

Oracle® Fusion Middleware
Developing Data Service Integrator Applications

12c (12.1.3)

E47944-01

May 2014

Oracle Fusion Middleware Developing Data Service Integrator Applications, 12c (12.1.3)

E47944-01

Copyright © 2008, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix

1 Introducing Data Services for Client Applications

1.1 Introduction ... 1-1
1.2 What Is a Data Service?.. 1-2
1.3 What is an Oracle Data Service Integrator Client Application?... 1-2
1.4 Choosing a Client Programming Model.. 1-3
1.5 Introducing Service Data Objects (SDO) ... 1-3
1.6 Introducing the Data Service Mediator API .. 1-4
1.7 Typical Client Application Development Process ... 1-4
1.8 Security Considerations in Client Applications ... 1-5
1.9 Performance Considerations ... 1-5
1.10 Client Classpath Settings ... 1-6
1.10.1 Java Mediator API Clients .. 1-6
1.10.2 Web Services Clients ... 1-7
1.10.3 JMX Mbean Management API Client Classpath... 1-7
1.10.4 Oracle Data Service Integrator JDBC API Client Classpath .. 1-8

2 Data Programming Model and Update Framework

2.1 Introduction ... 2-1
2.2 Oracle Data Service Integrator and SDO... 2-2
2.2.1 Static and Dynamic Data Object APIs ... 2-3
2.2.1.1 Static Data Object API.. 2-3
2.2.1.2 XML Schema-to-Java Type Mapping Reference .. 2-5
2.2.1.3 Dynamic Data Object API ... 2-6
2.3 Role of the Mediator API and SDO ... 2-10

3 Invoking Data Services from Java Clients

3.1 Introducing the Mediator API .. 3-1
3.1.1 What is SDO?.. 3-2
3.1.2 What is the Mediator API? ... 3-2

iv

3.1.3 Dynamic and Static Mediator APIs... 3-2
3.1.4 API Overview .. 3-3
3.1.5 Summary... 3-3
3.2 Getting Started... 3-4
3.2.1 Basic Steps... 3-4
3.2.2 Setting the CLASSPATH .. 3-5
3.2.2.1 Adding the Oracle Data Service Integrator Client Library 3-5
3.2.2.2 Manually Setting the CLASSPATH ... 3-5
3.2.2.3 Specifying the Class Loader Directly... 3-6
3.2.3 Running the Sample Applications .. 3-7
3.3 Sample Static Mediator Application .. 3-7
3.3.1 Setting Up the Sample Data Service.. 3-8
3.3.2 Generating the Mediator Client JAR File .. 3-11
3.3.3 Setting Up the Java Project .. 3-12
3.3.4 Running and Testing the Code ... 3-14
3.3.5 Examining the Sample Code ... 3-15
3.3.5.1 Importing Packages .. 3-15
3.3.5.2 Obtaining a Data Access Service Handle ... 3-16
3.3.5.3 Retrieving Data from the Service .. 3-16
3.3.5.4 Obtaining a DataObject from the Result ... 3-16
3.3.5.5 Disposing the Result Object ... 3-17
3.3.5.6 Modifying the DataObject .. 3-17
3.3.5.7 Returning Changes to the Server ... 3-17
3.4 Sample Dynamic Mediator Application .. 3-18
3.4.1 Setting Up and Running the Sample Code ... 3-18
3.4.2 Sample Java Client Code (Dynamic Mediator API) .. 3-18
3.4.3 Examining the Sample Code ... 3-19
3.4.3.1 Importing Classes .. 3-19
3.4.3.2 Obtaining a DataAccessService Handle ... 3-19
3.4.3.3 Retrieving Data from the Service .. 3-20
3.4.3.4 Obtaining a DataObject from the Result .. 3-20
3.4.3.5 Disposing the Result Object ... 3-20
3.4.3.6 Modifying the DataObject ... 3-21
3.4.3.7 Returning Changes to the Server .. 3-21
3.5 Creating New DataObjects ... 3-21
3.5.1 Creating a New DataObject with the Static API ... 3-21
3.5.1.1 Setting Up and Running the Sample ... 3-21
3.5.1.2 Importing Packages .. 3-23
3.5.1.3 Obtaining a Data Access Service Handle .. 3-23
3.5.1.4 Creating a DataFactory .. 3-24
3.5.1.5 Create and Name the DataObject.. 3-24
3.5.1.6 Modifying the DataObject .. 3-24
3.5.1.7 Returning New DataObject to the Server ... 3-25
3.5.1.8 Returning the New DataObject Key ... 3-25
3.5.2 Creating a New DataObject with the Dynamic API ... 3-25
3.5.2.1 Running the Sample ... 3-25
3.5.2.2 Importing Packages .. 3-27

v

3.5.2.3 Creating a DataFactory .. 3-27
3.5.2.4 Create and Name the DataObject ... 3-28
3.5.2.5 Modifying the DataObject .. 3-28
3.5.2.6 Returning New DataObject to the Server ... 3-28
3.5.2.7 Returning the New DataObject Key ... 3-29
3.6 Mediator API Basics .. 3-29
3.6.1 Beyond the Sample Applications ... 3-30
3.6.2 More on the Static Mediator API.. 3-30
3.6.3 More on the Dynamic Mediator API .. 3-30
3.6.3.1 Invoking Data Service Operations ... 3-30
3.6.3.2 Getters and Setters... 3-30
3.6.4 Naming Conventions for Generated Classes.. 3-31
3.6.4.1 Mediator Client JAR Naming Convention .. 3-31
3.6.4.2 Web Services Mediator Client JAR Naming Convention.................................... 3-31
3.6.5 Understanding DASResult .. 3-31
3.6.5.1 Overview of DASResult ... 3-31
3.6.5.2 Disposing of DASResult Objects .. 3-32
3.6.5.3 Dynamic Mediator APIs and DASResult... 3-32
3.6.5.4 Static Mediator APIs and DASResult ... 3-33
3.6.5.5 Retrieving an Array of Objects .. 3-33
3.6.6 Obtaining the WebLogic JNDI Context for Oracle Data Service Integrator 3-33
3.6.7 Working with Data Objects .. 3-34
3.6.7.1 Enabling Data Objects for Change Tracking ... 3-34
3.6.7.2 Modifying Data Object Properties .. 3-34
3.6.7.3 Creating a New Data Object ... 3-35
3.7 Mapping Data Service Types to Java Types... 3-35
3.7.1 Conversion of Simple Types .. 3-35
3.7.2 Conversion of Date/Time Types.. 3-36
3.7.3 Passing Empty Sequence Arguments .. 3-37
3.7.4 Quantified Return Types ... 3-37
3.7.5 What is Autoboxing?.. 3-37
3.7.6 Support for Derived Simple Types .. 3-38
3.7.6.1 Mapping Derived Schema Types to Java Types ... 3-38
3.8 Web Services Support.. 3-39
3.9 Advanced Topics.. 3-39
3.9.1 Schema Management .. 3-39
3.9.1.1 Schema Scope .. 3-39
3.9.1.2 Schema Download... 3-40
3.9.1.3 Schema Cache Management .. 3-40
3.9.2 Support for Stateless Operations .. 3-41
3.9.3 Cache Management ... 3-42
3.9.3.1 Forcing Data Cache Read-through and Update.. 3-42
3.9.4 Specifying XPath Expressions as Arguments ... 3-43
3.9.5 Making Ad Hoc Queries.. 3-43
3.10 Understanding Transaction Behavior .. 3-44
3.10.1 Transaction Behavior for Read/Write Operations .. 3-44
3.10.2 Transaction Behavior for Read-Only Operations... 3-44

vi

4 Invoking Data Services Through Web Services

4.1 Overview.. 4-1
4.2 Before You Begin... 4-2
4.3 Getting Started .. 4-3
4.3.1 Basic Steps... 4-3
4.3.2 Setting the CLASSPATH ... 4-3
4.3.2.1 Adding the Oracle Data Service Integrator Client Library 4-4
4.3.2.2 Manually Setting the CLASSPATH ... 4-4
4.3.3 Running the Sample Applications .. 4-6
4.4 Sample Static Mediator Application ... 4-6
4.4.1 Setting Up the Sample Data Service ... 4-6
4.4.2 Creating a Web Service Map File .. 4-6
4.4.3 Generating the Web Services Mediator Client JAR File... 4-7
4.4.4 Setting Up the Java Project ... 4-8
4.4.5 Running and Testing the Code .. 4-9
4.4.6 Examining the Sample Code ... 4-10
4.4.6.1 Importing Packages... 4-10
4.4.6.2 Obtaining a Data Access Service Handle ... 4-11
4.4.6.3 Retrieving Data from the Service .. 4-11
4.4.6.4 Obtaining a DataObject from the Result .. 4-11
4.4.6.5 Disposing the Result Object ... 4-12
4.4.6.6 Modifying the DataObject .. 4-12
4.4.6.7 Returning Changes to the Server .. 4-12
4.5 Sample Dynamic Mediator Application .. 4-12
4.5.1 Setting Up and Running the Sample Code ... 4-13
4.5.2 Sample Java Client Code (Dynamic Mediator API) .. 4-13
4.5.3 Examining the Sample Code ... 4-14
4.5.3.1 Importing Classes .. 4-14
4.5.3.2 Obtaining a DataAccessService Handle ... 4-14
4.5.3.3 Retrieving Data from the Service ... 4-15
4.5.3.4 Obtaining a DataObject from the Result .. 4-15
4.5.3.5 Disposing the Result Object ... 4-15
4.5.3.6 Modifying the DataObject ... 4-15
4.5.3.7 Returning Changes to the Server .. 4-16
4.6 Transaction Behavior and Web Services ... 4-16
4.7 Securing Your Web Services Application .. 4-16

5 Using SQL to Access Data Services

5.1 Introducing SQL Access to Data Services ... 5-1
5.1.1 Features of the Oracle Data Service Integrator JDBC Driver .. 5-2
5.1.2 Exploring Oracle Data Service Integrator and JDBC Artifacts...................................... 5-3
5.2 JDBC and SQL Support in Oracle Data Service Integrator ... 5-3
5.2.1 JDBC Support ... 5-3
5.2.2 SQL Support ... 5-9
5.2.2.1 Supported SQL Statements ... 5-9
5.2.2.2 Supported SQL Functions .. 5-10
5.2.2.3 Numeric Functions ... 5-10

vii

5.2.2.4 String Functions ... 5-10
5.2.2.5 Datetime Functions ... 5-11
5.2.2.6 Aggregate Functions .. 5-12
5.2.3 JDBC Metadata Search Patterns.. 5-12
5.2.3.1 Table Parameter Support.. 5-13
5.2.4 Additional Details and Limitations.. 5-14
5.3 Preparing to Use SQL to Access Data Services.. 5-14
5.3.1 Publishing Data Service Operations .. 5-14
5.3.2 Configuring the Oracle Data Service Integrator JDBC Driver 5-15
5.4 Accessing Data Services Using SQL From a Java Application.. 5-16
5.4.1 Obtaining a Connection ... 5-16
5.4.1.1 Using the PreparedStatement Interface.. 5-17
5.4.1.2 Using the CallableStatement Interface ... 5-18
5.5 Advanced Features .. 5-18
5.5.1 Using Table Parameters ... 5-19
5.5.1.1 When to Use Table Parameters.. 5-19
5.5.1.2 Setting Table Parameters Using JDBC.. 5-19
5.5.2 Accessing Custom Database Functions Using JDBC... 5-23
5.6 Accessing Data Services Using SQL-Based Applications .. 5-23
5.6.1 Accessing Data Services Using SQL Explorer .. 5-24
5.6.2 Connecting to the Oracle Data Service Integrator Client Using OpenLink ODBC-JDBC

Bridge 5-27
5.6.3 Using OpenLink with Reporting Tools ... 5-28
5.6.3.1 Microsoft Access 2003-ODBC .. 5-28
5.6.3.2 Microsoft Excel 2003-ODBC... 5-29

6 Supporting ADO.NET Clients

6.1 Overview of ADO.NET Integration in Oracle Data Service Integrator 6-1
6.1.1 Understanding ADO.NET.. 6-2
6.1.1.1 ADO.NET Client Application Development Tools ... 6-2
6.1.2 Understanding How Oracle Data Service Integrator Supports ADO.NET Clients ... 6-3
6.1.3 Supporting Java Clients .. 6-4
6.1.4 Enabling Oracle Data Service Integrator Support for ADO.NET Clients 6-5
6.1.5 Generating an Oracle Data Service Integrator Web Services Mapper 6-5
6.1.6 Viewing an ADO.NET-Enabled WSDL.. 6-6
6.1.7 Creating a Web Reference in ADO.NET Client by Providing the Oracle Data Service

Integrator WSDL URL 6-7
6.2 Adapting Oracle Data Service Integrator XML Types (Schemas) for ADO.NET Clients 6-8
6.2.1 Approaches to Adapting XML Types for ADO.NET ... 6-8
6.2.1.1 XML Type Requirements for Working With ADO.NET DataSets 6-8
6.2.2 References .. 6-10
6.3 Creating a Data Service Based on an RPC-Style Web Service... 6-10
6.4 Generated Artifacts Reference ... 6-11
6.4.1 XML Schema Definition for ADO.NET Types DataSet... 6-11
6.4.2 Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients.........

6-12

viii

7 Advanced Topics

7.1 Accessing Metadata Using Catalog Services .. 7-1
7.1.1 Installing Catalog Services ... 7-1
7.1.2 Using Catalog Services.. 7-2
7.1.2.1 Application (application.ds) ... 7-3
7.1.2.2 DataService (DataService.ds) .. 7-3
7.1.2.3 DataServiceRef (DataServiceRef.ds) .. 7-3
7.1.2.4 Folder (folder.ds) .. 7-5
7.1.2.5 Function (Function.ds)... 7-5
7.1.2.6 Relationship (Relationship.ds).. 7-8
7.1.2.7 Schema (Schema.ds) .. 7-10
7.2 Filtering, Sorting, and Fine-tuning Query Results .. 7-11
7.2.1 Introducing the Filter API ... 7-12
7.2.1.1 addFilter() ... 7-12
7.2.1.2 createFilter().. 7-13
7.2.1.3 addOrderBy() ... 7-13
7.2.1.4 setLimit() ... 7-14
7.2.1.5 Exploring the Filter Operators... 7-14
7.2.2 Using Filters... 7-14
7.2.3 Filtering Examples .. 7-15
7.2.3.1 Specifying a Compound Filter... 7-16
7.2.3.2 Ordering and Truncating Data Service Results .. 7-16
7.2.4 Using Ad Hoc Queries to Fine-tune Results from the Client 7-17
7.3 Using Inverse Functions to Improve Query Performance... 7-20
7.3.1 The Inverse Function Solution .. 7-21
7.3.1.1 Understanding Invertible Functions... 7-21
7.3.2 How Inverse Functions Can Improve Performance .. 7-21
7.3.2.1 A Closer Look... 7-22
7.3.3 Examining the Inverse Functions Sample... 7-22
7.3.3.1 Creating the Underlying Java Functions.. 7-23
7.3.3.2 Creating the Physical Data Services Based on the Functions.............................. 7-24
7.3.3.3 Configuring the Inverse Functions ... 7-25
7.3.3.4 Associating Custom Conditional Logic with Functions 7-26
7.3.3.5 Creating the Data Service ... 7-27
7.3.4 How To Set Up the Inverse Functions Sample... 7-28
7.3.4.1 Requirements ... 7-29
7.3.4.2 Importing the Dataspace Project ... 7-29
7.3.4.3 Assigning a Targeted Runtime.. 7-31
7.3.5 Exploring the Inverse Functions Sample... 7-32
7.3.5.1 Exploring the Projects ... 7-32

ix

Preface

This document describes how to develop applications for the Oracle Data Service
Integrator.

Audience
This document is intended for application developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Data Service
Integrator documentation set:

■ Oracle Fusion Middleware Using Data Service Integrator XQuery Engine

■ Oracle Fusion Middleware Administering Data Service Integrator

■ Oracle Fusion Middleware Installing Data Service Integrator

■ Oracle Fusion Middleware Developing Applications with Data Service Integrator

■ Oracle Fusion Middleware Data Services Java API for Oracle Data Integrator

Conventions
The following text conventions are used in this document:

x

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introducing Data Services for Client Applications 1-1

1Introducing Data Services for Client
Applications

This chapter provides an overview of Oracle Data Service Integrator for client
application developers. It includes the following topics:

■ Section 1.1, "Introduction"

■ Section 1.2, "What Is a Data Service?"

■ Section 1.3, "What is an Oracle Data Service Integrator Client Application?"

■ Section 1.4, "Choosing a Client Programming Model"

■ Section 1.5, "Introducing Service Data Objects (SDO)"

■ Section 1.6, "Introducing the Data Service Mediator API"

■ Section 1.7, "Typical Client Application Development Process"

■ Section 1.8, "Security Considerations in Client Applications"

■ Section 1.9, "Performance Considerations"

■ Section 1.10, "Client Classpath Settings"

1.1 Introduction
Oracle Data Service Integrator brings data access into the world of service-oriented
architecture (SOA). Oracle Data Service Integrator enables organizations to
consolidate, integrate, transform, and service-enable disparate data sources scattered
throughout their enterprise, making enterprise data available as an easy-to-access,
reusable commodity: a data service.

From the perspective of a client application, a data service typically represents a
distinct business entity, such as a customer or order. Behind the scenes, the data service
may aggregate the data that comprises a single view of the data, for example,
assembling it from multiple sources and transforming it in a number of ways.

A data service may be related to other data services, and it is easy to follow these
relationships in Oracle Data Service Integrator. Data services insulate the client
application from the details of the composition of each business entity. The client
application only has to know the public interface of the data service.

With Oracle Data Service Integrator, client applications can use heterogeneous data
through a unified service layer without having to contend with the complexity of
working with distributed data sources using various connection mechanisms and data
formats. For client developers, Oracle Data Service Integrator provides a uniform,

What Is a Data Service?

1-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

consolidated interface for accessing and updating heterogeneous back-end data. It
enables a services-oriented approach to information access using data services.

This document describes how to create Oracle Data Service Integrator-aware client
applications. It explains the various client access mechanisms that Oracle Data Service
Integrator supports and its main client-side data programming model, including
Service Data Objects (SDO). It also describes how to create update-capable data
services using the Oracle Data Service Integrator update framework.

■ For information about server-side aspects of creating and managing data services,
see the Oracle Fusion Middleware Data Service Integrator Developer's Guide.

■ For information on administering data services, including metadata, cache, and
security management, see the Oracle Fusion Middleware Administering Data Service
Integrator guide.

1.2 What Is a Data Service?
From a high-level perspective, a data service defines a distinct business entity such as a
customer and the customer's orders. The data service defines a unified view of the
business entity by aggregating data from any number of sources — relational database
management systems (RDBMS), Web services, enterprise applications, flat files, and
XML files, for example. Data services can also transform data from the original sources
as needed.

In order to use data services as a client, you need know only a few details, such as:

■ The name of the data service.

■ The functions and procedures exposed by the data service.

■ The data types associated with the data service.

Data service client applications can use data services in the same way that a web
service client application invokes the operations of a Web service.

For detailed information on developing data services, see the Oracle Fusion Middleware
Data Service Integrator Developer's Guide.

1.3 What is an Oracle Data Service Integrator Client Application?
An Oracle Data Service Integrator client application is any application that invokes
data service routines. Client applications can include Java programs, non-Java
programs such as Microsoft ADO.NET applications, Oracle WebLogic Workshop
applications, JDBC/ODBC, or web-service based applications in any programming
language.

■ Java client applications can use data service functions and procedures through the
Data Services Mediator API (also known simply as the Mediator API).

■ Java-based web service applications can use the Mediator API.

Regardless of the client type, Oracle Data Service Integrator provides a uniform,
service-oriented mechanism for accessing and modifying distributed, heterogeneous
data. Developers can focus on business logic rather than on the details of various data
source connections and formats.

In your client application code, a client simply invokes the data service routine; in
turn, Oracle Data Service Integrator:

■ Gathers data from the appropriate sources (via XQuery).

Introducing Service Data Objects (SDO)

Introducing Data Services for Client Applications 1-3

■ Integrates and instantiates the results as data objects.

■ Returns the materialized data objects to your client application.

The Oracle Data Service Integrator data objects conform to the Service Data Object
(SDO 2.1) specification, a Java-based API for data programming that is the result of
joint effort by Oracle, IBM, SAP, and others.

1.4 Choosing a Client Programming Model
Application developers can choose from among several client API models for
accessing Oracle Data Service Integrator services. The model chosen will depend on
the desired access mechanism. Each access method has its own advantages and uses.
Table 1–1 provides a description of each of these access methods and summarizes the
advantages of the various programming models for accessing Oracle Data Service
Integrator data services.

1.5 Introducing Service Data Objects (SDO)
Service Data Objects (SDO), a specification proposed jointly by Oracle, IBM, SAP, and
others, is a Java-based API for data programming. SDO simplifies data programming
against data sources of different types. It simplifies data access, giving data consumers
a consistent, uniform approach to using data whether it comes from a database, web
service, application, or any other system.

SDO uses the concept of disconnected data. Under this architecture, a client gets a copy
of externally persisted data in an SDO data object or data graph, which is a structure
for holding data. The client operates on the data remotely; that is, while disconnected
from the data source.

Table 1–1 Summary of Techniques for Exposing Data Services to Clients

Data Access
Technique Description Advantages Other Details

Java Data Service
Mediator

Instantiate a remote data service
interface and invoke public methods
on the interface.

See Chapter 3, "Invoking Data Services
from Java Clients."

Full read/write access to
data.

Requires adequate Java
programming skills.

Web services Data services can be directly mapped
to web services. Clients have access to
data through SOAP messages and/or
SDOs.

See Chapter 4, "Invoking Data Services
Through Web Services."

Read/write access to data.

Industry standard.

N/A

SQL Data service functions first need to be
published as SQL objects. These SQL
objects are then available to your
application through JDBC.

See Chapter 5, "Using SQL to Access
Data Services."

Accepted by commonly used
reporting tools.

Read-only, and for use
SQL-based clients only.

ADO.NET Allows interoperability between
Oracle Data Service Integrator data
services and ADO.NET.

See Chapter 6, "Supporting ADO.NET
Clients."

Enables Oracle Data Service
Integrator data services to be
used in Microsoft ADO.NET
client applications.

Specific to ADO.NET
applications.

Introducing the Data Service Mediator API

1-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

If the client makes data changes that need to be saved to the data source, a connection
to the source is re-acquired later. Keeping connections active for the minimum time
possible maximizes scalability and performance of web and service-oriented
applications.

To SDO clients, the data has a uniform appearance no matter where it originated or
what its underlying source format is. Enabling this unified view of data in the SDO
model is the concept of a data mediator.

The mediator is the intermediary between data clients and back-end systems. It allows
clients to access data services and invoke their functions to acquire data or submit data
changes. Oracle Data Service Integrator implements such an SDO mediator.

For details on SDO, see Chapter 2, "Data Programming Model and Update
Framework."

1.6 Introducing the Data Service Mediator API
The SDO specification allows for many types of mediators, each intended for a
particular type of query language or back-end system. Oracle Data Service Integrator
provides a Data Service Mediator API, a server-side component of the Oracle Data
Service Integrator XQuery processing engine that serves as the intermediary between
data services and client applications or processes.

The Data Service Mediator facilitates access and updates to the various data sources
that comprise any data service. The Mediator is also the core mechanism for the data
service update framework. For details on using the Mediator API for web services
clients and for Java clients, see:

■ Chapter 3, "Invoking Data Services from Java Clients"

■ Chapter 4, "Invoking Data Services Through Web Services"

1.7 Typical Client Application Development Process
Developing an Oracle Data Service Integrator-enabled client applications encompasses
these steps:

1. Identify the data services you want to use in your application. The Oracle Data
Service Integrator Administration Console can be used to find all services
available on your Oracle WebLogic Server. The Oracle Data Service Integrator
Administration Console serves as a data service registry within the Oracle Data
Service Integrator architecture; it shows available data services, including the
specific functions and procedures that each data service provides.

2. Choose the data access approach that best suits your needs. (Table 1–1 describes
the advantages of the different access mechanisms.) The approach you choose also
depends on how the data service has been deployed.

Note: Oracle Data Service Integrator 10gR3 does not support
backward compatibility with ALDSP 2.x (all ALDSP 2.x deprecated
APIs are no longer supported in Oracle Data Service Integrator
Release 12c (12.1.3). This includes all classes in the
com.bea.dsp.dsmediator.client and
com.bea.ld.dsmediator.update packages.

Performance Considerations

Introducing Data Services for Client Applications 1-5

For example, if the data service has been mapped out as a web service, you can
develop a Web service client application using Java in conjunction with the
service's WSDL file.

Similarly, if the data service is incorporated in a portal, business process, or Web
application, your client application development process may take place entirely
in the context of the server, as a set of pageflows or other server-side artifacts,
using a control.

3. Obtain the required JAR files. (See specific chapters in this guide for JAR file
requirements.)

1.8 Security Considerations in Client Applications
Oracle Data Service administrators can control access to deployed Oracle Data Service
Integrator resources through role-based security policies. Oracle Data Service
Integrator leverages and extends the security features of the underlying WebLogic
platform. Roles can be set up in the WebLogic Administration Console. (See the Oracle
Fusion Middleware Administering Data Service Integrator guide for detailed information
about the Oracle Data Service Integrator Administration Console.

Access policies for resources can be defined at any level — on all data services in a
deployment, individual data services, individual data service functions, or even on
individual elements returned by the functions of a data service.

For information on Oracle Data Service Integrator security, see "Securing Oracle Data
Service Integrator Resources," in the Oracle Fusion Middleware Administering Data
Service Integrator guide.

For complete information on WebLogic security, see Programming WebLogic Security.

1.9 Performance Considerations
Data service performance is the result of the end-to-end components that make up the
entire system, including:

■ Data service design. The number, types, and capabilities of data sources,
complexity of logical data source aggregation, and other data service design
considerations can affect performance.

■ Number of clients accessing the data service. The number of simultaneous clients
can affect performance.

■ Performance of the underlying data sources. Since data services access
underlying data, the performance and availability of those systems can affect
performance.

■ Hardware resources. The number of servers, processing power, memory, network
structure, and other factors for each and every platform throughout the system,
client and server alike, can affect performance.

Before creating a client application for a data service, it is recommended that you be
aware of the performance of each underlying data source and benchmark the
performance of the data services as you develop them. Use load-testing tools to
determine the maximum number of clients that your deployed data services can
support.

You can use the Oracle Data Service Integrator auditing capabilities to obtain
performance profile information that you can use to identify and resolve performance
problems if they occur. For detailed information on Oracle Data Service Integrator

Client Classpath Settings

1-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

audit capabilities see the Oracle Fusion Middleware Administering Data Service Integrator
guide.

1.10 Client Classpath Settings
The following tables provide classpath requirements for:

■ Java Mediator API clients (dynamic and static)

■ Web Service clients (dynamic and static)

■ JMX Mbean Management API clients

■ JDBC API clients

1.10.1 Java Mediator API Clients
Client applications using the Oracle Data Service Integrator Mediator API need one of
the following classpath settings:

Example 1–1 Static Java Mediator API Client Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 1–2 Static Java Mediator API Client Classpath (with generated wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/com.bea.core.xml.xmlbeans_2.4.0.0_2-5-1.jar
 <WL_HOME>/server/lib/wlfullclient.jar

Example 1–3 Dynamic Mediator API Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 1–4 Dynamic Mediator API Classpath (with generated wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/ com.bea.core.xml.xmlbeans_1.0.0.0_2-6-0.jar
 <WL_HOME>/server/lib/wlfullclient.jar

Note: For information on generating wlfullclient.jar, see
Oracle Fusion Middleware Programming Stand-alone clients for Oracle
Weblogic Server.

Client Classpath Settings

Introducing Data Services for Client Applications 1-7

1.10.2 Web Services Clients
Client applications using the Oracle Data Service Integrator Native Web Services
feature need one of the following classpath settings:

Example 1–5 Static Web Service Client Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 1–6 Static Web Service Client Classpath (with generated wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/ com.bea.core.xml.xmlbeans_1.0.0.0_2-6-0.jar
 <WL_HOME>/modules/ com.bea.core.xml.beaxmlbeans_1.0.0.0_2-6-0.jar
 <WL_HOME>/server/lib/wlfullclient.jar

 <COMMON_COMPONENTS_HOME>/modules/clients/com.oracle.webservices.fmw.client_
12.1.3.jar
 <WL_HOME>/modules/clients/ com.oracle.webservices.wls.jaxws-wlswss-client.jar

Example 1–7 Dynamic Web Service Clients (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 1–8 Dynamic Web Service Clients (with generated wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/ com.bea.core.xml.xmlbeans_1.0.0.0_2-6-0.jar
 <WL_HOME>/modules/ com.bea.core.xml.xmlbeans_1.0.0.0_2-6-0.jar <WL_
HOME>/server/lib/wlfullclient.jar

 <COMMON_COMPONENTS_HOME>/modules/clients/com.oracle.webservices.fmw.client_
12.1.3.jar
 <WL_HOME>/modules/clients/ com.oracle.webservices.wls.jaxws-wlswss-client.jar

1.10.3 JMX Mbean Management API Client Classpath
The JMX Mbean Management API needs the following classpath settings:

Example 1–9 JMX Mbean Management API Client Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <WL_HOME>/server/lib/weblogic.jar

Client Classpath Settings

1-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Example 1–10 JMX Mbean Management API Client Classpath (with generated
wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar

 Thin-client -> [<WL_HOME>/server/lib/wljmxclient.jar and <WL_
HOME/server/lib/wlclient.jar]
 (OR)
 Thick-client ->[<WL_HOME>/server/lib/wlfullclient.jar]

1.10.4 Oracle Data Service Integrator JDBC API Client Classpath
The Oracle Data Service Integrator JDBC API client needs the following classpath
settings:

Example 1–11 Oracle Data Service Integrator JDBC API Client Classpath (with
weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/ldjdbc.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 1–12 Oracle Data Service Integrator JDBC API Client Classpath (with
wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/ldjdbc.jar
 <WL_HOME>/server/lib/wlfullclient.jar

2

Data Programming Model and Update Framework 2-1

2Data Programming Model and Update
Framework

Oracle Data Service Integrator implements Service Data Objects (SDO) as its data
client-application programming model. This chapter discusses SDO concepts and APIs
that are of interest to Oracle Data Service Integrator client application developers.

■ Section 2.1, "Introduction"

■ Section 2.2, "Oracle Data Service Integrator and SDO"

■ Section 2.3, "Role of the Mediator API and SDO"

2.1 Introduction
SDO is an architecture and set of APIs for working with data objects while
disconnected from their source. In Oracle Data Service Integrator, SDO-compliant data
objects— whether typed or untyped data objects — are obtained from data services
through Mediator APIs or through Data Service controls. (See also Section 1.5,
"Introducing Service Data Objects (SDO).")

Client applications manipulate the data objects as required for the business process at
hand, and then submit changed objects to the data service, for propagation to the
underlying data sources. Although the SDO specification does not define one, it does
discuss the need for mediator services, in general, that can send and receive data
objects; the specification also discusses the need for handling updates to data sources,
again, without specifying an implementation. The SDO specification leaves the details
up to implementors as to how mediator services are implemented, and how they
should handle updates to data objects.

As discussed in Section 1.6, "Introducing the Data Service Mediator API," the Oracle
Data Service Integrator Data Service Mediator is the process that not only handles the
back-and-forth communication between client applications and data services, it also
facilitates updates to the various data sources that comprise any data service.

This chapter includes information about the Oracle Data Service Integrator
implementation of the SDO data programming model, as well as its update
framework.

Note: Oracle Data Service Integrator 10gR3 does not support
backward compatibility with ALDSP 2.x (all ALDSP 2.x deprecated
APIs are no longer supported in Oracle Data Service Integrator
10gR3). This includes all classes in the
com.bea.dsp.dsmediator.client and
com.bea.ld.dsmediator.update packages.

Oracle Data Service Integrator and SDO

2-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

2.2 Oracle Data Service Integrator and SDO
When you invoke a data service's read operation through the Data Service Mediator
API, a data object is returned. Data objects are the fundamental artifacts of the SDO
data programming model.

Data objects represent the contents of a complex type. A data object contains
properties, which represent elements and attributes. The properties can be of simple or
complex types. In SDO, a simple type property is called a datatype property, while a
complex type property contains a data object (which in turn has properties).

Data objects can be defined to contain a special kind of property called a change
summary. A change summary is used to track changes to the data object. As changes
are made to the properties (or properties of nested descendant data objects), the
changes are captured in the change summary.

The change summary is used by the Mediator to derive the update plan and
ultimately, to update data sources. The change summary submitted with each changed
SDO remains intact, regardless of whether or not the update function succeeds, so it
can support rollbacks when necessary.

A datagraph is a built-in data object type that is defined to have a change summary
property. Thus it is convenient to use a datagraph to encapsulate change tracking. The
datagraph has one immediate data object child, and a change summary that can track
changes to this data object. Figure 2–1 shows the structure of a datagraph.

Figure 2–1 Structure of a DataGraph

Note: For information on the Mediator API, see Chapter 3, "Invoking
Data Services from Java Clients."

Oracle Data Service Integrator and SDO

Data Programming Model and Update Framework 2-3

2.2.1 Static and Dynamic Data Object APIs
SDO specifies both static (typed) and dynamic (untyped) interfaces for data objects:

■ Static. The static data object API is an XML-to-Java API binding that contains
methods that correspond to each element of the data object returned by the data
service. These generated interfaces provide both getters and setters:
getCustomer() and setCustomer(). For examples see Table 2–2.

■ Dynamic. The dynamic data object API provides generic getters and setters for
working with data objects. Elements are passed as arguments to the generic
methods. For example, get("Customer") or set("Customer").

The dynamic data object API can be used with data types that have not yet been
deployed at development time.

Table 2–1 summarizes the advantages of each approach.

2.2.1.1 Static Data Object API
SDO's static data object API is a typed Java interface generated from a data service's
XML schema definition. It is similar to JAXB or XMLBean static interfaces. The
interface files, packaged in a JAR, are typically generated by the data service developer
using WebLogic Workshop, or by using one of the provided tools.

The generated interfaces extend the commonj.sdo.DataObject interface and provide
typed getters and setters for all properties of the XML datatype.

An interface is also generated for each complex property (such as CREDIT and
ORDER shown in Figure 2–2), with getters and setters for each of the properties that
comprise the complex type.

For many-valued properties, a get method is generated that returns a java.util.List
object. A many-valued property corresponds to an XML schema element that has
maxOccurs greater than one. The List returned by a get method for a many-valued
property is "live." This means that if you modify the List object, the changes are
reflected directly and immediately in the containing data object.

As an example of how static data object APIs are generated, given the CUSTOMER
data type shown in Figure 2–2, generating typed client interfaces results in
CUSTOMER, CREDIT, ORDER, and POITEM interfaces, each of which includes
getters, setters, and factory classes (for instantiating static data objects and their
properties).

Table 2–1 Static and Dynamic Data Object APIs

Data Model Advantages...

Static Data Object API ■ Easy-to-implement interface; code is easy to read and
maintain.

■ Compile-time type checking.

■ Enables code-completion in Workshop for WebLogic Source
View.

Dynamic Data Object
API

■ Dynamic; allows discovery.

■ Runtime type checking.

■ Allows for a general-purpose coding style.

Oracle Data Service Integrator and SDO

2-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 2–2 CUSTOMER Return Type Displayed in Oracle Data Service Integrator
Administration Console's Metadata Browser

When you develop Java client applications that use SDO's static data object APIs, you
will import these typed interfaces into your Java client code. For example:

import appDataServices.AddressDocument;

Table 2–2 lists static data accessor and related API methods. These methods are
generated using names that match the schema names with the first letter in the name
forced to be upper-case. The generated names cannot conflict with standard Java
naming rules.

Table 2–2 Static (Typed) Data Object API Getters and Setters

Static Data Object API
(Generated) Description Examples

Type getPropertyName() Returns the value of the
property. Generated for
boolean-valued
properties.

String name = getLAST_
NAME()

List<Type>
getPropertyName()

For multiple occurrence
elements, returns all
PropertyName elements.

List<ORDER> orders =
getORDER()

void setPropertyName(Type
newValue)

Sets the value of the
property to the
newValue.

setLAST_NAME("Smith")

boolean isPropertyName() Determines whether the
PropertyName element or
attribute exists in the
data object.

isSPECIAL_DELIVERY()

void createPropertyName() Generated only for
non-datatype properties.
Creates a data object for
the specified property.
The (created) data object
is initialized with no
values in its properties.

createORDER()

boolean
isSetPropertyName()

Determines whether the
property is set to some
value.

isSetLAST_NAME()

void unsetPropertyName() Unsets the property. The
property is then
considered not to be set.

unsetLAST_NAME()

Oracle Data Service Integrator and SDO

Data Programming Model and Update Framework 2-5

2.2.1.2 XML Schema-to-Java Type Mapping Reference
Oracle Data Service Integrator client application developers can use the Oracle Data
Service Integrator Administration Console to view the XML schema types associated
with data services (see Figure 2–2). The Return Type tab indicates the data type of each
element—string, int, or complex type, for example. The XML schema data types are
mapped to corresponding Java types using the data type mappings shown in
Table 2–3.

Note: The following XQuery types are discussed by the SDO
specification and are listed in Table 2–3 but are not supported for
input or output from the Mediator API: xs:ENTITIES, xs:ENTITY,
xs:ID, xs:IDREF, xs:IDREFS, xs:language, xs:Name, xs:NCName,
xs:NMTOKEN, xs:NMTOKENS, xs:NOTATION. The Mediator API is
discussed in Chapter 3, "Invoking Data Services from Java Clients."

Table 2–3 XML Schema to Java Data Type Mapping

XML Schema Type SDO Java Type

xs:anyType commonj.sdo.DataObject

xs:anySimpleType java.lang.Object

xs:anyURI String

xs:base64Binary byte[]

xs:boolean boolean or java.lang.Boolean

xs:byte byte or java.lang.Byte

xs:date String

xs:dateTime String

xs:decimal java.math.BigDecimal

xs:double double or java.lang.Double

xs:duration String

xs:ENTITIES List<String>

xs:ENTITY String

xs:float float or java.lang.Float

xs:gDay String

xs:gMonth String

xs:gMonthDay String

xs:gYear String

xs:gYearMonth String

xs:hexBinary byte[]

xs:ID String

xs:IDREF String

xs:IDREFS List<String>

xs:int int or java.lang.Integer

xs:integer java.math.BigInteger

Oracle Data Service Integrator and SDO

2-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

2.2.1.3 Dynamic Data Object API
Every static (typed) data object implements the Data Object interface; therefore, you
can use the DataObject (dynamic) methods as well as the static API. This API provides
generic property getters and setters for specific Java data types (String, Date, List,
BigInteger, and BigDecimal, for example). Table 2–4 lists representative APIs from
SDO's dynamic Data Object API.

The propertyName argument indicates the name of the property whose value you
want to get or set; propertyValue is the new value. The dynamic Data Object API also
includes methods for setting and getting a DataObject's property by indexValue. This
includes methods for getting and setting properties as primitive types, which include
setInt(), setDate(), getString(), and so on.

As an example, assuming that you have a reference to a CUSTOMER data object, you
can use the dynamic Data Object API to get the LAST_NAME property as follows:

String lastName = customer.getString("LAST_NAME");

The SDO APIs are standard implementations. You can read the full SDO specification,
"SDO for Java Specification V2.1" at

xs:language String

xs:long long or java.lang.Long

xs:Name String

xs:NCName String

xs:negativeInteger java.math.BigInteger

xs:NMTOKEN String

xs:NMTOKENS List<String>

xs:nonNegativeInteger java.math.BigInteger

xs:nonPositiveInteger java.math.BigInteger

xs:normalizedString String

xs:NOTATION String

xs:positiveInteger java.math.BigInteger

xs:QName String

xs:short short or java.lang.Short

xs:string String

xs:time String

xs:token String

xs:unsignedByte short or java.lang.Short

xs:unsignedInt long or java.lang.Long

xs:unsignedLong java.math.BigInteger

xs:unsignedShort int or java.lang.Integer

xs:keyref String

Table 2–3 (Cont.) XML Schema to Java Data Type Mapping

XML Schema Type SDO Java Type

Oracle Data Service Integrator and SDO

Data Programming Model and Update Framework 2-7

http://www.osoa.org/display/Main/Service+Data+Objects+Specificat
ions.

See also Service Data Objects at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/11/s
do.html.

Table 2–4 lists dynamic Data Object API getters and setters.

XPath Expressions in the Dynamic Data Object API

Table 2–4 Dynamic (Untyped) Data Object API Getters and Setters

Dynamic Data Object API Description Example

get(int PropertyIndex) Returns the PropertyName
child element at the
specified index.

get(5)

set(int PropertyIndex,
Object newValue)

Sets the value of the
property to the newValue.

set(5, CUSTOMER3)

set(String PropertyName,
Object newValue)

Sets the value of the
PropertyName to the
newValue.

set("LAST_NAME",
"Nimble")

set(commonj.sdo.Property
property, Object
newValue)

Sets the value of Property
object to the newValue.

set(LASTNAME, "Nimble")

getType(String
PropertyName)

Returns the value of the
PropertyName. Type
indicates the specific data
type to obtain.

getBigDecimal("CreditSc
ore")

unset(int PropertyIndex) Unsets the property. The
property is then
considered not to be set.

unset(5)

unset(commonj.sdo.Proper
ty property)

Unsets the property. The
property is then
considered not to be set.

unset(LASTNAME)

unset(String
PropertyName)

Unsets the property. The
property is then
considered not to be set.

unset("LAST_NAME")

createDataObject(commonj
.

sdo.Property property)

Returns a new DataObject
for the specified
containment Property.

createDataObject(LASTNA
ME)

createDataObject(String
PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject("LAST_
NAME")

createDataObject(int
PropertyIndex)

Returns a new DataObject
for the specified
containment property.

createDataObject(5)

createDataObject(String
PropertyName, String
namespaceURI, String
typeName)

Returns a new DataObject
for the specified
containment property.

createDataObject("LAST_
NAME","http://namespace
URI_here", "String")

delete() Removes the object from
its container and unsets all
writeable properties.

delete(CUSTOMER)

Oracle Data Service Integrator and SDO

2-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Oracle Data Service Integrator supports a limited subset of XPath expressions called
SDO path expressions. SDO path expressions offer flexibility in how you locate data
objects and attributes in the dynamic Data Object API's accessors. For example, you
can filter the results of a get() method invocation based on data elements and values:

company.get("CUSTOMER[1]/POITEMS/ORDER[ORDERID=3546353]")

The SDO path implementation augments XPath 1.0 support by adding zero-based
array index notation (".index_from_0") to XPath's standard bracketed notation ([n]). As
an example, Table 2–5 compares the XPath standard and SDO augmented notations to
refer to the same element, the first ORDER child node under CUSTOMER (Table 2–5).

Zero-based indexing is convenient for Java programmers who are accustomed to
zero-based counters, and may want to use counter values as index values without
adding 1. Oracle Data Service Integrator fully supports both the traditional index
notation and the augmented notation.

Keep in mind these other points regarding Oracle Data Service Integrator XPath
support:

■ Expressions with double adjacent slashes ("//") are not supported. As specified by
XPath 1.0, you can use an empty step in a path to effect a wildcard. For example:

("CUSTOMER//POITEM")

In this example, the wildcard matches all purchase order arrays below the
CUSTOMER root, which includes either of the following:

CUSTOMER/ORDERS/POITEM
CUSTOMER/RETURNS/POITEM

Because this notation introduces type ambiguity (types can be either ORDERS or
RETURNS), it is not supported by the Oracle Data Service Integrator SDO
implementation.

■ In SDO Path, "@" has no significance and is ignored. Elements and attributes in
XML Schema both map to properties in SDO, and "@", the notation for denoting an
attribute, can be used with any property; however, the "@" will be ignored.
Moreover, attributes can be referenced in SDO Path simply with the attribute
name, without an "@". For example, the ID attribute of the following element:

<ORDER ID="3434">

is accessed with the following path:

ORDER/@ID, or with
Order/ID

See also Section 3.9.4, "Specifying XPath Expressions as Arguments."

Obtaining Type Information about Data Objects

The dynamic Data Object API returns generic data objects. To obtain information about
the properties of a data object, you can use methods available in SDO's Type interface.
The Type interface (located in the commonj.sdo package) provides several methods

Table 2–5 XPath Standard and SDO Augmented Notation

XPath Standard Notation SDO Augmented Notation

get("CUSTOMER/ORDER[1]"); get("CUSTOMER/ORDER.0");

Oracle Data Service Integrator and SDO

Data Programming Model and Update Framework 2-9

for obtaining information, at runtime, about data objects, including a data object's
type, its properties, and their respective types.

According to the SDO specification, the Type interface (see Table 2–6) and the Property
interface (see Table 2–7) comprise a minimal metadata API that can be used for
introspecting the model of data objects. For example, the following obtains a data
object's type and prints a property's value:

DataObject o = ...;
Type type = o.getType();
if (type.getName().equals("CUSTOMER") {
 System.out.println(o.getString("CUSTOMERNAME")); }

Once you have an object's data type, you can obtain all its properties (as a list) and
access their values using the Type interface's get Properties() method, as shown in
Example 2–1.

Example 2–1 Using SDO's Type Interface to Obtain Data Object Properties

public void printDataObject(DataObject dataObject, int indent) {
 Type type = dataObject.getType();
 List properties = type.getProperties();
 for (int p=0, size=properties.size(); p < size; p++) {
 if (dataObject.isSet(p)) {
 Property property = (Property) properties.get(p);
 // For many-valued properties, process a list of values
 if (property.isMany()) {
 List values = dataObject.getList(p);
 for (int v=0; count=values.size(); v < count; v++) {
 printValue(values.get(v), property, indent);
 }
 else { // For single-valued properties, print out the value
 printValue(dataObject.get(p), property, indent);
 }
 }
 }
 }

Table 2–6 lists other useful methods in the Type interface.

Table 2–7 lists the methods of the Property interface.

Table 2–6 Type Interface Methods

Method Description

java.lang.Class
getInstanceClass()

Returns the Java class that this type represents.

java.lang.String getName() Returns the name of the type.

java.lang.List getProperties Returns a list of the properties of this type.

Property getProperty(

 java.lang.String propertyName)

Returns from among all Property objects of the
specified type the one with the specified name.
For example, dataObject.get("name") or
dataObject.get(dataObject.getType().getProperty(
"name"))

java.lang.String getURI() Returns the namespace URI of the type.

boolean isInstance(

 java.lang.Object object)

Returns True if the specified object is an instance
of this type; otherwise, returns false.

Role of the Mediator API and SDO

2-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

2.3 Role of the Mediator API and SDO
In Oracle Data Service Integrator, data objects are passed between data services and
client applications: when a client application invokes a read function on a data service,
for example, a data object is sent to the client application.

The client application modifies the content as appropriate—adds an order to a
customer order, for example—and then submits the changed data object to the data
service. The Data Service Mediator is an API that receives the updated data objects
and propagates changes to the underlying data sources.

The Data Service Mediator is the linchpin of the update process. It uses information
from submitted data objects (change summary, for example) in conjunction with other
artifacts to derive an update plan for changing underlying data sources. For relational
data sources, updates are automatic.

The artifacts that comprise the Oracle Data Service Integrator update framework,
including the Mediator, and how the default update process works, are described in
more detail in "Managing Update Maps" in the Oracle Fusion Middleware Data Service
Integrator Developer's Guide.

For detailed information on using the Mediator APIs for web services clients and Java
clients, see:

■ Chapter 3, "Invoking Data Services from Java Clients"

■ Chapter 4, "Invoking Data Services Through Web Services"

Table 2–7 Property Interface Methods

Method Description

Type getContainingType() Returns the containing type of this property.

java.lang.Object getDefault() Returns the default value this property will
have in a data object where the property has
not been set

java.lang.String getName() Returns the name of the property.

Type getType() Returns the type of the property.

boolean isContainment() Returns True if the property represents
by-value composition.

boolean isMany() Returns True if the property is many-valued.

3

Invoking Data Services from Java Clients 3-1

3Invoking Data Services from Java Clients

This chapter discusses the Data Services Mediator API, a Java API for invoking data
service operations from Java applications. This chapter explains in detail how to use
the Mediator API and includes working sample applications to help you get started.

Using the Mediator API is one of several techniques for invoking data services from
client applications. See Chapter 1, "Introducing Data Services for Client Applications"
for a summary of these techniques.

This chapter includes these topics:

■ Section 3.1, "Introducing the Mediator API"

■ Section 3.2, "Getting Started"

■ Section 3.3, "Sample Static Mediator Application"

■ Section 3.4, "Sample Dynamic Mediator Application"

■ Section 3.5, "Creating New DataObjects"

■ Section 3.6, "Mediator API Basics"

■ Section 3.7, "Mapping Data Service Types to Java Types"

■ Section 3.8, "Web Services Support"

■ Section 3.9, "Advanced Topics"

3.1 Introducing the Mediator API
The Mediator API is the Java API for retrieving Service Data Object (SDO) artifacts
from a data service and returning them to their source. In your Java client, you call
Mediator API methods to connect to a data service, invoke data service methods, and
send updated data objects back to the server. You use SDO API methods to manipulate
the data objects within your Java client.

For example, you might call a Mediator API method getAllCustomers() to retrieve
a collection of customer data objects from the data service. Then, you could call an
SDO method such as setCustomerName() to modify a customer object. Finally, you
might call another Mediator API method, such as updateCustomers() to return the
modified data object to the data source on the server.

Topics in this section include:

■ Section 3.1.1, "What is SDO?"

■ Section 3.1.2, "What is the Mediator API?"

■ Section 3.1.3, "Dynamic and Static Mediator APIs"

Introducing the Mediator API

3-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ Section 3.1.4, "API Overview"

■ Section 3.1.5, "Summary"

3.1.1 What is SDO?
The Java programming model provided by Oracle Data Service Integrator for invoking
data service operations is based on Service Data Objects (SDO). SDO, a specification
proposed jointly by Oracle, IBM, SAP, and others, is a Java-based architecture and API
for data programming. Oracle Data Service Integrator lets programmers uniformly
access data objects from heterogeneous data sources, including relational databases,
XML data sources, web services, and enterprise information systems.

3.1.2 What is the Mediator API?
While the SDO specification does not specify a mechanism for updating data objects, it
does discuss the need for update services, called mediator services. The Mediator API is
an Oracle Data Service Integrator implementation of a mediator service. The Mediator
API lets you gain access to SDO-compliant objects, called DataObjects, and return
them to their source data store.

The important points to remember are that the Mediator API lets you connect to a data
service and invoke data service operations. Results are returned as SDO-compliant
data objects. Using methods of the SDO API, you can then change or manipulate the
data objects. Finally, you use the Mediator API to perform the update.

See Section 2.2, "Oracle Data Service Integrator and SDO" for a general overview of
SDO data objects and other artifacts.

3.1.3 Dynamic and Static Mediator APIs
The Oracle Data Service Integrator Mediator API comprises two main interfaces:
dynamic and static. As an application developer, you need to choose one of these
approaches.

■ The Dynamic Mediator API is useful for programming with data services that are
unknown or do not exist at development time. This API is useful, for example, for
developing tools and user interfaces that work across data services. The Dynamic
Mediator API lets you invoke data service operations directly by name. Clients
that use the Dynamic Mediator API are not bound to use specific data services: a
dynamic client can use any available data service. See Section 3.4, "Sample
Dynamic Mediator Application."

■ The Static Mediator extends the Dynamic Mediator with pre-generated Java
classes that have type-safe named methods for accessing data service operations.
A Static Mediator API must be explicitly generated using either the IDE or a
command line utility. The generated API classes are placed in a JAR file that must
be accessible by your client application. See Section 3.3, "Sample Static Mediator
Application."

Note: See Section 1.5, "Introducing Service Data Objects (SDO)" for a
general overview of SDO. For a more in-depth discussion of SDO, see
Chapter 2, "Data Programming Model and Update Framework."
Finally, see the dev2dev article Service Data Objects at
http://www.oracle.com/technology/pub/articles/dev2ar
ch/2005/11/sdo.html, which provides links to the SDO
specifications and Javadoc.

Introducing the Mediator API

Invoking Data Services from Java Clients 3-3

3.1.4 API Overview
The Dynamic Mediator API consists of the classes and interfaces listed in Table 3–1.
Refer to the Javadoc on e-docs for more information on these classes and interfaces.

Sample of both Static and Dynamic Mediator clients applications are provided. See
Section 3.3, "Sample Static Mediator Application" and Section 3.4, "Sample Dynamic
Mediator Application."

3.1.5 Summary
It may be confusing at first discussing SDO and the mediator APIs together. You can
think of SDO as the standard enabling technology that allows client applications to
access and update data through Oracle Data Service Integrator data services. SDO has

Note: For most use cases, the Static Mediator API is your best choice.
The Static Mediator inherits from the Dynamic Mediator and therefore
includes all of the functionality of the Dynamic Mediator API. In
addition, the static API is type-safe at compile-time. Generally
speaking, the static API is simpler and more convenient to use than
the Dynamic Mediator API.

Table 3–1 Oracle Data Service Integrator Mediator API

Interface or Class Name Description

DataAccessService The interface for interacting with a data service. The invoke()
method of this interface is used to call data service operations. If
a data service operation returns a result, the invoke() method
returns a DASResult object–a collection of SDO data objects or
simple types. (Package: com.bea.dsp.das)

DASResult The Mediator APIs that return data sets return an object called
DASResult (Data Access Service Result). DASResult is similar to
a Java Iterator. See Section 3.6.5, "Understanding DASResult."
(Package: com.bea.dsp.das)

PreparedExpression The interface for preparing and executing ad hoc queries. An ad
hoc query is one that is defined in the client program, not in the
data service. See Section 3.9.5, "Making Ad Hoc Queries."
(Package: com.bea.dsp.das)

DataAccessServiceFactory The factory class for creating local interfaces to data services.
Can be used for dynamic data service instantiation and ad hoc
queries. (Package: com.bea.dsp.das)

HelperContextCache Oracle Data Service Integrator maintains a global cache of SDO
HelperContext objects. These objects can be used, for
instance, to create new data objects. This class contains methods
that let you query and manipulate this cache. See Section 3.5,
"Creating New DataObjects." (Package: com.bea.dsp.das)

RequestConfig This class encapsulates a collection of attributes that control
how a data service method is to be invoked from a client. This
class also serves as a way to return arbitrary information to the
client. (Package: com.bea.dsp)

SDOUtil This utility class contains methods for manipulating SDO data
objects in the context of Oracle Data Service Integrator. While
not part of the Mediator API, this utility class is commonly used
in programs that use the Mediator API. (Package:
com.bea.dsp.sdo)

Getting Started

3-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

a Java API for handling DataObjects and collections of DataObjects. SDO DataObjects
can be either dynamic or static.

The SDO APIs are standard implementations. You can read the full SDO specification,
"SDO for Java Specification V2.1" at
http://www.osoa.org/display/Main/Service+Data+Objects+Specificat
ions.

The mediator APIs, on the other hand, are Oracle Data Service Integrator-specific
implementations. The mediator APIs are designed to let you access SDO DataObjects
and return them to the server. For more information on the how Oracle Data Service
Integrator uses SDO, see Chapter 2, "Data Programming Model and Update
Framework."

3.2 Getting Started
This section lists the basic steps to get started writing a Java client application that
interacts with a data service.

Topics in this section include:

■ Section 3.2.1, "Basic Steps"

■ Section 3.2.2, "Setting the CLASSPATH"

■ Section 3.2.3, "Running the Sample Applications"

3.2.1 Basic Steps
These are the basic steps to follow when developing a Java client that uses the
Mediator APIs.

1. The first thing you need is a data service to call. To use a data service, you need to
know its name and the names and signatures of its operations. The mediator API
method signatures will be the same as the signatures for the data service
operations.

2. Decide whether to use the Static or Dynamic Mediator API to interact with the
data service from your Java client. See Section 3.1.3, "Dynamic and Static Mediator
APIs" for a summary of each API. To use the Static Mediator API, you need to
generate or obtain the Static Mediator Client JAR file. For instructions on
generating a Static Mediator Client JAR, see the Oracle Fusion Middleware Data
Service Integrator Developer's Guide.

3. Set up your Java build environment. You need certain JAR files in your
CLASSPATH. See Section 3.2.2, "Setting the CLASSPATH" for details.

Note: You can discover data services that are available to you by
using the Oracle Data Service Integrator Console. See Viewing
Metadata Using the Service Explorer in the Oracle Fusion Middleware
Administering Data Service Integrator guide.

Note: The Static Mediator API is generally recommended for most
use cases. The static API is type safe and generally easier to use than
the Dynamic Mediator API.

Getting Started

Invoking Data Services from Java Clients 3-5

4. Write and test your client application. This document provides working sample
applications that demonstrate both the Static and Dynamic Mediator API. See
Section 3.2.3, "Running the Sample Applications."

3.2.2 Setting the CLASSPATH
You can set the CLASSPATH by either adding the Oracle Data Service Integrator client
library to the project or by manually setting the CLASSPATH.

3.2.2.1 Adding the Oracle Data Service Integrator Client Library
You can add the Oracle Data Service Integrator client library to your project by doing
either of the following:

■ Adding the library to an existing project

■ Adding the library when creating a new project

Adding the Library to an Existing Project

You can add the Oracle Data Service Integrator client library to an existing project.

Complete the following steps:

1. Right-click the project and choose Properties. A dialog showing the properties for
the project appears.

2. Select Java Build Path.

3. Click the Libraries tab, and click Add Library.

4. Select Oracle Data Service Integrator client library, click Next, and click Finish.

Alternatively, you can do the following:

1. Right-click the project and choose Build Path > Configure Build Path. A dialog
showing the properties for the project appears.

2. Select Java Build Path.

3. Click the Libraries tab, and click Add Library.

4. Select Oracle Data Service Integrator client library, click Next, and click Finish.

Adding the Library When Creating a New Project

You can add the Oracle Data Service Integrator client library when creating a new Java
project.

Complete the following steps:

1. Right-click in the Project Explorer, and choose New > Project. The New Project
wizard appears.

2. Select Java Project and click Next.

3. Type a name for the project and click Next.

4. Click the Libraries tab, and click Add Library.

5. Select Oracle Data Service Integrator client library, click Next, and click Finish.

6. Click Finish to create the new project.

3.2.2.2 Manually Setting the CLASSPATH
You can optionally set the CLASSPATH manually, if required. The CLASSPATH
settings depend on whether you are using the Static or Dynamic Mediator API.

Getting Started

3-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Static Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are
using the Static Mediator API.

Example 3–1 Static Java Mediator API Client Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 3–2 Static Java Mediator API Client Classpath (with wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/com.bea.core.xml.xmlbeans_2.4.0.0_2-5-1.jar
 <WL_HOME>/server/lib/wlfullclient.jar

Dynamic Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are
using the Dynamic Mediator API.

Example 3–3 Dynamic Mediator API Classpath (with weblogic.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 3–4 Dynamic Mediator API Classpath (with wlfullclient.jar)

CLASSPATH=
 <ODSI_HOME>/lib/ld-client.jar
 <ODSI_HOME>/lib/sdo.jar
 <WL_HOME>/modules/com.bea.core.xml.xmlbeans_2.4.0.0_2-5-1.jar
 <WL_HOME>/server/lib/wlfullclient.jar

3.2.2.3 Specifying the Class Loader Directly
Certain application contexts, such as web applications, employ their own class loaders.
In these cases, you must take steps to ensure that the static mediator classes use the
correct class loader. If you do not take these steps, class cast exceptions can occur.

To ensure that your static mediator classes resolve properly in such contexts, you can
pass the appropriate class loader object to

Note: You can use the Java Mediator API with either the weblogic.jar
or the wlfullclient.jar file. For more information about choosing
between weblogic.jar or wlfullclient.jar, see "Overview of
Stand-alone Clients" in the Oracle WebLogic Server documentation.
For more information about creating the wlfullclient.jar file, see
"Using the WebLogic JarBuilder Tool" in the Oracle WebLogic Server
documentation.

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-7

com.bea.dsp.das.HelperContextCache.setClassLoader() before creating
DataAccessService or PreparedExpression objects in your code. The example
code in Example 3–5 shows one possible variation on this approach, where the class
loader is obtained from the current thread object. This variation works well for web
applications deployed on WebLogic Server.

Example 3–5 Example Code: Getting and Setting the Class Loader

import com.bea.dsp.das.HelperContextCache;
...
ClassLoader sdoCompiledSchemaLoader =
 Thread.currentThread().getContextClassLoader();
HelperContextCache.setClassLoader(dataSpaceName, sdoCompiledSchemaLoader);
...
DataAccessService das = DataAccessServiceFactory.newDataAccessService(ctx,
 dataSpaceName, dsUri);
...

Other possible approaches to obtaining the class loader object include:

■ this.getClass().getClassLoader() – This option is typically used when
invoking code from JPD, JPF, and JWS applications.

■ classname.class.getClassLoader() – This option can be used in place of
the previous option inside a static method (where you cannot use the this
keyword to refer to the current object).

■ fully-qualified-name-of-compiled-sdo-class-or-interface.class.g
etClassLoader() – This is the most general-purpose option.

■ external-Java-function-class.class.getClassLoader() – Use this
option for external Java functions.

3.2.3 Running the Sample Applications
A good way to get started is to run the sample application code that is provided in this
chapter. Samples that use both the Static and the Dynamic Mediator APIs are included.
The samples illustrate simple but common use cases: retrieving data, modifying it, and
updating it. See Section 3.3, "Sample Static Mediator Application" and Section 3.4,
"Sample Dynamic Mediator Application."

3.3 Sample Static Mediator Application
This section presents a simple Java program that you can copy, compile, and run. The
program uses the Static Mediator API to perform these basic tasks: authenticating the
client, retrieving data, modifying data, and updating data on the server. For a basic
overview of the Static Mediator API, see Section 3.1.3, "Dynamic and Static Mediator
APIs." See also Section 3.6, "Mediator API Basics" and Section 3.9, "Advanced Topics."

Topics include:

■ Section 3.3.1, "Setting Up the Sample Data Service"

Note: In Listing 3–5, you could use the following code to obtain a
PreparedExpression object: PreparedExpression pe =
DataAccessServiceFactory.prepareExpression(ctx,
dspDataSpace, adhoc);

Sample Static Mediator Application

3-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ Section 3.3.2, "Generating the Mediator Client JAR File"

■ Section 3.3.3, "Setting Up the Java Project"

■ Section 3.3.4, "Running and Testing the Code"

■ Section 3.3.5, "Examining the Sample Code"

3.3.1 Setting Up the Sample Data Service
Before you can build and test the sample Java application, you need to set up an
Oracle Data Service Integrator data service. The instructions assume that you are
familiar with the Oracle Data Service Integrator perspective in the Eclipse IDE, as
described in the Oracle Fusion Middleware Data Service Integrator Developer's Guide.

1. Install Oracle Data Service Integrator.

2. In Workshop for WebLogic, create a server that uses the Oracle Data Service
Integrator samples domain.

3. Start the server.

4. Create an Oracle Data Service Integrator dataspace called MediatorSamples.

5. Copy the sample data service (Example 3–6) into a file called
MediatorSamples/Retail/CUSTOMER.ds.

6. Copy the schema file (Example 3–7) into a file called
MediatorSamples/Retail/schemas/CUSTOMER_KEY.xsd.

7. Copy the schema file (Example 3–8) into a file called
MediatorSamples/Retail/schemas/CUSTOMER.xsd.

Figure 3–1 shows the resulting Dataspace configuration:

Figure 3–1 Sample Dataspace Configuration

Note: The sample Java client that is presented in this section calls
operations in this sample data service. The sample Java code is
designed to work with this specific data service.

Note: Example 3–6 is a simple data service file, containing the
XQuery code that defines the service and its operations. Example 3–7
and Example 3–8 are schema files that are required by the data service.
The Mediator API lets you invoke the data service operations from a
Java client. For more information on data services, see Oracle Fusion
Middleware Data Service Integrator Developer's Guide.

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-9

Example 3–6 CUSTOMER.ds

xquery version "1.0" encoding "UTF-8";

(::pragma xds <x:xds targetType="t:CUSTOMER" xmlns:x="urn:annotations.ld.bea.com"
xmlns:t="ld:Retail/CUSTOMER">
 <creationDate>2007-11-08T17:13:51</creationDate>
 <relationalDB name="dspSamplesDataSource" providerId="Pointbase"/>
 <field xpath="CUSTOMER_ID" type="xs:short">
 <extension nativeXpath="CUSTOMER_ID" nativeTypeCode="5"
 nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"
 nativeKey="true">
 <autoNumber type="identity"/>
 </extension>
 <properties nullable="false"/>
 </field>
 <field xpath="FIRST_NAME" type="xs:string">
 <extension nativeXpath="FIRST_NAME" nativeTypeCode="12"
 nativeType="VARCHAR" nativeSize="64" nativeFractionalDigits="0"/>
 <properties nullable="false"/>
 </field>
 <field xpath="LAST_NAME" type="xs:string">
 <extension nativeXpath="LAST_NAME" nativeTypeCode="12"
 nativeType="VARCHAR" nativeSize="64" nativeFractionalDigits="0"/>
 <properties nullable="false"/>
 </field>
 <field xpath="CUSTOMER_SINCE" type="xs:date">
 <extension nativeXpath="CUSTOMER_SINCE" nativeTypeCode="91"
 nativeType="DATE" nativeSize="10" nativeFractionalDigits="0"/>
 <properties nullable="false"/>
 </field>
 <field xpath="EMAIL_ADDRESS" type="xs:string">
 <extension nativeXpath="EMAIL_ADDRESS" nativeTypeCode="12"
 nativeType="VARCHAR" nativeSize="32" nativeFractionalDigits="0"/>
 <properties nullable="false"/>
 </field>
 <field xpath="TELEPHONE_NUMBER" type="xs:string">
 <extension nativeXpath="TELEPHONE_NUMBER" nativeTypeCode="12"
 nativeType="VARCHAR" nativeSize="32" nativeFractionalDigits="0"/>
 <properties nullable="false"/>
 </field>
 <field xpath="SSN" type="xs:string">
 <extension nativeXpath="SSN" nativeTypeCode="12" nativeType="VARCHAR"
 nativeSize="16" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <field xpath="BIRTH_DAY" type="xs:date">
 <extension nativeXpath="BIRTH_DAY" nativeTypeCode="91" nativeType="DATE"
 nativeSize="10" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <field xpath="DEFAULT_SHIP_METHOD" type="xs:string">
 <extension nativeXpath="DEFAULT_SHIP_METHOD" nativeTypeCode="12"
 nativeType="VARCHAR" nativeSize="16" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <field xpath="EMAIL_NOTIFICATION" type="xs:short">
 <extension nativeXpath="EMAIL_NOTIFICATION" nativeTypeCode="5"
 nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>

Sample Static Mediator Application

3-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 <field xpath="NEWS_LETTTER" type="xs:short">
 <extension nativeXpath="NEWS_LETTTER" nativeTypeCode="5"
 nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <field xpath="ONLINE_STATEMENT" type="xs:short">
 <extension nativeXpath="ONLINE_STATEMENT" nativeTypeCode="5"
 nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <field xpath="LOGIN_ID" type="xs:string">
 <extension nativeXpath="LOGIN_ID" nativeTypeCode="12" nativeType="VARCHAR"
 nativeSize="50" nativeFractionalDigits="0"/>
 <properties nullable="true"/>
 </field>
 <key name="CUSTOMER_0_SYSTEMNAMEDCONSTRAINT__PRIMARYKEY"
 type="cus:CUSTOMER_KEY" inferredSchema="true"
 xmlns:cus="ld:Retail/CUSTOMER"/>
</x:xds>::)

declare namespace f1 = "ld:Retail/CUSTOMER";

import schema namespace t1 = "ld:Retail/CUSTOMER" at
"ld:Retail/schemas/CUSTOMER.xsd";

import schema "ld:Retail/CUSTOMER" at "ld:Retail/schemas/CUSTOMER_KEY.xsd";

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
 visibility="public" kind="read" isPrimary="false" nativeName="CUSTOMER"
 nativeLevel2Container="SAMPLECUSTOMER" style="table">
 <nonCacheable/> </f:function>::)

 declare function f1:CUSTOMER() as schema-element(t1:CUSTOMER)* external;

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
 visibility="public" kind="create" isPrimary="true" nativeName="CUSTOMER"
 nativeLevel2Container="SAMPLECUSTOMER" style="table">
 <nonCacheable/> </f:function>::)

 declare procedure f1:createCUSTOMER($p as element(t1:CUSTOMER)*)as
 schema-element(t1:CUSTOMER_KEY)* external;

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
 visibility="public" kind="update" isPrimary="true" nativeName="CUSTOMER"
 nativeLevel2Container="SAMPLECUSTOMER" style="table">
 <nonCacheable/> </f:function>::)

 declare procedure f1:updateCUSTOMER($p as changed-element(t1:CUSTOMER)*) as
 empty() external;

 (::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
 visibility="public" kind="delete" isPrimary="true" nativeName="CUSTOMER"
 nativeLevel2Container="SAMPLECUSTOMER" style="table">
 <nonCacheable/> </f:function>::)

 declare procedure f1:deleteCUSTOMER($p as element(t1:CUSTOMER)*) as empty()
 external;

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-11

Example 3–7 CUSTOMER_KEY.xsd

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:Retail/CUSTOMER"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER_KEY">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:short"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Example 3–8 CUSTOMER.xsd

<xs:schema targetNamespace="ld:Retail/CUSTOMER"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs:short" minOccurs="0"/>
 <xs:element name="FIRST_NAME" type="xs:string"/>
 <xs:element name="LAST_NAME" type="xs:string"/>
 <xs:element name="CUSTOMER_SINCE" type="xs:date"/>
 <xs:element name="EMAIL_ADDRESS" type="xs:string"/>
 <xs:element name="TELEPHONE_NUMBER" type="xs:string"/>
 <xs:element name="SSN" type="xs:string" minOccurs="0"/>
 <xs:element name="BIRTH_DAY" type="xs:date" minOccurs="0"/>
 <xs:element name="DEFAULT_SHIP_METHOD"
 type="xs:string" minOccurs="0"/>
 <xs:element name="EMAIL_NOTIFICATION" type="xs:short" minOccurs="0"/>
 <xs:element name="NEWS_LETTTER" type="xs:short" minOccurs="0"/>
 <xs:element name="ONLINE_STATEMENT" type="xs:short" minOccurs="0"/>
 <xs:element name="LOGIN_ID" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

3.3.2 Generating the Mediator Client JAR File
The sample Java application listed later in this section requires that you first generate a
Mediator Client JAR from the data service. The classes in this JAR contain type-safe
methods that call the data service functions and procedures. The generated Java
methods have the same names as their corresponding data service functions and
procedures.

To generate a mediator client JAR file using the IDE:

1. Select File > Export.

Note: You can generate a Mediator Client JAR file using the IDE, the
Oracle Data Service Integrator Console, or an Ant script. These
methods are described in detail in the Oracle Fusion Middleware Data
Service Integrator Developer's Guide. For this example, we will use the
IDE.

Sample Static Mediator Application

3-12 Oracle® Fusion Middleware Developing Data Service Integrator Applications

2. In the Select dialog, select Oracle Data Service Integrator > Mediator Client JAR
File and click Next.

3. Complete the Mediator Client JAR File dialog as follows:

■ Select the Dataspace project to export. For this example, the Dataspace project
is called MediatorSamples.

■ Specify a directory in which to place the exported JAR file. You can select any
location on your system. By default, the exported JAR will be named:
MediatorSamples-dsp-client.jar.

4. Click Finish.

3.3.3 Setting Up the Java Project
Example 3–10 lists the sample Java program that uses the Static Mediator API. The
application simply retrieves a DataObject from a data store, modifies the object, and
returns it to the data store. This example assumes you are using the Eclipse IDE, but
you can use the IDE or build environment of your choice. For this example, we set up
an Eclipse Java project called MediatorClient.

To set up the project:

1. Create a Java project called MediatorClient.

2. Set up your Java Build Path to include the JAR files listed in Section 3.2.2, "Setting
the CLASSPATH." To do this, select Project > Properties > Java Build Path. Be
sure to include the Mediator Client JAR file, as discussed in Section 3.3.2,
"Generating the Mediator Client JAR File."

3. Create a package called com.bea.dsp.sample in your Java project. To do this,
right-click the Java project in the Package Explorer and select New > Package.

4. Create a Java class called StaticSampleApp.java in the package. To do this,
right-click the package in the Package Explorer and select New > Class.

5. Delete the default contents of the new source file and copy the entire file listed in
Example 3–9 into the source file.

6. Save the file. Figure 3–2 shows the completed project configuration in the Eclipse
IDE.

Note: For detailed information on how generated class names in the
JAR file are derived, see Section 3.6.4, "Naming Conventions for
Generated Classes."

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-13

Figure 3–2 Completed Project Configuration

Example 3–9 StaticSampleApp.java

package com.bea.dsp.sample;

import das.ejb.retail.CUSTOMERDAS;
import retail.customer.CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class StaticSampleApp {
 public static void main(String[] args) throws Exception {
 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context ctx = new InitialContext(hash);

 // Create DataAccessService handle with Context and dataspace name
 CUSTOMERDAS das = CUSTOMERDAS.getInstance(ctx, "MediatorSamples");

 // Invoke the basic 'get all customers' function
 DASResult<CUSTOMER> result = das.CUSTOMER();

 // Obtain the first CUSTOMER DataObject - also be sure to
 // always dispose() any DASResults
 try {

Note: The imported classes CUSTOMERDAS and CUSTOMER (see
Example 3–9) are located in the Static Mediator Client JAR file, which
must be in the CLASSPATH.

Sample Static Mediator Application

3-14 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 CUSTOMER customer = result.next();

 // Enable change-tracking for that CUSTOMER
 SDOUtil.enableChanges(customer);

 // Modify customer
 customer.setFIRST_NAME("New First Name");
 customer.setEMAIL_ADDRESS("first_name@example.com");

 // Send changes back to DSP - update function takes an array
 // of CUSTOMERs
 das.updateCUSTOMER(new CUSTOMER[] { customer });
 }
 finally {
 result.dispose();
 }
 }
}

3.3.4 Running and Testing the Code
To test the application:

1. Start the server.

2. Run the Java client as a Java application. In Eclipse, this is commonly done by
right-clicking the Java file and selecting Run As > Java Application.

To verify that the Java client worked, simply test the data service:

1. Open the data service in the Data Service editor.

2. Click the Test tab (see Figure 3–3).

3. Select an operation from the drop down menu. For this example, select the
CUSTOMER() operation.

4. Click Run (see Figure 3–3).

5. Inspect the first row of the data table. The client application changes the first
customer's name and email address to "New First Name" and "first_
name@example.com" as shown in Figure 3–3.

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-15

Figure 3–3 Testing the Client

3.3.5 Examining the Sample Code
This section examines the parts of the Java sample in Example 3–9. This section
discusses:

■ Section 3.3.5.1, "Importing Packages"

■ Section 3.3.5.2, "Obtaining a Data Access Service Handle"

■ Section 3.3.5.3, "Retrieving Data from the Service"

■ Section 3.3.5.4, "Obtaining a DataObject from the Result"

■ Section 3.3.5.5, "Disposing the Result Object"

■ Section 3.3.5.6, "Modifying the DataObject"

■ Section 3.3.5.7, "Returning Changes to the Server"

3.3.5.1 Importing Packages
The first two classes are located in the generated Mediator Client JAR file, which must
be in your build path. The CUSTOMERDAS class is the generated DataAccessService
class for the data service. This class contains type-safe methods that map to the actual
data service operations. The CUSTOMER class provides the SDO interface for
manipulating DataObjects returned from the data service.

import das.ejb.retail.CUSTOMERDAS;
import retail.customer.CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Sample Static Mediator Application

3-16 Oracle® Fusion Middleware Developing Data Service Integrator Applications

3.3.5.2 Obtaining a Data Access Service Handle
A DataAccessService object lets you call methods on a data service. See the Javadoc for
more information on this class. For the Static Mediator API, DataAccessService (DAS)
classes have a factory method named getInstance() to return the handle.

The getInstance() method requires two parameters to return the handle:

■ A WebLogic JNDI Context object. The Context object allows the Java client to
connect to the data service running through WebLogic Server. See Section 3.6.6,
"Obtaining the WebLogic JNDI Context for Oracle Data Service Integrator."

■ The name of the Dataspace project in which the data service is deployed. In this
sample, the project is called MediatorSamples.

Hashtable<String, String> hash = new Hashtable<String, String>();
hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
Context ctx = new InitialContext(hash);

CUSTOMERDAS das = CUSTOMERDAS.getInstance(ctx, "MediatorSamples");

3.3.5.3 Retrieving Data from the Service
The generated DataAccessService method CUSTOMER() retrieves the result set from
the data service. This method returns all customer objects from the data service. The
return type is a DASResult object, which works like an iterator. For more information
on this return type, see Section 3.6.5, "Understanding DASResult."

DASResult<CUSTOMER> result = das.CUSTOMER();

The method CUSTOMER() is mapped directly from the original no-argument data
service operation of the same name. The operation definition as specified in the data
service file looks like this:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
 visibility="public" kind="read" isPrimary="false" nativeName="CUSTOMER"
 nativeLevel2Container="SAMPLECUSTOMER" style="table">
 <nonCacheable/> </f:function>::)

 declare function f1:CUSTOMER() as schema-element(t1:CUSTOMER)* external;

The entire data service file is shown in Example 3–6.

3.3.5.4 Obtaining a DataObject from the Result
The DASResult.next() method works very much like the Java method Iterator.next(). It
returns the next CUSTOMER, which is an SDO DataObject. SDO is a Java-based data
programming model (API) and architecture for accessing and updating data. For
details on SDO, see Using Service Data Objects (SDO) in the Oracle Fusion
Middleware Using Data Service Integrator XQuery Engine Oracle Data Service
Integrator Concepts Guide.

CUSTOMER customer = result.next();

Sample Static Mediator Application

Invoking Data Services from Java Clients 3-17

3.3.5.5 Disposing the Result Object
You must call DASResult.dispose() whenever you are finished iterating through a
result object. For more information on dispose(), see Section 3.6.5.2, "Disposing of
DASResult Objects."

result.dispose();

3.3.5.6 Modifying the DataObject
After you obtain a DataObject, you can modify it; however, if you intend to submit
these changes back to the Oracle Data Service Integrator server, you must enable
change-tracking on the DataObject before making any modifications. The
SDOUtil.enableChanges() method lets you enable change-tracking for a single
DataObject or an array of DataObjects.

For more information on this method, see Section 3.6.7, "Working with Data Objects."
After the customer object has change-tracking enabled, the generated setters are called
to modify certain values in the customer object.

SDOUtil.enableChanges(customer);

// Modify customer
customer.setFIRST_NAME("New First Name");
customer.setEMAIL_ADDRESS("first_name@example.com");

3.3.5.7 Returning Changes to the Server
Finally, the generated DataAccessService.updateCUSTOMER() method is called with a
single parameter: an array of CUSTOMER objects. The method calls its equivalent data
service operation to update the database with the newly modified row of data.

das.updateCUSTOMER(new CUSTOMER[] { customer });

Note: Placing the dispose() call in a try/finally block is a
recommended best practice.

Note: Note that the set method below is called on an SDO
DataObject. Technically, such methods are part of the SDO API, not
the Mediator API. See Chapter 2, "Data Programming Model and
Update Framework" for information on SDO.

Note: In this example, the update method generated by Oracle Data
Service Integrator accepts an array of DataObjects. It accepts an array
because the data service operation (created by the data service
developer) accepts an array of data objects. If the data service
developer had created an additional update method that accepted a
single CUSTOMER, it would not be necessary to put the customer
DataObject into an array.

Sample Dynamic Mediator Application

3-18 Oracle® Fusion Middleware Developing Data Service Integrator Applications

3.4 Sample Dynamic Mediator Application
This section presents a simple example that you can copy, compile, and run. This
example uses the Dynamic Mediator API to perform these basic tasks: authenticating
the client, retrieving data, modifying data, and updating data on the server.

The topics in this section include:

■ Section 3.4.1, "Setting Up and Running the Sample Code"

■ Section 3.4.2, "Sample Java Client Code (Dynamic Mediator API)"

■ Section 3.4.3, "Examining the Sample Code"

3.4.1 Setting Up and Running the Sample Code
To set up and run this sample code, follow the basic instructions in Section 3.3,
"Sample Static Mediator Application." The procedures for creating a sample data
service, setting up the Java project, and running the program are the same as the Static
Mediator sample; however, when using the Dynamic Mediator API, you do not need
to generate or reference the Static Mediator Client JAR file. Use the sample Java code
shown in Example 3–10 in your project.

3.4.2 Sample Java Client Code (Dynamic Mediator API)
This section shows sample Java client code for the Dynamic Mediator API.

Example 3–10 DynamicSampleApp.java

package com.bea.dsp.sample;

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;
import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class DynamicSampleApp {
 public static void main(String[] args) throws Exception {
 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"welcome1");
 Context ctx = new InitialContext(hash);

 // Create DataAccessService handle with Context, dataspace
 // name, and data service URI
 DataAccessService das = DataAccessServiceFactory.newDataAccessService
 (ctx, "MediatorSamples", "ld:Retail/CUSTOMER");

 // Invoke the basic 'get all customers' function, which takes
 // no arguments
 DASResult<Object> result = das.invoke("CUSTOMER", new Object[0]);

Sample Dynamic Mediator Application

Invoking Data Services from Java Clients 3-19

 // Obtain the first CUSTOMER DataObject - also be sure to
 // always dispose() any DASResults
 try {
 DataObject customer = (DataObject) result.next();

 // Enable change-tracking for that CUSTOMER
 SDOUtil.enableChanges(customer);

 // Modify customer
 customer.set("FIRST_NAME", "DynamicClient");
 customer.set("EMAIL_ADDRESS", "dynamic@example.com");

 // Send changes back to DSP - update function takes an array
 // of CUSTOMERs
 das.invoke("updateCUSTOMER", new Object[] { customer });
 }
 finally {
 result.dispose();
 }
 }
}

3.4.3 Examining the Sample Code
This section examines the parts of the Java sample in Example 3–10. This section
discusses:

■ Section 3.4.3.1, "Importing Classes"

■ Section 3.4.3.2, "Obtaining a DataAccessService Handle"

■ Section 3.4.3.3, "Retrieving Data from the Service"

■ Section 3.4.3.4, "Obtaining a DataObject from the Result"

■ Section 3.4.3.5, "Disposing the Result Object"

■ Section 3.4.3.6, "Modifying the DataObject"

■ Section 3.4.3.7, "Returning Changes to the Server"

3.4.3.1 Importing Classes
These classes are required by the sample. For detailed information on the classes, refer
to the Javadoc on e-docs.

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;
import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;
import commonj.sdo.DataObject;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

3.4.3.2 Obtaining a DataAccessService Handle
A DataAccessService object lets you call methods on a data service. See the Javadoc for
more information on this class. The DataAccessServiceFactory class requires three
parameters to return the handle:

Sample Dynamic Mediator Application

3-20 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ A WebLogic JNDI Context object. The Context object allows the Java client to
connect to the data service running through WebLogic Server and provides
security attributes. See Section 3.6.6, "Obtaining the WebLogic JNDI Context for
Oracle Data Service Integrator." For more information on WebLogic JNDI context
objects, see Oracle Fusion Middleware Programming JNDI for Oracle WebLogic
Server.

■ The name of the Dataspace project in which the data service is deployed.

■ The name of the data service as based on its location in the Dataspace's folder
hierarchy.

Here is the code:

Hashtable<String, String> hash = new Hashtable<String, String>();
hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
Context ctx = new InitialContext(hash);

DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, "MediatorSamples", "ld:Retail/CUSTOMER");

3.4.3.3 Retrieving Data from the Service
In this example, the invoke() method calls the data service CUSTOMER operation.
This operation returns all customer objects from the data service. The invoke() method
returns a DASResult object, which works like an iterator. For more information on this
return type, see Section 3.6.5, "Understanding DASResult." Note that the CUSTOMER
operation takes no arguments.

DASResult<Object> result = das.invoke("CUSTOMER", new Object[0])

3.4.3.4 Obtaining a DataObject from the Result
The DASResult.next() method works very much like the Java method Iterator.next(). It
returns the next object in the result set. Because the CUSTOMER data service method
returns SDO-compliant DataObjects, you can cast the return value to DataObject.

SDO is a Java-based data programming model (API) and architecture for accessing
and updating data. See also Section 3.1.1, "What is SDO?."

DataObject customer = (DataObject) result.next();

3.4.3.5 Disposing the Result Object
You must call DASResult.dispose() whenever you are finished iterating through a
result object. For more information on dispose(), see Section 3.6.5.2, "Disposing of
DASResult Objects."

result.dispose();

Note: The generic type parameter for DASResult is <Object> because
data of any type can be returned by the invoke() method of the
Dynamic Mediator API.

Creating New DataObjects

Invoking Data Services from Java Clients 3-21

3.4.3.6 Modifying the DataObject
After you obtain a DataObject, you can modify it; however, if you intend to submit
these changes back to the Oracle Data Service Integrator server, you must enable
change-tracking on the DataObject before making any modifications. The
SDOUtil.enableChanges() method lets you enable change-tracking for a single
DataObject or an array of DataObjects.

For more information on this method, see Section 3.6.7, "Working with Data Objects."
After the customer object has change-tracking enabled, the Dynamic SDO set() method
is called to modify certain values in the customer object. For more information on SDO
methods, see Chapter 2, "Data Programming Model and Update Framework."

SDOUtil.enableChanges(customer);

customer.set("FIRST_NAME", "DynamicClient");
customer.set("EMAIL_ADDRESS", "dynamic@example.com");

3.4.3.7 Returning Changes to the Server
Finally, the DataAccessService method invoke() calls the update method on the data
service with a single parameter: an array of CUSTOMER objects. The data service
operation updates the database with the newly modified row of data.

das.invoke("updateCUSTOMER", new Object[] { customer });

3.5 Creating New DataObjects
This section explains how to use the Data Services Mediator and SDO APIs to create
new data objects and submit them to the Oracle Data Service Integrator server. As
with previous examples, both the static and dynamic APIs are illustrated.

3.5.1 Creating a New DataObject with the Static API
The Java program in Example 3–11 creates a new DataObject, modifies it, and updates
it on the Oracle Data Service Integrator server.

3.5.1.1 Setting Up and Running the Sample
The sample code in Example 3–11 is designed to work in the same Java project and
with the same data service project that are described in Section 3.3, "Sample Static
Mediator Application."

Note: Placing the dispose() call in a try/finally block is a
recommended best practice.

Note: In this example, the update method accepts an array of
DataObjects. It accepts an array because the data service operation
(created by the data service developer) accepts an array of data
objects. If the data service developer had created an additional update
method that accepted a single CUSTOMER, it would not be necessary
to put the customer DataObject into an array.

Creating New DataObjects

3-22 Oracle® Fusion Middleware Developing Data Service Integrator Applications

You can run the sample code presented here by following the setup instructions in that
section. When you test the data service, you will see a new row has been added to the
table.

Example 3–11 StaticCreateSample.java

package com.bea.dsp.sample;

import das.ejb.retail.CUSTOMERDAS;
import retail.customer.CUSTOMER;
import retail.customer.CUSTOMER_KEY;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.helper.HelperContext;
import commonj.sdo.helper.DataFactory;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class StaticCreateSample {
 public static void main(String[] args) throws Exception {
 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context ctx = new InitialContext(hash);

 // Create DataAccessService handle with Context and dataspace name
 CUSTOMERDAS das = CUSTOMERDAS.getInstance(ctx, "MediatorSamples");

 // Obtain the SDO HelperContext for this dataspace
 HelperContext hctx = das.getHelperContext();
 // Could also use:
 // HelperContext hctx = HelperContextCache.get("MediatorSamples");

 // Get DataFactory from HelperContext
 DataFactory factory = hctx.getDataFactory();

 // Create an "empty" CUSTOMER DataObject by naming the XML
 // schema *type*. For schema global elements that do not
 // explicitly specify a type, their type name will be the same
 // as the element name.
 CUSTOMER customer = (CUSTOMER) factory.create
 ("ld:Retail/CUSTOMER", "CUSTOMER");

 // Have to provide this DataObject with its own name. Note
 // that this is the XML schema *name*, not the *type* -
 // although as noted, when the global element does not
 // explicitly specify a type, the type that is provided for it
 // has the same name as the element.
 SDOUtil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER");

 // Note that you must NOT enable change-tracking for this
 // DataObject using enableChanges(). Change-tracking is only

Creating New DataObjects

Invoking Data Services from Java Clients 3-23

 // for tracking changes to data originally received from the
 // DSP server.

 // Set fields on new DataObject. Don't set auto-generated
 // fields, such as CUSTOMER_ID. May omit optional fields or
 // those with default values
 customer.setFIRST_NAME("New First Name");
 customer.setLAST_NAME("New Last Name");
 customer.setCUSTOMER_SINCE("2007-10-18");
 customer.setEMAIL_ADDRESS("first_name@example.com");
 customer.setTELEPHONE_NUMBER("867-5309");

 // Send new DataObject to DSP - create function takes an array
 // of CUSTOMERs, and returns CUSTOMER_KEYs
 DASResult<CUSTOMER_KEY> result =
 das.createCUSTOMER(new CUSTOMER[] { customer });

 // Can obtain new customer ID from the returned key - also be
 // sure to always dispose() any DASResults.
 try {
 CUSTOMER_KEY key = result.next();
 System.out.println("New customer key: " + key.getCUSTOMER_ID());
 }
 finally {
 result.dispose();
 }

 // Note that the created DataObject is NOT automatically
 // updated based on the generated key values. If you want to
 // get a DataObject populated with the new CUSTOMER_ID, you
 // need to re-read. This is easier if the data service
 // architect provides a getByID() function on the data
 // service.
 }
}

3.5.1.2 Importing Packages
Two SDO classes are required by this program. A HelperContext provides access to a
consistent set of instances of SDO helpers. It represents a helper execution context. The
set of helpers returned by the methods in this interface have visibility to the same SDO
metadata, that is, they execute in the same "scope."

A DataFactory is a helper for the creation of DataObjects. The created DataObjects are
not connected to any other DataObjects. Only Types with DataType false and abstract
false may be created.

3.5.1.3 Obtaining a Data Access Service Handle
A DataAccessService object lets you call methods on a data service. See the Javadoc for
more information on this class. For the Static Mediator API, DataAccessService (DAS)
classes have a factory method named getInstance() to return the handle.

The getInstance() method requires two parameters to return the handle:

■ A WebLogic JNDI Context object. The Context object allows the Java client to
connect to the data service running through WebLogic Server. See Section 3.6.6,
"Obtaining the WebLogic JNDI Context for Oracle Data Service Integrator." For
more information on WebLogic JNDI context objects, see Oracle Fusion
Middleware Programming JNDI for Oracle WebLogic Server.

Creating New DataObjects

3-24 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ The name of the Dataspace project in which the data service is deployed. In this
sample, the project is called MediatorSamples.

Hashtable<String, String> hash = new Hashtable<String, String>();
hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
Context ctx = new InitialContext(hash);

CUSTOMERDAS das = CUSTOMERDAS.getInstance(ctx, "MediatorSamples");

3.5.1.4 Creating a DataFactory
To create a DataFactory, you need to first obtain a HelperContext object for the
Dataspace.

HelperContext hctx = das.getHelperContext();
DataFactory factory = hctx.getDataFactory();

You could also use this call to return the HelperContext:

HelperContext hctx = HelperContextCache.get("MediatorSamples");

3.5.1.5 Create and Name the DataObject
After you create a DataObject, you must explicitly name it. The factory.create() method
takes two String parameters. The first is a URI, the location of the data service in the
Dataspace project. The second parameter is the XML schema type of the DataObject
you are creating. For schema global elements that do not explicitly specify a type, their
type name will be the same as the element name.

CUSTOMER customer = (CUSTOMER) factory.create("ld:Retail/CUSTOMER", "CUSTOMER");

Next, you must provide the new DataObject with a name. The
SDOUtil.setElementName() method takes these parameters: the DataObject, the
namespace URI of the element QName, and the local part of the element QName.

Note that this name is the XML schema name, not the type. However, as noted, for
global elements that do not specify a type, the type that is provided has the same name
as the element.

SDOUtil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER");

3.5.1.6 Modifying the DataObject
After you create a new DataObject, you can modify it before submitting it to the server.

You must not enable change-tracking in this new DataObject using the
SDOUtil.enableChanges() method. Change-tracking is only used for tracking changes
to data that was originally received from the Oracle Data Service Integrator server.

customer.setFIRST_NAME("New First Name");
customer.setLAST_NAME("New Last Name");
customer.setCUSTOMER_SINCE("2007-10-18T12:27:41Z");
customer.setEMAIL_ADDRESS("first_name@example.com");
customer.setTELEPHONE_NUMBER("867-5309");

Creating New DataObjects

Invoking Data Services from Java Clients 3-25

3.5.1.7 Returning New DataObject to the Server
After the new object is created, the data service operation createCUSTOMER is called
from the Static Mediator API. The data service create operation takes an array of
objects as input. The Mediator API method returns a CUSTOMER_KEY objects in a
DASResult.

DASResult<CUSTOMER_KEY> result = das.createCUSTOMER(new CUSTOMER[] { customer });

3.5.1.8 Returning the New DataObject Key
To return the CUSTOMER_KEY for the new CUSTOMER object, call the next() method
on the DASResult object. Be sure to dispose the DASResult object (result) after it is
returned. Placing dispose() in a try/finally block is a recommended best practice.

try {
 CUSTOMER_KEY key = result.next();
 System.out.println("New customer key: " + key.getCUSTOMER_ID());
}

finally {
 result.dispose();
}

3.5.2 Creating a New DataObject with the Dynamic API
The Java program in Example 3–11 creates a new DataObject, modifies it, and updates
it on the Oracle Data Service Integrator server.

3.5.2.1 Running the Sample
The sample code in Example 3–12 is designed to work in the same Java project and
with the same data service project that are described in Section 3.4, "Sample Dynamic
Mediator Application." You can run the sample code presented here by following the
setup instructions in that section.

Example 3–12 DynamicCreateSample.java

package com.bea.dsp.sample;

import com.bea.dsp.das.DataAccessService;
import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DASResult;
import com.bea.dsp.das.HelperContextCache;
import com.bea.dsp.sdo.SDOUtil;

Note: You can omit optional fields or fields with default values.

Note: The newly created local copy of the DataObject (customer, in
this example) is not automatically updated with generated keys such
as CUSTOMER_ID. If you want to obtain a DataObject populated with
CUSTOMER_ID, you need to retrieve the new DataObject from the
server by invoking the data service's read operation. This is easier if
the data service developer provides a getByID() operation on the data
service.

Creating New DataObjects

3-26 Oracle® Fusion Middleware Developing Data Service Integrator Applications

import commonj.sdo.helper.HelperContext;
import commonj.sdo.helper.DataFactory;
import commonj.sdo.DataObject;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class DynamicCreateSample {
 public static void main(String[] args) throws Exception {
 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.PROVIDER_URL,"t3://localhost:7001");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context ctx = new InitialContext(hash);

 // Obtain the SDO HelperContext for this dataspace. As with
 // StaticCreateSample, I could obtain this from the
 // DataAccessService. However, here I'm demonstrating how to
 // create an all-new DataObject prior to creating any
 // DataAccessService instance. In this case, since I'm using
 // the dynamic mediator, I need to first ensure that the
 // global HelperContext cache is populated with the schemas
 // for my data service.
 HelperContextCache.loadSchemasForDataspace
 (ctx, "MediatorSamples", "ld:Retail/CUSTOMER");

 // Now that the schemas are loaded, I can get the
 // HelperContext for the dataspace
 HelperContext hctx = HelperContextCache.get("MediatorSamples");

 // Get DataFactory from HelperContext
 DataFactory factory = hctx.getDataFactory();

 // Create an "empty" CUSTOMER DataObject by naming the XML
 // schema *type*. For schema global elements that do not
 // explicitly specify a type, their type name will be the same
 // as the element name.
 DataObject customer = factory.create("ld:Retail/CUSTOMER", "CUSTOMER");

 // Have to provide this DataObject with its own name. Note
 // that this is the XML schema *name*, not the *type* -
 // although as noted, when the global element does not
 // explicitly specify a type, the type that is provided for it
 // has the same name as the element.
 SDOUtil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER");

 // Note that you must NOT enable change-tracking for this
 // DataObject using enableChanges(). Change-tracking is only
 // for tracking changes to data originally received from the
 // DSP server.

 // Set fields on new DataObject. Don't set auto-generated
 // fields, such as CUSTOMER_ID. May omit optional fields or
 // those with default values
 customer.set("FIRST_NAME", "Dynammic");

Creating New DataObjects

Invoking Data Services from Java Clients 3-27

 customer.set("LAST_NAME", "Mediator");
 customer.set("CUSTOMER_SINCE", "2007-10-18");
 customer.set("EMAIL_ADDRESS", "dynamic@example.com");
 customer.set("TELEPHONE_NUMBER", "867-5309");

 // Create DataAccessService handle with Context and dataspace name
 DataAccessService das = DataAccessServiceFactory.newDataAccessService
 (ctx, "MediatorSamples", "ld:Retail/CUSTOMER");

 // Send new DataObject to DSP - create function takes an array
 // of CUSTOMERs, and returns CUSTOMER_KEYs
 DASResult<Object> result =
 das.invoke("createCUSTOMER", new Object[] { customer });

 // Can obtain new customer ID from the returned key. Always be
 // sure to dispose() any DASResults you get.
 try {
 DataObject key = (DataObject) result.next();
 System.out.println("New customer key: " + key.get("CUSTOMER_ID"));
 }
 finally {
 result.dispose();
 }

 // Note that the created DataObject is NOT automatically
 // updated based on the generated key values. If you want to
 // get a DataObject populated with the new CUSTOMER_ID, you
 // need to re-read. This is easier if the data service
 // architect provides a getByID() function on the data
 // service.
 }
}

3.5.2.2 Importing Packages
Three SDO classes are required by this program. A DataObject is a representation of
some structured data. It is the fundamental component in the SDO (Service Data
Objects) package. A HelperContext provides access to a consistent set of instances of
SDO helpers. It represents a helper execution context.

The set of helpers returned by the methods in this interface have visibility to the same
SDO metadata, that is, they execute in the same "scope." A DataFactory is a helper for
the creation of DataObjects. The created DataObjects are not connected to any other
DataObjects. Only Types with DataType false and abstract false may be created.

This example also uses the com.bea.dsp.das.HelperContextCache class, which
provides access to the global cache of SDO HelperContext objects maintained by
Oracle Data Service Integrator. The use of HelperContextCache is described in the next
section Section 3.5.2.3, "Creating a DataFactory."

3.5.2.3 Creating a DataFactory
As with the static mediator example discussed previously, we need to obtain the SDO
HelperContext for this Dataspace. In the static example, we created the HelperContext
from the DataAccessService. However, in this example, we create a new DataObject
before we create the DataAccessService instance.

To do this, you need to ensure that the global HelperContext cache is populated with
the data service schemas.

Creating New DataObjects

3-28 Oracle® Fusion Middleware Developing Data Service Integrator Applications

HelperContextCache.loadSchemasForDataspace
 (ctx, "MediatorSamples", "ld:Retail/CUSTOMER");
 // Now that the schemas are loaded, get the HelperContext for the dataspace.
 HelperContext hctx = HelperContextCache.get("MediatorSamples");

 DataFactory factory = hctx.getDataFactory();

3.5.2.4 Create and Name the DataObject
When you create a DataObject, you must explicitly name it. The factory.create()
method takes two String parameters. The first is a URI, the location of the data service
in the Dataspace project. The second parameter is the XML schema type of the
DataObject you are creating.

For schema global elements that do not explicitly specify a type, their type name will
be the same as the element name.

DataObject customer = factory.create("ld:Retail/CUSTOMER", "CUSTOMER");

Next, you must provide the new DataObject with a name. The
SDOUtil.setElementName() method takes these parameters: the DataObject, the
namespace URI of the element QName, and the local part of the element QName.

Note that this name is the XML schema name, not the type. However, as noted, for
global elements that do not specify a type, the type that is provided has the same name
as the element.

SDOUtil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER");

3.5.2.5 Modifying the DataObject
After you create a new DataObject, you can modify it before submitting it to the server.

You must not enable change-tracking in this new DataObject using the
SDOUtil.enableChanges() method. Change-tracking is only used for tracking changes
to data that was originally received from the Oracle Data Service Integrator server.

customer.set("FIRST_NAME", "New First Name");
customer.set("LAST_NAME", "New Last Name");
customer.set("CUSTOMER_SINCE", "2007-10-18T12:27:41Z");
customer.set("EMAIL_ADDRESS", "first_name@example.com");
customer.set("TELEPHONE_NUMBER", "867-5309");

3.5.2.6 Returning New DataObject to the Server
You need a DataAccessService handle to call methods on the data service. A
DataAccessService object lets you call methods on a data service. See the Javadoc for
more information on this class. The DataAccessServiceFactory class requires three
parameters to return the handle:

Note: For detailed information on HelperContextCache, refer to the
Javadoc.

Note: You can omit optional fields or fields with default values.

Mediator API Basics

Invoking Data Services from Java Clients 3-29

■ A WebLogic JNDI Context object. The Context object allows the Java client to
connect to the data service running through WebLogic Server and provides
security attributes. See Section 3.6.6, "Obtaining the WebLogic JNDI Context for
Oracle Data Service Integrator." For more information on WebLogic JNDI context
objects, see Oracle Fusion Middleware Programming JNDI for Oracle WebLogic
Server.

■ The name of the Dataspace project in which the data service is deployed.

■ The name of the data service as based on its location in the Dataspace's folder
hierarchy.

The DataAccessServiceFactory returns the handle.

// Create DataAccessService handle with Context and dataspace name
DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, "MediatorSamples", "ld:Retail/CUSTOMER");

The DataAccessService.invoke() method is used to call the createCUSTOMER data
service operation on the server. Note that the createCUSTOMER data service operation
is designed to take an array of objects as input. The function returns a CUTOMER_
KEYS objects in the DASResult object.

DASResult<Object> result =
 das.invoke("createCUSTOMER", new Object[] { customer });

3.5.2.7 Returning the New DataObject Key
To return the key for the new CUSTOMER object, call the next() method on the
DASResult object. Be sure to dispose the DASResult object (result) after it is returned.
Placing dispose() in a try/finally block is a recommended best practice.

try {
 DataObject key = (DataObject) result.next();
 System.out.println("New customer key: " + key.get("CUSTOMER_ID"));
}
finally {
 result.dispose();
}

3.6 Mediator API Basics
This section discusses various Mediator API topics.

■ Section 3.6.1, "Beyond the Sample Applications"

■ Section 3.6.2, "More on the Static Mediator API"

■ Section 3.6.3, "More on the Dynamic Mediator API"

■ Section 3.6.4, "Naming Conventions for Generated Classes"

Note: The newly created local copy of the DataObject (customer, in
this example) is not automatically updated with generated keys such
as CUSTOMER_ID. If you want to obtain a DataObject populated with
CUSTOMER_ID, you need to retrieve the new DataObject from the
server by invoking the data service's read operation. This is easier if
the data service developer provides a getByID() operation on the data
service.

Mediator API Basics

3-30 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ Section 3.6.5, "Understanding DASResult"

■ Section 3.6.6, "Obtaining the WebLogic JNDI Context for Oracle Data Service
Integrator"

■ Section 3.6.7, "Working with Data Objects"

3.6.1 Beyond the Sample Applications
It is recommended that you review and run the sample applications provided in this
chapter:

■ Section 3.3, "Sample Static Mediator Application"

■ Section 3.4, "Sample Dynamic Mediator Application"

Although the sample code is very basic, it demonstrates common use cases of
retrieving, modifying, and updating data. The samples also include details to help you
understand the code.

The rest of this chapter discusses additional features of the APIs as well as advanced
topics and important reference material.

3.6.2 More on the Static Mediator API
When called through the Static Mediator API, data service operations that return
empty() or that return a single item do not return DASResult; instead, they return void
or the single item. See also Section 3.6.5, "Understanding DASResult."

3.6.3 More on the Dynamic Mediator API
This section provides additional information on the Dynamic Mediator API.

■ Section 3.6.3.1, "Invoking Data Service Operations"

■ Section 3.6.3.2, "Getters and Setters"

3.6.3.1 Invoking Data Service Operations
The invoke(String method, Object[] args) method dynamically invokes data service
operations. When an operation is invoked (getCustomerByCustID(), for example), it
returns a DASResult object. All data service functions return a DASResult when called
through the Dynamic Mediator API. See also Section 3.6.5, "Understanding
DASResult."

You can see the invoke() method in use in the Dynamic Mediator API sample in
Example 3–10:

DASResult<Object> result = das.invoke("updateCustomer", new Object[0]);

More information on the invoke() method is available in Javadoc on e-docs.

3.6.3.2 Getters and Setters
SDO provides generic getters and setters for working with data objects. The SDO API
can be used with data types that have not yet been deployed at development time.
XPath expressions are passed as arguments to the generic methods. For example:

customer.set("EMAIL_ADDRESS", "first_name@example.com");

or

String name = customer.get("EMAIL_ADDRESS");

Mediator API Basics

Invoking Data Services from Java Clients 3-31

See also Section 3.9.4, "Specifying XPath Expressions as Arguments" and Chapter 2,
"Data Programming Model and Update Framework."

3.6.4 Naming Conventions for Generated Classes
When you generate a Mediator Client JAR file or a Web Services Mediator Client JAR
file, the generated DataAccessService subclasses and packages are named according to
the following conventions:

3.6.4.1 Mediator Client JAR Naming Convention
Generated DataAccessService subclasses are named <Data_Service_Name>DAS.class.
For example, if you generate a Mediator Client JAR file from a data service called
Customer.ds, a class called CustomerDAS.class is generated in the JAR file. Package
names contain das.ejb.

3.6.4.2 Web Services Mediator Client JAR Naming Convention
Generated DataAccessService subclasses are named <Data_Service_Name>DAS.class.
For example, if you generate a Web Services Mediator Client JAR from a web service
map file called Customer.ws, a class called CustomerDAS.class is generated in the JAR
file. Package names contain das.ws.

3.6.5 Understanding DASResult
The mediator APIs that return data sets return an object called DASResult (Data
Access Service Result). DASResult is similar to a Java Iterator.

This section includes these topics:

■ Section 3.6.5.1, "Overview of DASResult"

■ Section 3.6.5.2, "Disposing of DASResult Objects"

■ Section 3.6.5.3, "Dynamic Mediator APIs and DASResult"

■ Section 3.6.5.4, "Static Mediator APIs and DASResult"

■ Section 3.6.5.5, "Retrieving an Array of Objects"

3.6.5.1 Overview of DASResult
By default, data is returned to the Mediator from the Oracle Data Service Integrator
server in small blocks. This "streaming" behavior means that large result sets are never
held in memory all at once on either the Oracle Data Service Integrator server or the
client application, which optimizes memory utilization.

However, this requires that resources on the server be held open until all results have
been returned to the client. See Section 3.9.2, "Support for Stateless Operations."

For example, the signature for the invoke() method is:

DASResult<Object> invoke(String operation, Object[] args) throws DASException;

Like an Iterator object, DASResult is forward-only; there is no way to return to a
previous item nor to restart the iteration.

DASResult includes these standard Java Iterator methods:

■ Object next() throws DASException;

■ boolean hasNext();

Mediator API Basics

3-32 Oracle® Fusion Middleware Developing Data Service Integrator Applications

All complex XML items in the DASResult object are represented as DataObjects. All
simple items (which can be returned from library data service operations) in the result
are represented by a corresponding Java object, such as Integer, Long, and so on.

For information on how types are mapped to schema types, see Section 3.7, "Mapping
Data Service Types to Java Types." See also Section 3.9.5, "Making Ad Hoc Queries."

3.6.5.2 Disposing of DASResult Objects
The server is required to hold open resources such as database handles until the code
finishes iterating through all of the results. Therefore, you are required to dispose of
returned DASResult objects to tell the server to release the resources.

DASResult includes the following methods:

■ void dispose() – Disposes of resources required by DASResult on the Oracle Data
Service Integrator server.

■ boolean isDisposed() – Returns whether the connection to the Oracle Data Service
Integrator server has been closed.

The dispose() method is automatically called for you in the following two cases:

■ You use the FETCH_ALL_IMMEDIATELY feature of the RequestConfig object. For
more information this feature, see Section 3.9.2, "Support for Stateless Operations."

■ You use the DASResult.getItems() method. For more information, see
Section 3.6.5.5, "Retrieving an Array of Objects."

3.6.5.3 Dynamic Mediator APIs and DASResult
All Dynamic Mediator API methods that return XQuery results return a DASResult
object. These methods include:

■ The basic invoke() method

■ The form of invoke() that takes a RequestConfig object. See Section 3.1.4, "API
Overview" for information on RequestConfig.

■ All forms of PreparedExpression.executeQuery() for ad-hoc queries. For details on
forming ad-hoc queries, see Section 7.2.4, "Using Ad Hoc Queries to Fine-tune
Results from the Client."

Note: The Java Iterator remove() method is not included because
DASResult is a read-only object.

Note: All mediator methods that return DASResult never return
NULL; if the data service function returns no results, then the
DASResult iterates through zero items. That is, hasNext() immediately
returns false and next() returns NULL.

Note: You must call dispose() when you are finished iterating
through a DASResult. If you call dispose() on a result object that has
already been disposed, nothing happens, and no error is generated.

Mediator API Basics

Invoking Data Services from Java Clients 3-33

3.6.5.4 Static Mediator APIs and DASResult
In the Static Mediator API, all generated methods for data service operations that have
plural results are declared to return a DASResult<T>. Plural results are results of data
service operations whose XQuery return type is type* (zero or more instances of the
type) or type+ (one or more instances of the type). T is the class of DataObjects that
are returned by the DASResult.next().

Generated methods for data service operations that have a maximum of one return
value (that is, data service operations whose XQuery return type is type or type?)
will be declared to return the corresponding Java type directly, rather than a
DASResult object. In addition, a data service operation whose return type is empty()
will generate a static mediator method with a return type of void. See Section 3.7,
"Mapping Data Service Types to Java Types" for more information.

3.6.5.5 Retrieving an Array of Objects
DASResult includes a method T[] getItems(). This method returns the results as an
array. This method immediately disposes the DASResult. See Section 3.6.5.2,
"Disposing of DASResult Objects."

■ You must call getItems() before any calls to DASResult.next(). If you call getItems()
after any calls to next() an IllegalStateException is thrown.

■ If you call next() after calling getItems(), an IllegalStateException is thrown.

■ When you call getItems(), all results are materialized in memory on the client at
once.

3.6.6 Obtaining the WebLogic JNDI Context for Oracle Data Service Integrator
Java client applications use JNDI to access named objects, such as data services, on a
Oracle WebLogic Server. To use any of the Mediator APIs, you need to obtain the
WebLogic Server JNDI context for Oracle Data Service Integrator.

This context allows the mediator APIs to call data service operations and acquire
information from data services. For more information on WebLogic JNDI context
objects, see Oracle Fusion Middleware Programming JNDI for Oracle WebLogic
Server.

Use the following call to obtain the JNDI context. The hashtable parameter is
explained below.

InitialContext jndiCtxt = new InitialContext(hashtable);

Table 3–2 lists the keys and values that you can insert into the hashtable parameter.

Example 3–13 shows example code for obtaining the JNDI context.

Table 3–2 JNDI Context Keys and Values

Key Value

Context.INITIAL_CONTEXT_FACTORY weblogic.jndi.WLInitialContextFactory

Context.PROVIDER_URL URL of the WebLogic Server hosting Oracle Data
Service Integrator. For example:
t3://localhost:7001.

Context.SECURITY_PRINCIPAL (optional) A username

Context.SECURITY_CREDENTIALS (optional) A password

Mediator API Basics

3-34 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Example 3–13 Obtaining the JNDI Context

Hashtable h = new Hashtable();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL,"t3://machinename:7001");
 h.put(Context.SECURITY_PRINCIPAL,<username>);
 h.put(Context.SECURITY_CREDENTIALS,<password>);
 InitialContext jndiCtxt = new InitialContext(h);

3.6.7 Working with Data Objects
When you invoke a data service operation using the Mediator API, a collection of
SDO-compliant data objects is returned in a DASResult object. (See also Section 3.6.5,
"Understanding DASResult.")

This section discusses working with DataObjects within the context of a Java client.
For more details on SDO data objects and the SDO API, see Chapter 2, "Data
Programming Model and Update Framework."

3.6.7.1 Enabling Data Objects for Change Tracking
Before you make any changes to a DataObject, you must enable it for change tracking.
To do this, pass the DataObject to the com.bea.dsp.sdo.SDOUtil.enableChanges()
method. For example:

SDOUtil.enableChanges(customer);

There are two forms of enableChanges(). One takes a DataObject and the other takes
an array of DataObjects:

com.bea.dsp.sdo.SDOUtil.enableChanges(DataObject);
com.bea.dsp.sdo.SDOUtil.enableChanges(DataObject[]);

3.6.7.2 Modifying Data Object Properties
After you pass a DataObject to enableChanges(), you can make any allowable
modifications to the DataObject using the standard SDO APIs. See Chapter 2, "Data
Programming Model and Update Framework." for detailed information on the SDO
API interfaces.

SDO provides static (typed) and dynamic (untyped) interfaces. For details, see
Section 2.2.1.1, "Static Data Object API" and Section 2.2.1.3, "Dynamic Data Object
API."

Example static (typed) method call:

customer.setFIRST_NAME("New First Name");

Example dynamic (untyped) method call:

customer.set("FIRST_NAME", "New First Name");

Note: When a DataObject that is enabled for changes is returned to
the server, it contains its original data and its changed data. The
mechanics of handling changed data is somewhat complex; therefore,
the SDOUtil.enableChanges() utility method was created to handle
those details.

Mapping Data Service Types to Java Types

Invoking Data Services from Java Clients 3-35

After an SDO object is enabled for change and modified, it can be passed as an
argument to an update method. Oracle Data Service Integrator then handles the
details of performing the update. For example, from Example 3–9:

das.updateCUSTOMER(new CUSTOMER[] { customer });

3.6.7.3 Creating a New Data Object
You can use the API to create a completely new data object. In RDBMS terms this
would be considered creating a new record. Data object creation is an advanced topic.
For detailed information, see Section 3.5, "Creating New DataObjects."

3.7 Mapping Data Service Types to Java Types
This section explains how types in data services are mapped to Java types by the
Mediator API. For example, the Static Mediator API generator makes these type
conversions when creating a Mediator Client JAR file.

This section also helps you understand how argument types passed to Mediator API
methods are mapped to corresponding XQuery types.

Topics in this section include:

■ Section 3.7.1, "Conversion of Simple Types"

■ Section 3.7.2, "Conversion of Date/Time Types"

■ Section 3.7.3, "Passing Empty Sequence Arguments"

■ Section 3.7.4, "Quantified Return Types"

■ Section 3.7.5, "What is Autoboxing?"

3.7.1 Conversion of Simple Types
Table 3–3 specifies how simple XQuery types are converted to Java types by the
Mediator API. For example, a data service operation that returns xs:int produces a Java
method that returns a Java Integer object. An operation that returns xs:int* (zero or
more ints) returns a DASResult<Integer> object. (See also Section 3.6.5.4, "Static
Mediator APIs and DASResult.")

The following XQuery types are discussed by the SDO specification but are not
supported for input or output from the Mediator API: xs:ENTITIES, xs:ENTITY, xs:ID,
xs:IDREF, xs:IDREFS, xs:language, xs:Name, xs:NCName, xs:NMTOKEN,
xs:NMTOKENS, xs:NOTATION.

Note: Simple types in are mapped to Java Objects when returned
from the mediator in a manner that is identical to the SDO for Java
Specification V2.1. You can find this specification online at
http://www.osoa.org/display/Main/Service+Data+Object
s+Specifications.

Table 3–3 Simple XQuery to Java Type Conversion

XQuery Type Mediator Accepts Mediator Returns

xs:boolean Boolean Boolean

xs:byte Byte Byte

Mapping Data Service Types to Java Types

3-36 Oracle® Fusion Middleware Developing Data Service Integrator Applications

3.7.2 Conversion of Date/Time Types
The mediator APIs handle date/time conversions in a manner that is consistent with
the SDO specification. In the SDO for Java Specification V2.1, all date/time values are
mapped to Java Strings. You can find this specification online at
http://www.osoa.org/display/Main/Service+Data+Objects+Specificat
ions.

xs:short Short Short

xs:int Integer Integer

xs:long Long Long

xs:integer BigInteger BigInteger

xs:negativeInteger

xs:positiveInteger

xs:nonNegativeInteger

xs:nonPositiveInteger

BigInteger BigInteger

xs:unsignedByte Short Short

xs:unsignedShort Integer Integer

xs:unsignedInt Long Long

xs:unsignedLong BigInteger BigInteger

xs:float Float Float

xs:double Double Double

xs:decimal BigDecimal BigDecimal

xs:string String String

xs:anyURI String, java.net.URI String

xs:base64Binary byte[] byte[]

xs:hexBinary byte[] byte[]

xs:QName javax.xml.namespace.QName String

This string is formed by
concatenating a URI, a # symbol,
and the local name of the QName.
Input can be a string of that form
or a QName object.

Note: The form of these Strings is the same as the canonical lexical
representation of the corresponding schema type according to the
XML Schema specification.

Table 3–4 XQuery Date/Time Types to Java Conversions

XQuery Type Mediator Accepts Mediator Returns

xs:date String, java.sql.Date String

xs:time String, java.sql.Time String

Table 3–3 (Cont.) Simple XQuery to Java Type Conversion

Mapping Data Service Types to Java Types

Invoking Data Services from Java Clients 3-37

3.7.3 Passing Empty Sequence Arguments
If a data service operation takes an optional argument (for example CUSTOMER?), you
can pass a NULL parameter to a Static or Dynamic Mediator method. You can pass
NULL in these situations:

■ As an entry in the Object[] of arguments passed to methods such as
DataAccessService.invoke() or as one of the arguments to the Static Mediator
method.

■ As a value to PreparedExpression.bindObject(QName variable, Object value).

3.7.4 Quantified Return Types
In the Static Mediator API, quantified return types from data service operations are
generated based on the following rules:

Any data service parameters that are quantified with * or + (for example, xx:int*)
have static mediator methods that are declared to return DASResult<type>.

For example, a data service operation with the following signature:

declare function t1:someFunc($a as xs:int*, $b as xs:double+) as xs:int*
external;

is converted to a method like this:

DataObject<java.lang.Integer> someFunc(Integer[] a, Double[] b);

Data service operations that return unquantified or ?-quantified types have Static
Mediator methods that are declared to return the type directly. In the case of ?, it is
possible that the result of the operation will be 0 instances of the type, in which case
the static mediator method returns NULL.

3.7.5 What is Autoboxing?
Autoboxing is a Java 1.5 language feature that can help simplify your code when
working with Java primitive types and their object wrappers. Autoboxing
automatically casts between object wrappers such as Integer and their primitive
countertypes.

With autoboxing, for instance, you can use an Integer object returned from a Mediator
API method in a mathematical expression and you can pass an int to a Mediator API
method that takes an Integer object. For detailed information on autoboxing, refer to
the Sun's Java documentation.

In Example 3–14, an Integer object is retrieved from a DASResult is auto-cast to an int.

xs:dateTime String, java.sql.Timestamp,

java.util.Date, java.util.Calendar

String

xs:duration, xs:gDay,

xs:gMonth, xs:gMonthDay,

xs:gYear, xs:gYearMonth

String String

Table 3–4 (Cont.) XQuery Date/Time Types to Java Conversions

XQuery Type Mediator Accepts Mediator Returns

Mapping Data Service Types to Java Types

3-38 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Example 3–14 Autoboxing Example

CustomerDAS custdas = CustomerDAS.getInstance(..);
// Invoke a 0-argument procedure that returns xs:int*
DASResult<Integer> result = custdas.getIDs();
while (result.hasNext()) {
 int cust = result.next(); // Note use of autoboxing.
}
result.dispose();

3.7.6 Support for Derived Simple Types
Oracle Data Service Integrator enables you to employ user-derived simple types as
parameters or return types in data service operations accessed through the Oracle
Data Service Integrator Mediator API.

The Mediator API is the Java API for retrieving artifacts from a data service and
returning them to their source. In your Java client, you can call Mediator API methods
to connect to a data service and invoke data service operations.

This enables you to create a simple type in a schema which restricts a built-in schema
type, and use that type as either a parameter type or a return type for a data service
operation, successfully invoking the operation through the Oracle Data Service
Integrator Mediator API.

For example, you might declare a simple type called ZipCode that derives from
xsd:string, as shown in the following:

<xs:simpleType name="ZipCode">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xs:restriction>
</xs:simpleType>

Oracle Data Service Integrator enables you to use this type as a parameter type or
return type for a data service operation.

3.7.6.1 Mapping Derived Schema Types to Java Types
The mapping of derived schema types to Java types is defined by the SDO
specification and, with one exception, is identical to the mapping of the corresponding
built-in schema types. For example, if a user type is derived from xs:string, the Java
class is java.lang.String. Similarly, if a user type is derived from xs:byte, the Java class
is java.lang.Byte.

The single exception involves using XSD types that are derived from xs:integer and
include facets (such as minInclusive, maxInclusive, minExclusive, maxExclusive, or
enumeration) constraining the range to be within the range of the Java data type int.
Oracle Data Service Integrator maps these XSD types to the Java type java.lang.Integer
instead of the default type java.math.BigInteger.

Note: If you use an Integer returned from a static mediator method
as an int, but the static mediator method actually returns null, you
will get a NullPointerException. This can only occur from a data
service operation that is declared to return xs:int? – that is, 0 or 1
integers. (This is not unique to int, but to any use of autoboxing.)

Advanced Topics

Invoking Data Services from Java Clients 3-39

Note that this is also true for user XSD types that derive from the following schema
built-in types (which are themselves derived from xs:integer):

■ xs:positiveInteger

■ xs:negativeInteger

■ xs:nonPositiveInteger

■ xs:nonNegativeInteger

■ xs:long

■ xs:unsignedLong

3.8 Web Services Support
The Oracle Data Service Integrator native web services feature lets you map data
services to web services directly. Client applications access data through web services
using the Mediator API. Both the Dynamic and Static Mediator APIs support native
web services. See Chapter 4, "Invoking Data Services Through Web Services" for
detailed information on the native web services feature.

3.9 Advanced Topics
This section includes these topics:

■ Section 3.9.1, "Schema Management"

■ Section 3.9.2, "Support for Stateless Operations"

■ Section 3.9.3, "Cache Management"

■ Section 3.9.4, "Specifying XPath Expressions as Arguments"

■ Section 3.9.5, "Making Ad Hoc Queries"

3.9.1 Schema Management
SDO provides a series of APIs that assist with schema management. These APIs
include:

■ XMLHelper – Creates DataObjects from XML.

■ DataFactory – Creates DataObjects from scratch.

■ XSDHelper – Loads the SDO type system with schemas.

■ HelperContext – Obtains instances of all the various helpers.

3.9.1.1 Schema Scope
A HelperContext object represents SDO's concept of scope; all schemas loaded into a
particular XSDHelper are available and used when creating DataObjects from the
XMLHelper or DataFactory of the same HelperContext.

.A Dataspace represents the basic unit of scope for schemas. A Dataspace will not
contain any schemas with conflicting type declarations.

Note: You cannot use types derived from xs:QName. Attempting to
use these types in data service operations may cause an exception.

Advanced Topics

3-40 Oracle® Fusion Middleware Developing Data Service Integrator Applications

For the web services-based mediator, the scope is defined by the WSDL. All schemas
necessary for all operations in a WSDL are included in that WSDL, so the WSDL itself
forms a reasonable scope for schemas. See Chapter 4, "Invoking Data Services Through
Web Services" for more information.

The Mediator automatically keeps a global cache of HelperContexts, and the key to
that cache will be either the Dataspace name or, for the web services case, the WSDL
URL. The Mediator will automatically use the HelperContext for the appropriate
Dataspace/WSDL when creating new DataObjects for the return values of operations.

You can obtain the HelperContext for a given Dataspace/WSDL and use this
HelperContext to create your own DataObjects, query the type system, and so on. See
Section 3.9.1.3, "Schema Cache Management" for more information on the
HelperContext API.

3.9.1.2 Schema Download
This section describes the process of downloading schemas for DataAccessService
objects instantiated from data services and WSDLs (web services).

■ Data Services Case – When a DataAccessService is instantiated for a data service, a
HelperContext object is automatically populated with all schemas imported by the
data service (and all schemas imported or included by those schemas, recursively).

■ WSDL Case – When a DataAccessService is instantiated for a WSDL, the mediator
automatically populates the HelperContext for that WSDL with all schemas in that
WSDL.

Schemas are only loaded if they have not previously been loaded. You can set an
optional boolean flag on the newDataAccessService() method that requests the
mediator not to download schemas. Use this flag if you intend to download schemas
manually using methods described in the next section, or if you plan to load them
manually using SDO XSDHelper methods.

3.9.1.3 Schema Cache Management
Use the following methods for querying and manipulating the mediator cache of
HelperContexts. These are static methods on the class
com.bea.dsp.das.HelperContextCache.

■ HelperContext get(String key) – Returns (or creates, if necessary) the
HelperContext for the given Dataspace name/WSDL URL. You may wish to
obtain this object to load schemas that are only available on the client. For
example, this technique is useful if you have a schema for the return type of an
ad-hoc query that you intend to execute.

■ void flush(String key) – Instructs the mediator to remove the HelperContext for
the given Dataspace name/WSDL URL from its cache All DataAccessServices

Note: Schemas are only downloaded when creating a dynamic
DataAccessService. Creating an instance of the Static Mediator API
never downloads schemas, because the schemas are already compiled
into the Static Mediator Client JAR file.

Note: The schema download feature ensures that you do not need to
worry about schemas. The default behavior ensures that schemas are
available to clients at the appropriate times.

Advanced Topics

Invoking Data Services from Java Clients 3-41

created in the future will use a new HelperContext. You can use this technique if
you know the state of schemas has changed on the Oracle Data Service Integrator
server.

■ boolean loadSchemasForDataspace(Context ctx, String dataspace, String dsname)
– Instructs the Mediator to download all appropriate schemas for the given
Dataspace and data service. This download mechanism is similar to the one used
by the Mediator when creating a DataAccessService instance. This method allows
you to "pre-load" schemas, for instance, so you do not have to create a
DataAccesssService instance just to obtain the schemas to create DataObjects. (See
also Section 3.5, "Creating New DataObjects".) This method is also the only way to
achieve server schema download when you intend to use PreparedExpression for
executing an ad-hoc query. Finally, if you pass NULL for the data service name,
this method automatically downloads schemas for all data services in the
Dataspace. This may be slow, but is useful for certain ad-hoc query circumstances.

■ boolean loadSchemasForWSDL(String wsdl) – Instructs the mediator to load all
schemas from the WSDL into the corresponding HelperContext. This download
mechanism is similar to the one used by the Mediator when creating a
DataAccessService instance. As ad-hoc queries are not feasible over the web
service transport, this method is typically not used.

3.9.2 Support for Stateless Operations
By default, the Mediator API holds resources on the Oracle Data Service Integrator
server open while data is being returned. As discussed in Section 3.6.5,
"Understanding DASResult," data objects are returned through DASResult one object
at a time. Oracle Data Service Integrator refers to this strategy as stateful.

Generally, stateful operations are desirable. Stateful behavior allows both the client
and the server to minimize memory consumption. The Oracle Data Service Integrator
server will only hold open resources as long as is absolutely necessary, and the client
will not use more network round trips than are necessary to transfer data to the server.

However, in some cases, you may want to guarantee that the client uses exactly one
network round trip. For instance, if your network connection to the Oracle Data
Service Integrator server is highly latent or potentially unreliable, using one round trip
minimizes response time and ensures that there is no possibility of resources being left
open on the server longer than necessary.

To override the default stateful behavior and return results immediately, use the
RequestConfig flag FETCH_ALL_IMMEDIATELY. When this flag is specified, the
Mediator uses exactly one network round trip to retrieve all the results at once. In
addition, server resources are closed immediately.

Note: It is not possible in SDO 2.1 to "unload" schemas from a
HelperContext; therefore the only way to change schema information
is to create an entirely new HelperContext.

Note: Both loadSchemasForDataspace() and
loadSchemasForWSDL() return a boolean indicating whether they
actually loaded any schemas; they return false if the schemas for the
requested data service or WSDL were previously loaded.

Advanced Topics

3-42 Oracle® Fusion Middleware Developing Data Service Integrator Applications

WebLogic Server specifies a maximum amount of data which can be sent in a single
network operation. By default, this amount is 10 MB. If you use FETCH_ALL_
IMMEDIATELY and the results are larger than this block size, you may receive a
weblogic.socket.MaxMessageSizeExceededException. You can change this 10 MB limit
in the WebLogic Server Console by selecting:

Environment > Servers > (server) > Protocols > General > Maximum Message Size

When this flag is enabled, all methods that return a DASResult will return one which
is already disposed, as explained in Section 3.3.5.5, "Disposing the Result Object."

If you use FETCH_ALL_IMMEDIATELY, you can still use the normal iterator methods
of DASResult, or use getItems() to read all the results at once.

3.9.3 Cache Management
This section discusses API features that let you manage data caching through the
Mediator APIs.

3.9.3.1 Forcing Data Cache Read-through and Update
Data retrieved by data service operations can be cached for quick access. This is
known as a data caching. (See "Configuring the Query Results Cache" in the Oracle
Fusion Middleware Administering Data Service Integrator guide.) Assuming the data
changes infrequently, it's likely that you'll want to use the cache capability.

When the RequestConfig.GET_CURRENT_DATA attribute is set to true:

■ All data cache access is bypassed in favor of the physical data source. Function
values are recalculated based on the underlying data and the cache is refreshed. If
a call involves access to several cacheable functions, all will be refreshed with
current data.

■ The audit property:

evaluation/cache/data/forcedrefresh

indicates that a GET_CURRENT_DATA operation has been invoked.

■ The REFRESH_CACHE_EARLY attribute property setting is ignored.

SETTING the REFRESH_CACHE_EARLY Attribute

You can control the data cache using the RequestConfig.REFRESH_CACHE_EARLY
attribute.

If the RequestConfig.GET_CURRENT_DATA property is not enabled, you can use the
RequestConfig.REFRESH_CACHE_EARLY property to control whether cached data is
used based on the remaining TTL (time-to-live) available for the function's data cache.

The REFRESH_CACHE_EARLY attribute is of type integer. It is set by invoking the
RequestConfig.setIntegerAttribute() method. The setting of REFRESH_CACHE_

Note: The client must have enough memory to materialize the entire
result set immediately. In addition, the Oracle Data Service Integrator
server will need to fully materialize the result set in memory when
this flag is specified. Therefore, it is very important to use this flag
when there is any possibility that the result set cannot be held
comfortably in memory on both the client and the server.

Advanced Topics

Invoking Data Services from Java Clients 3-43

EARLY to a particular value requires that a cached record must have at least n seconds
of remaining TTL before it can be used.

If the record is set to expire in less than n seconds, it will not be retrieved. Instead its
value is recalculated based on the underlying data and the data cache associated with
that function is refreshed. The same REFRESH_CACHE_EARLY value applies to all
cache operations during a query evaluation.

3.9.4 Specifying XPath Expressions as Arguments
Oracle Data Service Integrator supports a limited subset of XPath expressions called
SDO path expressions. SDO path expressions offer flexibility in how you locate data
objects and attributes in the dynamic data API's accessors.

SDO path uses only SDO property names (which can be different from the
element/attribute name from schema/xml) in the selector. If there are alias names
assigned, those are also used to match. Each step of the path before the last must
return a single DataObject.

For example:

customer.get("CUSTOMER_PROFILE[1]/ADDRESS[AddressID=\"ADDR_10_1\"]")

The example gets the ADDRESS at the specified path with the specified addressID. If
element identifiers have multiple values, all elements are returned.

The get() method returns an Object. If the result of the expression is a property that
isMany, the method returns a List of DataObjects.

You can get a data object's containing parent data object by using the get() method
with XPath notation:

myCustomer.get("..")

You can get the root containing the data object by using the get() method with XPath
notation:

myCustomer.get("/")

This is similar to executing myCustomer.getRootObject().

Oracle Data Service Integrator fully supports both the traditional index notation and
the augmented notation. See the content on XPath expressions in Section 2.2.1.3,
"Dynamic Data Object API" for details.

3.9.5 Making Ad Hoc Queries
The DataAccessServiceFactory.prepareExpression() method lets you create ad hoc
queries against the data service. Example 3–15 shows an example of the
preparedExpression() method. For more information on ad hoc queries, see
Section 7.2.4, "Using Ad Hoc Queries to Fine-tune Results from the Client."

Example 3–15 Example of preparedExpression Method

PreparedExpression pe = DataAccessServiceFactory.prepareExpression
 (ctx, appname, "18 + 25");
DASResult<Object> result = pe.executeQuery();

Note: The supplied integer value of REFRESH_CACHE_EARLY
should always be positive. Negative values are ignored.

Understanding Transaction Behavior

3-44 Oracle® Fusion Middleware Developing Data Service Integrator Applications

int answer = (int) result.next();
result.dispose();

3.10 Understanding Transaction Behavior
This section discusses the transaction behavior of read/write and read-only operations
and queries.

3.10.1 Transaction Behavior for Read/Write Operations
The Oracle Data Service Integrator server always creates a new transaction if necessary
when executing read/write operations, such as create, update, or delete.

3.10.2 Transaction Behavior for Read-Only Operations
By default, read operations make use of a transaction if one is currently active on the
client; however, if no transaction is open, one will not be created. You can change this
default by setting an attribute on RequestConfig and passing RequestConfig as a
parameter to invoke(). (For detailed information on invoke() see the Javadoc.)

The attribute RequestConfig.ReadTransactionMode lets you set one of the following
values to configure transaction behavior of read-only operations.

■ SUPPORTS – Read operations will make use of a transaction if one is active on the
client. If no transaction is open, however, one will not be created. This is the
default setting.

■ REQUIRED – Read operations will make use of a transaction if one is active on
the client. If no transaction is open on the client, one will be created on the server
for the duration of the read operation.

■ NOT_SUPPORTED – Read operations will not use a transaction if one is active on
the client, and no transaction will be created.

Use the RequestConfig.setEnumAttribute() method to set the
ReadTransactionMode attribute. For example, the following code sets the
ReadTransactionMode mode to SUPPORTS.

RequestConfig config = new RequestConfig();
config.setEnumAttribute(RequestConfig.ReadTransactionMode.SUPPORTS);

4

Invoking Data Services Through Web Services 4-1

4Invoking Data Services Through Web
Services

This chapter explains how to expose data services as industry-standard Web services
and how to create client applications that invoke data services through those web
services.

This chapter includes these topics:

■ Section 4.1, "Overview"

■ Section 4.2, "Before You Begin"

■ Section 4.3, "Getting Started"

■ Section 4.4, "Sample Static Mediator Application"

■ Section 4.5, "Sample Dynamic Mediator Application"

■ Section 4.6, "Transaction Behavior and Web Services"

■ Section 4.7, "Securing Your Web Services Application"

4.1 Overview
The Oracle Data Service Integrator Native Web Services feature lets you map data
services to web services directly. Client applications access data through web services
with the Data Services Mediator API.

When you expose data services as Web services, your information assets become
accessible to a wide variety of client types, including other Java Web service clients,
Microsoft ADO.NET, other non-Java applications, and other Web services. Figure 4–1
illustrates the various approaches that client application developers can take to
integrating data services and Web services. Web service WSDL operations map
directly to data service operations on the server.

Note: Chapter 3, "Invoking Data Services from Java Clients"
discusses the Mediator API in detail. We recommend that you review
that chapter before you develop web service-enabled applications.

Note: For detailed information on creating data service operations
(read, create, update, delete, libraryFunction, and libraryProcedure)
see the Oracle Fusion Middleware Data Service Integrator Developer's
Guide.

Before You Begin

4-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 4–1 Web Services Enable Client Access to Oracle Data Service
Integrator-Enabled Applications

4.2 Before You Begin
This chapter is intended for Java developers who wish to write client applications that
invoke data services through web services.

We recommend that:

■ You have a basic understanding of web service technology and terms such as
WSDL (Web Service Description Language) and SOAP (Simple Object Access
Protocol).

■ You are a Java programmer (the Data Service Mediator APIs you will use are Java
APIs).

■ You review Chapter 3, "Invoking Data Services from Java Clients." This chapter
discusses the Data Services Mediator API and related topics in detail.

■ You review the basics of the SDO (Service Data Object) standard. SDO provides
APIs for manipulating data objects and is central to the client programming model
adopted by Oracle Data Service Integrator. See Chapter 2, "Data Programming

Note: If you are unfamiliar with web services, you can refer to the
WebLogic Server document "WebLogic Web Services: Getting Started"
at http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/webserv/index.html. This document provides
a thorough introduction to web services as well as detailed
information on developing web services for WebLogic Server.

Getting Started

Invoking Data Services Through Web Services 4-3

Model and Update Framework" for information on SDO.

■ You are familiar with XML.

4.3 Getting Started
This section lists the basic steps to get started writing a Java client application that
interacts with a data service.

■ Section 4.3.1, "Basic Steps"

■ Section 4.3.2, "Setting the CLASSPATH"

■ Section 4.3.3, "Running the Sample Applications"

4.3.1 Basic Steps
These are the basic steps to follow when developing a Java client that invokes data
service functions through web service operations.

1. The first thing you need is a data service to call. Someone (typically a data service
developer) creates the data service.

2. A Web Service Map file must then be generated from the data service. The map
file is typically generated by a data service developer. The procedure for
generating a Web Service Map file, see the Oracle Fusion Middleware Data Service
Integrator Developer's Guide.

3. Deploy and test the web service.

4. Decide whether to use the Static or Dynamic Mediator API to interact with the
web service from your Java client. See Section 3.1.3, "Dynamic and Static Mediator
APIs" for a summary of each API. To use the Static Mediator API, you need to
generate or obtain the Web Services Mediator Client JAR file. For instructions on
generating a Web Services Mediator Client JAR, see the Oracle Fusion Middleware
Data Service Integrator Developer's Guide.

5. Set up your Java build environment. You need certain JAR files in your
CLASSPATH. See Section 4.3.2, "Setting the CLASSPATH" for details.

6. Learn the WSDL operations that are available to you for accessing data service
functions. The operations have the same names and parameters as the data service
from which they were generated.

7. Write and test your client application. See the sample applications provided in this
document: Section 4.4, "Sample Static Mediator Application" and Section 4.5,
"Sample Dynamic Mediator Application."

4.3.2 Setting the CLASSPATH
You can set the CLASSPATH by either adding the Oracle Data Service Integrator client
library to the project or by manually setting the CLASSPATH.

Note: The Static Mediator API is generally recommended for most
use cases. The Static Mediator API is type safe and generally easier to
use than the Dynamic Mediator API.

Getting Started

4-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

4.3.2.1 Adding the Oracle Data Service Integrator Client Library
You can add the Oracle Data Service Integrator client library to your project by doing
either of the following:

■ Adding the library to an existing project

■ Adding the library when creating a new project

Adding the Library to an Existing Project

You can add the Oracle Data Service Integrator client library to an existing project.

Complete the following steps:

1. Right-click the project and choose Properties. A dialog showing the properties for
the project appears.

2. Select Java Build Path.

3. Click the Libraries tab, and click Add Library.

4. Select Oracle Data Service Integrator client library, click Next, and click Finish.

Alternatively, you can do the following:

1. Right-click the project and choose Build Path > Configure Build Path. A dialog
showing the properties for the project appears.

2. Select Java Build Path.

3. Click the Libraries tab, and click Add Library.

4. Select Oracle Data Service Integrator client library, click Next, and click Finish.

Adding the Library When Creating a New Project

You can add the Oracle Data Service Integrator client library when creating a new Java
project.

Complete the following steps:

1. Right-click in the Project Explorer, and choose New > Project. The New Project
wizard appears.

2. Select Java Project and click Next.

3. Type a name for the project and click Next.

4. Click the Libraries tab, and click Add Library.

5. Select Oracle Data Service Integrator client library, click Next, and click Finish.

6. Click Finish to create the new project.

4.3.2.2 Manually Setting the CLASSPATH
You can optionally set the CLASSPATH manually, if required. The CLASSPATH
settings depend on whether you are using the Static or Dynamic Mediator API.

Getting Started

Invoking Data Services Through Web Services 4-5

Static Web Service Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are
using the Static Mediator API.

Example 4–1 Static Web Service Client Classpath (with weblogic.jar)

CLASSPATH=
 <dataspace-ws-client>.jar <= this is the generated static client jar
 for the webservices transport
 <ALDSP_HOME>/lib/ld-client.jar
 <BEA_HOME>/modules/com.bea.core.sdo_1.1.0.0.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 4–2 Static Web Service Client Classpath (with wlfullclient.jar)

CLASSPATH=
 <dataspace-ws-client>.jar <= this is the generated static client jar
 for the webservices transport
 <ALDSP_HOME>/lib/ld-client.jar
 <BEA_HOME>/modules/com.bea.core.sdo_1.1.0.0.jar
 <BEA_HOME>/modules/com.bea.core.xml.xmlbeans_1.0.0.0_2-4-0.jar
 <BEA_HOME>/modules/com.bea.core.xml.beaxmlbeans_1.0.0.0_2-4-0.jar
 <BEA_HOME>/modules/glassfish.jaxws.rt_2.1.3.jar
 <WL_HOME>/server/lib/webserviceclient.jar
 <WL_HOME>/server/lib/wseeclient.jar
 <WL_HOME>/server/lib/wlfullclient.jar

Dynamic Web Service Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are
using the Dynamic Mediator API.

Example 4–3 Dynamic Web Service Client Classpath (with weblogic.jar)

CLASSPATH=
 <ALDSP_HOME>/lib/ld-client.jar
 <BEA_HOME>/modules/com.bea.core.sdo_1.1.0.0.jar
 <WL_HOME>/server/lib/weblogic.jar

Example 4–4 Dynamic Web Service Client Classpath (with wlfullclient.jar)

CLASSPATH=
 <ALDSP_HOME>/lib/ld-client.jar
 <BEA_HOME>/modules/com.bea.core.sdo_1.1.0.0.jar

Note: You can use the Java Mediator API with either the weblogic.jar
or the wlfullclient.jar file. For more information about choosing
between weblogic.jar or wlfullclient.jar, see Overview of Stand-alone
Clients in the Oracle WebLogic Server documentation at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/client/basics.html. For more information
about creating the wlfullclient.jar file, see Using the WebLogic
JarBuilder Tool at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/client/jarbuilder.html.

Sample Static Mediator Application

4-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 <BEA_HOME>/modules/com.bea.core.xml.xmlbeans_1.0.0.0_2-4-0.jar
 <BEA_HOME>/modules/com.bea.core.xml.beaxmlbeans_1.0.0.0_2-4-0.jar
 <BEA_HOME>/modules/glassfish.jaxws.rt_2.1.3.jar
 <WL_HOME>/server/lib/webserviceclient.jar
 <WL_HOME>/server/lib/wseeclient.jar
 <WL_HOME>/server/lib/wlfullclient.jar

4.3.3 Running the Sample Applications
A good way to get started is to run the sample application code that is provided in this
chapter. Samples that use the Static and the Dynamic Mediator APIs are included. The
samples illustrate simple but common use cases: retrieving data, modifying it, and
updating it. See Section 4.4, "Sample Static Mediator Application" and Section 4.5,
"Sample Dynamic Mediator Application."

4.4 Sample Static Mediator Application
This section presents a simple Java program that you can copy, compile, and run. The
program uses the Static Mediator API to invoke WSDL operations to perform the
following basic tasks: authenticating the client, retrieving data, modifying data, and
updating data on the server.

For an overview of the Static Mediator API, see Section 3.1.3, "Dynamic and Static
Mediator APIs."

Topics include:

■ Section 4.4.1, "Setting Up the Sample Data Service"

■ Section 4.4.2, "Creating a Web Service Map File"

■ Section 4.4.3, "Generating the Web Services Mediator Client JAR File"

■ Section 4.4.4, "Setting Up the Java Project"

■ Section 4.4.5, "Running and Testing the Code"

■ Section 4.4.6, "Examining the Sample Code"

4.4.1 Setting Up the Sample Data Service
The sample application presented here is designed to work with a sample data service.
You need to create this data service and configure a sever before continuing. For
detailed instructions on creating the data service that is required by this sample
application, see Section 3.3.1, "Setting Up the Sample Data Service."

4.4.2 Creating a Web Service Map File
To run the example, you need to generate a Web Service Map file. You can do this
easily using Workshop for WebLogic. See the Oracle Fusion Middleware Data Service
Integrator Developer's Guide for detailed instructions.

To create the file using Workshop for WebLogic:

1. Right-click the data service project and select New > Web Service Map.

2. Follow the wizard to create the map file. For this example, name the file
PhysicalCUSTOMER.ws.

3. Drag the data service file, PhysicalCUSTOMER.ds onto the Web Service Mapper
editor.

Sample Static Mediator Application

Invoking Data Services Through Web Services 4-7

4. Save the file.

5. Deploy and test the web service. To do this, right-click the PhysicalCUSTOMER.ds
file and select Test Web Service.

4.4.3 Generating the Web Services Mediator Client JAR File
The sample Java application listed later in this section requires that you first generate a
Web Services Mediator Client JAR file. The classes in this JAR contain type-safe
methods that call WSDL operations.

To generate a Web Services Mediator Client JAR file using Workshop for WebLogic:

1. Generate the Web Service Map file, as discussed previously in Section 4.4.2,
"Creating a Web Service Map File."

2. Select File > Export.

3. In the Select dialog, select Oracle Data Service Integrator > Web Services Mediator
Client JAR File and click Next.

4. Complete the Web Services Mediator Client JAR File dialog as follows:

■ In the left panel, select the Dataspace project that contains the .ws file(s) to
export. For this example, the Dataspace project is called MediatorTest.

■ In the right panel, select the Web Service Map file to export. You can select one
or more .ws files. For this example, be sure PhysicalCUSTOMER.ws is
selected.

■ Specify a directory in which to place the exported JAR file. You can select any
location on your system. By default, the exported JAR will be named:
MediatorTest-ws-client.jar.

5. Click Finish.

6. After you generate the JAR file, you must place it in the CLASSPATH for your Java
build environment. See Section 4.3.2, "Setting the CLASSPATH" for more
information.

Note: You can generate a Web Services Map file using Workshop for
WebLogic, the Oracle Data Service Integrator Console, or an Ant
script. These methods are described in detail in the Oracle Fusion
Middleware Data Service Integrator Developer's Guide.

Note: You can generate a Web Services Mediator Client JAR file
using Workshop for WebLogic, the Oracle Data Service Integrator
Console, or an Ant script. These methods are described in detail in the
Oracle Fusion Middleware Data Service Integrator Developer's Guide.

Note: Generated classes in the JAR file are named according to the
conventions described in Section 3.6.4, "Naming Conventions for
Generated Classes."

Sample Static Mediator Application

4-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

4.4.4 Setting Up the Java Project
Example 4–5 lists the sample Java client that uses the Static Mediator API to call WSDL
operations. The application simply retrieves a DataObject from a data store, modifies
the object, and returns it to the data store.

This example assumes you are using Workshop for WebLogic, but you can use the IDE
or build environment of your choice. For this example, we set up a Java project called
MediatorWSClient.

To run the sample:

1. Create a Java project called MediatorWSClient.

2. Set up your Java Build Path to include the JAR files listed in Section 4.3.2, "Setting
the CLASSPATH." To do this, select Project > Properties > Java Build Path. Be sure
to add the generated Web Services Mediator Client JAR file.

3. Create a package called com.bea.ws.sample in your Java project. To do this,
right-click the Java project in the Package Explorer and select New > Package.

4. Create a Java class called StaticWSSampleApp.java in the package. To do this,
right-click the package in the Package Explorer and select New > Class.

5. Delete the default contents of the new source file and copy the entire file listed in
Example 4–5 into the source file.

6. Save the file. Figure 4–2 shows the completed project configuration.

Figure 4–2 Completed Project Configuration

Example 4–5 StaticWSSampleApp.java

package com.bea.ws.sample;

import das.ws.ld.PhysicalCUSTOMERDAS;
import physicaldss.physicalcustomer.PhysicalCUSTOMER;

Note: The imported classes PhysicalCUSTOMERDAS and
PhysicalCUSTOMER are taken from the Web Services Mediator Client
JAR file, which must be in the CLASSPATH.

Sample Static Mediator Application

Invoking Data Services Through Web Services 4-9

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class StaticWSSampleApp {
 public static void main(String[] args) throws Exception {

 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"welcome1");
 Context ctx = new InitialContext(hash);

 String wsdlURL =
 "http://localhost:7001/MediatorTest/PhysicalCUSTOMER.ws?WSDL";

 // Create DataAccessService handle with Context and dataspace name
 PhysicalCUSTOMERDAS das = PhysicalCUSTOMERDAS.getInstance(ctx, wsdlURL);

 // Invoke the basic 'get all customers' function
 DASResult<PhysicalCUSTOMER> result = das.PhysicalCUSTOMER();

 // Obtain the first PhysicalCUSTOMER DataObject
 PhysicalCUSTOMER customer = result.next();

 // When finished interating through results, always call dispose().
 result.dispose();

 // Enable change-tracking for that PhysicalCUSTOMER
 SDOUtil.enableChanges(customer);

 // Modify customer
 customer.setFIRST_NAME("StaticWSMediator");
 customer.setEMAIL_ADDRESS("staticwsmediator@example.com");

 // Send changes back to DSP - update function takes an array
 // of PhysicalCUSTOMERs
 das.updatePhysicalCUSTOMER(new PhysicalCUSTOMER[] { customer });
 }
}

4.4.5 Running and Testing the Code
To test the application, simply start the server and run the Java client as a Java
application. In Workshop for WebLogic, this is commonly done by right-clicking the
Java file and selecting Run As > Java Application.

To verify that the Java client worked, re-test the data service:

1. Open the data service in the Data Service editor.

2. Click the Test tab (see Figure 4–3).

Sample Static Mediator Application

4-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

3. Select an operation from the drop down menu. For this example, select the
PhysicalCUSTOMER() function.

4. Click Run (see Figure 4–3).

5. Inspect the first row of the data table. The client application changes the first
customer's name and email address to "StaticWSMediator" and
"staticwsmediator@example.com" as shown in Figure 4–3.

Figure 4–3 Testing the Client

4.4.6 Examining the Sample Code
This section discusses the parts of the Java sample in Example 4–5. This section
examines the following components of the sample code:

■ Section 4.4.6.1, "Importing Packages"

■ Section 4.4.6.2, "Obtaining a Data Access Service Handle"

■ Section 4.4.6.3, "Retrieving Data from the Service"

■ Section 4.4.6.4, "Obtaining a DataObject from the Result"

■ Section 4.4.6.6, "Modifying the DataObject"

■ Section 4.4.6.7, "Returning Changes to the Server"

■ Section 4.4.6.5, "Disposing the Result Object"

4.4.6.1 Importing Packages
Note that the first two imported classes come from the generated Web Services
Mediator Client JAR file.

The PhysicalCUSTOMERDAS class is the generated DataAccessService class that
contains Java methods to call the WSDL operations. Method names are the same as
their corresponding WSDL operations. This class contains type-safe methods that map
to the actual WSDL operations. The PhysicalCUSTOMER class provides the SDO
interface for manipulating DataObjects returned from the data service.

import das.ws.PhysicalCUSTOMERDAS;
import physicaldss.physicalcustomer.PhysicalCUSTOMER;

Sample Static Mediator Application

Invoking Data Services Through Web Services 4-11

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

4.4.6.2 Obtaining a Data Access Service Handle
A DataAccessService object lets you call methods on a data service. See the Javadoc for
more information on this class. For the Static Mediator API, DataAccessService (DAS)
classes have a factory method named getInstance() to return the handle.

The getInstance() method requires two parameters to return the handle:

■ A WebLogic JNDI Context object. The Context object holds properties, such as
certain security attributes. See Section 3.6.6, "Obtaining the WebLogic JNDI
Context for Oracle Data Service Integrator." For more information on WebLogic
JNDI context objects, see Programming WebLogic JNDI at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/jndi/jndi.html. For information on security settings, see
Section 4.7, "Securing Your Web Services Application."

■ A WSDL URL the specifies the address of the web service to access.

Hashtable<String, String> hash = new Hashtable<String, String>();
hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
hash.put(Context.SECURITY_CREDENTIALS,"welcome1");
Context ctx = new InitialContext(hash);

String wsdlURL = "http://localhost:7001/MediatorTest/PhysicalCUSTOMER.ws?WSDL";

// Create DataAccessService handle with Context and dataspace name
PhysicalCUSTOMERDAS das = PhysicalCUSTOMERDAS.getInstance(ctx, wsdlURL);

Both the Static and Dynamic Mediator APIs accept either a file or a WSDL URL. For
example:

file:///C:/RTLApp/DataServices/RTLServices/Customer.wsdl

where Customer.wsdl is the WSDL file located on the local hard drive.

4.4.6.3 Retrieving Data from the Service
The generated DataAccessService method PhysicalCUSTOMER() retrieves the result
set from the data service. This method returns all customer objects from the data
service. The return type is a DASResult object, which works like an iterator. For more
information on this return type, see Section 3.6.5, "Understanding DASResult."

DASResult<PhysicalCUSTOMER> result = das.PhysicalCUSTOMER();

4.4.6.4 Obtaining a DataObject from the Result
The DASResult.next() method works very much like the Java method Iterator.next(). It
returns the next PhysicalCUSTOMER, which is an SDO DataObject. SDO is a
Java-based data programming model (API) and architecture for accessing and
updating data. For details on SDO, see Using Service Data Objects (SDO) in the

Sample Dynamic Mediator Application

4-12 Oracle® Fusion Middleware Developing Data Service Integrator Applications

ALDSP 2.5 Concepts Guide at
http://edocs.bea.com/aldsp/docs25/concepts/index.html.

PhysicalCUSTOMER customer = result.next();

4.4.6.5 Disposing the Result Object
You must call DASResult.dispose() whenever you are finished iterating through a
result object. For more information on dispose(), see Section 3.6.5.2, "Disposing of
DASResult Objects."

result.dispose();

4.4.6.6 Modifying the DataObject
After you obtain a DataObject, you can modify it; however, if you intend to submit
these changes back to the Oracle Data Service Integrator server, you must enable
change-tracking on the DataObject before making any modifications. The
SDOUtil.enableChanges() method lets you enable change-tracking for a single
DataObject or an array of DataObjects.

For more information on this method, see Section 3.6.7, "Working with Data Objects."
After the customer object has change-tracking enabled, the generated setters are called
to modify certain values in the customer object.

SDOUtil.enableChanges(customer);

customer.setFIRST_NAME("StaticWSMediator");
customer.setEMAIL_ADDRESS("staticwsmediator@example.com");

4.4.6.7 Returning Changes to the Server
Finally, the generated DataAccessService.updatePhysicalCUSTOMER() method is
called with a single parameter: an array of PhysicalCUSTOMER objects. The method
calls its equivalent data service function to update the database with the newly
modified row of data.

das.updatePhysicalCUSTOMER(new PhysicalCUSTOMER[] { customer });

4.5 Sample Dynamic Mediator Application
This section presents a simple example that you can copy, compile, and run. This
example uses the Dynamic Mediator API to perform these basic tasks: authenticating
the client, retrieving data, modifying data, and updating data on the server.

■ Section 4.5.1, "Setting Up and Running the Sample Code"

■ Section 4.5.2, "Sample Java Client Code (Dynamic Mediator API)"

■ Section 4.5.3, "Examining the Sample Code"

Note: The getters and setters are part of the SDO API, not the
Mediator API. See Chapter 2, "Data Programming Model and Update
Framework" for information on SDO.

Sample Dynamic Mediator Application

Invoking Data Services Through Web Services 4-13

4.5.1 Setting Up and Running the Sample Code
To run this sample code, follow the basic setup instructions in Section 4.4, "Sample
Static Mediator Application." The procedures for creating a sample data service,
setting the CLASSPATH, and running the program are the same as the Static Mediator
sample; however, when using the Dynamic Mediator API, you do not need to generate
or reference the Web Services Mediator Client JAR file.

4.5.2 Sample Java Client Code (Dynamic Mediator API)
This section shows sample Java client code for using the dynamic mediator API.

Example 4–6 DynamicWSSampleApp.java

package com.bea.ws.sample;

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;
import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class DynamicWSSampleApp {
 public static void main(String[] args) throws Exception {
 // Create InitialContext for mediator
 Hashtable<String, String> hash = new Hashtable<String, String>();
 hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
 hash.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context ctx = new InitialContext(hash);

 String wsdlURL =
 "http://localhost:7001/MediatorTest/PhysicalCUSTOMER.ws?WSDL";

 // Create DataAccessService handle with Context, dataspace
 // name, and data service URI
 DataAccessService das = DataAccessServiceFactory.newDataAccessService
 (ctx, wsdlURL);

 // Invoke the basic 'get all customers' function, which takes
 // no arguments
 DASResult<Object> result = das.invoke("PhysicalCUSTOMER", new Object[0]);

 // Obtain the first PhysicalCUSTOMER DataObject
 DataObject customer = (DataObject) result.next();

 // When finished interating through results, always call dispose().
 result.dispose();

 // Enable change-tracking for that PhysicalCUSTOMER
 SDOUtil.enableChanges(customer);

 // Modify customer
 customer.set("FIRST_NAME", "DynamicWSMediator");

Sample Dynamic Mediator Application

4-14 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 customer.set("EMAIL_ADDRESS", "dynamicwsmediator@oracle.com");

 das.invoke("updatePhysicalCUSTOMER", new Object[] { customer });
 result.dispose();
 }
}

4.5.3 Examining the Sample Code
This section discusses the parts of the Java sample in Example 4–6. This section
examines the following components of the sample code:

■ Section 4.5.3.1, "Importing Classes"

■ Section 4.5.3.2, "Obtaining a DataAccessService Handle"

■ Section 4.5.3.3, "Retrieving Data from the Service"

■ Section 4.5.3.4, "Obtaining a DataObject from the Result"

■ Section 4.5.3.5, "Disposing the Result Object"

■ Section 4.5.3.6, "Modifying the DataObject"

■ Section 4.5.3.7, "Returning Changes to the Server"

4.5.3.1 Importing Classes
These classes are required by the sample. For detailed information on the classes, refer
to the Javadoc on e-docs.

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;
import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

4.5.3.2 Obtaining a DataAccessService Handle
A DataAccessService object lets you call methods on and submit changes to a data
service. The DataAccessServiceFactory requires two parameters to return the handle.

■ A WebLogic JNDI Context object. The Context object holds properties, such as
certain security attributes. See Section 3.6.6, "Obtaining the WebLogic JNDI
Context for Oracle Data Service Integrator." For more information on WebLogic
JNDI context objects, see Programming WebLogic JNDI at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/jndi/jndi.html. For more information on security, see
Section 4.7, "Securing Your Web Services Application."

■ A WSDL URL that specifies the address of the web service to access.

Hashtable<String, String> hash = new Hashtable<String, String>();
hash.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
hash.put(Context.SECURITY_PRINCIPAL,"weblogic");
hash.put(Context.SECURITY_CREDENTIALS,"weblogic");

Sample Dynamic Mediator Application

Invoking Data Services Through Web Services 4-15

Context ctx = new InitialContext(hash);

String wsdlURL = "http://localhost:7001/MediatorTest/PhysicalCUSTOMER.ws?WSDL";

// Create DataAccessService handle with Context, dataspace
// name, and data service URI
DataAccessService das = DataAccessServiceFactory.newDataAccessService
 (ctx, wsdlURL);

Both the Static and Dynamic Mediator APIs accept either a file or a WSDL URL. For
example:

file:///C:/RTLApp/DataServices/RTLServices/Customer.wsdl

where Customer.wsdl is the WSDL file located on the local hard drive.

4.5.3.3 Retrieving Data from the Service
In this example, the invoke() method calls the WSDL operation PhysicalCUSTOMER.
This method returns all customer objects from the data service. The method returns a
DASResult object, which works like an iterator.

For more information on this return type, see Section 3.6.5, "Understanding
DASResult." Note that the PhysicalCUSTOMER operation takes no arguments. This
signature corresponds to the data service function that the WSDL operation calls.

DASResult<Object> result = das.invoke("PhysicalCUSTOMER", new Object[0])

4.5.3.4 Obtaining a DataObject from the Result
The DASResult.next() method works very much like the Java method Iterator.next(). It
returns the next object in the result set. Because the PhysicalCUSTOMER data service
method returns SDO-compliant DataObjects, you can cast the return value to
DataObject.

SDO is a Java-based data programming model (API) and architecture for accessing
and updating data. For details on SDO, see Using Service Data Objects (SDO) in the
Oracle Data Service Integrator Concepts Guide at
http://edocs.bea.com/aldsp/docs25/concepts/index.html. See also
Section 3.1.1, "What is SDO?."

DataObject customer = (DataObject) result.next();

4.5.3.5 Disposing the Result Object
You must call DASResult.dispose() whenever you are finished iterating through a
result object. For more information on dispose(), see Section 3.6.5.2, "Disposing of
DASResult Objects."

result.dispose();

4.5.3.6 Modifying the DataObject
After you obtain a DataObject, you can modify it; however, if you intend to submit
these changes back to the Oracle Data Service Integrator server, you must enable
change-tracking on the DataObject before making any modifications. The
SDOUtil.enableChanges() method lets you enable change-tracking for a single
DataObject or an array of DataObjects.

Transaction Behavior and Web Services

4-16 Oracle® Fusion Middleware Developing Data Service Integrator Applications

For more information on this method, see Section 3.6.7, "Working with Data Objects."
After the customer object has change-tracking enabled, the set method is called to
modify certain values in the customer object.

// Enable change-tracking for that PhysicalCUSTOMER
SDOUtil.enableChanges(customer);
// Modify customer
customer.set("FIRST_NAME", "DynamicWSMediator");
customer.set("EMAIL_ADDRESS", "dynamicwsmediator@oracle.com");

4.5.3.7 Returning Changes to the Server
Finally, the DataAccessService method invoke() is called with the update WSDL
operation. The operation takes a single parameter: an array of PhysicalCUSTOMER
objects. The data service function updates the database with the newly modified row
of data.

das.invoke("updatePhysicalCUSTOMER", new Object[] { customer });

4.6 Transaction Behavior and Web Services
Transactions are not propagated from the client to the server through web services,
because there is no way for a client transaction to be sent through the web services
interface. If a failure occurs and there is a transaction on the client side, the transaction
will be rolled back, depending on how the client handles the failure; however, the
transaction is not propagated to the server.

You can configure how transactions are handled on the server by setting attributes on
the static com.bea.dsp.RequestConfig.ReadTransactionMode object:

■ If set to REQUIRED and you invoke a read operation, a transaction is started on
the server.

■ If set to SUPPORTS (the default), a currently running transaction on the server will
continue. If there is no currently running transaction, a new one is not created.

A third attribute, NOT_SUPPORTED, is not supported for web service operations. For
a detailed discussion of transaction behavior with the Mediator API, see Section 3.10,
"Understanding Transaction Behavior.".

Example 4–7 shows how to set the com.bea.dsp.RequestConfig.ReadTransactionMode
attribute.

Example 4–7 Setting the ReadTransactionMode Attribute

RequestConfig config = new com.bea.dsp.RequestConfig();
RequestConfig requestConfig = request.getConfig();

if(readTransactionRequired) {
 config.setEnumAttribute(RequestConfig.ReadTransactionMode.REQUIRED);
}

4.7 Securing Your Web Services Application
Oracle Data Service Integrator Native Web Services supports the following security
features:

■ Basic authentication (Web Application Security)

Securing Your Web Services Application

Invoking Data Services Through Web Services 4-17

■ Transport level security (HTTPS)

■ Message level security (Web Services Security)

Typically, security configuration is performed on the server side by an administrator
or data services developer. As a client developer, you need to pass the required values
to the server to satisfy the required authentication. See Example 4–8 for one example.

If basic authentication is enabled, you must pass the following properties through the
Mediator API using the context object. For more information on WebLogic JNDI
context objects, see Programming WebLogic JNDI at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/jndi/jndi.html.

■ DSPWebServicesProperties.USER_NAME

■ DSPWebServicesProperties.PASSWORD

Example 4–8 illustrates one possible way to set up a web service security for a data
access service. In this case, a client-side BinarySecurityToken credential provider is
created that uses the public key infrastructure standard X.509 for identity. The
credential provider is then set as a property in the Context object, which is used to
create the data access service. The credential provider, security token, username token,
and trust manager are standard web service security properties.

For more information refer to the WebLogic Service documentation on web services
security. See also see "Configure Security for Web Services Applications" in the Oracle
Fusion Middleware Data Service Integrator Developer's Guide.

Example 4–8 Example X.509 Certificate Token Profile Setup

Hashtable h = new Hashtable();
h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContextFactory");

// Create emtpy list of credential providers.
List credProviders = new ArrayList();

// Create a client-side BinarySecurityToken credential provider that uses
// X.509 for identity, based on certificate and keys parameters.
CredentialProvider cp = new ClientBSTCredentialProvider(cert, key);
credProviders.add(cp);

String userid = "weblogic";
String password = "welcome1";
// Create a client-side UsernameToken credential provider based on username
// and password parameters.
cp = new ClientUNTCredentialProvider(userid.getBytes(), password.getBytes());

Note: For detailed information on configuring these security options,
see "Configure Security for Web Services Applications" in the Oracle
Fusion Middleware Data Service Integrator Developer's Guide.

Note: The Native Web Services feature supports only the HTTP and
HTTPS transport protocols. If you wish to use another transport
protocol, you must use the Oracle Data Service Integrator Oracle
Service Bus transport. This transport allows Oracle Data Service
Integrator data services to be exposed through ALSB.

Securing Your Web Services Application

4-18 Oracle® Fusion Middleware Developing Data Service Integrator Applications

credProviders.add(cp);

h.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
h.put(WSSecurityContext.TRUST_MANAGER, userTrustMgrImpl);

Context context = new InitialContext(h);

5

Using SQL to Access Data Services 5-1

5Using SQL to Access Data Services

This chapter explains how to use SQL to access data services and how to set up and
use the Oracle Data Service Integrator JDBC driver. The chapter covers the following
topics:

■ Section 5.1, "Introducing SQL Access to Data Services"

■ Section 5.2, "JDBC and SQL Support in Oracle Data Service Integrator"

■ Section 5.3, "Preparing to Use SQL to Access Data Services"

■ Section 5.4, "Accessing Data Services Using SQL From a Java Application"

■ Section 5.5, "Advanced Features"

■ Section 5.6, "Accessing Data Services Using SQL-Based Applications"

5.1 Introducing SQL Access to Data Services
Many reporting tools, such as Crystal Reports, Business Objects, Microsoft Access, and
Microsoft Excel, can access data using SQL. SQL can also be useful in other contexts.
Java applications, for example, can access data using SQL. You can also run ad hoc
SQL queries using development tools such as Data Tools Platform (DTP) or SQL
Explorer.

The Oracle Data Service Integrator JDBC driver enables JDBC and ODBC clients to
access information from data services using SQL. The Oracle Data Service Integrator
JDBC driver thereby increases the flexibility of the Oracle Data Service Integrator
integration layer by enabling access from a range of database applications and
reporting tools.

For the client, the Oracle Data Service Integrator integration layer appears as a
relational database, with each data service operation comprising a table or a stored
procedure. Internally, Oracle Data Service Integrator translates SQL queries into
XQuery. Figure 5–1 illustrates SQL access to data using the Oracle Data Service
Integrator JDBC driver.

As Figure 5–1 shows, source data can be consolidated, integrated, and transformed
using Oracle Data Service Integrator data services. The source data itself can come
from disparate sources throughout the enterprise, including relational databases and
Web services, among others.

You can then, in turn, expose the data service operations as a relational data source
accessible using SQL queries. This enables JDBC clients to access data consolidated
through Oracle Data Service Integrator.

Note that the Oracle Data Service Integrator JDBC driver does impose the following
constraints on data services:

Introducing SQL Access to Data Services

5-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ You can use the Oracle Data Service Integrator JDBC driver to access data only
through data services that have a flat data shape, which means that the data
service type cannot have nesting. SQL provides a traditional, two-dimensional
approach to data access, as opposed to the multi-level, hierarchical approach
defined by XML.

■ The Oracle Data Service Integrator JDBC driver exposes non-parameterized flat
data service operations as tables because SQL tables do not have parameters.
Parameterized flat data services are exposed as SQL stored procedures.

Figure 5–1 SQL Access to Data Services

5.1.1 Features of the Oracle Data Service Integrator JDBC Driver
The Oracle Data Service Integrator JDBC driver implements the java.sql.* interface in
JDK 1.7x to provide access to an Oracle Data Service Integrator server through the
JDBC interface. The driver has the following features:

■ Supports SQL-92 SELECT statements

■ Implements the JDBC 4.0 Application Programming Interface (API)

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-3

■ Supports Oracle Data Service Integrator with JDK 1.7

■ Supports both Java and ODBC bridge software clients

■ Supports table parameters, an extension to SQL-92.

■ Allows metadata access control at the JDBC driver level

Using the Oracle Data Service Integrator JDBC Driver, you can control the metadata
accessed through SQL based on the access rights set at the JDBC driver level. This
access control ensures that users can view only those tables and procedures that they
are authorized to access.

However, to use this feature, the Oracle Data Service Integrator console configuration
should be set to check access control. For more information, refer to the "Securing Data
Services Platform Resources" section in the Oracle Fusion Middleware Administering Data
Service Integrator guide.

5.1.2 Exploring Oracle Data Service Integrator and JDBC Artifacts
The Oracle Data Service Integrator views data retrieved from a database in the form of
data sources and operations. Table 5–1 shows the equivalent terminology.

For example, if you have a project SQLHowTo and a data service EmpInfo.ds with an
operation getAll(), you can use SQL Mapper to expose it as
JDBCdemo.empData.empinfo. The JDBC driver would then see a table called
empinfo with schema empData and catalog JDBCdemo.

5.2 JDBC and SQL Support in Oracle Data Service Integrator
This section describes the JDBC and SQL support in the Oracle Data Service Integrator
JDBC driver

5.2.1 JDBC Support
The Oracle Data Service Integrator JDBC driver implements the following interfaces
from the java.sql package as specified in JDK 1.7x:

■ java.sql.Blob

■ java.sql.CallableStatement

■ java.sql.Connection

■ java.sql.DatabaseMetaData

■ java.sql.ParameterMetaData

■ java.sql.PreparedStatement

■ java.sql.ResultSet

■ java.sql.ResultSetMetaData

Table 5–1 Oracle Data Service Integrator and JDBC Driver Artifacts

Oracle Data Service Integrator JDBC

Dataspace Project JDBC connection parameter (Driver URL)

Operation with parameters Stored procedure

Operation without parameters Table or stored procedure

JDBC and SQL Support in Oracle Data Service Integrator

5-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ java.sql.Statement

The Oracle Data Service Integrator JDBC driver supports the following methods:

Table 5–2 Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

java.sql.Blob getBinaryStream

getBytes

length

position

truncate

java.sql.CallableStatement clearParameters

executeQuery

setAsciiStream

setBigDecimal

setBoolean

setByte

setBytes

setCharacterStream

setDate

setDouble

setFloat

setInt

setLong

setNull

setObject

setShort

setString

setTime

setTimestamp

java.sql.Connection clearWarnings

close

createStatement

getAutoCommit

getCatalog

getHoldability

getLogPrintWriter

getMetaData

getSchema

getTransactionIsolation

getTypeMap

getWarnings

isClosed

isReadOnly

nativeSQL

prepareCall

prepareStatement

setAutoCommit

setCatalog

setHoldability

setReadOnly

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-5

java.sql.DatabaseMetaData allProceduresAreCallable

allTablesAreSelectable

dataDefinitionCausesTransactionCommit

dataDefinitionIgnoredInTransactions

deletesAreDetected

doesMaxRowSizeIncludeBlobs

getAttributes

getBestRowIdentifier

getCatalogs

getCatalogSeparator

getCatalogTerm

getColumnPrivileges

getColumns

getConnection

getCrossReference

getDatabaseMajorVersion

getDatabaseMinorVersion

getDatabaseProductName

getDatabaseProductVersion

getDefaultTransactionIsolation

getDriverMajorVersion

getDriverMinorVersion

getDriverName

getDriverVersion

getExportedKeys

getExtraNameCharacters

getIdentifierQuoteString

getImportedKeys

getIndexInfo

getJDBCMajorVersion

getJDBCMinorVersion

Table 5–2 (Cont.) Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

JDBC and SQL Support in Oracle Data Service Integrator

5-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

java.sql.DatabaseMetaData getMaxBinaryLiteralLength

getMaxCatalogNameLength

getMaxCharLiteralLength

getMaxColumnNameLength

getMaxColumnsInGroupBy

getMaxColumnsInIndex

getMaxColumnsInOrderBy

getMaxColumnsInSelect

getMaxColumnsInTable

getMaxConnections

getMaxCursorNameLength

getMaxIndexLength

getMaxProcedureNameLength

getMaxRowSize

getMaxSchemaNameLength

getMaxStatementLength

getMaxStatements

getMaxTableNameLength

getMaxTablesInSelect

getMaxUserNameLength

getNumericFunctions

getPrimaryKeys

getProcedureColumns

getProcedures

getProcedureTerm

getResultSetHoldability

getSchemas

getSchemaTerm

getSearchStringEscape

getSQLKeywords

getSQLStateType

getStringFunctions

getSuperTables

getSuperTypes

getSystemFunctions

getTablePrivileges

getTables

getTableTypes

getTimeDateFunctions

getTypeInfo

getUDTs

getURL

getUserName

getVersionColumns

insertsAreDetected

isCatalogAtStart

isReadOnly

locatorsUpdateCopy

nullPlusNonNullIsNull

nullsAreSortedAtEnd

nullsAreSortedAtStart

nullsAreSortedHigh

nullsAreSortedLow

othersDeletesAreVisible

othersInsertsAreVisible

othersUpdatesAreVisible

Table 5–2 (Cont.) Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-7

java.sql.DatabaseMetaData ownDeletesAreVisible

ownInsertsAreVisible

ownUpdatesAreVisible

storesLowerCaseIdentifiers

storesLowerCaseQuotedIdentifiers

storesMixedCaseIdentifiers

storesMixedCaseQuotedIdentifiers

storesUpperCaseIdentifiers

storesUpperCaseQuotedIdentifiers

supportsAlterTableWithAddColumn

supportsAlterTableWithDropColumn

supportsANSI92EntryLevelSQL

supportsANSI92FullSQL

supportsANSI92IntermediateSQL

supportsBatchUpdates

supportsCatalogsInDataManipulation

supportsCatalogsInIndexDefinitions

supportsCatalogsInPrivilegeDefinitions

supportsCatalogsInProcedureCalls

supportsCatalogsInTableDefinitions

supportsColumnAliasing

supportsConvert

supportsCoreSQLGrammar

supportsCorrelatedSubqueries

supportsDataDefinitionAndDataManipu
lationTransactions

supportsDataManipulationTransactions
Only

supportsDifferentTableCorrelationName
s

supportsExpressionsInOrderBy

supportsExtendedSQLGrammar

supportsFullOuterJoins

supportsGetGeneratedKeys

supportsGroupBy

supportsGroupByBeyondSelect

supportsGroupByUnrelated

supportsIntegrityEnhancementFacility

supportsLikeEscapeClause

supportsLimitedOuterJoins

java.sql.DatabaseMetaData supportsMinimumSQLGrammar

supportsMixedCaseIdentifiers

supportsMixedCaseQuotedIdentifiers

supportsMultipleOpenResults

supportsMultipleResultSets

supportsMultipleTransactions

supportsNamedParameters

supportsNonNullableColumns

supportsOpenCursorsAcrossCommit

supportsOpenCursorsAcrossRollback

supportsOpenStatementsAcrossCommit

supportsOpenStatementsAcrossRollback

supportsOrderByUnrelated

supportsOuterJoins

supportsPositionedDelete

supportsPositionedUpdate

supportsResultSetConcurrency

supportsResultSetHoldability

supportsResultSetType

supportsSavepoints

supportsSchemasInDataManipulation

supportsSchemasInIndexDefinitions

supportsSchemasInPrivilegeDefinitions

supportsSchemasInProcedureCalls

supportsSchemasInTableDefinitions

supportsSelectForUpdate

supportsStatementPooling

supportsStoredProcedures

supportsSubqueriesInComparisons

supportsSubqueriesInExists

supportsSubqueriesInIns

supportsSubqueriesInQuantifieds

supportsTableCorrelationNames

supportsTransactionIsolationLevel

supportsTransactions

supportsUnion

supportsUnionAll

java.sql.DatabaseMetaData updatesAreDetected

usesLocalFilePerTable

usesLocalFiles

Table 5–2 (Cont.) Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

JDBC and SQL Support in Oracle Data Service Integrator

5-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

java.sql.ParameterMetaData close

getParameterClassName

getParameterCount

getParameterMode

getParameterType

getParameterTypeName

getPrecision

getScale

isNullable

isSigned

java.sql.PreparedStatement addBatch

clearParameters

close

execute

executeQuery

getMetaData

getParameterMetaData

setAsciiStream

setBigDecimal

setBlob

setBoolean

setByte

setBytes

setCharacterStream

setDate

setDouble

setFloat

setInt

setLong

setNull

setObject

setShort

setString

setTime

setTimestamp

java.sql.ResultSet clearWarnings

close

findColumn

getAsciiStream

getBigDecimal

getBlob

getBoolean

getByte

getBytes

getCharacterStream

getConcurrency

getDate

getDouble

getFetchDirection

getFetchSize

getFloat

getInt

getLong

getMetaData

getObject

getRow

getShort

getStatement

getString

Table 5–2 (Cont.) Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-9

5.2.2 SQL Support
This section outlines SQL-92 support in the Oracle Data Service Integrator JDBC
driver, and contains the following sections:

■ Section 5.2.2.1, "Supported SQL Statements"

■ Section 5.2.2.2, "Supported SQL Functions"

■ Section 5.2.3.1, "Table Parameter Support"

5.2.2.1 Supported SQL Statements
The Oracle Data Service Integrator JDBC driver provides support for the SQL-92
SELECT statement. The INSERT, UPDATE, and DELETE statements are not

java.sql.ResultSet getTime

getTimestamp

getType

getWarnings

next

setFetchDirection

setFetchSize

setMaxRows

wasNull

java.sql.ResultSetMetaData close

getCatalogName

getColumnClassName

getColumnCount

getColumnDisplaySize

getColumnLabel

getColumnName

getColumnType

getColumnTypeName

getPrecision

getScale

getSchemaName

getTableName

isAutoIncrement

isCaseSensitive

isCurrency

isDefinitelyWritable

isNullable

isReadOnly

isSearchable

isSigned

isWritable

java.sql.Statement cancel

clearWarnings

close

execute

executeQuery

getConnection

getFetchDirection

getFetchSize

getGeneratedKeys

getLogPrintWriter

getMaxFieldSize

getMaxRows

getMoreResults

getQueryTimeout

getResultSet

getResultSetConcurrency

getResultSetHoldability

getResultSetType

getUpdateCount

getWarnings

setCursorName

setEscapeProcessing

setFetchDirection

setFetchSize

setMaxFieldSize

setMaxRows

setQueryTimeout

Table 5–2 (Cont.) Oracle Data Service Integrator JDBC Driver Methods

Interface Supported Methods Supported Methods

JDBC and SQL Support in Oracle Data Service Integrator

5-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

supported. Additionally, the driver does not support DDL (Data Definition Language)
statements.

5.2.2.2 Supported SQL Functions
The Oracle Data Service Integrator JDBC driver supports functions that you can use to
access and process data. This section describes the following supported Oracle Data
Service Integrator SQL-92 query language functions:

■ Section 5.2.2.3, "Numeric Functions"

■ Section 5.2.2.4, "String Functions"

■ Section 5.2.2.5, "Datetime Functions"

■ Section 5.2.2.6, "Aggregate Functions"

■ Section 5.2.3, "JDBC Metadata Search Patterns"

5.2.2.3 Numeric Functions
The Oracle Data Service Integrator JDBC driver supports the numeric functions
described in Table 5–3.

5.2.2.4 String Functions
The Oracle Data Service Integrator JDBC driver supports the string functions
described in Table 5–4.

Table 5–3 Numeric Functions

Function Signature Comment

ABS numeric ABS (numeric n) ABS returns the absolute value of n. If n is
NULL, the return value is NULL.

CEIL numeric CEIL(numeric n) CEIL returns the smallest integer greater
than or equal to n. If n is NULL, the return
value is NULL.

FLOOR numeric FLOOR(numeric n) FLOOR returns largest integer equal to or
less than n. If n is NULL, the return value
is NULL.

ROUND numeric ROUND (numeric n) ROUND returns n rounded to 0 decimal
places. If n is NULL, the return value is
NULL.

Table 5–4 String Functions

Function Signature Comment

CONCAT varchar CONCAT(varchar s1, varchar s2) CONCAT returns s1
concatenated with s2. If any
argument is NULL, it is
considered to be equivalent to
the empty string.

Left varchar left (varchar s, numeric n) Left returns the left n characters
of s.

LENGTH numeric LENGTH(varchar s) LENGTH returns the length of s.
The function returns 0 if s is
NULL.

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-11

5.2.2.5 Datetime Functions
The Oracle Data Service Integrator JDBC driver supports the datetime functions
described in Table 5–5.

LOWER varchar LOWER(varchar s) LOWER returns s, with all letters
lowercase. If s is NULL, the
function returns an empty string.

LPAD varchar lpad(varchar v, numeric n, varchar p) LPAD returns v, with n
characters of an infinitely
repeating p appended to the left.

LTRIM varchar LTRIM(varchar s) LTRIM trims leading blanks from
s. If s is NULL, the function
returns NULL.

Right varchar right (varchar s, numeric n) Right returns the right n
characters of s.

RPAD varchar rpad(varchar v, numeric n, varchar p) RPAD returns v, with n
characters of an infinitely
repeating p appended to the
right.

RTRIM varchar RTRIM(varchar s) RTRIM trims trailing blanks from
s. If s is NULL, the function
returns NULL.

SUBSTR varchar SUBSTR(varchar s, numeric start) SUBSTR with two arguments
returns substring of s starting at
start, inclusive. The first
character in s is located at index
1. If s is NULL, the function
returns an empty string.

TRIM varchar TRIM(varchar s) TRIM trims leading and trailing
blanks from s. If s is NULL,
TRIM returns NULL.

UPPER varchar UPPER(varchar s) UPPER returns s, with all letters
uppercase. If s is NULL, UPPER
returns the empty string.

Table 5–5 Datetime Functions

Function Signature Comment

DAYS numeric DAYS(T value) DAYS returns the days component
from value. T can be a date, timestamp,
or duration. If value is NULL, the
result is NULL.

HOUR numeric HOUR(T value) HOUR returns the hour component
from value. T can be one of time,
timestamp, or duration. If value is
NULL, the result is NULL.

MINUTE numeric MINUTE(T value) MINUTE returns the minute
component from value. T can be a time,
timestamp, or duration. If value is
NULL, the result is NULL.

Table 5–4 (Cont.) String Functions

Function Signature Comment

JDBC and SQL Support in Oracle Data Service Integrator

5-12 Oracle® Fusion Middleware Developing Data Service Integrator Applications

5.2.2.6 Aggregate Functions
The Oracle Data Service Integrator JDBC driver supports the aggregation functions
described in Table 5–6.

5.2.3 JDBC Metadata Search Patterns
The Oracle Data Service Integrator JDBC driver supports standard JDBC API search
patterns, as shown in Table 5–7.

MONTH numeric MONTH(T value) MONTH returns the month
component from value. T can be one of
date, timestamp, or duration. If value
is NULL, the result is NULL.

SECOND numeric SECOND(T value) SECOND returns the seconds
component from value. T can be a time,
timestamp, or duration. If value is
NULL, the result is NULL.

YEAR numeric YEAR(T value) YEAR returns the year component
from value. T can be one of date,
timestamp, or duration. If value is
NULL, the result is NULL.

Table 5–6 Aggregate Functions

Function Signature Comment

COUNT numeric COUNT(ROWS r) COUNT returns the number of rows in
r.

AVG T AVG(T r) AVG returns the average values of all
values in r. T can be a numeric or
duration type.

SUM T SUM(T r) SUM returns the sum of all values in r. T
can be a numeric or duration type.

MAX T MAX(T r) MAX returns a value from r that is
greater than or equal to every other
value in r. T can be a numeric, varchar,
date, timestamp, or duration type.

MIN T MIN(T r) MIN returns a value from r that is less
than or equal to every other value in r. T
can be a numeric, varchar, date,
timestamp, or duration type.

Table 5–7 JDBC Driver Metadata Search Patterns

Pattern Purpose

"string" Matches the identified string.

"" Uses the default catalog/schema.

"%" Wildcard; equivalent to * in regular expressions.

"_" Matches a single character; equivalent to . (period) in regular expressions.

null Wildcard; same as "%"

Table 5–5 (Cont.) Datetime Functions

Function Signature Comment

JDBC and SQL Support in Oracle Data Service Integrator

Using SQL to Access Data Services 5-13

For more information about using the JDBC metadata API, refer to the Java
documentation.

Assuming that the default_catalog is catalog1 and default_schema is schema1,
Table 5–8 shows some common matching patterns.

5.2.3.1 Table Parameter Support
The Oracle Data Service Integrator JDBC driver extends the standard SQL-92
parameter model by providing the ability to add table parameters to SQL FROM
clauses. For example, in SQL you might encounter a situation where it is necessary to
specify a list of parameters (highlighted) in a query.

In the following query, JDBCdemo.empData.empinfo is the entire customer table.

SELECT emp.empid, emp.name, emp.salary
FROM JDBCdemo.empData.empinfo emp
WHERE emp.empid in (?, ?, ?, ...)
or emp.name in (?, ?, ?, ...)

If the number of parameters can vary, you need to specify a query for each case. Table
parameters provide an alternative by enabling you to specify that the query accept a
list of values (the list can be of variable length). The following query uses table
parameters (highlighted):

SELECT emp.empid, emp.name, emp.salary
FROM JDBCdemo.empData.empinfo emp
WHERE emp.empid in (SELECT * FROM ? as emp(empid))
or emp.name in (SELECT * FROM ? as emp(empname))

Table 5–8 JDBC Driver Metadata Search Patterns

Pattern Matching Example

"Oracle" Matches the identified string, Oracle.

"abc%d" Matches:

■ abc10d

■ abcd

■ abc_practically anything_d

But not:

■ abc10e

■ abc10def

abc%d_ Matches:

■ abc10d

■ abcd

■ abc_practically anything_d

■ abc10dg

But not:

■ abc10dgh

■ abc10dgPattern

""

and

null

A call to:

DBDatabaseMetadata.getTables("",null,"abc%")

would return all tables starting with abc under catalog 1.

Preparing to Use SQL to Access Data Services

5-14 Oracle® Fusion Middleware Developing Data Service Integrator Applications

The table parameter is specified using the same mechanism as a parameter; a question
mark ("?") is used in place of the appropriate table name.

For more information about using table parameters, see Section 5.5.1, "Using Table
Parameters."

5.2.4 Additional Details and Limitations
When using the ALSDSP JDBC driver, each connection points to one Oracle Data
Service Integrator dataspace. Table 5–9 notes the Oracle Data Service Integrator JDBC
driver limitations that apply to SQL language features.

5.3 Preparing to Use SQL to Access Data Services
This section describes the tasks you need to perform prior to using SQL to access data
services, and contains the following topics:

■ Section 5.3.1, "Publishing Data Service Operations"

■ Section 5.3.2, "Configuring the Oracle Data Service Integrator JDBC Driver"

5.3.1 Publishing Data Service Operations
To access data services using SQL, you first need to publish the data service operations
as SQL objects within the Oracle Data Service Integrator-enabled project. These SQL
objects include tables, stored procedures, and functions.

To publish data service operations as SQL Objects, perform the following steps:

Note: You can only pass a table with a single column as a table
parameter. If you specify more than one column, an exception is
thrown.

Table 5–9 Oracle Data Service Integrator JDBC Driver Limitations Applying to SQL
Language Features

Feature Comments Example

Assignment in select Not supported. SELECT MYCOL = 2

FROM VTABLE

WHERE COL4 IS NULL

The
CORRESPONDING
BY construct with
the set-Operations

(UNION,
INTERSECT and
EXCEPT)

The SQL-92 specified default
column ordering in the set
operations is supported.

Both the table-expressions
(the operands of the
set-operator) must conform
to the same relational
schema.

(SELECT NAME, CITY FROM
CUSTOMER1) UNION CORRESPONDING
BY (CITY, NAME) (SELECT CITY,
NAME FROM CUSTOMER2)

The supported query is:

(SELECT NAME, CITY FROM
CUSTOMER1) UNION (SELECT NAME,
CITY FROM CUSTOMER2)

Note: SQL objects published through Oracle Data Service Integrator
need to be enclosed in double quotes when used in an SQL query, if
the object name contains a hyphen. For example SELECT "col-name"
FROM "table-name".

Preparing to Use SQL to Access Data Services

Using SQL to Access Data Services 5-15

1. Publish the data service operations to a schema that models the operations as SQL
objects.

2. Build and deploy the Oracle Data Service Integrator dataspace.

After the dataspace is deployed, the newly created SQL objects are available to the
dataspace through the ALSDSP JDBC driver.

5.3.2 Configuring the Oracle Data Service Integrator JDBC Driver
The Oracle Data Service Integrator JDBC driver is located in the ldjdbc.jar file,
which is available in the <ALDSP_HOME>/lib directory after you install Oracle Data
Service Integrator. To use the Oracle Data Service Integrator JDBC driver on a client
computer, you need to configure the classpath, class name, and the URL for the JDBC
driver.

To configure the driver on a client computer, perform the following steps:

1. Copy the ldjdbc.jar and weblogic.jar (in the <ALDSP_HOME>/lib and
<WL_HOME>/server/lib directories respectively) to the client computer.

2. Add ldjdbc.jar and weblogic.jar to the classpath on the client computer.

3. Set the appropriate supporting path by adding %JAVA_HOME%/jre/bin to the
path on the client computer.

4. To set the JDBC driver, do the following:

a. Set the driver class name to the following:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

b. Set the driver URL to the following:

jdbc:dsp@<DSPServerName>:<ALDSPServerPortNumber>/<DataspaceName>

For example the driver URL could be:

jdbc:dsp@localhost:7001/Test_DataSpace

Alternatively, set the default catalog name and schema name in the URL while
connecting to the JDBC driver using the following syntax:

jdbc:dsp@<DSPServerName>:<ALDSPServerPortNumber>/<DataspaceName>/
<catalogname>/<schemaname>

If you do not specify the CatalogName and SchemaName in the JDBC driver
URL, then you need to specify the three-part name for all queries. For
example:

select * from <catalogname>.<schemaname>.CUSTOMER

c. Optionally, enable debugging using the logFile property. To log debugging
information, use the following JDBC driver URL syntax:

jdbc:dsp@localhost:7001/test;logFile=c:\output.txt

Note: You will need gateway software to enable connectivity
between the JDBC driver and DSP to configure the JDBC driver. For
more information, refer to the section entitled Section 5.6.1, "Accessing
Data Services Using SQL Explorer."

Accessing Data Services Using SQL From a Java Application

5-16 Oracle® Fusion Middleware Developing Data Service Integrator Applications

In this case, the log file is created in the c:\output.txt file. You can also
specify the debug property separately instead of specifying it with the URL.

The following is an example URL defining a default catalog and schema for a
JDBC connection:

jdbc:dsp@localhost:7001/myDataspace/myCatalog/mySchema

You can specify the default schema and catalog name using the default_
catalog and default_schema property fields in case you do not specify it in
the properties.

If dataspace, default_catalog, or default_schema appears in both the
connection properties and the URL, the variable in the URL takes precedence.

5. To configure the connection object for the Oracle Data Service Integrator
dataspace, you can specify the configuration parameters as a Properties object or
as a part of the JDBC URL.

For more information, see "Configuring the Connection Using the Properties
Object" on page 5-17 or "Configuring the Connection in the JDBC URL" on
page 5-17 respectively.

5.4 Accessing Data Services Using SQL From a Java Application
You can have a Java application access information from data services using SQL
through the Oracle Data Service Integrator JDBC driver.

To access the data from a Java application, perform the following steps:

1. Obtain a connection to the Oracle Data Service Integrator dataspace.

For more information, see Section 5.4.1, "Obtaining a Connection."

2. Specify and submit an SQL query to the JDBC datasource.

You can use either the PreparedStatement or CallableStatement interface to specify
and submit the query to the datasource. For more information, see Section 5.4.1.1,
"Using the PreparedStatement Interface" and Section 5.4.1.2, "Using the
CallableStatement Interface" respectively.

5.4.1 Obtaining a Connection
A JDBC client application can connect to a deployed Oracle Data Service Integrator
dataspace by loading the Oracle Data Service Integrator JDBC driver and then
establishing a connection to the dataspace. In the database URL, use the Oracle Data
Service Integrator dataspace name as the database identifier with "dsp" as the
sub-protocol, using the following form:

jdbc:dsp@<WLServerAddress>:<WLServerPort>/<DataspaceName>
(/default catalog/default schema;

Note: If you build an SQL query using a reporting tool, the
unqualified JDBC function name is used in the generated SQL.
Consequently, to enable application developers to invoke an database
function, the default catalog and schema name must be defined in the
JDBC connection URL. It is also a requirement that any JDBC
connection utilize those functions available from a single SQL
catalog:schema pair location.

Accessing Data Services Using SQL From a Java Application

Using SQL to Access Data Services 5-17

param(=value1; param2=value2;)?

For example:

jdbc:dsp@localhost:7001/Test_DataSpace

The name of the Oracle Data Service Integrator JDBC driver class is:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

Configuring the Connection Using the Properties Object

You can establish a connection to an Oracle Data Service Integrator dataspace using
the Properties object as follows:

Properties props = new Properties();
props.put("user", "weblogic");
props.put("password", "weblogic");
props.put("application", "TestProjectDataSpace");

// Load the driver
Class.forName("com.bea.dsp.jdbc.driver.DSPJDBCDriver");

// Get the connection
Connection con = DriverManager.getConnection("jdbc:dsp@localhost:7001", props);

Alternatively, you can specify the Oracle Data Service Integrator dataspace name,
TestProjectDataSpace, in the connection object itself, as shown in the following
segment:

Properties props = new Properties();
props.put("user", "weblogic");
props.put("password", "weblogic");

// Load the driver
Class.forName("com.bea.dsp.jdbc.driver.DSPJDBCDriver");

// Get the connection
Connection objConnection = DriverManager.getConnection(
 "jdbc:dsp@localhost:7001/TestProjectDataSpace", props);

Configuring the Connection in the JDBC URL

You can also configure the JDBC driver connection without creating a Properties
object, as shown in the following segment:

// Load the driver
Class.forName("com.bea.dsp.jdbc.driver.DSPJDBCDriver");

// Get the connection
Connection objConnection = DriverManager.getConnection(
 "jdbc:dsp@localhost:7001/TestProjectDataSpace;logFile=
 c:\output.txt; ", <username>, <password>);

5.4.1.1 Using the PreparedStatement Interface
You can use the preparedQueryWithParameters method to specify a query to the
JDBC datasource using the connection object (conn), obtained earlier. The connection
object is obtained through the java.sql.Connection interface to the Oracle
WebLogic Server, which hosts Oracle Data Service Integrator.

Advanced Features

5-18 Oracle® Fusion Middleware Developing Data Service Integrator Applications

In this query, the data service function getAll() in the data service EmpInfo.ds
under the SQLHowTo project is mapped using SQL Mapper to
JDBCdemo.empData.empinfo.

public ResultSet preparedQueryWithParameters(Connection conn) throws
 java.sql.SQLException {
 PreparedStatement ps = conn.prepareStatement("SELECT *
 FROM JDBCdemo.empData.empinfo emp WHERE emp.salary >= ?");
 ps.setInt(1,275000);
 ResultSet rs = ps.executeQuery();
 return rs;
}

In the SELECT query, JDBCdemo is the catalog name, empData is the schema name,
and empinfo is the table name.

5.4.1.2 Using the CallableStatement Interface
After you establish a connection to a server where Oracle Data Service Integrator is
deployed, you can call a data service operation to obtain data using a parameterized
data service operation call.

The following example shows how to call a stored query with a parameter (where
conn is a connection to the Oracle Data Service Integrator server obtained through the
java.sql.Connection interface). In the segment, a stored query named
getBySalary is called passing a parameter with a value of 275000.

public ResultSet storedQueryWithParameters(Connection conn) throws
 java.sql.SQLException {
 CallableStatement ps =
 conn.prepareCall("call JDBCdemo.empData.getBySalary(?)");
 ps.setInt(1,275000);
 ResultSet rs = ps.executeQuery();
 return rs;
}

You can also use the prepareCall method as follows:

conn.prepareCall("{call JDBCdemo.empData.getBySalary(?)}");

5.5 Advanced Features
This section describes advances features and uses of the Oracle Data Service Integrator
JDBC driver and contains the following sections

■ Section 5.5.1, "Using Table Parameters"

■ Section 5.5.2, "Accessing Custom Database Functions Using JDBC"

Note: You can create a preparedStatement for a non-parametrized
query as well. The statement is used in the same manner.

Note: For more information about how to map data service
operations to SQL objects, refer to Section 5.3.1, "Publishing Data
Service Operations."

Advanced Features

Using SQL to Access Data Services 5-19

5.5.1 Using Table Parameters
This section describes how to use the Oracle Data Service Integrator JDBC driver to
pass table parameters to data services.

5.5.1.1 When to Use Table Parameters
Consider the case in which a data service contains consolidated information of all
employee contact information. A manager further has a consolidated list of all
government employees in European countries. The goal is to use a data service to
obtain contact information for that specific subset of employees.

The scenario is a common one involving the need for a join between the manager's
employee list and contact information. However, if the manager's employee list is long
and not already available through a database, it is convenient to pass a list of values as
if it were a column in a table.

In the SQL cited above, a list of employees is passed in as a table with a single column.
The clause

? as emp(empid)

provides a virtual table value (emp) and a virtual column name (empid).

5.5.1.2 Setting Table Parameters Using JDBC
The Oracle Data Service Integrator JDBC driver passes table parameters to data
services through its TableParameter class. The class (shown in its entirety in
Example 5–1) represents an entire table parameter and the rows it represents.

Example 5–1 Table Parameter Interface

public class TableParameter implements Serializable
 /**
 * Constructor
 *
 * @schema the schema for the table parameter
 */
 public TableParameter(ValueType[] schema);

 /**
 * Creates a new a row and adds it to the list of rows in this
 * table parameter
 */
 public Row createRow();
 /**
 * Gets the rows of this table parameter
 */
 public List/*Row*/ getRows();
 /**
 * Gets the schema of this table parameter
 */
 public ValueType[] getSchema();
 /**
 * Represents a row in the table parameter
 */

Note: You should alias all table parameters since the default
table/column names are undefined and may produce unexpected
name conflicts.

Advanced Features

5-20 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 public class Row implements Serializable {
 /**
 * Sets a value to a particular column
 * @param colIdx the index of the column to set, always 1
 * @param val the value for the column
 * @exception if index is out of bounds
 */
 public void setObject(int colIdx,Object val) throws SQLException;
 Object getObject(int colIdx);
}

Creating Table Parameters

The following steps show how to create a TableParameter instance and populate the
instance with data:

1. Instantiate a TableParameter with the schema of your table.

2. Call the createRow() method on TableParameter to create a new Row object
representing a tuple in the table.

3. Use the setObject(1,val) call to set the column on the Row object.

4. Call createRow() again to create as many rows as the table requires.

JDBC Usage

You can pass table parameters through JDBC just like any other parameter, using the
PreparedStatement interface.

To pass table parameters using the PreparedStatement interface:

1. Create a PreparedStatement with the query, as shown in the following:

PreparedStatement ps = c.prepareStatement("SELECT * " +
 "FROM ? as EMP(empid), JDBCdemo.empData.contact CONTACT " +
 "WHERE CONTACT.empid = EMP.empid AND CONTACT.zip=?");

2. Set the value of the normal parameter on the PreparedStatement, as shown in the
following:

ps.setObject(2,"98765");

3. Create a table parameter of a specific type, as shown in the following:

ValueType[] tableType = new ValueType[1];
tableType[0] = ValueType.REPEATING_INTEGER_TYPE;
TableParameter p = new TableParameter(tableType);

4. Fill the table parameter by reading rows from a file or other input stream, as
shown in the following:

String empidlist = FileUtils.slurpFile("empidlist.txt");
StringTokenizer empids = new StringTokenizer(empidlist,"\n");
while(empids.hasMoreTokens()) {
 TableParameter.Row r = p.createRow();
 r.setObject(1,new Integer(empids.nextToken()));
}
ps.setObject(1,p);

Note: At present only one column is supported for table parameters.

Advanced Features

Using SQL to Access Data Services 5-21

5. Set the table parameter as a property of the prepared statement, as shown in the

ps.setObject(1,p);

Table Parameter Example

The following simplified example illustrates the use of a table parameter. The
supporting JDBC code is shown in Example 5–2:

Example 5–2 JDBC Code Supporting Table Parameter Example

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.PreparedStatement;
import java.sql.Connection;
import java.sql.Driver;
import java.util.Properties;
import java.util.StringTokenizer;

import com.bea.ld.sql.types.ValueType;
import com.bea.ld.sql.data.TableParameter;

import weblogic.xml.query.util.FileUtils;

public class TableParameterTest {

 /**
 * Establish a connection to the Oracle Data Service Integrator
 * JDBC driver and return it
 */
 protected static Connection connect() throws Exception {
 // Attempt to locate the JDBC driver
 Class.forName("com.bea.dsp.jdbc.driver.DSPJDBCDriver");
 Driver driver = DriverManager.getDriver("jdbc:dsp@localhost:7001");
 if(driver == null)
 throw new IllegalStateException("Unable to find driver.");

 //Set the connection properties to the driver
 Properties props = new Properties();
 props.setProperty("user", "weblogic");
 props.setProperty("password", "weblogic");
 props.setProperty("application", "SQLHowTo");

 // Try to connect to the driver using the properties set above
 Connection c = driver.connect("jdbc:dsp@localhost:7001", props);
 if(c == null)
 throw new IllegalStateException("Unable to establish a connection.");
 return c;
 }

 /**
 * Prints a result set to system out
 * @param rs the result set to print
 */
 protected static void printResultSet(ResultSet rs) throws Exception{
 while(rs.next()) {
 for(int i = 1; i < rs.getMetaData().getColumnCount()+1; i++) {
 rs.getObject(i);
 System.err.print(rs.getObject(i) + " ");
 }
 System.err.println();

Advanced Features

5-22 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 }
 rs.close();
 }

 public static void main(String args[]) throws Exception {
 Connection c = connect();

 // Create the query
 PreparedStatement ps = c.prepareStatement("SELECT * " +
 "FROM ? as EMP(empid), JDBCdemo.empData.contact CONTACT " +
 "WHERE CONTACT.empid = EMP.empid AND CONTACT.zip=?");

 // Set the normal parameter
 ps.setObject(2,"98765");

 // Create the table parameter
 ValueType[] tableType = new ValueType[1];
 tableType[0] = ValueType.REPEATING_INTEGER_TYPE;
 TableParameter p = new TableParameter(tableType);

 // Create the rows of the table parameter from values in a file
 String empidlist = FileUtils.slurpFile("empidlist.txt");
 StringTokenizer empids = new StringTokenizer(empidlist,"\n");
 while(empids.hasMoreTokens()) {
 TableParameter.Row r = p.createRow();
 r.setObject(1,new Integer(empids.nextToken()));
 }
 ps.setObject(1,p);
 // Run the query and print the results
 ResultSet rs = ps.executeQuery();
 printResultSet(rs);
 }
}

Table Parameter ValueTypes

Table 5–10 lists the table parameter ValueTypes supported by the Oracle Data Service
Integrator JDBC driver.

Table 5–10 TableParameter ValueTypes

Type Name Type Value Java Type

ValueType.REPEATING_SMALLINT 16 bit signed integer Short

ValueType.REPEATING_INTEGER 32 bit signed integer Integer

ValueType.REPEATING_BIGINT 64 bit signed integer Long

ValueType.REPEATING_REAL 32 bit floating point Float

ValueType.REPEATING_DOUBLE 64 bit floating point Double

ValueType.REPEATING_DECIMAL decimal BigDecimal

ValueType.REPEATING_VARCHAR string String

ValueType.REPEATING_DATE date java.sql.Date

ValueType.REPEATING_TIME time java.sql.Time

ValueType.REPEATING_TIMESTAMP datetime java.sql.Timestamp

ValueType.REPEATING_BLOB byte array char[]

ValueType.REPEATING_BOOLEAN Boolean Boolean

Accessing Data Services Using SQL-Based Applications

Using SQL to Access Data Services 5-23

5.5.2 Accessing Custom Database Functions Using JDBC
Several relational database management systems provide mechanisms to extend the
library of built-in, standard SQL functions with user-defined, custom functions,
defined using another language, such as PL/SQL, that can be directly embedded in
SQL statements.

You can make these built-in or custom functions in your database available through
data services by registering the function with Oracle Data Service Integrator through a
library. After registering the functions, you can use them in SQL statements submitted
to the Oracle Data Service Integrator JDBC driver. The following example shows the
use of the custom function myLower() in a SELECT statement:

select * from CUSTOMER where ? = myLower(LAST_NAME)

Note that the following conditions must be met to enable Oracle Data Service
Integrator to use database-specific or user-defined functions:

■ The function must accept at least one argument using the standard syntax
myFunction(arg1, arg2). This argument must be from the data source for
which the function is defined. Remaining arguments, however, may be constants
or arguments from another type of data service, such as a web service.

■ Oracle Data Service Integrator does not support functions of the form TRIM(
TRAILING ' ' FROM $column) as custom database functions.

■ Oracle Data Service Integrator does not support special columns such as SYSDATE,
ROWNUM, or similar columns as parameters to custom database functions.

■ You must explicitly expose Oracle Data Service Integrator artifacts in the SQL Map
for the dataspace.

5.6 Accessing Data Services Using SQL-Based Applications
You can access data services using both SQL-based applications and applications that
connect to the Oracle Data Service Integrator JDBC driver through an ODBC-JDBC
bridge. This section describes how to configure SQL and ODBC-based applications to
access data services, and contains the following sections:

■ Section 5.6.1, "Accessing Data Services Using SQL Explorer"

■ Section 5.6.2, "Connecting to the Oracle Data Service Integrator Client Using
OpenLink ODBC-JDBC Bridge"

■ Section 5.6.3, "Using OpenLink with Reporting Tools"

You can also use the Oracle Data Service Integrator JDBC driver with the Eclipse Data
Tools Platform (DTP) plug-in. To use DTP, download the DTP software using the
following link: http://wiki.eclipse.org/index.php/Getting_Started_
with_DTP.

ValueType.REPEATING_YMINTERVAL year month interval weblogic.xml.query.dateti
me.YearMonthDuration

ValueType.REPEATING_DTINTERVAL day time interval weblogic.xml.query.dateti
me.DayTimeDuration

ValueType.REPEATING_INTERVAL both year month &
day time interval

weblogic.xml.query.dateti
me.Duration

Table 5–10 (Cont.) TableParameter ValueTypes

Type Name Type Value Java Type

Accessing Data Services Using SQL-Based Applications

5-24 Oracle® Fusion Middleware Developing Data Service Integrator Applications

5.6.1 Accessing Data Services Using SQL Explorer
You can use the Oracle Data Service Integrator JDBC driver with Eclipse SQL Explorer
to access data services. This section describes how to configure SQL Explorer to use
the Oracle Data Service Integrator JDBC driver and how to specify the connection
settings. This section assumes that you have already defined your web server and
dataspace project in Eclipse.

To use SQL Explorer, perform the following steps:

1. Download the SQL Explorer software from the following link:

http://sourceforge.net/projects/eclipsesql

2. After you have downloaded the SQL Explorer zip file, extract two folders,
Features and Plug-Ins.

3. Copy the SQL Explorer files in the Features folder into the Eclipse Features folder.

4. Copy the SQL Explorer files in the Plug-ins folder into the Eclipse Plug-ins folder.

5. Launch Eclipse in the Oracle Data Service Integrator Perspective. Start the web
server within Eclipse and open the dataspace (project).

6. Choose Window Æ Preferences, expand SQL Explorer in the left margin, and
select JDBC Drivers. Click Add and type the driver name, URL, and class name, as
follows:

■ Type a name for the JDBC Driver, such as odsi_jdbc_driver.

■ Set the example URL to:

jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPDataspaceName>

Note: SQL Explorer does not support stored procedures and,
therefore, data services exposed as stored procedures through the
Oracle Data Service Integrator JDBC driver do not appear in SQL
Explorer. For more information, refer to the Eclipse SQL Explorer web
site at http://eclipsesql.sourceforge.net.

Accessing Data Services Using SQL-Based Applications

Using SQL to Access Data Services 5-25

Figure 5–2 Create New Driver Dialog

7. Click the Extra Class Path tab and then click Add. Enter the paths for two JAR
files, as follows:

■ <ALDSP_HOME>/lib/ldjdbc.jar

■ <BEA_HOME>/wlserver_10.3/server/lib/weblogic.jar

Click OK.

8. Set the Driver Class Name to the following:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

Click OK twice.

9. Open the SQL Explorer perspective by choosing Open Perspective > Other > SQL
Explorer. Click OK.

10. Click on the far left icon under Connections to create a new connection. Enter a
name for the new connection and choose Oracle Data Service Integrator JDBC
Driver from the drop-down list. Enter the URL for the JDBC Driver, then enter the
user name and password, and click OK.

Accessing Data Services Using SQL-Based Applications

5-26 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 5–3 Create New Connection Profile Dialog

11. Right-click the new JDBC Driver connection and choose Edit to ensure that you
have the correct connect profile for the JDBC driver.

12. Right-click on JDBC Driver connection and choose Connect. Verify that the
connection profile is correct in the Connection dialog, then click OK.

Figure 5–4 Connection Dialog

The data displays in the Database Structure and Database Detail window.

1. If the JDBC Driver window is not open, choose Window > Show View > Other >
SQL Explorer Database Structure > OK to display the client data.

2. If you get an exception message, add the catalog name and schema name to the
JDBC Connection URL, as follows:

jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPDataspaceName>
/<Your_CatalogName>/<Your_SchemaName>

Accessing Data Services Using SQL-Based Applications

Using SQL to Access Data Services 5-27

Figure 5–5 Change Connection Profile Dialog

5.6.2 Connecting to the Oracle Data Service Integrator Client Using OpenLink
ODBC-JDBC Bridge

You can use an ODBC-JDBC bridge to connect to the Oracle Data Service Integrator
JDBC driver from non-Java applications. This section describes how to configure the
OpenLink ODBC-JDBC bridge to connect to the Oracle Data Service Integrator JDBC
driver.

You can use the Openlink ODBC-JDBC driver to interface with the Oracle Data Service
Integrator JDBC driver to query Oracle Data Service Integrator dataspaces with client
applications such as Crystal Reports, Business Objects XI, Microsoft Access 2003, and
Microsoft Excel 2003.

To use the OpenLink bridge, you need to install the bridge and create a system DSN
using the bridge. The following describes the steps to complete these two tasks:

1. Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite).

For information on installing OpenLink ODBC-JDBC-Lite, refer to the OpenLink
Software download page for the Single-Tier (Lite Edition) ODBC to JDBC Bridge
Driver (Release 6.0) for use on Windows systems. The page can be accessed at
http://download.openlinksw.com/download/login.vsp?pform=2&pfa
m=1&pcat=1&prod=odbc-jdbc-bridge-st&os=i686-generic-win-32&os
2=i686-generic-win-32&release-dbms=6.0-jdbc.

2. Create a system DSN and configure it for your Oracle Data Service Integrator
dataspace. Ensure that the CLASSPATH contains the following JAR files required
by ODBC-JDBC-Lite, ldjdbc.jar and weblogic.jar. A typical CLASSPATH
might look as follows:

<ALDSP_HOME>/lib/ldjdbc.jar;
<WL_HOME>/server/lib/weblogic.jar;

3. Update the system path to include the jvm.dll file, which should be in the
<ALDSP_HOME>/%javaroot%/jre/bin/server directory.

Note: For Windows platforms, be sure to save the value of your
CLASSPATH before installation.

Accessing Data Services Using SQL-Based Applications

5-28 Oracle® Fusion Middleware Developing Data Service Integrator Applications

4. Launch Control Panel > Administrative Tools > Data Sources (ODBC). The ODBC
Data Source Administrator window displays.

5. Click the System DSN tab and then click Add.

6. Select JDBC Lite for JDK 1.7 (6.0) and click Finish.

7. Specify the DSN name, for example, openlink-odsi.

8. Click Next. Then on the next screen, enter the following next to the JDBC driver:

com.bea.dsp.jdbc.driver.DSPJDBCDriver.

9. Type the following in the URL string field:

jdbc:dsp@<machine_name>:<port>/<dataspace_name>/<catalog_name>/
<schema_name>

10. Select the "Connect now to verify that all settings are correct" checkbox. Type the
login ID and password to connect to the Oracle Data Service Integrator Oracle
WebLogic Server, and click Next.

11. Select any additional parameters, and click Next.

12. Click Next and specify the connection compatibility parameters.

13. Click Next, and then click Test Data Source. Verify that the setup was successful.

14. Click Finish.

5.6.3 Using OpenLink with Reporting Tools
This section describes how to configure and use reporting tools with the Oracle Data
Service Integrator ODBC-JDBC driver.

Some reporting tools issue multiple SQL statement executions to emulate a scrollable
cursor if the ODBC-JDBC bridge does not implement one. Some drivers do not
implement a scrollable cursor, so the reporting tool issues multiple SQL statements,
which can affect performance.

5.6.3.1 Microsoft Access 2003-ODBC
This section describes the procedure to connect Microsoft Access 2003 to Oracle Data
Service Integrator through an ODBC-JDBC bridge.

Generating Reports Using Microsoft Access

To connect MS Access to the bridge, perform the following steps.

1. Run MS Access, choose File > Open, then select ODBC Databases as the file type.
The Select Data Source dialog displays.

2. Click Cancel to close the Select Data Source dialog.

3. Click Queries, then Design.

4. Close the Show Table dialog box. The Select Query window should be visible.

Note: Do not include the file name jvm.dll in the system path.

Note: Support for third party reporting tools is deprecated in Oracle
Data Service Integrator 10gR3.

Accessing Data Services Using SQL-Based Applications

Using SQL to Access Data Services 5-29

5. Right-click in the window and choose SQL Specific > Pass-Through.

6. Type the SQL query and click Run.

7. Click the Machine Data Source tab in the dialog that appears, and select
openlink-odsi to connect to the Oracle Data Service Integrator JDBC driver and
generate the report.

Limitations and Usage Notes

Note the following:

■ The Microsoft Jet database engine, shipped with MS-Access, maps SQL_DECIMAL
and SQL_NUMERIC fields to the closest Jet numeric data type, depending upon the
precision and scale of the ODBC field. In certain cases, this mapping results in a
map to a non-exact (floating point) numeric Jet data type, such as Double or a
Text field. For details, refer to the following Microsoft article:
http://support.microsoft.com/kb/214854/en-us.

This implicit type conversion by MS Access causes some errors when retrieving
data from Oracle Data Service Integrator using MS Access.

■ In MS Access, to sort data retrieved from Oracle Data Service Integrator, select a
Unique Record Identifier when you link tables imported from Oracle Data Service
Integrator. If you do not select the Unique Record Identifier, then an exception
occurs when you try to sort data.

5.6.3.2 Microsoft Excel 2003-ODBC
This section describes the procedure for connecting Microsoft Excel 2003 to Oracle
Data Service Integrator through an ODJB-JDBC bridge using OpenLink.

To connect Microsoft Excel to Oracle Data Service Integrator, perform the following
steps:

1. Launch Workshop for WebLogic and then start the WebLogic Server.

2. Build and deploy the Oracle Data Service Integrator dataspace.

3. Start Microsoft Excel and open a new worksheet.

4. Click Data > Import External Data > New Database Query. The Choose Data
Source dialog box displays.

5. Select openLink-odsi from the list of data sources and then click OK.

The Query Wizard - Choose Columns dialog box displays. For details on
configuring the JDBC driver using OpenLink, refer to Section 5.6.2, "Connecting to
the Oracle Data Service Integrator Client Using OpenLink ODBC-JDBC Bridge."

6. Select the tables that you want to use to generate the report and click Next.

7. Follow the Query Wizard instructions and in the Query Wizard - Finish dialog
box, select Return Data to Microsoft Office Excel.

8. Click Finish and import the data in a new MS Excel spreadsheet. The query results
display in the spreadsheet.

Limitations

When passing a generated SQL string to Excel, there are situations where Excel inserts
single quotes around an alias, resulting in an exception from the Oracle Data Service
Integrator JDBC driver. Here is an example:

SELECT Sum(EMP.SALARY) AS 'Salary Cost' FROM JDBCdemo.empData.empinfo emp

Accessing Data Services Using SQL-Based Applications

5-30 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Although you can edit your query post-generation, another option is to install a patch
from Microsoft that is designed to address the problem. The current URL for accessing
information on this problem and patch is listed here:
http://support.microsoft.com/kb/298955/en-us.

6

Supporting ADO.NET Clients 6-1

6 Supporting ADO.NET Clients

This chapter describes how to enable interoperability between Oracle Data Service
Integrator and ADO.NET client applications. With support for ADO.NET client
applications, Microsoft Visual Basic and C# developers who are familiar with
Microsoft's disconnected data model can leverage Oracle Data Service Integrator data
services as if they were ADO.NET Web services.

From the Microsoft ADO.NET developers' perspective, support is transparent: you
need do nothing extraordinary to invoke Oracle Data Service Integrator operations
(functions and procedures)—all the work is done on the server-side.

ADO.NET-client-application developers need only incorporate the Oracle Data Service
Integrator-generated web service into their programming environments, as you would
when creating any Web service client application.

Information about how Oracle Data Service Integrator achieves ADO.NET integration
is provided in this chapter, along with the server-side operations required to enable it.
The chapter includes the following sections:

■ Section 6.1, "Overview of ADO.NET Integration in Oracle Data Service Integrator"

■ Section 6.1.4, "Enabling Oracle Data Service Integrator Support for ADO.NET
Clients"

■ Section 6.2, "Adapting Oracle Data Service Integrator XML Types (Schemas) for
ADO.NET Clients"

■ Section 6.3, "Creating a Data Service Based on an RPC-Style Web Service"

■ Section 6.4, "Generated Artifacts Reference"

6.1 Overview of ADO.NET Integration in Oracle Data Service Integrator
Functionally similar to the service data object (SDO), ADO.NET (Active Data Object) is
data-object technology for Microsoft ADO.NET client applications. ADO.NET
provides a robust, hierarchical, data access component that enables client applications
to work with data while disconnected from the data source. Developers creating
data-centric client applications use C#, Visual Basic.NET, or other Microsoft .NET
programming languages to instantiate local objects based on schema definitions.

Note: The details of ADO.NET development are described on
Microsoft's MSDN Web site (http://msdn.microsoft.com). See
this site for information about developing ADO.NET-enabled
applications.

Overview of ADO.NET Integration in Oracle Data Service Integrator

6-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

These local objects, called DataSets, are used by the client application to add, change,
or delete data before submitting it to the server. Thus, ADO.NET client applications
sort, search, filter, store pending changes, and navigate through hierarchical data using
DataSets, in much the same way as SDOs are used by Oracle Data Service Integrator
client applications.

See Section 2.3, "Role of the Mediator API and SDO" for more information about
working with SDOs in a Java client application. Developing client applications to use
ADO.NET DataSets is roughly analogous to the process of working with SDOs.

Although functionally similar on the surface, as you might expect with two dissimilar
platforms (Java and .NET), the ADO.NET and SDO data models are not inherently
interoperable. To meet this need, Oracle Data Service Integrator provides
ADO.NET-compliant DataSets so that ADO.NET client developers can leverage data
services provided by the Oracle Data Service Integrator, just as they would any
ADO.NET-specific data sources.

Enabling a Oracle Data Service Integrator data service to support ADO.NET involves
the following steps:

■ Section 6.1.5, "Generating an Oracle Data Service Integrator Web Services Mapper"

■ Section 6.1.7, "Creating a Web Reference in ADO.NET Client by Providing the
Oracle Data Service Integrator WSDL URL"

6.1.1 Understanding ADO.NET
ADO.NET is a set of libraries included in the Microsoft .NET Framework that help
developers communicate from ADO.NET client applications to various data stores.
The Microsoft ADO.NET libraries include classes for connecting to a data source,
submitting queries, and processing results.

The DataSet also includes several features that bridge the gap between traditional data
access and XML development. Developers can work with XML data through
traditional data access interfaces.

6.1.1.1 ADO.NET Client Application Development Tools
ADO.NET client applications are typically created using Microsoft Windows Forms,
Web Forms, C#, or Visual Basic. Microsoft Windows Forms is a collection of classes
used by client application developers to create graphical user interfaces for the
Windows .NET managed environment.

Web Forms provides similar client application infrastructure for creating web-based
client applications. Any of these client tools can be used by developers to create
applications that leverage ADO.NET for data sources.

Note: Although ADO.NET supports both connected (direct) and
disconnected models, only the disconnected model is supported in the
Oracle Data Service Integrator.

Overview of ADO.NET Integration in Oracle Data Service Integrator

Supporting ADO.NET Clients 6-3

Figure 6–1 ADO.NET Clients Supported via Web Services

Once the WSDL URL is available, your client can invoke data service operations and
you can invoke functions on the data service and manipulate the DataSet objects in
your code as you normally would.

6.1.2 Understanding How Oracle Data Service Integrator Supports ADO.NET Clients
Oracle Data Service Integrator supports ADO.NET at the data object level. That is, the
Oracle Data Service Integrator maps inbound ADO.NET DataSet objects to SDO
DataObjects, and maps outbound SDOs to DataSets. The mapping is performed
transparently on the server, and is bidirectional.

As shown in Figure 6–2, the ADO.NET typed DataSet is submitted to and returned by
Oracle Data Service Integrator. At runtime, when a Microsoft .NET client application
makes a SOAP invocation to the ADO.NET-enabled Web service, the Web service
intercepts the object, converts the .NET Dataset to an SDO Data Object, and passes it to
Data Services.

Note: The process of generating the WSDL and server-side artifacts
is described in Section 6.1.5, "Generating an Oracle Data Service
Integrator Web Services Mapper."

Table 6–1 ADO.NET and SDO Data Objects Compared

ADO.NET SDO Microsoft .NET Description

DataSet DataObject Disconnected data models. Queries return
results conforming to this data model.

DiffGram ChangeSummary Mechanisms for tracking changes made to
data objects by a client application.

Overview of ADO.NET Integration in Oracle Data Service Integrator

6-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 6–2 Oracle Data Service Integrator and .NET Integration

Mapping, transformation, and packaging processes are transparent to client
application developers and data services developers. Only the items listed in Table 6–2
are exposed to data service developers.

6.1.3 Supporting Java Clients
The WSDL generated by Oracle Data Service Integrator from an ADO.NET-enabled
web services maps specific for use by Microsoft ADO.NET clients. Exposing data

Table 6–2 Oracle Data Service Integrator—Java and ADO.NET-Enabled Artifacts

Name Example Description

Data Service Customer.ds An XQuery file that instantiates
operations such as read functions,
navigation functions, procedures, and
update functionality at runtime.

Data Service Schema Customer.xsd The schema associated with the XML
type of the original data service.

DataSet Schema CustomerDataSet.xsd The typed DataSet schema that
conforms to Microsoft requirements
for ADO.NET data objects.

Note that dataset xsd is not physically
generated into a dataspace project. It
is dynamically generated at WSDL
generation time when WSDL and its
imported schema files are accessed in
.NET client.

Web Service Map CustomerNET.ws Web Services mapper file that maps
data service operations to web service
operations.

Overview of ADO.NET Integration in Oracle Data Service Integrator

Supporting ADO.NET Clients 6-5

services as Web services that are usable by Java clients is generally the same, although
the actual steps (and the generated artifacts) are specific to Java.

6.1.4 Enabling Oracle Data Service Integrator Support for ADO.NET Clients
The process of providing ADO.NET clients with access to data services is a server-side
operation that is initially enabled in Eclipse and takes place in the context of an
application and Workshop for WebLogic.

The instructions in this section assume that you have created a dataspace project and
that you want to provide an ADO.NET client application with access to data services.
(For information about designing and developing data services, see the Oracle Fusion
Middleware Data Service Integrator Developer's Guide.

Enabling an Oracle Data Service Integrator application to support ADO.NET clients
involves doing the following:

■ Section 6.1.5, "Generating an Oracle Data Service Integrator Web Services Mapper"

■ Section 6.1.7, "Creating a Web Reference in ADO.NET Client by Providing the
Oracle Data Service Integrator WSDL URL"

In some cases, of course, there will already be existing operations that you want to
make available to an ADO.NET client.

6.1.5 Generating an Oracle Data Service Integrator Web Services Mapper
You need to generate an Oracle Data Service Integrator Web Services Mapper that
maps data service functions to Web Service operations.

To generate a Web Services Mapper, do the following:

1. Right-click the project folder and select New > Web Service Mapper. Enter a
filename for your .WS map file.

You can then drag and drop data service files and functions from the Project
Explorer into your mapper.

Overview of ADO.NET Integration in Oracle Data Service Integrator

6-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 6–3 Creating a Web Service Mapper

2. Select Windows > Show View > Properties to display the properties for the Web
Service Mapper, and the operations that you put into your Web Service mapper.

3. Click on the Mapper Bar and on the value across from ADO-NET-enabled. Then,
select true for the ADO.NET-enabled option.

4. Redeploy your project by right-clicking on the project name and checking Deploy
Project.

6.1.6 Viewing an ADO.NET-Enabled WSDL
The system automatically generates a Web Services Description Language (WSDL) file
that can be used by Web service clients to invoke operations on the ADO.NET-enabled
Web service:

1. Right-click on the Section 6.1.5, "Generating an Oracle Data Service Integrator Web
Services Mapper."

2. Select View WSDL.

Overview of ADO.NET Integration in Oracle Data Service Integrator

Supporting ADO.NET Clients 6-7

Figure 6–4 Generated WSDL in Workshop for WebLogic

■ See Section 6.4.2, "Web Services Description Language (WSDL) File for Microsoft
ADO.NET Clients" for information about the format of the WSDL.

6.1.7 Creating a Web Reference in ADO.NET Client by Providing the Oracle Data
Service Integrator WSDL URL

From your ADO.NET client application, specify the path to locate the WSDL. The
example uses VisualStudio as a client application.

1. Right-click on Web Reference to import the WSDL.

2. Add "Web Ref."

3. In the window, enter the URL for the WSDL.

http:// host:port/dataspace project name/ folder/.../mapperfile.ws?WSDL

For example, the web services mapper file created in :

http://localhost:7001/NewProject/TestMapper.ws?WSDL

4. Click Go.

Note: The building of RPC-style Web services on top of Oracle Data
Service Integrator is not supported. For this reason RPC-style Web
services built on cannot be created from ADO.NET clients utilizing
Oracle Data Service Integrator.

Adapting Oracle Data Service Integrator XML Types (Schemas) for ADO.NET Clients

6-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Once you have imported the WSDL you will be able to execute its data service
operations assuming that the Oracle Data Service Integrator-enabled server is running
and your application has sufficient access privileges.

6.2 Adapting Oracle Data Service Integrator XML Types (Schemas) for
ADO.NET Clients

Fundamentally, Microsoft's ADO.NET DataSet is designed to provide data access to a
data source that is—or appears very much like—a database table (columns and rows).
Although, later adapted for consumption of Web services, ADO.NET imposes many
design restrictions on the Web service data source schemas.

Due to these restrictions, Oracle Data Service Integrator XML types (also called
schemas or XSD files) that work fine with data services may not be acceptable to
ADO.NET's DataSet.

This section explains how you can prepare XML types for consumption by ADO.NET
clients. It covers both read and update from the ADO.NET client side to the Oracle
Data Service Integrator server, specifically explaining how to:

■ Read a query result as a ADO.NET DataSet via SDO (since query results are
presented as SDO DataObjects within).

■ Update data sources using an ADO.NET DataSet's diffgram that is mapped to an
SDO data graph with a Change Summary.

See the Oracle Fusion Middleware Data Service Integrator Developer's Guide for detailed
information related to creating and working with XML types.

6.2.1 Approaches to Adapting XML Types for ADO.NET
There are several approaches to adapting XML types for use with an ADO.NET
DataSet:

■ Develop ADO.NET-compatible data services above the physical data service layer.
You can develop data services on top of physical data sources that are specifically
intended to be consumed by ADO.NET clients. (Details are described in
Section 6.2.1.1, "XML Type Requirements for Working With ADO.NET DataSets.")

■ Develop ADO.NET-compatible data services above a logical data service layer. If
existing logical data services that are not ADO.NET-compatible must be reused,
you can build an additional layer of ADO.NET-compatible data services on top of
the logical data services.

6.2.1.1 XML Type Requirements for Working With ADO.NET DataSets
The following guidelines are provided to help you develop ADO.NET
DataSet-compatible XML types (schemas) by providing pattern requirements for
various data service artifacts.

Note: Any ADO.NET-compatible data service XML types also can be
used by non-ADO.NET clients.

Note: This approach may increase the likelihood of having to work
with inverse functions and custom updates.

Adapting Oracle Data Service Integrator XML Types (Schemas) for ADO.NET Clients

Supporting ADO.NET Clients 6-9

Requirements for Complex Types

Requirements for supporting a complex type in an ADO.NET DataSet include:

■ Define the entire XML type in a single schema definition file. This means not using
include, import, or redefine statements.

■ Define one global element in the XML type and all other complex types as
anonymous complex types within that element. Define one global element in the
schema and define all other complex types as anonymous complex types within
the element. Do not define any of the following:

■ global attribute

■ global attributeGroup

■ global simple type

■ Be sure that the name of an element in the anonymous complex type is unique
within the entire schema definition.

Requirements for Recurring References

Since ADO.NET does not support true recurring references among complex types, the
requirements noted in Section , "Requirements for Complex Types" should be followed
when simulating schema definitions utilizing such constructs as the following:

■ Nested complex types

■ Recurring references among complex types

■ Multiple references from different complex type to a single complex type

As an example, if an address complex type has been referred to by both Company and
Department, there should be two element definitions, CompanyAddress and
DepartmentAddress, each with an anonymous complex type.

The following code illustrates this example:

<xsd:schema targetNamespace="urn:company.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Company">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="CompanyAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Department">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="DepartmentAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>

Note: The name of an element of simple type need not be unique,
unless the occurrence of the element is unbounded.

Creating a Data Service Based on an RPC-Style Web Service

6-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

</xsd:sequence>
 </xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Requirements for Simple Types

Requirements for supporting simple types in an ADO.NET DataSet include the
following:

■ Use xs:dateTime type in the XML type rather than xs:date, or xs:time, or any gXXX
type, such as gMonth, etc. (If a physical date source uses gXXX type, you should
rely on the use of an inverse function to handle the type for update. For gXXX
types, you should rely on the use of an update override function to handle the
update.)

■ Base64Binary type should be used, rather than hexBinary type.

■ Avoid using List or Union type.

■ Avoid using xs:token type.

■ Avoid defining default values in your XML type.

■ The length constraining facet for 'String' should not be used.

Requirements for Target Namespace and Namespace Qualification

Requirements for using target namespaces and namespace qualification include:

■ Your XML type must have a target namespace defined. Everything in the type
should be under a single namespace.

■ Set the elementFormDefault and attributeFormDefault to unqualified for the entire
XML type. (As these are the default setting of a schema document, you can
generally leave these two attributes of xs:schema unspecified.)

6.2.2 References
Further information regarding XML schemas can be found at
http://www.w3.org/TR/xmlschema-0.

6.3 Creating a Data Service Based on an RPC-Style Web Service
For RPC-style web services, results are return as qualified or unqualified based on the
setting of the schema attribute:

elementFormDefault

In general, for web services, you can override the elementFormDefault by setting
the form attribute for any child element. However, these individual settings are
ignored for RPC-style web services since only the global setting (qualified or
unqualified) is taken into account.

For example:

<s:schema elementFormDefault="qualified"

Generated Artifacts Reference

Supporting ADO.NET Clients 6-11

targetNamespace="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
xmlns:s0="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
xmlns:s="http://www.w3.org/2001/XMLSchema">
 <s:complexType name="ORDER">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="ORDER_ID" type="s:string"/>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified"
 name="CUSTOMER_ID" type="s:string"/>
 </s:sequence>
 </s:complexType>
</s:schema>

In this code sample, the global element is qualified but a child element (ORDER_ID) is
unqualified.

In the standard case, the special setting of unqualified for ORDER_ID is honored. In the
case of RPC-style web services, however, the runtime generates qualified attributes for
all of the elements, including ORDER_ID.

Multi-dimensional arrays in RPC mode are not supported.

6.4 Generated Artifacts Reference
The process of creating a ADO.NET-enabled Data Service and Web service generates
two ADO.NET-specific artifacts:

■ Typed DataSet Schema file - This file is not located in the dataspace project
physically like the web services mapper file. It is dynamically generated on the
server and sent to the .NET client when WSDL and its imported xsd are retrieved
on the client side

■ ADO.NET Enabled Web Services Map File

Technical specifications for these artifacts are included in this section.

6.4.1 XML Schema Definition for ADO.NET Types DataSet
The Typed DataSet schema file is referred to in the dynamically-generated WSDL. The
schema file is retrieved by the .NET client dynamically during web reference creation.

In the generated schema, the root element has the IsDataSet attribute (qualified with
the Microsoft namespace alias, msdata) set to True, as in:

msdata:IsDataSet="true"

In keeping with Microsoft's requirements for ADO.NET artifacts, the generated target
schema of the data service and all schemas upon which it depends are contained in the
same file as the schema of the typed DataSet. As you select functions to add to the
control, WebLogic Workshop obtains the associated schemas and copies the content
into the schema file.

Note: RPC-style web services such as those generated by ADO.NET
may contain child elements with form attributes which do not match
the schema's elementFormDefault declaration. To turn these web
services into executable data service operations, make sure that all
form element attributes and the elementFormDefault attribute are in
agreement (either qualified or unqualified).

Generated Artifacts Reference

6-12 Oracle® Fusion Middleware Developing Data Service Integrator Applications

In addition, the generated schema includes:

■ A reference to the Microsoft-specific namespace definition, as follows:

■ xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

■ Namespace declaration for the original target schema (the schema associated with
the data service)

Example 6–1 shows an excerpt of a schema—CustomerDS.xsd—for a typed DataSet
generated from an Oracle Data Service Integrator Customer schema.

Example 6–1 Example of a Typed DataSet (ADO.NET) Schema

<xs:schema xmlns:mstns="http://temp.openuri.org/schemas/Customer.xsd"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns="http://temp.openuri.org/schemas/Customer.xsd"
targetNamespace="http://temp.openuri.org/schemas/Customer.xsd" id="CustomerDS"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element msdata:IsDataSet="true" name="CustomerDataSet">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="CUSTOMER"/>
 </xs:choice>
 </xs:complexType>
</xs:element>
<xs:element name="CUSTOMER">
. . .
</xs:element>
</xs:schema>

6.4.2 Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients
The WSDL generated from the mapper file contains import statements that correspond
to each typed DataSet. Each of the import statements is qualified with the namespace
of its associated DataSet schema, as in the following example:

<import namespace="http://temp.openuri.org/schemas/Customer.xsd"
location="LDTest1NET/CustomerDataSet.xsd"/>

In addition, the WSDL includes the ADO.NET compliant wrapper type definitions.
The wrappers' type definitions comprise complex types that contain sequences of any
type element from the same namespace as the typed DataSet, as follows:

<s:complexType name="CustomerDataSetWrapper">
 <s:sequence>
 <s:any namespace="http://temp.openuri.org/schemas/Customer.xsd"/>
 </s:sequence>
</s:complexType>

Below is a sample CUSTOMER_VIEW DataSet.xsd file:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:tns="ld:logicalDS/CUSTOMER_VIEW"
 targetNamespace="ld:logicalDS/CUSTOMER_VIEW"
 id="CUSTOMER_VIEWDataSet" xmlns:xs="http://www,w3,org/2001/XMLSchema">
 <xs:element msdata:IsDataSet="true"
 name="CUSTOMER_VIEWDataSet">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">

Generated Artifacts Reference

Supporting ADO.NET Clients 6-13

 <xs:element ref="tns:CUSTOMER_VIEW" />
 <xs:choice>
 <xs:complexType>
 <xs:element>
 <xs.element name="CUSTOMER_VIEW">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER_ID" type="xs.string" />
 <xs:element name="FIRST_NAME" type="xs.string" />
 <xs:element name="LAST_NAME" type="xs.string" />
 <xs:element name="CUSTOMER_SINCE" type="xs.dateTime" />
 <xs:element name="EMAIL_ADDRESS" type="xs.string" />
 <xs:element name="TELEPHONE_NUMBER" type="xs.string" />
 <xs:element minOccurs="0"name="SSN" type="xs.string" />
 <xs:element minOccurs="0"name="BIRTH_DAY" type="xs.dateTime" />
 <xs:element minOccurs="0"name="DEFAULT_SHIP_METHOD"Type="xs.string"/>
 <xs:element minOccurs="0"name="EMAIL_NOTIFICATION"Type="xs.integer"/>
 <xs:element minOccurs="0"name="NEWS_LETTER"Type="xs.integer"/>
 <xs:element minOccurs="0"name="ONLINE_STATEMENT"Type="xs.integer"/>
 <xs:element minOccurs="0"name="CREDIT_LIMIT"Type="xs.decimal"/>
 <xs:element name="ORDERS">
 <xs.complexType>
 <xs.sequence>
 <xs.element minOccurs="0" maxOccurs="unbounded"name="ORDER">
 <xs.complexType>
 <xs.sequence>
 <xs:element name="CUSTOMER_ID" type="xs.string" />
 <xs:element name="ORDER_ID" type="xs.string" />
 <xs:element name="ORDER_DATE" type="xs.dateTime" />
 <xs:element name="SHIP_METHOD" type="xs.string" />
 <xs:element name="HANDLING_CHARGE" type="xs.decimal" />
 <xs:element name="SUBTOTAL" type="xs.decimal" />
 <xs:element name="TOTAL_ORDER_AMOUNT" type="xs.decimal" />
 <xs:element name="SUBTOTAL" type="xs.decimal" />
 <xs:element name="SALE_TAX" type="xs.decimal" />
 <xs:element name="SHIP_TO" type="xs.string" />
 <xs:element name="SHIP_TO_NAME" type="xs.string" />
 <xs:element name="BILL_TO" type="xs.string" />
 <xs:element name="ESTIMATED_SHIP_DATE" type="xs.dateTime" />
 <xs:element name="STATUS" type="xs.string" />
 <xs:element minOccurs="0"name="TRACKING_NUMBER"type="xs.string"/>
 <xs.sequence>
 <xs.complexType>
 <xs:element>
 <xs.sequence>
 <xs.complexType>
 <xs:element>
 <xs.sequence>
 <xs.complexType>
</xs.schema>

Below is a sample CUSTOMER_VIEW_Net WSDL file:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:tns="ld"LogicalDSs/Customer_view_net.ws"
 xmlns:soap= "http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="ld:LogicalDSs/Customer_view_net.ws"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <documentation>Oracle Data Service Integrator Web Service</documentation>
 <import namespace="ld:logicalDS/CUSTOMER_VIEW" location=

Generated Artifacts Reference

6-14 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 DSP_DOT_NET_ SCHEMAS/LogicalDSs/schemas/CUSTOMER_VIEW/CUSTOMER_VIEW
DataSet.xsd/>
 <types>
 <xs:schema xmlns:stns="ld:logicalDS/customer_view_net.ws"
 xmlns:dsns0="ld:logicalDS/CUSTOMER_VIEW" elementFormDefault="qualified"
 targetNamespace="ld:logicalDSs/customer_view_net.ws">
 <xs:element name="getFirst">
 <xs:complexType>
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
 <xs:element name="getFirstResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="getFirstResult"
 type="stns:CUSTOMER_VIEWDataSetWrapper" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="createCUSTOMER_VIEW">
 <xs:complexType>
 <xs:sequence>
 <XS:ELEMENT NAME="P">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="dsns0:CUSTOMER_VIEW" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="createCUSTOMER_VIEWResponse">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
 <xs:element name="updateCUSTOMER_VIEW">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="p"
 type="stns:CUSTOMER_VIEWDataSetWrapper" />
 <xs:sequence>
 <xs:complexType>
 </xs:element>
 <xs:element name="updateCUSTOMER_VIEWResponse">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
 <xs:element name="deleteCUSTOMER_VIEW">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="p">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="dsns0:CUSTOMER_VIEW" />
 </xs:sequence>

Generated Artifacts Reference

Supporting ADO.NET Clients 6-15

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="deleteCUSTOMER_VIEWResponse">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
 <xs:element name="getAll">
 <xs:complexType>
 <xs:sequence />
 </xs:complexType>
 </xs:element>
 <xs:element name="getAllResponse">
 <xs:complexType>
 <xs:sequence>
 <xs.element minOccurs="0" name="getAllResult"
 type="stns:CUSTOMER_VIEWDataSetWrapper">
 <xs.sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CUSTOMER_VIEWDataSetWrapper">
 <xs:sequence>
 <xs:any namespace="ld:logicalDS/CUSTOMER_VIEW" />
 </xs:sequence>
 </xs:complexType>
 </xs.schema>
 </types>
 <message name="getAllIn">
 <part name="parameters" element="tns:getAll" />
 </message>
 <message name="getAllOut">
 <part name="parameters" element="tns:getAllResponse" />
 </message>
 <message name="getFirstIn">
 <part name="parameters" element="tns:getFirst" />
 </message>
 <message name="getFirstOut">
 <part name="parameters" element="tns:getFirstResponse" />
 </message>
 <message name="createCUSTOMER_VIEWIn">
 <part name="parameters" element="tns:createCUSTOMER_VIEW" />
 </message>
 <message name="createCUSTOMER_VIEWOut">
 <part name="parameters" element="tns:createCUSTOMER_VIEWResponse" />
 </message>
 <message name="updateCUSTOMER_VIEWIn">
 <part name="parameters" element="tns:updateCUSTOMER_VIEW" />
 </message>
 <message name="updateCUSTOMER_VIEWOut">
 <part name="parameters" element="tns:updateCUSTOMER_VIEWResponse" />
 </message>
 <message name="deleteCUSTOMER_VIEWIn">
 <part name="parameters" element="tns:deleteCUSTOMER_VIEW" />
 </message>
 <message name="deleteCUSTOMER_VIEWOut">
 <part name="parameters" element="tns:deleteCUSTOMER_VIEWResponse" />
 </message>

Generated Artifacts Reference

6-16 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 <portType name="Customer_view_netPT">
 <operation name="getAll">
 <input message="tns:getAllIn" />
 <output message="tns:getAllOut" />
 </operation>
 <operation name="getFirst">
 <input message="tns:getFirstIn" />
 <output message="tns:getFirstOut" />
 </operaton>
 <operation name="createCUSTOMER_VIEW">
 <input message="tns:createCUSTOMER_VIEWIn" />
 <output message="tns:createCUSTOMER_VIEWOut" />
 </operaton>
 <operation name="updateCUSTOMER_VIEW">
 <input message="tns:updateCUSTOMER_VIEWIn" />
 <output message="tns:updateCUSTOMER_VIEWOut" />
 </operaton>
 <operation name="deleteCUSTOMER_VIEW">
 <input message="tns:deleteCUSTOMER_VIEWIn" />
 <output message="tns:deleteCUSTOMER_VIEWOut" />
 </operaton>
 </portType>
 <binding name+"Customer_view_netSoapBinding"
 type="tns:Customer_view_netPT">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="getAll">
 <soap:operation soapAction="ld:LogicalDSs/Customer_view_net.ws/getAll"
 style="document" />
 <input>
 <soap:body use="literal" />
 </ input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="getFirst">
 <soap:operation soapAction="ld:LogicalDSs/
 Customer_viewnet.ws/getFirst" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="createCUSTOMER_VIEW">
 <soap:operation
 soapAction="ld:LogicalDSs/Customer_view_net.ws/createCUSTOMER_VIEW"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="updateCUSTOMER_VIEW">
 <soap:operation
 soapAction="ld:LogicalDSs/Customer_view_net.ws/updateCUSTOMER_VIEW"
 style="document" />

Generated Artifacts Reference

Supporting ADO.NET Clients 6-17

 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="deleteCUSTOMER_VIEW">
 <soap:operation
 soapAction="ld:LogicalDSs/Customer_view_net.ws/deleteCUSTOMER_VIEW"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="Customer_view_netSoapService">
 <port name="Customer_view_netSoapPort"
 binding="tns:Customer_view_netSoapBinding"
 <soap:address
 location="http://172.16.38.38:7001/RTLApp/ODSIWebService/LogicalDSds/
 Customer_view_net.ws" />
 </port>
 </service>
</definitions>

Generated Artifacts Reference

6-18 Oracle® Fusion Middleware Developing Data Service Integrator Applications

7

Advanced Topics 7-1

7Advanced Topics

This chapter describes miscellaneous features that are related to client programming
with Oracle Data Service Integrator. It includes the following topics:

■ Section 7.1, "Accessing Metadata Using Catalog Services"

■ Section 7.2, "Filtering, Sorting, and Fine-tuning Query Results"

■ Section 7.3, "Using Inverse Functions to Improve Query Performance"

7.1 Accessing Metadata Using Catalog Services
Oracle Data Service Integrator maintains metadata about data services, application,
functions, and schemas through Catalog Services, which is a system catalog-type data
service. Catalog services provide a convenient way for client-application developers to
programmatically obtain information about Oracle Data Service Integrator
applications, data services, schemas, functions, and relationships.

Catalog Services are also data services; you can view them using the Oracle Data
Service Integrator Administration Console, the Oracle Data Service Integrator Palette,
and Data Service controls.

Some advantages of using Catalog Services are as follows:

■ Client application developers can use the Catalog Services in the same way as they
use any other data service in Oracle Data Service Integrator.

■ Application developers can create dynamic applications based on the metadata
underlying the data service applications that have been deployed.

■ For enterprise, third-party, and other developers, Catalog Services leverage the
development of dynamic, metadata driven, query-by-form (QBF) applications.

■ Catalog Services enable interoperability with other metadata repositories.

This section provides details about installing and using Catalog Services to access
metadata for any Oracle Data Service Integrator application. It includes the following
topics:

■ Section 7.1.1, "Installing Catalog Services"

■ Section 7.1.2, "Using Catalog Services"

7.1.1 Installing Catalog Services
You can install Catalog Services as a project for an Oracle Data Service Integrator
application or as a JAR file that is added to the Library folder in Workshop for
WebLogic. The Catalog Services project (_catalogservices) contains data services that

Accessing Metadata Using Catalog Services

7-2 Oracle® Fusion Middleware Developing Data Service Integrator Applications

provide information about the application, folders, data services, functions, schemas,
and relationships available with the application.

DataServiceRef and SchemaRef are additional data services that consist of functions
that retrieve the paths to the data services and schemas available with the Oracle Data
Service Integrator application. For more information about the data services and
functions available with Catalog Services, refer to Section 7.1.2, "Using Catalog
Services."

To install Catalog Services as a project:

1. Right-click the Oracle Data Service Integrator application in .

2. Select the Install Catalog Services (Expanded) option if you want to use the catalog
services for development, as shown in Figure 7–1. If you need catalog services
only during runtime then select Install Catalog Services (Jar) option.

Figure 7–1 Installing Catalog Services

7.1.2 Using Catalog Services
After installing Catalog Services, the catalog services project, _catalogservices, is
created for the Oracle Data Service Integrator application. All the data services
associated with catalog services are available under this project. You can invoke the
data service functions to access metadata. The client Mediator API is used to invoke
the Catalog Service methods.

The data services available under _catalogservices include:

■ Section 7.1.2.1, "Application (application.ds)"

■ Section 7.1.2.3, "DataServiceRef (DataServiceRef.ds)"

■ Section 7.1.2.4, "Folder (folder.ds)"

■ Section 7.1.2.5, "Function (Function.ds)"

■ Section 7.1.2.6, "Relationship (Relationship.ds)"

■ Section 7.1.2.7, "Schema (Schema.ds)"

Accessing Metadata Using Catalog Services

Advanced Topics 7-3

7.1.2.1 Application (application.ds)
The following table provides the declaration and description for the
getApplication()function in Application.ds.

7.1.2.2 DataService (DataService.ds)
Table 7–2 provides declaration and description information for the functions available
in DataService.ds.

7.1.2.3 DataServiceRef (DataServiceRef.ds)
The following table provides the declaration and description for the functions
available in DataServiceRef.ds.

Table 7–1 Functions in Application.ds

Function Declaration Description

getApplication() as
schema-element(t1:Application) external;

This function returns the name of the Oracle
Data Service Integrator application. It does not
take any parameters.

Table 7–2 Functions in DataService.ds

Function Declaration Description Sample Input

getDataServiceRef($arg as
element(md:DataService)) as
element(md:DataServiceRef)
{$arg/md:DataServiceRef}

This function returns the
path of the data service
associated with the
function.

For this function, you need
to specify the following:

Path of the data service

Path of the schema for the
data service

Function ID of the function
for which you need the data
service reference

<urn:DataService kind="javaFunction"
xmlns:acc="ld:RTLAppDataServices/Custo
merDB/Customer"
xmlns:urn="urn:metadata.ld.bea.com">

 <urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/C
ustomer.ds</id>

 </urn:DataServiceRef>

 <returnType name="CUSTOMER"
kind="read" quantifier="*"
schemaId="ld:RTLAppDataServices/Custom
erDB/schemas/CUSTOMER.xsd"/>

<!--Zero or more repetitions:-->

 <key>

<!--1 or more repetitions:-->
<path>ld:RTLAppDataServices/CustomerDB
/Customer.ds</path>

</key>

 <!--Zero or more repetitions:-->

 <urn:FunctionId name="CUSTOMER"
arity="0"/>

</urn:DataService>

getDataService($x1 as
element(t1:DataServiceRef)) as
schema-element(t1:DataService
)? external

This function returns the
attributes of the specified
data service such as the
schema path, functions, and
relational data source.

Specify the path of the data
service to retrieve the
required result.

<DataServiceRef
xmlns="urn:metadata.ld.bea.com">

<id
xmlns="">ld:DataServices/CustomerDB/CU
STOMER.ds</id>

</DataServiceRef>

Accessing Metadata Using Catalog Services

7-4 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Table 7–3 Functions in DataService

Function Declaration Description Sample Input

getDataServiceRefsByFolder($x1 as
xsd:string, $x2 as xsd:boolean) as
schema-element(t1:DataServiceRef)*
external

This function returns the data
services that exist within a
folder in the project. You need
to specify the path of the
project folder and set the
boolean value to true for this
function.

String parameter =
ld:RTLAppDataServices/CustomerDB/

Boolean = true

getDataServiceRefs() as
schema-element(t1:DataServiceRef)*
external

This function returns the path
to all the data services in the
project. It does not require any
parameters.

No input required.

getDependents($x1 as
element(t1:DataServiceRef), $x2 as
xsd:boolean) as
schema-element(t1:DataServicRef)*
external

This function returns the path
of the data services on which
the specified data service
depends.

For this function, you need to
specify the path of the data
service whose dependents
you need to determine. For
example, if you need to find
out the dependents for
CUSTOMER.ds then specify
the path of the data service as:

ld:DataServices/CustomerDB
/CUSTOMER.ds

<urn:DataServiceRefdat
xmlns:urn="urn:metadata.ld.bea.com">
<id>ld:DataServices/CustomerDB/CUST
OMER.ds</id>

</urn:DataServiceRef>

getDependencies($x1 as
element(t1:DataServiceRef), $x2 as
xsd:boolean) as
schema-element(t1:DataServiceRef)*
external

This function returns the
dependencies for the specified
data service.

For this function, you need to
specify the path of the data
service whose dependencies
you need to determine.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld.bea.com">
<id>ld:DataServices/Demo/CustomerPro
file.ds</id>

</urn:DataServiceRef>

getFunctions($x1 as
element(t1:DataServiceRef)) as
schema-element(t1:Function)*
external

This function returns the list
of data service functions and
their attributes such as
function kind, arity, and
schema path.

For this function, specify the
path of the data service as
input.

<DataServiceRef
xmlns="urn:metadata.ld.bea.com">

<id
xmlns="">ld:RTLAppDataServices/Custo
merDB/CUSTOMER.ds</id>

</DataServiceRef>

getRelationships($x1 as
element(t1:DataServiceRef)) as
schema-elemen43t(t1:Relationship)*
external

This function retrieves the
path of data services which
have any relationship with the
specified data service. You
need to specify the path of the
data service, such as
ld:RTLAppDataServices/Cust
omerDB/CUSTOMER.ds

DataServiceRef
xmlns="urn:metadata.ld.bea.com">

<id
xmlns="">ld:RTLAppDataServices/Custo
merDB/CUSTOMER.ds</id>

</DataServiceRef>

Accessing Metadata Using Catalog Services

Advanced Topics 7-5

7.1.2.4 Folder (folder.ds)
The following table provides the declaration and description for the functions
available in Folder.ds.

7.1.2.5 Function (Function.ds)
The following table provides the declaration and description for the functions in
Function.ds.

getSchemaRefs($arg as
element(t1:DataServiceRef),
$transitive as xs:boolean) as
element(t1:SchemaRef)* external

For this function, enter the
path of the data service and
set the boolean value to true
for retrieving the list of
associated schemas. This
function also lists the paths of
schemas for data services,
which have a relationship
with the specified data
service.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld.bea.com">
<id>ld:RTLAppDataServices/CustomerD
B/CUSTOMER.ds</id>

</urn:DataServiceRef>

.

getDataService($x1 as
element(t1:DataServiceRef)) as
schema-element(t1:DataService)?
external

This function returns the
attributes of the specified data
service such as the schema
path, functions, and relational
data source.

Specify the path of the data
service to retrieve the required
result.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld.bea.com">

<id
xmlns="">ld:RTLAppDataServices/Custo
merDB/CUSTOMER.ds</id>

</urn:DataServiceRef>

Table 7–4 Functions in Folder.ds

Function Declaration Description Sample Input

getFolder() as
schema-element(t1:Folder)*
external

This function provides a list of paths
of folders and data services that exist
within the Oracle Data Service
Integrator project. It does not require
any parameters.

No input required.

getFolder($x1 as xsd:string, $x2
as xsd:boolean) as
schema-element(t1:Folder)*
external

This folder returns the paths of all
the data services that exists within a
specified folder. You need to specify
two parameters for this function,
which include:

■ Path of the folder such as
ld:RTLAppDataServices/Cu
stomerDB

■ Boolean value (usually set to
true)

■ Parameter 1 (string) =
ld:RTLAppDataServices/Cust
omerDB

■ Parameter 2 (boolean) = true

getDataServiceRefs($x1 as
element(t1:Folder)) as
schema-element(t1:DataServiceR
ef)* external

This function also provides the paths
of the data services that exist within
a folder. To retrieve this information,
specify the path of the folder as
input.

<Folder
xmlns="urn:metadata.ld.bea.com">

<id
xmlns="">ld:RTLAppDataServices/Cus
tomerDB</id>

</Folder>

Table 7–3 (Cont.) Functions in DataService

Function Declaration Description Sample Input

Accessing Metadata Using Catalog Services

7-6 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Table 7–5 Functions in Function.ds

Function Declaration Description Sample Input

getFunctionById($x1 as
element(t1:FunctionId)) as
schema-element(t1:Function)
external4

This function returns the path
of the data service and schema
along with function arity,
function kind and return type
information about the
specified function.

For this function, specify the
function ID and arity as input.

<FunctionId name=" cus:CUSTOMER "
arity="0"
xmlns:cus="ld:RTLAppDataServices/Custom
erDB/CUSTOMER"
xmlns="urn:metadata.ld.bea.com"/>

getDataService($arg as
element(md:Function)) as
element(md:DataService

This function returns the
function arity and physical
data source information for
the specified function.

For this function, you need to
specify the function ID, path
of the data service and
schema.

<?xml version="1.0" encoding="UTF-8" ?>

<urn:Function kind="read"
xmlns:acc="ld:RTLAppDataServices/Custom
erDB/CUSTOMER"

xmlns:urn="urn:metadata.ld.bea.com">

<urn:FunctionId arity="0"
name="acc:getAll"></urn:FunctionId>

<returnType kind="element"
name="urn:Account" quantifier="1"
schemaId="ld:RTLAppDataServices/Custome
rDB/schemas/CUSTOMER.xsd">

</returnType>

<urn:DataServiceRef>
<id>ld:RTLAppDataServices/CustomerDB/C
USTOMER.ds</id>

</urn:DataServiceRef>

</urn:Function>

Accessing Metadata Using Catalog Services

Advanced Topics 7-7

getRelationship($arg as
element(md:Function)) as
element(md:Relationship)
external

getFunction()relationship
function

This function returns the
relationship target and path of
the data services with which
the navigation function has a
relationship.

Specify the function ID, path
of the data service and schema
as input.

This function is applicable to
navigation functions only.

<?xml version="1.0" encoding="UTF-8" ?>

<urn:Function kind="navigate"
xmlns:acc="ld:RTLAppDataServices/Custom
erDB/Customer"
xmlns:urn="urn:metadata.ld.bea.com">

<urn:FunctionId arity="1"
name="acc:getDISCOUNT">

</urn:FunctionId>

<returnType kind="element"
name="urn:getDISCOUNT" quantifier="1"
schemaId="ld:RTLAppDataServices/Custome
rDB/schemas/CUSTOMER.xsd">

</returnType>

<parameter name="arg">

<type kind="navigate"
name="urn:DISCOUNT" quantifier="*"
schemaId="ld:RTLAppDataServices/Custome
rDB/CUSTOMER.xsd">

</type>

</parameter>

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/C
USTOMER.ds</id>

</urn:DataServiceRef>

<roleName>DISCOUNT</roleName>

</urn:Function>

Table 7–5 (Cont.) Functions in Function.ds

Function Declaration Description Sample Input

Accessing Metadata Using Catalog Services

7-8 Oracle® Fusion Middleware Developing Data Service Integrator Applications

7.1.2.6 Relationship (Relationship.ds)
The following table provides the declaration and description for the functions
available in Relationship.ds.

getSchemaRefs($x1 as
element(t1:Function), $x2 as
xsd:boolean) as
schema-element(t1:SchemaRef)*
external

DataServicesRef_

For this function, specify the
function ID and path of the
data service to retrieve the
path of the schemas associated
with the data service.

<urn:Function kind="navigate"
xmlns:acc="ld:RTLAppDataServices/Custom
erDB/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com">

<urn:FunctionId name="acc:getDISCOUNT"
arity="1"/>

<returnType name="DISCOUNT"
kind="element" quantifier="*"
schemaId="ld:RTLAppDataServices/Custome
rDB/schemas/CUSTOMER.xsd"/>

<!--Zero or more repetitions:-->

<parameter name="arg">

<type name="DISCOUNT" kind="element"
quantifier="*"
schemaId="ld:RTLAppDataServices/Custome
rDB/schemas/CUSTOMER.xsd"/>

</parameter>

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/C
ustomer.ds</id>

</urn:DataServiceRef>

<!--Optional:-->

<roleName>DISCOUNT</roleName>

</urn:Function>

Note: The functions in Relationship.ds can be used to access
metadata only for navigation functions.

Table 7–5 (Cont.) Functions in Function.ds

Function Declaration Description Sample Input

Accessing Metadata Using Catalog Services

Advanced Topics 7-9

Table 7–6 Functions in Relationship.ds

Function Declaration Description Sample Input

getFunctions($arg as
element(md:Relationship)) as
element(md:Function)

This function returns the
attributes of the function that
you specify as input. You need
to specify the following
parameters for this function:

■ String parameter = Path
of the data service

■ Function ID

■ Values for minOccurs and
maxOccurs

<urn:Relationship
xmlns:acc="ld:RTLAppDataServices/CustomerD
B/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com">

<!--1 to 2 repetitions:-->

<relationshipTarget roleName="DISCOUNT"
minOccurs="1" maxOccurs="1" description="">

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/CUS
TOMER.ds</id>

</urn:DataServiceRef>

<!--Zero or more repetitions:-->

<urn:FunctionId name="acc:getDISCOUNT"
arity="1"/>

</relationshipTarget>

</urn:Relationship>

getDataServiceRefs($x1 as
element(t1:Relationship)) as
schema-element(t1:DataServic
eRef)

You need to specify the
following parameters for this
function:

■ String parameter = Path
of the data service

■ Function ID

■ Values for minOccurs and
maxOccurs

<urn:Relationship
xmlns:acc="ld:RTLAppDataServices/CustomerD
B/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com">

<!--1 to 2 repetitions:-->

<relationshipTarget roleName="DISCOUNT"
minOccurs="1" maxOccurs="1" description="">

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/CUS
TOMER.ds</id>

</urn:DataServiceRef>

<!--Zero or more repetitions:-->

<urn:FunctionId name="acc:getDISCOUNT"
arity="1"/>

</relationshipTarget>

</urn:Relationship>

Accessing Metadata Using Catalog Services

7-10 Oracle® Fusion Middleware Developing Data Service Integrator Applications

7.1.2.7 Schema (Schema.ds)
The following table provides the declaration and description for the functions
available in Schema.dsSchemaRef (SchemaRef.ds)

getDataServices($arg as
element(md:Relationship)) as
element(md:DataService)

This function returns the
attributes, such as relational
datasource and function arity,
of the navigation function of
the data service.

For this function, you need to
specify the following
parameters:

■ String parameter = Path
of the data service

■ String parameter = Path
of the schema

■ Values for maxOccurs and
minOccurs

■ FunctionID

<?xml version="1.0" encoding="UTF-8" ?>

<urn:Relationship
xmlns:acc="ld:RTLAppDataServices/CustomerD
B/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com">

<relationshipTarget description=""
maxOccurs="1" minOccurs="1"
roleName="DISCOUNT">

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/CUS
TOMER.ds</id>

</urn:DataServiceRef>

<urn:FunctionId arity="1"
name="acc:getDISCOUNT">

</urn:FunctionId>

</relationshipTarget>

<relationshipTarget description=""
maxOccurs="1" minOccurs="1"
roleName="DISCOUNT"
xmlns:acc="ld:RTLAppDataServices/CustomerD
B/CUSTOMER">

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/CUS
TOMER.ds</id>

</urn:DataServiceRef>

<urn:FunctionId arity="1"
name="acc:getDISCOUNT">

</urn:FunctionId>

</relationshipTarget>

</urn:Relationship>

Table 7–6 (Cont.) Functions in Relationship.ds

Function Declaration Description Sample Input

Filtering, Sorting, and Fine-tuning Query Results

Advanced Topics 7-11

The following table provides the declaration and description for the functions
available in SchemaRef.ds.

7.2 Filtering, Sorting, and Fine-tuning Query Results
The Filter API enables client applications to apply filtering conditions to the
information returned by data service functions. In a sense, filtering allows client
applications to extend a data service interface by allowing the application to specify
more about how data objects are to be instantiated and returned by functions.

The Filter API alleviates data service designers from having to anticipate every
possible data view that clients may require and to implement a data service function
for each view. Instead, designers can choose to specify a broader, more generic
interface for accessing a business entity and allow client applications to control views
as desired through filters.

Table 7–7 Functions in Schema.ds

Function Declaration Description Sample Input

getSchema($x1 as
element(t1:SchemaRef)) as
schema-element(t1:Schema)*
external

This functions returns the schema
attributes of the schema associated
with the data service. You need to
specify the path of the schema
which you need to access as string
parameter. For example:

ld:RTLAppDataServices/Customer
DB/schemas/CUSTOMER.xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld.bea.com">

<id>ld:RTLAppDataServices/CustomerD
B/schemas/CUSTOMER.xsd</id>

</urn:SchemaRef>

getSchemaRef($x1 as
element(t1:Schema)) as
schema-element(t1:SchemaRef)

This function returns the path of
the schema of the data service.

Specify the schema path to get the
reference to the schema. For
example:

ld:RTLAppDataServices/Customer
DB/schemas/CUSTOMER_
TABLE.xsd

<urn:Schema
xmlns:urn="urn:metadata.ld.bea.com">

<urn:SchemaRef>

<id>ld:RTLAppDataServices/CustomerD
B/schemas/CUSTOMER_
TABLE.xsd</id>

</urn:SchemaRef>

</urn:Schema>

Table 7–8 Functions in SchemaRef.ds

Function Declaration Description Sample Input

getDependencies($x1 as
element(t1:SchemaRef), $x2 as
xs:boolean) as
schema-element(t1:SchemaRef)*
external

This function returns the
dependencies of the specified data
service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:

ld:DataServices/Demo/schemas/
CustomerProfile.xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld.bea.com">

<id
xmlns="">ld:DataServices/Demo/schemas/
CustomerProfile.xsd</id>

</urn:SchemaRef>

The second parameter is boolean and the
value can be either or .

getSchema($x1 as
element(md:SchemaRef)) as
schema-element(md:Schema)*
external

This functions returns the schemas
associated with the data service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:

ld:RTLAppDataServices/Custome
rDB/schemas/CUSTOMER.xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld.bea.com">

<id>ld:RTLAppDataServices/CustomerD
B/schemas/CUSTOMER.xsd</id>

</urn:SchemaRef>

Filtering, Sorting, and Fine-tuning Query Results

7-12 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Using the API, you can specify that only objects that meet a particular condition in the
function return set be returned to the client. A filter is therefore similar to a WHERE
clause in an XQuery or SQL statement—it applies conditions to a possible result set.
You can apply multiple filter conditions using AND and OR operators.

The effects of a filter can vary, depending on the desired results. Consider, for example,
the CUSTOMERS data object shown in Figure 7–2. The data object contains multiple
complex elements (CUSTOMER and ORDERS) and several simple elements, including
ORDER_AMOUNT.

Figure 7–2 Nested Value Filtering

You can apply a filter to any element in this hierarchy. For example, you could apply a
filter to return all CUSTOMER objects but filter ORDERS than have an ORDER_
AMOUNT greater than 1000. Similarly, you could apply a filter to return only the
CUSTOMER objects that have at least one large order.

You can also use a filter to specify the order criteria (ascending or descending) in
which results should be returned from the data service. Finally, you can use a filter to
set the maximum number of results to be returned.

7.2.1 Introducing the Filter API
You specify filters using the FilterXQuery object, which includes the following
methods enabling you to add a filter, create a filter to apply later, specify the sort order,
and set a limit on the number of results returned:

■ Section 7.2.1.1, "addFilter()"

■ Section 7.2.1.2, "createFilter()"

■ Section 7.2.1.3, "addOrderBy()"

■ Section 7.2.1.4, "setLimit()"

7.2.1.1 addFilter()
The addFilter() method enables you to create a filter and add it to the list of filters.
The addFilter() method has several signatures with different parameters,
including the following:

public void addFilter(java.lang.String appliesTo,
 java.lang.String field,
 java.lang.String operator,
 java.lang.String value,

Note: Filter evaluation occurs at the server, so objects that are filtered
are not passed over the network. Often, objects that are filtered out are
not even retrieved from the underlying data sources.

Filtering, Sorting, and Fine-tuning Query Results

Advanced Topics 7-13

 java.lang.Boolean everyChild)

This version of the method takes the following arguments:

■ appliesTo specifies the node (the XPath relative to the document element) that
the filtering affects. That is, if a node specified by the field argument does not
meet the condition, appliesTo nodes are filtered out.

■ field is the node against which the filtering condition is tested.

■ operator and value together comprise the condition statement. The operator
parameter specifies the type of comparison to be made against the specified
value. See Table 7–9 for information about available operators.

■ everyChild is an optional parameter. It is set to false by default. Specifying true
for this parameter indicates that only those child elements that meet the filter
criteria will be returned. For example, by specifying an operator of GREATER_
THAN (or ">") and a value of 1000, only records for customers where all orders are
over 1000 will be returned. A customer that has an order amount less than 1000
will not be returned, although other order amounts might be greater than 1000.

7.2.1.2 createFilter()
The createFilter() method enables you to create a filter that you can later apply
to any of the objects in the hierarchy. The createFilter() method has several
signatures with different parameters, including the following:

public void createFilter(java.lang.String field,
 java.lang.String operator,
 java.lang.String value,
 java.lang.Boolean everyChild)

This version of the method takes the following arguments:

■ field is the node against which the filtering condition is tested (specified as the
XPath relative to the document element).

■ operator and value together comprise the condition statement. The operator
parameter specifies the type of comparison to be made against the specified
value. See Table 7–9 for information about available operators.

■ everyChild is an optional parameter. It is set to false by default. Specifying true
for this parameter indicates that only those child elements that meet the filter
criteria will be returned.

7.2.1.3 addOrderBy()
The addOrderBy() method enables you to add a sort criteria (either ascending or
descending) to the specified object. The addOrderBy() method has the following
signature:

public void addOrderBy(java.lang.String appliesTo,
 java.lang.String field,
 java.lang.String sort)

The method takes the following arguments:

■ appliesTo specifies the node returned by the filter (specified as the XPath
relative to the document element).

■ field specifies the node to which the ordering is applied, relative (not the full
path) to the appliesTo node.

Filtering, Sorting, and Fine-tuning Query Results

7-14 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ sort is the sort criteria (either ascending or descending)

7.2.1.4 setLimit()
The setLimit() method enables you to specify the maximum number of entries to
return of the specified object. The setLimit() method has the following signature:

public void setLimit(java.lang.String appliesTo,
 java.lang.String max)

The method takes the following arguments:

■ appliesTo specifies the node (the XPath relative to the document element) to
which the filter is applied.

■ max is the maximim number of entries to return (an int value specified as a string,
for example, "10").

7.2.1.5 Exploring the Filter Operators
Table 7–9 describes the operators that you can apply to filter conditions.

7.2.2 Using Filters
Filtering capabilities are available to Mediator and Oracle Data Service Integrator
Control client applications. To use filters in a mediator client application, import the

Table 7–9 Filter Operators

Operator Usage Note or Example

LESS_THAN Can also use "<". For example:

myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT", "<",
"1000");

is identical to

myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT",
FilterXQuery.LESS_THAN, "1000");

GREATER_THAN Can also use ">".

LESS_THAN_EQUAL Can also use "<=".

GREATER_THAN_EQUAL Can also use ">=".

EQUAL Can also use "=".

NOT_EQUAL Can also use "!=".

MATCHES Tests for string equality.

BEA_SQL_LIKE Tests whether a string contains a specified pattern in a manner
similar to the SQL LIKE clause.

AND Compound operator that can apply to more than one filter.

OR Compound operator that can apply to more than one filter.

NOT Compound operator that can apply to more than one filter.

Note: Filter API Javadoc, and other Oracle Data Service Integrator
APIs are available on the Oracle Technology Network.

Filtering, Sorting, and Fine-tuning Query Results

Advanced Topics 7-15

appropriate package and use the supplied interfaces for creating and applying filter
conditions.

Data service control clients get the interface automatically. When a function is added to
a control, a corresponding "WithFilter" function is added as well.

The filter package is named as follows:

com.bea.ld.filter.FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter = new FilterXQuery();

2. Add a condition to the filter object using the addFilter() method.

The following example shows how to add a filter to have orders with an order
amount greater than 1000 returned (note that the optional everyChild parameter
is not specified, so order amounts below 1000 will also be returned):

myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 ">",
 "1000");

3. Use the Mediator API call setFilter() to add the filter to a RequestConfig
object, and pass the RequestConfig as an argument to the data service operation
invocation. For example,

RequestConfig config = new RequestConfig();
config.setFilter(myFilter);
CUSTOMERDAS custDAS = CUSTOMER.getInstance(ctx, "RTLApp");
custDS.myOperation(config);

4. Invoke the data service function.

For more information on invoking data service functions, see Chapter 3, "Invoking
Data Services from Java Clients."

7.2.3 Filtering Examples
In general, with nested XML data, a condition such as
"CUSTOMER/ORDER/ORDER_AMOUNT > 1000" can affect what objects are
returned in several ways. For example, it can cause all CUSTOMER objects to be
returned, but filter ORDERS that have an amount less than 1000.

Alternatively, it can cause only CUSTOMER objects to be returned that have at least
one large order, but containing all ORDERs (small and large) for each such
CUSTOMER.

The following examples show how filters can be applied in several different ways:

■ Returns all CUSTOMER objects but only their large ORDER objects:

FilterXQuery myFilter = new FilterXQuery();
Filter f1 = myFilter.createFilter(
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");
 myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER", f1);

Filtering, Sorting, and Fine-tuning Query Results

7-16 Oracle® Fusion Middleware Developing Data Service Integrator Applications

■ Returns only CUSTOMER objects that have at least one large order but view all
ORDER objects for such CUSTOMER objects:

FilterXQuery myFilter = new FilterXQuery();
myFilter.addFilter("CUSTOMERS/CUSTOMER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");

■ Returns only CUSTOMER objects that have at least one large order and return only
large ORDER objects:

FilterXQuery myFilter = new FilterXQuery();
myFilter.addFilter("CUSTOMERS/CUSTOMER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");
myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");

■ Returns only CUSTOMER objects for which every ORDER_AMOUNT is greater
than 1000:

FilterXQuery myFilter = new FilterXQuery();
myFilter.addFilter("CUSTOMERS/CUSTOMER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000",true);

Note that the everyChild flag is set to true; by default this parameter is false.

7.2.3.1 Specifying a Compound Filter
You can create a filter with two conditions using logical AND and OR operators.
Example 7–1 uses the AND operator to apply a combination of filters to a result set,
given a data service instance customerDS.

Example 7–1 Example of Combining Filters by Using Logical Operators

FilterXQuery myFilter = new FilterXQuery();
Filter f1 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS/ISDEFAULT",
 FilterXQuery.NOT_EQUAL,"0");
Filter f2 = myFilter.createFilter("CUSTOMER/ADDRESS/STATUS",
 FilterXQuery.EQUAL, "\"ACTIVE\"");
Filter f3 = myFilter.createFilter(f1,f2, FilterXQuery.AND);

7.2.3.2 Ordering and Truncating Data Service Results
You can specify the order criteria (ascending or descending) in which results should be
returned from the data service. The addOrderBy() method accepts a property name
as the criterion upon which the ascending or descending decision is based.

Example 7–2 provides an example of creating a filter to return customer profiles in
ascending order, based on the date each person became a customer.

Example 7–2 Example of Applying an Ordering Filter

FilterXQuery myFilter = new FilterXQuery();
myFilter.addOrderBy("CUSTOMER_PROFILE", "CustomerSince" ,FilterXQuery.ASCENDING);

Filtering, Sorting, and Fine-tuning Query Results

Advanced Topics 7-17

Similarly, you can set the maximum number of results to be returned using the
setLimit() method. Example 7–3 shows how to use the setLimit() method to
limit the number of active addresses in the result set to 10.

Example 7–3 Example of Applying a Filter that Truncates (Limits) Results

FilterXQuery myFilter = new FilterXQuery();
Filter f2 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS",
 FilterXQuery.EQUAL,"\"INACTIVE\"");
myFilter.addFilter("CUSTOMER_PROFILE", f2);
myFilter.setLimit("CUSTOMER_PROFILE", "10");

7.2.4 Using Ad Hoc Queries to Fine-tune Results from the Client
An ad hoc query is an XQuery function that is not defined as part of a data service, but
is instead defined in the context of a client application. Ad hoc queries are typically
used in client applications to invoke data service functions and refine the results in
some way.

You can use an ad hoc query to execute any valid XQuery expression against a data
service. The expression can target the actual data sources that underlie the data
service, or can use the functions and procedures hosted by the data service.

To execute an XQuery expression, use the PreparedExpression interface, available in
the Mediator API. Similar to JDBC PreparedStatement interface, the
PreparedExpression interface takes the XQuery expression as a string in its
constructor, along with the JNDI server context and application name.

After constructing the prepared expression object in this way, you can call the
executeQuery() method on it. If the ad hoc query invokes data service functions or
procedures, the data service's namespace must be declared by the query string before
you can reference the methods in your ad hoc query.

Example 7–4 shows a complete example; the code returns the results of a data service
function named getCustomers(), which is in the namespace:

ld:DataServices/RTLServices/Customer

Example 7–4 Invoking Data Service Functions using an Ad Hoc Query

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.PreparedExpression;

String queryStr =
 "declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";" +
 "<Results>" +
 " { for $customer_profile in ns0:getCustomer()" +
 " return $customer_profile }" +
 "</Results>";
PreparedExpression adHocQuery =
 DataServiceFactory.prepareExpression(context,"RTLApp",queryStr);
DASResult<Object> result = adHocQuery.executeQuery();

Note that the return type of the executeQuery() method is
DASResult<Object>. The kinds of Objects that can be returned from this
DASResult are the same as for data service operations invoked using the dynamic
mediator API. Simple schema types, such as xs:int and xs:decimal are returned as
Java Objects (java.lang.Integer, java.math.BigDecimal) according to the
mapping described in Table 2–5. Complex types are returned as SDO DataObjects.

Filtering, Sorting, and Fine-tuning Query Results

7-18 Oracle® Fusion Middleware Developing Data Service Integrator Applications

A single ad-hoc query may return multiple Objects, corresponding to the sequence of
items in the result of the XQuery expression. Each of these items are returned as a
single Object from calls to result.next().

Because ad-hoc queries are defined inside the client code itself, the Mediator API
cannot know the return type of the query. That is why the return value of
executeQuery() is DASResult<Object> rather than a more specific type such as
DASResult<Customer>, even if the query only returns Customer DataObjects.

However, if the query does return DataObjects whose schema is defined in a static
mediator client JAR, as described in Chapter 3, "Invoking Data Services from Java
Clients" and that static mediator client JAR is on the client's CLASSPATH, it is possible
to cast the Objects from the DASResult to the corresponding typed DataObject, just
as it is with the dynamic mediator API. For instance,

DASResult<Object> result = adHocQuery.executeQuery();
Customer cust = (Customer) cust.next();

Note that if the results of the ad-hoc query are not actually Customer DataObjects, the
above code throws a ClassCastException when attempting to cast the result of
cust.next().

Security policies defined for a data service apply to the data service calls in an ad hoc
query as well. If an ad hoc query uses secured resources, the appropriate credentials
must be passed when creating the JNDI initial context. (For more information, see
Section 3.6.6, "Obtaining the WebLogic JNDI Context for Oracle Data Service
Integrator.")

As with the PreparedStatement interface of JDBC, the PreparedExpression interface
supports dynamically binding variables in ad hoc query expressions.
PreparedExpression provides several methods (bindType() methods; see Table 7–10),
for binding values of various data types.

Table 7–10 PreparedExpression Methods for Bind Variables

To bind data type of... Use bind method...

Binary bindBinary(javax.xml.namespace.QName qname, byte[] abyte0)

Boolean bindBoolean(javax.xml.namespace.QName qname, boolean flag)

Byte bindByte(javax.xml.namespace.QName qname, byte byte0)

Date bindDate(javax.xml.namespace.QName qname, java.sql.Date date)

Calendar bindDateTime(javax.xml.namespace.QName qname, java.util.Calendar calendar)

DateTime bindDateTime(javax.xml.namespace.QName qname, java.util.Date date)

DateTime bindDateTime(javax.xml.namespace.QName qname, java.sql.Timestamp
timestamp)

BigDecimal bindDecimal(javax.xml.namespace.QName qname, java.math.BigDecimal
bigdecimal)

double bindDouble(javax.xml.namespace.QName qname, double d)

Element bindElement(javax.xml.namespace.QName qname, org.w3c.dom.Element element)

Object bindElement(javax.xml.namespace.QName qname, java.lang.String s)

float bindFloat(javax.xml.namespace.QName qname, float f)

int bindInt(javax.xml.namespace.QName qname, int i)

long bindLong(javax.xml.namespace.QName qname, long l)

Filtering, Sorting, and Fine-tuning Query Results

Advanced Topics 7-19

To use the bindType methods, pass the variable name as an XML qualified name
(QName) along with its value; for example:

adHocQuery.bindInt(new QName("i"),94133);

Example 7–5 shows an example of using a bindInt() method in the context of an ad
hoc query. Note that all variables to be bound must be explicitly declared as
external variables in the ad-hoc query, as shown in the example.

Example 7–5 Binding a Variable to a QName (Qualified Name) for use in an Ad Hoc
Query

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression(
 context, "RTLApp",
 "declare variable $i as xs:int external;
 <result><zip>{fn:data($i)}</zip></result>");
adHocQuery.bindInt(new QName("i"),94133);
DASResult<Object> result = adHocQuery.executeQuery();

Example 7–6 shows a complete ad hoc query example, using the PreparedExpression
interface and QNames to pass values in bind methods.

Example 7–6 Sample Ad Hoc Query

import com.bea.dsp.das.PreparedExpression;
import com.bea.dsp.das.DataAccessServiceFactory;
import commonj.sdo.DataObject;
import javax.naming.InitialContext;
import javax.xml.namespace.QName;
import weblogic.jndi.Environment;

public class AdHocQuery
{
 public static InitialContext getInitialContext() throws NamingException {
 Environment env = new Environment();
 env.setProviderUrl("t3://localhost:7001");
 env.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 env.setSecurityPrincipal("weblogic");
 env.setSecurityCredentials("weblogic");
 return new InitialContext(env.getInitialContext().getEnvironment());
 }

 public static void main (String args[]) {
 System.out.println("========== Ad Hoc Client ==========");

Object bindObject(javax.xml.namespace.QName qname, java.lang.Object obj)

short bindShort(javax.xml.namespace.QName qname, short word0)

String bindString(javax.xml.namespace.QName qname, java.lang.String s)

Time bindTime(javax.xml.namespace.QName qname, java.sql.Time time)

URI bindURI(javax.xml.namespace.QName qname, java.net.URI uri)

Note: For more information on QNames, see
http://www.w3.org/TR/xmlschema-2/#QName.

Table 7–10 (Cont.) PreparedExpression Methods for Bind Variables

To bind data type of... Use bind method...

Using Inverse Functions to Improve Query Performance

7-20 Oracle® Fusion Middleware Developing Data Service Integrator Applications

 try {
 StringBuffer xquery = new StringBuffer();
 xquery.append("declare variable $p_firstname as xs:string external; \n");
 xquery.append("declare variable $p_lastname as xs:string external; \n");

 xquery.append(
 "declare namespace ns1=\"ld:DataServices/MyQueries/XQueries\"; \n");
 xquery.append(
 "declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

 xquery.append("<ns1:RESULTS> \n");
 xquery.append("{ \n");
 xquery.append(" for $customer in ns0:CUSTOMER() \n");
 xquery.append(" where ($customer/FIRST_NAME eq $p_firstname \n");
 xquery.append(" and $customer/LAST_NAME eq $p_lastname) \n");
 xquery.append(" return \n");
 xquery.append(" $customer \n");
 xquery.append(" } \n");
 xquery.append("</ns1:RESULTS> \n");

 PreparedExpression pe = DataAccessServiceFactory.prepareExpression(
 getInitialContext(), "RTLApp", xquery.toString());
 pe.bindString(new QName("p_firstname"), "Jack");
 pe.bindString(new QName("p_lastname"), "Black");
 DASResult<Object> results = pe.executeQuery();

 } catch (Exception e) {
 e.printStackTrace();
 }
}

7.3 Using Inverse Functions to Improve Query Performance
When designing and implementing data services, one of the principal goals is to
provide a set of abstractions that enable client applications to see and manipulate
integrated enterprise data in a clean, unified, meaningful, canonical form. Doing so
invariably requires transforming data, which can include restructuring and unifying
the schemas and the instance-level data formats of the disparate data sources.

In such cases, names may be reformatted, addresses normalized, and differences in
units reconciled, among other operations, to provide application developers (the
consumers of data services) with a natural and easily manipulable view of the
underlying data. Such transformations, while highly useful to the end consumers of
the data, can lead to performance challenges when retrieving underlying data.

When the resulting data is queried, it is crucial for performance that much of the query
processing (especially for selections and joins) be pushable to the underlying sources,
particularly to relational data sources. This requires updates to the transformed view
of the data to be translatable back into appropriate source updates.

Unfortunately, if data transformations are written in a general-purpose programming
language, such as Java, both of these requirements can be difficult. This is because,
unlike user-written XQuery functions, such general-purpose functions are opaque to
the Oracle Data Service Integrator query and update processors.

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-21

7.3.1 The Inverse Function Solution
To solve this issue, Oracle Data Service Integrator enables data service developers to
register inverse functions with the system, enabling you to define and use general
user-defined data transformations without sacrificing query pushdown and
updatability. Using this information, Oracle Data Service Integrator is able to perform
a reverse transformation of the data when analyzing query predicates or attempting to
decompose updates into underlying data source updates.

This means that you can use inverse functions to retain the benefits of
high-performance data processing for your logical data without giving up
application-oriented convenience data functions. In addition, inverse functions enable
automated updates without the need to create Java update overrides.

7.3.1.1 Understanding Invertible Functions
The thing to keep in mind when creating inverse functions is that the functions you
create need to be truly invertible.

For example, in the following case date is converted to a string value:

public static String dateToString(Calendar cal) {
 SimpleDateFormat formatter;
 formatter = new SimpleDateFormat("MM/dd/yyyy hh:mm:ss a");
 return formatter.format(cal.getTime()) ;
}

However, notice that the millisecond value is not in the return string value. You get
data back but you have lost an element of precision. By default, all values projected are
used for optimistic lock checking, so a loss of precision can lead to a mismatch with
the database's original value and thus an update failure.

Instead the above code should have retained millisecond values in its return string
value, thus ensuring that the data you return is exactly the same as the original value.

7.3.2 How Inverse Functions Can Improve Performance
Here are some additional scenarios where inverse functions can improve performance,
especially when large amounts of data are involved:

■ Type mismatches. A UK employees database stores date of hire as an integer
number; the U.S. employees database stores hire dates in a datetime format. You
can convert the integer values to datetime, but then searching on hire date would
require fetching every record in the database and sorting at the middleware layer.
In this situation, you could use inverse functions to take advantage of each
database's hire date index.

■ Data Normalization. In order to avoid confusion of UK and U.S. employees, a data
service function prepends a country code to the employee IDs of both groups.
Again, sorting based on these values will be time consuming since the processing
cannot be achieved on the backend without modifying the underlying data.

Note: Using inverse functions effectively and correctly requires
careful design. In particular, you must ensure that the functions are
true inverses of one another, otherwise Oracle Data Service Integrator
may perform undesired operations on your data. While inverse
functions are an intuitive and useful idea, be aware that the details
require careful attention.

Using Inverse Functions to Improve Query Performance

7-22 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Inverse functions can be used to remove the prepended country code when
pushing the operation down to the underlying database.

■ Data Transformation. A logical data service has a fullname operation that
concatenates firstname and lastname elements. Any attempt to sort by fullname
would be penalized by the required retrieval of information on all customers,
followed by local processing of the returned results.

■ Data Conversion. There are many cases where values need to be converted to their
inverse based on established formulas. For example there could be a requirement
that the application retrieve customers by date as an xs:dataTime rather than as a
numeric. In this way users could supply date information in a variety of formats.
Consider an example where the data architect creates the following XQuery
function:

declare function tns:getEmpWithFixedHireDate() as element(ns0:usemp)*{
 for $e in ns1:USEMPLOYEES()
 return
 <emp>
 <eid>{fn:data($e1/ID)}</eid>
 <name>{mkName($e1/LNAME, $e1/FNAME)}</name>
 <hiredate>{int2date($e1/HIRED)}</hiredate>
 <salary>)fn:data($e1/SAL)}</salary>
 </emp>
}

Given such a function, issuing a filter query on hiredate, on top of this function,
results in inefficient execution since every record from the back-end must be
retrieved and then processed in the middle tier.

You can use inverse functions in these and other situations to improve performance,
especially when processing sizable amounts of data.

7.3.2.1 A Closer Look
Consider the case of a logical data service that has a fullname operation that
concatenates firstname and lastname elements. It is clear that performance would be
adversely affected when running the fullname operation against large data sets.

The ideal would be to have a function or functions which decomposed fullname into
its indexed components, passes the components to the underlying database, gets the
results and reconstitutes the returned results to match the requirements of the
fullname operation. In fact, that is the basis of inverse functions.

Of course there are no XQuery functions to magically deconstruct a concatenated
string. Instead you need to define, as part of your data service development process,
custom functions that inverse engineer fullname.

In many cases complimentary inverse functions are needed. For example,
fahrenheitToCentigrade() and centigradeToFahenheit() would be
inverses of each other. Complimentary inverse functions are also needed to support
fullname.

In addition to creating inverse functions, you also need to identify inverse functions
when defining the data service.

7.3.3 Examining the Inverse Functions Sample
You need to complete the following actions to use inverse functions:

■ Create the underlying Java functions

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-23

■ Create physical data services based on the functions

■ Add comparison logic to the data service

■ Configure the inverse functions

■ Create the data service

7.3.3.1 Creating the Underlying Java Functions
The inverse functions sample includes logic to perform transformations between:

■ first/last names and full names

■ department names and numbers

■ employee IDs and names

The string manipulation logic to manipulate first and last names needed by the inverse
function is in the following Java file in the JavaFunctionLib project:

JavaFunctionLib/JavaFuncs/NameLib.java

This file defines three string manipulation functions.

package JavaFuncs;
public class NameLib {
 public static String fullname(String fn, String ln) {
 return (fn == null || ln == null) ? null : (fn + " " + ln);
 }

 public static String firstname(String name) {
 try {
 int sepidx = name.indexOf(' ');
 if (sepidx < 0) return null;
 return name.substring(0, sepidx);
 }
 catch (Exception e) { return null; }
 }

 public static String lastname(String name) {
 try {
 int sepidx = name.indexOf(' ');
 if (sepidx < 0) return null;
 return name.substring(sepidx+1, name.length());
 }
 catch (Exception e) { return null; }
 }

 public static void main(String[] args) {
 String first = "John";
 String last = "Doe";
 String full = "John Doe";
 System.out.println(fullname(first, last));
 System.out.println(firstname(full));
 System.out.println(lastname(full));

 System.out.println(firstname(first));
 System.out.println(lastname(first));
 }
}

Using Inverse Functions to Improve Query Performance

7-24 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Notice that the function fullname() simply concatenates the first and last names. In
contrast, the firstnname() and lastname() functions deconstruct the resulting
full name using the required space in the full name string as the marker identifying the
separation between first and last names. Or, put another way, the fullname()
function is the invertible of firstname() and lastname().

Similar functions are available in the DeptLib and EmpIdLib packages supporting
transformations between department names and numbers, and employee IDs and
names respectively.

7.3.3.2 Creating the Physical Data Services Based on the Functions
After you have compiled the Java functions, you can create a physical data service
from the resulting class file. In the sample, physical data services were created using
the NameLib.class, DeptLib.class, and EmpIdLib.class files.

In the sample, the resulting operations corresponding to the string manipulation logic
reside in the NameFunc.ds data service, as illustrated by the following:

Figure 7–3 NameFunc.ds Data Service

Adding Comparison Logic to the Data Service

Note: See Create a Physical Data Service from a Java Function at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Create%20a%20Physical%20D
ata%20Service%20from%20a%20Java%20Function.html for
step-by-step instructions for creating a physical data service from a
class file.

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-25

As is often the case, some additional programming logic is needed. In the case of the
sample, a function, fullnameEQ(), compares names and returns a Boolean value
indicating whether the names are identical.

declare function f1:fullnameEQ($full1 as xs:string?, $full2 as xs:string?)
 as xs:boolean? {
 (f1:firstname($full1) eq f1:firstname($full2)) and
 (f1:lastname($full1) eq f1:lastname($full2))
};

7.3.3.3 Configuring the Inverse Functions
You need to configure the inverse functions to perform the reverse transformation of
the data.

In this particular case, this means that you need to identify an inverse function for
each parameter in the fullname() function.

To association the parameters of a function with inverse functions:

1. Double-click on the data service in Project Explorer. For example, double-click
NameFuncs.ds in the sample.

2. Right-click on the function with which you want to associate inverse functions,
and choose Configure Inverse Function. In the sample, right-click the fullname
operation and choose Configure Inverse Function.

Figure 7–4 Selecting Configure Inverse Function

A dialog appears enabling you to select the inverse functions for each parameter.

3. Choose the corresponding inverse functions for each parameter using the
drop-down lists, and click Next.

Note: You can define additional functions for specific conditions,
such as "is greater-than" or "is-less-than." Later, when configuring the
inverse functions, you can create associations for these conditionals
enabling the the XQuery engine to substitute the custom logic for a
simple conditional.

Note: Inverse functions can only be defined when the input and
output function parameters are atomic types.

Using Inverse Functions to Improve Query Performance

7-26 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 7–5 Selecting Configure Inverse Function

4. Specify the equivalent transforms.

7.3.3.4 Associating Custom Conditional Logic with Functions
After you have associated inverse functions with the correct parameters, you may
want to associate custom conditional logic with the functions. You do this by
substituting a custom function for such generic conditions as eq (is equal to) and gt (is
greater than). The following table lists conditional operations available for such
transformations.

Associating a particular conditional (such as "is greater-than") with a transformational
function allows the XQuery engine to substitute the custom logic for a simple
conditional. As is always the case with Oracle Data Service Integrator, the original
basis of the function does not matter.

It could be created in your data service, or externally in a Java or other routine. In this
example the transformational function, fullnameEQ, is in the Java-based physical data
service.

Table 7–11 Conditional Operations

Conditional Operation Definition

gt string-greater-than

ne string-not-equal

lt string-less-than

ge string-greater-than-or-equal-to

eq string-equal

le string-less-than-or-equal-to

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-27

Figure 7–6 Defining the Equivalent Transforms

7.3.3.5 Creating the Data Service
The final step is to build the data service that contains the operations to create, read,
update, and delete the data. In the sample dataspace, this data service, Employee.ds,
includes operations such as createEmployee, getAll, updateEmployee, and
deleteEmployee. The data service also includes operations such as
getByDeptName, getByEmpName, and getByEmpNo.

The following shows the overview of the Employee.ds data service.

Figure 7–7 Employee.ds Data Service

The data service uses XML types associated with the Employee.xsd schema. This
schema could have been created through the XQuery Editor, through the Oracle Data
Service Integrator schema editor, or through a third-party editing tool.

The getAll() operation returns all employee records, as shown in the following
listing:

Using Inverse Functions to Improve Query Performance

7-28 Oracle® Fusion Middleware Developing Data Service Integrator Applications

declare function ns1:getAll() as element(ns1:Employee)* {
 for $EMP2 in emp2:EMP2()
 return
 <tns:Employee>
 <EmpNo>{emp1:empnum($EMP2/EmpId)}</EmpNo>
 <MgrName?>{fn:data($EMP2/MgrName)}</MgrName>
 <Dept?>{dep:deptname($EMP2/Dept)}</Dept>
 </tns:Employee>
};

Examining the query plan for the getAll() operation, as shown in the following, you
can see that predicates are being pushed despite data transformations, because of the
use of inverse functions.

Figure 7–8 Query Plan for getAll Operation

The case is the same for the other read methods getByDeptName(),
getByEmpName(), and getByEmpNo(). Examining the corresponding query plans,
you can see that predicates are being pushed regardless of the specific transformations
because of the corresponding inverse functions.

7.3.4 How To Set Up the Inverse Functions Sample
This section describes how to import and configure the Oracle Data Service Integrator
inverse functions sample dataspace project.

Note: The getByEmpName() operation illustrates a typical case
where the transformation involves performing a concatenation and
the inverse function reverses the operation. In this case, N values are
merged into 1 or vice versa. The getByDeptName() and
getByEmpNo() operations are both 1:1 examples, transforming
between numeric and string values.

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-29

7.3.4.1 Requirements
You can install and work with the inverse function sample on any system with Oracle
Data Service Integrator 10gR3 (Oracle WebLogic Server 10gR3) installed.

The inverse function sample is available as a ZIP file from
http://edocs.bea.com/aldsp/docs30/code/InverseFunctions.zip.

It is recommended that the ZIP file be extracted into an Oracle Data Service Integrator
directory such as:

<ALDSP_HOME>/user_projects/workspaces/default/InverseFunctionSample

7.3.4.2 Importing the Dataspace Project
The inverse functions sample consists of two projects:

■ The inverse functions sample dataspace

■ A Java project that defines the functions used for transforming the data

To import the dataspace project:

1. Launch Workshop for WebLogic.

2. Right-click in the Project Explorer and choose Import > Import.

Figure 7–9 Import Dialog

3. Select General > Existing Projects into Workspace, and click Next.

Using Inverse Functions to Improve Query Performance

7-30 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 7–10 Import Menu

4. Click the Select archive file button, and click Browse.

5. Navigate to the InverseFunctions.zip file, select the file, and click Open.

Figure 7–11 Importing the Projects

6. Click Finish. Workshop for WebLogic imports two projects: InverseFnHowTo
and JavaFunctionLib.

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-31

Figure 7–12 Inverse Function Projects

7.3.4.3 Assigning a Targeted Runtime
Before examining the inverse functions sample, you need to start an Oracle Data
Service Integrator-enabled server and assigned a targeted runtime server to the
project.

To assign a targeted runtime:

1. Start an Oracle Data Service Integrator-enabled server.

2. In the Project Explorer, right-click the InverseFnHowTo project and choose
Properties.

Figure 7–13 Choosing Properties

3. Click Targeted Properties. The list of available servers appears.

Using Inverse Functions to Improve Query Performance

7-32 Oracle® Fusion Middleware Developing Data Service Integrator Applications

Figure 7–14 Selecting the Targeted Runtime

4. Select a server and click OK. Workshop for WebLogic assigns a runtime server to
the project.

7.3.5 Exploring the Inverse Functions Sample
The inverse functions sample consists of two projects.

7.3.5.1 Exploring the Projects
This section describes the principal entities within the two projects that comprise the
inverse functions sample.

Exploring the InverseFnHowTo Dataspace Project

The following table describes the data services defined in the InverseFnHowTo
dataspace project:

Table 7–12 Inverse Function Sample Projects

Project Description

InverseFnHowTo The inverse functions sample dataspace, including the top-level
data service, a relational physical data service, physical data
services corresponding to Java transformation functions, and
utility data services.

JavaFunctionLib A Java project that defines the functions used for transforming the
da

Table 7–13 Data Services in the InverseFnHowTo Dataspace

Data Service Description

Employee The top-level data service for the project. Examining the query plans for
the read methods in the data service shows that predicates are pushed
despite data transformations because of inverse functions.

EMP2 The physical data service that accesses the data in the underlying
relational database.

Using Inverse Functions to Improve Query Performance

Advanced Topics 7-33

Exploring the JavaFunctionLib Project

The following table describes the data services defined in the JavaFunctionLib
project:

DeptFunc

EmpIdFuncs

NameFuncs

The physical data services corresponding to the Java transformation
functions in the JavaFuncLib project.

EMP2Util Contains functions useful for manipulating and fixing the sample data
through the test view.

Table 7–14 Data Services in the JavaFunctionLib Project

Class Method Description

DeptLib deptname() Converts a department number to a department name.

deptno() Converts a department name to a department number.

EmpIdLib empid() Converts an employee number to a string of the
following format: EMPid_number.

empnum() Converts a string of format EMPid_number to an
employee id.

NameLib firstname() Extracts the first name from a string (containing a
person's full name).

lastname() Extracts the last name from a string (containing a
person's full name).

fullname() Concatenates the first and last name to form a full
name.

Table 7–13 (Cont.) Data Services in the InverseFnHowTo Dataspace

Data Service Description

Using Inverse Functions to Improve Query Performance

7-34 Oracle® Fusion Middleware Developing Data Service Integrator Applications

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing Data Services for Client Applications
	1.1 Introduction
	1.2 What Is a Data Service?
	1.3 What is an Oracle Data Service Integrator Client Application?
	1.4 Choosing a Client Programming Model
	1.5 Introducing Service Data Objects (SDO)
	1.6 Introducing the Data Service Mediator API
	1.7 Typical Client Application Development Process
	1.8 Security Considerations in Client Applications
	1.9 Performance Considerations
	1.10 Client Classpath Settings
	1.10.1 Java Mediator API Clients
	1.10.2 Web Services Clients
	1.10.3 JMX Mbean Management API Client Classpath
	1.10.4 Oracle Data Service Integrator JDBC API Client Classpath

	2 Data Programming Model and Update Framework
	2.1 Introduction
	2.2 Oracle Data Service Integrator and SDO
	2.2.1 Static and Dynamic Data Object APIs
	2.2.1.1 Static Data Object API
	2.2.1.2 XML Schema-to-Java Type Mapping Reference
	2.2.1.3 Dynamic Data Object API

	2.3 Role of the Mediator API and SDO

	3 Invoking Data Services from Java Clients
	3.1 Introducing the Mediator API
	3.1.1 What is SDO?
	3.1.2 What is the Mediator API?
	3.1.3 Dynamic and Static Mediator APIs
	3.1.4 API Overview
	3.1.5 Summary

	3.2 Getting Started
	3.2.1 Basic Steps
	3.2.2 Setting the CLASSPATH
	3.2.2.1 Adding the Oracle Data Service Integrator Client Library
	3.2.2.2 Manually Setting the CLASSPATH
	3.2.2.3 Specifying the Class Loader Directly

	3.2.3 Running the Sample Applications

	3.3 Sample Static Mediator Application
	3.3.1 Setting Up the Sample Data Service
	3.3.2 Generating the Mediator Client JAR File
	3.3.3 Setting Up the Java Project
	3.3.4 Running and Testing the Code
	3.3.5 Examining the Sample Code
	3.3.5.1 Importing Packages
	3.3.5.2 Obtaining a Data Access Service Handle
	3.3.5.3 Retrieving Data from the Service
	3.3.5.4 Obtaining a DataObject from the Result
	3.3.5.5 Disposing the Result Object
	3.3.5.6 Modifying the DataObject
	3.3.5.7 Returning Changes to the Server

	3.4 Sample Dynamic Mediator Application
	3.4.1 Setting Up and Running the Sample Code
	3.4.2 Sample Java Client Code (Dynamic Mediator API)
	3.4.3 Examining the Sample Code
	3.4.3.1 Importing Classes
	3.4.3.2 Obtaining a DataAccessService Handle
	3.4.3.3 Retrieving Data from the Service
	3.4.3.4 Obtaining a DataObject from the Result
	3.4.3.5 Disposing the Result Object
	3.4.3.6 Modifying the DataObject
	3.4.3.7 Returning Changes to the Server

	3.5 Creating New DataObjects
	3.5.1 Creating a New DataObject with the Static API
	3.5.1.1 Setting Up and Running the Sample
	3.5.1.2 Importing Packages
	3.5.1.3 Obtaining a Data Access Service Handle
	3.5.1.4 Creating a DataFactory
	3.5.1.5 Create and Name the DataObject
	3.5.1.6 Modifying the DataObject
	3.5.1.7 Returning New DataObject to the Server
	3.5.1.8 Returning the New DataObject Key

	3.5.2 Creating a New DataObject with the Dynamic API
	3.5.2.1 Running the Sample
	3.5.2.2 Importing Packages
	3.5.2.3 Creating a DataFactory
	3.5.2.4 Create and Name the DataObject
	3.5.2.5 Modifying the DataObject
	3.5.2.6 Returning New DataObject to the Server
	3.5.2.7 Returning the New DataObject Key

	3.6 Mediator API Basics
	3.6.1 Beyond the Sample Applications
	3.6.2 More on the Static Mediator API
	3.6.3 More on the Dynamic Mediator API
	3.6.3.1 Invoking Data Service Operations
	3.6.3.2 Getters and Setters

	3.6.4 Naming Conventions for Generated Classes
	3.6.4.1 Mediator Client JAR Naming Convention
	3.6.4.2 Web Services Mediator Client JAR Naming Convention

	3.6.5 Understanding DASResult
	3.6.5.1 Overview of DASResult
	3.6.5.2 Disposing of DASResult Objects
	3.6.5.3 Dynamic Mediator APIs and DASResult
	3.6.5.4 Static Mediator APIs and DASResult
	3.6.5.5 Retrieving an Array of Objects

	3.6.6 Obtaining the WebLogic JNDI Context for Oracle Data Service Integrator
	3.6.7 Working with Data Objects
	3.6.7.1 Enabling Data Objects for Change Tracking
	3.6.7.2 Modifying Data Object Properties
	3.6.7.3 Creating a New Data Object

	3.7 Mapping Data Service Types to Java Types
	3.7.1 Conversion of Simple Types
	3.7.2 Conversion of Date/Time Types
	3.7.3 Passing Empty Sequence Arguments
	3.7.4 Quantified Return Types
	3.7.5 What is Autoboxing?
	3.7.6 Support for Derived Simple Types
	3.7.6.1 Mapping Derived Schema Types to Java Types

	3.8 Web Services Support
	3.9 Advanced Topics
	3.9.1 Schema Management
	3.9.1.1 Schema Scope
	3.9.1.2 Schema Download
	3.9.1.3 Schema Cache Management

	3.9.2 Support for Stateless Operations
	3.9.3 Cache Management
	3.9.3.1 Forcing Data Cache Read-through and Update

	3.9.4 Specifying XPath Expressions as Arguments
	3.9.5 Making Ad Hoc Queries

	3.10 Understanding Transaction Behavior
	3.10.1 Transaction Behavior for Read/Write Operations
	3.10.2 Transaction Behavior for Read-Only Operations

	4 Invoking Data Services Through Web Services
	4.1 Overview
	4.2 Before You Begin
	4.3 Getting Started
	4.3.1 Basic Steps
	4.3.2 Setting the CLASSPATH
	4.3.2.1 Adding the Oracle Data Service Integrator Client Library
	4.3.2.2 Manually Setting the CLASSPATH

	4.3.3 Running the Sample Applications

	4.4 Sample Static Mediator Application
	4.4.1 Setting Up the Sample Data Service
	4.4.2 Creating a Web Service Map File
	4.4.3 Generating the Web Services Mediator Client JAR File
	4.4.4 Setting Up the Java Project
	4.4.5 Running and Testing the Code
	4.4.6 Examining the Sample Code
	4.4.6.1 Importing Packages
	4.4.6.2 Obtaining a Data Access Service Handle
	4.4.6.3 Retrieving Data from the Service
	4.4.6.4 Obtaining a DataObject from the Result
	4.4.6.5 Disposing the Result Object
	4.4.6.6 Modifying the DataObject
	4.4.6.7 Returning Changes to the Server

	4.5 Sample Dynamic Mediator Application
	4.5.1 Setting Up and Running the Sample Code
	4.5.2 Sample Java Client Code (Dynamic Mediator API)
	4.5.3 Examining the Sample Code
	4.5.3.1 Importing Classes
	4.5.3.2 Obtaining a DataAccessService Handle
	4.5.3.3 Retrieving Data from the Service
	4.5.3.4 Obtaining a DataObject from the Result
	4.5.3.5 Disposing the Result Object
	4.5.3.6 Modifying the DataObject
	4.5.3.7 Returning Changes to the Server

	4.6 Transaction Behavior and Web Services
	4.7 Securing Your Web Services Application

	5 Using SQL to Access Data Services
	5.1 Introducing SQL Access to Data Services
	5.1.1 Features of the Oracle Data Service Integrator JDBC Driver
	5.1.2 Exploring Oracle Data Service Integrator and JDBC Artifacts

	5.2 JDBC and SQL Support in Oracle Data Service Integrator
	5.2.1 JDBC Support
	5.2.2 SQL Support
	5.2.2.1 Supported SQL Statements
	5.2.2.2 Supported SQL Functions
	5.2.2.3 Numeric Functions
	5.2.2.4 String Functions
	5.2.2.5 Datetime Functions
	5.2.2.6 Aggregate Functions

	5.2.3 JDBC Metadata Search Patterns
	5.2.3.1 Table Parameter Support

	5.2.4 Additional Details and Limitations

	5.3 Preparing to Use SQL to Access Data Services
	5.3.1 Publishing Data Service Operations
	5.3.2 Configuring the Oracle Data Service Integrator JDBC Driver

	5.4 Accessing Data Services Using SQL From a Java Application
	5.4.1 Obtaining a Connection
	5.4.1.1 Using the PreparedStatement Interface
	5.4.1.2 Using the CallableStatement Interface

	5.5 Advanced Features
	5.5.1 Using Table Parameters
	5.5.1.1 When to Use Table Parameters
	5.5.1.2 Setting Table Parameters Using JDBC

	5.5.2 Accessing Custom Database Functions Using JDBC

	5.6 Accessing Data Services Using SQL-Based Applications
	5.6.1 Accessing Data Services Using SQL Explorer
	5.6.2 Connecting to the Oracle Data Service Integrator Client Using OpenLink ODBC-JDBC Bridge
	5.6.3 Using OpenLink with Reporting Tools
	5.6.3.1 Microsoft Access 2003-ODBC
	5.6.3.2 Microsoft Excel 2003-ODBC

	6 Supporting ADO.NET Clients
	6.1 Overview of ADO.NET Integration in Oracle Data Service Integrator
	6.1.1 Understanding ADO.NET
	6.1.1.1 ADO.NET Client Application Development Tools

	6.1.2 Understanding How Oracle Data Service Integrator Supports ADO.NET Clients
	6.1.3 Supporting Java Clients
	6.1.4 Enabling Oracle Data Service Integrator Support for ADO.NET Clients
	6.1.5 Generating an Oracle Data Service Integrator Web Services Mapper
	6.1.6 Viewing an ADO.NET-Enabled WSDL
	6.1.7 Creating a Web Reference in ADO.NET Client by Providing the Oracle Data Service Integrator WSDL URL

	6.2 Adapting Oracle Data Service Integrator XML Types (Schemas) for ADO.NET Clients
	6.2.1 Approaches to Adapting XML Types for ADO.NET
	6.2.1.1 XML Type Requirements for Working With ADO.NET DataSets

	6.2.2 References

	6.3 Creating a Data Service Based on an RPC-Style Web Service
	6.4 Generated Artifacts Reference
	6.4.1 XML Schema Definition for ADO.NET Types DataSet
	6.4.2 Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

	7 Advanced Topics
	7.1 Accessing Metadata Using Catalog Services
	7.1.1 Installing Catalog Services
	7.1.2 Using Catalog Services
	7.1.2.1 Application (application.ds)
	7.1.2.2 DataService (DataService.ds)
	7.1.2.3 DataServiceRef (DataServiceRef.ds)
	7.1.2.4 Folder (folder.ds)
	7.1.2.5 Function (Function.ds)
	7.1.2.6 Relationship (Relationship.ds)
	7.1.2.7 Schema (Schema.ds)

	7.2 Filtering, Sorting, and Fine-tuning Query Results
	7.2.1 Introducing the Filter API
	7.2.1.1 addFilter()
	7.2.1.2 createFilter()
	7.2.1.3 addOrderBy()
	7.2.1.4 setLimit()
	7.2.1.5 Exploring the Filter Operators

	7.2.2 Using Filters
	7.2.3 Filtering Examples
	7.2.3.1 Specifying a Compound Filter
	7.2.3.2 Ordering and Truncating Data Service Results

	7.2.4 Using Ad Hoc Queries to Fine-tune Results from the Client

	7.3 Using Inverse Functions to Improve Query Performance
	7.3.1 The Inverse Function Solution
	7.3.1.1 Understanding Invertible Functions

	7.3.2 How Inverse Functions Can Improve Performance
	7.3.2.1 A Closer Look

	7.3.3 Examining the Inverse Functions Sample
	7.3.3.1 Creating the Underlying Java Functions
	7.3.3.2 Creating the Physical Data Services Based on the Functions
	7.3.3.3 Configuring the Inverse Functions
	7.3.3.4 Associating Custom Conditional Logic with Functions
	7.3.3.5 Creating the Data Service

	7.3.4 How To Set Up the Inverse Functions Sample
	7.3.4.1 Requirements
	7.3.4.2 Importing the Dataspace Project
	7.3.4.3 Assigning a Targeted Runtime

	7.3.5 Exploring the Inverse Functions Sample
	7.3.5.1 Exploring the Projects

