating the severity level for
both success and error messages.

For example, pams_detach_q has two possible success return codes; PAMS-- SUCCESS
and PAMS__DETACHED. The PAMS SUCCESS return code is used to indicate that you
successfully detached the specified queue(s).

PAMS__DETACHED is an informational return code indicating that the call was successful and
that you have detached your last queue which effectively detaches your application from the
message queuing bus in the same manner as the pams_exit function.

Return Values

putil_show_pending
Requests the number of pending messages for a list of selected queues. To use the
putil_show_pending function, specify the number of message queues for which you want to
obtain a pending message count and the list of queue addresses for which you want to obtain a
pending message count. The value returned by this function contains the total number of
messages in each memory queue. On OpenVMS systems, this function also returns the number
of pending messages in the local recovery journals targeted for delivery to the selected queue.

Syntax
int32 putil_show_pending (count, in_q_list, out_pend_list)

Table 2-70 Return Codes

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call parameters specified.

PAMS__BADPARAM All Invalid call parameter specified.

PAMS__FAILED All There is no translation for the specified return code.

PAMS__SUCCESS All Normal successful completion.

PAMS__TRUNCATED All The description was returned but was -truncated.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-112 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

Argument Definitions

count
Supplies the number of queue entries in the in_q_list argument (the number of indexes
in the array). The maximum allowed value is 32,000.

in_q_list
Supplies an array of int32 values containing the queue numbers for which the pending
message count is requested.

out_pend_list

Return Values

Table 2-71 Arguments

Argument Data Type Mechanism Prototype Access

count int32 reference int32 * passed

in_q_list short array reference short array* passed

out_pend_list int32 array reference int32 array * returned

Table 2-72 Return Code

Return Code Platform Description

PAMS__BADARGLIST UNIX

Windows NT

Invalid argument supplied to this function.

PAMS__BADPARAM OpenVMS Invalid argument supplied to this function.

PAMS__NETERROR Clients Network error resulted in a communications link abort.

PAMS__NOTDCL All Process is not attached to Oracle MessageQ.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-113

Example
Display Number of Pending Messages

This example shows how to use putil_show_pending to display the number of pending
messages currently in the queue. A queue named "queue_1" must be defined during group
configuration. The complete code example called x_shopnd.c is contained in the examples
directory.

Using Message-Based Services
Receiving a Response

Obtaining the Status of a Queue

Monitoring and Controlling Link Status

Learning the Current Status of Queues

Managing Message Recovery Files

Oracle MessageQ applications regularly perform standard tasks such as checking the state of a
queue or the status of a cross-group connection before sending a message. To make these tasks
easier, Oracle MessageQ offers message- based services, which are sets of predefined request,
notification, and response messages exchanged between the application and Oracle MessageQ
server processes.

Table 2-73 describes the functions performed by using message-based services and lists the
servers they are available through.

PAMS__RESRCFAIL All Insufficient resources to complete operation.

PAMS__PAMSDOWN All The specified Oracle MessageQ group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__SUCCESS All Successful completion.

Table 2-72 Return Code

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-114 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Oracle MessageQ uses message-based services to perform routine tasks such as obtaining queue
status. There are two request-response paradigms used by message-based services. For some
kinds of services, the sender program sends a request to a Oracle MessageQ server using a
particular message. The Oracle MessageQ server returns the response in a message using a
particular message type and format. If information was requested, it is returned in the message
area of the response message.

In other cases, a sender program may register to receive ongoing updates of information. In this
case, the sender program sends a registration request and receives a response if the registration
request is successful. In addition, the sender program receives event-driven messages providing
up-to-date information as requested. To stop receiving the event-driven messages, the sender
program must send a deregistration request to the Oracle MessageQ server.

Service requests are directed to the primary queue of the Oracle MessageQ server designated to
provide the selected service. Oracle MessageQ message-based service requests are delivered to
Oracle MessageQ servers using the Oracle MessageQ application programming interface (API)
or Oracle MessageQ scripts. Similarly, applications obtain response and notification messages by
reading these messages from their primary or response queue.

Oracle MessageQ message-based services are sent between a user application program that
functions as a requestor and a Oracle MessageQ server process that fulfills the request. For
messages to be properly understood between systems, message data must be sent and returned in
the endian format understood by both the requestor and the server.

Most Oracle MessageQ message-based services automatically perform this conversion if the
endian format of the two systems is different. However, some message-based services do not

Table 2-73 Overview of Message-Based Services

You can . . .

Obtain the status of a particular queue

Monitor and control link status

Obtain the current status of all queues

Register for broadcast messages

Manage message recovery files (OpenVMS systems only)

Transfer messages from one DQF file to another (OpenVMS systems only)

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-115

perform this conversion. Therefore, the user application must convert the message to the endian
format of the server system to ensure that the message data is correctly interpreted.

See the description of each message for information on whether Oracle MessageQ performs the
conversion or the application must check for differences in hardware data formats. See the
Building and Testing Applications topic to learn how you can ensure that your application
formats data properly and performs required conversions when sending standard messages
between computer systems from different vendors.

You can send a service request message using the pams_put_msg function. Request messages
use the type argument to identify the purpose of the message. Each request message has a
predefined data structure.

To send a standard request message, supply the following:

A detailed description of each message in the Message Reference topic explains each field in the
data structure and provides a sample C message structure.

Receiving a Response
Each Oracle MessageQ server returns response or notification messages to answer a service
request. Most request messages have a response message. In addition, some service requests are
answered by the Oracle MessageQ server with a notification message that supplies information
to the sender program as it becomes available.

When an application requests information using the pams_put_msg function, it provides the
Oracle MessageQ server with the group ID and queue number to which the response should be
directed. The sender program then reads this queue using the pams_get_msg, pams_get_msgw,
or pams_get_msga function to obtain the response information.

A Oracle MessageQ server response and notification message provides the following:

Table 2-74 A Oracle MessageQ server response

Source The symbolic name of the Oracle MessageQ server fulfilling the request.

Class The class code of the response is always PAMS, indicating that this is a Oracle
MessageQ message- based service.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-116 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

A detailed description of each message in the Message Reference topic explains each field in the
data structure and provides a sample C message structure.

Obtaining the Status of a Queue
Oracle MessageQ message-based services enable applications to check whether a particular
queue is available to receive messages. This set of messages returns information on the status of
any active queue in a local or remote group.

To obtain information on the status of a particular queue, applications exchange the following
messages with the Avail Server:

AVAIL_REG-Request message to register to receive queue information.

AVAIL_REG_REPLY-Response message to confirm registration or deregistration.

AVAIL-Notification message to indicate that the queue is available.

UNAVAIL-Notification message to indicate that the queue is unavailable.

AVAIL_DEREG-Notification message to deregister from obtaining queue information.

Type The type code of the message received. For example, AVAIL_REG_REPLY.

Message data The predefined data structure used to provide requested information in the
response or notification message. The definition of all Oracle MessageQ
message-based services messages is now provided in the p_msg.h include file.

Table 2-74 A Oracle MessageQ server response

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-117

Figure 2-18 Figure 5-1 Avail Server Message Flow

An application program registers to receive availability messages by sending a message of type
AVAIL_REG to the local Avail Server process. The Avail Server responds with a message of
type AVAIL_REG_REPLY, acknowledging the notification request.

After registration, the requestor immediately receives an AVAIL or UNAVAIL message
indicating the current availability of the target queue. Queue availability messages provide
ongoing notification when a specific queue becomes attached or detached and when a link is
connected or lost. If the queue becomes active because a process becomes attached, the Avail
Server sends a message of type AVAIL. If it becomes -inactive, the server sends a message of
type UNAVAIL.

Applications must cancel availability notification by sending a message of type AVAIL_DEREG.
The application receives a AVAIL_REG_REPLY message indicating the status of the operation.
It is important to note that if the distribution queue for an AVAIL registration becomes
unavailable, the registration will be automatically deleted by Oracle MessageQ. A subsequent
attempt to deregister AVAIL services for this distribution queue will result in an error message
indicating that the registration does not exist.

Monitoring and Controlling Link Status
This section describes how applications can use Oracle MessageQ message-based services with
the Connect Server process to obtain information on connections, queue entries, groups,
cross-group connections, and link status.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-118 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Listing Cross-Group Connections, Entries, and Groups
An application can request a list of current cross-group connections or all configured cross-group
entries from the Connect Server. This request allows the application to obtain the current Oracle
MessageQ cross-group configuration and active cross-group connections. In addition, the
Connect Server can provide a list of known queues in a group and a list of all groups defined on
a message queuing bus.

To obtain a list of all cross-group connections, configured groups, and queue entries,
applications exchange the following messages with the Connect Server:

LIST_ALL_CONNECTIONS (Request)-Request message to provide a list of all
cross-group connections.

LIST_ALL_CONNECTIONS (Response)-Response message to provide a list of all
cross-group connections. Groups with no link connection are not listed.

LIST_ALL_ENTRIES (Request)-Request message to provide a list of all queue entries
for a group.

LIST_ALL_ENTRIES (Response)-Response message to provide a list of all queue
entries for a group.

LIST_ALL_GROUPS (Request)-Request message to provide a list of groups on the
message queuing bus.

LIST_ALL_GROUPS (Response)-Response message to provide a list of all groups,
connected and unconnected, on the message queuing bus.

Figure 2-19 Figure 5-2 Requesting Cross-Group Information

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-119

To obtain a list of all groups defined on the message queuing bus, send a LIST_ALL_GROUPS
message to the Connect Server. To obtain a list of all cross-group connections for the message
bus or a list of all cross-group entries, send a LIST_ALL_CONNECTIONS message to the
Connect Server. To obtain a list of queues in a group, send a LIST_ALL_ENTRIES message.

The reply to these requests is a variable-length message with the same type and class as the
request. To read the information returned, the application uses the message size parameter
returned by the pams_get_msg function and divides it by the byte size of the data object
requested to determine the number of data entries returned. The byte size of these entries is
described in the reference description of each message.

Obtain Notification of Cross-Group Links Established and Lost
An application can also use Connect Server messages to receive notification of cross-group links
connected and disconnected in its own group. To obtain information on the status of cross-group
links, use the following message- based services:

ENABLE_NOTIFY-Request message to request notification of link changes.

LINK_COMPLETE-Notification message to indicate that the cross-group link was created.

LINK_LOST-Notification message to indicate that the cross-group link was lost.

DISABLE_NOTIFY-Request message to request disabling of link change -notification.

Figure 2-20 Figure 5-3 Requesting Cross-Group Link Status

Applications send an ENABLE_NOTIFY message to the Connect Server to receive ongoing
notification when new connections are made or lost. Registered applications receive a
LINK_COMPLETE notification message when a new cross-group connection is created.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-120 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Applications receive a LINK_LOST message when a cross-group connection is lost. To
deregister from -receiving further notification messages, the application sends a
DISABLE_NOTIFY message to the Connect Server.

Note: Note: To receive ongoing notification of queue attachments, we recommend the use of
the Queue Server messages,such as ENABLE_Q_NOTIFY_REQ. The
ENABLE_NOTIFY message should no longer be used to obtain queue attachment
information.

Controlling Cross-Group Links
In addition to obtaining information on cross-group links, the Connect Server messages can be
used to control cross- group connections through a feature called link management. Applications
use link management messages to explicitly control the creation and deletion of cross-group
links. Explicit control over remote links may be required by an application to restrict network
communication with a particular node or to reduce network traffic.

The LINKMGT_REQ request message enables the following control functions:

Inquire-Allows querying of a group's link state.

Enable-Re-enables a link's address entries.

Disable-Disables a link's address entries.

Connect-Re-enables a link's address entries and connects to selected groups.

Disconnect-Implicitly disables links and disconnects links to requested groups.

The LINKMGT_RESP response message notifies the requesting application if the request was
successful and supplies information about the cross-group connection. Link management
functions are also available through the System Manager utility on Oracle MessageQ for
OpenVMS systems. Figure 5-4 is a graphical representation of the functional relationship
facilitated by LINKMGT_REQ and LINKMGT_RESP:

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-121

Figure 2-21 Figure 5-4 Using Link Management

Link management can also be event driven. For example, an application event can trigger a link
to another group, which enables message exchange.

Note: When using link management, automatic creation of cross-group connections must be
disabled with the generate connect option D (disable) in the %XGROUP section of the
Oracle MessageQ group initialization file to completely control all cross-group links. For
more information, refer to the Enabling Network Connections in the Cross-Group
Section topic in the Oracle MessageQ Installation and Configuration Guide for each
platform.

Link Management Control Functions
The link management request message allows for the following control functions:

Inquire-Allows querying of a group's link state.

Enable-Re-enables a link's address entries.

Disable-Disables a link's address entries.

Connect-Re-enables a link's address entries and connects to selected groups.

Disconnect-Implicitly disables links and disconnects links to requested groups.

Inquire Function

The Inquire function of the link management request message allows querying of a single group's
link state. To use the Inquire function, specify the group number of the local or remote group for
which you want to learn the link state. This function does not allow you to specify any selection
parameters other than the group number. Because you can only inquire about the link state of one

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-122 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

group at a time, you cannot specify the PSYM_LINKMGT_ALL_GROUPS symbol in the
group_number field.

The Inquire function performs endian translation when the request is sent to a Connect Server
running on a system that uses a different byte order. Both the request and response messages are
encoded in the endian of the request originator.

Request Message Format for the Inquire Function
Table 2-75 displays the Inquire function request message format:

Determining the Status of the Inquire Request
The status field of the LINKMGT_RESP message contains a return code indicating the outcome
of the inquiry request. Refer to Table 5-3 for a description of each status return and the
corresponding user action.

Table 2-75 Inquire Function Request Message Format

Field Required/ Optional Setting

version Required 10

user_tag Required User-specified code identifying the
request.

function_code Required PSYM_LINKMGT_CMD_INQUIRY

group_number Required Group number to receive the action. Valid
values are 1 to 32000.

connect_type Optional PSYM_LINKMGT_ALL_TRANSPORT
S

reconnect_timer Optional PSYM_LINKMGT_USE_PREVIOUS

window_size Optional PSYM_LINKMGT_USE_PREVIOUS

window_delay Optional PSYM_LINKMGT_USE_PREVIOUS

transport_addr_len Optional 0
node_name_len Optional 0

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-123

Table 2-76 Inquire function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in
request message

Error One of the field values in the inquiry
request message is invalid. Check the
syntax of the request message against
the list of valid values and re-issue the
corrected request message.

MSGFMT Unknown
request version
or function code

Error Correct the syntax of the request
message. The version field of the
must contain the number 10. The
function code field must contain the
symbol
PSYM_LINKMGT_CMD_INQUIR
Y.

NOGROUP The selected
group does not
have a cross
group entry

Error You requested the link state for a
group that is not defined in the
cross-group table. This group has no
cross-group links.

OPERATIONFAIL The command
was unable to be
successfully
completed

Error The inquire function failed due to a
system resource problem.
• Check the network connection to

the target group to determine if
the network link is up.

• Check the Connect Server to
determine if it is running out of
virtual memory.

• Check the log file to see if the
cause of the error has been
logged.

SUCCESS The operation
successfully
completed

Success Refer to the description of the link
management response message
below for a description of the data
returned.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-124 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Response Message Format for Successful Inquire Requests
If the Inquire function is successful, the response message returns the status of both the incoming
and outgoing cross-group links in the in_link_state and out_link_state fields. These fields specify
the status of the link using the following symbols:

PSYM_LINKMGT_CONNECTED-the incoming/outgoing cross-group link for the selected
group is connected.

PSYM_LINKMGT_NOCN-the incoming/outgoing cross-group link for the selected group is
not connected.

PSYM_LINKMGT_DISABLE-the incoming/outgoing cross-group link for the selected
group is disabled.

If the link status for the group is PSYM_LINKMGT_CONNECTED, the response message contains
the following information:

Table 2-77 Response Message Information

Field Description

version 10

user_tag User-specified code from the request message.

Status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_CONNECTED

out_link_state PSYM_LINKMGT_CONNECTED

connect_type Transport that message is connected over: PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of the TCP/IP port number.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-125

Enable Function

The Enable function of the link management request message re-enables a link's address entries
if they have been disabled. All addresses in the cross-group connection table that match the
selection criteria specified in the request message (for example, group number, connect type,
node name, and transport address) will be enabled. All other address entries for the group or
groups selected will be disabled. The Enable function will still complete if the link is already
connected. The effects will not be visible until the existing link is lost.

The Enable function allows a link to occur only with the selected addresses for a group. If the
group has a reconnection timer, the timer will be set to cause the connection to be attempted after
the specified time and connections are not attempted immediately. Incoming connections are then
allowed to occur.

The Enable function offers the following selection options:

If the group_number field is set to PSYM_LINKMGT_ALL_GROUPS, then the node name
and transport address cannot be specified.

If a specific group number is specified and PSYM_LINKMGT_ALL_TRANSPORTS is
specified, then the node name and transport address cannot be specified.

On OpenVMS systems, if an entry that matches the selection criteria is not found, one will
be created providing the group exists. On UNIX and Windows NT systems, the Enable
function only enables existing address entries. It does not modify connection parameters or
add new address entries.

On OpenVMS systems, if the window or reconnect timer information is supplied, the
specified values overwrite the existing information of the select entries. On UNIX and
Windows NT systems, the Enable function does not modify connection parameters.

Note: The symbol PSYM_LINKMGT_ALL_TRANSPORTS is new to the LINK_MGT
message API for Oracle MessageQ Version 4.0. On OpenVMS systems, the Enable
function requires that the requesting process have either OPER or the DMQ$OPERATOR
rights identifier.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Table 2-77 Response Message Information

Field Description

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-126 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Request Message Format for the Enable Function
Table 2-78 displays the Enable function message format:

Table 2-78 Enable function message format

Field Required/ Optional Setting

version Required 10

user_tag Required User-specified code identifying the request.

function_code Required PSYM_LINKMGT_CMD_ENABLE

group_number Required Group number to receive the action. Valid
values are 1 to 32000. Or, use the
PSYM_LINKMGT_ALL_GROUPS symbol to
enable all known links for groups with the
connect_type requested.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional Time it takes for the COM Server or Group
Control Process (GCP) to reconnect to a
communications link. Enter the number of
seconds or the following values:

PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS

window_size Optional Size of transmission window (cross-group
protocol Version 3.0 or higher).

window_delay Optional Transmission window delay in seconds
(cross-group protocol Version 3.0 or higher).

transport_addr Optional Transport address string 16 bytes in length; the
TCP/IP port ID

transport_addr_len Optional Length of transport address. Valid values
are 0 to 16 bytes. Zero specifies the use of
the previous setting.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-127

Determining the Status of the Enable Request
The status field of the LINKMGT_RESP message contains a return code indicating the outcome
of the Enable request. See Table 2-79 for a description of each status return and the corresponding
user action.

node_name Optional ASCII text of node name. The length is
determined by node_name_len up to
255 characters.

node_name_len Optional Length of the node name string. Zero
specifies the use of the previous known
value.

Table 2-78 Enable function message format

Field Required/ Optional Setting

Table 2-79 Enable function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

ALREADYUP The link is already active Warning The Enable function completed although
the link entries were already available.

MSGCONTENT Invalid value in request
message

Error One of the field values in the enable
request message is invalid. Check the
syntax of the request message against the
list of valid values and re-issue the
corrected request message.

MSGFMT Unknown request version
or function code

Error Correct the syntax of the request message.
The version field of the must contain the
number 10. The function code field must
contain the symbol
PSYM_LINKMGT_CMD_ENABLE.

NOGROUP The selected group does not
have a cross group entry

Error No cross-group entries can be enabled
because you requested the enable
function for a group that is not defined in
the cross-group table.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-128 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Response Message Format for Successful Enable Requests
If the Enable function is successful, the response message returns the information shown in the
following table:

NOTRANSPORT The selected group does not
have any cross- group
entries with specified
transport

Error No cross-group entries can be enabled
because you requested the enable
function for a group or groups that does
not have a cross-group connection entry
that uses the specified transport.

OPERATIONFAIL The command was unable
to be successfully
completed

Error The enable function failed due to a system
resource problem.

Check the Connect Server to determine if
it is running out of virtual memory.

Check the log file to see if the cause of the
error has been logged.

SUCCESS The operation successfully
completed.

Success Refer to the description of the link
management response message below for
a description of the data returned.

Table 2-79 Enable function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

Table 2-80 Enable function

Field Description

version 10

user_tag User-specified code from the request message.

status PAMS__SUCCESS

group_number Group number or numbers to receive the action.

in_link_state PSYM_LINKMGT_ENABLED

out_link_state PSYM_LINKMGT_ENABLED

connect_type Transport that message is connected over: PSYM_LINKMGT_TCPIP.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-129

Disable Function

The Disable function of the link management request message disables a link's address entries if
they have been enabled. This prevents a link from occurring with the group's selected addresses.
Connection attempts to and from the selected addresses are prevented.

All addresses in the group address table that match the selection criteria of the message (for
example, group ID, connect type, node name, and transport address) will be disabled. All other
address entries for the groups selected will not be affected. If no entry matches the group_number
field, then PSYM_LINKMGT_NOGROUP is returned.

The Disable function takes matching cross-group entries out of the search list for connect
processing.

Request Message Format for the Disable Function
Table 2-81 displays the Disable function message format:

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Table 2-80 Enable function

Table 2-81 Disable Function Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-130 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Determining the Status of the Disable Request
The status field of the LINKMGT_RESP message contains a return code indicating the outcome
of the Disable request. See Table 2-82 for a description of each status return and the
corresponding user action.

function_code Required PSYM_LINKMGT_CMD_DISABLE

group_number Required Group number to receive the action. Valid values are 1 to
32000. The

PSYM_LINKMGT_ALL_GROUPS symbol indicates all
known links for this group.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional PSYM_LINKMGT_USE_PREVIOUS

window_size Optional PSYM_LINKMGT_USE_PREVIOUS

window_delay Optional PSYM_LINKMGT_USE_PREVIOUS

transport_addr Optional Transport address string 16 bytes in length; the TCP/IP
port ID

transport_addr_len Optional Length of transport address. Valid values are 0 to 16 bytes.
Zero indicates to use the previous setting.

node_name Optional ASCII text of node name. The length is determined by
node_name_len up to 255 characters.

node_name_le Optional Length of the node name string. Zero indicates to use the
previous known value.

Table 2-81 Disable Function Message Format

Field Required/
Optional

Setting

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-131

Table 2-82 Disconnect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in request
message

Error One of the field values in the disable
request message is invalid. Check the
syntax of the request message against the
list of valid values and re-issue the
corrected request message.

MSGFMT Unknown request version
or function code

Error Correct the syntax of the request message.
The version field of the must contain the
number 10. The function code field must
contain the symbol
PSYM_LINKMGT_CMD_DISABLE.

NOGROUP The selected group does not
have a cross group entry

Error No cross-group entries can be disabled
because you requested the disable
function for a group that is not defined in
the cross-group table.

NOTRANSPORT The selected group does not
have any cross group
entries with specified
transport

Error No cross-group entries can be disabled
because you requested the disable
function for a group or groups that does
not have a cross-group connection entry
that uses the specified transport.

OPERATIONFAIL The command was unable
to be successfully
completed

Error The disable function failed due to a
system resource problem.
• Check the Connect Server to

determine if it is running out of
virtual memory.

• Check the log file to see if the cause
of the error has been logged.

SUCCESS The operation successfully
completed.

Success Refer to the description of the link
management response message below for
a description of the data returned.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-132 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Response Message Format for Successful Disable Requests
If the Disable function completes successfully, the response message contains the -following
information:

Connect Function

The Connect function of the link management request message re-enables a link's address entries
if they have been disabled, and causes an immediate connect attempt to occur with the selected
groups if not already connected.

Table 2-83 Response Message Format for Successful Disable Requests

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_DISABLED

out_link_state PSYM_LINKMGT_DISABLED

connect_type Transport that message is connected over:PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-133

Incoming connections are then allowed to occur. This function will still be able to complete even
if the link is already connected. The effects of the function will not be visible until the existing
link is lost.

All addresses in the group address table that match the selection criteria of the message (for
example, group ID, connect type, node name, and transport address) will be enabled, and all other
address entries for the groups selected will be disabled. If a matching entry is not found, then one
will be created, providing the group exists. If the window or reconnect timer information is
supplied, then those values will overwrite the existing information of the selected entries.

If the group_number field is set to PSYM_LINKMGT_ALL_GROUPS, then node name and
transport address cannot be specified. If a specific group number is specified, and
PSYM_LINKMGT_ALL_TRANSPORTS is specified, then node name and transport address
cannot be specified.

On OpenVMS systems, the Connect function requires that the requesting process have either
OPER or the DMQ$OPERATOR rights identifier.

Request Message Format for the Connect Function
Table 2-84 displays the Connect request function message format:

Table 2-84 Connect Request Function Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request, if supplied.

function_code Required PSYM_LINKMGT_CMD_CONNECT

group_number Required Group number to receive the action. Valid values are 1 to
32000. The

PSYM_LINKMGT_ALL_GROUPS symbol indicates all
known links for this group.

connect_type Required Select the following transport type:

PSYM_LINKMGT_TCPIP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-134 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Determining the Status of the Connect Request
The status field of the LINKMGT_RESP message contains a return code indicating the outcome
of the Connect request. See Table 2-85 for a description of each status return and the
corresponding user action.

reconnect_timer Optional Time it takes for the COM Server to reconnect to a
communications link. Enter the number of seconds or the
following values:

PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS

window_size Optional Size of transmission window (cross-group protocol
Version 3.0 or higher).

window_delay Optional Transmission window delay in seconds (cross-group
protocol Version 3.0 or higher).

transport_addr Optional Transport address string 16 bytes in length' the TCP/IP
port ID

transport_addr_ len Optional Length of transport address. Valid values are 0 to 16 bytes.
Zero specifies the use of the previous setting.

node_name Optional ASCII text of node name. The length is determined by
node_name_len up to 255 characters.

node_name_len Optional Length of the node name string. Zero specifies the use of
the previous known value.

Table 2-84 Connect Request Function Message Format

Field Required/
Optional

Setting

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-135

Table 2-85 Connect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

ALREADYUP The link is already active Warning The Connect function completed
although the link entries were already
available.

MSGCONTENT Invalid value in request
message

Error One of the field values in the connect
request message is invalid. Check the
syntax of the request message against the
list of valid values and re-issue the
corrected request message.

MSGFMT Unknown request version
or function code

Error Correct the syntax of the request message.
The version field of the must contain the
number 10. The function code field must
contain the symbol
PSYM_LINKMGT_CMD_CONNECT.

NOGROUP The selected group does not
have a cross group entry

Error No cross-group links can be connected
because you requested the connect
function for a group that is not defined in
the cross-group table.

NOTRANSPORT The selected group does not
have any cross group
entries with specified
transport

Error No cross-group links can be connected
because you requested the connect
function for a group or groups that does
not have a cross-group connection entry
using the specified transport.

OPERATIONFAIL The command was unable
to be successfully
completed

Error The connect function failed due to a
system resource problem.

Check the Connect Server to determine if
it is running out of virtual memory.

Check the log file to see if the cause of the
error has been logged.

SUCCESS The operation successfully
completed.

Success Refer to the description of the link
management response message below for
a description of the data returned.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-136 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Response Message Format for Successful Connect Requests
If the Connect request is successful, the response message contains the following -information:

Disconnect Function
The Disconnect function of the link management request message requests implicit disables of
links and disconnects any links to the requested group. All addresses in the group address table
that match the selection criteria of the message (for example, group ID, connect type, node name,
and transport address) will be disconnected. All other address entries for the groups selected will
not be affected. If no entry matches the group_number field, then PSYM_LINKMGT_NOGROUP

Table 2-86 Response Message Format for Successful Disable Requests

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_CONNECTED

out_link_state PSYM_LINKMGT_CONNECTED

connect_type Transport that message is connected over:

PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-137

is returned. On OpenVMS systems, the Disconnect function requires that the requesting process
have either OPER or the DMQ$OPERATOR rights identifier.

Request Message Format for the Disconnect Function
Table 2-87 displays the Disconnect function message format.

Determining the Status of the Disconnect Request
The status field of the LINKMGT_RESP message contains a return code indicating the outcome
of the Disconnect request. Refer to Table 2-88 for a description of each status return and the
corresponding user action.

Table 2-87 Disconnect Function Message Format

Field Required/
Optional

Setting

user_tag Required 10
function_code Required User-specified code identifying the request.
group_number Required PSYM_LINKMGT_CMD_DISCONNECT
connect_type Required Group number to receive the action. Valid values are

1 to 32000. The PSYM_LINKMGT_ALL_GROUPS
symbol means disconnect all known links for this
group.

reconnect_timer Required Select the following transport type:

PSYM_LINKMGT_TCPIP
window_size Optional PSYM_LINKMGT_USE_PREVIOUS
window_delay Optional PSYM_LINKMGT_USE_PREVIOUS
transport_addr Optional PSYM_LINKMGT_USE_PREVIOUS
transport_addr_ len Optional Transport address string 16 bytes in length; the

TCP/IP port ID
node_name Optional Length of transport address. Valid values are 0 to 16

bytes. Zero specifies the use of the previous setting.
node_name_len Optional ASCII text of node name. The length is determined

by node_name_len up to 255 characters.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-138 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Table 2-88 Disconnect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in request
message

Error One of the field values in the disconnect
request message is invalid. Check the
syntax of the request message against the
list of valid values and re-issue the
corrected request message.

MSGFMT Unknown request version
or function code

Error Correct the syntax of the request message.
The version field must contain the
number 10. The function code field must
contain the symbol
PSYM_LINKMGT_CMD_DISCONNE
CT.

NOGROUP The selected group does not
have a cross-group entry

Error No cross-group connections can be
disconnected because you requested the
disconnect function for a group that is not
defined in the cross-group table.

NOGROUP The selected group does not
have a cross group entry

Error No cross-group links can be connected
because you requested the connect
function for a group that is not defined in
the cross-group table.

NOTRANSPORT The selected group does not
have any cross group
entries with specified
transport

Error No cross-group links can be connected
because you requested the connect
function for a group or groups that does
not have a cross-group connection entry
using the specified transport.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-139

Response Message Format for Successful Disconnect Functions
If the Disconnect function is successful, the response message returns the following -information:

OPERATIONFAIL The command was unable
to be successfully
completed

Error The connect function failed due to a
system resource problem.

Check the Connect Server to
determine if it is running out of
virtual memory.

Check the log file to see if the
cause of the error has been
logged.

SUCCESS The operation successfully
completed.

Success Refer to the description of the link
management response message below for
a description of the data returned.

Table 2-88 Disconnect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

Table 2-89 Response Message Format for Successful Disconnect Functions

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_DISABLED

out_link_state PSYM_LINKMGT_DISABLED

connect_type Transport that message is connected over: PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-140 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Link Management Design Considerations
Table 2-90 lists important design considerations for applications using link management.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Table 2-89 Response Message Format for Successful Disconnect Functions

Field Description

Table 2-90 Link Management Design Condsiderations

Feature Description

Failover Node Table
Disabled

When an application issues a LINKMGT_REQ request, the Connect
Server disables the failover node table defined in the group initialization
file. Disabling the failover node table ensures the application complete
control over the attributes of the link request.

Additional Group
Connections Disabled

When the application issues a LINKMGT_REQ request to disconnect a
link, the Connect Server disables further connections to the group.
Disabling connections ensures that no additional links to the group will
occur until the application issues another LINKMGT_REQ request.

Connect Requests -
Verified

When a connect request is made for a single group, the
XGROUP_VERIFY table uses the information supplied in the message
to determine whether to accept or reject the -request for a connection.
Cross-group verification only works on incoming requests. The data
structure for cross-group verification is overwritten by the information in
the link management connect or disconnect message.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-141

Learning the Current Status of Queues
This section describes how applications can use Queue Server message-based services to obtain
status information on all active queues in a particular group or to obtain notification of queue
status changes. The list of active queues displays all attached permanent and temporary queues.

Listing Attached Queues in a Group
The Queue Server process can provide applications with a list of all attached queues for a selected
group. This information is available for local and remote groups and includes a listing of both
permanent and temporary queues. To request this list, the application program sends a message
of type LIST_ALL_Q_REQ to the Queue Server process.

To learn the status of all queues in a selected group, an application exchanges the following
messages with the Queue Server:

LIST_ALL_Q_REQ-Request message to request the status of all queues.

LIST_ALL_Q_RESP-Response message to provide a list of all queues and their status.

Connect and Disconnect
Requests Acknowledged

When the Connect Server receives a connect message after a link is
already successfully connected, the Connect Server rejects the second
connect message. When the Connect Server receives a disconnect
message after a link is already successfully disconnected, the Connect
Server acknowledges the second disconnect message with a successful
-return message.

Restrictions on Local and
Remote Requests

The Connect Server will only accept link control requests from a local
application. However, the Connect Server will accept link status
inquiries from remote as well as local -applications.

Privileges Required Application link control requests on the OpenVMS system require that
the application have VMS

OPER privilege or be granted the DMQ$OPERATOR rights identifier.

Table 2-90 Link Management Design Condsiderations

Feature Description

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-142 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Figure 2-22 Figure 5-5 Listing All Queues

The application receives a response message from the Queue Server of type
LIST_ALL_Q_RESP providing a list of all attached queues. Because a LIST_ALL_Q_RESP
message may contain a long list of queue names, the application must allocate a sufficient buffer
size to store the information returned.

Receiving Attachment Notifications
The Queue Server process can notify an application of all attached queues and subsequent queue
attachments and detachments for its own group. An application registers for this service by
sending a message of type ENABLE_Q_NOTIFY_REQ to the group's Queue Server process. The
Queue Server responds with a message of type ENABLE_Q_NOTIFY_RESP, indicating the
status of the registration request.

To learn the status of all queues and receive ongoing notification of new queue attachments and
detachments, an application exchanges the following messages with the Queue Server:

ENABLE_Q_NOTIFY_REQ-Request message to request the current status of all queues
with notification of future queue status changes.

ENABLE_Q_NOTIFY_RESP-Response message to provide the current status of all queues
and confirmation that queue status changes will be reported.

Q_UPDATE-Notification message to provide information on newly attached and detached
queues in the selected group.

DISABLE_Q_NOTIFY_REQ-Request message to request that notification of queue status
changes be discontinued.

Us ing Message-Based Serv ices

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-143

DISABLE_Q_NOTIFY_RESP-Response message to indicate that notification of queue
status changes has been successfully disabled.

Figure 2-23 Listing Available Queues

The registration request places the sender's response queue number in the list of applications to
receive notification of new attachments and detachments. Notifications are sent using a message
of type Q_UPDATE. The application can cancel the notification registration by sending a message
of type DISABLE_Q_NOTIFY_REQ. The Queue Server responds with a reply of type
DISABLE_Q_NOTIFY_RESP indicating the status of the registration cancellation request.

Managing Message Recovery Files
Oracle MessageQ message-based services are used with the MRS Server to maintain files for
recoverable messaging and to turn MRS journaling capability on or off. Message-based services
for performing these functions are available on OpenVMS systems only. The functions are also
available through the Oracle MessageQ Manager Utility on OpenVMS systems. For complete
information on how to use the Oracle MessageQ message recovery system, see the Sending
Recoverable Messages topic.

Oracle MessageQ uses the following four Oracle MessageQ files for MRS message-based
services:

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-144 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Controlling Journaling to the PCJ File
You can use the messages in Table 2-79 to disable journaling when replacing a PCJ file and then
reenable journaling:

MRS_JRN_DISABLE-Request message to disable journaling to the PCJ file.

MRS_JRN_DISABLE_REP-Response message to indicate the status of the request.

MRS_JRN_ENABLE-Request message to enable journaling to the PCJ file.

MRS_JRN_ENABLE_REP-Response message to indicate the status of the request.

Figure 2-24 Disabling Journaling

Table 2-91 Oracle MessageQ files for MRS message-based services

Store and forward file
(SAF)

Messages designated for recovery on the sender system.

Destination queue file
(DQF)

Messages designated for recovery on the receiver system.

Dead letter journal (DLJ) Undelivered messages not designated for recovery by Oracle MessageQ.
These messages can be delivered later from the DLJ by an application
program.

Postconfirmation journal
(PCJ)

Successfully delivered recoverable messages which form an audit trail
of messaging events.

Message Refe rence

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-145

Use the MRS_JRN_DISABLE message to disable journaling to the PCJ when you need to close
the PCJ and open a new one. The MRS_JRN_DISABLE_REP message returns the status of the
operation. Use the MRS_JRN_ENABLE message to enable journaling after you have opened a
new PCJ file. The MRS_JRN_ENABLE_REP message returns the status of the operation.

Message Reference
This chapter contains detailed descriptions of all Oracle MessageQ message-based services
alphabetized by message type. Each description lists the message type code name, the name of
the Oracle MessageQ server performing the service, and a detailed definition of the message
area and required arguments to send messages or read response and notification messages using
the Oracle MessageQ API or scripts. The definition of all Oracle MessageQ message- based
services messages is now provided in the p_msg.h include file.

Oracle MessageQ message-based services are sent between a user application program that
functions as a requestor and a Oracle MessageQ server process that fulfills the request. For
messages to be properly understood between systems, message data must be sent and returned
in the endian format understood by both the requestor and the server. Most Oracle MessageQ
message-based services automatically perform this conversion if the endian format of the two
systems is different. However, some message-based services do not perform this conversion,
therefore, the user application must convert the message to the endian format of the server
system to ensure that the message data is correctly interpreted. Each message-based service
description notes whether the data structure is RISC aligned and whether the server performs
the endian conversion automatically. Please note that the environment variables VIEWFILES and
VIEWDIR should be setted properly before using message-based services. For instance, export
VIEWDIR=$TUXDIR/udataobj and VIEWFILES=otmq_mbs.V.

Table 2-92 Oracle MessageQ message-based services alphabetized by message type

• AVAIL • LINKMGT_REQ • LIST_ALL_Q_
REQ

• MRS_JRN_ENA
BLE_REP

• UNAVAIL

• AVAIL_DEREG • LINKMGT_RES
P

• LIST_ALL_Q_
RESP

• Q_UPDATE

• AVAIL_REG • LINK_COMPLE
TE

• LOCATE_Q_RE
P

• SBS_DEREGIS
TER_REQ

• AVAIL_REG_R
EPLY

• LINK_LOST • MRS_ACK • SBS_DEREGIS
TER_RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-146 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Note: In the section entitled "See Also" for every service, you will find a list of related Oracle
MessageQ message-based services. For more information about these services, see
"Message Reference" section.

AVAIL
Applications can register to receive notification when queues become active or inactive in local
and remote groups by sending an AVAIL_REG message to the Avail Server. The AVAIL
notification message is sent to registered applications when a queue in the selected group
becomes active. See the Obtaining the Status of a Queue topic in the Using Message-Based
Services section for an explanation of how to use this message.

Applications must cancel availability notification by sending a message of type
AVAIL_DEREG. The application receives a AVAIL_REG_REPLY message indicating the
status of the operation. It is important to note that if the distribution queue for an AVAIL
registration becomes unavailable, the registration will be automatically deleted by Oracle

• DISABLE_NOT
IFY

• LIST_ALL_CO
NNECTIONS
(Request)

• MRS_JRN_DIS
ABLE

• SBS_REGISTE
R_REQ

• DISABLE_Q_N
OTIFY_REQ

• LIST_ALL_CO
NNECTIONS
(Response
)

• MRS_JRN_DIS
ABLE_REP

• SBS_REGISTE
R_RESP

• DISABLE_Q_N
OTIFY_RES
P

• LIST_ALL_EN
TRIES
(Request)

• MRS_JRN_ENA
BLE

• SBS_SEQUENC
E_GAP

• ENABLE_NOTI
FY

• LIST_ALL_EN
TRIES
(Response
)

• MRS_JRN_ENA
BLE

• SBS_STATUS_
REQ

• ENABLE_Q_NO
TIFY_REQ

• LIST_ALL_GR
OUPS
(Request)

• MRS_JRN_ENA
BLE

• SBS_STATUS_
RESP

• ENABLE_Q_NO
TIFY_RESP

• LIST_ALL_GR
OUPS
(Response
)

• MRS_JRN_ENA
BLE_REP

• TIMER_EXPIR
ED

AVA IL

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-147

MessageQ. A subsequent attempt to deregister AVAIL services for this distribution queue will
result in an error message indicating that the registration does not exist.

Note: The Avail Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _AVAIL

{ q_address target_q;

} AVAIL;

Message Data Fields

Arguments

See Also
AVAIL_DEREG

AVAIL_REG

Table 2-93 Message Data Fields

Field Data Type Script Format Description

target_q q_address DL Address of queue that is now available.

Table 2-94 Arguments

Argument Data Type Mechanism Prototype Access

Target Supplied by
AVAIL_REG

Supplied by
AVAIL_REG

Target Supplied by
AVAIL_REG

Source AVAIL_SERVE
R

PAMS__AVAIL
_SERVER

Source AVAIL_SERVE
R

Class PAMS MSG_CLAS_
PAMS

Class PAMS

Type AVAIL MSG_TYPE_
AVAIL

Type AVAIL

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-148 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

AVAIL_REG_REPLY

UNAVAIL

Example
The AVAIL services example illustrates avail services, avail register, avail deregister, and
getting avail messages. The complete code example called x_avail.c is contained in the
examples directory.

AVAIL_DEREG
Applications can register to receive notification when queues become active or inactive in local
and remote groups by sending an AVAIL_REG message to the Avail Server. When notification
messages are no longer needed, the application sends an AVAIL_DEREG message to the Avail
Server to cancel registration. It is important to note that if the distribution queue for an AVAIL
registration becomes unavailable, the registration will be automatically deleted by Oracle
MessageQ. A subsequent attempt to deregister AVAIL services for this distribution queue will
result in an error message indicating that the registration does not exist. See the Obtaining the
Status of a Queue topic in the Using Message-Based Services section for an explanation of how
to use this message.

Note: The Avail Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _AVAIL_DEREG { int16 version;

int16 filler; q_address target_q;

q_address distribution_q; char req_ack;

} AVAIL_DEREG;

Message Data Fields

Table 2-95 Message Data Fields

Field Data Type Script Format Description

version word DW Format version number. Must be 20.

AVAIL_DEREG

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-149

Arguments

See Also
AVAIL

AVAIL_REG

AVAIL_REG_REPLY

UNAVAIL

Example
The AVAIL services example illustrates avail services, avail register, avail deregister, and
getting avail messages. The complete code example called x_avail.c is contained in the
examples directory.

filler word DW Spacing for RISC alignment.

target_q q_address DL Queue being monitored for its -availability.

distribution_q q_address DL Queue notified of availability.

req_ack Boolean DB If response required, 1; else 0.

Table 2-95 Message Data Fields

Table 2-96 Arguments

Argument Script Format pams_get_msg Format

Target AVAIL_SERVER PAMS__AVAIL_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type AVAIL_DEREG MSG_TYPE_AVAIL_DEREG

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-150 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

AVAIL_REG
Applications can register to receive notification when queues become active or inactive in local
and remote groups by sending an AVAIL_REG message to the Avail Server. See the Obtaining
the Status of a Queue topic in the Using Message-Based Services section for an explanation of
how to use this message. If the application detaches from the distribution queue, the AVAIL
registration is automatically deleted. The application must cancel notification, regardless of
queue type, by sending a message of type AVAIL_DEREG. The application receives a
AVAIL_REG_REPLY message indicating the status of the operation.

Note: The Avail Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _AVAIL_REG { int16 version;

int16 filler; q_address target_q;

q_address distribution_q; int32 timeout;

} AVAIL_REG;

Message Data Fields

Table 2-97 Message Data Fields

Field Data Type Script Format Description

version word DW Format version number. Must be 31.

filler word DW Spacing for RISC alignment.

target_q q_address DL Queue to be monitored for availability.

distribution_q q_address DL Queue to receive availability messages.

timeout int32 DL Interval (specified in seconds) after which the
function should timeout.

AVA IL_REG_REPLY

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-151

Arguments

See Also
AVAIL_REG_REPLY

AVAIL

UNAVAIL

AVAIL_DEREG

Example
The AVAIL services example illustrates avail services, avail register, avail deregister, and
getting avail messages. The complete code example called x_avail.c is contained in the
examples directory.

AVAIL_REG_REPLY
Applications register to receive notification when queues become active or inactive in local and
remote groups by sending an AVAIL_REG message to the Avail Server. The
AVAIL_REG_REPLY message indicates whether the application has successfully registered or
deregistered from receiving notification messages. See the Obtaining the Status of a Queue
topic in the Using Message-Based Services section for an explanation of how to use this
message.

Note: The Avail Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

Table 2-98 Arguments

Argument Script Format pams_get_msg Format

Target AVAIL_SERVER PAMS__AVAIL_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type AVAIL_REG MSG_TYPE_AVAIL_REG

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-152 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

C Message Structure
typedef struct _AVAIL_REG_REPLY { int16 status;

uint16 reg_id; int16 number_reg;

} AVAIL_REG_REPLY;

Message Data Fields

Arguments

See Also
AVAIL_REG

AVAIL_DEREG

Table 2-99 Message Data Fields

Field Data Type Script Format Description

status word DW Status code: 1 = success;

0 = failure.

reg_id unsigned word DW Returned subscription ID.

number_reg word DW Number of registrants left on the Avail list.

Table 2-100 Arguments

Argument Script Format pams_get_msg Format

Target Sender of AVAIL_REG/DEREG Sender of AVAIL_REG/DEREG

Source AVAIL_SERVER PAMS__AVAIL_SERVER

Class PAMS MSG_CLAS_PAMS

Type AVAIL_REG_REPLY MSG_TYPE_AVAIL_REG_REPLY

DISABLE_NOT IFY

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-153

AVAIL

UNAVAIL

Example
The AVAIL services example illustrates avail services, avail register, avail deregister, and
getting avail messages. The complete code example called x_avail.c is contained in the
examples directory.

DISABLE_NOTIFY
Applications can register to receive notification when cross-group links are established and lost
by sending an ENABLE_NOTIFY message to the Connect Server. When an application no
longer needs to receive notification messages, it deregisters by sending a DISABLE_NOTIFY
message to the Connect Server. The DISABLE_NOTIFY message can stop notification of
cross-group link changes. See the Obtain Notification of Cross-Group Links Established and
Lost topic in the Using Message-Based Services section for an explanation of how to use this
message.

Note: The Connect Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _ENABLE_NOTIFY { char reserved; char connection_flag;}

ENABLE_NOTIFY;

Message Data Fields

Table 2-101 Message Data Fields

Field Data Type Script Format Description

reserved unsigned char DB Reserved for use by Oracle
MessageQ.

connection_flag unsigned char DB Boolean flag to cancel cross-group
connection notification, 1; else 0.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-154 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also
ENABLE_NOTIFY

LINK_COMPLETE

LINK_LOST

DISABLE_Q_NOTIFY_REQ
Applications can register to receive notification when queue states change in local or remote
groups by sending an ENABLE_Q_NOTIFY_REQ message. The DISABLE_Q_NOTIFY_REQ
is sent to the Queue Server when the application no longer needs to receive notification
messages. See the Receiving Attachment Notifications topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _Q_NOTIFY_REQ { int32 version;

int32 user_tag;

} Q_NOTIFY_REQ;

Table 2-102 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type DISABLE_NOTIFY MSG_TYPE_DISABLE_NOTIFY

DISABLE_Q_NOT IFY_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-155

Message Data Fields

Arguments

See Also
DISABLE_Q_NOTIFY_RESP

ENABLE_Q_NOTIFY_REQ

ENABLE_Q_NOTIFY_RESP

Q_UPDATE

DISABLE_Q_NOTIFY_RESP
Applications can register to receive notification when queue states change in local or remote
groups by sending an ENABLE_Q_NOTIFY_REQ message. The DISABLE_Q_NOTIFY_REQ

Table 2-103 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Table 2-104 Arguments

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS__QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type DISABLE_Q_NOTIFY_REQ MSG_TYPE_DISABLE_Q_
NOTIFY_REQ

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-156 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

message is sent to the Queue Server when the application no longer needs to receive
notification messages. The DISABLE_Q_NOTIFY_RESP message indicates whether the
application is successfully deregistered from receiving notification messages. See the
Receiving Attachment Notifications topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
#define MAX_NUMBER_Q_RECS 50 typedef struct _Q_NOTIFY_RESP {int32 version;

int32 user_tag; int32 status_code; int32 last_block_flag; int32

number_q_recs; struct{

q_address q_num; q_address q_owner; int32q_type;int32q_active_flag; int32

q_attached_flag; int32q_owner_pid;} q_rec [50];} Q_NOTIFY_RESP;

Message Data Fields

Table 2-105 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error 1=Success

-2=Refused

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues
(SQs)).

ENABLE_NOT IFY

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-157

Arguments

See Also
DISABLE_Q_NOTIFY_REQ

ENABLE_Q_NOTIFY_REQ

ENABLE_Q_NOTIFY_RESP

Q_UPDATE

ENABLE_NOTIFY
Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTIFY message to the Connect Server. See the Obtain

q_type int32 DL Queue type (numerically encoded P, S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID).

Table 2-105 Message Data Fields

Table 2-106 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS__QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type DISABLE_Q_NOTIFY_RESP MSG_TYPE_DISABLE_Q_ NOTIFY_RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-158 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Notification of Cross-Group Links Established and Lost topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _ENABLE_NOTIFY { char reserved;

char connection_flag;

} ENABLE_NOTIFY;

Message Data Fields

Arguments

Table 2-107 Message Data Fields

Field Data Type Script Format Description

reserved unsigned char DB Reserved for use by
Oracle MessageQ.

connection_flag unsigned char DB Boolean flag for
cross-group connection
notification, 1; else 0.

Table 2-108 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type ENABLE_NOTIFY MSG_TYPE_ENABLE_NOTIFY

ENABLE_Q_NOTIFY_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-159

See Also
DISABLE_NOTIFY

LINK_COMPLETE

LINK_LOST

ENABLE_Q_NOTIFY_REQ
Applications can register to receive notification when queue states change in local or remote
groups by sending an ENABLE_Q_NOTIFY_REQ message. This message requests a list of all
active queues and then subsequent notification when queues become attached or detached and
active or inactive. See the Receiving Attachment Notifications topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _Q_NOTIFY_REQ { int32 version;

int32 user_tag;

} Q_NOTIFY_REQ;

Message Data Fields

Table 2-109 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-160 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also
DISABLE_Q_NOTIFY_REQ

DISABLE_Q_NOTIFY_RESP

ENABLE_Q_NOTIFY_RESP

Q_UPDATE

ENABLE_Q_NOTIFY_RESP
Applications can register to receive notification when queue states change in local or remote
groups by sending an ENABLE_Q_NOTIFY_REQ message. The ENABLE_Q_NOTIFY_RESP
message delivers a list of all active queues and then subsequently notifies the application of
attachments, detachments, and changes to active and inactive status using the Q_UPDATE
message. See the Receiving Attachment Notifications topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
#define MAX_NUMBER_Q_RECS 50 typedef struct _Q_NOTIFY_RESP {int32 version;

int32 user_tag; int32 status_code;int32 last_block_flag; int32

number_q_recs; struct{

Table 2-110 Arguments

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS__QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type ENABLE_Q_NOTIFY_REQ MSG_TYPE_ENABLE_Q_NOTIFY_REQ

ENABLE_Q_NOT IFY_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-161

q_address q_num; q_address q_owner; int32q_type;int32q_active_flag; int32

q_attached_flag; int32q_owner_pid;} q_rec [50];} Q_NOTIFY_RESP;

Message Data Fields

Table 2-111 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error 1=Success

-2=Refused

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues
(SQs)).

q_type int32 DL Queue type (numerically encoded P, S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID).

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-162 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also
DISABLE_Q_NOTIFY_REQ

DISABLE_Q_NOTIFY_RESP

ENABLE_Q_NOTIFY_REQ

Q_UPDATE

LINKMGT_REQ
Applications can use link management messages to explicitly control cross-group connections.
Use the LINKMGT_REQ message to request a connection to a remote group, to disconnect from
a remote group, or to obtain information about a remote Oracle MessageQ group. See the
Controlling Cross-Group Links topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _TADDRESS { int32 len;char str [16];} TADDRESS;

typedef struct _NODENAME { int32 len;char str [255];} NODENAME;

Table 2-112 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS__QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type ENABLE_NOTIFY_RESP MSG_TYPE_ENABLE_NOTIFY_RESP

L INKMGT_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-163

typedef struct _LINKMGT_REQ { int32 version;int32 user_tag; int32

function_code; int32 group_number; int32 connect_type;int32

reconnect_timer; int32 window_size; int32 window_delay;int32

reserved_space [10];TADDRESS transport_addr; NODENAME node_name;}

LINKMGT_REQ;

Message Data Fields

Table 2-113 Message Data Fields

Field Data Type Script
Format

Description

version int32 DL Message version.

user_tag int32 DL User-specified code to identify this request.

function_code int32 DL Function of the message using
PSYM_LINKMGT_CMD:
_ENABLE

_DISABLE

_INQUIRY

_CONNECT

_DISCONNECT

Note: _INQUIRY_CONNECT and _DISCONNECT :
Not supported in this release for Oracle Tuxedo MP
environment.

group_number int32 DL Group number to receive action; valid values
are between 1 and 32,000;
PSYM_LINKMGT_ALL_GROUPS indicates all known

connect_type int32 DL Type of transport to use, as follows:

PSYM_LINKMGT_TCPIP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-164 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

reconnect_timer int32 DL Time it takes for the COM Server to reconnect to a
communications link. Enter the number of seconds or the
following values:

PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS

window_size int32 DL Size of transmission window (cross-group protocol
Version 3.0 and higher). Enter the number of messages or
the following value:

PSYM_LINKMGT_USE_PREVIOUS

window_delay int32 DL Transmission window delay in seconds (cross-group
protocol Version

3.0 and higher). Enter the number of seconds or the
following value:

PSYM_LINKMGT_USE_PREVIOUS

reserved_space 10-int32
array

DL(10) Reserved for Oracle MessageQ use.

transport_addr_l
en

int32 DL Length of transport address. Values 0 to 16 bytes; 0 = use
previous setting.

transport_addr char char

str *

A Transport address string that is 16 bytes in length; the
TCP/IP port ID.

node_name_len int32 DL Length of node name string; 0 = use previous known value.

node_name char A ASCII text of node name; length determined
by node_name_len up to 255 characters.

Table 2-113 Message Data Fields

L INKMGT_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-165

Arguments

See Also

LINKMGT_RESP

LINKMGT_RESP
Applications can use link management messages to explicitly control cross-group connections.
Use the LINKMGT_REQmessage to request a connection to a remote group, to disconnect from
a remote group, or to obtain information about a remote Oracle MessageQ group. The
LINKMGT_RESP message notifies the requesting application if the connection or
disconnection request was successful and supplies information about the cross-group
connection. See the Controlling Cross-Group Links topic in the Using Message-Based Services
section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data formats. This
message is also RISC aligned.

C Message Structure
typedef struct _TADDRESS { int32 len;char str [16];

} TADDRESS;typedef struct _NODENAME { int32 len;

char str [255];} NODENAME;

Table 2-114 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LINKMGT_REQ MSG_TYPE_LINKMGT_REQ

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-166 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

typedef struct _LINKMGT_RESP { int32 version;int32 user_tag; int32 status;

int32 group_number; int32 in_link_state; int32 out_link_state; int32

connect_type; int32 platform_id; int32 reconnect_timer; int32 window_size;

int32 window_delay;int32 reserved_space [10]; TADDRESS transport_addr;

NODENAME node_name;} LINKMGT_RESP;

Message Data Fields

Table 2-115 Message Data Fields

Field Data Type Script
Format

Description

version int32 DL Message version.

user_tag int32 DL User-specified code from request.

status int32 DL Completion status

group_number int32 DL Group number to receive action. Valid values are
between 1 and 32,000;

PSYM_LINKMGT_ALL_GROUPS indicates all
in_link_state int32 DL State of inbound link at time of request. Values are:

PSYM_LINKMGT_UNKNOWN
PSYM_LINKMGT_NOCNT
PSYM_LINKMGT_CONNECTED
PSYM_LINKMGT_DISABLED

out_link_state int32 DL State of outbound link at time of request; same
values as

in_link_state.
connect_type int32 DL Type of transport to use as follows:

L INKMGT_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-167

platform_id int32 DL Platform type preceded by the prefix
PSYM_PLATFORM. Valid values are:

VAX_VMS VAX_ULTRIX RISC_ULTRIX

HP9000_HPUX MOTOROLA_VR32 SPARC_SUNOS

IBM_RS6000_AIX OS2

MSDOS PDP11_RSX VAXELN MACINTOSH

SCO_UNIX M68K VMS_AXP UNIX WINDOWSNT

OSF1_AXP DYNIX_X86 UNKNOWN

reconnect_ti

mer

int32 DL Time it takes for the COM Server to

reconnect to a communications link.

Enter the number of seconds or the

following values:

PSYM_LINKMGT_NO_TIMER

window_size int32 DL Size of transmission window

(cross-group protocol Version 3.0 and

higher).
window_delay int32 DL Transmission window delay in seconds

(cross-group protocol Version 3.0 and

higher).

Table 2-115 Message Data Fields

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-168 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Status Code

reserved_spa

ce

10-

int32

array

DL(10) Reserved for Oracle MessageQ use.

transport_ad

dr_ len

int32 DL Length of transport address. Values 0

to 16 bytes; 0 = use previous setting.

transport_ad

dr

char A Transport address string 16 bytes in

length, the TCP/IP port ID.

node_name_le

n

int32 DL Length of node name string. 0 = use

previous known value.

node_name char A ASCII text of node name; length
determined by node_name_len up to 255
characters.

Table 2-115 Message Data Fields

Table 2-116 Status Code

Status Code Description

PSYM_LINKMGT_ALREADYUP Link already connected.

PSYM_LINKMGT_MSGCONTENT Message incomplete or content inconsistent with
dialog.

PSYM_LINKMGT_MSGFMT Format error in dialog.

PSYM_LINKMGT_NOGROUP Group is unknown.

PSYM_LINKMGT_NOPRIV No privilege for attempted operation.

PSYM_LINKMGT_NOTRANSPORT Requested transport is not available.

PSYM_LINKMGT_NOTSUPPORTED Feature not supported.

L INK_COMPLETE

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-169

Arguments

See Also
LINKMGT_REQ

LINK_COMPLETE
Applications can register to receive notification when cross-group links are established and lost
by sending an ENABLE_NOTIFY message to the Connect Server. Registered applications
receive a LINK_COMPLETE message each time a cross-group connection occurs. See the
Obtain Notification of Cross-Group Links Established and Lost topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

PSYM_LINKMGT_OPERATIONFAIL Requested operation failed.

PSYM_LINKMGT_SUCCESS Normal successful return.

Table 2-116 Status Code

Table 2-117 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LINKMGT_RESP MSG_TYPE_LINKMGT_RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-170 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

C Message Structure
typedef struct _LINK_NOTIFICATION { int16 group_number;

int16 filler1; char os_type; char filler2;

} LINK_NOTIFICATION;

Message Data Fields

Arguments

See Also
DISABLE_NOTIFY

Table 2-118 Message Data Fields

Field Data Type Script Format Description

group_number word DW Group address associated with link.

filler1 word DW Reserved for Oracle MessageQ.

os_type byte A(1) Code indicating operating system of
remote node.

filler2 byte XB Reserved for Oracle MessageQ.

Table 2-119 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LINK_COMPLETE MSG_TYPE_LINK_COMPLETE

L INK_LOST

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-171

ENABLE_NOTIFY

LINK_LOST

LINK_LOST
Applications can register to receive notification when cross-group links are established and lost
by sending an ENABLE_NOTIFY message to the Connect Server. Registered applications
receive a LINK_LOST message each time a cross-group connection is lost. See the Obtain
Notification of Cross-Group Links Established and Lost topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
typedef struct _LINK_NOTIFICATION { int16 group_number;int16 filler1; char

os_type; char filler2;} LINK_NOTIFICATION;

Message Data Fields

Table 2-120 Message Data Fields

Field Data Type Script Format Description

group_number word DW Group address associated with link.

filler1 word DW Reserved for Oracle MessageQ.

os_type byte A(1) Code indicating operating system of
remote node.

filler2 byte XB Reserved for Oracle MessageQ.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-172 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also
DISABLE_NOTIFY

ENABLE_NOTIFY

LINK_COMPLETE

LIST_ALL_CONNECTIONS (Request)
An application can request a listing of all active and configured cross-group connections by
sending a LIST_ALL_CONNECTIONS message to the Connect Server. The reply to this
request is a variable-length message of the same type and class containing the cross-group
connection information. See the Listing Cross-Group Connections, Entries, and Groups topic
in the Using Message-Based Services section for an explanation of how to use this message.

Note: This message is RISC aligned.

C Message Structure
None.

Message Data Fields
None.

Table 2-121 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LINK_LOST MSG_TYPE_LINK_LOST

L IST_ALL_CONNECT IONS (Response)

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-173

Arguments

See Also
LIST_ALL_CONNECTIONS response message

LIST_ALL_ENTRIES (Request)

LIST_ALL_ENTRIES (Response)

LIST_ALL_GROUPS (Request)

LIST_ALL_GROUPS (Response)

LIST_ALL_CONNECTIONS (Response)
An application can request a listing of all active and configured cross-group connections by
sending a LIST_ALL_CONNECTIONS message to the Connect Server. The reply to this
request is a variable length-message of the same type and class containing the cross-group
connection information. To read the information returned, the application must total the number
of bytes in the reply and divide by the cross-group entry length, which is 20 bytes, to determine
the number of records returned. See the Listing Cross-Group Connections, Entries, and Groups
topic in the Using Message-Based Services section for an explanation of how to use this
message.

This message does not return any information on groups with no link connection. The state field
for LIST_ALL_CONNECTIONS should always be 3 (linked).

Note: The Connect Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The

Table 2-122 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_CONNECTIONS MSG_TYPE_LIST_ALL_ -CONNECTIONS

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-174 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
typedef struct _GROUP_RECORD { int16 group_number;char group_name[4]; char

uic[3];char os_type; char node[6]; char state;char reserved[3];}

GROUP_RECORD;

Message Data Fields

Note: Treat variable "state" as int type.

Arguments

Table 2-123 Message Data Fields

Field Data Type Script Format Description

group_number word DW Group address number.

group_name 4-char array A(4) Name truncated to 4 characters.

uic 3-char array A(3) Octal group user identification code

os_type char A(1) Operating system type of group
(OpenVMS only)‘.

node 6-char array A(6) Network node name.

state char A(1) 1=No link 2=Pending 3=Linked

reserved 3-char ZB 3 Reserved for Oracle MessageQ.

Table 2-124 Arguments

Argument Script Format pams_get_msg Format

Target Supplied by Oracle MessageQ Supplied by Oracle MessageQ

L IST_ALL_ENTRIES (Request)

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-175

See Also
LIST_ALL_CONNECTIONS request message

LIST_ALL_ENTRIES (Request)

LIST_ALL_ENTRIES (Response)

LIST_ALL_GROUPS (Request)

LIST_ALL_GROUPS (Response)

LIST_ALL_ENTRIES (Request)
An application can request a listing of all attached and configured queues in a group by sending
a LIST_ALL_ENTRIES message to the Connect Server. The reply to this request is a
variable-length message of the same type and class containing the queue information. See the
Listing Cross-Group Connections, Entries, and Groups topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: This message is RISC aligned.

C Message Structure
None.

Message Data Fields
None.

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_CONNECTIONS MSG_TYPE_LIST_ALL_ -CONNECTIONS

Table 2-124 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-176 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also

LIST_ALL_ENTRIES response message

LIST_ALL_CONNECTIONS (Request)

LIST_ALL_CONNECTIONS (Response)

LIST_ALL_GROUPS (Request)

LIST_ALL_GROUPS (Response)

LIST_ALL_ENTRIES (Response)
An application can request a listing of all attached and configured queues in a group by sending
a LIST_ALL_ENTRIES message to the Connect Server. The reply to this request is a variable
length message of the same type and class containing the queue information. To read the
information returned, the application must total the number of bytes in the reply and divide by
the queue entry length, which is 24 bytes, to determine the number of records returned. See the
Listing Cross-Group Connections, Entries, and Groups topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The

Table 2-125 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_ENTRIES MSG_TYPE_LIST_ALL_ ENTRIES

L IST_ALL_ENTRIES (Response)

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-177

sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
typedef struct _QLIST_RECORD { char q_name [20]; int16 q_number; char

attach_flag; char reserved;} QLIST_RECORD;

Message Data Fields

Note: Treat variable " attach_flag" as int type.

Arguments

Table 2-126 Message Data Fields

Field Data Type Script Format Description

q_name 20-char array A(20) Queue name,
truncated to fit.

q_number word DW Local queue
address number.

attach_flag Char DB 1=Attached

0=Unattached

reserved byte ZB Reserved for
Oracle

Table 2-127 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_ENTRIES MSG_TYPE_LIST_ALL_ENTRIES

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-178 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
LIST_ALL_ENTRIES request message

LIST_ALL_GROUPS (Request)

LIST_ALL_GROUPS (Response)

LIST_ALL_CONNECTIONS (Request)

LIST_ALL_CONNECTIONS (Response)

LIST_ALL_GROUPS (Request)
An application can request a listing of all groups on a message queuing bus by sending a
LIST_ALL_GROUPS message to the Connect Server. The reply to this request is a
variable-length message of the same type and class containing the group information. See the
Listing Cross-Group Connections, Entries, and Groups topic in the Using Message- Based
Services section for an explanation of how to use this message.

Note: This message is RISC aligned.

C Message Structure
None.

Message Data Fields
None.

Arguments

Table 2-128 Arguments

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS__CONNECT_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_GROUPS MSG_TYPE_LIST_ALL_GROUPS

L IST_ALL_GROUPS (Response)

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-179

See Also

LIST_ALL_GROUPS response message

LIST_ALL_CONNECTIONS (Request)

LIST_ALL_CONNECTIONS (Response)

LIST_ALL_ENTRIES (Request)

LIST_ALL_ENTRIES (Response)

LIST_ALL_GROUPS (Response)
An application can request a listing of all groups, connected and unconnected, on a message
queuing bus by sending a LIST_ALL_GROUPS message to the Connect Server. The reply to
this request is a variable-length message of the same type and class containing the group
information. To read the information returned, the application must total the number of bytes
in the reply and divide by the group entry length, which is 18 bytes, to determine the number
of records returned. See the Listing Cross-Group Connections, Entries, and Groups topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
typedef struct _LIST_ALL_RESP { int16 group_number;

char group_name [4];

char uic_number [3]; charoperating_system; chardecnet_node [6]; char

connection_state; char reserved[3];

} LIST_ALL_RESP;

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-180 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Message Data Fields

Arguments

Table 2-129 Message Data Fields

Field Data Type Script
Format

Description

group_number word DW Group address number.

group_name 4-char
array

A(4) Name truncated to 4 characters.

uic_number 3-char
array

A(3) Octal group user identification code (UIC).

operating_syste
m

char A(1) Operating system type of group.

decnet_node 6-char
array

A(6) Current DECnet node name. This can also be the TCP/IP node
name. TCP/IP node names longer than 6 characters are
truncated.

connection_state char A(1) 1=No link 2=Pending 3=Linked

reserved 3-char
(VMS)
1-char
(UNIX)

ZB Reserved for Oracle MessageQ.

Table 2-130 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

L IST_ALL_Q_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-181

See Also

LIST_ALL_GROUPS request message

LIST_ALL_CONNECTIONS (Request)

LIST_ALL_CONNECTIONS (Response)

LIST_ALL_ENTRIES (Request)

LIST_ALL_ENTRIES (Response)

LIST_ALL_Q_REQ
The LIST_ALL_Q_REQ message is sent to the Queue Server to request a list of all attached
permanent and temporary queues for a local or remote group. See the Listing Attached Queues
in a Group topic in the Using Message-Based Services section for an explanation of how to use
this message.

Note: Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data formats. This
message is also RISC aligned.

C Message Structure
typedef struct _Q_NOTIFY_REQ { int32 version;

int32 user_tag;

} Q_NOTIFY_REQ;

Source CONNECT_SERVER PAMS__CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_GROUPS MSG_TYPE_LIST_ALL_GROUPS

Table 2-130 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-182 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Message Data Fields

Arguments

See Also
LIST_ALL_Q_RESP

LIST_ALL_Q_RESP
The LIST_ALL_Q_RESP message provides a list of all permanent queues and all attached
temporary queues for a local or remote group. This information is requested by sending a
LIST_ALL_Q_REQ message to the Queue Server. Because the response message may contain
a long list of queue names, the application must allocate a sufficient buffer size to store the
information returned. See Listing Attached Queues in a Group in Chapter 5, "Using
Message-Based Services" for an explanation of how to use this message.

Table 2-131 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Table 2-132 Arguments

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS__QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_Q_REQ MSG_TYPE_LIST_ALL_Q_REQ

L IST_ALL_Q_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-183

Note: The Queue Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
#define MAX_NUMBER_Q_RECS 50 typedef struct _Q_NOTIFY_RESP {

int32 version; int32 user_tag; int32 status_code;

int32 last_block_flag; int32 number_q_recs; struct{

q_address q_num; q_address q_owner; int32q_type;

int32 q_active_flag; int32q_attached_flag; int32q_owner_pid;

} q_rec [50];

} Q_NOTIFY_RESP;

Message Data Fields

Table 2-133 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error 1=Success

-2=Refused

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues
(SQs)).

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-184 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Arguments

See Also
LIST_ALL_Q_REQ

LOCATE_Q_REP
The pams_locate_q function requests the queue address for a queue name. When this function
is performed asynchronously, the results are returned in the LOCATE_Q_REP message. This
message provides the location in the search list where the name is found, the status of the
operation, a tag that can be set by the user, and the queue address associated with the name.

Note: This message is RISC aligned.

q_type int32 DL Queue type (numerically encoded P,
S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID). On
Windows NT systems, thread identifier is
returned.

Table 2-133 Message Data Fields

Table 2-134 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS__QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_Q_RESP MSG_TYPE_LIST_ALL_Q_RESP

LOCATE_Q_REP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-185

C Message Structure
typedef struct _LOCATE_Q_REP { int32 version;

int32 search_loc; q_address object_handle; int32 status;

int32 trans_id; char q_name [256];

} LOCATE_Q_REP;

Message Data Fields

Arguments

Table 2-135 Message Data Fields

Field Data Type Script Format Description

version int32 DL Format version number.

search_loc int32 DL Location in which name is found.

object_handle q_address DL Queue address associated with name.

status int32 DL Return code from pams_locate_q.

trans_id int32 DL User-specified tag.

q_name 256-character array A(256) Name to locate.

Table 2-136 Arguments

Argument Script Format pams_get_msg Format

Target Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-186 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

MRS_ACK
The MRS_ACK message acknowledges the delivery of a recoverable message at the delivery
interest point when a nonblocking request is issued. It responds to a pams_put_msg request
when delivery modes of PDEL_MODE_AK_DQF, PDEL_MODE_AK_SAF, or
PDEL_MODE_AK_CONF are specified. Status codes for the send operation are extracted from
the PAMS Status Block (PSB), an argument value which is returned to the pams_get_msg,
pams_get_msga, and pams_get_msgw function when the recoverable message is read.
The status codes for the psb and uma arguments are listed in the Status Codes section of this
description.

Note: This message is RISC aligned.

C Message Structure
None.

Message Data Fields
None.

Arguments

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class PAMS MSG_CLAS_PAMS

Type LOCATE_Q_REP MSG_TYPE_LOCATE_Q_REP

Table 2-136 Arguments

Table 2-137 Arguments

Argument Script Format pams_get_msg Format

Target Sender program Sender program

Source MRS_SERVER PAMS__MRS_SERVER

MRS_ACK

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-187

Status Code

Class MRS MSG_CLAS_MRS

Type MRS_ACK MSG_TYPE_MRS_ACK

Table 2-137 Arguments

Table 2-138 Status Code

Message PSB Status

PAMS__DQF_DEVICE_FAIL Message is not recoverable; destination queue file (DQF)
I/O failed.

PAMS__ENQUEUED Message is recoverable.

PAMS__MRS_RES_EXH Message is not recoverable; MRS resource exhaustion.

PAMS__NO_DQF Message is not recoverable; no DQF for target queue.

PAMS__NO_SAF Message is not recoverable; no SAF file for target queue.

PAMS__SAF_DEVICE_FAIL Message is not recoverable; SAF I/O failed.

PAMS__SAF_FORCED Message is written to SAF file to maintain
first-in/first-out (FIFO) order.

PAMS__SENDER_TMOEXPIRED Send timeout expired prior to completion of MRS
actions.

PAMS__STORED Message is recoverable in store and forward (SAF) file.
(Delivery mode was

PDEL_MODE_AK_SAF.)

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-188 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

UMA Status

Table 2-139 UMA Status

Message UMA Status

PAMS__DISC_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded.

PAMS__DISC_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message could not be discarded.

PAMS__DISCL_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded after logging
recoverability failure.

PAMS__DISCL_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; recoverability failure could not be logged
or message could not be discarded.

PAMS__DLJ_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to dead letter journal
(DLJ).

PAMS__DLJ_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DLJ; dead letter journal write failed.

PAMS__DLQ_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message queued to dead letter queue.

PAMS__DLQ_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message could not be queued to dead
letter queue.

PAMS__NO_UMA Message is recoverable; undeliverable message action (UMA) not
executed.

PAMS__RTS_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned to sender.

PAMS__RTS_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be returned to sender.

MRS_JRN_DISABLE

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-189

MRS_JRN_DISABLE
Disables journaling for a running message queuing group. This service is used to disable
journaling before failing over auxiliary journals. See the Controlling Journaling to the PCJ File
topic in the Using Message-Based Services section for an explanation of how to use this
message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is sent
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
/**/

/* STATUS VALUES FOR JRN_ENABLE message*/

/**/

#define JRN_SET_ERROR 0

#define JRN_SET_SUCCESS 1

#define JRN_SET_REFUSED 2

#define JRN_SET_ALREADY_DISABLED 3

#define JRN_SET_ALREADY_ENABLED 4

#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL { int32 version;

PAMS__SAF_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from SAF file.

PAMS__SAF_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_SAF; SAF write failed.

Table 2-139 UMA Status

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-190 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

int32 dqf_status; int32 saf_status; int32 pcj_status; int32 dlj_status;

} MRS_JRN_SET_ALL;

Message Data Fields

Table 2-140 Message Data Fields

Field Data Type Script Format Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

saf_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

pcj_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available
dlj_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

MRS_JRN_DISABLE_REP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-191

Arguments

See Also
MRS_JRN_DISABLE_REP

MRS_JRN_ENABLE

MRS_JRN_ENABLE_REP

MRS_JRN_DISABLE_REP
Applications can request to disable journaling for a running message queuing group by sending
an MRS_JRN_DISABLE message to the MRS Server. The MRS_JRN_DISABLE_REP
message returns the status of the request. This service is used before failing over auxiliary
journals. See the Controlling Journaling to the PCJ File topic in the Using Message- Based
Services section for an explanation of how to use this message. This service is available on
OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
/**/

/* STATUS VALUES FOR JRN_ENABLE message*/

/**/

Table 2-141 Arguments

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS__MRS_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_JRN_DISABLE MSG_TYPE_MRS_JRN_DISABLE

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-192 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

#define JRN_SET_ERROR 0

#define JRN_SET_SUCCESS 1

#define JRN_SET_REFUSED 2

#define JRN_SET_ALREADY_DISABLED 3

#define JRN_SET_ALREADY_ENABLED 4

#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL { int32 version;

int32 dqf_status; int32 saf_status; int32 pcj_status; int32 dlj_status;

} MRS_JRN_SET_ALL;

Message Data Fields

Table 2-142 Message Data Fields

Field Data Type Script Format Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

saf_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

pcj_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

MRS_JRN_ENABLE

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-193

Arguments

See Also
MRS_JRN_DISABLE

MRS_JRN_ENABLE

MRS_JRN_ENABLE_REP

MRS_JRN_ENABLE
Enables journaling for a running message queuing group after it has been disabled using the
MRS_JRN_DISABLE message. This service is used before failing over auxiliary journals. See

dlj_status int32 DL 0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

Table 2-142 Message Data Fields

Table 2-143 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS__MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_JRN_DISABLE_REP MSG_TYPE_MRS_JRN_
DISABLE_REP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-194 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

the Controlling Journaling to the PCJ File topic in the Using Message-Based Services section
for an explanation of how to use this message. This service is available on OpenVMS systems
only.

Note: The MRS Server does not perform endian conversion when this message is sent
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
/**/

/* STATUS VALUES FOR JRN_ENABLE message*/

/**/

#define JRN_SET_ERROR 0

#define JRN_SET_SUCCESS 1

#define JRN_SET_REFUSED 2

#define JRN_SET_ALREADY_DISABLED 3

#define JRN_SET_ALREADY_ENABLED 4

#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL { int32 version;

int32 dqf_status; int32 saf_status; int32 pcj_status; int32 dlj_status;

} MRS_JRN_SET_ALL;

Message Data Fields

Table 2-144 Message Data Fields

Field Data Type Script Format Description

version int32 DL Format version number. Must be 0.

MRS_JRN_ENABLE

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-195

Arguments

dqf_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

saf_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

pcj_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available
dlj_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available

Table 2-144 Message Data Fields

Table 2-145 Arguments

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS__MRS_SERVER

Source Supplied by Oracle MessageQ Supplied by Oracle MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_JRN_ENABLE MSG_TYPE_MRS_JRN_ENABLE

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-196 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
MRS_JRN_DISABLE

MRS_JRN_DISABLE_REP

MRS_JRN_ENABLE_REP

MRS_JRN_ENABLE_REP
Applications can request to reenable journaling for a running message queuing group after it
has been disabled by sending an MRS_JRN_ENABLE message to the MRS Server. The
MRS_JRN_ENABLE_REP message returns the status of the request. This service is used with
MRS before failing over auxiliary journals. See the Controlling Journaling to the PCJ File topic
in the Using Message-Based Services section for an explanation of how to use this message.
This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is received
between processes that run on systems that use different hardware data formats. The
sender program must convert the message to the endian format of the target system to
ensure that the message data is correctly interpreted. This message is RISC aligned.

C Message Structure
/**/

/* STATUS VALUES FOR JRN_ENABLE message*/

/**/

#define JRN_SET_ERROR 0

#define JRN_SET_SUCCESS 1

#define JRN_SET_REFUSED 2

#define JRN_SET_ALREADY_DISABLED 3

#define JRN_SET_ALREADY_ENABLED 4

#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL { int32 version;

int32 dqf_status; int32 saf_status; int32 pcj_status; int32 dlj_status;

};

MRS_JRN_ENABLE_REP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-197

typedef struct MRS_JRN_SET_ALL;

Message Data Fields

Arguments

Table 2-146 Message Data Fields

Field Data Type Script Format Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

saf_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

pcj_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available
dlj_status int32 DL 0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available

Table 2-147 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-198 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
MRS_JRN_DISABLE

MRS_JRN_DISABLE_REP

MRS_JRN_ENABLE

Q_UPDATE
Applications can register to receive notification when queue states change in local or remote
groups by sending an ENABLE_Q_NOTIFY_REQ message. The ENABLE_Q_NOTIFY_RESP
message delivers a list of all active queues and then subsequently notifies the application of
attachments, detachments, and changes to active and inactive status using the Q_UPDATE
message. See the Receiving Attachment Notifications topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
#define MAX_NUMBER_Q_RECS 50 typedef struct _Q_NOTIFY_RESP {

int32 version; int32 user_tag; int32 status_code;

int32 last_block_flag; int32 number_q_recs; struct{

q_address q_num; q_address q_owner; int32q_type;

int32 q_active_flag; int32q_attached_flag; int32q_owner_pid;

} q_rec [50];

} Q_NOTIFY_RESP;

Source MRS_SERVER PAMS__MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_JRN_ENABLE_REP MSG_TYPE_MRS_JRN_ENABLE_REP

Table 2-147 Arguments

Q_UPDATE

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-199

Message Data Fields

Arguments

Table 2-148 Message Data Fields

Field Data Type Script Format Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error 1=Success 2=Refused

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues
(SQs)).

q_type int32 DL Queue type (numerically encoded P, S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID).

Table 2-149 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-200 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
ENABLE_Q_NOTIFY_REQ

ENABLE_Q_NOTIFY_RESP

DISABLE_Q_NOTIFY_REQ

DISABLE_Q_NOTIFY_RESP

SBS_DEREGISTER_REQ
Requests SBS deregistration by exact match of MOT and distribution queue or by registration
ID. This service replaces the SBS_DEREG service.

Note: The SBS Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_DEREGISTER_REQ { int32 version;

int32 user_tag; int32 mot;

q_address distribution_q; int32 reg_id;

int32 req_ack;

} SBS_DEREGISTER_REQ;

Source QUEUE_SERVER PAMS__QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type Q_UPDATE MSG_TYPE_Q_UPDATE

Table 2-149 Arguments

SBS_DEREGISTER_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-201

Message Data Fields

Arguments

Table 2-150 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code to identify this request.

mot int32 DL The MOT broadcast stream from which the
program wants to deregister. 0 if unused.

distribution_q q_address DW, DW The Oracle MessageQ address of the
distribution queue of the registration. A zero in
the group number portion of the queue address
automatically is replaced with the group

reg_id int32 DL The ID of the registration request to deregister.
0 if unused.

req_ack int32 DL 1 if registration acknowledgment message is
required; 0 otherwise.

Table 2-151 Arguments

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS__SBS_SERVER

Source Source queue address of the
requester.

Source queue address of the requester.

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREGISTER_REQ MSG_TYPE_SBS_ DEREGISTER_REQ

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-202 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
SBS_DEREGISTER_RESP

SBS_REGISTER_REQ

SBS_REGISTER_RESP

SBS_DEREGISTER_RESP
This response message acknowledges the SBS server deregistration of all entries matching the
given MOT queue and distribution queue.

This service replaces the SBS_DEREG_ACK service.

Note: The SBS Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_DEREGISTER_RESP { int32 version;

int32 status; int32 user_tag; int32 number_reg;

} SBS_DEREGISTER_RESP;

Message Data Fields

Table 2-152 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

status int32 DL Returned status code. Valid codes are as
follows: PSYM_SBS_SUCCESS = Success
PSYM_SBS_BADPARAM = Bad parameter
PSYM_SBS_NOMATCH = No match

user_tag int32 DL User-specified code from the request message.

number_reg int32 DL The number of registrants left on this MOT or
target.

SBS_REGISTER_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-203

Arguments

See Also
SBS_DEREGISTER_REQ

SBS_REGISTER_REQ

SBS_REGISTER_RESP

SBS_REGISTER_REQ
This request message requests registration for reception of broadcast messages. It can specify
from 0 to 255 distribution rules, which must be satisfied for the message to be distributed to
the distribution queue.

This service replaces the SBS_REG and SBS_REG_EZ services.

Note: The SBS Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_REGISTER_HEAD { int32 version;

int32 user_tag; int32 mot;

q_address distribution_q; int32 req_ack;

Table 2-153 Arguments

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source SBS_SERVER PAMS__SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREGISTER_RESP MSG_TYPE_SBS_
DEREGISTER_RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-204 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

int32 seq_gap_notify; int32 auto_dereg; int32 rule_count; int32

rule_conjunct;

} SBS_REGISTER_HEAD;

typedef struct _SBS_REGISTER_RULE { int32 offset;

int32 data_operator; int32 length;

int32 operand;

} SBS_REGISTER_RULE;

#define MAX_SEL_RULES 256

typedef struct _SBS_REGISTER_REQ { SBS_REGISTER_HEAD head;

SBS_REGISTER_RULE rule [256];

} SBS_REGISTER_REQ;

Message Data Fields

Table 2-154 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code to identify this request.

mot int32 DL The MOT broadcast stream to which the
program attempts to register.

distribution_q q_address DW, DW The Oracle MessageQ address that receives
any messages that are selected from the
broadcast stream.

A zero in the group number portion of the
queue address is automatically replaced with

req_ack int32 DL 1 if registration acknowledgment message is
required; 0 otherwise.

seq_gap_notify int32 DL 1 if broadcast stream sequence gap notification
is required; 0 otherwise.

SBS_REGISTER_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-205

Arguments

auto_dereg int32 DL 1 if registration request is to be purged on
distribution queue detach; 0 otherwise.

rule_count int32 DL Number of distribution rules in the request (0,
..., 255).

rule_conjunct int32 DL Valid values are:

PSEL_ALL_RULES if all rules must be
true for distribution to succeed;

* Following items are repeated "rule_count" times *

data_offset int32 DL Valid values are: PSEL_TYPE
PSEL_CLAS

SDM tag ID

Integer in the range 0, ...,
MAX_MSG_SIZE, specifying an offset in
the data

rule_count int32 DL Number of distribution rules in the request (0,
..., 255).

Table 2-154 Message Data Fields

Table 2-155 Arguments

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS__SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_REGISTER_REQ MSG_TYPE_SBS_REGISTER_REQ

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-206 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
SBS_DEREGISTER_REQ

SBS_DEREGISTER_RESP

SBS_REGISTER_RESP

SBS_REGISTER_RESP
This message provides a response to an SBS_REGISTER_REQ subscriber registration. The
response contains a status field, which is 1 on success. The message also contains the user tag,
specified in the request message, the registration ID and the number of registered entries for the
MOT address.

This service replaces the SBS_REG_REPLY and SBS_REG_EZ_REPLY services.

Note: The SBS Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_REGISTER_RESP { int32 version;

int32 user_tag; int32 status; int32 reg_id; int32 number_reg;

} SBS_REGISTER_RESP;

Message Data Fields

Table 2-156 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code from the request message.

status int32 DL Returned status code. Valid codes are
as follows: PSYM_SBS_SUCCESS =
Success PSYM_SBS_BADPARAM = Bad
parameter PSYM_SBS_RESRCFAIL =
Failed to allocate resource

SBS_STATUS_REQ

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-207

Arguments

See Also
SBS_DEREGISTER_REQ

SBS_DEREGISTER_RESP

SBS_REGISTER_REQ

SBS_STATUS_REQ
The SBS server supports a message-based status request. This request details the current
condition of each MOT being used by the server and its activity with other Oracle MessageQ
groups, which are also running the SBS server.

The request message is targeted to the SBS_SERVER with message class PAMS and message
type SBS_STATUS_REQ. Upon receipt of the message, the SBS server validates the request.
If the request is incorrect, the response message contains an error status. The SBS server
responds with the reply message of type SBS_STATUS_RESP.

reg_id int32 DL Returned registration ID.

number_reg int32 DL Number of entries currently registered for this
MOT or target.

Table 2-156 Message Data Fields

Table 2-157 Arguments

Argument Script Format pams_get_msg Format

Target Source of registrant Source of registrant

Source SBS_SERVER PAMS__SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_SEQUENCE_RESP MSG_TYPE_SBS_SEQUENCE_ RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-208 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

Note: The SBS Server performs endian conversion when this message is sent between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_STATUS_REQ { int32 version;

int32 user_tag; int32 start_mot; int32 end_mot; int32 reset;

} SBS_STATUS_REQ;

Message Data Fields

Arguments

Table 2-158 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code to identify this request.

start_mot int32 DL Lowest MOT for which statistics are desired.

end_mot int32 DL Highest MOT for which statistics are desired.

reset int32 DL 0: Do not reset counters for the remote server
data after constructing the reply message.

1: Reset counters for the remote server data
after constructing the reply message.

Table 2-159 Arguments

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS__SBS_SERVER

SBS_STATUS_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-209

See Also
SBS_STATUS_RESP

SBS_STATUS_RESP
This message is returned following the successful processing of the SBS_STATUS_REQ
request message. It is a variable format message and is made up of a variable number of fixed
length parts. To parse the message, each variable length section has a count.

Note: The SBS Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _SBS_STATUS_RESP { int32 version;

int32 user_tag; int32 status; int32 num_rec; int32 last_block; char data

[31980];

} SBS_STATUS_RESP;

typedef struct _SBS_STATUS_RESP_MOT { int32 mot;

union { struct{

union { struct{

char s_b1; char s_b2; char s_b3; char s_b4;

} S_un_b; struct{

uint16 s_w1; uint16 s_w2;

} S_un_w; uint32 S_addr;

} inet_addr; uint16 inet_port;

Source Requesting program's primary or
reply queue

Requesting program's primary or reply queue

Class PAMS MSG_CLAS_PAMS

Type SBS_STATUS_REQ MSG_TYPE_SBS_STATUS_REQ

Table 2-159 Arguments

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-210 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

} udp; struct{

char mca_addr [12];

char protocol [4];

} eth; struct {

char unused [20];

} dmq;

int32 filler [5];

} transport;

int32 heartbeat_timer; int32 xmit_silo;

int32 rcv_silo; int32 rcv_silo_max; int32 num_reg;

int32 complete_rcvd; int32 complete_bytes; int32 seq_gaps;

int32 whole_msg_gaps; int32 whole_silo_gap; struct {

char device_name [16]; struct{

uint32 tv_sec; uint32 tv_usec;

} fail_tod; int32 msgs_sent; int32 bytes_sent; int32 pkts_sent; int32

pkts_rcvd;

int32 dupl_pkts_disc;

} rail [2];

} SBS_STATUS_RESP_MOT;

typedef struct _SBS_STATUS_REP_REG_Q { q_address reg_q;

} SBS STATUS REP REG Q;

typedef struct _SBS_STATUS_REP_NUM_GROUPS { int32 num_groups;

} SBS_STATUS_REP_NUM_GROUPS;

typedef struct _SBS_STATUS_RESP_GROUP { int32 group;

int32 rexmit_reqs_to_remote; int32 rexmit_sat_by_remote; int32

late_rexmit;

int32 rexmit_reqs_from_remote; int32 rexmit_sat_by_local;

} SBS_STATUS_RESP_GROUP;

SBS_STATUS_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-211

Message Data Fields

Table 2-160 Message Data Fields

Field Data Type Script Format Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code to identify this request.

Status int32 DL Returned status code. Valid codes are as
follows:

PSYM_SBS_SUCCESS = Success
PSYM_SBS_BADPARAM = Bad
parameter PSYM_SBS_NOMATCH = No
match

num_rec int32 DL Number of MOTs reported in this message.

last_block int32 DL 1 if this is the last message; 0 otherwise.

* Remainder of message repeated "num_rec" times up to a maximum of 50 records
per Local SBS Server data *

mot int32 DL MOT for which statistics are being reported.

transport A(20) Transport specific address information
associated with the MOT. The format is
dependant on the type of transport referred to.

heartbeat_timer int32 DL Heartbeat timer setting.

xmit_silo int32 DL Transmit silo size (MABs).

rcv_silo int32 DL Receiver silo size (MABs).

rcv_silo_max int32 DL Maximum occupancy of receive silo (MABs).

num_reg int32 DL Number of registrants for this MOT.

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-212 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

complete_rcvd int32 DL Number of complete messages received.

complete_bytes int32 DL Number bytes contained in
"complete_rcvd" messages.

seq_gaps int32 DL Total sequence gaps reported on this MOT.

whole_msg_gaps int32 DL Number complete messages detected missed
initially.

whole_silo_gap int32 DL Number times sequence gap caused entire silo
flush.

* Transport rail information repeated two times *

device_name char A(16) Optimized device address.

fail_tod DL(2) Shutdown timestamp in seconds.

msgs_sent int32 DL Number of messages sent on this rail.

bytes_sent int32 DL Number of bytes sent on this rail.

pkts_sent int32 DL Number of packets sent on this rail.

pkts_rcvd int32 DL Number of packets received on rail.

dupl_pkts_disc int32 DL Number of duplicate packets discarded from
this rail.

* Registrant data: repeated "num_reg" times *

reg_q q_address DW, DW Queue address of registrant.

* End of registrant data *

num_groups int32 DL Number of remote SBS servers communicating
with the local SBS server.

Table 2-160 Message Data Fields

SBS_STATUS_RESP

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-213

Arguments

* Remote SBS server data: Following fields repeated "num_groups" times *

group int32 DL Group number of remote SBS server.

rexmit_reqs_to_
remote

int32 DL Number of retransmission requests from the
local SBS server to the remote SBS server.

rexmit_sat_by_
remote

int32 DL Number of retransmission requests satisfied by
the remote SBS server.

late_rexmit int32 DL Number of retransmission requests that were
received too late to prevent a sequence gap.

rexmit_reqs_
from_remote

int32 DL Number of retransmission requests from the
remote SBS server.

rexmit_sat_by

_local

int32 DL Number of retransmission requests satisfied by
the local SBS server for the remote server.

* End of remote server data *

Table 2-160 Message Data Fields

Table 2-161 Arguments

Argumentt Script Format pams_get_msg Format

Target Requesting program's primary or
reply queue

Requesting program's primary or reply queue

Source SBS_SERVER PAMS__SBS_SERVER

Type SBS_STATUS_RESP MSG_TYPE_SBS_STATUS_RESP

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-214 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also

SBS_STATUS_REQ

TIMER_EXPIRED
TIMER_EXPIRED is a response message to the pams_set_timer function. This message is
sent to the timer queue associated with sender program's primary queue. Each call to the
pams_set_timer function generates one message of type TIMER_EXPIRED when the timer
expires.

Note: This message is RISC aligned.

C Message Structure
typedef struct _TIMER_EXPIRED { int32 timer_id;

char reserved [20];

} TIMER_EXPIRED;

Message Data Fields

Arguments

Table 2-162 Message Data Fields

Field Data Type Script Format Description

timer_id int32 DL Timer ID specified in the pams_set_timer call.

reserved 20-byte array A(20) Reserved for Oracle MessageQ.

Table 2-163 Arguments

Argument Script Format pams_get_msg Format

Target primary queue primary queue

Source TIMER_QUEUE PAMS__TIMER_QUEUE

UNAVAIL

Oracle Tuxedo Message Queue (OTMQ) Programming Guide 2-215

UNAVAIL
Applications register to receive notification when queues become active or inactive in local and
remote groups by sending an AVAIL_REG message to the Avail Server. The UNAVAIL
notification message is sent to the registered application when a queue in the selected group
becomes inactive. See the Obtaining the Status of a Queue topic in the Using Message-Based
Services section for an explanation of how to use this message.

Note: The Avail Server performs endian conversion when this message is received between
processes that run on systems that use different hardware data formats. This message
is also RISC aligned.

C Message Structure
typedef struct _UNAVAIL { q_address target_q;

} UNAVAIL;

Message Data Fields

Arguments

Class PAMS MSG_CLAS_PAMS

Type TIMER_EXPIRED MSG_TYPE_TIMER_EXPIRED

Table 2-163 Arguments

Table 2-164 Message Data Fields

Field Data Type Script Format Description

target_q q_address DL Address of unavailable queue.

Table 2-165 Arguments

Argument Script Format pams_get_msg Format

Target Supplied by AVAIL_REG Supplied by AVAIL_REG

Orac le Tuxedo Message Queue PAMS Programming Gu ide

2-216 Oracle Tuxedo Message Queue (OTMQ) Programming Guide

See Also
AVAIL_REG

AVAIL_REG_REPLY

AVAIL

AVAIL_DEREG

Source AVAIL_SERVER AVAIL_SERVER

Class PAMS MSG_CLAS_PAMS

Type UNAVAIL MSG_TYPE_UNAVAIL

Table 2-165 Arguments

	Oracle® Tuxedo Message Queue (OTMQ)
	12c Release 2 (12.1.3)

	Oracle® Tuxedo Message Queue (OTMQ) Programming Guide, 12c Release 2 (12.1.3)
	Oracle Tuxedo Message Queue Programming Guide
	Programmer Tasks
	Sending and Receiving Messages
	Using Filters
	Filter Type
	Simple Filter
	Compound Filter

	Filter Format
	Simple Filter
	Compound Filter

	Using Publish/Subscribe
	Sending Broadcast Messages
	Receiving Broadcast Messages
	Subscribing to Receive Broadcast Messages
	Subscribing to Receive Selected Broadcast Messages
	Subscription Acknowledgement
	Reading Broadcast Messages
	Unsubscribing Receiving Broadcast Messages

	Using Recoverable Messaging
	Choosing a Message Delivery Mode
	Choosing Recoverable or Non-recoverable Delivery Mode
	Choosing an Undeliverable Message Action

	How to Send a Recoverable Message
	How to Receive a Recoverable Message
	Using UMAs for Exception Processing
	Using Discard UMA
	Using the Return-to-Sender UMA
	Using the SAF UMA
	Using the Dead Letter Queue UMA
	Using the Dead Letter Journal
	The DIP and UMA Support List

	Using Naming
	Naming Service
	Name Scope
	Name Space
	Process Level Name Space
	Local Name Space
	Global Name Space

	Attaching and Locating Queues
	Static and Dynamic Binding of Queue Aliases

	Using WS SAF
	Building Applications

	Oracle Tuxedo Message Queue PAMS Programming Guide
	PAMS Application Programming Interface
	Oracle MessageQ API Description Format
	Oracle MessageQ API Data Types

	pams_attach_q
	pams_bind_q
	pams_cancel_get
	pams_cancel_select
	pams_cancel_timer
	pams_close_jrn
	pams_confirm_msg
	pams_detach_q
	pams_exit
	pams_get_msg
	pams_get_msga
	pams_get_msgw
	pams_locate_q
	pams_open_jrn
	pams_put_msg
	pams_read_jrn
	pams_set_select
	pams_set_timer
	pams_status_text
	putil_show_pending
	Using Message-Based Services
	Receiving a Response
	Obtaining the Status of a Queue
	Monitoring and Controlling Link Status
	Listing Cross-Group Connections, Entries, and Groups
	Obtain Notification of Cross-Group Links Established and Lost
	Controlling Cross-Group Links

	Learning the Current Status of Queues
	Listing Attached Queues in a Group
	Receiving Attachment Notifications

	Managing Message Recovery Files
	Controlling Journaling to the PCJ File

	Message Reference
	AVAIL
	AVAIL_DEREG
	AVAIL_REG
	AVAIL_REG_REPLY
	DISABLE_NOTIFY
	DISABLE_Q_NOTIFY_REQ
	DISABLE_Q_NOTIFY_RESP
	ENABLE_NOTIFY
	ENABLE_Q_NOTIFY_REQ
	ENABLE_Q_NOTIFY_RESP
	LINKMGT_REQ
	LINKMGT_RESP
	LINK_COMPLETE
	LINK_LOST
	LIST_ALL_CONNECTIONS (Request)
	LIST_ALL_CONNECTIONS (Response)
	LIST_ALL_ENTRIES (Request)
	LIST_ALL_ENTRIES (Response)
	LIST_ALL_GROUPS (Request)
	LIST_ALL_GROUPS (Response)
	LIST_ALL_Q_REQ
	LIST_ALL_Q_RESP
	LOCATE_Q_REP
	MRS_ACK
	MRS_JRN_DISABLE
	MRS_JRN_DISABLE_REP
	MRS_JRN_ENABLE
	MRS_JRN_ENABLE_REP
	Q_UPDATE
	SBS_DEREGISTER_REQ
	SBS_DEREGISTER_RESP
	SBS_REGISTER_REQ
	SBS_REGISTER_RESP
	SBS_STATUS_REQ
	SBS_STATUS_RESP
	TIMER_EXPIRED
	UNAVAIL

